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Abstract

Automated human action recognition plays a critical role in the development of human-machine

communication, by aiming for a more natural interaction between artificial intelligence and the

human society. Recent developments in technology have permitted a shift from a traditional

human action recognition performed in a well-constrained laboratory environment to realistic

unconstrained scenarios. This advancement has given rise to new problems and challenges still

not addressed by the available methods. Thus, the aim of this thesis is to study innovative ap-

proaches that address the challenging problems of human action recognition from video captured

in unconstrained scenarios. To this end, novel action representations, feature selection methods,

fusion strategies and classification approaches are formulated.

More specifically, a novel interest points based action representation is firstly introduced, this

representation seeks to describe actions as clouds of interest points accumulated at different tem-

poral scales. The idea behind this method consists of extracting holistic features from the point

clouds and explicitly and globally describing the spatial and temporal action dynamic. Since

the proposed clouds of points representation exploits alternative and complementary information

compared to the conventional interest points-based methods, a more solid representation is then

obtained by fusing the two representations, adopting a Multiple Kernel Learning strategy. The

validity of the proposed approach in recognising action from a well-known benchmark dataset is

demonstrated as well as the superior performance achieved by fusing representations.

Since the proposed method appears limited by the presence of a dynamic background and fast

camera movements, a novel trajectory-based representation is formulated. Different from interest

points, trajectories can simultaneously retain motion and appearance information even in noisy

and crowded scenarios. Additionally, they can handle drastic camera movements and a robust

region of interest estimation. An equally important contribution is the proposed collaborative

feature selection performed to remove redundant and noisy components. In particular, a novel

feature selection method based on Multi-Class Delta Latent Dirichlet Allocation (MC-∆LDA)

is introduced. Crucial, to enrich the final action representation, the trajectory representation is
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adaptively fused with a conventional interest point representation. The proposed approach is

extensively validated on different datasets, and the reported performances are comparable with

the best state-of-the-art. The obtained results also confirm the fundamental contribution of both

collaborative feature selection and adaptive fusion.

Finally, the problem of realistic human action classification in very ambiguous scenarios is

taken into account. In these circumstances, standard feature selection methods and multi-class

classifiers appear inadequate due to: sparse training set, high intra-class variation and inter-class

similarity. Thus, both the feature selection and classification problems need to be redesigned.

The proposed idea is to iteratively decompose the classification task in subtasks and select the

optimal feature set and classifier in accordance with the subtask context. To this end, a cascaded

feature selection and action classification approach is introduced. The proposed cascade aims to

classify actions by exploiting as much information as possible, and at the same time trying to

simplify the multi-class classification in a cascade of binary separations. Specifically, instead of

separating multiple action classes simultaneously, the overall task is automatically divided into

easier binary sub-tasks. Experiments have been carried out using challenging public datasets;

the obtained results demonstrate that with identical action representation, the cascaded classifier

significantly outperforms standard multi-class classifiers.
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Chapter 1

Introduction

1.1 Thesis Scope

Video-based human action recognition aims to automatically classify human actions by observ-

ing frames from a video sequence. It is important to clarify at the beginning the meaning of

action, since it may have different levels of abstraction. Moeslund et al. (2006) suggest that

general human movements can be divided into three levels: primitives, actions and activities.

Primitives are defined as a basic movement that can be described at the limb level. For instance,

left leg forward, right arm upward or head twist. Actions consist of a sequence of primitives and

involve part or the whole body movement such as “walking”, “running”, “clapping”or “jump-

ing”. Fig 1.1 shows some examples. Finally, activities are defined as a routine of subsequent

actions. An example of activity is high hurdles, which contains starting, jumping and running. A

more complex example is cooking which involves selecting and cutting the ingredients, boiling

them, waiting and serving the food.

While primitives movements are limited and specific in describing a single human movement,

actions provide a compact and detailed representation of human intentions or dynamics. For

this reason, actions may be interpreted as atomic samples of human life (Yu-Ming et al. 2007).

Differing from primitives and activities, actions have the proper spatial and temporal resolution to

capture and discriminate human behaviours, which is crucial for understanding human intentions

and interactions.

Automatic human action recognition attempts to group actions into different classes accord-
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Figure 1.1: Examples from common datasets of human actions, from top to bottom: KTH dataset
(Schüldt et al. 2004), UCF Sport Actions (Rodriguez et al. 2008), YouTube datasets (Liu et al.
2009a) and Hollywood dataset (Laptev et al. 2008).

ing to their visual similarity. This process can be seen as a perceptual grouping problem (Boyer

and Sarkar 1999). In its most general formulation, action recognition is composed of two ma-

jor phases: representation and classification. The former starts with the extraction of low-level

features from videos, like colour, texture and optical flow, for example. Next, these features

are usually mapped into a multidimensional space achieving a more compact and descriptive

representation. With this information, it is then possible to design a model capable of separat-

ing actions into different classes. The second phase, classification, takes place when unlabelled

videos are analysed and matched against the previously built action model, so that those videos

can be associated with one of the known action classes.

The overall scope of this work is to research and define innovative methods to perform human

action recognition in a robust manner, exploring both the representation and the classification

phases.

1.2 Why automated human action recognition

Understanding the meaning of an action is an essential aspect of human social communication

(Decety et al. 1997). Furthermore, it can be said that a large part of our daily life is spent

watching and interpreting the actions of others (Barresi and Moore 1996). Many studies indicate

that recognition of actions is a highly developed ability in humans and non-human primates

(Premack and Woodruff 1978). This highly developed ability permits us to recognise actions
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even when only a limited number of cues are available (Johansson 1973). In the context of an

autonomous machine designed to interact with human beings, recognising human actions plays

a critical role. Specifically, by employing an action recognition framework, a machine will be

able to automatically learn and respond to outside inputs, as well as to monitor and detect human

behaviours. Ultimately, intelligent machines could perhaps achieve the ability to interact and

automatically move within the society, performing helpful and complex tasks without human

supervision.

The development of intelligent machines has interested humans since ancient times (Koch

and Mathur 1996), and today with the advances in computers and sensors, such developments

are attracting an increasing interest from both research and commercial companies. Without a

doubt, the study of automated vision is receiving considerable attention. Vision is a key-ability

for intelligent machine to interpret information and deal with the surroundings effectively. By

means of vision, it becomes possible to learn, understand and recognize scenarios as well as to

communicate and interact.

Within this domain, recognising human actions is probably one of the most important factors,

because it lets machines directly and naturally interact and understand humans without the need

for any specific hardware interface. Practically, connecting a video camera to an intelligent

machine and developing algorithms that replicate the human understanding, it becomes possible

to create an intelligent machine that utilises visual information similarly to humans.

Automated action recognition has many potential applications, including but not limited to

medical surgery, security, education, media, and the military sector, thus improving and simplify-

ing human jobs. Although methods for recognising human actions are still to be fully developed,

there are already applications that exploit this technique to address practical problems. A good

example is smart video surveillance systems, which aim to detect suspicious behaviours auto-

matically (Haritaoglu et al. 2000). Moreover, within the same context human action recognition

can allow one to search for specific events in recorded surveillance videos. The analysis of sports

videos is another important application (Efros et al. 2003). It may involve the classification of

video segments between play and break intervals to summarize a video. Also soccer games can

be analysed (Xie et al. 2002). Player’s activities are recognized and used to help coaches in

tactical analysis or TV commentary. Human-computer interaction systems can also benefit from

the ability of recognizing actions (Bobick et al. 1999). For instance, an intelligent system can
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(a) Intra-class variation

(b) Inter-class similarity

Figure 1.2: From top to bottom: action walking performed by and old man and a boy. Action
riding a bike recorded frontally and sideways. Action hugging a person and kissing look similar
if recorded from a particular angle. Action jogging and running look very similar

interact with children by interpreting and reacting to specific actions or needs. In the educational

environment (smart classroom), the actions performed by a teacher are recognized to allow auto-

matic camera motion and virtual mouse movement (Ren and Xu 2002). In robotics, interpretation

of actions can be used either for reaction to the recognized action or for learning and imitation

(Kruger et al. 2007). Finally, in medical treatment human motion analysis and recognition can

aid diagnosis of motor problems by comparing patient motion to normality patterns as well iden-

tify progress over time (Branzan et al. 2007). Another possible medical application is to provide

remote assistance to elderly people (Kosta and Benoit 2008; McKenna and Nait-Charif 2004).

1.3 Challenges and Motivations

Recognising human action is a challenging problem because it requires representing and cluster-

ing complex motions of an articulated human body. Additionally, the problem is further compli-

cated because some actions may be visually very similar and in an unconstrained environment

the presence of noise substantially increases the ambiguity.

Early studies focused on action recognition in heavily constrained motion capture environ-

ments, avoiding realistic challenges such as significant intra-class variations, inter-class similar-
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ity, occlusion, and dynamic background (Lopes et al. 2010). Moreover, in order to obtain reliable

features, most of the early works made a number of strong assumptions about the videos, such

as the availability of reliable human body tracking, slight or no camera motion, and a limited

number of viewpoints.

This thesis instead, studies the action recognition problem in a more realistic and uncon-

strained environment. By relaxing all the above-mentioned assumptions and constraints, the ac-

tion recognition process becomes increasingly complex, and is required to face new challenges.

These challenges are originated from a number of different factors which can be broadly catego-

rized as following:

Intra-Class Variations - Actions are often performed by subjects of different age, size and

appearance. Action speed, duration and spatio-temporal dynamics can differ as well. For in-

stance, Figure 1.2 (a) shows how an action “walking” performed by a boy or an old man can

appear different. Similarly, the action “riding a bike” recorded frontally or sideways has a com-

plete different spatio-temporal characteristic highlighting a significant intra-class variation. To

handle intra-class variations, an action representation able to generalize over these variations is

required, capturing invariant features.

Inter-Class Similarity - The complementary problem to intra-class variations is known as

inter-class similarity; it occurs when different actions look similar. Some examples are reported

in Figure 1.2 (b). By observing the actions “kissing” and “hugging” or “jogging” and “run-

ning” from a specific angle, it can be noticed that they share numerous similarities in both spa-

tial and temporal aspects. Consequently, action representation needs to take into account both

intra-class variation and inter-class similarity to minimise misclassification. Action representa-

tion needs to be as invariant as possible and at the same time be able to capture discriminative

and reliable features. This problem is more evident for an increasing numbers of classes, where

different actions can be easily confused because they share similar primitive components.

Occlusion - In realistic scenarios a person may be partially occluded by other objects or par-

tially self-occluded (for instance one leg is occluding the other). In the presence of occlusion the

extracted features may be incomplete and misleading, causing classification errors. For instance,

the action “running” generates key features associated with the fast legs movements. Having an

object occluding the legs, prevents extraction of important information fundamental to classify

the action. Similar problems appear for the action “boxing” when the arms are occluded or self-
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(a) View Point changes

(b) Occlusion (c) Camera motion

Figure 1.3: From top to bottom: action swinging observed from different angles and zooms.
Action boxing characterized by self and partial occlusion. Strong camera motion observed in a
diving sequence, the camera follows the athlete.

occluded as presented in 1.3(b). Additionally, in this last example it may happen that the target is

temporarily totally occluded causing problems with the target identification. Thereby, occlusion

also affects the target identification and localization.

View Point - Observing the same action from different viewpoints may lead to extracting

completely different action representations. For instance, as presented in Figure 1.2 (b), the

action “riding a bike” appears very different if recorded frontally or sideways. Similar repre-

sentation distortions can be observed when the action is recorded at different camera distances.

A representative example is presented in Figure 1.3(a), where the action “swinging” is recorded

with different viewpoint orientation and zoom.

Camera Motion - A fundamental action component consists of its motion, which is strongly

modified and distorted in the presence of camera motion. Moreover, in this circumstance new

background components irrelevant to the action are added. As such, the same action observed in

still or moving camera scenarios generates significantly different representations. This difference

may be partially reduced by separating motion components associated with the action from the

background one. To this end, a pre-processing step can be employed aiming to compensate the

camera movements. Unfortunately, this is not always doable especially for video containing

drastic and variable camera movements. A representative example of this challenge is reported

in Figure 1.3(c), where the camera follows a “diving” athlete.

Dynamic Background - Realistic scenarios may contain multiple persons or objects mov-

ing at the same time. As consequence, the background scene constantly changes. These changes

influence the action recognition process in two ways: the target identification becomes more com-
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plex and partial or total occlusion may occur. Secondly, the background components separation

from the foreground’s becomes complicated, thus the action representation may be influenced by

strong background noise.

Other Environmental Conditions - Recording setting and scenario variations also play a

role in action perception. For instance, shadows, lighting changes and crowdedness further in-

crease action ambiguity and complicate the recognition process.

Due to the above-mentioned challenges, it is fundamental to develop a solid action represen-

tation invariant to changes in environment conditions and recording set-up. And at the same time

make sure the representation is discriminative enough to clearly separate different actions. In

light of this, it is important to capture robust action features aiming to minimizing the misclas-

sification error. Eventually, multiple sources of information, such as optical flow, shape, action

dynamics or context, can be simultaneously exploited and fused together. Then, to reduce both

intra-class variations and inter-class similarity, feature selection should be applied to filter out

redundant and misleading components. Feature selection also improves the classification phase,

reducing the feature space ambiguity. Finally, in order to take into account challenges such as oc-

clusion, dynamic background and camera motion, a specifically designed classification method

is motivated.

1.4 Approach

This thesis focuses on the problem of automated action recognition from videos and covers four

main areas: robust action representation, feature selection, feature fusion and iterative feature

selection, and action classification. Action recognition is performed off-line in both training and

testing scenarios.

1.4.1 Robust Action Representation

As an intuitive starting point, it can be said that human actions involve movements in space and

time and these movements are characterised by a well defined spatio-temporal dynamic. Con-

sequently, these spatio-temporal dynamics can be used to represent and discriminate between

different actions. Additionally, it can be observed that each action is further characterised by

dominant primitive movements, which differ from the rest. Typically these dominant primitives

are short-term and fast-motion components (such as legs movement for running or arms move-
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Figure 1.4: Examples of the proposed Clouds of Points method showing the point distribution
generated by different actions, from left to right: hand waving, boxing, and running

ment for boxing). These components are very useful in overcoming problems of ambiguity.

It needs also to be mentioned, as discussed in Section 1.3, that action recognition performed

in realistic scenarios is notably influenced by noisy components and distortions. Consequently,

the action representation has to be designed taking into account these issues.

In the light of these observations, this thesis aims to represent actions as spatio-temporal dy-

namics with specific attention to modelling unique primitive components in a robust way. To

this end, a space-time interest points based representation, capable of globally and explicitly de-

scribing the action dynamic in both space and temporal domains, has been chosen. Compared

with alternative methods, such as shape analysis, tracking or optical flow, this representation is

more robust to noise, small camera movements, and low-resolution inputs. Moreover, it does not

require extraction of highly detailed silhouettes or target tracking. Conventional interest points

based methods rely primarily on the discriminative power of individual local space-time de-

scriptors, thus information about the spatial and temporal points distribution is lost. In contrast,

this thesis initially presents a novel approach, named Clouds of Points, which exploits only the

global spatio-temporal information about the point distribution, without the need to represent the

detected interest points using local descriptors and visual vocabulary. In addition, this model is

novel in capturing information about global spatio-temporal distribution of interest points explic-

itly and at different scales. The Clouds of Points approach does not require any assumptions on

object shape, position or motion behaviour, thus avoiding tracking and segmentation problems.

As a result, the formulated Clouds of Points approach appears to be more discriminative com-

pared with existing interest points based method, and more invariant to local distortions, outliers

and environments changes. The main idea is to collect reliable information by observing the

clouds of points generated by the action over different temporal scales, then a robust multidi-

mensional descriptors is computed to store the action information. Some example frames of the
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Clouds of Points method are shown in Figure 1.4.

Furthermore, an innovative interest points detector designed to capture samples specifically

located where the dominant primitive movements occur is also introduced.

Despite comparable performance with the best state-of-the-art methods, the proposed repre-

sentation appears inadequate to deal with action containing drastic camera movements and dy-

namic background. In these conditions, the majority of the detected interest points are associated

with the background leading to a mistaken action representation.

1.4.2 Feature Fusion and Selection

Feature fusion has been largely used to enrich action representations, usually by merging mean-

ingful sources of information. The basic idea is to capture different action aspects or dynamics,

then merging them to achieve less sensitivity to distortions and noise. Since standard Bag of

Words interest points based methods and the proposed Clouds of Points exploit complementary

and alternative action features, it is convenient to fuse these representations in order to build a

solid action description. To this end, a Multiple Kernel Learning strategy is employed (Sonnen-

burg et al. 2006). Despite the obtained representation appearing more robust, it is still inadequate

to handle realistic challenges such as camera movements or crowded background.

To tackle this problem, a novel action representation based on key-point trajectories is formu-

lated. This representation is principally motivated by the fact that interest point based methods

fail in the presence of shaky and constant camera movement. In contrast, trajectories based rep-

resentations are less sensitive to camera movements, since the trajectories associated with the

background can be properly filtered out leading to a coherent region of interest definition. Subse-

quently, within this region of interest key-points trajectories descriptors are exploited to represent

the action. Unlike the trajectories method, interest points based methods are limited in temporal

scalability. They only capture short movements within a short temporal window and, therefore,

are inadequate for describing longer-term and more complex movements. Alternatively, long-

term motion characteristics can be extracted from trajectories through tracking key points. To

deal with large ranges of variation, a set of novel descriptors are also introduced. Critically,

these descriptors are invariant to changes in scale, action direction, and frame resolution pro-

viding more discriminative description compared to existing methods. Some example frames

presenting the proposed idea are shown in Figure 1.5.

In order to enrich the action representation and raise the recognition robustness, an adaptive
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Figure 1.5: Examples of the proposed key-point trajectory method showing the components
generated by different actions, from left to right: horse riding, bench swing , and weight lifting

feature fusion method combines the proposed trajectory based representation with an interest

points based representation. This adaptive approach, in accordance with the camera movements

detected, selects the optimal fusion strategy in order to cope with drastic changes in motion.

The general problem of unconstrained environments is the strong presence of noisy compo-

nents, which affect the recognition performance. Moreover, the recorded actions may contain

viewpoints variation, occlusion, and multiple subjects thus necessitating a feature selection ap-

proach to reduce the intra-class variation and inter-class similarity. To this end, a novel multi-

class Delta Latent Dirichlet Allocation model based on (Blei et al. 2003) for feature selection

is proposed. Specifically, the most informative features are selected collaboratively, rather than

independently.

The proposed action recognition framework has been tested on different datasets and results

comparable with the state-of-the-art have been observed.

1.4.3 Cascade Feature Selection and Action Classification

As stated above, action recognition in unconstrained environments is a very challenging problem

due to the strong presence of noisy components. In addition, it can be further complicated if

the observed video sequences are highly ambiguous and the available training set is noisy and

sparse. (In this context sparse refers to a training set having few samples per class). These ex-

treme conditions place new challenges on performing action recognition, principally in both the

feature selection and action classification phases. More specifically, in the presence of sparse

training data, high intra class variation and high inter class similarity, standard feature selection

methods become extremely inefficient. Similarly, a noisy and sparse training set is inappropriate

to train standard multi-class classifiers. In this context, it is difficult to simultaneously estimate

the optimal decision boundaries that separate multiple action classes. Furthermore, the action
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recognition task is particularly complicated when different action classes are visually similar

due to the shared primitive action components. For instance, as presented in Figure 1.2, “run-

ning” and “jogging” would involve mostly the same body parts moving in a very similar ways.

“Hugging” and “kissing” may look identical at the beginning of the action sequences, so it is

therefore critical to perform feature selection in order to identify the most discriminative features

per inter-class before classification. However, different feature sets are useful for separating dif-

ferent groups of actions, and there will rarely be features that are universally informative for

separating all classes simultaneously. Therefore, the proposed solution to this problem is to se-

lect different sets of features for classifying different subsets. This unconventional, but necessary

feature selection requirement is not well met by deploying standard multi-class classifiers.

The proposed framework aims to recursively decompose the classification task in subtasks,

and each subtask is then addressed optimizing simultaneously the selected feature set and the

learned classifier. The basic idea is to iteratively redesign the classification task in accordance

with a specific context analysed. To this end a cascade of feature selections and binary classifiers

is formulated, which seeks to optimise the feature selection and classification in each classifica-

tion subtask.

1.4.4 Contributions

In order to formulate a solid action recognition approach, this thesis studies the problems of ro-

bust action representations, feature selection, feature fusion and classification. In the presence of

realistic scenarios, characterized by noise and data ambiguity, the action recognition problem is

further complicated. Thus, innovative approaches have been formulated. The main contributions

are:

• A new space-time interest points detection method is developed to extract denser and

more informative interest points compared to the existing methods (Dollar et al. 2005;

Schüldt et al. 2004). In particular, primitive dominant components are highlighted while

spurious detections in the background area and highly textured foreground areas, irrelevant

to the action, are avoided (Bregonzio et al. 2009a). The extracted interest points are then

used in the proposed Clouds of Points action representation. The idea of this represen-

tation is to describe actions as clouds of interest points accumulated at different temporal

scales. Holistic features are then computed from these point clouds capturing explicitly
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and globally the spatial and temporal dynamics of the action. In contrast with existing

methods (Dollar et al. 2005; Schüldt et al. 2004; Liu and Shah 2008), which rely on sin-

gle point descriptors, the proposed representation exploits the discriminative power of the

point distribution (Bregonzio et al. 2009a).

• To address the problem of action recognition in unconstrained environments, a novel tra-

jectory based representation is formulated (Bregonzio et al. 2010). An advantage of

the proposed representation is to be able to simultaneously retain motion and appearance

information even in noisy and crowded scenarios. Compared with interest points based

methods, this approach can handle drastic camera movements allowing a robust region

of interest estimation. Moreover, it describes actions with a large range of temporal and

spatial scales, impracticable for points based representations. The used descriptors are in-

variant to changes in scale, action direction, and frame resolution providing a more robust

description compared to existing methods (Sun et al. 2009a).

• To select more informative and discriminative features from a large feature set, a novel fea-

ture selection method based on Multi-Class Delta Latent Dirichlet Allocation (MC-

∆LDA) is developed (Bregonzio et al. 2010). The idea behind this model is to collabora-

tively select features observing the shared feature patterns within different action classes.

Compared to mutual information based methods, MC-∆LDA returns better results.

• Aiming to enrich the action representation, an adaptive feature fusion strategy is formu-

lated to merge trajectory based and interest points based representations (Bregonzio et al.

2010). These representations observe different action aspects and exploit complementary

information, thus optimal to be fused. The experimental results confirm the benefit of the

presented fusion strategy.

• To deal with highly ambiguous sequences and noisy and sparse training set, an itera-

tive feature selection and action classification approach is introduced (Bregonzio et al.

