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Abstract 

 

 
Vaccinia virus is a 250-300nm enveloped DNA virus from the poxvirus family and is used as a 

vector for oncolytic viral gene therapy. No unique cell surface receptor has been identified for 

Vaccinia virus and the reasons for its tropism for cancer cells are unclear. Pancreatic 

adenocarcinoma (PDAC) is resistant to conventional chemotherapy and typically contains areas 

that are profoundly hypoxic.  

 

We have investigated the utility of Vaccinia virus as a vector for targeting hypoxic regions in 

pancreatic adenocarcinoma, as other viral vectors have been found to replicate poorly in 

hypoxia. We found that cytotoxicity was equivalent in normoxia and hypoxia in some PDAC 

cell lines but in others cytotoxicity was enhanced in hypoxia. This increase in cytotoxicity was 

only seen in cell lines where there was hypoxic induction of vascular endothelial growth factor 

(VEGF). Functional studies using over-expression and knockdown of VEGF in pancreatic 

cancer cell models showed that VEGF can augment viral transgene expression, cytotoxicity and 

replication in vitro and in vivo. We found that VEGF facilitates the internalisation of Vaccinia 

virus. These results show that VEGF is an additional factor involved in the tropism and 

pathogenesis of Vaccinia virus.   

 

We then constructed an oncolytic Vaccinia virus to target hypoxic cancer cells using the HIF-1α 

oxygen degradation domain, encephalomyocarditis virus internal ribosomal entry site and the 

VEGF 3‟ un-translated region to regulate luciferase expression in hypoxia. We have shown a 

dose-, time- and oxygen-dependent effect using this construct and propose this may be adapted 

to regulate therapeutic genes, or produce a conditionally replicating Vaccinia virus, in hypoxic 

conditions. 
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1 Introduction 

1.1 Pancreatic Ductal Adenocarcinoma 

1.1.1 Pancreatic Cancer Incidence & Epidemiology  

Pancreatic ductal adenocarcinoma (PDAC) remains a disease with a dismal prognosis. 

Worldwide it is the 14
th
 most common cancer but the fifth and sixth leading cause of cancer 

death in the USA and UK respectively. In the developed world incidence has risen three-fold 

since the 1920s, stabilising in the late 1970s. PDAC occurs at an incidence of 1.75:1 male to 

female ratio but this gender bias diminishes with increased age of onset. Approximately 30 

percent of cases of PDACs are attributable to smoking. Diet and occupational carcinogens have 

been implicated but findings are not conclusive. Chronic pancreatitis is a known risk factor with 

the chronic inflammatory condition predisposing to malignant transformation(1).  

 

1.1.2 Pathology and Molecular Biology 

PDAC has a well-defined chronology of pathological and molecular changes during disease 

progression (Figure 1.1). Pre invasive lesions consist of pancreatic intra-epithelial neoplasia 

(PanIN) 1-3, after which loss of the integrity of the basement membrane is a sign of invasive 

carcinoma. The K-Ras oncogene is mutated in 95% of sporadic PDACs (2). It is located on 

chromosome 12p13 and mutations results in a constitutively active form which signals via the 

Ras-Raf-MEK pathway. The ErbB family of growth factor receptors have also been shown to be 

over expressed in PDAC, in particular epidermal growth factor receptor (EGFR) family 

members. Signalling via EGFR1 is increased due to greater production of its two ligands 

epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This results in 

signalling via the Ras-Raf-MEK signalling pathway (transmitting proliferative signals),
 
the 

PI3K/Akt signalling pathway (mediating cell cycle progression
 
and survival) and the signal 

transducer and activator of transcription (STAT) family of proteins which mediates a variety of 
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features conducive
 
to cancer cell survival progression, including cell division,

 
motility, invasion 

and adhesion (3). Loss of p16 function occurs
 
in 80–95% of PDACs and results in abrogation of 

the pRB/p16 pathway, this means that p16 can no longer inhibit the formation of the cyclin D-

cyclin-dependent kinase4/6 (CDK4/CDK6) complex resulting in cell cycle progression (4).  

 

Later in the development of PDAC, loss of the tumour suppressor genes p53, DPC4 and 

BRCA2 is found (5). Smad4 mediates intercellular signalling for members of the TGFβ family 

of cytokines. There is a loss of heterozygosity of Smad4 in 70% of pancreatic cancers and a 

total loss of protein function in 50%. This mutation affects the tumour microenvironment and 

potentiates tumour invasion (6). Reactivation of the developmental signalling pathway through 

Notch and Hedgehog is found in PDAC and may be involved in a putative pancreatic cancer 

stem cell phenotype (7). In summary, a progression model for pancreatic cancer exists but the 

variety of molecular changes highlight the heterogeneity of PDAC. 

 

 

Figure 1.1: Progression model for pancreatic cancer.  

Normal duct epithelium progresses to infiltrating cancer (left to right) through a series of 

histologically defined precursors. (5) 
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1.1.3 Pancreatic Ductal Adenocarcinoma Management 

In the UK during 2004 there were 7398 new cases and 7238 deaths with outcomes being poor 

regardless of the therapeutic modality (8). Median survival for surgically resected patients is 11-

15 months, 6-10 months for locally advanced disease and 3-5 months for metastatic disease(7).  

 

Surgery remains the only curative therapy although only a minority (10-15%) of patients present 

early enough for resection. A Kausch-Whipple partial pancreatoduodenectomy or a pylorus-

preserving partial pancreatoduodenectomy are considered the standard surgical procedures for 

resectable disease. 

 

For adjuvant therapy of resectable disease, ESPAC-1 was the first study to show benefit for 

chemotherapy in this setting. ESPAC-1 demonstrated a 21% vs. 8% 5 year survival rate when 

patients received 5-florouracil (5-FU) and Leucovorin (LV) as opposed to observation (9). The 

CONKO-001 study showed a similar benefit for gemcitabine chemotherapy in the adjuvant 

setting (10). ESPAC-3 was designed to compare 5-FU/LV with gemcitabine in a head to head 

design. Both drug treatments improved 5 year survival in comparison to historical data, but no 

benefit was seen to favour either agent in the adjuvant setting (11).  The standard of care for 

locally advanced or metastatic disease involves gemcitabine monotherapy, which has shown 

greater efficacy and lower toxicity compared to the previous regime of 5-flourouracil (12). A 

meta-analysis of clinical trials of chemotherapy for advanced pancreatic cancer have shown a 

small but significant survival advantage with combination regimes of gemcitabine with 

capecitabine (an oral 5-FU analogue) or a platinum-based drug over gemcitabine alone (13). A 

phase III randomized trial has recently demonstrated a 7.4 vs. 6.0 month (P=0.026) benefit for 

gemcitabine and capecitabine versus gemcitabine alone (14). Despite this, median survival 

times are still measured in months and consequently trials of biological agents targeting the 

molecular pathways involved in pancreatic cancer continue to be investigated. The EGFR 

inhibitor, erlotinib, was licensed by the Federal Drug Administration (FDA) after showing a 
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6.24 vs. 5.91 month improvement in mean overall survival when given with gemcitabine over 

gemcitabine alone (15). The anti-VEGF monoclonal antibody bevacizumab and the anti-EGFR 

monoclonal antibody cetuximab did not improve median survival in phase III trials of patients 

with metastatic and locally advanced PDAC (16, 17). Given this, there is a great need to 

develop effective systemic therapy, and consequently multiple novel immunotherapy and gene 

therapy strategies are being investigated.    

 

The role of radiotherapy in the management of pancreatic cancer remains controversial. The 

ability to deliver high dose therapy is limited by the proximity of adjacent organs. More targeted 

radiotherapy techniques which allow greater dose delivery and account for organ motion may 

prove to be useful. These include 3D conformal radiotherapy and Intensity-Modulated 

Radiotherapy (IMRT) which improve targeting by using multiple lower energy beams to deliver 

a higher total dose at the point where the beams transect. Proton therapy uses ionised protons 

which, compared to conventional radiation therapy, allow more accurate tumour targeting and 

decreased deposition of energy in the normal tissue through which it passes before reaching the 

tumour. In addition incorporation of organ motion sensing during the breathing cycle into the 

treatment plan should allow delivery of greater radiotherapy doses without increased toxicity. In 

the adjuvant setting, combination chemoradiotherapy (5-FU and ~45Gy) has been widely used 

in some centres (18). Data from the Surveillance Epidemiology and End Results (SEER) 

registry suggest that there is a five-month improvement in overall survival with the addition of 

radiotherapy to treatment (17 month vs. 12 month median survival, P<0.0001) (19). However no 

benefit has been demonstrated in a phase III randomised trial and in the ESPAC-1 trial a 

detrimental effect was seen. Radiotherapy may still be useful in the adjuvant setting if 

combination regimes can be designed or dose delivery improved with advanced external beam 

technologies or radionucleotide strategies. For locally advanced pancreatic cancer, radiotherapy 

is beneficial when given in combination with 5-FU but there are limited data to support the 

addition of radiotherapy to gemcitabine (20). There is currently no role for radiotherapy in the 

metastatic setting except for palliation of symptoms. 
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There is clearly an unmet need in the treatment of PDAC both in the adjuvant and metastatic 

setting and virotherapy has emerged as a novel strategy to treat tumours resistant to 

conventional therapy (21). Vaccinia virus is a promising vector for gene delivery, viral 

oncolysis and cancer vaccines however, tumour hypoxia has been shown to reduce the efficacy 

of conventional therapy (22) and it is important also to investigate its effect on novel therapies. 

 

1.2 Hypoxia and Cancer 

Tissue hypoxia is the result of a mismatch of oxygen supply to cellular demand and can be 

multi-factorial in origin. Reduction in atmospheric oxygen concentration, decreased blood 

oxygen-carrying capacity, impaired perfusion of tissue vasculature and the distance over which 

molecular oxygen must diffuse from vessel to cell all limit the delivery of oxygen. The 

physiology and microenvironment of solid tumours are fundamentally different from normal 

tissue and are more prone to develop hypoxic regions because the disordered growth of tumours 

results in structural and functional distortions in the microcirculation which impairs the delivery 

of oxygen.  

 

Normal tissues can maintain cellular function at a range of pO2 from 10-80mmHg depending on 

the tissue type. In contrast, cancer cells can be exposed to pO2 <10mmHg with moderate 

hypoxia being defined as pO2 ≤1% (~7mmHg), extreme hypoxia as pO2 ≤0.1% and anoxia as the 

absence of molecular oxygen (23). Tumours can be exposed to both chronic and acute hypoxia. 

Chronic hypoxia occurs when tumour cells are beyond the limit of oxygen diffusion (~150µm) 

which results from tumour growth extending beyond that of tumour vasculature, and this is 

defined as diffusion-limited hypoxia. In contrast, fluctuations in tumour blood supply caused by 

transient occlusion by intravascular thrombus, tumour cells or vasoconstriction result in periods 

of acute or perfusion-limited hypoxia. Thomlinson and Gray first described areas of hypoxia in 

histological sections of adenocarcinoma of the lung in 1955 (24). Since this time, areas of 

hypoxia have been found in the majority of solid tumours including malignant brain tumours 
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(25), melanomas (26), soft tissue sarcomas (27), prostate cancer (28), cervical cancer (29), 

invasive breast cancer (30), non-small cell lung cancer (NSCLC) (31), PDAC (32) and head and 

neck squamous cell carcinoma (HNSCC) (33). However, these areas are often heterogeneously 

distributed and may be located adjacent to normoxic regions. 

 

1.2.1 Molecular Basis of Oxygen Sensing 

 
The transcription factor hypoxia-inducible factor 1 (HIF-1) is an important regulator of the 

cellular response to hypoxic conditions (34-36). HIF-1 is a heterodimer composed of a α and β 

subunit. HIF-1β is constitutively expressed and not regulated by hypoxia. The transcription and 

translation of the HIF-1α subunit is mainly independent of oxygenation status (37) but 

proteolytic degradation is profoundly affected (38). In addition, the rate of HIF-1α translation is 

responsive to growth factor and oncogenic stimulation (39). The proteolytic regulation of HIF-

1α is controlled via the oxygen-dependent degradation domain (ODD) (Figure 1.2). This region 

of HIF-1α contains two domains which are specifically hydroxylated at prolyl residues Pro402 

and Pro 564. This hydroxylation is achieved via the actions of three prolyl hydroxylase domain 

(PHD) enzymes which require the presence of dioxygen as a substrate for this reaction in 

addition to other cofactors (2-oxoglutarate, iron and ascorbate) (40). This hydroxylation allows 

HIF-1α to bind the von Hippel-Lindau tumour suppressor protein (pVHL) which then functions 

as the substrate recognition component of the ubiquitin E3 ligase complex leading to proteolytic 

degradation of the HIF-1α-pVHL complex (41). In addition an asparaginyl residue, present in an 

N-terminal transactivation domain (TAD) of HIF-1α, is hydroxylated in the presence of 

molecular oxygen by factor inhibiting HIF (FIH). This FIH-dependent asparaginyl 

hydroxylation inhibits interactions with p300 co-activator and limits gene transcription (42). 
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Stabilisation of the HIF-p300/CBP complex leads to transcription of target genes containing 

hypoxia response elements (HRE). HRE sequences are present in the promoter region of some 

genes, and they contain the core sequence 5‟-RCGTG-3‟ along with flanking regions that are 

recognised by HIF-1α and lead to the formation of the transcription complex (43). Consequently 

Figure 1.2: An overview of HIF-1α function and regulation.  

In the presence of oxygen (O2), prolyl hydroxylase (PHD) hydroxylates hypoxia-inducible 

transcription factor (HIF)-1α at the oxygen degradation domain. This allows it to interact with 

the von Hippel–Lindau (VHL) complex and it is this complex that mediates the ubiquitylation 

of HIF-1α . The ubiquitination targets HIF-1α  for proteosomal degradation. In the absence of 

oxygen, prolyl hydroxylase cannot modify HIF-1α, and the protein remains stable. Stabilised 

HIF-1α, with an un-hydroxylated trans-activating domain (TAD) is translocated to the nucleus, 

where it interacts with cofactors including HIF-1β to bind to hypoxia-responsive elements 

(HREs) and activate transcription of target genes 
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this results in the transcription of genes with HREs within their promoters and this cellular 

response to hypoxia causes increased transcription of a number of genes involved in 

proliferation, apoptosis, energy metabolism and pH regulation (22). Gene expression studies of 

the response of both normal, non-transformed cells and cancer cells after exposure to hypoxia 

were published by Chi et al. (44). They defined both a gene signature pattern for the hypoxic 

response common to all cell types, and a distinct gene set which was specific to epithelial cells 

versus mesenchymal cells. Genes induced by hypoxia in an epithelial model included immune 

regulatory genes (HLADRB1, HLADRB3), complement inhibitors (SERPING1), solute 

transporters (MDR1), chemokines (CXCR4), genomic integrity (RAD50, RAD54B) and p53 

target genes (caveolin, EGF-like transforming growth factor). Many of these have been 

implicated in the aetiology of cancer and the resistance to conventional therapy and are 

considered therapeutic targets. The “hypoxic signature” of Chi et al was shown to have 

independent prognostic significance for survival and progression-free survival in breast and 

ovarian cancer. 

 

1.2.2 Hypoxia, Local Invasion and Metastasis of Cancer 

Exposure of tumour cells to hypoxia results in a phenotypic change with increased local 

invasion, perifocal tumour spreading and an increased propensity to disseminate widely. In 

prostate cancer it has been shown to be independently predictive of shortened time to 

biochemical failure, a surrogate marker for disease progression (45). In vitro analysis of the 

LNCap prostate cancer cell line after exposure to hypoxia for 24 hours demonstrated increased 

phosphorylation of Akt/Protein Kinase B and reduced apoptotic potential (46). 

Immunohistochemical analysis of HIF-1α and extrinsic measures of hypoxia such as invasive 

microelectrode studies and the hypoxic marker pimonidazole (which is reduced and retained in 

hypoxic cells) can predict for increased invasion and a poor outcome in uterine cervical cancer 

(29, 47). Human papillomavirus, the causative agent in uterine cervical cancer, has been shown 

to stabilise HIF-1α and result in increased expression of the vascular endothelial growth factor 
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(VEGF) (48, 49). In NSCLC an endogenous marker of hypoxia, Carbonic Anhydrase IX, 

predicts for a poor outcome (31). Knockdown of HIF-1α in NSCLC cell lines, by lentiviral 

short-hairpin RNA, was found to reduce CXCR4 expression and result in reduced invasion and 

migration in response to its ligand CXCL12 (50). 

 

The transition of cancer cells from an epithelial to a mesenchymal phenotype is now considered 

central to cancer migration, invasion and metastasis and is accompanied by the classical 

molecular hallmarks such as a fibroblastoid phenotype, loss of E-cadherin, β-catenin nuclear 

translocation and expression of vimentin (51). These changes can be induced by reactive oxygen 

species generation (ROS) secondary to hypoxic stress or by hypoxic upregulation of HIF-1α, 

hepatocyte growth factor (HGF), activation of Notch signalling or NFkB pathways or epigenetic 

changes (52, 53). This concept has great importance since it has been shown that anti-

angiogenic strategies can elicit the malignant progression of tumours by causing hypoxia in 

tumours and promoting an epithelial to mesenchymal transition (54). 

 

1.2.3 Hypoxia and Chemotherapy Response 

Cytotoxic chemotherapies, as monotherapies or in combination, are central to modern cancer 

therapy however hypoxia reduces the efficacy of chemotherapy by multiple mechanisms. The 

cytotoxicity of some agents relies on the generation of superoxide radicals which results in 

DNA damage. Doxorubicin, mitomycin C, etoposide, cisplatin and docetaxel have all been 

shown to generate ROS. Although superoxide radicals can be generated from a number of 

molecules containing oxygen other than dioxygen a reduction in molecular oxygen availability 

has been shown to reduce efficacy (55, 56). Drug resistance can also result from hypoxia-

induced cellular senescence. Many chemotherapies are only active against the proliferating 

tumour fraction and senescent cells which survive multiple cycles of chemotherapy will result in 

tumour regrowth (57). Hypoxic tumours also have disordered vasculature with greater diffusible 

distances between vessel and tumour cells. Both these factors can lead to poor distribution and 
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penetration of chemotherapy agents (58). The multiple alterations in gene expression after 

exposure to hypoxia can reduce the efficacy of chemotherapy. For example, hypoxia can 

increase the frequency of dihydrofolate reductase gene amplification and antagonise 

methotrexate cytotoxicity (59) and increase efflux of multiple chemotherapies by expression of 

the multi drug resistance protein (MDR) 1 (44). 

 

1.2.4 Hypoxia and Radiotherapy 

The response of both normal and malignant cells to ionizing radiation is dependent upon 

adequate oxygenation, a relationship was first described in 1953 by Gray et al (60). They 

defined the concept of the oxygen enhancement ratio i.e. the additional cytotoxicity induced by 

a given dose of radiation in normoxic vs. hypoxic cells in vitro. It was postulated that three 

times the amount of radiation was required to kill cells irradiated in the absence of oxygen. The 

magnitude of this effect at clinically relevant fractionation schedules (which are lower than 

those used in this original experiment) is not clear but the radio-resistance of hypoxic tumours 

has been well documented in a number of tumour types. Hypoxia has been shown to be 

independently predictive of a poor response to radiotherapy in cancer of the cervix (61), head 

and neck (33), prostate (62) and sarcoma (27, 63).  

 

There are multiple mechanisms of resistance to radiotherapy in hypoxia. Radiation leads to the 

generation of DNA radicals either by direct ionisation or by radiolysis of water molecules 

resulting in production of hydroxyl radicals which then react with DNA molecules. This 

damage is then fixed in the presence of oxygen. In hypoxic conditions, reducing species can 

accept electrons and repair this damaged before it is permanently fixed. The genetic 

mechanisms behind radio-resistance are less well characterised than the radiobiological effects. 

Studies using individual pathway analysis have shown that, as with resistance to chemotherapy, 

the activation of PI3K/Akt/NF-kappa B signalling is associated with resistance to radiation-

induced apoptosis (64). HIF-1α has also been used as a therapeutic target to restore 
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radiosensitivity. Knockdown of HIF-1α with siRNA in vivo using adenoviral gene transfer was 

found to cause a limited but significant improvement in radiosensitivity (65). 

 

1.2.5 Evidence for hypoxia in PDAC 

PDACs contain significant areas of hypoxia that have been measured intraoperatively using 

microelectrodes (32). Using intrinsic markers it has been shown that hypoxia and HIF-1α 

stabilisation is associated with a poor prognosis in PDAC (66, 67). In vitro, hypoxia is 

implicated in the resistance to gemcitabine, the current standard of care. Hypoxia causes 

resistance to the pro-apoptotic effects of gemcitabine by an increase in PI3K/Akt/NF-kappa B 

signalling (68).
 

 

1.3 Vascular Endothelial Growth Factor, Angiogenesis and Cancer 

Angiogenesis is the growth of new blood vessels from existing vessels and neoangiogenesis is 

essential for the growth of all tumours beyond 2 or 3mm (69). The process of angiogenesis is 

regulated by the balance of angiogenic growth factors and inhibitors, released from endothelial 

cells, monocytes, platelets, smooth muscle and tumour cells (70). When there is an excess of 

growth factors in comparison to inhibitors, as is frequently the case in tumours, neoangiogenesis 

within the local tumour environment is initiated.  

 

Proangiogenic growth factors released from tumours bind to receptors on both endothelial cells 

of nearby blood vessels and circulating, bone-marrow derived epithelial progenitor cells (EPC). 

This results in their activation, proliferation and co-ordinated growth via the interaction of 

integrins with extracellular matrix components. The endothelial cells then remodel and form 

tubes, which connect into loops through the tumours, forming completed blood vessels. 

Structural support cells such as smooth muscle cells follow, but these tumour blood vessels 

remain leaky and have a poorly formed basement membrane (71, 72). 
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Vascular endothelial growth factor-A (VEGF) is a diffusible mitogen that plays a critical role in 

angiogenesis by increasing blood vessel permeability, endothelial cell growth, proliferation, 

migration and differentiation (73-75). VEGF is a heparin-binding polypeptide growth factor that 

was identified and isolated in 1989 by Ferrara et al (76). They discovered a molecule that was 

secreted into the extracellular compartment and was mitogenic to endothelial cells. Further 

characterisation has discovered that this molecule exists in multiple isoforms (77) and that these 

isoforms differ in their molecular masses and their receptor binding (Figure 1.3). They have a 

variable pattern of binding to heparin or heparan-sulphate proteoglycans and to different VEGF 

receptors. The splice forms VEGF121, VEGF145 and VEGF165 are secreted, whereas VEGF189 is 

tightly bound to cell surface heparan-sulphate and VEGF206 is an integral membrane protein. In 

Figure 1.3: VEGF isoforms and their specificity for VEGFR1, VEGFR2, NRP1 and 

HSPGs.  

VEGFA isoforms/VEGFE and their binding to VEGF receptor 1, VEGF receptor 2, Neuropilin 

1 (NRP1) and heparan sulphate proteoglycans (HSPG) as relevant to this study. MAM Domain 

is a ~ 170 aa region important for NRP1 interaction with co-receptors. 
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contrast to the other forms, VEGF121 and VEGF145  do not bind to heparin or extracellular matrix 

proteoglycans. The signalling tyrosine kinase receptor FLT-1/VEGFR1 (fms-like tyrosine 

kinase-1) and KDR/VEGFR2 (kinase domain region/flk-1, foetal liver kinase-1) binds all 

isoforms of VEGFA but differ in their intracellular signalling. Signalling via VEGFR2 is 

responsible for most functions involved in angiogenesis. Neuropilin-1 acts predominantly as a 

co-receptor as it lacks the tyrosine kinase domain found in VEGFR1/2. Ligands for NRP1 

include VEGF165 and VEGFE, the Orf Virus VEGF homologue (78). 

 

Elevated expression of VEGF has been detected in a variety of human tumours and this is 

associated with poor survival and an increased risk of recurrence (74). Up-regulation of VEGF 

occurs in response to a microenvironment of low oxygen conditions via the hypoxia inducible 

transcription factor HIF-1α (79). The 5‟ VEGF gene promoter regions contain hypoxia response 

elements that allow binding of HIF-1α and increased gene transcription (80). VEGF then 

stimulates endothelial migration via the PI3K isoform p110 alpha and subsequent activation of 

the Small GTPase RhoA (81). Expression of VEGF in response to hypoxia is central to 

angiogenesis and has led to VEGF being defined as the prime hypoxia-inducible angiogenic 

factor. VEGF is also induced by a number of cytokine growth factors such as epidermal growth 

factor (EGF), platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) 

(78). Mutations in Ras oncogenes, and p53 are also linked with increased VEGF expression, as 

are genetic alterations of the phosphatase and tensin homolog protein (PTEN) and the Von 

Hippel Lindau protein (pVHL) that increase HIF-1 activity in tumour cells, which may 

indirectly lead to increased levels of VEGF (82-87).  

 

Although there is no known homologue of VEGF in the Vaccinia virus genome, Orf virus the 

type species of the Parapoxvirus genus, produces a protein with a high degree of similarity to 

other VEGF family members (88, 89). VEGF-E has been shown to have 25-43% sequence 

homology with other VEGF proteins but notably contains all six cysteine residues of the 

cysteine-knot motif which are conserved in all VEGF family members. Unique among the 
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VEGF family, receptor binding is restricted to VEGFR-2 and NRP1 (90, 91). This viral protein 

induces endothelial cell proliferation, vascular permeability, angiogenesis and 

lymphangiogenesis in vitro. In vivo it is responsible for the characteristic pustular dermatitis 

seen in sheep, goats and humans where there is extensive vascular and epithelial proliferation 

(92). 

 

1.4 Viral Therapy for Cancer 

Despite advances in conventional chemotherapy the response rates of PDAC is poor and five 

year survival limited. With the increasing knowledge of the molecular genetics of pancreatic 

cancer, gene therapy is developing as a new option for this extremely aggressive disease. Gene 

therapy strategies to repair isolated genetic defects in cancers, such as restoring wild type p53 

status, showed promising in vitro results but have not been successful in clinical trials (93). The 

lack of efficacy of such single gene strategies is not unexpected given the complexity of genetic 

changes and abnormalities in signal transduction found in cancer cells. Given this lack of 

efficacy, the use or tumour-selective, replication-competent viruses or bacteria are being 

investigated as new agents for cancer therapy.  

 

The concept that viruses may have some role in the treatment of cancer is not new. There are 

many examples in the literature where an acute viral illness or recent vaccination has resulted in 

the regression of a malignancy (94). Previous smallpox vaccination has also been shown to 

reduce the risk of melanoma incidence many years after vaccination implicating tumour specific 

immunity as a mechanism of action (95). 

 

The central premise of viral oncolytic therapy is that the vector replicates specifically in cancer 

cells (Figure 1.4). Some viruses have an inherent tropism for cancer cells alternatively specific 

viral genes can be deleted which are essential for replication but are compensated for by 

abnormalities in cancer cells but not in normal tissue. These therapeutic effects can be mediated 

by multiple mechanisms in addition to cell lysis as a result of viral replication. These effects 
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include the expression of toxic proteins, local conversion of pro-drugs to active chemotherapy 

agents or re-sensitisation to conventional therapies and induction of host cell-mediated 

immunity.  

 

The ideal vector would be highly tumour-selective so that it can target cancer cells without 

affecting surrounding normal cells. The efficiency of viral therapy can be enhanced by the use 

of a bystander effect. This is defined as induction of cell death, limitation of cell growth, 

inhibition of angiogenesis or an immune mediated effect by enhancing the host immune 

response to cancer cells (96). The ability to harness the host immune response against tumour 

cells has the potential not only to enhance local cancer cell death, but also to treat distant 

metastases. 

  

Figure 1.4: Replication-selective oncolytic viruses.  

The premise of oncolytic viral therapy involves viral replication only in cancer cell due to an 

inherent tropism or deletion of critical viral genes rendering them tumour-specific. Viral 

replication leads to production of new infectious virions, lysis of infected cells and spread of 

virions to infect adjacent and potentially distant cancer cells. (Hawkins LK, Lemoine NR, Kirn D. 

Oncolytic biotherapy: a novel therapeutic plafform. The Lancet Oncology. 2002 January;3(1):17-26.) 
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Viruses have evolved over millions of years and gained the ability to evade our immune system, 

infect and replicate efficiently in and cause lysis of humans cells to facilitate viral spread (96). 

These vectors naturally induce oncolysis or stimulate apoptosis and are capable of expressing 

therapeutic genes at high transduction efficiencies and inducing tumour-specific, cell mediated 

immunity  (21).  

 

Many oncolytic viruses have been developed but there has been few successful clinical trials 

(97). Replication-selective oncolytic adenovirus is the most well-researched and Onyx 

015/dl1520, or H101 in China, was approved as the world's first oncolytic virotherapy for head 

and neck cancer therapy (98). However, to date clinical trials using oncolytic viral therapy for 

pancreatic cancer have been disappointing. Two phase I/II trials using Onyx 015 (dl 1520), an 

adenovirus serotype 5 (Ad5) vector, with a deletion in the p53-binding protein E1B55kD to 

improve tumour selectivity, have shown minimal response when injected into pancreatic cancers 

endoscopically or under CT guidance (99, 100). There are many reasons for the poor 

performance of adenoviral vectors in clinical trials to date. The complexity of cancer cell 

signalling abnormalities and the effect of viral gene deletions are major factors and results may 

improve with future generations of adenoviruses.  

 

Ultimately, for oncolytic viruses to become part of the cancer treatment paradigm the effect of 

the tumour microenvironment on viral delivery and pathogenesis will need to be considered.  

Studies looking more specifically at adenovirus biology under hypoxic conditions may partly 

explain its poor performance in clinical trials to date. Ad5, a group C adenovirus, shows 

attenuated viral replication in hypoxic conditions. Virus attachment and internalisation via 

Coxsackie/Adenovirus receptor (CAR) and αv integrin expression is unaffected by hypoxia as is 

mRNA expression of viral proteins E1A and Hexon. However translation of viral mRNA to 

protein is reduced, resulting in a 10-100-fold reduction in the yield of infectious virus particles 

(101, 102). In addition the group B adenoviruses type 3 and 11 are attenuated in hypoxia 

displaying reduced lytic potential and production of virus particles independent of viral receptor 



Chapter 1 

 

33 

 

status and viral gene expression (103). Consequently, adenoviruses may not be the ideal vectors 

for pancreatic cancer and investigation of other vectors is warranted.  

