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ABSTRACT 

In this thesis I introduce a new methodology for pricing American options 

when the underlying model of the asset price allows for stochastic volatility and/or 

it has a multi-factor structure. Our approach is based on a decomposition of an 

American option price into its European options counterpart price and the early 

exercise premium, paid by the option holder in order to keep the right of exercising 

the option at any time-point before its expiration date. 

Based on closed form solutions of the joint characteristic function of the state 

variables driving the underlying model, the thesis provides analytic, integral solutions 

of the early exercise premium (and hence of the American option price) which enable 

us to build up fast and accurate numerical approximation procedures for calculating 

options prices. The analytic solutions that I derive express the optimal early exercise 

boundary in terms of prices of Arrow-Debreu type of securities reflecting the values 

of the options additional payoffs if they are exercised earlier, or not. 

Numerical results reported in the thesis show that our approach can price 
American options on stocks, bonds and interest rates derivatives efficiently and very 

fast, compared with existing methods. The efficiency gains of our method stem from 

the fact that it involves only one step of approximation, as the European prices 

embodied in the American option prices can be calculated analytically. The gains 

of computational speed come from the fact that our method can reduce the integral 

dimensions of the early exercise premium considerably. 
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CHAPTER 1. 

INTRODUCTION 

Financial derivatives constitute securities (instruments) whose payoffs depend 

on other financial securities, from which they derive their price. Their use in the com- 

mercial activities can be traced back several centuries ago. Since the abandonment of 

the Brendon Woods exchange rate mechanism in year 1973, financial derivatives have 

become one of the most popular categories of securities. This happened because both 

corporations and financial institutions have been starting to being exposed to high 

volatility risks stemming from the changes in interest rates, exchange rates, commodi- 

ties and equities. In year 1973 the first organised exchange options market opened, 

the Chicago Board Options Exchange (CBOE). Since then, the growth of world's 

derivative markets shows no sign of slowing down. According to the recent statistics 

on derivative markets' volume, reported by the Bank of International Settlements 

(BIS), at the end of 2002 the outstanding value of derivative contracts was $13.54- 

trillion, without taking into account the $10.34-trillion value of futures contracts and 

the trading volume of derivatives traded in over-the-counter markets. 

Parallel to the development of traded markets for derivatives, over the last 

three decades there was an explosive amount of research introducing and pricing 

correctly derivative securities. Since the seminal work of Black and Scholes (1973), 

derivatives have become one of the hottest areas in financial economics and econo- 

metrics. In particular, new models of option and asset pricing have been developed 

to allow for stochastic volatility and/or jump processes, or other phenomena which 

can better describe the dynamics of stock and derivative prices. However, most of the 

new models suggested do not provide closed form solutions for derivative prices, espe- 

cially for the American type of derivatives which is the main topic of this thesis. This 

makes the computation and empirical evaluation problem of derivative prices a very 

difficult task. There are two sources of difficulties for pricing American derivatives. 

The first comes from the fact that this category of derivatives gives the option holder 
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the right to exercise the option contract at any time before the expiration date which, 

in turn, implies that the interim payoffs and optimal stopping (exercising) time of 

the derivatives, over the maturity interval, must be estimated. The lack of analytical 

closed form solution, is also very severe for interest rates derivatives, such as caps 

and swaptions, where it is assumed that the underlying interest rates are driven by 

a multi factor, affine model of state variables and that the interest rate is no longer 

deterministic. 

Although the above aforementioned derivative pricing problems have been 

known to the practitioners and academics for a long time, there are few models pro- 

viding analytic solutions for American call or put options. And these are available for 

simple, Gaussian asset pricing models. The aim of this thesis is to fill this gap, and to 

provide analytic and computationally attractive closed form solutions for American 

call (or put) option prices for more complicated asset pricing models, used in real life. 

To derive these solutions, we exploit the recent developments in asset pricing theory 

which indicate that, in general, asset prices and derivatives can be spanned by the 

same characteristic functions (CFs). Closed form solutions of these CFs are derived 

in the thesis. The closed form solution are used to derive analytic formulas for option 

prices on stocks, bonds and interest rates under stochastic volatility or jumps. The 

closed form solutions of the CF enable us to explicitly calculate the expected values 

of the payoffs implied by an early exercise date of the American option contracts. 

These prices are referred to in the literature as Arrow-Debreu prices. They consti- 

tute the cornerstone of the modern asset pricing theory, as they can determine the 

risk neutral probability density function of the underlying asset price explicitly. The 

analytic formulas provided by the thesis for pricing American options unbundle the 

option prices to a portfolio of Arrow-Debreu type of securities, which can make the 

evaluation of the option prices very fast and efficient. 

The thesis is organised as follows. In Chapter 2, we provide a survey of the 

existing numerical approximation methods in the literature for pricing American op- 
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tions. These methods are divided into the following categories: the Binomial tree, 

the finite difference, optimal exercise boundary and the simulation based methods. 

From all of these categories, the optimal exercise boundary methods seem to be the 

best one in terms of pricing accuracy and computation speed. This is the main reason 

for employing this approach in approximating the analytic, integral formulas of the 

derivative prices derived in the following chapters of the thesis. 

In Chapter 3, we present a new option pricing formula for pricing American 

calls on stocks under stochastic volatility. This is done by assuming that the optimal 

exercise boundary price above which the option contract is exercised is a log-linear 

function of the stochastic volatility. This assumption can be justified by recent empiri- 

cal evidence based on parametric estimates of the optimal exercise boundary function. 

This relationship of the boundary enable us to decompose the American option price 

into its European option counterpart price and the early exercise premium that the 

option holder would like to pay for having the right to exercise early the option. The 

latter is derived in analytic form and is exploited in order to develop an optimal exer- 

cise boundary approximation approach of the exercise boundary based on Chebyshev 

polynomials. Numerical results indicate that our boundary approximation method 

can equally perform with other exercise boundary approximation methods, suggested 

in the literature for the simple, log-normal model of stock returns. Indeed, it can 

price American call options under stochastic volatility very fast and efficiently. 

In Chapter 4, we present a new optimal approximation method of the exercise 

boundary with the aim to price American bond put options for multi-factor affine 

term structure models. American bond option prices are far more difficult to be 

calculated, compared with the American stock options. This happens because: first, 

the discounted factor of the option payoffs is no longer deterministic and, second, the 

multi-factor structure of the underlying bond price (or interest rates) tends to make 

the dimensionality problem of the analytic formulas more difficult to cope with. 

As in Chapter 3, the suggested approximation method for pricing American 
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bond options is based on a decomposition of the bond option price into its European 

counterpart plus the early exercise premium, which can be expressed as a portfolio 

of Arrow-Debreu securities. To derive the analytic formulas of the Arrow-Debreu 

security prices, we used the extended CF suggested by Duffie, Pan and Singleton 

(2000). Since the space of the state variables is spanned by many variables, now our 

exercise boundary approximation method is based on a multi-region and multi-piece 

approximation of the optimal exercise boundary function. As shown, in our Monte 

Carlo experiments this approach can better approximate the true exercise boundary 

function, compared with a single region approximation of the exercise boundary state 

space. 

In Chapter 5, we present an option model for pricing interest rates derivatives, 

such as caps, floors and swaptions. Since some of these derivatives critically depend 

on the date-to-date announcements in interests rates, we adopt Heath, Jarrow and 
Morton's (1992) (HJM) model of forward rates for describing the dynamics of the 

term structure model of interest rates. This model is extended to allow for stochastic 

volatility and marked point (jumps) processes. One of our motivations to adopt 

this model is that it can accommodate factors of the implied volatility of caps and 

swaptions prices which can not be spanned by affine models of the term structure, as 

recent evidence suggests. 

As in the previous chapters, we employ the same methodology in developing a 

numerical approximation method for pricing the above interest rate derivatives. To 

evaluate whether the HJM model and the exercise boundary approximation scheme 

can consistently price the caps and swaptions, we fit alternative specifications of the 

extended HJM model into caps and swaptions data employing our approximation 

method. Our results indicate that allowing for stochastic volatility and jumps can 

significantly reduce the pricing errors of interest rates derivatives. Our results also 

show that the risk neutral intensity of the jump is very high, which implies the high 

price of jump risk, and can be compared with that estimated based on stock options 

4 



data. 

In Chapter 6, we conclude the thesis. 



CHAPTER 2. 

NUMERICAL METHODS OF EVALUATING AMERICAN OPTIONS 

American options give the holder the right, but not obligation, to buy (for call 

options) or sell (for put options) the underlying security at a fixed price, known as 

strike price, at any period of time before the expiration date of the option contract. As 

the European options, the evaluation of American options can be done by calculating 

the risk neutral expectation of the appropriately discounted future cash flow (payoff) 

of the option. This cash flow is the difference between the selling (buying) price of 

the underlying security for a call (put) option minus the strike price. But, in contrast 

to the European, the American options imply a continuum of cash flow during the 

maturity interval. These cash flows can come from an early exercise of the option. 

Since the time of exercising an American option contract is unknown, the evaluation 

problem of an American option is more complicated than that for a European option. 

Mathematically, the evaluation problem of an American option is known as the 

optimal stopping (decision) time problem. Below, we briefly describe this problem 

for an American put option on a security with maturity date T and strike price K, 

denoted as PA(Xt, T). 

Consider the probability space (P,. F, fl), with the filtration .r E[t,, Il satisfying 

the usual conditions [see Protter (1990)]. Assume that the dynamics of interest rates 

and the price of the underlying security are driven by an N-dimension vector of state 

variables Xs E RN and that the elements of X,, are adapted under filtration 
. 
P3. Let 

G(X5) 'ZN -+ 7Z, Vs E [t, T] denote the underling asset determined by the state 

variables, g(X3) : RN -º R, Vs E [t, T] denote the payoff function of the American 

option and rE [t, T] denote a time-point of the maturity interval where the option 

can be exercised. Then, we can write the mathematical problem for calculating the 

American put option price PA(Xt, T) as 

PA(Xt, T) = sup EQ [e_ftTr(3)d3g(XT)J. 
t] 

TEr=[t, T] 
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where Q stands for the risk neutral probability measure and r constitutes the set of 

all, possible stopping (exercise) time-points. The optimal exercise time is defined as 

T* = inf {s E [t, T] :9 (X, ) = PA(X�, T)} (2.. 2) 

The above mathematical problem is referred to as the Snell envelop [see Karatzas 

(1988)]. Note that e-fT''(x°, 9)asPA(Xt, T) constitutes a supermartingale, while the 

corresponding product for a European option price constitutes a martingale. 

To obtain an optimal solution for PA(Xt, T), given (2.. 1), we need to make 
three important assumptions for the security markets: (i) there are no arbitrage op- 

portunities, (ii) the markets are efficient and (iii) the markets are frictionless. The 

no profitable arbitrage assumption is a sufficient and necessary condition for the exis- 

tence of a the martingale measure Q, under which we can price the options. Without 

this condition, we could not find an optimal solution. The efficiency of security and 

options markets assumption implies that all market participants (i. e. holders or writ- 

ers of the American options) share the same information when forming expectations 

about the future paths of security prices and potential exercise time-points. Finally, 

the frictionless of the market assumption implies that there are not any transaction 

costs or other type of costs which may trivially complicate the evaluation problem of 

the option. 

The above assumptions are not adequate to guarantee that a mathematical 

solution of problem (2.. 1) will always exist. To this end, we need to impose a critical 

boundary condition [see Duffie (1992)], stated below. 

Condition 1 (American Regularity Conditions) If g(X3) is non-negative con- 

tinuous process and E[(g*)9] < oo for some q>2, where g* = supsE[t. TJ g(X3), then 

the instantaneous interest rate, denoted as r(X8, s), is bounded. 

This condition guarantees that the instantaneous interest rate, which is used 

to discount the payoff of the option, is bounded, and thus guarantees the existence 
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of a solution for problem (2.. 1). 

To complete the description of the mathematical problem for calculating the 

American put option price PA(Xt, T), next we make the following definitions. First, 

we define the exercise region of the space of the vector of the state variables Xt. This 

is given by a subset of the state space of Xt into which the option holder exercises 

the option contract, defined as 

71t = {Xt E RN : g(Xt) = PA(Xt, T)}. 

The complementary of the above set, defined as 

7t = 
{. Yt E RN : J(Xt) < PA(Xt)} 

, 

constitutes the continuation region into which the holder keeps the option alive until 

its expiration date. The subset of RN which divides the space RN into the exercise 

and continuation regions is known as the optimal exercise boundary. This is a region 

of critical values of Xt where the option holder is indifferent of exercising or holding 

the option alive. 

2.1 Mathematical representations of problem (2.. 1) 

The optimization problem given by equation (2.. 1) can be represented in two 

ways. The first is based on a partial differential equation (PDE) of the bond price 

PA(Xt, T) and the second is based on a Bellman equation. Both of these representa- 

tions can be proved very useful in building up numerical methods for calculating the 

option price PA(Xt, T), given that it is difficult to find out analytic methods. 

2.1.1 PDE representation Let us, for exposition, assume that the vector of the state 

variables Xt consists of one state variable, denoted Xt, which follows an Ito process 

in R which satisfies the stochastic differential equation (SDE) under the risk neutral 
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probability measure Q 

dXt = a(Xt)dt + b(Xt)dWtQ, 

where WQ is a Brownian motion process under the Q measure. According to Ito's 

lemma, we have 

dPA(Xt, T) = DPA(Xt, T)dt + 
OPA 

ex 
ý' T) 

b(Xt)dWQ 

where D is the differential operator, defined as 

D= a(Xt) 
OPA (Xt, T) 

axt 
OPA(Xt, T) 

+1tr 
f a2PA(Xt, T)b 

XbX, + 2L 8Xt 
( t) ( t)) at 

Define h(Xt, T) = e- ft r(X., s)dsPA(Xt, T), then it can be easily see that EQ [h(XB, T)] < 

)t(X3, T), V s>t, because h(Xt, t) is the supermartingale. This implies that h(Xt, t) 

should satisfy the following PDE inequality 

Dh(Xt, T) 

e- fT r(Xa, s)ds = DPA(Xt, T) - r(Xt, T)PA(XX, T) < 0. 

Since in the continuation region, %, h(XT, T) is a local martingale, we have that 

PA(Xt, T) should also satisfy the following PDE 

DPA(Xt, T) - r(Xt, t)PA(Xt, T) = 0. 

Combining the above two relations, we can derive a PDE with a variant inequality 

[DPA(Xt, T) - r(Xt, t)PA(Xt, T )] [PA(Xt, T) - 9(Xt)) =0 (2.. 3) 
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with DPA(Xt, T) - r(Xt, t)PA(Xt, T) <0 and PA(Xt, T) > g(Xt), 

subject to the boundary condition PA(XT, T) = g(XT). The above PDE can be 

numerically solved out to derive the option price PA(Xe, T). 

2.1.2 Bellman Equation representation This representation of the American option 

pricing problem (2.. 1) is often used in discrete-time frameworks of the evaluation of 

the American option. In this framework, we assume that the set of optimal stopping 

time-points is given by the finite indexed set y= It = so, sl, ..., sn = T}. Then, 

problem (2.. 1) implies the following discrete-time Bellman equation for the American 

option price 

PA(Xs{, T) 

= max 
(g(x8), E3 [e- f +l r(xuýu)ýu pý (xS +i ý ý') J ]) 

' 
(2.. 4) 

Vi = 0,1, ... n. As the PDE, the above Bellman equation can be solved out to obtain 

a solution of the price PA(X3;, T). 

2.2 Numerical methods for pricing American options 

The mathematical representations of the American option pricing problem, 

given by equations (2.. 3) and (2.. 4), indicate that it is difficult to derive analytic, 

closed form solutions for the option price PA(Xe, T). Therefore, numerical approxi- 

mation methods have been suggested in the options pricing literature. In this section 

we survey these methods starting, first, with the Binomial tree method, which is the 

oldest method. 

2.2.1 Binomial tree numerical method The Binomial tree (BT) method was intro- 

duced by Cox, Ross and Rubinstein (1979). This method provides a simple and 

powerful approach to price American options. The BT method assumes that at the 
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end of each node of the maturity interval (step of the tree, as is said alternatively), 

the underlying asset can take one out of two possible outcomes. The method exploits 

the fact that an option can be replicated by a portfolio consisting of a riskless asset 

and the underlying risky asset (say a stock). This portfolio is known as replicating 

(or synthetic) portfolio. Ruling out arbitrage implies that the value of the option 

should be equal to the value of the synthetic portfolio which can be used to price the 

option contract. 

To present the BT method, we first consider the case of a European put option 

and we assume that the underlying asset (stock) price follows a one-step Binomial 

tree. If the initial stock price is identical with the state variable Xt and the European 

put option price is Pt, then there are two possible outcomes of the stock price in the 

next period, when the option contract expires: either the stock price to move up to 

the level Xt+1 = Stu or move down to the level Xt+l = Xtd, with (u >1>d> 0). 

The put option prices corresponding to the above two outcomes are respectively given 

as Pt+l = max(K - Xiu, 0) and P+1 = max(K - Xtd, 0). Under this scenario, we 

can show that a synthetic portfolio consisting of w= Pu_ d number of stocks and one 

European put option is riskless and has an instantaneous rate of return equal to the 

riskless interest rate r [see Hull (2000), inter alia]. Based on this portfolio, we can 

derive the current price of the option as 

erT -d with q=u-d 

where T denotes the maturity interval of the option (here, T= 1). The analytic 

solution of the option price given by the above equation can be thought of as a 

weighted average of the possible one-period (step) ahead future payoffs of the option 

in the expansion (bull) and recession (bear) states of the stock market, respectively. 

The attached weights, q and 1-q, are known as risk neutral probabilities, since the 
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evaluation of Pt in (2.. 5) is made after ruling out arbitrage. These probabilities are 

also known as the prices of Arrow-Debreu type of securities which pay $1 in bull state, 

and zero otherwise. 

Multi-step Binomial tree In reality, the BT model is more complicated than the one- 

step tree presented above. It can involve a larger number of steps (say n). In this 

situation, we need to divide the maturity interval into n equal subintervals of length 

At =nt and calculate the number of all possible outcomes of the underlying asset 

price process at each step i, i=1,2, ..., n of the tree t+ i/t . We will refer to the 

jth node (branch) of the tree at the step t+ it as the (i, j) node. In this case we 

can easily show that the risk neutral probability q at each step of the tree can be 

calculated as 

erne -d q 
u-d 

where u= e° °t and d= e-° °t. 

Suppose that all future possible outcomes of the stock price are determined by a se- 

quence of independent and identically distributed random variables Y+i, Y+21 
..., Y+n 

measured on the probability space (q, 1- q), i. e. YE (u, d). At the ith step of the 

tree, the stock price will be given by the product Xt+; ot = XtY+1 '+2oc""Y+=ot, and 

it will take the following i+1 possible values Xtdi, Xtdt-lu, 
..., Xtui with probabilities 

(1 - q)1, (t_i)11 q(1 - q)i-1, (i_2)121g2(1 - q) i-2, 
..., qt, respectively. ' Denote the stock 

price at the node (i, j) of the tree as X +iot 
= Xtd'-3'uj. Then, based on the same 

I The convergence of the BT model to the BS model can be shown by assume i=n, taking 
logarithms of St+,,, implying 

n 

109 Stan =1o9 Xt + 10$ Yt+i, 
i=1 

and applying the central limit theorem to the above sum appropriately scaled. 
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risk neutral arguments as in the one-step case, we can show that the option price Pt 

can be calculated as 

n 

1, t = e-T(T-t) 
nl 

qm(1- . )n-"` max(K - X( )ot, 
( 

0) 
n-m)I . mI . 

t+n 
m=1 

n n! 
_ e-r(T-t) (n )! q"`(1 - q)'i-' max(K - Xtum. d"-"`, 0). 

m=1 
-m m. 

Value back down tree: Pricing American options with the BT method Options' payoffs 

do not only depend on the stock price at the expiration date, as assumed above. For 

American options, they will also depend on the prices of stocks and options at any 

step i of the tree, before the expiration date of the option contract. These payoffs 

should be taken into account when calculating the option price. To price the option 

contract under these circumstances, we need to calculate the payoffs of the option 

at each step of the tree, separately, as the option can be exercised at any time-point 

of the maturity interval. The American option price can then be calculated by the 

maximum discounted present value of these payoffs. 