2009b). The proposed approach employs a cascade structure to iteratively simplify the

classification problem and simultaneously redesign both feature selection and classifica-

tion task according with the actual context. Specifically, instead of separating multiple

action classes simultaneously, the overall task is automatically decomposed into easier bi-

nary subtasks and the optimal feature set and classifier are employed.
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1.5 Thesis Structure

The arguments of the thesis are presented in the following chapters, the breakdown of which is

as follows:

• Chapter 2 reviews literature relevant to the proposed lines of research, and provides insight

into the reasons underlying their choice.

• Chapter 3 initially introduces an alternative interest point detector, then the interest points

based representation named Clouds of Points is formulated and validated over different

benchmarks. The proposed representation exploits the information associated with the

global points distribution captured at different temporal scales. In the experiment section,

an extensive comparison with state-of-the-art approaches is presented.

• Chapter 4 formulates a fusion strategy to combine the proposed Clouds of Points rep-

resentation with a conventional Bag of Word representation. As a result, a more robust

representation is achieved. Then, aiming to handle action recognition in unconstrained

environments (especially in the presence of drastic camera movements and dynamic back-

grounds), a trajectory based representation is formulated. In order to improve the recog-

nition, the formulated trajectory representation is adaptively fused with an interest points

representation. Finally, to reduce the effects of intra-class variation and inter-class similar-

ity, a collaborative feature selection approach is derived. The experiment section validates

the method over very challenging datasets and highlights the advantages obtained by us-

ing the proposed feature fusion and feature selection approaches. The action recognition

results reported are comparable with the state-of-the-art.

• Chapter 5 formulates and describes the cascaded feature selection and classification ap-

proach designed to handle action recognition in extreme conditions. Extreme conditions

refer to a feature space characterized by a noisy and sparse training set, high intra-class

variation and inter-class similarity. The proposed cascade approach simplifies the multi-

class decision process in binary subtasks where only the best performing features are used

for classification. Extensive experiments show that the proposed method has superior per-

formance when compared to standard feature selection methods and multi-class classifiers.

• Chapter 6 concludes the thesis, summarizing results and ground covered in the research,
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and suggests various promising directions for future studies based on the results achieved

so far.
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Chapter 2

Literature Review

Action recognition in video involves a large number of steps and issues, from the initial low-level

feature extraction to the final action labelling. This chapter reviews the principal contributions

relevant to action representation, feature selection, feature fusion and classification. A recent

survey of the most commonly used techniques can be found in (Poppe 2010).

2.1 Action Representation

Given a set of low-level observations directly extracted from a video sequence, action repre-

sentation aims to map these observations in a multidimensional feature space (descriptor). This

multidimensional space mapping is usually automatically performed and attempts to reshape the

low-level observations in a richer and more convenient space where machine learning techniques

(e.g. classifiers) can optimally work. Typically, action representation has two essential require-

ments. Firstly it needs to be invariant and generalized over small variations, for instance the same

action may look slightly different due to: execution speed (action performed by an old man or

young boy), view angle (action observed frontally or at 30 degrees left), light changes (afternoon

or evening time) and clothes (wearing a jacket or a t-shirt). Secondly, the representation should

be discriminative and non-ambiguous to allow a robust classification. This implies that represen-

tations belonging to different classes should be clearly separable even if the associated actions

may look similar (jogging and running). The practical interpretation of these constraints yields to

an action representation that is ideally invariant to: person appearance changes, dynamic back-

ground, viewpoint, and action execution variations. To satisfy these requirements it is crucial
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to perform an appropriate low-level observation extraction (pixel-level measures) and mapping,

which ensure a reliable action representation.

To this end alternative methods can be found within the existing literature, and they can be

broadly divided into four categories: 1) spatio-temporal shape template based, 2) optical flow

based, 3) interest points based, and 4) trajectories based. The former two methods use a global

representation that encodes the visual observation as a whole. Global representation is obtained

in a top-down fashion: a person is localized first in the image using background subtraction or

tracking. Then, the region of interest is encoded as a whole and mapped in a descriptor. The rep-

resentations are powerful since they encode much of the available information. However, they

rely on accurate localization, background subtraction or tracking. They are also particularly sen-

sitive to viewpoint, background noise, occlusions and inconstant frame rate. Differently, interest

points and trajectories based methods use local representations derived by sample observations.

The calculation of local representations proceeds in a bottom-up fashion: spatio-temporal interest

points or key-point trajectories are detected first. Next, descriptors are calculated at either sample

or distribution level. Sample level observes a single measurement at a time, while distribution

level observes clouds of measurements. Compared to global representation, local representations

are less sensitive to noise, partial occlusion and do not strictly require background subtraction or

tracking. However, they do depend on the extraction of a sufficient number of relevant samples,

and pre-processing is sometimes required to compensate for camera movements.

2.1.1 Spatio-Temporal Shape Template based Representation

Spatio-temporal shape template based approaches have been one of the early attempts to address

action representation. Essentially, they treat action recognition as an object recognition problem

by representing the action classes as a collection of spatio-temporal templates. The recognition is

performed by matching known spatio-temporal templates with the testing query. The technique

requires highly detailed silhouettes that can be computed using background subtraction. In the

presence of camera movement, shadow, occlusion and multiple targets, clear silhouettes extrac-

tion is impracticable. Consequently, these approaches are problematic if applied to real-world

videos.

One of the earliest examples of this line of research is presented by Bobick and Davis (2001),

where shape templates are generated using silhouettes only information. Specifically, they extract

silhouettes from a single view and aggregate differences between subsequent frames of an action
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(a) (b)

Figure 2.1: (a) Comparison of MEI and MHI representation presented by (Bobick and Davis
2001). (b) < transforms of the same human silhouette which has been translated and scaled
(Wang et al. 2007b).

sequence. This results in a binary motion energy image (MEI), which indicates where motion

occurs. Also, a motion history image (MHI) is constructed where pixel intensities are functions

of the silhouette sequence. Some representative frames are shown in Fig. 2.1(a). The template

comparison is done using Hu moments, which permits a reasonable shape discrimination in a

translation and scale invariant manner.

To further increase the robustness Wang et al. (2007b) apply a < transform to the extracted

silhouettes. This results in a translation and scale invariant representation that can be generalized

over local appearance variations. Examples of silhouette variations and the correspondent <

transforms are reported in Fig. 2.1(b). To enrich the action representation Wang and Suter (2006)

used both silhouette and contour descriptors to capture the global and local body parts motion

properties. Given a sequence of frames, an average silhouette is formed by calculating the mean

intensity over all centred frames. Similarly, the mean shape is formed from the centred contours

of all frames.

Human body localisation, silhouette extraction and low template generalization still remain

the major drawbacks of the above methods. Despite the rich information associated with the

body shape, no explicit motion components are explored. Moreover, video sequences containing

partial occlusions, crowd background and viewpoint changes are not handled by these represen-

tations.
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(a) (b)

Figure 2.2: (a) Space-time shapes of jumping-jack, walking and running actions (Blank et al.
2005). (b) Examples of frame-to-prototype matching (Lin et al. 2009), from top line to bottom:
original frame, shape components, motion components.

To address some of the mentioned limitations, spatio-temporal shape templates have been

extended attempting to explicitly include also the motion information. (Blank et al. 2005) is

an earlier example of work on this research line. They proposed a representation based on 3D

spatio-temporal volumes formed by stacking silhouettes over a given sequence, examples of this

representation are reported in Fig. 2.2(a). Then, the solution of the Poisson equation is used to

derive local space-time saliency and orientation features. Global features for a given temporal

range are obtained by calculating weighted moments over these local features. The obtained

templates are able to incorporate the pose of the human body as well as dynamic information

such as global body motion and local limb motion. Although the representation appears robust

to partial occlusions, non-rigid deformations, changes in scale and viewpoint, the method does

require accurate localization, alignment and solid background subtraction. A similar line of

research, which attempts to simultaneously represent both shape and motion, is introduced by

Yilmaz and Shah (2005). They initially generate a spatio-temporal volume by matching the

subject contours over consecutive frames. Then, information such as speed, direction and shape

are extracted by analysing the differential geometric properties of the spatio-temporal volume.

An interesting property of this representation is that it is invariant to viewpoint changes. This is

achieved by relying on the maxima/minima contour extremes which have been demonstrated to

be view invariant. Basically, the idea is that by observing a 2D subject contour from different

views, the curvature maxima and minima are invariant across different the views, thus they can

be used to re-project the action. Finally, action recognition is achieved as 3D spatio-temporal

volumes object matching.

Aiming to reduce the constraints about where the action takes place, Lin et al. (2009) propose

a hybrid system able to deal with appearance variations, camera motion, dynamic background



2.1. Action Representation 32

(a) (b)

Figure 2.3: (a) Constructing the motion descriptor. The global optical flow vector is computed
and then the x and y components are separated; finally four motion channels are defined and
subsequently smoothed (Efros et al. 2003). (b) Harris corners are detected and used to construct
the bounded area around the subject. Then the bounding area is partitioned into head, torso and
legs (Danafar and Gheissari 2007).

and partial occlusion. This approach involves a pre-processing step that automatically compen-

sates the camera movements and at the same time localizes and tracks the human body. Next,

both shape and motion cues are explored by creating action prototypes designed to capture the

correlations between action shape and motion. The shape information is computed using a grey-

scale mask obtained by background subtraction, while the motion components are obtained using

optical flow mapped into a grey-scale mask. Fig. 2.2(b) shows some examples of the used shape

and motion templates. Finally, in order to rapidly match prototypes a decision tree structure is

used. This research emphasized the fact that the shape component plays an important role in the

recognition process, especially in the presence of dynamic background.

Clear silhouette extraction and subject localization still remain the principal limitations of

these methods. Hence, none of these have been tested on realistic datasets (e.g. YouTube, Hol-

lywood or UCF Sport actions). The problem stems from the inability to handle constant camera

movements, low image resolution and cluttered background.

2.1.2 Optical Flow based Representation

Action representation based on optical flow tries to describe the human body as a whole and

recognize action based on its dominant motion. This approach relaxes some constraints imposed

by the shape based representation (such as does not require a detailed silhouette extraction) re-

sulting in a more robust representation that is invariant to environmental variations such as light
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changes, partial occlusion, and viewpoint changes.

Efros et al. (2003) pioneered work in this area. Their aim was to recognise action from

a medium distance where both human bodies and the camera may be moving fast. The videos

contain low-resolution frames with people whose images are only 30 pixels tall. First, by tracking

the person and stabilizing the image in the middle of a tracking window, a sequence of spatial-

temporal volumes are generated. Secondly, a descriptor based on blurred optic flow is extracted

from each volume. Specifically, the motion channels are computed and then decomposed in

four dominant components along the principal directions (left, right, up, down), next smoothed

and normalized. A schematic description of this method is reported in Fig. 2.3(a). Recognition

is performed in a nearest neighbour framework by observing the spatio-temporal correlation

between descriptors. Although silhouette and contours are not required this method still depends

on: robust subject segmentation, image stabilization and tracking; moreover the representation

is strongly influenced by target occlusions and changes in size which notably modify the optical

flow model.

Fathi and Mori (2008) improved this idea extending the optical flow descriptor to a two-fold

framework. The low-level motion descriptors proposed by Efros et al. (2003) are initially ex-

tracted and used in the second step to derive the mid-level motion features. In practice, the low

level features represent the weak classifier in the AdaBoost training algorithm to extract infor-

mative mid-level motion descriptors. The method produces interesting results on well known

benchmarks. In addition, it appears robust to clutter and tolerant to both scale and viewpoint

changes.

An alternative idea aiming to represent optical flow not as a single global component but

as a set of local contributions is presented by Danafar and Gheissari (2007). Here the optical

flow is evaluated using a grid-based representation. Specifically, a region of interest is found

around the subject and divided in three horizontal sections (head, torso and legs) as shown in

Fig. 2.3(b). Then, for each section two histograms of horizontal and vertical optic flow compo-

nents are computed and used as descriptors. The histogram representation turns out to be robust

to environmental noise, changes in illumination and viewpoint. Furthermore, the authors report

an encouraging recognition rate on a popular benchmark . On the other hand, high performances

are achieved only if region of interest and sections division are precisely estimated.

A similar approach of representing optical flow information via histograms is adopted in the
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(a)

(b)

Figure 2.4: (a) Metric learning structure, the three information channels (vertical flow, horizontal
flow and silhouette) are mapped in a 268-dimension histogram (Tran and Sorokin 2008). (b)
Illustration of the 3D sable optical flow fields from different action sequences. Note how each
action group has a unique flow volume surface (Riemenschneider et al. 2009)

Tran and Sorokin (2008) work. In contrast to the early work, this method appears robust to low

resolution images, camera movements and imprecise subject localization. The authors also report

high performance results on realistic sequences such as badminton games. The basic idea behind

the method involves representing action using histograms of silhouettes and optical flow, which

are computed inside a normalized bounding box located around the target. The bounding box

is then divided into 2× 2 sub-windows and in each sub-window the histograms are computed.

The final descriptor is derived by merging the information collected over a window of 15 frames.

Fig. 2.4(a) summarizes the principal steps of this representation.

More recently, Riemenschneider et al. (2009) proposed a different approach to explore op-

tical flow information. They observed that different actions generate a unique spatio-temporal

optical flow volume that can be stabilized and sampled as shown in Fig. 2.4(b). Thus, instead

to directly analyse the raw optical flow, they first derive a more stable and continuous optical

flow volume. Later, 3D interest points are extracted on the volume surface and the bag of words

framework is applied for recognition. Although the paper reports promising results on a clean
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dataset, the authors do not address more complex and realistic scenarios. It should be emphasized

that the method strongly relies on still camera and clear background. In the presence of camera

movements or crowd background the optical flow volume may assume a different shape, which

cannot be handled by the proposed representation.

2.1.3 Interest Points based Representation

Interest point based representations involve two consecutive steps. Firstly, a set of spatio-temporal

samples is captured: a process referred to as interest point sampling. Secondly, these samples

are used to create the action descriptor: a process referred to as point representation. Among the

recent techniques proposed in human action recognition literature, the interest points approach is

the most popular representation. In contrast with previous model-based representation, an impor-

tant advantage of interest points representation is to be model-free. This means that it does not

require the presence of moving subjects under specific conditions or the observations matching

with a predefined model.

Interest Points Sampling - Interest points are spatio-temporal locations where salient move-

ments associated with the action occur. The goal of these points is to sample movements that are

crucial to characterize human actions such as motion discontinuities. These interest points need

to be stable with respect to perspective transformation and temporal periodicity.

Different ideas have been proposed to detect interest points. One of the simplest methods

detects corners on the image plane employing the standard 2D Harris corner detector (Harris and

Stephens 1988). However appearance information is captured, 2D interest points totally ignore

temporal variations. Since the actions are defined in a spatio-temporal domain, the temporal cue

plays a fundamental role in the action description. Hence, 3D spatio-temporal interest points

appear to be the best alternative because able to simultaneously capture visual appearance and

short temporal changes or dynamics. Along this line, Laptev and Lindeberg (2003) extended the

2D Harris corner detector to a 3D spatio-temporal domain. They define space-time interest points

as those where the local neighbourhood has a significant variation in both spatial and temporal

domain. The space-time scale of the neighbourhood is automatically selected. Drawbacks of

this method include sparse samples and poor region of focus. Specifically, in the presence of

smooth movements or low texture foreground a relatively small number of stable interest points

may be detected and frequently the majority of the points are associated with the background,

which creates misleading observations.
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Figure 2.5: Interest point detection on hand-waving action. The first row shows the input image
sequence, the second, third and fourth rows show the interest points detected by (Wong and
Cipolla 2007), (Dollar et al. 2005) and (Laptev and Lindeberg 2003) methods. This comparison
image has been extracted from (Wong and Cipolla 2007)

The sparse samples issue is well addressed by the Dollar et al. (2005) detector. They sepa-

rately extract spatial and temporal information using a 2D Gaussian kernel and a 1D Gabor filter

respectively. Then, the two responses are combined and interest points located in correspondence

at the local maxima. The number of interest points is manually adjusted by changing the scale

of the two filters. Despite its popularity, the Dollar et al. (2005) detector has a number of short-

comings. As mentioned by the as a moving, smoothed edge will cause only a gradual change

in intensity at a given spatial location. Areas without spatially distinguishing features cannot in-

duce high response. The detector is also prone to generate spurious detections in highly textured

background areas. Additionally, the points are extracted at a single spatio-temporal scale.

Oikonomopoulos et al. (2006) propose a more sophisticated detector which addresses some

of the above mentioned limitations. Saliency points are localized using the entropy information

computed on the optical flow field. (Optical flow is compensated to reduce camera movements

noise). Moreover, for each point an optimal spatio-temporal scale is automatically associated.

Finally, each detected point is represented using both optical-flow and spatial-gradient descrip-

tors. To be more robust against noise, they also introduced a clustering algorithm which removes

points with low saliency value and creates clusters that are well localized in space, time, scale

and sufficiently distant from each other. The method has been only tested on still camera scenar-

ios and it appears unstable in the presence of dynamic background. This is because no region of

focus is deployed to drive the detector.

This issue has been taken into account by Wong and Cipolla (2007) who propose a detector
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(a) (b)

Figure 2.6: (a) Local space-time features detected for a walking pattern: 3-D spatio-temporal plot
of leg motion (upside down) and corresponding features (Schüldt et al. 2004). (b) Visualization
of spatio-temporal cuboids of mouse footage (Dollar et al. 2005).

driven by a region of focus named non-negative matrix factorisation (NNMF). Practically, the

original 3D interest point detection problem is broken down into two filtering steps. Initially, 2D

interest regions are detected observing motion components (regions of focus). Next, 1D points

are detected as local maxima of the previous step’s response. The authors compare the method

with the Dollar and Laptev detectors; an example is reported in Fig. 2.5. In terms of performance,

NNMF appears superior on three benchmark datasets. Despite the proposed detector partially

addresses the problem of false detection reduction. Points associated with the background in the

presence of a moving or zooming camera the model fails due to the incorrect motion components

estimation.

To further improve the interest point detection, Chapter 3 presents an innovative method

capable of extracting denser and more informative points compared to the above-mentioned de-

tectors. In particular, our model avoids spurious detection in both background areas and highly

textured static foreground areas. More specifically, our interest point detection method consists

of two steps: 1) frame differencing to select the region of interest and 2) 2D Gabor filtering to

select motion components. In both steps, saliency detection in temporal and spatial domains is

exploited for the interest point detection.

Interest Points Descriptor - The interest points representation aims to summarize the 3D

event observed by the interest point using a compact descriptor. Ideally it is invariant to back-

ground clutter, appearance, occlusions, and possibly to rotation and scale. In practice, a 3D

cuboid of neighbouring pixels is extracted around each interest point and mapped in a feature

vector (descriptor). Examples of detected interest points are presented in Fig. 2.6. Interest point
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representation can be seen as a direct scheme for event detection and interpretation that does not

require feature tracking, segmentation or computation of optic flow; only point detection and

point description are involved.

Schüldt et al. (2004) did early studies in this area. In the first step of their approach interest

points are found by using the Laptev and Lindeberg (2003) detector; an example of interest point

extraction from a walking sequence is reported in Fig 2.6(a). Next, by observing the 3D cuboids

both motion and appearance are captured with a normalized derivative descriptor. In the training

phase all the point descriptors are collected and a K-means clustering is used to originate a visual-

word vocabulary. Finally, each video sequence is represented as a histogram of visual-word co-

occurrence. The recognition phase follows the standard Bag of Words framework and SVM is

used as final classifier. Although the representation is designed to be invariant with respect to

relative camera motions, the principal limitation of this method is the low discriminative power

between similar actions. For instance, actions such as jogging - running or hand clapping - hand

waving are easily misclassified. Such errors occur because of the low level of detail provided by

the used descriptor.

Improvements in performance and representation are presented by Dollar et al. (2005). This

work introduces novelties in both interest point detector and point representation. Specifically,

they employ the (Dollar et al. 2005) detector and test three different descriptors named: normal-

ized pixel based descriptor, brightness gradient based descriptor and optical flow based descrip-

tor. The authors report that the best performance is achieved with the brightness gradient based

descriptor. In addition they use PCA to reduce the descriptor dimensionality. For the recogni-

tion process, the method follows the standard Bag of Words framework with K-means clustering

and 1-Nearest Neighbour as the final classifier. The recognition rate is reported on a standard

benchmark and it is comparable with the state-of-art. Fig. 2.6(b) shows spatio-temporal cuboids

extracted from a video sequence.

Similarly, Niebles et al. (2008) employ the Dollar et al. (2005) detector with gradient de-

scriptors but applies smoothing before reducing the descriptor dimensionality using PCA. They

achieve slightly better performance employing an unsupervised learning strategy.

Encoding Spatio-Temporal Distribution Information - These methods tend to rely on the

discriminative power of a single point, ignoring the information associated with the global spatio-

temporal distribution. Additionally, representing action based on single points, they are unable
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Figure 2.7: (a) The three parts that make up the (Gilbert et al. 2008) local feature descriptor. (b)
A close-up example of a 2x2x2 neighbourhood of an interest point, with five local features shown
as corners. (c) The spatial and temporal encoding applied to each local feature. (d) Concatenating
the local features into a coded vector for the observed interest point.

to capture spatial relationship and global action dynamics. Aiming to address these limitations, a

number of recent methods attempt to describe actions as a spatio-temporal distribution, instead of

relying on single point descriptors. Simultaneously modelling the point itself and its neighbours

generates a global representation of the action.

Along this vein, Liu and Shah (2008) exploit the spatial distribution of interest points using

a modified correlogram. The idea behind the correlogram is to provide the local correlation in

terms of the spatial location between interest points. The performance enhancements reported by

the authors underline the importance of spatial information.

Gilbert et al. (2008) encode spatial and temporal position of the neighbouring interest points

through a grid. Each single interest point descriptor is extended with additional information from

the nearby interest point. A schematic overview of this method is proposed in Fig. 2.7. In a sim-

ilar fashion, Zhang et al. (2008) introduce the concept of motion context to capture both spatial

and temporal distribution of neighbouring interest points. Oikonomopoulos et al. (2009) propose

an alternative approach where the spatial and temporal locations are encoded taking into account

the co-occurrences of visual words pairs in relation to the object center. The object center is man-

ually estimated in the training phase and automatically computed in the testing, allowing action

localization.

All these models, however, still suffer from some of the flaws of the original Bag of Words

method, in that ad hoc and arbitrary processes are needed for selecting a data dependent space-

time descriptor, clustering algorithm for constructing a codebook, and codebook size. In addition,

spatial and temporal information about the distribution of interest points is only exploited implic-
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Figure 2.8: Action localization and classification (Liu et al. 2009a). ”M”, ”S” and ”H” in the
images means the following judgments are made on the ”motion”, ”static” and ”hybrid” features,
respectively.

itly, locally, and at a fixed temporal scale. In contrast, Chapter 3 proposes a model which exploits

spatio-temporal information explicitly and at multiple temporal scales therefore capturing both

local and global temporal information about interest point distributions. Moreover, it avoids data

specific parameter tuning.