 

Vaccinia virus is an alternative viral vector with many attributes that make it an attractive vector 

for viral gene therapy. Townsley et al. found that exposure of cells to a low pH augmented viral 

uptake via an endosomal pathway. The tumour microenvironment is known to be hypoxic and 

genes involved in regulating intracellular pH are upregulated by HIF-1α (104). Given that 

pancreatic cancer has been shown to be one of the most hypoxic tumours (32) we have decided 

to investigate Vaccinia virus as an alternative vector for pancreatic cancer gene therapy and to 

characterise the effect of hypoxia on the viral life cycle. 

 

1.4.1 Vaccinia Virus 

Vaccinia virus is an enveloped, double-stranded DNA virus and a member of the genus 

Orthopoxvirus from the Poxviridae family. The true origin of Vaccinia virus remains unknown 

and it has no single natural host. In 1796, Edward Jenner created the first vaccine when he 

isolated cowpox virus from a milkmaid and used it to vaccinate others against smallpox. 

Vaccinia virus was probably derived from cowpox virus through multiple passages over time 

and became established as an effective smallpox vaccine (105). Vaccinia virus was used widely 

as the vaccine strain for the WHO smallpox eradication programme (106)  

 

1.4.2 Strains of Vaccinia virus 

Many strains exist, some of which have been sequenced (107). The Western Reserve (WR) 

strain of Vaccinia virus has been the most common strain used in laboratories for the 

construction of oncolytic Vaccinia viruses, based on its supposed superior lytic activity over 

other strains in vitro (108). However, this is not a vaccine strain and less is known of the safety 
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profile in humans. In addition, it has neurovirulence and is gonadotropic in murine models (109, 

110). 

 

Vaccine strains of Vaccinia virus such as the Lister, Wyeth, Modified Vaccinia virus Ankara 

(MVA), Copenhagen and its derivative New York Vaccinia virus (NYVAC) are less virulent 

than the WR strain and may offer a superior safety profile in vivo. The MVA, Copenhagen and 

NYVAC strains all require primary cells, such as chicken fibroblasts, for production (111). 

These are difficult to mass-produce and may be contaminated by other viruses. However, both 

the Lister and WR strains can be produced at a high yield in CV1 cells, a normal African Green 

Monkey Kidney Fibroblast Cells. This cell line can be easily stored and grown at high density in 

culture. Mass production of the Lister virus is therefore safer, easier and more cost-effective 

than other vaccine strains. The Lister strain was developed at the Elstree laboratories of the 

Lister Institute. This vaccine strain of Vaccinia virus was used safely as the smallpox vaccine 

throughout Europe, is highly attenuated and has recently been fully sequenced (112, 113). As a 

result the Lister strain is the Vaccinia strain used as the vector for oncolytic therapy in our 

laboratory.  

  

1.4.3 Structure of Vaccinia virus and nomenclature of virions. 

Vaccinia virus is a large DNA virus measuring 250-360nm in size and encodes over 200 

proteins from a genome of approximately 200 kilobases (114, 115). The study of this virus is 

complicated by the fact that there are four forms of infectious virus particles and controversy 

surrounding the exact structure of these.  The intracellular mature virus (IMV) is the initial 

particle formed in peri-nuclear viral factories and surrounded by a single lipoprotein membrane. 

The intracellular enveloped virus (IEV) which is a triple lipoprotein-enveloped virus produced 

after fusion with the trans-Golgi network or early endosomes. The cell-associated enveloped 

virus (CEV) is formed after the IEV fuses with the cell surface membrane and is retained at the 

cell surface membrane. The extracellular enveloped virus (EEV) is a double lipoprotein-
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enveloped virus released from the cell membrane (116). Each particle contains an inner viral 

core containing a number of virus-encoded proteins including RNA polymerases, enzymes for 

RNA capping, methylation, polyadenylation and some early viral mRNA (117). 

           

1.4.4 Overview of the Vaccinia virus life-cycle 

 
Vaccinia virus replication occurs exclusively in the cell cytoplasm. Infection is a highly co-

ordinated process from cell entry, viral mRNA transcription, protein translation, DNA 

replication, virion assembly through to release co-ordinated release of EEV/CEV or cell lysis 

and release of IMVs (Figure 1.5). 

 

 

 

 

Figure 1.5: Overview of the Vaccinia virus lifecycle.  

The Vaccinia virus lifecycle occurs in the cytoplasm of infected cells. Viral replication requires 

attachment and entry, temporal mRNA transcription, DNA replication, wrapping of viral cores 

with a cell-derived lipoprotein membrane and egress. (Moss B. Poxviridae: the viruses and their 

replication, Fields Virology. 4th Edition ed. Knie DM, Howley PM, editors. Philadelphia: Lippincott 

Williams and Wilkins; 2001.) 
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1.4.5 Viral Attachment and Internalisation 

Vaccinia virus has a wide tropism and can enter most mammalian cell lines (118). However, a 

unique receptor for Vaccinia virus has not been identified. This is in contrast to adenovirus 

where attachment is via the coxsackievirus and adenovirus receptor (CAR) for Ad5 and CD46 

for Group B adenoviruses (119, 120).  

 

Several proteins present in the outer membrane of Vaccinia virus have been shown to be 

important in IMV cell entry (121). H3L, A27L and D8L all interact with cell surface 

glycosaminoglycans (GAG) and are involved in virus binding (122-124). However, the presence 

of these viral proteins is not essential and their effect on viral replication is dependent on cell 

type. Carter et al found that pre-incubation of purified IMV with various GAGs, to saturate 

these viral proteins, did not significantly impair the infectivity of BSC-1 cells (125).  In 

contrast, Whitbeck et al found that heparin was able to inhibit IMV attachment in human HeLa 

cells, murine B78H1 and L cells but not BSC-1 and Vero cells (126). They also examined the 

effect of low pH on the rate of endosomal uptake of Vaccinia virus IMV. They used 

bafilomycin to inhibit the endosomal Na/H+ pump and thereby prevent acidification of the 

endosomal compartment. They found that they were able to reduce the entry of Vaccinia virus 

by 35-90%, depending upon the cell type. They concluded that Vaccinia virus may enter 

different cell types by different mechanisms and also use these different mechanisms 

simultaneously (both endocytosis and plasma membrane fusion) to enter a single cell type. This 

corroborates the findings of Townsley et al who showed that a low pH-dependent endosomal 

pathway was also responsible for the entry of Vaccinia virus IMV (127). Alternatively these 

findings may be the result of a mixture of IMVs and EEVs being used in the virus preparation. 

Vanderplasschen et al demonstrated that IMVs and EEVs enter cells via different mechanisms 

or receptors (128). They also suggested that only the EEV exhibits a low-pH-dependent entry 

mechanism where un-coating of the EEV occurs inside acidified endosomes (129). This would 

suggest that although EEVs represent only a small fraction (~2-5%) of standard preparations of 
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Vaccinia virus on a single sucrose gradient, they are responsible for a disproportionate amount 

of viral infection compared to IMVs. EEVs have an additional lipid layer making them more 

resistant to host immune inactivation. This improves infectivity after systemic delivery in vivo 

(130). In contrast, the comparative infectivity of IMV versus EEV particles in vitro has not been 

clearly demonstrated, partly due to the fragility of EEVs.  

 

The epidermal growth factor receptor (EGFR) was initially proposed as a cellular receptor for 

Vaccinia virus because receptor occupation was shown to inhibit Vaccinia virus (131, 132). 

This hypothesis stemmed from the discovery of the viral protein Vaccinia Growth Factor 

(VGF).  This is a polypeptide encoded in the viral genome with sequence homology to both the 

EGF and Transforming Growth Factor-α and is produced early after viral infection (133, 134). 

VGF is secreted extracellularly, induces auto-phosphorylation of the EGFR, and signals via 

MEK kinases resulting in cell survival and proliferation (135-137). The concept that EGFR is a 

receptor for Vaccinia virus has largely been disproved and there are no studies since the 

development of multi-channel fluorescence microscopy which show co-localisation of Vaccinia 

virus with the EGFR (138). The most likely conclusion is that VGF or EGF/TGF-α signalling 

via the EGFR stimulates cell signalling pathways that maintain cells in a more susceptible state 

for infection to maximise viral replication in epithelial tissues prior to the lytic step of the viral 

life cycle. A study by Vermeer et al used intact respiratory epithelium from cadaveric sources 

and monitored the effect of EGF on Vaccinia virus infection and respiratory epithelium 

morphology (139). In normal respiratory epithelium EGF is secreted via the apical membrane 

and acts on the basolaterally located receptors to stimulate cell proliferation and repair when 

epithelial integrity is lost. In the context of viral infection they showed that virally produced 

VGF or recombinant EGF was able to stimulate these basolateral receptors and maintain 

epithelial integrity, stimulate proliferation and consequently facilitate maximal viral replication 

at early time points after infection. Deletion of VGF now serves as one of the important 

strategies for improved tumour targeting of oncolytic Vaccinia virus. Mutant viruses with 

deletion in the VGF gene are attenuated but this deletion is compensated for in cancer cells with 
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constitutively active EGFR/Ras signalling pathways (140, 141). Due to concern about the use of 

smallpox in bioterrorist attacks this pathway has been targeted to reduce the lethality of 

respiratory inoculation. Vaccinia virus respiratory infection is used as a model of smallpox 

attack and Yang et al were able to show that pre-treatment with inhibitors of the ErbB1 receptor 

tyrosine kinase was able to reduce the lethality of a respiratory infection (142).  

 

Lipid-rich membrane domains defined as lipid rafts have been implicated in the entry of 

enveloped viruses (143). Vaccinia virus co-localises with GM-1, a marker of lipid rafts, and 

depletion of the sphingomyelin and cholesterol domains impairs the binding of Vaccinia virus to 

the cell membrane (144). 

 

1.4.6 Viral Internalisation and Movement. 

Macropinocytosis, used by the IMV for cell entry, is a transient growth factor-induced, actin-

dependent endocytic process that leads to internalisation of fluid and membrane into large 

vacuoles. It is associated with considerable cell-wide plasma membrane ruffling induced by the 

activation of actin and microfilaments connected to the plasma membrane. The ruffles take the 

form of lamellipodia, circular ruffles and plasma membrane blebs. These protrusions can fold 

back, forming fluid-filled cavities and undergo membrane fission forming closed vacuoles that 

are no longer connected with the plasma membrane. These macropinosomes have a diameter of 

0.5–10 µm, larger than other pinocytic vesicles. This causes a transient increase in cellular fluid 

uptake and is often termed fluid phase endocytosis (145). The arginine-rich HIV-Tat protein 

also uses this mechanism for cell entry. 

 

IMV can bind to filopodia and lamellapodia and move towards the cell body in a manner 

consistent with actin-based motility. Large transient plasma membrane blebs are formed when 

the IMV reaches the cell membrane. The formation of the structures appears to be stimulated by 

phosphatidylserine residues in the virus envelope. This mimics apoptotic bodies and induces a 
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macropinocytic response by the host cell. This requires Ras-related C3 botulinum toxin 

substrate 1 (Rac1), a member of the Rho family of GTPases and p21-activated kinase 1 (PAK1). 

The IMV induces phosphorylation of threonine 423 of PAK1 which is known to be essential for 

macropinocytosis (146). The stimulation of the cell entry mechanism allows virus cores to enter 

the cell. EEV entry does not require this co-ordinated entry mechanism and inhibition of 

molecules involved in this pathway does not reduce infectivity (147).  

 

After internalisation, virus trafficking switches to microtubule-dependent transport. The pre-

transcribed early viral mRNAs are released from the core on entry and are transported along 

with the intact viral core to the endoplasmic reticulum. Here these mRNAs are translated into 

proteins involved in core uncoating, release and then replication of viral DNA (148).  

 

1.4.7 Viral Gene Expression and DNA Replication 

The tropism of Vaccinia virus is determined both by the ability to enter cells but also to 

complete replication and form new virions.  Following the entry of Vaccinia virus into the cell 

cytoplasm and trafficking to endoplasmic reticulum-associated, peri-nuclear viral factories, 

RNA polymerase and transcription factors already present in the virus facilitate early viral gene 

expression (114). Early Vaccinia virus mRNA is detected within 20 minutes of infection and 

peaks at 1.5 hours. Early mRNA transcripts produce further enzymes required for DNA 

transcription including thymidine kinase and ribonucleotide reductase, which synthesise any 

extra deoxyribonucleotides required for DNA replication. Soon after Vaccinia virus entry, all 

host protein synthesis is shut down following the expression of D9 and D10 Vaccinia proteins 

which destabilise cellular mRNA (149-151). This enhances viral replication by alleviating 

competition for nucleotides and protein synthesis machinery from cellular mRNAs, as 

depletions of pyrimidine nucleotide pools has been shown to limit Vaccinia virus DNA 

replication (152-154).  Exposure of cancer cells to hypoxia is known to limit the availability of 

pyrimidine nucleotides (155). 
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Early transcription occurs exclusively under the control of viral transcription factors but host 

proteins  contribute to the efficiency of intermediate and late gene transcription (118). 

Intermediate mRNA is seen from 1 hour after infection and peaks at 2 hours, resulting in the 

production of late transcription factors. Late mRNA is seen from 2 hours until 48 hours and 

encodes the structural proteins and enzymes required for viral assembly. New virions are coated 

with a single lipid layer containing viral proteins to form the IMV. This represents the majority 

of infectious viral particles as completion of the lytic viral life cycle will results in the release of 

these particles and allow infection of adjacent cells (116). Vaccinia proteins expressed on the 

surface of infected cells may mediate cell lysis by binding complement or natural killer (NK) 

cells although this is not completely characterised (156). 

 

In order for viral replication to be efficient the virus must enter the cell and have sufficient time 

to replicate before virus-induced apoptosis or cell lysis occurs. The requirement of Akt 

activation to inhibit virus-induced apoptosis is a mechanism that is used by a number of viruses 

to facilitate maximal replication (157). Myxoma virus, a member of the poxvirus family, 

requires the presence of phosphorylated Akt or the induction of this phosphorylation on 

infection in order for viral replication to occur. An ankyrin-repeat viral protein, MT5 is 

responsible for phosphorylation of Akt (158). Soares et al were able to show that Vaccinia 

virus-induced Akt phosphorylation resulting in reduced virus-induced apoptosis as measured by 

caspase-3 and TUNEL assays (159). This was inhibited in the presence of LY294002, an 

inhibitor of PI3K/Akt. 

 

1.4.8 Virus Egress 

The majority of IMV are released on cell lysis. However some IMV are wrapped in a double 

layer of Golgi- or endosome-derived intracellular membrane to form IEV (160). These use 

microtubules to traffic to the cell surface where a single layer of the outer lipid membrane fuses 
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with the cell plasma membrane creating CEV (161). CEV induce the formation of actin tails at 

the cell surface, which facilitate their spread to surrounding cells. EEVs, which mediate long-

range viral spread, are CEVs released from the cell membrane.  

 

The molecular mechanisms of this transition have been clarified; the IEV binds via the 

unphosphorylated viral protein A36R to Kinesin which mediates the microtubule-dependent 

transport to the cell surface. When present at the membrane as a CEV the B5R protein 

stimulates Src or Abl family-mediated phosphorylation of A36R which causes recruitment of 

cell actin polymerization machinery including adaptor proteins Nck and Grb2, the scaffold 

protein N-WASP and the Arp2/3 nucleation complex. This results in a switch to actin-based 

motility and protrusion of actin tails from the cell membrane and can be inhibited using 

inhibitors of the Src or Abl families (162, 163).  The release of EEV requires Abl but not Src 

family tyrosine kinase phosphorylation and can inhibited using STI-571 (Gleevec – an Bcr-Abl 

kinase inhibitor used in the treatment of chronic myeloid leukaemia) and reduces viral 

dissemination five-fold (163).  

 

The replication of Vaccinia virus is fast, efficient and does not require the host transcriptional 

machinery. However the viral lifecycle is still regulated by interaction of viral proteins and 

intracellular signalling pathways. Selective modification of this can significantly affect viral 

pathogenesis. A greater understanding of the signalling pathways that facilitate Vaccinia virus 

infection could allow improvements in oncolytic viral therapy and present strategies to alter 

poxvirus pathogenesis.  

 

1.4.9 Inherent tumour selectivity of systemically delivered Vaccinia virus 

One of the greatest barriers to the clinical application of viral gene therapy is specific and 

efficient gene delivery. This can to some extent be achieved by direct delivery of the virus to 

primary tumours and metastases by intratumoural injection. However, for many tumours this is 
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not feasible or metastases are too small to be detectable and systemically delivered agents are 

required.  

 

Wild-type Lister strain of Vaccinia virus has been shown to display inherent tumour specificity 

following intravenous delivery in both human tumour xenografts in nude mice and murine 

tumours in immunocompetent mice (164). This inherent specificity of Vaccinia virus for cancer 

cells is due to several factors; live in vivo imaging of systemically administered Vaccinia virus 

expressing the green fluorescence protein (GFP) confirmed that viral replication initially took 

place immediately surrounding tumour capillaries. These vessels differ from normal capillaries 

as they do not have an intact basement membrane and are leaky due to large gaps between 

endothelial cells (165). This may allow the large Vaccinia virus virions to enter the 

extravascular space. In support of this hypothesis, hyperthermia (to induce capillary dilation) 

improves the dissemination of Vaccinia virus (117). Additional factors include the constitutive 

activation of cell signalling pathways found in cancer cells, such as the EGFR pathway. In 

addition there are a range of host immunological factors, notably the loss of the interferon-

gamma antiviral response, that contribute to the tropism of Vaccinia virus for cancer cells (166). 

 

1.4.10 Current Status of Oncolytic Vaccinia Virus for Cancer Therapy 

At present, there are three oncolytic Vaccinia viruses in clinical trials. The leading vector is JX-

594, a Wyeth strain virus attenuated by deletion of the viral TK region and replacement with 

granulocyte/macrophage-colony stimulating factor (GM-CSF) to augment anti-tumour efficacy 

(167). A phase I trial of intratumoural injection of 22 heavily pre-treated patients 

(predominantly with hepatocellular carcinoma) was recently reported (168). All patients 

experienced grade I-III flu-like symptoms and four had transient, grade I-III, dose-related 

thrombocytopenia. Grade III hyperbilirubinemia was dose-limiting in two patients and the 

maximum tolerated dose was set at 1x10
9
 pfu. Only ten patients were evaluable for efficacy 

however, according to Response Evaluation Criteria in Solid Tumors (RECIST), three patients 
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had partial responses, six had stable disease, and one had progressive disease. These responses 

included patients who had been previously vaccinated for smallpox and had anti-Vaccinia 

antibodies before treatment. Secondly, viral replication was found in un-injected tumour cells 

distant to the site of initial injection showing that Vaccinia virus is capable of replication and 

spread to distant tumour sites. A phase II study is currently recruiting and a phase I study of this 

vector in patients with malignant melanoma has paused for interim analysis. Two other 

replicating Vaccinia viruses (see below) are in phase I clinical trials.  

 

GLV-1h68 is a Lister strain virus with deletions of the viral TK and haemagglutinin gene and a 

phase I trial in patients with solid tumours using intravenous administration is currently 

recruiting. The trial plans to assess viral replication in primary/secondary lesions, evidence of 

immune response and traditional efficacy and toxicity outcomes.  

 

JX-929 (vvDD-CDSR) is a Wyeth strain virus deleted for the viral TK and VGF genes, with 

two transgenes inserted in their place. The somatostatin receptor allows scintigraphic imaging 

and the cytosine deaminase transgene converts the pro-drug 5-fluorocytosine to the active 

metabolite 5-fluorouracil. A phase I study of intratumoural injection of this agent is currently 

recruiting (Data accessed www.clinicaltrials.gov 12
th

 June 2010). 

 

1.5 Hypoxia Targeting  

1.5.1 Overview 

Since the observations from pre-clinical data that hypoxia influences the phenotype of tumours 

and their response to therapies much has been done to target this issue. As the oxygen 

enhancement ratio demonstrates, hypoxia significantly reduces the efficacy the radiotherapy and 

consequently much of the work has focused on reversing this. Early clinical trials using 

hyperbaric oxygen chambers to increase the oxygen concentration of inspired air during 

radiotherapy showed benefit. A Medical Research Council study from 1978 showed a survival 
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benefit for hyperbaric oxygen therapy in combination with radiotherapy in cancer of the uterine 

cervix (169). However, patients must enter hyperbaric oxygen chambers prior to each dose of 

radiotherapy delivered. Consequently the logistics of delivering this kind of therapy make it an 

unfeasible solution.  

 

Radiotherapy techniques have improved from this period and other ways of improving tumour 

oxygenation are being studied. A combination of the hyperoxic gas carbogen,
 
to overcome 

diffusion-limited hypoxia, and the vasoactive agent
 
nicotinamide, to circumvent perfusion-

limited hypoxia have shown promise in phase II clinical trials using Accelerated Radiotherapy 

with Carbogen and Nicotinamide (ARCON) therapy (170). Phase III trial data should become 

available in the next few years and provide data to assess the efficacy of this approach. 

 

An alternative is the use of radio-sensitizing agents to improve radiotherapy efficacy. A meta-

analysis of their use has shown benefit in terms of local control and, in some tumour types, 

overall survival (171). The radio-sensitizing agent nimorazole is used in some centres in Europe 

for the management of supraglotic larynx and pharynx tumours after showing improved loco-

regional control in phase III trials (172). Tirapazamine, a bio-reductive drug which becomes 

toxic preferentially in hypoxic cells, had shown benefit in phase II trials. A recent phase III trial 

in head and neck cancer using this agent in combination with cisplatin and radiotherapy has not 

shown benefit. However, this study has been criticised for its lack of biomarkers for selection of 

hypoxic tumours and poor radiotherapy delivery in some trial centres. In addition the aetiology 

of the disease has changed to more radiosensitive human papillomavirus (HPV)-induced 

tumours since the phase I/II data were collected. 

 

An alternative approach to target hypoxia is to reduce hypoxia-induced gene transcription to 

reverse the phenotype that this causes. Some conventional chemotherapy agents have been 

shown to inhibit HIF function.  Intervention with gene silencing or chemical inhibition of HIF 

has shown benefit in vitro (173). Development of these therapies may prove beneficial in future. 
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1.5.2 Hypoxia-Targeting Viral Therapy 

Gene therapy strategies targeting hypoxia offer the potential of improved specificity and 

increased therapeutic ratios by restricting transgene expression to hypoxic regions. HIF-1 

when stabilised in hypoxic conditions will bind to hypoxia regulatory elements (HREs) and 

initiate transcription. Hypoxia-induced genes such as erythropoietin (Epo-1), inducible nitric 

oxide synthetase (iNOS) and VEGF all have promoter sequences which include a HRE. Using 

these HREs as cis-acting elements in either 5‟ or 3‟ flanking locations allows hypoxia-specific 

transgene expression and has been demonstrated both in vitro and in vivo using both viral and 

non-viral vectors (174, 175). Post et al inserted HREs as part of the promoter sequence for E1A 

to make a conditionally replicating adenovirus (176). Gene transfer using adeno-associated virus 

as a transfer vector in cardiovascular disease has been used in a dual vector system to target 

ischaemia. Tang et al then created a transactivating fusion protein in the first vector that 

contains an ODD sequence, which under hypoxic conditions was able to bind to the inducible 

promoter in the second vector and increase transcription of the luciferase reporter gene (177).  

 

Vaccinia virus encodes many of its own polymerases and therefore using HREs in a 

conventional hypoxia-targeting approach is not feasible. Given the advantages of Vaccinia as an 

oncolytic vector, in comparison to adenovirus or adeno-associated virus, a Vaccinia virus 

capable of targeting transgene expression or conditionally replicating in hypoxic conditions 

could be useful for cancer therapy.   
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1.6 Aims of Project 

 

 To study the feasibility of Vaccinia virus as a therapeutic vector targeting hypoxic PDACs. 

 To study the functional mechanisms by which hypoxia affects the potency of Vaccinia 

virus. 

 To construct a novel hypoxia-targeting Vaccinia virus with the potential for re-

sensitization of hypoxic tumours. 
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2. Materials & Methods 

2.1 Cell Lines 

All cell lines were maintained in their respective media at 37C in air supplemented with 5% 

carbon dioxide (CO2) or were cultured in hypoxic conditions as indicated. Repeated 

experiments were performed using cells of similar passage. All cells were grown in media 

containing 0.06 μg/L penicillin and 0.1 μg/L streptomycin obtained from Cancer Research UK 

Central Cell Services (CRUK CCS, Clare Hall, Herts, UK) or PAA Laboratories GmbH 

(Pasching, Austria) and were regularly tested for mycoplasma. 

 

2.1.1 Human cell lines 

2.1.1.1 Pancreatic cancer cell lines 

The pancreatic carcinoma cell lines Suit-2, CFPac1, MiaPaca2 and Panc1 were obtained from 

CRUK CCS and maintained in Dulbecco's Modified Eagle Medium (DMEM) with 10% foetal 

calf serum (FCS) (PAA Laboratories GmbH). 

 

2.1.1.2 Primary cell lines 

Normal human bronchial epithelial cells (NHBE) were obtained from Lonza (Lonza Group Ltd, 

Basel, Switzerland) and maintained in Bronchial Epithelial Growth Medium (BEGM) 

containing the following growth supplements: Bovine Pituitary Extract (BPE), 2 mL; 

Hydrocortisone, 0.5 mL; Human Epidermal Growth Factor (hEGF), 0.5 mL; Epinephrine, 0.5 

mL; Transferrin, 0.5 mL; Insulin, 0.5 mL; Retinoic Acid, 0.5 mL; Triiodothyronine, 0.5 mL; 

GA-1000, 0.5 mL from Lonza (Basel, Switzerland). Lonza obtained these cells from their 

patient donation programme following the acquisition of informed consent for use of cells in 

research and were free of mycoplasma, HIV, HBV and HCV.  
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2.1.1.3 Monkey cell line 

The immortalised non-transformed African Green Monkey kidney cell line CV1, was obtained 

from The American Tissue Culture Consortium (VA, USA) and cultured in DMEM with 10% 

FCS. 

 

2.2 Vaccinia Virus Production 

2.2.1 Wildtype Lister strain and recombinant thymidine kinase-deleted Vaccinia Virus 

The Lister vaccine strain of Vaccinia virus (VVLister) and recombinant thymidine kinase (TK)-

deleted Vaccinia viruses (VVL15) were a gift from Professor Istvan Fodor (Loma Linda 

University Campus, CA, USA). Fluorescently tagged Vaccinia virus-488 and VV-ODD were 

produced by Crispin Hiley (CH). Dr L Chard was involved in the design of VV-ODD and 

provided post-doctoral assistance during its construction. 

 

VVLister was used as the backbone for production of other engineered viruses. VVL15 was 

produced by an in vitro intracellular recombination technique previously described (178). 

VVL15 was constructed by the insertion of the firefly luciferase and the lacZ reporter genes into 

the thymidine kinase (TK) region of VVLister downstream of the early–late Vaccinia p7.5 

promoter.(179).  

 

2.2.2 Fluorescently labeled Vaccinia virus - VV-488 

Fluorescently tagged Lister strain Vaccinia virus (VV-488) was produced by CH following the 

protocol used by Warren et al to label the capsid of adenovirus (180). The Alexa Fluor® 488 

(Invitrogen Ltd, Paisley, UK) 5-sulfodicholorphenol ester (1mg) was resuspended in 100 µL of 

DMSO in a foil-wrapped Eppendorf tube. The Lister strain Vaccinia virus was diluted to 0.885 

x10
11

 pfu/mL in 0.1 M sodium bicarbonate buffer to 2 mL in a 15 mL tube. This was vortexed 

slowly whilst adding the dye solution. This was then continuously vortexed for 1 hour at room 

temperature in a foil-wrapped tube. After 1 hour, the 2 mL volume was injected into a 10 kDa 

MWCO Slide-A-Lyzer dialysis cassette (Pierce Biotechnology Inc, IL, USA). This was 
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dialyzed overnight at 4°C against a total of two changes of 0.1 M Tris-HCL, pH 7.8, 0.1 M 

MgCl2, 1.5 M NaCl, and 10% Sucrose and stored at -80°C in 10 µL aliquots prior to use. 

 

2.2.3 Hypoxia-targeting virus - VV-ODD 

The recombinant hypoxia-targeting Vaccinia virus VV-ODD was produced using intracellular 

homologous recombination as used for the construction of VVL15. The design and construction 

of VV-ODD are outlined in the results. 

 

2.2.4 Vaccinia virus mass production 

CV1 cells were cultured until 90% confluent and infected with 20 μL of purified virus to 

produce a primary expansion, and after this all further virus production was performed by Heike 

Muller. The primary expansion was harvested when significant cytopathic effect (CPE) was 

observed by cell detachment at 48-72 hours. A CF10 viral production factory (Nunc, NY, USA) 

was seeded with the cells from four 175 cm
2
 flasks of CV1 cells at 90% confluence. After 72 

hours, this was infected with the primary expansion in DMEM with 2% FCS until significant 

CPE was observed a further 72-96 hours later. 

 

Cells harvested from the CF-10 were centrifuged in Sorvall centrifuge bottles (Sorvall, MA, 

USA) at 3500 revolutions per minute (rpm) for 15 minutes at 4C. The cell pellet in each bottle 

was resuspended in 30 mL phosphate-buffered saline (PBS), transferred to a 50 mL tube and 

centrifuged in the same manner. The supernatant was again discarded and each pellet of cells 

resuspended in 7 mL of 10 mM Tris-HCl pH 9.0, then combined. Cell membranes were 

disrupted by three cycles of freezing in liquid nitrogen and thawing in a 37C water bath, prior 

to homogenisation by 60 strokes with a Dounce homogeniser. 

 

Cells were centrifuged at 900 rpm for 5 minutes at 4C and the supernatant removed and saved. 

The cell pellet was resuspended in 3 mL of 10 mM Tris-HCl pH 9.0 prior to a second 
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centrifuge. Both supernatants were combined and the pellet discarded. This was sonicated in an 

ultrasound ice bath for 20 seconds (Grant Instruments, Herts, England) and diluted to 30 mL 

with 10 mM Tris-HCl pH 9.0. 7.5 mL was carefully layered onto 17 mL of 36% sucrose (w/v) 

10 mM Tris-HCl pH 9.0 in each of four SW17 Beckman ultracentrifuge tubes (Beckman 

Coulter UK Ltd, Bucks, UK). After careful balancing by weight, these tubes were centrifuged at 

13,500 rpm for 80 minutes at 4C.  Each supernatant was discarded and purified viral pellets 

resuspended in 1 mL of 1 mM Tris-HCl pH 9.0 prior to combination and storage at -80 C. The 

viral titre was determined by TCID50 plaque assay. 