The BT approach for pricing the American option under the above circum- 

stances is known as the value back down BT approach. According to this, we start, 

first, calculating the option price and its payoffs at the end of the tree (nth step), and 

then we move backwards to the first step. Note that, at the expiration date, the price 

of the American option at the (n, j) node (branch) of the tree can be calculated as 

Pý t+not 
= max(K -X 

+not, 0) (2.. G) 

= max(K - Saud-', 0), 

for all nodes j of the nth1 step of the tree. Given the above value of the option, at 

the nth step, we can move backwards to calculate the American price at the steps 

(n - 1)th, (n - 2) th and so on. In doing so, notice that the risk neutral probability q 

of the stock price movement from the (i, j), i=1,2,..., n, node at time t+ i/t to the 
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(i + 1, j+ 1) node at time t+ (i + 1) At and the risk neutral probability (1 - q) of 

the stock price movement from the (i, j) node at time t+ izt to the (i + 1, j) node 

at time t+ (i + 1) At are the same with those for the standard BT approach, given 

by equation (2.. 5). Thus, the American option price for the node (i, j) of the tree can 

be calculated as 

Pn t+iot (2.. 7) 

= max 
[K 

-X 
+äot, e-rot 

(q 
A +(i+, )At + (1 - q)P jA, 

t 
)+(i+i)ot) 

' 0] 

where denotes the time t+ iLt discounted where e-''°t 
(qPA(j+')i+l)At + (1 - q)PA ) 

payoff of the American option of the t+ (i + 1)At step of the tree if it is kept alive 

and K- X+ of constitutes the payoff of the option if it is immediately exercised. 

Moving backwards, we can calculate the option price at the current time t. 

Appraisal of the BT method Although the BT method for pricing options constitutes 

a very simple and popular method, it suffers from some problems listed below. 

The first well known drawback of this approach is that the BT can give negative 

risk neutral probabilities. This happens when the steps of the tree are not sufficiently 

small [see Rendleman and Bartter (1979). To avoid this problem, Jarrow and Rudd 

(1983) suggest that q=0.5, rather than ud = 1, which has been suggested by Cox, 

Ross and Rubinstein (1979). But, this is not an economically justified restriction of 

the risk neutral probability, q. 

The second drawback of the BT method is that it is computationally very 
demanding and time-consuming. To circumvent this problem, Hull and White(1994), 

and Figlewski and Gao (1999) suggested modifications of the BT methods, such as 

the trinomial tree and the adaptive mesh tree. The trinomial tree assumes that every 

node of the tree potential outcomes, compared with the two of the binomial tree. 

This modification of the tree can increase the computation speed because it considers 

far more outcomes of the stock price movements at every node of the tree, and thus 
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increase computation speed as it can allow for less steps. The adaptive mesh tree 

allows for not equally distanced steps. 

However, the above modifications of the BT approach can not significantly 

reduce the computation speed, which remains the main disadvantage of this approach. 

Apart from this drawback, the BT approach is difficult to be applied for cases where 

the underlying security price is driven by more than one state variables, since the 

movements of the state variables at each branch of the tree will exponentially increase 

with the number of state variables. 

2.2.2 Finite Difference (FD) The finite difference approach [see Brennan and Schwartz 

(1978), inter alia] is entailed in pricing American options by exploiting the PDE given 

by equation (2.. 3), with its variant inequality. For expositional simplicity, we assume 

that the stock price conditional on its current price follows the log-normal Black and 
Scholes (1993) model. Then, (2.. 3) implies the following PDE 

rXtOPA(Xt, 
t) 

+ 
12Xý a21'n(Xt, t) 

_ 
DPA(Xt, t) 

=rPA(Xt, t), (2.. 8) OXt 2 OXt at 

subject to the boundary conditions 

limPA(Xt) t) 
t-T 

lim PA(Xt, t) 
Xt-'O 
lim PA(Xt, t) 

xt-aBi 
UPA(Xt, t) 

lira 
X -'B OXt 

= max(0, K- Xt), 

= K, 

=K- Bt, 

= -1, 

where Xt is the underlying stock price, r is the instantaneous interest rate, o is the 

standard deviation of the stock price changes and Bt denotes the critical stock price 

where the option holder is indifferent between exercising and continuing to hold the 

option contract, known as optimal exercise boundary price. 

The above PDE indicates that it is difficult to derive closed form solutions 
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for the option price PA(Xt, t). This happens because the optimal exercise boundary 

price, Bt, entering into this is unknown. Therefore, numerical methods have been 

suggested to solve out (2.. 8) under its boundary conditions. 

The most straightforward and easy to be applied numerical approach which 
has been suggested is the finite difference (FD) method. To implement this method, 

we need to set up a grid search [see Hull (2000)]. In particular, we assume that t=0, 

and that the maturity interval, T, can be divided into n subintervals of the same 

length At =n. Suppose that Xma,, denotes a sufficiently high stock price with zero 

occurrence probability. If we divide the space of the underlying stock price [0, Xmax] 

into M equal intervals and let OX = Al 
, we have the following sequence of M+1 

stock prices 

0, DX, 2AX,..., Xmax. 

If we refer to the node that the stock price is jOX at it as the (i, j) node. Then, 

the above division of the stock prices and the maturity interval implies (M+ 1) (n+ 1) 

nodes of the grid search. 

Armed with the above definitions, the FD approach assumes that the deriva- 

tives involved in (2.. 8) can be approximated as follows: 

4PA(Xt) t) 
axt 

a2P(xt, t) 

axt 
and 

aP(xt, t) 

at 

Pi+1, j+1 - Pi+l, j-1 

20X 
Pi+l, j+l + 1'i+l, j-1 - 21 i+l, j 

0X2 
Pi+1, j - Pi, j 

20t 

where Pij denotes the American price at each node (i, j), and that the PDE (2.. 8) at 
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each node (i, j) can be written as 

Pi, i = al,. iP+i, i-i + a2, jP1+i, j + a3, jPs i, i+i, with 

al, i = 1+rOt 

(_ri 
+ 

1orej2At 
I (2.. 9) 

1 
a2, i = 1-I- rOt 

(1 - v2j2At) and 

a3, i =1 +rOt 

(rt 
+ 

1Q2j20t) 
. 

Given that the option price at the expiration date is equal to max(K - XT, 0), we can 

write the option price at node (n, j), for all j, at the expiration date of the option as 

P,, j = max(K - j/X, 0) ,j=0,1,2,..., M. (2.. 10) 

Exploiting (2.. 10), equation (2.. 9) can be solved backwards to determine the option 

prices at each node (i, j), as we did for the BT approach. 

The FD method is more efficient than the BT method in terms of computation 

time because it can limit the grid search for calculating the American option prices 

into a subset of the space spanned by the values of the underlying stock price. One 

drawback of this method, mentioned in the literature [see Hull and White (1990)], is 

that the coefficients a1, ß, a2, ß and a3, ß in (2.. 9), representing the risk neutral proba- 

bilities of moving from one node of step i to another node of step i+1 in the grid, 

can take negative values. Note that if one of coefficients a1, ß, a2, ß and a3,3 become 

negative, then the FD method does not converge. To overcome this problem, Hull 

and White (ibid) recommended to set up very small time-steps for the grid. 

The FD approach, presented above, does not constitute the only method which 

has been suggested in the literature for solving PDE (2.. 8). Alternative methods have 

been also suggested by Huang and Pang (1998) and Dempster and Hutton (1999). In 

particular, Huang and Pang (ibid) suggested that we use the implicit finite difference 

[or Crank-Nicolson] method. According to this method, the derivatives in (2.. 8) can 
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be approximated as 

aPA(xt, t) 
axt 

a2P(xt, t) 
axe 

ß'1, j+l - Pi,, 
-1 and 

2LX 
Pi, 

j+1 + Pi, 
j-1 - 

2Pi, 
j 

AX2 

while the PDE (2.. 8) itself can be approximated as 

Pi+i, j = al, jPi, j-i + a2, jl'1, j + a3, jpi, j+i, 

where 

a1, ß =1 rjOt- 21 0' 2j20t, a2, i = 1+Q2j21t+rzt, a3,3 =-1rj1t- 
1a2j20t. 

222 

The last approximation method does not suffer from any nonconvergence problems. 

The only disadvantage of this method is that it requires a system of M-1 linear 

equations to be solved at each time-step of the grid. This will have a consequence to 

significantly increase the computation time needed for the calculations. Indeed, this 

remains to be the major disadvantage of all FD methods suggested in the literature. 

As for the BT method, this problem becomes more severe when multi-state, factor 

asset pricing models are considered. 

2.2.3 Monte Carlo simulation based methods To present this method, we write the 

evaluation problem of an American put option (2.. 1) as 

PA(Xt, t) _ EQ I e-fý r. dsýýXT" )] 
. 

where T* is defined by the equation (2.. 2) as the optimal time. To calculate the 

American option price PA(Xt, t), the simulation based methods generate paths of the 

underlying asset price under risk neutrality, and then calculate the option price by 
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taking the average of the generated payoffs appropriately discounted at each time- 

point of the maturity interval for each simulation experiment. 

The Monte Carlo simulation based method is a very simple, transparent and 

flexible, as it can generate future paths of stock prices and their implied payoffs for any 

asset pricing model, with stochastic volatility and/or jumps. One of the drawbacks of 

this method is that it can not identify the optimal time-point of the maturity interval 

where the option contract can be exercised, knowing as optimal stopping time. To this 

end, a few new modifications of the simulation method have been recently suggested 

in the literature [see the methods suggested by Barraquand and Martineau (1995), 

Broadie and Glasserman (1997), Garcfa (2000), Ibanez and Zapatero (1999), and 

Longstaff and Scharwtz (2001)]. Among them, the method suggested by Longstaff 

and Scharwtz (2001) seems to be the most efficient one. To deal with the problem 

of the optimal stopping time, this method calculates the conditional expectation of 

the payoff from keeping option alive. This expectation is assumed to be a function of 

the underlying state variables (here the stock price) and is calculated by the cross- 

sectional regression of the simulated payoffs on the values of the state variable, at each 

time-point of the maturity interval. The conditional expectation of this regression 

is used to determine whether the option is exercisable, or not, at each point of the 

maturity interval, and thus can be used to identify the optimal stopping time. 

Although the simulation based methods seem to be more efficient than the 

other numerical methods, surveyed before, they are still time consuming, and require a 

great amount of computation effort, especially for calculating the hedging parameters 

of options prices. This can be thought of as the main drawback of this category of 

methods. 

2.2.4 Optimal exercise boundary approximation methods This method is based on 

a decomposition of the American option price into its European option price coun- 

terpart and a premium allowing for an early exercise of the option, known as the 

early exercise premium [see Barone-Adesi and Whaley (1987), Jacka (1991), Mynenni 
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(1992), Jamshidian (1992) and Kim (1990), inter alia]. Below, we present this type of 

decomposition for an American call option price for the simple case of the lognormal 

model of the stock price, derived in the literature [see Kim (1990)], 

PA(Xt, T) = PE(Xt, T) (2.. 11) 
jT 

+ [rKe-''(s-t)N(-d2(Xs, B3, - 

-SXte-6(3-t)N(-dl(Xt, B8, s- t))] ds, 

where PE(Xt, T) denotes the European option price, B3 is the optimal exercise bound- 

ary price above which the option contract will be exercised, S denotes the dividend 

rate, N(. ) stands for the normal distribution, with dl(Xt, B3, s-t) and d2(Xt, B3, s-t) 

are defined as follows 

di (Xt, Bs, s- t) = 
log(XtIB, ) + (r -S+0.5o2)(s - t) 

Q s-t 

and d2 (Xt, B9, s- t) = dl (Xt, Bs, s- t) -s-t. 

At any point sE [t, T], the optimal exercise boundary price satisfies the fol- 

lowing recursive equation 

B3 - If = PA(Bs, T - s) (2.. 12) 
T 

+ [rKe-r(hi-')N(-d2(Bs, B, L, h- s)) 
s 

-6B3e-6("-')N(-dl(B3, Bh, h- s))] dh 

subject to the boundary condition BT = min(K, äK). 

The above decomposition of the option price PA(Xt, T) implies an analytic, 

integral solution of the early exercise premium, given as 

fTrKe_r(3_t)N(_d2(Xs, 
Bs, s - t)) - öXte-6(st)N(-dl(Xt, B3, T - s))ds. 
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Equations (2.. 11) and (2.. 12) indicate that the only difficulty in calculating 

the option price PA(St, T) based on its decomposition given above is that the optimal 

exercise boundary price, which is defined recursively, constitutes a part of its ana- 

lytical solution. However, once this price is determined, the calculation problem of 

PA(St, T) becomes very trivial. 

To calculate the optimal exercise boundary, a number of methods have been 

suggested in the literature [see Huang, Subrahmanyam and Yu (1996) and Ju (1998) 

]. In particular, Huang, Subrahmanyam and Yu (ibid) suggested to approximate the 

optimal exercise boundary function using a flat line at each piece of the maturity 

interval and Ju (ibid) recommended to employ an exponential function. These ap- 

proximation schemes seem to work efficiently and to calculate American option prices 

very fast, compared with the other numerical methods surveyed above [see Ju (ibid)]. 

The success of this method stems from the fact that it involves only one step of 

approximation; the European price can be calculated analytically. Another source 

of the efficiency of the method is that, based on the above approximation schemes, 

we can significantly reduce the dimensionality of the integrals involved in the pricing 

formula. 

2.2.5 Other methods The above categories of numerical methods suggested for pricing 

American options do not exhaust the whole set of the available method in the litera- 

ture. See, for instance, the methods suggested by Barone-Adesi and Whaley (1987), 

Ceske and Johnson (1984), Lim and Guo (2000) and Sullivan (2000). However, these 

methods can to some degree be thought of as mixed versions of the methods surveyed 

in this chapter. We do not review these methods for reasons of space. 

2.3 Conclusions 

The aim of this chapter has been to present alternative numerical approxi- 

mation methods for pricing American call (or put) options. In our survey of these 

methods, we focus our discussion on both the computational and pricing accuracy 
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(efficiency) issues related to each category of methods. 
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CHAPTER 3. 

PRICING AMERICAN OPTIONS UNDER STOCHASTIC 

VOLATILITY: A NEW METHOD USING CHEBYSHEV 

POLYNOMIALS TO APPROXIMATE THE EARLY EXERCISE 

BOUNDARY 

3.1 Introduction 

Pricing American options is one of the most difficult problems in option pricing 

literature. The difficulty stems from the fact that, unlike a European, an American 

call (or put) option has no explicit closed form solution. This happens because the 

optimal boundary above which the American call option will be exercised is unknown 

and part of the option price solution. Therefore, efforts have been concentrated on 

developing numerical approximation schemes which can price the American options 

accurately and faster than the lattice or simulation based methods, which are time 

consuming and computationally more demanding. These schemes are based on in- 

tegral representations of the American option evaluation formula or they exploit the 

partial differential equation satisfied by the option prices. ' 

The existing approximation schemes for pricing American call (or put) options 

in the literature are valid only under the assumptions of the Black and Scholes (1973) 

option pricing model, which assert that the stock price of the underlying stock is log- 

normally distributed conditional on the current stock price and has constant volatility. 

However, these assumptions are in contrast to most of the empirical evidence of 

the option and stock pricing empirical literature, which indicates that stocks' prices 

volatility is stochastic and stocks' returns distributions deviate from lognormality [see 

Ghysels, Harvey and Renault (1996), for a survey]. 

I Examples of such type of numerical methods include the Barone-Adesi and Whaley (1987) 

analytical approximation method, the approximating methods of Geske-Johnson (1984) and Bunch 
and Johnson (1992), the Gaussian quadrature method of Sullivan (2000), inter alia, and the recently 
developed exercise boundary approximation methods of Subrahmanyam and Yu (1996), and Ju 

(1998). 
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The aim of this chapter is to develop a new numerical method for pricing 

American call option prices for the case that the underlying stock's price volatility 

is stochastic. The lack of such type of methods in the literature of the American 

options is primarily due to the fact that, under stochastic volatility, the optimal exer- 

cise boundary depends, in addition to time, on the paths of the volatility [see Broadie 

et al (2000)]. This considerably complicates the derivation of a suitable, analytic 

representation for an American call option price upon which a numerical approxi- 

mation method can be build up. Our strategy of circumventing this problem is to 

approximate the optimal exercise boundary function with a log-linear function with 

respect to volatility changes over different pieces of the maturity interval. ' Based on 

this approximation, we derive an analytic, integral representation of the early exer- 

cise premium of the American call option price. This representation unbundles the 

early exercise premium (and hence the American call option price) into a portfolio 

of Arrow-Debreu type of securities [see Bakshi and Madan (2000), for a European 

call option price]. The prices of these securities (and thus the American call option 

price) can be calculated based on the joint characteristic function of the stock price 

and its conditional volatility process which is derived in closed form in the chapter. 

To complete our numerical method for evaluating the American call option under 

stochastic volatility, we employ Chebyshev polynomials to estimate the optimal ex- 

ercise boundary function. With these polynomials, we can efficiently approximate 

any non-linear pattern of the optimal exercise boundary function, over the different 

pieces of the maturity interval, because we can choose the point with the minimum 

approximation error to fit a high-degree polynomial approximating function into the 

true optimal exercise boundary function. 

To appraise the pricing performance of our method, the chapter reports numer- 

ical results of the speed and accuracy of the method in comparison with benchmark 

2 Note that this approach is consistent with recent evidence suggesting that, when volatility is 

stochastic, the exercise boundary is smooth with respect to volatility changes [see Broadie et al 
(2000)]. 
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methods. We also compare the pricing performance of the method for the case that 

volatility is constant with other exercise boundary approximation methods for the 

log-normal model, which are frequently used in practice. The results of the numerical 

evaluations are very encouraging. They show that a very parsimonious, two degree 

approximating function of the exercise boundary based on Chebyshev polynomials 

can satisfactorily price American call options for a broad class of stock and exercise 

prices considered in our numerical experiments. This is true both under stochastic 

and constant volatility. Our results show that the pricing errors of our method are 

very close to zero, and they are of the same order of magnitude independently on 

whether the volatility is constant or stochastic. In the constant volatility case, we 

find that the pricing errors of our method can become smaller in magnitude than the 

other approximation methods compared with, especially when the curvature of the 

true optimal exercise boundary function is high. 

The chapter is organised as follows. In Section 3.2, we present the evaluation 

framework for the American call option price under stochastic volatility and derive 

an analytic, integral representation of the American call price. In Section 3.3, we 

show how to implement Chebyshev polynomials to approximate the optimal exercise 

boundary function for the lognormal and stochastic volatility models, respectively. In 

Section 3.4, we list and discuss numerical results of the performance of our method 

to price the options. Section 3.5 summarizes and concludes the chapter. 

3.2 Analytic evaluation of American call options under stochastic volatility 

In this section, in order to derive an analytic evaluation formula for an Amer- 

ican call option we assume that the price of the underlying stock follows a geometric 

stochastic volatility process. This model of the stock price is known in the literature 

as the stochastic volatility (SV) model [see Heston (1993), inter alia]. The analysis 

of the section proceeds as follows. First, we present a general evaluation framework 

for pricing an American call option under stochastic volatility which is in line with 
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that of Broadie et al (2000). Based on this framework, we next derive an analytic, 

integral representation of the American call option price. 

3.2.1 The valuation framework Assume that the dynamics of underlying stock's price, 

denoted Pt at time t, follow Heston's (1993) specification of the stochastic volatility 

(SV). For analytic convenience, assume that dividends are paid at the constant rate 

6 and that the riskless interest rate, r, is constant. Then, the SV model implies that 

the spot stock price should satisfy the following risk-neutralised process 

dPt 
Pt = (r - S) dt + VdWl, t, (3.. 1) 

where the instantaneous conditional variance (volatility), V, follows the mean revert- 

ing square root process 

dV = k(8 -V )dt + uV-V-tdW2, t, (3.. 2) 

where k is adjusted by the market price of volatility risk, {Wj, t, t> 0} ,j=1,2, are 

two correlated standard Brownian motion processes, with correlation coefficient given 

by Corr(dWi, t; dW2, t) = pdt, pE (-1,1) 
. 

Consider now an American call option contract for the above stock with ma- 

turity date T and strike price K, at the exercise time. This contract gives the holder 

the right of exercising the call option at any time It in the maturity interval [t, T], i. e. 

Ii E [t, T]. The critical stock price above which the American call will be exercised is 

referred to as the optimal exercise boundary. Since the price of the underlying stock 

depends on the paths of the volatility process V, we will hereafter denote the time t, 

which represents the current time price of the American call option contract (i. e. the 

American call option price) as CA (Pt, V t, T- t), while the optimal exercise boundary 

will be denoted as B (V, h), V It E [t, T]. 

The American call option price CA (Pt, V t, T- t) can be calculated by the 
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maximum value of the discounted payoffs from the option where the maximum is 

taken over all possible stopping (exercise) times, denoted r, in the maturity interval, 

[t, T]. Define the optimal stopping time as 

T* = inf {-r E [t, T] : CA (Pt, V t, T- t) = (Pt - K)+} . 
(3.. 3) 

Then, the American call option pricing problem can be represented by the Snell 

envelop3 

CA (Pt, Vi, T- t) = sup EQ (efT'"8 (PT - K)+) 
TES[t, T] 

where S[t, T] is the set of stopping times in the maturity interval, [t, T], EQ denotes 

the time t conditional expectation under the equivalent martingale measure Q, and 

(PT - K)+ is the payoff of the American call option at the stopping time T. 

The following theorem characterises the optimal solution of the problem de- 

fined by equation (3.. 4). 