More recently action recognition has been applied to more realistic video sequences captured

under uncontrolled conditions, such as: videos recoded by an amateur using a hand-held camera,

YouTube, broadcast TV and personal video collections. This type of video generally contains

significant camera motion, background clutter, and changes in object appearance, scale, illumi-

nation conditions, and viewpoint. These video sequences arise new challenges for the interest

points based representations, mainly because in the presence of constant camera movements,

multiple targets or background clutter, the detected points are misleading and unrepresentative.

Hence, an additional pre-processing is required to filter out the noisy points and remove the

components associated with the background. To this end, the action representation embeds both

regain of interest estimation (target localization) and feature selection to tackle the problem. Re-

gion of interest is used to select the main subject in the video and filter out the points generated

by others, whereas feature selection analyses the action descriptor and removes noisy and am-

biguous features.

Promising results in this unconstrained context have been reported by Liu et al. (2009a).

The goal is to initially detect a very dense set of interest points at multiple scales by using

different detectors. Then, a region of interest is estimated and points not relevant to the action

are filtered out. The representation is composed by a static contribution, extracted using SIFT

(Lowe 2004), and a motion contribution, computed using gradient descriptors on 3D cuboids.

Both contributions are then merged in a single hybrid feature representation. To further reduce

the noise component, they implement a pruning framework based on Page Ranking (Kim et al.

2008): the goal is to select features according to their consistency. Only features that appear in the
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(a) (b)

Figure 2.9: (a) Several trajectories used by (Rao and Shah 2001) to describe the actions open-
ing overhead cabinet and closing overhead cabinet. (b) Representation of an action in 4-space
employing the (Sheikh et al. 2005) representation.

video consistently and have similar behaviour are kept. At this stage, a very solid set of features

is used in a Bag of Worlds recognition schema. Fig. 2.8 shows some example frames where

the estimated region of interest and the action classification performed using different feature

contributions are highlighted. The authors validate the method on standard datasets reporting

results comparable with the state of the art. Despite the ability to reliably select features in

static background, in the presence of constant motion or zooming camera, feature pruning loses

its selectivity power. Due to camera movements, interest points are equally spread all over the

image making region of interest estimation difficult and page ranking pruning much less efficient.

This section shows how action representation based on interest points has been successfully

employed in different works. The achieved performance is comparable with the state-of-the-art.

Although interest points are reliable in constrained scenarios, a number of limitations have been

highlighted in more challenging circumstances. For instance, interest points describe the scene

only locally ignoring middle and long term information. Moreover, they usually sample the se-

quence with a fixed spatial-temporal scale, which may be not optimal in describing different

human dynamics. Finally, as mentioned above, it is difficult to isolate interest points associ-

ated with the background, mainly in the presence of dynamic background. To address some of

these limitations it possible to track the interest points over different frames and use these point-

trajectories to build a more robust action representation. This alternative action representation is

presented in the following section.
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2.1.4 Trajectories based Representation

Trajectories based representations have been extensively studied in the past few years. The prin-

cipal concept in trajectories based representation consists of encoding the dynamics and be-

haviours of trajectories in a robust space-time descriptor. Compared to interest points based

representation, the significant advantages of this representation lie in its ability to simultaneously

capture the spatial and temporal dynamics involved in an action, to be more robust to dynamic

background, and finally to offer a variable spatial-temporal scale. On the other hand, a general

problem with trajectories derives from the fact that they are projected from an original 3D space

on a 2D image plane. Consequently, different points of view generate different trajectories re-

sulting in a viewpoint dependent representation. Therefore, the representation tends to capture

view-dependent characteristics, which increase the action ambiguity. This shortcoming is more

noticeable in older research that used long trajectories. Instead more recent works employ trajec-

tory segments together with other cues such as local appearance, shape and distribution. Since

trajectory segments are relatively invariant to viewpoint, this results in a robust representation

capable of handling distortions in viewpoint changes, dynamic background and low-resolution

images.

Rao and Shah (2001) attempted to compute a view-invariant trajectory based representation

for action recognition. The method aims to recognize action including: opening and closing over-

head cabinets, picking up and putting down a book, picking up and putting down a phone, erasing

a whiteboard, etc. The proposed representation is based on spatio-temporal curvature analy-

sis of hands-only trajectories where the trajectories are generated using a skin detector tracker.

Fig. 2.9(a) shows some examples of detected trajectories. The action trajectory is represented by

a sequence of dynamic instants and intervals. A dynamic instant is defined as an instantaneous

entity, which occurs for only one frame, and represents an important change in motion character-

istic: speed, direction, acceleration, and curvature. While, an instant is detected by identifying

maxima (a zero crossing in a first derivative) in the spatio-temporal curvature, an interval repre-

sents the time period between any two dynamic instants, during which, the motion characteristics

remain pretty much constant. Instants and intervals have physical meanings in terms of action

continuity and discontinuity, therefore it is possible to explain an action as a sequence of mean-

ingful instants and intervals. The view-invariant representation is derived by describing action

with the number of instants, instants signs (positive or negative according to the direction) and
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Figure 2.10: Schematic diagram on hierarchical spatio-temporal context modelling: 1) the point-
level context with SIFT average descriptor, 2) intra-trajectory context, and 3) inter-trajectory
context (trajectory proximity descriptor) (Sun et al. 2009a).

a matching vote (measuring the similarity with other examples). Although the authors properly

classify their testing dataset, the method is not designed to be applied in a realistic environment.

Hand tracking is very sensitive to initialization and light changes, and the representation is lim-

ited to hand movements. Furthermore, the method fails in the presence of camera movements

and dynamic background.

Sheikh et al. (2005) proposed an alternative approach able to describe full body actions ob-

serving multiple trajectories generated by landmarks on the body as presented in Fig. 2.9(b). The

proposed representation seeks to describe the landmark movements over a 4D space (X,Y,Z,t) by

using a matrix formulation. Basically, the measurements of the imaged position of the anatom-

ical landmarks of an actor are collected in a single matrix. The classification of an unknown

sequence is then computed estimating the likelihood between a set of known actions. Long tra-

jectories tracking and robust landmarks selection clearly represent a shortcoming of this method.

Additionally, if any landmark is lost during the tracking, the recognition process becomes unsta-

ble. The full-body tracking appears not always practicable because of the generally unpredictable

and complex nature of the human movements and self-occlusions. Seeking to address this prob-

lem, John et al. (2010) propose a framework able to track full-body articulated human motions

recorded under different viewpoints. Promising results are obtained in a constrained set up.

An alternative method, able to recognize actions in realistic scenarios without relying on ac-

curate tracking, has been presented by Sun et al. (2009a). In contrast with earlier researches,

here a dense set of trajectory segments is used (segments of 5 to 25 frames maximum). This

relaxes the constraints on tracking performance and key point selection. Practically, if a tracked

key point is lost, in the next frame a new trajectory is generated from a new key point. The
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proposed representation aims to model the spatio-temporal context information encoded in un-

constrained videos using a three-level hierarchical structure: at the lower level the SIFT average

description is computed along the trajectory; at the intermediate level, the transition and dy-

namics of the trajectory is evaluated; and at the coarse level, the spatio-temporal co-occurrence

and distribution of the trajectories is observed. The schematic block diagram of this method is

reported in Fig. 2.10. This representation produces a compact and efficient representation of tra-

jectories context, dynamics and distribution, which is stable over different real world distortions

such as camera movements, camera zooming, dynamic background, illumination changes and

shadow. The authors validate the method with a challenging dataset reporting the best state-of-

art result. Although trajectory segments have been proven efficient in unconstrained scenarios,

in circumstances such as: low textured, fast moving, unstable frame rate, or small size subject

the generated trajectories may be sparse. This shortcoming can be observed in scenarios such as

amateur videos or clips collected on YouTube, where small size subjects are moving fast and few

key points can be properly tracked over 10 to15 frames. The trajectories based method is then

insufficient to provide discriminative information to perform action recognition. To address this

issue, Chapter 4 merges a trajectory based method with an interest points based method. Do-

ing this, sparse trajectories scenarios are handled by relying on interest points, which are easily

extracted even in extreme conditions.

A shared problem of both trajectories based and interest point based representations is repre-

sented by the difficulty of isolating noisy features, which negatively influence the action classifi-

cation task. This problem is more severe in unconstrained scenarios where noisy and redundant

features are accumulated due to the complex sequence analysed. A well known strategy to ad-

dress this problem is feature selection, which seeks to identify and filter out redundant and noisy

components. More details on feature selection are presented in the following section.

2.2 Feature Selection

Once low-level features are extracted and represented in a descriptor, the feature selection step

plays a crucial role in isolating redundant and noisy components as well as in reducing the feature

space dimension. The main objectives of feature selection are: (a) to avoid over-fitting and

redundancy, (b) to provide faster and more cost-effective models, and (c) to best represent the

underlying structure of the data. In other words, the goal of feature selection is to find a subset of
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features as small as possible, while simultaneously optimising the action labelling. However, it

has been recognised that, in feature selection, combinations of individually good features do not

necessarily lead to good classification performance (Cover 1974; Jain et al. 2000). Guyon and

Elisseeff (2003) showed that the issue of feature redundancy and its relationship to usefulness

is further complicated by the realisation that highly-correlated variables may in principle still be

complementary to each other. It is then important to opt for a relevant feature selection approach.

For classification problems, feature selection techniques can be organised into two main cate-

gories: filter methods and wrapper methods. Filter methods can be seen as a pre-processing step.

They select features on the basis of their relevance or discriminators power with regard to the

targeted classes. Whereas wrapper methods select feature subsets by evaluating the performance

of a learning algorithm (e.g. classifier). Basically, the main difference is that wrapper methods

make use of the classifier, while filter methods do not. Hence, filter methods are computationally

much more efficient, but usually perform worse than wrapper methods.

Filter methods employ feature ranking criteria for selection and operate independently from

the classification algorithm. As a result, they look only at the intrinsic properties of the features

and therefore ignore the effects of the selected feature subset on the performance. However they

filter the (1) irrelevant and /or (2) redundant features to obtain a better and generic representation

of the data according to its class membership, hence the term filter defined by John et al. (1994).

To achieve the first task, i.e. filter irrelevant features, one of the simplest schemes is to evaluate

each feature individually based on its correlation with the target class and then to select the k

features with highest value. To that end, univariate feature ranking criteria such as the Relief al-

gorithm (Kira and Rendell 1992) can be used to rank each feature independently from the others.

This technique measures the linear dependency between features. An alternative method also

able to measure non-linear dependency is based on the mutual information criterion (Zaffalon

and Hutter 2002). Specifically, mutual information measures how a single feature is discrimina-

tive for a specific class. For instance, if a feature is shared with all the classes the associated rank

is low. Otherwise, if the feature is a perfect indicator of the specific class the associated rank is

maximum.

A more complex feature selection framework has been proposed by Peng et al. (2005) named

minimal redundancy- maximal relevance (mRMR). This technique has been proven to be bene-

ficial for selecting features for classification. It maximises the mutual information between the
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Figure 2.11: Feature selection using PageRank (Liu et al. 2009a). The first row shows the original
static features, and the second row shows the selected features.

selected features and classes, whilst minimising the interdependence among the selected features.

In the wrapper approach feature selection is carried out using any machine learning algo-

rithm. In its most general formulation, wrapper methods consist of using the test performance

of a given machine learning algorithm to assess the relative usefulness of subsets of features.

However the prediction performance is computed for each candidate feature at every stage (e.g.

adding or removing a feature), which provokes a computationally expensive process. To prevent

overfitting. In wrapper based feature selection, the more states that are visited during the search

phase of the algorithm the greater the likelihood of finding a feature subset that has a high inter-

nal accuracy while generalising poorly. When this occurs, the algorithm overiftted the model to

the training data. Greedy search strategies, such as sequential feature selection seem to alleviate

the problem. The latter consists of two variants (Whitney 1971; Kittler 1978): (1) Sequential

Forward Selection (SFS) in which features are sequentially added to an empty candidate set un-

til the addition of further features does not decrease the criterion; and (2) Sequential Backward

Elimination (SBE), in which features are sequentially removed from a full candidate set until the

removal of further features increases the criterion. However both of these two techniques suffer

from the so-called nesting effect 1. To prevent the nesting of feature subsets, advanced methods

have been developed, such as Sequential Forward Floating Search (SFFS), Sequential Backward

Floating Search (SBFS) (Pudil et al. 1994) and the Plus q take-away r strategy (Ferri et al. 1994).

All three methods backtrack as long as they find improvements compared to previous feature sets

of the same size.

With regard to the specific task of action recognition, the feature selection problem is fur-

ther complicated by real-world conditions and dynamics thus more sophisticated techniques are

1The nesting effect refers to the consequence of finding a local extreme (suboptimal solution) rather
than a global (optimal) solution
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needed. In particular, it can be seen that different action classes are often visually similar due to

the shared atomic action components. For instance, running and jogging would involve mostly

the same body parts moving in a very similar way. Hugging and kissing may look identical at

the beginning of the action sequences. It is therefore critical to perform feature selection in order

to identify the most discriminative features per class before classification. However, different

feature sets are useful for separating different groups of actions, and there will rarely be features

that are universally informative for separating all classes simultaneously. More generally, in an

unconstrained environment with by high intra-class variance and high inter-class similarity tradi-

tional feature selection methods appear inefficient. For this reason, existing works prefer ad-hoc

methods specifically designed for action recognition. For instance, in the presence of constantly

changing background, a general requirement consists of removing the background components

and selects a robust set of features associated with the subject only.

To reduce the influence of background components Liu et al. (2009a) propose an uncon-

ventional PageRank (PR) technique to select the important features. This ides is based on the

assumption that if the background changes throughout the video, a consistent feature is a fore-

ground feature. To this end, they build a large directed graph of features and evaluate if a feature

is consistently matched with many other features. Thus, in case of high matching the feature is

considered more significant than others. PR is employed to analyse the interaction between the

features by assigning a ranking score to each feature as its relative significance in the feature

network. This approach contains two major steps: visual similarity graph constructed by image

matching and visual feature ranking by PR. Finally, the top informative features are selected.

Some examples of feature selection using this method are reported in Fig. 2.11. Experimen-

tal results show the efficacy of PR technique in single subject scenarios where the majority of

the background components, generated by camera movements, are removed. However, in the

presence of multiple subjects the feature selection loses power.

Recently, to address feature selection in multiple subject scenarios Gilbert et al. (2009) ex-

ploit a complete by different idea. They are especially interested in learning discriminative low-

level feature configurations, which appear frequently in the specific action sequence, and rarely

on other actions or the background. In their paper feature configurations represent atomic mo-

tions or action segments without any link to human silhouette or subject location. This allows

to detect simultaneously feature configurations belonging to different actions located in different
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areas or to detect different feature configurations belonging to the same action but representing

different motions. To this end, they propose to use a low-level feature hierarchical neighbour-

hood grouping exploring appearance and location concurrently. Specifically, they initially extract

a dense 2D interest points set and represent each point with a 3 digit code (scale, channel, and

orientation). Then, each point-code is extended incorporating the neighbouring points relation-

ships. Finally, in order to identify the frequently reoccurring patterns data mining is used. All

the compound features are combined into a single database and fed into a data mining algorithm

called APriori (Agrawal and Srikant 1994). APriori finds the feature configurations which are

frequently occurring in the same action class. The resulting frequent configurations are then used

to group the features over a larger grid in the next hierarchical stage. The principal advantages

of this method are that it can select reliable features directly at low-level and it can be used to

spatio-temporally localize actions. Moreover, the reported results are comparable with the state

of art. The computational cost is probably the main limitation; in fact the method has been tested

only on relatively small datasets.

To perform feature selection in unconstrained videos with tractable computational cost, two

alternative solutions are formulated in Chapter 4 and 5 respectively. 1) The first solution ad-

dresses the feature selection problem delineated by an ambiguous multi-class task with a sparse

training set available. To this end a feature selection cascade is proposed, which simplifies the

simultaneous multi-class feature selection with an iterative binary selection. Specifically, instead

of separating multiple classes simultaneously, the overall task is decomposed automatically into

easier sub-tasks of separating two groups of the most separable classes at a time. Then, for each

classification sub-task the optimal features are selected using mutual information as a measure

of feature relevance.

2) The second solution addresses feature selection in a large and ambiguous multi-class task

problem, where the selection process requires analysing feature relationships. In these circum-

stances, conventional methods are computationally intractable, so a novel Multi-Class Delta La-

tent Dirichlet Allocation (MC-∆LDA) topic model for collaborative feature selection is intro-

duced. MC-∆LDA is designed to retain any correlation among features and select them collab-

oratively. MC-∆LDA is an extension of ∆LDA proposed by (Andrzejewski et al. 2007b), which

was used for understanding code bugs in computer programs with binary document classes (with

and without bugs). Here, the formulated MC-∆LDA is aimed at discovering action feature groups
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(topics), some of them corresponding to features shared across different actions categories and

others corresponding to unique features from specific action classes. By grouping all features

jointly and collaboratively, MC-∆LDA provides more effective feature selection for action dis-

crimination.

To summarise, it can be said that the main ideas behind these two methods differ in terms

of which aspect of the features is observed. The first method aims to identify unique features

capable to strongly characterize a binary classification independently without relying on accurate

training. In other words there is no interest in observing shared features and multi-class feature

influences. In contrast, the last method takes into account the shared feature behaviours across

different classes. Both shared and unique components are evaluated and used to jointly evaluate

the feature relevance. This is achieved through an accurate learning phase.

2.3 Feature Fusion

Representation fusion is largely used to merge information coming from different sources, where

the final aim is to enhance the recognition performance. Within the context of action recognition,

fusion is mainly used to merge complementary representations (which explore alternative action

patterns or aspects) to generate a richer action representation. It has to be mentioned that fusion

brings improvement only if the fused representations mutually benefit each other. However, a

straight foreword fusion is frequently impracticable because different representations may differ

in dimensionality, scale or availability. Thus, the choice of the correct fusion strategy is challeng-

ing. To address feature fusion there are two main strategies that have been adopted by existing

techniques: feature level fusion where feature spaces are merged at low-level and used as a single

representation in the final classification (e.g. concatenation). And decision level fusion where

separate recognisers are trained for each feature space before a joint decision is designed to make

the final classification.

In the action recognition field a popular choice is feature level fusion. Along this line, Tran

and Sorokin (2008) present an action representation obtained by concatenating histograms of

optical flow and silhouette shape. Similarly, Lin et al. (2009) fuse motion and shape descrip-

tors employing a weighted concatenation which generates a joint motion-shape descriptor. Here

the optimal weights are estimated by cross-validation. Another work reporting performance im-

provements by fusion features is presented in (Schindler et al. 2008). Here the authors con-
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catenate histograms of interest point descriptors (space-time gradient, optical flow and SIFT)

increasing the recognition performance by an average of 4.5%. Despite its efficacy and simplic-

ity, feature concatenation requires that all the features are properly normalized. Moreover, if they

have a notable dimensionality difference the one with higher dimensionality needs to be reshaped

otherwise the joined feature space becomes unbalanced.

More generally, it is possible to say that in a multi-class action classification problem, fea-

ture fusion should ideally weight features (which may have different scales and dimensionality)

according to their relevance to the classification task. Furthermore, different weightings should

be used for classifying different actions and ideally these weightings should be learned automati-

cally from a training dataset. To this end, in Chapter 3 a multiple kernel learning (MKL) method

is formulated to fuse interest point descriptors. MKL was first introduced in (Bach et al. 2004)

to address the problem of selecting the optimal combination of kernel functions for a specific

feature for Support Vector Machine (SVM) classification. Recently it has been used in computer

vision for addressing a closely related problem, that is, given a specific kernel function but dif-

ferent features capturing different aspects of a visual object, how to best combine them together

to achieve the optimal classification performance (Gehler and Nowozin 2009; Sun et al. 2009a).

In this work, MKL is adopted to learn the optimal combination of different features without

requiring any prior knowledge of them.

2.4 Action Classification

Given a training set, supervised multi-class classification algorithms aim to assign a class label for

each testing sequence. The simplest case involves a two classes problem (binary classification)

where the unknown sequence can be labelled as +1 or -1. Several algorithms, which have been

proposed to solve binary problems, can be naturally extended to the multi-class case; others

need a special formulation. Among the multi-class techniques used in action recognition, k-

Nearest Neighbour (k-NN) is a well known and competitive classifier (Lin et al. 2009; Tran and

Sorokin 2008; Wang and Suter 2006; Blank et al. 2005; Ali and Aggarwal 2001). k-NN performs

classification measuring the distance (e.g. Euclidean) from the given unknown sequence to every

other training data. The k smallest distances are identified, and the most common label among

the k identified is chosen as a class label. The value of k is normally determined using cross-

validation. However, k-NN is very simple and for a large training dataset the testing phase
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involves a large number of comparisons that turns out to be computationally expensive. To

reduce the computational cost of the nearest neighbour searches, the k-dimensional tree idea has

been proposed (Moore 1991). Basically the feature space is partitioned in the training phase and

the classification involves a quick tree search. A valid alternative is the Support Vector Machine

(SVM) (Vapnik 1995). SVM builds a model during the training phase to represent data, then

the classification is carried out matching the unknown sequence with the model. So it turns out

to be computationally independent from the training data size. By its nature SVM is essentially

a binary classifier. However, it can be extended to multi-class by using two common methods:

(i) one-versus-all or (ii) one-versus-one. In the former method a binary classifier per action is

built then the one with the highest output assigns the class label. In the last method, for each

pair of classes a binary classifier is built, while discarding the rest of the classes. Then, through a

voting among the classifiers output the label is assigned according to the class with the maximum

number of votes. A number of papers employ the multi-class SVM classifier (Dollar et al. 2005;

Danafar and Gheissari 2007; Wong and Cipolla 2007; Schüldt et al. 2004; Zhang et al. 2008;

Ikizler et al. 2008), and observing the presented comparisons it emerges that generally SVM

outperforms k-NN. In any case, the classifier performance depends greatly on the characteristics

of the data to be classified. In other words there is no single classifier that works best on all

given problems. Hence, empirical tests on classification performance are commonly employed

to select the best classifier.

A different classification approach is used by (Fathi and Mori 2008; Liu et al. 2009a) where

a boosting framework is applied to improve the accuracy of any given classifier. Specifically,

boosting algorithms such as Adaboost (Adaptative boosting) (Freund and Schapire 1997) employ

an iterative procedure to increase the performance of weak classifiers by reinforcing training on

misclassified samples. Differently from the previous methods, the decision boundaries optimiza-

tion is obtained gradually, generating more complex classifiers in each iteration. Advantage of

Adaboost is to improve the generalisation properties without overfit the data, however sparse and

noisy training set particularly reduce the classification performance.

