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ABSTRACT 

Embryonic stem (ES) cells can differentiate into many different cell lines, 

including vascular smooth muscle cells (SMCs). The aim of this project is to 

characterize protein changes during this differentiation process. Mouse ES cells are 

pre-differentiated by withdrawal of the leukemia inhibitory factor-1 from the culture 

medium. Subsequently, stem cell antigen-1 positive (Sca-1) cells are sorted by 

magnetic labelling cell sorting with anti-Sca-1 microbeads and cultured in 

differentiation medium with or without platelet-derived growth factor (PDGF). Protein 

extracts of ES cells and Sca-1+ cells are separated by two-dimensional electrophoresis. 

About 300 protein species of each cell lines are analyzed by mass spectrometry. 

Proteome maps are available online (http: //vwvw. vascular-proteomics. com). After 

stimulation with PDGF for 5 passages, Sca-1+ cells differentiate into SMCs (esSMCs) 

with 95% staining positive for SMC markers such as smooth muscle a-actin, calponin, 

and smooth muscle myosin heavy chain. Protein profiles of esSMCs and mouse aortic 

SMCs are compared using the difference gel electrophoresis approach. esSMCs display 

decreased expression of myofilaments but increased oxidation of redox-sensitive 

proteins due to higher levels of reactive oxgen species (ROS). While immunoblotting 

reveals an upregulation of numerous antioxidants in esSMCs, enzymatic assays 

demonstrate lower glutathione concentrations compared to aortic SMCs despite a 3-fold 

increase in glutathione reductase activity. Mitochondrial superoxide measurement 

revealed the mitochondria-derived superoxide is the main source of ROS in esSMCs 
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and inhibition of electron transport chain complex III by antimycin A showed 

remarkable increase of ROS in esSMCs. Moreover, depletion of glutathione by diethyl 

maleate or inhibition of glutathione reductase by carmustine (BCNU) results in a 

remarkable loss of cell viability in esSMCs compared to aortic SMCs while adding 

2-mercaptoethanol increased esSMCs survival. These results indicate that esSMCs 

require additional antioxidant protection for survival and consequently, treatment with 

anti-oxidants could be beneficial for tissue repair from ES cells. 
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1.1 Vascular Biology 

Vascular biology successfully brought together basic scientists and clinical 

investigators. It stimulated interactions and collaborations among researchers from 

multiple disciplines and developed new training opportunities. From these activities 

emerged the discipline of vascular medicine (Dzau, Gibbons et al. 1993). Vascular 

biology has grown and matured over the past 50 years to emerge as a major area of 

research with many potential therapeutic applications. 

1.1.1 Vasculature 

The vessel wall is an integrated functional component of the circulatory system 

which continually remodels in response to hemodynamic or biomechanical stress (Xu 

2000). Vessels are primarily divided into arteries and veins. Arteries are subdivided into 

large (elastic) arteries (such as aorta) and medium-sized (muscular, distributing) arteries. 

In general, veins are exposed to a lower blood pressure than arteries. Thus their wall 

structures are different from each other but both contain three layers: intima, media, and 

adventitia (Figure 1). 
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Figure 1. Structure of vessel wall 
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Figure 1. The arterial vessel wall has three layers: the intima with a lining of 
endothelial cells, the media, consisting of circular muscles between the internal and 
external elastic membrane, and the adventitia, embedded with vasa vasorum (supply 
vessels within the adventitia). The venous vessel wall is thinner and also has three 
layers: the intima, the media with less muscle cells, which lacks an elastic component, 
and the out layer, consists of fat cells. Large veins have valves to prevent blood flowing 
back under low blood pressure conditions. 
(http: //accessexcellence. org/AE/AEC/CC/images/vessel. gif) 

The term SMC is used within the vasculature to include any connective tissue cell 

that forms a coating around the endothelial tube (Mahoney and Schwartz 2005). In 

addition to contractile function, vascular SMCs have been shown to be a pleiotropic cell 

capable of phenotypic changes associated with the synthesis of many biologically active 

molecules that mediate cell growth, death, migration, matrix modulation and 

inflammation. These actions of vascular SMCs play important roles in physiological 

vascular functions (such as vascular remodelling) and pathological disorders (such as 

atherosclerosis). A cadre of endogenous biological mediators regulating smooth muscle 
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phenotype and function have been identified, including growth factors, pro-apoptotic 

factors, matrix glycoproteins, metalloproteinases, cytokines, chemokines, and adhesion 

molecules (Alexander and Dzau 2000). 

Moreover, SMCs in different parts of the vascular tree developed from different 

germ layers. For example, the descending aorta and most muscular arteries including the 

coronary arteries contain SMCs derived from the mesoderm, while the SMC 

compartment within the pulmonary trunc, the aortic arch and the ascending aorta 

originates from neuronal crest (ectoderm). Hence, a great variation has been observed 

among different SMC populations (Frid, Moiseeva et al. 1994; Frid, Dempsey et al. 

1997). 

The endothelium lines the inner surface of all blood vessels covering an area of 

approximately 1000 m2 and amounts to a total weight of 1 kg in humans. The quiescent 

endothelium forms not only a selective barrier between blood and tissue, but also 

provides an antithrombotic surface, inhibits leukocyte adhesion and SMC proliferation 

and regulates the vascular tone via synthesis of nitric oxide (NO). However, injury 

causes endothelial activation and leads to the loss of its antithrombotic and 

anti-inflammatory properties. Dysfunctional endothelium expresses adhesion molecules 

(Cybulsky and Gimbrone 1991) and coagulation factors (Libby and Simon 2001) and 

produces reactive oxygen species (ROS), resulting in a decreased bioavailability of the 

vasodilator causing paradoxical vasoconstriction (Cai and Harrison 2000). 

Robert Furchgott won the Nobel Prize for demonstrating endothelium-dependent 

vasodilatation (Furchgott and Zawadzki 1980). Endothelial cells have an obligatory role 
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in the relaxation of arteries by acetylcholine (ACh) and related muscarinic agonists by 

releasing a very labile (half-life 3-50 seconds) diffusible factor, endothelium-derived 

relaxing factor (EDRF), which acts on the adjacent smooth muscle cells to cause their 

relaxation. The chemical nature of EDRF was identified in 1986, when it was proposed 

that EDRF is nitric oxide (NO). 

Figure 2. Current scheme for endothelium-dependent relaxation 
LJ 

ti 1 
2" 

Ca" I- Citruihne 
Endothelial L. Arg nine 

' 
NO Cell NOS to -1 

02 L- NMMA 
L" NAME 

Hb02 
NO-*---' 
10 

Muscle Cell GTP 
G- ease 

e GMP 
a 

(Relaxation) 4- , "- 
JG-kin se 

Figure 2. Agent A and receptor (R) of EC interaction activates Ca2+ influx. Increased 
intracellular Ca2+ activates NOS, generating NO from L-arginine. NO diffuses to 
adjacent SMCs where it activates G-cyclase, resulting increase in cGMP, which initiates 
processes leading to relaxation. L-NMMA and L-NAME are arginine derivatives, which 
inhibit NOS, and 02' and Hb02 are potent scavengers of NO. (GTP, guanosine 
triphosphate; G-cyclase, guanylyl cyclase; cGMP, cyclic guanosine monophosphate; 
L-NMMA, NG-monomethyl-L-arginine; L-NAME, Nw-Nitro-L-arginine methyl ester; 
Hb02, oxygenated hemoglobin) (http: //www. downstate edu/pharmacology/furch. htm) 

Most vasoactive stimuli such as shear stress mediate EC activities through the 

nitric oxide synthase (NOS)-derived NO. Three NOS enzymes are responsible for the 

production of NO, neuronal NOS (NOS1, nNOS), inducible NOS (NOS2, iNOS), and 

endothelial NOS (NOS3, eNOS), with eNOS to be important in the regulation of 

vascular compliance. eNOS is essential for neovasularization by enhance the 
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mobilization of stem and progenitor cells, so that contributs to impaired regeneration 

processes (Aicher, Heeschen et al. 2003). Massive generation of endogenous NO 

derived from iNOS overexpression leads to a marked apoptosis in vascular SMCs, 

suggesting an important role of NO as a proapoptotic factor for vascular SMCs in the 

process of vascular remodelling (Iwashina, Shichiri et al. 1998). 

NO relaxes vascular smooth muscle and inhibits platelet aggregation and adhesion 

via the elevation of cGMP levels. NO is destroyed only by oxygen and superoxide 

anions (OZ''). Its action both on vascular strips and on platelets is inhibited by 

hemoglobin and some redox compounds. Hemoglobin may have a complex action 

involving binding of NO, inhibition of guanylate cyclase and generation of 02' during 

auto-oxidation (Moncada, Radomski et al. 1988). 

In the vascular SMCs, the most predominant binding site for NO in the target 

tissues is heure group or iron-sulfur compound (Hobbs and Ignarro 1996). Herne plays a 

central role in eukaryotic metabolic pathways, as the prosthetic moiety of hemoproteins 

is involved in cell respiration and oxidative biotransformations, including hemoglobin 

and myoglobin, cytochrome P450, NOS and soluble G-cyclase. Herne oxygenase (HO) 

degrades heure to CO and biliverdin, which is further reduced to bilirubin. Two 

principal isozymes of HO have been identified, a constitutive isoform HO-2 and an 

inducible isoform HO-1, which is expressed at a low basal level in vascular ECs and 

SMCs and is induced by heavy metals, oxidative stress, inflammatory mediators and 

oxidized LDL. HO degrades heure to regulate hemoprotein levels and protect cells from 

the deleterious effects of free heure. 
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The vasodilator function ascribed to the heme-HO system relies on CO and 

biliverdin acting in a coordinated manner, with biliverdin/bilirubin as antioxidants. 

Importantly, biliverdin and bilirubin negate the pro-oxidant action of CO and thus 

enable the gas to effects vasodilation. The mechanism by which CO activates soluble 

guanylyl cyclase is similar to that of NO, and involves binding and dislocation of its 

heme-iron to induce a conformational change and activation of the catalytic site of 

guanylyl cyclase, resulting in elevated intracellular cGMP levels and leading to smooth 

muscle relaxation (Maines 1997). The heure moiety binds NO to form a 5-coordinate 

complex or bind CO to form a 6-coordinate complex. Although NO and CO modulate 

intracellular cGMP levels, platelet aggregation and smooth muscle relaxation, CO has a 

much lower affinity for soluble G-cyclase than NO (Stone and Marietta 1994). 

Decreased production or sensitivity to NO in atherosclerosis may be compensated for 

by an induction of HO-1, with bilirubin acting as a cellular antioxidant and CO as a 

vasodilator. CO and NO can also be generated in SMCs in response to atherogenic 

stimuli or pro-inflammatory cytokines, respectively. The metabolic and functional links 

between CO and NO suggest that vasodilator actions of CO may become important in 

atherogenesis, where endothelium-derived NO production is inhibited (Siow, Sato et 

al. 1999). As the heure moiety of NOS and soluble G-cyclase can serve as alternate 

substrates for HO, their activity may under certain conditions be downregulated. In 

addition, CO is able to bind to the heure moiety of NOS and thereby inhibit NO 

production (Maines 1997). (Figure 3) 
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Figure 3. Network of NOS-NO system and HO-CO system 
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Figure 3. HO metabolizes heure to generate the antioxidant biliverdin and CO, which is 
similar to NO, stimulates sGC resulting in increased intracellular cGMP. Atherogenic 
and pro-inflammatory mediators decrease eNOS activity while induce HO-1 and iNOS 
in SMCs. Diminished production or activity of NO by the endothelium in atherogenesis 
could be compensated for by induction of HO-derived CO, which can sustain blood 
flow. At the same time catabolism of heure and generation of biliverdin would attenuate 
cellular oxidative stress in atherogenesis. (L-Arg, L-arginine; eNOS, endothelial nitric 
oxide synthase; iNOS, inducible nitric oxide synthase; HO, heure oxygenase; 
sGC, soluble guanylyl cyclase) (Siow, Sato et al. 1999). 

It is well know that platelets play an important role in thrombosis and haemostasis, 

and in the maintenance of normal cardiovascular functions. Platelets express both iNOS 

and eNOS (Mehta, Chen et al. 1995). During platelets adhesion and aggregation, NOS 

is activated and generates NO. NO regulates platelets activation by inhibiting adhesion 

and aggregation. The L-arginine transport is rate-limiting for the NO production in 

uraemic platelets (Brunini, Yaqoob et al. 2003). NOS inhibitor 

N'G-monomethyl-L-arginine (L-NMMA) and N°-nitro-L-arginine methylester 

(L-NAME) inhibits NO production of platelets so that increased their activation and 

adhesion (Brunini, Mendes-Ribeiro et al. 2006). Platelets-derived NO may play a 
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significant role in the maintenance of vascular tone and blood flow (Zhou, Hellermann 

et al. 1995). 

NO inhibit the synthesis of platelet-activating factor by neutrophils, monocytes 

and ECs (Mariano, Bussolati et al. 2003). Increased transport of L-arginine is necessary 

to sustain NO synthesis in monocytes exposed to increased levels of circulating 

cytokines (Brunini, Roberts et al. 2002). 

1.1.2 Development of vascular system 

The embryo develops in the absence of vascularization at the earlies stages. When 

the embryo grows, the diffusion cannot provide sufficient nutrition for its development. 

The embryo rapidly transforms into a highly vascular organism, survival being 

dependent on a functional, complex network of capillary plexuses and blood vessels. 

The initial event in vascular growth is vasculogenesis, a process whereby vessels 

are formed de novo from EC precursors (angioblasts). During vasculogenesis, 

angioblasts migrate to discrete locations, differentiate in situ and assemble into solid 

endothelial cords, later forming a plexus with endocardial tubes, also known as the 

primary capillary plexus. The subsequent growth, expansion and remodeling of these 

primitive vessels into a mature vascular network is angiogenesis, characterized by a 

combination of sprouting of new vessels from the sides and ends of pre-existing ones or 

by longitudinal branching of existing vessels with periendothelial cells. Angiogenesis is 

important in the embryo to promote the primary vascular tree as well as an adequate 

vasculature from developing organs (Conway, Collen et al. 2001). 

29 



Both vasculogenesis and angiogenesis have been extensively studied in embryonic 

stem cells of mouse (Vittet, Prandini et al. 1996; Feraud and Vittet 2003) and human 

origin (Levenberg, Golub et al. 2002). 

1.1.3 Hemodynamics 

In vivo, there are two main hemodynamic forces acting on vascular cells: shear 

stress, the dragging frictional force on ECs created by blood flow, and mechanical 

stretch, or tension, a cyclic strain stress created by blood pressure (Davies, Polacek et al. 

1999). Shear stress is mainly sensed by ECs while all vascular cell types are exposed to 

stretch stress. 

Fluid shear stress represent an essential survival signal for ECs and potently 

inhibits EC apoptosis via phosphorylation of the serine/threonine kinase Akt (Dimmeler, 

Assmus et al. 1998), which subsequently mediates the activation of endothelial nitric 

oxide synthase (eNOS) leading to increased NO production and vessel relaxation 

(Dimmeler, Fleming et al. 1999). Fluid shear stress also modulates EC structure and 

function including the organization of F-actin microfilaments, the expression of 

adhesion molecules, and the attraction, activation and adhesion of leukocytes. 

Transcription and expression of a variety of genes encoding for growth factors, 

transforming growth factor, vasodilators, vasoconstrictors, and adhesion molecules 

appear to be regulated on shear stress stimulation (Lehoux and Tedgui 1998). 

Cyclic strain stress influences both ECs and SMCs. The maximum stretch of large 

diameter vessels (aorta, femoral and pulmonary arteries) in human is 9-12% under 
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normotensive conditions. A certain level of mechanical stretch is necessary to develop 

and maintain a differentiated and contractile phenotype of vascular SMCs (Lehoux and 

Tedgui 1998). Increased tension promotes the generation of vasoconstrictors and 

mitogenic factors such as endothelium-dependant contracting factors and 

platelet-derived growth factor (PDGF). If the cyclic strain stress is persistent and 

chronically elevated, SMCs may change structure supervention, beginning with 

hypertrophy (mainly seen in small vessels), hyperplasia (in large vessels) and cell 

migration, leading to gradual thickening of arterial walls, and subsequent hypertension 

and arteriosclerosis. 

The endothelium acts as a mechanotransducer that senses blood flow stress and 

converts these extracellular mechanical stimuli to biochemical signals (Davies 1995; 

Resnick and Gimbrone 1995; Davies, Barbee et al. 1997), which is important for both 

acute vascular regulation and chronic vascular remodelling. In vitro, fluid mechanical 

shear stress elicits acute endothelial responses that include activation of ion channels 

(Olesen, Clapham et al. 1988) and G proteins (Berthiaume and Frangos 1992; Gudi, 

Clark et al. 1996; Gudi, Nolan et al. 1998), mobilization of intracellular calcium (Shen, 

Luscinskas et al. 1992; Ando, Ohtsuka et al. 1993), and induction of protein kinase 

pathways (Tseng, Peterson et al. 1995). Subsequent transcription factor activation (Lan, 

Mercurius et al. 1994) and binding to shear stress response-related sequences of several 

flow-responsive genes (Resnick and Gimbrone 1995) results in important functional and 

structural changes in the cells including extensive topographic and cytoskeletal 

reorganization, cellular elongation, and alignment in the direction of shear stress 
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(Dewey, Bussolari et al. 1981; Remuzzi, Dewey et al. 1984; Barbee, Davies et al. 1994). 

Physical forces initiate signal pathways, especially mitogen-activated protein kinases 

(MAPKs), leading to vascular cell death and inflammatory response followed by SMC 

proliferation. Thus, mechanical stress, similar to cytokines or growth factors, can 

effectively activate signal transduction pathways, which can result in apoptosis and cell 

proliferation so that contribute to the development of arteriosclerosis (Mayr, Li et al. 

2000; Xu 2000; Mayr, Hu et al. 2002). 

1.1.4 Vascular remodelling 

Different physical forces lead to a different vessel remodelling. Blood vessels 

regress when not constantly perfused, they enlarge when chronically exposed to high 

flows, and their walls become thicker with high pressures (Heil and Schaper 2004). The 

adaptation and accommodation abilities of the blood vessel to long- and short-term 

hemodynamic condition changes are critical functions in cardiovascular homeostasis 

(Figure 4) (Gibbons and Dzau 1994). 
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Figure 4. The spectrum of structural alterations of blood vessels 
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Figure 4. In response to increased arterial pressure, the ratio of the width of the vessel 

wall to the width of the lumen is elevated by either an increase in muscle mass (A) or 

rearrangement of cellular and noncellular elements (B). Vascular stenosis increases 

shear stress and thereby induces an increase in the vessel radius to maintain a constant 

predetermined level of shear stress (D), such as arteriovenous fistula and aneurysm 
formation. Conversely, a long-term reduction in blood flow results in vascular mass and 

calibre reduction (C). The architecture of the vessel wall is also markedly altered in 

response to vascular injury, such as neointimal hyperplasia (E) and atherosclerosis (F). 
(Gibbons and Dzau 1994) 

Vascular remodelling involves cell growth, migration, apoptosis, extracellular 

matrix expansion or contraction, and activation or inhibition of specific protcolytic 

enzymes or glycosidases. it is dependent on a dynamic interaction between locally 

generated growth factors, vasoactive substances, and hcmodynamic stimuli. The 

remodelling response is usually a long-term adaptive process occurring in response to 

chronic changes in hemodynamic conditions, but it may subsequently contribute to the 

pathophysiology of' vascular diseases and circulatory disorders, such as atherosclerosis 

(Gibbons and Dzau 1994). 

Although all the vascular cells may participate in the remodelling process, the 
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endothelium is particularly suited to play a prominent part. The endothelium serves as 

dual function in the control of vascular tone, secreting relaxing factors such as NO, 

prostacyclin, endothelium-derived hyperpolarizing factor, and adenosine, in addition to 

constricting factors such as the endothelin and prostanoid. Vessel tone is dependent on 

the balance between these factors, as well as on the ability of the SMC to respond to the 

factors. 

Remodelling of pre-existing collateral arteriolar anastomoses is involved during 

arteriogenesis. During the course of collateral artery development, the collateral vessel 

wall is exposed to increased fluid shear stress, which initiates the interaction between 

monocytes and vascular endothelium. After that, growth factors are released from the 

matrix and monocytes, which not only activate mitosis but also influence the 

transcription of secondary growth factors, inactivation of the matrix-metalloproteinases 

(MMPs) inhibitor and down-regulation of elastin. SMCs are transformed from the 

contractile into the proliferative/synthetic phenotype. Monocytes/macrophages produce 

MMPs so that they can migrate from the intraluminal side of the collateral arteriole 

toward deeper vessel wall regions. The invasion of monocytes and proliferation of 

SMCs transform an arteriole with only 1-2 layers of SMCs into an artery of up to 

20-fold larger in diameter and 50-fold larger in tissue mass by SMCs proliferation. The 

increase of collateral vessel diameter reduces fluid shear stress, which is the signal for 

maturation and terminates the SMC proliferation. The arteriogenesis, which transform a 

small microvascular resistance vessel into a large conductance artery, is completed (Heil 

and Schaper 2004). 
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1.1.5 Vascular disease 

Cardiovascular disease is the principal death reason in western society and much 

of Asia. Alterations of hemodynamic forces have significant impact on the development 

of cardiovascular diseases. Excessive accumulation of SMCs has a key role in the 

pathogenesis of vascular diseases (Sata, Saiura et al. 2002) such as arteriosclerosis, 

atherosclerosis and graft arterial disease. 

1.1.5.1 Risk factors for atherosclerosis 

Several important environmental and genetic risk factors are associated with 

atherosclerosis (Table 1). 

Table 1. Risk factors for atherosclerosis 

Modifiable risk factors 

Hypertension Mechanical stress exerts the main influence on atherosclerosis as this 
disease only occures in arteries but not in veins. Atherosclerotic lesion 
favours areas of disturbed flow such as bifurcations, branch ostia and 
curves. These sites are often associated with structural modifications 
(intimal thickening, cellular rearrangement, SMCs proliferation and 
extracellular matrix deposition (Gibbons and Dzau 1994). 

Hyperlipidaemia Plasma lipid disorders are associated with an increased risk of 
atherosclerosis related disease, particularly coronary artery disease 
(CAD). Lipids are transported in the plasma as lipoproteins. There are 
three main categories of lipoproteins: high density lipoprotein (HDL), 
low density lipoprotein (LDL), and very low density lipoprotein 
(VLDL). LDL is the major carrier of cholesterol in the plasma and 
LDL-derived cholesterol is important in maintaining overall 
cholesterol homeostasis within cells. As cellular cholesterol increases, 

cellular cholesterol synthesis and synthesis of new LDL receptors are 
inhibited while scavenger receptors of macrophages and SMCs are 
not down-regulated, leading to foam cell formation in atherosclerotic 
lesions. Apolipoprotein E (ApoE) deficiency mouse provides an 
appropriate animal model for hypercholesterolaemia and shows 

35 



spontaneous atherosclerosis (Zhang, Reddick et al. 1992). Besides 
cholesterol, high plasma triglycerides are also associated with 
premature CAD, probably because they inhibit natural tissue 
plasminogen activator. 

Smoking There is a direct link between CAD and the number of cigarettes 
smoked. This risk declines to normal levels within 5 years of giving 
up smoking. Smoking increases free radical production and therefore 
oxidized-LDL. Carcinogens in the cigarette smoke cause DNA 
damage (Izzotti, De Flora et al. 1995; De Flora, Izzotti et al. 1997) 
therefore smoking contributes to endothelial injury as an early event 
in atherogenesis. 

Diabetes Complications of diabetes mellitus can be broadly considered as 
mellitus macro- and microvascular. Macrovascular complications (such as 

myocardial infarction, stroke and peripheral vascular diseases) are 
more common in patients with diabetes and improved glycaemic 
control cannot per se reduce the risk of them. Microvascular 

complications (such as retino-, nephro- and neuropathy) are hallmarks 

of diabetes mellitus. An attractive hypothesis suggests that elevated 
blood glucose levels cause glycosylation of various proteins, 
including lipoproteins. These products accumulate in atherosclerotic 
lesions and mediate cytotoxic effects on ECs. Improved glycaemic 
control minimizes and delays microvascular complications. 

Hemostatic Increased plasma levels of hemostatic factors (factor VII, factor VIIIC 
factors and fibrinogen) are associated with an increased risk of 

atherosclerosis. It is not known whether a reduction in these factors 
lowers incidence of angina and myocardial infarction. 

Weakly There is no clear evidence that the weakly associated factors can 
associated cause atherosclerosis. Physical activity may be beneficial on the 
factors circulation, or merely indicate a healthy constitution in those who 

make exercise. Persons with type A personality (aggressive, restless, 
ambitious people who are constantly anxious about deadlines) have 

more atherosclerosis than others. This may be due to an increased 
level of circulating catecholamines. The more alcohol the higher the 
risk, but no alcohol is also thought to lead to a higher risk. Alcohol 
intake below 50g per day seems to be protective for atherosclerosis 
(Kiechl and Willeit 1999). 

Virus Several reports showed a correlation between the incidence of 
atherosclerosis and the presence of infectious microorganisms, such as 
herpesviruses and C. pneumoniae. They are identified in atheromatous 
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lesions in coronary arteries and other organs but no direct evidence 
shows they can cause the lesions of atherosclerosis (Ross 1999). 

Non-modifiable risk factors 

Aging Although early lesions can be identified in young people, the 
incidence of atherosclerosis rises with age. Besides its intima- media 
thickening effects, aging predicts marked dilation of the vessel 
because of loss of elastic fibres, which is independent of elevated wall 
thickness and other determinants of vessel. Notably, structural aging 
is not an obligatory phenomenon but usually occurs once enhanced 
intima-media thickening indicates incipient wall pathology (Strong, 
Oalmann et al. 1984; Wissler 1992). 

Sex Atherosclerosis is more common in men than in women (Strong, 
Malcom et al. 1992; Strong 1995). After the menopause the incidence 
in women increases to approach that of men at the same age. The 

relative protection of women is attributed to female sex hormones. 
17ß-estradiol inhibits apoptosis in ECs (Alvarez, Gips et al. 1997). 
Additionally, women show a lower LDL levels and higher HDL levels 
than men. 

Genetics Premature vascular disease undoubtedly runs in families, but there is 

no established pattern. In the absence of other risk factors, a history of 
myocardial infarction increases the risk of ischaemic heart disease in 

offspring by 20-30%. Inherited metabolic disorders (such as lipopathy 

and homocystinemia) are associated with increased risk for 

atherosclerosis. 

1.1.5.2 Atherogenesis 

Atherogenesis is a slowly progressive process (Stary 1989). Depending on their 

size and composition, lesions are divided into fatty streaks, early stages of lesions, and 

advanced stages of atherosclerosis called plaques. Intima-media thickening of the vessel 

wall commonly precedes definite atherosclerosis. Such precursor lesions of 

atherosclerosis may occur as early as adolescence, but the frequency of definite 

atherosclerotic lesions remains low until age 40 in men and onset of menopause in 
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women. 

Pre-existing atherosclerotic lesions may experience one of two different types of 

disease progression (Kiechl and Willeit 1999). The first main type of plaque growth is 

described as nonstenotic atherosclerosis. It is characterized by slow and continuous 

plaque extension, which usually affects several plaques simultaneously and rarely 

causes lumen obstruction >40%. Nonstenotic atherosclerosis relies on a cumulative 

exposure to well-established risk factors. It is mediated by a variety of complex 

biological step-by-step phenomena such as lipid-induced atherogenesis or SMC 

proliferation. Diffuse dilative atherosclerosis may be assumed as a final stage of this 

type of disease progression. Compensatory enlargement of the artery at the site of active 

atherosclerosis effectively preserves a near normal lumen or is even over-compensatory 

in the early course of disease. Vascular remodelling in response to atherogenesis 

restores normal blood flow and delays the onset of clinical symptoms. The second main 

type of plaque growth is a focal disease, which usually develops at sites of high 

hemodynamic stress. Rapid plaque expansion and insufficient or lacking vascular 

remodelling act synergistically in producing a significant lumen compromise. 

Atherothrombosis seems to be the main underlying pathomechanism. Consistent with 

the concept of underlying plaque thrombosis, stenotic atherosclerosis is a domain of a 

procoagulant state without a significant age trend. The risk profile consists of clinical 

conditions known to interfere with coagulation and markers of enhanced thrombotic 

activity. Actually, both types of atherogenesis develop and proceed independently from 

each other. Similarly, the degree of arterial stenosis does not predict the likelihood of 
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myocardial infarction. Plaque fissuring which results in infarction mostly occurs in 

relatively minor atherosclerotic plaques. 

Atherosclerotic plaques contain three major cellular components: the SMCs, 

which dominate the fibrous cap, the macrophages, which are the most abundant cell 

type in the lipid-rich core region, and the lymphocytes, which have been mainly 

ascribed to the fibrous cap (Ross 1999). Vascular SMC migration, proliferation, and 

matrix synthesis within the intima of medium-sized and large vessels is though to play a 

major role in atherosclerosis development in adult human subjects (Ross 1993). 

The most popular model (Ross 1999) summarized atherogenesis as following four 

steps: (a) EC damage leads to endothelium dysfunction (increased permeability and 

endothelial adhesion molecules), allows leukocytes migration into the artery wall. (b) 

Fatty streaks initiate with lipid-laden monocytes, macrophages (foam cells) and T 

lymphocytes and further increase by SMCs migration and proliferation, T -cell activation, 

foam cell formation, and platelet adherence and aggregation. (c) As fatty streaks 

progress to intermediate and advanced lesions, a fibrous cap is formed to shield the 

lesion from the lumen. The fibrous cap covers a mixture of leukocytes, lipid, and debris, 

which may form a necrotic core. (d) Unstable fibrous plaques rupture from a thinning 

fibrous cap can rapidly lead to thrombosis. (Figure 5) 
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Figure 5. Atherogenesis model 
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Figure 5. (A) Endothelial dysfunction as an initial step of atherosclerosis. (B) 
Fatty-streak formation. (C) Formation of an advanced, complicated lesion. (D) Unstable 

plaques are generated. (Ross 1999) 

1.1.5.3 Arteriosclerosis 

The arteriosclerotic lesion is characterized by SMC hyperplasia or hypertrophy 

and matrix protein accumulations in the intima and/or media with or without lipid 

deposition, resulting in thickening and stiffness of the arterial wall (Schwartz 1999). 

Biomechanical stress effects on the vessel wall during the development of all types of 

arteriosclerosis (Zou, Hu et al. 1998). 