Theorem 2 Let the stock price satisfy processes (3.. 1) and (3.. 2). Then, the Amer- 

ican call option price CA (Pt, V t, T- t) can be written as 

CA (Pt, V t, T- t) = CE (Pt, Vt, T- t) (3.. 5) 
T 

+EQ 
l 

e-r(. 5-t) (6P3 - rK) I{P�B(V,, s}ds 
tt 

where CE (Pt, V t, T- t) is the value of a European call price with maturity date T 

and strike price K, B(V8, s) denotes the value of the optimal exercise boundary, at 

time sE [t, T], and IA is the indicator function of the set A, defined as A= {P3 : 

PS > B(VS, s) and V. E R+}, which contains the prices of the stock at which the 

3 See Karatzas (1988), inter alia. 
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American call will be exercised. The optimal exercise boundary B(Vh, h) entered into 

the American call option price formula (3.. 5) should satisfy the following recursive 

equation 

B (V,, h) -K (3.. G) 

= CE (B (V,,, h), K, V, ,T- h) 
T 

+EýQ J e-''(s-h) (SP8 - rK) I{Pa>B(v�s)}ds Vs >_ hE [t, T), 

with terminal condition 

B (VT, T) -K= max {K, rK/S}. (3.. 7) 

In Appendix A. 1, we give a proof of Theorem 2 based on a decomposition of 

the optimal stopping problem (3.. 4) in terms of the optimal exercise boundary [see 

Myneni (1992)]. 

Theorem 2 shows that the American call option price CA (Pt, V t, T- t) can 

be evaluated using formula (3.. 5), once the values of optimal exercise boundary, 

B (V, h) 
, are provided. However, these values are not available due to the recur- 

sive nature of B (Vh, h), which shows that the optimal exercise boundary is deter- 

mined as part of the American call option price solution. To circumvent this difficult 

evaluation problem, Huang, Subrahmanyam and Yu (1996), and Ju (1998) suggested 

efficient numerical approximation methods of the optimal exercise boundary function 

for the case of the lognormal model. These methods are based on an approximation 

of B (V,, h), over different pieces of the maturity interval, with a constant and an 

exponential function of time, h. With these methods, we can derive analytic, integral 

representations of the early exercise premium embedded into the option price, given 
T 

by EQ f e-' (S-t) (5P3 - rK) I{P�s(v�s}ds [see (3.. 5)], and then calculate the American 
e 

call option price, using equation (3.. 5). However, these methods can not be applied 
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to the case of the SV model. This happens because, under stochastic volatility, the 

optimal exercise boundary should also depends on the volatility changes. In the next 

subsection, we therefore derive an analytic, integral representation of the American 

call price and the optimal exercise boundary recursive equation assuming that the 

optimal exercise boundary function, in addition to time h, depends on the volatility 

changes of the underlying stock. 

3.2.2 An integral representation of the American call option price for the SV model 

Suppose that the logarithm of the optimal exercise boundary, at time h, defined as 

b(VL, h) - In B(V,, h), is given by the following linear in volatility, Vh, relationship 

b(Vh, Ii) = ba(h) + bl(h)(VI, - EtVh). (3.. 8) 

The above relationship can be thought of as a first-order log-linear approxima- 

tion of the optimal exercise boundary function around the time t conditional mean of 

volatility, denoted EtV,. It asserts that, for small changes of V, around EtVh, the true 

optimal exercise boundary function is an exponentially smooth surface with respect 

to volatility changes. This assumption can be justified by recent evidence provided 

by Broadie et al (2000), who recovered the American call option price and the ex- 

ercise boundary reduced forms from the data following a non parametric statistical 

approach. 

Given relationship (3.. 8), in the next theorem we derive an integral representa- 

tion of the American call option pricing formula (3.. 5) for the SV model upon which 

we can build up a numerical method for evaluating the American options, under 

stochastic volatility. 

Theorem 3 For relationship (3.. 8), the American call option price CA (Pt, V t, T- t) 
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can be calculated as 

CA (Pt, Vt, T -t) 
T 

= CE(Pt, V, T - t) +f SPce-6(9-t)ll (bo(s), bi (s)IPP, V)ds 
e 

rKe-T(s-t)II2 (bo(s), bi(s)I Pt, V) ds, (3.. 9) 
f- 

where analytic, integral solutions of Ill(. ) and 112 (. ) are given in Appendix B. The 

optimal exercise boundary B (Vt, li) satisfies the following recursive equation 

B(VL, h) -K=CE(Ph, Vh, T -h) 
fT 

+J 6B (v,,, It) e-6(8-") H/ (bo(s), bi(s)I B(VL, h), VL) ds 
h 

rT 
-J rKe-r(s-h)II2 (bo(s), bl (s) I B(UL) h), UL) ds, (3.. 10) 

h 

Vs >_ It E [t, T], with terminal condition 

B(VT, T) -K= max{K, rk/ö}, 

where IIi (. ) and 02 (. ) are given in Appendix A. 2. 

The proof of the Theorem is given in Appendix A. 2. 

The integral representation of the American option price CA (Pt, V t, T- t) and 

its associated exercise boundary recursive equation (3.. 10), given by Theorem 2, un- 

bundles the early exercise boundary premium (and hence the American call option) 

into a portfolio of Arrow-Debreu type of securities. The prices of these securities, 

denoted by the Greek letter II(. ), can be derived by calculating the following risk 

neutral expectations: 

ni (bo(s), bi(s)I Pt, V) = EQ 
ýPsI{(PaEQ: PP B(v�s)} I pt, VJ ,() 3.. 11 
Lt [s] 
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as or using the transformed measure Q1 with äQ 9= 
Eh 

p -- -ZT 

ni (bo(s), b1(s)t1'e, V) = EQ' [I{(Ps, 
Vs): Pa>B(Va, s)} IPt, V], 

and 

112 (bo(s), b1(s) IPt, V) = EQ [I{(P5, v8): Paý: B(Va, s)} (Pt, V] 

(3.. 12) 

(3.. 13) 

Closed form (analytic) solutions of the above prices II, (b0 (s), b1(s)I Pt, V) and 112(bo(s), 

bl (s) I Pt, V t), given by equations (3.. 12) and (3.. 13) respectively, are given in Appendix 

A. 2. These are derived based on the joint characteristic function of the stock price, 

Pt, and volatility, V t, which is derived in closed form in Appendix A. 2. The economic 

intuition of these prices (and thus their characterisation as Arrow-Debreu state prices) 

can be derived by equations (3.. 12) and (3.. 13). These show that II, (bo(s), bi (s) JPt, V t) 

and 112 (b0(s), bi (s) I Pt, V) constitute the market prices of a security which pays $1 in 

state {(P3, Vs) : P9 >_ B(V8, s)} and 0 otherwise under the risk neutral measures Q1 

and Q, respectively. In the risk neutral asset pricing context, these prices are equal 

to the risk neutral probabilities of the state {(P3, V) : P3 B(V3, s)}. Below, we 

show this for case of the lognormal model. 

The integral representation of the American call option given by Theorem 2 

can be reduced to that for the lognormal model, derived by Kim (2000) by setting 

k=0= o- =0 in equations (3.. 9) and (3.. 10) and noticing that, under the assumptions 

of the log-normal model, the exercise boundary equation (3.. 8) is given by B(V,, h) _ 

exp[bo(h)]. Then, it can be easily seen that equation (3.. 9) reduces to 

T 
6ý-t) Pte- 11, (B(s)I Pt)ds CA (Pt, T - t) = CE (Pt, T - t) + 

it 
S 

fT 
-J rKe_r(s-t) 12 (B (s) IPt) ds, for s>hE [t, T], 

t 
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while equation (3.. 10) reduces to 

B (h) -K (3.. 15) 

= CE (Ph, T- t) +JTÖB (h) e-b(s-h) II l (B(s)I B(h)) ds 

rKe11(B(s)I B(h)) ds, 
f- 

where now II, (B(s)lPt) and 112 (B(s)lPt) are given by 

Hi (B(s)I Pt) 
00 1+1l 

Re 
[e-iOlog B(s)F(iox, 0, s- hl In Pt, 0) 

d 
2 7r ,ý 

io 
0 

=N 
(1o(Pt/B(s)) + (r -6+2 72)(s - t) 

(3.. 16) 
Q s-t 

) 

and 

112 (B(s)I Pt) 

1+1 ýRe0, 
s- hI 1n Pt, 0) 

,ý 

[ecb( 

0 

=N 
(io(Pt/B(s)) + (r -6-0,2) (S - t) 

vs- 
-t 

2) 
(3.. 17) 

respectively. 4 Equations (3.. 16) and (3.. 17) clearly indicate that the prices of the 

Arrow-Debreu type of securities l1(B(s)lPt) and 112 (B(s)lPt) reflect the prices of 

a security which pays $1 in the state {Ps ? B(s)} and 0 otherwise under the mea- 

sures Q1 and Q, respectively. These prices can be calculated as the probabilities of 

the standardized normal distribution at the values of log(B(s)/Pt) adjusted by the 

quantities (r -5+. 10,2 )(s - t) and (r -5- IU2)(s - t) under the measures Q1 and 

4 The prices III (B(s)IB(h)) and IIz (B(s)IB(h)) can be defined analogously. 
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Q, respectively. ' 

3.3 Numerical evaluation of American call options using Chebyshev polynomial 
functions to approximate the exercise boundary 

As argued before, the integral representation of the American call option price 

and its associated recursive optimal exercise boundary relationship given by Theorem 

3 can be used to build up a numerical approximation method for pricing American 

options under stochastic volatility. In this section we introduce such a method based 

on an approximation of the optimal exercise boundary function using Chebyshev 

polynomials. 

Our motivation to implement a numerical approach to approximate the optimal 

exercise boundary rather than to directly approximate the whole American value 

formula stems from recent evidence suggesting that this numerical group of methods 

can considerably increase the computation speed of calculations without losing much 

in accuracy [see Huang, Subrahmanyam and Yu (1996), and Ju (1998)]. This happens 

because the boundary approximation methods can separate the estimation problem 

of the optimal exercise boundary function from that of the American call option. 

This can increase the computation speed while, simultaneously, avoid accumulating 

pricing errors through the evaluation steps of the American option risk neutral pricing 

formula. Our motivation to employ Chebyshev polynomials to approximate the true 

optimal exercise boundary function stems from the fact that, with these polynomials, 

we can efficiently approximate any non-linear function by choosing the point with the 

minimum approximation error to fit a high-degree polynomial approximating function 

to the true function. 6 Note that the accuracy of this approach will increase with the 

5 Note that the above two quantities differ by .2 which reflects the fact that the price of risk 
under the meassure Q1 is smaller than under measure Q. This can be attributed to the fact that 
under measure Q1 the payoff of the Arrow-Debreu price is scaled by the stock price [see equations 
(3.. 12) and (3.. 13)]. 

6A brief discription of the Chebyshev function approximation is given in Appendix A. 3. 
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number of the Chebyshev polynomials used in the approximating function. 

To better understand how to employ the Chebyshev polynomials to approx- 
imate the optimal exercise boundary, which will be hereafter referred to as the CB 

method, we first start our analysis with the case of the lognormal model. We next 

extend the analysis to the SV model. 

3.3.1 The case of the lognormal model To implement the CB method for the lognormal 

model, notice that the optimal exercise boundary equation (3.. 15) can be reduced to 

the one-dimension integral relationship: 

B(h) -K 

= C2(P,, T - h) - B(h)e-6(T-h)N (dl (B(h), B(T), T- h)) + B(h)N(e) 

+ Ke-r(T-l`)N (dl (B(h), B(T), T- h)) - KN(6) 
T 

+f B(h)e-6(-h)n (dl (B(h), B(s), s- h)) 
3d1(B(h), 

DB(s), 
s- h) 

ds 
s 

e 
T 

-f Ke-T(s-h)n (d2 (B(h), B(T), s- It)) 
3d1(B(h), B(s), s- h) 

ds, (3.. 18) 
s 

It 

where = limsýh I°(aa) In(B(s)) = 0, N (") and n (") denote the cumulative standard 

normal distribution and its associated probability density function, respectively. 

Let b(h) = log B(h) denote an approximating function of the logarithm of the 

optimal exercise boundary which consists of v-Chebyshev polynomials terms. The 

functional form of b(h) is given in Appendix A. 3. Substituting b(h) into equation 

(3.. 18) implies the following system of equations for the optimal exercise boundary 

recursion 
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B(n) -x 
= CE(Ph, T- h) - B(h)e-6(T-1`)N (dl (. B(h), B(T), T - h)) + 

2B(h) 

+ Ke-''(T-h)N (d2 (B(h), B(T), T - h)) - 
2K 

T/' 
v-2 

+J 13(h)e-6(s-f`)n (dl (B(h), B(s), s- h)) az 
si ds 

t 

(i=o 

s-h 
Tr 

v-2 

-J Ke-r('-")n (d2 ((h), (s), s - h)) ds, 
i 

(3.. 19) 
i-o s-h It 

where ai and yz satisfy the following recursive equations 

v 

ai = ryi = 2ici 
- cjl 

j-' /2Q, for i=2,3, ..., v-1, 

j=i+i 
v' 

a 
ao = 

2ý [2c1 
- cj hj-i +r-S+0.5Q2 and 7= ao -2 

j=2 

where ci+l (or cc) are the coefficients of the approximating function b(h) [see Appendix 

A. 3]. 

The system of equations defined by (3.. 19) consists of v-nonlinear equations 

with v-unknown c=, for i=0,1,2,..., v-1, coefficients. Based on the minmax crite- 

rion, we can solve out this system for ci, and determine the optimal exercise boundary 

approximating function, B(h). The above numerical approximation method guaran- 

tees that B(h) converges to its true value, B(h), as the number of the polynomial 

terms (v) of the approximating function increases. This happens because, according 

to the minmax criterion, B(h) is chosen in order to be equal to the true function B(h) 

at v-zero points, where B(h) cuts off B(h). As v increases, B(h) converges to B(h) 

by Weierstrass theorem. 

To increase the computation speed of the CB method without significantly 
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losing in accuracy, we can employ Richardson's extrapolation scheme [see Ju (1988), 

inter alia]. According to this scheme, we need to calculate the optimal exercise 

boundary approximating function B(h) over the whole maturity interval, which is 

divided into A=1,.., A pieces, where A denotes the maximum number of pieces. The 

values of the American price corresponding to the maturity interval with A pieces will 

be hereafter denoted as CA, A(Pt, T- t). Below, we introduce all necessary notation 

in order to show how to calculate the American call price CA,. \ (Pt, T- t). 

Let Baj(h), where l=1,2, ..., 
A, denote the value of B(h) over the 1th_ sub- 

interval of the A pieces maturity interval. Denote by Baj(zj), for j=1,2..., v, the 

v-zero points of Bai (h) and by A the fraction of the maturity interval 0=T. Then, 

system (3.. 19) evaluated at the v-zero points implies the following vxA dimension 

system of equations: 

Bai(ze)-K=CE (. 
1(z), T_ z) 

- Baa (T) N (dl (Bai (z; ) 
, Baa (T) 

,T-z; 
) ) 

+2B, \, \ (T) + KN (d2 (l(z), 
A(T), T_ z3)) -2K 

t+10 v-2 
-6('-zj) 

(s 
+ Bal (zj) en 

(d1 

1 
Bal (zj) 

, 
Bal (s) 

,s- zi CYi ds 
s zz 

i=O zj 

t+IA v-2 

- Ke-' (s-z' )n d2 (BAl (zj) 
, 
Bat (s) 

,s- zz) E ryi 
s ds 

i=O s- zi 
zi 

A t+h0 
v-2 

+J Bai (zz) e-&(s-zj)n 
(di (Bat (zz) 

) Bah (s) 
,s- zj aZ 

ss' 
ds 

z 

A t+h0 v-2 

-J Ke-r(s-z')n d2 (Bat (zz) 
, Bah (s) 

, S- zi) Es ds , 
h=ý+i i=o s zj 

t+(h-1)A 

(3.. 20) 

for j=1,2,..., v and 1=1,2,..., A. The above system can be solved out in the 
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same way as system (3.. 19) in order to determine the optimal exercise boundary 

approximating function Baj(h), corresponding to the maturity interval with the A 

pieces. Given the approximation of the optimal exercise boundary Bat (h) for l= 

1,2, ..., 
A, The American call option price CA, a (Pt, T- t) can be calculated based on 

the equation (3.. 14) as 

CA, A(Pt, T- t) = CE (Pt, T- t) 
t+to 

-}- J aPte-6(s-t)N (dl (Pt, Bat (s) 
,s- t)) ds 

A t+t0 

-J rKe-''(s-t)N 
(d2 (PtAz 

, 
(s) 

,s- t)) ds. (3.. 21) 
t=1 t+(t-1)0 

In order to accelerate the computational speed, we can employ the Richardson ex- 

trapolation scheme to CA, A(Pt, T- t) for A=1, .., A. 

3.3.2 The case of the SV model The implementation of the CB method to the 

stochastic volatility case is slightly more complicated than the constant volatility 

case, described in the previous subsection. This happens because the optimal exer- 

cise boundary now is a function in two dimensions: the time and volatility. According 

to equation (3.. 8), this means that we need to approximate the functional forms of the 

two coefficients bo(h) and bl(h) in order to approximate the optimal exercise boundary 

function B (Vh, h). 

Let us denote the approximating functional forms of these coefficients as bo(h) 

and bl (h), respectively. Then, equation (3.. 8) implies that bo(h) and b1(h) can be 

determined once two distinct values of the conditional variance (say Vh, o and Vh, l) and 

their associated optimal exercise boundary are provided. Denote the approximating 

boundary function by the CB method at the above two values of the conditional 

variance as B (VL, i, h), i=0,1, respectively. Then, the coefficients bo(h) and b1(h) 
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can be calculated based on the following system of two equations: 

bi (h) = 
1n[. (V, 

, h) /B (V,, o, h)] 
(3.. 22) 

and 

ýo(ý) = 
1n[Ua, oB (Vi,,,, It) /B (V,, o' Ii) Vß, 1] (3.. 23) 

Vt, o - Vl, l 

For an American call option with maturity date T, natural choices of V1,, o and V1,1 

can be taken to be the time t variance V and time t expected values of the conditional 

variance EtVT, respectively. These are values around which the future values of the 

conditional variance over the maturity horizon [t, T] are expected to fluctuate. Equa- 

tions (3.. 22) and (3.. 23) indicate that the optimal exercise boundary approximating 

function B (V,, h) over the variance Va at time It E [t, T], can be estimated based 

on the equations(3.. 22) and (3.. 23) to approximate the exercise boundary at the two 

values of the conditional variance V,, 0 and V,,,, i. e.. (V,, =, h), i=0,1, respectively. 

The function b (Vl, t, ii) over the time It E [t, T] can further be approximated by the 

Chebyshev polynomial function of time It, having v unknown coefficients for the or- 

der v polynomial function. Because we need estimate B (Vi, i, h) for both i=0,1, 

we need to estimate 2v coefficients for two Chebyshev polynomial function. These 

coefficients can be obtained by solving 2v equations which are constructed by setting 

the approximation of B (V,, i, Ii) to cut the true function B (V,, h) at time zero-points 

zj and variance Vzf,; for j=1,2, ..., v and i=0,1. For a maturity interval with A 
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pieces, this implies that we have the following 2(v x A) system of equations 

B (Vzj, 
i, zj) -K= CE (b., (v. 

j, i, zj) 5 
K, Vzj, i, T - zj) 

t+lo 
+J bb,, (Vzj, 

i, zj) e-a(s-zj)l1 
Cb, 

\,, o 
(s) ball (s) I Bal (Vzj, 

i, zj) ' 
Vzj, i) ds 

zj 

t+IA 

-J rKe-r(s-z1)l2 
Cb, 

\I, o 
(s) 

s 
b. 

ýl, l 
(s) lbxl (Vzj, 

i, zj) , 
v1, i) ds 

zj 

t+mO+A 

+J 5b, 
\, 

(Vzj, 
i, z7) e-'(s-zj)ý1 

(bým, 

0 
(sý 

i 
bým, 

1 
(S) I Bal Vj, 

i, zj J' 
Vzj, 

i) 

m=1+1 t+m0 

A t+m0+A 

-J rKe-T'(s-zj)II2 
Cb. 