In the context of realistic human action recognition, multi-class classification is further com-

plicated by the fact that actions may be performed by subjects of different sizes, appearance and

poses. Moreover, in an unconstrained environment the problem is compounded by the inevitable

occlusion, illumination change, shadow, and camera movement. In this circumstance, character-
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ize by strong presence of intra-class variation and inter-class similarity, standard classifiers such

as multi-class SVM or k-NN appear inadequate. This because they use the same feature set to

classify different action, furthermore the classification is done in a single step.

The idea to employ different feature-subsets to separate different classes is more suitable in this

circumstance.

To address these problems, Chapter 5 proposes a novel action classification approach which

utilises a cascade of binary classifiers. Instead of separating multiple action classes simulta-

neously, the overall task is decomposed automatically into easier sub-tasks of separating two

groups of the most separable action classes at a time with different features selected for different

binary classification sub-tasks. More specifically, our classifier iteratively splits a group of action

classes into two sub-groups until each sub-group only contains a single action class. Compared

with the standard multi-class classifiers, a binary classifier in the cascade only needs to draw a

single decision boundary between two groups of data that are most separable at a time. In addi-

tion, it allows for the selection of different sets of optimal features for separating different classes

of actions.

The idea of using cascaded classifiers for solving difficult vision problems has been exploited

before by Viola and Jones (2002) and Athitsos et al. (2005). Specifically, Viola and Jones (2002)

propose a cascade of AdaBoost classifiers to address the face detection problem. Athitsos et al.

(2005) employ a cascade of approximate k-NN classifiers for recognising handwritten digits.

Similar to our approach, their classifiers utilise different sets of features at different stages in a

cascade with the later stage facing harder classification problems. Our approach is also closely

related to the classification trees used in the machine learning community (Safavian and Land-

grebe 1991). Similarly to classification tree, the cascade structure is automatically built and

different feature-subsets are exploited in different separation tasks.

2.5 Summary

From this chapter one can appreciate how much attention action recognition has recently received

from the computer vision community. A large number of alternative approaches have been pro-

posed but still it remains an open area of research. In addition, very recently action recognition

moved from the laboratory environment to realistic scenarios introducing a large variety of new

challenges.
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The first problem concerns action representation, which is the process of describing low-

level observations in a multidimensional space suitable for machine learning techniques. Current

representations differ in the explored features such as: shape, contours, motion flow, key points,

or motion trajectories. According to the literature, there are four different ways to perform ac-

tion representation: 1) spatio-temporal shape template based, 2) optical flow based, 3) interest

points based, and 4) trajectories based. Both spatio-temporal shape template and optical flow

based methods require a reliable subject localization or region of interest estimation, otherwise

the representation is unable to capture meaningful information. Alternatively, spatio-temporal

interest points and trajectory based methods sample the video sequence and use key points to

describe the action. Specifically, interest point based methods construct action descriptors ob-

serving the surrounding area extracted around the detected points. Trajectory based methods

track key points over time and generate trajectories; actions are represented using descriptors

representing the spatio-temporal appearance of the trajectories themselves and the trajectories’

distribution. However these two methods are more competitive and reliable in unconstrained

environments. They require a dense sampling of the action that is not always possible, espe-

cially with low resolution frames, and small size, fast moving subjects. It has been observed that

interest point based methods do not explicitly describe the property of the point’s distribution,

but they solely rely on the discriminative power of individual points. Moreover the recognition

framework used (Bag of Words) involves tedious parameter tuning. In order to address these

issues, Chapter 3 presents a novel action representation method which differs significantly from

the existing interest point based representation in that only the global distribution information of

interest points is exploited.

Chapter 4 tackles a different aspect linked to robust action representation obtained by exploit-

ing feature selection and fusion as well as an alternative action representation. These steps are

crucial when the recognition is performed in unconstrained sequences which involve large de-

grees of occlusions from multiple objects, illumination changes, shadows, cluttered backgrounds,

and scale variations. In more detail, a novel trajectories based representation is formulated, which

is able to retain local motion information (trajectory orientation and magnitude), trajectory shape

and static appearance information. After a collaborative feature selection phase, this trajectories

based method is fused with a standard interest point method aiming to produce a more reliable

action representation.
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The last problem studied is relevant to multi-class action classification. Among the standard

methods available to solve this task the most commonly used are k-Nearest Neighbours (k-NN)

and Support Vector Machine (SVM). The former performs classification measuring the distance

(e.g. Euclidean), from the given unknown sequence to every other training data. The latter builds

a model during the training phase learning the decision boundary, then the classification is carried

out matching the unknown sequence with the model, which is computationally cheaper compared

to k-NN. Alternatively, a boosting framework such as AdaBoost, may be employed to improve

the accuracy of any given classifier. AdaBoost iteratively optimise the decision boundaries gener-

ating more complex classifiers at each step. Generally, in classification tasks delineated by large

class overlap and intra-class variation standard classifiers appear inadequate. This is because they

aim to simultaneously estimate the optimal decision boundaries that separate highly ambiguous

multiple action classes.

To address this problem, Chapter 5 proposes an action classification approach which utilises

a cascade of binary classifiers. More specifically, our classifier iteratively splits a group of action

classes into two sub-groups until each sub-group only contains a single action class.
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Chapter 3

Robust Action Representation Using Clouds

of Interest Points

Most of the recent action recognition methods represent actions as bags of space-time interest

points. Although these methods report promising results, they rely solely on the discriminative

power of individual local space-time descriptors while ignoring the potentially useful information

about the global spatio-temporal distribution of interest points. Consequently, they are unable to

capture global motion components as well as smooth and fast motions. This is due to the lack of

both multiple-temporal-scale and points-distribution information.

To address these limitations, this chapter puts forward an action representation method that

aims to explicitly and globally exploit spatio-temporal information associated with interest point

distributions. In particular, holistic features from clouds of interest points accumulated over

multiple temporal scales are used. Representative frames explaining this idea are presented in

Figure 3.1.

The proposed action representation, named Clouds of Points, merges the extracted features

by using a Multiple Kernel Learning strategy. This allows different weights to be automatically

assigned to each temporal scale, obtaining a more robust representation for each action class as

a result.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Examples of Clouds of Interest Points extracted from the KTH dataset. The clouds
at different temporal scales are highlighted in yellow boxes. (a) Boxing (b) Clapping (c) Hand
waving (d) Jogging (e) Running (f) Walking.

3.1 Interest Point Sampling

As presented in Chapter 1, the first step of the action recognition framework involves low-level

observations extraction. With regard to the proposed Clouds of Points representation, low-level

observations are extracted using an interest points approach.

Interest points are local spatio-temporal features which are considered to be salient or de-

scriptive of actions captured in a video. Among various interest point detection methods, the

one proposed by Dollar et al. (2005) is perhaps the most widely used for action recognition.

Using their detector, intensity variations in the temporal domain are detected using Gabor filter-

ing. The detected interest points correspond to local 3D patches that undergo complex motions.

Specifically, the response function of the Gabor filters has the following form:

R = (I ∗g∗hev)2 +(I ∗g∗hod)2 (3.1)

where g(x,y : σ) is the Gaussian smoothing kernel applied in the spatial domain, while hev and

hod are the 1D Gabor filters applied temporally, defined as:

hev(t;τ,ω) =−cos(2πtω)e−t2/τ2
(3.2)

hod(t;τ,ω) =−sin(2πtω)e−t2/τ2
(3.3)
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(a) Boxing (b) Hand waving (c) Running

Figure 3.2: Comparison between interest points detected using our detector (green circle points)
and the Dollar et al. (2005) detector (red square points). The frames present the detection process
in three different conditions: (a) slow object movements (b) camera zooming (c) presence of
shadow

The algorithm first applies the Gaussian smoothing on the all video sequence followed by the

Gabor filtering. As reported in the original paper (Dollar et al. 2005), by setting ω = 4/τ , there

are essentially two free parameters τ and σ which roughly control the spatial and temporal scales

of the detector.

Despite its popularity, the Dollar detector has a number of drawbacks. As mentioned by the

authors, areas undergoing pure translational motion will in general not induce a strong response.

For instance a moving smoothed-edge will cause only a gradual change in intensity at a given

spatial location, thus it induces a weak response.

Additionally, since it does not use any region of focus, it also tends to generate spurious

detection in highly textured background areas irrelevant for the action. As shown in Figure 3.2,

Dollar detector is particularly ineffective given slow object movement, small camera movement,

or camera zooming.

A new interest point detector is developed here to overcome the shortcomings of the Dollar

detector. In particular, most of the shortcomings of the Dollar detector are caused by its design
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Figure 3.3: Examples of first-order derivative filter oriented along 45◦.

of spatial and temporal filters and the way these filters are combined to give the final response.

Especially, the 1D Gabor filter applied in the temporal domain is sensitive to background noise

and highly textured background/foreground areas, which have nothing to do with the action being

performed. To overcome this problem, the proposed detector adopts different and more effective

filters for detecting salient space-time local areas undergoing complex motions. More specifi-

cally, our interest point detection method consists of two steps: 1) frame differencing for focus

of attention and region of interest detection1; and 2) first-order derivative filtering on the detected

regions of interest along different orientations. Via these two steps, saliency detection in both the

temporal and spatial domains are combined together to give the filter response.

The first-order derivative filters are applied on the frame difference result. Specifically, the

filters are composed of two parts. The first part c(x,y; i) represents the real part of a complex

sinusoid:

c(x,y; i) = cos(2π(µ0x+υ0y)+θi) (3.4)

where θi defines the orientation of the filter 8 orientations are considered:

θi=1,..,5 = {0◦,±22◦,±45◦,±67◦,90◦} (3.5)

and µ0 and υ0 are the spatial frequencies of the sinusoid controlling the scale of the filter. The

1Although it is a very simple technique, frame differencing is found to be sufficient for our interest
point detector given moderate camera motions such as those in the KTH dataset; When larger camera
movements are present, a more sophisticated foreground detection method need to be adopted (e.g. one
can employ an object detector such as (Felzenszwalb et al. 2008)).
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second part of the filter G(x,y) represents a 2D Gaussian-shaped function:

G(x,y) = exp

− x2

ρ2 + y2

ρ2

2

 (3.6)

where ρ is the parameter that controls the width of G(x,y). By setting µ0 = υ0 = 1
2ρ

, the only

parameter controlling the scale is ρ , which is set to 11 pixels in this study2. The filters Ft are sep-

arately applied and 8 different responses are computed at each frame t. An example of oriented

filter is shown in Fig. 3.3.

Ft = It ∗ ct ∗Gt (3.7)

These responses are combined together to compute a bi-dimensional saliency map Fmap
t as fol-

lows:

Fmap
t = (F0◦

t )2 +(F22◦
t )2 +(F−22◦

t )2 +(F45◦
t )2 +(F−45◦

t )2 +(F67◦
t )2 +(F−67◦

t )2 +(F90◦
t )2

(3.8)

where that image coordinates (x,y) are omitted for conciseness. Finally, interest points are de-

tected as local maxima of the saliency map.

Figure 3.2 shows examples of our interest point detection results obtained on the KTH

dataset. It is evident that the detected interest points are much more meaningful and informative

compared with those detected using the Dollar et al. (2005) detector. In particular, the interest

points detected by our approach tend to correspond to the main body parts contributing to the ac-

tion being performed, whilst those detected by the Dollar detector often drift to static body parts

or to background areas with strong edges. The experiments presented in Section 3.4.2 also sug-

gest that a better recognition performance can be obtained when our interest point detector is used

in place of the Dollar et al. (2005) detector, either with the standard Bag of Words representation

or the proposed Clouds of Points representation.

3.2 Action Representation

Consider an action video sequence V consisting of T image frames, represented as:

V = [I1, . . . ,It , . . . ,IT ]. (3.9)

2The value of ρ is set empirically. It could be set in a more principal way via cross validation. It has
been observed in our experiments that the recognition performance is not sensitive to the value of ρ .
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(a) Boxing (b) Hand clapping

(c) Hand waving (d) Jogging

(e) Running (f) Walking

Figure 3.4: Examples of clouds of space-time interest points obtained using S = 6 and Ns = 5.
In each frame the red rectangle represents the foreground area, the green points are the extracted
interest points, and the yellow rectangles illustrate clouds of different scales.

Where It is the tth image frame. For the image frame It , a total of S interest point clouds of differ-

ent temporal scales are formed. They are denoted as: [C1
t , . . . ,Cs

t , . . . ,CS
t ]. More specifically, an

interest point cloud of the s-th scale is constructed by accumulating the interest points detected

over the past s×Ns frames, where Ns is the difference between two consecutive scales (in the

number of frames). Examples of Clouds of Interest Points formed using the KTH and Weizmann

datasets are shown in Figure 3.4. It can be seen from Figure 3.4 that different types of actions

result in interest point clouds of very different shapes, relative locations (w.r.t body location),

and distributions. It is also evident that interest point clouds of different temporal scales capture

different aspects of human motion that potentially have different levels of discriminative power.

(The cloud spatial scale is deified by the point distribution itself). This will be exploited by the

feature selection method detailed later (Section 3.2.2).

3.2.1 Feature Extraction

For the S interest point clouds constructed for the t-th image frame [C1
t , . . . ,Cs

t , . . . ,CS
t ], two sets

of features are extracted. These features are significantly different from the local descriptors

computed by conventional interest point based approaches. In particular, the interest point cloud

features are global and holistic capturing distribution information of interest points, whilst the

conventional descriptor features, computed from a cuboid centred at each interest point are lo-

cal, describing appearance information of individual interest points. Advantage of the proposed



3.2. Action Representation 61

(a) Frame difference (b) Filtering (c) Edge detection (b) Target localization

Figure 3.5: Intermediate steps for target detection and localization. (a) Regions of interest are
detected via frame difference. (b) 8 first-order derivative filters are applied to the image. (c)
Prewitt edge detector is employed to segment the object. (d) Target localization with boundary
box

method is the ability to overcome local problems such as background noise, short-term occlu-

sions and outliers by exploiting the global representation. On the other hand, in the presence of

sparse interest point the representation standard representation are more efficient.

The first set of interest point cloud features is concerned with the shape and speed of fore-

ground objects. To reliably detect and segment a foreground object given camera movement,

zooming, strong shadows, and noisy input is a non-trivial task. This is accomplished by the

following procedure. Firstly, a binary mask is obtained via frame difference (this mask can

be seen as a saliency map which identifies areas containing strong movements). Secondly, 8

first-order derivative filters oriented along {0◦,±22◦,±45◦,±67◦,90◦} are applied to the image

frame. Thirdly, the responses of these filters are fused together with the frame difference mask.

Finally, a Prewitt edge detector (Parker 1997) is employed to segment the object from the de-

tected foreground area. The above mentioned four steps are presented in Figure 3.5. Once an

object is segmented from the frame, two features are computed: Or
t measuring the height to width

ratio of the object, and OSp
t measuring the absolute speed of the object.

The second set of features is extracted from interest point clouds of different scales, they are

thus scale dependent. Particularly, from the s-th scale cloud, 8 features are computed and denoted

as:

[Cr
s ,C

Sp
s ,CD

s ,CV d
s ,CHd

s ,CHr
s ,CWr

s ,COr
s ] (3.10)

Note that subscript t is omitted for clarity. Specifically, Cr
s is the height to width ratio of the cloud;

CSp
s is the absolute speed of the cloud; CD

s is the density of the interest points within the cloud,

which is computed as the total number of points normalised by the area of the cloud; CV d
s and

CHd
s measure the spatial relationship between the cloud and the detected object area. Specifically,

CV d
s is the vertical distance between the geometrical centre (centroid) of the object area and the
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cloud, and CHd
s is the distance in the horizontal direction. CHr

s and CWr
s are the height ratio and

width ratio between the object area and the cloud respectively. COr
s measures how much the two

areas overlap. Overall, the 8 features can be put into two categories: Cr
s , CSp

s , and CD
s measure the

shape, speed, and density of the cloud itself; the 5 remaining features capture the relative shape

and location information between the object and the cloud areas. Table 3.1 schematically lists all

the features.

To make these features insensitive to outliers in the detected interest points, an outlier filter

is deployed before the feature extraction, which evaluates the interest point distribution over 4

consecutive frames and removes those points that are too far away from the distribution centroid.

Specifically, the points distribution centroid is estimated in each frame and compute the average

distance from each point to the centroid. If the distance between an interest point and the centroid

is 4 times or more of the average distance, it is most likely to be caused by background noise and

thus removed.

Now each frame is represented using 8S + 2 features where S is the total number of scales

(i.e. 8 features for each scale plus 2 scale-independent features Or
t and OSp

t ). By using a total

of (8S + 2)× T features to represent the whole action sequence leads to a feature space of an

extremely high dimension. It is well known that a high dimensional feature space can cause

over-fitting resulting in poor recognition performance. To reduce the dimensionality of the fea-

ture space, and more importantly, to make our representation less sensitive to feature noise and

invariant to the length of each action sequence, a histogram of Nb bins is constructed for each

of the 8S + 2 features collected over time via linear quantization. Consequently, each action se-

quence is represented as 8S+2 histograms or (8S+2)×Nb scalar features with Nb� T . Instead

of using fixed-width histogram binning as most existing work does, here it is adopted a histogram

of non-uniform bin width with more bins being given to the high density area of the feature space

(Kontkanen and Myllymaki 2007).

It has to be mentioned that the formulated representation appears local in time and global

along the spatial domain. Specifically, multiple temporal scales are selected aiming to sample

both local (short temporal scale) and global (larger temporal scale) action dynamics. Contrary,

in the spatial domain a single region of interest is applied. This introduces some limitations in

detecting a variety of scenarios such as: multiple targets, group actions and simultaneous actions.

Additively, it does not allow exploring the action at atomic-motion level such as dividing the
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target area in sub-regions. This is principally motivated by the fact that clean target detection is

complicated, and with the available video resolution, a more sophisticate detector may introduce

large amount of noise.

Or
t Target height to width ratio

OSp
t Target absolute speed

Cr
s Cloud height to width ratio

CSp
s Cloud absolute speed

CD
s Interest points density within the cloud

CV d
s Vertical distance between the target centroid and the cloud

CHd
s Horizontal distance between the target centre and the cloud

CHr
s Height ratio between the object area and the cloud

CWr
s Width ratio between the object area and the cloud

COr
s Measures the cloud and target overlap

Table 3.1: List of features used in the COP representation.

3.2.2 Feature Selection

Using the (8S + 2)×Nb features as described above, the feature space dimension is still very

high and needs to be further reduced. Moreover, there are uninformative and redundant features

one would wish to eliminate from the feature set. To that end, a simple and intuitive yet effective

feature selection method is formulated below.

Our feature selection can be defined as filters method (Yu and Liu 2004; Wang et al. 2007a)

where the

R fi =

√
1
A ∑

A
a=1(µa

fi
− µ̂ fi)2

1
A ∑

A
a=1 σa

fi

(3.11)

where µ̂ fi = 1
A ∑

A
a=1 µa

fi
is the inter class mean of the A intra class feature means. The numerator

and denominator of the above equation correspond to the standard deviation of the intra class

means, and the inter class mean of the intra class standard deviations respectively. The former

measures how the feature value varies across different classes (the higher the value is, the more

informative the feature fi is); the latter tells how the value varies within each class (the lower the

value, the more informative the feature). Overall, features with higher R fi values are preferred

over those with lower ones. Finally, all features are ranked according to their R fi and a decision

is made as to how many percent of the features are to be kept for recognition.

The proposed feature selection method, although intuitive, seems to have a number of draw-

backs. Firstly, different features are selected separately as if they were independent of each
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other. It has been widely recognised that combining good features together does not guaran-

tee good recognition performance (Peng et al. 2005). So, ideally one would like to select the

features collectively. However, this means that the feature search space is too high for an exhaus-

tive search and even a sequential-search based approximation scheme is considerably expensive.

Secondly, more sophisticated relevance measures such as mutual information (Peng et al. 2005)

can be used. Nevertheless, compared with alternative feature selection approaches, one of the

method advantages is that it has an extremely low computational cost. It is also shown empiri-

cally through experiments (see Sec. 3.4.2) that the proposed method is more effective than a far

more complicated state-of-the-art method (Peng et al. 2005).

3.3 Combining Multi-scale Clouds of Interest Point Features

The Clouds of Interest Points (COP) features are of multiple (S) temporal scales. Features of

different scales may not be equally informative in representing different actions. This is because

each action can be better described by a subset of temporal scales instead of using the all. The

majority of the observed actions are periodic (e.g. running, walking, hand-clapping), for them,

the speed and lengths of their period are direct indications of their dominant temporal scales. For

instance, in the KTH dataset at 25Hz, a full cycle of the running, hand-clapping and walking

actions lasts around 20, 25, and 30 frames respectively. Intuitively, longer scale COP features

are more useful in describing longer scale (slower) actions. Therefore it is necessary to weight

the features of different scales according to their relevance to the classification task, and different

weightings should be used for classifying different actions. Ideally these weightings should be

learned automatically from a training dataset.

To this end, a multiple kernel learning (MKL) method is formulated for learning the optimal

weighting of COP features of different scales for multi-class action classification. MKL was first

introduced in (Bach et al. 2004) to address the problem of selecting the optimal combination of

kernel functions for a specific feature for Support Vector Machine (SVM) classification. Recently

it has been used in computer vision for addressing a closely related problem, that is, given a

specific kernel function but different features capturing different aspects of a visual object, how

to best combine them together to achieve the optimal classification performance (Gehler and

Nowozin 2009; Sun et al. 2009a). In this work, the COP features of different scales capture the

characteristics of an action class under multiple temporal scales and MKL is adopted to learn the
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optimal combination of these features.

To formally define the multiple class action recognition problem, it is possible start to anal-

yse the validation schema. In this work, the one-versus-rest scheme is employed, where C binary

classifiers are learned to classify an action sequence into one of the C classes. By assuming that

the training set is composed of N instances (xi,yi)i=1,...,N ; each training sample xi is a video se-

quence containing an action with a class label yi. To represent the action, S features are extracted

as described in Section 3.2.1. Each feature is a histogram corresponding to COP features at one

specific scale. s-th scale feature can be denoted as fs(x), where fs() is the feature extraction

function. Using multiple kernel learning, a set of kernel functions is to be computed, each of

which is essentially a distance/similarity measure. Specifically, a kernel function

ks(x,x′) = k( fs(x), fs(x′)) (3.12)

measures the similarity between a pair of action sequences represented using the s-th scale COP

features. For notational convenience, given an action sequence x, its kernel response of the s-th

feature to all N training samples is denoted as:

Ks(x) = [ks(x,x1),ks(x,x2), ...,ks(x,xN)]T (3.13)

Now, it is studied how different kernels corresponding to different COP features are combined

in an SVM framework. Using MKL, the objective is to learn an optimal weighting so that the

combined kernel function has the following form:

k∗(x,x′) =
S

∑
s=1

βsks(x,x′) (3.14)

where βs is the weight associated to the s-th temporal scale. To learn an SVM for classifying

one action class against the rest, an optimisation problem needs to be solved with the following

objective function:

min
α,β ,b

1
2

S

∑
s=1

βsα
T Ksα +C

N

∑
i=1

L

(
yi,b+

S

∑
s=1

βsKs(x)T
α

)
sb.t.