 

2.3 Hypoxia 

For this study, hypoxia is defined as 1% oxygen unless otherwise stated. This equates to an 

approximate oxygen tension of 7 mmHg. This was achieved using a hypoxic incubator 

maintained at 94% nitrogen, 5% CO2 and 1% Oxygen (Heto-Holten Cell Chamber 170, Surrey, 

United Kingdom). 

 

2.4 RNA techniques 

2.4.1 RNA extraction 

Cells were lysed directly in wells using 1 mL of TRIzol (Invitrogen) reagent per 10 cm
2
 of cells. 

Solutions were then pipetted into Eppendorf tubes and incubated for 5 minutes at 23 °C. 0.2 mL 

of chloroform per 1 mL of TRIzol was added to each Eppendorf. Tubes were shaken by hand 

and incubated for 2 minutes at 23°C. The reactions were centrifuged at 4°C in the Eppendorf 

5471 refrigerated bench top centrifuge for 15 minutes at 14,000 rpm and the aqueous phase was 

transferred to a fresh tube.  RNA was precipitated by mixing with 0.5 mL of isopropanol per 1 

mL of TRIzol and incubated for 10 minutes at 4 °C.   Samples were then centrifuged at 14,000 

rpm for 10 minutes and the supernatant removed. Pellets were then washed with 75% ethanol 

and centrifuged at 14,000 rpm for 5 minutes at 4 °C. Pellets were air-dried and resuspended in 

20 µL RNAse-free ddH2O. 
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2.4.2 Reverse Transcription (RT) Polymerase Chain Reaction (PCR) 

Purified total cellular and viral RNA (2 g) was added to 1 L random hexanucleotide primers 

(RHP) (50 ng/L) (Roche) or gene-specific primers (2.5 M) (Sigma), 1 µL of 10 mM dNTPs 

(Invitrogen) and made up to a total volume of 12 L with nuclease-free dH2O.  The reactions 

were incubated at 65 
o
C for 5 minutes and chilled on ice. Then 4 µL of 5X first-strand buffer, 2 

µL 0.1 M DTT and 1 µL of RNAseOUT (40 U/µL) were added to each sample. Samples were 

mixed and then incubated for 2 minutes at 42 
o
C for gene specific primers or 25 

o
C for random 

primers. 1 µL of SuperscriptII reverse transcriptase (Invitrogen) was added to each sample and 

incubated at 42 
o
C for 50 minutes for gene specific primers or 25 

o
C for 10 minutes for random 

primers. Superscript II reverse transcriptase was inactivated by heating to 70 
o
C for 15 minutes. 

The cDNA was stored at -20 
 o
C until required. 

 

2.5 DNA techniques 

2.5.1 Agarose gel electrophoresis 

Agarose gels (1%) were made using 1x TAE (40 mM Tris-acetate, 10 mM EDTA, pH 8.2) 

buffer and electrophoresis grade agarose powder (Invitrogen).  Ethidium bromide (EtBr) 

(Sigma) was added to the molten agarose at a final concentration of 0.5 g/mL before the gel 

was cast.  Samples for analysis were added to 6x blue/orange loading dye (Promega) and dH2O 

before being loaded into the wells.  For reference, a 1 kb DNA ladder (5 µL) (Promega) was 

also run.  Gels were run in 1x TAE buffer containing 0.5 g/mL EtBr.  Bands were visualised 

using a transilluminator and the GelDoc program (BioRAD). 

 

2.5.2 Low melting point (LMP) gel electrophoresis 

LMP agarose gels were used for purification of DNA.  LMP agarose (1%) gels were made using 

1x TAE buffer and electrophoresis grade LMP agarose powder (Invitrogen) (Appendix II).  

EtBr was added to the molten agarose at a final concentration of 0.5 g/mL before the gel was 

cast.  Gels were run in a 1x TAE buffer containing 0.5 g/mL EtBr.  The DNA bands were 
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observed under low intensity ultra violet (U.V.) light and the appropriate bands excised from the 

gel.  The DNA was purified from the gel using the GE GFX
TM

 PCR DNA and Gel Band 

purification kit, according to the manufacturer‟s protocol.  The DNA was eluted in 50 L dH2O 

and quantified by using a NanoDrop spectrophotometer to measure absorbance at 260 nm. 

 

2.5.3 DNA extraction 

DNA was extracted using the QIAamp DNA blood mini kit (QIAGEN Ltd, Crawley, UK) 

according to the manufacturers‟ instructions. Samples were lysed and DNA bound to a silica-gel 

membrane, while contaminants were washed away before the elution of purified DNA. Cell 

pellets samples were resuspended in 200 μL PBS. Viral standard samples consisted of 100 μL 

purified VVLister mixed with 100 μL PBS. 20 μL protein kinase K and 200 μL of lysis buffer 

AL were added to samples and mixed before incubating at 56 C for 10 minutes. 200 μL ethanol 

was added, samples transferred into spin columns containing a silica-gel membrane, centrifuged 

at 800 rpm for 1 minute and filtrates discarded. Columns were placed in Eppendorfs and 500 μL 

wash buffer AW1 added to the columns, which were centrifuged as above and filtrates again 

discarded. Columns were washed in the same manner with 500 μL wash buffer AW2. Columns 

were placed in fresh Eppendorfs, samples eluted from membranes with 70 μL of elution buffer 

AE (10 mM TrisCl; 0.5 mM EDTA; pH 9.0) and stored at -20 C. Sample DNA concentration 

and purity was determined using the Nanodrop

 ND-Spectrophotometer and Nanodrop


 v3.1.0 

software (NanoDrop Technologies, Delaware, USA). DNA was accepted as adequately pure 

where the ratio of absorbance at 260 and 280 nm was ~1.8. Concentration was measured until 

three measurements within 4 ng were obtained and then an average taken.    

 

2.5.4 Restriction digests 

For analytical digests, 1 g of plasmid DNA was added to an appropriate amount of each 

restriction enzyme (Promega/NEB), 2 L of the supplied 10x enzyme buffer, 0.5 µL of bovine 

serum albumin as required and the reactions made up to 20 L with dH2O.  Digests were 
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incubated for 2 hours at 37 
o
C and the sample mixed with 4 L of blue/orange 6x loading dye 

and analysed by electrophoresis. 

 

For preparative digests, 5 g of the plasmid DNA and an appropriate amount of restriction 

enzyme were used in a 50 L volume digest.  Digests were incubated for 2 hours at 37 
o
C and 5 

L of the digest was analysed on a 1% agarose gel. 

 

2.5.5 DNA polymerase I (Klenow fragment) 

DNA polymerase I (Klenow fragment) was used for blunt end repair of DNA. 1 µL Klenow or 

(5 U/µL) (Promega) was added directly to 50 L of preparative restriction digests, with 1.5 L 

10 mM dNTPs (from PCR nucleotide mix, Promega). The reaction was incubated at room 

temperature for 30 minutes. 

 

2.5.6 Calf Intestinal Alkaline Phosphatase (CIAP) treatment 

To remove 5‟ phosphate groups, the DNA was incubated for 30 minutes at 37 
o
C with 0.5 µL 

CIAP (1 U/µL) (Promega) and 5 L 10x dephosphorylation buffer (Promega). 

 

2.5.7 PCR 

PCRs were performed using the primers listed in the appropriate results chapters. 50 µL 

reactions were used, containing 100 ng of template DNA, 10 pmol of each primer (forward and 

reverse), 5 µL 10x PCR reaction buffer, 2 µL of MgSO4 (25 mM), 1 µL 10 mM PCR nucleotide 

mix and 1 U of KOD Hot Start DNA Polymerase. PCR cycles were performed using the 

program detailed in Table 2.1.  The PCR products were analysed on a 1% agarose gel before the 

fragments were purified using LMP electrophoresis. Purified products were stored at -20 
o
C 

until required. 
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Table 2.1: Details of PCR cycles. 
*1 

The annealing temperature was adjusted according to 

the melting temperature (Tm) of the primers. 

 

Step Temperature Time 

1   Initial Denaturation 94
 o
C 2 minutes 

2   Denaturation 94
 o
C 20 seconds 

3   Annealing
*1 56

 o
C 30 seconds 

4   Elongation 72
 o
C 90 seconds/kb  

      Go to 2, repeat 30 times  
5   Final Elongation 72

 o
C 7 minutes 

6   Hold  4
 o
C 1 hour 

 

2.5.8 Quantitative real-time PCR 

2.5.8.1 Primers and probes 

Primers and probes for VVLister Vaccinia Late Transcription Factor were designed manually 

using Primer Express
®
 v3.0 software (Applied Biosystems, New Jersey, USA) and constructed 

by Sigma-Aldrich and Applied Biosystems respectively. Primers and probes were chosen for 

optimum PCR efficiency with minimal secondary structures with probe length 17-20 bp, Tm 

(Melting temperature) 68-70 C, GC content 40-60% with repeats minimised. Primers were 

chosen to be 20-26 bp in length either side of the probe with Tm 58-60 C and GC content 40-

60%. Sequences were confirmed as unique within the Vaccinia virus and human genomes and 

are presented in the relevant results section. 

 

2.5.8.2 Quantitative PCR (qPCR) 

All samples were diluted to a concentration of 8 ng/µL of DNA. Samples, no template control 

(RNAse free water) and nine 10-fold serial dilutions of standards (5x10
8
 to 5 viral genome 

copies diluted in 5μL RNAse free water) were tested in triplicate in each plate by qPCR. A 

25μL reaction volume consisted of 5μL sample or standard and 20μL of Master mix (0.9 μM 

forward primer, 0.9 μM reverse primer, 0.2 μM probe in TaqMan
®
 Universal PCR Master Mix). 

Reactions were performed in MicroAmp optical 96-well reaction plates sealed with optical 

adhesive covers and amplified using the 7500 Real-time PCR System (1 cycle of 48 C for 30 

minutes, 95 C for 10 minutes then 40 cycles of 95 C for 15 seconds, 60 C for 1 minute). 
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Cycle thresholds (CT) were determined using 7500 System SBS software (All Applied 

Biosystems, New Jersey, USA). 

 

Standard and sample triplicates were accepted for analysis if their standard deviation was <0.3. 

Standard curves were created using mean cycle thresholds in Prism® and sample genome copy 

number determined accordingly. Standard curves were accepted as valid where R
2
  0.99 with a 

slope of –3.30 to -3.32. Results were expressed in total genome copy number per sample. As the 

concentration of DNA used was constant the copy number represents the ratio of viral DNA to 

cellular DNA in any given sample. The mean of the qPCR triplicate was summed with the 

corresponding biological duplicate and presented as an average.  

 

Reverse Transcriptase Quantitative PCR (rt-qPCR) for Vaccinia virus mRNA was performed as 

a two-step reaction with cDNA being produced as outlined. A multiplex reaction consisted of 

40ng of template and a mastermix, as outlined above, with the inclusion of 1.25 μL of 20x 

eukaryotic 18S rRNA endogenous control (VIC/MGB Probe, Primer; Applied Biosystems) for 

each reaction. The comparative CT was used to compare the relative expression of VLTF 

mRNA to 18S overtime. A validation experiment was performed to confirm comparative 

efficiency of the target and reference amplification. 

 

2.5.9 Annealing of oligonucleotides 

5‟ phosphorylated oligonucleotides (Sigma) were annealed for ligation into plasmid vectors.  

The details of these are given in the appropriate results chapters. 100 pmol of each of the 

forward and reverse primer were added to 18 L dH2O.  The oligonucleotides were boiled at 

100 
o
C for 2 minutes before being allowed to cool down to room temperature.  0.2 L of the 

annealed oligonucleotides was used in subsequent ligation reactions. 
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2.5.10 Ligations 

Ligations were carried out using 25-30 ng of vector and a quantified amount of purified insert at 

a ratio of 1:3.  To this, 2 L of 10x DNA ligase buffer (Promega) and 0.5 µL of T4 DNA ligase 

(3 U/µL) (Promega) were added and the reactions made up to 20 L with dH2O.  The ligations 

were incubated at 16 
o
C overnight and then transformed into One Shot Top10 competent cells 

(Invitrogen). „No insert‟ controls were performed for each vector used. 

 

2.5.11 Transformation of competent cells 

5 µL of each ligation reaction was added to 50 μL thawed One Shot Top10 competent cells and 

the mixture incubated on ice for 20 minutes.  Each reaction was heat-shocked at 42 
o
C for 45 

seconds then placed on ice for 5 minutes. 250 µL of warm SOC was added to each vial and then 

shaken horizontally for 1 hour at 225 rpm. Transformed bacteria were plated out on Lysogeny 

Broth (LB) agar plates containing the appropriate antibiotics and incubated overnight at 37 
o
C. 

 

For midi preparations, the transformed cells were added to 50 mL LB media containing the 

appropriate antibiotic and incubated overnight at 37 
o
C in the shaker.  Preparations were then 

pelleted by centrifugation at 8,000 rpm for 6 minutes and stored at -20 
o
C until purified. 

 

2.5.12 Mini-preparation of plasmid DNA 

Single colonies were picked from the LB agar plates and grown up overnight at 37 
o
C in 5 mL 

LB media containing an appropriate antibiotic. 1 mL of the overnight culture was centrifuged 

for 2 minutes at 14,000 rpm and the supernatant removed.  The plasmid DNA was purified from 

the pelleted bacterial cells using the Qiagen Miniprep DNA purification system as described by 

the manufacturer.  DNA was eluted in 50 L dH2O and 5 L of the sample was analysed by 

restriction analysis and agarose gel electrophoresis. 

 



Chapter 2 

 

57 

 

2.5.13 Midi-preparation of plasmid DNA 

For medium scale preparation of plasmid DNA, a 50 mL culture of transformed bacteria was 

grown overnight in LB broth containing the appropriate antibiotic.  Cultures were transferred 

into 50 mL falcon tubes and centrifuged at 6000 rpm for 10 minutes.  The supernatant was 

removed and the pellet used for purification of plasmid DNA. 

 

Midi-prep DNA was obtained using the Qiagen Hi-Speed Plasmid Midi Prep Kit according to 

the manufacturer‟s protocol and the DNA eluted in 1 mL dH2O.  The DNA was then 

precipitated for 1 hour using 2.5 volumes 100% ethanol (EtOH) and 1/10th volume 3 M Sodium 

Acetate (NaOAC), before being washed once in 70% EtOH.  The DNA was quantified using the 

Nanodrop spectrophotometer. 

 

2.6 Protein techniques 

2.6.1 Immunoblotting 

2.6.1.1 Sample preparation for Western blot analysis 

Nuclear extracts were isolated using the NE-PER Nuclear and Cytoplasmic extraction reagents 

(Pierce, Rockford, IL, USA) according to the manufacturer‟s instructions.  

 

Whole cell extracts were collected by lysis of cells with NP40 cell lysis buffer (50 mM Tris 

pH7.4, 150 mM NaCl, 10 mM Ca
2+

, protease inhibitor cocktail (Roche Applied Science, 

Mannheim, Germany) and 1% Nonidet P40 (Sigma Chemicals Co., Poole, UK). Lysis buffer for 

analysis of phosphorylated proteins also contained phophatase inhibitor cocktail (Roche 

Applied Science, Mannheim, Germany). 

 

2.6.1.2 Protein quantification 

Protein concentrations were determined using the Beckman protein assay. 5 μL of samples were 

mixed with 200 μL Bio-Rad protein assay indicator (Bio-Rad, Munich, Germany) and 795 μL 

of distilled water in cuvettes (Fisher Scientific, Leicester, UK). Following calibration with a 
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blank sample (200 μL Biorad indicator and 800 μL distilled water), the absorbance at 595 nm 

was measured using a spectrophotometer (Beckman Coulter UK Ltd, Bucks, UK). The protein 

concentration of samples was determined from a standard curve of protein concentration against 

absorbance of known quantities (1, 2, 4, 8, 16, 32 and 64 μg) of bovine serum albumin (Sigma 

Chemicals Co., Poole, UK) at 595 nm.  

 

2.6.1.3 SDS-Polyacrylamide gel electrophoresis 

30 μg of samples were mixed with 5 μL of 5x loading buffer (50 mM Tris, 4% SDS, 10% 

Glycerol, 5% Mercaptoethanol and 0.01% Bromophenol Blue) and distilled water to give a final 

volume of 25 μL. Samples were heated to 95 C for 5 minutes and cooled on ice for 5 minute 

prior to loading into a denaturing 10% polyacrylamide gel in 1x Running buffer (3 g of Tris 

base, 14.4 g of glycine, 1 g of SDS diluted to 1 L of distilled water, pH 8.3) 10 μL of Rainbow


 

molecular weight marker (Amersham Biosciences, Bucks, UK) was loaded alongside the 

protein samples. Electrophoresis took place at 120 V for 60-70 minutes. 

 

Proteins were sandwiched between blotting paper in the presence of transfer buffer (1% glycine 

and 10% methanol in distilled water) and transferred onto a Polyvinylidene Fluoride (PVDF) 

membrane (Immobilon-P, Millipore, Bedford, MA, USA) using a wet transfer system (Bio-Rad, 

CA, USA) at 100 V for 1 hour. 

 

Membranes were blocked with a 5% BSA (Sigma Chemicals Co., Poole, UK) in a solution of 

1% Tween
®
20 (Sigma Chemicals Co., Poole, UK) in PBS for thirty minutes at room 

temperature. The primary antibodies (Table 2.2) were diluted in the same blocking solution and 

incubated with the membrane at 4 
0
C overnight or at 37 ºC for 1 hour. Following removal of the 

primary antibody, membranes were washed three times for 10 minutes with TBST washing 

buffer (137 mM NaCl, 20 mM Tris, 0.1% Tween-20, pH 7.6). Secondary horseradish 

peroxidase (HRP)-conjugated antibodies were diluted in blocking solution and incubated with 
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membranes for 1 hour at room temperature. Three further TBST washes were performed 

following removal of the secondary antibody. 

 

Chemiluminescent detection was performed using ECL Plus Detection reagent (GE 

Healthcare, Bucks, UK) according to the manufacturer‟s instructions. The signals were 

visualised by exposing membranes to Fuji Medical film Super RX (Fuji, Japan) for 1-10 

minutes. 

 

Membranes were placed in blocking solution for a further 30 minutes prior to incubation with 

proliferating cell nuclear antigen (PCNA), Ku-70 or β-actin (loading controls) using the same 

protocol. 
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Table 2.2: Antibodies used for western blots 

 
Antibody 1º/ 2º Species Dilution Supplier 

VVLister coat 

protein 
1º Rabbit-pAb 1:1000 

MorphoSys UK Ltd, 

Bath, UK 

HIF-1α 1º Murine-mAb 1:750 
AbCam Plc, Cambridge, 

UK 

PCNA 1º Murine-mAb 1:1000 
Santa Cruz Biotech Inc, 

California, USA 

Ku-70 1º Murine-mAb 1:1000 
Santa Cruz Biotech Inc, 

California, USA 

β-Actin (C4) 1º Murine-mAb 1:3000 
Santa Cruz Biotech Inc, 

California, USA 

Anti-mouse HRP 2º Goat 1:2000 Autogen Bioclear 

Anti-rabbit HRP 2º Goat 1:2000 Autogen Bioclear 

Anti-goat HRP 2º Donkey  1:2000 Autogen Bioclear 
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2.6.2 Enzyme-Linked Immunosorbant Assay (ELISA) for VEGFA 

The Duoset® ELISA for human VEGFA (R and D Systems, Abingdon, UK) was used 

according to the manufacturers‟ instructions. 96-well microplates were coated with 100 μL/well 

of 1 μg/mL mouse anti-human VEGF antibody diluted in PBS. Plates were sealed overnight 

with plate sealers then aspirated and washed 3 times with 400 μL/well wash buffer (0.05% 

Tween 20® in PBS). Plates were blocked for 1 hour at 20 °C with 300 μL/well 1% bovine 

serum albumin (BSA; Sigma Chemicals Co., Poole, UK) in PBS and washed in the same 

manner.  

 

Standards (recombinant human VEGF) and samples were diluted in PBS supplemented with 

10% FCS. All samples were diluted 1:10. 100 μL of samples and seven 2-fold serial dilutions of 

standard (2000 pg/mL to 31.25 pg/mL) were added to 2 wells of each plate for 2 hours. Plates 

were washed, 100 μL/well of 100 ng/mL biotinylated goat anti-human VEGF added for 2 hours, 

100 μL/well of 1:200 Streptavidin-HRP added and the plate kept in the dark for a further 20 

minutes before washing. 100 μL/well of substrate solution (1:1 colour reagent A (H2O2) and 

colour reagent B (Tetramethylbenzidine)) was added and the plate kept in the dark for 20 

minutes before the addition of 50 μL/well of stop solution (2NH2SO4) (R&D Systems, UK). 

 

The OD of each well was determined using an Opsys MR 96-well plate absorbance reader 

(Dynex, VA, USA) at 450 nm and OD values at 540 nm subtracted to correct for optical plate 

imperfections. Mean OD values were used to create a standard curve using revelation software 

(Dynex, VA, USA), which was used to obtain human VEGF levels. 

 

2.6.3 ELISA for Chloramphenicol Acetyltransferase (CAT) 

A CAT Elisa kit (Roche) was used to quantify CAT levels in samples according to the 

manufactures instructions. Cells were lysed directly in wells with the lysis buffer provided. 200 

µL of CAT standard or cell lysate was added to capture antibody labelled microplate modules 

and left for 1 hour at 37 °C. Cells were then washed 3 times with 250 µL of washing buffer. 200 
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µL of Anti-CAT-digoxigenin solution was added to each well and left for 1 hour at 37 °C. Cells 

were washed 3 times with 250 µL of washing buffer. 200 µL of anti-digoxigenin-peroxidase 

solutions was added to each well and left for 1 hour at 37 °C. Cells were washed 3 times with 

250 µL of washing buffer. 200 µL of peroxidise substrate was then added to each well and left 

for 10 minutes at room temperature. Absorbance at 405 nm (using 490 nm as a reference) was 

determined using an Opsys MR 96-well plate absorbance reader (Dynex, VA, USA). Mean OD 

values were used to create a standard curve using revelation software (Dynex, VA, USA), which 

was used to obtain CAT levels. 

 
2.6.4 In vitro bioluminescence quantification 

Bioluminescence was originally measured using the IVIS camera (In Vivo Imaging System; 

Xenogen Corp., CA, USA). Media was aspirated and replaced with 150 μg/mL D-Luciferin 

(Xenogen Corp, CA, USA) in PBS at 37 C and luminescence measured after 2 minutes. Light 

emission was quantified as the sum of all detected photon counts within uniform-sized regions 

of interest (ROI) with each well manually defined during post-data acquisition image analysis. 

This was measured in photons per second per cm
2
 (p/s/cm

2
) using Living Image software 

(Xenogen Corp., CA, USA). 

 

During the course of this project a Perkin Elmer Victor II Multi-label plate-reader became 

available and was used for all luciferase reporter assays. Cells were lysed with passive lysis 

buffer (Promega), centrifuged at 6000 rpm for 3 minutes at 4 °C, kept on ice and used fresh for 

each assay. 20 µL of sample was added to each well of a white polystyrene plate (Corning Life 

Sciences) and warmed to 37 °C. 75 µL of luciferase reagent (Promega) was added to each well 

using the automated dispenser. Bioluminescence was measured for 1 second and samples were 

assayed in triplicate. 
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2.6.5 In vitro red fluorescent quantification 

The Perkin Elmer Victor II Multi-label plate-reader was used to measure fluorescence using an 

excitation wavelength of 560 nm and an emission wavelength of 620 nm. Cells were lysed with 

passive lysis buffer (Promega), centrifuged at 6000 rpm for 3 minutes at 4 °C, kept on ice and 

used fresh for each assay. 50 µL of each sample was added to each well of a white polystyrene 

plate (Corning Life Sciences) and the fluorescence quantified in triplicate for each sample. The 

autofluorescence of control cells was subtracted from the average for each sample. 

 

2.7 Tissue culture technique and viral assays 

2.7.1 siRNA gene silencing 

Gene silencing was performed using siGenome siRNA smartpools (Dharmacom, IL, USA). 

targeting four sequences unique to each gene. Sequences are shown in the relevant results 

chapter. Cells were seeded in antibiotic-free complete DMEM supplemented with 10% FCS at a 

density of 2x10
4
 cells per well in 24 well plates or 1x10

6
 cells per well in 6 well plates. Cells 

were then transfected 16 hours later with 25 nM of siRNA. The protocol for preparing siRNA 

transfection mix for one well of a 24 well plate was used as follows. A 5 μM siRNA solution in 

1X siRNA Buffer (Dharmacon) was prepared from the stock reconstituted 20 μM solution using 

RNase-free water. In separate tubes 5 μM siRNA solution and DharmaFECT transfection 

reagent 1 were diluted with serum-free medium. Tube 1 – 2.5 μL of 5 μM siRNA and 47.5 μL 

serum-free medium. Tube 2 – 2 μL DharmaFECT reagent 1 and 48 μL of serum-free medium. 

The contents of each tube were incubated for 5 minutes at room temperature. Tube 1 and Tube 2 

were combined and incubated for 20 minutes at room temperature. Sufficient antibiotic-free 

medium supplemented with 10% FCS was then added to make the final volume 500 µL. The 

culture medium was removed and replaced with 500 μL of medium containing siRNA. This 

protocol was then adapted for the volume of transfection medium required for each experiment. 

SiGenome RISC-free Control siRNA was used in place of as a negative control (Dharmacon, 

IL, USA). Minimal toxicity was noted on transfection of cells with DharmaFECT reagents. All 

reagents were purchased from Dhamacon, IL US. 
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2.7.2 Cytotoxicity of Vaccinia virus by MTS assay 

The potency of viruses was determined by CellTiter 96
®
 AQueous Non-Radioactive Cell 

Proliferation (MTS) assay (Promega). Cells were infected with nine serial dilutions of virus in 

96 well plates and the proportion of cells alive after 6 days at each viral concentration compared 

to a non-infected control following the addition of MTS reagents.  

 

Cells were cultured in 90 L of DMEM with 5% FCS in 96-well plates at a density of between 

1x10
3
 and 5x10

3
 cells per well, depending on the rate of cell growth, to ensure that mock-

infected wells were nearly confluent 6 days after infection. Plates included six replicates. Plates 

were incubated at 37 C in normoxia or hypoxia and 16 hours later, infected with 10 L of 9 

serial dilutions of viruses (range optimised for each cell line) diluted in media with 5% FCS or 

mock-infected with media with 5% FCS alone and returned to normoxic or hypoxic conditions. 

6 days following infection, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H tetrazolium) was added to PMS (phenazine methosulfate; Promega, WI, 

USA) according to the manufacturer‟s instructions in a ratio of 20 MTS: 1 PMS. 20 L was 

added to each well and plates incubated for 1 to 3 hours. Cell viability was determined by 

measuring the absorbance or optical density (OD) at 490 nm using an Opsys MR 96-well plate 

absorbance reader (Dynex, VA, USA). Cell viability was determined in infected cells in 

comparison to mock-infected cells (positive control) after correction for absorbance due to the 

media alone (negative control). All OD values in positive controls were greater than 1. The 

concentration of virus required to kill 50% of cells (half maximal effective concentration or 

EC50) was then calculated for each cell line (section 2.11.1) and a dose-response curve created 

by non-linear regression using Prism
®
 (GraphPad Software, CA, USA). Experiments were 

repeated in duplicate. 
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2.7.3 Viral replication assay 

Cells were seeded in 3 wells of a 6-well plate in 2 mL of media with 10% FCS at a density of 

2x10
5
 cells per well. One plate was seeded for each virus at time points 24, 48, 72, and 96 hours 

with a further control plate. All plates were incubated overnight at 37 C in normoxic or 

hypoxic conditions.  

 

Plates were infected by 2 mL of media with 2% FCS containing Vaccinia virus Lister strain at a 

multiplicity of infection (MOI) of 1 pfu/cell in human tumour cell lines. Cells and supernatant 

were harvested together by scraping from each individual well to give samples in triplicate at 

every time point. Samples were frozen in liquid nitrogen and thawed in a 37 C water bath three 

times. 

 

The titres of purified viruses and the replication of viruses in cell lines were determined by 

measuring the 50% tissue culture infective dose (TCID50) of samples titrated onto indicator 

cells. 1x10
4
 CV1 cells were seeded in 200 μL of DMEM with 10% FCS into 96 well plates and 

incubated at 37 C in air supplemented with 5% CO2. 16 to 18 hours later, plates were infected 

with purified virus or viral burst assay sample lysates diluted to 1x10
-5

 or 1x10
-3

 respectively in 

DMEM supplemented with 10% FCS. 20 μL was added with a multi-tip pipette to all 12 wells 

of the top row and mixed. Following a change of pipette tips, serial 1:10 dilutions were made to 

the next 7 consecutive rows of CV1 cells up to a dilution of 1x10
-11

 for purified virus or 1x10
-9

 

for burst assay sample lysates. Row H was left uninfected as a negative control. 

 

The CPE of viruses on CV1 cells were determined by light microscopy 10 days after infection. 

Each well was scored 0 (no CPE) or 1 (any CPE) to make a score for each row out of 12. These 

were used to calculate the TCID50 using the established Reed-Meunch accumulate method 

(section 2.11.2). TCID50 plates were performed in duplicate for each sample, with three 
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samples at each time point. Purified viral titres were converted to pfu/mL and viral burst titres to 

pfu/cell based on the number of cells present at viral infection. 

 

2.7.4 VVLister genome replication 

For the assessment of Vaccinia virus DNA replication MiaPaca2-VEGF-165 and MiaPaca2-

Vector Control cells were infected as for the viral replication assay indicated above. Cells were 

collected at 24, 48 and 72 hours post-infection, DNA extracted and qPCR performed as 

outlined.  