\m, o (s) 
, 
bam, l (s) lb (Uzj, i, zj) Uzj, i) ds, 

m=l+1 t+mA 

(3.. 24) 

for j=1,2,..., v and i=0,1, should be satisfied. Solving out this system with respect 

to the coefficients of the boundary approximating functions B (Vh, i, h), for i=0,1, we 

can estimate the optimal exercise boundary approximating function b (Vh, h), using 

equations (3.. 22) and (3.. 23). Given B (Vh, h), then the American call option price 

corresponding to the maturity interval with A pieces can be calculated as 

CA, A (Pt, Vt, T - t) = CE (Pt, Vt, T- t) 
A t+10 

+f 6ete-6(5-t)111 Cb, 
\I, o (s) ball (s) I Pt, V) ds 

I-1 t+(1-1)A 

t+IO 

-J rKe-''(s-t) 112 (Ai, 
o (s) 

' ball (s) I Pt, V) ds, (3.. 25) 
1=1 t-}(1-1)0 

and the Richardson's extrapolation scheme can be employed to calculate CA (Pt, V t, T- t), 

as the case of lognormal model. 
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3.4 Numerical results of the Chebyshev approximation method 

In this section we report numerical results to evaluate the performance of the 

CB approximation method of the exercise boundary, developed in the previous sec- 

tion, to price American call options both for the stochastic volatility and lognormal 

models. The performance of the method is measured in terms of both the speed and 

accuracy with which it can price American call options in comparison with bench- 

mark models. For the lognormal model, we compare the method with other existing 

numerical methods for pricing American call options based on an approximation of 

the optimal exercise boundary. These are the methods suggested by Huang, Sub- 

rahmanyam and Yu (1996) (hereafter HSY-3) and the exponential exercise boundary 

approximation method suggested by Ju (1998) (hereafter EXP-3). The aim of these 

comparisons is to investigate whether the CB method can improve upon the other 

optimal exercise boundary approximation methods, which are available for the log- 

normal model.? The section has the following order. We present first the numerical 

results for the lognormal model and, second, for the stochastic volatility model. 

3.4.1 Numerical results for the lognormal model To assess the ability of the CB 

method to price American call options satisfactorily, compared with the other two 

approximation methods of the early exercise boundary function, we calculate the 

prices of J= 1250 American call options, denoted CAj (Pt, V t, T- t), j=1,2, ..., J, 

based on the above methods and a benchmark method. 8 The parameters of the 

7A detail comparison of the optimal exercise boundary approximating methods with the other 
numerical methods for pricing American call options, based on the evaluation of the whole American 

call option risk neutral relationship or the finite difference methods, can be found in Ju (1998). This 

study clearly shows that the exercise boundary approximation methods are superior both in terms 

of accuracy and speed. 
8 Note that in order to implement the HSY-3 method, we have slightly modified the procedure 

suggested by Huang, Subrahmanyam and Yu (1996). We have only used the HSY method to 

approximate the exercise boundary. The integral terms of the American call option evaluation 
formula are calculated numerically, as in our method. We have found that this modification of the 

HSY method considerably reduces the pricing errors of the method. 
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lognormal stock price model that we use in calculating the options prices are randomly 

generated from the uniform distribution over the following intervals: [85,115] for the 

current stock price (Pt), [0.0,0.10] for the dividend (8) and interest rates (r), [0.1,0.6] 

for the volatility (V = a) and [0.1,3.0] of years for the maturity interval. The strike 

price (K) is set as fixed, at the level of K= 100. The above intervals of the parameters 

of the lognormal model cover a set of estimates that have been reported by many 

studies in the empirical literature of option pricing. As a benchmark model, we use 

the binomial-tree model of Cox, Ross and Rubinstein (1979) with N= 10,000 time 

steps, denoted as BT. To evaluate the relative performance of the CB method as the 

degrees of the polynomial approximating function of the optimal exercise boundary 

increases, we employ the CB method with two and three degrees, denoted CB-2 

and CB-3, respectively. For all the numerical methods employed, we evaluate the 

American call option prices over three-points of the maturity interval. Then, we 

use the three-point Richardson extrapolation scheme to calculate the American call 

options prices over the whole maturity interval. 

The computational speed of each method is measured by the CPU time (in 

seconds) required for the calculation of the whole set of the American call options gen- 

erated in all (J = 1250) experiments. The accuracy of each method compared with 

the benchmark model is assessed by calculating, over the whole set of generated option 

prices, the following two measures: the root mean squared error (RMSE), which is de- 

fined RMSE jý and the maximum of the absolute pricing errors 

(MAE), which is defined as MAE = max{jCA, l(")-BT1I, jCA, 2(")-BT2j, ..., 
ICA, J(")-BTJI}. 

We also calculate the above two measures for the option pricing errors as a percentage 

of the option prices of the benchmark model, i. e. 100. OA, 1() BT f These measures are 

denoted as RMSE% and MAE%, respectively. The numerical results of the above 

all measures and the CPU time can be found in Table 3.1. 

As was expected, the results of the table clearly show that there is a trade off 

between accuracy and computational speed across all the approximation methods. In 
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HSY-3 EXP-3 CB-2 CB-3 
RMSE 0.0059 0.0029 0.0026 0.0012 
MAE 0.0679 0.0178 0.0163 0.0089 
RMSE% 0.0673% 0.0251% 0.0236% 0.0171% 
MAE% 0.474% 0.163% 0.142% 0.087% 

CPU(secs) 3.17 9.75 9.65 67.71 

Table 3.. 1: Numerical Result for the Lognormal Model 

terms of accuracy, the CB-2 method can be compared with the EXP-3 method. The 

estimates of RAISE and MAE measures, as well as of their counterparts for the per- 

centage pricing errors, indicate that both the CB-2 and EXP-3 methods approximate 

adequately the option prices and clearly outperform the HSY-3 method; with the CB- 

2 method performing slightly better than the EXP-3 method. The HSY-3 seems to 

be superior only in terms of computational speed, which is obviously due to its func- 

tional simplicity. But this is at the cost of larger pricing errors. Note that accuracy of 

the CB method increases considerably as the degrees of the polynomial approxima- 

tion v increases, which is consistent with the predictions of the Weierstrass' theorem. 

Comparing the results of the table with those of Ju(1998), we can conclude that the 

CB-2 and EXP-3 methods perform much better than other numerical methods for 

pricing American call options based on the approximation of the whole American call 

option risk neutral relationship, or on the finite difference numerical methods. 

The potential gains of CB method, compared with the two other approximation 

methods of the optimal exercise boundary function, for pricing American call options 

can be better understood with the help of Figure 3.1. This figure presents estimates of 

the optimal exercise boundary function by the CB-2 (line'***'), HSY-3 (line 'xxx') and 

EXP-3(line'+++') methods, as well as those by the benchmark method(line'... ') 
, 
for 

the following set of parameters of the lognormal model: {Pt = 100, K= 100, r=0.03, 

r-ö= -0.04, o=0.4 and T-t=0.5}. For this set of parameters, we found that 

the lognormal model can generate a highly concave function of the optimal exercise 
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boundary function with respect to the maturity interval. Inspection of the graphs of 

the figure indicate that the magnitude of the pricing errors of the CB method are 

clearly smaller than those of the HSY-3 and EXP-3 methods. The benefits, in terms 

of accuracy, of the CB method is due to the fact that it achieves a good approximation 

error of the true optimal exercise boundary. It does this by choosing the point with 

the minimum error to fit an approximating polynomial function into the true function, 

over the different pieces of the maturity interval, according to the minmax criterion. 

This will have a better pricing performance the more concave the optimal exercise 

boundary function is. In contrast, the HSY-3 method approximates the optimal 

exercise boundary function by fitting a straight line within each piece of the maturity 

interval, while the EXP-3 method uses a tangent line at the initial point of each piece 

of the interval. This will have as a consequence that the HSY method will result 

in higher pricing errors compared to the other two methods when the true optimal 

exercise boundary function is concave. The pricing errors of the EXP-3 method will 

depend on the degree of concavity of the optimal exercise boundary function. 

Overall, the results of this section indicate that approximating the optimal 

exercise boundary by the CB-2 has proved to be a very fast and accurate method 

for pricing American call options for the lognormal model. It can be compared with 

other efficient approximation methods introduced in the literature, for this model. 

3.4.2 Numerical results for the stochastic volatility model To assess the performance 

of the CB method for the SV model, we focus on the CB-2 model, with two degrees, 

which is found to perform very well in the case of the lognormal model. To evaluate 

the method, we follow steps similar to those in the previous section. We calculate 

the prices of J= 1250 American call option prices by drawing the parameters of 

the SV model from the uniform distribution over the following intervals: [90,110] 

for Pt, [0.0005,0.5] for V, [-1.0,1.0] for the correlation coefficient (p), [0.0,0.1] for 

r and 6, [0.1,3.0] for k, [0.01,0.2] for 0, [0.1,0.5] for o and [0.1,3.0] years for T-t. 

As previously, the strike price is assumed to be fixed, K= 100, in all experiments. 
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RMSE MAE RMSE% MAE% CPU (secs) 
CB-2 0.0035 0.0123 0.063% 0.191% 801.51 (or 13.35 mins) 

Table 3.. 2: Numerical Result For the SV Model 

The accuracy and speed performance of the CB-2 method are evaluated based on the 

1? 1'vISE and MAE measures of the options pricing errors (as well as their RMSE% 

and AMIAE% counterparts for the pricing errors percentages), and the CPU time. To 

calculate the pricing errors, we use the lattice model suggested by Britten-Jones and 

Neuberger (2000) with N= 200 steps, denoted BJ-N, as benchmark model. In Table 

3.2 we report the results. 

The results of the table clearly show that the CB-2 method can be successfully 

applied to price American call options under the SV model. The RMSE and MAE 

measures, as well as their RMSE% and MAE% counterparts, indicate that the 

magnitude of the pricing errors is very small. Note that it is almost of the same order 

as that for the lognormal model. In terms of computation time, the benefits of the 

CB-2 method are enormous. It only takes 13.35 minutes to calculate the whole set of 

the American call options. To make these calculations, we need about 6.0 hours by 

the benchmark model. 

The success of the CB-2 method in pricing American call options under stochas- 

tic volatility can be attributed to fact that this method successfully approximates the 

optimal exercise boundary surface. This can also justify the assumption made in de- 

riving Theorem 2 that the optimal exercise boundary surface is smooth with respect 

to volatility changes. To confirm this, in Figures 3.2-3.3, we present three-dimension 

graphs of the optimal exercise boundary surface implied by the SV model. This is 

done for the benchmark and CB-2 methods, respectively, based on the following set of 

parameters of the SV model: Jr = 0.03, r-ö=0.01, k=1.0,0 = 0.03, p=0.00, a= 

0.1}. ° In Figure 3.4, we present a section of the estimated surfaces at the level of 

I This is a set of parameters used by Heston (1993) to calibrate the SV model. 
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Figure 3.. 2: The Estimated Optimal Exercise Boudnary for the Benchmark Model 
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volatility V=0.16, line '... ' for the benchmark and line '" " .' for CB-2.10 Indeed, 

inspection of the graphs of all the figures leads to the conclusion that a surface of the 

exercise boundary which is log-linear with respect to volatility changes can adequately 

approximate the true optimal exercise boundary. This justifies the assumption made 

in Theorem 3. From these graphs, it can be seen that the success of the CB-2 method 

in effectively pricing the options prices can be attributed to its ability to efficiently 

approximate the true optimal exercise boundary for the SV model. As the graphs of 

Figure 3.4 indicate, the approximation of the optimal exercise boundary by the CB-2 

method under stochastic volatility is as closely as under constant volatility. 

"u Note that these graphs are indicative. Similar graphs are taken at any other level of the 

volatility. 
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3.5 Conclusions 

In this chapter we introduced a new numerical method of pricing an American 

call option under stochastic volatility. The method is based on an approximation of 

the optimal exercise boundary by Chebyshev polynomials. To implement the method 

we derived an analytic, integral representation for the American call option price 

under stochastic volatility employing a log-linear function of the optimal exercise 

boundary with respect to the volatility changes. This representation unbundles the 

early exercise premium (and hence the American call option price) into a portfolio of 

Arrow-Debreu type of securities. The prices of these securities can be calculated by 

the joint characteristic function of the price of the underlying stock and its conditional 

variance. The analytic form of this function is derived in closed form in the chap- 

ter. The chapter presented a set of numerical results which show that our method 

can approximate American call option prices very quickly and efficiently both un- 

der stochastic and constant volatility. The numerical results show that our method is 

very efficient even for cases where the curvature of the true optimal exercise boundary 

function is high. 
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CHAPTER 4. 

PRICING AMERICAN BOND OPTIONS FOR AFFINE TERM 

STRUCTURE MODELS 

4.1 Introduction 

It is well known that pricing American options is one of the most difficult 

tasks in academic and practitioner circles in the area of financial economics and 

econometrics. Among the American type of options, those on bonds (and/or interest 

rates) are the most sophisticated. This is because the interest rates which determine 

both the discount factor and the options payoffs are not assumed to be deterministic, 

as in most of the stock options pricing models. With the exception of a few studies [see 

Chesney, Elliott and Gibson (1993), Jorgensen (1994), inter alia], which derive closed 

form solutions for bond option prices for very simple cases, such as the Gaussian model 

of Vasicek, no closed form solutions of bond option prices are available in the literature 

for more complicated, multi-factor term structure of interest rates, frequently used in 

practice. 

The other reason which makes the calculation of American bond option prices 

difficult is the curse of dimensionality of the term structure. This raises the compu- 

tational burden of numerical methods for calculating American bond options, such 

as the binomial, finite difference and lattice methods, especially for multi-factor term 

structure models. For example, we need to calculate 2" node option prices for an 

n-step single factor model based on the binomial tree, 4" for a two-factor model 

and 21" for an m-factor term rate models. Although simulation based methods [see 

Longstaff and Schwartz (2001), Ibanez and Zapatero (1998), Barraquand and Mar- 

tineau (1995), inter alia] can resolve the dimensionality problem to some extent, 

these methods suffer from other problems. In particular, they are time-consuming 

and employ a perturbation scheme to calculate the hedge parameters: the delta and 

gamma, which can potentially increase the computational burden. For example, the 

perturbation scheme needed to calculate 2n option prices for the estimation of the 
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delta parameter and 3n(n + 1)/2 option prices for the gamma parameter. Moreover, 

based on a perturbation scheme may not result in complete hedging. 

In this chapter, we suggest a new approach for calculating American bond 

put option prices for multi-factor, affine term structure of interest rates models [see 

Duffie, Pan and Singleton (2000), inter alia]. These models are widely used to price 

interest rates and bond prices. Our approach is based on a decomposition of the 

American bond put price into its European option counterpart price and the early 

exercise premium, for exercising the option before its expiration date. This decom- 

position enables to develop a very fast and accurate approximation scheme of the 

early exercise premium based on an approximating of the optimal exercise bound- 

ary function with a hyperplane, estimated over different regions of the space of the 

state variables (factors), driving the term structure of interest rates, and different 

pieces of the maturity interval of the option. Since our method involves only one 

part of approximation (the European option price can be calculated exactly), it can 

significantly reduce the computation effort and time, without losing in accuracy. 

To implement our method, we unbundle the early exercise premium into a 

portfolio of Arrow-Debreu type of security prices. These prices calculate the values 

of early exercising the American bond option contract over all points of the maturity 

interval. We provide explicit solutions for these prices based on the joint characteristic 

function of the state variables underlying the term structure of interest rates. This 

function is derived in closed form in the appendix B of the chapter. 

The chapter is organised as follows. Section 4.2 presents the affine term struc- 

ture model, with its necessary notation, and provides the analytic formulas for pricing 

the American bond options. Section 4.3 suggests an algorithm for a multi-region and 

multi-piece approximation the optimal exercise boundary price function, and it shows 

how to calculate the hedging parameters. Section 4.4 presents numerical results eval- 

uating the pricing performance of our method, compared with a benchmark method. 

Section 4.5 concludes the chapter. All the proofs are given in the appendix. 
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4.2 Pricing American bond options for affine term structure models 

4.2.1 The affine term structure model Consider the probability space (SZ, 
. 
ý, Q) re- 

stricted to the time interval [t, T2] and define 
. 
Fs = 1,17,; sE [t, T2]}, with .T= 

FT, to 

be the filtration generated by the relevant bond prices (or interest rates) in the econ- 

omy. Then, the general affine term structure model of interest rates [see Duffle and 

Kan (1996) and Dai and Singleton (2000)] assumes that the risk neutral instantaneous 

interest rate, r� of the economy is given as a linear combination of N unobservable 

state variables, collected in the N-dimension vector Xs = (X1,3, X218, ..., XN, 3)' ERN 

-the N-dimension Euclidean space, that is 

N 

r, = ao +Ea, X.., s = ao + a'X3, (4.. 1) 
n=1 

where ao is a constant scalar, a= (al, a2, ..., aN)' is an N-dimension vector of con- 

stants and the dynamics of X, are described by the following system of stochastic 

differential equations: 

dX ,= h(©-X, )ds+o- VsdW4, 

where 0 is a N-dimension vector of constants, w and o is non-singular (N x N) 

dimension matrices, 44,4 is a N-dimension vector of independent Brownian motion 

processes under the risk neutral measure, denoted Q, and V is an (N x N) dimension 

diagonal matrix with elements 

V, 
ii - ei + ßi)S, 

where ei is a constant and ßi is N-dimension vector of constants. 

For the above affine model, the current time t price of the zero-coupon bond 
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with maturity T2 - t, under the Q measure can be written as 

B (Xe, T2 - t) = EQ 
(e_fT213) 

1 
(4.. 2) 

and can be calculated by solving the following partial differential equation (PDE): 

GB(Xt, T2 - t) = rtB (Xt, T2 - t) , 
(4.. 3) 

where G is the differential operator, defined as 

NN IN 2 19 
Un1i6n2iV, ii axax 

(4.. 4) 

n1-- 1 n2=1 i=1 nl, t n2it 

NN 
aa 

at . - +EE ti, 111712 (©n2 - Xn2, t) aXnl't 
n1=1 n2=1 

From Duffic and Kan (1996), we know that the bond price B (Xt, T2 - t) can be 

written as an exponential function of the state variables Xt,,,, 

N 

B(Xc, T2-t)=exp 
(A((T2 

- t)) + (T2-t)Xn, e (4.. 5) 
n-i 

where A (T2 - t) and C� (T2 - t) are deterministic functions of the maturity interval, 

T2-t. An explicit solution for B (Xe, T2 - t) can be derived by substituting (4.. 5) into 

(4.. 3) and solving the resulting following two ordinary differential equations (ODEs): 

CAA (T2 
- t) 

=NN 
C7 (T2 - t) -ao -}- 

E7 ý'n, n2Bn2Cnl (T2 - t) 
nl=1 n2=1 

NNN 

Un1ign2iPi Cni 
(T2 - t)Cn2 (T2 - t), 

nl=ln2=1 i=1 
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and 

OCn(Ty -t) 
NN 

(T2 - t) an -EE hnln2n1(T2 - t) 

n1=1 n2=1 
NNN 

+2 E 
(EO'njiO'n2i6i 

cn1(T2 - t)G`n2 (T2 - t)2 (4.. 6) 
n1=1 n2=1 i=1 

with initial conditions A(O) =0 and C, 
ß(0) = 0, and terminal condition B(XT2,0) = 1. 

4.2.2 Pricing American bond put options Having introduced the affine model of 

the term structure of interest rates with its necessary notation, we now direct our 

attention to the pricing of an American put option on a zero coupon bond with 

maturity T2i as underlying asset. We focus our attention to this category of options 

because the price of an American call bond option is the same with that of a European 

call option. 

Let PA (Xe, T1; T2) denote the time t price of an American put option expiring 

at time Tl < T2 and strike price K on a bond expiring at date T2. At any point 

sE [t, T1], i. e. during the life of the option, we can split the space RN spanned 

by the state variables into two regions: the continuation region into which the op- 

tion is kept alive, defined as q, = {Xs E 7ZN :K-B (X3, T2 - s) < PA (Xs, Tl; T2) }, 

and the early exercise region into which the option is exercised, defined as 71s = 
{Xe E RN :K-B (X, T2 - s) = PA (Xs, Ti; T2) }. Note that % is the complemen- 

tary set of 718 . 
Since X, is the vector of the state variables driving bonds prices and interest 

rates, it is convenient to write the continuation and exercise sets in terms of the state 

variables. This can be done by exploiting the existence of a relationship between 

a state variable of the state vector X, (say XN,, E RI -the 1 dimension Euclidean 

space) and the remaining state variables collected in the (N-1)-dimension vector Y, _ 
(X1,,, X2,,, ..., XN_,,, )' E RN-1 - the (N - 1)-dimension Euclidean space. Then, we 

can write the continuation and exercise regions as rJs = {X3 E 7ZN : XN,, < G(Y8, s)} 
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and CJs = {Xe E %ZN : XN, 3 % G(Y3, s) }, respectively, where G(.,. ) : RN-1 X [t, T] -º 
1Z is a function relating XN,, to the remaining state variables, collected in Y. 

In order to derive an analytic solution for the bond put option price, we need 

to introduce the concept of the optimal exercise boundary. This is a collection of 

the critical bond prices, denoted Be, VsE [t, T], where the holder of the option will 

be indifferent between exercising and continuing to hold the option contract. Let 

Xs denote the vector of the state variables corresponding to the critical bond price 

Bs, at time s. According to the affine term structure model [see equations (4.. 1) 

and (4.. 2)], Be should be a function of the vector of state variables Xs and T2 - s, 

i. e. Bs -B (X; 
, 
T2 - s). At the optimal exercise boundary price, the payoff from 

exercising the option, given by K- Bs, should be equal to the value of the American 

option PA (Xe, Ti; T2), i. e. 