Abnormal or pathological remodelling in conditions such as hypertensive vascular 

hypertrophy, atherosclerosis, bypass graft disease, restenosis, and transplant 
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vasculopathy involves inappropriate cellular and extracellular changes leading to 

narrowing or occlusion of the lumen. Autologous vein grafts are the only surgical 

alternative for many types of vascular reconstruction, but occlusion of grafts is common 

after bypass operations. Three pathological processes are primarily responsible for vein 

graft occlusion: (a) thrombosis as an early postoperative event; (b) intimal hyperplasia 

after a few months to a few years; (c) arteriosclerosis occurs usually after at least 3 

years (Bourassa, Campeau et al. 1982). The lesions and the pathogenic processes of 

graft-induced arteriosclerosis appear to have unique features. For instance, an extensive 

loss of ECs in the intima and a significant loss of SMCs in the media of grafted veins 

were observed (Kockx, Cambier et al. 1994). In addition, the development of vein graft 

arteriosclerosis is rather rapid compared to arteries. Hypercholesterolemia has been 

shown to be a significant risk factor for the development of vein graft atheroma. 

Evidence indicates that the rates of obstructive atheroma in grafted veins were highly 

correlated to preoperative serum cholesterol levels, and that lesion development was 

predicted by higher levels of plasma VLDL and LDL. Accordingly, patients with 

familiar hypercholesterolemia exhibit a high incidence of late vein graft occlusion after 

bypass surgery. However, the molecular mechanism, by which hypercholesterolemia 

initiates, promotes or perpetuates vein graft atherosclerosis, is largely unknown. 

1.2 Stem cells 

Stem cells represent one of the most promising areas in biological and medical 

research. All stem cells are defined as having two basic properties: prolonged 
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self-renewal and the potential to differentiate in vitro, via "progenitor cells", into 

differentiated somatic cells of many tissue types. Stem cells include two broad 

categories: embryonic stem cells (ES cells) and adult (somatic) stem cells (Gepstein 

2002). 

1.2.1 Embryonic stem cells 

1.2.1.1 Mouse ES cells 

The term "embryonic stem cells" originated from the isolation of pluripotent stem 

cell cultures from early mouse blastocyst by Evans and Kaufman (Evans and Kaufman 

1981) and Martin (Martin 1981) independently. ES cells are characterized by their 

capacity for prolonged undifferentiated proliferation in culture while maintaining the 

potential to differentiate into every cell type of all three germ layers, including germ 

cells (Bradley, Evans et al. 1984). 
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Figure 6. Scheme of early mouse embryonic development 
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Figure 6. Scheme of early mouse development depicting the contribution of early cell 
populations such as ES cells to the development of the three germ layers. (Keller 2005) 

When co-cultured on confluent feeder layers (Evans and Kaufman 1981; Martin 

1981) or cultured in medium containing leukemia inhibitory factor (LIF) (Smith, Heath 

et al. 1988; Williams, Hilton et al. 1988), mouse ES cells can be maintained in the 

undifferentiated state, otherwise they will spontaneously differentiate into embryonic 

structures. Recent development allows mouse ES cells culture with defined factors, such 

as LIF and bone morphogenetic protein 4 (BMP4) in the absence of serum or feeder 

cells (Ying, Nichols et al. 2003). 

The ability to derive multiple lineages from ES cells opens exciting new 

opportunities to model embryonic development in vitro for studying the events 

regulating the earliest stages of lineage induction and specification. In addition, ES cell 
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differentiation system is considered as a novel and unlimited source of cells and tissues 

for transplantation for the treatment of a broad spectrum of diseases (Keller 2005). The 

ES cells have been used extensively for creating mouse mutants for more than a decade, 

but their application in cell replacement therapy remains in its infancy. 

1.2.1.2 Human ES cells 

The human ES cell lines were first derived from the "inner cell mass" of blastocyst 

stage embryos that developed in culture within 5 days of fertilization of the oocyte 

(Thomson, Itskovitz-Eldor et al. 1998). The human ES cells dramatically elevated the 

interest in the cell therapy aspect of ES cells and moved this concept one step closer to 

reality. 

The regulation of human ES cell growth is less well understood and differs from 

that of the mouse in that LIF and STAT3 (signal transducer and activator of transcription 

3) appears to play no role in their self-renewal. The use of inactivated fetal mouse 

fibroblast feeder cells is essential to inhibit the spontaneous differentiation of human ES 

cells in vitro and removing the feeder cells markedly enhanced their differentiation 

(Thomson, Itskovitz-Eldor et al. 1998; Reubinoff, Pera et al. 2000; Daheron, Opitz et al. 

2004). With current protocols, human ES cells can be maintained on feeder cells in 

serum-free medium supplemented with basic fibroblast growth factor (bFGF) (Amit, 

Carpenter et al. 2000). human ES cells can also be grown in the absence of feeder cells 

if cultured on matrigel- or laminin-coated plates in medium supplemented with mouse 

embryonic fibroblast conditioned medium (Xu, Inokuma et al. 2001), which is a 
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relatively easy maintenance of human ES cells. Further studies are needed to clarify the 

molecular mechanism that regulates human ES cell self-renewal (Keller 2005). 

1.2.2 Embryonic stem cell differentiation 

ES cells can differentiate into specialized somatic cells in vitro and have shown 

many early embryonic development processes (Gepstein 2002). It has been reported that 

ES cells display a remarkable capacity to form differentiated cell types in culture 

(Keller 1995; Smith 2001), e. g. cardiomyocytes (Doetschman, Eistetter et al. 1985), 

hematopoietic progenitor cells (Doetschman, Eistetter et al. 1985), ECs (Risau, Sariola 

et al. 1988; Hristov, Erl et al. 2003), skeletal muscle cells and SMCs (Rohwedel, 

Maltsev et al. 1994; Drab, Haller et al. 1997; Itskovitz-Eldor, Schuldiner et al. 2000), 

neuronal and glial cells (Bain, Kitchens et al. 1995; Brustle, Jones et al. 1999), 

pancreatic islet cells (Soria, Roche et al. 2000), yolk sac (Doetschman, Eistetter et al. 

1985), adipocytes (Dani, Smith et al. 1997), chondrocytes (Poliard, Nifuji et al. 1995), 

melanocytes (Yamane, Hayashi et al. 1999), primitive endoderm (Abe, Niwa et al. 

1996), and several other tissue types (Keller 1995). These highlighted totipotency and 

self-renewal make ES cells a promising source for regeneration medicine 

(Yurugi-Kobayashi, Itoh et al. 2003). 

When removed from the factors that maintain them as stem cells, ES cells will 

differentiate and, under appropriate conditions, generate progeny consisting of 

derivatives of the three embryonic germ layers: mesoderm, endoderm, and ectoderm 

(Keller 1995; Smith 2001). Three general approaches are used to initiate ES cell 
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differentiation. All of these approaches are effective and have specific advantages and 

disadvantages and have been used to generate a broad spectrum of cell types from ES 

cells (Table 2). 
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1.2.2.1 Mesoderm-derived lineages 

Mesoderm-derived lineages, including the hematopoietic, vascular and cardiac are 

among the easiest to generate from ES cells and have been studied in considerable detail. 

Besides, the ES cell system also can differentiate to the skeletal muscle (Rohwedel, 

Maltsev et al. 1994), the osteogenic (Buttery, Bourne et al. 2001; zur Nieden, Kempka 

et al. 2003), the chrondrogenic (Kramer, Hegert et al. 2000), and adipogenic (Dani, 

Smith et al. 1997) lineages. All these in vitro development recapitulated its development 

in vivo, indicating that these populations progressed through normal differentiation 

progress. 

1.2.2.1.1 Hematopoietic differentiation 

There are many studies focus on the hematopoietic differentiation using the ES 

cells (Burkert, von Ruden et al. 1991; Schmitt, Bruyns et al. 1991; Keller, Kennedy et al. 

1993; Nakano, Kodama et al. 1994) since the discovery of the hemoglobinized cells in 

embryoid bodies 20 years ago (Doetschman, Eistetter et al. 1985). To date, methods 

have been established for selectively expanding multipotential cell populations, 

neutrophils, megakaryocytes, master cells, eosinophils, dendritic cells, and definitive 

erythroid cells from ES cells in culture (Keller 2005). 

In optimized culture conditions following serum induction, ES cells will undergo 

hematopoietic differentiation in a highly reproducible and efficient way, which can be 

easily monitored by gene expression patterns, the appearance of specific cell surface 

markers, and the development of clonable progenitor cells, so that investigation of the 

regulation of hematopoietic commitment become possible. 
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The progenitor derived from ES cells known as blast colony-forming cell 

(BL-CFC) gives rise to hematopoietic and vascular progenitors in methylcellulose 

culture in the presence of VEGF (Kennedy, Firpo et al. 1997; Choi, Kennedy et al. 

1998), proved the hypothesis that the hematopoietic and endothelial lineages develop 

from a common progenitor, the hemangioblast. However, the BL-CFC does not express 

hematopoietic and vascular markers, such as CD31, VE-cadherin, CD34, or c-kit 

(Fehling, Lacaud et al. 2003), indicating this progenitor is in the earliest stage of 

hematopoietic commitment. Also the ES cell-derived hematopoietic cells express EC 

markers (Flk-1, VE-cadherin and CD41) before the hematopoietic-specific marker 

(CD45) which presents on most fetal liver and adult bone marrow cells. BMP4 together 

with VEGF can support hematopoictic differentiation of ES cells in serum-free 

conditions (Nakayama, Lee et al. 2000; Park, Afrikanova et al. 2004). The development 

of the BL-CFC and hematopoietic progenitors is positively regulated by bFGF (Faloon, 

Arentson et al. 2000), VEGF (Nakayama, Lee et al. 2000; Park, Afrikanova et al. 2004) 

and serum-derived factors. 

Several studies have documented hematopoietic development in human ES cell 

cultures either through co-culture with stromal cells (Kaufman, Hanson et al. 2001) or 

the generation of EBs (Chadwick, Wang et al. 2003; Cerdan, Rouleau et al. 2004). 

While differentiation was serum-induced, hematopoietic development was augmented 

in the EBs by the addition to the cultures of BMP4, VEGF, and a mixture of 

hematopoietic cytokines (stem cell factor, Flt-3 ligand, interleukin-3, interleukin-6 and 

granulocyte colony-stimulating factor) (Cerdan, Rouleau et al. 2004). Under this 
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condition, hematopoietic induction is slower than observed in mouse ES cell 

differentiation cultures. Only the hemoglobin pattern changes were detected within the 

ES cell-derived erythroid lineages but no distinct primitive or definitive erythroid 

population was identified. Similarly, human hematopoietic development also expresses 

EC markers (Flk-1, VE-cadherin, CD31) before their maturation to CD45+ cells (Wang, 

Li et al. 2004). The findings from this limited number of studies indicate that it is 

possible to generate hematopoietic cells from human ES cells in culture and that the 

sequence of developmental events may reflect the onset of hematopoisis in the early 

embryo (Keller 2005). 

1.2.2.1.2 Vascular differentiation 

It has been discussed that the vasculogenic potential of ES cells could be 

specifically of use in tissue engineering for the induction of tissue vascularization 

(Levenberg, Golub et al. 2002). Endothelial development can also be detected in early 

yolk sac blood islands of the embryo (Haar and Ackerman 1971) and ES cell-derived 

BL-CFC, suggesting that development of the endothelial lineage in vitro recapitulates 

its development in vivo. ES cells differentiate in vitro to ECs through successive 

maturation steps with sequential expression of cell lineage-specific markers: Flk-1, 

platelet endothelial cell adhesion molecule (PECAM) and tie-2, tie-1 and VE-cadherin, 

and EC specific antigens MECA32 (Hallmann, Mayer et al. 1995) and CD34/MEC-14.7 

(Vittet, Prandini et al. 1996). A similar pattern was also observed when isolated Flk-1+ 

progenitors were re-cultured on type IV collagen-coated dishes or on OP9 stromal cells 

(Hirashima, Kataoka et al. 1999). 
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The Flk-1+ cells derived from ES cells can differentiate into both endothelial and 

mural cells in response to VEGF and PDGF-BB selection respectively, so that to suffice 

a vascular progenitor cells (VPCs) (Yamashita, Itoh et al. 2000). VEGF is a major 

growth factor for developing ECs and lack of VEGF will result in embryo death during 

embryonic vascular development. Several growth factors have been implicated in SMC 

differentiation, including transforming growth factors (TGF) ßl, ß3, and PDGF-BB, 

(Nakajima, Mironov et al. 1997; Hirschi, Rohovsky et al. 1998; Hellstrom, Kalen et al. 

1999; Chen and Lechleider 2004). The combinatorial effects of Flk-1 and transcription 

factor T -cell acute lymphocytic leukemia 1 (Tal-1) regulate cell fate choice in early 

development into hernatopoietic, endothelial and smooth muscle lineage (Ema, Faloon 

et al. 2003). Flk-1'1" mouse embryo cannot form both hematopoietic and endothelial 

cells, suggesting they share a common progenitor. Although Tal-1 is dispensable for 

initial endothelial development, it is required for later vascular remodeling. In the 

absence of Tal-1, ES cells favour the vascular smooth muscle development pathway and 

are unable to generate endothelial and hematopoietic progeny, while when expressed, 

they differentiate to endothelial and smooth muscle cells. Interestingly, in the absence of 

Tal-1, cell-to-cell interactions play an important role in the generation and maintenance 

of ECs in vitro (Table 3) (D'Souza, Elefanty et al. 2005). 

Table 3. Flk-1+ cell fate under different condition 
Cell types Adherent Aggregate 

Tal-1*'* ECs (CD31+, F1k-1+, VEcad -30% -60% 
SMCs (SMA+) -50% ~5% 
HSC (Gata-1) -+ 

Tal-1'l' ECs (CD31+, F1k-1+, VEcad+) 0.5% ~27% 
SMCs (SMA+) -70% -18% 
HSC (Gata-1+) -- 
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The functional capacity of the ES cell-derived VPCs has been evaluated both in 

culture (Doetschman, Eistetter et al. 1985; Bautch, Stanford et al. 1996; Yamashita, Itoh 

et al. 2000) and in animal models following transplantation. They can organize into 

vessel-like structures or incorporated into newly formed vessel in vitro and in vivo, thus 

participate in neovascularization (Marchetti, Gimond et al. 2002; Yurugi-Kobayashi, 

Itoh et al. 2003). 

Endothelial differentiation has also been demonstrated in human ES cell 

differentiation cultures. The cells that develop in these cultures express endothelial 

markers, form tube-like structures* in matrigel in vitro, and generate capillary structures 

when transplanted into severe combined immunodeficient mice (Levenberg, Golub et al. 

2002). 

1.2.2.1.3 Cardiac differentiation 

Development of the cardiomyocytes lineage progresses in ES cell differentiation is 

similar to development of the lineage in vivo. The presence of cardiomyocytes can be 

easily detected by the appearance of contracting cells, expression of cardiac genes, and 

electrophysiological measurements (Maltsev, Rohwedel et al. 1993; Hescheler, 

Fleischmann et al. 1997; Boheler, Czyz et al. 2002; Banach, Halbach et al. 2003). 

Because few antibodies are available for the isolation of cardiac progenitors, ES cells 

were genetically modified to express either drug-resistance (Klug, Soonpaa et al. 1996; 

Zandstra, Bauwens et al. 2003) or fluorescent genes (Kolossov, Fleischmann et al. 1998; 

Muller, Fleischmann et al. 2000; Hidaka, Lee et al. 2003) under the control of 

stage-specific gene promoters of cardiac development to enable specific cell selection 
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within the lineage. 

ES cell-derived cardiomyocytes selected for a-cardiac MHC expression could 

incorporate and survive in the hearts of dystrophic mice after direct transplantation 

(Klug, Soonpaa et al. 1996), providing the source of transplantable cells for the 

treatment of cardiovascular disease. Expression of VEGF in the cardiomyocytes prior to 

transplantation into hearts of mice with myocardial infarction shows increased cell 

survival and enhanced neovascularization and improved cardiac function (Yang, Min et 

al. 2002). Cardiomyocytes differentiation and maturation have also been demonstrated 

in human ES cell differentiation cultures, which are similar to that reported in vivo (Nir, 

David et al. 2003). Although the human ES cell-derived cardiomyocytes do not undergo 

maturation to the stage of adult cardiomyocytes, cells with electrical properties of nodal, 

atril, and ventricular cells have been identified (He, Ma et al. 2003). Recently, human 

ES cell-derived cardiomyocytes have been used in xenogeneic transplantation as 

"biologic pacemakers" for the treatment of bradycardia (Kehat, Khimovich et al. 2004), 

but the arrhythmia effect should be concerned. 

1.2.2.2 Endoderm-derived lineages 

The generation of endoderm derivatives, in particular pancreatic ß-cells and 

hepatocytes, has become the focus of many investigators in the filed of ES cell biology. 

The interest of their development derives from their clinical potential for the treatment 

of Type I diabetes and liver diseases, etc. ES cells have been successfully induced into 

pancreatic islets, hepatocytes, thyrocytes, lung, and intestinal cells but several obstacles 
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still impair the progress of generating endoderm-derived cell types, such as very low 

frequency of differentiated cells, markers specifity, and lack of specific inducers. Only 

when large numbers of highly enriched progenitors are available, can these ES 

cell-derived endoderm cells be used in clinical applications (Keller 2005) 

1.2.2.3 Ectoderm differentiation 

Most of ectoderm differentiation studies focus on neuroectoderm commitment and 

neural differentiation. Each of the relatively pure populations of three major neural cell 

types (neurons, astrocytes, and oligodendrocytes) of the central nervous system can be 

generated when cultured under appropriate conditions (Okabe, Forsberg-Nilsson et al. 

1996; Barberi, Klivenyi et al. 2003). The ability to generate different types of neurons 

from ES cells has dramatically raised the interest in repair of nervous system disorders 

by cell replacement therapy, one of which is Parkinson's. 

In addition to somatic tissues, several studies have documented the development 

of germ cells from differentiated ES cells (Lawson, Dunn et al. 1999; Hubner, 

Fuhrmann et al. 2003; Clark, Bodnar et al. 2004). Before the models can be widely used, 

it will be important to define the regulators that induce germ cell development. 

1.2.2.4 Modelling embryonic development with ES cell 

The studies of earliest stages of lineage development in ES cell differentiation 

highlight the importance of understanding these early events, as the inducing molecules 

used in the differentiation cultures dramatically influence the cell populations that 
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ultimately develop and different cell fate needs different set of conditions. When ES 

cells were cultured without LIF, they will spontaneously differentiate to primitive 

ectoderm. The brachyury-expressing cells are shown as a hypothetical primitive streak 

consisting of both posterior and anterior populations. BMP4 is shown to induce 

posterior mesoderm and skin. Low concentrations of activin/nodal induce more 

posterior populations and high concentrations induce endoderm (derived from anterior 

primitive streak). FGF is shown to play a role in neural induction, whereas Writ, BMP 

and activin are all implicated as inhibitors of the early stages of this pathway (Figure 7) 

(Keller 2005). 

Figure 7. ES cell differentiation fate 
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Figure 7. After the withdrawal of LIF, the ES cells will spontaneously differentiate into 
primitive ectoderm. With BMP4 or FGF stimulation, it will differentiate to primitive 
streak or ectoderm, respectively. The primitive streak will give the rise to mesoderm 
lineages or definitive endoderm when high concentration of Activin/Nodal is present. 
(Keller 2005) 
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1.2.3 Adult stem cells 

Many adult tissues have also been found to harbour adult stem cell populations in 

recent years, including brain (Bjornson, Rietze et al. 1999; Clarke, Johansson et al. 2000; 

Galli, Borello et al. 2000), heart (Matsuura, Nagai et al. 2004), skeletal muscle (Jackson, 

Mi et al. 1999), bone marrow (Ferrari, Cusella-De Angelis et al. 1998; Petersen, Bowen 

et al. 1999; Pittenger, Mackay et al. 1999; Brazelton, Rossi et al. 2000; Lagasse, 

Connors et al. 2000; Mezey, Chandross et al. 2000; Sanchez-Ramos, Song et al. 2000; 

Jackson, Majka et al. 2001; Orlic, Kajstura et al. 2001), and umbilical cord blood. These 

adult stem cells have generally been regarded as having the capacity to form only the 

cell types of the organ in which they are found. Recently they have been shown to 

exhibit an unexpected versatility (Anderson, Gage et al. 2001) but still relatively limited 

transdifferentiation abilities (Gepstein 2002). 

It was reported that bone marrow cells (BMCs) substantially contribute to the 

pathogenesis of vascular diseases, e. g. postangioplasty restenosis, graft vasculopathy, 

and hyperlipidemia-induced atherosclerosis. One hypothesis is distant stem cells, e. g. 

BMCs, sensed the injury, mobilized by stem cell factor (SCF) and granulocyte-colony 

stimulating factor (G-CSF), migrate to the infarcted region, replicate, differentiate, thus 

promote structural and functional repair of the infarcted heart after injected (Orlic, 

Kajstura et al. 2001). One article demonstrated side population cells (CD34"/low, c-kit+, 

Sca-1+) of HSCs in bone marrow have the cardiomyogenic potential and could 

contribute to the formation of functional tissue so that benefit patients with myocardial 

infarction (Jackson, Majka et al. 2001). But another study shows the HSCs do not 
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transdifferentiate into cardiac myocytes in myocardial infarcts (Murry, Soonpaa et al. 

2004). Intravenous injection of HSCs or muscle-derived stem cells into irradiated 

animals results in the reconstitution of the hematopoietic compartment of the 

transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the 

partial restoration of dystrophin expression. Transplantation of different stem cell 

populations using the procedures of bone marrow transplantation might provide an 

avenue for treating diseases where the systemic delivery of therapeutic cells throughout 

the body is critical (Gussoni, Soneoka et al. 1999). 

In contrast to HSCs, Sca-1+ cells in the adult murine heart do differentiate into 

spontaneous beating cardiomyocytes and may contribute to the regeneration of injured 

hearts (Matsuura, Nagai et al. 2004). This represents an alternative source of 

functionally intact cardiomyocytes for the treatment of cardiovascular diseases. 

Most published papers use the term progenitor cells to describe circulating and 

bone marrow-derived cells (Szmitko, Fedak et al. 2003). Accumulating data indicate 

that circulating "endothelial" progenitor cells and bone marrow progenitor cells can 

transdifferentiate into other types of cells (Quaini, Urbanek et al. 2002; Badorff, 

Brandes et al. 2003; Yeh, Zhang et al. 2003). Because the term progenitor cells are 

heavily used at present, most paper use both stem/progenitor cells to describe this 

population of cells rather than use more accurate term stem cells. 

1.2.4 Vascular progenitor cells (VPCs) 

A number of studies demonstrated that VPCs, including endothelial and smooth 
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muscle progenitors, which are present in circulating blood and BMCs, have the capacity 

to proliferate, migrate, and differentiate into mature SMCs and ECs (Asahara, Murohara 

et al. 1997; Rafii 2000; Simper, Stalboerger et al. 2002; Hill, Zalos et al. 2003; Sata 

2003; Szmitko, Fedak et al. 2003), thereby contributing to vascular repair, remodelling, 

and atherosclerotic lesion formation (Vasa, Fichtlscherer et al. 2001; Assmus, 

Schachinger et al. 2002; Hill, Zalos et al. 2003; Rauscher, Goldschmidt-Clermont et al. 

2003). 

Abundant progenitor cells (Sca-1+ cells) in the adventitia can differentiate into 

SMCs that participate in lesion formation in vein grafts (Hu, Zhang et al. 2004). These 

progenitor cells could be a source of SMCs in neointima and might contribute to 

circulating smooth muscle progenitor cells. Several studies of animal models suggested 

that both vascular and blood progenitor cells may contribute to the vascular diseases 

(Han, Campbell et al. 2001; Hillebrands, Matter et al. 2001; Li, Han et al. 2001; Saiura, 

Sata et al. 2001; Shimizu, Sugiyama et al. 2001; Hu, Davison et al. 2002; Sata, Saiura et 

al. 2002). 

The numbers of VPCs in blood negatively correlated with risk factors of 

cardiovascular diseases(Vasa, Fichtlscherer et al. 2001; Hill, Zalos et al. 2003; Rauscher, 

Goldschmidt-Clermont et al. 2003), highlighting the potential role of these cells in 

cardiovascular diseases (Assmus, Schachinger et al. 2002). Recently, Xu's group has 

provided evidence that both ECs and SMCs in atherosclerotic lesions and neointima in 

mice are derived from stem/progenitor cells presented in blood or the vessel wall, which 

can differentiate into vascular cells and thus contribute to pathophysiology of vessel 
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wall as well as generation of microvascular structures in adult neoangiogenesis (Hu, 

Davison et al. 2002; Hu, Davison et al. 2003; Xu, Zhang et al. 2003). These findings are 

crucial for understanding the pathogenesis and establishing new therapeutic strategies 

for vascular diseases, i. e. stem cell-based therapy. 

1.2.5 Stem cells contribution in atherogenesis 

During last 20 years, lots of studies demonstrated the SMC phenotype difference 

between media and atherosclerotic lesions. Traditionally, it was believed that SMCs can 

migrate from the media into intima after a transition in their phenotype (Campbell and 

Campbell 1994) in response to PDGF released by injured ECs and aggregated platelets 

(Ross, Glomset et al. 1977). However, the investigation of the role of SMC phenotypic 

switching has met a number of difficulties and deficiencies, such as lack of 

differentiation markers and regulation factors. Although the phenotypic modulation of 

SMCs in atherogenesis and vascular repair was widely accepted, no obvious evidence 

shows the essential role of such phenotypic modulation for atherogenesis. 

Recent studies demonstrated that stem/progenitor cells from blood (Saiura, Sata et 

al. 2001; Hu, Davison et al. 2002), bone marrow(Han, Campbell et al. 2001; Hillebrands, 

Matter et al. 2001; Shimizu, Sugiyama et al. 2001), and the vessel wall (Hu, Mayr et al. 

2002; Hu, Zhang et al. 2004) may be responsible, at least in part, for endothelial repair 

and SMCs accumulation in lesions, suggesting that SMCs in lesions may result from 

differentiation of stem cells. A new theory of atherosclerosis pathogenesis point out the 

importance of progenitor cells during this process (Figure 8) (Xu 2006). First, ECs on 
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the arterial wall were damaged in specific areas and regeneration is carried on by 

endothelial progenitor cells (EPCs). The differentiation of neoendothelial cells into 

mature state takes several days. During this period, LDL deposits in the intima and 

blood mononuclear cells adhere to neoendothelial cells and migrate into the 

subendothelial space. Progenitor cells are also the source of smooth-muscle 

accumulation in atherosclerotic lesions. Circulating or adventitial progenitor cells 

migrate into the intima and differentiate into neo-SMCs. All known risk factors for 

atherosclerosis can also exert their effects on the vessel wall partially via increase in 

endothelial turnover, inhibition of differentiation and promotion of SMC and 

macrophage accumulation. Thus, the progenitor cells comprise the main cell source 

responsible for the formation of atherosclerotic lesions. 
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Figure 8. Stem cell theory of atherosclerosis 
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Figure 8. (A) Dead ECs are replaced by EPCs allowing increased endothelium 
permeability for monocytes and platelets (B) Monocytes migrate into subendothelial 
area and differentiate into macrophages to take up oxidized LDL, forming foam cells. 
(C) Progenitor cell-derived ECs have a shortened lifespan due to locally generated 
cytokines, free radicals, and risk factors. Endothelial cell death results in loss of 
endothelium in certain areas and vascular progenitor cells might migrate into the fatty 

streak. (D) Angiogenesis within atherosclerotic lesions occurs. The microvessels 
transport vascular stem or progenitor cells from the adventitia into the lesion. They 
differentiate into neo-smooth muscle cells within atherosclerotic lesions, which differ 
from medial smooth muscle cells and further develop into atheroma. (EC, endothelial 
cell; EPC, endothelial progenitor cell; oxLDL, oxidized LDL; neo-SMC, neo-smooth 
muscle cell; SMC, smooth muscle cell) (Xu 2006) 
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1.2.6 Tissue engineering 

Vascular and coronary diseases are treated surgically using bypass procedures, 

whereby grafts of principally autogenous tissue (internal mammary artery, saphenous 

vein) and synthetic prostheses (polyethylene tetraphthlate, polytetrafluoroethylene, 

expanded polytetrafluoroethylene) are used (Kannah, Salacinski et al. 2005). Graft 

failure happens due to the difference in elasticity between the native blood vessel and 

the graft, creating turbulence and damaging the endothelial lining, resulting in thrombus 

formation, SMC proliferation and intimal hyperplasia (Sales, Salacinski et al. 2005). 

Tissue engineering offers the prospect of being able to meet the demand for replacement 

of heart valves, vessels for coronary and lower limb bypass surgery. Human 

stem/progenitor cells have the ability for self-renewal and potential to differentiate, 

which may be used to create artificial vessels for the bypass surgery. Circulating EPCs 

and bone marrow cells have been applied for single- and two-stage seeding into 

synthetic prostheses before implantation (Tiwari, Salacinski et al. 2001; Shirota, He et al. 

2003), which may endothelialize in vivo so that prevent thrombus formation and 

significantly improve patency. Mesenchymal stem cells (MSCs) are also used for 

orthopaedic therapeutic applications, especially bone formation and cartilage tissue 

repairing (Tuan, Boland et al. 2003). Difficulties are associated with finding suitable 

numbers of cells with high quality and purity, especially under emergency 

circumstances. For these reasons, the study on stem cell differentiation is urgent for the 

basic medical researchers. 
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1.3 Proteomics 

1.3.1 Definition of Proteomics 

Because the genomic sequence or the transcriptional profile cannot be directly 

correlated with actual protein levels or protein function (Humphery-Smith, Cordwell et 

al. 1997) and cellular processes are largely attributed to posttranslational modifications 

(PTM) (Hart 1992; Faux and Scott 1996), measuring protein levels has become 

imperative. Proteomics, defined as "the entire PROTEin complement expressed by the 

genOME" of an organism at a given time-point (Wilkins, Pasquali et al. 1996), was thus 

developed to study cell functions at protein level (Wilkins, Sanchez et al. 1996). 

The dynamic range of protein expression and modification makes the proteomics 

more complex than genomics. The appearance of entire genomes of a number of 

organisms, unified protein sequence database, and more powerful computers, make 

proteomics one of the fastest developed research area in the past few years. Proteomic 

techniques are ideal for clarifying quantitative protein changes in physiological and 

diseased conditions (Lopez and Melov 2002; Huber, Pfaller et al. 2003; Loscalzo 2003; 

McGregor and Dunn 2003) but additional experiments are still needed to clarify the 

functional consequence of the changes in the proteome. 

A typical proteomic analysis includes experimental design, sample preparation, 

separation, identification and quantification of many proteins simultaneously from a 

mixture. To date, two-dimensional electrophoresis (2-DE) is the most preferred method 

to resolve proteins mixture from cellular lysate (Banks, Dunn et al. 2000; Dunn 2000). 
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Supported by high throughput mass spectrometry (MS) techniques, which allow rapid 

identification and characterization of very small quantities of peptides, 2-DE allows 

analyzing thousands of protein species at the same time. 