 

2.7.5 Quantification of EEV production 

Miapaca2-VEGFp165 and Miapaca2-Vector Control cell lines were seeded at a density of 2x10
5
 

cells per well in 3 wells of a 24 well plate. After incubation for 16 hours at 37 ºC cells were 

infected with Vaccinia virus Lister strain at an MOI = 1 pfu/cell. 24 hours later before any CPE 

was evident only the supernatant was collected from the infected wells. This was then used 

without freeze-thawing to infect CV1 cells in a standard viral titration assay as outlined below. 

This method was previously used by Reeves et al to assess the effect of bcr-abl inhibition of 

EEV release (163). 

 

2.7.6 Viral internalisation and attachment 

Suit-2 cells were transfected with VEGF siRNA or control RISC-free siRNA for 72 hours 

before use. Miapaca2-VEGFp165 and Miapaca2-Vector control were cultured in 100mm dishes 

overnight in DMEM supplemented with 10% FCS. Cells were then trypsinised and suspended at 

a density of 1.5x10
5
 cells in a 1.5 mL Eppendorf in 100 µL of serum-free DMEM and kept on 

ice. Each cell type and time point was performed in duplicate and sufficient samples were 

prepared to assess viral attachment to the cell membrane and then internalisation at time points 

indicated in the results. Cells were then infected with an MOI = 10 pfu/cell of wild type Lister 

strain Vaccinia virus in 100 µL of buffer and left on a roller at 4 °C for 1 hour.  For viral 

attachment samples cells were centrifuged at 3000 rpm for 5 minutes at 4 °C. The supernatant 
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was then removed and washed once with cold PBS supplemented with 1% BSA. This was 

repeated a second time to remove unattached virus before the cells were pelleted at -80 °C or 

used immediately for DNA extraction. The remaining samples were vortexed gently and placed 

in a normoxic incubator at 37 °C until the indicated time points, after which cells were 

centrifuged and washed in cold PBS supplemented with 1% BSA. Cells were then resuspended 

in PBS with Pronase  (Roche, UK) at a dilution of 1.0 mg/mL for 30 minutes on ice to remove 

any attached but uninternalised virus (128). Cells were then centrifuged and washed once in 

cold PBS before pelleting for storage or DNA extraction and subsequent qPCR. 

 

2.7.7 Immunofluorescence confocal microscopy 

2.7.7.1 Validation of specific labelling of Vaccinia virus-488 with Alexa Fluor-488 

Specificity of labelling of the viral envelope with Alexa Fluor-488 was performed by assessing 

co-localisation of the Alexa Fluor-488 probe with a Vaccinia virus-specific antibody. Suit-2 

cells were seeded at a density of 5x10
4
 in three wells of a chamber slide in 500 µL of DMEM 

with 10% FCS. After 16 hrs, two chambers were infected with a 1:100 dilution of labelled 

Vaccinia virus-488 for 1 hour in DMEM supplemented with 5% FCS and the third chamber was 

mock-infected. The medium was removed and cells washed with PBS. These were then fixed 

with methanol for 10 minutes at -20 ºC. Cells were rinsed slowly three times with PBS and 

blocked for 1 hour at room temperature in PBS with 1% BSA. Cells were incubated with 

primary anti-Vaccinia virus rabbit polyclonal antibody at a 1:500  dilution (Serotac, USA) in 

PBS with 1% BSA for 1 hour at room temperature in one virally infected chamber and one 

mock-infected chamber. In the remaining virally infected chamber isotype control IgG at 1:500 

(Santa Cruz, CA, USA) in PBS with 1% BSA was added for 1 hour at room temperature. Cells 

were rinsed slowly three times with PBS and incubated with secondary antibody Alexa Fluor 

546 donkey anti-rabbit IgG (Invitrogen, USA) at 1:1000 dilution in PBS with 1% BSA for 1 

hour at room temperature. This was rinsed slowly three times with PBS and once in dH2O. Cells 

were protected with a cover slip mounted using Vectashield Mounting Media with DAPI 

(VectorLabs, USA), dried for 1 hour at 37 °C and protected from light until use. A Zeiss LSM 
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510 META laser scanning microscope was used for fluorescent 2D image and Z stack image 

capture and the Zeiss Zxiovision LE software for image presentation (Carl Zeiss Microimaging 

GmbH, Germany). 

 

2.7.7.2 Assessment of viral attachment and internalisation using fluorescence confocal 

microscopy. 

To assess attachment and binding of Vaccinia virus-488 to Suit-2 cells with or without VEGF 

knockdown, Suit-2 cells were seeded at a density of 2x10
4
 cells per chamber in 500 µL of 

DMEM supplemented with 10% FCS. Cells were seeded in all four chambers on each slide and 

incubated overnight at 37 °C in normoxia. Sufficient chamber slides were seeded to assess viral 

attachment and the internalisation at the indicated time points. Cells were then transfected with 

100 nM concentration of SiGenome Smartpool hVEGF siRNA, Control RISC free siRNA, 

Dharmafect Reagent 1 only or DMEM only. After 72 hours cells were washed twice in cold 

PBS. Vaccinia virus-488 was diluted 1:170 in cold DMEM supplemented with 5% FCS. Cells 

were left to attach at 4 °C for 1 hour then washed x 3 with cold PBS. The first slide was fixed in 

methanol for 10 minutes at -20 °C. Warm DMEM was added to the remaining slides and left at 

37 °C for 5 minutes, 15 minutes and 30 minutes. These slides were fixed in 100% methanol for 

10 minutes and rinsed slowly three times with PBS. They were blocked for 1 hour at room 

temperature in PBS with 1% BSA and incubated with anti α-tubulin murine mAb at a 1:500 

dilution (Sigma, UK) at room temperature for 1 hour in PBS with 1% BSA. Cells were rinsed 

slowly three times with PBS. Cells were incubated with Alexa Fluor 546 rabbit anti-mouse IgG 

at a dilution of 1:1000 at room temp for 1 hour in PBS with 1% BSA then rinsed slowly three 

times with PBS. Slides were mounted and imaged as outlined previously. Ten representative 

images of each experiment condition were taken with 63x lens on Zeiss Confocal Microscope. 

The ratio of internalised particles per cell and the number of infected versus uninfected cells 

was counted and results then analysed with Graph Pad Software using the students T-test for 

statistical analysis. 
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2.7.8 In vivo bioluminescent imaging 

All imaging experiments were performed by CH at the Barts and The London School of 

Medicine and Dentistry Biological Services Unit (Charterhouse Square, London, UK) in 

accordance with the UK co-ordinating committee on cancer research guidelines and the Animals 

(Scientific Procedures) Act 1986 and the guidelines for the welfare and use of animals in cancer 

research (181). During all in vivo experiments, the general health of mice was assessed daily 

and animals sacrificed if signs of ill health were seen such as piloerection, hunched posture, 

20% loss of body weight, diarrhoea or dyspnoea. Animals were also sacrificed if tumours 

ulcerated, impeded vital functions such as locomotion and excretion or tumour size (maximum 

length x maximum breadth) reached 1.4 cm
2
.  

 

Miapaca2-VEGFp165, Miapaca2-VEGFp121 and Miapaca2-Vector Control were used to 

establish tumour xenografts in the flank of 4-5 week-old Balb/c nude mice (Harlan UK Ltd., 

Bicester, Oxon, UK). 5x10
6
 cells in 150 µL of sterile PBS were injected using a 22 G needle 

into the right flank of each animal and there were five mice per group of each cell type. When 

tumours reached 0.4-0.5 cm each mouse received 1x10
7
 pfu of VVL15 in 100 µL of PBS via 

intravenous (IV) tail vein injection. The biodistribution of VVL15 was determined 1, 2, 3, 5 and 

6 days following infection by measuring luciferase distribution by light emission with the IVIS 

camera according to the manufacturer‟s instructions. Mice were anaesthetised (2% isofluorane 

by inhalation in O2 1 L/min and NO 1 L/min) and received an intraperitoneal (IP) injection of 

150 mg/kg D-Luciferin at a concentration of 15 mg/mL (200 μL injection in 20 g mouse). Mice 

were placed on a stage pre-warmed to 37 °C in the light-free chamber housing the IVIS camera 

where anaesthesia was continued by nose-cone delivery.  

 

10 minutes following D-Luciferin injection, grey-scale whole-body photographic images were 

collected (field of view 15 cm; exposure 0.2 seconds; binning medium; f/stop 16) followed by 

acquisition and overlay of a colour image representing the spatial distribution of the detected 

photons emitted from the field (field of view 15 cm; exposure 0.5-120 seconds; binning 
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medium; f/stop 1). The length of bioluminescence imaging varied between 0.5 and 120 seconds 

in order to ensure that a non-saturated image was obtained. Tumours were defined as ROI and 

light emission quantified (p/s/cm
2
) using Living Image software. Results were analysed using 

Prism
®
. 

 

2.8 Histology and immunohistochemistry (IHC) 

All histology and IHC procedures were performed by Vipul Bhakta, Mohammed Ikram and 

Keyur Trivedi (Pathology Service, Barts CR-UK Centre, QMUL, London) and all slides 

reviewed by CH and YW. 

 

2.8.1 Sample processing 

Tumour xenografts and organs were collected from mice immediately after sacrifice and were 

fixed in 10% formaldehyde and then paraffin-embedded. Samples were cut into 4 μm sections 

using a Leica EG1160 microtome. Slides were stained with haematoxylin and eosin (H&E) 

according to standard protocols using a Leica autostainer XL. Further sections were cut for IHC, 

which was performed using the Ventana
®
 Discovery staining module (Ventana, Tucson, USA). 

This system used biotin-free secondary antibodies, which were already conjugated to 

streptavidin-HRP. These were visualised with a hydrogen peroxide (H2O2) substrate and 

3,3‟diaminobenzidine tetrahydrochloride (DAB) chromogen, which produced a dark brown 

product visible by light microscopy.  

 

Table 2.3: Primary Antibodies used for IHC 

 
Antibody against 1º/ 2º Species Optimised dilution Supplier 

VVLister coat 

protein 

1º Rabbit 1:200 (paraffin) 

 

MorphoSys UK Ltd, Bath, UK 

Pecam-1 (ab56299) 1º Rabbit 1:200 Abcam Ltd. Cambridge. UK. 
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2.8.2 IHC in paraffin-embedded sections for Vaccinia virus and Pecam-1. 

All staining was performed using the Ventana
®
 Discovery staining module (Ventana, Tucson, 

USA). Slides were deparaffinised using EZ Prep (Ventana) at 75 C for 8 minutes. Slides 

were heated to 95 C for 8 minutes in the presence of conditioning solution 1 (CC1; Tris-

EDTA-based buffer). A 1:200 dilution of primary antibody (Table 2.3) was applied to sections 

for 60 minutes at 37 C. Omnimap anti-Rabbit HRP was then applied 16 minutes. Sections were 

then incubated with 3,3'-Diaminobenzidine (DAB) and hydrogen peroxide for 8 minutes. 

Sections were counterstained with haematoxylin and bluing agent for two minutes. Sections 

were washed between each step. 

 

2.8.3 Quantification of Pecam-1 immunostaining 

Five tumours per group were used for analysis. Samples were collected and stained as described 

using a Pecam-1 mAb (Abcam, Cambridge, UK). Two sections were taken from the centre of 

each tumour 200 µm apart. The Zeiss Axioplan microscope (Carl Zeiss International, Gottingen, 

Germany) was used at 20x magnification to take sufficient images to cover the entire section. 

The edges of tumours, folding of sections or any images showing sample degradation were not 

included in the analysis. The images from each section were reconstructed into a montage using 

the Image J Software (National Institute of Health, Bethesda, USA) (182). Montages were then 

split into RGB channels. The blue channel was selected as giving greatest distinction between 

Pecam-1-positive staining and background. The threshold analysis tool was used to select 

vessels and any contaminating (non-vessel) stray pixels were excluded. Each montage was 

measured to give the area of Pecam-1-positive immuno-staining as a percentage of the total 

area. Measurements were combined for each group for analysis. 

 

2.9 Data handling and statistical analysis 

2.9.1 EC50 and variable slope non-linear regression 

EC50 = ((X where Y=top) – (X where Y= bottom))*0.5 
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Y= Bottom +   ____(Top-Bottom)____ 

(1+10
((LogEC50-X)*HillSlope)

) 

X = log[virus] ;Y =  %cells alive; Hillslope=steepness of curve 

Top/Bottom = Maximum/Minimum Y value (or cell death) 

 

2.9.2 TCID50 

The Reed-Muench method of TCID50 calculation is based on the adding the proportionate 

distance between CPE scores of rows above and below 6 out of 12 to the log of the viral dilution 

where CPE is 6 or less. Viral dilutions range from 10
-3

 to 10
-9

 for viral replication samples.  

This is converted to pfu/mL for purified viral titres:  

Since volume of sample inoculated into the first row = 0.02 mL 

 

2.9.3 Statistical analysis 

Data sets were initially confirmed as normally distributed or not using the D'Agostino and 

Pearson test of normality. Comparisons were then performed using two-tailed unpaired t-tests or 

a Mann-Whitney U test as appropriate. A repeated measures two way ANOVA with a 

bonferroni correction was used to compare bioluminescence for in-vivo time course 

experiments. 

 

TCID50/mL = (1/ TCID50)*(1/0.02) 

TCID50 PFU/mL = TCID50/mL*0.69  

This is then converted into PFU/cell for viral replication titres. 

TCID50 (PFU/cell)  =  ____TCID50 PFU/mL___ 

number of cells at infection 

log TCID50 = log (viral dilu
n
 at row above 50% CPE) – __(% CPE next above  50%)-50%_____ 

            (% CPE next >50%)-(% CPE next ≤ 50%) 
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3 Hypoxia and Vaccinia Virus 

Many tumours are known to contain areas of hypoxia due to poorly developed vasculature. 

Adenovirus, the most commonly used oncolytic vector has been shown to replicate poorly in 

hypoxia. We wanted to assess the effect of hypoxia on the life cycle VVLister to assess its 

potential as an oncolytic viral vector in hypoxia. 

 

3.1 Validation of Hypoxic Conditions 

Hypoxia-inducible factor 1 alpha (Hif-1α) is the key protein mediating the response of cells to a 

hypoxic microenvironment. In the presence of oxygen Hif-1α is hydroxylated at specific proline 

residues which results in its interaction with the Von Hippel–Lindau gene product and 

subsequent ubiquitination and degradation (41). In the absence of ambient oxygen this 

degradation does not occur and subsequent nuclear localisation results in the transcription of 

Hif-1α target genes and cellular adaptation to hypoxia. Vaccinia Virus is becoming an 

increasingly common vector for viral gene and oncolytic therapy. However its ability to 

replicate in hypoxia has not been reported to date. In this project, hypoxic conditions were 

simulated with the use of a hypoxic incubator (Cell Chamber 170, Heto-Holten, Surrey, UK) 

maintaining the ambient oxygen concentration at 1% pO2. To validate the response of Hif-1α in 

our in vitro system, immunoblotting for Hif-1α in nuclear extracts of three pancreatic cancer cell 

lines Suit2, MiaPaca-2 and CFPac1 was carried out. This demonstrated stabilisation of the Hif-

1α protein and nuclear localisation only when exposed to 1% pO2 (Figure 3.1). The predicted 

molecular weight of Hif-1α is 92 kDa but this antibody, H1alpha67, detects a protein of 

approximately 120 kDa and it is assumed that this is due to post-translational modification of 

the protein (183). This demonstrates that a hypoxic environment can be maintained using our 

incubator and this was used to simulate a hypoxic environment in all future experiments unless 

otherwise stated. The use of the term hypoxia refers to a pO2 of 1%, 5% pCO2 and 94% pN2 

unless otherwise stated.  
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Figure 3.1: Stabilisation and nuclear translocation of Hif-1α under hypoxic conditions. 

 Cell lines were incubated in normoxic conditions (20% pO2) or hypoxia (1% pO2) for 16 

hours before harvesting of nuclear extracts for immunoblotting. Lysates were probed for Hif-

1α and proliferating cell nuclear antigen (PCNA) expression as a loading control. pO2 = 

Oxygen Partial Pressure. 
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3.2 Viral Protein Production in Hypoxia 

 

Hypoxia has been shown to limit the total amount of protein synthesis (184). Consequently we 

investigated whether production of viral proteins in pancreatic cancer cell lines exposed to 

hypoxic conditions would be altered. CFPac1 and MiaPaca2 cell lines were infected with 

VVLister at an MOI=1 pfu/cell or mock infected and lysates were harvested at 24h, 48h and 72h 

post-infection. Using an anti-VVL polyclonal antibody similar levels of Vaccinia virus protein 

were detected at 72 hours when exposed to normoxia or hypoxia as shown in lanes 6 & 7 of 

Figure 3.2. This result confirms that viral proteins are translated efficiently in hypoxic 

conditions. 
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Figure 3.2: Western Blot of Vaccinia virus protein expression in MiaPaca2 and CFPac1 in 

normoxia and hypoxia.  

Cells were maintained in normoxic or hypoxic conditions before and after viral infection. Cells 

were infected with VVLister at an MOI of 1 pfu/cell or mock infected with vehicle buffer alone. 

Membranes were probed for Vaccinia virus proteins with an anti-Vaccinia polyclonal antibody. 

This antibody detects most reliably a viral protein ~35-37 kDa in size which is likely to represent 

the 37 kDa Vaccinia virus major envelope protein. Human proliferating cell nuclear antigen 

(PCNA) was used as a loading control. 
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3.3 Viral Replication in Hypoxia 

 

The ability of replication-competent, oncolytic viruses to infect, multiply, lyse and subsequently 

infect neighbouring cells is crucial for their anti-tumour efficacy. There has been concern that 

hypoxia may present a barrier to this (185). We investigated the replication of VVLister in 

pancreatic cancer cell lines Suit-2, Miapaca2 and CFpac1 when exposed to normoxia or hypoxia 

prior to and post viral infection. Cells and supernatant were collected at 24, 48, 72 and 96 hours 

post-infection. The number of pfu/cell produced for each cell line in different conditions was 

determined using a TCID50 assay as described in the Materials and Methods. Viral replication 

in Miapaca-2 and CFpac1 cells is unaffected at any point by hypoxic conditions (Figure 3.3). 

Suit-2 cells show a similar pattern at 24h and 48h producing a high titre of infectious viral 

particles in both hypoxia and normoxia. At 72 and 96 hours post-infection even higher titres are 

achieved when replication occurs in ambient oxygen concentrations (P=0.01 and P=0.04 

respectively). In summary high viral titres of VVLister (approximately 100 pfu/cell) were 

achievable in all pancreatic cancer cell lines tested in both normoxia and hypoxia.   

  



Chapter 3 

78 

 

 

  

Figure 3.3: Viral replication of VVLister in normoxic and hypoxic conditions in PDAC 

cell lines.  

Viral replication was measured by TCID50 (50% tissue culture infective dose) assay of viral 

burst assays. Cell lines were exposed to normoxic (solid line) or hypoxic conditions (dashed 

line) before and after infection with an MOI=1 of VVLister. Burst assay samples were collected 

at 24, 48, 72 and 96 hours post-infection. TCID50 assays were performed on CV1 green 

monkey kidney cells. Experiments were performed in triplicate for each cell line, time point and 

condition. Results are presented as mean ± SEM. 

* 
* 

Normoxia 

 
  Hypoxia (1% Oxygen) 

Time Post-Infection (hours) Time Post-Infection (hours) 

Time Post-Infection (hours) 
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3.4  Cytotoxicity of Wildtype Vaccinia Virus in Hypoxia 

 

Effective lysis of infected tumour cells is the ultimate aim of oncolytic therapy. We used the 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) assay to determine the EC50 (dose of virus required to kill 50% of cells) for four 

pancreatic cancer cell lines using wild type Vaccinia virus. Cells were infected and maintained 

in the indicated oxygen conditions for the duration of the experiment and cell viability was 

analysed at 6 days post-infection. EC50 values were calculated (Figure 3.4).  

 

In Suit2 the EC50 in normoxia was 1.5 pfu/cell and 1.8 pfu/cell in hypoxia (P = 0.48). In Panc1 

the EC50 in normoxia was 1.2 pfu/cell and 0.8 pfu/cell in hypoxia (P = 0.07). For these two cell 

lines there was no statistically significant effect of hypoxia on viral replication. In MiaPaca2 the 

EC50 in normoxia was 187.0 pfu/cell and 9.0 pfu/cell in hypoxia (P ≤ 0.0001). In CFPac1 the 

EC50 in normoxia was 3.7 pfu/cell and 1.1 pfu/cell in hypoxia (P ≤ 0.0001). These values 

represent a statistically significant increase in Vaccinia virus cytotoxicity in Miapaca2 and 

CFPac1 cell lines maintained under hypoxic conditions, with an approximately 20-fold and 3-

fold reduction in EC50 respectively. These data suggest that the Lister strain Vaccinia Virus is a 

good agent for oncolytic viral therapy where hypoxia is likely to be present in the tumour 

microenvironment and represent a proportion of the tumour burden. 
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Figure 3.4: Effect of hypoxia on cytotoxicity of VVLister.  

Pancreatic cancer cell lines were incubated in hypoxic or normoxic conditions for at least 16 

hours, then infected with serial dilutions of VVLister and maintained under the same oxygen 

tension. The infected cells were assayed with MTS reagent at day 6 post-infection at 37 °C with 

5% CO2 for 2 hours. Viable cells were determined as a percentage of the uninfected controls 

and non-linear regression analysis was used to draw dose–response curves. The dotted line 

represents hypoxic conditions; the solid line represents normoxic conditions. Each assay 

contained six replicates and results are presented as mean ± SEM of four independent 

experiments.  
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3.5 Cytotoxicity of Recombinant Vaccinia Virus VVL15 in Hypoxia 

 

VVL15 is a recombinant Vaccinia virus provided by Istvan Fodor (Loma Linda University 

Campus, CA, USA). VVL15 was made by insertion of the firefly luciferase (fLuc) and the lacZ 

reporter genes into the thymidine kinase (TK) region of VVLister. The firefly luciferase gene 

was placed under the control of the Vaccinia early/late promoter and lacZ under the control of 

the Vaccinia promoter p7.5. This virus is valuable for following transgene expression in vitro 

and in vivo. This virus was used in subsequent experiments so we wanted to verify if there was a 

similar effect of hypoxia on the cytotoxicity of this TK-deleted oncolytic virus in MiaPaca2 and 

CFPac1. 

 

MTS assays were carried out as described previously. The EC50 values for VVL15 in MiaPaca2 

were 183.8 pfu/cell and 7.7 pfu/cell in normoxia and hypoxia respectively (P ≤ 0.0001). The 

EC50 values for CFPac1 were 7.9 pfu/cell and 2.4 pfu/cell in normoxia and hypoxia 

respectively (P ≤ 0.0001) (Figure 3.5). Although there was some difference in the mean EC50 

values for recombinant VVL15 versus wildtype VVLister a similar trend was observed. Both 

viruses were more cytotoxic under hypoxic conditions.  
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Figure 3.5: Effect of hypoxia on cytotoxicity of recombinant Vaccinia virus VVL15.  

Pancreatic cancer cell lines were maintained in hypoxic or normoxic conditions for at least 16 

hours, then infected with serial dilutions of VVLister and maintained under the same oxygen 

tension. The infected cells were assayed with MTS reagent at day 6 post-infection at 37 °C with 

5% CO2 for 2 hours. Viable cells were determined as a percentage of the uninfected controls 

and non-linear regression analysis was used to draw dose–response curves. The dotted line 

represents hypoxic conditions; the solid line represents normoxic conditions. Each assay 

contained six replicates and results are presented as mean ± SEM of four independent 

experiments. 
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3.6 Viral Transgene Expression in Hypoxia 

Many replicating viruses used for oncolytic therapy have additional therapeutic transgenes 

inserted into the viral genome to increase their cytopathic effect. Examples include pro-

apoptotic proteins, prodrug-converting enzymes and cytokines (186). One attraction of Vaccinia 

virus versus more conventional viral vectors such as adenovirus or adeno-associated virus is its 

large capacity for transgene insertion (187). Although we have seen that Vaccinia virus gene 

expression is unaffected by hypoxia it is important to determine the effect of hypoxia on 

transgene expression from replication-competent Vaccinia virus if this vector is to be of clinical 

use (184).  

 

We used VVL15 to investigate the effect of hypoxia on firefly luciferase gene expression. Suit2, 

MiaPaca2, CFPac1 and Panc1 were all infected with VVL15 at an MOI=1 pfu/cell and samples 

collected at 24, 48 and 72 hours post-infection. In previous studies on the effect of hypoxia on 

other viruses isolated readings or early time points were used (103, 188). We felt it would be 

more appropriate to assay multiple and later time points to reflect the transgene expression that 

would be of interest in translational applications. The level of luciferase expression was largely 

unaffected by hypoxia (Figure 3.6). Only two of the four cell lines tested showed a significant 

difference between normoxia and hypoxia at two isolated time points. There was a decrease at 

24 hours and increase at 48 hours in luciferase expression for CFPac1 and Panc1, respectively. 

However, this difference was not sustained at later time points. This result suggests that hypoxia 

does not compromise transgene expression from replication-competent Vaccinia virus. 
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Figure 3.6: The effect of hypoxia on transgene expression from VVL15.  

Cells were seeded at a density of 3x104 per well in a 24 well plate and then infected with 1 

pfu/cell of VVL15 24 hours later. Cells were lysed and luciferase activity was measured at 24, 

48 and 72 hours post-infection using a luminometer (Perkin Elmer Victor II) after addition of 

D-Luciferin. The dashed line represents hypoxic conditions; the solid line represents normoxic 

conditions. All experiments were performed in triplicate and results represent the data from 

three separate experiments. Results are presented as mean ± SEM (solid line and triangle 20% 

pO2, dashed line and triangle 1% pO2. Light units=photons/second. * = P≤0.05). 
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Time Post-Infection (hours) Time Post-Infection (hours) 
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3.6.1 Viral Transgene Expression in Hypoxia at an Early Time Point 

The transcription of early poxvirus genes occurs inside the viral core at less than 4 hours post-

infection using the virally encoded early transcription machinery that is packaged into the virion 

upon assembly. Intermediate and late viral gene expression occurs after peri-nuclear viral 

factories have been established at 4-5 hours post-infection (148). 

 

We performed a luciferase assay to assess the effect of hypoxia on early viral gene expression in 

CFPac1 and MiaPaca2 (Figure 3.7). There was a statistically significant increase in early gene 

expression seen for both cell lines under hypoxic conditions (P = 0.0004 and P ≤ 0.0001 

respectively). Luciferase imaging was also performed with the IVIS imager to give a visual 

impression of Luciferase expression in normoxia and hypoxia using MiaPaca2 cell line imaged 

at 4 hours post-infection and a clear difference was noted (Figure 3.8). This suggests that 

hypoxia has an effect on the viral life cycle at an early time point prior to establishment of peri-

nuclear viral factories. Additional effects at later time points are also possible.  

 

As Vaccinia virus is an enveloped virus that contains cellular proteins accumulated in the virion 

during assembly it cannot be excluded that some of the effect on Luciferase expression is the 

result of luciferase being enveloped within the viral core during viral production in CV1 cells. 

Incorporating luciferase proteins inside infective virions has been used to study the effect of 

PI3K inhibitors on the cellular entry of Ebola Virus (189). If luciferase contained inside the 

infective virion is contributing to this finding it would suggest an effect of hypoxia on viral 

entry.  
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Figure 3.7: The effect of hypoxia on early transgene expression from VVL15.  

Cells were seeded at a density of 3e4 per well in a 24 well plate and then infected with 1 pfu 

per cell of VVL15 four hours later. Cells were lysed and luciferase activity was measured at 

four hours post-infection using a luminometer (Perkin Elmer Victor II) after addition of D-

Luciferin. All experiments were performed in triplicate and results represent the data from two 

separate experiments. An unpaired two-tailed students T-test was used to compare the mean 

bioluminescence. Results are presented as mean ± SEM. *** = P ≤ 0.001. 
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Figure 3.8: Representative images of bioluminescence from MiaPaca2 parental cell 

infected with VVL15 in normoxia and hypoxia.  

MiaPaca2 cells were seeded in 6 wells plates and allowed to adhere overnight. Cells were then 

infected with VVL15 at an MOI of 10 pfu/cell, 1 pfu/cell or mock infected (M). Cells were then 

exposed to normoxia or hypoxia for 4 hours and imaged for luciferase expression using the IVIS 

imaging system. Wells are outlined in red and the same colorimetric scale is used for both 

images.   

MOI

I 
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3.7 Summary of Vaccinia Virus and Hypoxia 

 

We have demonstrated that the replication, protein production and transgene expression of the 

Lister strain Vaccinia virus is not negatively affected by hypoxia. Importantly, for translational 

applications, we found that viral cytotoxicity was augmented in two of four PDAC cell lines. 

Transgene expression from the recombinant virus VVL15 was increased in hypoxia versus 

normoxia early after viral infection. This suggests that hypoxia has a positive effect on an early 

stage of viral infection in some PDAC cell lines in vitro. 
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4 Vaccinia Virus and VEGFA 

4.1 The Effect of VEGFA Expression in PDAC Cell Lines 

Vaccinia virus is a large virus and we hypothesised that the tropism of Vaccinia virus may be 

related to the increased permeability of blood vessels in tumours compared to normal tissue, 

allowing extravasation preferentially at tumours. VEGFA was initially discovered as a factor 

released by tumour cells that increased the permeability of blood vessels (73). To test this 

hypothesis, a cell line with a low endogenous level of VEGFA that could be engineered to 

overexpress VEGFA and used to establish an in vivo tumour model with increased vascular 

permeability was required. As in other solid tumours, it has been found that VEGF is over 

expressed in pancreatic cancer (190) and that this can be regulated by hypoxia as a 

transcriptional target of Hif-1 (191).  

 

To verify the endogenous level of VEGF production and the effect of hypoxia on VEGF 

secretion by the PDAC cell lines, an ELISA was performed on the supernatant of uninfected 

cells. MiaPaca2, Suit2, CFPac1 and Panc1 cells were seeded in six well plates, allowed to 

adhere overnight and then incubated in normoxia or hypoxia for a further 24 hours. Experiments 

were designed so that all cells were at approximately 70% confluent when supernatant was 

taken to perform a subsequent ELISA. Suit2 and Panc1 had a relatively high level of VEGF 

secretion (>2000 ng/mL) compared to CFPac1 and MiaPaca2 (~1000 ng/mL). However, only in 

MiaPaca2 and CFPac1 was statistically significant hypoxic induction of VEGF observed and 

interestingly it is only in these two cell lines was a significant increase of viral cytotoxicity in 

hypoxia was noted  (Figure 4.1).  