K-13(Xg, T2-s)=PA (X,, Ti; T2), (4.. 7) 

otherwise arbitrage opportunities will be arisen. As we did for the continuation and 

exercise regions, it is convenient for our later derivations to define the optimal exercise 

boundary set, denoted as B� in terms of the state variables 

238 = {x; = (x4,, 
8, 

Ys) E RN : xN, 
s = G(Y3, s) V Y3 ERN-1 }, (4.. s) 

since both the underlying bond price and the American option price are solely de- 

termined by the vector of state variables X, *. Relationship (4.. 8) indicates that B., 

can be thought of as the set of the critical values of XS which split the space RN 

into two complementary regions: the exercise region, given by set res, and continua- 

tion region, given by set res. Relationship (4.. 8), which follows from the definitions 

of the continuation and early exercise regions as res = {Xs E RN : XN, 3 < G(Y9, s)} 

and %= {X, E 7ZN : XN,, > G(Y9, s)}, respectively, indicates that the B., can be de- 

fined as the set of critical values of the state variable X7 satisfying the relationship 
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N, =G(Y�s), VYd ERN-1. 

Since the option price PA (Xe, T1; T2) constitutes a martingale in the continu- 

ation region, its solution can be derived based on Feyman-Kac's theorem by solving 

the following partial differential equation (PDE) 

£PA (Xt, Ti; T2) = rtPA (Xt, Ti; T2), 

subject to the following terminal and boundary conditions 

ihn PA (Xt, Ti; T2) = max (0, K-B (XTI)T2 - T1)) , t-+7i 

Ihn Pn (Xi, Ti; T2) = 0, 
ß(Xt, T2-t)-soo 

Ein Pn (Xt, Ti; T2) =K-B (Xt, T2 - \i-+\t EL; 

and lim 
OPA (Xti Ti; T2) 

xt .. xt Eta OB (Xc, T2 - t) 

(4.. 9) 

Given that it is difficult to derive an analytic solution for the above PDE, many au- 

thors [working mainly in the area of American options pricing for stocks , see Kim 

(1990), and Nlyneni (1992), inter alia] have recently suggested numerical approxima- 

tion methods for calculating the option price PA (Xe, Ti; T2) based on a decomposition 

of PA (Xe, TI; T2) into its European option price counterpart plus the early exercise 

premium. This method can be proved faster and more accurate than numerical meth- 

ods based on a numerical solution of the PDE (4.. 9) [see Ju (1998), inter alia]. In the 

bond option pricing literature, such a type of decomposition of the American option 

price has been suggested by Jumshidian (1992) and Jorgensen (1996), inter alia, but 

this is done for the single factor Gaussian interest rate model. In the next theorem, 

we extend this decomposition of the American bond option price for the case of an 

N-dimension affine term structure model of interest rates. 

Theorem 4 For the affine term structure model, defined by (4.. 1), the time t price 

of an American put option PA (Xt, Ti; T2), with expiration date Ti and strike price 
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K, on a bond expiring at date T2 > Tl can be decomposed as 

PA (Xe, Tl; TO = PE (Xe, Ti; T2) (4.. 10) 
T1 

+f EQ [efta *udurKA{xN , G(Ys)} Ixt ds' 

where PE (Xt, Tl; T2) is the price of the European put option counterpart of the Ameri- 

can option, AA is an indicator function of a set A (here, A-%= {X3 : XN, 3 > G(YS, s)}). 

At any time It E [t, T], where It < s, the optimal exercise boundary, B (X*, T2 - s), 

should satisfy the following recursive equation 

B (X, 
� T2 - It) -K 

= P2 (Xia) Ti; T2) 
Ti 

ds. (4.. 11) +JE,,? [efh' ru`ýur, KA{xr,,.. G(Yaýs)} X] 

The proof is given in Appendix B. 1. An analytic formula for the European 

put option price PE (Xe, Ti; T2), which is needed for the calculation of PA (Xe, Ti; T2), 

is derived by Cliacho and Das (1999). 

Although Theorem 4 characterises the solution of the bond put option price 
PA (Xt, Ti; T2), it does not provide an analytic formula which can be used to calculate 

this price. This is due to the fact that the option price PA (Xe, Ti; T2) and the opti- 

mal exercise boundary are related through the recursive relationship (4.. 11). However, 

the decomposition of PA (Xe, T1; T2) into the European price PE (Xe, T1; T2) and the 

early exercise premium, given by the difference PA (Xe, T1; T2) - PE (Xe, T1; T2) 

fE [eft' r"dur3l{A{xr,,,, G(YY, s)} 
I- t] ds, enables us to develop a fast and efficient nu- 

t 
merical approximation method for pricing the American option based on an approx- 

imation of the early optimal exercise boundary function, along the lines of the ap- 

proximation methods suggested by Huang, Subrahmanyam and Yu (1996), and Ju 
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(1998), for American stock oprions. As we will see later, this method can lead to a 

more accurate approximation of American bond option prices because it involves only 

one approximation step; the calculation of the European option price can be done 

exactly. 
To develop the exercise boundary approximation method, we first need to 

specify a functional form for G (Y3, s), determining the critical values of X, %, and, 

hence, the optimal exercise boundary set ß9. For the affine term structure model, a 

natural choice for 0 (Y3, s) can be the linear relationship 

N-1 
G (Ys, S) = A0, 

s 
+> Xn, 

sXn, s, 
(4.. 12) 

n=1 

which is assumed that holds at the moment for the whole maturity interval, for 

simplicity. Given (4.. 12), in the next theorem we provide a two-dimension integral, 

analytic solution for the option price PA (Xe, Ti; T2), which can be used to build up 

our exercise boundary approximation method. 

Theorem 5 Assume that X3 =G (Y3, s) is given by the linear function (/x.. 12). 

Then, the option price PA (Xt, Ti; T2) can be calculated as 

Pn (Xt, Ti; T2) = PE (Xt)Tl; T2) 
T, 

+K1<I)(Xt, s-t; Vo, VI)II(Xt, s-t)ds, (4.. 13) 

t 

where the optimal exercise boundary satisfies the following recursive relationship 

B((' , Xi,,, )', T2 - h) -K 

_ PE ((Yº, Xi 
, 1, )', Ti; T2) 

T, 

+K J (I) (X,,, s-h, Vo, Vi) II ((Yh, XX, 
3)1, s- h) ds, (4.. 14) 
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where VO and Vi are N-dimension vectors of zeros and unities, respectively, and 

(I) (Xt, s-t; 0, cp) is the extended characteristic function defined as 

\ 
(I) (Xe, s-t; 0, c) = Et 

(exp(f8 
rudu)cpXse"3) 

The proof of the theorem is given in Appendix B. 2. 

Theorem 5 indicates that the early exercise premium (and hence the American 

put bond option price) can be unbundled into a portfolio of Arrow-Debreu type of 

securities. The prices of these securities, denoted by the Greek letter II(. ), can be 

calculated by evaluating the following risk neutral expectation 

G' 
fh r"du7' A 

Qs 
{XN, 

eic(Ys, s)} / 
E, 

ýýY&ý ýýh, 
sýýý S- %L) _' li 

/Q 
ýe fti ruder `I 

(yh) XN, 
h)i 

s) 

or using the transformed measure Qj, where dQ =Q (f 
fh" 

udü l, the expectation Eh 
\C 

Ta/ 

11 ((Yt, XN,,, )', s- IL) _ E! ' 
[A{xN,, 

c(yS, s)}'h1, 
XN, 

h)l 
]. (4.. 16 

Closed form solutions of prices II ((Yh, s- h) are given in Appendix 

B. 2. These are derived based on the extended transform of the joint conditional char- 

acteristic function (CCF) of the state variables X, ß, 3, given X,,, h. These prices have 

an interesting economic interpretation. As equation (4.. 16) indicates, they constitute 

the market prices of a security under the measures Q1, respectively, which pay $1 in 

state {X3 : XN, B >G (Y3, s)} and 0 otherwise. In the asset pricing context, they are 

equal to the probabilities of the state {X8 : XN, s >G (Y3, s)} under measure Q1. 

4.2.3 Multi-region and multi-piece approximation of the optimal exercise boundary 

The analytic solution for the American put bond option price presented in the previ- 

ous section is based on the assumption that the optimal exercise boundary function 
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can be determined through the linear relationship (4.. 12). However, if this is not true 

(as it may happen in reality), then approximating the optimal exercise boundary rela- 

tionship XN, 
3 = G(Y,,, s) by the linear function (4.. 12) may lead to significant pricing 

errors. To reduce this type of errors, in this section we suggest a method to approx- 

imate the function of XN,, = G(Y,, s), over MN- 
,,, regions (segments) of the 

state space of Y. E RN-1 and L different pieces of the maturity interval, [t, T], based 

on the linear relationship (4.. 12). As recently pointed out by Singleton and Umantsev 

(2002), who suggested a similar method for approximating swaptions prices, this ap- 

proach can lead to a very accurate approximation of the exercise boundary function 

based on a few segments of RN-1, i. e. M=2. This happens because the values of 

the state variables, X,,, 5, of the affine term structure model tend to be concentrated 

on a small subset of RN-lwith non-zero probability of occurrence. 

To present our approach more analytically, first define the set OC RN-1, 

which contains the values of Y3 with non-zero probability of occurrence. 0 can be 

written as the Cartesian product 0= Xl X X2 X ... X XN_1 of (N - 1)-subsets of 

the state variables, where Xn = [Xnm1°, X, ", '] n= 1> 2>..., N-1, where Xnmin and 

X, I denote the minimum and maximum values of Xn, 8 with non-zero probability of 

= occurrence, respectively. If we divide each subset Xn into M equal intervals N0 

XnminrX1], [x l xs] ' [fn at-1 
s nnn Xhrn _ Xnma"] then O can be divided into MN-1 equal ný ""s 

finer subsets (regions) Ejj, 
j21..., jN_, = [Xis, X11+1] X [X 2, X2J2+1] X. X [XN-1' 

XN-1+1]' 

where (jl = 0,1,2, ..., Al , j2 = 0,1,2, ..., M,..., jN_1 = 0,1,2, ..., M ), and thus can 
Al MM 

be written as the sum of subsets Ej 1, ý2, .., ýN_1, Le 0 
71=192=1 7N-1=1 

Suppose that the optimal exercise boundary function Xß,, 
9 = G(YS, s) is deter- 

mined in each region =j1, i2,..., jN_1 by the hyperplane 

N-1 
G11J2,..., iN-1 (Y3, finis Xn, 

s) 
(4.. 17 

n=l 

then the functional form of the optimal boundary relationship X, 8 = G(Y3, s) can 
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be approximated over the whole space e by the sum of functions G7l, j2,..., jN_1 (Ys, s), 

taken over different intervals M of the space spanned by Y3, i. e. 

b1 b1 b1 

GAr (Y97 s) 91=1 72=1 9N-1=l 

Gj, 
i2,..., 7N-1 

(Y3, s) A=jl. 
j2,..., IN-1' 

4.. 18) 

where A= ý1. ýZ. . 1N_1 denotes an indicator function for the set Eý1J2,,,,, jN_1 
As M approaches to infinite, we can easily show that the approximating func- 

tion G"1(Y3, s) converges to the true function G (X3, s), i. e. 

lim GM(Y3, s) =G(Ys, s). M-- oo 

This last result guarantees that if we divide the space spanned by the vector Ys ad- 

equately small enough, then the approximating function GM (Y3, s) will constitute 

an adequate approximation of the true function G (Xs, s). The above result follows 

immediately by noticing that, for continuous and differentiable optimal exercise func- 
N-1 

- 
in 

tions, we have that I GA1(Y3, s) -G (Y3, s) I o(OX), where OX = [I Xmax 
MXm 

n_i 
thus implying limjj1,,,. GM (Y� s) =G (X5, s). 

In the next theorem, we extent the results of Theorem 5 to the case that the 

optimal exercise boundary function X7 = G(YY, s) is approximated by the multi- 

region (multi-segment) function GA! (Y3, s). 

Theorem 6 Let us consider that the optimal early exercise boundary function is ap- 

proximated by the multi-region function GM (Y8, s), given by equation (4.. 18). Then, 

the American put option price PA (Xt, Ti; T2) can be approximated by 

P Al (Xt, Ti; T2) = PE (Xt) Tl; T2) (4.. 19) 
T1 

+K J 4) (Xt, s-t; Vo, Vi) IIn1(Xe, s- t) ds, 
e 
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where the early exercise boundary satisfies the following recursive equation 

B, ýl(X, *�Ta-h)-K 

= Pc (XI*L7 Ti; T2) + (4.. 20) 
T1 

KJ (I) (X 
,s-h; Vo, Vi) 11"1 ((Yh) XN, h)') s- h) ds. 

It 

As expected the results of the theorem are analogous to those of Theorem 2. 

The proof of the theorem and the analytic formulas of the state prices IIM(. ), involved 

in the integrals of equations (4.. 19) and (4.. 20), are given in Appendix B. 3. 

The above results show how to approximate the American option price PA(Xt, 

T1; T2) based on a multi-region approximation of the optimal exercise boundary re- 

lationship XN, 
s = G(Y3, s), over the whole maturity interval of the option T-t. To 

improve the efficiency performance of this approximation method, we may also con- 

sider its implementation over different pieces of the maturity interval. To this end, 

next present the steps of an algorithm which show how this method can be applied 

both over different regions of the space of the state variables and different pieces of 

the maturity interval. 

1. First, we divide the maturity interval Tl -t into L equal pieces [so = t, Si], 

(Si, s2],..., (sL_i, SL - Ti], with st =t+ l1", and assume that the optimal exercise 

boundary function is flat for each piece (sj_1i se], i. e. GM (Ys, s) = GM (Ys� se), V 

sE (st-iIst]. 

2. Due to the recursive nature of the optimal exercise boundary and option 

price formulas, in order to approximate the hyperplane G' (Ys, s), `d sE (sl_l, si], 

we proceed backwards starting with the last piece of the interval, (sL_1i SL - T], and 

then moving backwards to the first piece [so t, sl]. 

In order to calculate G" (Ys, s) for the piece (SL_1i SL = T], note that at 

the expiration date of the option, T1, the optimal exercise boundary is given by 

B (XN, 
T1, T2 - T1) = K, V YTi E =J*IJ2,,.. JN_1. According to equation (4.. 5), this price 
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can be calculated as 

B (Xn, 
Tý, T2 - Ti) 

= exp A (T2 - Tl) + 
N-1 

Cn (T2 
- TO Xn, TI + CN (T2 

- TO XN7Ti 
. 

n=i 

The last relationship implies that the optimal value of the state variable XN, TI 

can be calculated as 

X4 Ti 
N-1 

1= GAr (YTS 
, Ti) = CN (T2 - Tl) 

log K-A (T2 - Ti) - 
T. Cn (T2 - T1) Xf, TI . 
n=1 

3. Having calculated XN, TI, in the next step we calculate XN, 
SL_l=GM(Y8L_17 

SL_1), With SL_1 0 (SL_1, SL]. This can be done as follows. In each region j1J2, """, jN-1 
= [ý j', 

Cjl 
+1] X [Xý 72, 

�'2+1 X '"" x1 ýiN1 , 
XN-1+1] 

, we collect the X, In or Xn ax val- 

uesXof 

"the 

state variables X,,, 
s, n=1,2,..., N-1, in aN- 1-dimension vector. 

In total, we can yield 2N-1 such type of vectors, denoted as Yl, Y2 
i ..., 

Y2N-1. Sub- 

stituting the values of these vectors into the recursive boundary equation (4.. 20) 

for the date T1, we can calculate their corresponding values of XN 
sL_l, 

denoted 

as X2N_1, respectively, by solving out the recursive equation (4.. 20) for 

XN, 
sL_1 using the Newton-Raphson nonlinear numerical method. The parameters of 

N-1 

the hyperplane Gj,, 72r..., ir, -ý 
(YsL-I SL-1 + ýo A J1.72,..., jN_1 

n, s Xn, s can 
n=1 

be derived by regressing Xi 
, X2*,.., X2N_l on Y1,,..., Y2N-Iwith the method of least 

squares. 

4. We repeat step 3 backwards to calculate the hyperplanes Gjl, j2,.... jN_1 (Yst, s1), 

over all the remaining pieces of the maturity interval, i. e. [so . t, Si], (sl, s2], ..., 
(SL-3, 

SL-21. These are then used to calculate the optimal exercise boundary approximating 

function G" (Y31, s1), over the MN-1-different regions of set O. 

5. Substituting GA' (Y31, si), obtained from step 4, into the equation (4.. 19), 
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we can calculate the American option price PA (Xt, T1; T2). 

4.2.4 Calculation of the hedging parameters: the deltas and gammas The analytic 

solution of the American put bond option price given by Theorem 2 enables us to 

derive analytic formulas of the hedging parameters: the deltas (Sn) and gammas 

(Ynm)ý for hedging against the changes of each of the state variables Xn, t. These 

formulas are given by 

Sn =a PA (Xt) Tl; T2) aXn, 
t 

T1 

ar = ax1'E 
(Xt, Ti; T2) +J 11 

t 
(Xt, s- t) ds 

n, t t 

and 

a2 PE (xt 
, 
Tl i T2 'Ynm = 

ax n, taxm, t T1 

_a PE (Xg, Tl; T2) +J 11X 
txm t 

(Xt, s- t) ds 
axn, taxm, t t 

[see Appendix B. 4 for proofs]. In contrast to the simulation and/or other numerical 

methods which are very time consuming and computationally demanding, the above 

formulas of the hedging parameters will enable us to compute the parameters Sn and 

rya, n very easily and fast. 

4.3 Numerical results 

In this section we report numerical results to evaluate the performance of the 

approximation method of the exercise boundary developed in the previous section, 

denoted as LBA, for pricing American put bond options. This is done for three 

frequently used, in practice, term structure models of interests: a two and three factors 

extensions of Vasicek's model [see De Jong and Santa-Clara (1999)], a two-factor 
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extension of the CIR model [see Chen and Scott (1992)] and for the three-factor affine 

model suggested by Dai and Singleton (2000), referred to with the acronym ATSM. 

For the above three models, we compare the pricing performance of our method with 

a benchmark model using measures of pricing errors and computation time. Due to 

the curse of dimensionality and the convergence problems arisen by the multi-factor 

the term structure models, we used the least-squares Monte Carlo (LS-MC) method 

of Longstaff and Schwartz (2001), instead of a binomial tree method, as a benchmark 

method. As has shown by Longstaff and Schwartz (2001), the LS-MC method can 

very accurately approximate American bond option prices, especially for multifactor 

term structure models with bearable time-consuming. 

To implement our method, we approximate the boundary function over L= 

8 pieces of the maturity internal. For each piece, we limit the space of the state 

variables X,,, 9 values in the region [Et(Xj, 
3) - 5Vart(Xj, 3), Et(Xj, 3) + Wart (Xj,, )], 

as the probability of a value of X,,, s to lie outside this region is very small (almost 

zero) for Gaussian models, and we provide two sets of numerical results: The first 

set assumes that M=1, i. e the exercise boundary approximating function takes 
N-1 ., +A s'1Xi, 

s). The values in the whole region of O (thus implying ýlýl =A* 0 I' t-1 

second set assumes that M=2, i. e. the exercise boundary function is linearly 

approximated over each of the MN-1 = 2N-1 different subsets of e (thus implying 
N-1 

j1. ý2 ='\ä3l''2. -I- Aý'sl'i2Xi, 9 jl = 1,2 and j2 = 1,2). The CFs needed to calculate 

the Arrow-Debreau type of prices of the state variables can be found in Appendix 

B. 5. 

To implement the LS-MC method, we assume that there are 50 exercise points 

per year period of the maturity interval and we carry out 100,000 (50,000 plus 50,000 

antithetic) simulation paths to calculate the put bond option prices [see Longstaff and 

Schwartz (2001)]. For each path, we identify the optimal exercise time by comparing 

the immediate exercise value of the bond option with that of a non-exercisable in- 

the-money bond option, for all possible exercising points s of the maturity interval. 
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The latter is calculated by approximating the time s conditional expectation of the 

continuation value of the in-the-money option time s+1 cash flows by a countable 

set of linear basis functions, measured at point s. For the two-factor models, we use 

the following set of variables {1, X1, t, Xi, t, X2, t, X2 
, t, 

X1, tX2, t} as the basis functions 

to estimate the function of the time s conditional expectation, while for the three- 

factor models we use {1, X1, t, Xi, 
t, 

X2, t, X2, 
t, 

X1, tX2, t, X3, t, 
X3 

, t, 
X3, tXl, t, X3, tX2, t}. 

i 

Once the exercise time is determined for each simulation path, we value the bond 

option price by appropriately discounting the resulting payoff from exercising the 

option contract. According to the LS-MC approach, the American put bond option 

price is then calculated by taking the average of the put bond option prices over all 

simulation paths. 