1.3.2 Sample preparation 

Efficient and reproducible sample preparation methods are key to successful 2-DE 

(Rabilloud 1999; Molloy 2000). An effective sample preparation should reproducibly 

solubilize proteins of all classes including hydrophobic proteins, prevent protein 

aggregation and loss of solubility during focusing, prevent post-extraction chemical 

modification, remove or thoroughly digest nucleic acids and other interfering molecules, 

yield proteins of interest at detectable levels. 

Because of the significant mask effect of the most predominantly expressed 

proteins (enzymes, cytoskeletal proteins, albumin and immunoglobulin G) to the lower 

abundant but more important co-migrating proteins (such as signalling proteins) in the 

whole cell lysate, some reduction in the complexity of samples is needed to display the 

majority of protein species on 2-DE gels. Sample pre-fractionation techniques aim to 

reduce the diversity and complexity of protein mixtures, thus increase the concentration 

of distinct subsets of proteins that can be resolved. Different pre-fractionation methods 

based on different protein properties are developed, such as differential extraction 

(relative solubility, hydrophobicity), subcellular fractionation (co-localization within the 

cell), chromatography (affinity), preparative isoelectric focusing (net charge), etc. In 

general, pre-fractionation methods should be kept as simple as possible, target different 
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molecular properties and employ downstream compatible solutions to minimize sample 

loss and the chance of degradation and artifactual protein modifications. 

1.3.3 Two-dimensional electrophoresis (2-DE) 

2-DE is a powerful and widely used method for the analysis of complex biological 

samples. It was first introduced in 1975 (Klose 1975; O'Farrell 1975) and has a 

renaissance in the past decade. 2-DE separates proteins according to two independent 

properties in two step: the first-dimension, isoelectric focusing, separates proteins 

according to their isoelectric point (pI) in pH gradient gels; the second-dimension, 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE), separates proteins according to 

their molecular weight (Mr) (Patton, Pluskal et al. 1990) (Figure 9). 

Figure 9. Principles of 2-DE 

Figure 9. (A) First dimention, proteins are separated by isoelectric point under electric 
field in pH gradient gels, called isoelectric focusing. (B) Second dimention, proteins are 
separated by molecular weight in polyacrylamide gels. 

pH gradients for IPG strips are created with sets of acrylamide buffers, 

CH2=CH-CO-NH-R, where the R contains either a carboxyl [-COOH] or a tertiary 
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amino group [e. g., -N(CH3)21. These acrylamide derivatives are covalently incorporated 

into polyacrylamide gels at the time of casting and can form almost any conceivable pH 

gradient (Righetti 1990). According to both theory and experiment, the difference in pI 

between two adjacent isoelectric focusing-resolved protein bands is directly 

proportional to the square root of the pH gradient and inversely proportional to the 

square root of the voltage gradient at the position of the bands. Thus, narrow pH ranges 

and high applied voltages yield high resolution in isoelectric focusing. 

A default current limit of 50µA per strip is intended to minimize protein 

carbamylation reactions in urea sample buffers. If different strips are run at the same 

time, the electrical conditions experienced by individual strips will be different, perhaps 

exposing some strips to more current than desired. Thus, strip length, pH range and 

protein amount should be the same to get similar electronic resistant so that to produce 

similar protein pattern in 2-DE gels. 

The percentage of acrylamide referred to as %T (total percentage of acrylamide 

plus corsslinker, N, N-methylene- bisacrylamide, at a ratio of 37.5: 1) determines the 

pore size of a gel. Higher %T means smaller pore size. The pores of the polyacrylamide 

gel sieve proteins according to the size. Using piperazine diacrylamide (PDA) instead of 

bisacrylamide can reduce silver staining background and give higher gel strength 

(Wiersma, Dos et al. 1994). Polymerization is typically accomplished using a chemical 

reaction with ammonium persulfate (APS) and N, N, N', N'-tetramethylethylenediamine 

(TEMED), which are the initiator and the catalyst respectively (Figure 10). 
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Figure 10. Chemical basis of the polymerization of polyacrylamide gel 
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Figure 10. Acrylamide and bisacrylamdie 

are polymerized with the catalysis of 
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(http: //oregonstate. edu/instruction/bb450/ 
stryer/c h04/Slide 10. i pg ). 

Homogeneous (single-percentage acrylamide) gels generally give excellent 

resolution of sample proteins with a narrow Mr range. Gradient gels are cast with 

acrylamide concentrations that increase from top to bottom so that allow proteins with a 

wide range of Mr to be analyzed simultaneously and sharpen the spots. However, 

gradient gel cannot obtain the same resolution as single-percentage gels optimized for a 

narrow Mr range. A proteomics experiment might start out with an 8-16%T gradient for 

global comparison. After interesting regions of the 2-D array have been identified, a 

new set of single-percentage gels may be run to study a particular size range of proteins. 

In single-percentage gel, the migration rate of polypeptides in SDS-PAGE is inversely 

proportional to the logarithm of its Mr. In gradient gels, log(migration distance) is 

inversely proportional to log(Mr). 

It is highly recommended casting and running 2-DE gels in batches to ensure 

minimum gel-to-gel variation within one experiment. 

2-DE gels are high-resolution protein arrays suitable for the separation of complex 
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protein mixtures. Conventional one-dimensional IEF and one-dimensional SDS-PAGE 

can only resolve approximately 100 of the most abundant proteins in a heterogeneous 

sample. 2-DE theoretically can separate the product of the number of proteins separated 

by each technique because protein charge and molecular weight are independent 

properties. Because of this highly parallel nature of the technique, hundreds to 

thousands of proteins can be visualized simultaneously, i. e. a single large-format 2-DE 

gel will resolve 1000 to 3000 different polypeptide spots. A 2-DE gel is also an array of 

authentic proteins, which preserves protein charge, molecular weight, and PTMs (such 

as phosphorylation, glycosylation, and oxidation) during electrophoresis. This allows 

direct analysis of protein isoforms that may be involved in particular metabolic or 

disease processes. 2-DE gels present different PTM of one protein because the different 

PTM forms have slightly different molecular weight and/or pI. The glycosylation 

normally resulted in a series of spot chain in the 2-DE gels, which are easily recognized 

while the phosphorylation and oxidation only present horizontal shifting of spots with 

almost the same Mr but huge difference in pI. In addition, the quantitative differences 

between proteins in mixtures can be determined from the intensity of spots on 2-DE gel 

images by statistic analysis so that the differences of protein expression levels can be 

directly detected. 

A simple method to view more protein spots is using a series of complementary 

narrow pH-range immobilized pH gradient strips. Commercially available narrow-range 

and micro-range pH immobilized pH gradient strips can resolve proteins in 1 pH unit, 

most focus on acidic area. 
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Another way to get the information of low abundant proteins is to develop more 

sensitive detection method. The sensitivity that is achievable in staining is determined 

by the amount of stain that binds to the proteins, the intensity of the colouration, and the 

difference in colouration between stained proteins and the background (signal-to-noise 

ratio). Currently, there are no stains that can span the approximately 7 or 8 orders of 

magnitude dynamic range of cellular proteins. However, improved methods of protein 

detection by using fluorescent dyes offer a broader dynamic range and linear 

quantitative range of detection than silver staining. For example, SYPRO Ruby 

(Molecular Probes), a ruthenium-based fluorescent dye that binds non-covalently to 

proteins in gels, provides sensitive (1-10ng) and linear (over 3 orders of magnitude) 

stain with high signal-to-noise ratio, and compatible with MS and Edman sequencing 

(Patton 2000). It also allows detection of glycoproteins, lipoproteins, low Mr proteins 

and metalloproteins that are not stained well by other stains. The linear dynamic range 

of fluorescent dye, which covers the ranges of both Coomassie blue and silver stains, 

potentially increases accuracy of quantitative comparisons. Because all stains interact 

differently with different proteins (Carroll, Ray et al. 2000), replicate gels should be 

stained with at least two different stains for critical analysis. Normally the gels should 

be stained by Coomassie blue or a fluorescent stain prior to silver stain. 

Unfortunately, standard 2-DE gels do not reflect a true representation of 

hydrophobic, highly insoluble, very basic (pI >9.5), very small (<l OkDa) and very large 

(>lOOkDa), as well as very low abundance proteins. Very high molecular weight 

proteins do not easily enter the gels and should be separated using one-dimensional 
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SDS-PAGE, preferably following sample pre-fractionation to enrich the targeted 

proteins. Improved second-dimensional separation of very low molecular weight 

proteins can be achieved if the Tris-glycine buffer is substituted by the Tris-tricine-SDS 

buffer system in combination with high percentage gradient gels. Also more sensitive 

mass spectrometers are needed for identifying small proteins. The process of 

solubilization and subsequent separation of hydrophobic proteins in immobilized pH 

gradient strips have been improved by combining more effective reducing agents such 

as the uncharged agent tributyl phosphine with more powerful chaotropes such as 

thiourea and surfactants such as linear sulfobetaine-type zwitterionic detergents 

containing a carboxyamido group to improve urea tolerance. The development of basic 

immobilized pH gradients up to pH 12 will facilitate easy, reproducible analysis of 

alkaline proteins as soon as the problem of reverse electroendosmotic flow 

(anode-directed water flow) is fully solved. 

1.3.4 Difference gel electrophoresis (DIGE) 

Traditional 2-DE is a well-established technique and a relatively simple visual 

method for mapping differences in protein expression. There are certain limitations to 

the universal use of this technology, such as irreproducible between gels and has 

significant system variability, low detection sensitivity and linearity. It is hard to get 

highly confident result of protein expression changes by using traditional 2-DE. 

Recently, the difference gel electrophoresis (DIGE) (Unlu, Morgan et al. 1997) is 

invented and widely used in proteomics studies. With this technology, samples are 
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labelled with one of three fluorescent dyes (Cy2, Cy3 or Cy5) and run in a single 2-DE 

gel. DIGE displays two or more complex protein mixtures labelled with different 

fluorescent dyes in a single 2-DE gel, offers the opportunity of direct comparison of 

different samples, thus eliminating gel-to-gel variations inherent to comparative gel 

analysis. Fluorescent labelling also renders 2-D DIGE much more quantitative than 

colorimetric methods. It has a linear dynamic range of 4 or 5 orders of magnitude, by 

contrast with the approximately 1 or 2 order range of Coomassie and silver stains. As 

regards sensitivity, Ing of standard protein is detected with Cy3/Cy5 fluorescent 

labelling. The use of a pooled internal standard labelled with Cy2 will further improve 

the accuracy of quantitative comparisons in differential display experiments by 

normalizing quantitative expression data across multiple samples run on several 2-DE 

gels. 

The CyDye DIGE Fluor minimal dyes have an N-hydroxysuccinimide (NHS)- 

ester reactive group and covalently attach to the epsilon amino group of protein lysine 

residues via an amide linkage. When coupled to a lysine residue, the dye will replace 

the positive charge of lysine with its own positive charge so that does not significantly 

alter the pI of the protein. Their size and charge match properties insure that same 

labelled protein from different samples have the same relative mobility regardless of the 

dye used to tag them. Their fluorescent signals are relatively stable during the labelling, 

separation, and scanning. The excitation and emission wavelengths of these dyes are 

resolvable, which contributes to the accuracy of DIGE. (Table 4) (CyDye DIGE fluor 

Data File, 18-1164-84, GE healthcare) 
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Table 4. CyDye DIGE Fluor minimal dyes characteristics 

Fluor Fluorescence Max. absorption Max. fluorescence Added molecular 
colour wavelength (nm) wavelength (nm) weight (Mr) 

Cy2 Green 491 509 434 

Cy3 Orange 553 569 466 

Cy5 Red 645 664 464 

The workflow of three-dye DIGE system is as simple as traditional 2-DE. Samples 

are washed and lysed in special DIGE lysis buffer without primary amino reagent, 

which may interfere with DIGE labelling. After adjust the pH of protein extracts to 8.5 

(optimal pH for DIGE labelling), one of three fluorescent dyes is added to samples in a 

dye/protein ratio at 400pmol dye/50µg protein. In this condition, only 3% of total 

amount of each protein is tagged. Normally the same amount of two different protein 

extracts are labelled with Cy3 and Cy5 and also a randomized crisscross experimental 

design is used in which two extracts are each tagged with Cy3 or Cy5 to eleminate 

differences between dyes. The pooled internal standard, which contains equal amounts 

of each protein extract, is labelled with Cy2, and is included in all gels to normalize 

protein abundance measurements across multiple gel experiments. After labelling, 

protein extracts and the pooled internal standard are mixed together and resolved in a 

single 2-DE gel. Protein spot patterns are visualized by alternately illuminating the gel 

with the excitation wavelengths for each of the three fluorescent dyes by fluorescence 

scanner. The 2-D images are analyzed by specific software, such as DeCyder. The 

intensity of protein spots on the 2-D images of different protein extracts are compared 

with the pooled internal standard, which reduces variation between gels and enables 

automated and accurate spot quantitation, gel-to-gel matching and statistical analysis 
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(Figure 11). In order to maximize the amount of protein available for MS, the total 

protein should by visualized using a post-staining method (silver staining or SYPRO 

ruby) (Monteoliva and Albar 2004). 

Figure 11. Workflow of three-dye DIGE system 
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Figure 11. Two samples are labelled with Cy3 or Cy5. Pooled internal standard is 
labelled with Cy2. Mixtures are co-separated by 2-DE and separate images are acquired 
for each dye by a fluorescence scanner. Quantitative analysis is carried out by DeCyder 

software. 
(http"//www5 amershambiosciences com/aptrix/upp009I9 nsf/Content/Proteomics+DlG 
E-Proteomics+DIGE+Applications) 

1.3.5 Biological mass spectrometry 

Before biological mass spectrometry was invented, protein characterization was 

mainly undertaken by Edman degradation. However, this approach fails in the analysis 

of subpicomole (10-12 M) quantities or N-terminally blocked proteins (which are very 

common in eukaryotes). By contrast, biological mass spectrometry can provide an 

analytical sensitivity down to the subfemtomole (10-15 M) level and is not restricted by 

terminal modifications. 
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In the basic workflow for protein identification, mass spectrometric analysis is 

preceded by site-specific proteolysis (Shevchenko, Wilm et al. 1996). Trypsin normally 

is the best enzyme for unknown substrate, which can generate peptides between 1000 to 

2000 Da in mass (most convenient mass range for biological MS). Next, the peptide 

ions are produced by matrix-assisted laser desorption/ionization (MALDI) or 

electrospray ionization (ESI). Gas-phase ions are separated according to their mass (m) 

to charge (z) ratio (m/z) (Corthals 2000) in various mass analyzers, such as 

time-of-flight (TOF), quadrupole, ion trap, or Fourier-transform ion cyclotron resonance 

(FT-ICR) analyzers. The optional fragments of selected ion species are generated either 

by postsource decay (PSD) or by collision-induced dissociation (CID). The signal 

intensity of different peptides are recorded by the detector, obtaining a spectrum that 

displays ion intensity versus m/z values (Roepstorff 1997; Mann, Hendrickson et al. 

2001). Experimentally obtained peptide masses from the MS spectrum are subjected to 

database searches. There are several websites for database searching with mass 

spectrometric data (such as http: //www. matrixscience. com, http: //www. expasy. ch/tools ). 

The common aspect of all search engines is the generation of a protein ranking based on 

peptide mass matching probabilities using various computer algorithms, such as 

PROFOUND, MASCOT, MOWSE and SEQUEST. 

In MALDI-ToF MS, the laser ionizes predominantly singly charged peptides 

within a mixture of sample and matrix. Because in an electric field the time a peptide 

takes to hit the detector is proportional to its ratio of mass to charge (m/z), peptides with 

different mass spend different time to reach the detector. The ion signal intensity versus 
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its m/z (measured as time of flight) was ploted (Figure 12). The spectra were analyzed 

and the prominent intensity peaks were labelled and searched against protein databases. 

i. e. using the MASCOT program (http: //wwwmatrixscience. com) (Perkins, Pappin et al. 

1999). One specific protein has one set of defined peptide masses after tryptic digestion, 

so called peptide mass fingerprint (PMF). By comparing the observed PMF with the 

calculated PMF, the probability (P) of the proteins that the observed match is a random 

event can be calculated and shown as protein score, which is -10*Log(P). A higher 

score means lower possibility that the observed match is a random event. Scores > 59 

are considered significant (p<0.05). 

Figure 12. A representative MALDI-ToF MS spectrum 

Recently, tandem mass spectrometry (MS/MS) is commonly used to get partial 

peptides sequence information so that obtain highly confident protein identifications. A 
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Figure 12. Spectrum was recorded by Kratos Axima CFR MALDI-ToF MS and ploted 
as relative intensity versus m/z. The m/z values of predominant peaks were labelled and 
subjected to database search. 



peptide isolated in the gas phase of the first mass scanning stage is further dissociated 

by PSD or CID. The peptide will be broken at where the peptide bonds formed and B 

ions and Y ions are generated (Figure 13). The masses of the peptide fragments are 

determined in the second mass stage with the resulting data used for sequence analysis 

and database searching (Yates, Eng et al. 1995). MS/MS instruments include 

combination of MALDI-MS with PSD or ESI-MS coupled to triple-quadrupole MS or 

ion-trap MS. The latter is commonly regarded to be superior to MALDI-PSD MS/MS 

because of its greater sensitivity and less complex fragment ion spectra. Notably, 

MALDI MS is more tolerant to sample contamination and less time consuming than 

MS/MS. 
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Figure 13. A representative LCQ MSIMS spectrum 

(A) 

Y3 z3 X2 Y2 12 X1 Yl z, ---. ýº 

R11,0 , R, 0 R, 0 A4 

H2N-C484N-TC48 TN :C '8 ; -NTC-COON 
HI IH :H: :H: H;: H: H 

-- -- -- -- -- -- -- -- 
a, b1 ci a2 b2 c2 a3 b3 c3 

(B) 

d' s. lt1 It CM 1? a s«. "40X f -- 7---- 
Dyh.. - 17: ' h. - 11246 MM 2 MmV1M. W 
MNr c_7 l 602 

P Fi-j I. rA D/ rrr arc i ;yrrr v6 rz rGT ApyWvrJMýW 

1D 11t. M - if 
20 2323 toil! 1! 
7f.. IUftl N 
. '2 . 103l 155031 /] 
50 ! N! 2 5837!. Q 
tD C34,1%SAC 11 
7v m7.121At1 M 
6 I. MIN 1131.50 I 
ll . MO{ 161111 $ 
M 1.115027 Pt3. W 7 
11 I 1251 Y 7771$ 
12 D I]'. 21 M') 3 

15   ISS" 1.16! t 
45534 3 

1! ft. 722! 1 2 
tt q 115.21 1 

D0 CA D t 1LF 1 D   7PR 

"Im-1 ma7.196-4ssara IDDE! 

100 

i II 
Mz 

2713 11$ 

n. « 2254 

phi 1Y 
]d 

11$ 
11Ni 

10705 1f 
1151.5 

ti 
T71' 20- r: 2 1260 " « 

1 
ý'1 lw 1365f ý 

ba 69 f 6' t5yp 71744 
Sao0 %014 1742t 

r11 , AA 

0 
0 100 200 3050 400 500 p0 70p p0 W topp 1700 1200 1300 140 1500 1f00 7100 

Figure 13. (A) Different ions (a and x, b and y, c and z ions) can be generated during 

the MS/MS. (B) Peptide ion spectrum obtained by LCQ Deca XP Plus MS/MS 
(Thermo). B ions and Y ions were recognized and labelled with red and blue colour, 
respectively. 

With rapid development during these years, mass spectrometers have emerged as a 

core technology for peptide and protein structural analysis, forensic analysis, 

metabolomics, and pharmaceutical drug discovery. Newly developed orbitrap (Hu, Noll 
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et al. 2005) and electron transfer dissociation (ETD) (Syka, Coon et al. 2004) provides 

the abilities of obtaining high mass accuracy and analysing posttranslational 

modification by MS/MS, which facilitates us in the protein modification 

(phosphorylation, oxidation and glycosylation) research and analysis of complex blood 

samples or biomarkers. 

1.3.6 Alternative non-gel based approaches 

Proteomic research lacks an amplification method, such as polymerase chain 

reaction (PCR) in genomic sequencing and is limited by the absence of technologies 

that can perform a fast and high-throughput analysis of complex protein distributions 

automatically (Fey and Larsen 2001). Despite the potential and resolution of 2-DE, it 

remains a labour-intensive technique that requires qualified personal to obtain 

reproducible results. Also because of its limitation with respect to the resolution of 

proteins with extrem properties, alternative gel-free approaches are developed to avoid 

these disadvantages, such as multidimensional liquid chromatography (MDLC) online 

with ESI-MS/MS. 

1.3.6.1 Multidimensional liquid chromatography (MDLC) 

As an alternative to 2-DE approach, initial efforts have focused on MDLC to 

decrease sample complexity coupled with MS for protein identification (Lopez and 

Melov 2002). In LC/MS-based approaches, complex protein mixtures are digested in 

solution and fractionated by one or several steps of capillary chromatography and 
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analysed in a data-dependent manner by MS/MS. 

A clear advantage is that most of these methods are very automation-friendly. 

However, exhaustive analysis of the sequence data obtained demands powerful 

computing facilities. The MDLC can minimize the bias toward larger proteins with 

more numerous peptides but it is not quantitative and the purified peptides are not all 

ionized, leading to underrepresentation of these proteins. 

Major limitation of LC/MS-based methods is the difficulty in performing 

differential display analysis. To date, several different chemical, metabolic and 

enzymatic labelling techniques are used to perform non-gel MS-based quantatitive 

proteomics, such as stable isotope labelling with amino acides in culture media (SILAC), 

isotope-coded affinity tags (ICAT), iTRAQ, etc. For the comparison between different 

experiments or for the absolute quantification, reference peptides need to be introduced 

into MDLC system. 

1.3.6.2 SI LAC 

SILAC (Ong, Blagoev et al. 2002) is a simple and accurate approach for 

MS-based quantitative proteomic methods. Two groups of cells are grown in culture 

media that are identical except one contains the light form (labelled with 1H, 12C and 

'4N) and the other contains the heavy form (labelled with 2H, 13C and 15N) of a 

particular essential amino acid (e. g. L-leucine or arginine). After several times of cell 

doubling, the cell population replaces the original form of the amino acid with the given 

light or heavy form of the amino acid. In this way, the same proteins from two different 
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samples will show the same chemical behaviour but with a difference in mass detectable 

by MS. Peptide peak intensities can be used for relative quantification of these proteins 

(Figure 14A). 

Figure 14. Scheme of SILAC 
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Figure 14. (A) Worke flow of SILAC. Different samples are cultured in medium 
contain light or heavy amino acid. Cell lysates are combined, digested and quantified by 
MS. (B) Comparison between different labelling methods. SILAC labels samples at the 
cell level, which has high efficiency and minimum artificial error. 

The advantages of SILAC are that it incorporates with nearly 100% efficiency and 

does not require multiple chemical processing and purification steps, thus ensures the 

two different samples have been subjected to same conditions throughout the 

experiment and allows using any method of protein or peptide purification without 

introducing error into the final quantitative analysis. 

1.3.6.3 ICAT 

Isotope-coded affinity tags (ICAT) represented the first labeling strategy for 

protein expression analysis using LC/MS approaches that facilitated high throughput 

proteomics and enabled relative quantitation between two samples for proteins that 
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contain the amino acid cysteine (Gygi, Rist et al. 1999). 

In this elegant and straightforward approach, two samples are labelled with 

structurally identical tags that differ in isotopic composition and contain a thiol-reactive 

group, which covalently links to cysteine residues, and a biotin moiety. The samples are 

combined, digested, and the labeled peptides are selectively enriched via biotin-avidin 

affinity chromatography. They can be separated, quantitated and identified by MS/MS 

(Figure 15). 
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Figure 15. Proteins from different samples are labelled with different ICAT tags and 
then combined, digested, affinity separated and analyzed by MS/MS. Relative intensity 
of the peptides from different samples indicates the relative abundance of the original 
proteins. Protein identifications are obtained by the sequence analysis of the peptide. 
(httu: //www cnic es/yroteomica/im CAT f) 

t 
c 

Quantification "'fz 
MS 

81 



One of the main advantages of ICAT is that it selects for peptides that contain 

relatively rare cysteine residues, which significantly reduces the complexity of the 

sample and its resulting mass spectrum. At the same time, this is also one of its 

drawbacks because many important proteins, including those with PTMs, do not contain 

cysteine. As a result, several groups have described alternative labeling strategies that 

target lysine and tryptophan residues or peptide N- or C- termini. 

1.3.6.4 iTRAQ 

Recently, an improved approach analogous to ICAT has been developed called 

iTRAQTM. The technique is based upon chemically tagging the lysine sidechain and the 

N-terminus of peptides by one of four isobaric N-hydroxysuccinimide ester tags with 

different mass of reporter moieties. Labelled samples are then combined, fractionated 

by nanoLC and analyzed by MS/MS. Database searching of the fragmentation data of 

the peptides results in the identification of the labelled peptides. Measurement of the 

intensity of the reporter ions enables relative quantification of the peptides in each 

digest (Figure 16). 
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Figure 16. iTRAQ principles 
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Figure 16. Peptides from different samples are labelled with different iTRAQ tags and 
then combined, fractionated and analyzed by MS/MS. Protein is identified by the 
sequence analysis of the peptide and their relative abundance derived from the relative 
intensity of the reporter moiety. (http: //www. proteome. soton. ac. uk/iTRAO. htm) 

Both ICAT and iTRAQ techniques require proteins to be chemically modified 

before they are mixed so that these techniques have the potential to introduce artifical 

sample preparation biases. 

1.3.7 Vascular Proteomics 

In the early times, when the absence of immobilized pH gradients and powerful 

computer-based analysis software limited the reproducibility and accuracy of 2-DE, 

only the most obvious changes were detected, i. e. albumin, fibrinogen, immunoglobulin 

G alpha-I antitrypsin, transferrin, haptoglobin, ApoA-I and ApoA-II, which were 

originated from the plasma and accumulated in diseased vessels (Stastny, Fosslien et al. 
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1986). Later studies reflect the compromised endothelial barrier function of diseased 

and aged vessels (Song, Stastny et al. 1985; Stastny and Fosslien 1992). Even with 

recent improvements in 2-DE and the availability of sophisticated software packages for 

gel analysis, proteomic characterization of atherosclerotic lesions remains a challenge. 

Many variations will influence the reliability of the differences found in proteomic 

analysis, e. g. the biological variability between human, the variability between 

heterogeneous composition of atherosclerotic lesions and the experimental variability of 

proteomic analysis. To overcome the limitations of heterogeneity in cell composition, 

laser capture microdissection may be used. However, collecting sufficient material for 

proteomic analysis is time-consuming and it is difficult to identify proteins from very 

limited amounts of tissues. The most feasible alternative is to use cultured cells and to 

study proteomic changes in response to cardiovascular risk factors, such as high levels 

of glucose, cholesterol, and mechanical stress. 

An interesting alternative approach to study atherosclerotic plaques with 

proteomic techniques was performed recently (Duran, Mas et al. 2003). Normal arteries 

and carotid endarterectomy samples were cultured in protein-free medium and the 

supernatant was analyzed by 2-DE. Proteins involved in reverse cholesterol transport, 

apoptosis, protein degradation and antioxidants were found to be released from plaques, 

which fits well in the pathophysiological context of atherosclerosis. However, it remains 

to be clarified whether these proteins are really secreted by plaques or just because of 

the diffusion difference between plaques and normal arteries. 

Several SMCs proteome maps have been published recently (McGregor, Kempster 
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et al. 2001; Dupont, Corseaux et al. 2005; Mayr, Mayr et al. 2005). Proteomic changes 

in venous SMCs exposed to hemodynamic stress were observed for proteins of the 

gelsolin family and actin filament remodelling. These indicate that mechanical 

stress-induced protein changes favour the generation of contractile stress fibbers 

(McGregor, Kempster et al. 2004). Proteomic techniques are applied to several 

functional studies on arterial SMCs, such as SMC hypertrophy and hyperplasia 

(Holycross, Peach et al. 1993; Patton, Erdjument-Bromage et al. 1995), 

aging-associated effect on SMC differentiation (Cremona, Muda et al. 1995), SMC 

apoptosis and proliferation (Guevara, Kim et al. 1999; Taurin, Seyrantepe et al. 2002) 

and vascular SMC response to oxidative stress (Liao, Jin et al. 2000). In a recent study 

combined proteomics and metabolomics to investigate the mechanism of the neointima 

formation in vein graft of protein kinase C delta (PKCS)-deficient mice (Mayr, Siow et 

al. 2004). 

Similarly, annotated 2-DE map of proteins expressed in human umbilical vein 

endothelial cells (HUVECs) has been published (Bruneel, Labas et al. 2003; Bruneel, 

Labas et al. 2005) and is available on the web at http: //www. huvgc. com. Data were 

accumulated from separations conducted on 3-10,4-7 and 4-6.5 pH gradients and 

displayed more than 1,000 protein species and more than 200 have been identified, 

providing a representative overview about the most abundant proteins in this important 

cellular model. 
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1.4 Oxidative Stress 

Oxidative stress is the disturbance in the prooxidant-antioxidant balance in favour 

of the former (Sies and Cadenas 1985). It induces cellular redox imbalance and leads to 

potential tissue damage (or altered cell responses) (Sies 1991). Cellular prooxidants 

include reactive oxygen species (ROS), reactive nitrogen species (RNS), lipid 

hydroperoxides (ROOH), paraquat, adriamycin, etc. There are two kinds of antioxidants: 

enzyme systems (SODs, catalase, glutathione peroxidase, peroxiredoxins) and radical 

scavengers (ascorbic acid, a-tocopherol, GSH, thioredoxin, selenium, etc). Also there 

are mainly two kinds of redox pairs: thiol redox (GSWGSSC; protein sulphydryls), and 

pyridine nucleotide redox (NADPH / NADP+, NADH / NAD+). 

1.4.1 Source of ROS 

ROS come from both endogenous and exogenous sources, including mitochondria, 

cytochrome P450 metabolism, peroxisomes, and inflammatory cell (neutrophils, 

eosinophils and macrophages) activation (Inoue, Sato et al. 2003). The oxygen free 

radical is the ultimate source of many ROS, which is mainly generated by the 

mitochondria. The electron transport chain leakage (ubiquinone and several iron-sulphur 

clusters transfer electron directly to oxygen instead of to the next electron carrier, shown 

in Figure 17) will generate superoxide anion radical (02'"), which form hydrogen 

peroxide (H202) and hydroxyl radical (HO). SOD-2 and glutathione peroxidase (GPx) 

is the main scavenger of 02' and H202 in mitochondria, respectively. Thus 

mitochondria represent the main source of the intracellular oxygen radicals (02' and 
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H202) in mammalian organs. 

