
Combinatorial ink-jet printing for ceramic discovery
Wang, Jian

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1759

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1759


COMBINATORIAL INK-JET PRINTING 

FOR CERAMIC DISCOVERY 

MAN WANG 

Thesis submitted for the degree of 
Doctor of Philosophy 

Department of Materials 
Queen Mary, 

University of London 

2006 



Abstract 

An aspirating and dispensing printer established inside a robot gantry equipped 

with furnace and measurement table is used to prepare thick-film combinatorial 
libraries. Implementation of series of screening tests for ceramic inks that address 

stability against sedimentation, evaporation and particle segregation during 

drying, has provided a series of calibration inks can be used for calibration of 

this printer. The instrument can assemble ceramic mixtures with compositional 

accuracy of 1-3 wt %. By changing the amount of dispersant used in the inks or 
by printing onto a porous substrate, the geometry of residues from dried ceramic 
ink droplets can be modified to facilitate property measurements and uniform 

composition, as planned, can be achieved. The same material prepared in three 

ways, in the form of dried ink, ink-jet printed as for a combinatorial sample and 
by conventional compaction gave similar dielectric measurements. A 

combinatorial system has been developed so that combinatorial libraries can be 

printed, fired and screened automatically. A ternary A1203-TiO2-ZrO2 system 

was first studied using the developed combinatorial method. 

The particle segregation during drying of multi-component ceramic ink drops is 

not due to preferential sedimentation unless dispersant addition is restricted. The 

segregation is due to the partitioning of particles between the growing peripheral 
'foot' that develops during drying and the diminishing liquid pool which contains 
vigorous recirculation flows. Better dispersed particles remain in the pool and 
hence are found in excess on the upper surface of residues. Less well dispersed 

particles join the 'foot' earlier in the drying process. 

The contact angle and height of droplets containing large amounts of dispersant, 

steadily reduced during drying until a minimum value was reached; the contact 
diameter being almost unchanged during drying. These droplet residues retained 
a dome shape. Droplets of suspensions containing small additions of dispersant 

terminated in a 'doughnut' shaped residue. 
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Chapter 1 Introduction 

1.1 Aims and objectives of the research 

The aim of this research is to develop a new combinatorial method for the 

discovery of new ceramics. The method is first thoroughly calibrated and then 

applied to discovery of ceramic dielectrics although it can be used to study 

various properties of ceramics. The following sub-objectives of the research lead 

to this goal. 

(1) The development and characterisation of several water-based ceramic inks 

that can be used in direct ceramic ink-jet printing. 

(2) The investigation of procedures for creating ceramic compositions using an 

aspirating-dispensing printer for the combinatorial method. The study is intended 

to affirm that the printed compositions are those that the user wanted to produce 

and to account for errors. 

(3) The investigation of compositional distribution of residue from droplets of 

water-based multi-components ceramic inks. The study is intended to find 

solutions to the problem of producing droplet residues with uniform planned 

composition. 

(4) The investigation of the drying behaviour of water-based ceramic ink 

droplets. 

(5) The investigation of the dielectric properties of ink-jet printed ceramics. This 

includes the design, implementation and calibration of the automated 
instruments, principally their sample probes and electroding procedures used to 

measure dielectric properties of ceramic libraries. 
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(6) Implementation of the automation of the combinatorial method so that 

ceramic libraries can be printed, sintered and screened by robot with minimum 
human intervention. 

(7) The application of the combinatorial method so developed to study dielectric 

properties of the A1203-TiO2-ZrO2 system in order to discover new ceramic 

dielectrics and examine performance and functionality of the combinatorial 

method. 

1.2 Combinatorial methods 

In the 19th century, William Whewell of Cambridge responded with the name 

"Dielectric" when Michael Faraday asked him to give a word for materials that 

would "convey the electric force"'. Today, dielectric materials (dielectrics) have 

various applications in industry as, inter alia, insulators, capacitors and 
ferroelectric devices. There is tremendous interest in finding new and better 

dielectrics to meet requirements raised by current applications. For example, the 

continuing drive towards miniaturisation of capacitors is motivating the search 
for new dielectrics. Computer simulation techniques are being used to optimise 
dielectrics and have produced promising results 24 

. However, due to the 

limitation of predictive theories, there are limited opportunities for users to 

design the structure of dielectrics for enhanced properties, and then build the 

target materials. The traditional method of discovering dielectrics remains a 
time-consuming and rather unpredictable trial-and-error process. Hence there is a 

need for a more efficient and systematic ways to search through the largely 

unexplored ternary, quaternary and higher order compounds that the periodic 

table provides in order to discover new dielectrics. With the advent of computers, 

automated techniques and analytical instruments, an automated approach to 

discovering materials, the combinatorial method, may fit this need 5-7 
. 

The combinatorial method may be described as a method that can create large 

libraries of different samples with high-efficiency, and screen those libraries for 

specific properties of interest. The method involves the process of (1) the 

experimental design; (2) the creation of sample libraries; (3) the high-throughput 
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measurement of the libraries; (4) the modelling of the measurement results in the 
form of composition-structure-property relationships 5,6 

. 

In the pharmaceutical industry, automation of the creation of multivariate 

specimen arrays, screening and analysis techniques have dramatically accelerated 

the development of new drugs. There are a number of reviews of the 

combinatorial method used in the pharmaceutical industry8-9 . Given this success, 

the combinatorial method has been adopted in other scientific fields such as 

metallurgy10 and polymer synthesis". One of the earliest attempts to realise this 

approach in the ceramic field was conducted at the GEC Hirst Research Centre 

UK, in the early 1990s in a quest for new ceramic superconductor compositions. 

In this pioneering approach, a robot was used to mix up to nine aqueous chelated 

solutions of oxide precursors over the full composition range 12 
. The robot 

synthesised over 18,000 samples and successfully generated a range of new 
12,13 cuprate superconductors 

14 X. -D. Xiang et al. , 1995, reported the application of the discrete combinatorial 

synthesis (DCS) technique 14,15 for the discovery of new solid state materials with 

novel properties. The method uses the fact that in many materials systems, it is 

possible to grow stoichiometric compounds by means of controlled thermal 

diffusion of precursors. The DCS technique can generate a spatially defined 

library of thin films by sequentially depositing the individual precursors of target 

materials through a series of precisely positioned shadow masks, which allow 

spatially selective deposition on a substrate. Each sample can be varied with 

respect to elemental composition, the sequence in which the layers are deposited, 

and the thickness of each layer. The thin films were sputtered using an RIF 

magnetron-sputtering gun. After the library was sintered at 840 *C in air, the 

resistance of each sample was automatically measured as a function of 

temperature using specially developed instruments. BiSrCaCuO and YbaCuO 

super-conducting films were identified within the library 14 
. Their method can 

synthesize combinatorial libraries with samples as small as 200 ýtm x 200 Pin in 

size and spacing of 50 pm between samples, corresponding to library densities of 

1.55 X 107 sites per square metre 14. 
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X. -D. Xiang and his colleagues at Lawrence Berkeley National Laboratory 

continued to improve the DCS technique, for example by developing the Pulsed 

Laser Deposition technique 15 to efficiently deposit film and extended the 

combinatorial method to discover or optimise luminescent materials, magnetic 
14-18 

materials, ferroelectrics and dielectrics 

Van Dover et al. 19,1998, at Bell Laboratory reported the first application of the 

continuous composition-spread (CCS) technique 19-22 for the discovery of useful 

amorphous dielectrics. The CCS technique employed three magnetron-sputtering 

guns, which have been arranged in the 90' off-axis configuration around a 

substrate, to form a spread two-dimensional ternary composition of oxide 

dielectric materials. The Zr, Ti and Sn guns run at different radio frequency 

power providing the desired Zr/Ti/Sn composition at the substrate midpoint. 
Rutherford Backscattering Spectroscopy was used for obtaining the mapping of 

positions and compositions. The capacitance and current-voltage characteristics 

of the resulting films were automatically measured using a scanning Hg-probe 

instrument. Zro-2Snoffio. 602 was identified as a promising dielectric 22 
. They 

typically synthesize and evaluate 4,000 samples in a ternary composition in one 
day 20 

. The CCS technique was also adopted for the combinatorial method of 
discovery of new hard coating materials 23 

. 

In previous work on the combinatorial method for the discovery of solid-state 
materials, samples are often prepared in thin-film form. The phosphors used in 

industry are usually in powder form and it could be suggested that there may be 

some difference in results observed in a thin-film library and those from the 

corresponding powdered sample. X. Sun et al. 24,25 
, 2002, at Berkeley lab have 

developed and applied a chemical ink-jet liquid-dispensing system for the 

combinatorial method of discovery of advanced phosphors. The system can 

quantitatively deposit the volume range from lOnI to 250gl and mix a 

stoichiometric volume of different chemical solutions and bake them to make a 

powdered phosphor library on a ceramic multiple-well template. As reported 24 
,a 

library with 128 different solution-mixing precursors of powdered phosphors can 
be generated in a matter of minutes. 
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Ikuo Yanase et al. 26 
, 2002, reported a combinatorial robot system that was 

developed for measuring, mixing, and moulding liquid samples and producing 

sample libraries for ceramic powders on the reaction pallet. In their study, 

slurries that consist of metal oxide nano-particles suspended in water and 

inorganic solutions were used as starting raw materials. Mixing was performed 

by repetition of aspirating from vials that contain raw slurries and injecting into 

the mix vials using a micropipette. A platinum pallet with 16 holes of 5mm 

diameter and 2mm in depth was positioned on a hot plate. Slurry mixtures were 

distributed in the holes one-by-one for modelling, drying and heat treatment. 

The products on the pallet were studied by using powder XRD. As reported, 

LiMn204 was successfully synthesised by using either of two different 

combinations of raw materials: UOH and Mn(CH3COO)2 aq. solution and UOH 

aq. solution and Mn304 slurry. 

Reichenbach and McGinn 27 
, 2003, reported the application of the Pechini process 

in conjunction with ink jet deposition for the combinatorial method to study 

catalytic activity of the LaM03 (M = Cr, Co) system. Most of the catalytic 

activity was found in the cobalt-rich regions. Pechini process 27-29 is a solution- 

polymerisation route to produce single-phase mixed oxide powders, wherein the 

metal ions are suspended in solution with organic acids (e. g., citric acid) and 

polyhydroxyl alcohol (i. e., ethylene glycol). The metal ions are chelated by citric 

acid and are evenly distributed throughout the solution; upon heating, the solvent 
evaporates, the ethylene glycol undergoes polyesterification resulting in a 

polymer resin that has the various cations distributed uniformly in stoichiometric 

proportions. After higher temperature heating, the resin decomposed and formed 

the oxide powders. Because Pechini process is a liquid mixing process, metal 
ions are mixed on a molecular level, thereby requiring shorter processing time 

and lower processing temperatures than those needed by solid state processes. A 

probable disadvantage of the process is the ratio of citric acid to ethylene glycol 

and the ratio of organic material to metal. These need to been re-investigated to 

guarantee the success of the process. 
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1.3 Combinatorial ink-jet printing 

Ink-jet technology has been used extensively in biotechnology 30-32 and polymer 33 

research to make arrays of compositions. The use of direct ink-jet printing in 

ceramics is well advanced and 3-D ceramic architectures 34-36 including 

functionally graded structures 37 are produced. Ink-jet technology is compatible 

with micro-scale and high speed. Not surprisingly, this technique has been 

applied to the preparation of combinatorial libraries. 

Combinatorial libraries can be prepared using ink-jet printing of ceramic 

precursor solutions. For instance, as discussed in section 1.2, H. M. Reichenbach 

et al. applied the Pechini process coupled with ink-jet deposition for 

combinatorial study of catalytic activity. X. Sun et al . 
24,25 applied a drop-on- 

demand ink-jet printer for the combinatorial discovery of advanced phosphors. 
Soichiro Okamura et al3s. 2002, reported Pb(Zr, Ti)03 (PZT) thin films with 

various Zr/Ti ratios can be fabricated by overlapped ink jet printing. In these 

methods, the composition and structure of the material synthesized are either 
known by X-ray diffraction (XRD) or by reliance on the Pechini process. 

The combinatorial library also can be prepared using direct mixing of powder 
suspensions. The composition and structure of members of a combinatorial 
library can be established as planned before screening and analysis of the library. 
Ink-jet printers can mix ink in three ways. In conventional colour printers, 
separate coloured droplets are placed adjacent; colour mixing actually occurs in 

the observer's brain. Applied to ceramic powders, this discrete printing approach 
involves large diffusion distances during sintering. Thus it is unlikely to be a 

promising approach for mixing ceramic powders. 

Mixing can also take place in the pipe-work behind the nozzles 37,39. A drop-on- 

demand printer was developed to create combinatorial libraries and functionally 

graded ceramics. In this printer, ceramic inks from multiple reservoirs pressurised 

with nitrogen are supplied via electromagnetic valves to a manifold. Variation in 

the opening times of the electromagnetic valves provides precise composition 

while a solenoid micro-pump provides circulation and mixing. After mixing, the 
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ink is printed through an electromagnetic valve-nozzle assembly'9,40 . Tbree 

ceramic mixtures in the A1203-Ti02-Y203 system were prepared from alcohol-based 

ceramic inks. Initial analysis of ceramic mixtures showed systematic deviations from 

programmed compositions. Energy Dispersive X-ray Spectrometry (EDS) analysis of 

the cross sections of printed droplet residues revealed segregation of some oxides to the 

upper surfaces. When libraries of thicker samples were printed, this compositional 
deviation decreased to below 1 wt. % which is comparable with the error of the analysis 

method (EDS) . 
41 The segregation effect is associated with particle dynamics during 

slow droplet drying and fast drying by absorption of the vehicle into the porous lower 

layers eliminated the effect. In this method, the number of ceramics that can be 

mixed is dependent on the number of reservoirs but the device can deposit large 

quantities and build functionally graded components. 

The third approach, used in this research, is to mix inks ahead of the nozzle by 

reformatting well plates. Stepper driven syringes control aspiration and 
dispensing of ceramic suspensions. Miniature electromagnetic valves provide 
ink-jet printing. This approach allows a very large number of components to be 

mixed limited only by the well number while retaining the patterning capability of 
the printer. The research work reported in this thesis pioneers the combinatorial 

method for the discovery of new ceramic dielectrics. The work is based on an 

aspirating-dispensing ink-jet printer that is integrated with a large-scale 

combinatorial robot. There are two features of this research: (1) the samples of 
the combinatorial libraries are prepared in powdered form by using the ink-jet 

ceramic printing technique, corresponding to the fact that many dielectrics used 
in the industry are prepared in powdered form. (2) The ceramic libraries can be 

printed, sintered, tested and analysed by robot. The idea of the work is to develop 

a powerful combinatorial system, which can perform unlimited operations with 

minimum human intervention and thus generate a large amount of dielectric 

information that is stored in the database for further data mining and analysis. 

1.4 Dielectrics 

Dielectrics can be defined as materials with high electrical resistivitieS42. When 

an electric field is applied to an ideal dielectric material, there is no long-range 
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transport of charge but only a slight shift in the balance of charge within the 
43,44 

material to form electrical dipoles, a process known as polarisation 
Polarisation and the dynamics of electric charges in dielectrics are often 
described in terms of macroscopic properties such as permittivity, dielectric loss 

and dielectric strength. 

1.4.1 Electric permittivity, dielectric loss and dielectric strength 

Coulomb's laW45'46 states: (1) like charges repel and opposite charges attract each 

other, (2) the force between the charges is 

(a) inversely proportional to the square of the distance between them 

(b) proportional to the product of the charge magnitudes 
(c) dependent on the medium in which they are embedded 
(d) acts along the line joining the charges. 

This is surnmarised in Coulomb's law that may be stated as: 

q, q2 
er 

2 (1.1) 

where F is defined as the force between the charges; q, and q2 are two charges; 

r is the distance between the charges; A is a constant whose value depends on 

the units used for charge, distance and force; c is a property of the medium in 
2-50 

which charges are embedded called its permitflvij)ý 

Permittivity may be also defined as a property of a material that describes the 
44,46 

electric flux produced when the material is excited by an electromotive force 

Absolute permitivity is the ratio of electric flux density produced to the electric 
field strength. The unit of absolute permitivity is farad per meter. The absolute 

permittivity of free space 46 is equal to approximately 8.85 x 10,12 Fm". In 

engineering applications, permittivity is often expressed in relative permittivity 

or relative dielectric constant, that is 

19 



kt= ge 
' (1.2) 

90 

where k' is relative pennittivity of a substance; c' is the absolute permitivity of 

the substance; co is the absolute permittivity of free space. 

Early researchers such as Faraday, Maxwell, and Lord Kelvin found dielectric 

materials can increase the charge-storage capacity of a condenser 47 
. When an air 

condenser is connected to a battery, the air condenser charges until the free 

charges on each plate produce a potential difference equal and opposite to the 
battery voltage. Due to polarisation, a dielectric increases the charge-storage 

capacity of a condenser by neutralising some of the free charges, which would 

otherwise contribute to the potential difference opposing the battery voltage as 

visualised in Figure I. I. By neglecting fringing effects, the increased storage 

capacity is 

C= PCO 9 (1.3) 

where C is the increased storage capacity; CO is the original capacity in air; k' is 

relative permittivity of the dielectric material. Thus, the degree of polarisation or 

charge storage capability of a material is identified by relative permittivity. 
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Figure 1.1 Schematic representation of the polarisation effect in the capacitor 
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involving a dielectric material (Adapted from reference [48], p. 54). 
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Figure 1.2 The current-voitage relation in the circuit with an ideal capacitor. 
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Figure 1.3 Representation of the loss in capacitor. (a) Parallel resistance models 

of a lossy capacitor. (b) Phase diagram for a real capacitor. 

When connected to a sinusoidal. voltage source, an ideal capacitor would have 

zero loss, because during one half-cycle the capacitor is charged and during the 
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next it releases its charge reversibly back (without loss of energy) into the source. 

Under this circumstance, an alternating current I would lead voltage V by a 

phase angle of n/2 as illustrated in Figure 1.2. A real capacitor does dissipate 

energy because of lead and electrode resistance, DC leakage resistance, and most 

importantly, dielectric losses of real materials. There is a loss component of 

the current I that is in phase with the voltage V. The component may be 

related not only to the electric current flowing through the dielectric material and 

hence related to ohmic resistance but also to other energy consuming processes 

such as dipole orientation". Therefore, the phase angle between V and I is not 

exactly n/2. The current I lags slightly behind what it would be in a perfect 

capacitor as shown in Figure 1.3 (b). The angle of lag is defined as 8. The 

dielectric loss is characterised by tan8, named as the loss tangent or dissipation 

factor 42-44,46 
. By introducing a complex relative permittiVi 6,48 (the concept of 

complex quantities can be found in reference 48, p. 48-50. ) 

k* = k'-jk", (1.4) 

where k' and V denote the real and the imaginary components of the complex 

relative permittivity, respectively; j is equal to 1(--I) 
. The loss tangent is 

tan 15 =9 k 
(1.5) 

where k' is relative dielectric constant and V is defined as relative loss factor. 

When the dielectric medium is loss-free, V will be zero. It is sometimes 

convenient to regard the "lossy" capacitor as an ideal capacitor shunted by a 

resistance R as shown in Figure 1.3 (a), which gives rise dissipation of energy by 

dipole orientation. 

The insulating properties of dielectrics can be described in the terins of dielectric 

strength 43,44,46, which is defined as the electric field just sufficient to initiate an 

uncontrollable current to flow through or across dielectric. The unit of dielectric 
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strength is voltage per unit of thickness of the materials. For example, dielectric 

strength as high as 200 MVm" has been measured for a mica material44. 

1.4.2 Mechanisms of polarisation 

There are several different mechanisms of polarisation 
43 , 44 , 46 - 48,49 

, which may 

overlap one another or take place independently: 

(1) Electronic polarisation. 
When a field is applied, electrons shift very slightly to the positive electrode and 

nuclei shift very slightly to the negative electrode, causing the atoms to acquire 

an induced dipole moment. This is named electronic polarisation and occurs in 

all dielectrics. 

(2) Dipole polarisation 
Dipole polarisation occurs in non-symmetrical molecules that contain permanent 

electric dipoles. Taking H20 as an example, the dipole arises because the electro- 

negative oxygen depletes the electron density around the hydrogen. The covalent 
bonds between the hydrogen and oxygen atoms are directional such that the two 
hydrogens are one side of the oxygen. Under an electric field, H20 molecules 

align the positive side (the hydrogen side) facing the negative electrode and the 

negative side (the oxygen side) facing positive electrode. This is an example of 
dipole polarisation. 

(3) Atomic or Ionic polarisation 
The field may cause the atoms or ions within a crystal structure to be displaced, 

altering the distance between them and hence changing the dipole moment of the 

crystal. This is called atomic or ionic polarisation. 

(4) Space charge polarisation 
The space charge polarisation is due to defects in real crystals such as lattice 

vacancies, dislocation and interfaces such as grain bound or phase boundaries. 

When an applied field drives free charge carriers, these migrate through the 
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crystal and may be trapped or pile up against the defects, resulting in a localised 

accumulation of charge which gives a dipole moment. 

Temperature affects the permittivity of the material43,44 . Electronic polarisation 
is relatively insensitive to temperature. Space charge and orientation polarisation 

are strongly temperature dependent. Dipole polarisation decreases as the 

temperature increases because increasing the temperature increases the random 
fluctuations of the system. Atomic or ionic polarisation tends to increase with 
temperature due to an increase in ion mobility. 

Because charges have inertia, the polarization requires time to respond to an 

applied field 43,48,50 
. Electronic polarisation responds very rapidly and no lag of 

the polarization contribution occurs up to 1017 Hz. Ionic polarizations have a 

slower and hence lower frequency response because ions are larger and less 

mobile when being displaced within the crystal. The ionic displacement begins to 

lag the field reversal at about 1013 Hz, increasing the loss factor and contributing 
less to the dielectric constant. Dipole polarisation and space charge polarisation 

only occur at low frequency. At very high frequencies, none of these 

mechanisms is able to follow the field, and the relative dielectric constants 

approaches one. The polarization process is accompanied by energy dissipation. 

At every frequency where relative dielectric constant varies rapidly, the relative 
loss factor tends to be maximum. 44,49 The total net effect is illustrated in Figure 

1.4. 
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Figure 1.4 Variation of (a) relative dielectric constant and (b) dielectric loss with 
frequency (Modified from Reference 5 1, p. 543). 

The Debye equations 46,47 describe how materials with dipole polarisation behave 

with frequency. If a steady field is applied to align the molecules and is then 

switched off, the polarisation and hence the internal field diminish. By assuming 

that it decays exponentially with a time constant r, the real and imaginary parts 

of complex relative permittivity and the loss tangent are 

kl= 
I+ 

zur (S 
1 n7.2. r 

2, 

tang 
V= (c, -, c. )tur 
k' C, + C. tu'r, 
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where -. is the relative permittivity (representing electronic polarization) when 

the applied frequency is much greater than the reciprocal of the alignment time 

of the molecule; For much lower frequencies it becomes e, named the static 

relative permittivity; to, is an angular velocity, ty = 2; rv (radians per second), 

where v is the frequency of the applied field. Equations (1.6)-(1.8) are known 

as the Debye equations and agree well with experimental results. 

The purpose of dielectric theory should be to permit calculation of the 

macroscopic properties of a dielectric from its atomic and molecular structure. In 

practice, the calculation of explicit values of pernittivity from an atomic or 

molecular model and its temperature and frequency dependence is beset by 

considerable difficulties. For example, in the case of electronic polarisation, no 

calculation could be made unless the precise configuration of their electron 

clouds were known, and is the case for only a limited number of relatively simple 

exampleS46. 

1.4.3 Piezoelectricity and ferroelectricity 

Some materials produce dielectric polarisation when under mechanical strain, 
This effect is referred to as piezoelectricity 43,44,46 

. The application of stress 

separates the effective centre of the positive charges from the effective centre of 

the negative charges, producing a dipole moment (polarisation). For a centro- 

symmetrical crystal, no combination of uniform stresses produces the necessary 

separation of the centres of the charges. Piezoelectricity can occur only in 

crystals with no centre of symmetry. 

Heating of certain crystals produces dielectric polarisation. This effect is known 

as pyroelectrici 3,46 
. Pyroelectric crystals are a special class of piezoelectric 

crystals. When heated, the crystal expands and there may be deformation due to 

thermal expansion. Due to the piezoelectric effect it acquires dielectric 

polarisation by virtue of the deformation. The change of temperature has a direct 

effect on the form of polarisation in certain portions of the crysta146. 
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Ferroelectric crystals (Ferroelectrics) are a subclass of pyroelectric crystals. 

There are three characteristics of ferroelectrics 43,44,46 : 

(1) Ferroelectrics can retain a dipole even after an applied voltage has been 

removed. This is known as spontaneous polarisation. 

(2) The direction of the polarisation can be reversed by application of an electric 
field showing a hysteresis loop as illustrated in Figure 1.5 (b); 

(3) Ferroelectrics have a Curie temperature that is defined as the temperature of 

transformation from paraelectric material to ferroelectric. Paraelectric 

materials 50 
, such as Ti02, don't have spontaneous polarisation and shown 

linear response of polarisation versus voltage as illustrated in Figure 1.5 (a). 

(a) 

ric field field 

Figure 1.5 (a) Paraelectric behaviour has a linear response of polarisation to 

voltage. (b) A ferroelectric shows a hysteresis loop. 

Ferroelectric crystals must contain alternate atom positions or molecular 

orientations to permit the reversal of the dipole and a spontaneous polarization 43 
. 

Taking BaTi03 as a sample 43,44,48, BaTi03 has the perovskite structure as 

illustrated in Figure 1.6. There are minimum-energy positions off-centre in the 

direction of each of the six oxygen ions surrounding the Ti ions 27 
. The Ti ions 

adopt positions randomly in one of these six possible minimum-energy sites. 

From 1200C to 1460"C, BaTi03 has a cubic structure. The Ti4+ ion does shift 

(b) 
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position when an electric field is applied, but it returns to its stable central 

position once the field is removed. There is no spontaneous polarisation and no 

ferroelectric behaviour. From 120'C to O'C the structure of BaTi03 shifts fi-orn 

cubic to tetragonal. The Ti 4+ ion moves off-center toward one of the two oxygen 

ions ofthe long axis, resulting in a spontaneous increase in positive charge in this 

direction. An electric field opposite to the original dipole causes the Ti4+ ion to 

move through the centre of the octahedral site and to an equivalent off-centre 

position as illustrated in Figure 1.7. 'rhis is referred to as ferroelectric behaviour. 