For each of the term structure models considered, we give 10 examples of 
American put bond option prices given known parameters and we also generated 

J= 1000 American put bond option prices for randomly selecting parameters of the 

models from some reasonable range. The computational speed of each approximation 

method is measured by the CPU time (in seconds) required for the calculation of 

the whole set of the American put option prices generated, for all (J = 1000) ex- 

periments. The accuracy of our method is assessed by calculating, over the whole 

set of generated option prices, the root mean of squared relative error RMSRE _ 

PLBA PLS-MC 
2 

"jam- "1j' 
O 

'ý) 
, which is defined relatively to the LSM American op- 

tion price. 

Tables 4.1-4.4 report the numerical results. PA, PE, Early and Diff respec- 

tively denote the American option price, the European option price, the early exercise 

premium and the difference between the valuation of American option by LBA and 

that by LS-MC. Tables 4.1 and 4.2 report the results for the two and three factors 

1 Note that these sets of variables include terms in X, ß, 9, their powers and their cross-products. 
The number of these terms will grow exponetially with the dimensionality of the affine model of the 

term structure. 
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extensions of Vasicek's model, Table 4.3 reports the results for the two-factor CIR's 

and, finally, Table 4.4 reports the results for the three-factor ATSM's models. The 

maturity intervals that we consider for the American bond option price and the zero- 

coupon bonds are respectively: Ti =4 months and T2 =5 years, for the Vasicek 

model, and Ti =4 months and T2 =7 years, for the other two term structure mod- 

els. To generate the example American option prices, we are based on the following 

sets of parameters: {K = 0.8, wl = 0.0337, it2 = 0.4861,01 = 0.0415,02 = 0.0230, 

o, l = 0.0103,62 = 0.0127} for the two-factor Vasicek model [see De Long and Santa- 

Clara (1999)], {K=0.65, w1 = 0.0525, K2 = 0.0705, ic3 = 0.6553,0l = 0.0415, 

02 = 0.0230,03 = 0.1012, Ql = 0.0163, a2 = 0.0189, Q3 = 0.0214} for the three- 

factor Vasicek model [see De Long and Santa-Clara (1999)], {K = 0.7, rtl = 0.1574, 

h, 2 = 0.8103,01 = 0.0188,02 = 0.0324, vl = 0.0775, a2 = 0.0798} for the two-factor 

CIR model [see De Long and Santa-Clara (1999)], {K = 0.68, /C,. = 2.19, hn,, = 

0.0757, h� = 1.24 0�a = 0.0416,0� = 0.000206, Qm = 0.00253, and o- 2=0.000393} for 

the ATSM model [see Dai and Singleton (2000)]. For 1000 random experiments, we 

randomly generate the parameters of the state variables underlying the term struc- 

ture from the uniform distribution over the interval: {Xl E [0.01,0.2], X2 E [0.01,0.2], 

it E [0-01)0-9911 h2 E [0.01,0.99], 01 E [0.01,0.2], 02 E [0.01,0.2], a1 E [0.01,0.2], 

0'2 E [0.01,0.2]} for two factor Vasicek model, {X1 E [0.01,0.2], X2 E [0.01,0.2], 

X3 E [0.01,0.2], wl E [0.01,0.99], h2 E [0.01,0.99], IC3 E [0.01,0.99], 01 E [0.01,0.2], 

02 E [0.01,0.2], 03 E [0.01,0.2] Ql E [0.01,0.2], 172 E [0.01,0.2]. 0'3 E [0.01,0.2]} 

for three factor Vasicek model, {X1 E [0.01,0.2], X2 E [0.01,0.2], tC1 E [0.01,0.99], 

h2 E [0.01,0.99], 01 E [0.01,0.2], 02 E [0.01,0.2], a1 E [0.01,0.2], a2 E [0.01,0.2] } for 

two factor CIR, {r E [0.01,0.2], mE [0.0170.2], vE [0.01,0.2], ic,. E [0.01,5], 

ti,,,,. E [0.01,2], Ic E [0.01,2], Om E [0.01,0.2], By E [0.01,0.2], Qm E [0.01,0.2], 

u, E [0.01,0.2]} for the ATSM model. Note that, in addition to the RMSRE and 

CPU pricing performance measures, the table reports results on option prices for 

specific values of the state variables. 
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(X1 'X2) PE PA Early PA Early Diff PA Early Diff 

LS-MC LS-MC LBA(M=1) LBA(M=1) 10 LBA(M=2) LBA(M=2) 10- 

(0.022,0.022) 0.005465 0.007120 0.001655 0.007227 0.001762 107 0.007167 0.001702 47 

(0.022,0.024) 0.006546 0.008724 0.002178 0.008805 0.002259 81 0.008763 0.002217 39 

(0.022,0.026) 0.007778 0.010615 0.002837 0.010680 0.002902 65 0.010647 0.002869 32 

(0.022,0.028) 0.009163 0.012021 0.003748 0.012970 0.003797 49 0.012948 0.003775 27 

(0.022,0.030) 0.010696 0.015869 0.005173 0.015869 0.005173 0 0.015869 0.005173 0 

(0.018,0.032) 0.005157 0.006081 0.001824 0.007078 0.001921 97 0.007029 0.001872 48 

(0.018,0.034) 0.006190 0.008676 0.002486 0.008762 0.002572 86 0.008713 0.002523 37 

(0.018,0.036) 0.007375 0.010736 0.003361 0.010807 0.003432 71 0.010759 0.003384 23 

(0.018,0.038) 0.008711 0.013201 0.004490 0.013201 0.004490 0 0.013201 0.004490 0 

(0.018,0.040) 0.010198 0.016148 0.005950 0.016148 0.005950 0 0.016148 0.005950 0 

RATSRE 1.59% 6.24% 1.28% 3.71% 

CPU(Sec) 4208.21 22.89 46.96 

Table 4.. 1: Two Factor Vasicek Model 

(X1, 
l7.2, /13 

) 
PE PA Early PA Early Di ff PA Early Dill 

LS-MC LS-MC LBA(M=1) LBA(M=1) 10 LBA(M=2) LBA(M=2) 10 

(0.007,0.006,0.028) 0.031112 0.034918 0.003806 0.034918 0.003806 0 0.034918 0.003806 0 

(0.007,0.006,0.0255) 0.029645 0.033006 0.003361 0.033085 0.003440 79 0.0033062 0.003417 56 

(0.007,0.006,0.023) 0.028206 0.031235 0.003020 0.031345 0.003139 110 0.031310 0.003104 75 

(0.007,0.006,0.0205) 0.026707 0.029067 0.002270 0.029208 0.002411 141 0.029156 0.002359 89 

(0.007.0.006,0.018) 0.025418 0.027553 0.002135 0.027732 0.002314 179 0.027665 0.002247 112 

(0.006,0.007,0.028) 0.031023 0.034710 0.003687 0.034710 0.003687 0 0.034710 0.003687 0 

(0.006,0.007,0.0255) 0.029558 0.032972 0.003414 0.033047 0.003489 75 0.033030 0.003472 58 

(0.006,0.007,0.023) 0.028121 0.030676 0.002555 0.030779 0.002658 103 0.030747 0.002626 71 

(0,006,0.007,0.0205) 0.026713 0.020043 0.002330 0.029182 0.002469 139 0.029130 0.002417 87 

(0.006,0.007,0.018) 0.025337 0.027535 0.002198 0.027707 0.002370 172 0.027644 0.002307 109 

RMSRE 2.39% 7.37% 1.78% 4.51% 

CPU(sec) 
1- 1 

8598.33 38.89 178.78 

Table 4.. 2: Three Factor Vasicek Model 
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(Xl, 
2) PE PA Early PA Early Diff PA Early Diff 

LS-MC LS-MC LBA(M=1) LBA(M=1) 10 LBA(M=2) LBA(M=2) 10 

(0.03,0.013) 0.010904 0.014153 0.003249 0.014153 0.003249 0 0.014153 0.003249 0 

(0.03,0.0115) 0.010249 0.013170 0.002921 0.013199 0.002950 29 0.013195 0.002946 25 

(0.03,0.01) 0.009721 0.012130 0.002409 0.012163 0.002442 33 0.012157 0.002436 27 

(0.03,0.0085) 0.009031 0.011067 0.002034 0.011108 0.002075 41 0.011098 0.002065 31 

(0.03,0.007) 0.008409 0.010110 0.001611 0.010149 0.001650 39 0.010143 0.001644 33 

(0.034,0.013) 0.018926 0.025378 0.006452 0.025378 0.006452 0 0.025378 0.006452 0 

(0.034,0.0115) 0.018155 0.024138 0.005983 0.024138 0.005983 0 0.024138 0.005983 0 

(0.034,0.01) 0.017010 0.022896 0.005877 0.022934 0.005915 38 0.022923 0.005904 27 

(0.034,0.0085) 0.016334 0.021651 0.005317 0.021704 0.005370 53 0.021685 0.005351 34 

(0.034,0.007) 0.015060 0.020404 0.004444 0.020451 0.004491 47 0.020441 0.004481 37 

RMSRE 1.21% 4.15% 0.98% 2.71% 

CPU(ýee) 7298.23 18.89 38.96 

Table 4.. 3: Two Factor CIR Model 

The results of the tables lead to the following general conclusions. First, the 

pricing performance of the LBA method is very satisfactory, across all the term struc- 

ture models and the maturity intervals. The pricing errors of the LBA approach con- 

stitute only a very small percentage of the LS-MC prices. Note that, for M=1, the 

biggest differences in prices between the LBA and LS-MC approaches are found to be: 

0.000107 for the two-factor Vasicek model, 0.000179 for three-factors Vasicek model, 

0.000053 for the to two-factors CIR model and 0.000121 for the ATSM model, which 

are very small. As expected, these differences reduce tremendously as M increases. 

The second conclusion which can be drawn from the table is that there im- 

portant computation time benefits of the LBA approach, compared with the LS-MC 

approach. In contrast to the high computation time required by the LS-MC approach, 

it takes only a few minutes to price the options with the LBA approach. Summing 

up, the above results suggests that the LBA method can be proved a very fast and 

efficient approach of pricing American put option prices. 

69 



(r, 0, m) PE PA Early PA Early Diff AmPut Early Diff 

LS-MC LS-MC LBA(M=1) LBA(M=1) 10-6 LBA(M=2) LBA(M=2) 10 

(0.040,0.01,0.005) 0.039222 0.048584 0.009362 0.048584 0.009362 0 0.048584 0.009362 0 

(0.0475,0.01,0.005) 0.035676 0.044665 0.008989 0.044665 0.008989 0 0.044665 0.008989 0 

(0.046,0.01,0.005) 0.031071 0.040721 0.008750 0.040797 0.008826 76 0.040777 0.008806 56 

(0.0445,0.01,0.005) 0.028350 0.036753 0.008403 0.036846 0.008406 93 0.036827 0.008477 74 

(0.043,0.01,0.005) 0.024812 0.032760 0.007947 0.032881 0.008068 121 0.032851 0.008038 91 

(0.040,0.007,0.008) 0.028563 0.036640 0.008077 0.036640 0.008077 0 0.036640 0.008077 0 

(0.0475,0.007,0.008) 0.024925 0.032646 0.007721 0.032700 0.007775 54 0.032682 0.007757 36 

(0.040,0.007,0.008) 0.021609 0.028028 0.007019 0.028699 0.007090 71 0.028674 0.007065 46 

(0.0445,0.007,0.008) 0.018330 0.024584 0.006254 0.024670 0.006340 86 0.024649 0.006319 65 

(0.043,0.007,0.008) 0.015338 0.020516 0.005177 0.020625 0.005286 109 0.020599 0.005260 83 

RMSRE 2.12% 6.13% 1.48% 4.75% 

CPU(aec) 41598.12 40.71 182.93 

Table 4.. 4: Three Factor ATSM Model 

4.4 Conclusions 

In this chapter we introduced a new numerical method of pricing an American 

put option on bonds for the class of affine term structure models, frequently used in 

practice. The method is based on a decomposition of the American bond put option 

price into its European option counterpart price and the early exercise boundary pre- 

mium. The latter is expressed in terms of prices of Arrow-Debreu type of securities 

and its approximation is based on a multi-region and multi-piece approximating func- 

tion (hyperplane). To derive the analytic solutions of the prices of the Arrow-Debreu 

type of securities, we derive the closed form of the joint characteristic function of the 

state variables driving the term structure of interest rates. 

To evaluate the pricing performance of our method, compared with a bench- 

mark method the least-squares Monte Carlo method recently suggested by Longstaff 

and Schwartz (2001), we carry out some experiments some known term structure 

models. The numerical results of these experiments indicate that our method can 

very accurately and fast price American bond options prices, compared with the 

benchmark method. 
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CHAPTER 5. 

PRICING CAPS AND SWAPTIONS BASED ON HJM MODELS 

5.1 Introduction 

Pricing interest rates derivatives is one of the most important areas of finan- 

cial economics. It requires an appropriate model capturing the dynamics of the term 

structure of interest rates. Despite the plethora of term structure of interest rates 

models available, recent evidence suggests that none of these models can price the 

term structure of interest rates and contingent claims on them consistently. As aptly 

noted by Collin-Dufresne and Goldstein (2002a), the affine term structure models 

recently developed by Duffle and Kan (1997), and Dai and Singleton (2000) with, or 

without stochastic volatility, can explain only a small proportion of caps' and swap- 

tions' returns. Moreover, Heidari and Wu (2001) show that a three factor model of the 

term structure, which can explain almost 99% of swaps' rates variations, is not able 

to explain more than 60% variations of swaptions prices. This evidence is consistent 

with that provided by studies on the implied volatilities of caps and swaptions prices 

[see De Jong, Driessen and Pelsser (2002), Jagannathan, Keplin and Sun (2001), 

Collin-Dufresne and Goldstein (2002a), inter alia] supporting the view that the term 

structure of the implied volatilities by the above derivatives are not consistent with 

the movements of interest rates, across different maturity horizons. Furthermore, 

these studies provide evidence that there may be a systematic factor, referred to as 

unspanned implied volatility factor by Collin-Dufresne and Goldstein (2002a), which 

is necessary to jointly capture the dynamics of the caps and swaptions prices and their 

underlying term structure of interest rates. Actually, Collin-Dufresne and Goldstein 

(2002b) went further to show that, from the existing term structure models, only 

the Heath, Jarrow and Morton's (1992) (hereafter HJM) model of forward rates can 

accommodate the unspanned implied volatility factor. 

In this chapter I suggest an extension of the standard HJM model which allows 

for stochastic volatility and/or jumps with the aim to capture the unspanned factor of 
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the implied volatilities by the caps and swaptions prices. My motivations to consider 

for such type of extensions of the standard HJM model can be justified by recent 

evidence of empirical studies on the term structure of interest rates [see Babbs and 

Webber (1993), El-Jahel, Lindberg and Perraudin (1997), Johannes (1999), and Das 

and Sundaram (1999), inter alia] suggesting that the presence of jumps in interest 

rates dynamics are necessary in order to capture the time series properties of interest 

rates and the smirks of the implied volatility of caps and swaptions, especially at the 

short end of the term structure. ' These jumps can be attributed economically to 

monetary news which affect the term structure of interest rates. 

The chapter is organised as follows. In section 5.2,1 present the extension of 
HJM model allowing for stochastic volatility and marked point (jump) processes, and 

I derive the dynamics of the bond prices and forward rates under the physical and 

risk neutral measures. In section 5.3, I derive analytical solutions of the caps and 

swaptions prices for the extended HJM model. I provide a closed form solution for 

caps and an analytical approximation solution of swaptions, suggested by Singleton 

and Umantsev (2002) and similar to mine in pricing American option in the previous 

chapters, based on the characteristic function of the underlying bond prices. This 

function is derived in closed form in the appendix. The analytic solutions of the caps 

and swaptions prices are derived under the forward probability measure. In Section 

5.4, I evaluate the empirical performance of the model to jointly price interest rates, 

caps and swaptions. The results of this section indicate that allowing for stochastic 

volatility and jumps in forward rates can significantly improve the performance of the 

model upon the standard HJM model. Section 5.5 concludes the chapter. 

I Models of interest rates derivatives which consider for smiles are suggested by Das 

(1997a, 1997b, 1999), Das and Foresi (1996) and Duffle and Kan (1996) and Shirakawa (1991). 
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5.2 The HJM model with stochastic volatility and marked point process 

5.2.1 Model set up In this section, I present a version of the HJM model of the 

term structure of interest rates with stochastic volatility and a marked point process. 
This model will be used in the next section to price different types of interest rates 
derivatives. 

Consider the probability space (S2, J, F, P) with the filtration F =(. T3)t<s<T 

and let the instantaneous T-period forward rate contracted at time t, denoted f (t) T), 

follow the dynamic process: 

Al 

df (t, T) = µf(t, T)dt +> Qm, f(t, T) Ui(t)dZ, n(t) + dJ(t, T), (5.. 1) 
M=l 

with volatility processes V,,. (t), m=1,2,..., M, given by the diffusions 

dVm(t) = hm(em - Vm(t)) + Vmýt5dCm(t) (5.. 2) 

and a marked point process, denoted J(t, T), defined as 

L 

J(t, T) _ J(z) (t, T), (5.. 3) 

where 1i f (t, T) and 0 m, p (t, T) are deterministic functions, Z,,,, (t) denote indepen- 

dent Wiener processes, Cm(t) is also an independent Wiener process determining 

the volatility changes independently from Z7z(t), and JO(t, T) represents an indi- 

vidual marked point process, JO (t, T), which aims to capture random over time 

jumps (or shifts) at the levels of forward rates coming from i independent sources, 

such as central banks interventions, earthquakes, bankruptcies etc., marked with 

the random variables X( taking values in the measurable space (G, G), where G is 

the set of the states of the marked process, defined as G- (-oo, oo), and G is a 

collection of all subsets of G. If we denote the time point of n-th potential jump 
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as r and its corresponding marked variable as X,, (, ), for n=1,2, ..., oo, where 

Tý=ý E R+ = (0, oo), with r< 72Zl < ... < Tel = oo [see Glasserman and Kou 

(2002)], then the marked point process P) (t, T) can be characterized by the double 

sequence {(rrnz), X. (t)), n=1,2, ... 
}. 

The above model extends the standard HJM into two directions. First, it 

allows for the forward rate volatility to be stochastic, which is consistent with recent 

evidence [see Collin-Dufresne and Goldstein (2001a, b)] and, second, it allows the 

forward rates, in addition to the Wiener processes, to be driven by a number, L, of 

independent marked jump processes, which is consistent with evidence that interest 

rates are subject to pure jumps (or switching regime), over time [see Lindberg, Orzang 

and Perraudin (1995), and Tzavalis and Wickens (1997), inter alia]. 

In order to complete the description of the marked point process, J(Z) (t, T) 

define the number of jumps, N(') as N()(t) = sup 
{n > 0: T( Z) < t}, with an inten- 

sity function (which gives the arrival rate of the marked X(') jump within each of the 

subsets dx of G, at any time) A (dx, t) and a magnitude function h(i) (Xni), 7-(') ,T), 

which depends on X. ), 
Tn(`) and the maturity interval of the forward rate, T-t. Note 

that A(_) (dx, t) is a measurable function A(') (dx, t) :Gx (0, oo) -+ R, and magnitude. 
NL i) 

Given the above notation, we can write P) (t, T) as J(i) (t, T) _ hei) (X (), r, T). 

n=1 Our assumption that the jump magnitude depends on the maturity interval is quite 

general. It can allow different impacts of a jump on forward rates, across the whole 

maturity spectrum. 

As in Bjork, Kabanov and Runggaldier (1997), we can rewrite the individual 

marked process J() (t, T) as 
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Niw 

n=1 
T 

=JJ h(: )(x, s, T) fc(z)(dx, ds), 
tG 

where h() (x, s, T) = h(i) (XAAý, Tntý, T), with X, 2) taking values x in the set G and -rn(Z) 

taking value s, and µ() (dx, ds) :9x (0, co) -- R is a function which measures how 

many jumps happen in the subset dx x ds. 

For the intensity function A(') (dx, s), we can notice that it satisfies the follow- 

ing relationship 

11 
h(i) (x, s, T) [µ(: ) (dx, ds) - A(') (dx, s) ds] 

t Er T o0 

=JJ 1i (x, s, T) [ti(') (dx, ds) -A (dx, s) ds] 
,vi, 

t0 

according to the project theorem given by Bremaud (1981). This relationship consti- 

tutes a martigale. 

5.2.2 Pricing Bond under the Risk Neutral Measure In order to derive the pricing 

formulas on interest rates derivatives for the HJM model, defined by equations (5.. 1)- 

(5.. 2), my analysis starts with describing the dynamics of a zero coupon bond price 

with maturity date T (i. e. maturity interval T- t), at time t, denoted as P(t, T), 

under the physical (objective) and the risk neutral, denoted Q, measures. 