Figure 17. Mitochondrial electron transport chain and ROS generation 
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Figure 17. Mitochondrial complex I and II transfer electrons from NADH and succinate, 
respectively, to ubiquinone. The reduced ubiquinol will pass electrons to complex III 

and becomes ubisemiquinone. Antimycin A inhibits the recycle of ubisemiquione back 
to ubiquinone. Accumulation of ubisemiquinone will generate superoxide. Site of 
inhibition are indicated with boxes. DPI, diphenylene iodonium; SOD, superoxide 
dismutase; TTFA, thenoyl trifluoracetone. (Chandel, Maltepe et al. 1998) 

NAD(P)H oxidase is considered as major source of ROS in vasculature and SMCs. 

In neutrophils, high levels of ROS generated by NAD(P)H oxidase are used to kill 

invading microorganisms, while nonphagocytic cells only produce low levels of ROS. 

NAD(P)H oxidase comprises several subunits, p22phox, gp91phox, p47pnox, p40Phox, 

p67ph°", and Rac. When cells are stimulated with cytokines, growth factors, and 

hormones (Sauer and Wartenberg 2005) (such as interleukin, TNF-a, PDGF, TGF-ß 1, 

VEGF), the cytosolic subunits (p47, p40, and p67) will translocate to the membrane 

subunits (p22 and gp9l), resulting in NAD(P)H oxidase activation and the oxidative 

burst. 

Besides the above main source of ROS generation, there are several other 

endogenous or exogenous sources of cellular oxidants, shown in Table 5 (Klaunig and 

Kamendulis 2004). 
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Table 5. ROS and reactive nitrogen species generation in the cell 

Cellular oxidants Source Oxidative species 
Endogenous Mitochondria 02'', H202, HO' 

Cytochrome P450 02'", H202 
Macrophage/inflammatory cells Of, NO', H202, OCl" 
Peroxisomes H202 

Exogenous Redox cycling compounds 02'' 
Metals (Fenton reaction) HO' 
Radiation HO' 

1.4.2 Oxidative effects 

All macromolecules can be damaged by ROS and lead to various diseases: (a) 

nucleic acid damage cause mutation and carcinogenesis (Nakabeppu, Sakurai et al. 

2006); (b) membrane damage by lipid peroxidation (Girotti 1998); (c) protein damage, 

deactive enzymes, receptors and transporters (Davies 2005); (d) polysaccharide damage, 

hyaluronic acid degradation caused arthritis (Jahn, Baynes et al. 1999). 

Glutathione (GSH, L-y-glutamyl-L-cysteinylglycine), first discovered in 1920s, is 

present in millimolar concentrations within most eukaryotic cells and involves in 

various biologic phenomena. Cellular GSH comes from glutathione synthesis, reduction 

of oxidized glutathione (GSSG), and luminal and plasma GSH transportation. It is an 

important protective antioxidant against free radicals and other oxidants by oxidation of 

the thiol (-SH) group of its cysteine residue. The functions of different GSH-related 

enzymes (GSSG reductase, thioredoxin-thioredoxin reductase system, thiol transferase, 

and protein-disulphide isomerase) demonstrate GSH's capability of catalysing protein 

thiol-disulphide interchange for defence against oxidative stress. Hence, GSH plays an 

important role in enzyme activation and regulation of complex biochemical processes. 
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The ratio of GSH to GSSG (GSH/GSSG) is crucial in cells (Cotgreave and Gerdes 

1998). GSH depletion and altered GSH/GSSG ratios can signal the development of 

oxidant-mediated tissue injury (White, Mimmack et al. 1986; De Vecchi, Lubatti et al. 

1998) and malformations during embryogenesis (Trocino, Akazawa et al. 1995). 

Sustained low level of GSH/GSSG can cause cell death. 

Thiol antioxidant 2-mercaptoethanol (2-ME) has been reported to support 

lymphopoiesis and to maintain a variety of other cell lines in vitro, including enhancing 

leukaemia and lymphoma cells proliferation, stimulation of the proliferation of murine 

spleen cells by enhancing the transport of L-cysteine into the TCA-insoluble pool, and 

benefit for the optimal maintenance of colony formation, cell proliferation and 

differentiation of marrow osteoprogenitor cells in primary human bone marrow 

fibroblast cultures (Inui, Oreffo et al. 1997). The uptake of the essential amino acid 

cysteine and consequently the maintenance of intracellular glutathione levels are 

enhanced by 2-ME. Furthermore, 2-ME causes lymphocytes to release thiols into the 

culture medium, which may protect the cells from oxidative damage (Neumann, Zierke 

et al. 1998) 

Many proteins have been shown to be sensitive to thiol disulphide interchange 

reactions, including enzymes involved in central and peripheral metabolism, signal 

transduction, protein catabolism, and anti-oxidative enzymes (Cotgreave and Gerdes 

1998). The activation of many proteins is related with the modifications induced on 

thiols by redox changes while some proteins lose their function after these 

modifications. 
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The peroxiredoxin (PRX) family represents a special type of peroxidases, as the 

protein is the reducing substrate itself. According to the number of cysteine in the active 

site and the reaction procedure, they can be classified into typical 2-Cys peroxiredoxin 

(PRX-1, -2, -3, -4), atypical 2-Cys peroxiredoxin (PRX-5) and 1-Cys peroxiredoxin 

(PRX-6). Upon oxidative stress, the cysteine in the active site is either oxidized to 

cysteine sulfenic acid or overoxidized to cysteine sulfinic acid (Manevich, Sweitzer et al. 

2002; Wood, Schroder et al. 2003) (Figure 18). While the first modification is DTT 

sensitive and therefore undetectable in 2-DE gels, the latter modification is DTT 

resistant and results in a charge shift towards a more acidic pI (Wagner, Luche et al. 

2002). Peroxiredoxin 6 only has one cysteine in the active site and is more easily 

oxidized than other peroxiredoxins so that it can be used as an indicator for high level of 

ROS in cells. 
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Figure 18. Redox modification of reactive cysteine in proteins 
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Figure 18. The main target of proteins under oxidative attack is the cysteine residue of 
the protein. Under physiological pH, a reactive cysteine can exist as thiolate anion, 

which more easily undergoes reversible oxidation either by the reaction with ROS 
(S-hydroxylation), NO radical (S-nitrosylation), or GSSG (S-glutathiolation). The 

reaction products are Prot-SOH, Prot-S-NO, or Prot-S-SG, respectively. Prot-S-OH can 
be transformed into Prot-S-SG when GSH exists to protect the protein from further 

oxidation into sulfinic acid (Prot-S02H) or sulfonic acid (Prot-SO3H), which are 
irreversible modifications of cysteine. (Filomeni, Rotilio et al. 2005) 

Oxidized proteins are recognized by proteases and completely degraded to amino 

acids in mitochondria. In cytoplasm, nucleus and endoplasmic reticulum of eukaryotic 

cells, these biological reactions occurre in the proteasome complex. When exposed to 

high oxidative stress or in the presence of declined proteolytic capacity (aging or certain 

disease states), the oxidized proteins will accumulated and cross-link with one another 
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or form extensive hydrophobic bonds and further impair the normal cell functions. 

Protein synthesis inhibitors shunt intracellular cysteine from protein synthesis to GSH 

synthesis (Ratan, Murphy et al. 1994), which increases the resistance to apoptosis. 

During the 1980s, most studies focused on the detrimental effects of oxidative 

stress in biological processes, such as necrotic cytotoxicity. Now it is well known that 

oxidative stress take up a role in the regulation of many physiological processes. 

Change of intracellular redox state becomes an additional signal that can regulate 

proliferation, cell cycle and apoptosis. 

Oxidants and oxidant-mediated regulation is involved in both mitogenesis and 

apoptosis. Exposure to oxidative stress can induce a wide series of responses ranging 

from increased mitosis to transient growth arrest, transient adaptation, permanent 

growth arrest, apoptosis, and necrosis (Davies 1999). These effects depend on the cell 

type, source, species, intracellular oxidants concentration and duration of stress (Figure 

19). 
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Figure 19. Cellular responses to oxidative stress 
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Figure 19. For terminally differentiated cells (A), highly proliferative tumour or 
transformed cells (C), oxidative stress can induce apoptosis or necrosis. For mitotically 
competent cells, lower level of oxidative stress can stimulate cell proliferation, but at 
higher oxidative stress, cells will die by apoptosis or necrosis (B). (Aw 1999) 

1.4.3 Apoptosis 

Apoptosis is a common mechanism of cell replacement, tissue remodelling, and 

removal of damaged cells (Chandra, Samali et al. 2000). The most prominent protease 

families implicated in apoptosis are caspases. About 100 proteins are potential caspase 

substrates and caspase-mediated proteolysis is the essential step of most apoptosis 

events. Caspases are cysteine-containing, aspartate-specific proteases which exist as 

zymogens in cytoplasm, mitochondrial intermembrane space, and nuclear matrix of 

virtually all cells. The activity of caspases is optimal under reducing environments. 

There are three proposed models for caspase activation. First, apoptosis can be 

induced by ligation of cell surface receptors, causes assembly of death-inducing 

signalling complex (DISC) and activates caspase-8, caspase-3 and other caspases, 
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ultimately cleaves various substrates. Second, cytochromc c released from 

mitochondrial forms apoptosomc with apoptotic protcasc activating factor I (Apal-I) 

and activates caspasc-9, caspasc-3 and caspasc-7 (Figure 20). The third pathway is 

initiated by cytotoxic cells, which release per(orin to attack the target cells. Perforin 

permeahalizes target cells, allowing granzyme into the cytosol, where it activates 

caspas-3 and induces apoptosis in tumour cells and inlccted cells (Chandra, Saniali et al. 

2000). 

Figure 20. Intracellular ROS-mediated apoptotic pathways 
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Figure 20. Apoptosis can be induced by H202-induced upregulation of Fas-Fact- system, 
leading to activation of caspase-8 and downstream caspases, and ultimately cleaves 
various substrates. Another pathway focuses on H-, O, -caused release of cytochrome c 
from mitochondria into the cytosol, which forams apoptosome and activates caspase-9 
and caspase-3. H-, O2 also activates nuclear transcription factors and induced cell death. 
GSH and SODs are the main cellular defenses against ROS. (Chandra, Saniali et al. 
2000) 

A role for oxidative stress in apoptosis has been elucidated by several independent 

observations. Apoptotic cell death can be switched to necrosis during oxidative stress by 
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oxidation of active site thiol group of caspases and oxidative-induced mitochondrial 

energy production failure. Oxidative stress can inhibit caspases activity directly by 

modifying cysteines of the active site or indirectly by activating caspase inhibitors 

(Chandra, Samali et al. 2000). During the oxidant-induced apoptosis, oxidative stress 

causes a mitochondrial calcium influx, which activates mitochondrial nuclease to 

degrade all mitochondrial polynucleotides. It is possible that partially digested 

mitochondrial polynucleotides play a similar role as released cytochrome c in activating 

pro-apoptotic enzymes (Cadenas and Davies 2000). 

1.4.4 Oxidative stress in pathophysiology 

A lot of biological and pathological processes and various diseases are caused by 

oxidative stress, most of which are linked with apoptosis, such as aging, inflammation, 

ischemia-reperfusion, carcinogenesis, AIDS, Parkinson's (Chandra, Samali et al. 2000). 

1.4.4.1 Aging 

Aging is progressive and endogenous. This ultimately determines the rate of aging 

and maximum life-span potentials (MLSPs) of different animal species. (Barja 2002). 

Many recent studies support that free radicals, especially those of mitochondrial 

origin, are related to the basic aging process (Weindruch and Sohal 1997; Beckman and 

Ames 1998; Barja 1999). Most investigations showed that endogenous antioxidants are 

negatively correlated with maximum longevity without normalization by metabolic rate 

(Perez-Campo, Lopez-Torres et al. 1998), suggesting that the rate of oxygen radical 
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generation in tissues in vivo at normal conditions must be lower in long-lived than in 

short-lived species. Overexpression of GSH reductase in Drosophila melanogaster did 

not prolong their MLSP (Mockett, Sohal et al. 1999) and aging rate does not seem to 

change in SOD- or GPx-knockout mice (Banja 2002), indicated that antioxidants do not 

slow the intrinsic aging process. However, antioxidants can non-specifically protect 

against many causes of early death, normally exogenous oxidative stress, so that 

increase animal survival, especially under suboptimum conditions. These can be very 

important to prevent early death in human populations living in suboptimum 

environment. 

Various studies point to two parameters that can elucidate the connection between 

aging and oxidative stress. One parameter is the rate of generation of ROS by 

mitochondria, which correlates better than the metabolic rate with maximum longevity. 

Long-live animals have a lower ROS generation rate and lower antioxidants level 

correspondingly. On the other hand, the higher oxidative stress caused more damage in 

the mitochondrial DNA (measured as 8-OHdG) of short-lived than in that of long-lived 

animals, which will be accumulated during aging and result in mitochondrial 

malfunction (Cadenas and Davies 2000). The other parameter is the degree of fatty acid 

unsaturation of tissue cellular membranes, measured as the total number of fatty acid 

double bonds (double bond index, DBI). DBI is negatively correlated with body size in 

mammals, which is due to the endogenous desaturase activities in different species. 

Thus, the low DBI of long-lived animals would protect them against lipid peroxidation 

(Banja 2002). 
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1.4.4.2 Cardiovascular disease 

Cardiovascular diseases are associated with increased oxidative stress in blood 

vessels. ROS are regarded as one of the risk factors for the pathogenesis of various 

cardiovascular diseases, including hypertension, atherosclerosis, restenosis, cardiac 

hypertrophy, and heart failure. 

ROS generated from NAD(P)H oxidases expressed in ECs and SMCs have been 

demonstrated to be involved in artherosclerosis, hypertension, heart failure, and diabetic 

vasculopathy (Sauer and Wartenberg 2005). Vascular SMCs contain potent 

oxidant-generating systems, acting as major superoxide source in the normal vessel wall 

(Griendling, Minieri et al. 1994). NADPH-derived superoxide and H202 are intimately 

involved in SMC growth and apoptosis. In ECs, laminar shear results in a transient 

activation of NADPH oxidase, whereas oscillatory shear causes a sustained increase in 

their activity. Superoxide in the vessel wall will react with NO and form peroxynitrite, 

thereby impairing endothelium-dependent vasodilatation, oxidize LDL, increase 

adhesion molecule expression in ECs, and activate matrix metalloproteinases 

(Griendling, Sorescu et al. 2000). oxLDL has been shown to produce multiple 

functional alterations that are potentially involved in atherosclerosis (Steinberg, 

Parthasarathy et al. 1989). Low concentration of oxLDL stimulates SMC proliferation, 

while higher doses can induce apoptosis (Dietrich, Hu et al. 2000). Although ROS serve 

as short-term second messenger in vascular cells, the long-term effect of ROS induces 

cellular damage and lesion formation. Notably, over-expression of the uncoupling 

protein 1 promotes atherosclerosis by triggering mitochondrial dysfunction, depleting 
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energy stores and increasing superoxide production (Bernal-Mizrachi, Gates et al. 2005), 

which is in agreement with our observations (Mayr, Chung et al. 2005). Thus, there is a 

growing body of evidence that mitochondrial energy metabolism and oxidative stress 

are intertwined in cardiovascular disease. 

1.4.5 Antioxidant therapy 

The antioxidant therapeutic interventions, which reduce the generation of ROS, 

include vitamin E-like antioxidant, native SOD, SOD mimic, and ON00' 

decomposition catalyst. 

Protective and beneficial roles of SOD have been demonstrated in broad range of 

diseases. SOD effectively attenuates both acute and chronic inflammatory responses in 

animal models of human diseases. Bovine erythrocyte SOD-1 attenuated the 

inflammatory injury of the colons and showed promising therapeutic efficacy with 

rheumatoid arthritis, osteoarthritis, and side effects associated with chemotherapy and 

radiation therapy. However, they have several disadvantages: (a) H0' formation from 

SOD product H202; (b) short circulating half-time, antigenicity, bell-shaped dose 

response curves, high susceptibility to proteolytic digestion; and (c) they cannot 

penetrate cells or cross the blood-brain barrier (Cuzzocrea, Riley et al. 2001). 

A series of low molecular weight SOD mimics, such as manganese-based 

metalloporphyrin complexes, have been developed to overcome some limitations of the 

native enzymes. An important and unique property of these SOD mimics is that they are 

stable to dissociation and oxidation in the Mn(II) oxidation state. In addition, they are 
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not deactivated by ON00' or H202 but possess catalase activity, scavenge ON00' and 

inhibit lipid peroxidation. Mn(II)-based SOD mimics shows cardio-protective effects in 

isolated heart preparations and in the in vivo models of myocardial ischemia/reperfusion 

injury (Cuzzocrea, Riley et al. 2001). The most profound effects of metalloporphyrin are 

depressing the neutrophil influx and reducing nitrotyrosine formation. Although they are 

very effective compounds in a wide range of oxidative stress paradigms, its potency and 

efficacy can be quite variable. One general limitation is their poor blood-brain 

permeability that complicates their use in neurodegenerative diseases (Cuzzocrea, Riley 

et al. 2001). 

Peroxynitrite decomposition catalysts also have anti-inflammatory function. 

Fe(III)-porphyrin complexes show a peroxynitrite isomerase activity, which measurably 

reduces the lifetime of peroxynitrite under physiologically relevant conditions. It is 

likely that peroxidase enzymes might function additionally as endogenous peroxynitrite 

isomerase, such as mammalian heure haloperoxidases. An active drug will duplicate 

peroxidase reactivity at critical sites where these enzymes are not present in optimal 

quantities (Cuzzocrea, Riley et al. 2001). 

It is well established that ROS formation plays a critical role in the development 

of atherosclerosis (Griendling and FitzGerald 2003; Griendling and FitzGerald 2003). 

Oxidative stress has been implicated in development of potentially proatherogenic 

actions on SMC proliferation, inflammatory cell recruitment, and redox-sensitive gene 

expression. Results of antioxidant trials, however, were disappointing (Touyz 2004). 

Several explanations have been put forward including the fact that many oxidation 
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pathways are not effectively inhibited by certain antioxidants, that under certain 

conditions both vitamin E and C can exhibit pro-oxidant rather than anti-oxidant actions 

(Hazell and Stocker 1997; Podmore, Griffiths et al. 1998) and that doses of antioxidants 

that are effective in reducing systemic oxidative markers may not cause a significant 

reduction in oxidative injury in the site of interest (Touyz 2004). 
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RATIONALE 

SMCs are the key player involved in vascular modelling and vascular disease 

pathogenesis. Initially, it was thought that SMCs from the media migrated, 

dedifferentiation into the neointima thereby contributing to lesion development. There 

are now compelling data to suggest that smooth muscle progenitor/stem cells participate 

in atherogenesis. With regards to this novel hypothesis, the true contribution of 

stem/progenitor cells may be wholly established by understanding the mechanisms of 

vessel wall integration, specific recruitment signals, homing, differentiation and 

adhesion properties of these precursor cells. In addition, these mechanisms may provide 

new insight into therapeutic strategies such as vascular tissue engineering. 

Protocols to differentiate stem cells, more specifically ES cells into vascular SMCs 

have already been established by many labs. Using proteomics in conjunction with these 

protocols, we believe immense knowledge on stem cell differention may be obtained. 

First, by analyzing protein profiles including expression changes occurring at various 

stages during ES cell differentiation into SMCs, key proteins involved in molecular 

pathways governing this process may be highlighted. Second, the end stage proteomic 

profile may be used to confirm that a fully functional vascular SMCs similar to that 

present in native tissue can be successfully acquired by in vitro differentiation. 

Hence, within the field of stem cell vascular biology, proteomics can provide 

insight into the new atherogenesis hypothesis, and give new perspectives into 

therapeutic strategies for controlling this process in vivo. In addition, proteomics such as 
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that described here may be a potential tool to validify SMCs derived in vitro and 

subsequently used for vascular tissue engineering strategies. 
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AIMS AND OBJECTIVES 

As we now know, the ES cells have potential to differentiate into many kinds of 

other cell lines and replenish different tissue types. The two main ES cell lines currently 

available are human ES cells and mouse ES cells. Thorough studies of the mouse ES 

cells' functions and differentiation mechanisms will be fundamental for any future 

medical applications of human ES cells. Although ES cells and differentiated progenitor 

cells are already applied in medical therapy, the mechanism of ES cell differentiation 

toward a specific lineage and the protein expression changes involved are still not fully 

elucidated yet. 

In the present thesis, I will utilize proteomic techniques to study the ES cell 

differentiation and try to find some important protein changes and investigate their 

function in detail. 

Aim 1: There are no reliable ES cell proteome maps before I started my PhD, 

which is the fundamental reference if we want to compare the protein changes during 

their differentiation. Mouse ES cell were cultured and maintained in an undifferentiation 

state by using LIF-1 in the culture medium. The whole ES cell lysate were separated on 

a large format 2-DE gels and the proteins were identified by MS. Thus a reliable mouse 

ES cell proteome map was obtained. 

Aim 2: Mouse ES cells were induced to differentiate into SMC-like cells via the 

Sca-1+ progenitor cells. ES cells were predifferentiated by withdrawal of LIF-1 and 

Sca-1+ progenitor cells were then isolated by magnetic beads. Further culturing Sca-1+ 
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progenitor cells in differentiation medium supplemented with PDGF-BB will induce 

their differentiation into ES cell-derived SMCs (esSMCs), which express SMC markers 

and their purity was verified by FACS. The proteome map of Sca-1+ progenitor cells 

was also generated using the same protocols as the ES cell proteome map. 

Aim 3: Differences in protein expression of esSMCs and aortic SMC were 

directly compared by using DIGE approach. The majority of protein changes between 

these two cell lines were identified by tandem MS and verified by immunoblotting. 

Further comparison using enzymatic assay, cell viability experiment and treatment by a 

panel of inhibitors were carried on to find out some part of the mechanisms involved in 

ES cell differentiation. 
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2 MATERIALS AND METHODS 
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2.1 Cell culture and differentiation 

2.1.1 Mouse ES Cells Culture 

The clonal mouse ES cell line ES-D3 (CRL-1934, ATCC) was derived from 

blastocysts of a 129S2/SvPas mouse. ES cells were maintained as described previously 

(Vittet, Prandini et al. 1996). Briefly, ES cells were cultured in complete stem cell 

medium (see Appendix) in a humidified incubator with 95% air/5% CO2 at 37°C. The 

medium is buffered with 1.5 g/L sodium bicarbonate, which requires 5% CO2 to 

maintain the medium in the optimal pH range for cells (C02 + H2O -ý H2C03 H H+ + 

HCO3"). Undifferentiated ES cells were passaged into flasks coated with 0.04% gelatine 

(G1393, Sigma) at a ratio of 1: 6 to 1: 10 every 2 days to maintain an undifferentiated 

state. The addition of 2-mercaptoethanol provides an alternative source of -SH groups to 

regulates the redox level and protect cells from oxidative stress. 

2.1.2 ES cells differentiation to esSMCs 

To induce differentiation, ES cells were cultured on type IV mouse collagen 

(Trevigen) coated flasks for 3-4 days in basic differentiation medium (DM) (see 

Appendix) as described before (Hirashima, Kataoka et al. 1999). Sca-1+ cells were 

sorted from the cell culture by magnetic labelling cell sorting (MACS) with anti-Sca-1 

magnetic microbeads (Miltenyi Biotec) as described in our previous studies (Hu, Zhang 

et al. 2004). Briefly, cells were detached with 0.05% trypsin/0.02% EDTA solution 

(Invitrogen) from flasks and incubated with the antibody-conjugated/coated microbeads. 
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With occasional agitation for 15min at 4°C, the bead-bound cells were selected with 

magnetic cell separator (Miltenyi Biotec) and cultivated in collagen type IV coated 

24-well plate. After cultured with DM for 4 days, these cells were subcultured into 

collagen type IV coated 6-well plate with DM. These cells were called Sca-l+ cells, 

passage 0. After 2-3 days, Sca-l+ cells were subcultured and expanded in gelatin-coated 

flasks with DM and passaged every 2 days and change medium every day (Xiao, Zeng 

et al. 2006) Sca-l+ cells, passage 15, were harvested for proteomic analysis. 

Sca-1+ cells, passage 5-7, were stimulated with DM contains lOng/mL PDGF-BB 

(P4056, Sigma) in gelatin-coated flasks. These cells will express SMC markers after 5 

passages, so called ES-derived SMCs (esSMCs), passage 0. esSMCs were continuously 

passaged every 2 days in DM at ratio of 1: 2 to 1: 3 and change medium every day (Xiao, 

Zeng et al. 2006). esSMCs, passage 5-12, were harvested for proteomic analysis and 

immunoblotting. (Figure 2 1) 

Figure 21. Schematic illustration of ES cell differentiation procedure 
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Figure 21. Dissociated mouse ES cells were 
predifferentiated in collagen IV-coated dishes in basic 
differentiation medium (DM) without LIF-1. Sca-1+ 

cells were isolated with Sca-1 magnetic beads. When 

stimulated by IOng/mL PDGF-BB for 5 passages, 
more than 95% of these cells express smooth muscle 
cell markers, and were termed ES cell-derived SMCs 
(esSMCs). 
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2.1.3 SMCs culture 

Mouse mature vascular SMCs of C57BL/6J mice (Charles River, Sulzfeld, 

Germany) were cultivated from their aortas as described previously (Hu, Zou et al. 

1999). Briefly, mouse thoracic aortas were removed and washed with RPMI 1640 

(Invitrogen) medium. The Intima and inner two thirds of the media were carefully 

dissected from the vessel under an anatomic microscope, cut into pieces and planted 

onto a gelatine (0.02%) coated plastic bottle. The bottle was incubated upside down at 

37°C in a humidified atmosphere of 95% air/5% CO2 for 3 hours, and then primary 

culture medium (see Appendix) was slowly addes. Cells were incubated at 37°C for 7 to 

10 days and passaged by treatment with 0.05% trypsin/0.02% EDTA solution. The ECs 

will not survive during following cultures and no contamination was detected previously. 

Then these cells were cultured in the exactly same condition as the esSMCs. SMCs 

were cultured in 0.04% gelatine-coated flasks with DM in a humidity incubator with 5% 

CO2 at 37°C, passaged every 2 days at ratio of 1: 2 to 1: 3 with medium changes every 

day. SMCs were harvested at the same time as esSMCs for proteomic analysis and 

immunoblotting. 

2.2 H&E staining 

Cells were plated in 8-well chamber slides (Nalge Nunc) and cultured in complete 

stem cell medium or basic DM for 3 days then fixed and stained with H&E. Briefly, cell 

were stained in Harris' haematoxylin for 5min and in Eosin for 3min, followed by 

extensive wash in running water, then mounted with coverslip and left to dry. 
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2.3 Flow cytometry analysis 

The procedure was similar as described previously (Hu, Zhang et al. 2004). Briefly, 

cultured cells were incubated with dissociation buffer (Invitrogen) for 3min and blocked 

with diluted serum (the species of serum is the same as the secondary antibody) for 

20min on ice. The single-cell suspension was aliquoted and incubated with either 

isotype control or SSEA-1 (MAB4301, Chemicon), Sca-1 (553333, BD Biosciences), 

smooth muscle a-actin (C6198, Sigma), calponin (C2687, Sigma), and SMMHC 

(M7786, Sigma) antibodies for 30min on ice and incubated with rabbit anti-mouse or 

anti-rat immunoglobulin conjugated with FITC (DAKO). Cell suspensions were 

analyzed with FACS scan flow cytometer (Becton Dickinson Immunocytometry 

Systems). Data analysis was carried out using CeliQuest software (Becton Dickinson). 

2.4 Immunofluorescence staining 

The procedure was similar as described previously (Hu, Zhang et al. 2004). Briefly, 

cultured cells were labelled with mouse monoclonal antibodies to stage-specific 

embryonic antigen-1 (SSEA-1; clone MC-480; Chemicon) and Sca-1 (clone E-13-161.7; 

BD biosciences), and visualized with rabbit anti-mouse immunoglobulin conjugated 

with fluorescein isothiocyanate (FITC; DAKO Cytomation) or phycoerythrin (PE; 

DAKO). 4', 6-diamidino-2-phenylindole (DAPI; Sigma) was used as counterstaining. 

Cells were mounted in Floromount-G (DAKO) and examined under fluorescence 

microscope (ZEISS). 
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2.5 Molecular biology methods 

2.5.1 RNA isolation 

The RNA extraction was performed according to the RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) protocol for isolation of total RNA from animal cells. All steps of 

the RNeasy protocol were performed at room temperature. The cells were washed and 

scraped off in PBS and centrifuged at 13.2krpm for lmin. Cell pellet was disrupted by 

RLT Buffer (350µL for small flask, 600 gL for medium flask) and mixed by pipetting to 

make sure no cell clumps are visible. The lysate was transferred directly onto a 

QlAshredder spin column placed in a2 mL collection tube, and centrifuged for 2min at 

13.2krpm. Same volume of 70% ethanol was added to the homogenized lysate and 

mixed well by pipetting. 700 µL of the sample were applied to an RNeasy mini column 

placed in a2 mL collection tube and centrifuged for 15 seconds at 13.2krpm. The 

flow-through was discarded and another 700 gL of sample were applied if there was any. 

700µL of RW1 buffer was added to the RNeasy column and centrifuged for l5sec at 

13.2krpm to wash the column. 500µL RPE buffer was pipetted onto the RNeasy column 

and centrifuged for 15 seconds at 13.2krpm to wash the column and another 500 µL 

RPE buffer was added to the column and centrifugation for 2min at 13.2krpm was taken 

place to dry the RNeasy silica-gel membrane. The flow-through and the collection tube 

were discarded. Finally, the RNeasy column was transferred to a clean 1.5 mL 

collection tube. 50 µl RNase-free water was pipetted directly onto the RNeasy column, 

following by centrifugation for lmin at 13.2krpm to elute the RNA. The RNA 
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concentration was determined by measuring the absorbance at 260nm in a 

spectrophotometer and diluted with RNase-free water and ethanol to make a final 

mRNA concentration of 0.25 µg/µL in 75% ethanol. 

2.5.2 Reverse transcription PCR (RT-PCR) 

RT-PCR was performed using Improm-IITM RT kit (Promega, Madison, WI, USA) 

with RNase inhibitor (Rnasin, Promega) and random primers (Promega). Control RT 

reactions were performed without reverse transcriptase. Total RNA was used as a 

template for cDNA synthesis. 