120'C is the Curic temperature of BaTi03. 

I, 

) 

Figure 1.6 Schematic ofthe perovskite structure of BaTi03. 

0 11,41 

0 
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Figure 1.7 Reversal in the direction of spontaneous polarisation in BaTi03 by 

revci-sal of the direction of the applied electric field (from reference 43, p. 274). 
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A spontaneously polarised, ferroelectric crystal forms domains to minimise its 

electrostatic energY43,46 . The domain is a region of the crystal in which the 

dipoles are all aligned parallel to each other. Such domains can be rendered 

visible by suitable techniques e. g., Transmission electron microscopy (TEM) 
52,53 

which are used to study mechanisms of ferroelectric behaviour . The 

permittivity of a fcffoclectric has a sharp maximum at the Curie temperature and 

thereafter falls further as temperature decreases. Above the Curie temperature, 

the dielectric susceptibility ;r follows the Curie-Weiss laW45,46 

C (1.9) 

where C is the Curie constant, T is temperature and T, is Cure temperature. 

1.4.4 Measurement of permittivity 

Methods for the measurement of permittivity include, inter alia, Bridge 

methods 
46,54 

, Resonant methods 
46,55 

, Transmission-line measurements 
46 

and 
S46,56 Cavity resonator method The selection of a particular method is 

determined by factors such as the nature of the specimen, frequency coverage 

and ease of operation. To measure permittivity, a dielectric material is assembled 

as a capacitor. The basic structure of a capacitor is a dielectric material 

sandwiched between two electrodes. The measurement of the real part of relative 

permittivity k' is generally done by measuring the change in capacitance, 

whereas the imaginary part V is found from measurement of tan8, the loss 

factor arising from the introduction of the dielectric. 
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Figure 1.8 The simplified block diagram of the auto balancing bridge method 

(modified from reference 54, p. 2-7). 

The auto balancing bridge method54,57,58 is commonly used in modem 
impedance measurement instruments. Its operational frequency ranges from 20 

Hz to 110 MHz. Figure 1.8 shows the simplified block diagram of the auto 
balancing bridge method used in the Agilent 4294A precision impedance 

analyser. The current flowing through the Device under Test (DUT), also flows 

through a range resister R, The detector D detects potential at the point "L" and 

controls both magnitude and phase of the OSC2 output, so that the potential at 

the point "L" is maintained at zero volts and so 54 

EDUT+ Er 0, (1.10) 
Z� Rr 

Zx = Rr x 
(EDUT ), (1.11) 

Er 

Where Zx is the impedance of the DUT; EDUT and Er are voltages across the 

DUT and the range resistor R, respectively. Both EDuT and Er are measured 

and Rr is known. ZX is calculated from Equation [ 1.11 ]. An impedance vector 

consists of a real part (resistance, R= IZICOsO) and an imaginary part 
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(reactance, X =IZI sin 0) as shown in Figure 1.9. For a capacitor (by excluding its 

parasitic inductance), the reactance X is 

21rfC 

where f is the applied frequency and C is the capacitance of the capacitor. 

The capacitance C can be calculated using Equation (1.12) if the reactance X is 

known from the impedance Z. The real part of relative permittivity k' is 

calculated from 58,59 

k' DxC 
Ax co 

(1.13) 

where D is thickness of the test material; A is the area of electrode of capacitor; 

C is the measured capacitance of the DUT; co is the permittivity of air 

8.854xlO-" farads/metre. The imaginary part of relative permittivity V is 

found from measurement of tan8 54 
. 

Imaginary axis 

X ----------- I Z(R, X) 
IZI 

0 Real axis 

Figure 1.9 Impedance (Z) consists of a real part (R) and an imaginary part (X). 

Once a particular measurement method is selected, the accuracy of measurement 

of permittivity depends critically on the measuring cell in which the specimen is 

mounted and how the specimen is prepared. Errors are associated with the 
inductance and resistance of the leads to the electrodes, stray capacitance from 

these leads to earth and fringe fields at the edges of the electrodes, etc 46,59. Von 
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Hippe142 has given a full discussion of types of measuring cell and corrections. 
An ultimate accuracy of approximately 0.2% in the measurement of capacitance 

and 2% in the measurement of tan8 can be quoted. Various standards exists for 

the measurement of permittivity such as, ASTM D150, British Standard (BS) 

99/243524 DC. 

1.5 Ceramic dielectrics 

Ceramics can be defined as non-metallic, inorganic solids that experience high 

temperature in fabrication or use. Suyama and Yamaguchi has defined three 

features of advanced ceramics that distinguished them from their traditional 

counterparts such as bricks, sanitary wares and household porcelain6o: 

1. High purity raw materials with controlled composition and particulate 

properties are used. 
2. Processing is subject to precise control of both forming and firing. 

3. Products have a well-controlled microstructure, which ensures high 

performance. 

Ceramic dielectrics may be classified in three groups 42,61 : (1) Ceramics with a 

relative permittivity below 12; (2) Ceramics with a relative permittivity above 
12; (3) Ceramics with piezoelectric and ferroelectric properties. 

(1) Ceramics with a relative permittivity below 12 

The ceramics of this group are widely used for applications requiring insulation. 

Insulators are used principally to hold conductive elements in position preventing 

electrical conduction. In this case their mechanical properties are as important as 

their dielectric properties. When required in large quantities, they must also be 

based on a low-cost material. 

(a) Low-tension and high tension electrical porcelain 
Porcelain was the first ceramic insulating material to be used by the electrical 

indUStry6 1. A typical porcelain composition would lie in the following ranges: 
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clays, 40-60wt%; flux, 15-25wtO/o; filler, 30-40wt%. Kaolinite, with the 

composition A12(Si2O5)(OH)4, is the most common clay mineral. The common 
fluxes are feldspars, having the general formula, [K. Naj.,, (ALSi2)081. The 

common fillers are quartz (Si02) in the form of sand or flint. When high 

mechanical strength is required, bauxite (AI203.2H20) is substituted for quartz to 

given aluminous porcelain. Table 1.1 gives typical physical properties of 

electrical porcelains. To reduce corona on high-tension (or high-voltage) 

insulators and eliminate interference with electronic devices, high-voltage 

insulators are frequently equipped with semi-conducting glazes or coatings over 

areas which are in contact with metallic conductors 42,44 
. There are also many 

low-tension applications for electrical porcelain as, inter alia, switch bases and 
fuse holders. 

Table 1.1 Physical properties of electrical porcelains (From reference 28, P. 208) 

Property Siliceous Aluminous 

Density/Mgm'3 2.4 2.8 

Flexural strength/N4Pa 125 185 

Coefficient of linear expansion /MK71 6.0 5.0-6.0 

Dielectric strength /MVm" 25 25 

Volume resistivity Mm at 20 'C -1010 -1010 
Tan8/1 0-4 at 20 'C -150 -150 

(b) High-temperature and high-frequency insulation 

When selecting insulators for electrical heating elements or resistor wires, the 

important properties are free from deformation under mechanical load, resistance 

to thermal shock and high insulation resistance at operating temperature. The 

convention electrical porcelains are not satisfactory because they contain a glassy 

phase that may cause deformation. Cordierite ceramics (Mg2Al2Si5Ol5) are best 

known for excellent thermal shock resistance combined with high insulation 

resistance at high temperature. Steatite ceramics have low dielectric losses that 

are desired for high frequency application and can be made to close tolerances 

with high mechanical strength. Steatite ceramics are widely used in electronic 
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applications. A typical composition is about 85wt% talc W93SWIIE20), 

15wt% clay and 2wt% calcium carbonate (chalk). When lower dielectric losses 

are required, forsterite ceramics (Mg2Si04) are used. Alumina ceramics 44,62 are 

widely used for spark-plug insulators, thick-film circuit substrates and integrated 

circuit packaging because of their excellent combination of mechanical, thermal, 

chemical and electrical properties. Table 1.2 gives typical properties of some 

low-permittivity ceramic dielectrics. 

Table 1.2 Typical properties of low-permittivity ceramic dielectrics (Adapted 

from reference 44, p. 209) 

Dielectric Tan 5 /10-4 Thermal Linear expansion 

Material Constant at 1 MHz conductivity coefficient MK71 

Wrn"K71 at 25C at 20- 1000 'C 

Steatite 6.1 7 3 8.9 

Cordierite 5.7 80 2 2.9 

Forsterite 6.4 2 3 10.7 

96% A1203 9.7 3 35 8.2 

(2) Ceramics with a relative permittivity above 12 

The ceramics in this group, also called high dielectric constant ceramics, are 

mainly used for capacitors. Electronic Industries Association5O, 63 (EIA) has 

classified these dielectrics for capacitors by the capacitance temperature 

coefficient (T. C. ). Two basic groups (Class I and Class II) are used in the 

manufacture of ceramic chip capacitors. Class III identifies the reduced barium 

titanate barrier-layer materials used in the production of disc capacitors5o. The 

T. C. is determined by measurement of the capacitance change at various 

temperatures from the reference room temperature. The T. C. is expressed in parts 

per million per degree (ppm/'C) for Class I dielectrics and as percent capacitance 

change (%AC) for Class II. The method of calculation of T. C can be found in 

reference [50]. EIA has developed a series of codes that define the temperature 

coefficients5o. For example, the most common Class II dielectric for chip 
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capacitors is the X7R designation, which means ± 15% maximum AC from 

550C to 125 OC. 

(a) Class I dielectrics 

This group identifies the dielectrics showing a linear relation of polarisation to 

voltage as shown in Figure 1.5 (a). These materials are based primarily on Ti02, 

with dielectric constants under 150. With addition of other (ferroelectric) 

oxideS50' such as CaTi03 or SrTi03, compositions display near-linear and 

predictable temperature characteristics with dielectric constants ranging up to 

500. Class I dielectrics are used in circuits requiring stability of capacitor, i. e. 

negligible aging, low loss, negligible change in capacitance and dielectric loss 

with voltage or frequency, and predictable linear behaviour with temperature 

within prescribed tolerances. The most common Class I dielectric for chip 

capacitors is the COG designation, which means 0 ppm/'C with ±30% ppm/"C 

tolerance of temperature coefficient. 

(b) Class II dielectrics 

Class 11 dielectrics comprise the ferroelectric formulations with much higher 

dielectric constant than Class I dielectrics, but with less stable properties with 
temperature, voltage, frequency and time. They are useful where changes in 

capacitance with temperature are not too critical, for examples, as by-pass and 

coupling capacitorS55. Most of these compositions are based on barium titanate. 
By various oxide additions to barium titanate 64-67 or by changing the ratio of BaO 

to Ti02 from the stoichiometric rati044 , it is possible to shift the Curie 

temperature and change the T. C. value to meet application requirements. Class 

Il dielectrics can be subclassified into two categories 34 by T. C. characteristics: 
(1) "stable Mid-K" Class II, which typically have dielectric constants in the 

range of 600 to 4000, and meet EIA X7R characteristics (± 15% maximum AC 

from -55'C to 125'C); (2) "High K" Class II dielectrics, which display dielectric 

constants from 4000 to 18,000 and typically have Z5U characteristic (+ 22% to - 
56% maximum AC from +10'C to +85'C) or Y5V (+22% to -82% maximum AC 

from -30"C to +851C ). 
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(3) Piezoelectric and ferroelectric ceramics 
Piezoelectric and ferroelectric ceramics are important and widely used in modem 

technology. Table 1.3 lists four main uses of piezoelectric ceramics. 44 ' 68 

Ferroelectric ceramics are mainly used in various switch applications such as 

binary memory devices 69 
. The first piezoelectric ceramic to be developed 

commercially was BaTi03 whose ferroelectric model has been discussed earlier. 

By the 1950s, the solid solution system Pb(Ti, Zr)03 (PZT), which also has the 

pervoskite structure, was found to be ferroelectric. PZT compositions are now 

widely used in piezoelectric applications owing to its excellent electromechanical 

properties 44,70,71 
. Great efforts have been made by researchers to discover other 

72-77 novel piezoelectric and ferroelectric ceramics 

Table 1.3 Main description of uses of piezoelectric ceramics 

Main uses Main properties' requirements Application 

examples 

The generation of charge at High g coefficients * with resistance Gas igniter 

high voltages by means of a to damage of either electrical or 

compressive stress mechanical properties by high 

mechanical stress. 

The detection of mechanical High g coefficients combined with Actuator 

vibrations low permittivity 

The control of frequency Properties stable with both time and Quartz clocks, 

temperature, with minimal losses Wave filters 

and a high coupling coefficient 

The generation of acoustic and Low losses when the high fields Various 

ultrasonic vibrations necessary to generate vibrations of ultrasonic 

useful amplitude are applied. devices. 

' In this table, g is voltage output coefficient, indicating piezoelectric field strength per 

applied mechanical stress. The piezoelectric body vibrating at a resonant frequency can 

absorb considerably more energy than at other frequencies. 44 This fact provides a basis 

for the application of the control of frequency and the generation of acoustic and 

ultrasonic vibrations. 
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1.6 Advanced Ceramics processing 

The objective of ceramic processing is to produce a material with specific 

properties, required shape and size at an economic cost. The ceramic properties 

are basically controlled by the composition but also affected by the grain size and 

porosity of the sintered ceramic, which are affected by the method of processing. 
Because ceramics have relatively high melting point, it is difficult to use the 

melting-casting method employed for metals and plastics to form ceramic 

products. The brittle and high hardness of ceramics also make machining of final 

shape commercially prohibitive except in a few cases. Most advanced ceramics 

processing starts with powder as the precursor. This is formed into an assembly 

with a shape close to the final product and a larger size to allow for shrinkage on 
firing. 

(1) Powder processing 
Improvement in the dielectric properties of ceramics can be achieved by 

carefully controlling the characteristics of the initial powders 48,78 
. Ceramic 

powders are traditionally prepared via mixed-oxide processes 48 
. This involves 

milling the component metal oxides or blending their acid salts to achieve 

mixing. The mixed powders are subject to heat treatment (calcination) to 

promote the inter-diffusion of constituent cations, the solid state reaction and the 

formation of the required compound. The commonly used method of mixing is 

ball milling 43,44 
. Ball milling involves placing the powder in a closed cylindrical 

container with grinding media (balls, short cylinders, or rods) and rotating the 

cylinder horizontally on its axis so that the media cascade. Ball milling can be 

conducted either dry or we t43 . There are also other mixing methods such as 

attrition milling 43 and vibratory milling43,44 each used with great success. 

In recent years, various novel preparation routes such as hydrothermal 

synthesis 43,79, oxalate route 48,80 and Sol-Gel processing 48,81,82 have emerged in 

an attempt to produce powders more suitable for processing of high relative 

density fine grain size ceramics 48 
. These preparation routes are often called wet 

chemical processes. Most of the techniques take advantage of reactions that take 

place in the liquid phase (as opposed to the solid-state) so that more intimate 
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mixing of cations is achieved initially and in turn the optimum homogeneity of 
the powder can be expected. A flowsheet describing the essential steps for both 

the mixed oxide and wet chemical processes is given in Figure 1.10. Ball milling 

of the calcined materials is necessary for both types of powders to produce fine 

powders. 

Composition 

Mixed Oxides II Wet chemical 

B 

Ball-milling 

Drying 
I 

Forming-_1 
I 

DensificatiLnj 
I 

[Final 
processing] 

ation 
I 

Figure 1.10 Flow sheet for ceramics processing (adapted from reference 56) 

(2) Forming and Firing (Densification) 

Various forming methods exist to compact the powders to a specific form or 

shape prior to densification. Cold pressing is, perhaps, oldest and most 

economical of these methods. Two types of cold pressing are available: Uniaxial 

pressing - the powder, mixed with a very small amount (1-2%) of fluid or 

organic additives, is compacted into a rigid body by applying pressure along a 

single axis through upper and lower pistons; Isostatic pressing - the powder is 

normally sealed in a rubber mould of the required shape and immersed in a 
hydraulic fluid through which applied pressure is transmitted in all directions 
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during all stages of compaction. For example, spark plug insulators are 

commonly produced using cold isostatic pressing. There are many other forming 

methods including extrusion 
43,83, 

slip casting43,44,84, tape casting44,85 , roll 

compaction 
86, 

screen printing 
43,87 

and injection moulding43,44 currently used for a 

wide range of ceramic powders. 

Powders assemblies are then subject to densification in an attempt to produce a 

pore-free, fully dense ceramic by sintering. Complex-shaped components can be 

densified easily by this method if appropriate powder processing and pro- 
forming have been accomplished. Generally, sintered density increases with 

rising temperature although the full density is rarely achieved unless special 

techniques are used to assist the sintering processing. Taking Pb(Ti, Zr)03 (PZT) 

as an example 71, with an air atmosphere, densities of -96% of theoretical can be 

achieved, but the use of excess PbO during sintering to compensate for PbO loss 
43 - (volatilisation), the sintered density can approach 99%. Hot pressing is 

commonly used to produce piezoelectric ceramics. It involves compacting 

powders under uniaxial pressure in a die at a high enough temperature that the 

powder can densify. With the simultaneous application of pressure and 

temperature, the formation of fully dense ceramics can be achieved. For example, 

tiles of PUT as large as 150mm in diameter and 25mm in thickness are 

regularly hot-pressed to full density and high transparency7 1. Other densification 

methods that have been proved to be successful for dielectric ceramics in more 
43,44,71 88,89 recent years includes hot istostatic pressing and vacuum sintering 

After densification, ceramics are subject to final processing that is product- 
depended. For example, the final steps involved in processing of ferroelectric 

ceramics are (1) slicing, (2) lapping of the slices, (3) polishing of the plates for 

electro-optic elements, (4) electroding and (5) evaluation of the parts for further 

assembly to components 71 
. 

(3) Thin- and thick-film processing 
Piezoelectric and ferroelectric films have wide electronic applications such as 

non-volatile memory, light modulator and switches 44,87 
. Thin films are often 

made by vapour deposition, typically no more than a few micrometers thick. 
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Vapour deposition involves the condensation of an element or a compound from 

the vapour state onto a substrate as a thin film. In chemical vapour deposition 

(CVD), a vapour of the source materials is thermally decomposed or reacted with 

other gases or vapours to produce a non-volatile reaction product that is 

deposited on a heated substrate. Physical vapour deposition (PVD) involves the 

removal of the vapour phase of a target material and its deposition as a thin film 

on a substrate. 

Rather thicker films with thickness typically in the range 10-22 gm are 
44 

commonly made by screen printing techniques . In screen printing, the screens 

that define the printed pattern are meshes of either nylon or stainless steel. The 

screen is held taut in a frame that is fixed 1-3mm above the surface to be printed. 
A thick paste is swept across the screen by a hard rubber 'squeegee' with 

sufficient pressure to extrude paste through the non-masked areas. The 

consistency of the paste is such that, as the screen rises from the surface, it flows 

over the spaces left by the threads or wires of the screen so that there is only a 

small variation in the thickness of the deposit. 

The wet chemical solution deposition techniques (sol-gel and metal-organic 
decomposition) have been quite successful and extensively used in producing 
thin and thick films of ferroelectrics, dielectrics and many other materials". Sol- 

gel processing begins with a colloidal dispersion of particles in a liquid, which is 

the definition of a sol. Through subsequent chemical cross-linking, electrostatic 
destabilisation, evaporation or some combination these of, the fluid sol may be 

transformed into a rigid gel that is a substance containing a continuous solid 

skeleton enclosing a continuous liquid phase. This sol-gel transition allows the 

solid phase to be shaped into films. 

Metal organic decomposition 45 involves metallic species introduced as gaseous 

organic complexes in epitaxial growth. For examples, trimethyl indiurn vapour is 

mixed with hydrogen and phosphine and passed over a heated substrate where 
deposition of indium, phosphide occurs. 
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1.7 Ceramic Solid freeforming 

There is a close relationship between Solid Freeforming Processes (SFF) that 

have acquired the capability to make functional gradients and combinatorial 

methods; SFF devices that can make three dimensional (3D) functional gradients 

can also produce combinatorial libraries. The direct ceramic ink-jet printing 

process used in this research was initially developed for solid freeforming of 

ceramics. SFF, also sometimes referred to as Rapid Prototyping (RP), is a 

computerized fabrication technique that can produce complex three-dimensional 

physical objects from a computer file by point, line or planar addition of material 

rather than abstracting material from a blank. SFF was initially used in the 

plastics industry and has extended to metals and ceramics. The two main 

advantages of SFF are (1) it can create complex 3D objects with lower cost and 

shorter time compared with the conventional fabrication technology; (2) different 

parts of an object can be fabricated using different materials as required to 

produce functional gradient materials. The following sub-sections describe 

several main SIFF methods used in the fabrication of ceramics including: 

stereolithography90-92, fused deposition modelling (FDM)93-95, selective laser 

sintering (SLS)96-98, laminated object manufacturing (LOM)99"01, three 

dimensional printing (3DP) 102-105 and direct ceramic ink jet printing (DCjjp)37,39 ' 
40 

. The common feature of these techniques is that 3D computer images of 

components generated by CAD software are sliced to produce two dimensional 

(2D) layers, and then sent sequentially to a peripheral device that fabricates a real 

component layer by layer. 

1.7.1 Stereolithography 

Figure 1.11 illustrates the stereolithography process. A laser beam scans the 

surface of a monomer containing a photo-polymerization initiator. The monomer 
is polymerized and hence solidified when exposed to ultraviolet light. Once the 

first layer is solidified, the elevator moves downwards, deeper into the pool of 

resin, by a distance equivalent to the layer thickness. Resin is deposited on top of 

the previously cured layer. The next layer is scanned by laser and so forth, the 

self-adhesive property of the materials causes the layers to bond to one another 
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and eventually form a 3D object. For objects having overhanging areas, support 

structures are commonly used and cut off after the completion of fabrication. For 

ceramic applications, the photopolymers are charged with powder. In order to 

achieve hioh density upon sintering, the monomer is filled with typically 50- 

65vol. % of solids. The cured resin serves only as a binder for ceramic particles 

and is removed by slowly heating to 250-500'C, followed by high temperature 

sintcring. 

T 

I'levator Z-1110tioll 

Figure 1.11 Schematic principle of Stereolithography (frorn re 1erence 92) 

1.7.2 Fused Deposition Modelling (FDM) 

Figure 1.12 illustrates the process of FDM. The FDM machine builds the part by 

extruding a serni-molten filarnent through a temperature controlled nozzle in a 

prescribed pattern onto a platform. A second nozzle may extrude a second 

material in order to build support structures for the part where needed. When the 

first layer is completed, the platform lowers by one layer thickness and the 

process is repeated until the entire object is formed. Support structures are later 

removed. A water-soluble support material which can be washed away is also 

available. For cerarnic applications, the starting materials for FDM are filaments 
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of ceramic powder mixed with thermoplastic polymer or wax binder. The 

startino materials are mixed, granulated and extruded to produce continuous 

lengths of flexible filarnent. The filament is typically 0.5-2inin nominal diameter 

and fed into a movable head with a heated nozzle where it softens to just above 

its melting point at the exit. A significant advantage of FDM is that materials are 

delivered on demand and the process does not require a large reservoir of 

expensive feedstock at the start. Piezoelectric ceramics and polyrner-cerarnic 

composites with functional gradients have been prepared using the FDM tor 

3 sensors and actuators9 
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Figure 1.12 Schematic di-aw1m, of' Fusccl Deposition Modelling (Adapted fivill 
I 

reference 91) 

1.7.3 Selective laser sintering (SLS) 

The SLS process (as illustrated in Figure 1.13) involves depositing a uniform 

layer of powder on a building platform. A laser then selectively scans and sinters 

the forming areas of the powder in a defined pattern. The non-forming areas are 

left as free powder to support subsequent layers. The platform is then lowered 

and the next layer of powder is dispensed. The process is repeated until a 3D 

object is built directly from a CAD file. The unsintered powder is removed and 

may be reused. The laser energy also fuses consecutive layers together. The 

building chamber is commonly purged with inert gas and is often heated to 

reduce the additional laser energy required to heat the powder to its fusion 

temperature. Recent advances include methods to deposit multiple powder 
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patterns onto the building platform to produce 3D functional gradient and the use 

of the same device to produce combinatorial libraries 98 
. 

Scanning Laser 
Mirror Rearn 

Powder 
Bed 
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Sintered part Z-1110tion 
Piston 

Figure 1.13 Schematic representation of selective lascr sintenno (adaptcd fi-om 

reference 98) 

1.7.4 Laminated object manufacturing (LOM) 

The LOM process is illustrated in Figure 1.14. The LOM produces 3D 

components through laser cutting 2D sheets of material in CAI) defined contours 

and by laminating the layers to obtain the 3D shape. The under-surface of the 

sheet has a binder that when pressed and heated by the roller causes it to adhere 

to the previous sheet. To help the removal of the excess material once the parts 

have been built, tile exterior of the slice is heavily cross-hatched with tile laser. 