S

∑
s=1

βs = 1, βs ≥ 0, s = 1, ...,S

(3.15)
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Where α is a N-dimensional feature vector which can be seen as the weights of each training

sample, b has a scalar value, Ks is defined in Eqn. (3.13) and L(y,z) denotes the Hinge Loss

function (Bishop 2006). The two constraints put on βs are to make sure that the estimated value

of βs is sparse and interpretable (i.e. as weights, they should be either zero or a positive num-

ber, and the sum of all weights should be 1). Various methods can be used to solve the above

optimisation problem. In this work the semi-infinite linear program (SILP) (Sonnenburg et al.

2006) is adopted. Conventionally the multiple kernel learning problem is formulated as a convex

quadratically constrained quadratic program and solved using a local descent algorithm such as

Sequential Minimization Optimization (SMO). However, it is slow and only feasible for small

scale problems. The method in (Sonnenburg et al. 2006) reformulates the multiple kernel learn-

ing problem as a semi-infinite linear program (SLIP), which can be efficiently solved using an

off-the-shelf linear program solver and a standard SVM implementation. Two linear program

solvers are formulated in (Sonnenburg et al. 2006); one is a wrapper algorithm and the other a

chunking algorithm. The wrapper algorithm was used in the current implementation. Note that

the regularisation constant C is determined via cross validation (only the training set is use in the

validation process). Given the learned parameters βs, α , and b, the final binary decision function

of MKL is of the following form:

FMKL(x) = sign

(
S

∑
s=1

βs(Ks(x)T
α +b)

)
(3.16)

where the ‘sign’ function is a function that returns a value 1 if its parameter is positive and -1 if

otherwise, Ks(x is defined in Equation (3.13) which measures the similarity between the test data

x with all N training data samples (both positive and negative). If FMKL(x) assumes the value 1,

the test sequence x is deemed as being a member of the target action classes for which the MKL

binary classifier is trained. Since it is required to solve a multiple class classification problem,

multiple binary classifiers are trained and a test action sequence is classified as the action class

with the highest value of FMKL(x).

3.4 Experiments

3.4.1 Experimental Settings

For the formulated MKL classifier, Gaussian kernels were used. All results were obtained using

Leave-One-Out Cross-Validation (LOOCV); cross-validation imposes to learn the model param-
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eters using the training set only and test the algorithm on the testing set (unknown data). It

involved employing a group of clips from a single subject in a dataset as the testing data and the

remaining clips as the training data. This was repeated so that each group of clips in the dataset

is used once as the testing data. More specifically, for the KTH dataset (see Appendix A.2), the

clips of 24 subjects were used for training and the clips of the remaining subject was used for

validation. For the Weizmann action recognition dataset (see Appendix A.1), the training set

contains 8 subjects. As for the Weizmann robustness test dataset, the whole Weizmann action

recognition dataset was used as training set, and each of the 20 robustness test sequences were

classified as one of the 10 action classes.

For constructing the multi-scale interest point clouds, the difference between two consecutive

scales Ns was set to 5 frames and the total number of scales S was set to 6 (parameters learned

empirically). This generates to 50 features (8S + 2), each of which was represented as a 50-bin

histogram (i.e. the COP features were represented in a 2500 dimensional space). 20% of these

features were removed using the introduced feature selection method (See Section 3.2.2).

Additionally, the proposed Clouds of Points representation has been compared with a stan-

dard interest point based method which uses a Bag of Words (BOW) framework (Dollar et al.

2005). For extracting these BOW features, a codebook size of 300 was used for KTH and 250

for Weizmann3. Note that the Bag of Words method requires generating a codebook using a

k-means clustering algorithm, which is sensitive to initialisation. Therefore, results are reported

as an average of 20 trials. For the proposed COP features, no such initialisation issue exists, and

different trials will give identical results.

3.4.2 Recognition Performance Evaluation

BOW COP
ACA σ ACA σ

KTH 85.33% 1.23 92.83% 0
WEIZMANN 90% 0.78 96% 0

Table 3.2: Performance comparison between COP and BOW representations. The results are
reported in terms of average classification accuracy and standard deviation over 20 trials

3The codebook sizes for KTH and Weizmann dataset were set to be between 200 to 500 empirically
by most space-time interest point based methods reported in the literature. A few works (e.g. (Dollar
et al. 2005)) investigated the effect of the size of codebook on the recognition performance and found that
the performance is insensitive to the codebook size as long as it is within that range. Similar finding are
reported in the proposed experiments.
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(a) BOW (b) COP

(c) BOW (d) COP

Figure 3.6: Recognition performance measured using confusion matrices: (a) KTH dataset,
BOW representation, accuracy: 85.33% (b) KTH dataset, COP, accuracy: 92.83% (c) WEIZ-
MANN dataset, BOW representation, accuracy: 90% (d) WEIZMANN dataset, COP, accuracy:
96%

Clouds of Points (COP) VS. Bag of Words (BOW) - The proposed COP is compared with

BOW representation. The recognition results are presented in the form of averaged recognition

rates in Table 3.2 and confusion matrices in Figure 3.6. Table 3.2 shows that the COP represen-

tation achieves higher average recognition rate on both datasets. Figure 3.6 also gives details on

where the performance gain was obtained. It is noted that the COP representation is particularly

strong in recognising jogging, running, and walking in the KTH dataset (comparing Figure 3.6(b)

with (a)), and running, skipping, and walking in the Weizmann dataset (comparing Figure 3.6(d)

with (c)). These actions are similar in terms of shape and motion appearance, but differ in terms

of action speed and temporal evolution, which can only be measured globally and over different

temporal scales. The BOW representation, based on interest point appearance only, is unable to
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capture these differences thus its performance is inferior. On the contrary, the proposed COP

representation measures explicitly and globally the spatial and temporal distribution informa-

tion. Moreover, it describes actions over multiple temporal scales, which is particularly useful

for distinguishing actions that differ mainly in temporal scales (e.g. running and walking). To be

noticed that in the Weizmann dataset, COP outperforms BOW in all the actions except galloping

sideways. Galloping sideways appears periodical and relatively slow thus well described by the

BOW representation.

Concatenation MKL
KTH 92.50% 92.83%
WEIZMANN 95% 96%

Table 3.3: Performance comparison between MKL and concatenation based feature combination.

Multi-Scale Recognition: MKL vs. Concatenation - The COP representation contains features

of multiple scales. Experiments were carried out to compare two ways of combining these multi-

scale features: the proposed MKL method and the simple concatenation method. The former

learns the optimal weighting from a training dataset, whilst the latter gives an equal weight to

all the scales. (Before concatenation the features are normalized with average zero and standard

deviation one).

The obtained result is shown in Table 3.3 indicates that MKL yields slight improvement

compared with concatenation based feature combination.

Figure 3.7 shows the weight distributions over the multiple scale COP features learned by

MKL. It is clear that different weights are assigned to COP features of different scales, and the

weight distributions vary for different actions. As expected, the learned weights reflect the tempo-

ral scales of different actions. For instance, for walking, jogging and running in the KTH dataset,

as the action is faster, more weights were assigned to shorter scale features (Figure 3.7(a)). Sim-

ilarly, in the Weizmann dataset it is observed that shorter term (faster) actions such as waving

received significantly more weights for the shorter scale features. In the meantime, longer term

actions such as hand clapping and galloping sideways received more weights for the longer scale

features (Figure 3.7(b)). By exploiting the different discriminative power of different feature

scales, the MKL based feature combination is able to produce slight better performance than

simple feature concatenation.
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(a) KTH dataset

(b) Weizmann dataset

Figure 3.7: Weight distribution of 6 multi-scale COP features learned using MKL.

Table 3.4 also compares the obtained results with the existing approaches proposed recently,

which are not restricted to interest points based methods. It shows that the obtained results are

close to the results reported so far on each dataset, and outperform some of the recently proposed

methods, especially those tested on both datasets.

Interest Point Detector Evaluation - The proposed interest point detector (Section 3.1) was

compared with the widely used Dollar et al. (2005) detector and the result is shown in Table 3.5.

As can be seen, using the same COP representation, the proposed detector outperforms the Dol-

lar et al. (2005) detector on both the KTH and Weizmann datasets. This is because the proposed

detector is less sensitive to dynamic backgrounds and camera movements. Moreover, it tends

to select more meaningful points located near the moving body parts (see Figure 3.2). The im-

provement is particularly significant for the KTH dataset where dynamic background and camera

motions appear frequently. Note that the presented detector differs from the Dollar et al. (2005)

detector in both the way the Gabor filters are designed and the use of frame differencing as a

pre-processing step. To investigate the effect of each difference individually, frame differencing

is also applied to the Dollar et al. (2005) detector. The result in Table 3.5 shows that an improve-
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METHOD KTH WEIZMANN
Proposed approach 92.83% 96%
Sun et al. (2009b) 94.00% 97.80%
Ikizler et al. (2008) 94.00% -
Lin et al. (2009) 93.43% -
Wang and Mori (2009) 92.51% 100%
Liu et al. (2009b) 92.30% -
Fathi and Mori (2008) 90.50% 100%
Zhang et al. (2008) 91.33% 92.89%
Kläser et al. (2008a) 91.40% 84.30%
Niebles et al. (2008) 83.30% 90.00%
Dollar et al. (2005) 81.17% 85.20%
Liu and Shah (2008) 94.16% -
Zhao and Elgammal (2008) 91.17% -
Gilbert et al. (2008) 89.92% -
Savarese et al. (2008) 86.83% -
Nowozin et al. (2007) 84.72% -

Table 3.4: Performance comparison with state-of-the-art.

Dollar et al. (2005) Dollar et al. (2005) with FD Proposed detector
KTH 90.08% 92.00% 92.83%

WEIZMANN 93% 94% 96%

Table 3.5: Performance comparison between the proposed interest point detector and the one
presented by Dollar et al. (2005) with and without frame differencing (FD).

ment can be obtained. However the result is still worse than that of our detector. This suggests

that the advantage of our detector is due to both the use of frame differencing and the way the

Gabor filters are designed.

No feature selection mRMR (Peng et al. 2005) Proposed method
KTH 89.03 % 91.32 % 92.83%

WEIZMANN 93% 94% 96%

Table 3.6: Performance comparison between different feature selection approaches.

Effects of Feature Selection - The proposed COP representation was evaluated in three scenar-

ios: without feature selection, with the proposed feature selection approach (Section 3.2.2), and

with a more complex minimal-redundancy-maximal-relevance (mRMR) algorithm proposed in

(Peng et al. 2005). Table 3.6 shows that feature selection improves the recognition performance

and the best performance is obtained when the proposed feature selection method is employed.

Note that a major attraction of the mRMR method, as compared with other existing feature selec-

tion methods, is its low computational cost. The proposed feature selection method has an even

lower computational cost. Specifically, this method took less than one twelfth of the time used

by the mRMR method for selecting the same amount of features (7.1 seconds using the Section
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3.2.2 method to measure and rank 2500 features, as compared with 90 seconds using mRMR on

a 2.1G PC platform with 4G RAM).

Processing Time - During training, most of the computation time was spent on feature extrac-

tion. Specifically for each leave-one-out run, on average the amount of time required for feature

extraction was 403.40 seconds for Weizmann and 1365.60 seconds for KTH. (There are much

more training clips in KTH than Weizmann). After feature extraction and selection, the train-

ing of the multiple kernel SVM classifier was much faster, needing on average 0.32 seconds for

Weizmann and 3.28 seconds for KTH. During testing, the average processing times for each test

clip on the Weizmann dataset were: 4.60 seconds on feature extraction and 0.0017 seconds for

classification. For the KTH dataset those numbers became 23.50 and 0.0019 respectively. All

implementations were in Matlab on a 2.1G PC platform with 4G RAM.

3.4.3 Robustness Evaluation

(a) Walking along 45◦ degrees (b) Sleepwalking

(c) Walking with occluded legs (d) Walking with a dog

Figure 3.8: Example of Clouds of Points detected in the sequences used in the robustness test
experiments.

The robustness of the presented method is demonstrated using the Weizmann robustness test
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Correct recognition
COP 19 out of 20
BOW 10 out of 20
Blank et al. (2005) 19 out 0f 20
Wang and Suter (2007) 18 out of 20

Table 3.7: Robustness test result.

sequences. Examples of the detected Clouds of Interest Points are shown in Figure 3.8. The

result is reported in Table 3.7. It can be seen that BOW based representation is very sensitive

to view angle, variations in action, and occlusions, with only half of the test sequences being

recognised correctly. In contrast, the proposed COP representation is much more robust, with

only a single misclassified sequence ( a person walking with a dog was recognised as skipping). In

the sequence, the most informative human body part for the action (i.e. the legs) overlapped with

another object (the dog), which was also walking but in a very different way (see Figure 3.8(d)).

Table 3.7 shows that the proposed method outperforms as well as other existing action recognition

approaches that have reported results on this robustness test dataset.

3.5 Discussions

Existing interest points based methods describe actions by employing local descriptors only, ig-

noring potentially valuable information associated with the global point distribution. Moreover,

these methods observe actions with a fixed temporal scale, limiting their representation’s dis-

criminative power. In contrast, this chapter formulates a novel action representation method,

which differs significantly from the mentioned methods in that only the global distribution in-

formation of interest points is exploited. In particular, the proposed method initially extracts

holistic features from clouds of interest points which have been accumulated over multiple tem-

poral scales. Then, it merges the features in a robust representation by using a Multiple Kernel

Learning strategy. This allows the optimal weight for each temporal scale to be automatically

defined in accordance with the observed action class.

Compared to existing methods, the proposed COP representation is less sensitive to back-

ground noise and occlusion. Since the action is observed globally over a window of frames, local

noise from the background and short temporal occlusions are overcome. It is also robust to view

changes and able to capture smooth motions. Furthermore, COP avoids the significant problems

of selecting the optimal local descriptor, clustering algorithm for constructing a codebook, and
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codebook size faced by previous interest points based methods. The reported performance in

terms of execution time is also encouraging, being notably faster than those seen with traditional

interest point based methods.

Experiments using the KTH and Weizmann datasets demonstrate that the proposed approach

is comparable to the state-of-the-art. Additionally, the performed robustness test reports the best

performance compared to other methods.

For the KTH dataset, the errors made by our approach come mainly from three classes:

jogging, running, and walking all of which are visually very similar. With the global features

extracted using Clouds of Points representation, fewer errors were made when compared to a

conventional interest points based method (see Figure 3.6). However, there are still misclassifi-

cations between jogging and running, as there is no clear separation between these two action

classes; identifying when running becomes slow enough to be labelled as jogging is a subjective

human process. As for the Weizmann dataset, COP tends to mistake skipping for either jumping

or running, and also galloping sideways as walking. Again, skipping is a combination of jumping

and running, and galloping sideways is visually very similar to walking. In order to avoid these

mistakes, it is possible to build a human body model and separate different body parts in the

representation. Alternatively, features should be extracted from 3D human body shapes. How-

ever, as stated in Section 2.1.3, both model tracking based approaches and spatio-temporal shape

template based approaches require highly detailed silhouettes to be extracted. They thus stand

no chance on noisy data such as the KTH dataset, where silhouette extraction is very complex.

In light of these experiments, it can be noted how Bag of Words and Cloud of Points repre-

sentations exploit alternative but complementary cues to describe actions (local descriptors and

global distribution respectively). Consequently, a more robust representation can be achieved if

the two representations are merged, leading to a more accurate action classification. Motivated

by this intuition, the next Chapter will show how the Multi Kernel Learning algorithm can be ex-

tended to fuse the BOW features with the actual COP features. The advantages of feature fusion

will be also discussed.

From the obtained results, the importance of feature selection also emerges. In practice, not

all of the extracted features are significant, making it important to remove redundant and noisy

components. As shown in Table 3.6, the proposed feature selection method, even if simple,

improves performance in both the KTH and Weizmann datasets. Although efficient, one of the
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limitations of this method is the evaluation of features independently rather than collaboratively.

In other words, the features are singularly analysed, ignoring potential information associated

with multiple-feature patterns. To address this issue, the next chapter presents an innovative

Multi-Class Delta Latent Dirichlet Allocation model for feature selection in which, features are

collaboratively analysed.

3.6 Summary

This chapter introduces a robust interest points based representation named Clouds of Points

(COP), which is able to exploit information about the global spatio-temporal distribution of

points. COP aims to observe clouds of interest points generated by human actions, and also

to collect information at different temporal scales.

The first step of the proposed method consists of a new space-time interest point detection

method, which extracts denser and more informative points when compared to existing meth-

ods. In particular, our model avoids spurious detection in both background areas and highly

textured static foreground areas unrepresentative of the dynamic parts of concerned actions. The

extracted interest points are accumulated over time at different temporal scales to form point

clouds. Holistic features are then computed from these point clouds for action representation,

and these capture explicitly and globally the spatial and temporal points distributions. The sets

of holistic features collected over different temporal scales are then automatically weighted ac-

cordingly to their relevance in the classification task. To this end, a Multiple Kernel Learning

strategy is employed. Specifically, to learn a multi-class classifier for action recognition, support

vector machine with multiple kernels is employed, each kernel being associated with a certain

temporal scale. Multiple Kernel Learning is then performed to learn the best linear combination

of the kernels for yielding optimal classification accuracy.

The proposed approach is evaluated using two widely used public datasets, namely the KTH

dataset and the Weizmann dataset. The experimental results demonstrate that our approach

is comparable with the state-of-the-art. Furthermore, it is more robust against occlusion and

changes in view angle condition when compared to existing methods. Crucially, the results also

highlight the importance of both the formulated interest point detector and the feature selection

step.

Despite the proposed representation appears robust to moderate distortions and dynamic
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backgrounds, it has been observed that a more solid representation can be achieved improving

the feature selection approach and exploiting more comprehensive features. Following this idea,

in Chapter 4 a more sophisticated feature selection approach that aims to rank features collabo-

ratively is formulated. Additionally, a richer feature space is obtained fusing features originated

by complementary methods.
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Chapter 4

Feature Fusion and Selection

To improve the action representation, it is important to 1) explore different sources of information

and 2) filter out noisy and redundant features. This chapter studies these specific problems and

suggests innovative approaches designed to fuse different representations and collaboratively

select features.

Initially, the fact that the proposed Clouds of Points (COP) and conventional Bag of Words

(BOW) representations exploit different but complementary sources of information is taken into

account. COP provides a global action description by relying on interest points distribution,

while the BOW representation exploits local descriptor information. The two representations are

then fused with the aim of achieving a more solid action representation. Specifically, a Multiple

Kernel Learning fusion strategy is formulated.

A different scenario is drawn by processing more challenging sequences such as realistic

videos. Due to the presence of a constantly moving camera and a crowded background, the

proposed Clouds of Points representation appears inadequate and unable to produce significant

results. As such, an alternative representation based on key-point trajectories is formulated. The

proposed approach removes the trajectories associated with the background and subsequently

focuses attention on a specific region of interest. To further remove misleading features, a novel

Multi-Class Delta Latent Dirichlet Allocation model for feature selection is formulated. The most

informative features are selected collaboratively rather than independently. Collaboratively imply

that the features are selected observing their group-behaviour across all the classes. Finally, to

enrich the action representation, an adaptive feature fusion method is then developed to combine
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the proposed trajectory based representation with a conventional BOW representation. The fusion

method, in accordance with the camera movements detected, selects the optimal fusion strategy

in order to cope with drastic changes in motion.

4.1 Fusion of Interest Points Based Representations

Feature fusion techniques have already been successfully employed to improve classification

tasks, as presented in Section 2.3. As observed in the previous chapter, the proposed Clouds

of Points representation and the conventional Bag of Words representation (Dollar et al. 2005)

exploit two types of features, which capture completely different yet complementary aspects of

the actions. The former (COP) contains global distribution information of interest points, while

the latter (BOW) represents how each interest point looks in terms of 3D texture and localised

motion characteristics. As such, to increase the action representation discriminative power, a

fusion method is designed to merge both COP and BOW representations.

This fusion problem can be considered as a feature combination problem and addressed using

the Multiple Kernel Learning method described in Section 3.3. More specifically, after interest

points are extracted using the method described in Section 3.1 and represented as a histogram of

the BOW features, a kernel function denoted as kB can be computed and used to form a linear

combination with the S COP features. Now the combined kernel function in Equation (3.14) is

rewritten as:

k∗(x,x′) =
S

∑
s=1

βsks(x,x′)+βBkB(x,x′) (4.1)

Similarly, the objective function to be optimised using the SLIP algorithm (Sonnenburg et al.

2006) becomes:

min
α,β ,b

1
2

(
S

∑
s=1

βsα
T Ksα +βBα

T KBα

)

+C
N

∑
i=1

L

(
yi,b+

S

∑
s=1

βsKs(x)T
α +βBKB(x)T

α

)
sb.t.

S

∑
s=1

βs +βB = 1, βs ≥ 0, s = 1, ...,S, βB ≥ 0

(4.2)

where βB is the weight of the BOW features. After parameter estimation, the final binary decision

function is:

FMKL(x) = sign

(
S

∑
s=1

βs(Ks(x)T
α +b)+βB(KB(x)T

α +b)

)
(4.3)
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Figure 4.1: From top to bottom: Example frames from the Weizmann, Weizamnn robustness and
KTH datasets. More details are reported in the Appendix A.

Although interest points based methods are robust to action distortions and noisy background,

they appear inadequate in the presence of constant camera movements and crowded background.

This limitation can be clearly observed processing videos recorded in unconstrained scenarios,

such as the sequence contained in the YouTube Dataset (Liu et al. 2009a) (See Appendix A.6).

The strong presence of interest points associated with the background cause that COP captures

incorrect point distributions; consequently poor action description is experienced. A similar

problem affects also conventional BOW representations, even if in a softer manner. To address

this issue, Section 4.2 formulates an alternative action representation, which instead of relying on

interest points, exploits key-point trajectories. As will be demonstrated, the principal advantage

of the key-point trajectory representation is to be able to properly discharge background and

noisy components, fundamental issue in performing action recognition in realistic scenarios.

4.1.1 Validation of Multiple Kernel Learning Fusion

Experiments have been conducted to validate the effectiveness of the proposed Multiple Kernel

Learning fusion, where two complementary interest points based representations are merged

(COP and BOW). In the validation process both the KTH (Schüldt et al. 2004) and Weizmman

(Blank et al. 2005) datasets are analysed. To present a fair comparison, the same settings reported

in Section 3.4.1 are used. More specifically, the formulated MKL classifier utilises Gaussian

kernels, while the validation follows a Leave-One-Out Cross-Validation (LOOCV) schema.