RT reaction system was set up by drying 10µL mRNA (0.25µg/. tL) at 70°C and 

mixing with 0.2µL random primer (0.5gg/tL) and 9.8µL distilled water. The sample 

was incubated at 70°C for 5min and cooled down on ice for 5min. 1 0µL of 5x RT Buffer, 

6µL of 25mM MgCI2,2µL of 25mM dNTPs, 1µL of Rnasin (40U/gL) and 2µL of 

reverse transcriptase (200U/µL) were added to make a final volume 50µL. The RT-PCR 

was carried on in thermal cycler (TC-312 or TC-412, TECHNE) with following 

program: preheat lid at 105°C, initial denaturation at 25°C for 5min, elongation at 42°C 

for 1.5 hours and final extension at 72°C for 15min. 

2.5.3 Polymerase chain reaction (PCR) 

The expressions of cell markers were detected by PCR using cDNA from RT-PCR 

as templete. Oligonucleotide primer sequences were as follows (Table 6) (Hu, Zhang et 

al. 2004): 
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Table 6. PCR primers for SMC markers 

Gene Name Primer Cycles 

hl-calponin 30 

forward 5'-GAT ACG AAT TCA GAG GGT GCA GAC GGA GGC TC-3' 

reverse 5'-GAT ACAAGC TTT CAA TCC ACT CTC TCA GCT CC-3' 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 25 

forward 5'-GAT ACA AGC TTT CAA TCC ACT CTC TCA GCT CC-3' 

reverse 5'-CGG AGT CAA CGG ATT TGG TCG TAT 3' 

smooth muscle a-actin (SMA) 30 

forward 5'-ACG GCC GCC TCC TCT TCC TC-3' 

reverse 5'-GCC CAG CTT CGT CGT ATT CC-3' 

smooth muscle protein 22 (SM22) 25-30 

forward 5'-GCA GTC CAA AAT TGAGAA GA-3' 

reverse 5'-CTG TTG CTG CCC ATT TGAAG-3' 

smooth muscle myosin heavy chain (SMMHC) 35-40 

forward 5'-GAC AAC TCC TCT CGC TTT GG-3' 

reverse 5'-GCT CTC CAA AAG CAG GTC AC-3' 

Glyseraldehyde-3-phosphate dehydrogenase (GAPDH) is a catalytic enzyme 

involved in glycolysis. The GAPDH gene is constitutively expressed in almost all 

tissues at high levels and has been widely used as an internal control in conventional 

RT-PCR to normalize the expression of a target gene. 

PCR was performed using PCR kit (Invitrogen) following the manufacturer's 
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instructions and reaction system was prepared on ice as follows: 0.50µL DNA template, 

1.25µL dNTP (2mM), 1.25µL lOx buffer, 1.00µL primer, 1.00µL MgCl2 (50mM), 

0.10µL Taq Polymerase, and 7.40µL distilled water. The total volume is 12.50µL for 

each reaction. After prepared the reaction system, tubes were put into thermal cycler 

(Model TC-312 or TC-412, TECHNE) and the following programs were used: preheat 

lid at 105°C, initial denaturation at 94°C for 4min, then 25-40 cycles of denaturing at 

94°C, annealing at 55°C and elongation at 72°C, each step for 50 seconds. The final 

extension step is at 72°C for 5min and then PCR products can be stored at 4°C. 

2.5.4 Agarose gel electrophoresis 

Agarose gels (2%) were prepared by dissolving 3g agarose with 150mL TAE 

buffer (40mM Tris-acetate, 2mM Na2EDTA, pH 8.3) diluted from 50x TAE stock 

(EC-872, National Diagnostics) by heating in a microwave oven. Then, the gel was 

cooled and 7.5µL ethidium bromide (10 mg/mL) was added to the clear gel solution to a 

final concentration of 0.5µg/mL. After mixing, the gel was poured into a plastic mould 

with casting combs in place and allowed to solidify for 20-30min. The tape and the gel 

casting combs were removed and the gel was placed in a horizontal gel electrophoresis 

apparatus (GIBCO BRL, Horizon® 11.14, Catalogue No. 11068-012). TAE 

electrophoresis buffer was added to the reservoirs until the buffer covered the agarose 

gel. PCR products were mixed with 6x loading buffer (30% Glycerol or 15% ficoll 400, 

0.25% Bromophenol blue, 0.25% Xylene cyanole) and loaded into the wells together 

with 1kb DNA ladder. Agarose gel electrophoresis was performed for 45-60min with 
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constant current of 130mA. Finally, the target fragments were visualized on a 

transilluminator UV light box (254 nm) and pictures were taken. 

2.6 Protein concentration measurement 

The protein concentration was determined using the Bradford method (Bradford 

1976). For lysates in urea buffer, 2.8µL of samples was mixed with 2.8µL of 0.1 M HCI, 

22.4µL of distilled water, and 972 µL of diluted Protein Assay Reagent (1: 5 dilution, 

Bio-Rad) was added and mixed well. For samples without urea, 2µL of samples was 

mixed with 998µL of diluted Protein Assay Reagent. Absorbance at 595nm was 

measured by SmartSpecTM 3000 spectrophotometer (Bio-Rad) and protein concentration 

was calculated based on the BSA standard curve. 

2.7 Proteomic techniques 

Figure 22. Proteomics workflow 

Semple 
Preparation 
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Figure 22. The brief workflow of proteomics used in this thesis. Black line indicates 

normal 2-DE, silver staining and MALDI-ToF MS process. Red line denotes DIGE and 
MS/MS procedure. 



2.7.1 2-DE 

The protocol used for proteomics analysis is similar to that described previously 

(Dunn 1997; McGregor, Kempster et al. 2001). Cells were washed by 2-DE wash buffer 

(see Appendix) then scraped and centrifuged at 4°C, 13.2krpm, for 1min. Cell pellets 

were lysed in 2-DE lysis buffer (see Appendix) for 30min and centrifuge at 13.2krpm at 

20°C for 20min. Supernatant was divided into aliquots and protein concentration was 

determined, then stored at -80°C. Extracts were diluted with rehydration solution (see 

Appendix) or subject to an additional clean-up procedure by using 2-D PrepReady 

CleanUp Kit (Bio-Rad) to remove contaminants interfering with isoelectric focusing. 

Protein samples were loaded on 18cm nonlinear immobilized pH gradient strips, pH 

3-10 (Immobiline DryStrips, GE healthcare). One hundred micrograms total proteins 

were used for analytical gels and 400µg for preparative gels. After 24 hours rehydration, 

strips were focused in MultiphorTM II isoelectric focusing System (GE healthcare) at 

20°C with following protocol: 400V for 5min, 500V for 15min, 750V for 15min, 1250V 

for 30min, 2000V for 20min, 2500V for 15min, 3500V for 15min, then 3500V for 18 

hours. Once isoelectric focusing was finished, the strips were equilibrated in 

equilibration buffer (see Appendix) with addition of I% (w/v) DTT for 15min, followed 

by a further 15min equilibration in the same buffer containing 4.8% (w/v) 

iodoacetamide in place of DTT. SDS-PAGE was performed using 12%T (total 

acrylamide concentration), 2.6% C (degree of cross-linking) separating polyacrylamide 

gels without a stacking gel, running with EttanTM DALTsix vertical electrophoresis 

system (GE healthcare). The second dimension was carried out at 10°C with the 
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following protocol: for 6 gels, 600V, 400mA, 12W for 15min, 15W for 30min, 100W 

for 4.5 hours, using 2x running buffer in the upper chamber and 1x running buffer in the 

lower chamber, until the Bromphenol Blue dye front had migrated off the lower end to 

the gels. The lower power step at the beginning allows all proteins in the IPG strip enter 

the polyacrylamide gel before separation by the following high power step. 

2.7.2 DIGE 

The design of a DIGE experiment is shown as Table 7. esSMCs and aortic SMC 

were labelled with Cy3 and Cy5 and crisscross experimental design was used to 

eleminate differences between dyes 

Table 7. DIGE experiment design 

Strip No. Cy Dye Sample 

20372 Cy3 

Cy5 

esSMC-X2 p6 

20373 Cy3 Aortic SMC p13 

Cy5 

20374 Cy3 

Cy5 

20375 Cy3 

Cy5 

20377 Cy3 

Cy5 

20378 Cy3 

Cy5 

S \1 I 

esSMC-R1 p5 

Aortic SMC p 15 

pol' r, I 

esMC-X5.2 p 11 

Si III 

esSMC-X5.1 plO 

14Cp16 

esSMC-X1 p6 

20379 Cy3 Sea 1p 112 

Cy5 esSMC-R2 p5 
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Aortic SMCs and esSMCs were washed with DIGE wash buffer (see Appendix) 

and lysed in DIGE lysis buffer (see Appendix). After centrifugation at 13.2k rpm for 

20min, the supernatant containing soluble proteins was harvested and protein 

concentration was determined. The fluorescence dye labelling reaction was carried out 

at a dye/protein ratio of 200pmol/50gg. After incubation on ice for 30min, the labelling 

reaction was stopped by scavenging non-bound dyes with 10mM lysine (L8662, Sigma) 

for 15min. Fifty micrograms whole cell extracts of each sample were labelled with 

fluorescent dyes (Cy3 or Cy5) and mixed with internal pool standard (labelled with 

Cy2). Samples were mixed with 2x buffer (see Appendix) and loaded on immobilized 

pH gradient strips (18cm, pH 3-10, nonlinear). As in traditional 2-DE, after rehydration 

overnight, samples were separated using the same protocols. Fluorescence images were 

acquired using the Typhoon variable mode imager 9400 (GE healthcare), visualized by 

silver staining and scanned in transmission scan mode using a calibrated scanner 

(GS-800, Bio-Rad) for documentation. Detailed protocols can be downloaded from our 

website (http: //www. vascular-proteomics. com). 

2.7.3 Silver Staining 

Protein profiles of 2-DE gels were visualized by silver staining using the 

PlusOneTM Silver Staining Kit, Protein (GE healthcare) with slight modifications, i. e. 

only formaldehyde was used in developing solution but no glutardialdehyde or 

formaldehyde in other solutions (Yan, Wait et al. 2000), which is compatible with mass 

spectrometry. 250mL of solutions are needed per large format gel. All steps should be 
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performed with gentle shaking of the glass dish and all solutions are made in double 

distilled water. 

Gels were taken out from the glass plates carefully and fixed in fixation solution 

(see Appendix) overnight. On the next day, gels were sensitized for 30min in sensitizing 

solution (see Appendix) followed by silver reaction for 20min in 0.25% w/v AgNO3 

with 3x5min washing between these two steps. After brief washing for 2 times, the 

developing solution (see Appendix) was added and the gels were shaken until protein 

spots are observed and before background becomes over-developed. The developing 

solution was replaced by the stopping solutions (see Appendix). After shaking for 10min, 

the gels were washed 3x5min, sealed in bag and kept in 4°C. 

2.7.4 Analysis of 2-DE gels 

Three different software have been used for 2-DE gel analysis, PDQuest (version 

7.0 for Mac, Bio-Rad), ProteomWeaver (version 2.1, Definiens) and DeCyder (version 

6.5, GE healthcare). 

PDQuest is used for generating Mr/pI grid image. After identification of the 

proteins, Mr/pI Grid was made according to most confident Mr/pI pairs. The observed 

Mr and pI of proteins were derived from this Mr/pI Grid. 

ProteomWeaver detects spots on each gel and make a match matrix to compare 

these gels in a short time. After the matching process, an overlay picture of two gel 

images can be obtained, orange colour for bottom gel and blue colour for top gel. One 

image is distorted to make the matched spot exactly on the top of another image. When 
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the matched spots in two images are nearly the same size and intensity, the spot on 

overlay picture will appear black. Using this strategy, the difference between two gels 

can be easily found. 

DeCyder is the dedicated software for DIGE gels. It automatically detects spots 

using the standard gel image among the three images of one gel and does not allow 

artificial modifications on spots boundary. One DIGE gel has unique spots boundaries 

on three CyDye images, which can present the different protein expressions on the same 

gel directly. By matching and normalising the internal standard from different DIGE 

gels, samples from different DIGE gels using same standard can be matched and 

compared, and statistical analysis can be carried on. Average ratio of the intensity of 

each protein spots and p values between two groups were calculated. Spots showing a 

statistically significant difference (2 fold increase or decrease, p<0.05) in intensity were 

excised for in-gel tryptic digestion. 

2.7.5 In-gel tryptic digestion 

At the beginning, we used manual digestion according to a published protocol 

(Shevchenko, Wilm et al. 1996). Silver-stained spots were picked and washed with 

50µL 100mM ammonium bicarbonate (ABC, A6141, sigma) followed by 200µL 

acetonitrile (ACN, 27071-7, Aldrich) twice. After dried in Speed Vac for 5min, gel 

pieces were soaked in 50µL lOmM DTT (D9779, Sigma) in 100mM ABC for 30min at 

56°C followed by 50µL 50mM iodoacetamide (11149, Sigma) in 100mM ABC for 

30min at room temperature to reduce disulfide bond and alkylate cystaine residues. 

119 



After washed with 100µL 100mM ABC, 200µL ACN, 100µL 100mM ABC, 200µL 

ACN twice sequentially and dried in Speed Vac for 5min, gel pieces were treated 

overnight at 37°C with 50µL trypsin (20µg/mL in 50mM ABC, V5111, Promega). 

Peptide fragments were recovered by sequential extractions with 100mM ABC and 

extraction solution (see Appendix) twice, each for 20min. Extracts were combined 

together, lyophilized, and resuspended in 10µl 0.1% (v/v) trifluoroacetic acid (T0274, 

Sigma). The peptides solution was desalted with µC-18 ZipTip (Millipore) according to 

the manufacturer's instruction and spoted on MALDI plate (Kratos, Manchester, UK). 

Now the in-gel digestion was performed with an Investigator ProGest (Genomic 

Solutions) robotic digestion system according to published methods (Shevchenko, Wilm 

et al. 1996; Wilm, Shevchenko et al. 1996; Perkins, Pappin et al. 1999; Yan, Wait et al. 

2000). Briefly, silver stained gel slices were destained with 50µL of destaining solution 

(see Appendix) for 15min then washed with 100µL ddH2O 2x 10min then with 100µL 

25mM ABC for 10min. All solutions were purged by N2 and gels were dehydrated in 

50µL ACN and neutralized with ABC then shrinked with another 100µL of ACN. The 

gels were reduced in 30µL DTT (10mM in 50mM ABC) at 60°C for 10min and cooling 

for 20min then alkylated in 30µL iodoacetamide (50mM in 50mM ABC) for 15min. 

After washed with 40µL of 50mM ABC for 10min and shrinked with 50µL ACN for 

2x 15min, trypsin solution was prepared (see Appendix) and 15µL of trypsin solution 

was added to each well and digestion was carried on at 37°C for 7.5 hours, 10µL of 

ddH2O was added after 1.5 hours of digestion to cover the gels. After the reaction, 1 0µL 

of 25mM ABC, 20µL of ACN and 20µL of 10% formic acid were consequently added 
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and each incubation were 10min. after final extraction by 20µL ACN for 15min and 

30µL of ACN for 15min, all the solution were purged into collection plate and the 

digestion is finished. The plate was lyophilized and digestion products were 

resuspended in 15 µL of 0.1% formic acid and ready for MS. 

2.7.6 MALDI-ToF MS 

MALDI-MS was performed using an Axima CFR spectrometer (Kratos). The 

instrument was operated in the positive ion reflectron mode. 1µl of sample and 1µL of 

matrix (see Appendix) were applied to MALDI plate. The spectra were recorded and 

analyzed by Kompact software (version 2.3.4, Kratos) and the prominent intensity 

peaks were labelled and internally calibrated using trypsin autolysis products 

(monoisotopic masses at m/z = 842.51, m/z = 1045.56, and m/z = 2211.10). Their 

peptide masses were searched against SwissProt databases using the MASCOT program 

(http: //wwwmatrixscience. com) (Perkins, Pappin et al. 1999). One missed cleavage per 

peptide was allowed and carbamidomethylation of cysteine as well as partial oxidation 

of methionine were assumed. Protein scores greater than 59 were considerd significant 

(i<o. 05). 

2.7.7 Q-ToF MS/MS 

Mass spectra were recorded using a Q-ToF mass spectrometer (Micromass) 

interfaced to a Micromass CapLC capillary chromatograph. Samples were dissolved in 

0.1% formic acid, injected onto a 300µm x 5mm Pepmap C18 column (LC Packings), 
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and eluted with an acetonitrile/0.1 % formic acid gradient. The capillary voltage was set 

to 3500V, and data-dependent MS/MS acquisitions were performed on precursors with 

charge states of 2,3, or 4 over a survey mass to charge range of 540-1000. The collision 

gas was argon, and the collision voltage was varied between 18V and 45V depending on 

the charge-state and mass of the precursor. Initial protein identifications were made by 

correlation of uninterpreted tandem mass spectra to entries in SWISS-PROT and 

TREMBL, using ProteinLynx Global Server (V 1.1, Micromass). 

2.7.8 LCQ ion-trap MS/MS 

Following enzymatic degradation, peptides were separated by capillary liquid 

chromatography on a reverse-phase column (BioBasic-18,100mm x 0.18mm, particle 

size 5pm, Thermo Electron Corporation) and applied to a LCQ ion-trap mass 

spectrometer (Finnigan LCQ Deca XP Plus, Thermo Electron Corporation) interfaced 

with a Finnigan Surveyor autosampler (Thermo Electron Corporation). The peptides 

were eluted using an acetonitrile/0.1 % formic acid gradient. Acetonitrile concentration 

was increased gradually from 5% to 80%. Spectra were collected from the ion-trap mass 

analyzer using full ion scan mode over the mass to charge range 300-1800. MS-MS 

scans were performed on each ion using dynamic exclusion. Database search was 

performed using TurboSEQUEST program (BioWorks Browser v3.2, Thermo Electron 

Corporation) against UniProt database. Protein probabilities were calculated in the 

comparison of esSMCs and aortic SMCs. Following filter was applied: for charge state 

1, Xcon > 1.50; for charge state 2, Xoo, r > 2.00; for charge state 3, Xcon > 2.50. 
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2.8 Immunoblotting 

Immunoblotting was performed as described previously (Li, Hu et al. 1999; Li, Hu 

et al. 2000). Cells were washed with cold PBS and scraped on ice. After lysis in RIPA 

lysis buffer (see Appendix) for 30min at 4°C and centrifuged at 13.2krpm at 4°C for 

20min, supernatant was collected and the protein concentration was determined using 

Bradford method. Samples were stored at -20°C. Cell extracts were mixed with 1/4 

volume of 5x Laemmli buffer (see Appendix), denatured at 96°C for Smin and a quick 

spin was following. 50µg protein samples were loaded on each lane of Novex 

Tris-Glycine Gel (4-20%, 1.0mm x 10 wells, Invitrogen) and electrophoresed at 125V 

constant voltage for 2.5 hours. When the Bromphenol Blue dye front reaches the end of 

the gel, electrophoresis was terminated and proteins were electrotransferred from gel to 

nitrocellulose membrane at 25V constant voltage for 2.5 hours in transfer buffer (see 

Appendix). The membranes were labelled as appropriate and blocked with 5% 

PBS-milk for 1 hour at room temperature or overnight at 4°C. Specific primary (Table 8) 

and corresponding secondary antibody (both in 5% PBS-milk) were applied to the 

membrane in turn and incubated at room temperature with gentle agitation for 1 hour, 

wash with PBS for 3x5min between two incubations. After washing with 0.05% Tween 

in PBS for 3x5min, ECL Western Blotting Detection Reagents (RPN2209, GE 

healthcare) were applied for lmin. The membranes were drained from excess ECL 

solution and sealed in sample bags. Hyper film was exposed by membranes and 

developed in developing solution (Kodak GBX developer/replenisher, P7042, Sigma) 

and fixation solution (Kodak GBX fixer/replenisher, P7167, Sigma). 
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Table 8. Antibodies used in immunoblotting. 

Antibody Company Cat No Dilution 

Actin Santa Cruz sc-1616 1: 1000 

Catalase Abcam ab1877 1: 3000 

Crystallin a/ß (HSP20) Abcam ab13497 1: 1000 

Heat shock protein 27 (HSP27) Santa Cruz sc-1049 1: 1000 

Heat shock protein 60 (HSP60) Stressgen SPA-807 1: 400 

Heat shock protein 70 (HSP70) Stressgen SPA-810 1: 100 

Heat shock protein 90 (HSP90) Santa Cruz sc-7947 1: 300 

Herne oxygenase 1 (HO-1) Santa Cruz sc-10789 1: 200 

Herne oxygenase 2 (HO-2) Santa Cruz sc-11361 1: 1000 

Myosin light chain-1 (MLC-1) Abcam ab680 1: 1000 

Peroxiredoxin 1 (PRX-1) Lab Frontier LF-PA0001 1: 2000 

Peroxiredoxin 2 (PRX-2) Lab Frontier LF-PA0007 1: 2000 

Peroxiredoxin 3 (PRX-3) Lab Frontier LF-PA0030 1: 2000 

Peroxiredoxin 6 (PRX-6) Abcam ab16824 1: 1000 

Peroxiredoxin-S03 (PRX-S03) Lab Frontier LF-PA0004 1: 2000 

Peroxiredoxin 6-SO3 (PRX6-SO3) Lab Frontier LF-PA0005 1: 2000 

Superoxide dismutase [CuZn] (SOD-1) Santa Cruz sc-11407 1: 100 

Superoxide dismutase [Mn] (SOD-2) Upstate 06-984 1: 500 

a-Tubulin Abcam ab7750 1: 100 
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2.9 Total reactive oxygen species (ROS) measurement 

The oxidative fluorescent dyes dihydrorhodamine 123 (DHR123, D632, 

Molecular Probes) were used to evaluate in situ production of ROS by use of a method 

described previously (Miller, Gutterman et al. 1998). DHR123 are freely permeable to 

cells and are oxidized to hydrorhodamine in the presence of ROS and labels proteins in 

cytoplasm with green fluorescence. Cells were incubated with 10µM DHR123 for 1 

hour, washed with PBS and lysed in lysis buffer (see Appendix). The cell lysates were 

sonicated for 15 seconds then 30 seconds and centrifuged at 13.2krpm for 20min at 4°C. 

The supernatant were analyzed at excitation and emission wavelengths of 502 and 

523nm, respectively, by FusionTM universal microplate analyzer (Packard). Protein 

concentration was determined by the Bradford method. The fluorescence intensity was 

expressed as relative fluorescence units (RFU) per gg protein. 

2.10 Mitochondrial superoxide and ROS measurement 

MitoSOXTM Red mitochondrial superoxide indicator (M36008, Molecular Probes) 

is live-cell permeant and is rapidly and selectively targeted to the mitochondria. Once in 

the mitochondria, it is oxidized by superoxide but not by other ROS- or reactive 

nitrogen species (RNS)-generating system and exhibits red fluorescence. Hence it can 

be used for highly selective detection of superoxide in the mitochondria of live cells 

(http: //probes. invitrogen com/media/pis/mp36008 pd fl. Cells were cultured in 24-well 

plates, change medium after 24 hours. After 48 hours, cells were pretreated with normal 

medium, 20µg/mL antimycin A or 10µM rotenone for 3 hours and incubated with 
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2.5µM MitoSOXTM Red mitochondrial superoxide indicator and 10µM DHR123 in 

HBSS (14025-092, Invitrogen) for 30min. After washed with HBSS, plates were 

scanned on a fluorescence scanner (Typhoon 9400, GE healthcare), excitation/emission 

wavelengths 532nm/580nm for MitoSOX and 488nm/520nm for DHR123. 

Fluorescence intensity was quantified using the ImageQuant software (Molecular 

Dynamics) and normalized with aortic SMC control. 

2.11 ATP concentration measurement 

ATP concentration was determined by using a bioluminescence assay as described 

previously (Jenner, Ruiz et al. 2002). The ATP assay uses luciferase extract of firefly 

tails and depends on the detection of the bioluminescence produced by it in the presence 

of ATP. ATP levels in samples can be calculated because the amount of light produced is 

proportional to the amount of ATP. Cells were cultured on 6-well plate (2.5 x 105 

cells/well for SMC and 5X105 cells/well for esSMC), change medium after 24 hours. 

After 48 hours, cells were washed briefly with cold PBS twice. Cold trichloroacetic acid 

(TCA, 6.5% w/v) was added to each well (1mL/well) and incubated on ice for 10min. 

TCA extracts were transferred into eppendorf tubes. 10µL sample or acid ATP standard 

was added to 140µL of reaction buffer (see Appendix) and mixed with 50µL of firefly 

lantern extract solution (lmg/mL, F3641, Sigma). Bioluminescence was measured by 

luminescence plate reader (FusionTM universal microplate analyzer, Packard). Adherent 

cell protein was solublized by adding 1mL of 0.5M NaOH and incubating for 1 hour on 

ice. Protein concentrations were determined using Bradford method. ATP concentration 
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was adjusted for protein concentration and expressed as µmol per gram protein. 

2.12 GSH concentration measurement 

The fluorometric method for determination of GSH is described previously 

(Hissin and Hilf 1976; Jenner, Ruiz et al. 2002). The sample harvest procedure was the 

same as ATP measurement. 7.5µL of acid sample extract or acid GSH standard was 

added to reaction buffer (see Appendix) followed by 15µL of 0.1% (w/v) 

o-phthalaldehyde in methanol. After 25min, fluorescence was measured on a FusionTM 

universal microplate analyzer (Packard) by using excitation and emission wavelengths 

of 350nm and 420nm, respectively. GSH concentration was adjusted for protein 

concentration and expressed as µmol per gram protein. 

2.13 Glutathione reductase activity 

Glutathione reductase catalyzes the reduction of glutathione (GSSG) in the 

presence of NADPH, which is oxidized to NADP+. The decrease in absorbance at 

340nm is measured to determine the glutathione reductase activity. Cells were cultured 

on 6-well plates, medium was changed after 24 hours. After 48 hours, cells were washed 

briefly with PBS twice and lysed in lysis buffer (see Appendix). Cell lysates were 

sonicated for 30 seconds and centrifuged at 13.2krpm for 20min at 4°C. The supernatant 

were analyzed for glutathione reductase activities by using glutathione reductase kit 

(GR2368, Randox Laboratories Ltd) on Cobas Mira chemistry analyzer (Roche) 

according to the manufacturer's instruction. The glutathione reductase activities were 
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adjusted for protein concentration and expressed as IU per gram of cell proteins. 

2.14 Cell viability assay 

To investigate the GSH's influence on cell viability, GSH depletion reagent diethyl 

maleate (DEM) and GSH reductase inhibitor 1,3-Bis(2-chloroethyl)-1-nitrosourea, 

(carmustine, or BCNU) were administered. DEM is a commonly used electrophiles 

which leads to more rapid and more extensive depletion effect than that obtained with 

y-GCS inhibitors (Griffith 1999). It is relatively non-toxic and conjugates directly with 

GSH in a reaction catalyzed by the glutathione S-transferase system (16,17) (Weber, 

Duncan et al. 1990). The antitumor agent carmustine (BCNU) is unstable in aqueous 

solution, and will spontaneously degrade to reactive alkylating, 2-chloroethyl 

diazohydroxide, and carbamoylating intermediate, 2-chloroethyl isocyanate. The 

alkylating component is responsible for the antitumor effects, whereas the 

carbamoylating species inhibit carbamoylation of Cys-58 in glutathione reductase and 

carbamoylate glutathione (Becker and Schirmer 1995). 

Cells were cultured on 96-well plates (2.5x 103 cells/well for SMCs, 5x 103 

cells/well for esSMCs), medium was changed after 24 hours. After 48 hours, cells were 

incubated with different concentrations of diethyl maleate (DEM, D97703, Sigma) or 

2-mercaptoethanol for 24 hours, or with 100µM carmustine (BCNU, C0400, Sigma) for 

different time. After removal of medium, Ce1lTiter 96® AQ1e01S One Solution (Cell 

Proliferation Assay, Promega) was added with dilution ratio of 1: 6 in DMEM 

(Invitrogen). After 3 hours incubation, the optical density at 490nm was recorded by 
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photometer (Mayr, Mayr et al. 2002). The reagent concentration used was optimized in 

preliminary experiments. 

2.15 JC-1 staining 

A high mitochondrial membrane potential (M') guarantees the normal function of 

mitochondria. The fall in AT is one of the early events during the apoptosis. 

5,5', 6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) is a 

lipophilic cationic dyes that exhibit potential-dependent accumulation in mitochondria, 

indicated by a fluorescence emission shift from green (-525nm) to red (-590nm) 

(Cossarizza, Baccarani-Contri et al. 1993). Consequently, mitochondrial depolarization 

is indicated by a decrease in the red/green fluorescence intensity ratio, which only 

depends on the AT and not on other factors (size, shape, density) (Salvioli, Ardizzoni et 

al. 1997). 

Cells were diassociated in PBS and treated with 51iM of JC-1 (T3168, Molecular 

Probes) with or without 50µM of carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 

C2759, Sigma) for 30min at 37°C. Cell suspensions were analyzed by FACS scan flow 

cytometer (Becton Dickinson Immunocytometry Systems). Signals of FL-1 (green, 

525nm) and FL-2 (red, 590nm) channel were recoded and data analysis was carried out 

by CeliQuest software (Becton Dickinson). 

2.16 Metabolites measurement 

To evaluate the metabolites changes, a set of metabolites concentration in esSMCs 
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and aortic SMCs were measured by nuclear magnetic resonance (NMR) spectroscopy. 

Cells were cultured in big flasks (culture surface is 175cm2) for 48 hours, with medium 

change after 24 hours. Cells were washed by cold sodium chloride for 2 times after 

decanting the medium. Water-soluble metabolites were extracted in 6% perchloric acid 

(380083, Sigma). Adherent cells were scraped and transferred to ice cold centrifuge 

tubes. After centrifuged at 4000 rpm for 15min at 4°C, the supernatant was transferred 

to new tubes. The pellet was solubilized by adding 2mL of 0.5M NaOH and protein 

concentration was determined by the Bradford method. The supernatant was neutralized 

to pH 7 with IOM KOH and centrifuged at 4000 rpm for 15min at 4°C. The supernatant 

was collected, lyophilized and reconstituted in deuterium oxide (D20). Immediately 

before the NMR analysis, the pH was readjusted to 7 with perchloric acid or KOH. 

500µ1 of the extracts were placed in 5mm NMR tubes. 1H NMR spectra were obtained 

using a Bruker 600MHz spectrometer. The water resonance was suppressed by using 

gated irradiation centred on the water frequency. Sodium 3-trimethylsilyl-2,2,3,3- 

tetradeuteropropionate (TSP) was added to the samples for chemical shift calibration 

and qualification. 