The waste material is left in place during fabrication to serve as a support. After 

all layers have been stacked, the part block is removed from platform. 'File excess 

material is eliminated and then the part produced is subject to binder removal" 

and densification. LOM using ceramic tapes as feed materials is currently 

employed to make ceramic functional components. Thin (typically around 100 

[un) ceramic tapes are pre-processed by mixing ceramic powder with all 

appropriate binder through tape casting, roll cornpaction or all extrusion process. 
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Figure 1.14 Schematic drawing of laminated object nianufactUring (Adapted 

from reference 91) 

1.7.5 Three dimensional printing (3DP) 

Figure 1.15 illustrates the 3)DP. The process starts by depositing a measured 

quantity of powder at the top of a fabrication chamber. The roller then distributes 

and compresses the powder at the top of the fabrication charnber. The multi- 

channel 'jetting 
head subsequently deposits a liquid adhesive in a 2D pattern onto 

the layer of the powder. The powder becomes bonded in the areas where the 

adhesive is deposited to form a layer of the object. Once a layer is completed, the 

fabrication piston moves down by the thickness of a layer, and the process is 

repeated until the entire object is formed. The ob . Ject then is elevated and the 

excess powder brushed away leaving a powder assembly in the shape demanded 

by the computer file. This assembly is oven-cured and excess powder is removed 
by immersion in a water bath before sintering. No external supports are required 
during fabrication because overhangs are supported by the free powder. By 

using multiple print heads. additives may be deposited in a prescribed fashion to 

create gradients in composition, for example, 3DIII has been used for the Cý 
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fabrication of functionally graded reaction infiltrated SiC-Si composite 

ceramic 10ý 
. 
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Figure 1.15 Schematic drawing of three dimensional printing (Adapted from 

reference 91 ) 

1.8 Direct ceramic ink jet printing (DCIJP) 

1)(1111 is distinguished from 3DII in that a cerainic-powder containing ink is 

dispensed directly instead of the binder. The basic process ofDC1.111 involves the 

t'ollowing steps: A ceramic suspension is passed through a printer nozzle and 

layer upon layer of ink is deposited according to a computer model until the part 

is built. The printed ceramic part is then subjected to conventional binder 

removal and sintering to produce a dense ceramic component. 'rhe application of 

multi-nozzle printing heads allows different inks from separate reservoirs to be 

printed at the same tirne, thus it is possible to change the cornposition frorn point- 

to-point. Therefore, DCIJP gives the materials engineer not only control over the 

shape but also the composition of ceramic parts via a computer interface. DCUP 

has been successfully applied to form ferroelectric filin 38 and zirconia/alurnina 

functionally graded material S37 . DCUP is built upon two fundamental principles: 

(1) Freeforining via ink-jet printing and (2) Ceramic inks prepared via colloidal 

processing. 
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1.8.1 Ink-jet printing technology 

Ink-jet is a non-impact dot-matrix technology which takes small quantities of 
inks from a reservoir, coverts them into droplets, and transports the droplets to a 

specified position on medium (paper, transparency, etc) to create an image. There 

are two main types of ink-jet printer: continuous ink-jet printer106-107 and drop- 
106-108 

on-demand ink-jet printer 

(1) Continuous ink jet printer 

Figure 1.16 illustrates a continuous ink-jet printer. In this system, a fluid is 

forced under pressure through a 10-200 gm diameter nozzle. As it passes through 

the nozzle, the fluid is piezoelectrically pulsed or modulated so that the stream 
breaks up into a continuous series of droplets. These droplets are selectively 

charged as they pass through a charging electrode. The charged drops when 

passing througha high-voltage deflection electrode are deflected and directed to 

the substrate. Uncharged drops that are undeflected continue in their flight. A 

gutter collects the droplets that do not reach the substrate for recirculation. 
Continuous ink-jet printers form droplets continuously even when there is no 

printing. It is normally used for high-speed printing of bar codes and for date 

labelling of food packages. 

(2) Drop-on-demand (DOD) ink jet printer 

In the DOD printer, ink droplets are formed only when required. Depending on 

the mechanism used in the drop formation process, the technology can be 

categorized into four major methods: thermal, piezoelectric, electrostatic and 

acoustic ink-jet. Thermal ink-jet DOD printer is the most successful method on 

the market today. The thermal ink-jet printer normally uses a disposable ink-jet 

printer-head that contains a liquid ink supply, several nozzles and their associated 
droplet formation systems. Figure 1.17 illustrates the droplet formation process 
in a thermal ink jet printer. Droplets of ink are forced out of the nozzle by 

heating a resistor, which causes an air bubble to expand. When the bubble 

collapses, the ink droplet breaks off and is transferred to the substrate. Capillary 
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force causes the ink chamber to refill with ink and the process is ready to begin 

again. Compared with the continuous ink-jet method, the DOI) principle is less 

useful for printing on curved surfaces or where the ink droplet must transverse a 

long distance""'. It is used mainly in horne and office printing. 

Piezoelectric 
drive rod 

Charge n 
Electrode 

High Voltage Cutter Substrate 
Deflection plates 

Figure 1.16 Schematic drawing of continuous ink-jet (modified from reference 

107). 

ifice 

Ink Chamber 

Figure 1.17 Droplet formation process in a thermal ink-jet printer (iriodified 

from reference 108). 
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(3) SynQUAD-]'" dispensing technology 

The printer used in this research is based on SynQUAD dispensing technology 109 

allowing non-contact dispensing of nanoliter volumes. The dispensing system 

(Figure 1.18) is a hydraulically driven system and requires a fluid mediurn to be 

present from the syringe to the rnicrosolenoid valve. 'Two modes of liquid 

handling ofSynQUAD techniques are possible: 

(1) Continuous dispensing - involves pulling liquids from a reservoir into the 

syringe and then dispensing it through the micro solenoid valve. 

(2) Aspirate/dispense - involves dipping the tip of the valve into a flUid in a well 

plate, withdrawing the syringe after aspirating the sample, and then dispensing 

the aspirated sample at another location. 

Connecting 
Tubing I 

I ligh-Speed Micro 
Solenoid Valve 

Removable Tip 

- Oritice 

Figure 1.18 SynQUAD dispensing system (from rellerence 109) 1 

Dispensing the specified volume is achieved by a 192000 step syringe that 

displaces a given amount of fluid. The amount of fluid displaced by the syringe 

Pump equals the amOLInt dispensed. The micro solenoid valve is opened for a 

short period of time (i. e.. milliseconds). The fluid is released from the valve and 

travels to the tip. The fluid increases its linear velocity as it passes through tile tip 

orifices and ejects as a drop (or stream if the amount of fluid is large). The co- 
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ordination of the syringe pump and micro solenoid valve is embedded in 

proprietary software. 

Several factors may influence achieving the desired dispense volume: (1) Gas 

bubbles in the dispensing system can cause variation in dispensed volumes. 
Bubbles can be removed by purging the system with isopropanol and using 
degassed solvents. (2) When the sample is aspirated, the syringe pump draws 

fluid through the tip orifice. The resistance to flow from the tip and valve creates 

a negative pressure which must first be overcome. Venting (i. e aspirating zero 

volume) can bring the system to a known (zero/ambient) pressure. To prevent the 

introduction of air, venting is typically done with tips in the sample to prevent 

the introduction of air. If an air gap is not used, dilution occurs at the interface of 

the aspirated sample and system fluid. As a general rule, 3 to 4 times the 

dispense volume must be aspirated to produce a series of undiluted dispenses. 

(3) The interaction of ejected drops with fluid on the tip orifice can lead to loss of 

control of dispense volumes. Vacuum drying of the tips at appropriate times 

during the dispense cycle can reduce or eliminate this effect. Once the printing 

procedure compensates for these factors, the printer can dispense the specified 

volume. Table 1.4 gives the specifications of SynQUAD TM dispensing. 

Table 1.4 SynQUAD TM dispensing general specifications (modified from 

reference 109). 

Dispensing range: 20nL to 250ýtL 

Dispensing accuracy: ±7% at 20nL, ±5% at I OOnL 

Dispense to Dispense precision*: <10% CV at 20nL, <7% CV at IOOnL 

<5% CV at I ýtL 
Minimum aspiration volume: 5pL 

*CV stands for coefficient of variation. 

1.9 Ceramic inks 
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The properties of ceramic inks are important to the functioning of ink-jet printing 

and quality of the printed sample. A ceramic ink normally comprises the ceramic 

powder, solvent, dispersant, binder and other additives as shown in Table 1.5. 

Each component has to been carefully selected and accurately controlled to give 

the ink the desired properties and to ensure its compatibility with others. There 

are two basic requirements for ceramic inks. One is stability and homogeneity of 

the suspension that is achieved via colloidal processing. The other is that 

physicochernical properties of ceramic inks should meet the requirements of the 

ink-jet printer, for example, solvents should not damage valves and tubing. A 

third requirement arises when combinatorial ink-jet printers create mixtures of 

ceramic inks. The inks must mix without causing instability in each other. 
Flocculation, sedimentation or separation should be prevented. 

Table 1.5 Components of ceramic inks 

Components Function 

Ceramic powders Building the green part. 
Solvent Impart fluidity and as a vehicle for the dissolution and 

uniform distribution of all additives and ceramic particles. 
Dispersant Distribute the powder homogeneously in the solvent; 

Promotes deflocculation and stability; Enables effective 

total wetting of the solid by the solvent. 
Binder Provides strength to the green part for handling and 

storage. 

1.9.1 Colloidal processing of ceramics. 

A colloidal dispersion' 10,111 can be defined as a system in which particle having 

diameters between 1-1000 nm of any state (solid, liquid or gas) are dispersed in a 

continuous phase of a different composition or phase. In colloidal dispersions, 

the contact area between particles and the dispersing media is large. As a result, 
inter-particle forces (or surface forces) strongly influence suspension behaviour. 
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The gravitational force often can be ignored. The dominating inter-particle forces 

in most ceramic colloidal systems are van der Waals forces, electrostatic forces 

and steric forces associated with adsorbed dispersant molecules. Preparation of 
the ceramic ink essentially involves dispersing the powder in a liquid, achieving 

stability by adjusting pH or adding dispersant and then preventing sedimentation 
during storage. Bell and Crowl' 12 described the dispersion process as 
"Incorporation of a dry powder into a liquid medium in such a way that the 
individual particles of the powder become separated from one another, or form 

small clusters, evenly distributed throughout the entire liquid medium". 

Various inter-particle forces such as, van der Waals forces, electrostatic forces, 

bonding due to moisture and gravitation forces, are responsible for the formation 

of agglomerates in a dry powder"O. These forces must be overcome before the 

powder can be incorporated in the liquid where powder-air and powder-powder 
interfaces are replaced by powder-liquid interface. Breakdown of agglomerates 
(de-agglomeration) is usually achieved mechanically by either shear or impact. 

Ultrasonic disruption 113 and high energy bead mills4o have been employed to 

break down agglomerates during ceramic ink processing. After de- 

agglomeration, the entire surface of each particle is available for wetting. 
Wetting refers to the spreading of a liquid over a solid surface whereby the 

adsorbed air and other contaminants on the particle surface are replaced. Surface 

active agents can be used to assist the wetting of liquid over the powder surface. 

The breakdown of agglomerates is a dynamic process in which re-agglomeration 
(flocculation) is constantly in competition with de-agglomeration as the attractive 

van der Waals forces are always present in the dispersion. To create a stable 

suspension"' (i. e., dispersed, weakly flocculated or strongly de-flocculated 

states), the repulsive electrostatic force and/or steric force can be manipulated by 

pH or surface-active agents or both to overcome the attractive van der Waals 

forces. 

Electrostatic stabilisation refers to the stability of the powder suspension due to 

the repulsive interaction of charged particles of equal sign. Solid oxides in 

aqueous suspension are generally electrically charged. Ions can be attracted from 
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the liquid to the particle surface or preferential dissolution of ions from the solid 

surface takes places. Both effects produce a net charge on the surface. As 

illustrated in figure 1.19, Ions are distributed between two regions. In the Stem 

layer the ions are close against the surface; Beyond the Stem layer the ions are 

distributed in a diffuse 'atmosphere'. They have a high concentration near the 

surface and gradually decrease with distance, until an equal density of positive 

and negative ions is reached. If direct current passes through a colloidal solution, 

according to the sign of the charge, particles move either to the positive or 

negative electrode. This phenomenon is called electrophoresis. For spherical 

particles the electrophoretic mobility u (unit m2 VIS-) iS114 

(E )ýD 

6ml 
(1.14) 

where Ell is the potential gradient which means the volts E applied and on the 

distance I between the electrodes; The zeta potential 4is the electrokinetic 

potential of the particle ;D is the dielectric constant of the medium and 77 is the 

viscosity of the medium. In general, a high absolute zeta potential value indicates 

the presence of a well-dispersed colloid by electrostatic repulsion. The zeta 

potential value can be determined from equation (1.14) by measuring the 

mobility u at a definite voltage gradient, dielectric constant D and the viscosity 

of the medium must be known as well. By adding electrolytes or adjusting the 

pH value of a colloidal solution, the zeta potential may either increase or 
decrease. Isoelectric point"O is the pH value at which zeta potential is zero. At 

this point, there is no repulsion between particles and they flocculate under van 
der Waals attraction. DLVO theorylit explains the interaction of electrostatic 
forces with van der Waals forces. 
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Figure 1.19 Double layers describe ion attached to charged particles in the 

colloid. 

Steric stabilisation"' arises from the repulsive interaction between absorbed 

polymer chains at the particle surfaces. When particles approach each other, 

these adsorbed polymeric chains intermingle, they lose degrees of freedom which 

they would otherwise possess. In thermodynamic terms, this involves a reduction 
in entropy, which leads to a higher free energy and provides an opposing force to 

prevent further attraction. As chains intermingle, solvent is forced out from 
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among particles, which causes a counter-force to separate particles, known as 

osmotic repulsion. When the polymer dissolves in the solvent, it is flexible and 

can fold in different ways. A well dispersed suspension requires the polymer 

chains to be in an extended configuration so that the steric repulsion can be 

established when the chains interact. Many factors determine the adsorption of 

polymers onto the ceramic particles such as, compatibility with solvent, 

molecular architecture and active surface site density'". The third stabilisation 

mechanism is known as electrosteric stabisation"', which is combination of a 

pure electrostatic repulsion and a steric force. Non adsorbing, smaller species 
(e. g., polymers, electrolyte or fine colloidal particles) in the solution also form 

structural barriers to separate large colloidal particles. Colloidal systems are 

complicated, and much work has still to be done to clarifying numerous 

theoretical and practical problems. 

There are various methods of assessment of dispersion stability such as 

measurements of light scattering"O, the measurement of zeta potential and 

viscosity of suspension as a function of pH value 116,117 and the measurement of 
118 changes in flow behaviour in response to an applied stress or strain . 

Sedimentation testing is possibly the simplest method of studying the behaviour 

of dispersion. It is often performed in a cylinder to follow the evolution of 

particle agglomeration by monitoring the rise of sediment level formed at the 

bottom under the influence of gravity until the sediment is constant or the 

collapse of the turbid region from the top of the tube. The dispersion stability 

may be inferred form the observation of ceramic inks during a sedimentation test. 

The time that it takes for an apparently homogenous ceramic ink to develop 

layers or sediments is a guide to the stable working time for this ink. 

1.9.2 The properties of ceramic inks 

The ceramic ink properties relevant to functioning of a jet printer and quality of 

the printed sample are the viscosity, surface tension and in some printers, 

electrical conductivity or boiling point (for thermal jet printers). 
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ViSCOSity45.119 is the property of a liquid that resists shear forces, and hence flow. 

Shear is the orderly movement of layers of liquid relative to parallel adjacent 

layers. In steady shear, the rate of relative movement of layers is known as the 

rate of shear, and the tangential force per unit area applied to the layers to sustain 

the motion is the shear stress. Dynamic viscosity, r7, is the shear stress divided 

by the rate of shear for steady flows of liquid. The SI unit is pascal second (i. e., 

Pa s). Kinematic viscosity, v, is: 

17 
p 

17 = V-P, (1.16) 

where both dynamic viscosity, 77, and the density of the liquid, p, are measured 

at the same temperature. When the viscosity is measured using a U-tube 

viscometer, Kinematic viscosity is calculated from 119 : 

Ct, (1.17) 

where C is the calibration constant for the viscometer given in its calibration 

certificate, t is the mean flow time (in s) of liquid of a given volume between the 

etched rings. Dynamic viscosity, il, is calculated from kinematic viscosity using 

equation 1.16. The detailed procedure of measuring viscosity using the U-tube 

viscometer can be found in British Standard 188: 1977 Methodsfor determination 

of the viscosity of liquids (i. e., reference 119). 

A liquid is said to exhibit Newtonian flow when its viscosity is independent of 

the rate of shear at constant temperature and pressure. For non-Newtonian fluids, 

their viscosities are dependent on the rate of shear, such as polymer melts, whose 

viscosities decrease with increasing shear rate. The viscosity requirements of 

ceramic inks may vary with machine types but ideally the flow should be 

Newtonian. A value of 1-3 mPa s is normally chosen for continuous jet printers 
but this is lower than for a DOD printer 107 

. 
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Surface tension 120,121 is due to unbalanced molecular cohesive force near the 

surface and is measured by the force acting perpendicular to unit length of a line 

drawn in the surface. Units of measurement are Nin". The surface tension of 

water is 72.8 mNm-1 at 20 'C, but this value may decrease significantly when 
blended with additives. The formation of droplets during ink-jet printing and 
their subsequent dispersal after impact on a substrate is dependent on the surface 
tension of ceramic inks 107,108 

.A drop of liquid placed on a smooth and solid 

surface has 3 phase boundaries and there are 3 tensions acting at the 3 interfaces 

(Figure 1.20). In the case of equilibrium, by the Young's equation: 

al-(TI, 2 ý- (72 COS 0 (1.18) 

The pull 47, -0',, 2 tends to spread the liquid over the whole surface of the solid. 

Wetting, therefore, occurs if CFI_aI, 2 > 0-2 COS 0. The wetting is perfect, if at 

contact angle 0=0( COS 0= I), and 0'i_U,, 2 > a2. The wetting is imperfect 

'f0'f_aI, 
2 < a2, because in this case, it is always possible to satisfy Young's 

equation 1.18 as the contact angle increases andcoso decreases. There are 

various methods of measuring surface tension such as the ring-detachment 

method, the Wilhelmy plate method and the bubble pressure method (the details 

of each method can be found in reference 121). 

The DC conductivity of ink is critical to the printer that makes use of 

electrostatic force 108 
. For continuous jet printers, the ink droplet has to be 

charged for the duration of the charging pulse so that it can be deflected and 
deposited on the printing substrate. Polar solvents such as water can yield high 

conductivity but present the problem of slow drying rate comparing with non- 

polar solvent such as benzene (C6H6)- 

High volume fraction of ceramic powder of the ink is often wanted to provide 

efficient ink-jet printing - deliver more powder to the building platform using 
less vehicle and time. However, increasing the volume fraction of ceramic 

powder in ink often means increasing viscosity, decreasing the dispersion 
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stability and affecting conductivity. To use DCIJP, ceramic inks must have a 

careful balance of the volume fraction of ceramic powder in the ink, viscosity, 

surface tension, DC conductivity and other properties as the application specifies. 

Figure 1.20 The spreading of a liquid over the surface of a solid. Surface 

tension: a, - solid/gas, 072 - liquid/gas, Cr,, 2 - solid/liquid. (modified from 

reference 120). 

1.9.3 The drying behaviour of ceramic ink droplets 

The powder assembly produced by DCIJP is built from residues of ceramic ink 

droplets. It is important to study the drying behaviour of such droplets because 

the drying process influences the compositional distribution and geometry of the 

residues of droplets. 

In general, the drying of ceramic suspensions can be divided into two 

stages 111,122. In the initial constant-rate period, fluid is transported to the external 

surfaces at a rate that matches evaporation. Then, in the falling-rate period, the 

fluid can no longer get to the surfaces at this rate and experimentally, there are 
two falling rate periods. In the first (linear) period, fluid menisci retreat into the 
body (the funicular state). Moisture migration is controlled by capillary flow. As 

further evaporation occurs, fluid resides in isolated pockets (the pendular state), 

marking the transition to a second non-linear falling rate period. The remaining 
liquid is removed from the body by vapour-phase diffusion. 
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There have been many studies of the drying of unsupported droplets of ceramic 

slurries, the better to understand spray drying 123-126 
. Spray drying is one of the 

ways to convert ceramic slurries into a free-flowing powder. In the spray drying 

process, a slurry containing ceramic powder is atomised into tiny droplets, which 

are mixed with hot drying gas, typically air, which dries the individual droplets 

into clusters of solid particles. Geoff and Red 124 have found droplets from well- 
dispersed slurries in which particles retain mobility during drying, form irregular 

shaped agglomerates with a central hole. Suspensions with a tendency to 

flocculate, form dense spherical agglomerates. 

On the other hand, the drying of drops of liquid deposited on a horizontal non- 

porous substrate is affected by (1) the wetting characteristics of the substrate 127 

(2) the temperature and atmospheric conditions 128 
, and (3) the properties of the 

liquid and solids it may contain. Shannahan and Bourges 128 showed that in a dry 

environment, a pure water droplet placed on a smooth polymer surface, 

experienced three stages of drying. First, the contact diameter remained constant 

whilst both drop height and contact angle decreased. Second, both the drop 

height and diameter decreased concomitantly while maintaining a small contact 

angle. Finally, height, diameter and contact angle all decreased sporadically as 

the droplet volume diminished to zero. 

There is general agreement that unlike a sessile drop of pure liquid, for which the 

contact radius decreases during drying, presenting a receding contact angle, the 

three-phase boundary of a droplet of suspension is pinned by the rapid deposition 

of particles at the boundary 129 
. The pinning is generally attributed to surface 

irregularities and can be eliminated by using smooth TeflonTM as the substrate 129 
. 

The consequence is that while the radius remains constant, either the drop shape 

ceases to be a spherical cap, the cap recedes to the centre leaving a foot or the 

contact angle decreases. In some cases, a series of concentric rings is formed as 

the droplet dries rather than one peripheral ring 130 
. 

Guo and Lewis (1999)131, characterized the microstructure of dried films 

prepared from aqueous Si02 suspensions stabilized by electrolyte (NH4CI). Non- 

uniformities developed in the spatial distribution of colloidal particles and 
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precipitated salt. Si02 films were cast onto (001) silicon substrates. The salt 

concentration decreased substantially from the film edge to its centre as evident 
in EDS analysis. Such features resulted from capillary-induced transport of free 

colloidal particles and dissolved salt species. 

Parisse & Allain (1997) 132 demonstrate that a 'foot' becomes fixed around the 

edge of the droplet where particles build up as drying proceeds. The remaining 
drop, treated as part of a spherical cap recedes into the centre and they calculate 
its shape based on the radial flow of liquid to the periphery resulting from the 
higher relative proportion of liquid-air interface there. For their experiments, the 
drops were of an aqueous silica colloidal sol containing 24 vol. % solids 
deposited on cleaned glass. Maenosono et al. (1999) reported 133 a system in 

which two types of particles, US and CdSe/CdS(core/shell) were suspended in 

pyridine and water respectively. A drop of suspension was placed on a solid 

substrate and the solvent was allowed to evaporate in a nitrogen atmosphere. A 

ring-shape multilayer formed at the drop periphery, with the ring width 
depending on the particle volume fraction. Such lateral transport of carrier liquid 

has been observed directly by magnetic resonance microscopy during the drying 

of emulsion paints 134 
. This process, modeled by Routh and Russel 135 shows how 

a front of closely packed particles advances from the drying edge as solvent 

recedes into the film. 

The full story of droplet drying and of the effects reported here, cannot be told 

until it is recognized that another factor is at play. The splendid observational 

work presented in a paper by Haw et al. 136 tells us that as the more densely 

packed particle assembly at the droplet periphery grows, vertical circulation 
flows are present in the undried central region of the droplet: "aggregates in the 

cap are seen to continuously circulate in the vertical plane" and so " we can 

expect macroscopic inhomogeneity in the final residue". Later, convection-like 

cells form in the horizontal plane. The packing of particles in the 'foot' does not 
become fully dense until the liquid-rich cap has dried. The radial flow of liquid 

continues to supply the foot to replace the liquid lost there by evaporation. Only 

when the cap disappears and no replacement is available does the foot become 

well-packed. Very recently (2005), the circulation flows have been analysed by 
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Hu and Larson 137 in terms of the Marangoni stresses that result from surface 
tension gradients in an evaporating droplet. 

Although the drying of drops of colloidal suspension is an important step in a 
diverse range of applications including protective coatings, DCIJP, etc. there has 

been relatively little effort directed towards the fundamental understanding of the 

shape and compositional changes that take place in the drying process. These 

matters are relevant to the properties of combinatorial libraries made by ink-jet 

printing and are explored in more detail in this thesis. 

1.10. Platinum coated substrates 

In combinatorial inkjet printing, combinatorial libraries are printed on platinum 

coated substrates. The platinum coating has two functions: (1) Due to its high 

melting point (1768.3 'C), the platinum layer serves as a barrier to prevent 

ceramic samples reacting with alumina substrates during firing. (2) Due to its 

low resistance, the platinum layer also serves as an electrode when measuring the 

electrical properties. 

For thin doped layers such as platinum coatings, resistivity is a strong function of 

thickness. In modem electrical engineering, it is often convenient to work with a 

parameter called the "Sheet resistance'A5 . 

Considering the resistance (R) of a rectangular block of uniform material (Figure 

1.21), the resistance is given by: 

pxL 
A 

(1.19) 

where p is the resistivity of the sample and L and A are its length and cross- 

section area. If W is the width of the sample and t is its thickness (i. e., 
A=Wxt), then the equation (1.19) can be written as 
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R=L )=Rs (L 
tww 

(1.20) 

Where Rs = -L is the sheet resistance of a layer of this material, strictly speaking, 
t 

the unit for sheet resistance is the ohm (since L/W is unitless). To avoid 

confusion between R and Rs, however, sheet resistance is specified in unit of 
"ohms per square. " indicating that a square of any side which has the same 

resistance. 

I 

w 

Figure 1.21 The figure used to describe the concept of sheet resistance. 
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Chapter 2 Experimental details 

2.1 Materials 

Table 2.1 describes the materials used in these experiments and lists their 

sources. The alumina is a fine milled submicron powder which is widely used in 

industry. The Ti02 is an anatase pigment used in paint formulations. The 

zirconia, selected for calibration using EDS is additive-free to avoid the 

confounding effects of dopant oxides. High purity barium titanate is 

crystallographically cubic and suitable for use in formulating X7R (reference 

page. 35) compositions. The dispersant is a solution of an ammonium salt of a 

polyacrylate widely used to stabilise oxides in aqueous media. 

2.2 Equipment 

The equipment used for these combinatorial experiments includes an aspirating- 
dispensing ink-jet printer, a furnace, an impedance analyzer and its accessories 

and a two-axis measurement table fitted with a hotplate. These are combined 

within a gantry robot and described in detail in what follows. Other equipment 

used in the experiments described in this chapter is listed in Table 2.2. 

2.2.1 The aspirating-dispensing inkjet printer 

The printer (ProSys 4510, Cartesian Ltd, Huntingdon, Cambridge) is based on 
SynQUAD Tm dispensing technology described in section 1.8.1. The specification 

of dispensing and aspirating abilities of the printer was described in Table 1.4. 

Figure 2.1 is a photograph of the printer. The printer head is fitted with eight 

nozzles each having an independent dispensing system. The nozzles can 

automatically visit a cleaning station for purging, external washing, ultrasonic 

cleaning and air drying. The printer head can move with I [tm resolution in x-y-z 
directions on a 425 mm x 540 mm table holding one hundred 76mm x 25mm 

ceramic substrates. The printer is controlled by AxSysTm software that is used to 

program complex tasks involving aspirating-dispensing of solutions to precise 
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locations. AxSys TM software runs in a Personal Computer (PC) (Pentium 3, 

Windows 95). 