 

Consequently we hypothesised that VEGF plays a role in the Vaccinia virus life cycle and could 

be involved in the effect of hypoxia on early gene expression. Orf virus, a member of the 

poxvirus family, produces VEGFE a vascular endothelial growth factor that is critical to viral 

infection (92). Although no homologue to VEGFA or VEGFE has been found in the Vaccinia 
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Lister strain genome it is known that another growth factor, epidermal growth factor, is 

important for Vaccinia virus infection, so we wanted to investigate if VEGFA played a role in 

the Vaccinia virus life cycle (133).  
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Figure 4.1: ELISA to assess VEGFA concentration in the supernatant of PDAC cell 

lines exposed to normoxia and hypoxia.  

MiaPaca2, CFPac1, Panc1 and Suit2 were seeded in 6 well plates and exposed to the 

relevant oxygen conditions for 48 hours when the cells were all at approximately 70% 

confluence. Fresh supernatant was taken and used for a subsequent ELISA. Experiments 

were performed in duplicate and results represent the data from two separate experiments. 

An unpaired two tailed students T-test was performed to compare the mean VEGF levels. 

Results are presented as mean ± SEM. * = P ≤ 0.05. 
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4.2 Manipulating VEGFA in PDAC cell lines 

4.2.1 Silencing of VEGF Expression in Suit2 Cells 

 

To establish cell models we selected Suit2, with a high endogenous level of VEGFA, and used a 

pool of four siRNA sequences to silence gene expression. Suit2 cells were transfected with 

Control siRNA, VEGFA siRNA (25 nM) or mock transfected and supernatant collected at 24, 

48 and 72 hours later. An ELISA was used to detect the effectiveness of VEGF silencing and 

select the optimal time for viral infection. There was some off-target (or transfection reagent) 

effect on VEGFA expression in the control siRNA-transfected cells when compared to the 

parental cell line at 48 hours. However, at 72 after transfection there was a three-fold 

differential between control and VEGFA siRNA-treated cells and consequently 72 hours after 

siRNA transfection was selected as the optimal time point for viral infection (Figure 4.2). To 

further optimise the required concentration of siRNA and quantity of transfection reagent 

required for VEGFA gene silencing 25 & 50 nM of siRNA and 1 or 2 μL of transfrection 

reagent were used and VEGFA measured 72 hours later. A combination of 25 µM of siRNA and 

2 uL of transfection was selected as optimal for VEGFA silencing (Figure 4.3). The sequences 

used for gene silencing of VEGFA are presented in Table 4.1. 
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Table 4.1: Sequence of VEGFA siRNA smartpool 

GENE 

(Ref Seq) 
siRNA Target Sequence 

VEGFA 

(NM_001025366) 

 

1-GCAGAAUCAUCACGAAGUGUU 

2-GGAGUACCCUGAUGAGAUCUU 

3-GAUCAAACCUCACC AAGGCUU 

4-AGAAAGAUAGAGCAAGACAUU 
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Figure 4.2: The effect of VEGFA siRNA in the Suit2 cell line.  

To optimise timing for infection in the VEGFA-silenced Suit2 cell line, cells were transfected 

with VEGFA siRNA or siGENOME RISC-free control siRNA. Cells were transfected in 6 

well plates using 50 nM of siRNA and 2 uL of transfection reagent per well. Supernatant was 

then collected for a VEGFA ELISA at 24, 48 and 72 hours. The untransfected parental cell 

line was also included for comparison. Experiments were performed in duplicate and results 

represent the data from two separate experiments. Results are presented as mean ± SEM. * = P 

≤ 0.05. 
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Figure 4.3: Optimisation of VEGFA siRNA in Suit2 cells.  

Cells were transfected with 50 or 25 nM of VEGFA or Control siRNA using either 1 or 2uL of 

transfection reagent per well of a six well plate. Supernatant was collected 72 hours later and a 

VEGFA specific ELISA was used to measure VEGFA concentration. The VEGF level of the 

parental cell line at 72 hours is shown for comparison. Experiments were performed in 

duplicate and results represent the data from two separate experiments. Results are presented 

as mean ± SEM. 

 



Chapter 4 

96 

 

4.2.2 Over-expression of VEGF in MiaPaca2 

 

In order to create a stable model, VEGFA- overexpressing and paired vector-control MiaPaca2 

cells were selected as they have a relatively low endogenous level of VEGFA. The sequence 

NM_001025368.1 corresponding to Homo sapiens VEGFA transcript 4 coding for VEGF 

isoform p165 was used. This was supplied from the manufacturer in the Vector pCMV6-XL4 

(Origene, Rockville MD, USA). The pCMV6-Neo vector was used for expression in eukaryotic 

cells (Origene, Rockville MD, USA). The Not1 restriction site was used to excise the VEGF 

sequence from the pCMV6-XL4 vector which was gel-purified and ligated into the pCMV-Neo 

eukaryotic expression vector creating the vector pCMV-Neo-VEGFp165. Restriction enzyme 

digestion with gel analysis and sequencing was performed to verify the integrity and orientation 

of the VEGF transcripts. MiaPaca2 cells were seeded at a density of 2x10
5
 cells per well in a 6 

well plate. The Effectene transfection reagent (Qiagen, Valencia, CA, USA) was used at a ratio 

of 1 ug of DNA to 10 µL of Effectene reagent to transfect MiaPaca2 cells with pCMV-Neo-

VEGFp165, pCMV-Neo control vector or no vector. Cells were cultured in the presence of 

G418 (Invitrogen) in DMEM supplemented with 10% FCS until cells in the untransfected wells 

were no longer viable. VEGF protein expression was then confirmed using Enzyme-linked 

immunosorbent assay (R&D Systems, Abingdon, UK). These cell lines will subsequently be 

referred to as Miapaca2-VEGF-165 and Miapaca2-Vector control. 

 

To quantify the level of VEGF over-expression the stable cell lines were seeded in 6 well plates 

and supernatant collected for a VEGFA ELISA 48 hours later. There was a three-fold increase 

in VEGF A expression in MiaPaca2-VEGF-165 compared to MiaPaca2-Vector-Control (Figure 

4.4). The stable cell line was assayed for VEGFA using an ELISA at regular intervals to 

confirm continued expression.  
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Figure 4.4: Quantification of VEGFA production in stable MiaPaca2 cell lines.  

MiaPaca2 cells were transfected with pCMV-Neo-VEGF-165 or pCMV-Neo to establish the 

stable cell lines MiaPaca2-VEGF-165 and MiaPaca2-Vector Control respectively. Cells were 

seeded in 6 well plates and incubated in normoxic conditions for 24 hours. Supernatant was 

then collected and assayed for VEGF expression using an ELISA. Experiments were 

performed in triplicate. An unpaired two-tailed students T-test was used to compare the mean 

level of VEGF. * = P ≤ 0.05. 
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4.3 The effect of VEGF expression on Vaccinia virus gene expression 

 

To investigate whether VEGF plays a role in the viral life cycle in vitro we used the Suit2 cell 

model to assess the effect of VEGF gene silencing on luciferase expression from VVL15. Suit2 

cells were seeded and allowed to adhere overnight, transfected with siRNA and infected 72 

hours later with VVL15 at an MOI = 1, 0.1 or 0.01 pfu/cell, or mock-transfected. At 24 and 48 

hours after infection, supernatant was removed, luciferin added and plates imaged immediately 

using the IVIS imaging system. VEGFA gene silencing resulted in a statistically significant log 

fold reduction of bioluminescence from VVL15. The bioluminescence from control siRNA-

treated cells was comparable to the parental cell line. A reproducible effect was seen at both 24 

and 48 hours and was consistent at all MOIs (Figure 4.5). A representative image taken at 48 

hours after infection is shown in Figure 4.6.  

To confirm these findings similar experiments were performed using MiaPaca2-VEGF-165 and 

MiaPaca2-Vector Control cell lines. Cells were seeded and allowed to adhere overnight and 

then infected with VVL15 at an MOI = 1 pfu/cell. Hypoxia affects bioluminescence from 

VVL15 as early as 4 hours post-infection. To see if hypoxic induction of VEGF may be 

implicated in VVL15 infection, cells were analysed for luciferase expression at 4, 24 and 48 

hours post-infection. There was a statistically significant increase in bioluminescence in 

MiaPaca2-VEGF-165 verses MiaPaca2-Vector Control. The over expression of VEGF results in 

a greater than three-fold increase in luciferase expression from VVL15 at 4 hours post-infection 

and greater than two-fold increase at 24 hours post-infection. By 48 hours post-infection this 

finding had diminished and there was no significant difference between MiaPaca2-VEGF-165 

and MiaPaca2-Vector Control (Figure 4.7).   

These findings suggest that VEGF has a positive effect on the Vaccinia virus life cycle and that 

the mechanism operates early in the process of infection. However it is possible that VEGF may 

mediate effects at multiple points in the viral life cycle. 
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Figure 4.5. The effect of VEGFA silencing on expression of the firefly luciferase 

reporter gene from VVL15.  

Suit2 cells were seeded in a 24 well plate. Cells were transfected with siRNA 24 hours later 

and then infected 72 hours after this with VVL15 at an MOI = 1, 0.1 or 0.01 or mock 

infected. Cells were lysed in the well and the substrate D-Luciferin was added. Plates were 

then imaged immediately using the IVIS imager and the baseline bioluminescence from 

mock infected cells was subtracted from infected wells. Cells were imaged at 24 and 48 

hours post-infection. Experiments were performed in triplicate and results represent the data 

from two separate experiments. Results are presented as mean ± SEM. *** = P ≤ 0.001, ** = 

P ≤ 0.01, * = P ≤ 0.05. 
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Figure 4.6: A representative image of the effect of VEGFA silencing on expression of the 

firefly luciferase reporter gene from VVL15.  

Suit2 cells were seeded in a 24 well plate. Cells were transfected with siRNA 24 hours later and 

then infected 72 hours after this with VVL15 at an MOI = 1, 0.1 or 0.01 or mock infected. Cells 

were lysed in the well and the substrate D-Luciferin was added. Plates were then imaged 

immediately using the IVIS imager and the baseline bioluminescence from mock-infected cells 

was subtracted from infected wells. Cells were imaged at 48 hours post-infection. The same 

colorimetric scale was used for all images. PCL = parental cell line, Mock = mock-transfected. 
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Figure 4.7: The effect of VEGF overexpression on the expression of the firefly 

luciferase reporter gene from VVL15.  

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were seeded in a 24 well plate. Cells 

were infected 24 hours later with VVL15 at an MOI = 1 or mock infected. Cells were lysed 

in the well and the substrate D-Luciferin was added. Plates were then imaged immediately 

using the IVIS imager and the baseline bioluminescence from mock infected cells was 

subtracted from infected wells. Cells were imaged at 4, 24 and 48 hours post-infection. 

Experiments were performed in triplicate and results represent the data from two separate 

experiments. Results are presented as mean ± SEM. *** = P ≤ 0.001, ** = P ≤ 0.01. 
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4.4 The effect of VEGF expression on Vaccinia virus replication 

 

We have determined that VEGF has a positive effect on luciferase expression from VVL15, but 

it is unclear whether this translates into an increase in production of infective virions. The effect 

of VEGF expression on wildtype Lister strain Vaccinia virus was investigated using the Suit2 

and MiaPaca2 cell models. Suit2 cells were seeded in six well plates and allowed to adhere 

overnight. They were then transfected with VEGFA siRNA or Control siRNA and infected 72 

hours after this with VVLister at an MOI=1 pfu/cell. Cells and supernatant were collected at 24, 

48, 72 and 96 hours post-infection. CV1 green monkey kidney cells were used as indicator cells 

and infected with collected lysates in a TCID50 assay. There was a statistically significant 

reduction in infective virions produced in Suit2 cells after VEGF gene silencing at 48, 72 and 96 

hours post-infection (Figure 4.8). A small amount of supernatant was also collected from all 

cells for a VEGF ELISA to verify that VEGF gene silencing was not lost towards the latter time 

points of the viral replication assay. Although there is a re-emergence of VEGFA secretion at 96 

hours post-infection in the VEGF siRNA-treated Suit2 cells a large differential between Control 

siRNA and VEGF siRNA treated cells persists for the duration of the experiment (Figure 4.9).  

 

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were also used to test the effect of VEGF 

overexpression on the replication of wildtype Lister strain Vaccinia virus. Cells were seeded in 

6 well plates, allowed to adhere overnight then infected with VVLister at an MOI=1pfu/cell. 

Lysates were collected at 24, 48, 72 and 96 hours post-infection and CV1 cells used as indicator 

cells to determine a viral titre using a TCID50 assay. A statistically significant increase in viral 

replication was seen in MiaPaca2-VEGF-165 versus MiaPaca2-Vector Control at 48 and 72 

hours post-infection (Figure 4.10). This difference was lost at 96 hours post-infection, similar to 

the loss of a statistically significant difference in gene expression at later time points in this 

model using VVL15. A small amount of supernatant was also used to verify persistent 

overexpression of VEGF during the viral replication assay and MiaPaca2-VEGF-165 produced 

40-50% more VEGFA throughout the experiment ( 
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Figure 4.11). 
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Figure 4.8: The effect of VEGFA gene silencing on VVLister replication.  

Viral replication of VVLister in Suit2 cell line transfected with VEGFA siRNA (dashed line) 

or siGENOME RISC-free control siRNA (solid line) measured by TCID50 (50% tissue 

culture infective dose) assay of viral burst assays. Cell lines were infected with a multiplicity 

of infection (MOI) 1 of VVLister and burst assay samples were collected at 24, 48, 72 and 

96 hours post-infection. TCID50 assays were performed on CV1 green monkey kidney cells. 

Experiments were performed in triplicate for each cell line, time point and condition. Results 

are presented as mean ± SEM. * = P ≤ 0.05. 
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Figure 4.9: Confirmation of VEGFA silencing in Suit2 cell line during viral replication 

assay.  

A sample of supernatant (50 µL) was taken from each viral burst assay before infection and 

then at 24, 48 and 96 hours post-infection. A VEGFA specific ELISA was used to quantify 

VEGF levels in the supernatant to ensure VEGF silencing had not been lost at later time 

points. Mean values are presented and experiments were performed in duplicate. 
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Figure 4.10: The effect of VEGFA over-expression on VVLister replication.  

Viral replication of VVLister (Lister vaccine strain of Vaccinia virus) in MiaPaca2-VEGF-165 

(solid line) and MiPaca2-Vector Control (dashed line) cells as measured by TCID50 assay of 

viral burst assays. Cell lines were infected with an MOI = 1 of VVLister and burst assay 

samples were collected at 24, 48, 72 and 96 hours post-infection. TCID50 assays were 

performed on CV1 green monkey kidney cells. Experiments were performed in triplicate for 

each cell line, time point and condition. Results are presented as mean ± SEM. ** = P ≤ 0.01, * 

= P ≤0.05. 
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Figure 4.11: Confirmation of VEGFA expression in MiaPAca2-VEGF-165 and MiaPaca2-

Vector Control cell lines during viral replication assay.  

A sample of supernatant (50 µL) was taken from each viral burst assay before infection and then 

at 24, 48 and 96 hours post-infection. A VEGFA specific ELISA was then used to quantify 

VEGF levels in the supernatant. Mean values are presented and experiments were performed in 

duplicate 
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4.5 The effect of VEGF on Vaccinia virus cytotoxicity in PDAC 

 
The presence of VEGF increases viral transgene expression and the production of infectious 

virions. The next question addressed was whether VEGF could affect the oncolytic ability of 

Vaccinia virus. MiaPaca2-VEGF-165 and MiaPaca2-Vector control cells were seeded in 96 well 

plates and infected with serial dilutions of wildtype Lister strain virus. An MTS assay was 

performed at 6 days post-infection to determine the percentage of viable cells remaining and a 

dose response curve was drawn in order to calculate an EC50 value (Figure 4. 12-A&B). The 

dose-response curve represents a composite of all experiments where as an EC50 value was 

calculated for each assay plate and the mean EC50 values for VVLister in MiaPaca2-VEGF-165 

and MiaPaca2-Vector Control cells compared. A highly statistically significant reduction in the 

EC50 value, therefore increase in viral cytotoxicity, was seen for MiaPaca-VEGF-165 

compared to MiaPaca2-Vector Control (26.5 vs. 122.4 pfu/cell, P<0.0001).  

 

As CFPac1 cells showed a significant increase in viral cytotoxicity in hypoxia, recombinant 

human VEGF (rhVEGFA) was used to stimulate CFPac1 cells and see if any effect was seen on 

viral cytotoxicity. Cells were seeded in a 96 well plate format, stimulated with rhVEGFA and 

infected with serial dilutions of VVLister. A dose of 2 ng/mL was selected as this was the level 

of VEGFA found in other pancreatic cancer cell lines and therefore deemed to be an appropriate 

concentration (Figure 4.1). An MTS assay was performed 6 days after viral infection and a 

statistically significant increase in viral cytotoxicity was found in CFPac1 cells treated with 

rhVEGF versus untreated cells with EC50 values of 0.13 and 0.26 pfu/cell respectively (P 

<0.001) (Figure 4.13). 

 

A 96 well plate format was more difficult to use with the Suit2 VEGF gene silencing cell model 

and results were not reproducible. Instead cells were seeded in 24 well plates and an MTS assay 

used to determine the percentage of cells killed at 3 days post-infection (Figure 4.15). A small 
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but statistically significant increase in the EC50 value was found in VEGF siRNA treated cells 

versus control siRNA treated cells (2.19 pfu/cell vs. 1.79 pfu/cell respectively). 

 

These data show that modulating VEGF levels prior to viral infection using overexpression, 

siRNA knockdown or addition of recombinant human VEGF affects viral potency and that 

increased cytotoxicity is associated with increased VEGF. 
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Figure 4. 12 : Effect of VEGF on the cytotoxicity of VVLister.  

 
MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were infected with serial dilutions 

of VVLister. The infected cells were assayed with MTS reagent at day 6 post-infection at 37 

°C with 5% CO2 for 2 hours. Viable cells were determined as a percentage of the uninfected 

controls and non-linear regression analysis was used to draw dose–response curves (A) and 

determine the EC50 value (B). Each plate contained six replicates, each assay used two 96 

well plates. Each assay was repeated four times making a total of eight 96 well plates. For 

clarity the dose response curve shown is calculated from a combination of all the 48 replicates. 

The EC50 value is presented as the geometric mean of the eight plates with the 95% 

confidence interval. An unpaired students T-test was performed to compare geometric means 

**** = P ≤ 0.0001. 
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Figure 4.13  : The effect of rhVEGF on the cytotoxicity of VVLister in CFPac1 cells.  

 
Cells were stimulated with 2 ng/mL of rhVEGFA-165 for 5 minutes prior to infection with 

VVLister. An MTS assay was then used to assess cell viability at 72 hours post-infection. 

Viable cells were determined as a percentage of the uninfected controls and non-linear 

regression analysis was used to draw dose–response curves and determine the EC50 value. 

Each plate contained six replicates, each assay used two 96 well plates. Each assay was 

repeated twice making a total of 24 replicates. The EC50 value is presented as the geometric 

mean of the four plates with the 95% confidence interval. An unpaired students T-test was 

performed to compare geometric means *** = P ≤ 0.001. 
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Figure 4.14: The effect of VEGF silencing on the cytotoxicity of VVLister.  

 
Suit2 cells were seeded in 24 well plates and transfected with VEGF siRNA or siGENOME 

RISC free control siRNA. Cells were infected with VVLister at 72hours after siRNA 

transfection. The infected cells were assayed with MTS reagent at day 3 post-infection at 37 

°C with 5% CO2 for 1 hour. Viable cells were determined as a percentage of the uninfected 

controls and non-linear regression analysis was used to draw dose–response curves and 

determine the EC50 value. Each plate contained three replicates, each assay used two 24 well 

plates. Each assay was repeated twice making a total of 12 replicates. The EC50 value is 

presented as the geometric mean of the four plates with the 95% confidence interval. An 

Mann-Whitney U Test was performed to compare geometric means as results were not 

normally distributed ** = P ≤ 0.01.  
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4.6 The effect of VEGF on viral replication in Normal Human Bronchial Epithelial cells. 

 

Pox viruses are known to enter via the respiratory epithelium and it has been shown that EGF 

maintains epithelial integrity to allow viral replication in this context (139). Since it has been 

published that respiratory epithelium expresses VEGF and its receptors we were interested to 

determine whether exogenous VEGF could increase the susceptibility of cells to wildtype 

Vaccinia virus infection (192-194). Normal human bronchial epithelial (NHBE) cells were 

seeded in growth media without bovine pituitary extract which might potentially contain VEGF.  

 

Viral replication in NHBE cells was performed using BEGM (without BPE and hEGF) or 

BEGM (without BPE and hEGF) supplemented with 10 ng/mL of rhVEGF (Peprotec, London, 

UK). Cells were infected with Lister strain Vaccinia virus at an MOI of 0.1 pfu/mL 10 minutes 

after the addition of rhVEGF. Collection and processing of samples was then performed as for 

other viral burst assays. 

 

Significantly higher levels of viral replication were seen at 72 hours in the NHBE cells infected 

in the presence of rhVEGF (Figure 4.15). Although results were not as marked compared to the 

effect seen in PDAC cells, this suggests that VEGF may play a more fundamental role in 

Vaccinia virus infection and is not restricted to the infection of transformed cell lines. 
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Figure 4.15: The effect of VEGF on the replication of VVLister in normal human 

bronchial epithelial (NHBE) cells as measured by TCID50 assay of viral burst assays.  

 
Cells were seeded in growth mediator without growth factors and were then stimulated with 

10 ng/mL of rhVEGFA-165 for 5 minutes prior to infection with VVLister. NHBE cells were 

infected with an MOI = 0.1 pfu/cell. Burst assay samples were collected at 24, 48 and 72 h 

post-infection. TCID50 assays were performed on CV1 green monkey kidney cells. 

Experiments were performed in triplicate for each cell line, time point and condition. Results 

are presented as mean ± SEM. * = P ≤ 0.05. 
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4.7 Characterization of proteases to cleave bound Vaccinia virus from infected cells using 

Real-Time Quantitative PCR 

 

The life cycle of Vaccinia virus begins with attachment to the cell membrane via an 

uncharacterized receptor followed by internalisation of the infectious viral particle. Attachment 

to the cell membrane is considered to be a passive process which can occur at 4 °C whereas 

internalisation is an active process requiring ATP and the co-ordination of complex actin 

dynamics occurring at 37 °C (121). DNA can be extracted from cells, after infection at 4 °C or 

after allowing internalisation to occur at 37 °C and the amount of viral DNA can be quantified 

as a surrogate for viral infection at these time points. However, in order to provide accurate 

results after returning cells to 37 °C for viral internalisation any virus particles which have not 

been internalised at the relevant time point need to be cleaved from the cell membrane so that 

only truly internalised particles are included for qPCR analysis. In a previous study using the 

International Health Department-J strain (IHD-J) of Vaccinia virus it has been demonstrated that 

trypsin is unable to cleave bound virus from infected cells where as pronase treatment was able 

to cleave 92% and 97% of bound IMV from rabbit kidney (RK13) and HeLa cells respectively 

(128). Subtilisin has been used to cleave adenovirus from infected cells (195) but no data exist 

for the Lister strain Vaccinia virus. Consequently it was necessary to identify a suitable protease 

that could be used in subsequent internalisation assays to cleave and remove attached but un-

internalised virus. 

 

CV1 cells were infected with VVLister at an MOI = 30 pfu/cell at 4 °C for 1 hour after which 

unattached virus was removed by washing. At this point DNA was either extracted for 

assessment of internalisation or cells were treated with pronase (0.5, 1.0, 1.5 mg/mL), Subtilisin 

(2 mg/mL) or trypsin (0.5%) for 30 minutes at 4 °C and DNA extracted for qPCR to quantify 

the efficacy of these proteases at removing bound virions from infected cells. The Vaccinia late 

transcription factor 1 (VLTF-1) primer and probe set used and are shown in Table 4.2. As found 

in previous studies, trypsin does not cleave attached virus from infected cells ( 
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Figure 4.16). Higher concentrations of trypsin were not used as this was the maximum that 

could be used without detaching cells during treatment. Both subtilisin and pronase are effective 

and are capable of removing 75% of bound virus after 30 minutes of treatment at the optimum 

concentrations. The remaining 25% may represent a proportion of virus that binds to cells in an 

alternative manner or could be removed if a more efficient protease was available. Although 

these results were not as impressive as published using the IHD-J they were considered 

sufficient for subsequent viral internalisations assays and a concentration of 1 mg/mL of 

pronase was used in all subsequent assays. 
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Table 4.2: Primers and probes used for qPCR, S = sense; AS = antisense. Vaccinia virus 

strain, Lister clone VACV107, complete genome (GenBank: DQ1211394.1) VLTF-1 

Primers and probe =112800-112872 bp. 

 

Gene Primer 

or Probe 

Sequence 

VVLister 

VLTF-1 

Probe 

(FAM) 

ATTTTAGAACAGAAATACCC 

Primers S 5‟-AACCATAGAAGCCAACGAATCC 

AS 5‟-TGAGACATACAAGGGTGGTGAAGT 
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Figure 4.16: Comparison of proteases used to cleave virus attached to cells at 4°C.  

 
CV1 cells were placed on ice and infected with VVLister at an MOI = 30 pfu/cell. Unattached 

virus was then removed and cells exposed to the relevant proteases for 30 minutes on ice. DNA 

was then extracted and 40 ng was used for qPCR using the VLTF-1 primer & probe set. 

Experiments were performed in biological duplicates and qPCR in triplicates. Results are 

presented as mean DNA copy number ± SEM. *** =  P ≤ 0.001. 
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4.8 The effect of VEGF on viral attachment and internalisation measured using Real-

Time Quantitative PCR 

 

To assess if VEGF has any effect on attachment or internalisation of Vaccinia virus a 

quantitative PCR assay was used to measure the proportion of viral DNA present in extracts 

from infected cells. MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were infected 

with VVLister at an MOI = 10 pfu/cell for one hour at 4 °C. Cells were washed to remove 

uninternalised virus and DNA extracted immediately or cells returned to 37 °C for 5, 15 or 30 

minutes. Cells were then treated with pronase to remove un-internalised virus and DNA 

extracted. As seen in Figure 4.17 there is no significant difference in the attachment of Vaccinia 

virus in the presence of VEGF. However after allowing internalisation to resume there is a 

highly significant increase in viral internalisation in the MiaPaca2-VEGF-165 versus MiaPaca2-

Vector Control at 15 minutes (P = 0.0032) and 30 minutes (P < 0.0001). Suit2 cells were also 

used to investigate the effect of VEGF gene silencing on VVLister internalisation. Cells were 

infected with VVLister at 72 hours after siRNA treatment and virus was allowed to internalise 

for 30 minutes before pronase treatment and DNA extraction. There was a significant decrease 

in viral internalisation in the VEGF siRNA-treated Suit2 cells versus control siRNA treated 

cells (P = 0.0027) as shown in Figure 4.18. 
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Figure 4.17: The effect of VEGF over expression on Vaccinia virus attachment and 

internalisation as measured by quantitative PCR.  

 
MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were infected with Vaccinia virus at 

an MOI of 10 pfu/cell for 1 hour at 4°C. Cells were washed and then DNA extracted for 

attachment analysis or treated with pronase (1 mg/mL) for 30 minutes at 4°C DNA and then 

warmed to 37 °C. Cellular and viral DNA was then extracted 5, 15 and 30 minutes later to 

assess viral internalisation. Quantitative real-time PCR was then used to determine the genome 

copy number using the VLTF-1 primer and probe set. Experiments were performed in 

triplicate for each time point and results are the combination of two experiments. Results are 

presented as mean ± SEM. *** = P ≤ 0.001, ** = P ≤ 0.01. 
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Figure 4.18: The effect of VEGF gene silencing on Vaccinia virus internalisation as 

measured by quantitative PCR.  

Suit2 cells were transfected with VEGF siRNA or Control siRNA and then 72 hours later 

infected with Vaccinia virus at an MOI of 10 pfu/cell for 1 hour at 4 °C. Cells were washed and 

treated with pronase (1 mg/mL) for 30 minutes at 4 °C and then warmed to 37 °C. Cellular and 

viral DNA was then extracted 30 minutes later to assess viral internalisation. Quantitative real-

time PCR was then used to determine the genome copy number using the VLTF-1 primer and 

probe set. Experiments were performed in triplicate for each time point and results are the 

combination of two experiments. Results are presented as mean ± SEM. ** = P ≤ 0.01. 

 

 30 Minutes Post-Infection 



Chapter 4 

121 

 

4.9 Development of fluorescently labelled Vaccinia virus VVL-488 

 

In order to confirm, using an alternative technique, that viral internalisation was affected by 

VEGF we first made a fluorescently labelled Vaccinia virus to investigate attachment and 

internalisation of viral particles. To directly visualise the process of viral infection wildtype 

Lister strain virus was coated with Alexa Fluor® 488 (Invitrogen, USA) 5-

sulphodicholorphenol ester which links the fluorescent marker to viral coat proteins. To verify 

the specificity and sensitivity of this technique CV1 cells were seeded onto a transwell on a 

microscope slide and infected with the Alexa Fluor labelled wild type Vaccinia virus (VVL-

488) or mock-infected as shown in Figure 4.19-A and C. Samples were then fixed and probed 

with anti-Vaccinia polyclonal antibody or its isotype control as shown in Figure 4.19-A/C and 

B. The images show efficient labelling of Vaccinia virus with Alexa Fluor-488 (green) and this 

appears to be specific as these foci co-localise with staining for anti-Vaccinia antibody (red) 

although not all infective virions that are detected with anti-Vaccinia antibody were labelled 

with Alexa Fluor-488. In addition the foci VVL-488 vary markedly in size. As these are all 

labelled specifically with anti-Vaccinia virus antibody, it appears likely that our virus 

preparation produces individual infective virions but also virions grouped in clumps perhaps 

due to incomplete disruption of host cell membranes during virus production. However, this 

difference in size does not seem to affect virus attachment in these or subsequent images.  
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Figure 4.19: Validation of labelling of wild type lister strain virus with Alexa Fluor-488.  