2.17 Glucose concentration measurement 

D-glucose can be oxidized to gluconic acid by glucose oxidase releasing H202. In 

the presence of peroxidase, H202 reacts with o-dianisidine (colourless) to form a brown 

coloured product. Oxidized o-dianisidine reacts with sulphuric acid to form a more 

stable pink coloured product. The intensity of the pink colour measured at 540nm is 
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proportional to the original glucose concentration. 

Cells were cultured in 6-well plates. Medium from different time points was 

collected and gluocose concentration were measured by using Glucose (GO) Assay Kit 

(GAGO-20, Sigma). According to the manufacture's instruction, samples and glucose 

standard were added into 96-well ELISA plates. After addition of 100µl of the mixture 

of glucose oxidase/peroxidase/o-Dianisidine, the solution showed brown colour. After 

incubation in 37°C for 30min, the reaction was stopped by adding l00µ1 12N sulphuric 

acid. The intensities of each well at 540nm were measured and glucose concentrations 

were calculated. 

2.18 Statistical analysis 

Statistical analysis was performed using Student's t-test. Results were given as 

means ± SE. Mean = hic/n. Standard error of the mean (SE) = (F. (X-Xmean)2/(n'(n-1)))ý'. p 

value of less than 0.05 was considered significant. Number of different samples (n) used 

for different experiments were stated in each section of Results Chapter where 

applicable. 
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3 RESULTS 
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3.1 ES cells differentiation 

Mouse ES cells were pre-differentiated in collagen-IV coated flasks by withdrawal 

of LIF. Subsequently, Sca-1+ cells were isolated by magnetic labelling cell sorting 

(MACS) with anti-Sca-1 microbeads. Stimulation by PDGF-BB for 5 passages induces 

Sca-1+ cells to differentiate to ES-derived SMCs (esSMCs). At least 3 Sca-1+ cell 

cultures and 6 esSMC cultures were generated using this protocol and studied in this 

project. Aortic SMCs isolated from 2 C57BL/6J mice were used as control. Their 

phenotype was verified by using H&E staining, RT-PCR, FACS, and 

immunofluorescence staining. 

Sca-1+ progenitors and esSMCs displayed a monolayer in culture, while ES cells 

showed clusters in an undifferentiated status for more than 35 passages. Comparison of 

H&E staining pictures between mature and differentiated SMCs showed a 

morphological similarity (Figure 23). 

mRNA levels of SMC markers, e. g. smooth muscle a-actin, smooth muscle protein 

22, calponin, and smooth muscle myosin heavy chain, were very low in Sca-1+ cells. 

After stimulation with PDGF-BB for 5 passages, they were strongly expressed in 

esSMCs but slightly weaker than those in aortic SMCs (Figure 24). 
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Figure 23. H&E staining of ES cells, Sca-1+ cells, esSMCs and SMCs 
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Figure 23. ES cells, Sca-l+ cells, esSMCs and SMCs were cultured in chamber slides 
and stained with H&E staining. The ES cells showed clusters while other three cell lines 
displayed a monolayer. These four pictures were shown with same scale. Black bar 
indicates 50µm. 

Figure 24. RT-PCR results of ES cells, Sea-1+ cells, esSMCs and SMCs 
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Figure 24. mRNA of ES cells, Sca-l+ cells, esSMCs and SMCs were harvested and 
RT-PCR was utilized to detect the mRNA level of smooth muscle cell markers. The 
SMA, SM22, caponin and SMMHC were highly expressed in esSMCs compared to ES 

cells and Sca-l+ cells but slightly less than in aortic SMCs. GAPDH was included as 
loading control. (SMA, smooth muscle a-actin; SM22, smooth muscle protein 22; 
SMMHC, smooth muscle myosin heavy chain; GAPDH, glyceraldehyde- 3-phosphate 
dehydrogenase) 

134 



The flow cytometric analysis demonstrated that 96.5% of ES cells were stage 

specific embryonic antigen-1 (SSEA-1) positive (Figure 25A), which indicates that the 

ES cells were maintained in undifferentiated status and can be used in further 

experiments. FACS analysis also revealed that 94.3% of the Sca-1 + cells expressed stem 

cell antigen-I (Sca-1) marker (Figure 25A), proved that cell sorting with anti-Sca-1 

microbeads obtained a highly purified Sca-l+ population. More than 95% of esSMCs 

were smooth muscle a-actin-, calponin-, and smooth muscle myosin heavy chain 

(SMMHC)-positive cells, which were very similar as aortic SMCs (99%) (Figure 25B). 

Figure 25. FACS analysis of ES cells, Sca-1+ cells, esSMCs and SMCs 
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Figure 25. Cells were dissociated and incubated with either isotype control (green line) 
or antibodies (red area) and analyzed by FACS. (A) ES cells specificly express stage 
specific embryonic antigen-1 but not Sca-1 while Sca-l+ cells only express Sca-l but 

not SSEA-1. (B) Smooth muscle cell markers of ES cells, esSMCs and SMCs were 
detected by FACS. The esSMCs showed similar cell marker expressions as aortic SMCs. 
(SSEA-1, stage specific embryonic antigen-l; Sca-1, stem cell antigen-l; SMA, smooth 
muscle a-actin; SMMHC, smooth muscle myosin heavy chain) 

Immunofluorescent staining of SSEA-1 and Sca-1 also showed that ES cells and 

Sca-1+ cells expressed SSEA-1 and Sca-1, respectively (Figure 26A). The 

immunofluorescent staining also confirmed that the esSMCs expressed SMA, calponin 

135 



and SMMHC (Figure 26B). 

Figure 26. Immunofluorescent staining of ES cells, Sca-i+ cells, and esSMCs. 

A 

B 

Figure 26. (A) Immunofluorescent staining showed SSEA-1 (green) expression in ES 

cells and Sca-1 (green) expression in Sca-l+ cells. Nuclei were counter-stained with 
DAPI (blue). White bar indicates 50µm. (B) Smooth muscle cell marker expressions of 

esSMCs were detected by immunofluorescent staining, including smooth muscle a-actin 
(red), calponin (red) and smooth muscle myosin heavy chain (green). Nuclei were 

counter-stained with DAPI (blue). White bar indicates 50µm. (SMA, smooth muscle 

a-actin; SMMHC, smooth muscle myosin heavy chain) 

All these results confirmed the undifferentiated stage of ES cells, high 
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homogeneity of the Sca-1+ progenitor cells, and SMC marker expressions of esSMCs 

after PDGF-BB stimulation. 

3.2 Proteome map of ES cells 

3.2.1 ES cell proteome map 

The proteome of ES cells was separated by 2-DE. On a large format 2-DE gel, 

there are about 2000 spots visible by silver staining. Comparison of different gels (n=6) 

by ProteomWeaver showed high consistency of the protein pattern between different ES 

cell cultures. A representative overlay picture is shown as Figure 27. Nearly 300 

proteins were picked and identified (Figure 28) by mass spectrometry, in a MM range 

from lOkDa to 130kDa, and a pI range from 4 to 9. The proteins were labelled and 

listed in Table 13 (see Appendix). The Mr/pI Grid map was generated by PDQuest 

software with internal calibration (Figure 29). 
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Figure 27. Overlay picture of two 2-DE gels of ES cells 
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Figure 27. Overlay of two 2-DE gels from different ES cell cultures were generated by 
ProteomWeaver software. The orange colour and blue colour indicate protein spots on 
different gels. Matched proteins with similar expression are shown in black colour. 
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Figure 28. Proteome map of FS cells 
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Figure 28.100µg of protein extract of ES cells was separated on a pH 3-IONI. IPG strip, 

followed by a 12% SDS polyacrylamide gel. Protein spots were visualised by silver 

staining. Labelled spots were picked for protein identification. 
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Figure 29. Mr/pI grid picture of ES cell proteome map 
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Figure 29. The Mr/pI grid picture of ES cell proteome map was generated by PDQuest 
software, assuming that the observed Mr/pI of red spots were equal to the calculated 
value. The observed Mr/pI of other spots were read from this grid. Blue numbers are the 
spots numbers as in Table 13 (see Appendix). 

Figure 30. ES cell proteins category pie chart 
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Figure 30. Proteins category pie chart showed that enzymes, chaperones and cell 
proliferation-related proteins are most abundant proteins species in ES cells. 
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All 231 identified proteins were classified into 7 categories, antioxidants (3%), 

chaperones (21%), cell proliferation-related proteins (19%), enzymes (36%), signalling 

molecules (5%), structural proteins (13%), and others (3%) (Figure 30). The large 

proportion of the enzymes, chaperones and cell proliferation-related proteins may due to 

the high proliferation rate of ES cells. 

3.2.2 Brief comparison of proteome maps of ES cells and 

aortic SMCs 

Comparative analysis of ES cell (n=4) and SMC (n=4) proteome map were also 

performed. 30% of all identified spots in the same position were found containing the 

same protein (Table 9, Figure 31). This suggests that many spots containing high 

abundant proteins match on mouse ES cell and SMC gels. 

Table 9. Co-localization of proteins between ES cell and SMC maps 

No Protein Name 
UniProt 

Entry Name 

* SMC 

map No. 

ES cell 
map No. 

Al Actin, cytoplasmic 2 ACTG_MOUSE 50 50 

A2 Actin, cytoplasmic 1 ACTB_MOUSE 48 55 

A3 Actin, cytoplasmic 1 ACTB_MOUSE 83 97 

A4 Actin, cytoplasmic 2 ACTG_MOUSE 50 52 

A5 Aconitate hydratase, mitochondrial [Precursor] ACON_MOUSE 199 256 

A6 Fructose-bisphosphate aldolase A ALDOA_MOUSE 187 191 

A7 Fructose-bisphosphate aldolase A ALDOA_MOUSE 188 192 

A8 Annexin A2 ANXA2_MOUSE 165 176 

A9 ATP synthase alpha chain, mitochondrial [Precursor] ATPA_MOUSE 197 229 

A10 ATP synthase beta chain, mitochondrial [Precursor] ATPB MOUSE 32 36 

Cl Calreticulin [Precursor] CALK MOUSE 17 27 

C2 Cofilin-1 COF1_MOUSE 124 131 

D Dihydrolipoyl dehydrogenase, mitochondrial [Precursor] DLDH_MOUSE 229 230 

El Electron transfer flavoprotein alpha-subunit, ETFA MOUSE 168 169 

mitochondrial [Precursor] 
E2 Endoplasmin [Precursor] ENPL_MOUSE 32 
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E3 Alpha-enolase ENOA_MOUSE 249 210 

F1 Far upstream element binding protein 1 FUBP 1 MOUSE 204 246 

F2 Far upstream element binding protein 2 FUBP2 RAT 200 255 

G1 78 kDa glucose-regulated protein [Precursor] GRP78_MOUSE 5 4 

G2 Glutamate dehydrogenase, mitochondrial [Precursor] DHE3_MOUSE 240 227 

G3 Glyceraldehyde 3-phosphate dehydrogenase G3P MOUSE 164 177 

G4 Glyceraldehyde 3-phosphate dehydrogenase G3P MOUSE 163 178 

G5 Guanine nucleotide-binding protein subunit beta2-like 1 GBLP_HUMAN 169 171 

H1 Heat shock cognate 71 kDa protein HSP7C_MOUSE 45 47 

H2 Heat shock cognate 71 kDa protein HSP7C MOUSE 7 9 

H3 Heat shock cognate 71 kDa protein HSP7C_MOUSE 11 21 

H4 Heat shock cognate 71 kDa protein HSP7C_MOUSE 153 156 

H5 47 kDa heat shock protein [Precursor] HSP47_MOUSE 192 216 

H6 60 kDa heat shock protein, mitochondrial [Precursor] CH60 MOUSE 219 63 

H7 Heat-shock protein beta-1 HSPB 1 MOUSE 144 145 

H8 Heterogeneous nuclear ribonucleoprotein L HNRPL_MOUSE 231 244 

H9 Heterogeneous nuclear ribonucleoproteins A2B 1 ROA2_MOUSE 160 179 

I Inosine-5'-monophosphate dehydrogenase 2 IMDH2_MOUSE 237 234 

L LIM and SH3 domain protein 1 LASP 1 MOUSE 183 183 

Ni NASCENT polypeptide associated complex alpha subunit NACA_MOUSE 68 70 

N2 Nucleoside diphosphate kinase B NDKB_MOUSE 127 127 

0 Ornithine aminotransferase, mitochondrial [Precursor] OAT MOUSE 220 64 

P1 Peptidyl-prolyl cis-trans isomerase A PPIA MOUSE 122 129 

P2 Peptidyl-prolyl cis-trans isomerase A PPIA_MOUSE 125 128 

P3 40 kDa peptidyl-prolyl cis-trans isomerase PPID_MOUSE 256 188 

P4 Peroxiredoxin 1 PRDX1_MOUSE 136 139 

P5 3-phosphoglycerate dehydrogenase Q8C603_MOUSE 215 219 

P6 Phosphoglycerate kinase 1 PGK1_MOUSE 190 207 

P7 Phosphoglycerate mutase 1 PGAM1_MOUSE 151 154 

P8 Poly(rC)-binding protein 1 PCBP 1_MOUSE 259 186 

P9 Profihin I PROM 
- 

MOUSE 120 124 

P 10 Prohibitiv PHB_MOUSE 85 86 

P 11 26S protease regulatory subunit 8 PRS8_MOUSE 253 213 

P 12 Pyruvate kinase, M2 isozyme KPYM_MOUSE 235 237 

Si Stress-70 protein, mitochondrial [Precursor] GRP75_MOUSE 9 11 

S2 Superoxide dismutase [Cu-Zn] SODC_MOUSE 114 120 

S3 Superoxide dismutase [Mn], mitochondrial [Precursor] SODM_MOUSE 138 138 

Ti T -complex protein 1 subunit beta TCPB_MOUSE 217 218 

T2 Transgelin 2 TAGL2_MOUSE 133 137 

T3 Transketolase TKT_MOUSE 233 245 

T4 Translationally controlled tumour protein TCTP_MOUSE 102 103 

T5 Triosephosphate isomerase TPIS MOUSE 140 150 

V Voltage-dependent anion-selective channel protein 1 VDAC1 MOUSE 158 172 

* The SMC No. come from the mouse arterial SMC map (Mayr, Mayr et al. 2005). 
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Figure 31. Overlay of SMC and ES cell 2-DE average gels 
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Figure 31. Overlay of average 2-DE gels of ES cells (blue, n=4) and aortic SMCs 
(orange, n=4) were generated by ProteomWeaver software. Matched proteins with 
similar expression are shown in black colour. Labelled spots were identified and 
revealed identical proteins in both cell lines, listed in Table 9, indicating the consistency 
of these proteins. 
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3.2.3 Differentially expressed proteins between ES cells and 

aortic SMCs 

Immunoblotting was carried out to verify differences in protein expression. For 

each protein, at least 2-3 Western blots were run with different cell lysates for 

comparison of protein expression between ES cells and aortic SMCs. Results showed 

that most heat shock proteins were more abundant in ES cells, e. g. HSP27, HSP60, and 

HSP90. However, crystallin a/ß (HSP20), which is known to regulate actin 

polymerization, was expressed at higher levels in SMCs (Figure 32). Another significant 

difference between these two cells is the antioxidants. The main oxidants such as 

catalase, peroxiredoxin 1 (PRX-1) and Cu-Zn superoxide dismutase (SOD-1) were all 

upregulated in ES cells while heure oxygenase 1 (HO-1) was decreased in ES cells 

compared to aortic SMCs (Figure 32). 
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Figure 32. Western blot comparison of protein expressions between ES cells and 

SMCs. 

ESC SMC 

000 000 JWW Acti. 

"r Acun 

I` Actin 

HSP 20 

HSP 20 

A Omm HSP 20 

HSP 27 

ýý "ý-+ . +r HSP 27 

HSP 27 

HSP 60 

HSP 60 

f"'ý ý"'ý HSP 70 

S'Mem» HSP70 

w'^ HSP 70 

HSP 90 

HSP 90 

ESC SMC 

- !M caaia» 

w w9--ar IPM c. all« 
ww cauas" 

- 

HO-2 

kom: 
HO-2 

Äwbmlb 
HO-2 

eafflý IM HO-1 

. ýr.. ý osk HO-1 

" ý"ý ýýr HO-1 

PRX-1 

ow MEN* PRX-1 

PRX-1 

SOD-1 

Figure 32. (A) Most heat shock proteins were upregulated in ES cells. However, 

crystallin a/ß (HSP20) is expressed at higher levels in SMCs because of the regulation 
role in actin polymerization. Higher expressions of antioxidants (catalase, peroxiredoxin 
I and SOD-1) were observed in ES cells, indicating altered oxidative stress in ES cells. 
(B) Bar graph show clear differences of the protein expressions between the two cells. 
The relative average intensity (Y-axis) of each sample in each blot was calculated by 

normalizing with the average of the stronger sample band of all blots. (HSP, heat shock 
protein; HO, heure oxygenase; PRX, peroxiredoxin; SOD, superoxide dismutase) 

3.3 Proteome map of Sca-1 + cells 

3.3.1 Sca-1+ cell proteome map 

After isolation from primitive differentiation culture by magnetic labelling cell 

sorting, Sca-l+ progenitor cells were cultured in gelatine-coated flasks for 15 passages 
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and harvested for 2-DE. Protein samples were separated before and after using a 

clean-up kit (Bio-Rad) and separated by isoelectric focusing on 18cm dry strips (pH 

3-10 nonlinear) and 12% SDS-PAGE (Figure 33 and Figure 34, respectively). 

Comparison of different gels (n=4) by ProteomWeaver showed high consistency of the 

protein pattern between different Sca-1+ progenitor cell cultures. A representative 

overlay picture of unprecipitated samples is shown as Figure 35. 

146 



Figure 33. Proteome map of Sca-1+ progenitor cells 
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Figure 33.400 µg of protein extract was separated on a pH 3-1ONL IPG strip, followed 

by a 12% SDS polyacrylamide gel. Protein spots were visualized by silver staining. 
Labelled spots were picked for protein identification (A). The highlighted areas are 

enlarged in inset B and C. 
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Figure 34. Proteome map of Sca-1+ progenitor cells after using clean-up kit 
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Figure 34.400 µg of protein extract was treated with clean-up kit (Bio-Rad) and 
separated on a pH 3-IONL IPG strip, followed by a 12% SDS polyacrylamide gel. 
Protein spots were visualized by silver staining. Labelled spots were picked for protein 
identification (A). The highlighted areas are enlarged in inset B and C. 
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Figure 35. Overlay picture of two 2-DE gels of Sea-l+ progenitor cells 
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Figure 35. Overlay of two 2-DE gels from different Sca-l+ progenitor cell samples 
were generated by ProteomWeaver software. The orange colour and blue colour indicate 

protein spots on different gels. Matched proteins with similar expression are shown in 
black colour. 
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From approximately 2000 spots that were resolved on a single large format 

silver-stained gel, 300 were labelled and picked for mass spectrometry (Figure 33 and 

Figure 34). 241 spots were identified representing 173 unique proteins with a MM range 

from lOkDa to 100kDa and a pI range from 4 to 9. Fifty-nine spots (19.7%) remained 

unidentified. All identifications are listed in Table 14 (see Appendix). 

Overall, the spot patterns were very similar before and after clean-up and the 

clean-up procedure prevented streaking in the basic area. However, some spots 

disappeared after using the clean-up kit, mainly in the basic region (pI >8) and in the 

lower left corner of the gel (spots 44,73,74,81,85,89,109,144,166,175,181,188, 

190,224,230-232), while additional spots became detectable in the treated sample 

(spots 9-11,13,15-18,24,33,39,40,42,55,57,64,67,68,80,116,234,238,244, 

288). 

Among the total 241 identified proteins, the majority were enzymes (33%), 

followed by proteins involved in DNA maintenance, transcription and translation (18%), 

structural proteins (13%) and chaperones (20%). Interestingly, signalling molecules 

were more abundant in Sca-1+ progenitor cells (10%) than ES cells (5%) and adult 

arterial SMCs (Mayr, Mayr et al. 2005) (Figure 36). 
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Figure 36. Sca-1+ cell proteins category pie chart 
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Figure 36. Proteins category pie chart showed that enzymes, chaperones and cell 
proliferation-related proteins are most abundant proteins species in Sca-1+ cells. 

A direct comparison of the protein profile of Sca-l+ progenitor cells (n=4) with ES 

cells (n=4) and arterial SMCs (n=4) revealed that the percentage of differentially 

expressed spots (2 fold increased or decreased) was higher between arterial SMCs and 

Sca-1+ progenitor cells indicating that the proteome of Sca-l+ progenitor cells remained 

more similar to ES cells than arterial SMCs (Figure 37). 
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Figure 37. Percentage of differentially expressed spots in Sea-1+ progenitor cell gels 

compared with ES cell gels and SMC gels 
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Figure 37.2-DE gel images from Sca-l+ progenitor cells (n=4), ES cells (n=4) and 
SMCs (n^4) were imported into the ProteomWeaver software. Average gels were 
created from 4 single gels per group. Pie charts show the percentage of protein spots 
with 2 fold increased and decreased protein expression between Sca- l+ progenitor cells 
and ES cells (A) and between Sca-1+ progenitor cells and SMCs (B). 

3.3.2 Data presentation on the internet 

I maintain a website at htlp: //www. vascular-protcomics. com using Apache/ PHP/ 

MySQL, for our group presenting protocols, proteome maps, protein identifications, 

publications along with maps from mouse aortic SMCs (Mayr, Mayr et al. 2005) and 

other vascular cells (McGregor, Kempster et al. 2001; Dupont, Corseaux et al. 2005) 

published by other groups. The protein identifications were all saved in the MySQL 

database. After the users inquired the database through PHP language, the result was 
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displayed by Apache web server. The "SEARCH SPOTS" function allows the 

comparison of proteins across different maps and the detailed methods for 2-DE, tryptic 

digestion and mass spectrometry should be useful to other investigators. 

3.4 Comparison of esSMCs and aortic SMCs 

3.4.1 Proteomic analysis using DIGE approach 

To allow accurate quantification of protein expression in ES cell-derived SMCs 

(esSMCs) and aortic SMCs, the DIGE approach was utilized. In brief, proteins from 

esSMCs (n=6) and aortic SMCs (n=2) were labelled with either Cy3 or Cy5 and 

co-separated by 2-DE using a broad range pH gradient (pH 3-10 nonlinear) and large 

format 12% SDS gels. After normalization to the internal pooled standard labelled with 

Cy2, protein expression ratios and p values were calculated between these 2 groups by 

DeCyder software. Totally there were 146 spots showed a significant (p < 0.05) 2 fold 

change. A representative image with labelled numbers was shown as Figure 38. Among 

these, 128 spots (88%) were successfully identified by MALDI-ToF MS or LC MS/MS 

and listed in Table 15 (see Appendix). Because ES cells were cultured in complete stem 

cell medium to keep an undifferentiated stage, they were not included in present 

comparison. 

While cytoskeletal/myof i lament proteins and calcium binding proteins were less 

abundant in esSMCs than in aortic SMCs, chaperones such as heat shock proteins were 

increased along with proteins regulating DNA maintenance, transcription and 

translation. Notably, upregulation of the cytosolic antioxidant peroxiredoxin 6 (spot 50) 
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coincided with a downregulation of mitochondrial manganese SOD (SOD-2, spot 77,78) 

in esSMCs. 

Figure 38. esSMCs (green, n=6) and aortic SMCs (red, n=2) were compared using the 
DIGE approach. In the representative gel, protein lysates of esSMCs and aortic SMCs 
were labelled with Cy3 and Cy5, respectively and co-separated in large format 2-DE 
gels. Images were acquired on a fluorescence scanner and analyzed by DeCyder 
software. Spots with 2 fold increase or decrease (p < 0.05) between esSMCs and aortic 
SMCs were numbered, picked and identified by mass spectrometry. 
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Figure 38. A representative DIGE image of esSMCs and aortic SMCs 



Figure 39. An illustration of DeCyder software 
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Figure 39. An illustration of the DeCyder software. Protein expression increases (red 
circle) and decreases (blue circle) in SMCs compared to esSMCs are shown in the 
top-left panel on selected gels. The intensity of the protein spot in each gel is shown as 
one spot in the top-right panel. There are 6 spots in esSMCs group (yellow) and 2 spots 
in SMCs group (blue). Y-axis is the standardized log abundance compared to the 
internal pool standard. The average abundance of each group is shown as a cross (+) and 
connected by the blue line. A 3-D comparison of selected spot is shown in the 
bottom-left panel. The selected spot (purple circle) is SOD-2 with a 3.06 fold increase in 
SMCs compare to esSMCs, x. 00083, as shown in the bottom-right panel. 

3.4.2 Confirmation of differentially expressed proteins 

Some protein changes between esSMCs and aortic SMCs were verified by 

immunoblotting (Figure 40). For each protein, at least 2-3 Western blots were run with 

different cell lysates for comparison of protein expression between esSMCs and aortic 

SMCs. Cytoskeletal/myofilament proteins (actin, a-tubulin and myosin light chain) 

were less abundant in esSMCs than in aortic SMCs, while most chaperones were 

increased except crystallin a/ß (HSP20). Notably, upregulation of the cytosolic 
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antioxidant peroxiredoxin 1,2,6 and SOD-I were accompanied by downregulation of 

mitochondrial antioxidants peroxiredoxin 3 and SOD-2 in esSMCs. This inconsistency 

in antioxidant expression prompted us to study possible alterations in the subcellular 

redox state. 

Figure 40. Western blot comparison between esSMCs and SMCs 
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Figure 40. (A) The expressions of a panel of cytoskeletal proteins, heat shock proteins 
and antioxidants were detected by Western blot using corresponding antibodies. 
esSMCs showed decreased cytoskeletal proteins but increased heat shock proteins. 
Cytosolic antioxidants were increased in esSMCs but mitochondrial counterparts were 
decreased. (B) Bar graph showing clear differences of the protein expressions between 
these two cells. Relative average intensity (Y-axis) of each sample in each blot was 
calculated by normalizing with the average of the stronger sample bans of all blots. 
(MLC, myosin light chain; HSP, heat shock protein; PRX, peroxiredoxin; PRX-S03, 
oxidized peroxiredoxin; PRX6-S03, oxidized peroxiredoxin 6; SOD, superoxide 
dismutase; HO, heure oxygenase) 
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Besides revealing differences in protein expression, 2-DE gel also has the 

potential to display differences in posttranslational modifications. Peroxiredoxin 6 was 

encountered as doublet spots in 2-DE (Figure 41). The over-oxidation of peroxiredoxin 

6 is likely to be irreversible under biological conditions and de novo synthesis is 

required to counteract the annihilation of the peroxiredoxin-based antioxidant defence 

(Rabilloud, Heller et al. 2002). Consistent with the predominance of the acidic isoform 

in esSMCs, immunoblotting showed higher levels of oxidized peroxiredoxin 6 

(PRX6-SO3) (Figure 40), indicating an increased turnover of this antioxidant protein 

compared to mature SMCs. 

Figure 41. Overlay of 2-DE gels showing peroxiredoxin 6 shifting 
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Figure 41. Peroxiredoxin 6 showed 2 horizontal spots in 2-DE gels. In esSMCs, the 
oxidized form (red circle) was more abundant than the reduced form (blue circle) while 
the reduced form was present in higher amounts than the oxidized form in aortic SMCs. 

3.4.3 ROS production 

We therefore quantified total ROS and mitochondrial superoxide production by 

DHR123 and MitoSOX staining, respectively. Consistent with the increased oxidation 
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of redox-sensitive proteins in esSMCs, the fluorescent signal intensity for DHR 123 was 

higher in esSMCs compared to aortic SMCs (2133 ± 50 RFU/µg protein, n=3 vs. 1782 ± 

64 RFU/µg protein, n=3, p=0.002) (Figure 42). Notably, the increase in total ROS 

production was accounted for by a rise in mitochondrial superoxide production as 

indicated by a corresponding increase in MitoSOX staining. To further clarify the site of 

ROS generation, we treated SMCs with rotenone and antimycin A, a mitochondrial 

complex I and III inhibitor, respectively. Antimycin A but not rotenone augmented 

mitochondrial superoxide and total ROS formations in esSMCs, but did not 

substantially alter the fluorescent signal of aortic SMCs (Figure 43), providing 

additional proof that the observed increase in oxidative stress in esSMCs is 

predominantly from mitochondria and suggesting that complex III acts as the principal 

site of ROS generation. 

Figure 42. Total cellular ROS measured by DHR123 
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Figure 42. Aortic SMCs (n=3) and esSMCs (n=3) were incubated with DHR123 for 1 
hour and harvested for fluorescence signal measurement and protein concentrations 
were determined. Normalized RFU indicates the total reactive oxygen species level in 
these cells. esSMCs showed significantly increased ROS than aortic SMCs. (The error 
bar indicates SE of each group, ** denotes p<0.01) 
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Figure 43. Total IZOS and mitochondrial superoxide prodlictioll 

(A) 

12 

10 
C 

C 
CD 8 
C 

cn 6 
2 
0 
LL 4 
a) 
:r 
d2 

0 

AM 

(13) 

5 

C4 Q1 

C 

Q) 
U 3 
v 
u 
U) 
d 
02 

U- 
a) 

p"O fill 1 

:r 
C) 

0 
SMC esSMC 

MitoSOX DHR123 

I Control 

  Antimycin A 

Q Rotenone 

Figure 43. MitoSOX (A) and DIIR123 (B) staining were used to assess total reactive 
oxygen species (ROS) and mitochondrial superoxide production in esSM('s (n -3) and 
aortic SMCs (n=3). csSMCs have a significant increase in mitocliondrial superoxide 
production. Changes in oxidative stress were analyzed after treatment with rotenone and 
antimycin A, a complex I and III inhibitor, respectively. Note that the complex III 

inhibitor antimycºn A resulted in a marked increase in mitochondrial superoxide 
production in esSMCs. (The error bar indicates SE of each group, ** 1)'-1). 0I compared 
to control) 

3.4.4 Redox balance 

The rise in mitochondrial ROS in csSMC's was paired with decreased expression 

of' ATP synthase beta chain (Table 15, see Appendix), a drop in cellular NIT levels 

(19.52 f I. 07µmol/g proteins in esSMCs, n 2, vs. 32.31 =f= II Oµmol/g proteins in aortic 

SMCs, n=2) (Figure 44A) and reduced concentrations of, glutathionc ((GSI1) (40.65 A- 

0.52µmol/g protein in csSMCs, 11==2, vs. 49.87 _1 1.34µmol/g protein in aortic SMCs, 

n=2) (Figure 44B). The reduction in cellular GSII, the major intracellular antioxidant, 

occurred despite a compensatory increase of glutathionc rcductase activity in csSMC's 

** 
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(107.6 ± 2.8 IU/g protein in esSMCs, n=3, vs. 33.5 ± 1.1 IU/g protein in aortic SMCs, 

n=3) (Figure 44C). 