Table 2.1 Materials and their sources 

Material Suppliers Grade Purity Density / Average 

kgm-3 particle 
diameter 

/YM 

A1203 Alcoa, A16-SG 99.8% 3987 0.5 

powder Ludwigshafen, 

Germany 

Ti02 Tioxide Europe SA, A-HR 99.0% 3850 0.15 

Powder Calais Cedex, France 

Zr02 PI-KEM LTD, Wern 99.5% 5750 0.9 

powder Shropshire, England 

BaTi03 TPL Inc, NE HPB 5700 0.05 

Powder Albuquerque, USA 1000 

Dispersant Allied Colloids Ltd, Dispex 46.54% 1300 

Bradford, England A40 in 

aqueous 

solution 

Distilled Made by the merit 1000 

water water still, W4000 

Bibby Sterilin Ltd, 

Staffordshire, UK 

Silver paste Johnson Matthey p1c, M4516 

Royston Herts, UK 
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Table 2.2 Ancillary equipment used in the experiments 

Equipment Mode / Supplier Application Specifications 

Name brand 

Analytical ADA Adam Equipment, Inc. Determination Resolution is 0.1 mg 
balance 102LE New Milford, USA of mass 

Ultrasonic U200S, IKA Works, Inc. Mixing and 20 kHz 

probe Control Staufen, Germany dissolution 

Oven Gallenkamp p1c, Drying Maximum 

Loughborough, UK temperature 300*C 

Sample vial Nalge Ltd, Ink containers Capacity: 75ml. 

Hereford, UK Polyethylene vials. 

Cylinder MBL Bibby Sterilin Ltd, Determination Capacity: 10ml, 

Staffordshire, UK of volume divided in 0.2 ml 

Test Tube PYREX Bibby Sterilin Ltd, Sedimentation Capacity: 10ml, 

Staffordshire, UK experiment divided in 0.2 ml 

Crucibles 
- 

Haldenwanger, Berlin, Loss on Maximum 

Germany ignition temperature: 1200*C 

experiment 

96-micro well - 
Nalge Nunc Ink containers 0.5ml / well. 

plate International Round-bottom 

Rochester, USA 

Pipette 
- 

Samco scientific Aspirate inks. 

corporation, San 

Fernando, U. S. A 

Press 
- 

Bradley & Turton, Compaction of 
Kidderminster, UK powder 

Calliper 
- 

Mitutoyo UK ltd, Measure the Resolution is 

Hampshire, UK geometry of 0.02mm 

ceramics 

Micrometer 
- 

RS Components Ltd, Measure the Resolution is 

Northants, UK geometry of 0.01mm 

ceramics 

The high FLHT RS Components Ltd, Wiring of Operating 

temperature Northants, UK equipment temperature -55'C to 

wire +200"C. Conductor 

diameter 1.5 mm. 
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Figure 2.1 ProSys 45 10 printer integrated with a large-scale combinatorial robot 

2.2.2 The furnace 

The furnace was manufactured by Elite Thermal Systems Ltd, Leicestershire, UK 

and is shown in Figure 2.2. The furnace has four chambers, individually heated 

and controlled. The maximum operating temperature of the furnace was 1600'C. 

The top hall' of the furnace can be raised into the vertical position to allow the 

robot to transfer samples into the furnace for densification and to relocate the 

samples after firing. 

Figure 2.2 The furnace used in the combinatorial experiments 
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2.2.3 The measurement table and hotplate 

The measurement table measures 500mm x 600mm and is precise to I ýtm subject 

to temperature fluctuation. A hotplate (Elmatic Ltd, Cardiff, UK) was mounted 

on the table and was independently controlled to a maximum of 250T and used 

to measure the temperature dependence of, for example, dielectric properties. 

2.2.4 The impedance analyzer and its accessories 

The Hewlett-Packard Model 4294A (HP4294) Impedance Analyser (Agilent 

Technologies UK Ltd, West Lothian, Scotland) was used to measure dielectric 

constants of the samples. The technique of permittivity measurement is based on 

the auto balancing bridge method described in section 1.4.4. The impedance 

analyser can measure dielectric properties of samples at one specified frequency 

or across a range of frequencies (i. e. any range between 40 Hz to I 10 MHz). Two 

types of probe were used in the experiments. One is the probe provided by 

Agilent, a model 16074A test fixture that covers a frequency range from DC to 

13MHz. The other is a user-designed robotic probe as described in section 2.7. 

2.2.5 The robot 

The printer, the furnace and the hotplate are all contained within a robotic gantry 

as shown in Figure 2.3. The robotic gripper can pick up each substrate from the 

printer table and move it from one stage to the next. The robot is manufactured 
by Labman Automation Limited, Stokesley, UK. The manufacturer provided 

source codes that can move the gripper to a specified x-y-z position with 100 Pm 

resolution and pick up or release a slide. The source code is implemented using 
Visual basic 6.0 programming language and running in a PC (Pentium 3, 

Windows 2000). 
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Figure 2.3 The printer, tile furnace and the measurement table arc all within a 

robotic gantry. 

2.3 Ceramic ink preparation 

Table 2.3 gives the compositions of all inks used in this thesis. The common 

procedure for creating ZrO-), A1203 and Ti02 inks was: after weighing using the 

analytical balance, powder, distilled water and Dispex A40 (Dispex A40 was 

only used in ZrO, and A1103 ink) were transferred to a 75ml polyethylene sample 

vial. The vial containing the mixture was subjected to ultrasonic disruption by 

the ultrasonic probe Pulsed at duty cycle 0.5 and 75% amplitude for Iks. 

A sample of 50 w1% BaTi03,15 wt% Dispex A40 and 35 wt% distilled water 

were weighed and transferred into the sample vial. The vial containing tile 

mixture was subýjected to ultrasonic disruption pulsed at duty cycle 0.5 and 75% 

amplitude for lks. The mixture was left for sedimentation for 5 minutes. The 

liquid mixture was transferred into a tube and the sediment left in the sample 

vial. The inks in the tube were used as BaTiO3 ink whose composition was 

worked out from Loss on Ignition experiments as described in section 2.5.2. The 

ink contains 53.88 wt% BaTi03,7.7 wt% Dispex and 38.42wt% distilled water. 
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Table 2.3 Master table of ceramic ink compositions. 

Ink Designed A1203 Ti02 Zr02 Dispex Distilled 
ID 

Composition Powder Powder Powder A40 water 

/ wt. % /Wt. % /Wt. % wt. % /Wt. % 

(Vol. %) (Vol. %) (Vol. %) 

A I OOwVYo Zr02 38.83 1.52 59.65 

(9.99) 

B 100wt% Ti02 29.93 70.07 

(9.99) 

c I 00wtO/o A1203 30.46 0.77 68.77 

(9-92) 

D A120350-ZrO2 50 17.07 17.07 1.1 64.76 

D' A120350-ZrO2 50 17.07 17.07 64.76+1.1 

E A120350-TiO2 50 15.1 15.1 0.38 69.42 

F Ti02 50-ZrO2 50 16.9 16.9 0.66 65.54 

F Ti02 50-ZrO2 50 16.9 16.9 - 65.54+0.6 

G A1203 25-TiO2 8.49 8.49 16.98 0.88 65.16 
25-ZrO250 

H A120350-ZrO2 50 17.07 - 17.07 10 55.86 

1 Ti0250- Zr02 50 - 16.9 16.9 10 56.2 

i A1203 25-TiO2 8.49 8.49 16.98 10 56.04 
25-ZrO250 

* Ink A, B and C are named as Zr02 ink, Ti02 ink and A1203ink respectively 

through the thesis. 
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2.4 Substrate preparation 

The printer was used to print combinatorial libraries on platinum-coated 99.8% 

a-alumina substrates (Advanced Ceramics Ltd, Stafford, UK). Two approaches 
to platinum coating were explored. 

(a) Evaporation of Platinum 

Alumina substrates were first cleaned by submersing in chromic acid 
(concentrated sulphuric plus Cr03) for 43.2ks in order to clean the surface of 

organic contamination. The cleaned substrates were transferred to a vacuum 

coating unit (Edwards High Vacuum Ltd, West Sussex, England). 100mm 

platinum wire with diameter 0.2mm (99.95% pure, Agar scientific, Essex, 

England) was mounted onto the tungsten filament. There was approximately 
100mm distance between the tungsten filament and alumina substrates. The 

wire was evaporated using a high DC current supply. The coating process 

was repeated twenty times to achieve sufficient thickness and conductance. 

(b) Coating with Platinum Ink 

Platinum ink (64021001, Ferro Corporation, Hanau, Germany) was painted 

on alumina substrates using a small brush. The painted substrates were dried 

in the oven at 60 'C for 0.9ks and then fired in the furnace for 2.4ks at 
1400'C. 

To study loss of platinum during firing, the platinum-coated substrates produced 
by both approaches were fired at 1600 ̀ C for 7.2ks. The sheet resistance of the 

platinum coating layer was measured using a multi-meter (Model: IDM63, ISO- 

TECH, Southport, England) illustrated as Figure 2.4. The wetting characteristics 

of platinum coated substrates were also studied by depositing BaTi03 inks using 

a pipette to examine whether inks can form a confined drop or spread. 
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Figure 2.4 The measurement of sheet resistance of the platinum coating. 

Aspirate & dispense 

specified voIumes of 
inks 

Ink-jet printing of 

composite inks 

Ink A Ink B Ink C 

Ifi If] ED. 

Source well plates 

Mix ink Substrate 
A+B+C 

Drying 
Target well 

plate 
I 

Intermittent 
ultrasonic Sintering 
dispersion 

Figure 2.5 The process of preparing ceramic mixtures using an aspirating- 
dispensing printer. 
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2.5 Compositional calibration of the ink-jet printer 

As reviewed in section 1.6, the conventional way of preparing ceramic mixtures 
involves: calculation and weighing of powders; milling (dry or wet); drying if 

using wet milling; calcining; milling; shape forming and finally densification. A 

new approach, creating ceramic compositions using an aspirating-dispensing 

printer, was developed and explored in this research. Basically, the printer can 
transfer specified volumes of several ceramic inks into a well to build a target 

composite ink as illustrated in Figure. 2.5. The motivation behind this new 

approach is not only to fulfil the automation requirement of combinatorial 

methods but also to explore a more efficient and possibly better way of 

assembling ceramic mixtures and forming functional gradients. 

The following example describes the procedure for creating ceramic mixtures 

using the aspirating-dispensing printer. Suppose the aim is to create a ceramic 

composition consisting of 50 Nyt. % A1203 and 50 wt. % Ti02: 

Stepl: Ink preparation. Prepare 10 vol. % water-based A1203 and 10 vol. % 

water-based Ti02 ceramic inks. 

Step2: Calculation of transfer volumes. Equations 2.1 and 2.2 give the 

general formulae for calculation of transfer volumes, 

V +V =V ab total (2.1) 

V, x AVOIA x P,, a-x 100% = Awt. %, (2.2) 
V,, x Avol. % x p. + Vbx Bvol. % xA 

Where V. and Vb are the volumes of transferred inks A and B, respectively; 
Vtýtaj is the volume of the composite ink; A vol. % and B vol. % are the 

volume percentage of ceramic powders in inks A and B, respectively; p. and 

A are the densities of powders A and B, respectively; A wt. % is the weight 

percentage of A in the ceramic composition. Suppose the aim is to make 
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0.3ml composite ink. The density of A1203 powder is 3987 k gM, 3 
. 

The 

density of Ti02 powder is 3850 k gM, 3 
. 

Thus the equation 2.1 and 2.2 

becomes, 

VAI, 
O, 

+ VTIO, 
= 0.3ml, (2.3) 

VA1203 

xIOvol. %x3987kgm -3 

-x 
100% 

= 5owt. % 
xIOvol. %x3987kgm -3 + VTO, 

xlOvol. %x3850kgm -3 
A1203 

(2.4) 

From equations 2.3 and 2.4, the transfer volume of A1203 ink is 0.1474ml; the 

transfer volume of Ti02 ink is 0.1 526ml. 

Step 3: Programming the printer to mix inks. The pseudocode code is, 

Start. 

Loop 10 times. 

Aspirate 16pl TiO2 inkfrom source wellplate. 

Loop 152 times /* Dispense 0.01 52ml TiO2 ink 

Dispense 0.1 pl TiO2 ink into a well on the mix well plate. 

Clean the nozzle and channel. 

Aspirate 16ul A1203 inkfrom the source well plate. 

Loop 147 times/* Dispense 0.0147ml TY02 ink V. 

Dispense 0.1 pl A1203 ink into the well of mix well plate. 

Clean the nozzle and channel. 

} 
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Aspirate 2 pl TiO2 inkftom source well plate. 

Loop 6 times /* Dispense 0.0006ml TiO2 ink 

Dispense 0.1 pl P02 ink into the well of mix wellplate. 

Clean the nozzle and channel. 

Aspirate 2 pl A 1203 inkfrom the source well plate. 

Loop 4 times/* Dispense 0.0004ml A1203 ink 

Dispense 0.1 pl A 1203 ink into the well of mix well plate. 

Clean the nozzle and channel. 

Aspirate specified volume of mixed inkftom the mix well plate. 
Print the composite ink on the target substrates in requiredpattern. 
Clean the nozzle and channel. 
Finish. 

A volume of 0.1 pI was set as the base dispensing unit in order to control the 

dispensing error since the accuracy of printer dispensing varies with 

dispensing volume as described in Table 1.4. Using a ten times loop to 

complete transfer 0.152ml (0.0152 mlxlO) Ti02 ink and 0.147 ml 

(0.0147mlxlO) A1203 ink rather than completing transfer at one time is 

intended to mix inks on small volume basis achieving homogeneous mixed 

ink with the help of ultrasonic disruption (as shown in Figure 2.5). To 

maintain the consistency of printer programs, transfer of ink is always done 

as two steps: (1) a ten times loop completes the main part of the transfer inks, 

(2) and then remaining part is transferred (e. g. 0.0006ml Ti02 ink and 

0.0004ml A1203 ink). 

Step 4 Run the printer program. 
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Step 5 Dry printed samples on the substrates. 

Step 6 Fire the printed samples. 

The success of building composites using ProSys 4510 printer relies on: (1) 

Stable and homogenous ceramic inks that provided the correct base for step 2 

calculation; (2) Dispensing technology that allows transfer of nanolitre volumes; 
(3) Achievement of homogenous liquid mixtures in the well plate though mixing 

processes by the printer and ultrasonic disruption. The dried ceramic mixtures 

after ink-jet deposition from the printer mixed composite inks should have 

uniform distribution of powder as the planned composition. 

By building four compositions in the A1203-TiO2-ZrO2 system illustrated in 

Figure 2.6 as examples, a group of experiments was conducted to examine the 

accuracy of mixing ink compositions using the printer (Table 2.4). The 

remaining part of this section gives the details of these experiments. 

Zr02 

50wt% Zr02 
50wt% Zr02 25wt%AI20 50wt% Zr02 
50wt%AI203 Ah 50wto/o Ti02 

A1203 

50wt% Ti02 
50wtl/oA1203 

Ti02 

Figure 2.6 Four compositions in the A1203-TiO2-ZrO2 system used in 

compositional calibration of the ink-jet printer 
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Table 2.4 Summary of a group of experiments to examine the performance of 

preparing compositions using the ProSys 45 10 printer. 

Name Description Objective 

Sedimentation Study the sedimentation To ensure these inks can be stable 
behaviour of A1203, Zr02 and for sufficient time for use in later 
Ti02 ceramic inks. experiments. 

Loss on ignition Loss on ignition of water- To confirm the mixing of powder 
based A1203, Zr02 and Ti02 and vehicles, so that the weight of 

ceramic inks. powder can be calculated from 

volume of ink. 

Evaporation Study the evaporative loss of To examine how evaporative 

water-based Zr02 ink in the losses change the weight 

well plate as a function of percentage of ceramic in water- 

time. based ink in the well plate as a 
function of time 

Loss on ignition The printer transferred To examine whether the printer 

of transferred specified volumes of different can bring the supposed amount of 
inks. inks into different crucibles, each powder into a composite ink. 

loss of ignition of these 

transferred inks was 

conducted. 

Suspension 

stability in the 

well plate 

Build four ink mixtures in the To examine whether there are 
A1203-TiO2-ZrO2 system using sediments in the mixed well plate 
the printer. Observe these 

mixed inks for sedimentation 
behaviour. 

after building composite inks, 

perhaps due to interaction of 

particles or dispersants. 

Analysis of the Examine two types of four To examine whether printed 

printed ceramic composites in A1203-TiO2- composites are what the user 

samples Zr02 system using EDX wanted to produce, compare the 

protocol. First type was results with other mixing routes. 

manually-prepared 

composites. Second were 

printer-built composites. 
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2.5.1 Sedimentation Testing 

The objective was to study the sedimentation behaviour of A1203, Zr02 and Ti02 

inks as a function of time to ensure these inks were stable for sufficient time for 

use in printing experiments. Three 10ml samples A1203, Zr02 and Ti02 inks were 

transferred to Pyrex test tubes. The test tubes were stoppered, sealed and the inks 

were left undisturbed to settle through the period of study. The sedimentation 
behaviour of inks was recorded as a function of time. Further, sedimentation tests 

were conducted by gently aspirating inks from well plates as described below. 

2.5.2 Loss on ignition 

The aim was to confirm that water-based ceramic inks were homogenous 

mixtures so that the weight of the suspended powder can be calculated from the 

volume of ink. Three 30g Zr02 ceramic ink samples were created. Five 2ml 

samples of Zr02 ink were placed in a weighed crucible and then weighed on the 

analytical balance. The volumes of inks were measured by the 10ml cylinders. 
The crucibles holding samples were transferred to the oven at 60 *C for two 
hours. After drying, the crucibles were weighed and put into the furnace at 700 

OC for five minutes to remove dispersant. Upon ashing, the crucibles were 

weighed again. The weight percentage residues of five samples of ink were 

calculated. The same procedure of loss on ignition was carried for A1203 and 
Ti02 inks as well. 

2.5.3 Evaporation 

The objective was to study how evaporative loss changes the weight percentage 

of water-based ink in the well plate as a function of time. log Zr02 ink was 

created. One well of the 96 well micro plate was filled with Zr02 ink and then 

weighed on the analytical balance. A paper cover was put on the well plate after 
filling inks. The cover was hand-made from silicone release paper as illustrated 

in Figure 2.7. There is a 2min diameter circular opening in the cover that allows 
the printer nozzles to penetrate it. The well plate with the cover was previously 

weighed so that the weight of transferred ink can be calculated. The room 
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temperature was 26*C. The evaporative loss of inks from the well plate was 

recorded as a function of time. 

20mm 3x d=2mm 

------------ ------------- 
9mm 

50mm 

9mm 

------------ -------- -- 
lomm 

IF 
40mm 

oil 

Figure 2.7 A paper cover of the 96-well micro plate 

2.5.4 Loss on ignition of transferred inks 

The specifications of the printer (Table 1.4) state there is finite accuracy of the 

printer transfer volumes. This experiment was intended to examine the overall 

performance of the printer used in ceramic applications by examining whether 

the printer can transfer a specified amount of powder that is dispersed in the ink 

into the target well plate. In section 2.5.6, the four compositions in the A1203- 

Ti02-ZrO2 system that were ink jetted from the mixed inks by the printer were 

subjected to Energy-dispersive X-ray spectrophotometry (EDS) analysis. Here, 

the question is whether their corresponding mixed inks (if there are no 

sediments) contained the correct amounts of each powder. 

Three lOg stocks of A1203, Zr02 and Ti02 ink were created. Table 2.5 gives the 

calculated transfer volumes of inks for each composition. Based on calculations 
described in section 2.5, for all the four compositions, the volume of the 

composite ink is 0.45ml. Appendix I gives the pseudocode used in the 

experiments, in which the printer transferred the calculated volumes of inks from 

the source well plate into crucibles. After running the printer programs, the 
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transferred inks in crucibles were subjected to loss on ignition following the 

procedure of section 2.5.2. Thus the weights of transferred powders were 

obtained and compared to the planned values in table 2.5. Each program was run 

three times to build an assessment of confidence limits. 

Table 2.5 The programmed transfer volumes of inks for four compositions in the 

A1203-TiO2-ZrO2 system to build 0.45mL composite inks. 

§ The programmed The programmed The programmed 
Composition transfer volumes of transfer volumes of transfer volumes of 

Zr02 ink A1203 ink Ti02 ink 

(The weight of Zr02 (The weight of A1203 (The weight of Ti02 

powder in inks) powder in inks) powder in inks) 

50wt% Zr02 0.1835mL 0.2665ml, 

50wt%A1203 (0.1 054g) (0.1054g) 

50wt% Ti02 0.2219mL 0.2281mL 

50wt%A1203 (0.0878g) (0.0877g) 

50wt% Zr02 0.1805mL 0.2695mL 

50wt% Tio2 (0.1037g) (0.1037g) 

25wt% Ti02 0.1 82mL 0.1323mL 0.1357mL 

50wt% Zr02 (0.1045g) (0.0523g) (0.0522g) 

25wt%AI203 

§ In this table, the error in weight percentages of compositions caused by rounding the 

limitation of weighing accuracy to match the calculation was below 0.1%. 

The weight of Zr02 powder in ink = volume of ink x 9.99vol% x 5750kgm-3 

The weight of A1203 powder in ink = volume of ink x 9.92vol% x 3987 k gM, 3 

The weight of TiO2 powder in ink = volume of ink x 9.99vol% x3 850 kgM "3 

(The volume percentage of ceramic powders in each ink is from Table 2.3. the density of 

each powder is from Table 2.1) 

2.5.5 Observation of composite inks 

This section examines whether there are sediments in the mixed well plate after 
building composite inks, perhaps due to interaction of particles or dispersants. 

Three 10g stocks of A1203, Zr02 and Ti02 ink were created. Table 2.5 gives the 
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calculated transfer volumes of inks for each composition. Appendix I gives the 

pseudocode used in the experiments, in which the printer reformatted the well 

plate to build composites inks. After running printer programs, the mixed inks in 

the well were gently aspirated using the pipette. The well was inspected for 

residues. 

2.5.6 EDS Protocol 

The aim of the EDS scans was to examine the dried ceramic mixtures after ink- 

jet deposition from the printer-mixed composite inks. These should be 

homogenous mixtures having the planned compositions. These results were 

subsequently compared with the results for manually mixed and deposited 

ceramic mixtures. This work uses the four compositions in the A1203-TiO2- 

Zr02 system (Figure 2.6) as calibration cases. 

The printer-built ceramic mixtures 

Three I Og stocks of A1203, Zr02 and Ti02 ink were created. Table 2.5 gives the 

calculated transfer volumes of inks for each composition. The part of the 

pseudocode for building composite ink samples is the same as the pseudocode 

used in section 2.5.5. After building composite inks, the printer aspirated them 

and dispensed 5plinks onto the silicone release paper (Sterling Coated 

Materials, Cheshire UK) to form an ink-jet printed sample. After printing, the 

samples were left in air for 3.6ks and taken from the silicone release paper for 

EDS protocol without firing. 

The manually prepared ceramic mixtures 

Table 2.3 (ink D, E, F and G) give compositions of ceramic liquid mixture for the 

four compositions. These inks were prepared to give the same compositions as 

those produced by mixing the single component inks (i. e. Ink A, B and Q in 

Table 2.3. It was intended to compare EDS results of two types of ceramic 

mixture (i. e., the printer-built and the manually prepared) in the same base 
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because different amounts of Dispex A40 and distilled water may have different 

effects to the drying process of the composites. 

After weighing, powders were mixed with half the amount of water first in a 

75ml polyethylene sample vial and then dispersant was mixed with the other half 

of water and then added. The vial containing the mixture was subjected to 

ultrasonic disruption by the ultrasonic probe pulsed at cycle 0.5 and 75% 

amplitude for Iks. For each composition, lOg ceramic liquid mixture was 

prepared. After ultrasonic mixing, the mixtures were deposited on the silicone 

release paper using a fine copper wire and left in air for 3.6ks. After drying, they 

were lifted from the silicone release paper and subjected to the EDS protocol, so 

that nominally identical printer-built and manually-prepared identical 

compositions could be directly compared. 

EDS Analysis 

Both the dried printer-built samples and the manually prepared samples had a 

bulk radius of - Imm. The top surfaces, the bottom surfaces and the cross- 

sections were analysed as illustrated in Figure 2.8. The samples were coated 

with carbon and studied using scanning electron microscopy (SEM; Model 6300, 

JEOL, Tokyo, Japan) equipped with an EDS system (Model eXL II, Oxford 

Instruments, Bucks, UK). Measurement was taken over an area approximately 

150 gm x 150 gm. for the surface and 50 grn x 50 gm for the cross section for a 

period of 100s. The conditions were 20kV acceleration voltage and 15mm 

working distance. The data were corrected using INCA software (Oxford 

Instruments). Cobalt was used as a standard for calibration of the analyzer. 

Viscosity and surface tension measurement of suspensions 

It is useful to know the viscosity and surface tension of ceramic suspensions 

when studying the EDS result of the ceramic mixtures. The viscosity and surface 

tensions of ink D, H, F and I (Table 2.3) were measured at 25 *C using a reverse 

flow U-Tube viscometer following BS 188: 1977 and the du Noily ring 

detachment method, respectively. The U-tube was previous calibrated using 
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standard viscosity calibration oil (Poulten Selfe & Lee Ltd, Essex, England). The 

ring method was calibrated using both distilled water and ethanol. 

EDS Position 

2345 

-2mm 
S- 

- lwt% dispersant 

-2mm 

10 wt% dispersant 

(a) Dried sample profiles 

Five points of EDS each 
covering - 150 x 150pm 

Five points (EDS) 
from top to bottom 
each covering 
-50x 50gm 

(b) Upper sample surface (c)The cross-section of the sample 

Five points of EDS each 
covering - 150 x 150gm 

(d) Lower sample surface 

Figure 2.8 EDS measurement were made along the top and bottom surfaces and 

through the cross-section of the samples. 

82 



2.6 Drying behaviour of droplets of mixed powder suspensions 

Members of the combinatorial library are formed from dried ceramic ink 

droplets. It is important to study drying behaviour of a sessile droplet of mixed 

powder suspensions because both compositional distribution and residue shape 

are established during drying. As discussed in section 1.9.3, the drying behaviour 

of a droplet deposited on a horizontal non-porous substrate is affected by (1) the 

wetting characteristics of the substrate (2) the temperature and atmospheric 

conditions, and (3) the properties of the droplet itself. 

All inks (table 2.3) were mixed manually by weighing and deposited manually 
from a wire knib at room temperature and and ambient air conditions (3 1%R. H). 

Each drop was approximately 5til. The substrate was silicone release paper 
having a surface free energy of 20 mNm". The drying was observed by optical 

microscopy and classified. Several examples of drying were imaged as a function 

of time by a video camera (model 4540, Eastman Kodak Co., San Diego, USA). 