Split channels images: Top left=Dapi, Top right=488, Bottom left=546, Bottom right=combined 

image. Panel A - Split channel image of CV1 cells infected with VVL-488 (green) and stained 

with Vaccinia virus polyclonal rabbit IgG (red) and nuclear stain DAPI (blue). Panel B – Split 

channel image of CV1 cells infected with VVL-488 (green) and isotype control RbIgG (red). 

Panel C – Split channel image of mock-infected CVI cells counterstained with Vaccinia virus 

polyclonal rabbit (red). Images were taken at 64x magnification with Zeiss LSM 510 META 

laser scanning microscope.  

 

A 

 

B 

 

C 
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4.9.1 The effect of VEGF on attachment and internalisation of VVL-488 assessed using 

confocal fluorescent microscopy 

 
In order to assess visually if VEGF facilitates Vaccinia virus internalisation, the fluorescently 

labelled VVL-488 was used to infect Suit2 cells transfected with VEGF siRNA or Control 

siRNA. After returning cells to 37 °C previous experiments had indicated that 30 minutes was 

required before a difference was seen in viral internalisation, therefore images were taken at 30 

minutes. Suit2 cells were seeded into chamber microscope slides and later transfected with 

control or VEGF specific siRNA. Three days after siRNA transfection cells were infected with a 

1:200 dilution of VVL-488. Chamber slides were warmed to 37 °C and then fixed at 30 minutes 

post-infection for confocal microscopy. Images of VEGF siRNA treated cells (Figure 4.20) and 

a representative Z-stack image (Figure 4.21) show reduced attachment and internalisation of 

viral particles compared to control siRNA treated cells (Figure 4.22 & Figure 4.24). Membrane 

fusion and macropinocytosis have both been implicated in the internalisation of Vaccinia virus 

and although it is not possible to determine which GFP foci represent intact virions and which 

are viral membranes fused with cellular membranes VEGF siRNA cells are clearly less 

infectable at this time point. Quantification of attachment and internalisation was performed 

despite this caveat. Z-stack 3D representations of 10 fields of view were taken for the VEGF 

siRNA and control siRNA treated Suit2 cells. A clearly isolated GFP foci was counted as one 

virion and small or large foci counted equally. Two independent observers, who were blinded to 

sample group, scored images at the time of viral attachment and 30 minutes after internalisation 

was allowed to proceed at 37 °C. There was no significant difference in viral attachment but 

there was a significant (P = 0.023) increase in mean number of viral particles per cell after 30 

minutes at 37 °C (Figure 4.24). Taken together with the quantitative PCR data it is clear that 

VEGF facilitates Vaccinia virus entry in PDAC cell lines in vitro.  
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Figure 4.20: The effect of VEGF gene silencing on the internalisation of VV-488.  

The Representative split channel image of Suit-2 cells transfected with VEGF siRNA and 

imaged at thirty minutes after warming of cells to 37 ºC to allow internalisation of viral particles. 

Nuclear material is stained blue with DAPI, alpha- tubulin (red) and VVL-488 (green). Images 

were taken at 64x magnification with a Zeiss LSM 510 META laser scanning microscope and 

displayed at a resolution of 1024 x 1024 dpi.  
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Figure 4.21: The effect of VEGF gene silencing on the internalisation of VV-488 (Z 

stack).  

Representative Z stack image of Suit-2 cells transfected with VEGF siRNA and imaged at 

thirty minutes after warming of cells to 37 ºC to allow internalisation of viral particles. 

Nuclear material is stained blue with DAPI, alpha-tubulin (red) and VVL-488 (green). 

Images were taken at 100x magnification with a Zeiss LSM 510 META laser scanning 

microscope and displayed at a resolution of 1024 x 1024 dpi. Twenty-five images were taken 

to create each Z-stack. X, Y and Z dimensions are shown with viewpoint aligned through 

centre of cell as indicated by cross-hairs.  
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Figure 4.22: The effect of control siRNA on the internalisation of VV-488.  

Representative split channel image of Suit-2 cells transfected with siGENOME RISC-free 

control siRNA and imaged at thirty minutes after warming of cells to 37 ºC to allow 

internalisation of viral particles. Nuclear material is stained blue with DAPI, alpha-tubulin (red) 

and VVL-488 (green). Images were taken at 64x magnification with a Zeiss LSM 510 META 

laser scanning microscope and displayed at a resolution of 1024 x 1024 dpi. 
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Figure 4.23: The effect of control siRNA on the internalisation of VV-488 (Z stack).  

Representative Z stack image of Suit-2 cells transfected with Control siRNA and imaged at 

thirty minutes after warming of cells to 37 ºC to allow internalisation of viral particles. Nuclear 

material is stained blue with DAPI, alpha-tubulin (red) and VVL-488 (green). Images were 

taken at 100x magnification with a Zeiss LSM 510 META laser scanning microscope and 

displayed at a resolution of 1024 x 1024 dpi. Twenty-five images were taken to create each Z-

stack. X, Y and Z dimensions are shown with viewpoint aligned through centre of cell as 

indicated by cross-hairs. 
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Figure 4.24: Quantification of VVL-488 attachment & internalisation confocal images 

Z-stack 3D representations of 10 fields of view were taken for the VEGF siRNA and control 

siRNA treated Suit2 cells. A clearly isolated GFP foci was counted as one virion and small or 

large foci counted equally. This was because we were not able to differentiate individual 

virions from those that could represent virion in complex with cellular membrane following 

viral preparation. Two independent observers, who were blinded to sample group, scored 

images at the time of viral attachment and at 30 minutes after internalisation was allowed to 

proceed at 37 °C. Images were taken at 64 x magnification with a Zeiss LSM 510 META laser 

scanning microscope and displayed at a resolution of 1024 x 1024 dpi for counting. * = P  ≤ 

0.05 Two tailed students T-test.  
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4.10 The effect of VEGF on Vaccinia virus mRNA transcription 

 

The next step in the Vaccinia life cycle is gene transcription, so to assess if VEGF can affect 

viral mRNA transcription we used a reverse transcription real-time quantitative PCR assay. 

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were infected for 1 hour with 

VVLister at an MOI = 10 pfu/cell. At 6 and 24 hours post-infection cells were harvested for 

RNA extraction. Quantitative PCR was then performed using the VLTF-1 primer and probe set 

(Table 4.2) and results were normalised to 18S RNA as detailed in the Material and Methods 

section of this thesis. The VTLF-1 primer and probe set were used firstly as no pre-transcribed 

early mRNA presents in viral particles would contaminate the assay and also as VTLF-1 mRNA 

would be transcribed only after the productions of early and intermediate mRNAs.  This should 

give a picture more reflective of total viral mRNA transcription as opposed to early viral mRNA 

production.  

 

A significant increase in mRNA production was noted in MiaPaca2-VEGF-165 compared to 

control at 6 hours after infection (Figure 4.25). However, given that VEGF facilitates Vaccinia 

virus internalisation in these cells a crude attempt was made to remove the effect of increased 

internalisation as a more rapid infection will undoubtedly result in greater mRNA transcription 

at early time points. The amount of mRNA present in MiaPaca2-VEGF-165 was normalised to 

the amount of virus internalised so that results were more comparable with MiaPaca2-Vector 

Control cells. When this was done there was no longer a significant affect of VEGF on viral 

mRNA transcription although a trend is present (Figure 4.26). On balance it is unlikely that 

VEGF has an effect of viral mRNA transcription other than accelerating the process by inducing 

earlier internalisation. 
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Figure 4.25: The effect of VEGF on Vaccinia virus mRNA expression.  

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were infected for 1 hour with wild type 

Lister strain Vaccinia virus at an MOI = 10 pfu/cell. Cells were harvested at 6 and 24 hours for 

RNA extraction. RT-qPCR was performed for VLTF-1 and 18S and fold changes normalised to 

MiaPaca2-Vector Control at 6 hours post-infection. Relative quantification was used. * =  P 

≤0.05.  
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Figure 4.26: The effect of VEGF on Vaccinia virus mRNA expression.  

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were infected for 1 hour with wild type 

Lister strain Vaccinia virus at an MOI = 10pfu/cell. Cells were then harvested at 6 and 24 

hours for RNA extraction. RT-qPCR was performed for VLTF-1 and 18S then fold changes 

normalised to MiaPaca2-Vector Control at 6 hours post-infection. To control for increased 

internalisation of Vaccinia virus in MiaPaca2-VEGF-165 these ratios were transformed 

adjusting for this (values multiplied by 0.66). Relative quantification was used.  
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4.11 The effect of VEGF on Vaccinia virus DNA replication measured using qPCR 

 
Replication of Vaccinia virus genomic DNA is required to in order to produce infective virions. 

To determine whether VEGF has any effect on DNA replication, MiaPaca2-VEGF-165 and 

MiaPaca2-Vector Control cells were infected with VVLister at an MOI = 1 pfu/cell. Cells were 

collected at 24, 48 and 72 hours post-infection and DNA extracted for Real-Time quantitative 

PCR using the VLTF-1 primer and probe set. Cells were not collected at 96 hours post-infection 

as significant cytopathic effect is seen at this time and DNA would be lost after cell lysis and 

release of virions. 

  

A significant increase was seen in DNA replication in MiaPaca2-VEGF-165 compared to 

control cells at 24 (P = 0.0033), 48 (P = 0.0016) and 72 hours (P = 0.003) paralleling the viral 

replication as measured using viral burst and TCID50 assay (Figure 4.27).   
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Figure 4.27: The effect of VEGF on the replication of Vaccinia virus genomic DNA.  

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were infected for 1 hour with wild type 

lister strain Vaccinia virus at an MOI = 1 pfu/cell. Cellular and viral DNA was then extracted 

at 24, 48 and 72 hours. The VLTF -1 primer and probe set was used to perform qPCR on 40 

ng of DNA at each time point. ** = P  ≤ 0.01 Two tailed students T-test. 
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4.12 The effect of VEGF on Vaccinia virus EEV production measured using TCID50 

assay 

 

I have demonstrated that VEGF facilitates Vaccinia virus replication resulting in increased 

cytolysis and cytotoxicity. However EEV forms of Vaccinia are released without cytolysis early 

after infection and this process has been shown to be mediated in part by Abl-family tyrosine 

kinases (163). To assess whether VEGF affects the release of extracellular enveloped virus 

(EEV), MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were infected with VVLister 

at an MOI = 1 pfu/cell. Supernatant was collected at 24 hours post-infection before any 

cytopathic effect was seen. Consequently any infective virions present in the supernatant 

represent EEV rather than the usual, predominant IMVs. This supernatant was then used in 

TCID50 assay to titrate the amount of EEV produced. As expected the amount of EEV 

produced was much lower than that of IMVs at this time point. There was no significant 

difference in the amount of EEV produced in the presence of increased VEGF (Figure 4.28). In 

summary our results show that VEGF facilitates the entry of oncolytic Vaccinia virus 

accelerating viral infection but does not directly affect other steps in the virus life cycle. 
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Figure 4.28: The effect of VEGF on the production of extracellular enveloped virus 

particles (EEV).  

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control were infected for 1 hour with wild type 

Lister strain Vaccinia virus at an MOI = 1 pfu/cell. Supernatant was then collected at 24 hours 

before any cytopathic effect and used to determine titre of EEVs by TCID50 on CV-1 

indicator cells. 

 

 



Chapter 4 

136 

 

4.13 The expression of VEGF receptors on PDAC cell lines Suit2, MiaPaca2, Panc1 and 

CFPac1 

 
To investigate the mechanism through which VEGF facilitates Vaccinia virus entry we firstly 

characterized the endogenous expression of VEGF receptors. There are many receptors that 

bind to VEGF ligands, but we restricted our analysis to those most implicated in VEGFA-165 

biology, namely VEGFR1(Flt-1), VEGFR2(Flk-1/KDR) and neuropilin 1(NRP1) (78). Cells 

were seeded and allowed to adhere overnight, then exposed to normoxia or hypoxia for a further 

24 hours. Protein was then extracted and probed for VEGFR1, VEGFR2, NRP1. Ku-70 was 

used as a loading control (Figure 4.29). Protein extract from human umbilical vein endothelial 

cells (HUVEC) was used as a positive control as they express all three receptors (196). The 

double bands of VEGFR1 and VEGFR2 represent differently glycosylated forms (197). NRP1 

was highly expressed in CFPac1 cells compared to HUVECs in both normoxia and hypoxia. It 

was also present at a lower level in Suit2 and Panc1 and there is a slight increase in receptor 

expression after exposure to hypoxia. There is a faint band present in extracts of MiaPaca2 cells 

in both normoxia and hypoxia which is more clearly visible on the original radiograph. Li et al 

looked at NRP1 mRNA expression in Panc-1 and MiaPaca2 cells and their results are consistent 

with these. The immunoblotting for VEGFR1 and VEGFR2 is less clear. There are faint bands 

visible for VEGFR1 in Panc1 and CFPac1 cells and faint bands for VEGFR2 in 

Suit2/CFPac1cells exposed to hypoxia and MiaPaca2 cells exposed to normoxia. The 

expression of VEGFR1/2 is therefore likely to be low and variable across cell lines and as a 

consequence Western blotting may not be a sufficiently sensitive technique. This is consistent 

with the work of Itakura et al who found evidence for VEGFR2 in some PDAC cell lines but 

immunoprecipitation of protein was required to detect receptors with immunoblotting (190), 

although Wey et al have published that pancreatic cancer cell lines do express VEGFR1 and 

that density of receptor increases as cell become more confluent (198). Their experiments were 

performed using a polyclonal antibody for VEGFR1.  
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Figure 4.29: Western blot to determine VEGF receptor status of four pancreatic cancer 

cell lines in normoxia and hypoxia.  

A reducing denaturing gel was used to separate 30ng of protein per well and transferred to a 

PVDF membrane. Membranes were then probed for VEGFR1, VEGFR2 and neuropilin 1 

(NRP1) and Ku-70 used as a loading control. Human umbilical vein endothelial cells 

(HUVEC) known to express all three receptors were used as a positive control. Molecular 

weights are expressed as kDa. N=normoxia H=hypoxia. 
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4.14 The effect of NRP1 gene silencing in Vaccinia virus transgene expression in Suit2 

and CFPac1 

 

As NRP1 is the most abundant VEGF receptor we found on PDAC cell lines NRP1 gene 

silencing was used to look for any effect on Vaccinia virus transgene expression. The sequences 

used for siRNA gene silencing are shown in Table 4.3. Firstly the efficiency and timing of gene 

silencing was optimised in CFPac1 cells. Shown in Figure 4.30, cells were either mock 

transfected (1), transfected with transfection reagent only (2), NRP1 siRNA (25 nM) (3) or 

Control siRNA (25 nM) (4) and protein harvested 48 and 72 hours later. A Western Blot was 

then performed and membranes were probed with NRP1 mAb which show almost complete 

abolition of NRP1 protein expression at both time points. Cells were viable and did not show 

any unusual morphology. The double band on immunoblotting represents the soluble (90 kDa) 

and membrane-bound (130 kDa) form of NRP1 (199). 

 

CFPac1 and Suit2 cells were then either mock-transfected with transfection reagent only, or 

transfected with NRP1 siRNA or control siRNA followed by infection 48 hours later with 

VVL15 expressing firefly luciferase. At 48 hours after infection, cells were lysed and samples 

measured for bioluminescence (using the Perkin Elmer Victor luminometer) and protein 

concentration. Bioluminescence is expressed per µg of protein in Suit2 (Figure 4.31) and 

CFPac1 (Figure 4.32) cells infected with VVL15 at an MOI = 0.1 pfu/cell. Unexpectedly there 

was a small but significant increase in viral transgene expression after NRP1 gene silencing 

compared to control siRNA in both Suit2 (P < 0.0001) and CFPac1 (P < 0.0001) cells. 

However, in CFPac1 the bioluminescence in the parental cell line is higher than in control 

siRNA or transfection-reagent treated cells suggesting a non-specific effect on viral transgene 

expression. 
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Table 4. 3: The siRNA sequences for NRP1 gene silencing 

GENE 

(Ref Seq) 
siRNA Target Sequence 

NRP1 

(NM_001024629) 

 

1-CGAUAAAUGUGGCGAUACU 

2-GGACAGAGACUGCAAGUAU 

3-GUAUACGGUUGCAAGAUAA 

4-AAGACUGGAUCACCAUAAA 
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Figure 4.30: Western blot to confirm silencing of NRP1 with specific siRNA.  

Protein from the parental cell line CFPac1 (1), cells exposed to transfection reagent only (2), 

NRP1 siRNA (3) or Control siRNA (4) were collected at 48 and 72 hours transfection. Lysates 

were then probed for neuropilin-1 (NRP1) or proliferating cell nuclear antigen (PCNA). The 

double band of NRP1 represents the membrane-bound form (130-135 kDa) and a soluble form 

(90 kDa). 
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Figure 4.31: The effect of NRP1 gene silencing on the expression of the firefly luciferase 

reporter gene from VVL15.  

Suit2 cells were seeded in a 24 well plates and transfected 24 hours later with NRP1 siRNA, 

control siRNA, transfection reagent only or mock-transfected. Cells were infected 48 hours 

later with VVL15 at an MOI = 0.1. Cells were lysed 48 hours post-infection and 

bioluminescence was quantified. Experiments were performed in triplicate and results 

represent the data from two separate experiments. Results are presented as mean ± SEM. TR= 

Transfection reagent only, PCL= parental cell line, *** = P ≤ 0.001. 
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Figure 4.32: The effect of NRP1 gene silencing on the expression of the firefly luciferase 

reporter gene from VVL15.  

CFPac1 cells were seeded in a 24 well plates and transfected 24 hours later with NRP1 

siRNA, control siRNA, or transfection reagent only. Cells were infected 48 hours later with 

VVL15 at an MOI = 0.1. Cells were lysed 48 hours post-infection and used to quantify 

bioluminescence with a luminometer. Experiments were performed in triplicate and results 

represent the data from two separate experiments. Results are presented as mean ± SEM. 

TR= Transfection reagent only, PCL= parental cell line, *** = P ≤ 0.001. 
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4.15 The effect of VEGF on Akt phosphorylation status in PDAC cells 

 

The biology of VEGF receptor signalling is most well characterised in endothelial cells and it is 

known that VEGF acts via PI3K to phosphorylate Akt (78). However it has also been 

demonstrated that VEGF can increase Akt phosphorylation through NRP1 and via VEGFR1 in 

cancer cell lines (200, 201). The PI3K-Akt signalling pathways has additionally been shown to 

be important for viral infection and survival (157). We were interested to determine whether 

there was any difference between endogenous Akt phosphorylation in our PDAC cell lines. 

MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cells were starved overnight and protein 

collected for western blotting with Fadu cell extracts used as a positive control. There was no 

clear difference in baseline Akt phosphorylation status (S473) in our cell lines (Figure 4.33). 
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Figure 4.33: Western blot of Akt phosphorylation status (S473) in uninfected 

MiaPaca2-Vector Control (VC) and VEGFA-165 cell lines.  

Cells were starved overnight before protein was collected and used for immunoblotting. Fadu 

was used as a positive control. pAkt = phospho Akt, tAkt = total Akt, MW kDa=Molecular 

Weight in Kilodaltons. 
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4.16 The effect of Akt inhibition on Vaccinia virus transgene expression  

 

Although there was no difference in baseline Akt phosphorylation in our MiaPaca2 model we 

were interested to determine the effect of Akt inhibition on Vaccinia virus, as it had been shown 

previously that the infectivity of myxoma virus, another poxvirus, is dependent on Akt 

activation (158). MiaPaca2 and Suit2 cell lines were treated with Akt inhibitor VIII (202) at 5 or 

10 µM or with the PI3K inhibitor Wortmannin for two hours prior to infection. Cells were then 

infected with VVL15 and lysed 24 and 48 hours later to measure bioluminescence.  A highly 

significant and dose-dependent reduction in transgene expression after Akt inhibition was seen 

in both MiaPaca2 and Suit2 compared to DMSO-treated controls (Figure 4.34 A&B). This 

confirms that as with other viral species, Akt signalling plays an important role in infectivity. 

Wortmannin, an inhibitor of PI3K was used as it is known that PI3K can lead to 

phosphorylation of Akt, although Wortmannin does target other kinases (203). We found a 

limited effect on Vaccinia virus transgene expression at the dose used in our studies, with no 

effect on transgene expression in MiaPaca2 at 48 hours and a slight increase in Suit2 at this time 

point. This is consistent with the work of McNulty et al. who found that even at higher doses 

Wortmannin does not affect the plaque size of IHD-J strain Vaccinia virus (204). 
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Figure 4.34: The effect of Akt and Wortmannin on Firefly luciferase expression 

from VVL15.  

MiaPaca2 (A) and Suit2 (B) were pre-treated with Akt inhibitor VIII and 

Wortmannin for 2 hours prior to infection with VVL15 at MOI = 1 pfu/cell. Cells 

were lysed and bioluminescence quantified with a luminometer (Perkin Elmer Victor) 

at 24 and 48 hours post-infection. Experiments were performed in triplicate and 

results represent the data from two separate experiments. Results are presented as 

mean ± SEM. An unpaired, two-tailed students T Test was used to compare the 

difference to the mean of DMSO treated cells. * = P ≤ 0.05, *** = P ≤ 0.001. 
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4.17 The effect of Akt inhibiton on VEGF production 

 

Akt has been shown to regulate VEGF production in both normoxia and hypoxia (39, 205). This 

regulation may be relevant in PDAC cells as Akt, in addition to its importance for viral infection 

outlined by Cooray et al, may indirectly slow viral internalisation by limiting VEGF production. 

Suit2 cells were treated with Akt inhibitor VIII (5 µM) or DMSO for 2 hours prior mock 

infection or  infection with VVLister at an MOI = 1 pfu/cell. Akt inhibition resulted in a 

reduction in VEGFA productions as measured by ELISA after 2 hours of treatment and this was 

sustained at 24 hours after infection (Figure 4.35). Therefore, a reduction in Akt signalling may 

have an additional inhibitory effect on Vaccinia virus life cycle by reducing Vaccinia virus 

internalisation.  
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Figure 4.35: The production of VEGF during infection with Vaccinia virus and treatment 

with Akt InhibitorVIII.  

Suit2 cells were pre-treated with Akt inhibitor VIII and then infected with VVL15 at an MOI = 

1 pfu/cell. Supernatent was collected prior to treatment and a VEGFA-specific ELISA used to 

quantify the level of secreted VEGFA prior to treatment and at 24 and 48 hours after. DMSO = 

dimethyl sulfoxide, AktVIII = Akt Inhibitor VIII (5 µM).   

 

- 
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4.18 The effect of Akt inhibition on VEGF internalisation measured using qPCR 

 

To verify that Akt inhibition can affect Vaccinia virus internalisation, an internalisation assay 

was performed after Akt inhibitor treatment. Suit2 cells were treated with Akt Inhibitor VIII at 5 

or 20 µM or with DMSO for 2 hours prior to infection with VVLister (MOI= 10 pfu/cell) at 4 

°C for 1 hour. Internalisation was allowed to occur at 37 °C for 15 and 60 minutes after which 

cells were treated with pronase to remove un-internalised virions. There was a significant 

reduction in Vaccinia virus internalisation at 15 minutes post-infection with 20 µM, (the highest 

dose) of inhibitor (47% reduction vs DMSO, P = 0.009) and a trend with the lower dose (). At 

60 minutes post-infection there was a 30% and 35% reduction in Vaccinia virus internalisation 

after treatment with Akt inhibitor VIII at 5 µM (P = 0.042) and 20 µM (P = 0.032) respectively. 

The effect of Akt inhibition at 60 minutes post-infection appears to be saturated suggesting that 

Akt is involved in one mode of Vaccinia virus entry but other forms are unaffected.  
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Figure 4.36: The effect of Akt inhibition on the rate of viral internalisation.  

Suit2 cells were pre-treated for 2 hours with Akt inhibitor VIII at 5 or 20 µM and then 

infected with VVLister at an MOI = 10 pfu/cell for 1 hour at 4°C. Cells were warmed to 

37°C to allow internalisation of attached viral particles. At 15, 30 and 60 minutes cells 

were treated with pronase (1 mg/ml) for 30 minutes at 4 °C and washed to remove 

uninternalised virus. Cellular and viral DNA was extracted simultaneously and 40 ng used 

for quantitative real-time PCR using the VLTF-1 primer and probe set. Each sample was 

assayed in triplicate for qPCR and each combination and time point were performed in 

biological duplicates. An unpaired two-tailed students T-test was used for statistical 

analysis and results are presented as mean +/- SEM. *** =P < 0.001, * = P <  0.05. 
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4.19 The effect of Akt inhibition on Vaccinia virus cytotoxicity 

 
To verify if Akt inhibition has an effect on the oncolytic efficacy of Vaccinia virus we 

performed a MTS assay in the presence of this inhibitor. Suit2 cells were treated with 5 or 20 

µM of Akt inhibitor VIII prior to infection with serial dilutions of Vaccinia virus and MTS 

reagent was added to assess cell viability at 3 days post-infection. There was a highly significant 

and dose-dependent effect of Akt inhibition on Vaccinia virus cytotoxicity (Figure 4.37). The 

EC50 value at 3 days after infection for DMSO treated cells was 93.6 pfu/cell versus 43.0 

pfu/cell and 19.7 pfu/cell after treatment with 5 µM (P<0.0001) and 20 µM (P<0.0001) of Akt 

inhibitor VIII. This effect may be mediated in part by the reduction in VEGF produced after Akt 

inhibition but will almost certainly be caused by pleiotropic effects of Akt inhibition on the viral 

life cycle and also the host cell.   
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Figure 4.37: The effect of Akt Inhibition on Vaccinia virus cytotoxicity.  

Suit2 cells were pretreated with Akt inhibitor VIII (5 µM or 20 µM) for 2 hours and then 

infected with serial dilutions of VVLister. The infected cells were assayed with MTS reagent 

at day 3 post-infection at 37 °C with 5% CO2 for 2 hours. Viable cells were determined as a 

percentage of the uninfected controls and non-linear regression analysis was used to draw a 

dose–response curve (A) and determine the EC50 value (B). Each assay contained six 

replicates and results are presented as mean ± SEM of two independent experiments. An 

unpaired, two-tailed students T Test was used to compare the difference to the mean EC50 

values. *** = P ≤ 0.0001. 
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4.20 The effect of VEGF on Vaccinia virus transgene expression in vivo 

 

VEGF facilitates Vaccinia virus entry and results in increased transgene expression and 

replication in vitro. To see determine whether this finding was reproducible in vivo and could 

therefore be partly responsible for the tropism of Vaccinia virus, the MiaPaca2 cell model was 

used to establish tumour xenografts. MiaPaca2-VEGF-165 and MiaPaca2-Vector Control cell 

lines were used to establish xenografts in the right flank of Balb/c mice (n = 5 per group). Mice 

were injected with 1x10
7
 pfu of VVL15 intravenously via the tail vein and subsequently imaged 

12 to 132 hours later after the administration of D-luciferin. There was an increase in mean 

bioluminescent signal in MiaPaca2-VEGF-165 compared to vector control cells (Figure 4.38). 

This was statistically significant at 2.5 (P = 0.0019), 3.5 (P = 0.031), and 5.5 (P = 0.018) days 

post-infection and there was a trend towards statistical significance at 1.5 (P = 0.055) and 4.5 (P 

= 0.067) days post-infection. 

 

 A representative image at 2.5 days after infection is shown in Figure 4.39. This shows a clear 

difference between MiaPaca2-VEGF-165 and MiaPaca2-Vector Control xenografts. The 

bioluminescent signal seen in the oral region of some mice appears to be caused by oral contact 

by the mouse with an infected tumour or at the tail vein injections site as this occurs less 

commonly if animals are separated after infection. This does not seem to interfere with their 

eating or drinking habits. 

 

Tumours were collected at the end of the experiment (5.5 days post-infection) to verify that the 

bioluminescent signal corresponded with positive immunohistochemistry for Vaccinia virus. A 

representative image, at low (100x) and high magnification (200x), of immunohistochemistry 

with an anti-Vaccinia polyclonal antibody and serial sections stained with haematoxylin and 

eosin (H&E) is displayed in Figure 4.40 A and B. This shows the characteristic foci of Vaccinia 

virus infection; Strong central staining and finger like projections of infection spreading out in 

all directions. The serial H&E sections show karyolysis in the central area of infection. This 
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finding confirms that VEGF does facilitate Vaccinia virus infection and is a relevant mechanism 

in vivo. 
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Figure 4.38: The effect of VEGFA on the tumour tropism of VVL15.  

5x10
6
 Miapaca2-VEGF-165 (solid line) and Miapaca2-Vector Control (dashed line) cells 

were injected into the right flank of balb/c nude mice. VVL15 at an MOI of 1x10
7
 pfu/mouse 

was injected once via the tail vein at day 0. The bioluminescence for each tumour was 

measured 12 hours after virus infection and every 24 hours after until 5.5 days post-infection 

using the IVIS imaging system. Results are presented as mean bioluminescent intensity ± 

SEM. A repeated measures two way ANOVA with a bonferroni correction was used to 

compare the two groups (n = 5 per group). 
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Figure 4.39: Representative image of the effect of VEGF on bioluminescence from 

VVL15.  

5x10
6
 Miapaca2-VEGF-165 and Miapaca2-Vector Control cells were injected into the right 

flank of balb/c nude mice. VVL15 at an MOI of 1x10
7
 pfu/mouse was injected once via the tail 

vein and this image was taken at 60 hours post-injection using the IVIS imaging system.  

Colour metric scale is the same for both images. 
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Figure 4.40: Immunohistochemistry for Vaccinia viral proteins and H&E staining.  

MiaPaca2-VEGF-165 tumour xenografts were collected at day 6 post intravenous injection of 

VVL15. Images are representative of loci of viral infection found in tumours.  Images were 

taken with 20x/0.5 and 10x/0.32 objectives on a Zeiss Axioplan microscope fitted with a Zeiss 

AxioCam MRc camera.  