According to HJM model, the bond price P(t, T) can be calculated as P(t, T) 

e fT f (t, ")d" Define its log-price, as p(t, T) - log P(t, T). In the next proposition I 

present the diffusions describing the dynamics of the prices p(t, T) and P(t, T) under 

the physical measure. 
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Proposition 7 Let the forward rate satisfy equations (5.. 1)-(5.. 2), with their under- 

lying assumptions. Then, the dynamics of the log-bond price p(t, T- t) and the bond 

price P(t, T- t) can be respectively described by the following diffusions 

M 

dp(t, T) = (rt + A(t, T)) dt +TS,,,. (t, T)dZ,, (t) 
m=1 

D(z) (x, t, T)µ(') (dx, dt) 
L 

fG 
and 

dP(t, T) 

{rt l 
= P(t, T) + A(t, T) + JIS(tT) I} dt + P(t, T) Sm(t, T)dZm(t) 

JJJ m=1 
L 

+P(t_, T) E (eD(')(z, t, T) - 1) µ(zß (dx, dt), (5.. 5) 
z_1 G 

where rt is the instantaneous risk free interest rate and 

A(t, T) _-Jpf (t, s)ds, 
t 

T 

Sm(t, T) _- V", (t) 
f 

tm, f(t, s)ds, 

S(t, T) _ [Sl(t, T), S2(t, T),..., SS1(t, T)]' and 
T 

D() (x, t, T) =-J h(i) (x, t, s) ds. 

The proof of the proposition can be derived by applying Ito's Lema to the 

functions of the prices p(t, T) and P(t, T- t) [see Bjork, Kabanov and Runggaldier 

(1997)]. 

Assuming that the market is complete and that there exists a unique mar- 
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rt + A(t, T) +2 II S(t, T)11 2+ ]pt " S(t, T) 
L 

+ VG (D(xitT) 
-11 A(z)Q (dx, t) 

i-1 

should be equal to the instantaneous interest rate, rt, which in turn implies that the 

following relationship 

A(t, T) +2 IIS(t, T)112 + Pt " S(t, T) 
L 

x)A(i)(dx, t)1 
i-1 

=0 (5.. 6) 

should be hold. Since we assume that the market is complete and that there exists 

a unique martingale, equation (5.. 6) implies that there will exist unique solutions for 

Ft and (I)(') (t, x) V i. 

Using (5.. G), we can easily show that the dynamics of the bond price P(t, T) 

under the Q measure can be described by the following diffusion 

M 

dP(t, T) = P(t, T)rtdt+P(t, T)>Sm(t, T)dZQ(t) (5.. 7) 
m=1 

+P(t_, T)dJQ (t, T), 

where 

dý: ý(x, t, T) = eD(`)(x°t, T) -1 

and 
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L 

dJ4 (t, T) =L d(z)(x, t, s) 
[)(dX 

, dt) - ((i) (t, x), \(i) (dx, t)dt, , 
dc } 

1_1 

which constitutes a Q-local martingale which is unique, since the prices of all risks 

are uniquely determined by the absence of arbitrage condition. This implies that a 

unique risk neutral (no-arbitrage) bond price can be described by equation (5.. 7). 

In contrast with the risk price parameters which determine the drift of the 

bond prices p(t, T) and P(t, T) diffusions, the arbitrage condition alone is not enough 

in identifying the price of risks parameters associated with the stochastic volatility 

processes of the bond prices [see also Collin-Dufresne and Goldstein (2002(a), (b)]. To 

identify these parameters, we need additional information. This can be retrieved by 

the prices of futures contracts on the bonds' prices volatilities [see Collin-Dufresne 

and Shi (ibid)]. Such type of instruments can be replicated by a portfolio of futures 

contracts prices on the bonds' yields traded in Chicago Mercantile Exchange. The 

drift terms of these future prices are equal to zero under measure Q, and hence 

the parameters of the prices of risks associated with the stochastic volatilities of the 

underlying bond price can be uniquely determined [see Collin-Dufresne and Goldstein 

(ibid)]. In general, the volatility processes V�, (t) under measure Q can be written as 

dVm(t) = ti, Q (BQ - Vm(t)) V7(t)d(Q (t), (5.. 8) 

where 4q and OQ respectively denote the mean-reversion and long-run variance pa- 

rameters of the volatility processes under measure Q. 

Having derived the diffusion for dP(t, T) under Q, next I present the diffusion 

describing the dynamics of the forward rate under the Q measure. This is done by 
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exploiting the arbitrage condition for dP(t, T). This diffusion is given by 

M 

df (t, T) = µQ (t, T) dt +E Um, f (t, T) Vm (t) dZQ (t) 
m=1 

L 

(5.. 9) +E 
[/] 

where 

MT 

l-tfQ(t, T) =T Vm(t)CJr, f (t, T) 
J Ur, f (t, s)ds 

m=1 t 
L 

_E 
If 

h(i)(x, t, T)e(dx, t)] . 
i-1 LG1 

This diffusion indicates that the drift parameter of the forward rate under Q is de- 

termined by both the stochastic volatility and marked point processes. 

5.3 Pricing interest rate contingent Claims 

Having presented the diffusion processes of the forward rates and bond prices 

under the risk neutral measure for the HJM model, in this section I direct my analysis 

on pricing interest rates derivatives, such as caps and floors, and swaptions. To derive 

the pricing formulas for these derivatives, it is convenient at this point to transform 

the Q measure to the forward measure, denoted as U [see Jamshidian (1997), and 

Musiela and Rutkowski (1997), inter alia]. Under the concept of the forward measure, 

I can write the bond price P(t, T) in terms of another bond price with maturity date 

U, referred to as numeraire price, as 

P 
P°(t, T) = ý, 

ýtý T) 
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while the log price p(t, T) can be written as 

pU(t, T) - logPv(t, T) = log 
P(t, T) 
P(t, U) 

. 
It can be shown that PU(t, T) constitutes a martingale process under measure U [see 

Musiela and Rutkowski (ibid)]. Following similar steps with those before transforming 

the bond price P(t, T) from the physical measure to the risk neutral, Q measure, I 

can transform P(t, T) from the Q measure to the U measure. We can easily show 

that the diffusion describing the dynamics of P(t, T) under the U measure has a drift 

parameter which is equal to zero. This diffusion is given in the next theorem. 

Theorem 8 Under the U-forward measure, I have 

dPU(t, T) 
Al 

= PU(t, T) E (Sm(t, T) - Sm(t, U)) dZ° 
m=1 

L 
+PU (t-, T) 

[ d() (x, t, T) - d() (x, t, U) 

i=l 

I 
dO(x) t, U)+1 

(p(dx, dt) - A(') U (dx, t)dt)] , 
(5.. 10) 

where 

AU(dx, t) = [d()(x, t, U) + i] a()Q(dx, t) 
and dZU(t) = dZQ(t) - Sm(t, U)dt. 

The proof this theorem is given in Appendix C. 1. 

The results of this theorem indicate that under the U measure both the jump 

intensity and the jump magnitude functions are different from those under the Q 

measure. The happens because, when the bond price P(t, T) is measured in terms of 
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the relative bond price P(t, U), the drift parameter of the bond price P(t, T) diffusion 

changes. 

5.3.1 Interest rates caps and floors Interest rates caps constitute the most popular 

interest rate derivatives traded in over-the-counter markets. These derivatives are 

contracts which provide the insurance against the rate of interest on a floating note 

(usually the Libor rate or a Treasury bill rate) going above some prespecified level 

known as cap rate, denoted as Kr. 

Let r(t, T) denote the time t interest rate on the floating note (say a Trea- 

sury bill) with maturity T. An interest rate cap with maturity Tw pays the amount 

max {r(T3_1, T5) - K, 0} SB to the holder of the cap contract at equally distanced 

fixed points of times T8, s=1,2, ... w, over the maturity interval, i. e. Ts - Ts_1 = S, 

for all s, where B denotes the principal amount of the floating rate note. Given the 

cap's definition, we can write the cap price, denoted as Cap(t, T,, ), as the sum of the 

prices of w individual caps expiring at the time points T3, referred to as caplets, i. e. 

w 

Cap(t, T4, ) _ Caplet(t, Ts), (5.. 11) 
s=1 

where 

Caplet (t, T3) = BÖEQ [e- fT' r(u)du max(r(T3_1, Ts) - Kr, O)] . 
(5.. 12) 

The time T8_1 floating rate with maturity date Ts, denoted r(Ts_i, Ts), is given by 

1 
r(Ts-i, T3) =3 

(P(T, 11, 
T3) -1I 
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the caplet price Caplet3(t) can be rewritten as 

Caplet(t, Ts) (5.. 13) 

= B(1 + SKr)EQ 
(c_fT'rudum«(1 

+ SKr) - P(Ts-11Ts), O)l 

This equation indicates that the caplet price Caplet(t, T3) can be calculated as the 

price of a European put option on a zero-coupon bond. Choosing the bond price 

P(Tt, T3_1) and P(Tti, T3) respectively as a numeraire price of the forward measures 

U= T3-land U= T8, we can write the price Caplet(t, Ts) at time t 

Caplet(t, T3) 
1= 

B(1 + SKr)EQ Le-! e 
T. -, r(u)du ma ((1 

+ SKr) - P(Ts-1, Ts), 0)J 

_ fi s-1 r(u)du e 
{I'(Ta-1, Ta)ý 

1-i6Kr 
} = 

Bl (ý, T3_1)ýý 
P(t) TI-1) 

e- 
f Ts 

r(u)du 

-B(1 + 6Kr)P(t, TB)EQ P(t, T3) {P(Ts-1'Ta)_ 1+äKr } 

- BP(t, T3-1)El a-1 
(A{P(Tai, 

Ta)<( 
1f 

1 }/ 

-B(1 + SICr)P(t, TB)Et' (A{p(Ta_l, 
Ta)<(l-} 1 }ý ' 

(5.. 14) 

where A{, } is an indicator function, and the forward measure expectations Et'-1( 
AP(T"-1, 

T")ß 1+6K, 

) and Eta 
(AP(T 

1T)< 1+b Kr 

) 
constitute the prices of Arrow-Debreu 

type of securities which pay $1 in the state P(Ts_,, T3) :5 (1 11Kr)' and zero otherwise. 

Based on the characteristic functions of the log-price pT3-1(T3_1, ö) = log 
PýTT'1, 

T6)1) 

under the U= T3_1 and U= Ts forward measures, which are defined as 

'I'T'-1(ý, TsýpT"-1(t, T3), V(t)) = ET'-' [exp (cpT'-1(7'3_l, T8))] 

83 



and 

'I'T'(0, TsIPT3-1(t, Ts), V(t)) = ET° [exp (op7'-1(Ts-i, T3))] 

They are derived in closed form solution in Appendix C. 2, we can analytically calcu- 
late the expectations Er °-1 

(A{P(T 
l 

°and 
Et Ts 1 Ap(Te-i, 

Tý)ý (1+61 Kr) /1 and 

thus we can write the caplet price Caplet(t, TT) in closed form solution as 

Caplets (t) 

= BP(t, T8-i)lT'-1 
(P(T3lT8) 

<1 

-B(1-I-SKr)P(t, Ts)IIT' 
(P(T8_lT8) 

< (1+SKr)/' 
(5.15) 

where 

fT'-1 
(P(TS1Tý 1 

(1+öKr)) 

=11 
fRe 

d 

2ýrio 
o 

and 

nT° 
(P(TS_1TS) 

<_ 
1l 

00 
=11 Re e 2ý +ßýtn q, Ta 7's Ts I PTa 1(t, TV (t)) 

d 2-7r 0 io 

where 1pT1-I (¢ TT jpT°-1(t T) V (t)) and 11T8 (0 TT jp71-1(t T) V (t)) denote 

the CF of the bond prices PT"-1 (Ts-,, Ts), for s=1,2, ..., T4 , conditional on the cur- 

rent log-prices pT _1 (t, T3) respectively under U= Ts_1 and U= T3 forward mea- 

sure and the M-dimension vector V (t) of the volatility processes, defined as V (t) _ 
(VI (t), V2(t), ..., Vr1(t))'. IIT"-1 (P(T3_1,7's) 

(1+67f, ß) and IIT° (P(Ts-i, T8) (i+sxr) l 
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constitute the prices of the Arrow-Debreu type of securities, defined above. Using 

equation (5.. 15), we can calculate cap(t, T,, ), analytically, based on equation (5.. 11). 

Following similar steps with above, we can analytically calculate the price of 

floor interest rate derivative, denoted as f loor(t, T,, ). A floor derivative is analogous 

to a cap derivative, with the exception that a floor places a lower limit on the floating 

note rate that is charged. Therefore, its price can be written as 

{EP(tTs)11T3 1 
Floor(t, TW) = B(1+61C, ) 

(P(T8_lT8) 
(1+6Ks) 

s=1 
w 

E P(t, T3-i)lT°-1 
(P(T81T8) 

(1 + 5K3) / 
(5.. 1s) 

s=i 

As with the cap price cap(t, Tu, ), an analytic solution for the floor price Floor(t, T4, ) 

can be derived based on the CF T° (0, Ts_,, Ts JpTs-1(t, TS), V (t)), defined above. 

5.3.2 Swaptions Swaptions constitute options on interest rate swaps which give the 

holder the right to enter into a prespecified swap at fixed time in the future, T, 

a certain interest rate swap. There are two types of a swaption. The first type 

involves paying floating rate payments and receiving fixed rate payments, while the 

second type involves paying fixed rate payments and receiving fixed rate payments, 

inversely. We only concentrate on the first type. 

The first (I) type of swaption can be thought of as a call option on a coupon 
bearing bond with strike price $1 and maturity date To < T, that to enter the swap. 

The coupon rate of this bond is the fixed rate of the swap, denoted as c. Thus, the 

price of swaption I where the principal amount is paid off can be calculated as 

swaptionl(t, To, TT, ) = EQ [e ft T. r(u)du max (P°(To, Tu, ) - 1,0)] , 
(5.. 17) 

where P°(To, T,, ) is the time To price of a coupon bearing bond price with maturity 
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date T,, paying coupons at the fixed points of time T1, T2,..., T. The price of this 

coupon bond can be written as a portfolio of zero-coupon bond prices 

w 
Pc(To, T,,, ) _E cP(To, T3) + P(T, Tu). (5.. 18) 

s=1 

Substituting equation (5.. 18) into equation (5.. 17), we can rewrite equation (5.. 17) as 

follows 

Swaption j (t, To, T,, ) 

= EQ e- fTo r(u)du max E cP(To, T3) + P(T0, T. ) - 1,0 
8-1 

U Ie- fT° r(u)du 

_ cP(t, T3)EQ 
p(tý T, ) 

A{tý. (7'0, T,, )>, } 
s-i 

e- 
fT' r(u)du 

+P(t, T")E 
p(t, TU) 

A{Pr((, 
ýT,, )>1} 

e- 
fTo r(u)du 

-P(t, To)EQ 
p(t, To) 

A{P°(To. Tw)>i} 

_ cP(t, T3)ET' [A{Pc(T., 
T. )>1}] + P(t, T 

,, 
)ET- [A{Pc(T., 

Tý, )>1}] 

s=1 

-P(t, T3)Et [A{P°(T., 
T,, )>1}] i 

where ET, [A{pc(T0, T,,, )>i. o}] constitute the prices of Arrow-Debreu type of securities 

which pay $1 if the state Pc(To, T,, ) > 1.0 occurs, and zero otherwise. As the caps and 

floors prices, the prices of the Arrow-Debreu type of securities ET- [A{pc(TO, T,,, )>i}], 

implying the swaption price, can be spanned by the joint CF of the bond prices 

pTO (To, T3), s= T1, T2, ..., T,,, under the To forward measure, which is defined as 

(f: 

`I`T' (0, T., I PT° (t, n), V (t» = ET' 
[exP 

0ýPT° (To7 Ts) 7 
s=i 
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where 0= 
(01+027..., 

&, )', Ta = (Ti, T2, 
..., 

Tc, )', PTO(t, Tw) = (pTO(TO)T1), pT6 (To, T2), 

..., pT0(To, T,, ))' and V(t) _ (Vl(t), V2(t), 
..., 

VM(t))'. 2 However, in contrast to the caps 

and floors prices, I can not use the analytic formula of the above CF and Levy's inver- 

sion Lema to calculate prices of the Arrow-Debreu state prices ETa [A{p(T°, T,, )>i. o}], 

implied by the swaption price Swaptionj(t, T4, ). This is due to the fact that the 

exercise region of the swaption is not explicitly defined, and thus the expectation 

ET- [A{p(T0, T,, )>i. o}] needs to be calculated over an implicit subspace of the state 

space. For this reason, I will adopt the numerical approximation scheme suggested 

by Singleton and Umantsev (2002). 

5.4 Estimation and Evaluation of the HJM model 

The goal of this section is to evaluate the empirical performance of the ex- 

tension of the HJM model with stochastic volatility and marked point processes, 

suggested in the previous section, to jointly price interest rates derivatives. In par- 

ticular, the aim of our analysis is to investigate whether the model can span data 

on forward rates, caps and swaptions satisfactorily. To appraise the relative perfor- 

mance of alternative specifications of the model, which is with, or without, stochastic 

volatility and with, or without, marked point processes, I will be based on in-and- 

out-of-sample statistical measures, which can evaluate the pricing performance of the 

alternative specifications considered. 

The analysis of this section proceeds as follows. First, I present the alternative 

W 
2 Note that, here, we have defined the characteristic function as ET exp Oj pT0 (To, T8 ) 

rather than ET- 
[exp 

O1 p(To, T. ) 
. This happens because the drift of the diffusion for the 

e_i 
log-price p(To, T, ) is a function of the instantenous interest rate which is path depednent for the 

HJM model. Since we have ET 
[exp (vTocToT8))]= 

ET- exp Ojp(To, Ts) to avoid 

specifying the path of the instantaneous interest rate, we can we calculate the CF of the price 
pTo(T0, T3), whose drift parameter does not dependent on the instantenous interest rate. 
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specifications of the HJM model that we consider. Second, I describe the data and 

report the estimation results for the alternative specifications considered. 

5.4.1 Empirical specifications of the HJM model To evaluate the empirical perfor- 

mance of alternative specifications of the HJM model, given by equations (5.. 1)-(5.. 2), 

we first need to specify the functional form of the volatility parameters om, 1(t, T), 

and the marked point process J(t), with its intensity and magnitude parameters. For 

o- 1, f 
(t, T), we assume the following specification 

um 
[1 - exp(-Qm(T - t))] (5.. 19 

There are two reasons for adopting this specification for o- ,f 
(t, T). The first is that 

it can capture the type of shapes of the volatility, as evidence suggests [see Driessen, 

Klaassen and Melenberg (2000)]. The second is that it enables us to derive closed form 

T°-1(t, T3), solutions of the CF xI1T1-1 (0, T, 
-,, 

T3 °-1(t, T8), V (t)) and T3 (¢, T, 
-,, 

2' 'IP 

V(t)), which are needed to calculate the prices IIT, -1 
(P(T8.1, Ts) < (1+3Kr)) and IIT,, 

(P(T3_1, T, ) ý 
ý1 } 6lfr)) of the Arrow-Debrue securities. 

For the specification of the marked point process, we consider the widely used 

Poisson process with an intensity parameter specified as 

Aýi)4(dx, t) = a(i)y(i)(x)e-txdx 

x_mM 
2 

where 'y() (x) is the normal density function, 'y() (x) = 
Qý; ýl 2r e 20= )2 

, and we as- 

sume that the magnitude of the jumps is specified by the function hO(x, t, T) = x. 

The closed form solution of the CF lPT" (O, Ts_1 i T3 IpT°-1(t, T, ), V (t)) for the above 

specifications of the volatility and intensity parameters, O7z, f (t, T) and AS (dx, t), 

respectively, is given in Appendix C. 2. 

5.4.2 Data and estimation results Our data set consists of weekly time-series obser- 

vations form January 1997 to January 2003 on US forward rates, cap prices and 
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swaptions with maturities 0.25 (3-months), 0.50 (6-months), 0.75 (9-months) for the 

1,2,3,4,5 and 10 years. As forwards rates, we use the future contracts and swaps 

rates, for the above set of maturities. These notes' rates are used to construct the 

entire term structure interest rates curve. In particular, we used the swaps rates with 

maturities from 1-year to 15-year to retrieve the long-term interest rates, i. e. for 1,2, 

..., 10 years. The short term interest rates, for 3,6 and 9 months, we used the futures 

contracts interest rates, since there are no swaps rates available for these maturity 

intervals. 

In Table 5.1-5.3 ,I present descriptive statistics, i. e. the mean and standard 

deviation, of our data set series. Note that the table reports the implied volatilities 

of the caps and swaptions. The prices of them, used in estimation, are retrieved 

based on the BS formula. The results of the table indicate a number of known 

features of the data, found in other studies [see Jong, Driessen and Pelsser (2001), 

inter alia]. First, the unconditional means of the future contracts and swaps rates 

increase smoothly at a decaying rate from the three-months to ten-years maturities, 

with their standard deviations being not bigger than 2. As in many empirical studies 

on the term structure of interest rates [see De Jong, Driessen and Pelsser (ibid), inter 

alia], the interest rates at the short end of the term structure are more volatile than 

those at the long end. The prices of the implied volatilities of the swaptions seems to 

decrease smoothly with the maturity interval, while those of the caps follow a humped 

type of shape, first increasing and then decreasing, as often observed in reality [see 

De Jong, Driessen and Pelsser (ibid)]. Like futures contracts' and swaps' rates, the 

shapes of both the swaptions and caps implied volatilities seem to be more volatile 

at the short end of the term structure, rather than at the long end. 