The contact angle 0, contact diameter D, and height of droplets H, were 

computed from the images as illustrated in Figure 2.9. 

The mass loss from droplets was measured at 20 'C and 31 % RH on the 

analytical balance. The initial masses of droplets were controlled as I lmg, being 

approximately 8gl. The mass change was recorded at every 180s over a period of 

3.6 ks. The mass loss experiments were performed on both The Zr02- A1203 

system (Inks D, D'and H) and the Ti02-ZrO2 system (Ink F, F and I). 
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Figure 2.9 Schematic representation of a sessile drop of ceramic suspension 

2.7 Calibration of dielectric measurement in the combinatorial method 

The combinatorial method reported in this thesis was used to measure relative 

permittivity of ceramics as a function of temperature or frequency. Figure 2.10 

illustrates the procedure. The ink-jet printer printed combinatorial libraries on 

platinum-coated alumina substrates. After firing, the substrates were robotically 

placed on a hotplate. Each sample was then stamped by one copper electrode 

which had been inked with the silver paste. The libraries were then returned to 

the furnace for a second firing at 800'C for 20 min. After firing; the substrates 

were relocated on the hotplate. The robotic dielectric probe visited each sample 
in the libraries and the computer collected experimental data from a HP4294 

impendence analyzer, which processed these data, calculated relative permittivity 
from capacitance and stored information in the database. Table 2.6 lists a group 

of experiments that were used to calibrate the combinatorial dielectric 

measurement. In all experiments, relative permittivity k' was calculated from the 
formula 1.13 in section 1.4.4. 
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HP4294 Experimental Central 
Impendence 

Data Computer 

analyzer I> 

Cables 
Robotic Temperature 
dielectric 

Two spring probe 
........... .......... 

load copper EUROTHERM 
electrodes. 2208e temperaturel 

controller 

Silver cciati g Ill Ink-jet printed Platinum Thermo 
sample 

1-11 
coating 

-couple 

Alumina slide 
Hotplate 

X-Y table 

Figure 2.10 The experimental arrangement for combinatorial dielectric 

measurement. 
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Table 2.6 A group of experiments to calibrate the combinatorial dielectric 

measurement method. 

4 Name Description Objective 

Calibration of Calibrate the HP4294 To demonstrate the impedance 

HP4294 impedance analyser using analyser can give accurate 
impedance standard capacitors. readings of capacitance. 

analyzer 

Dielectric Measure relative permittivity of To demonstrate the impedance 

properties of ceramic (i. e. BaTi03) as a analyser providing accurate 
BaTi03 function of temperature or results for a well-known 

frequency using HP4294 dielectric and provide 
impedance analyzer. references for later 

experiments. 

Dielectric Measure relative permittivity of To study dielectric properties 

properties of ink-jet thick film ceramic (i. e., of direct ink-jet thick film 

ink-jet printed BaTi03) as a function of ceramics, compare the results 

ceramics temperature or frequency. with ceramics that were 

produced in conventional 

ways. 

Calibration of Apply the combinatorial. method To calibrate the dielectric 

Robotic to study dielectric properties of measurement of the 

dielectric ink-jct thick film ceramic (i. e., combinatorial method. 

probe BaTiOA. 

4 Each experiment described in the table was repeated at least three times to check 

reproducibility. 
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2.7.1 Calibration of the lIP4294 impedance analyser 

Standard capacitors (Table 2.7) were measured using the HP4294 impedance 

analyser with the 16074A test fixture (reference page 67) at lkHz and room 

temperature. All these capacitors were purchased from RS components, Derby, 

UK. The capacitance values of capacitors were selected to be in the same range 

of dielectric measurement as that used in later experiments. These capacitors also 

were applied to calibrate the measurement cell described below when extensions 
between the test fixture and the sample were implemented. 

Table 2.7 The description of capacitors used to calibrate HP4294 impedance 
analyser 

No Type Capacitance Tolerance 

I Ceramic - Surface Mount IpF ±5% 

2 Ceramic - Surface Mount 4.7pF ±5% 

3 Miniature plate ceramic 56pF : L2% 

4 Polypropylene-Radial O. OlgF 1% 

5 Polypropylene-Radial 0.022gF 1% 

6 Polypropylene-Radial 0.033gF 1% 

2.7.2 Dielectric properties of compacted and sintered samples from BaTi03 

powder 

Validity of the impedance analysis procedure was assessed by preparing 

conventional pressed and sintered discs of materials for which there are sound 

published measurements. A sample of 5g BaTi03 powder was weighed and 

pressed at 350 MPa into a pellet. The pressed pellet was sintered at 14000C for 

7.2ks in air and then abraded to give flat parallel sides. Sintered density was 

measured by Archimedes method. The geometry of the abraded plate was 

measured using the vernier calliper. The abraded plate was metalised using 

silver paste to form a parallel plate capacitor. Both temperature dependency (i. e., 
from room temperature to 180 IC at I kHz) and frequency dependency (i. e., from 
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100 Hz to I MHz at room temperature) of capacitance were measured by the 
HP4294 Impedance Analyzer. The measurement arrangement was illustrated in 

Figure 2.11. A SEM picture of the BaTi03 prepared by the same procedure was 
taken to study the microstructure. Formula 1.13 is used to calculate the dielectric 

constant of the sample from its capacitance. The procedure for metalising was: 
the two parallel surfaces of the samples were painted with silver paste, dried in 

the oven at 75'C for 1.8ks then fired at furnace at 800'C for 30s in air. 

K-type foil 
Thermocouple 

Furnace 

Dielectric 

Ag electrodes 

Two 300mm high 

temperature wires 
(reference Table 2.2) 

connecting the 
impedance analyzer 

with the 16074A test 

fixture 

Figure 2.11 The experimental arrangement for measuring dielectric properties of 

pellets compacted and sintered from BaTi03 powder. 

2.7.3 Dielectric properties of ink-jet printed BaTi03 samples 

Stocks of I Og of BaTi03 ink were created and then filled into the well plate. The 

printer aspirated from the well plate and dispensed 150 [d inks on a rectangular 

recess that was made with the silicon release paper. The inks were dried in air for 

3.6ks. After drying, the sample of BaTi03 was fired at 1400'C for 7.6ks in air. 
The measurement procedures for geometry and dielectric properties were the 

same as described in Section 2.7.2. The measurement of dielectric properties was 

arranged as illustrated in Figure 2.12. SEM images of the fired ink-jet printed 

ceramic were taken. 
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Dielectric 

Thermocouple Ag electrodes 
adjacent to 
sample 

Two I 50mm high 

An alumina 
temperature wires 

insulator (reference Table 2.2) 

connecting the 

Platinum coated impedance analyzer 
Alumina slides with the 16074A test 

A 

fixture 

I Hotplate 

Figure 2.12 The experimental arrangement for measuring dielectric properties of 
inkjet printed ceramic. 

2.7.4 Calibration of combinatorial dielectric measurement 

The source well plate was charged with BaTi03 ink. The operator instructed the 

system to start a sequence automatically as follows: 

Step 1. Ink-jet printing samples - the printer aspirated and dispensed 8.5 pL 
BaTi03 drops onto the platinum coated alumina substrate. Figure 2.13 is a 

photograph of the printer depositing samples on the substrate. 

Step 2. Firing - after finishing the printer program, the robot transferred the 

substrate from the printer to the furnace, where the sample was fired at 
1400'C for 7.2ks in air. Figure 2.14 is a photograph of the robot picking up 
the substrate from the printer to transfer it to the furnace (The robotic gripper 

can be seen top centre). 
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Step 3. Metalising - After completing the sintering program, the robot 

repositioned the substrate to the x-y table, where the probe deposited silver 

paste on the sample by stamping. The robot then took the substrate back to 

the furnace, where the samples were fired at 800'C for 5 minutes. 

Step 4. Screening - After step 3, the robot replaced the substrate on the x-y 

table. The robotic dielectric probe touched the sample as pictured in Figure 

2.15. The frequency dependence of capacitance from 100 Hz; to I MHz at 

room temperature was measured by the HP4294 Impedance Analyzer. The 

hotplate then raised the temperature. The temperature dependence of 

capacitance was then measured by the Impedance Analyzer from room 

temperature to 180 'C at I kHz. The impedance analyser transferred data to 

the central control computer. 

Step 5. Data processing- The measured data were then available to be 

processed as a user might require. The data were converted to database data 

structure and stored in the database. 

The Pt-coated substrates used in the experiment were produced using the 

platinum ink approach as described in 2.4. Another layer of the platinum ink was 

then painted on the platinum coated alumina substrates and dried in the oven at 

60'C for 15 min but not fired. The BaTi03 inks were printed on this dried 

platinum ink. The reasons for using this procedure are described in section 3.2. 

A temperature calibration map of the hotplate was prepared as follows. Each 

location of the substrate on the hotplate was recorded by the robot computer. A 

foil thermocouple was placed on the substrates. Both the hotplate's temperature 

and the substrate's temperature were recorded simultaneously in advance at each 

position. These data were stored in a database. When measuring the temperature 

dependencies of dielectric properties, the temperature of the sample can be 

automatically converted from the hotplate temperature by the computer. In the 

above step 4 "Screening", after the robot measured the frequency dependence of 

capacitance, a thermocouple was manually placed adjacent to the sample; the 
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tempuature dependence of capacitance of the sample was then recorded 

nianually. 'I'lie implementation of automation is described in section 3.9. 

Figure -1.16 describes how the values of thickness D and area of the electrode of 

the capacitor, A, as used in formula 1.13 were determined. The sample diameter 

was kept above 21nin to allow the electroded region to approximate to a parallel 

plate coil fi g uration. The thickness of tired samples, D, was measured by the 

micrometer. 

Figure 2.13 Ink-jet printing BaTi03 on the platinurn -coated alumina substrate 
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The robotic 
gripper 

W, v 

Figure 2.14'1'lie robot can pick up and place substrates from any position inside 

the robot gantry. 

Sample 

Figure 2.15 I'lic dielectric probe contacts the sample and measures data. 
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Copper electrode 

used to stamp the 

sliver paste on the 

sample 

II 
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2 k' txc 
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Silver electrode 

Ceramic sample 

Platinum coating 

I 
Alumina substrate 99.7% 

Figure 2.16 The peornetry of fired ink 
'jet 

ceramic on the platinum -coated L, 
substrates. 

2.7.5 Study of combinatorial dielectric measurement 

The CoInhinatorial dielectric measurement was studied further. BaTIO3 powder 

was mixed with distilled water and dispersant and subjected to dispersion using 

ultraSOUnd under the ultrasonic probe pulsed at cycle 0.5 and 75% amplitude for 

300s. The ink composition contained 44.9 wt. % BaTi03,13.3 wt. % dispersant 

and 41.8 wt. 'NO but to get different sample thickness from a single drop, the 

composition was varied. Droplets of suspension were placed on dried platinum 

inks painted on the alumina substrates using pipettes. After drying in an-, 

samples were fired at 1400 OC in air for 7.2ks. The thickness of fired samples was 

recorded using the micrometer. The upper surfaces of samples were stamped 

with silver paste using polished steel rods with different diameters. They were 
fired at 800 'C Ilor 300s. The area of the upper electrode was computed with a 

microscope (Model: BX60F, Olympus Ltd, Japan). The microscope is equipped 

with software used to measure a flat geornetry, Irriage-Pro Process, which was 

previously calibrated using a stage micrometer (Graticules Ltd, Kent, England, 

100 x 0.0 1 --1 inni). The room temperature capacitance at I kHz was measured 

, ývith the impedance analyser. 
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2.8 The combinatorial study for A1203-TiO2-ZrO2 system 

The developed and calibrated combinatorial robot was used first to study the 

A1203-TiO2-ZrO2 system. Figure 2.17 gives the numbered composition map of 

the A1203-TiO2-ZrO2 system. There are a total of 45 samples by intervals of 1/8 

on each composition axis. The number of 45 samples is calculated from the 

formula 

(n + 1)(n + 2) 
2 

(2.5) 

where N is number of compositions and n is number of intervals on each side of 
the ternary, by using 1/8 interval, n=8. The numbered compositions are mapped 
to the 96-well plate as described in Figure 2.18 so that each well was assigned for 

one mixed ink with a planned composition. For example, well A-2 holds mixed 
ink with planned composition number 2, whose composition can be found in 

Figure 2.17, as 87.5 wt. % Ti02 (weight fraction 7/8) and 12.5 wt. % Zr02 (weight 

fraction 1/8). 

Ti02 

ZrO2 A1203 

Figure 2.17 A numbered composition map of the A1203-TiO2-ZrO2 system. 
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Figure 2.18 Mapping the compositional array of the A1203-TiO2-ZrO2 system to 

a 96 well-plate. 

The pseudocode of the printer program for creating this library is given as 
follows: 

Start 

Set rows of wellplate =X, columns of wellplate =Y, dispense volume =V, control 

variables =Z and W. Planned mass of ceramic mixture = M. 

W =118 x the volume of T102 ink containing Mgram powder, Z=8, V= W; 

while (Z: 5 2) 
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I 
X= Z Y=l; 

For ü=O, i< Z, i++) 

Aspirating P02 inkftom source wellplate 
Dispensing V to the X, Y ofwell plate 
X--, Y+ +; 

Z--, v= V+W; 
) 

W=118x the volume ofZrO2 ink containing Mgrampowder, Z=8, V=WX=2; 

while (X: 58) 

Y=I. 

For (1=0; i< Z i++) 

Aspirating ZrO2 inkfrom source well plate 
Dispensing V to the X, Y ofwell plate 
Y++; 

X++, Z--, V= V+W; 
) 

W =118 x the volume ofAI203 ink containing Mgram powder, Z=8, V= W, Y=2; 

while (Y: 5 8) 

X=I. 

For (1=0; 1< Z ! ++) 

Aspirating A1203 inkfrom source well plate 
Dispensing V to the X, Y ofwellplate 
X+ +; 
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Y+ +, Z--, v= V+W, - 

) 

End 

In the above, the planned mass of ceramic mixture 'M' is set as 0.2g in this 

experiment. 
The volume of transferred Ti02 ink = (M 3850 kgm-3) 9.99VOI% 

The volume of transferred Zr02 ink = (M 5750 kgm-3) 9.99VOI% 

The volume of transferred A1203 ink = (N1 3987 kgm'3) 9.92vol% 

The volume percentage of ceramic powder in each ink is taken from Table 2.3. 

The density of each powder is taken from Table 2.1 

The basic idea of the pseudocode to create this library is as follows. As shown in 

Figure 2.17, assuming unit mass of ceramic mixture, for the Ti02 end, numbers 2 

and 3 contain 7/8 Ti02, numbers 4,5, and 6 contain 6/8 Ti02, numbers 7,8,9,10 

contain 5/8 TiO2, and so on until number 29-36 containing 1/8 TiO2. For the 

Zr02 end, numbers 29 and 38 contain 7/8 Zr02, number 22,30 and 39 contain 

6/8 Zr02, and so on until numbers 2,5,9,14,20,27,35 and 44 which contain 

1/8 Zr02. For the A1203 end, numbers 44 and 36 containing 7/8 A1203, and so on 

until numbers 3,5,8,12,17,23,30 and 38 which contain 1/8 A1203. By using 

the pseducode, the printer transfers the specified mass of each powder into the 

target well (Figure 2.18) to get the planned mixtures. 

In section 2.5, one essential step of the printer in creating ceramic mixtures is to 

work out the transfer volumes of each component inks for each ceramic mixture 

using equations [2.1] and [2.2]. By using the above pseducode, a ternary system 

can be easily implemented without working out transferred volumes of each 

component ink for each mixture. Here, the 1/8 interval is implemented, but there 
is no reason why 1/10,1/16 or any other interval cannot be implemented by 

mapping the composition array to one well plate or several well plates. 

After building composite inks in the target well plate, the printer aspirated 

composite inks from each well and dispensed 15ýd inks onto the porous cellulose 
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nitrate membranes (Whatmen ple, England), after 900s, the dried samples were 

removed from membranes and fired at 1450 *C for 2h in the furnace. After firing, 

the geometry of flat disc shape samples was measured using vernier callipers. 
Both surfaces of samples were metallized using silver paste as described in 

section 2.7.2. The capacitances of samples were measured using HP4294 

Impedance analysis at 25*C and IkHz. Formula 1.13 was used to calculate the 

dielectric constant of sample from its capacitance. 
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Chapter 3 Results and Discussion 

3.1 Characterisation of materials 

Figures 3.1,3.2 and 3.3 are SEM pictures of the individual Ti02, A1203 and Zr02 

powders. These images were obtained from the deposition of single component 
inks. Clearly, the Ti02 powder is the finest with ultimate particles in the region 
I OOmn- 200nm. The alumina particles are in the region 0.1 -I gm. The zirconia 
is a wide size distribution powder but the loose packing is evidence of 

considerable agglomeration. The ultimate particles are 0.3-2 gni in diameter. 

The particle size distributions of powders were measured using Sedigraph (5100, 

Micromeritics Instrument corporation, Norcross, USA) which detects particles in 

the range of 100nin to 300 Itin. Three lOg batches of A1203, Zr02 and Ti02 inks 

were made. Each ink was diluted using 50mL distilled water to reduce the 

concentration of powder to fit the requirement of the Sedigraph. Table 3.1 

describes particle size distributions for the three powders. The specific surface 

area of powders are Zr02 (15.2 M2/g) , A1203 (9.3 M2 /g) and Ti02 (8.8 M2/g) 

measured by nitrogen absorption BET method. 
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Figure 3.1 SEM picture of Ti02 powder prepared from single component Ti02 

ink. 

Figure 3.2 SEM picture of A1203 powder prepared from single component AI, 03 

ink. 
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Figure 3.3 SIN picture of ZrO, powder prepared from single component Zro, 
ink. 

Table 3.1 Particle size distributions for the three powders 

Low Diameter Cumulative mass coarser ('Vo) 

(pill) A1103 TK) 

3.7 

0.7 47.0 20.6 2.7 

0.4 63.8 45.0 23.9 

0.3 70.1 60.4 46.5 

0.2 76.9 77.7 73.3 

(). 1 85.5 91 ') 92.4 



3.2 Substrate preparation 

The sheet resistance of platinum coated substrates using the platinum wire 

approach was 8 ohm per square after 20 repeated coatings using the vacuum 

coating unit. After firing at 1600*C for 2 hours, Platinum coatings were all 

evaporated and beyond the range of resistance the multi-meter can detect. 

Therefore this approach was abandoned. 

The sheet resistance of platinum coated substrates using the platinum ink 

approach was 0.3 ohm per square before and after firing. The problem with the 
fired platinum paste was that when water-based inks (e. g., BaTi03 inks) were 
deposited on it, the droplets spread giving a thin coating, thus losing the spatial 

specification. To overcome this problem, a second layer of platinum ink was 

painted on the fired platinum-coated substrates but not fired. Water-based inks 

such as BaTi03 then formed non-spreading drops on the dried platinum ink. This 

approach was adopted for use in the combinatorial method. Figure 3.4 and figure 

3.5 give SEM pictures of 99.8% cc-alumina substrates and platinum coating on 

the cc-alumina substrate using the platinum ink approach, respectively. 
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4 

Figure 3.4 SEM picture of a 99.8% a-alumina substrate. 

Figure 3.5 SEM pictures of platinum coated on the 99.8% cc-alumina substrates 

using the platinum ink approach. 

r 
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3.3 Compositional calibration of the ink-jet printer 

3.3.1 Sedimentation 

Table 3.2 describes the sedimentation behaviour of A1203, Zr02 and Ti02 inks as 

a function of time. These results show that A1203, Zr02 and Ti02 inks were 

stable at least for 7.2ks after preparation. These inks were used in the 

experiments on compositional calibration of the printer. Because no printer 

programs run for more than 7.2ks (i. e., 2 hours) and the well plate holding these 
inks is subject to intermittent ultrasonic dispersion, these inks have adequate 

stability during the running of a printing program. 

Table 3.2 Sedimentation behaviour of water-based ceramic inks 

Time t-- 7.2 t= 14.4 t= 43.2 t= 86.4 
As 

Ti02 Stable Stable Top cloudy Top cloudy 
liquid; liquid; 

Ink Homogenous Homogenous 
mixture below. mixture below. 
No sediment. Sediment was 

found. 

Zr02 Stable Homogenous Top cloudy Appeared same 
mixture above. liquid; as t=43.2ks 

Ink Sediments was Homogenous 
thrown. mixture below. 

Sediment was 
thrown. 

A1203 Stable Cloudy liquid Appeared same as Appeared same 
above t-- 14.4 ks as t=43.2 ks 

Ink homogenous 
mixture. 
Sediment was 
thrown. 
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3.3.2 Loss on ignition 

Table 3.3 presents the results of loss on ignition of Zr02, Ti02 and A1203 ink. 

The target Zr02, Ti02 and A1203 ink contents were 38.83 wt. %, 29.93 wt. % and 

30.46 wt. % as described in Table 2.3. The deviations in weight percentages for 

five individual samples of three inks were each below 1%. These errors can be 

attributed to the measurement method. The overall deviations can be attributed to 

evaporation during mixing as discussed in section 3.3.3 below. The conclusion is 

that the water-based ceramic inks provide a homogenous mixture at this 

sampling level so it is possible to know the weight of dispersed powder from 

volume of ink. 

Table 3.3 Loss on ignition of water based ceramic inks 

Sample Zr02 ink Ti02 ink A1203 ink 

No4 
Zr02 Error % Ti02 Error % A1203 Error % 

wt. % wt. % wt. 

1 38.97 0.36 30.11 0.6 30.36 0.33 

2 38.99 0.41 30.05 0.4 30.51 0.16 

3 38.93 0.26 30.05 0.4 30.68 0.72 

4 38.95 0.31 30.04 0.37 30.20 0.85 

5 39.01 0.46 30.06 0.43 30.24 0.72 

Mean* 38.97±0.04 30.06± 0.04 30.40± 0.28 

* This row gives the mean value of five samples with 95% confidence limit. 

4 In the table, Error %= 100% x (Experimental powder weight %- Target 

powder weight %) / Target powder weight % 
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3.3.3 Evaporation 

Table 3.4 describes the evaporative loss of ink in the covered 96 well plate 
(reference to page 77) as a function of time. To control evaporation of inks, the 

well plate should be refilled with fresh ink at every 1.8ks (i. e., 30 minutes) 
during the operation in order to keep the error in weight percentage of ceramic 

within 1%. 

Table 3.4 Evaporative loss of Zr02 ink in the covered 96 well plate 

Time / ks t--O* t-- 1.8 t=3.6 t--4.8 t--7.2 

Mass of ink in one well /g 0.5149 0.5112 0.5068 0.5036 0.5005 

Evaporation loss /g 0 0.0037 0.0081 0.0113 0.0144 

Weight percentage of Zr02 38.83 39.11 39.45 39.70 39.95 

powder in the ink ** 

Effor in weight 0 0.72 1.6 2.24 2.88 

percentage 

t--O once the well was filled with inks and then covered. 
* When t=O, the weight percentage of filled Zr02 ink was 3 8.83 wt% as shown 

in Section 3.3.2 Loss on ignition. After that, 

Zr02 Wt- % at time t Mass of ink at t--O (i. e. 0.5149g) x 38.83 wt% 

Mass of ink in the well plate at time t 

As explained in section 2.5, the first requirement for processing ink compositions 

using the printer was the formulation of stable and homogenous ceramic inks that 

provide the correct base for step 2, calculation of transfer volumes. From the 

sedimentation results, loss on ignition and evaporation experiments, the A1203, 

Zr02 and Ti02 inks developed here can be used as the basis for the preparation of 
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multiple ceramic compositions by the aspirating-dispensing printer. These 

experiments make use of two additions to the equipment; ultrasonic actuation on 
the well-plate holders and well-plate covers. The time limits are 7.2ks for 

sedimentation loss and 1.8ks for evaporation. 

3.3.4 Loss on ignition of transferred inks 

Table 3.5 gives loss on ignition of transferred inks for four compositions in the 

A1203-TiO2-ZrO2 system and hence compares the masses transferred with those 

programmed. The errors associated with the transferred masses in Table 3.5 are 

calculated in two ways. The coefficient of variation from the three trials for each 

composition is given in brackets as a percentage and defines the variation 

associated with an individual transfer of one component of the mixture. These 

vary between 0.3 and 1.4%. The final column gives the compositional error in 

mass% for that mixture based upon the means. The maximum error is 0.3mass%. 

These errors can be attributed partly to the inaccuracy of printer dispensing. 

From Table 1.4, there is ±5 error% at lOOnL which was the base dispensing unit 

in all printer programs. In fact the error is considerably less than this using the 

protocol described. Evaporative loss as described in Table 3.4 also contributes. 

Finally there is an error associated with the gravimetric measurement. 

As mentioned in section 2.5, the second requirement for processing compositions 

was dispensing technology that allows transfer of nanoliter volumes. Loss on 
ignition of transferred inks tests the performance of the printer by examining 

whether it can transfer a specified amount of dispersed powder into the target 

well plate for which loss on ignition has established the initial composition. The 

results of loss on ignition of transferred inks demonstrate that the printer can 
deliver specified amounts of each powder into the target composite inks with a 

tolerable error of about 1 wt%. 
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Table 3.5 The results of loss on ignition of transferred inks (Each result is the 

mean of 3 trials) 

Planned transfers /g Mean Actual transfers /g Error 

(COV%)* Mass% 4 

Zr02 A1203 Ti02 Zr02 A1203 Ti02 

0.1054 0.1054 0.1057 0.1060 0.07 

(0.8) (0.3) 

0.0878 0.0877 0.0868 0.0879 0.3 

(0.5) (1.4) 

0.1037 0.1037 0.1037 0.1029 0.2 

(0.7) (1.4) 

0.1045 0.0523 0.0523 0.1042 0.0519 0.0528 0.1/0.2 

(0.8) (1.4) (0.3) /0.3 

* Coefficient of variation 
4 This is the error in the mass % of oxide in the delivered mixture. 

3.3.5 Observation of composite inks 

For all four compositions, no sediments were found in the mixed well plate after 

the composite inks were gently aspirated out. This confirms the bulk 

sedimentation trials in section 3.3.1 (vide supra). In subsequent work, four 

compositions were printed from the mixed ink wells and subjected to the EDS 

protocol which tests variation of composition throughout the sample. From the 

results discussed here, loss on ignition of transferred inks and observation of 

composite inks established that the corresponding mixed inks contained the 

correct amount of each powder overall. 