For constructing the multi-scale interest point clouds and the BOW representation, the same

setting reported in Section 3.4.1 is used. Note that the Bag of Words method requires generating
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(a) BOW (b) COP (c) BOW+COP

(d) BOW (e) COP (f) BOW+COP

Figure 4.2: Recognition performance measured using confusion matrices: (a) KTH dataset,
BOW representation, accuracy: 85.33% (b) KTH dataset, COP, accuracy: 92.83% (c) KTH
dataset, BOW+COP, accuracy: 94.33% (d) WEIZMANN dataset, BOW representation, accu-
racy: 90% (e) WEIZMANN dataset, COP, accuracy: 96% (f) WEIZMANN dataset, BOW+COP,
accuracy: 96%

a codebook using a K-means clustering algorithm, which is sensitive to initialisation. There-

fore, results are reported as an average of 20 trials. For the proposed COP features, no such

initialisation issue exists, and different trials will give identical results.

Table 4.1 and Figure 4.2 present a performance comparison between using a single type of

features, either BOW or COP, and the fusion of them using MKL. Table 4.1 shows that an im-

provement is obtained by fusing the two complementary features together on the KTH dataset.

Specifically, Figure 4.2 shows that with feature fusion, the recognition rates for all 6 classes ex-

cept hand waving were increased. It can also be seen in Table 4.1 that a simple concatenation

based fusion has a negative effect on the recognition performance on both datasets. In this ex-

periment the concatenation is performed normalizing the features with mean zero and standard

deviation one. Table 4.1 also reports that for Weizmann dataset no enhancement is reported using

MKL, but concatenation decreases the performance.

Figure 4.3 shows that different weight distributions were learned using MKL for different

action classes. In general, the weights given to the BOW features are higher than those given
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BOW COP Concatenation MKL Fusion
ACA σ ACA σ ACA σ ACA σ

KTH 85.33% 1.32 92.83% 0 92.66% 0.98 94.33% 1.05
WEIZMANN 90% 0.78 96% 0 94 % 0.62 96% 0.73

Table 4.1: Effect of MKL feature fusion. Results presented in terms of average classification
accuracy and standard deviation.

(a) KTH dataset

(b) Weizmann dataset

Figure 4.3: Weight distribution between Bag of Word and Clouds of Points features.

to each single scale COP feature, although overall more weight was given to COP features (It

has to be mentioned that the two representations have comparable dimensionality). It is inter-

esting to note that the weighting distribution is again largely determined by the temporal scale

of different actions. In particular, BOW features are given more weight for actions with longer

temporal scales (slower). For instance, in the KTH dataset, the weights of BOW features for

running, jogging and walking are ascending in that order as the action scale gets longer. This is

because when an action is performed with high motion intensity, both the detection of interest

points and computation of local appearance descriptors become unreliable, which decreases the

discriminative power of the BOW features.

Table 4.2 also compares the MKL results with the existing approaches proposed recently,
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METHOD KTH WEIZMANN
MKL approach 94.33% 96%
Sun et al. (2009b) 94.00% 97.80%
Ikizler et al. (2008) 94.00% -
Lin et al. (2009) 93.43% -
Wang and Mori (2009) 92.51% 100%
Liu et al. (2009b) 92.30% -
Fathi and Mori (2008) 90.50% 100%
Zhang et al. (2008) 91.33% 92.89%
Kläser et al. (2008a) 91.40% 84.30%
Niebles et al. (2008) 83.30% 90.00%
Dollar et al. (2005) 81.17% 85.20%
Liu and Shah (2008) 94.16% -
Zhao and Elgammal (2008) 91.17% -
Gilbert et al. (2008) 89.92% -
Savarese et al. (2008) 86.83% -
Nowozin et al. (2007) 84.72% -

Table 4.2: MKL performance comparison with state-of-the-art.

which are not restricted to interest points based methods. It shows that MKL fusion performances

are close to the best results reported so far on each dataset, and outperform most of the recently

proposed methods, especially those tested on both KTH and Weizmann dataset.

Correct recognition
COP+BOW 20 out of 20
COP 19 out of 20
BOW 10 out of 20
Blank et al. (2005) 19 out 0f 20
Wang and Suter (2007) 18 out of 20

Table 4.3: Robustness test result using MKL fusion.

Robustness Evaluation for Multiple Kernel Learning Fusion - The superior discriminative

power and robustness of the formulated MKL fusion strategy is demonstrated processing the

Weizmann robustness test sequences. As also reported in Chapter 3, it can be seen that BOW

based representation is very sensitive to view angle, variations in action, and occlusions, with

only half of the test sequences being recognised correctly. In contrast, COP only is more robust,

with only a single misclassified sequence. By applying MKL to fuse COP and BOW, all the

sequences are correctly classified. This result suggests that BOW and COP feature fusion does

improve the robustness of action recognition. In particular, by merging two complementary

representations such as COP and BOW, it is possible to overcome partial occlusions and action

distortions caused by other objects (for example, those caused by the dog in the walking with

the dog sequence). Table 4.3 shows that the formulated MKL fusion method also outperforms
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(a) (b) (c)

Figure 4.4: (a) Orientation-Magnitude Descriptor: An action trajectory is quantized and con-
verted to a histogram. (b) All the detected trajectories. (c) Trajectories of interest and ROI.

existing action recognition approaches that have reported results on this robustness test dataset.

4.2 Fusion of Trajectory and Interest Points Based Representation

Representing actions in realistic scenarios using trajectorie’s segments has been shown to be suc-

cessful by Sun et al. (2009a). Trajectory segments (5 to 25 frames) are easy to extract, very

efficient in capturing human dynamics and at the same time no specific constraints are imposed.

Inspired by this idea, this section formulates a novel method to extract and represent dense trajec-

tory segments. It should be mentioned that a main problem of these realistic sequences consists

of the strong presence of noisy trajectories. To this end, the background trajectory behaviour

is estimated and used to filter out these components. Next, trajectories located outside a region

of interest are discharged. After the first feature selection attempt, a more sophisticated method

is formulated to collaboratively select relevant features. Finally, since the trajectory-based rep-

resentation is complementary to Bag of Words interest points-based representation, the action

representation is then enriched by fusing the two representations.

4.2.1 Trajectory Based Features

Trajectory Generation - The trajectories of key-points are computed using two techniques: the

Pyramid Lucas-Kanade-Tomasi (KLT) tracker (Messing et al. 2009; Matikainen et al. 2009) and

SIFT matching (Sun et al. 2009a). These two trackers are applied independently to a video

footage so that as dense as possible trajectories can be obtained even in low textured videos.

During tracking, a trajectory is considered “reliable” if it lasts more than 5 frames. Any shorter

trajectory is automatically removed. When a trajectory reaches a pre-defined maximum length

(25 frames), it is auto-segmented and a new trajectory is created. (The segmentation is auto-

matically performed, practically as soon as a trajectory reach 25 frames, a new trajectory is
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initialized.)

Trajectory Pruning - The extracted trajectories in a video may not always be useful for action

recognition. For example, in Fig. 4.4 (b), lots of trajectories are extracted from the background

area and thus need to be removed in order to retain the most relevant trajectories for describing the

body actions of the person (Fig. 4.4 (c)). To that end, a trajectory pruning process is considered.

The proposed approach detects a region of interest (ROI) from each video frame by measur-

ing trajectory similarity within a temporal window. Suppose there exist N trajectories that pass

through a frame f : T = {ti}, i = 1, · · · ,N. For each trajectory, it is defined a trajectory segment

tsi within a temporal window of 4 frames centred at frame f and each framewise displacement

vector dsi as: tsi = {(xi
f−1,y

i
f−1),(x

i
f ,y

i
f ),(x

i
f +1,y

i
f +1),(x

i
f +2,y

i
f +2)}, and dsi = {di

1,d
i
2,d

i
3}, in

which di
k =
(

xi
f +(k−1)− xi

f +(k−2),y
i
f +(k−1)− yi

f +(k−2)

)
. By aiming to measure similarity between

any pair of trajectory displacement vectors dsi and ds j. This results in an N×N dimensional sim-

ilarity matrix C with entries:

Ci, j =
3

∑
k=1
‖dsi

k−ds j
k‖, (4.4)

from which a single similarity score is computed for trajectory ti as mi = ∑
N
j=1 Ci, j. This score

measures the similarity of this trajectory to all the other trajectories within a 4-frame temporal

window centred at the frame f . It is considered that, if a trajectory is very similar to the others, it

is likely that it is extracted from background clutter thus should be removed. To this end, in each

frame f , an adaptive threshold M f
T H = γ

N ∑
N
i=1 mi is computed, where γ is empirically set to 1.3.

(γ is a similarity coefficient, as small it is as selective is the filtering.)

Next, any trajectories whose similarity score is larger than M f
T H is removed . After thresh-

olding, assume N f trajectories are left in the frame f . The centroid of the region of interest (ROI)

can be computed by averaging spatial coordinates all key points on the remaining tracks:

x̂ =
1

N f

N f

∑
i=1

xi
f , ŷ =

1
N f

N f

∑
i=1

yi
f (4.5)

and its dimensions are given by Dx = 2
√

2cxx and Dy = 2
√

2cyy where cxx and cyy are the second

central moments of reliable key points. Any trajectory of interest which is located outside the ROI

will then be removed. An example of remaining trajectories after pruning is shown in Fig. 4.4 (c).

It shows clearly that the region of interest corresponds accurately to where the action takes place.
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Region of interest detection has been exploited elsewhere (Liu et al. 2009a) based on 2D interest

point detection. In contrast, the formulated approach is based on statistical analysis of key point

trajectory distributions and is robust for videos captured by both static and moving cameras. The

assumption behind this method is that the large majority of the trajectories are associated with

the background and few with the target. This allows modelling and subsequently removing the

background trajectories.

Advantages of the formulated ROI are: 1) the ability to filter out meaningless components

and background object; 2) to be able to automatically adjust the action size and location; and

to do not require any tracking method. On the other hand, the ROI is not designed to handle

multiple targets. For instance, if a car and a person are moving closely a single ROI is selected

including both car and person. Additionally, if the target does not generate enough trajectories

the ROI cannot be computed.

Orientation-Magnitude Descriptor - The basic idea is to describe how trajectories move in

terms of direction (orientation) and displacement (magnitude). Different actions generate sets of

trajectories having a unique dynamic, which it can be used to recognize themselves. Along this

idea, this descriptor aims to express these dynamics in a compact way. Given two consecutive

points: P = (xl,yl), P′ = (xl+1,yl+1), along a trajectory as illustrated in Fig. 4.4(a), the dis-

placement vector is computed between the two points as d = (xl+1− xl,yl+1− yl). For a single

trajectory t of length L a series of displacement vectors d = {d1,d2, ...,dL−1} can be obtained.

The quantization on d is performed by considering both magnitude and orientation of the dis-

placement vectors. For magnitude quantization, each displacement vector is normalised by the

largest displacement magnitude within the same trajectory and 4 uniform quantization levels are

used. For orientation quantization, the top and bottom half circles are divided into 8 equal sectors

, each subtending 22.5◦, as shown in Fig. 4.4(a). The formulated quantization results in a track

descriptor that is both scale-invariant (to be scale-invariant across different videos the same frame

rate is required) and direction-invariant (direction-invariant means that an action performed left

to right generates the same descriptors of the same action performed right to left). Combining

magnitude and orientation quantization, each trajectory is then described by a 32-bin histogram

O.

Trajectory Shape Descriptor - Complex Fourier descriptors are commonly used to represent
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and compare shapes extracted from object silhouettes for object recognition (Zhang and Lu

2003). Here the Fourier descriptor to describe the shape signature of a trajectory is formulated.

Assuming a trajectory consists of L key points {(x1,y1),(x2,y2), ...,(xL−1,yL−1,)} it can be then

transformed in a closed contour connecting the starting and ending point; doing this the Fourier

descriptor can be computed. The aim is to describe this trajectory as a 2D shape of N vertices

{z(i) : i = 1, . . . ,N}. These N vertices can be computed using the N coefficients of the Fourier

transform of {z(i)}:

zi =

N
2

∑
k=−N

2 +1

ck exp
(

2π j
ki
N

)
. (4.6)

The Fourier coefficients ck present the frequency contents of the trajectory in which lower fre-

quency components describe coarse shape while higher frequency components retain more tra-

jectory details. They provide useful descriptor for trajectory global characteristics. Within the N

Fourier coefficients, c0 is omitted because it represents centre of gravity of a trajectory and by

removing this term, the descriptor is invariant to translation. Moreover, c1 is used to normalise

all other Fourier coefficients, making them be invariant to homothety transformations (invariant

to rotation scale and translation, as well invariant to location and trajectory phase ). As a result,

each trajectory is represented by an N− 1 dimension vector F . Note that the Fourier descriptor

is very different from the orientation-magnitude descriptor in that the former is a global shape

descriptor concerning global motion information along a trajectory whilst the latter is a bag-of-

words (BOW) descriptor of local motion information of track segments. Both types of descriptors

contain complementary information.

Appearance Descriptor - Given a trajectory with a length L, first the SIFT features Si are ex-

tracted at all the L key points i = 1, ...,L. An appearance description of the tracked key point with

this trajectory is computed as the average of L SIFT features: S = 1
L ∑

L
i=1 Si. Similar approach

has been used by Sun et al. (2009a).

Holistic Trajectory Representation - In order to fuse all three descriptors for action representa-

tion, the BOW method is employed. For each trajectory, its associated descriptors O,F and S are

normalized and concatenated to form a global descriptor G = [O,F,S]. (The features normaliza-

tion obtains mean zero and standard deviation equal to one.) The creation of BOW representation

of a video consists of two steps. First the global descriptors G for all trajectories are quantised
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using K-means to obtain a codebook with 500 words and each trajectory is assigned a codeword.

Second, to retain spatio-temporal information about trajectories, the spatio-temporal volume of a

ROI in a video is divided into 8 blocks including 4 non-overlapping spatial blocks and 2 temporal

overlapping blocks (with a length of 2/3 of the temporal window of the ROI volume). Trajec-

tories in each spatio-temporal blocks are then labelled separately. This results in a codebook V1

with 500×8 = 4000 codewords to describe trajectories in videos.

4.2.2 Spatio-Temporal Interest Points Features

Local features extracted based on spatio-temporal interest points are also considered as they con-

tain complementary information compared to trajectory features. In this model, interest points

are detected using the method presented in Section 3.1. Compared with alternative methods such

as Dollar et al. (2005), this approach is more reliable under realistic conditions: small camera

movement, camera zooming, and shadows. The interest points are selected at the local maximal

of detector response, and 3D cuboids are extracted around them. Similar to Dollar et al. (2005)

and Liu et al. (2009a), the gradient vector is used to describe these cuboids and PCA to reduce

the descriptor’s dimensionality. To reduce the effect of spurious detection, an outlier removal

method, which deletes points far from the mass centre of the points cloud, is employed. Bag-

of-words is deployed again to represent each video clip. Specifically, a codebook V2 with 300

visual words is initially built by performing K-means on a random subset of local features from

the training data. Then, each clip is represented with a visual-words histogram.

4.2.3 Adaptive Feature Fusion

In this section the goal is to fuse adaptively trajectory based descriptors with Bag of Words in-

terest points based descriptors according the presence of camera movement. The presence of a

moving camera is detected by computing the global optical flow over all frames in a clip. If the

majority of the frames contain global motion, the clip is regarded as being recorded by a moving

camera. (In this case global motion means that the majority of the pixels are subjected to an opti-

cal flow grater the 4 pixels). This simple method can accurately and consistently separate videos

with and without camera movements. For clips without camera movement, both interest points

and trajectory based descriptors can be computed reliably and thus both types of descriptors are

used for recognition, resulting in a final codebook V = [V 1,V 2] with 4300 visual words. In con-

trast, when camera motion can be detected, interest point based descriptors are less meaningful
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Figure 4.5: MC-∆LDA model where αc is the hyperparameter for the corresponding action class
c, θ j is the constrained topic distribution, φt is the Dirichlet word-topic distribution and x is the
observed video clip. i and j represent the word and document index.

so only trajectory descriptors are employed, resulting the final codebook V = V 1 with 4000 vi-

sual words. Now, a set of Nd video clips is represented as X = {x j}, j = 1, · · · ,Nd , each of which

is represented as a set of labelled features using V .

4.3 Collaborative Feature Selection

4.3.1 Multi-Class Delta Latent Dirichlet Allocation (MC-∆LDA)

For MC-∆LDA modelling (Andrzejewski et al. 2007a), each video clip x j is considered as a

mixture of Nt topics Φ = {φt}Nt
t=1 (to be discovered), each of which φt is a multi-nominal dis-

tribution over Nw words (visual features). However, different from existing topic models such

as LDA model (Blei et al. 2003) which assumes uniform proportion of topic mixture for each

video clip, a MC-∆LDA model aims to constrain topic proportion non-uniformly and on a per-

clip basis. More precisely, for each video clip belonging to action category c, it is modelled as

a mixture of: (1) Ns
t topics which are shared by all Nc category of actions, and (2) Nt,c topics

which are uniquely associated with action category c. Where c represent one of the Nc available.

Standard topic models such as LDA model each instance (clip) as being derived from a bag of

topics drawn from a fixed (and usually uniform) set of proportions. In MC-∆LDA, we wish to

constrain the topic proportions non-uniformly and on a per-clip basis. This will enable some

topics to be shared among all categories of actions and some to be uniquely associated with par-

ticular action category, thereby representing the unique aspects of that action. The structure of

the proposed MC-∆LDA model is shown in Fig. 4.5. In MC-∆LDA, the non-uniform proportion

of topic mixture for a single clip x j (belonging to document j) is enforced by its action class

label c j and the hyperparameter αc for the corresponding action class c. Given the total number

of topics Nt = Ns
t + ∑

Nc
c=1 Nt,c and let T0 be the first Ns

t elements list of shared topics and Tc be

the Nt,c element list of topics for action c j, each hyperparameter αc is a vector with Nt compo-

nents αc = {αc
t }

Nt
t=1 in which components t ∈ T0

⋃
Tc are constrained to be non-zero. To enforce
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non-uniform proportion of topic mixture, a generative process of sampling video clips is given

as follows:

1. Draw a Dirichlet word-topic distribution φt ∼ Dir(β ) for every topic t;

2. For each document j:

(a) Draw a class label c j ∼Multi(ε);

(b) Given label c j, draw a constrained topic distribution θ j ∼ Dir(αc j);

(c) Draw a topic y j,i for each word i from multinomial y j,i ∼Multi(θ j);

(d) Sample a word x j,i according to x j,i ∼Multi(φy j,i).

Given the structure of the MC-∆LDA model and observable variables (clips x j and action labels

c j), the objective is to learn the Ns
t shared topics as well as all ∑

Nc
c=1 Nt,c unique topics for all Nc

classes of actions. The full joint probability of a document j in MC-∆LDA is

p(x j,y j,θ j,Φ,c|α,β ,ε) = ∏
i

p(x j,i|y j,i,Φ)p(y j,i|θ j)p(θ j|α,c)p(c|ε)p(Φ|β ). (4.7)

Similar to the standard LDA, exact learning in this model is intractable. However a collapsed

Gibbs sampler can be derived to sample the topic posterior p(y|x,c,α,β ) (now additionally

conditioned on the current class c) leading to the update

p(y j,i| y j,−i,x,c,α,β ) ∝
n−i

x,y +β

∑x nx,y +β

n−i
y,d +α

c j
y

∑y n−i
y,d +α

c j
y

. (4.8)

Here y j,−i indicates all topics except the token i; n−i
x,y indicates the counts of topic y being assigned

to word x, excluding the current item i; and n−i
y,d indicates the count of topic y occurring in the

current document d. These counts are also used to point estimate Dirichlet parameters θ and Φ

by their mean, e.g.

Φ̂x,y =
nx,y +β

∑x nx,y +β
. (4.9)

As reported in (Andrzejewski et al. 2007a), the presented Gibson sampling appears identical to

the standard LDA in both the update step and topic constrains. The presented model has been

developed in collaboration with Jian Li, extending his previous work (Li et al. 2009). The contri-

bution of this work involves apply MC-∆LDA in new application such as action recognition. The

used MC-∆LDA model employs Ns
t = 5 shared topics and at each action category assigns a single
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unique topic Nt,c = 1. Moreover, the non-zero elements of αc for shared topics are set to 0.1 and

for unique topics to 10. The hyperparameter β is learned with Gibbs-expectation maximization

(Minka 2003).

4.3.2 Feature Selection using MC-∆LDA

Using MC-∆LDA enables us to learn Nt topics Φ̂ to represent natural grouping of visual features

either shared by all classes of actions or uniquely associated with one particular action category.

This idea con be exploited to collaboratively select features, in this context collaborative means

that the feature are selected observing the global behaviour of the feature space, not at single-

feature level. This grouping process effectively ranks all the visual features according to their

importance of being used for representing either general aspects of all action classes or unique

aspects of a specific action class. Now, a sorted index of all the visual features r(V ) is needed

to be estimated from the learned topics to represent distinctive visual features for action classifi-

cation. Ideally, the ranked features r(V ) can be learned from the ∑
Nc
c=1 Nt,c action specific topics

in Φ̂. However, as visual features extracted from action videos can be very noisy and not well

structured, those topics can be easily corrupted by noise and are thus not suited for feature selec-

tion. Therefore, the discriminative features are learned from the Ns
t topics shared by all actions.

Given the Ns
t shared topics which are represented as an Nw×Ns

t dimension matrix Φ̂s, the feature

selection can be summarised into two steps:

1. For each feature vk, k = 1, · · · ,Nw, compute its maximum probability across all Ns
t topics

according to p(vk) = max(Φ̂s
k,1:Ns

t
);

2. Rank the value of p(vk),k = 1, · · · ,Nw in ascending order to obtain a vector of feature index

r(V ) in which higher ranked features correspond to more discriminative/relevant features.

As this model selects different types of features to represent videos with and without camera

movements, different MC-∆LDA models are trained separately for the two type of videos. For

each model, the number of features selected for final classification is determined by cross valida-

tion.

It has to be mentioned that MC-∆LDA differs from standard LDA because it uses shared

topics (common to all the classes) as well as unique topics which appear only in special classes.

Moreover, the documents are constituted of a mixture of shared and unique topics. Since the pro-

posed feature selection exploits the shared topics only, part of the extracted information (unique



4.4. Experiments 91

(a)

(b)

(c)

Figure 4.6: From top to bottom: Example frames from the (a) UCF Feature Films, (b) the UCF
Sport Actions and (c) the YouTube datasets. More details are reported in Appendix A.

topics) is discharged. Anyhow, in the proposed feature selection, MC-∆LDA is applied for shared

topics disclosure which cannot be achieved by using standard LDA.

4.4 Experiments

The formulated trajectory based representation is validated and the results obtained from the

fusion with the Bag of Words representation are discussed.