100 µM 

100 µM 
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4.21 The effect of hVEGF production on vascularity in the MiaPaca2 xenograft model 

 

VEGF facilitates Vaccinia virus infection in vitro and in vivo, however it is possible that other 

mechanisms may be important in animal models. Our original hypothesis was that VEGF would 

increase vascularity of tumours and therefore help improve the systemic distribution. MiaPaca2-

VEGF-165 and MiaPaca2-Vector Control xenografts were stained for Pecam-1 a marker of 

murine endothelial cells (206). Two sections were taken from the centre of each tumour with a 

200 µM distance between. The percentage of Pecam-1-positive cells was scored across the 

entirety of each section and the mean percentage of positive cells compared between the two 

groups. There is a greater than 90% homology between murine and human VEGFA with a high 

level of conservation at both N and C terminal regions. Thus we expected to see an increase in 

vascularity in the MiaPaca2-VEGF-165 xenografts. There was an increase in Pecam-1 positive 

cells and it was significantly greater than MiaPaca2-Vector Control cells, P = 0.0037 (Figure 

4.41). A representative image of Pecam-1 staining from the MiaPaca2-VEGF-165 and 

MiaPaca2-Vector Control xenografts is shown in Figure 4.42. Although these results show there 

is increased vascularity in the presence of VEGF which could account for some of its effect on 

Vaccinia virus in vivo, they do not give any indication as to the permeability of these vessels, 

which may also be important for Vaccinia virus spread.  
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Figure 4.41: Quantification of Pecam-1 staining in MiaPaca2-VEGF-165 and MiaPaca2-

Vector Control tumour xenografts in Balb/c nude mice.  

Images were taken at 20x magnification to provide complete coverage of tumour sections, 

approximately 15-25 images per tumour. Quantification was performed on two sections 

separated by 200 µM for each tumour. There were five tumours per group. Data are presented 

as percentage area of Pecam-1 positive cells per tumour. **=P<0.01 A two-tailed, unpaired 

students t-test was used to compare the mean percentage of CD31 positivity. Results are 

presented as mean ± SEM. Please refer to Materials and Methods, section 2.8.3, for detailed 

explanation of the quantification procedure.  
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Figure 4.42: Representative images of CD31/Pecam-1 staining in MiaPaca2-VEGF-165 

and MiaPaca2-Vector Control tumour xenografts in Balb/c nude mice.  

Images were taken with 20x/0.5 objectives on a Zeiss Axioplan microscope fitted with a Zeiss 

AxioCam MRc camera.  

MiaPaca2-VEGF-165 

MiaPaca2-Vector Control 

No Primary Antibody 
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5 Construction of VV-ODD, a hypoxia targeting Vaccinia virus 

5.1 Schema for VV-ODD 

 

Having confirmed that Vaccinia virus is a potential vector targeting hypoxic tumours, we next 

sought how to improve the potency of this virus. One strategy is to arm the virus with a 

therapeutic gene however tight regulation of gene expression is required in order to minimise 

off target effects. Previously this has been achieved by limiting the tropism of recombinant 

viruses to cancer cells and by using conditional promoters to target therapeutic gene expression. 

In order to restrict gene expression to hypoxic conditions we designed a Vaccinia virus 

expressing a luciferase reporter gene regulated by hypoxia as a proof of principle. Limiting 

therapeutic gene expression to hypoxia offers an additional level of regulation that could 

enhance the therapeutic ratio as any off target effects in normoxic normal tissue would be 

minimised.  

 

There are three levels of hypoxic regulation in this construct. Firstly it contains an IRES 

sequence to initiate protein translation, which is relatively more preserved than 5‟ methyl cap-

dependent translation in hypoxia (207). Secondly the Luciferase reporter gene is fused to the 

oxygen degradation domain (ODD) of the HIF1 gene. This results in the hydroxylation, 

ubiquitination and consequent proteolytic degradation of the reporter gene in the presence of 

oxygen (208). Thirdly the 3‟-untranslated region (UTR) from the VEGF gene is included as this 

has been shown to increase mRNA stability in hypoxia (209). The construct contains an 

unmodified red fluorescent protein (RFP) selection marker driven directly from the Vaccinia 

virus P7.5 promoter, and an SV40 poly A tail and is inserted into the TK region of the Lister 

strain virus (Figure 5.1). The shuttle plasmid has been designed so that elements including the 

transgene can be easily removed and replaced. 
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All PCR fragments were produced using Novagen KOD polymerase (Merck KGaA, Darmstadt, 

Germany) and all gene-specific primers were obtained from Sigma-Aldrich (St Louis, MO, 

USA). PCR primers for gene-specific reverse transcription from Suit2 DNA are shown in Table 

5.1. All other PCR primers to amplify fragments and introduce restriction enzyme sites (RES) 

are shown in table 5.2.  

 

The EMCV IRES bicistronic vector was used in a PCR reaction to produce a PCR fragment 

with SacI and AscI 5‟ and an RsrII, AsiSI, SacII and SacI RES 3‟ to the EMCV IRES sequence. 

pGem-Luc (Promega, Wisconsin, USA) was used as the source of the luciferase reporter gene. 

Gene-specific primers were designed to produce a PCR fragment with RsrII RES 5‟ and an FseI 

and AsiSI RES 3‟ to the luciferase coding sequence and to delete the stop codon. Suit2 cell 

mRNA was extracted using Trizol reagent (Invitrogen, Carlsbad, California, USA) and cDNA 

produced using superscript II reverse transcriptase (Invitrogen). This Suit2 cDNA was used as 

the source of the HIF1alpha ODD and gene specific primers were designed with a FseI RES 5‟ 

and a stop codon, NdeI and AsiSI RES 3‟ to the ODD coding sequence. These were designed so 

that the ODD sequence remained in frame with the Luciferase reporter gene. Suit2 cDNA was 

used as the source of the VEGFA 3‟UTR, gene specific primers were designed to amplify the 

130 bp sequence as published by Claffey et al (209). Primers were designed to introduce an 

NdeI RES 5‟ and a MluI and AsiSI RES 3‟ to the coding sequence. The SV40 polyA sequence 

was produced using gene-specific primers to introduce a MluI RES 5‟ and an AsiSI 3‟ to the 

coding sequence. All fragments were run on agarose gels with ethidium bromide to verify size 

and gel purified using the GFX PCR DNA purification kit (GE Healthcare Life Sciences, 

Bucks, UK). All fragments were subcloned into pTopo-CR-II blunt cloning vector (Invitrogen, 

Carlsbad, California, USA). All fragments were then cut from the pTOPO subcloning vector 

and gel purified. These were then sequentially ligated into the shuttle vector pSC65RFP.  

 

The pSC65RFP Vaccinia shuttle vector constructed by Dr L Chard, developed originally from 

pSC65, which contains RFP driven from the p7.5 Vaccinia virus promoter in between the TK 
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left and right arm was used to create the pSC65RFP-ODD shuttle plasmid. The BamHI site after 

RFP was cut with its restriction enzyme and a short polylinker, produced by annealing two 

oligonucleotides (Sigma-Aldrich), was then used to insert a SacI and SacII restriction site to 

allow site-directed, sticky-end cloning. This was then cut using the relevant RE and 

dephosphorylated with calf intestinal phosphatase (NEBiolabs, Ipswich, MA, USA) and then 

run on an agarose gel with ethidium bromide and gel-purified.  

 

Once completed the shuttle plasmid pSC65RFP-ODD was sequenced, using conventional 

Sanger sequencing by the QMUL Genome Centre, using 16 specific primers covering the TK 

left arm to the TK right arm. Vector NTI Software (Invitrogen, Carlsbad, CA, USA) was used to 

verify that the sequence was correct. 

 

The recombinant hypoxia-targeting Vaccinia virus was produced by homologous recombination 

of the pSC65RFP-ODD shuttle plasmid with the Lister strain Vaccinia virus in CV1 cells. Cells 

were seeded in 6 well plates and the next day infected with VVLister at an MOI = 0.05 for one 

hour then removed. Cells were transfected two hours later with 1 µg of pSC65RFP-ODD using 

Effectene transfection reagent (Qiagen Inc, Valencia, CA, USA). When CPE was first visible 48 

hours later, cell were collected and freeze thawed three times to release infectious virions. Serial 

dilutions of this were used to infect confluent CV1 cells which were then overlaid with a 50:50 

mix of 2% low melting point (LMP) agrose and DMEM with 20%FCS. Wells were then 

observed for plaques that were positive for RFP using a fluorescent microscope. These were 

picked using a pipette tip, placed into 200 µL of DMEM and freeze-thawed three times. Serial 

dilutions were used to infect CV1 cells and overlaid with LMP agarose and DMEM mix and 

RFP-positive plaques picked again when visible. This process was repeated until all plaques at 

all serial dilutions used were RFP-positive to produce purified VV-ODD which was then used 

to produce a primary expansion as outlined in the methods. 
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Figure 5.1: Schematic of VV-ODD.  

The construct was inserted into the Vaccinia virus thymidine kinase region (J2R) to express the 

red fluorescent protein and firefly luciferase fused to the ODD from a single Vaccinia virus 

promoter. Three un-translated regions were included. TK L=Thymidine kinase gene left arm, 

TK R=Thymidine kinase gene right arm, RFP ORF=Red fluorescent protein open reading 

frame, EMCV IRES=Encephalomyocarditis virus internal ribosomal entry site, VEGF-

3‟UTR=Vascular endothelial growth factor three prime un-translated region, SV40-

polyA=Simian virus 40 polyadenylation sequence. 

 

VV-ODD 
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Table 5. 1: Sequence of reverse transcription (RT) primers used first strand synthesis of 

the ODD sequence and VEGF 3’UTR from Suit2 mRNA. 

Primer Name Primer Sequence (5‟-3‟) 

RT Primer-ODD-Forward CAGTGCATTGTATG 

RT Primer-ODD-Reverse AAGTGAACCATCATG 

RT Primer-VEGF 3 'UTR-Forward CCAGCACGGTCCCTC 

RT Primer-VEGF 3 'UTR-Reverse AAGATCATGCCAGAG 

 

 

 

 
Table 5. 2: Sequence of primers used to produce fragments for the construction of VV-

ODD  

Primer Name Sequence (5'-3') 

Forward-SacI-AscI-EMCV AAGAGCTCGGCGCGCCCCCTAACGTTACTGGCCGAA 

Reverse-EMCV-RsrII-AsisI-Sac2 AGAGCTCTTCCGCGGGCGATCGCCGGTCCGATTATCATCGTGTTTTTCAA 

Forward-Luciferase-RsrII GTTTCGGACCGATGGAAGACGCCAAAAAC 

Reverse-Luciferase-FseI-AsisI CAAAGCGATCGCAGGCCGGCCCAATTTGGACTTTCCGCCC 

Forward-ODD-FseI GTTTGGCCGGCCACAACAAACAGAATGTGTCC 

Reverse-ODD-NdeI-AsisI CAAAGCGATCGCCATATGTCATGATGATGTGGCACTAG 

Forward-VEGF 3'UTR-NdeI GTTTCATATGTAGACACACCCACCC 

Reverse-VEGF 3'UTR-AsisI-MluI CAAAGCGATCGCACGCGTAACATTAGCACTGTTAA 

Forward-SV40 PolyA-MluI GTTTACGCGTTCGACATGATAAGATAC 

Reverse-SV40 PolyA-AsisI CAAAGCGATCGCGGATCTACCACATTTG 
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5.2 The use of Internal Ribosomal Entry Sites to drive protein translation in normoxia 

and hypoxia 

Protein translation by internal ribosomal scanning has been shown to be preserved in times of 

cellular stress such has nutrient deprivation and hypoxia (210). The VEGFA gene 5‟ UTR 

contains an IRES sequence and is reported to be involved in hypoxic regulation of the protein 

(211). To see if the VEGF 5‟UTR would function as an IRES in the context of Vaccinia virus 

infection, biscistronic vectors were created by Dr L Chard. They were all driven from a T7 

promoter and contain the chloramphenicol acetyltransferase (CAT) and firefly luciferase 

reporter genes (fLuc).  

Four bicistronic vectors were made (Figure 5.2): 

 

A. CAT/fLuc with no IRES sequence to show baseline leaky scanning from the upstream 

promoter.  

B. CAT/EMCV IRES/fLuc containing the encephalomyocarditis virus (EMCV) IRES a 

commonly used and well characterized IRES 

C. CAT/VEGF IRES/fLuc containing the VEGF 5‟UTR 

D. CAT/VEGF IRES(AS)/fLuc containing the VEGF 5‟UTR in the 3‟-5‟ direction which 

should not function as an IRES. 

 

Suit2 and MDA-231cells were transfected with one of the four bicistronic vectors and exposed 

to normoxic or hypoxic conditions for 16 hours. Cells were then infected with VTF7-3, a 

recombinant Vaccinia virus expressing the T7 RNA polymerase (212). Cells were lysed 24 

hours after infection and assayed for luciferase expression and CAT expression. Results are 

presented as light units per nanogram of CAT in MDA-231 (Figure 5.3) and Suit2 (Figure 5.4). 

MDA-231 cells were found to be relatively resistant to Vaccinia virus gene expression and 

therefore fLuc/CAT ratios are much lower than the permissive cell line Suit2. The EMCV IRES 

functions in this cell line but there was a reduction, in fLuc expression, of approximately one 
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third under hypoxic conditions. In contrast the EMCV IRES does maintain protein translation in 

hypoxia in Suit2 cells with a significant increase, in fLuc expression, of almost 50 percent 

versus normoxia. The results of the VEGF IRES are less clear. There is a small but highly 

statistically significant increase in hypoxia using the VEGF IRES in the Suit2 cell line 

compared to normoxia. However there are also smaller but significant increases in the 

fLuc/CAT ratio in the CAT/fLuc (A) and CAT/VEGF-IRES (AS)/fLuc (B) vectors. This 

suggests that any difference is more likely to be due to the effect of hypoxia on Vaccinia virus 

or on the T7 RNA polymerase machinery. As the EMCV IRES did preserve protein translation 

in hypoxia this was used as the IRES sequence for VV-ODD. 
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Figure 5.2: Schematic diagram of the bicistronic vectors used to analyse the ability of 

internal ribosomal entry sites to preserve protein translation in hypoxia.  

A=CAT/LUC, B=CAT/EMCV-IRES/fLuc, C=CAT/VEGF-IRES/fLUC, D=CAT/VEGF-

IRES-AS/fLUC. CAT = Chloramphenicol Acetyl Transferase, fLUC = firefly luciferase, 

EMCV = encephalomyocarditis virus internal ribosomal entry site, VEGF-IRES = vascular 

endothelial growth factor internal ribosomal entry site, VEGF IRES-AS = vascular endothelial 

growth factor internal ribosomal entry site in the anti-sense direction. 
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Figure 5.3: The use of a bicistronic vector to assess the efficacy of internal ribosomal entry 

sites in maintaining protein translation in hypoxia in MDA-231.  

MDA-231 cells were transfected with the bicistronic vectors then infected with a Vaccinia virus 

expressing a T7 promoter. At 16 hours post-infection the expression of luciferase was measured 

with a bioluminescence assay and CAT with an enzyme-linked immunosorbent assay. CAT = 

Chloramphenicol Acetyl Transferase, fLuc = firefly luciferase, EMCV = encephalomyocarditis 

virus internal ribosomal entry site, VEGF-IRES = vascular endothelial growth factor internal 

ribosomal entry site, VEGF IRES AS = vascular endothelial growth factor internal ribosomal 

entry site in the anti-sense direction, H=hypoxia. An unpaired, two-tailed students T test was 

used to compare the mean bioluminescence and results are presented as mean ±SEM. *** = 

P≤0.001. 
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Figure 5.4: The use of a bicistronic vector to assess the efficacy of internal ribosomal entry 

sites in maintaining protein translation in hypoxia in Suit2.  

Suit2 cells were transfected with the bicistronic vectors then infected with a vaccinia virus 

expressing a T7 promoter. At 16 hours post-infection the expression of luciferase was measured 

with a bioluminescence assay and CAT with an enzyme-linked immunosorbent assay. CAT = 

Chloramphenicol Acetyl Transferase, Luc = firefly luciferase, EMCV = encephalomyocarditis 

virus internal ribosomal entry site, VEGF-IRES = vascular endothelial growth factor internal 

ribosomal entry site, VEGF-AS = vascular endothelial growth factor internal ribosomal entry 

site in the anti-sense direction. An unpaired, two-tailed students T test was used to compare the 

mean bioluminescence and results are presented as mean ±SEM. *** = P≤0.001. 

 



Chapter 5 

171 

 

5.3 The efficacy of bioluminescence from VV-ODD and VVL15 

 

Suit2 cells were used to compare the efficacy of bioluminescence from VV-ODD against the 

non-hypoxia-targeting virus VVL15. Cells were infected with either virus at an MOI = 1 

pfu/cell, then exposed to normoxia or hypoxia for 24 hours. Evidence of increased 

bioluminescence was seen in this initial experiment and will be outlined in subsequent figures. 

However, the bioluminescent intensity from VV-ODD was 30 times lower than that seen in 

VVL15 (Figure 5.5). This may be a consequence of luciferase expression being transcribed 

through the IRES sequence rather than directly from the Vaccinia promoter or due to reduced 

luciferase protein efficacy once the ODD element was fused to it. In subsequent experiments 

VV-ODD was compared in normoxia and hypoxia and with VVL15. 
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Figure 5.5: Comparison of bioluminescence from the oxygen sensitive VV-ODD and 

VVLI5  

Suit 2 cells were infected with VV-ODD and VVL15 at an MOI = 1. Cell were then lysed at 24 

hours post-infection and assayed for bioluminescence. An equal number of cells were seeded for 

each replicate and results are presented the mean bioluminescence ± SEM. 
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5.4 VV-ODD a hypoxia targeting Vaccinia virus shows efficacy in multiple cell lines 

 

To verify the hypoxia targeting strategy, two PDAC cells lines and one breast cancer (BC) cell 

line were infected with VV-ODD. Suit2, MiaPaca2 (PDAC) and HeLa (BC) cells were infected 

with VV-ODD at an MOI=0.1pfu/cell and exposed to normoxia or hypoxia for 48 hours. 

Bioluminescence was measured using the Perkin Elmer Victor luminometer and normalised to 

RFP to give a ratio of hypoxia-targeting transgene expression over non-hypoxia-targeting. 

Values were normalised to the ratio of fLuc/RFP in each cell line and consequently the mean 

ratio in normoxia for each cell line is 1. There was a 10.2, 6.3 and 7.8 fold increase in 

bioluminescence in hypoxia in MiaPaca2, Suit2 and HeLa cell respectively, P < 0.0001 (Figure 

5.6). This suggests that the hypoxia-targeting Vaccinia virus could be broadly applicable to 

multiple cell lines. However, this result does not show the individual contribution of each level 

of hypoxic regulation to the overall effect. 
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Figure 5.6: An example of the efficacy of VV-ODD in three different cell lines.  

MiaPaca2, Suit2 and Hela cells were infected with VV-ODD at an MOI = 0.1 pfu/cell or mock 

infected. Cells were then incubated at the indicated oxygen concentrations for forty eight hours. 

Cells were then lysed and the luciferase activity and red fluorescence from VV-ODD was 

measured. Measurements were taken in duplicate from biological duplicates and normalised to 

the ratio in normoxia. The results are the combination of two independent experiments and 

presented as mean ± SEM. *** = P ≤ 0.001 Students two tailed T-test. 
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5.5 A time-, dose- and oxygen concentration-dependent effect of VV-ODD 

 

To show a time-dependent effect of VV-ODD, cells were infected with an MOI = 0.1 pfu/cell 

and exposed to normoxia or hypoxia. A time-dependent relationship with increasing relative 

difference between normoxic and hypoxic bioluminescence was seen in MiaPaca2 (Figure 5.7), 

Suit2 (Figure 5.8) and HeLa cells (Figure 5.9). The statistical significance was P < 0.0001 for 

all time points. In HeLa cells and Suit2 cells a 72 hour time point was not performed as in these 

cells lines significant cytopathic effect was seen. 

 

To show a dose-dependent effect MiaPaca2 and Suit2 cells were infected with VV-ODD at an 

MOI=0.1, 1.0 and 5.0 pfu/cell and cells lysed at 24 hours post-infection (Figure 5.10 and Figure 

5.11 respectively). An increase was seen from 0.1 to 1.0 pfu/cell indicating a dose-dependent 

effect. There was a further increase at 5 pfu/cell in Suit2 but the system appears to be saturated 

at this dose.  

 

An oxygen-dependent increase was also noted when MiaPaca2 cells were infected with an 

MOI=0.1 pfu/cell. Infected cells were exposed to 0.1%, 1.0% and 5.0% oxygen for 24 hours. A 

small but significant increase in the bioluminescent ratio was seen in 5.0% oxygen compared to 

normoxia. However, more significant increases were seen at 1.0 and 0.1% oxygen (Figure 5.13). 

This is reassuring as this mimics the kinetics of HIF in different oxygen concentrations (213). 
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Figure 5.7: A time-dependent effect of luciferase expression from VV-ODD in MiaPaca2 

cells.  

Cells were infected with VV-ODD at an MOI=0.1 pfu/cell or mock infected. Cells were 

incubated at the indicated oxygen concentrations for 24, 48 and 72 hours. Cells were lysed and 

the luciferase activity and red fluorescence from VV-ODD was measured. Measurements were 

taken in duplicate from biological duplicates and normalised to the ratio in normoxia. The 

results are the combination of two independent experiments and presented as mean ± SEM. *** 

= P ≤ 0.001 Students two tailed T-test. 
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Figure 5.8: A time-dependent effect of luciferase expression from VV-ODD in Suit2 cells.  

Cells were infected with VV-ODD at an MOI=0.1 pfu/cell or mock infected. Cells were 

incubated at the indicated oxygen concentrations for 24 and 48 hours. Cells were lysed and the 

luciferase activity and red fluorescence from VV-ODD was measured. Measurements were 

taken in duplicate from biological duplicates and normalised to the ratio in normoxia. The 

results are the combination of two independent experiments and presented as mean ± SEM. *** 

= P ≤ 0.001 Students two tailed T-test. 
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Figure 5.9: A time-dependent effect of luciferase expression from VV-ODD in Hela cells.  

Cells were infected with VV-ODD at an MOI = 0.1 pfu/cell or mock infected. Cells were 

incubated at the indicated oxygen concentrations for 24 and 48 hours. Cells were lysed and the 

luciferase activity and red fluorescence from VV-ODD was measured. Measurements were 

taken in duplicate from biological duplicates and normalised to the ratio in normoxia. The 

results are the combination of two independent experiments and presented as mean ± SEM. *** 

= P ≤ 0.001 Students two tailed T-test. 
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Figure 5.10: A dose-dependent effect of luciferase expression from VV-ODD in MiaPaca2 

cells.  

Cells were infected with VV-ODD at an MOI=0.1, 1.0 or 5.0 pfu/cell. Cells were incubated at 

1% oxygen concentrations for 24 hours. Cells were lysed and the luciferase activity and red 

fluorescence from VV-ODD was measured. Measurements were taken in duplicate from 

biological duplicates and normalised to the ratio in normoxia. The results are the combination of 

two independent experiments and presented as mean ± SEM. *** = P≤0.001 Students two tailed 

T-test. 
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Figure 5.11:  A dose-dependent effect of luciferase expression from VV-ODD in Suit2 

cells.  

Cells were infected with VV-ODD at an MOI = 0.1, 1.0 or 5.0 pfu/cell. Cells were incubated 

at 1% oxygen concentrations for 24 hours. Cells were lysed and the luciferase activity and red 

fluorescence from VV-ODD was measured. Measurements were taken in duplicate from 

biological duplicates and normalised to the ratio in normoxia. The results are the combination 

of two independent experiments and presented as mean ± SEM. *** = P ≤ 0.001 Students two 

tailed T-test. 
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Figure 5.12: The effect of oxygen concentration on luciferase expression from VV-

ODD.  

MiaPaca2 cells were infected with VV-ODD at an MOI = 0.1 pfu/cell or mock-infected. 

Cells were then incubated at the indicated oxygen concentrations for forty eight hours. 

Cells were then lysed and the luciferase activity and red fluorescence from VV-ODD was 

measured. Measurements were taken in duplicate from biological duplicates and 

normalised to the ratio in normoxia. The results are the combination of two independent 

experiments and presented as mean ± SEM. * = P ≤ 0.05, ** = P ≤ 0.01. NS = not 

significant. Mann Whitney U test. 
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5.6 The effect of hypoxia mimetics and an inhibitor of proteasomal degradation on VV-

ODD transgene expression 

 
HeLa cells were infected with VV-ODD at an MOI = 1.0 pfu/cell and treated with the hypoxia 

mimetic Dimethyloxallyl Glycine (DMOG) at increasing concentrations for 48 hours. DMOG is 

a hypoxia mimetic that inhibits prolyl hydroxylase-dependent hydroxylation of the ODD (214). 

No cytotoxicity was seen at the concentrations used in HeLa cells. Cells were lysed at 48 hours 

after infection and a western blot for HIF-1α, the Luciferase-ODD fusion protein and the 

loading control B-actin was performed. As the concentration of DMOG increased stabilisation 

of HIF-1α was seen and increased levels of the Luciferase-ODD fusion protein were seen 

(Figure 5.13). The amount of Luciferase-ODD fusion protein present was quantified and is 

presented in Figure 5.14. 

 

An alternative hypoxia mimetic Cobalt Chloride (CoCl2) and the proteasomal inhibitor MG132 

were also used to show the hypoxia-targeting ability of VV-ODD (213). These compounds were 

found to be cytotoxic on prolonged exposure so were used in a luciferase assay for 6 hours only. 

Hypoxia, at an oxygen concentration of 0.1% was used as a positive control. MiaPaca2 cells 

were infected with VV-ODD at an MOI = 0.1 pfu/cell or mock infected and then exposed to 

CoCl2 (100 µM) and MG132 (10 µM). A significant increase was seen after treatment with both 

compounds showing that the ODD is functional in this fusion protein (Figure 5.15). However 

this assay may not utilise the 5‟ and 3‟ elements of the VV-ODD luciferase construct as these 

compounds are not known to have any effect on ribosomal scanning or mRNA stability unless 

indirectly through HIF-1α stabilisation and target gene transcription. 
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Figure 5.13: The effect of DMOG on VV-ODD fLuc stability.  

Western blot of Hela cells infected with VV-ODD at MOI = 1 pfu/cell and then exposed to 

Dimethyloxallyl Glycine for 48 hours at the indicated concentrations or DMSO as control. 

Dimethyloxallyl Glycine is a cell-permeable competitive inhibitor of the HIF proyl 

hydroxylase enzymes and will stabilise luciferase expressed from VV-ODD. Membranes were 

probed for Hif1α, Luc-ODD and β-Actin. DMOG= Dimethyloxallyl Glycine, Luc-

ODD=Luciferase/Oxygen degradation domain fusion protein. 
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Figure 5.14: Quantification of the effect of DMOG on VV-ODD fLuc stability.  

Quantification of Western blot of HeLa cells infected with VV-ODD (MOI = 1) and then 

exposed to DMOG at the indicated concentration (mM) for 48 hours. The optical density 

measurements are the ratio of Luciferase/Oxygen degradation domain fusion protein to that of 

the loading control Beta-Actin. Ratios were normalised to untreated cells. DMOG= 

Dimethyloxallyl Glycine, DMSO= Dimethyl sulfoxide. 
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Figure 5.15: The effect of hypoxia mimetics and a proteasomal inhibitor on luciferase 

expression from VV-ODD.  

MiaPaca2 cells were infected with VV-ODD at an MOI = 0.1 pfu/cell for twenty four hours or 

mock infected. They were then exposed to normoxia, 1% oxygen, the hypoxia mimetic Cobalt 

Chloride (CoCl2) at 100 µM or the proteasomal inhibitor MG132 (10 µM) for six hours. Cells 

were lysed and the luciferase activity and red fluorescence from VV-ODD was measured. 

Measurements were taken in duplicate from biological duplicates and the results normalised to 

the ratio in normoxia. The results are the combination of two independent experiments and 

presented as mean ± SEM. * = P ≤ 0.05 Students two tailed T-test. 
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6 Discussion and Future Plan 

6.1 Vaccinia Virus and Hypoxia 

Wild-type Vaccinia virus has been well characterized and much of the molecular biology, 

genomic sequence, viral life cycle and immunology have been reported. Vaccinia virus has 

many inherent properties that make it an appealing candidate agent for oncolytic virotherapy. 

Vaccinia virus has a fast and efficient replication cycle with rapid cell-to-cell spread, a natural 

tropism for tumours, a strong lytic ability, large cloning capacity, is safe in humans and has 

good stability (167, 168, 215, 216). As outlined in the introduction, many tumours contain areas 

of hypoxia and these hypoxic regions contribute to the resistance of tumours to conventional 

therapy. Some oncolytic viruses have been shown to also be less effective in a hypoxic 

microenvironment. We have now demonstrated that hypoxia does not significantly affect viral 

gene expression, viral replication, cytotoxicity and it even enhances the tumour-killing activity 

in some PDAC cell lines by vaccinia virus.  

 

We have demonstrated here that the Lister strain Vaccinia virus shows comparable efficacy in 

infection, replication and transgene expression in normoxia and hypoxia. It is important to 

highlight that hypoxic cells used in these experiments had been exposed to reduced oxygen 

concentration for at least 16 hours prior to infection. This is more likely to reflect cellular 

adaptation to hypoxia and model clinical Vaccinia virus infection than shorter exposure times 

that have been used for the study of other oncolytic viruses (101, 188). In addition, we found 

that effective tumour cell lysis was maintained after infection of hypoxic PDAC cell lines and in 

half of the cell lines tested there was a statistically significant improvement in viral cytotoxicity. 

In the metastatic cell line CFPac1 and the primary tumour cell line MiaPaca2 a 3.3-fold and 23-

fold decrease in the EC50 value was seen, respectively, after 6 days of infection. This has 

implications for translational applications given that tumour lysis is the ultimate goal of 

oncolytic therapy and PDAC has been shown to contain areas of hypoxia (67). 
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Many groups have tried to target hypoxic fractions of tumours using hypoxia-specific promoters 

often containing hypoxia response elements (HRE) that facilitate HIF-1α binding and 

downstream gene transcription (176). Unfortunately such promoters are invariably less powerful 

drivers of gene expression than constitutive viral promoters and result in lower levels of gene 

expression and viral replication relative to wild-type viruses (174, 217). Our results show that 

Vaccinia virus has the capacity to infect and replicate in hypoxic tumour cells without the need 

for such approaches.  