3.3.6 EDS Protocol 

This stage of the calibration procedure examines the variation of composition 

throughout each individual printed sample. The EDS analyses of samples (Table 
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3.6) show that whether the drops were mixed and printed automatically by the 

combinatorial printer or mixed by manual weighing and deposited using a fine 

wire, the EDS results for the lower surfaces and cross sections agreed with the 

planned compositions. For unpolished surfaces the agreement is within the error 

associated with the analysis method". The top surfaces, on the other hand, were 

significantly different. Segregation of powders occurred in the upper surface 

region during drying. 

The residues of these droplets formed 'doughnut' shapes and sometimes there 

was a through-thickness hole (Figure 3.6a). Figure 3.6a is a picture of droplet 

residue from ink G. Although cracking of the residue sometimes occurred, EDS 

was only carried out on whole intact samples. The EDS results summarized in 

Table 3.6 are averaged from a positional array of assays systematically 

conducted along radial paths on the upper and lower surfaces and along the depth 

profile in cross sections (Figure. 2.8). 

In each mixture, the EDS results at position I of the top surface (edge part) were 

consistently in better agreement with the planned composition than the results at 

positions 2,3 and 4, a result which will become relevant when the segregation is 

interpreted. Tables 3.7 and 3.8 (rows 1) give only two examples of the positional 

array but this effect was general. The analysis of large area scans of the cross 

section does not disclose how deep the surface non-uniformity is. Figure 3.7 is a 

micrograph of the cross-section of a residue prepared from ink F (Ti02 - Zr02 

system) with elemental mapping showing Zr02 enrichment over 10-20 gm depth. 

The segregation layer became less thick from the central part to the edge, indeed 

there is no segregation in the edge region. Figure 3.7 also confirms the position 

of the segregation layer on the upper surface. The cross-section, indeed the major 

part of the body of residue shows no obvious excess concentration of a particular 

powder. Since the EDS analysis of the cross-section is a five point assay at 

sampling area of 50 x 50 gm it does not disclose the depth profile. 
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Compositional non-uniformity and the 'doughnut' shape with a possible hole at 
the centre present serious problems both for thick film combinatorial studies of 

ceramics and for forming functionally graded products using direct ceramic ink 

jet printing. Interventions to solve these problems were launched and the 

interpretation of their results provides an explanation for these effects. 

Table 3.6 Analysis by EDS of printer- (P) and manually-prepared (M) ceramic 

mixtures deposited on silicone release paper. 

Ink Planned EDS analysis /Wt%a 

ID Compositio 

n/ wt. % 
Top surface Lower Surface Cross section 

PMPMPM 

D Zr0250 83 ±5 73 ±9 51 ±2 52 ±1 52 ±3 52 ±2 

A1203 50 17 ±5 27 ±9 49 ±2 48 ±1 48 ±3 48 ±2 

E A1203 50 84 ± 13 81 ± 16 53 ±3 50 ±3 51± 3 49 ±3 

Ti02 50 16 ± 13 19 ± 16 47 ±3 50 ±3 49 ±3 51 ±3 

F Ti02 50 16 ± 19 10 ± 21 47 ±2 48 ±1 52 ±6 47 ±I 

Zr0250 84 ± 19 90 ± 21 53 ±2 52 ±1 48 ±6 53 ±1 

G A1203 25 26 ± 14 12 ± 11 26 ±1 26 ±1 28 ±3 25 ±2 

Ti02 25 6±7 9± 12 24 ±2 24 ±0 24 ±2 24 ±2 

Zr0250 67 ± 21 79 ± 22 50 ±2 50 ±1 48 ±3 51 ±3 

' Average for five arrays at different positions shown in Figure 2.8 with 95 % 

confidence limit. 
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(a) 

(C) 

(b) 

Figure 3.6 The shape of droplet residues. (a) Colloidal suspension containing 
around I wt% dispersant (Ink G). (b) Colloidal suspension containing excess 
amount of dispersant. (Ink J) (c) Suspension containing no dispersant (Ink F'). 
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Figure 3.7 Flernental mapping showing the depth ofthe segregated ZI*02 layer 

on the upper surface of residue from ink F. 
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3.4 Particle segregation 

It is a necessary but not sufficient condition of combinatorial library preparation 

that the volumetric calibrations described in section 3.2.3 are sound. It is also 

necessary that ink mixing in the well-plate is thorough. A further requirement is 

that the inks should remain mixed as each droplet dries. 

Initial experiments (section 3.3.6) on mapping the powder concentrations 

throughout a dried droplet residue on the substrate showed that this is not always 

the case. Such segregation effects have been noted before in alcohol-based 

suspensionlo. 

3.4.1 Deposition on porous substrates 

In previous work4o, there was no segregation when droplets were deposited on 

dried, pre-placed, porous layers of ink. Droplets were therefore manually placed 

on plaster of Paris which is used in slip casting and provides rapid separation of 

powder from its suspending fluid. Table 3.9 shows that all regions of these 

manually-prepared ink mixtures deposited on this porous substrate agreed with 

the planned composition, although slightly larger errors were encountered for the 

analysis of the upper surface. 

Similar enhancement of compositional uniformity by capillarity was obtained by 

placing drops on micro-porous cellulose nitrate membranes. Figure 3.8 compares 

the pore structure of plaster of Paris (Figure 3.8a) with that of cellulose 

membrane (Figure 3.8b). Drops of inks F and G were mixed and deposited 

manually onto cellulose nitrate membrane. Samples were also mixed and printed 
by the printer on cellulose nitrate membranes. The results show that faster drying 

again improved compositional homogeneity (Table 3.10) allowing the printer to 

produce planned compositions. 
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Table 3.9 Average EDS results for ink mixtures manually deposited on plaster of 
Paris 

Ink Planned EDS analysis / wt%' 

ID Composition / wt. % Top Surface Lower Surface Cross section 

G A1203 25 22 ±5 23 ±1 23 ±2 

Ti02 25 25 ±5 26 ±0 28 ±2 

Zr02 50 53 ± 10 50 ±1 49 ±2 

" Average for five arrays at different positions shown in Figure 2.8 with 95 % 

confidence limits. 

Table 3.10 Average EDS results for manually-prepared (M) and machine mixed 

and printed (P) ink mixtures deposited on micro-porous cellulose nitrate 

membrane 

Ink Planned EDS analysis / wt% ' 
ID Composition Top surface Lower Surface Cross section 

wt. % 
Pm P m P m 

F Ti02 50 50 48 53 51 49 47 

Zr02 50 50 52 47 49 51 53 

G A1203 25 25 23 27 26 26 25 

Ti02 25 24 24 26 26 25 22 

Zr02 50 51 53 47 48 49 54 

'Average for three arrays at different positions. 
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(a) SEM picture of calcium sulphate (Plaster of Paris) substrate 

Figure 3.8 Porous substrates used for rapid separation of powder from 

suspending fluid. 
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3.4.2 Effects of particle size and density 

I 

The simplest explanation for segregation is the selective sedimentation of either 
larger or more dense particles according to Stoke's law which gives the terminal 

velocity Vo as 

VO = 
gd'(p - p') 

1817 
(3.1) 

where g is the local acceleration due to gravity (or a centrifugal field), d is the 

particle diameter, p is particle density, p' is the fluid density and Tj is fluid 

viscosity. As described in Table 2.1, the density and average particle size of 

powders are Zr02 powder (5750 k gM, 3,0.9, um), A1203 (3987 k gM-3,0.5'U M) 

3 and Ti02 (3850 kgm' , 0.15 p m). However, considering the average particle size 

and density of powders, it is clear that there is no evidence of preferred 

sedimentation; indeed there are examples where larger and denser particles 

ascend to the upper surface (Table 3.6). 

Using the particle size distributions shown in Table 3.1,47% Zr02 powder but 

only 2.7% Ti02 is greater than 0.7 ýtm. Zr02 also has much higher density (5750 

kg M, 3) than Ti02 (3850 kg M-3) . For the 50% Zr02 - 50%Ti02 ink, Zr02 should 
be depleted on the upper surface due to preferential sedimentation but as shown 
by EDS (Table 3.7 row 1), Ti02 almost disappeared on the upper surface of the 

residue. This segregation cannot be explained by preferential sedimentation. The 

same conclusion can be drawn from the other three compositions in Table 3.6. 

There is no indication of coarser or denser particles settling out. 
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3.4.3 Effect of dispersant 

In order to assess the effects of dispersant, compositions D and F (described in 

Table 2.3) were prepared without dispersant (which was replaced by the same 

amount of distilled water). These suspensions (D' and F) were manually 

prepared and mixed for Iks with the ultrasonic probe and deposited on silicone 

release paper. 

The results for composition F (Ti02- Zr02 system) with and without dispersant 

are compared in Table 3.7 rows I and 2. The difference in these composition 

scans is striking. Without dispersant, the upper surface, instead of showing 

excess zirconia, now presents a slight deficit. No effect of radial distribution can 
be detected. This implies that the segregation of Zr02 to the upper surface seen 
before, was associated with the presence of dispersant. In contrast, the lower 

surface is now rich in Zr02: an effect that can indeed be attributed to preferential 

sedimentation. Such sedimentation is clearly seen in the cross section which has 

a steady increase in Zr02 from top to bottom. 

The results for ink D (Zr02-AI203 system) with and without dispersant are 

compared in Table 3.8 rows I and 2. In the case of the ink with dispersant, Zr02 

is richer on the upper surface. Without dispersant, there is no segregation; the 

upper surfaces, cross-sections and lower surfaces of residues agree well with the 

planned composition. In this case, there is no preferential sedimentation. This 

result is further confirmation that segregation on the upper surface is associated 

with the presence of dispersant. 

3.4.4 Order of mixing 

It is well known that the order of mixing when preparing colloidal suspensions 

can affect their properties. Taking two binary compositions in order to 

demonstrate the generality of the result, three preparation sequences were used. 
For a composition containing powder A, B, dispersant and water, the sequences 
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were: (a) powder A was mixed with the full amount of dispersant (i. e., the 

amount of dispersant described in the Table 2.3) and half the amount of water 
first, then powder B was mixed with the remaining half of water which was then 

added. (b) powder A and powder B were mixed with half the water first and then 
dispersant was mixed with the other half of water and then added; (c) powder B 

was mixed with the full amount of dispersant and half the amount of water first, 

then powder A was mixed with the remaining half of water and added. In the 

above, each mixing was enhanced by ultrasonic probe dispersion. 

For the Ti02- Zr02 system as shown in Table 3.11 a, the lower surface is 

unaffected by the order of mixing in each case. The results agreed with the 

planned composition. The depth profile for sequence (b) also agreed with the 

planned composition. Sequence (a) and Sequence (c) show similar general trends 

for the depth profile, which is not consistent with the planned composition. In 

each case, the top surfaces all show depletion of the fine Ti02- Considering the 

extent of depletion of Ti02 on the upper surface, the order of mixing neither 

reduces segregation nor offers a route to solution of the problem. It raises more 

questions about compositional distributions in the depth profile which require a 
different experiment approach (See section 3.4.5). 

The Zr02-AI203 system is shown in Table 3.11 b: In each case, the lower surface 
is slightly rich in Zr02: an effect that can be attributed to preferential 

sedimentation. This is a marginal effect and does not appear definitively in the 

cross section except in sequence (a) and (b). In each case, the top surface 

compositions all show depletion of A1203- Considering the extent of depletion of 

A1203 on the upper surface, the sequence of adding dispersant to A1203 first is 

more beneficial than the results from the case of adding dispersant to Zr02 first. 

The general conclusion is that the order of mixing does not have a definitive 

effect on segregation and does not provide a solution. 
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3.4.5 Removal of excess dispersant 

When dispersant is added to a suspension it tends to adsorb strongly on the solid 

surface until saturation is reached and the excess remains in solution. The excess 

can be removed by centrifuging the suspension, removing the supernatant and re- 
dispersing the powder in the same mass of liquid. The amount of dispersant in 

solution can be found by drying and weighing. 

Using ink F, Ti02 powder was first mixed with half the amount of water and the 
full amount of dispersant. The resulting Ti02 ink contained 1.31wt. % Dispex. 

After centrifuging for 1.8ks, gravimetric analysis showed that half the dispersant 

remained in the supernatant and was replaced with the same mass of distilled 

water. Ti02 powder was re-dispersed into the replaced water. Zr02 powder, 

mixed with the other half of water without dispersant was then added. This 

produces a mixed ink with 50 wt. % Ti02 - 50 wt. % Zr02 in which the dispersant 

is initially adsorbed on the Ti02. EDS analysis of residues (Table 3.7, row 3) 

show Zr02 depletion on the upper surface and evidence of preferential 

sedimentation of Zr02 in the cross section and on the lower surface. 

Again using ink F, Zr02 powder was treated with dispersant instead. Excess of 
dispersant was removed, and this suspension mixed with Ti02 ink without 
dispersant. The results (Table 3.7, row 4) show Ti02 depletion on the upper 

surface. However preferential sedimentation of Zr02 was also found in the lower 

surface. This combined effect is due to the wider particle size range of the Zr02 

powder: larger particles are still able to sediment. 

This selective procedure was then followed with ink D (50wt% A1203-50 Wt% 
Zr02). Dispersant was first added only to the A1203 and the excess removed 
before adding Zr02 free from dispersant. The results (Table 3.8 row 3) indicate 

Zr02 depletion on the upper surface and evidence of preferential sedimentation 

of Zr02 on the lower surface and in the cross section. 

123 



Again using ink D, dispersant was added to Zr02 powder first, excess was 

removed and A1203 ink without dispersant added. The results (Table 3.8, row 4) 

show that for this mixture, the upper surface is close to the as-planned 

composition with only slight excess of Zr02, but there are signs of A1203 

sedimentation on the lower surface not picked up in the large area scans for the 

cross-section. 

Removing excess dispersant does not provide a general solution to the 

segregation problem but it illustrates the sensitivity of segregation to preferential 

adsorption on specific powders; an effect that can over-ride preferential 

sedimentation under Stoke's law. The important observation was that the powder 

to which dispersant was preferentially attached was always richer on the upper 

surface of dried droplets and this general observation helps to explain the 

phenomenon of separation (vide infra). 

3.4.6 Use of excess dispersant 

As described in 3.4.1, one way of solving the segregation problem is to use 

porous substrates. There are two problems for implementation of this method: 
(1) the porous substrates still take finite time to remove solvent from the droplet 

or cannot remove solvent completely from the droplet to stop the drying process. 
Some segregation still happens. (2) Some applications of direct ceramic ink jet 

printing require droplets to be deposited on a particular substrate that may not be 

porous. For example, as described in section 3.5, ceramic ink droplets are 
deposited on platinum coated alumina substrates. Therefore a general ink 

formulation solution that is independent of the substrate is preferable. 

It may be that there is an optimum level of dispersant to achieve uniformity. The 

inks used in previous experiments commonly contain around 1 wt. % Dispex; 

sufficient to achieve stability during the period of printing. In the next step, inks 

H, I and J (Table 2.3) were prepared with large amounts of dispersant (10 wt. %). 

These were manually prepared, mixed for Iks. with the ultrasonic probe and 

124 



deposited on silicone release paper. EDS analysis of these residues, described in 

Table 3.12, show neither sedimentation nor segregation, the whole body of the 

residues has uniform composition as planned. 

Table 3.12 EDS analysis of droplet residues of multi-component ceramic 

colloids containing excess dispersant showing uniform composition. 

Ink Dispex Planned EDS analysis / wt% " 

No. wt% Composition / wt% Top Lower Cross 

surface Surface section 

H 10 A1203 50 50 ±3 52 ±1 51+2 

Zr02 50 50 ±3 48 ±1 49 ±2 

1 10 Ti02 50 50 ±4 46 ±1 47 ±2 

Zr02 50 50 ±4 54 ±1 53 ±2 

1 10 A1203 25 25 ±1 26 ±0 24 ±I 

Ti02 25 25 ±1 23 ±0 24 ±I 

Zr02 50 50: h 1 51 ±0 52 ±1 

' Average for five arrays at different positions shown in Figure 2.8 with 95% 

confidence limits. 

These inks presented another difference. The residues of ink H, I, J retained a 
dome shape (Figure 3.6 b). Figure 3.6 b is a picture of residue from ink J. No 

cracking was found in such residues. The dome shape may imply that particle 

movement to the periphery of the droplets is restricted and a uniform 
hemispherical drop ends up as a uniform dome-shaped residue, unlike previous 

segregation cases when a uniform hemispherical drop ends as a doughnut shape 

of residue. 
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For inks H, I, J which contain I Owt% Dispex, the volume fraction of powder in 

the residue from the droplets is near 76% so that the assembly of particles can 

sinter to full density. Although the large amount of dispersant increased the 

kinematic viscosity of these inks (Table 3.13), inks H, I and J could be inkjet 

printed by the printer. So, adding a larger amount of dispersant provides a 

generally sound solution to the segregation problem based on formulation rather 
than substrate selection achieving a uniform residue of the planned composition. 
Furthermore, the shape of residue was a simple guide to compositional 

uniformity. 

Table 3.13 Surface tensions and viscosities of suspensions 

Ink WtA dispersant in Surface tension Kinematic 

ID the suspension /mNrn'l viscosity /mm 2 S'l 

A1203-ZrO2 D 1.1 73.4 1.5 

system 
H 10 

Ti02-ZrO2 F 0.66 

system 
1 10 

62.5 

71.7 

3.7 

1.4 

66.6 11.4 
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3.4.7 Mechanism of segregation 

The final compositional distribution in residues is set up during drying. For a 

particle in a droplet of ceramic suspension, there are at least four types of particle 

motion: i) sedimentation due to gravity, ii) Brownian motion due to collisions 

with fluid molecules, iii) lateral migration of particles to form a 'foot' at the 

periphery of the drop and iv) fast recirculation flows that occur in the remaining 
liquid part of the drop which can easily be seen in the optical microscope. These 

movements can be restricted by surrounding particles, by dispersant and by 

flocculation behaviour. The details of the droplet drying process have been 

described in section 1.9.3. On the basis of iii) and iv), the mechanism of 

segregation can be interpreted and both the shape and the segregation effects are 

accounted for here. 

From the particle size distributions in Table 3.1, the particle size increases for the 

series Ti02, A1203 and Zr02. Table 3.6 indicates that in the A1203-TiO2, Zr02- 

Ti02ý A1203- Zr02 and Ti02- A1203- Zr02 systems, powder with the larger 

particle size is concentrated on the upper surface. Preferential sedimentation fails 

to explain the segregations seen on the upper surfaces in these experiments. 

In a well-dispersed suspension, particles participate in the radial flow, piling up 

at the periphery and forming a foot which grows as drying proceeds and leaving 

a hollow central region which may even produce a hole. A similar situation 

prevails in the spay drying of ceramic slurries; discrete droplets from well- 

dispersed slurries in which particles retain mobility during drying, form irregular 

shaped agglomerates with a central hole. Suspensions with a tendency to 
124 flocculate, form dense spherical agglomerates . In the present work, the use of 

large amounts of dispersant increases viscosity and is likely to impede particle 

mobility by chain entanglement effects. Sessile drops from these inks dry to 

leave dome shapes (Figure 3.6 b) with uniform planned composition. 

127 



For droplets from suspensions containing -Iwt% dispersant (Inks D, E, F and 
G), particles have high mobility in the suspension. Visual observation of 

reflectivity, transparency and the appearance of a discontinuity in the surface, 

suggest that a higher packing density of powder builds up at the three phase 
boundary as generally observed 129-131,133 

. The suspension on the rim continues 
drying as liquid migrates from interior regions to the periphery under capillary 
forces, eventually forming a 'doughnut' shape in which the centre is depleted and 

sometimes leaving a hole. The process is illustrated as Figure 3.9. 

(a) Droplet of 

uniform composition 

as deposited 

C* 
- 

Ambh Itift 

(d) Final shape of 

residue 

(b) Triple junction is 

pinned and curvation 

varies across the surface 

(c) Accumulation 

of powder at the 

rim 

(d') In some cases, a hole in 

the middle of the dried sample 

can be formed 

Figure 3.9 Schematic representation of the observed drying process for droplets 

from suspensions containing -Iwt% dispersant. 
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This does not explain the segregation effect, which can only be understood by 

looking also at the liquid region of the sessile drop bounded by the surrounding 
foot. As described by Haw at al 136 

, this region contains vigorous recirculation 
flows. These can be seen in the optical microscope with oblique illumination. 

These flows are attributed to Marangoni stresses resulting from surface tension 

gradients and thermal gradients associated with evaporation of liquid and have 

been modeled 137 
. As the drop dries, this region shrinks while the more densely 

packed 'foot' grows. 

A particle in suspension can either join the 'foot' or participate in the 

recirculation flows in the central pool. It can be argued that the better dispersed 

particles participate in the flow while the weakly dispersed particles join the 

'foot' and in this way, segregation develops on the upper surface where the well- 
dispersed particles accumulate. The process is shown schematically in Figure 

3.10. 

Accumulation of powder at Recirculation flows 

ery droplet periph 

Figure 3.10 Schematic diagram of radial and recirculation flows that are 

responsible for particle shape and segregation 
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This explanation is consistent with the geometry of residues and with the 

observation that at assay position I (Tables 3.7 and 3.8 row 1), the composition 
is closer to that planned than at positions 2-4. Position I became isolated from 

the liquid pool at an earlier stage. The explanation is consistent with the 

observations that the better dispersed particles always appeared in excess at the 

top irrespective of their density or particle size. Position 5 is not necessarily 

worse than position I as seen in table 3.8 row 1. When a hole is formed, position 
5 is a very thin section from which the final liquid containing well-dispersed 

particles is drawn laterally by capillary action into position 4 as drying comes to 

an end. 

The behaviour of inks containing no dispersant depended on the particular 

powders in combination. For the Zr02-TiO2 system, the Ti02 was a fine powder 
but the Zr02 was a comparatively coarse powder as deduced from SEM images 

and particle size distributions (Table 3.1). When there was no dispersant, Zr02 

powder began to sediment, most Ti02 was still dispersed in the water. These 

droplets dried to leave a much flatter 'doughnut' shape as shown in Figure. 3.6 

(c). After drying, Ti02 was richer on the upper surface while Zr02 powder was 

preferentially sedimented on the lower surface as evidenced by EDS results 

(Table 3.7, row 2). 

For the A1203-ZrO2 system, after the ultrasonic probe was switched off, the 

powders began to flocculate. The suspension appeared to become more viscous 

forming a paste rather than a liquid. This is typical of flocculated suspensions 138 
. 

These drops ended as a dome with uniform planned distribution of powder 

(Table 3.8 rows 2) and it seems reasonable to speculate that this is because a 

three dimensional flocculated network prevents particles from participating in the 

two modes of liquid flow. Using flocculation as a means to prevent segregation 

would provide a solution but it is incompatible with the need to produce 

suspensions stable against sedimentation. 
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It is instructive to compare the Zr02-TiO2 system under three conditions: 
dispersant added to both powders, no dispersant added and dispersant attached 

only to Zr02. When dispersant is attached to both Zr02 and Ti02 powders and 

excess is left in solution, residues of droplets are 'doughnut' shaped with ZrO2 

powder richer on the upper surface and the lower surface agreeing with the 

planned composition (Table 3.7, row 1). Without dispersant, the residues of 
droplets are flatter doughnut shapes with preferential sedimentation of Zr02 

powder (Table 3.7, row 2). With dispersant attached only to Zr02, residues of 
droplets have both types of segregation; Zr02 powder is richer on the upper 

surface yet preferential sedimentation of larger Zr02 particles (Table 3.7 row 4) 

shows up on the lower surface. 

In the A1203- Zr02 system, when dispersant is only attached to Zr02 with no 

excess available for A1203 in the solution, residues of droplets are 'doughnut' 

shaped with much more uniform composition (Table 3.8, row 4). The Zr02 is 

slightly denser and coarser than the A1203 SO the effects of sedimentation and 

ascent in the liquid zone tend to cancel. 
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3.5 Drying behaviour of droplets of mixed powder suspensions 

3.5.1 Droplet profiles during drying 

The ceramic suspensions (Table 2.3) used in this thesis can be classified in three 

types based on the amount of dispersant used. Type I consist of mixtures with 
large (10%) additions of dispersant, (Inks H, I and J). This is far more than that 

needed to provide stabilization against sedimentation for several hours to allow 

printing. Type II are mixtures (Inks A, C, D, E, F and G) containing a smaller 

amount dispersant (-I wt. %), though more than enough to preserve stability for 

the purpose of printing. Type III are mixtures of water and powders without 
dispersant (Inks B, D' and F). 

Droplets from type I suspensions present consistent drying behaviour. As shown 
in Figure 3.11 using Ink J as the example, the contact angle and height of 

droplets steadily reduced until a minimum value was reached. The contact 
diameter was almost unchanged during drying. The droplet that began as a 

spherical cap completed drying still as a dome as shown in Figure 3.6 (b). As 

described in section 3.4.5, the residues have uniform planned distribution of 

powder on both upper and lower surfaces and on cross sections as analyzed by 

EDS (Table 3.11). Such droplets form ideal combinatorial library members 
because their shape is suited to testing by electrical or optical probes and 

composition is consistent. 

Droplets of type II suspensions (-I wt. % dispersant) had a quite different drying 

behaviour. Using Ink G as the example (Figure 3.12), in the first stage, up to 0.9 

ks, the contact angle and height of droplets consistently decreased. In the second 

stage, at constant contact angle, the height of droplets decreased. In the last stage, 
both the apparent height of droplets and the contact angle were unchanged but 

the silhouette imaged against back-illumination does not disclose the pronounced 

collapse of the central region. The bulk of the ceramic powder, now situated at 

the rim, subsequently dried. Type II residue therefore ended as a 'doughnut' 
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shape sometimes with a hole in the centre as shown in Figure 3.6 (a). The drying 

process has been described in Figure 3.9 and discussed in section 3.4.6. 

As described in section 3.3.6, when EDS analysis was performed on these 

residues, the lower surface and cross-sections agreed with the planned 

composition but segregation of powders occ urred on the upper surface. This 

variation is to a depth of over 10-20 ýtm depth. Cracking of the residue could 

also be found sometimes. These are not suitable for combinatorial work because 

the shape does not allow access by measurement probes and the composition 

varies on the upper surface. 

For Type III suspensions to which no dispersant was added, the drying patterns 
depended on the powder. The drying of droplets from Ink D' (A1203-ZrO2 

system) was similar to Type I suspensions that contained excess dispersant. Both 

the contact angle and height of droplets consistently reduced until a minimum 

value was reached. The contact diameter was almost unchanged during drying. 

The residue also retained a dome and had uniform planned powder distribution as 

did the residues from the droplets of type I suspensions as shown in Table 3.8 

rows 2. 