Figure 44. Cellular ATP, GSH and glutathione reductase comparison 
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Figure 44. Cells were cultured in 6-well plates and harvested for measuring cellular 
ATP levels (n=2) (A), concentrations of reduced GSH (n=2) (B) and glutathione 
reductase activity (n=3) (C) in esSMCs and aortic SMCs. esSMCs showed lower ATP 

and reduced GSH levels but higher GSH reductase activity compared to aortic SMCs, 
indicating a higher ROS level in esSMCs. (The error bar indicates SE of each group, ** 
denotes p<0.01) 
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3.4.5 Cell viability 

In normal culture conditions (with 50µM 2-ME), esSMCs grew faster than aortic 

SMCs. Cells were cultured in 6-well plates and change medium after 24 hours. At 

different time point, cells were scraped and lysed in lmL 0.5M NaOH. Protein 

concentration was measured and plotted versus time (Figure 45). The slow down of the 

curve after 33 hours may be because shortage of nutritions in the medium. 

Figure 45. Growth curve of esSMCs and aortic SMCs 
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Figure 45. Cells were cultured in 6-well plates. Protein concentrations of cells from 

whole wells in different time points were measured and cell growth curve were made. 
esSMCs showed a much higher proliferation rate compared to aortic SMCs. 

esSMCs were more susceptible to cell death upon treatment with both diethyl 

maleate (DEM) (Figure 46A), a sulphydryl-reactive agent that results in rapid depletion 

of GSH followed by a drop in ATP (Mayr, Siow et al. 2004), and carmustine (BCNU) 

(Figure 46B), a glutathione reductase inhibitor. In contrast, esSMCs viability improved 

on addition of 2-mercaptoethanol to the culture medium (Figure 46C), highlighting their 
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need for additional antioxidant protection. 

DEM concentrations above 100µM are toxic. For the consist comparison with 

non-treated control, in this study DEM was directly added to DM containing 50µM of 

2-ME, which leads to a lower effective concentration of DEM. 

Figure 46. Cell viability after DEM, BCNU and 2-mercaptoethanol treatment 
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Figure 46. Cell viability after depletion of GSH by treatment with DEM (n=3) (A) or 
inhibition of glutathione reductase by BCNU (n=3) (B). Increase in esSMCs survival 
upon addition of 2-ME to the culture medium (n=4) (C). (The error bar indicates SE of 
each group, * p<0.05 compared to baseline, ** p<0.01) 
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3.4.6 Mitochondrial depolarization 

JC-1 was used for detection of mitochondrial depolarization occurring in the early 

stage of apoptosis. The ratio of green (FL1) to red (FL2) fluorescence is dependent only 

on the membrane potential and not on other factors such as mitochondrial size, shape 

and density that may influence single-component fluorescent signals. The FL2/FL1 

ratios of esSMCs and aortic SMCs were 2 and 10, respectively (Table 10, Figure 47). A 

lower ratio means lower membrane potential of mitochondria, indicating loss of 

mitochondrial potential in esSMCs. After adding 50µM of CCCP, the potential of 

mitochondrial membrane was completely lost and the ratios dropped to 0.1 for both cell 

lines. 

Table 10. Fluorescence signal of JC-1 staining of esSMCs and aortic SMCs 

Sample with 10µM JC-1 FL-1 FL-2 FL-2/FL-1 

SMC control 90 900 10 

esSMC control 700 1400 2 

SMC + 50µM CCCP 300 30 0.1 

esSMC + 50µM CCCP 100 10 0.1 
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Figure 47. JC-1 staining of esSMCs and aortic SMCs 
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Figure 47. Cultured esSMCs and SMCs were dissociated in PBS and 10µM JC-I or 
extra 50µM CCCP were added. After 30min of incubation in 37°C, the fluorescent 

signal of the cells was acquired by FACS. The cell count chart of each channel of 
esSMCs and aortic cells were generated and compared with each other. The average 
fluorescent signal readings were listed in Table 10 and FLl/FL2 ratio were calculated. 

3.4.7 Metabolomic differences between esSMCs and SMCs 

To clarify the metabolic effects of the differences shown at the protein level, 

esSMCs (n=3) and aortic SMCs (n=4) were harvested for NMR. Metabolites were 

measured by high-resolution NMR spectroscopy and protein concentrations were 

determined. The NMR analysis demonstrated several metabolites concentration changes 

between esSMCs and aortic SMCs. Those with ratio greater than 1.2 or less than -1.2 

are listed in Table 11. 
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Table 11. Metabolites concentration changes between esSMCs and aortic SMCs 

Metabolites Concentration (pmol /g protein) Ratio p 
esSMC SMC 

Glucose Metabolism 

Lactate 64.599 ± 15.129 

Glucose 0.557 ± 0.509 

Myoinositol 12.864 ± 2.068 

Lipid Metabolism 

Acetate 15.718 t 1.598 

Carnitine 11.726 ± 2.519 

Acetone 4.470 ± 0.287 

Phospholipid Components 

Choline 0.346 ± 0.045 

Phosphocholine 

Glycolate 

Amino Acids 

Glycine 

Aspartate 

Glutamate 

Glutamine 

Taurine 

Energy Metabolism 

0.961 ± 0.228 

11.903 f 2.329 

21.933 ± 1.316 

35.531 ± 3.658 

201.396 f 8.205 

94.752 ± 6.606 

47.022 ± 5.93 9 

44.767 t 11.157 

3.888 f 1.936 

51.613 ± 4.689 

27.636 ± 7.385 

18.129 ± 4.901 

6.144 ± 1.478 

1.128 ± 0.570 

7.155 t 4.014 

21.723 t 5.537 

1.443 0.137 

-6.984 0.036 

-4.012 0.000 

-1.758 0.044 

-1.546 0.079 

-1.375 0.106 

-3.255 0.071 

-7.443 0.054 

-1.825 0.031 

74.716 t 16.046 -3.407 0.007 

15.557±4.217 2.284 0.001 

95.992 ± 18.938 2.098 0.000 

75.738 t 20.441 1.251 0.160 

92.998 f 35.210 -1.978 0.077 

Adenosine pool 42.392 ± 1.761 35.317 f 3.813 1.200 0.027 

Phosphocreatine 21.738 ± 1.464 28.793 t 6.523 -1.325 0.117 

Succinate 6.611 ± 0.391 10.117 f 1.999 -1.530 0.036 

Fumarate 0.452 ± 0.011 0.312 ± 0.194 1.448 0.245 

NAD+NADH 4.126 ± 0.520 2.659 ± 0.831 1.552 0.036 

The most significant changes were observed for glucose, myoinositol, glycine, 

glutamate and aspartate. The low concentration of glucose may explain the low ATP 
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level in esSMCs. esSMCs appear to consume more glucose to meet their higher 

energetic demand. Glucose concentration is lower not only within esSMCs but also in 

the culture medium after 24 hours culture compare to the aortic SMC culture (Figure 

48). Alternatively, their mitochondria may not generate ATP efficiently and they 

therefore need a higher rate of glycolysis. 

Figure 48. Glucose concentration in the culture medium of esSMCs and aortic 
SMCs 
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Figure 48. Culture medium samples were taken from the 6-well plates at different time 

points from esSMCs (n=3) and aortic SMCs (n=3) and glucose concentration were 
measured. The glucose concentration of esSMCs showed a very fast drop during the cell 
culture. (The error bar indicates SE of each group, * denotes p<0.05 compared to 
baseline, ** p<0.01) 

In addition to ATP generation, mitochondria are also responsible for fatty acid 

oxidation. Notablely, metabolites involved in lipid metabolism and phospholipid 

components were all decreased in the esSMCs. Similarly, succinate, a supplementary 

carbon source in the citric cycle and in the electron transport chain complex II, showed 

a significant drop. Taken together, our proteomic and metabolomics data provide 

evidence for mitochondrial dysfunction in esSMCs. 
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4 DISCUSSION 
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4.1 Stem cells 

4.1.1 The differentiation potential of stem cells 

The remarkable differentiation potential of ES cells holds important research 

application including neoangiogenesis, stem cell-based therapies and tissue-engineering 

strategies, which may offer new clinical applications. ES cell differentiation is a 

complex process altering numerous proteins, not only at the transcriptional and 

translational level, but also by posttranslational modification. 

Three criteria should be considered when using ES cell model for lineage-specific 

differentiation. First, protocols need to be established that promote the efficiency and 

reproducibility of the development of intereted cell type. If possible, selection strategies 

should be combined with optimal differentiation schemes to isolate highly enriched cell 

populations. Second, lineage development from ES cells should recapitulate the 

development program that establishes the lineage in the early embryo. Third, the mature 

cell populations that develop in these cultures must display appropriate functional 

properties both in vitro and in vivo (Keller 2005). The third one remains to be the major 

challenges in the field today. 

The cellular heterogeneity is an intrinsic feature of the ES cell differentiation 

culture, which results in the pluripotent property of ES cells and makes the ES cell a 

considerable therapeutic potential source in the tissue engineering. However, the 

multiplicity is a major disadvantage of the ES cell differentiation culture when 

investigating cell type specific mechanism and teratomas can easily be formed when 
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injected in vivo (Martin 1981). In our studies, we used the positive selection (magnetic 

labelling cell sorting) of Sca-1+ cells and stimulation with PDGF-BB to obtain highly 

purified esSMC population, which expressed similar SMC marker as mature aortic 

SMCs (Figure 25). During the differentiation from Sca-1+ cells to esSMCs by 

PDGF-BB stimulation, the portion of SMC marker positive cells continuously 

increasing when treated with PDGF, from 50% at day 3 to 95% at passage 10. 

Additionally, esSMCs form vascular-like structures in vivo and no tumour-like tissue 

can be observed in the sections of cell grafts at 4 weeks (Xiao et al, unpublished data), 

indicating that esSMCs have angiogenesis activity and are safe for in vivo use. Another 

way to get highly purified SMCs is negative selection by puromycin on ES cell-derived 

SMCs with SM a-actin or SMMHC promoter controlled puromycin resistance gene 

(Sinha, Wamhoff et al. 2006). However, embryoid body differentiated up to day 28 still 

contained pluripotent cells. Thus, the highly efficient separation method is the critical 

requirement for the cell therapy and tissue engineering applications. 

Many laboratories, including us, used serum as a growth supplement and/or as a 

source of inducing factors and successfully developed various cell lineage from ES cells. 

However, the use of serum has several serious drawbacks that induce batch-to-batch 

variability and the lack of identity of the inducing factors contained in it. It will be 

important to use serum-free conditions (such as serum replacement) and defined 

molecules for differentiation study. Several recent studies have eliminated serum and 

have begun to identify factors required for lineage-specific differentiation (Nakayama, 

Lee et al. 2000; Ying, Nichols et al. 2003; Kubo, Shinozaki et al. 2004; Park, 
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Afrikanova et al. 2004). As more protocols incorporate these approaches, both mouse 

and human ES cell mutilineage differentiation will become an easy routine technology 

in many labs. 

4.1.2 Cell markers are not sufficient for differentiation 

Undifferentiated stem cells and cells in different stage during the differentiation 

express different combinations of surface antigens. These antigens can be routinely 

utilized to detect the existence of stem cells, progenitor cells, or differentiated cells by 

Western immunoblotting, reverse transcription-PCR, immunofluorescence staining, 

immunohistochemistry staining, or to separate specific cells from heterogeneous cells 

by fluorescence activated cell sorting (FACS) and magnetic labelling cell sorting 

(MACS). The full list of human cell differentiation molecules is a helpful reference 

when we study the stem cell differentiation (http: //www. hlda8. orM/). 

We used a panel of SMC markers which are widely accepted as sufficient to 

identify SMCs from heterogeneous cells, including SM a-actin and SMMHC, SM22, 

h-calponin. The SM a-actin and SMMHC expression within the developing embryoid 

body exhibited a high degree of SMC specificity/selectivity. In vivo, the SM a-actin 

promoter is expressed in all three muscle types during development but is restricted to 

smooth muscle by the time of birth (Mack and Owens 1999). The SMMHC promoter is 

more specific to SMCs and is only active in SMCs throughout embryogenesis and in a 

small subset of cardiomyocytes during very early development (Madsen, Regan et al. 

1998; Regan, Manabe et al. 2000). Normally the purified cells comprise various 
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subpopulations of SMCs (such as vascular, gut or other organ specific SMC lineages) 

and these cells are best suited to study the common mechanism for all SMCs (Sinha, 

Wamhoff et al. 2006). 

Although the esSMCs express a range of SMC markers, including two mature 

contractile SMC marker SM1 and SM2 (Xiao, Zeng et al. 2006), our proteomics 

comparison demonstrated that their ultimate phenotype and behaviour are profoundly 

different from mature vascular SMCs as revealed by the numerous differences between 

their proteome maps. Notably the esSMC 2-DE gel pattern is more like ES cells. 

Additionally, there are a lot of functional differences between these two cell types, 

especially their mitochondrial functions and their tolerance to oxidative stress. Similarly, 

ES cell-derived ECs also lack complete functional maturation in vitro (McCloskey, 

Smith et al. 2006). Mouse ES cell-derived ECs were compared with mouse aortic ECs. 

Although both cell types expressed EC markers (eNOS, Flk-l, Flt-1, VEcadherin, 

PECAM-1, CD34), ES cell-derived ECs showed a significantly lower levels of 

acetylated LDL uptake and von Willebrand factor and also their VEcadherin did not 

localize at the cell-cell junctions as in the mature counterpart. On the contrary, ES 

cell-derived ECs express much greater levels of the endothelial and hematopoietic stem 

cell marker CD34 and vasculogenic and angiogenic sprouting, indicating the immature 

stage of these differentiated cells. 

These findings indicate the expression of cell markers may be indicative but not 

sufficient to characterize stem cell-derived cells or stages of cell differentiations. Thus, 

other approaches are needed to characterize ES cell-derived cells and mature 
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counterparts. Otherwise, functional differences between which would have gone 

unnoticed by only relying on a classification based on a panel of cell marker proteins. 

Since the ultimate phenotype of a cell is reflected in their instantaneous proteomic 

profile, the advent of novel proteomic approaches may offer an opportunity to obtain 

not only a better understanding of cell differentiation, but also to progress towards a 

molecular classification of stem-cell derived cells based on comparative analysis of 

protein expression patterns with other vascular cell types. 

4.1.3 Mechanical stress and SMC maturation 

Previous studies demonstrated that lack of hemodynamic forces triggers apoptosis 

in vascular ECs (Kaiser, Freyberg et al. 1997) and low intra-luminal pressure (10mmHg) 

resulted in decreased contents of smooth muscle marker proteins h-caldesmon and 

filamin (Birukov, Bardy et al. 1998), both of which hint that mechanical forces are 

essential stimuli for the maintenance of blood vessels. Similarly, the reason for the 

immature state of esSMCs may be the lack of mechanical stress. ES cells were cultured 

in static environment from the beginning without mechanical stress, while mature cells 

underwent stress from the very beginning and the hemodynamic forces last during the 

entile development of the vascular system. The different original environment may be 

responsible for the different function of these two cells. Although they were cultured 

under exactly same condition afterwards and showed some similarities, many of their 

physiological functions are different. 

For tissue engineering, large numbers of proper functional and highly purified 

172 



cells will be needed to construct vessels. ES cells are easy to culture and have a high 

proliferation ability, which can be used to get enough cells in relatively short period. 

The purity of the ES cell-derived cells detected by FACS experiment is high enough to 

prevent the teratoma formation in vivo but the functions of these cells are very different 

from mature cells in vitro because of their immature stage. 

For the use of esSMCs in tissue engineering, additional treatment besides 

chemical stimulation (PDGF-BB), e. g. mechanical stress, may be needed to induce 

differentiation to mature SMCs. With presence of cyclic stretch, total expression of 

smooth muscle specific myosin heavy chain (SM-1 and SM-2) and myosin light chain 

kinases increased in cultured vascular SMCs but non-muscle myosin-A decreased 

compared to static condition (Smith, Tokui et al. 1995; Reusch, Wagdy et al. 1996), 

which demonstrated the stimulatory effect of cyclic stretch on cytoskeleton protein 

expression. Using the same method, we can culture esSMCs in a tube and apply ex vivo 

mechanical stretch between the two ends and gradually increase to normal blood 

pressure. After the stimulation by cyclic stretch, these esSMCs might become more 

similar to mature SMCs in function. 

4.1.4 Stem cell therapy 

Because of the outstanding differentiation performance of mouse stem cells, the 

introduction of human stem cells has received the most attention in recent years as a 

novel source of cells for cell replacement therapy and tissue engineering strategies. 

Diseases caused by the loss or dysfunction of one or a limited number of cell types 
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could benefit from ES cell-based therapies, including Type I diabetes, Parkinson's 

disease, stroke, arthritis, multiple sclerosis, heart failure, blood diseases, certain type of 

liver disease and spinal cord lesions (Wert Gd and Mummery 2003). Transplantation of 

specific ES cell-derived cells into pre-clinical models of human diseases is already 

underway. 

Although there is a promising future of the stem cell therapy, several important 

issues need to be addressed and settled before clinical practice. (a) The efficiency of 

establishing ES cell-derived cell lines has to be increased. Notably, apoptosis 

accompanying cell differentiation need to be resolved. If we discover the mechanisms 

and block the pathway of apoptosis during differentiation, we could increase the yield of 

purified progenitor/stem cells for implantation to injured tissue. (b) The compatibility of 

the donated embryos. Stem cell banks with a large numbers of ES cell lines would 

include a significant portion of the histocompatibility types in the population. Another 

trategy is to generate individualized ES cell lines through somatic cell nuclear transfer 

(SCNT), which would be genetically identical to the patient. (c) The purity of 

differentiated cell. Transplantation of undifferentiated ES cells can result in the 

development of teratomas (Thomson, Itskovitz-Eldor et al. 1998). With a combination 

of positive and negative selection, it should be possible to reproducibly generate grafts 

free of undifferentiated ES cells. (d) The number of cells to be transplanted. After the 

mechanisms controlling development of the desired lineage have been clarified, optimal 

conditions for the generation of the appropriate cell populations can be developed. (e) 

The delivery of the differentiated cells to the appropriate site, i. e. the homing of the 
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progenitor/stem cells. (f) The required stage of maturation depends to a large extent on 

the lineage under investigation. Relatively mature hepatocyte will be isolated and 

transplanted and end-stage of pancreatic ß-cells is needed before transplantation, while 

hematopoietic transplantation requires the most immature cells, i. e. HSC. Optimization 

of the differentiation stage of ES cells at transplantation is critically required to meet the 

challenge for cell therapy in regeneration medicine (Yurugi-Kobayashi, Itoh et al. 2003). 

Despite the potential benefit of using human ES cells in the treatment of disease, 

their use for research remains controversial and is currently high on the ethical and 

political agenda of many countries because they are derived from early human embryos. 

Although human ES cells can give rise to all somatic tissues, they cannot form 

extra-embryonic tissues which are necessary for complete embryo development, so that 

they cannot give rise to a complete new individual (Wert Gd and Mummery 2003). 

Messenchymal stem cells (MSCs) are highly attractive candidates for tissue engineering 

approaches in messenchymal tissue regeneration because they can easily be obtained 

and cultivated and are not ethically stigmatized. An ethical and practical limitation of 

SCNT is the requirement of enucleated oocytes. The development of oocytes from 

differentiated ES cells may provide one solution to this problem. 

4.2 Proteomics 

4.2.1 Gel-based or gel-free 

Currently, there are basicly two different workflows for proteomics. One is the 

conventional 2-DE separation following protein identification by MS. Another is based 
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on gel-free "shotgun" approach, which injects the digested protein complex directly into 

MS without prior 2-DE. 

Gel-based approach is very common due to the reasonable cost and is readily 

intergrated into other biochemical purification strategies. The high resolution can 

separate 2000 protein spots spontanously as shown in our proteome maps and all the Mr 

and pI information can be obtained. More importantly, some PTMs are also preserved, 

such as oxidation, phosphorylation and glycosylation. The drawback of gel-based 

approach is the time-consuming, labour intensive operation procedure, which demands 

qualified people to obtain reproducible results. 

While non-gel based approach is much faster and less time consuming. Because 

the separation is performed at the peptide rather than protein level, most of the solubility 

problems associated with large size, low abundance and hydrophobic proteins are 

obviated (Peirce, Wait et al. 2004). This approach offers considerable advantages for 

study membrane proteins. The disadvantage of most shotgun strategies is that 

computationally intensive analysis of the entire dataset is always required, even when 

only a few proteins display changes in expression levels. Moreover, no information on 

the pI or Mr of the intact proteins is obtained, and all connectivity between parent 

proteins and their digestion products is lost, which hinders characterization of PTMs. 

In this study, my subject is the proteome of ES cells and differentiated cells. The 

whole cell lysate is a very complex mixture of proteins. For quantification, mass 

spectrometry-based approaches are well suited to detect accurate differences in pairwise 

comparisons or few biological replicates. However, it remains a challenge to perform 
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comparisons across a large number of samples. Attempts are undertaken to perform 

label-free quantitation, but complex LC is required. Otherwise, quantitative differences 

in label-free LC-MS runs are influenced by co-eluting peptides as highly abundant ions 

suppress the ionization of less abundant ions. Undersampling of the mammalian 

proteome is another problem. For these reasons, the gel-based proteomic approach was 

used in this study although it is labour-intensive and requires more training. In addition, 

post-translational modifications such as the shift between the oxidized and reduced 

isoform of peroxiredoxin 6 would have gone unnoticed in a gel-free approach. However, 

this was a crucial observation and lead to all the functional studies into oxidative stress 

associated with the differentiation to esSMCs. 

Gel- and non-gel based approaches provide closely related but distinct information 

about proteins, suggesting that they are complementary, or at least supplementary, 

methods, but not a replacement for gel-based proteomics (Monteoliva and Albar 2004). 

With the development of all related techniques during these years, advanced LC system 

can easily resolve mixtures of 1000 different proteins and also new fragmentation 

methods on mass spectrometers such as- electron transfer dissociation (ETD) can be 

utilized to detect different PTMs. Thus, the shotgun approach also can be used for our 

future studies. 

4.2.2 Silver staining or DIGE 

Even within a same batch of 2-DE gels, silver stained gels still show a large 

variation because the dry stips and polyacrylamide gels are still not totally identical. 
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Gel-to-gel variation is the biggest problem for the reproducibility of our early studies. It 

is recommended that for a single biological replicate at least 9 different gels are required 

(3 different gels of three different samples of the same biological state) to overcome the 

gel-to-gel or intrinsic biological sample variations (Monteoliva and Albar 2004). It is 

very hard to use silver stained gels to study a large number samples and gel analysis is 

very time-consuming. 

Compared to the traditional silver stained gels, 2-D DIGE eliminates gel-to-gel 

variation by running different samples in one gel. This greatly reduced the work. Silver 

staining only allows a comparison between two similar samples, i. e. the same cell line 

before and after treatement, because a similar spot number or density is required for the 

normalization between silver stained gels. It is less suitable for comparing totally 

different cell lines, i. e. esSMCs and aortic SMCs, as they might have a different number 

of overall spots. By using the same internal pooled standard across different gels along 

with high sensitivity and wider linear dynamic range of the fluorescent dyes, highly 

accurate quantatitive analysis can be performed even between very different samples. 

Despite the relatively expensive equipment and consumables, the DIGE approach is 

much more reliable than silver stained gels. 

There were also some compatiblity issues when we transferred from silver stained 

system to DIGE comparison. DIGE lysis buffer contains Tris but not DTT. Tris can keep 

the DIGE lysis buffer in a stable pH of 8.5 for optimized labelling efficiency but 

introduced higher ion strength into the isoelectric focusing system. DTT will interfere 

with DIGE labelling and must be avoided in the lysis buffer before labelling. However, 
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the protein subunits or protein complex combined by double sulphate bond will not 

totally disaggregate in the lysis buffer without DTT. These component differences lead 

to potential differences in the spots pattern between 2-DE gels and DIGE gels. 

Hydrophobic protein lysis from cellular compartment for 2-DE remains to be an 

unconquered problem in proteomics today and can presently only be accomplished in 

part with the help of specifically different isolation protocols (Klose 1999; Ramsby and 

Makowski 1999). Moreover, the precipitation step during cleanup procedure will cause 

protein loss because some of the precipitated proteins cannot be resolubilized back into 

the solutions at the final reconstitution step. Also the extended exposure to the low pH 

trichloroacetic acid solution may cause some protein degradation or modification, which 

may influence the protein pattern of 2-DE gels. However, the clean-up can remove most 

of the contaminants some of which may interfere with the isoelectric focusing and cause 

a loss of spots or even vertical empty gap across the gels. For these reasons, we use a 

sample clean-up and ran the 2-DE gels as a complementary map for the proteome map 

of the Sca-1+ progenitor cells. 

By using the internal calibration with the Mr/pI pairs of identified proteins, a grid 

map can be generated (Figure 29). Because the real observed Mr/pI of identified 

proteins may not exactly equal to the calculated one, a less bias method could be used. 

The best one is using external calibration, i. e. using Mr marker to calibrate Mr and 

using pH gradient shape of IPG strip from manufacturer for adjusting pI. 

With more powerful computers, 2-DE gel analysis programs are also 

countinuously being developed and improved but image analysis remains a 

179 



time-consuming process. For DIGE experiments, DeCyder is the specially designed 

software for DIGE gels. It contains three modules, difference in-gel analysis (DIA), 

biological variation analysis (BVA) and extended data analysis (EDA). DIA module 

detects protein spots and directly compares the protein expression of the samples within 

one gel. BVA matches multiple images from different gels and calculates the relative 

ratio and statistical data of protein spots between multiple groups by normalizing and 

matching the internal pooled standard. The newly developed EDA module offers 

advanced statistical analysis in a simple-to-user format, uncovering patterns in 

expression data and relationships using multivariate analysis and sophisticated 

clustering methods. DeCyder provides statistical confidence and minimal user-to-user 

variation and reduces hands-on analysis time. 

Direct comparison between esSMCs and aortic SMCs using the DIGE approach 

revealed reliable differences in protein expression (Table 15, see Appendix), which will 

give us further insights into the functional role of the identified proteins (Yin et al, 2006, 

Proteomics, in press). The DIGE experiment showed that the expressions of 

myofilaments and associated proteins (such as actin, lamin, myosin light chain, 

tropomyosin and vimentin), calcium-binding proteins (annexin, caldesmon 1, 

calreticulin, and transgelin), are lower in esSMCs, which indicates an early 

differentiation state of esSMCs. In contrast, proteins related to DNA maintenance, 

transcription and translation showed increased expression in esSMCs, e. g. 

heterogeneous nuclear ribonucleoprotein, translation initiation factor, elongation factor, 

which are consistent with the higher proliferation rate of esSMCs. Other differences in 
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signalling proteins may implicate certain receptors and signalling pathways in 

regulating stem cell differentiation. 

HSPs are known to play an important role in chaperoning by transiently 

associating with nascent polypeptides to facilitate correct folding in the cytoplasm and 

nucleus. Notably, nearly all chaperones expressed at higher level in esSMCs than in 

aortic SMCs. This may due to the proliferation-related higher polypeptides synthesis 

rate in esSMCs. HSP 47 is known as molecular chaperon that specifically recognizes 

procollagen in the endoplasmic reticulum and is required for the maturation of type-IV 

collagen (Matsuoka, Kubota et al. 2004). The decreased expression level of HSP 47 

(spot 115 and 116) in esSMCs may be due to the previous initiation of differentiation in 

collagen IV coated flask, which did not demand high rate of collagen IV synthesis to 

form the basement membrane. Interestingly, stress-70 protein showed two pair of spots 

with the same Mr but different pI. The acidic form (spot 4 and 13) were both decreased 

while the alkali form (spot 5 and 15) were both increased in esSMCs compared to aortic 

SMCs. The pI shift may indicate phosphorylation or acetylation (Kim, Sprung et al. 

2006). The two forms of stress-70 protein with or without PTMs must perform different 

functions in esSMCs and aortic SMCs, which should be clarified by further study. 

The DIGE gel also showed SMCs specific marker, such as transgelin-2 (spot 76 

and 79), transgelin (SM22, spot 80), calponin (spot 93), which were decreased in 

esSMCs. Increased oxidized peroxiredoxin 6 (spot 50) and decreased SOD-2 (spot 77 

and 78) in esSMCs were also identified by DIGE gels, leading us to further investigate 

the redox status in esSMCs. Decreased ATP synthase B fragment (spot 22,31,32 and 63) 
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as well as increased VDAC (spot 88-91) suggested the mitochondrial dysfunction in 

esSMCs. 

There are still some spots, which are relatively difficult to obtain reproducible 

results because of low protein concentrations, low quality of MS spectra, too small to 

get enough peptide peaks to be identified, or unavoidable keratin contamination of 

samples during manual spot picking and tryptic digestion. 

4.2.3 Proteomics and differentiation 

To understand complex biological systems such as cell differentiation, a more 

comprehensive approach is needed. Proteomics offers the possibility to simultaneously 

assess the expression of multiple proteins and will help to get a better understanding of 

stem/progenitor cells differentiation in vitro and in vivo. 

There are several reports on stem cell and differentiation studies using proteomics 

technique. For example, proteome databases of murine R1 ES cells (Elliott, Crider et al. 

2004) and human mesenchymal stem cells (hMSCs) (Feldmann, Bieback et al. 2005) 

were established by using 2-DE and MS. The hMSCs and differentiated osteoblast were 

compared and membrane proteins were identified by using the subcellular fractionation 

and LC/MS/MS techniques (Foster, Zeemann et al. 2005), including many low abundant 

signalling proteins and cell markers. A proteomic approach was also used to compare 

cytosolic proteins differentially expressed in HSCs (CD34+ cells) and mature CD15+ 

myeloid cells from human umbilical core blood (Tao, Wang et al. 2004). Although 

proteomics were applied to many stem cell studies, it has been hampered by the lack of 
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physiologically relevant cell models that can be expanded to generate enough of 

material required for proteomic studies. 

Before we can analyze protein differences between different differentiation stage 

in detail, reliable and applicable reference protein maps of each stage during ES cell 

differentiation must be established. In addition to a protein map of mouse ES cells 

(Figure 28), we utilized the potential of proteomic techniques and provide a detailed 

map of proteins derived from Sca-l+ progenitor cells (Figure 33 and 34) (Yin, Mayr et 

al. 2005), the early differentiation step from ES cell to SMCs. All these data are 

available in our website. 

Vimentin is the most ubiquitous intermediate filament protein and the first to be 

expressed during cell differentiation. All primitive cell types including bone marrow and 

cord blood derived non-hematopoietic (mesenchymal, stromal) progenitor cells express 

vimentin, also in our Sca-1+ progenitor cells. Therefore vimentin is a key protein to 

identify progenitor cells of mesodermal origin (Feldmann, Bieback et al. 2005). 