Datasets - The experiments are carried out over realistic scenarios, to this end three datasets

have been explored. The UCF Feature Films Dataset (Rodriguez et al. 2008) provides a repre-

sentative pool of natural samples of two action classes: Kissing and Hitting/slapping. The UCF

Sport Actions Dataset (Rodriguez et al. 2008) contains 10 different types of human actions in

sport broadcasting videos: diving, kicking , weight-lifting, horse-riding, running, skateboarding,

golf swinging, swinging 1 (gymnastics, on the pommel horse and floor), swinging 2 (gymnastics,

on the high and uneven bars) and walking. The YouTube Dataset (Liu et al. 2009a) is the most ex-

tensive realistic action dataset available to the public and it is composed of 1168 videos collected

from YouTube. These videos contain a representative collection of real world challenges such as:

shaky cameras, cluttered background, variation in object scale, variable and changing view-point

and illumination, and low resolution. Since these videos are mostly home-videos captured by

hand-held cameras, the camera movements are much more unpredictable compared to the other

two datasets. The YouTube dataset contains 11 action categories: basketball shooting, volleyball
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(a) UCF Sports (b) UCF Films (c) YouTube
ACA = 86.90% ACA = 96.75% 64.00%

σ = 0.65 σ = 1.3 σ = 0.45

Figure 4.7: Confusion matrices of the proposed approach on three datasets. Results presented in
terms of average classification accuracy and standard deviation over 20 trials.

spiking, trampoline jumping, soccer juggling, horse-back riding, cycling, diving, swinging, golf

swinging, tennis swinging, and walking. Some representative frames are shown in Figure 4.6.

More details about these datasets are reported in Appendix A.

4.4.1 Experimental Settings

Recognition was performed using a Support Vector Machine with a Gaussian kernel and Leave-

One-Out Cross-Validation (LOOCV) was used. More specifically, for the YouTube dataset the

settings given in (Liu et al. 2009a) are adopted . The dataset was divided into 25 subsets, out

of which 24 subsets were used for training and the remaining subset was used for testing (im-

portantly, in the LOOCV the testing set is not used for training) .For the UCF Sport Actions and

Feature Films datasets the setting in (Rodriguez et al. 2008) was followed : one clip was used for

testing and the renaming for training. In this experiment, 29 Fourier coefficients were used in the

trajectory shape descriptor, and for the appearance descriptor, 128-bin SIFT histogram are used.

Those values were empirically selected.

Since the Bag-of-Words representation requires a clustering process to initialize the code-

book, different iterations may report slightly different performance. For this reason, the results

are displayed as average and standard deviation over 20 trials.

4.4.2 Trajectory Based Representation Validation

The average recognition rates obtained using the proposed representation approach are presented

in Table 4.4 and compared with the results obtained by existing approaches. The classification
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UCF Films UCF Sports YouTube
Proposed model 96.75% 86.90% 64.00%
Wang et al. (2009) 86.60% 85.60% -
Yeffet and Wolf (2009) 80.75% 79.20% -
Rodriguez et al. (2008) 66.30% 69.20% -
Kovashka and Grauman (2010) - 87.20% -
Yao et al. (2010) - 86.60% -
Liu et al. (2009a) - - 71.20%

Table 4.4: Comparison on the UCF Feature Films, UCF sport actions and YouTube datasets.

confusion matrices are also presented in Fig. 4.7. An excellent result is obtained on the UCF

Feature Film dataset with 96.75% average recognition rate for the two action classes. This re-

sult is significantly better than those obtained by existing approaches, the best of which (Wang

et al. 2009) achieved 86.60%. This approach also outperforms all existing methods which report

results on the UCF Sport dataset except (Kovashka and Grauman 2010). As for the YouTube

Dataset, an average recognition rate of 64.00% was obtained. This is a much harder dataset com-

pared to the other two due to its home video nature. Apart from the work which first introduced

this dataset (Liu et al. 2009a), no other work has presented results on this dataset. This result

is slightly lower than that in (Liu et al. 2009a) which used quite different features and different

classifiers, and included a number of heuristic steps that are hard to reproduce.

4.4.3 Effectiveness of Adaptive Feature Fusion

In this section we explore advantages of fusing different descriptors in an adaptive manner as

presented in Section 4.2.3. Basically, if the video clip contains global motion, the interest point

contribution is not used otherwise all of them are concatenated. The used descriptors are OM

Orientation-Magnitude, F Fourier descriptor, S SIFT and IP spatio-temporal interest points.

Table. 4.5 clearly shows the effectiveness of each single descriptor and the fusion of them. It

is evident that when the three trajectory based descriptors are fused together, action recognition

performance is improved for all three datasets. The improvement is particularly significant for

the YouTube dataset (around 15% increase compared to any single descriptor alone), which con-

tains a large variety of action categories and vastly different lighting conditions, camera angles,

and camera movements. It is thus more important for different complimentary information to be

utilised simultaneously. Table 4.5 also shows that fusion of trajectory based features with Bag
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UCF Films UCF Sport YouTube
OM 80.50% 58.04% 44.7%
F 82.00% 75.02% 45.7%
S 91.60% 82.50% 44.5%
OM+F+S 94.40% 84.45% 59.90%
OM+F+S+IP without adaptive fusion 92.20% 77.33% 49.03%
OM+F+S+IP with adaptive fusion 96.75% 86.90% 64.00%

Table 4.5: Evaluation of descriptor performances and effectiveness of feature fusion. OM:
Orientation-Magnitude Descriptor, F: Fourier Descriptor, S: SIFT Descriptor, and IP: spatio-
temporal interest points.

of Words interest points based features can lead to better performance, provided that they are

fused in an adaptive manner as proposed in this chapter. In particular, if they are fused uncondi-

tionally without considering the reliability of each type of feature given the camera movements,

performance degradation is observed. This result validates the effectiveness of the novel action

representation and feature fusion method formulated in this work.

4.4.4 Effectiveness of Collaborative Feature Selection

The optimal number of features used in the recognition is selected by cross-validation; for the

UCF Feature Film, UCF Sport Action and YouTube datasets the following figures are used re-

spectively: 70%, 80% and 70% of the total available feature are used. Table 4.6 compares the

effectiveness of the collaborative feature selection method with a mutual information based se-

quential feature selection method proposed in Zaffalon and Hutter (2002). It is evident that

our feature selection method indeed improves action recognition performance when compared

to using all features without selection. The effect from our feature selection is in particular

more significant for the difficult YouTube dataset. Here, the unpredictable camera movements

introduced large number of irrelevant features that cannot be removed completely even with our

trajectory pruning and region of interest detection. In comparison, the sequential feature selec-

tion process is less effective. This suggests the importance of performing feature selection jointly

and collaboratively given highly correlated features extracted both instantaneously from interest

points and globally over time from trajectories.
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UCF Films UCF Sports YouTube
MC-∆LDA 96.75% 86.90% 64.00%
Mutual Information 96.10% 85.33% 62.20%
No Feature Selection 96.10% 84.00% 59.90%

Table 4.6: Comparing the effectiveness of different feature selection methods. From top to bot-
tom: the proposed MC-∆LDA, Mutual Information (Zaffalon and Hutter 2002) and no feature
selection.

4.5 Discussion and Summary

This chapter extensively studies the problem of feature fusion and feature selection. Interestingly,

the obtained results show that action recognition can be notably improved by fusing different

sources of information and removing noisy and redundant components.

Initially, a novel framework for fusing interest points based representations is presented:

COP is merged with a conventional Bag of Words representation. The obtained results confirm

that Multiple Kernel Learning (MKL) fusion improves the performance in both of the tested

datasets. Specifically, in terms of recognition rate, an improvement of 1.7% and 2% is observed

for the KTH and the Weizmann datasets compared to concatenation. Moreover, a robustness test

has been also performed and the outcome highlights the superior discriminative power of the

formulated MKL fusion strategy.

Action recognition from video recorded in realistic scenarios introduces new challenges and

difficulties that cannot be handled using interest points based methods only. In other words,

the proposed COP and BOW representation appears unable to extract meaningful information

in the presence of constant camera movement and crowded background. To address this issue

an alternative key-point trajectories representation is formulated. The proposed trajectory de-

scriptors (Orientation-Magnitude, Trajectory Shape and Appearance Descriptor) use alternative

principles to efficiently capture action appearance and dynamics. As shown in the experiment

Section 4.4.2, the best performance is obtained by merging the three descriptors. By aiming to

further enrich the action representation, an adaptive feature fusion method is used to combine

trajectory descriptors with conventional Bag of Words interest point-descriptors. The reported

results show again that feature fusion notably improves the recognition rate by: 2.35%, 2.45%

and 4,1% respectively for the UCF Films, UCF Sports and YouTube datasets.

Crucially, a novel feature selection approach is also introduced by formulating a discrimi-

native Multi-Class Delta Latent Dirichlet Allocation (MC-∆LDA) topic model for collabo-
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rative feature selection. Interestingly, it is underlined that the unique topics appear noisy and

unstable for recognition purposes, and as such, shared topics are exploited. The basic idea is

to identify the less-shared topics and to use these to rank the features. Less-shared topics are

distributed across a small number of classes, conserving a significant discriminative power. Ad-

ditionally, they are more stable because they are less likely to represent background components.

The entire framework has been tested on three well known datasets (UCF Feature Films, UCF

Sport Actions and YouTube datasets), reporting comparable results with the state-of-the-art. Al-

though the proposed framework outperforms existing approaches, it appears inadequate for han-

dling different challenges such as classification performed on highly overlapped action classes

featured with noisy training set, short and very ambiguous sequences, strong camera movements

and zooming. These difficulties are for instance included in the Hollywood dataset (Laptev et al.

2008). To address these issues a specific approach is required which simultaneously addresses

both feature selection and classification. In the next chapter a cascade feature selection and clas-

sification strategy is designed to decompose the classification problem into multiple subtasks

where classification and feature selection are both mutually optimised.



97

Chapter 5

Cascaded Feature Selection and Action Classification

As stated in the previous chapters, realistic action recognition is a very complex and still un-

solved problem. Additionally, it can be further complicated if the observed video sequences are

highly ambiguous and the available training set is noisy and sparse. These extreme conditions

present new challenges when performing action recognition, in both feature selection and action

classification phases. More specifically, in the presence of high intra-class variation and high

inter-class similarity between action classes, standard feature selection methods as (Peng et al.

2005; Zaffalon and Hutter 2002) become less efficient. Similarly, a noisy and sparse training set

is inappropriate for training standard multi-class classifiers. Some of these problems are high-

lighted in Fig. 5.1 where it can be clearly seen that, even when the image quality is relatively

good, to recognise actions outside a well-controlled laboratory environment is far from simple.

In other words, it can be affirmed that:

1) It is difficult to simultaneously estimate the optimal decision boundaries that separate highly

ambiguous multiple action classes. Whatever action representation approach is taken, a multi-

class action dataset is featured with large intra-class variations and inter-class similarities due to

the aforementioned challenges.

2) Different action classes are often visually similar due to the shared primitive components.

For instance, “running” and “jogging” would involve mostly the same body parts moving in

a very similar way. “Hugging” and “kissing” may look identical at the beginning of the ac-

tion sequences. It is therefore critical to perform feature selection in order to identify the most

discriminative features per inter-class before classification. However, different feature sets are
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(a) (b)

(c) (d)

Figure 5.1: Examples from the Hollywood dataset (Laptev et al. 2008). (a) Hand shaking from an
unusual view angle. (b) Kissing in a crowd. (c) Getting out of a car under challenging lighting.
(d) Hug a person with occlusion.

useful for separating different groups of actions, and there will rarely be features that are univer-

sally informative for separating all classes simultaneously.

To deal with these extreme circumstances, this chapter proposes a cascaded feature selection

and classification that aims to classify actions by exploiting as much information as possible and

at the same time trying to simplify the multi-class classification in a cascade of binary separations.

The idea behind this approach consists of dynamically decomposing the classification problem,

and iteratively redesigning the optimal classification context in each step.

5.1 Action Representation

This chapter uses a representation based on interest point detection and Bag of Words (BOW)

descriptors. That is, salient information is extracted through interest points sampling from a

video sequence before clustered and represented as histograms of visual words.

Among various interest point detection methods, the one proposed by Dollar et al. (2005)

is perhaps the most widely used however has limited performance in unconstrained scenario.

Hence, in this study the interest point detector presented in Section 3.1 is adopted. Fig. 5.2
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(a) Boxing and Jogging

(b) Answering the phone and Hand shaking

Figure 5.2: Examples of interest point detection. Red points are extracted using (Dollar et al.
2005) while the green points using the proposed approach. (a) From the KTH dataset Schüldt
et al. (2004), (b) from the Hollywood dataset (Laptev et al. 2008).

shows a comparison between these two methods. It is evident that the adopted method (green) is

more meaningful and descriptive compared to the Dollar et al. (2005) detector (red).

After interest point detection, 3D cuboids are extracted from each interest point and gradient

based descriptors are then employed to map these cuboids into a high dimensional feature space,

generating a large collection of features. The size of the cuboid is set to 8 × 8 pixels in the

image coordinates and 12 frames along the time axis. Next, using K-means (Spath 1985) these

features are clustered and a visual word codebook is built. In the last step, each video sequence

is represented as a K bin histogram of visual words, where K is the size of the codebook.

Examples of visual word histograms are shown in Fig. 5.3. It is evident, by comparing

Fig. 5.3(a) and (b), that “running” and “jogging” have a very similar distribution of visual words,
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(a) Running and jogging

(b) Boxing and hand-clapping

Figure 5.3: Examples of actions from the KTH dataset represented as histograms of visual words.
The histograms have 100 bins (i.e. the size of the codebook is 100). (a) The light colour corre-
sponds to running action while the dark one is for jogging. (b) The light colour is for boxing
while the dark colour corresponds to hand-clapping.

which turns out to be quite different from that of “boxing” and “hand-clapping”. In accordance

with this observation, these four actions can be easily divided in two groups. This suggests that

separating the two action classes within each group is much harder than distinguishing the two

groups. Fig. 5.3 also highlights that 1) feature selection is necessary for action recognition; and

2) different sets of features should be selected for distinguishing different classes of actions.

For instance, histogram bins numbered 1-20 should be selected if the task is to separate the two

groups. However, they are not very helpful in separating “running” and “jogging”. Similarly,

bins numbered 50-70 are more discriminative for classifying “running” and “jogging”, but not

for “boxing” and “hand-clapping”. In order to explore these characteristics more effectively in

assisting action recognition, a cascaded feature selection and classification model is formulated

in the following sections.
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5.2 Cascaded Feature Selection and Action Classification

Given a training set containing sequences of M action classes A = [a1, . . . ,am, . . . ,aM], a classi-

fication cascade is built, in each stage of which one or more binary classifiers are deployed to

separate a group of action classes into the two most separable sub-groups. Any sub-group that

is composed of more than one action class, will be further divided into two in the next cascade

stage. Critically, for each classifier in each stage, feature selection is performed allowing differ-

ent features to been selected. The total number of stages S in the cascade will depend on in which

stage all sub-groups contain only a single action class. The value of S thus ranges from log2 M to

M−1 while the total number of binary classifiers is always M−1.

The structure of the cascade is determined automatically using spectral clustering (Shi and

Malik 2000). Specifically, in order to group the M action classes into two sub-groups in the first

stage of the cascade, the similarity between each pair of classes is computed which gives rise

to a M×M similarity matrix S = {Si, j} with Si, j measuring the similarity between the i-th and

the j-th action classes. To compute Si, j, the averaged descriptors pi and p j are obtained for the

i-th and the j-th action classes respectively (for a single class, the average descriptor is computed

averaging all the features belonging to that class). Then, it is obtained the following equation:

Si, j = 1−‖pi−p j‖ (5.1)

where ‖pi−p j‖ is the Euclidean distance between the two averaged descriptors. The elements

of S are then normalised to be in the range of [0,1]. Using the similarity matrix S as input,

the normalized cut algorithm (Shi and Malik 2000) is employed to cluster the M action classes

into two sub-groups. The same process is repeated for each sub-group that has more than two

members.

The cascade is dynamically determined by training binary classifiers for each classification

step. Within each step, feature selection is initially performed then the classifier is trained and the

optimal decision boundary is defined. To that end, a mutual information based feature selection

method (Zaffalon and Hutter 2002) is utilised, ranking the features (histogram bins in this case)

according to their relevance. The optimal number of features to be kept is determined by cross-

validation. An example of the obtained cascade structure is illustrated in Fig. 5.4.

After the cascade classifier training process is terminated, it is straightforward to classify an
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Figure 5.4: Cascaded action classifier example. Starting with a group of A = 8 action classes in
stage 1, all action classes are separated by stage 4. Note that for dividing each sub-group into
two, a different set of features FS is used. In this example, the cascade consists of 4 stages and 7
binary classifiers.

unknown action into one of the M classes. Specifically, the unknown action is firstly processed

by the initial stage, falling into one of the two sub-groups in stage 1. If the sub-group into which

it is classified contains more than one action class, it is further classified following the binary

classifier cascade in the remaining stages. This process is repeated until the action falls into

a sub-group with only one action class (not necessarily in the last cascade stage). Therefore a

minimum of one and a maximum of M−1 binary classifications are needed to assign a label to

an action sequence.

5.3 Experiments

5.3.1 Experimental Settings

Any type of binary classifier can be used to form the classification cascade. In this experiment

absolute distance based k-NN and an SVM with polynomial kernel are used. The k value and

polynomial degree were determined by cross validation performed for each separation step (the

cross-validation is done on training data only). The proposed framework is validated over the

KTH and Hollywood datasets. Additional information about these dataset is available in Ap-

pendix A. Different codebook sizes were tested for the BOW representation. The results are

reported using a visual word codebook size of 200 for KTH and 300 for Hollywood when not

stated otherwise. In order to present a fair comparison with the state-of-the-art results, the most

widely used validation procedure is followed. This means that for the KTH dataset the average
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(a)

(b)

Figure 5.5: Cascade classifier structure. (a) KTH dataset and (b) Hollywood dataset.

class accuracy (ACA) was used (Dollar et al. 2005), and the average precision (AP) of the pre-

cision/recall curve was used for the Hollywood dataset (Laptev et al. 2008). Since the codebook

was generated using K-means which is sensitive to initialisation, the results are reported based

on the average of 20 trials.

5.3.2 Learning Classifier Structures

Fig. 5.5 shows the learned cascade structures for both datasets, which were automatically de-

termined. It can be seen that both learned structures reflect accurately the natural grouping

of the different action classes. For instance, Fig. 5.5 (a) shows that the 6 action classes in

the KTH dataset were divided into two sub-groups in the first cascade stage: “jogging”, “run-

ning” and “walking” in one sub-group which all involve movement from legs, and “boxing”,
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(a) k-NN vs. cascaded k-NN

(b) SVM vs. cascaded SVM

Figure 5.6: Comparing cascaded and standard classifiers on the KTH dataset given different
codebook sizes.

“hand-clapping” and “waving” in the other which are featured mainly with movements from the

upper body. For the Hollywood dataset in the first stage of the cascade two action classes “hug a

person” and “kissing” are grouped together and separated from the other 6 classes. These two

classes are visually very similar whilst being distinctive from other action classes (see Fig. 5.1).

It can also be seen from Fig. 5.5 that similar action classes such as “stand-up” and “sit-up”,

“jogging” and “running” stay grouped until a binary separation between them is carried out in

the last cascade stage.

5.3.3 Cascaded Classifiers VS. Standard Classifiers

This experiment compares the performance of the proposed cascaded classifier with that of stan-

dard multi-class classifiers including k-NN and SVM using identical action representation. Fig.

5.6 shows the performance of cascaded k-NN, cascaded SVM, standard k-NN and SVM on the
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(a) Cascaded k-NN classifiers, (b) Cascaded SVM classifiers,
ACA = 90.8% ACA = 88.4%

σ = 1.58 σ = 1.12

Figure 5.7: Confusion matrix computed on KTH dataset; average classification accuracy and
standard deviation are reported.

KTH dataset. The results obtained with different codebook sizes are also shown to examine

its effect on different classifiers. The confusion matrices obtained using the proposed cascaded

classifiers are shown in Fig. 5.7. It is evident from Fig. 5.6 that cascade classifiers significantly

outperform the standard k-NN and SVM (more visible when using codebook size of 200). The

results obtained on the Hollywood dataset are shown in Table 5.2. Again, this is a large improve-

ment in performance regardless of the type of classifier used. With the same action representation

and the same type of classifier, this improvement can only be contributed by the proposed cas-

caded feature selection and classification method.

Due to cluster initialization, different runs of the proposed approach return slightly different

results. The final values are presented in Table 5.1 as average of 20 trials, moreover the standard

deviation is also shown.

Average Recognition Rate Std. Deviation
KTH 90.8% 1.58
Hollywood 31.31% 2.42

Table 5.1: Average recognition rate and standard deviation for KTH and Hollywood dataset
obtained using the proposed cascade classifier. The results are observed over 20 trials.
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Cascaded k-NN k-NN Cascaded SVM SVM

GetOutCar 19.3 % 17.4 % 22.3 % 20.2 %
AnswerPhone 22.5 % 18.2 % 38.4 % 32.4 %
HugPerson 21.6 % 12.7 % 33.5 % 28.8 %
Kiss 47.6 % 41.8 % 46.7 % 32.1 %
SitDown 31.5 % 30.1 % 37.9 % 17.3 %
StandUp 41.3 % 33.4 % 42.3 % 32.0 %
HandShake 13.5 % 12.1 % 21.0 % 19.5 %
SitUp 4.2 % 4.2 % 8.4 % 6.6 %
Average 25.19 % 21.24 % 31.31 % 23.61 %

Table 5.2: Comparing cascaded and standard classifiers on the Hollywood dataset.

KTH Hollywood
Proposed Method 90.8% 31.31%
Laptev et al. (2008) 91.8% 38.39%
Kläser et al. (2008b) 91.4% 24.7%
Bregonzio et al. (2009a) 93.17% -
Niebles et al. (2008) 83.33% -
Dollar et al. (2005) 81.17% -

Table 5.3: Comparative results on the KTH and Hollywood datasets.

5.3.4 Comparison with the State-Of-The-Art

Table 5.3 shows a performance comparison on both KTH and Hollywood datasets between the

proposed method and the state-of-the-art. It emerges that for the KTH dataset the proposed ap-

proach outperform existing methods that are based on a similar action representation (Niebles

et al. 2008; Dollar et al. 2005). For those that give a slightly better result (Kläser et al. 2008b;

Bregonzio et al. 2009a; Laptev et al. 2008), much more sophisticated action representation meth-

ods are employed. In particular, they all explored spatial distribution information of the visual

words. In contrast, this information has not been taken into account by the current model. As

for the Hollywood dataset, so far only two previous studies have reported results. Among them

(Kläser et al. 2008b) does not exploit the spatio-temporal distribution of interest points but uses a

more sophisticated interest point descriptor than us. However, this result is still clearly superior

to that in (Kläser et al. 2008b). The result obtained in (Laptev et al. 2008) is better than ours.