For other type III suspensions, (Ink B; single component Ti02 ink) and P (Ti02- 

Zr02 system without dispersant), the drying was similar to type II inks that 

contained around 1% dispersant, experiencing three stages as described above. 
The EDS result of the residue of droplets from Ink P (Table 3.7 rows 2) shows 

non-uniform compositional distribution. The resulting residue also had a 
'doughnut' shape, as did the type II inks. The residue of droplets from Ink H is 

shown in Figure 3.6 (c). 

Figure 3.13 gives percentage mass loss as a function of time for the Zr02- A1203 

system (Inks D, D'and H) and the Ti02-ZrO2 system (Inks F, F and I). 
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930, t =1.2ks 0= 92', t =1.5ks 

89', t =]. gks 

Figure 3.11 The drying process of a droplet of ceramic ink that contains excess 

amount of dispersant deposited on silicone release paper. 
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0 -- 800, t I. 2ks 0- 800. t 1.5ks 

0 -- 80", t-1.8ks 

Figure 3.12 The drying process of a droplet of ceramic ink that contains around 

I wt% dispersant deposited on silicone release paper. 
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Figure 3.13 The percentage mass loss as a function of tirne for a droplet of 

mixed powder suspension placed on the silicone release paper. 
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3.5.2 Discussion of the drying process 

Many observers 
134-136 

point out that the relative proportion of liquid-air interface 

is larger near the edge and this provides models of drying 129,130,134,135 

. Since the 

ratio of liquid-air interface relative to the underlying liquid is larger near the drop 

periphery a large amount of solvent is lost in this area and if the droplet footprint 

is unchanged, finite flow in the radial direction of the footprint occurs during 

drying. Some 134,135 consider that the evaporation rate can be taken as constant 

across the droplet surface, while others 129,139 attribute a higher evaporation rate 
to the droplet edge in static air because of the lower vapour pressure over the 

surrounding substrate. Most observers see the formation of a 'foot' consisting of 

a pile-up of particles at the droplet periphery which starts to form in the early 

stages of drying and continues to grow 129,130,132,134,136 
. When the droplet was 

mounted on a pedestal and surrounded by a water bath so that there is a uniform 

partial pressure of vapour over the whole surface of the droplet, a peripheral 

deposit still formed 129 
. Interestingly, when the drop was covered with a chamber 

with a small hole over the centre of the evaporating drop, a peripheral foot of 

solids did not form and a uniform deposit resulted. 

A geometric fact that illustrates the strong variation in surface area to underlying 

volume was discovered in this research. Consider a hemisphere of radius r as 

shown in Figure 3.14(a) sliced parallel to the equatorial plane. The surface area 

of a slice, A, is dependant only on the thickness; 

A= 21zr(r - h), (3.2) 

The volume of a slice that has a base on the equator is 

V=E (2r' - 3rh' + h'). (3.3) 
s3 

The volume of the cylinder inside the slice is 
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V ==2 
c 

(r - h), (3.4) 

But since x' = 2rh -h2 (x is shown in Figure 5a), 

V, = ir(2rh - 3rh' + h') (3.5) 

The volume of the rim is VR= V, - V, and from equation (2) and (3) is 

Ir 22 VR -"ý - (2r' + 6rh - 6r h- 2h') (3.6) 
3 

From equations (1) and (5), the ratio of surface area A to volume of rim VR is, 

A 3r 
VR (r - h)' 

(3.7) 

Equation (3.7) is plotted for r--I in Figure 3.14(b) showing how the ratio of 

surface area to volume increases towards the periphery of drop for the case of a 

90* contact angle. Obviously a ratio of 3 is obtained for the hemisphere at h=O. 

This does not address the more complex flow paths that occur during drying but 

does show that a strong component of flow must occur in the radial direction of 

the droplet footprint even if drying is uniform over the liquid surface. 

Droplets placed on silicone release paper start with a contact angle greater than 

90' and, as evaporation proceeds, the contact angle reduces to 90' (hemisphere), 

as the edge region dries first. The droplet curve is no longer spherical because the 

contact diameter stays the same. Neither is the curvature continuous because 

solids pile up at the periphery. The final droplet shape therefore depends on the 

extent to which powder participates in this flow. 
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Figure 3.14 (a) Model of a hemispherical cap showing droplet edge as shaded, 
(b) surface area /volume rati6as a function of (1-h) for r--l. 
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This research proposes that the geometry and compositional distribution of 

residues of droplets are both related to the movement of particles during drying 

but to different types of flow. Thus non-uniform composition and droplet residue 

shape are related to the mobility of particles in the drop. The question is, why, 

when the edge dried first in all ceramic ink droplets, do droplets of Type I 

suspension retain a dome shape and do not show segregation in the residue 

whereas droplets of type II suspension end as a 'doughnut' shape with 

segregation of powders of the residues? Two possible reasons stand out: (1) 

flocculation induced by entanglement of excess dispersant molecules inhibits 

particles from participating in flow during drying; (2) increased liquid viscosity 
due to excess dispersant prevents movement of particles in the suspension. There 

is a striking parallel with the morphological development of residues from 

spherical spray dried ceramic agglomerates; droplets from well-dispersed slurries 
in which particles retain mobility during drying, form irregular shaped 

agglomerates with a central hole. Suspensions with a tendency to flocculate, 

form dense spherical agglomerates 124 
. 

Careful observation of Type II droplets during drying shows that early in the 

process, a high packing density of powder builds up at the periphery of the drop. 

The three dimensional network of particles that forms here is well-known (vide 

supra). The rim of the drop accumulates powder and becomes larger forming a 

solid-like ring that can be observed on the drop periphery as a discontinuity of 

curvature seen in Figure 3.12 (t=1.2ks) and shown schematically in Figure 3.9. 

Eventually a 'doughnut' shape forms in which the centre is depleted in powder, 

sometimes leaving a hole. Clearly particle motion to the periphery accompanies 

radial liquid flow in the case of these drops. This flow explains the droplet shape 
but not the segregation effects. 

The second type of flow is the recirculation currents observed by Haw et al. 136 

and modeled in terms of Marangoni flows by Hu and Larson 137 
. This liquid 

region has the shape delineated by the dashed region in Figure 3.9 and within it 

circulation flows persist, driven by Marangoni stresses that result from 
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temperature gradients and in turn, surface energy gradients, due to evaporation. 
These dramatic recirculation currents can be seen in an optical microscope fitted 

with oblique illumination. 

As discussed in detail in section 3.4.6, as some particles become immobilized in 

the peripheral 'foot' the recirculation region contains an excess of the particles 

that are best dispersed and therefore least able to join the 'foot' which they do by 

a flocculation mechanism. The upper surface within the peripheral foot is thus 

the last to 'solidify' and this is precisely the region where segregation effects are 

observed. In all experiments it is the powder that is better dispersed that resides 
in excess on this part of the upper surface. It may also be possible for fine 

powders to filter through denser packed regions of coarse particles to the surface 

as radial liquid flow occurs but the preferred segregation of coarse particles 

suggests this is a secondary effect. 

For droplets of type III suspensions which are dispersant-free, the drying 

behaviour and compositional distribution varied with the powder characteristics. 

For the A1203-ZrO2 system (suspension D'), there was a noticeable, but not 

measured, increase in viscosity without dispersant. This is typical of flocculated 

suspensions 138. A three dimensional flocculated network prevents particles from 

participating the liquid flow. The spherical cap shape and homogenous mixture 

end as a dome with uniform planned distribution of powder. 

On the other hand, Ink B (single component Ti02 ink) and suspension H (Ti02- 

Zr02 system without dispersant) do shown three stage drying and show evidence 

of preferential sedimentation of Zr02. Ti02 is a fine powder that disperses well in 

water even without addition of dispersant. Zr02 is a comparatively coarse 

powder as deduced from SEM images. 

In summary, the edge dries first when a sessile drop retains its three phase 
boundary and this is common to all ceramic ink drops. If powder can be 

dispersed in water such that it is de-flocculated and particle mobility is high, 
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three stages drying and a doughnut shape result (e. g. Ink B, Ink F and Type II 

inks). If powders mobility is not high due to flocculation and, or increased liquid 

viscosity, then the sample that began as a spherical cap completed drying still as 

a dome shape (e. g., Ink D', and Type I inks). 

For the Zr02-AI203 system, inks D, D'and H have dried mass percentages of 

34.65wt%, 34.14wtO/o and 38.79wt% (calculated from Table 2.3), respectively. 

As shown in Figure 3.14 (a) at 3.5ks, the three types of inks' droplets completed 

drying at the same time. For the Ti02-ZrO2 system, ink F, P and I have dried 

mass percentages of 34.1 lwt%, 34.14wVYo and 38.79wt% (calculated from Table 

2.3), respectively. As shown in Figure 3.14 (b) at 3.5ks, inks F and P droplets 

completed drying but droplets from ink I that contain lOwt% dispersant dried 

slower. Overall, three types of inks' droplets have similar mass loss pattern. 
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3.6 Calibration of combinatorial dielectric measurement 

This assessment has four stages. In the first stage, the HP4294 impedance 

analyser was calibrated using standard capacitors. In the second stage, BaTi03 

was selected because there is an established literature basis for its dielectric 

properties. A conventional pressed sample was prepared using the same powder 

as that printed. In the third stage, a sample of ink was printed in a rectangular 

recess that was made by the silicon release paper and dried to produce a small 
disc. Its dielectric properties were measured after metalised using silver paste, 
Finally, a sample was printed onto dried platinum ink and tested using the 

combinatorial robot. Table 3.14 describes the measured values for standard 

capacitors. It proves the HP4294 impedance analyser gives accurate readings of 

capacitance. 

Table 3.14 Calibration of the measurement cell using standard capacitors 

No Capacitance of standard The measured Error % 

capacitors capacitance 

I IpF 1.03pF . 
3% 

2 4.7pF 4.73pF 0.64% 

3 56pF 56.52pF 0.93% 

4 O. OlgF 0.0100171 gF 0.17% 

5 0.022gF 0.0219951 gF 0.02% 

6 0.033gF 0.0331363 gF 0.41% 
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Figure 1.15 gives a picture of the pressed BaT103 sample, tile free-standing 

ink-jet printed BaTi03 sample and ink-jet printed BaTio,, samples oil platinum 

coated alumina substrates. In the picture, all samples were electroded. The 

thickness of' the pressed sample, the ink-jet sarnple separated froin silicone 

release paper and ink-Jet printed sample on platinum -coated alumina substrates 

were 2.13) mrn, O. 8rnrn and 0.36mm respectively. Figure 31.16 describes 

temperature and frequency dependency of dielectric constants ofBaTiOl. 

Pressed BaT103 

Ink-Jet printed BaT103 10nim 

Ink-jet printed 13ý 
Oll C11-iCd I'lýItHILUT 

Ink-jet printed BaTi03 
with fired silver paste 
Oil top 

Fired AIL1111ma 
Platinum ink Substrate 

Figure 3.15 BaTiO3 samples used for comparison of dielectric measurcnicilt 
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Pressed BaT103 

Ink-jet BaTi03 ink dried in a mould 
Ink-jet printed BaTi03 on platinum coated substrates measured bv 

the dielectric probe in the cornbinatorial robot. 
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Figure 3.16 Temperature and frequency dependencies of dielecti-ic constants of 
BaTi03 
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The measured value of dielectric constants of BaTi03 are affected not only by 

frequency and temperature, but also grain size, porosity and purity of samples. 44, 

78,140 The method of measurement can influence the values recorded as described 

in section 1.3. As shown in Figure 3.16, the pressed BaTi03 sample has 

e, = 1450 at 25 *C and 1 kHz. This value agrees with most of references 43'44' 

141 
. Its curie temperature is around 120'C, which is also consistent with BaTi03 

curie temperature 43,44,141 
. The whole trend of the diagram also agrees with the 

literature 43,44,140,141 
. As shown in Figure 3.16, dielectric constants decreased as 

frequency increased, which agrees with theory as described in section 1.4.2. In 

this way, it is established that the measured temperature and frequency 

dependencies of dielectric constant of a BaTi03 sample that was produced by a 

traditional compaction method was correct. This validates the measurement 

method used in this work. 

As shown in Figure 3.16, the measurement results for both BaTi03 ink dried in 

bulk and ink-jet printed BaTi03 on the Pt coated substrates measured 

automatically by the dielectric probe of the combinatorial instrument agree well 

with the pressed sample. The principal reasons for their differences are as 
follows: 

(1) There are some structural differences in the fired samples as shown by 

SEM (Figure 3.17-3.18). The peak permittivity is sensitive to the 

preparation method and was lower for samples prepared from ink, 

whether dried in bulk or ink-jet printed, compared with the pressed disc. 

The peak value for the pressed disc is in turn is lower than the literature 

values which give peaks in the region of 9500 44,141 
. The main cause is 

fired density. The relative density of the pressed disc was 93% and the 

samples prepared from ink appear to have a lower density as deduced 

from scanning electron microscopy. Thus, higher firing temperature may 
be needed to establish the same density from material prepared in the 
form of an ink in a combinatorial routine to samples prepared by 
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conventional compaction with consequences for grain size which is 
8 known to influence dielectric properties' 

(2) As show in Figure 2.10, the cables linking the dielectric probe used in the 

combinatorial method and test fixture are around 800mm and fasten to 

the frame of the x-y table. Although screened, they can interfere with 

each other or with other electromagnetic sources, e. g. the hotplate. 

(3) As described in section 2.7.4, there is an error for the calculation of 
dielectric constant for the ink-jet printed BaTi03 on platinum coated 

substrates associated with geometrical factors. Due to finite accuracy of 
the robot movement, the silver paste electrode on the top of the sample 

may be displaced away from the centre part of the sample. 

(4) As described in section 2.6.3 and 2.6.4, because the ink-jet samples were 

so thin, the thermocouples were placed adjacent to the samples whereas 

the thermocouple was in direct contacted with the pressed sample as 
described in section 2.6.2. There may be differences between the 

recorded temperature and the actual temperature of samples. 

This section establishes the measurement method for dielectric constant and links 

it to literature values for a 'well-established dielectric using conventional 

compaction for sample preparation. It establishes that the same material prepared 
in the form of an ink, dried and fired as it would be in a combinatorial. routine 

gives similar dielectric measurement. 
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Figure 3.17 SEM picture of ink-jet printed BaTiO3 fired at 1400 'C for 2 hom"s. 

Figure 3.18 The SEM picture of pressed BaTiO3 fired at 1400 OC t'or 2 hours. 
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3.7 Study of combinatorial dielectric measurement 

ASTM designation D150-87 (1989 section 10) specifies the conditions for 

measuring dielectric constant and dissipation factor. For high accuracy, the 

guarded electrode method is preferred but for routine work, the unshielded two- 

electrode system is accepted and is used here. In combinatorial. work there is 

necessarily a trade-off between accuracy and miniaturisation for high throughput. 

The greatest error is regarded as lying in the measurement of dimensions. The 

6unequal electrodes' method given in Table I of the ASTM designation was used 
(i. e., smaller electrode area is 'A' used in equation 1.13). 

The library density is a function of the contact angle of drops on the substrate. If 

the droplets spread, repeated prints are needed to develop sufficient sample 

thickness and the resulting diameter of drops is large. If a small radius is needed, 

the substrate must be pre-treated to provide a high contact angle or to prevent 

spreading. The result is a high curvature in the upper surface of the sample. 
When this is electroded, the sample can no longer be treated as a parallel plate 

capacitor. The purpose of this section is to calibrate the dielectric measurement 
for dome-shaped samples on a common ground electrode with an upper 

metallised electrode by measuring the capacitance with an impedance analyzer 

and establishing the corrections needed to obtain dielectric constant of the 

sample. 

Theory 

Using the geometry of Figure 3.19, a top electrode of radius re is deposited by 

contact printing centrally onto the sample whose thickness to can be measured 

and logged using a displacement transducer or measured with a micrometer 

gauge as in this case. The thickness of the sample t, at any radius r, is given by 

the equation for a circle as: 
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t =to -R+-IR2 -r2 (3.8) 

where to is the measured thickness of the sample. Hence the capacitance of a thin 

cylindrical shell between 0 and r, is: 

6C = 
2; rcoe,. rdr 

t 
(3.9) 

The capacitance of the capacitor formed by the upper curved electrode and the 

ground electrode directly below it is thus: 

C= 21rcoc, r dr It (3.10) 

In fact, the field lines are not strictly parallel near the periphery of the capacitor 

and fringe effects are discussed below. Expressing the capacitance as: 

C=2; rcoc r 
Ee r- 

r2 
dr 

to -R+ NfR2 

and making the substitutions, U=R2-r2, A=to-R 

JI dU = 2-, (U- 
- 2A ln(vrU-- + A) (3.12) T+, 7u 

this gives for capacitance C; 

r-r., 
C=21rrocr [(to -R)ln(VR' -r2 +to -R)-VR2-r2 ]I 

r-O 
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FR2 -r,, 2+to-R 
_ 

-2r 2 
C= 21reocr[(to - R) In 

to NFR e+ R] (3.14) 

Noting that R+r,,, 
2to 

0 
2 +r2y 2r. 2 

+tO2 2 
r2 

+r2y 2r2 2+ 2 CO-61 17j; 61 

[(tO2 

- ro') In 
ý (to' 

-4to .-0- 4to +0 sp C=- 0 
2t2 

4(to (t 

0 r. 
to to 

0 

(3.15) 

where 

, ýF(tO2 +2 t02 r. 
22_2 

2 ro -4 + to ro 
- 

(t2 
+ 2y 2 

r. 
2+ (t 2+ 

r02 , IF 0- 4to 
. 

7r 
(t 

0- ro2)ln 
t21 

ro 0 

120 

equivalent to plate area of a parallel plate capacitor with plate separation distance 

of to. Thus, two equations for the permittivity of ceramics calculated from 

capacitance can be applied to the samples. For the sample approximating to a 

parallel plate: formula 1.13 (i. e., implemented as Figure 2.16) is used, and for 

samples with a pronounced curvature of the upper electrode: 

toc (3.16) 
COS' 
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3- 3 

/ 
/ 

Figure 3.19 Geometry for calculation of dielectric constant from capacitance 

measured from a pronounced curvature of the upper electrode. 

Experimental results and discussion 

The experiment detail was described in section 2.7.5. Figure 3.20 gives the 

picture of samples. Both formula 1.13 and equation 3.16 are applied to calculate 
dielectric constant of each sample from its geometry and measured capacitance. 
The results for a range of values of electrode radius and sample thick are given in 

Table 3.15. 

(1) Literature values 
43,44,140,141 for the dielectric constant of BaTi03 at room 

temperature and I khz are about 1600. In fact, this may range from 2000 

down to 1200 depending on grain size, porosity and other factors. As 

discussed in section 3.6, the permittivity of the pressed disc measured in the 

conventional way was 1450. Scanning electron microscopy of both the 

pressed disc of BaTi03 and BaTi03 from the ceramic suspension is shown in 
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Figure 3.17 and 3.18. There is substantial porosity in both which accounts 
for the lower value. Samples No I to, 9 in Table 3.15 give dielectric 

constants from 2861 to 4796. The reason for the much higher dielectric 

constant calculated from the curved BaTi03 samples cannot be explained by 

a difference of grain size, porosity or other structural factors. These curved 

samples have contact angles ranging from 54 to 88* and rjrO from 0.36 to 

0.63. Geometrical factors gave significant error of permittivity calculated 
from these curved plate capacitance values showing that there are 

geometrical constraints that must be observed when preparing combinatorial 
libraries for the measurement of dielectric constant by a capacitance method. 

(2) Samples No 10 to 13 in Table 3.15 have dielectric constant from 1488 to 
1806, which gives more sound permittivity values compared with Samples I 

to 9. These samples also have high contact angle values ranging from 80 to 

85'. The reason for the more accurate result is that as rlro increased (i. e., 

ranged from 0.72 to 0.79), the upper and lower electrodes of samples are 

more near to the parallel configuration. 

(3) The equation 3.16 tends to give smaller values than the dielectric constant 

calculated by equation 1.13 but fails to fully account for the geometrical 

variability. Equation 3.16 is obtained from treating a curved plate capacitor 

as an integration of parallel capacitors. In fact, the field lines are not strictly 

parallel near the periphery of the capacitor and fringe effects for each 

parallel capacitor need to be included. 
' 

This is not pursued further in this 

research; these results are used to argue that combinatorial libraries for 

capacitance measurement must be designed close to the parallel plate model. 

As described in section 2.7.4, BaTi03 samples obtained from printing BaTi03 

ink drops gave a parallel configuration when measuring capacitance. The 

permittivity of these samples kept consistency with the result from the pressed 
disc BaTi03 at I kHz and room temperature (Figure 3.16). As discussed in 

section 3.4.6, by using excess dispersant in ceramic inks, the residue from a 
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single droplet has dome shape with uniform planned composition and is 

considered as an ideal member of combinatorial libraries. The problem that arises 

in this section, when measuring permittivity, is that the curved oconictry can give 

significant error. Two possible solutions are available: one is using an analytical 
formula as given in equation 3.16 but this fails to give a satisfactory correction. 

Actually, what is needed is a much flatter dome shape and i-ji-(, should he larger 

(e. g. about 0.75) to get close to a flat disc configuration. Then using tile 

conventional equation 1.131 gets permittivity from capacitance with neoll, "ble I --I 
error. 

Fliere is an alternative way learned from section 3.4.1: by printing ceramic inks 

on a porous substrate, the dried sample when separated from the substrate, glVes 

a flat shape with uniform planned composition. When querying permittivity on 

these flat samples, the geometrical factor can be excluded. This approach is 

implemented in the 1`61lowing a combinatorial study oI'Al-, O; -'FiO, -/r(), systern. 

8 

ild 

Ilk 

Figure 3.20 Curved BaTi03 samples prepared fi-om single drop ol'Batio; inks. 
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Table 3.15 Measurement of dielectric constant of BaTi03 from curved plate 

capacitors. 

Sample 
No. 

Electrode 
stamp 
radius 
/mM 

A* 
/MM2 

0§ 
/0 

N r, 

/mM 

r, 

/mM 

tý 

/mM 

C- 

/pf 
r. Iro 

Using 
equation 

1.13 

Using 
equation 

3.16 

1 1 2.11 87 0.82 1.33 1.4 64 0.62 4796 4308 

2 0.75 1.64 87 0.72 1.15 1.09 42 0.63 3152 2806 

3 0.75 1.33 88 0.65 1.19 1.14 28 0.55 2710 2486 

4 0.625 1.19 85 0.62 1.02 1.11 26 0.61 2739 2446 

5 0.625 0.89 86 0.53 1.11 1.18 26 0.48 3893 3703 

6 0.5 0.79 64 0.5 1.05 0.65 33 0.48 3067 2815 

7 0.5 0.78 86 0.5 1 0.93 30 0.5 4040 3723 

8 0.41 0.53 56 0.41 1.15 0.61 30 0.36 3900 3713 

9 0.41 0.54 54 0.41 1.11 0.57 24 0.37 2861 2762 

10 0.625 1.03 80 0.57 0.73 0.61 27 0.78 1806 1415 

11 0.75 1.6 82 0.71 0.95 0.83 29 0.75 1699 1387 

12 0.5 0.86 85 0.52 0.66 - 0.61 25 0.79 2003 1605 

13 0.285 0.51 82, 0.40 0.55 0.48 14 0.72 1488 1239 

In this table, 'A' is the area of electrode, 0, r, , ro and to are described in Figure 3.20. 

# 

0= Sin-' - 
2toro 

to 2+ 
ro 

2 
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3.8 A combinatorial study in the A1203-TiO2-ZrO2 systern 

As described in section 3.3, Al-, O,,, TiO, and ZrO-, inks were used I'or cal 1 brat loll 

of the printer. The instrument can assemble cerarnic rniXtUres with compositional 

acCLiracy of 1-3 wt'Vo. Therefore, the first combinatorial study was applied to the 

system. 

The conibinatorial samples have tlat-disc shape (Figure 3.1-1 ). These samples 

were obtained from printino inks on the cellulose nitrate membrane (reference 

Page 97). 'HILIS tile geometrical constraints for dielectric constant measurement 
described in section 3.7 are excluded. The thicknesses of' samples \ýcre 

approximate 0.31nin. The individual samples were accurately InCaSUred W1111 a 

micrometer screw gauge before electroding. The dielectric properties ol' the 

library are described in Table 3.16. 

10mm 

Lower surface I liýk 

I 

Upper surface 0 

Figure 3.21 Vxample ot'a combinatorial sample in the Al,, 03-TiO, -ZrO, svstenI 

(the sampic in flic picture Is 100 wt%TIO-, ). 
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Table 3.16 Dielectric constant measurement in the A1203-TiO2-ZrO2 system 

, Composition 

Number in 

Section 2.8 
Ti02 

Composition wt% 

Zr02 A1203 

Dielectric constants 

1 100 00 116 

2 87.5 12.5 0 47 

3 87.5 0 12.5 34 

5 75 12.5 12.5 27 

6 75 0 25 19 

9 62.5 12.5 25 25 

11 50 50 0 17 

12 50 37.5 12.5 18 

21 37.5 0 62.5 24 

The general conclusion from Table 3.16 is that Ti02 has the highest dielectric 

constant whose value is consistence with literature value 43,44 
. As Ti02 is diluted 

with Zr02 and A1203, the dielectric constant of the mixture decreased. A 

permittivity map of the A1203-TiO2-ZrO2 system can be generated if data from 

all compositions in Figure 2.17 are given. This is potentially interesting but 

requires more time. Here, the combinatorial library was developed and dielectric 

properties of specified members of the library were accessed. 
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3.9 A robot system for combinatorial study of new functional oxides 

One feature of this combinatorial method is that the ceramic libraries can be 

printed, sintered, tested and analysed by robot. In this section, the robot system 
is documented. 

3.9.1 The initial plan 

Figure 3.22 describes the system. Libraries are developed by the printer and then 

transferred to the furnace where they are sintered under different conditions. 
After firing, the libraries were transferred to a measurement table. The range of 

measurement methods that can be applied is open-ended such as dielectric 

property measurement using impedance analyser, a colour measurement using 
luminescence spectrometer or mechanical testing using an indentation method. 
The measurement data are stored in an Oracle database on a SGI Origin 3200 

computer for subsequent mining and analysis. The system is connected to 

Reality-Grid 142,143, the EPSRC's e-science programme so that it can be steered 

and interrogated remotely. 