Vimentin is one of the most prominent phosphoproteins. A charge train of spots in 2-DE 

gels may imply a series of phosphorylated proteins with different number of phosphate 

residues. SMC specific markers like h-caldesmon, a-actin, transgelin, and tropomyosin 

are commonly detectable in SMC 2-DE gels but less expressed in ES cells or Sca-1+ 

progenitor cells. 

Beside the intracellular protein differences, the membrane proteins are also 

important for the full function of esSMCs. Recent studies showed that the integrin a4PI 

(VLA-4) promotes the homing of circulating bone marrow-derived progenitor cells to 
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the a4ß1 ligands, VCAM, and cellular fibronectin, which are expressed on actively 

remodelling neovasculature (Jin, Aiyer et al. 2006). The expression of the similar 

membrane proteins as the mature SMCs will enhances the mobility of the esSMCs and 

facilitates their homing to the injured area in the cell therapy. 

As membrane proteins are normally very large hydrophobic proteins, new 

approaches are investigated by our lab to identify and quantify membrane proteins from 

SMCs (Sidibe, Yin et al. 2006, submitted), which combines cell surface labelling with 

Cy dye and biotinylation. After enrichment by the affinity capture with avidin and 

separation by 1D gradient SDS-PAGE, the Cy dye labelled proteins contained the 

majority of membrane, membrane-associated proteins and extracellular matrix proteins. 

Using this protocol, membrane proteins can be easier distinguished from co-purified 

intracellular contaminants. 

4.2.4 Bioinformatics for proteomics 

Currently increasing interest emerges in the validation of peptide identifications, 

the use of statistical methods to analyze results across multiple samples, the need to link 

mass spectrometric data to a multiplicity of genomic sequence entries, and the 

development of common standards for the dissemination of proteomic results. All these 

promote the development of proteomic bioinformatics. 

As proteomics study will generate large amount of data, including gel images, 

protein spots position on the 2-DE gel, mass spectrometry raw data and spots 

identifications, many 2-DE gel database have been set up, including SMCs, HUVEC, 
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serum, mitochondria (httl2: //www. exl2asy. oriz/ch2d/2d-index. html). Proteomic databases 

have been proven to be effective tools in basic and applied cell research (Resing 2002). 

The knowledge of the cellular proteome also provides a useful instrument for the 

assessment of differential protein expression changes under disease conditions, for the 

analysis of functional protein interactions and the clinical treatment protocols. For these 

reasons, we built our own website http: //www. vascular-proteomics. com. Our gels show 

excellent resolution and represent a variety of proteins and different PTM. The 

identifications through all these proteome maps are highly consistent, which may be 

beneficial for other researchers. Future guidelines for publication of protein 

identifications (Carr, Aebersold et al. 2004; Wilkins, Appel et at. 2006) may require 

access to raw file of mass spectrometry, for which the website would provide an ideal 

platform. 

4.3 Oxidative stress 

One of the remarkable features of esSMCs was their high level of oxidative stress 

in esSMCs as indicated by the presence of oxidized antioxidants pointing towards a 

potential role for oxidative stress in stem cell differentiation. 

4.3.1 Oxidative stress in stem cells differentiation 

ROS are ideally suited as signalling molecules because they are rapidly generated, 

highly diffusible, and have a short half-life inducing signal transduction cascades of 

numerous pathways, which regulate biological effects such as differentiation toward 
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certain cell lineage (Sauer, Wartenberg et al. 2001; Poli, Leonarduzzi ct al. 2004). 

Compared with undifferentiated and dedifferentiated cells, differentiated cells 

generally exhibit higher rates of cyanide-resistant respiration, cyanide-insensitive SOD 

activity, peroxide concentration and lower levels of GSH (Sohal, Allen et al. 1986). 

Metabolic gradients in developing organisms are believed to influence development 

(Allen and Balin 1989) by resulting in differential oxygen supplies to tissues directing 

developmental events. 

During embryoid body differentiation, embryoid bodies displayed significant 

endogenous production of ROS, accompanied by the expression of NADPH oxidase 

subunit p67Ph0", 10--100nM of H202 significantly enhances cardiomyogenesis in 

embryoid bodies, whereas higher concentrations exceeding 1 µM exhibits inhibitory 

effect. Continuous elevation of intracellular ROS is deleterious for cardiomyogenesis 

(Sauer and Wartenberg 2005). 

PDGF is essential for the ES cells differentiation into SMCs. At the same time, 

PDGF is well known to increase ROS in a variety of cells (Kreuzer, Viedt et al. 2003; 

Weber, Taniyama et al. 2004) and involves Rac activation in its signal transduction 

cascade (Chiariello, Marinissen et al. 2001). Although PDGF-BB had been withdrawn 

for several passages at the beginning of the differentiation, the increased oxidative stress 

may not be overcome by the cell redox system. Antimycin A inhibition resulted in a 

great increase of mitochondrial superoxide generation in esSMCs (Figure 43), 

indicating that complex III is responsible for the marked ROS increase in esSMCs. 

It has recently been shown that adult EPCs have increased antioxidant protection 
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(Dembach, Urbich et al. 2004), that oxidative stress accelerates EPC senescence 

(Imanishi, Hano et al. 2005) and that glutathione peroxidase deficiency mice have 

dysfunctional EPCs with impaired ability to promote angiogenesis (Galasso, Schiekofer 

et al. 2006). Our data presented in this study provide solid evidence that esSMCs 

encounter increased oxidative stress due to a rise of mitochondrial-derived ROS and 

displayed higher levels of antioxidants, indicating that esSMCs share some similarities 

with adult progenitor cells. 

The balance of the antioxidant and the ROS is very important for cell survival. It 

seems this balance is very fragile in esSMCs They are more susceptible to oxidative 

stress-induced cell death despite a compensatory increase in their endogenous 

antioxidant defence capacities and require exogenous antioxidant (2-mercaptoethanol) 

for survival. Thus, differences in protein expression relate to their altered cell function 

and maintaining the balance between ROS generation and antioxidative scavenging will 

be essential for the longevity of esSMCs and their potential use in tissue engineering. 

4.3.2 Oxidative effects 

In our study, peroxiredoxin 6 was mainly present as reduced isoform in aortic 

SMCs, but was predominantly oxidized in esSMCs (Figure 41), indicating a higher 

level of ROS in esSMCs, which is confirmed by the total ROS measurement with 

DHR123. In human blood vessels, the membrane-associated NAD(P)H oxidase is 

thought to be the principal source of superoxide and functionally related to 

cardiovascular risk factors (43,44). Besides its predominant role in the respiratory burst 
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oxidation of inflammatory cells, NADPH oxidase is also responsible for excess ROS 

production in vascular SMCs (45). But unlike mature SMCs, mitochondria appear to be 

the major source of excess ROS in esSMCs. The difference of mitochondria-derived 

superoxide was even more prominent between esSMCs and aortic SMCs (Figure 43), 4 

fold increase at basal condition and 10 fold increase after treated with antimycin A, the 

mitochondrial complex III inhibitor, suggesting the mitochondrial complex III is 

contributing to a marked increase in mitochondria-derived free radicals. 

In esSMCs, we observed lower levels of GSH than in aortic SMCs but higher 

GSH reductase activity. This may indicated that there is a higher consumption rate or a 

lower synthesis of GSH in esSMCs. Because of the drop in GSH, GCS activity needs to 

be measured. It has been reported that protein synthesis inhibitors shunt intracellular 

cysteine from protein synthesis to GSH synthesis (Ratan, Murphy et al. 1994), which 

increases the resistance to apoptosis. On the contrary, high protein synthesis activity 

also may cause cysteine shortage, leading to GSH depletion as observed in esSMCs. 

4.3.3 Redox imbalance induces mitochondrial dysfunction 

4.3.3.1 Mitochondria are more susceptible to oxidative stress 

Because mitochondrial components are exposed to a relatively high flux of 

superoxide and H202, the oxidative damage is more significant in mitochondria. 

The level of oxidized bases in mitochondrial DNA (mtDNA) is 10- to 20-fold 

higher than nuclear DNA without histone protection nor efficient DNA repair as their 

nuclear counterpart (Cadenas and Davies 2000). The hydroxyl radical (HO) derived 
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from the respiratory chain can easily add onto the deoxyguanosine of DNA to form 

8-hydroxydeoxyguanosine (8-OHdG) and induce gene mutations (Giulivi, Boveris et al. 

1995). 

02'', H202 and HO' exert quite different patterns of enzyme inactivation (Table 12). 

Overall, mitochondrial enzymes are all susceptible to inactivation by HO' but rather 

resistant to the effects of H202 exposure (Zhang, Marcillat et al. 1990). This is 

consistent to our observation that esSMCs is less susceptible to relatively higher 

concentration of H202 treatment (data not shown). 

Table 12. The different inhibition effects of oxidative stress to enzymes. 

Enzymes HO' HO' + 02' 02'' 11202 

NADH dehydrogenase High High High Partially 

NADH oxidase High High High Partially 

Succinate dehydrogenase High High Mildly - 

Succinate oxidase High High Poor - 

ATPase High High High - 

Cytochrome oxidase Resistant Resistant Resistant Resistant 

Cytochrome c oxidase Resistant Resistant Resistant Partially 

Notably, esSMCs showed a depletion of mitochondrial ROS scavenging enzymes, 

but a coordinated up-regulation of cytosolic ROS scavenging enzymes. However, this 

coordinated rise in cytosolic antioxidative defence capacity was unable to compensate 

for the loss of mitochondrial antioxidants as esSMCs remained more susceptible to 

oxidative injury. While the increased cytosolic antioxidants may be an adaptation to 
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PDGF-induced ROS production, the sustained high level of mitochondrial ROS are 

likely to impair mitochondrial antioxidants and functions by mutating mtDNA or 

inhibiting the synthesis of antioxidants enzymes. More importantly, 

mitochondria-derived 02'' can be only eliminated by SOD-2. Prolonged mitochondrial 

dysfunction causes a drop in ATP level compromising survival. 

4.3.3.2 SOD-2 is essential for maintaining normal cell function 

The pathophysiology of mitochondrial diseases has been attributed to decreased 

ATP production and toxicity resulting from increased mitochondrial ROS generation. 

Under normal condition, 0.4%-4% of the oxygen consumed is converted to 02'- during 

the oxidative phosphorylation and reduced to H202 by SOD-2. Mice that genetically 

lack of SOD-2 die by day 10 after birth. Notably, SOD-2 was decreased only in esSMCs 

but is similar between ES cells and aortic SMCs (data not shown). 

SOD-2 knockout mice have 30% less GSH when compared with wild-type mice 

and exhibit inhibition of electron transport chain complex I and II, inactivation of 

aconitase, development of a urine organic aciduria in conjunction with a partial defect in 

3-hydroxy-3-methylglutaryl-CoA lyase, and accumulation of oxidative DNA damage 

(Williams, Van Remmen et al. 1998; Melov, Coskun et al. 1999). The SOD-2 deficient 

mice also showed 1.3 fold decrease of succinate in state 3 than wild type mice, which is 

consistent with our NMR data, indicating the dysfunction of the citric acid cycle might 

be a result of low SOD-2. SOD-2 deficiency mice showed no changes in cytosolic 

enzymes compare to wild-type mice. The increased cytosolic enzymes in esSMCs may 
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be passed on from the ES cells because Western blot show a similar expression of 

SOD-1 in ES cells and esSMCs (data not shown). 

4.3.3.3 Citric acid cycle dysfunction causes GSH drop 

The L-glutamate level is twice as high in esSMCs as in aortic SMCs; while the 

succinate concentration is 1.5 folds decreased in esSMCs. Succinate is the key 

intermediate in the citric acid cycle, which comes from the a-ketoglutarate and is 

oxidized into fumarate and generates FADH2 at the same time. It is also involved in 

electron transport chain complex II to transfer electrons to ubiquinone. In the presence 

of low level of ROS, aconitase will be completely inactivated but a-ketoglutarate 

dehydrogenase is still functional. Glutamate becomes a key metabolite driving a 

segment of citric acid cycle with the final product being aspartate. When the ROS levels 

are increased, a-ketoglutarate dehydrogenase is also partially inhibited, resulting in an 

impaired respiratory capacity and decreased NADH production (Tretter and Adam-Vizi 

2000). The high concentration of glutamate and aspartate and low levels of succinate in 

esSMCs indicated impaired citric acid cycle by increased ROS production in these cells. 

The glutathione synthesis using L-glutamate may be inhibited because the L-glutamate 

is diverted to drive the citric acid cycle. This may be another reason for the low GSH 

concentration in the esSMCs. 

4.3.3.4 Electron transport chain dysfunction 

We tried several inhibitors for ROS-generation enzymes, including apocynin, 
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oxypurinol, N°-monomethyl L-arginine (L-NMMA), rotenone and antimycine A, which 

are the inhibitors for NAD(P)H oxidase, xanthine oxidase, iNOS/eNOS, electron 

transport chain complex I and III, respectively. The first 3 inhibitors did not show 

significant decrease of cell viability with treatment up to 400µM (data not shown). The 

rotenone and antimycin A lead to dramatic drop of cell viability at low concentration 

(5µM for rotenone, lOµg/mL for antimycin A) and cell death was higher in esSMCs 

compared to aortic SMCs, indicating that esSMCs are more susceptible to disruption of 

the mitochondrial electron transport chain. 

The major net energy conversion catalyzed by the mitochondria is: 

NADH + H+ + V202 + ADP +Pi -+ NAD+ + ATP + 2H2O 

That means the ATP generation depends on the NADH concentration. The low 

level of ATP in esSMCs demands higher rate of oxidative phosphorylation. There are 

two source of the electron in the electron transport chain, from complex I and complex 

II. Both are largely activated and used up all the NADH as well as succinate (as shown 

in NMR data). From the cell proliferation experiment, we indirectly got the information 

that the reductant potential (NADH + succinate) is lower in esSMCs than in aortic 

SMCs. Low NADH level would result in less ATP production, compromising the supply 

of energy in esSMCs. 

The complex I and II and aconitase defects are caused by the ROS-induced 

oxidation of iron-sulfur clusters, which release Fe 2'. This iron can participate in the 

Fenton reaction, generating hydroxyl radical (HO) and leading to further oxidative 

damage. Fibroblasts from complex I-deficient patients have increased mitochondrial 
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derived ROS production when compared with control. In addition, their fibroblasts have 

impaired mitochondrial function, as reflected by depolarized mitochondrial membrane 

potential (Michelakis, Hampl et al. 2002), which are similar as our FACS results of JC-1 

staining. 

Complex III is one of the major sites of superoxide radical formation by 

one-electron transfer to molecular oxygen. Inhibition of mitochondrial complex III by 

antimycin A will block the pathway from ubisemiquinone to ubiquinone (Figure 17) 

(Chandel, Maltepe et al. 1998). The ubisemiquinone accumulates and keeps converting 

02 to 02'" so that superoxide levels increase. In SMCs, the superoxide can be converted 

to H202 by SOD-2 but the insufficiency of SOD-2 in esSMCs cannot antagonize all the 

superoxide and esSMCs show a higher fluorescent signal in the MitoSOX experiments. 

Complex III is the most important part of the electron transport chain because it 

connects the upstream complex I and complex II and the downstream complex IV and 

ensures the electron transport pathway. If complex IV is blocked, alternative electron 

acceptors (such as fumarate) could maintain a minimal electron transport chain activity 

(Hohl, Oestreich et al. 1987). 

During the development, mitochondrial activity increases in cardiomyocytes. It 

may be the compensation of the increased energy demand or essential step of the 

maturation process. Addition of antimycin A (complex III inhibitor) completely blocked 

heart cell development, whereas neither TTFA (complex II inhibitor) nor KCN 

(complex IV inhibitor) blocks the differentiation, suggesting that specifically function of 

complex III of the electron transport chain rather than mitochondrial ATP production is 
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necessary for ES cells differentiation to cardiomyocytes (Spitkovsky, Sasse et al. 2004). 

The interference of the antimycin A with the heart cell differentiation indicates that 

some specific signalling pathways associated with mitochondrial complex III are 

important during the cardiomyocyte differentiation. 

At the same time, the SM a-actin expression was detected in embryoid bodies with 

presence of antimycin A, indicating the SMC differentiation was not inhibited by this 

specific mechanism (Spitkovsky, Sasse et al. 2004). However, the concentration of 

antimycin A (50nM) is 20-fold lower than usually to exclude side effects as much as 

possible. Higher concentration of antimycin A led to an increase of 

mitochondrial-derived superoxide, demonstrating that mitochondrial complex III 

appears to be responsible for the marked increase in mitochondrial free radicals in 

esSMCs, which may impair the survival of the esSMCs. ROS derived from different 

intracellular sources (mitochondrial or cytosolic) may have different effects on 

downstream signalling cascades that are responsible for ES cell differentiation. 

4.3.3.5 Energy metabolism 

Oxidative metabolism serves as an important signal for adaptive responses to 

hypoxia. Prolonged hypoxia causes an inhibition of oxidative phosphorylation, leading 

to important adaptive increases in glucose transport (Mann, Yudilevich et al. 2003), 

especially GLUT1. ECs cultured under hypoxia conditions for 4 days exhibited 

increased rates of glucose transport and generated more lactic acid than normoxic cells. 

All these are coincident with our observation that the oxidative phosphorylation of 
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esSMCs was impaired, which generated more superoxide but less ATP, esSMCs 

consumed more glucose and the lactate was elevated in esSMCs (Table 11), and 

esSMCs deplenish all the glucose in medium after 24 hours (Figure 48), which relies on 

highly efficient glucose transport system. One explaination is esSMCs grow very fast, 

so that there may be not sufficient oxygen supply for their growth, i. e. they may face a 

hypoxia microenvironment. Another possibility is the esSMCs were depleted for energy, 

e. g. ATP production. Anaerobic glycolysis is the fastest way to generate ATP. At the 

same time, a large quantity of NADH is oxidized by reducing pyruvate to lactate. This 

reaction is carried out by lactate dehydrogenase (LDH). 

The proton potential between inter membrane space and mitochondrial matrix are 

the determining factor for the ATP synthesis. If the electron transport chain cannot 

accumulate enough protons during the electron transport, there will be not enough 

energy for the mitochondria to generate enough ATP for cell metabolism. At the same 

time, the electron may be transfer directly to 02 to form 0f rather than to the next 

electron carrier in the electron transport chain. Thus, a low level of ATP synthesis rate is 

always coupled with higher superoxide in mitochondria. The constantly high level of 

superoxide will cause mitochondrial component damage and further lead to 

mitochondrial dysfunction. 

Spontaneous contraction of the differentiated heart cells with embryoid bodies was 

not affected by inhibition of electron transport chain, suggesting that early heart cell 

function is sufficiently supported by anaerobic ATP production (Spitkovsky, Sasse et al. 

2004). In contrast, alteration in mitochondrial redox status in esSMCs was associated 
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with cellular ATP level change. 

4.3.4 Apoptosis 

In the esSMCs, some cells generate relatively lower level of ROS and show a 

proliferation property while some other cells genereate more ROS exceeding their 

antioxidant ability resulting in apoptosis or necrosis. 

Apoptosis is observed during the differentiation of ES cells into esSMCs. The 

results from our lab showed that esSMCs had a higher rate of both spontaneous and 

ROS-induced apoptosis and necrosis. FACS analysis of apoptosis using annexin 

V/Propidium iodide (PI) double-labelling indicated that more dead and apoptotic cells 

in esSMCs compared to aortic SMCs, when cultured in DM. The main population of 

dying cells underwent apoptosis in esSMCs after treatment with H202 or serum 

starvation. Furthermore, caspase-2 activity in esSMCs had approximately a two-fold 

increase compared to aortic SMCs. Cytochrome c and caspase-3 in esSMCs were 

markedly elevated compared to that in aortic SMCs (Figure 49). When inhibiting 

caspase-2 with Z-VDVAD-fmk, Sca-1+ cells will direct toward differentiation direction 

instead of apoptosis (Xiao et al, unpublished data). These results indicate the apoptosis 

in esSMCs is mainly induced by the oxidative stress, which influenced the 

mitochondrial function and caused cytochrome c release. It could be interesting to 

further study the molecular mechanisms for regulating the balance between apoptosis 

and differentiation in stem cells. 
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Figure 49. ('vtochrOmc c and caspasc-3 expression in esSNl('s and aortic SM('s 

SMC esSMC 
Cytochrome c "W-" - --ý 

Caspase-3 --- - l 
Ii-actin ýMmft 

I mm ___ 
Figure 49. Western blots showed cytochrunie and caspasc-3 were highly cxprcssud III 
esSMCs (n--2) compared to aortic SM( (n 2), Imiicatin higlher apoptosis level in 

esSMCs. 

Our studies would suggest that inhibiting pools of' St l)Cl-oxiclc prod uictloll, it. in 

mitochondria by improving cellular IllctaholiSill, or targeting shccil e cell types, i. e. 

stem cells to facilitate tissue repair, may he a better therapeutic strategy than globaal 

antioxidant interventions. 

4.4 Conclusions and Potential Future Studies 

\Vc present the first protcomic conipairisun ot- niw-inc aortic SMCs and csSM('s 

demonstrating that there is a requirement to define stem cell populations by protcomics 

löt- a systematic understanding of changes occurring during dicv'clohnicnt. "I'hc high 

ROS lcvcl accomf)ailicd with the diffcrcntiation process is a challcnwc in 11-oint us and 

need more cffört to resolve this problem so that obtain stable cclls iör cell therapy. We 

expect that our identification of differentially expressed proteins during stem cell 

differentiation may have proftunci implications in stem cell therapy and tissue 

cinginccring. 

Since the ROS will impair the function Of dliflcrcntiatcci stein cclis and induce 

apoptosis, we want to know whether this high KOS level is necessary br the stem cell 
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differentiation or just a hazardous by-product of PDGF stimulation. If we add 

antioxidants and induce cell differentiation, by comparison with cells differentiated 

without antioxidant, we will know whether the antioxidants inhibit cell differentiation or 

prevent the differentiated cells from apoptosis. 

Moreover, mechanical stress can also induce stem cell differentiation. Some 

studies from our lab demonstrated that shear stress might induce mouse ES cells 

differentiation into ECs (Zeng, Xiao et al. 2006). Other kinds of stress may also be 

responsible for the SMC differentiation, i. e. by culturing ES cells on membrane and 

subjecting them to mechanical stretch. Furture studies will show where by combining 

chemical and mechanical stimulation, the differentiated esSMCs may acquire more 

similar behaviour as the aortic SMCs. 

198 



PUBLICATIONS 

Journal articles 

1, Mayr M, Mayr U, Chung Y-L, Yin X, Griffiths JR, Xu Q. Vascular proteomics: 

linking proteomic and metabolomic changes. Proteontics. 2004 December; 4(12): 

3751-3761. 

2. Mayr M, Chung YL, Mayr U, Yin X, Ly L, Troy H, Fredericks S, Hu Y, Griffiths 

JR, Xu Q. Proteomic and Metabolomic Analyses of Atherosclerotic Vessels 

From Apolipoprotein E-Deficient Mice Reveal Alterations in Inflammation, 

Oxidative Stress, and Energy Metabolism. Arterioscler. Thromb. Vasc. Biol. 

2005 October; 25(10): 2135-2142. 

3. Yin X, Mayr M, Xiao Q, Mayr U, Tarelli E, Wait R, Wang W, Xu Q. Proteomic 

dataset of Sca-1+ progenitor cells. Proteomics. 2005 November; 5(17): 

4533-4545. 

4. Mayr U, Mayr M, Yin X, Begum S, Tarelli E, Wait R, Xu Q. Proteomic dataset 

of mouse aortic smooth muscle cells. Proteomics. 2005 November; 5(17): 

4546-4557. 

5. Yin X, Mayr M, Xiao Q, Wang W, Xu Q. Proteomic Analysis Reveals Higher 

Demand for Antioxidant Protection in Embryonic Stem Cell-derived Smooth 

Muscle Cells. Proteomics. 2006. (in press) 

6. De Souza AI, Rossig L, Yin X, Mayr M, Dimmeler S, Xu Q. Proteomic Dataset 

of Human Endothelial Progenitor Cells. Proteomics. 2006. (submitted) 

199 



7. Yusuf S, Mayr M, Mayr U, Yin X, Ly L, De Souza AI, Xu Q, Camm J. 

Proteomic and metabolomic analysis of the fibrillating heart. J. Am. Coll. 

Cardiol. 2006 (submitted) 

8. Sidibe A, Yin X, Xu Q, Mayr M. Integrated Membrane Protein Analysis of 

Vascular Smooth Muscle Cells using a Novel Combination of Cy-dye/Biotin 

Labelling. Molecular & Cellular Proteomics. 2006. (submitted) 

9. Cuello F, Bardswell S, Haworth R, Yin X, Mayr M, Kentish J, Avkiran M. 

Cellular protein kinase D activity regulates cardiac troponin I phosphorylation 

and myofilament Ca2+ sensitivity in ventricular myocytes. Circulation research. 

2006 (submitted) 

Meeting abstracts 

1. Yin X, Mayr U, Mayr M, Xu Q. Comparative proteomic analysis of mouse stem 

cells and vascular smooth muscle cells. BAS meeting, 2004 March; Oxford, UK. 

(poster) 

2. Yin X, Xiao Q, Mayr M, Xu Q. Proteomic profiling of smooth muscle cells 

derived from embryonic stem cells. BAS meeting. 2005 April; Oxford, UK. 

(poster) 

3. Yin X, Xiao Q, Mayr U, Mayr M, Xu Q. Proteomic analysis reveals higher 

demand for antioxidant protection in embryonic stem cell-derived smooth 

muscle cells. BSCR meeting. 2005 September; London, UK. (poster and oral 

presentation) 

200 



4. Yin X, Xiao Q, Mayr U, Mayr M, Xu Q. Proteomic analysis of stem cell-derived 

smooth muscle cells. 3rd EMVBM. 2005 September, Hamburg, Germany. 

(poster) 

5. Yin X, Xiao Q, Mayr U, Mayr M, Xu Q. Proteomic Analysis Reveals Higher 

Demand for Antioxidant Protection in Stem Cell-Derived Smooth Muscle Cells. 

AHA Scientific Sessions. 2005 November; Dallas, TX, USA. (poster) 

6. Yin X, Xiao Q, Mayr U, Mayr M, Xu Q. Proteomics Analysis of Embryonic 

Stem Cell-derived Smooth Muscle Cells. XIVth International Vascular Biology 

Meeting. 2006 June; Noordwijkerhout, The Netherlands. (poster) 

Award 

2005 Clinical Science Young Investigator Award on British Society of Cardiovascular 

Research meeting 

201 



APPENDIX 

Recipes 

Cell culture 
Complete stem cell medium 
DMEM (ATCC) containing 1Ong/mL recombinant human leukaemia inhibitory 
factor (LIF, LIF1010, Chemicon), 10% fetal bovine serum (FBS, ATCC), 0.1mM 
2-mercaptoethanol (M7522, Sigma), 2mM L-glutamine (Invitrogen), 100U/mL 
Penicillin (Invitrogen), and 100µg/mL streptomycin (Invitrogen) 

Basic differentiation medium (DM) 
Alpha-minimal essential medium (a-MEM, Invitrogen), supplemented with 10% 
fetal calf serum (FCS, Invitrogen), 50µM 2-mercaptoethanol (Sigma), 2mM 
L-glutamine (Invitrogen), 100U/mL Penicillin (Invitrogen), and lOOpg/mL 

streptomycin (Invitrogen) 

SMC primary culture medium 
DMEM (Invitrogen) supplemented with 20% FCS (Invitrogen), 2mM L-glutamine 
(Invitrogen), 100U/mL penicillin (Invitrogen), and 100µg/mL streptomycin 
(Invitrogen) 

2-DE 
2-DE wash buffer 
250mM sucrose, 10mM Tris, pH=7 

2-DE lysis buffer 
9.5M urea, 2% w/v CHAPS, 1% w/v DTT, and 0.8% w/v Pharmalyte (pH 3-10) 

Rehydration solution 
8M urea, 0.5% w/v CHAPS, 0.2% w/v DTT, 0.2% w/v Pharmalyte (pH 3-10), and 
trace Bromophenol blue 

Equilibration buffer 
6M urea containing 30% v/v glycerol, 2% w/v SDS and trace Bromphenol blue 

DIGE 
DIGE wash buffer 
5mM Magnesium acetate, 10mM Tris, pH=8 
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DICE lysis buffer 
8M urea, 4% w/v CHAPS, 30mM TrisCl, pH=8.5 

2x buffer 
8M urea, 4% w/v CHAPS, 2% w/v DTT, 2% v/v Pharmalytes (pH 3-10) 

Silver staining 
Fixation solution 
40% v/v methanol, 10% v/v acetic acid 

Sensitizing solution 
30% v/v methanol, 0.2% w/v sodium thiosulphate, 0.5M sodium acetate 

Developing solution 
2.5% w/v sodium carbonate, 0.0148% w/v formaldehyde 

Stopping solution 
1.46% w/v EDTA-Na2.2H20 

In-gel digestion 
Extraction solution 
5% v/v formic acid, 50% acetonitrile 

Destaining solution 
15mM potassium ferricyanide, 50mM sodium thiosulfate 

Trypsin solution 
10µg trypsin in 600µL of 2mM HCl / 10% ACN, then add 900µL 25mM ABC 

MS 
Matrix for MALDI-ToF MS 
10mg a-cyano-4-hydroxy-cinnaminic acid in 3O0µ1 0.1% v/v trifluoroacetic acid 
and 700 µ1 acetonitrile 

Western blot 
RIPA buffer 
150mM NaCl, 65mM Tris Base, 1% v/v Nonidet P40,0.25% w/v Deoxycholate 
Acid (Sodium Salt), 10mM EDTA, pH=7.4 

RIPA lysis buffer 
1mL RIPA buffer, 5µI sodium orthovanadate, 5µl NaF, 1µl leupeptin, 1µl pepstatin, 
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lµ1 aprotinin and 2.51t1 PMSF 

Laemmli buffer 
250mM Tris, pH=6.8,100mM DTT, 10% w/v SDS, 50% glycerol, trace 
Bromohpenol Blue 

Transfer buffer 
12mM Tris, 96mM Glycine, 20% v/v methanol 

Others 
Lysis buffer for GSH reductase activity measurement 
containing 50mM Tris and 5mM EDTA (pH 7.5) 

Reaction buffer for GSH concentration measurement 
275µL of 80mM KH2PO4 (pH 8.0) containing 5mM EDTA 

Reaction buffer for ATP concentration measurement 
1: 1: 1 mixture of 80mM MgSO4.7H2O / 10mM KH2PO4 / 100mM Na2AsO4 (pH 
7.4) 

Lysis buffer for ROS measurement 
0.1% CHAPS, 50mM K2HPO4 (pH 7.0), and 0.1 mM EDTA 
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