 

Conner et al. showed that Oncolytic Vesicular Stomatitis virus (VSV) has comparable viral 

replication in normoxic HeLa cells versus those exposed to 1% O2 for 2 hours prior to infection 

and only a slight reduction of virus-induced CPE on semi-quantitative analysis (188). It is a 

welcome finding that other oncolytic viruses are not affected by oxygen availability, this differs 

from adenovirus which is a commonly used oncolytic virus and has been shown to be attenuated 

in hypoxia (101, 103). However, our results suggest a several-fold, statistically significant 

improvement, rather than non-inferiority, in the oncolytic potential of Vaccinia virus in some 

pancreatic cell lines exposed to hypoxic conditions. Conner et al concluded that their results 

suggest an advantage of RNA viruses over DNA viruses in targeting hypoxic tumour cells 

because of a greater reduction of DNA synthesis in hypoxic cells (188). Vaccinia virus is a 

double-stranded DNA virus but like VSV replicates in the cytoplasm and encodes its own 

polymerases. Therefore our findings do not support their conclusion and suggest that the 

intracellular location of the viral life cycle could be an important factor in its potential as an 

oncolytic agent. 

 

In contrast to Connor et al, Minami et al have found reduced replication of wildtype VSV in 

murine epidermal fibroblasts after exposure to hypoxia due to an increase in GADD34 (218). 

GADD34 is a cellular protein induced at times of cellular stress such as hypoxia and nutrient 

deprivation and was found to inhibit viral replication by inhibiting the mTOR pathway. 
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GADD34 was able to dephosphorylate and reverse the inhibitory effects of tuberous sclerosis 

complex 2 (TSC2) on the mTOR pathway, which regulated viral protein synthesis.  

 

We have found similar replication of wildtype Lister strain Vaccinia virus in Panc1, MiaPaca2 

and Suit2 cells in both normoxia and hypoxia. In Suit2, a permissive cell line, high titres were 

seen in both normoxia and hypoxia by 48 hours.  However, at later time points up to four fold 

higher titres were seen in normoxic conditions. Interestingly this did not affect cytotoxicity in 

this cell line suggesting that either titres of 100pfu/cell are sufficient to cause cell lysis or that 

replication is not the rate-limiting step in cell death. In MiaPaca2 cells, an increase in 

cytotoxicity was found in hypoxic conditions but no significant increase in viral replication was 

seen, further supporting the idea that other factors affect cell lysis in addition to the burden of 

intracellular virions produced. 

 

It is clear, however, that the effect of hypoxia on viral replication is specific to each virus. For 

example, in contrast to the observations for VSV, Aghi et al found that increased GADD34 in 

hypoxic conditions could significantly improve replication of the recombinant herpes simplex 

virus (HSV) G207 in the U87 glioma cell (219). This virus is deleted for the viral gamma 34.5 

protein which normally stops the inhibition of protein translation during viral infection. The 

cellular GADD34 protein compensates for the deletion of this gene and so replication of the 

recombinant virus is increased in hypoxia relative to normoxia. The replication of wildtype 

HSV is similar in normoxia and hypoxia because of the presence of the γ34.5 gene and its 

replication is significantly higher than the recombinant virus. Therefore they suggest deletion of 

γ34.5 is a reason for the improved specificity of this virus in vivo. We have found that the 

cytotoxicity of both wildtype and a TK deleted recombinant Vaccinia virus (VVL15) can be 

increased, relative to normoxia, in some cell lines when exposed to 1% oxygen and is a 

beneficial property inherent to both wildtype and recombinant viral strains.  
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Viral infection induces innate anti-viral mechanisms that inhibit cellular protein synthesis and 

limit viral replication. This is similar to the effect of hypoxia on cells, which can also inhibit 

protein translation (184). Consequently viruses that have acquired mechanisms to subvert 

cellular protein synthesis for virus production during infection may be those most adaptable to 

hypoxic conditions. For example the oncolytic parvovirus, Minute virus of mice, has been 

shown to replicate poorly in hypoxia because it is unable to counteract the shutdown of protein 

translation (220). Protein kinase R (PKR) is a cellular protein involved in the anti-viral response 

and on viral infection it phosphorylates eIF2α inhibiting protein translation. Vaccinia virus 

however has two proteins E3L and K3L which act as pseudo-substrates, inhibiting the function 

of PKR (221). In our experiments we found that viral protein production was maintained in the 

CFPac1 and MiaPaca2 cell lines exposed to hypoxia. E3L and K3L mutant Vaccinia viruses 

have been produced (222) and assessing viral replication and cytotoxicty in hypoxia using these 

viruses would show if they are important for the oncolytic efficacy of Vaccinia virus in hypoxia.  

 

This research shows the effect of 1% oxygen on Vaccinia virus replication and cytotoxicity. 

However, tumours are exposed to a range of oxygen tensions both acutely during temporary 

occlusion of the vasculature but also chronically when tumour cells are further than the 

diffusible distance of oxygen from a vessel. The effect of other forms and ranges of hypoxia on 

Vaccinia virus may be different and requires further investigation. Good transgene expression 

was seen at 0.1% oxygen using the hypoxia-targeting virus VV-ODD, suggesting that even 

lower concentrations of oxygen may not adversely affect Vaccinia virus. It is also unknown if 

the increase in cytotoxicity we have seen in hypoxia is HIF-1α dependent and further studies 

using RNAi strategies or HIF-null cells could be carried out to investigate this. 

 

We were able to show a significant increase in bioluminescence from the recombinant virus 

VVL15 in MiaPaca2 cells after 4 hours of infection. This prompted us to look for a factor that 

regulates an early stage of the Vaccinia virus life cycle that could be affected by hypoxia. We 
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found that VEGF facilitates Vaccinia virus entry, however there are likely to be other factors 

regulated by hypoxia that affect both early and later stages of the Vaccinia virus life cycle and 

may contribute to the increased cytotoxicity found in MiaPaca2 and CFPac1 cell lines. For 

example, using an RNAi approach in a Drosophila model, AMP Kinase was recently identified 

as being involved in Vaccinia virus entry through the control of actin dynamics (223). 

Previously it has been shown that hypoxia can activate AMPK (224) and this may be another 

factor increasing viral cytotoxicity in hypoxia which could be confirmed by assessing AMPK 

activity in CFPac1 and MiaPaca2 cells exposed to hypoxia.  

 

Our findings could also be relevant to others working more broadly on poxvirus biology. 

MiaPaca2 is a cell line relatively resistant to Vaccinia virus in normoxia with an EC50 of 

183.4pfu/cell but becomes 23 fold more sensitive in hypoxia. This model could be used, through 

comparative gene expression and proteomic studies, to identify other host factors that are 

involved in the Vaccinia virus life cycle. 
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6.2 VEGF Facilitates the Vaccinia Virus Life Cycle 

 

During the course of our investigation into the effect of hypoxia on Vaccinia virus we observed 

that increased cytotoxicity of the Lister strain virus was only found in those cell lines where 

there was a hypoxic induction of VEGF. Using VEGF gene silencing in Suit 2 (a cell line with a 

high endogenous VEGF level) and over expressing VEGF in MiaPaca2 (a cell line with a low 

endogenous VEGF level) we were able to show a functional relationship in PDAC cells in vitro 

and in vivo. Using these models we found that VEGF can affect Vaccinia virus replication, 

transgene expression and cytotoxicity. The cytotoxicity of Vaccinia virus was increased by 

over-expression of VEGF in MiaPaca2 cells and resulted in a 4.6 fold decrease in the EC50 

value. This is not as great as the effect seen with hypoxia indicating that VEGF is only one of 

the factors modulated by hypoxia affecting Vaccinia virus efficacy. We were also able to 

increase viral cytotoxicity by the addition of exogenous rhVEGF-165 and decrease efficacy by 

VEGF gene silencing. However, the effect of VEGF gene silencing on the cytotoxicity of the 

Lister strain Vaccinia virus in Suit2 cells, although statistically significant, was small. Suit2 is a 

permissive cell line and supports high titres of Vaccinia virus replication, this suggests that the 

effect of VEGF on viral cytotoxicity may have more relevance to those cell lines that are more 

resistant to Vaccinia virus infection. This supports our hypothesis that once viral replication 

reaches moderate titres (~100pfu/cell) the maximal level of viral replication is no longer the 

main determinant of Vaccinia virus cytotoxicity.    

 

Significantly we found that infection of MiaPaca2-VEGF-165 cells with the fLuc expressing 

virus VVL15 results in significantly higher bioluminescence at 4 hours post-infection compared 

to controls (P < 0.01). This mirrors the effect we had seen after exposure of VVL15 infected 

parental MiaPaca2 cells to hypoxia at this time point. It was apparent in our study, using both a 

quantitative PCR assay and fluorescent confocal microscopy to image internalisation of VVL-

488, that VEGF facilitates the entry of the Lister strain Vaccinia virus. We did not find any 

effect of VEGF on viral attachment to cells, mRNA transcription or EEV release.  
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The innate interferon response, Ras pathway activity and the availability of cellular nucleotides 

are three cellular factors that are involved in pox virus tropism (225). Tumours produce higher 

levels of VEGF and other pro-angiogenic cytokines than normal tissue and hypoxia is an 

important regulator of VEGF production in this context (79).We propose that VEGF is an 

additional factor that is responsible for the tropism of Vaccinia virus for tumour cells by 

increasing the rate of viral internalisation. However, Vaccinia virus enters host cells by a 

number of mechanisms and it has been shown that cell entry is influenced by the form of virus 

used (IMV vs. EEV), the cell type infected and the strain of Vaccinia virus (128, 226, 227). Our 

virus preparations are prepared from lysed, infected CV1 cells after cytopathic effect is seen and 

will be predominately composed of IMVs. We have shown that VEGF affects the tropism of the 

Lister strain virus in PDAC cells but to ascertain whether this mechanism is more widely 

applicable to Vaccinia virus as a species and other cell types will require further investigation.  

 

Primary infection with Vaccinia virus in a pathological context can occur through the 

respiratory tract. Vermeer et al have shown that EGF and the viral homologue VGF are 

important for Vaccinia infection of normal human bronchial epithelium (139).We were 

interested in whether VEGF affected Vaccinia virus infection in these non transformed cells so 

we used exogenous rhVEGF-165 to stimulate NHBE cells and found that viral replication was 

increased. This suggests that VEGF may have a wider role in the tropism of Vaccinia virus for 

different cell types. However internalisation of Vaccinia virus in NHBE cells was not directly 

analysed. Given that NHBE cells are likely to express more VEGFR1 and VEGFR2 than PDAC 

cells the mechanism may be different (193, 200).  

 

Our finding that VEGF facilitates poxvirus infection is not surprising given that a number of 

poxviruses produce homologues to VEGF. VEGF-E was first described in the Orf virus, a 

member of the poxvirus family. VEGF-E is a 25 kDa protein that forms homodimers and binds 

to VEGFR2 and NRP1 but not VEGFR1 or VEGFR3 (89). It acts as a bridging molecule 
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between VEGFR2 and NRP1, which is thought to facilitate VEGF signalling and is important in 

Orf virus pathogenesis (92, 228). Subsequently it has been found that the genomes of other 

parapoxviruses, Bovine Papular Stomatitis Virus and Pseudocowpox virus all contain VEGF 

homologues (229). In contrast, there has been no reports of VEGF homologues in Vaccinia or 

any other orthopoxviruses but it is thought that the evolution of poxviruses has predominately 

been through gain and loss of eukaryotic genes from host cells. We have demonstrated that 

VEGF is able to increase viral internalisation, although this does not discount further 

mechanisms of action. VEGF secretion induced by hypoxia can also protect pancreatic cells 

from pro-apoptotic stimuli (230). Many viruses have mechanisms to inhibit virus-induced 

apoptosis, which facilitates maximal viral replication and also allows latent viral infection to 

occur (157). Future work could involve examining the effect of VEGF on the apoptotic fraction 

of virally infected cells by Annexin V or BrdU fluorescence-activated cell sorting analysis. 

 

In vivo we were able to show that VEGF increases the bioluminescence of VVL15 in human 

xenografts in nude mice. Our group has found that bioluminescence is an effective surrogate for 

viral replication in vivo. VEGF improves Vaccinia virus replication in this mouse model, 

although viral recovery from tumours was not performed. In our mouse model of pancreatic 

cancer, VEGF may increase the rate of internalisation of Vaccinia virus as we have found in 

vitro but it also possible that it improves delivery to the tumour. VEGF increases vascular 

permeability and was originally named vascular permeability factor (73). The increased tumour 

targeting seen in vivo in this study may also be caused by better perfusion of the tumour with 

Vaccinia virus because of the more extensive vasculature which we have demonstrated in 

xenografts of MiaPaca-VEGF-165 compared to MiaPaca2-Vector Control. In addition more 

permeable tumour vasculature in VEGF-expressing stable cell lines could facilitate increased 

extravasation of this relatively large virus (200-250nm) at the site of tumours. The proportion of 

EEV re-entering the vasculature after subsequent rounds of viral replication could also be 

increased if surrounding vessels have been rendered more permeable by increased VEGF and 

would facilitate long-range spread of viral particles. We have not determined if these vessels are 
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more permeable and future work will involve the use of FITC dextran to see determine whether 

Vaccinia virus infection occurs more readily adjacent to areas of permeable vasculature in 

tumours. 

 

VEGF has traditionally been thought to act in a paracrine fashion, being produced by tumour 

cells and ligating VEGF receptors on endothelial cells, so our finding that VEGF acts directly 

on PDAC cell in vitro was unexpected. However VEGF has been found to act in an autocrine 

factor through VEGFR1 and NRP1 on breast, colorectal and pancreatic cancer cell lines and 

seems to modulate cellular chemotaxis (198, 231, 232). Although we detected relatively low 

levels of VEGFR1 and no VEGFR2 a role cannot be excluded. An RNAi approach to silence 

and VEGF receptor expression could be performed to exclude any effect on Vaccinia virus 

internalisation. This would be preferable to VEGF receptor-blocking antibodies as others have 

shown that VEGF can act in an intracrine fashion on perinuclear VEGFR1 (201).  

 

PDAC cells do express NRP1, which is a co-receptor for VEGF, which facilitates the binding of 

VEGF isoforms to VEGFR2. Previously, NRP1 was thought not to be involved directly in 

signalling, but to act as a co-receptor for VEGFR1 and VEGFR2, as it has a transmembrane but 

no intracellular domain itself (233). However, more recently it has been shown that it is a fairly 

promiscuous receptor and is involved in cell signalling by acting as a co-receptor with αVβ3 

integrin or with C-Met (234-236). Interestingly, endocytic cycling of NRP1 has been shown to 

differ depending on the ligand. Studies to date on NRP1 and endocytosis have concentrated on 

endothelial cells. Salikhovaet et al showed that Nrp1 underwent clathrin-dependent endocytosis 

in response to VEGFp165 treatment, whereas its other ligand semaphorin 3C (sema3C) induced 

lipid raft-dependent endocytosis (237). Vaccinia virus uptake has been shown to occur at the 

site of lipd rafts, suggesting that NRP1 may act as a receptor or be involved in viral uptake 

(144). NRP1 has already been implicated in the entry and pathogenesis of another virus human 

T cell leukaemia virus (HTLV) (238). In this context NRP1 forms a ternary complex with 

HTLV-Env proteins, NRP1 and the hypoxia inducible gene Glucose transporter 1 (Glut1). 
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We effectively used NRP1 gene silencing to knockdown NRP1 protein expression however, 

NRP1 gene silencing actually increased Lister strain Vaccinia virus transgene expression by 

approximately twenty percent. Class 3 semaphorin family members have been shown to inhibit 

lammelipodia formation via NRP1, which can be blocked by heparin-binding forms of VEGF 

(239-241). It is tempting to speculate that VEGF may alter the balance of signalling via NRP1 

with other ligands, semaphorins and plexins, resulting in a change in actin dynamics that favour 

virus internalisation. The possibility that NRP1 acts as a receptor or co-receptor for Vaccinia 

virus appears unlikely given our results but needs to be formally excluded by looking for NRP1 

and Vaccinia virus co-localisation using fluorescent confocal microscopy. Investigating the role 

of class 3 semaphorins on Vaccinia virus infectivity could be performed, by overexpressing and 

silencing NRP1, in a similar manner to the viral assays described here for VEGF. This offers an 

intriguing possibility to augment Vaccinia virus potency as strategies to augments VEGF 

activity are unlikely to be approved by new drug regulatory agents whereas blocking of 

semaphorin activity prior to Vaccinia virus may be more acceptable. 

 

VEGF may act via a non-receptor mediated effect as it interacts with cell surface GAGs via its 

heparin binding domain and alter their distribution or availability at the cell surface. GAGs have 

been implicated in Vaccinia virus pathogenesis and virus infectivity can be partially blocked by 

heparin and heparan sulphate (125, 227). One hypothesis could be that VEGF is able to bind 

heparin and heparans on the cell surface and block the inhibitory effects of GAGs on Vaccinia 

virus entry, thereby augmenting Vaccinia virus infectivity via a non signalling-dependent 

mechanism. We have confirmed that GAGs inhibit Lister strain infectivity (data not shown) but 

have been unable to use GAGs reproducibly in the internalisation assays outlined in this thesis 

to confirm if they antagonise the effects of VEGF. Further work to establish an assay to test this 

contention could use a self-quenching rhodamine B-labelled Vaccinia virus, a potentially more 

sensitive tool, to assess the interaction of GAGs and VEGF on virus membrane fusion with 

target cells ((242) & personal communication B Moss). 
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Akt is a central protein involved in actin dynamics, which acts downstream of NRP1, VEGFR2 

and VEGFR1 (78, 243). Akt has recently been described as an important determinate of the 

susceptibility to infection by myxoma virus, a member of the Leporipoxvirus genus of 

poxviruses (158). Although we have been unable to clarify the receptor implicated in the effect 

of VEGF on Vaccinia virus internalisation, we have shown that Akt phosphorylation does affect 

Vaccinia virus infection. Inhibition of Akt reduces Vaccinia virus internalisation, transgene 

expression and cytotoxicity in a dose-dependent manner. Others have shown that Akt is 

phosphorylated early during Vaccinia virus infection and is also involved in later stages of the 

viral life cycle (159, 204). In addition we also show that Akt inhibition reduces VEGF 

production in the context of viral infection and may also affect the internalisation of Vaccinia 

virus in this manner. 

 

During the course of the project, data have been published suggesting that one of the forms of 

cell entry used by Vaccinia virus is fluid phase endocytosis or macropinocytosis (146). Whether 

VEGF affects this mode of cell entry either by stimulating VEGF signalling pathway, acting as 

a scaffold for Vaccinia internalisation complex or reducing the inhibitory effect of GAGs is not 

clear. Mercer et al have shown that the Western Reserve (WR) strain Vaccinia virus induced 

membrane blebbing and the IHD-J strain induces filiopodia formation. They are both sensitive 

to inhibitors of actin polymerization and depolymerization (cytochalasin D and jasplakinolide) 

and myosin II (blebbistatin) but have different sensitivities to the effect of pH or GAGs on virus 

entry (226). Unlike WR IMVs, infection by IHD-J IMVs was not inhibited by genistein 

(tyrosine kinase inhibitor), nor by wortmannin (PI(3)-kinase inhibitor). Given these differences 

between strains, a full screen of inhibitors on the entry of the Lister strain Vaccinia virus needs 

to be performed to ascertain which mode of cell entry VEGF affects. Inhibitors of 

macropinocytosis, kinases and inhibitors of actin polymerization and depolymerisation could be 

used in an initial screen and then validated with siRNA gene silencing or transfection with 

dominant-negative proteins. Arginine rich cell penetrating peptides, originally identified from 
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the HIV tat protein, and now Vaccinia virus has been shown to use macropinocytosis as a mode 

of cell entry (244). Teesalu et al recently showed that the arginine-containing C-terminal of 

VEGF, which is not by definition arginine-rich, is important for cellular internalisation of NRP1 

(245) and raises the possibility of a role for VEGF in macropinocytosis. 

 

The results from this study to date are firstly that hypoxia does not significantly affect the 

efficacy of oncolytic Vaccinia virus. Furthermore, this study has highlighted a wider role for 

VEGF in the tropism of Vaccinia virus. These results are useful for the field of Vaccinia virus 

oncolytic therapy but may also have implication of Vaccinia virus based cancer vaccines and 

more general poxvirus pathogenesis. Although it has been demonstrated that increased 

internalisation of viral particles occurs in the presence of VEGF and that Akt inhibition can 

reverse this, the mode of internalisation and the signalling pathway through which it acts is 

unclear and requires further investigation. 
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6.3 The Hypoxia-Targeting Oncolytic Virus VV-ODD 

 

This section outlines the structure and function of a novel hypoxia-targeting oncolytic Vaccinia 

virus. Other viral vectors have been constructed to target hypoxia using a hypoxia-responsive 

adenovirus for cancer therapy with a hypoxia-responsive adeno-associated virus for 

cardiovascular disease (176, 246). However, both these approaches utilise an HRE to drive 

expression in hypoxia. The use of an HRE results in a significantly reduced gene expression 

compared to endogenous viral promoters and because of Vaccinia‟s reliance on viral 

polymerases cannot be used in this vector. To produce VV-ODD, a construct was designed that 

incorporated three levels of hypoxic regulation; transcriptional regulation using the VEGF 

3‟UTR, translational regulation using an IRES sequence and post-translational regulation using 

the HIF-1α ODD. 

 

A bicistronic vector system was used to compare the function of the EMCV IRES and the 

VEGF 5‟UTR on transgene expression, in normoxia and hypoxia, using a CAT and luciferase 

reporter assay. Contrary to published reports, we found limited evidence that the 5 „UTR of the 

VEGFA gene functioned as an IRES sequence. There was a less than a two-fold difference 

between the fLuc/CAT ratio containing the VEGF 5‟UTR and the control vector in both 

normoxia and hypoxia. Given that eukaryotic promoters would not drive a transgene located in 

the Vaccinia virus genome our results further suggest that the predominant feature of the 5‟ 

UTR is a cryptic promoter rather than an IRES. Our findings also support the more extensive 

report by Bert et al that shows the VEGF 5‟UTR contains a cryptic promoter and has only 

minimal function as an IRES sequence in comparison the EMCV IRES (247). The EMCV IRES 

clearly functions as an IRES sequence in the context of viral infection using a T7 polymerase 

expressing Vaccinia virus to drive reporter gene expression. In the permissive PDAC cell line 

Suit2, there is an 84% increase in hypoxia of protein translation from the IRES compared to 

normoxia. Consequently the EMCV IRES was selected as the IRES sequence for VV-ODD.  
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When the bioluminescence from VV-ODD was compared to that of VVL15 there was a 30-fold 

decrease in bioluminescent signal using our virus. VVL15 contains an unmodified firefly 

luciferase reporter gene driven directly from the Vaccinia virus promoter with no intervening 

IRES sequence. It is unclear from our results if the decrease observed was caused by reduced 

enzymatic activity of the luciferase ODD fusion protein or reduced protein translation from the 

IRES in comparison to 5‟ methyl cap-dependent translation. Simple plasmid vector studies 

could be performed to compare the enzymatic activity of a modified versus unmodified 

luciferase protein. This highlights that the functionality of all new transgenes after being fused 

to the ODD will need to be reassessed versus control to demonstrate there is still sufficient 

biological efficacy. Future work will incorporate an amino acid spacer in between transgenes 

and the ODD as this has been demonstrated to preserve the biological function of fusion 

proteins (248).  

 

It is equally as likely that the IRES, although functioning well in hypoxia, may not be sufficient 

for sufficient transcription of downstream genes. Our lab and others have found that the 

downstream sequence appears to be significantly more poorly expressed compared to the 

upstream sequence (249). Although IRES sequences allow the expression of multiple 

transgenes, in this context where highly efficient transgene expression is required, it does not 

add value in our vector design. The shuttle vector for this virus has been designed so that this 

sequence can be easily removed, making production of future generations of VV-ODD without 

an IRES sequence straightforward.  

 

VV-ODD was used to infect two PDAC cell lines and HeLa cells to see if the concept of a 

hypoxia-targeting virus was feasible. We have demonstrated, using a reporter gene assay, that in 

all cell lines tested we are able to show a virus dose, time and oxygen-dependent effect. 

Significantly more luciferase expression is seen in cells infected with VV-ODD exposed to 

hypoxia at 24-72 hours post-infection and at MOIs from 0.1 – 5.0 pfu/cell. We have shown that 

the function of this construct mirrors the kinetics of HIF-1 when exposed to different oxygen 
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concentrations. Significantly more luciferase expression was seen at 0.1% oxygen versus 5.0% 

oxygen using VV-ODD. In the absence of a closed system for manipulation of cells in hypoxia, 

DMOG was used to inhibit PHD enzymes and stabilise the Luciferase-ODD fusion protein for 

Western blotting. We were able to demonstrate a dose-range effect with increasing 

concentrations on DMOG (0.01-1.0 mM) causing stabilisation of both HIF-1α and the 

Luciferase-ODD fusion protein. Using our reporter gene assay we were also able to show that 

another hypoxia mimetic (CoCl2) and an inhibitor of proteasomal degradation (MG132) are able 

to increase bioluminescence from VV-ODD. In summary, we have shown through the use of 

different oxygen concentrations, hypoxia mimetics and inhibitors of HIF-1α degradation that the 

principle of our hypoxia-targeting Vaccinia virus is valid.  

 

Our construct also contains a 3‟UTR that has been reported to increase mRNA stability (209). 

We have used the smallest AU-rich region from the UTR in our construct but have not formally 

tested the contribution of this to our results. Future work will assess the requirement for this 

sequence by constructing reporter constructs expressing luciferase with or without the VEGF 

3‟UTR under the control of a Vaccinia virus promoter. Co infection/transfection studies with 

such reporter plasmids and the wildtype Lister strain Vaccinia virus in cells exposed to 

hypoxia/normoxia, both with and without an inhibitor of transcription (actinomycin D) would 

quantify the requirement for this sequence in future generations of viruses. 

 

I have outlined above how the requirements for the IRES sequence and 3‟UTR in future 

constructs will be assessed and subsequently modified. However, there maybe additional 

modifications that need to be introduced. Firstly our Vaccinia virus constructs contain two viral 

early termination sequences. These are strings of nucleotides (TTTTTNT) that signal 

termination of mRNA transcription by the Vaccinia virus ternary polymerase complexes when 

driven from an early promoter of Vaccinia virus (250). Two such sequences are present in our 

construct in the ODD sequence and the 3‟UTR. Point mutations are possible that will remove 

these features without affecting the function of either sequence. Currently it is possible that 
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truncated fusions proteins are produced when transcription is driven from the early promoter. 

This means that a fraction of the luciferase reporter protein produced on infection with VV-

ODD is not regulate by hypoxia and may result in increased baseline bioluminescence. 

Removing these early termination sequences may reduce any “leak” in this system and help 

improve specificity.  

 

Recently it has been found the stabilisation of HIF-1α can also be caused by S-nitrosylation at 

Cysteine 533, independent of conventional hydroxylation by PHD enzymes (251). Li et al 

demonstrated that tumour-associated macrophages, after tumour irradiation, were a source of 

nitric oxide (NO) that stabilised HIF-1α in normoxia. This would be undesirable for our 

hypoxia-targeting virus and NO production is likely in the context of viral infection in vivo. In 

line with Li et al we have mutated the Cysteine to Serine in our fusion protein shuttle plasmid 

so that future generations of viruses would not be susceptible to this form of stabilisation. This 

is an important modification to make before any in vivo experiments are performed. In vivo 

experiments using systemically delivered VV-ODD and then luciferase imaging after 

hydralazine administration or carbogen inhalation to induce or reverse tumour hypoxia 

respectively will be required to validate the concept in vivo (252). 

 

Although we have constructed a virus that is effectively able to target transgene expression to 

hypoxia it will also result in transgene expression in systems where the pathways for HIF-1α 

proteasomal degradation are disrupted. Such examples include loss of the VHL protein or PHD 

enzyme function. These mutations are often associated with malignancy and the loss of VHL is 

central to the pathogenesis of clear cell renal cell carcinoma (253). This system is unlikely to 

result in complete loss of transgene expression in normoxia and will increase the function of the 

transgene in hypoxia. Complete loss of transgene expression in normoxic cancer cells is 

undesirable and we anticipate that a combination of this construct and the dose delivered will 

result in a balance that will improve specificity and may reduce toxicity in translation 

applications. 
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A hypoxia-targeting virus would be a useful tool in the development of a clinically feasible 

oncolytic Vaccinia virus therapy. As initial clinical trial results show evidence of biological 

efficacy using replication-competent Vaccinia viruses, future generations of viruses will contain 

transgenes to improve efficacy. The principle, as demonstrated by VV-ODD, could be applied 

in several ways. Firstly, to create a conditionally replicating Vaccinia virus by applying this 

principle to a critical viral protein such as the viral ribonulceotide reductase (254). 

Alternatively, the luciferase reporter gene in VV-ODD could be replaced by a therapeutic 

transgene. Pro-drug converting enzymes such as NADPH:cytochrome P450 reductase are 

important in activating the bioreductive chemotherapy tirapazamine. Attempts to use adenovirus 

to target hypoxia in such a gene therapy approach have shown some specificity but limited 

efficacy (255) presumably as adenovirus replicate poorly in hypoxia. In contrast he VV-ODD 

concept could be used to deliver high levels of NADPH:cytochrome P450 reductase to hypoxic 

tumours. Hypoxia reduces the sensitivity of cells to radiotherapy and we are interested in using 

this concept to restore radiosensitivity to hypoxic tumours. Given the proximity of major vessels 

and other organs to the pancreas, the radiation doses delivered to patients with locally advanced 

PDAC are limited to 40-50Gy. Other tumour types, such as head & neck and prostate cancer, 

have shown significant responses when doses of radiation reach 80Gy. Even with more targeted 

delivery such as intensity-modulated radiotherapy (IMRT) and stereotactic radiotherapy, doses 

are still limited, as is access to this technology. Using the VV-ODD concept, transgene delivery 

specifically to tumour cells may allow us to restore radiosensitivity by augmenting cell death 

pathways or by restoring the oxygen enhancement ratio.  

 

Hypoxia may be an important problem for viral therapy but offers possibilities to improve 

specificity (185). I have outlined the principle and demonstrated the function of the hypoxia-

targeting virus VV-ODD. This could be used in many ways to treat the hypoxic component of 

pancreatic cancer and other tumour types with hypoxic regions although, like other oncolytic 

viruses, treatment is still limited by the ability to reach tumours. However, given the advantages 
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of Vaccinia virus for systemic delivery we believe that the concept of VV-ODD will be useful 

in the development of a clinically relevant oncolytic viral therapy. 
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