Users 

Intemet RealityGrid 
Rob ' (E-science) 

I Library development I I Library Screening I I Library analysis I 

Aspirating- 
dispensing ink-jet 
printer 
Four chamber 
furnace 

Robotic probe ,ý Precision X-Y table 
Hotplate 
Impedance analyser 

SGI Origin 3200 
computer 

Figure 3.22 Schematic diagram of the combinatorial robot system 
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3.9.2 Requirements specification 

Functional requirement 1: Start of a combinatorial trial 

The user inputs the details of one combinatorial. trial that includes the library 

construction, firing, screening and analysis. The robot checks the validity of 
information. If the information is not c orrect, an error message with 

corresponding information is given; otherwise the robot records the information 

of the trial and acknowledges the user. 

Functional requirement 2: Generate the printer programs 

The user-input information for library construction includes: the identification of 

the library, the composition of each sample in the library, the geometrical shape 

requirement of samples and density of the library. The robot creates a library 

development plan that includes: 

(1) The identification of the library is converted into a form of identification code 
(e. g. bar code) that will be printed on a particular location of the substrate. 

(2) The well-plate reformation algorithm is worked out according to the 

compositional distribution in the library. 

(3) The volume of printed mixed inks is worked out so that each sample meets 

the geometrical requirement of the sample. 

(4) The space location of each sample on the substrate is specified according to 

the requirements from the density of the library and the geometrical shape of 

samples. 

The library-development-plan is converted to programs that can be run by the 

printer. 
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Functional requirement 3: The robot triggers the printer 

The robot sends a signal to the printer. If the printer receives the signal and is 

ready to work, the printer is informed, otherwise, the robot gives an error 

message to the user. 

Functional requirement 4: The printer produces libraries 

The robot instructs the printer to run the programs to create libraries. Once the 

libraries are constructed, the printer informs the robot. If any problem occurs, the 

printer informs the robot, and the robot backs the effor-message to the user. 

Functional requirement 5: The robot processes the information on firing 

conditions. 

The robot processes the user-input information for library firing. The firing 

program of each chamber of furnace is worked out. Each substrate is located to a 

specified location in the chamber. 

Functional requirement 6: The robot transfers libraries to the furnace. 

Once the robot gets the message from the printer that libraries are ready, the 

robot informs the furnace door to open and uses the gripping device to transfer 

each substrate from the printer platform to the specified location in the furnace. 

Functional requirement 7: Firing libraries 

After the libraries are transferred to the furnace, the robot instructs the furnace to 

close door and run firing programs. Once the firing finished, the furnace informs 

the robot. 

f-, ",, 

Functional requirement 8: Transfer substrates from the furnace to the x-y table 
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After firing, the robot instructs the furnace door to open and uses gripping device 

to transfer substrates from the furnace to the x-y table. 

Functional requirement 9: Robotic stamping of silver paste to form the top 

electrode. 

Once substrates are placed to the x-y table, the robot paints silver paste on top of 

each sample by a stamping action. A pool of silver paste is available for the 

robot probe repeat action: picking up silver paste from the pool and stamping it 

to the sample. 

Functional requirement 10: Transfer of substrates from the x-y table to the 

furnace 

After the libraries are painted by silver paste, the robot transfers them to the 

furnace. 

Functional requirement 11: Second firing. 

The robot instructs the furnace door to close and runs a standard firing program 

to metalise silver paste. Once finished, the furnace informs the robot. 

Functional requirement 12: Transfer substrates to the x-y table for measurement. 

Once the second firing finished, the robot instructs the furnace door open and 

uses the gripping device to transfer the substrates from the furnace to the x-y 

table. 

Functional requirement 13: The robot sets up the measurement equipment 

The robot sets up the conditions of measurement equipment (e. g., the impedance 

analysis) based on the user-input information for library screening. 
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Functional requirement 14: Library screening 

The robot synchronises the measurement probe, the x-y table, and measurement 

equipment so that the properties of each sample in the library are accessed 

according to the user-specified information on libraries screening. The robot 

records the measurement data. 

Functional requirement 15: Store the measurement data of libraries into the 

database. 

The robot converts the measurement data of libraries into the database structures 

and stores these into SGI Origin 3200 computer. 

Functional requirement 16: The collection of substrates after libraries screening. 

The robot picks up the substrates from the x-y table and places onto the stock 

area. 

Functional requirement 17: Data mining and analysis 

Data mining and analysis programs are open-end implemented. For example, the 

experimental data can be compared to the result from either machine learning 

algorithms such as those provided by artificial neural networks or developing 

predicate theories. Each application will have its own software engineering 

process. 

Functional requirement 18: System status feedback 

During the combinatorial trials, the robot must give system feedback to the user 

such as "The printer is printing libraries", "The libraries are transferring from the 

printer to the furnace", etc. If anything goes wrong, error messages should be 

given. 
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Functional requirement 19: Report generation 

A report of the combinatorial trail should be generated for the user. The report 

must include the detailed information of libraries, the measurement results and 

analysis data. The content and format of report might be allowed to be user 

specified. 

Database requirement: A database must be developed and implemented in SGI 

Origin 3200 computer. The database must record and maintain the details of 

combinatorial libraries. The database must be expandable and can be integrated 

with other applications such as data-mining and analysis programs. A distributed 

database is required as the system will be internet-linked. 

User interface requirement: The interfaces between users and robot should be 

windows-based. The information of library construction, firing, screening and 

analysis must be categories and standardised so that user can select these from 

the menu. 

Safety requirements: during the robot transfer of substrates inside the robot 

gantry, the robot must not crash with any equipment such as the printer and the 

furnace. The furnace door can only be opened when chambers' temperature is 

below 50'C in case heat from the furnace damages equipment or users. A 

password protection must be implemented so that the system is only available for 

authorised users. 

3.9.3 System design 

Equipment making up the system has been described in section 2.2. These items 

of equipment are sourced from different manufacturers each having a stand-alone 

system. Thus the first task is making each part function. The second job is 

integrating all parts to work as a system. The functioning of each part (i. e., the 

printer, the furnace, the robot and the impedance analysis) has been described in 
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the previous section. The connection among these separate items of equipment 

relies on a local area network (Queen Mary, university network) as described in 

Figure 3.23. The benefits of this design are that the system can share the 

university network resource and save connection costs but still keep as a private 

network. 

The gripping device The measurement 
inside the robot gantry table and probe Reality grid' 

The Central L 
f ur furnace 

computer Internet 

Local area network 
(Queen Mary) 

The printer 

The computer computer 

with firewall I 

Computers HP 4294 The 
SGI Origin controlling Impedance 

combinatorial measurement analysis printer 3200 computer equipment 

Database 
j Open ended 

implementation 

Figure 3.23 The combinatorial robot system lying on a local area network 

The robot computer is used as the central control computer. The control 

programs are implemented using Visual basic 6.0 and integrated with the codes 

provided by Labman Automation Limited. The control program directly controls 

the operations of the measurement table, the measurement probe, the furnace and 
the gripping device inside the robot gantry. This is important because these 
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operations are real-time and can't rely on the network communication which 

takes time and is relatively unstable. The control program has four other 
functions: (1) Providing an interface between users and the system; (2) 

Converting user-input information into operations of combinatorial trial. (3) 

Communication with the printer, the measurement equipment (e. g. impedance 

analysis) and the SGI computer. (4) Communication outside the system (e. g. 
Internet). 

A library containing various standard procedures of the printer is developed 

using AxSys TM software. The printer programs are built from these procedures. 
A specification for the printer procedures should be developed but this is not 

addressed in this research. An application program is implemented in the printer 

computer using Visual basic 6.0. The program has three functions: (1) 

Communication with the central computer via implemented TCP connection; (2) 

Communication with the printer via Active X control to AxSys TM software; (3) 

Development of the printer program from the library-development-plan that was 

passed from the central computer. 

HP 4294 impedance analysis has LAN (Local area network) port and can be 

assign an IP address. The central computer controls the operation of HP4294 

impedance analysis using GPIB command via LAN. 

Entity relationship (ER) 144,145 model is a common tool used in relational database 

design. Figure 3.24 gives the ER schema diagram for the system database. Oracle 
145,146 is a popular commercial relational database management system (RDMS) 

The database is implemented using Oracle running on a SGI Origin 3200 

computer equipped with I Gbyte of memory. A personal computer is acting as a 
bridge between the LAN and SGI. The computer is installed with a firewall that 

acts against any unauthorised access of the SGI. 
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Entity: an object with a conceptual existence (e. g. a company, a job). 

Attributes: Each entity has attributes- the particular properties 
describe it. 

(: EE) Key attributes: an attribute can unique identify the entity. 

<ý> Relationship between entities 

Figure 3.24 The ER schema diagram for the database of combinatorial robot 

system 
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3.9.4 System implementation 

The requirement specitication was not fully implemented due to limited time. In 

this section. the system implementation is described in two parts. First the users- 

interfaces of' the systern are described. Second the system I Linctions are 

documented. 

Iýigurc 3.25-3.27 gives the user interfaces of the system. The basic process of' 

running the system: The user selects a list of robot operations that implements a 

cornbinatorial trial via a user-interface (Figure 3.25). The list of operations is 

recorded by the system and appears in the main user-interface (Figure 3.26). 

While these operations are proceeding, the status of the running system are also 

displayed and keep updating. The measurement data from the 111'4294 

impedance analysis is given in another user-interface (Figure 3.27). 

x 

.......... 4. 

Ný, QY Queen Mary 
Robot Ufij v"ýAy W Lorvdm 

Printer 
Pick I Connection 

Place 
DriveTj F- 00() F000 RunFile Fad 

Open oven 
Close oven Opor I Measurement 

r000 i Preset 
Robot home 

Output 
Setting Conditions 

Inp 
-Auto-Scale--] 

-- ---- 
ReadD *2ý ] 

Emergency s 
_ __ 

Wait f-0-00 
Run 

'x itPro gr am 

Figure 3.25 The user-interface where the user creates a list ofrobot operations 

that implement a cornbinatorial trial. 
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Figure 3.26 The main user-interface where a list of robot operations is going 

through and the system status is tracked. 

dL? J 

--Close Trace A 

Trace B 

Figure 3.27 The user-interl'ace which displays the measurement results fi'om the 

lIP4294 impedance analysis. 
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The fOllowing states in detail what system functions have been implemented. 

(1) A library containing thirty-two printer procedures has been developcd. 

The printer program can be built frorn these procedures. The printer was 

made operational 11or ceramic ink applications as described in section 2.5. 

Figure 3.28 shows 100 samples each of'O. 2 ýtl- 'I'iO-, ink printed on a 20 

min square ot'Pt-coated alumina, giving a library density of'2.5 x 105 111-- 

in a cubic array. It is spaced to allow both sample probe and common 

electrode probe contact adjacent to each sample f'or electrical property 

measurement. 

20 

Figure 3.28 An array of samples printed onto Pt-coated alurnina giving a library 

density of 2.5 x 10-5 M-2. 
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(2) The printer was integrated with the robot so that the robot can open a 

specified printer program, run, stop, and know execution status. 

(3) The robot can instruct the furnace door to open, close and run a firing 

program and know the status of the furnace door (i. e., open or closed). 
The physical integration of the furnace and robot was done by Labman 

Automation Limited. The software implementation was done in this 

research. 

(4) The robotic probe was developed and integrated with the impedance 

analyser and proved to function as described in section 3.6. 

(5) The impedance analyser and the robotic probe were integrated with the 

robot. Thus the robot can synchronise the probe contact with the sample, 

setting a specified measurement condition of the impedance analyser and 

reading data from the impedance analyser into the robot computer. 

(6) The robot gripper can pick up and place substrates on any top-cleared 

position inside the robot gantry. Various security procedures have been 

implemented to prevent the robot from crashing with other equipment. 

For example, unless the furnace door is fully opened, the robot gripper 

can't move. The time lock was used when the furnace door is opening or 

closing. 

Table 3.7 gives the performance of automation process described in the section 

2.7.4. The conclusion is: the nucleus part of the combinatorial system has been 

developed so that the combinatorial library can be printed, fired and screened 

automatically. 
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Table 3.17 The automation of the process for calibration of dielectric 

measurement in the combinatorial method. 

Automation Time used Note 

Sequence 

Inkjet 15 minutes The printer aspirated BaTi03 ink and printed it on dried 

printing platinum ink that was painted on the alumina substrate. 

samples 
It takes 54 seconds for the robot gripper to transfer one 

substrate from the printer to the furnace and go back to home 

position. 
Firing 48 hours It takes around 6 hours for the furnace firing samples at 1400 

'C for 2 hours. the other time is used to naturally cool down the 
furnace to 50 'C. Then the operator instructed the robot the 

furnace can be safely open. 

It takes 41 seconds for the robot to transfer one substrate from 

the furnace to the hotplate and vice verse. The silver paste was 

manually painted as one electrode in advance although it is 

Metalising 24 hours possible to automatically ink the electrode in a pool of silver 

paste. It takes 2 hours for the furnace program to metalise the 

sample at 80 
'0 

'C for 5 minutes. The other time is used to 

naturally cool down the furnace to 50 *C. Then the furnace 

can be safely opened. 

It takes 45 seconds for the robot gripper to pick up one 

substrate from the furnace and place it on the hotplate and 
Screening 5 minutes position it under the robotic probe. The setting of 

measurement conditions, measuring capacitance as a function 

of frequency and reading data from impedance analyser to the 

computer were all done in real time. 
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3.9.5 Discussion of the combinatorial robot system 

In the above section, the robot system was documented in a software engineering 

approach 147,148 with necessary simplification to make it widely accessible. Due 

to limited time, the system is not fully implemented. There is also much room for 

improvement for the documentation of the system itself. Considering the scope 

of the system, truly it requires a team rather than single person (i. e., the author) 

to design and implement this type of system. In fact, the system has been 

implemented and proved to function. A general formula for the approximate time 

(in seconds) used in the combinatorial method is: 

t= [tP(N9S)+tF(XX54, Y)+tm(Xx45+Sx20+86.4x10')+ts +t, +360]xn 
(3.16) 

where, tp is the time for the printer to reformat the well-plate and print samples 

on the substrate. This is a function of the number of compositions created N, and 

the number of printed samples, S, n is the number of cycles. One composition 

may be printed as several copies to allow firing at different temperatures in order 

to explore processing as well as compositional parameters or to provide an 

assessment of error by replication. This base time depends on the number of 

components in the system and the sequence chosen for mixing and printing. It 

can be reduced by, for example, printing in Right and the printer has this ability. 

tF is a function of the number of printed library substrates, X, and the firing 

program Y. The robot takes around 54 s to transfer one substrate from the printer 

to the furnace and return to its home positiom The firing program, Y, varies as 

the experiment requires and provides the greatest time penalty. tm is the time 

required for printing metallised electrodes; it takes around 45 s for the robot to 

replace a substrate from the furnace to the hotplate and vice verse. It takes 

around 30 s to deposit silver paste on the top of each sample and 86.4 ks for the 

furnace to fire the metallised samples to 800 *C for 300s and to cool naturally to 

50 OC. ts and tA are the times spent screening the library and analysing the 

library, respectively, which are both experiment dependent. During one cycle, 
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the furnace door closes and opens twice, which costs 360 s. The time required for 

ink preparation is excluded; it is assumed inks are available from stock. On this 

basis, the times given are not sensitive to the oxide types. 

The whole system can perform unlimited operations with minimum human 

intervention. The system is a unique instrument and therefore it is desirable to 

make it available through e-science networks. The evolving paradigm for sharing 

computational and experimental resources over the Internet is the Grid. 

RealityGrid is a leading UK e-science project that has as one of its aims the 

integration of the system into the Grid. Thus alongside molecular modelling and 

the associated visualisation methods which are presently being grid-enabled, we 

may begin to envisage combinatorial laboratories in which geographically 
diffuse operators steer searches on the basis of their own computer-assisted 

analysis of the emerging data. 

Clearly a range of machine learning algorithms such as those provided by 

artificial neural networks (weak methods) to those capable of specifying the 

nature of connections (strong methods) are becoming available. Thus when 
informatics are combined with combinatorial methods, it then becomes necessary 

to distinguish the terms 'high throughput screening' from 'combinatorial' 

methods. The former implies a screen or mesh through which unwanted (not 

optimised) compositions pass to waste while the latter implies that all data are 

collected, stored and assessed for the creation of wider and more general 
knowledge. These important issues are discussed in greater depth in current 

texts 149,1 50. A controversy surrounds the application of informatics to scientific 
discovery; it is claimed by some that hypothesis-free experiments from which 'in 

silico' or machine learning can generate new theory can never be conducted. 
One can discern the fallacy of converse accident in this criticism. It is rarely the 

intention, and may not be a possibility, to conduct hypothesis-free experiments. 
The choice of starting materials and even the measurement methods are 'theory 

laden' and the perceived uses of these methods should be seen, and are being 

used as, a way of speeding up what is often already an empirical approach to 
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scientific discovery in areas where predictive theory is inadequate, rather than the 

complete exclusion of human intervention. 
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Chapter 4 Conclusions and Suggested Future Work 

4.1 Conclusions 

The conclusions of this research are described following as five parts. 

Compositional calibration of the ink-jet printer 

1. A procedure for preparing thick film combinatorial ceramic libraries by 

an aspirating-dispensing ink-jet printer is developed. 

2. Three water-based ceramic inks (i. e., A1203, Zr02 and Ti02 inks) were 
developed. The sedimentation behaviours of these inks were reported. 
These results show that these inks were stable at least for 7.2ks after 

preparation. 

3. Loss on ignition experiments confirmed these water-based ceramic inks 

(i. e., A1203, Zr02 and Ti02 inks) were homogenous mixtures so it is 

possible to know the weight of dissolved powder from volume of ink. 

4. The evaporative loss of Zr02 inks in the covered 96 well plate was 

reported. To control evaporation of inks, the well plate should be refilled 

with fresh ink at every 1.8ks during the operation in order to keep the 

error in weight percentage of ceramic within 1%. 

5. The loss on ignition of transferred inks demonstrated that the printer can 
deliver specified amounts of each po, %ýder into the target composite inks 

with a tolerable error about lwt%. 

6. Inspection of the target well plates after -each composite ink was gently 

aspirated out found no evidence 'of sediment, confirming the bulk 
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sedimentation trials and indicating the interaction of ink constituents did 

not promote flocculation. 

7. By changing the amount of dispersant used in the inks or by printing onto 

a porous substrate, the geometry of residues from dried ceramic ink 

droplets can be modified to facilitate property measurements and uniform 

composition, as planned, can be achieved. 

8. The printer can assemble ceramic mixtures with compositional accuracy 

throughout the entire sample as mapped by EDS of 1-3wt%, when 

precautions are taken to establish stability against sedimentation, 

evaporation of vehicle, and particle segregation on drying. This is 

comparable to accuracy of the EDS measurement method itself as applied 

to unpolished surfaces. 

Particle segregation 

1. When multi-component ceramic suspensions are deposited in the form of 

small drops (- 5gl), particle segregation can occur on drying so that the 

upper surface of the powder residue does not match that of bulk 

composition. 

2. A micrograph of the cross-section of a residue prepared from ink F (Ti02- 

Zr02 system) with elemental mapping showed Zr02 enrichment over 10- 

20[tm depth. The segregation layer became less thick from the central 

part to the edge, indeed there is no segregation in the edge region. The 

figure also confirms the position of, the segregation layer on the upper 

surface. 

3. Droplets were placed on porous substrates (i. e., both plaster of pairs and 

micro-porous cellulose nitrate membranes) which provide rapid 

separation of powder from its - suspending fluid. The EDS results on 
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droplet residues show that fast drying by liquid capillarity improves 

compositional homogeneity; segregation is associated with slow drying 

by evaporation. 

4. The segregation cannot be explained by preferential sedimentation unless 
dispersant addition is restricted. 

5. In order to assess the effects of dispersants, inks D and F(described in 

Table 2.3) were prepared without dispersants, The EDS results on droplet 

residues from these inks confirm that segregation on the upper surface is 

associated with the presence of dispersant. 

6. The order of mixing components of ceramic inks does not have a 
definitive effect on the segregation and does not provide a solution to the 

problem of segregation. 

7. By centrifuging a discrete suspension, removing the supernatant and re- 
dispensing the powder in the same mass of liquid, it is possible to obtain 

mixtures in which only one type of powder is treated with dispersant. 

This experimental method was invented in this research and is named 
"Removing excess dispersanf'. 

8. Removing excess dispersant does not provide a general solution to the 

segregation problem but it illustrates, the sensitivity of segregation to 

preferential adsorption on specific powders; an effect that can over-ride 

preferential sedimentation under Stokes' law. The important observation 

was that the powder to which dispersant was preferentially attached was 

always richer on the upper surface of dried droplets. 

9. Adding a larger amount of dispersant (i. e., lOwt% in the inks) increases 

viscosity and is likely to impede particle mobility by chain entanglement 

effects. Sessile drops from these inks dry to leave dome shapes with 
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uniform planned composition. So, adding a larger amount of dispersant 

provides a generally sound solution to the segregation problem based on 
formulation rather than substrate selection. 

10. The segregation is attributable to the partitioning of particles between the 

growing peripheral 'foot' that develops during drying and the diminishing 

liquid pool which contains vigorous recirculation flows. Better dispersed 

particles remain in the pool and hence are found in excess on the upper 

surface of residues. Less well dispersed particles join the 'foot' earlier in 

the drying process. 

Drying behavior of sessile droplets of mixed powder suspensions 

1. For droplets of suspension in which there is limited particle mobility 

either due to excessive loadings of dispersant or because of absence of 
dispersant, the contact angle and height of droplets consistently reduced 

until a minimum value was reached. The contact diameter was almost 

unchanged during drying. Droplet residues retained a dome shape with 

uniform planned distribution of powder. 

2. Droplets of suspension in which particles are mobile, such as those 

containing around lwt% dispersant or fine powder that disperses well in 

water without the addition of dispersant, have three stages of drying and a 
'doughnut' shape of residue sometimes with a central hole resulted. 
Either segregation of powders on the upper surface or preferential 

sedimentation on the lower surface occurs. 

3. The conclusions (i. e., above I and 2) are striking by similar to the 

morphological development of residues from spherical spray dried 

ceramic agglomerates; droplets from well-dispersed slurries in which 

particles retain mobility during , drying, form irregular shaped 
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agglomerates with a central hole. Suspensions with a tendency to 
flocculate, form dense spherical agglomerates. 

4. A geometrical fact that illustrates the strong variation in surface area to 

underlying volume for a hemispherical drop is discovered in this research. 
This does not address the more complex flow paths that occur during 

drying but does show that a strong component of flow must occur in the 

radial direction of the droplet footprint even if drying is uniform over the 

liquid surface. 

Combinatorial dielectric measurement 

1. Two approaches, Evaporation of platinum wire and coating with platinum 
ink, are used to coat platinum on alumina substrates. By using the 

platinum ink approach, 0.3 ohm per square (i. e., sheet resistance) after 
1600T for 2h was measured. The platinum ink approach was chosen to 

facilitate combinatorial dielectric measurement. 

2. The combinatorial dielectric measurement method was developed. The 

measurement results for both BaTi03, ink dried in bulk and ink-jet 

printed BaTi03 on the Pt coated substrates measured automatically by the 

dielectric probe of the combinatorial instrument agree well with both the 

pressed sample and literature values. ,,, 

3. The capacitance measurement for dome-shaped BaTi03 samples on a 

common ground electrode with an upper metallised electrode was 

studied. The results show the geometry factor can bring significant error 

of dielectric constant, calculated from- the measured capacitance using 

conventional equation 1.13. As the upper and lower electrode of samples 

are closer to a parallel configuration, the dielectric constant calculated 
from the capacitance become more reasonable. 
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4. A formula for calculation dielectric constant from capacitance measured 
from a pronounced curvature of the upper electrode was developed, but 

the current form of the formula failed to account for geometrical effects 

probably due to the influence of edge effects. 

The combinatorial robot system 

1. The combinatorial robot system was designed, documented and 
implemented so that combinatorial libraries can be printed, fired and 

screened automatically. 

2. A library of A1203-TiO2-ZrO2 system was developed using the developed 

combinatorial method. Dielectric properties of the library were accessed. 

4.2 Suggested future work 

There are seven suggestions for future work. 

1. A new generation of combinatorial ink-jet printers needs to be developed. 

The relationship between ink properties (e. g., the volume percentage of 

powder, viscosity) and the aspirating and dispensing ability of printer 

should be cleared. An ideal printer should be able to aspirate and dispense 

these inks that have high volume percentage of powder and viscosity. 

2. More ceramic inks which have sound properties (i. e., being compatible 

with the printer and applications) need to be developed. 

3. Considering the cost of platinum, using platinum-coated substrates in the 

combinatorial method is not an economic approach. An alternative way 

needs to be researched. 
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4. The mechanism of segregation and its solutions (i. e., using porous 

substrate or using excess dispersant in the inks) needs to be further 

studied so that a quantitive explanation can be given. 

5. The relationship among the amount of dispersant used in the inks, the 

geometry of droplet's residue and the powders' characterises needs to be 

further studied. The aim is to use an optimal amount of dispersant to get 
the required geometry of droplet' residue with uniform planned 

composition. 

6. More combinatorial measurement such as measuring electric 

conductivity, mechanical properties and colour measurement of samples 

can be developed in the light of the developing combinatorial. dielectric 

measurement method. The thinking is increasing the measurement 

accuracy without losing the advantage of the high thoughput approach. 

7. The combinatorial robot system needs to be ftirther developed as 
discussed in section 3.9. 
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Appendix 1: Program sequence for formatting well plates with calibration 
inks. 

Start. 

Loop 10 times. 

(Aspirate Xx1.5 pI ink A from source well plate. 

Loop X times 

{Dispense 0.1 pI ink A into the target position. 

Clean the nozzle and channel. 
Aspirate Yx1.5 pl ink B from the source well plate. 

Loop Y times 

{Dispense 0.1 pI ink B into the target position) 

Clean the nozzle and channel. ) 

Aspirate X' x 1.5 pl ink A from source well plate 

Loop X' times 

{Dispense 0.1 pI ink A into the target position) 

Clean the nozzle and channel. 

Aspirate Y'x 1.5 pI ink B from the source well plate 

Loop Y' times 

(Dispense 0.1 pI ink B into the target position 

Clean the nozzle and channel. 

Aspirate specified volume of mixed ink from the mix well plate. 

Print the composite ink on the target substrates in required pattern. 
Clean the nozzle and channel. 

Finish. 

In the above, (X + X') x 0.1 pl is the required transfer volume of ink A; (Y + 

Y') x 0.1 pl is the required transfer volume of ink B. The target position can be 

one of wells of the mixed well plate or crucibles as experiment specified. 
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