However, different spatio-temporal Bag-of-Words representations were exhaustively examined

in their work and only the best one for each action class was used to produce their result. The

same idea employed in the proposed method will possibly enhance the performance.

It should be noted that in this work the goal is to improve the performance of action recogni-

tion via the novel cascaded feature selection and classification method regardless of the adopted

action representation and binary classifier. The results in Fig. 5.6 and Table 5.2 have clearly
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demonstrated that this goal has been achieved. It is expected that these results will be further

improved when more descriptive action representation methods such as those in (Laptev et al.

2008; Liu and Shah 2008) are employed.

5.4 Discussion

Much of the previous action recognition work focuses on action representation whilst using stan-

dard multi-class classifiers such as SVM and k-NN for action classification. It has been shown

that these standard classifiers are inadequate in addressing more challenging action recognition

problems encountered in an unconstrained environment where the training set available is noisy

and sparse. To overcome these problems a novel action classification approach based on cascaded

feature selection and classification is proposed. Specifically, instead of separating multiple action

classes simultaneously, the difficult multi class task is decomposed automatically into easier sub-

tasks. Practically, in each step the two easier-separable subgroups are identified and the optimal

features for the specific task are selected. The algorithm is iterated until all the action classes

are separated. Experiments are carried out using challenging public datasets to demonstrate that,

with identical action representation, the formulated cascaded classifier significantly outperforms

standard multi-class classifiers.

The obtained results also reveal that the learned cascade structure reflects the natural group-

ing of the actions, for instance very similar actions such as “running” and “jogging” are separated

only in the last stage. Similarly to decision tree approaches, the formulated classification struc-

ture is simple to interpret and additionally it is robust to noise and sparse training set (such as

Hollywood dataset). In principle there are no differences between the formulated cascade and

automatically generated decision trees; the name cascade classifier has been used explicitly to

emphasize the aim of the classifier. While decision trees frequently are employed for object

detection or recognition speed-up, our formulation aims mainly to improve the classification

performances.

5.5 Summary

Action recognition in realistic environments is a very complex and still unsolved problem. Ad-

ditionally, it can be further complicated if the observed video sequences are highly ambiguous

and the available training set is noisy and sparse. To perform action recognition in these extreme
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conditions a novel approach based on cascaded feature selection and classification is proposed.

Specifically, instead of separating multiple action classes simultaneously, the difficult task is

decomposed automatically into easier subtasks of separating two groups of the most separable

action classes at a time with different features selected for different subtasks.

A cascade classifier is then formulated, whereby one or more binary classifiers are deployed

at each stage to separate a group of action classes into the two most separable sub-groups. Any

sub-group that is composed of more than one action class will be further divided into two in the

next cascade stage. Critically, for each classifier in each stage, an optimal feature selection is

performed via cross-validation. This allows to specifically select features in accordance with a

determined classification task.

Experiments are carried out using challenging public datasets: the KTH Schüldt et al. (2004)

and Hollywood Laptev et al. (2008) datasets. It has been demonstrated that with identical action

representation, the formulated cascaded classifier can significantly outperforms standard some

multi-class classifiers.
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Chapter 6

Conclusion and Future Work

This thesis has set out to explore human action recognition from video sequences by studying

in detail the problem of action classification in unconstrained scenarios. Here the term action

refer to a sequence of primitive body movements that may involve part or the whole body such

as walking, running, clapping or jumping. Automatically recognising actions, in the context of

artificial intelligence, plays a crucial role because it permits machines to interact and understand

human requests through a video camera, without the need of a physical interface. Action recog-

nition has recently received a large amount of attention from the computer vision community

owing to the innumerable applications, including, but not limited to: medical surgery, security,

education, media, and the military sector.

As presented in Chapter 2, the available literature suggests that action recognition is moving

from a well constrained laboratory environment to unconstrained real world scenarios. In light

of this, new problems and challenges are emerging while recent methods appear to be limited.

The thesis contributions are summarized below, addressing action recognition in unconstrained

scenarios, and future developments are discussed.

6.1 Robust Action Representation Using Clouds of Interest Points

Recent action recognition methods (Schüldt et al. 2004; Laptev and Lindeberg 2003; Dollar et al.

2005; Niebles et al. 2008) represent actions as bags of space-time interest points. These methods

rely solely on the discriminative power of individual local space-time descriptors, while ignoring

the potentially useful information about the global spatio-temporal distribution of interest points.
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Consequently, they are unable to capture global motion components as well as smooth and fast

motions. This is due to the lack of both multiple-temporal-scale and points-distribution informa-

tion. Chapter 3 develops the Clouds of Spatio-Temporal Interest Points method (COP), which

aims to explicitly and globally exploit spatio-temporal information associated with the interest

points distribution. In particular, holistic features from clouds of interest points accumulated

over multiple temporal scales are used. The formulated COP representation is robust to noise

and outliers. Additionally, when compared with conventional interest point based methods, it ap-

pears more discriminative and invariant to changes in the recording set up and action distortions.

Furthermore, a novel interest point detector is formulated to select more stable and meaning-

ful points then standard available approaches. This detector, compared with existing methods,

appears more robust against shadow, noise and dynamic background.

The proposed approach has been evaluated using two widely used public datasets, namely

the KTH dataset (Schüldt et al. 2004) and the Weizmann dataset (Blank et al. 2005). The ob-

tained results demonstrate that our approach is comparable with most of the existing methods.

Furthermore, the proposed approach is more robust against occlusion and changes in viewing

angle, clothing, and carrying condition compared to existing methods.

6.1.1 Future work

The proposed interest point based method can be divided in two major steps: interest point

sampling and action representation, as presented in Chapter 3. With regard to interest point sam-

pling, the proposed approach has different limitations. For instance, it extracts points with fixed

spatial-temporal scale, and it is sensitive to fast camera movements and crowded backgrounds.

Additionally, the estimated region of interest relies on background subtraction which may be

impractical in realistic scenarios. Similarly, the action representation step appears inadequate

in the presence of a crowded background, multiple subjects and fast camera movements. These

circumstances generate points associated with background and surrounding objects, which are

captured by the Clouds of Points (COP) representation, leading to an incorrect representation.

The possible extensions identified to enhance the proposed COP method are:

1. Extend the proposed interest point detector to multi-scale detection, where the interest

point scale is automatically selected by observing the surrounding area. As discussed in

section 3.3, different actions have different temporal scales and speeds. Moreover, they
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may be recorded at different camera distances. An interest point detector that takes into

account these issues will provide a more consistent and robust action representation such

as: (Oikonomopoulos et al. 2006) which use entropy to select the point scale or (Liu et al.

2009a) where interest points are extracted at different scales and all used in the represen-

tation.

2. The proposed method requires a region of interest detection to compute different holistic

features. This region of interest should be located around the subject and the quality of

the extraction directly influences the performance. The present implementation relies on

a frame difference approach, which is sensitive to dynamic background. Furthermore, in

the presence of multiple targets the region of interest extraction fails. In light of this, it

is important to improve the region extraction and increase its robustness. To this end, it

would be possible to introduce an object detection approach to better initialise the subject

and then to employ a tracking algorithm to maintain the subject localization.

6.2 Feature Fusion and Selection

Real world environments introduce new challenges still not addressed by existing action recog-

nition approaches. Video sequences recorded in these circumstances are characterized by large

degrees of occlusions from multiple objects, illumination change, shadow, cluttered background,

scale variation, and constant camera movements. To overcome these difficulties, in Chapter 4 in-

novative feature selection and feature fusion strategies are deployed. Initially, in order to enhance

the proposed Clouds of Points representation, this representation is fused with a conventional Bag

of Words representation. This fusion is motivated by the fact that these representations contain

different but complementary information, leading to a more robust and informative action de-

scription. Despite encouraging results, this combined representation still suffers from camera

movements and crowded background. In light of this, a novel action representation based on

key point trajectories analysis is formulated. A robust set of trajectory descriptors are computed

and used in a Bag of Words paradigm. To remove redundant and noisy components, a novel

collaborative feature selection method is formulated (Multi-Class Delta Latent Dirichlet Alloca-

tion model). Finally, an adaptive feature fusion method is employed to combine the proposed

trajectory-based representation with a conventional interest points-based representation.

Extensive experiments have been conducted to evaluate the effectiveness of the proposed



6.2. Feature Fusion and Selection 112

method using realistic action datasets: YouTube (Liu et al. 2009a), UCF Sport Actions and Fea-

ture Films datasets (Rodriguez et al. 2008). The obtained results demonstrate that the proposed

methods significantly outperform existing techniques. Furthermore, the proposed Multi-Class

Delta Latent Dirichlet Allocation feature selection model and the adaptive fusion strategy no-

tably contribute to the action classification process.

6.2.1 Future work

In this section are summarized some ideas to further extend the proposed method, with an aim to

build a more robust and stable action recognition framework.

1. The presented feature fusion between the two interest points representations is achieved

by using Multiple Kernel Learning. The Bag-of-Words (BOW) representation is treated as

a single feature block while six kernels are associated with the COP features. Each kernel

is associated with a different temporal scale. It will be interesting to explore the advantage

of dividing the BOW features in sub-blocks and associating them to different kernels. For

instance, the BOW features can be divided in two: visual words generated by the upper

body and by the legs. Eventually, if multi-scale interest points are available, it will be

possible to associate different kernels to each interest point scale.

2. In the presented key point trajectories representation, three different descriptors are ex-

tracted from each single trajectory, ignoring the potential information associated with the

analysis of the surrounding area. It has been shown in (Sun et al. 2009a) that grouping

neighbouring trajectories allows one to capture interesting patterns, as well, to filter out

possible outliers. Along a similar idea, the global behaviour of the trajectories can be ex-

plicitly represented using a cloud of trajectories approach similarly to the work presented

in Chapter 3.

3. Although the proposed collaborative feature selection method outperforms the existing

methods, it is still unable to identify meaningful unique topics associated with each action

class. For this reason, only shared topics are involved in the feature ranking. This suggests

that instead of using single action classes as topics it may be more meaningful to use groups

of similar action such as: lower body action ( running, jogging, walking), riding action(

bike riding and hours riding), jumping action ( jumping, basketball, volleyball). When
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doing this, the topics will be more easily separable and more robust in performing feature

selection.

4. The region of interest (ROI) estimation in unconstrained video sequences is a complicated

issue. The actual implementation employs a simple algorithm based on trajectory centroid

estimation. Since the ROI estimation partially influences the recognition performance, it is

interesting to explore more sophisticated approaches. Moreover, it can be observed that in

realistic scenarios a number of actions may involve groups of people, for instance playing

volleyball, basketball or running. In these circumstances, the ROI should be able to handle

and identify action performed by an individual or a group, improving the generalization

of the problem. This issue may also be solved with an alternative solution as presented in

the work presented by (Gilbert et al. 2009), where ROI estimation is replaced by a feature

mining approach that is able to localize the action.

5. The current work considers fusion of features extracted from interest points and trajecto-

ries. Recently it has been demonstrated that alternative features such as optical flow and

scene context descriptors give strong performance on benchmarking datasets. These fea-

tures explore different action aspects and contain information that is highly complementary

to both interest points and trajectories-based representations. Motivated by the observed

performance offered by feature fusion, it will be interesting to formulate a framework

which combines three or more alternative representations.

6.3 Cascade Feature Selection and Action Classification

Automated action recognition in unconstrained environments is a complex problem and still

remains partially unsolved. As discussed in the previous chapters, the final aim is to formulate

a solid action recognition method capable of handling real-world challenges. In this context, it

has been observed that in the presence of a very sparse training set and video sequences featuring

by high intra-class variation and high inter-class similarity, standard feature selection methods

and multi-class classifiers appear extremely inefficient. Thus, the multi-class classification and

feature selection problem needs to be reformulated in a more efficient way. The proposed solution

involves simplifying the multi-class classification task into easier subtasks, where in each subtask

feature selection and classification should be simultaneously formulated according to the specific

context.
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This idea is developed in Chapter 5, where a cascaded feature selection and classification

approach is presented. Specifically, the multi-class classification task is decomposed in a cascade

of binary separations. Where in each separation step, as much information as possible is exploited

to optimize the classification.

Experiments are carried out using challenging datasets such as KTH (Schüldt et al. 2004)

and Hollywood (Laptev et al. 2008). It has been demonstrated that with an identical action

representation, the presented cascaded feature selection and classification approach significantly

outperforms standard multi-class classifiers.

6.3.1 Future work

The proposed study underlines that in the presence of ambiguous visual information and a sparse

training set (such as the Hollywood dataset), alternative cues should be employed to capture rel-

evant information as presented in (Laptev et al. 2008). Meaningful information can be extracted

from the context, as well as from the movie scripts and subtitles when available. Similarly, key

object detection and posture shapes may enrich the action description. By observing the cascade

framework performance, the training process can becomes computationally expensive principally

due to an exhaustive cross-validation. Moreover, the cascade structure is not updated during the

testing process, missing the chance to further consolidate its discriminative power.

Below is a summary of some further investigations to improve the proposed cascade frame-

work:

1. The study of context information may provide a rich source of extra information, crucially

important in the presence of motion blur, serious occlusions and low resolution. Under

such challenges, the cues associated with the scene and/or moving objects can be used

to complement features extracted from the subject. The intuition behind this is straight-

forward: the presence (or absence) of particular objects or scene properties can often be

used to infer the possible subset of actions that can take place. For example, if there is a

swimming pool within the scene, then diving becomes a possible action. On the contrary,

if there is no swimming pool, but a basketball court, then the probability of the diving

action is reduced. Exploring the relationships between objects, scenes and actions will be

compelling.

2. The used action representation is based on conventional interest points, which has been
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shown in Chapter 3 to be unreliable in the presence of camera movements. This suggests

that a trajectory-based representation should be able to outperform the achieved results.

Additionally, as presented in Section 4.2.1 as well as in (Laptev et al. 2008), the usage of a

spatio-temporal grid to contribute to capture low-level features should make the represen-

tation more robust.

3. Chapter 5 also raises the problem of classification training with sparse and ambiguous

data. Although the decision boundaries are optimally estimated with the available data,

the recognition process does not ensure a high recognition rate. To partially overcome this

limitation, an additional supervision from an external user can be requested. By doing

this, the learning algorithm is able to interactively query the user obtaining the needed

information to overcome ambiguities. Although this solution will notably improve the

performance, on the other hand it will be expensive in terms of human supervision.

4. Database: The available datasets cover small groups of actions within a similar context

such as sport, films or primitive actions. Additionally, these datasets contain between 6

to 11 action classes. The action recognition community needs a larger and more com-

prehensive dataset containing 20 to 30 different actions covering different contexts and

environments. Moreover, the frame size, quality, and rate should meet the level of modern

video cameras. The collection of a new dataset will strongly contribute to improve future

action recognition approaches.
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Appendix A

Human Action Datasets

A.1 Weizmann Dataset

The Weizmann dataset was introduced by Blank et al. (2005). It contains 90 video clips from 9

different subjects. Each video clip contains one subject performing a single action. There are 10

different action categories: walking, running, jumping, galloping sideways, bending, one-hand-

waving, two-hands-waving, jumping in place, jumping jack, and skipping. Each clip lasts about 2

seconds at 25Hz. The image size is 180 by 144 pixels, some examples are reported in Fig. A.1(a).

The same Weizmann group also provides a robustness test dataset, some example frames

are shown in Fig. A.1(b). It includes 11 walking sequences with partial occlusions and non-

rigid deformations: walking in skirt, walking with a briefcase, knees up walking, limping man,

occluded legs, walking swinging a bag, sleepwalking, and walking with a dog. The dataset

also includes 9 walking sequences captured from different viewpoints from 0◦ to 81◦ with 9◦

increments from the horizontal plane. This dataset is ideal for testing the robustness of an action

recognition approach under occlusions, different views, and non-rigid deformations.

The sequences are recorded in a very constrained environment with static camera and clear

background, this allows to for the extraction of a detailed silhouette and easily segments out the

human body. Moreover, the actions are performed specifically for the dataset minimizing the

intra-class variation. This makes the Weizmann dataset one of simplest benchmarks available,

where current methods already achieve 100% recognition rate.
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(a)

(b)

Figure A.1: Examples frames form a) Weizmann Dataset, from top left to right: “bending”,
“jumping-jack”, “jump-in-place”, “jumping-forward”, “gallop sideways”and “wave-one-hand”.
b) Robustness Test Dataset, from top left to right: “Walking in 45 degree”, “Walking in 81 de-
gree”, “Walking with a dog ”, “Sleepwalking ”, “ Walking occluded by a pole”and “ Walking with
occluded Legs ”.

A.2 KTH Dataset

The KTH dataset was provided by Schüldt et al. (2004) and still represents a benchmark for

the action recognition community. It contains 6 types of actions: boxing, hand clapping, hand

waving, jogging, running and walking performed by 25 subjects in 4 different scenarios including

indoor, outdoor, changes in clothing and variations in scale. Each video clip contains one subject

performing a single action. Each subject is captured in a total of 23 or 24 clips, giving a total of

599 video clips. Each clip has a frame rate of 25Hz and lasts between 10 to 15 seconds. The size

of each image frame is 160 by 120 pixels. Examples of the KTH dataset are shown in Fig. A.2.
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Figure A.2: Examples frames form the KTH Dataset, from top left to right: “boxing”, “hand
waving”, “clapping”, “jogging”, “running and “walking

Despite the fact that some of the sequences contain some real-world difficulties, such as

strong shadow, camera motion and zooming, changes in view angle and low grey-scale resolu-

tion, current methods already achieve more then 90% recognition rate. This is due to the fact

that the intra-class variation is low, actions are performed by actors in clear and static back-

ground without any occlusion or distortion. Anyhow, KTH still remains the most popular action

recognition benchmark.

A.3 UCF Feature Films Dataset

Figure A.3: Examples frames form the UCF Feature Films Dataset, top line: “Kissing”, bottom
line: “Hitting/Slapping”
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The UCF Feature Films Dataset (Rodriguez et al. 2008) provides a representative pool of nat-

ural samples of two action classes including Kissing and Hitting/Slapping as reported in Fig. A.3.

It contains 92 samples of Kissing and 112 samples of Hitting/Slapping, extracted from a range

of classic movies. The actions were captured in a wide range of scenes and viewpoints with dif-

ferent camera movement patterns. The clips have different frame rates and different image sizes,

lasting between 5 to 15 seconds.

Differently from KTH and Weizmann dataset, these UCF clip are recorded in complex re-

alistic scenarios featured by multiple subjects, people interacting, occlusion and dynamic back-

ground. Since the clips are short, it is difficult to properly identify the subjects as well as to

extract clear silhouettes. The two action classes differ on motion components and visual appear-

ance. Hitting/Slapping involves fast movements, while Kissing involves a specific posture and

slow movements.

A.4 UCF Sport Actions Dataset

Figure A.4: Examples frames form the UCF Sport Actions Dataset, from top left to right: “golf ”,
“kicking”, “weight-lifting”, “running”, “skateboarding”and “swinging 2”

The UCF Sport Actions Dataset (Rodriguez et al. 2008) contains 10 different types of hu-

man actions in sport broadcasting videos: diving, kicking , weight-lifting, horse-riding, running,

skateboarding, golf, swinging, swinging 1 (gymnastics, on the pommel horse and floor), swing-

ing 2 (gymnastics, on the high and uneven bars) and walking. Some examples are reported in

Fig. A.4. The dataset consists of 150 video samples, which show a large intra-class variability.

The videos have different frame rates and image sizes and they last an average of 5 seconds.
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This dataset offers a good collection of realistic clips recorded in unconstrained scenarios.

These clips contain a large range of real-world difficulties such as occlusion, camera movements

and zooming, shadow, multiple subjects, dynamic and crowded background. Additionally, the

dataset highlights a number of challenging aspects typical in the context of sport, for instance

Golf and Diving involve fast movements that are very difficult to visually detect. Actions such

as horse riding and swinging involve human-item interaction, while soccer-kicking and running

are usually preformed in a very crowded scenario. Due to the mentioned issues, current methods

still are unable to report high recognition performances.

A.5 Hollywood Dataset

Figure A.5: Examples frames form the Hollywood Dataset, from top left to right: “hand shak-
ing”, “kissing”, “getting out of the car”, “answering the phone”, “hugging”and “standing up”

The Hollywood Dataset (Laptev et al. 2008) contains 8 different action classes: answering

the phone, getting out of the car, hand shaking, hugging, kissing, sitting down, sitting up, and

standing up. These actions were collected from 32 different Hollywood movies. The full dataset

contains 663 video clips sampled at 25 Hz and each of them has a different frame size and

duration. The dataset is divided into manually and automatically labelled clips (Laptev et al.

2008). In this work experiments, the manually labelled set only is used where the training set

contains 219 clips, while the testing set contains 211 clips. As shown in Fig. A.5, the dataset

is composed of realistic sequences, and actions are performed by more than one person in a

crowded and dynamic background. The variations in lighting, view angle and drastic camera

movement make the dataset challenging.
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Laptev et al. (2008) introduced the dataset with the idea of recognising actions exploiting

simultaneously visual and text information (subtitles and scripts). In this work experiments,

the visual cue only are used. The principal limitation of this dataset consists of the low visual

correlation between training and testing set. Moreover, the intra-class variation is notably high,

for instance, the class sitting-up contains videos where only the actor’s face is recorded and the

camera follows the face movement, losing all the motion and contextual information. Due to

these problems, Marszałek et al. (2009) released a new dataset version more suitable for visual

only processing.

A.6 YouTube Dataset

Figure A.6: Examples frames form the YouTube Dataset, from top left to right: “basketball”,
“cycling”, “diving”, “horse-riding”, “soccer juggling”and “volleyball”

The YouTube Dataset (Liu et al. 2009a) is the most extensive realistic action dataset avail-

able to public. it is composed of 1168 videos collected from YouTube. These videos contain a

representative collection of real world challenges such as: shaky cameras, cluttered background,

variation in object scale, variable and changing viewpoint and illumination, and low resolution.

Particularly, since these videos are mostly home videos captured by hand-held cameras, the cam-

era movements are much more unpredictable compared to other datasets. The YouTube dataset

contains 11 action categories: basketball shooting, volleyball spiking, trampoline jumping, soccer

juggling , horse-riding, cycling, diving, swinging, golf swinging, tennis, swinging, and walking.

Clips have different frame rates but constant frame size of 320 by 240 pixels. The clips last

between 3 and 15 seconds. Examples are shown in Fig. A.6.
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The main difficulties of this dataset are the inconsistent frame rate, fast camera movements

and low image quality. In these circumstances, standard feature extraction methods appear in-

adequate, thus more sophisticated strategies and additional pre-processing steps are required.

Furthermore, dynamic backgrounds and occlusions make target identification complicated. The

dataset offers a good collection of realistic challenges, and for this reason current methods are

unable to perform very high recognition rate.
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A. Kläser, M. Marszałek, and C. Schmid. A spatio-temporal descriptor based on 3D-gradients.

In British Machine Vision Conference, 2008a.
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