To estimate the model, we follow the method suggested by Bakshi, Cao and 

Chen (1995). According to this, we regard the state variables, V, n(t), determining the 

volatilities of forward rates, as unobservable parameters which are estimated together 

with the remaining parameters of the model, collected in vector O= (a,,,,, ßm, n Z, O) 
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Maturity Mean St. Dev. 
Futures rates 

3 months 4.694 1.742 
6 months 4.746 1.750 
9 months 4.819 1.734 

Swaps rates 
1 4.910 1.704 
2 5.225 1.462 
3 5.466 1.268 
4 5.634 1.135 
5 5.762 1.038 
6 5.864 0.963 
7 5.949 0.905 
8 6.017 0.859 
9 6.078 0.822 
10 6.131 0.793 

Table 5.. 1: Summary statistics of Futures and swaps rates 

Maturity (yrs) Mean St. Dev. 
1 20.4074 13.3802 
2 21.8381 11.6603 
3 21.3032 8.9177 
4 20.7360 7.2306 
5 20.1887 6.0587 
7 19.2244 4.6180 
10 18.1217 3.5103 

Table 5.. 2: Summary statistics of implied volatilities for caps 
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Maturity (yrs) 12 
swap swap 

3 
swap 
mean 

20.7172 
20.3655 
19.5697 
18.5281 
17.7495 
17.0672 
16.4964 

St. Dev. 
10.2171 
9.2559 
7.3405 
5.0004 
3.9156 
3.1848 
2.6919 

4 
swap 

0.25 22.1276 22.0509 
0.5 22.4019 21.5124 
1 21.6289 20.4696 
2 19.8643 19.1274 
3 18.8957 18.2371 
4 18.1100 17.5131 
5 17.4898 16.8934 

0.25 
0.5 
1 
2 
3 
4 
5 

14.6194 
14.0099 
10.8845 
6.2670 
4.6973 
3.6302 
3.0218 

12.6533 
11.2449 
8.6035 
5.6011 
4.2563 
3.4033 
2.8421 

19.9634 
19.6757 
18.9170 
18.0628 
17.3310 
16.7151 
16.1289 

8.9341 
8.1345 
6.4712 
4.5725 
3.6558 
3.0154 
2.5853 

5 
swap 

19.4226 
19.1735 
18.4224 
17.6481 
16.9850 
16.3704 
15.7874 

8.1292 
7.4118 
5.8666 
4.2477 
3.4558 
2.8904 
2.4618 

Table 5.. 3: Summary statistics of implied volatilities for swaptions 

A(') mg), o)i=1 for one marked point process, by applying the non linear least 

squares method over their cross-sectional dimension of our observations, i. e. the caps 

and swaptions prices, over different maturities, at each point of time. In contrast to 

Bakshi et al (ibid), we obtain the parameters' estimates by minimizing the sum of 

the square pricing errors between the observed and estimates of the caps and swaps 

prices relative to their observed prices, denoted SSRE(t ), rather than their absolute 

errors. Mathematically, we can write our estimation problem as 

SSRE(t ) 
g ")Obs - CaP(t, Tv, ) 2 

ar min 
(Cap(t, 

Ca t, T) Vmýt)eýt)T ETA 
ý( 06s 

TOETSTTTETs 

Swaptionl(t, To, Tw)obs - Swaptionl(t, To, Tw) 2 

Swaptionj(t, T0, Tw)obs , dt (5.. 20) 

where T,, is the set of maturity date of caps T,, = (1,2,3,4,5,7,10), TST is the set of 

the time when entering swaps TST = (0.25,0.5,1,2,3,4,5), Ts is the set of maturity 
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HJM HJM-SV(1) HJM-SVJ(1,1) 

Q1 

of 
Q hi 

eQ 
C2 

02 
6Q 
eQ 
V) 
M, 
or, 
Vl 
V2 

SSRE 

0.0081(0.0018) 0.7749(0.0056) 
0.0421(0.0201) 0.0131(0.0023) 

0.0700(0.0019) 
0.0490(0.0046) 

0.0140(0.0011) 

27.31(1.00) 7.54(1.91) 

0.7772(0.0040) 
0.0152(0.0043) 
0.0567(0.0051) 
0.0486(0.0027) 

0.1870(0.0077) 
0.0118(0.0024) 

0.0039(3.4* 10-4) 
0.0121(0.0023) 

5.49(0.24) 

Table 5.. 4: Estimates of the HJM specifications 

HJM-SVJ(2,1) 

0.7134( 0.0126) 
0.0113(0.0051) 
0.1107(0.0114) 
0.0201( 0.0013) 
0.1007(0.0117) 
0.0912(0.0167) 
0.5481(0.0077) 
0.0016(0.0003) 

0.1437(0.0075) 
0.0083(0.0021) 

0.0021(4.47* 10-4) 
0.0097( 0.0015) 
0.0061(0.0021) 

4.87(0.33) 

intervals of swaps TS = (1,2,3,4,5), Cap(t, T�)Obs and Swaptionl(t, To, T,,, )obs denote 

the observations of Cap(t, T,,, ) and Swaptionl (t, To, T,. ), at any time-point t of our 

sample. The whole sample estimates of the vector of parameters of interest e can be 

obtained by taking the average of the values of 0(t), over the different points of the 

sample, t. Averaging ,,, (t), across t, will give us the average estimates of volatilities, 

over the whole sample, denoted cm. 

To avoid any problems of overparameterization (overfitting), in estimation we 

consider parsimonious alternative specifications of the model (5.. 1)-(5.. 2). The most 

general specification considers that there is only one jump process, i. e. L=1, and 

two independent volatility processes Vm(t), i. e. M=2. This specification implies 

that we need to estimate 13 parameters, thus leaving us 29 degrees of freedom. 

The in-sample estimates of the vector of parameters 0 together with their 

standard deviations, reported in parentheses, can be found in Table 5.4. The table 

reports estimation results for the following alternative four specifications of the model: 

(i) the standard HJM model, which assumes volatility deterministic and zero jumps, 

92 



(ii) the HJM model with one stochastic volatility (SV) process, denoted as HJM-SV(1) 

(iii) the HJM model with one SV and one jump processes, denoted as HJM-SVJ(1,1) 

and (iv) the most general specification, which assumes two SV and one jump processes, 

denoted HJM-SVJ(2,1). To evaluate the pricing error performance, the table reports 

the average, over the whole sample, estimate of the SSRE(t), denoted as SSRE 
, 

with its standard deviation in parentheses. 

The general conclusion that can be drawn from the results of the table is 

that the specifications of the HJM model which allow for stochastic volatility or 

stochastic volatility and jumps constitute a very important improvement upon the 

standard HJM specification. They result in a reduction of the pricing errors by around 

20%. Note that the extension of the model which allow, in addition for stochastic 

volatility, for a jump constitutes the superior specification, but the benefits of this 

specification in terms of pricing errors do not seem to be very important (see the 

standard deviations of SSRE% in parentheses). 

The parameters estimates indicate that there is high persistency in the under- 

lying stochastic volatility processes, for all the alternative specifications of the HJM 

model considered. The estimates of the risk neutral intensity of the jump parameter, 

A is quite high (A1 = 18.70%) implying a high risk aversion attitude of the investors 

participating into the interest rates derivatives markets. This is very close to that for 

options data on stocks (see Pan (2002)]. 

Apart from examing whether can reduce the in-sample pricing errors, another 

way to assess the pricing performance of the alternative specifications of the HJM 

model, considered here, is to investigate their out-of-sample pricing error performance. 

Therefore, in Table 5.5 I report out-of-sample average estimates of the SSRE(t) mea- 
------(T-t) 

sure, over the whole sample, separately for each maturity3, denoted SSRE 
, and 

for the whole set of maturities, denoted as SSRE. These measures are calculated 

3 For caps, T,,, is defined in equation (5.. 11). For swaptions, To the date that enters the swap and 
T,,, is the maturity date of the swap, see equation (5.. 17). 
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Maturity (yrs) HJM HJM-SV(1) HJM-SVJ(1,1) HJM-SV(2,1) 
------(T -t) 
SSRE 

Caps 
Tl= 1 17.21 21.58 12.56 9.67 

3 9.81 2.83 2.22 2.03 
5 7.72 2.64 2.53 2.25 
10 14.40 6.79 5.75 2.39 

Swaptions 
(To, T,, )=(0.25,1) 34.04 3.17 3.29 4.98 

(0.25,3) 29.65 4.70 4.58 3.67 
(0.25,5) 29.78 5.57 6.47 5.57 
(1,1) 35.20 2.91 3.84 5.13 
(1,3) 31.69 4.42 2.59 2.47 
(1,5) 32.91 6.17 4.62 5.50 
(3,1) 39.47 6.42 6.59 5.02 
(3,3) 32.22 9.26 2.57 2.62 
(3,5) 32.99 9.47 5.18 5.25 
(5,1) 41.56 6.93 6.73 8.42 
(5,3) 36.34 10.31 3.01 4.25 
(5,5) 35.87 10.87 4.99 5.41 

SSRE 33.31 8.47 6.88 6.59 

Table 5.. 5: Out-of-sample estimates 

based on a recursive estimation procedure. According to this, the estimates of pa- 

rameters for week t of the sample are used to calculate the time t predictions for the 

caps' and swaptions' prices for week t+1. Notes: . 
The results of Table 5.5 indicate that the overall out-of-sample performance 

of the alternative specifications of the HJM is analogous to the in-sample-one. There 

are only a small differences in the values of SSRE which can contributed to the 

prediction errors. Among the alternative specifications considered, the estimates of 
------(T -t) 

the SSRE indicate that the HJM-SVJ(1,1) seems to better price the caps and 

swaptions at both the short and long ends of the maturity structure. 

Summing up, the results of this section indicate that the specification of the 

HJM model which allows for stochastic volatility and jump processes seems to ad- 
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equately prices the caps and swaptions interest rates derivatives, especially at the 

short and long ends of the maturity structure. 

5.5 Conclusions 

The aim of this chapter has been to introduce extensions of the standard 

HJM model for pricing caps and swaptions interest rates derivatives which consider 

for stochastic volatility and marked point, such as jumps, processes. The chapter 

suggests analytical formulas for calculating caps' and swaptions' prices, and evaluates 

the pricing performance of various alternative extensions of the HJM model based on 

US data on future contracts, swaps, swaptions and caps. 

To derive the analytic formulas of the caps and swaptions prices, I decomposed 

the caps' and swaptions' prices to a portfolio of Arrow-Debreu state type of securities. 

For the caps, I suggested a new approach of calculating these prices based on the joint 

characteristic function of the underlying stochastic processes driving the forward rates 

in the HJM model. For the swaptions, I suggested a numerical approach along the 

lines of Singleton and Umantsev (2002). 

My empirical evaluation of the alternative specifications of the HJM model that 

I suggested indicate that the extension of the model to allow for stochastic volatil- 

ity and jumps consider an important improvement upon its standard specification 

in spanning adequately caps' and swaptions' prices across different maturity inter- 

vals. My empirical finding suggest that the inclusion, in additional to the stochastic 

volatility, of a jump process into the model can significantly reduce the pricing errors 

of the model. The estimates of the risk neutral intensity coefficients of the jump are 

found to be analogous to those found for stock options data. 
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CHAPTER 6. 

CONCLUSION 

In this thesis, we provide the analytic and computationally attractive closed 

form solutions for the prices of American stock and interest rate derivatives under 

more complicated asset pricing models, stochastic volatility or jump models. To 

derive these solutions, we unbundle American options and interest rate derivatives 

into Arrow-Debreu type of securities and exploit the recent developments in the asset 

pricing theory which indicate that the Arrow-Debreu type of securities can be spanned 

by the characteristic functions. The closed form solutions of these CFs are derived in 

the thesis and enable us to evaluate the option prices very quickly and efficiently. 

For pricing American stock options under stochastic volatility, we introduced 

a new numerical method which is based on an approximation of the optimal exercise 

boundary by Chebyshev polynomial function with respect to the maturity interval 

and a log-linear function with respect to volatility. The numerical results presented 

in chapter 3 show that our method can approximate American call option prices very 

quickly and efficiently both under stochastic volatility and constant volatility. 

For pricing American bond options under the class of Affine term structure 

models, we introduced a new numerical method which is based on an approxima- 

tion of the optimal exercise boundary by multi-region and multi-piece approximating 

function (hyperplane). For evaluating the performance of our method, we carry out 

some experiments. The numerical results of these experiments presented in chapter 

4 indicate that our method can price American bond options very accurately and 

quickly. 

For pricing caps and swaptions interest rate derivatives, we introduce an exten- 

sion of the standard Heath-Jarrow-Morton (HJM) model which allows for stochastic 

volatility and marked point jumps processes. In chapter 5, we provide the analytical 

formulas for calculating caps' and swaptions' prices and evaluate the pricing perfor- 

mance of various alternative extensions of HJM model based on US data on future 
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contracts, swaps, swaptions and caps. Our empirical evaluation indicates that the 

inclusion of unspanned stochastic volatility and jumps can significantly reduce the 

errors of jointly pricing caps and swaptions. The estimates of the risk neutral inten- 

sity coefficients of jumps are found to be analogous to those found for stock options 

data. 
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` APPENDIX A. 

PROOFS OF CHAPTER 3 

In this appendix, we proof the results given in the chapter 3. 

Appendix A. 1: Proof of Theorem 2 Proof. To prove the theorem we follow similar 

steps with Myneni (1992), who decomposed the optimal problem (3.. 4) for an Ameri- 

can put option under the assumptions of the lognormal model in terms of the exercise 

(stopping) boundary. To this end, notice that (3.. 4) implies 

CA (Pty V t, T- t) = slip EQ (_ftTrd3 (P- K)+) (1.01) 
f 

= EQ 
(e_fT t rds (PTL - K)+) 

= EQ (_fTrd3 (PT - K)+) 

+EQ 
(s_fr; 

rds (P. 
r. - ýý), 

ý, - C- 
LT rds (PT 

- K)+) 

= EQ (1Ti. s (PT - K)+) 

(Jd(e_ft'(Ps_Ic)+)) 
-EQ 

where d(") is the differential operator. Note that first term in the last equation 

represents the value European option, while the second term constitutes the value of 

the early exercise premium. Using differentiation rules, the integral term of the early 

exercise premium term can be written as 

T 

fd (e-ft rau (Ps - K)+) 

TT 
feft'd(Ps 

- K)+ -% re-I: rau (ps - K)+ ds. (1.02) 

TýTJL 
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Using Tanaka's formula and local time for Brownian motion at the point K, the 

differential d (PT - . 
K)+ can be written as 

d (PS - K)+ = dLP (K) + I(P�x)dP8, (1.03) 

where LP (K) is the local time for Brownian motion at the value K of the stock price 

Ps and IA is the indicator function of the set A, defined in Theorem 2. Using (1.03) 

and applying Ito's Lemma, equation (1.02) can be decomposed as follows 

T 

rau (P - K)+) fd 
(e- ft. 

Tt 

TTT 
fc_f: 

rdudL(Ic) +% e- Jý rauI(p�x)dP3 -J re- ft ram ps - K)+ ds 
Tt 

TT 

e-f raudLP (K) + e- ft' Taul(psý>x) (r - S) Psds 
t, 7- t* 

T/ý T 

.ý/ e-ft rdul(P3 K) V PgdWl, 
s -J re. ft rdu (Ps 

- K)+ds 

TJA TL 

l 

TT 

e- 
ft rdudLP (K) +f e- 

ft rdul(Pe, 
x) VsP3dW1,3 

Ti 

l1r, 

T 

+f e-! 
i rdul(P8, 

J{) (rK - SP, )ds. 
T 

(1.04) 

T 
As shown by Mynenni(1992), the expectation of f e- ft' rdudLP (K) is zero. Therefore, 

Tt 

taking the conditional expectation of the last equation with respect the measure Q 
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yields 

7' T 

Et 
(Id 

(c-fi rdu (Pa - K)+) = E4 e-Je rdul(P. 
> _IJ)(rIC - SP8)du , 

(1.05) 
Tý Tý 

since ESQ (dlli,, ) = 0. 

Notice that., by the un-connected property of the optimal exercise boundary 

[see Broadie et al (2000), for a proof], the optimal exercise time 7-* [see equation 
(3.. 3)] can be defined as 

T* = iuf {T E [t, T] : P. > 13(V� s)}, VsE [t, T]. (1.06) 

Using the above definition of T-', equation (1.05) can be written as 

T 

PQ Id(c-ft ' "l- (P, - K), }. 
) 

Ti 

T 

= Ei' c-tt raul(p. >x)I(P. aB(v., 9))(rK - öP8)du . 
(1.07) 

By the property of the exercise boundary that B (V� s) > K, VsE [t, T], the last 

equation implies 

T 

E4 
Td (c-! 

er rda (PT - K). }, 
) 

r 

= EQ 
(fe_f: 

rdul(P>ß(v))(rIc - 6P3)ds . 
(1.08) 

Substituting equation (1.08) into (1.01) proves the result of equation (3.. 5), given by 

Theorem 1. The optimal exercise boundary recursive equation (3.. 6) can be derived 
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based on (3.. 5) and using the following arbitrage condition: CA (B(Vh, h), Vh, T- h) = 

B(Vt, It) - K, V It E [t, T].   

Appendix A. 2: Proof of Theorem 3 In this appendix, we prove Theorem 3 of the thesis. 

To this end, we first derive the joint conditional characteristic function (CF) of the 

logarithm of the stock price In P, adjusted by the term (r - 6)(s - h), VsE [t, T], 

and the variance V. conditional on the past values of In Ph and Vh, for s>hE [t, T]. 

This is given in the following Lemma. 

Lemma 9 Let the SV model, defined by processes (3.. 1) and (3.. 2), hold. Define 

Ys, h =1n P. - (r - 6) (s - ii), Vs> It E [t, T]. Then, the joint characteristic function 

of Ye and V8 conditional on the values of Yh, h =1n Ph and Vh is given by 

F`Oy, OV, S - Ibll /t, h, Vh) = G'90(0Y,, 
6v, s-h)--91(, 5Y,, 6v, s-h)Yh, h-f-92(0Y, Ov, s-h)VhI 

where 

9o(0}', OV, s- 11) 

_ -kO{(D+B)(s-h)+21nI1- 
D+B+Q2ioV 

( e-D(s-h)) `1- 2D JJ 

g1 (0y, qv, s- h) = iOy 

92(cY) Ov, s-ii) = 
C(1- e-D(s-4)) + i¢v [2D - (D - B) (1 - e-D(s-h) 

2D - (D + B) (1 - e-D(s-h)) - OvQ2(1- e-D(s-h)) 

and 

A= 2Q2, B=pvi0y-k, C=-Z 02 y-2igy and D= B2-4AC. 
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Proof. By Ito's Lemma, we can write 

dYj = -1 Vsds + VSdWl, s. (1.09) 

To derive a closed form solution of the joint CF F(Oy, q, s - hlYh, h, Vh), consider the 

following general affine solution: 

F(Oy7 O 
vs - /ZI1 h, h) 

V1, ) ego(0Y, 
OV, 3-h)--91(0Y, OV, S-h)Yh, h+92(0y, OV, 3-h)Vh. (1.010) 

The coefficients of the CF go (0Y, Ov, s- h), g, (0Y, Ov, s- h) and 92 (¢Y, OV) s- h) 

can be derived by noticing that F(Oy, q vas - hlYh, h, Vh) should satisfy the following 

partial differential equation (PDE) 

9F(gy, OV, S - hI Yh, h, Vi) 1 a2F(oy, OV, S - h)Yh, h) Vh) 

ah +2 Vh ayh, h 
+pQUl 

a2F(OY, cby, s - hl Yh, h, VL) 1 
2V 

a2F(gy, Oys - hl Yh, h) Vh) 

+Qh2 aYt, haVL 2 aYh 
1 

V` 
OF(gy, OV, S - hI Yh, h) Vh) 

+ %(e - Vh) 
aF(qy, OV, s - hlYh, h, Vh) 

aYt, h 0Vh 
=0 (1.011) 

ah 2'n 0Y2, h 
ýUa 

O2F(OY, cbv, s - hl Yh, h, VL) 1 2v 
a2F(oy, qvs - hlYh, h) Vh) 

+p +Qh2 äYt, h8VL 2 aVh 
1 vi` 

ÜF(gy, q5y, S - hl Yh, h) Vh) 
+ k(O - Vh) 

COF`gy, Oys 
- hlYh, h, Vh) 

2 BYt, h 5Vh 

Substituting (1.010) into (1.011) yields 

v il 
cV) S- 11) 

+ 
1g2(0y, 

Ov, s- h) 
l Oh 2 

+Po"gi (OY) Ov, s- h)92 (0Y) cv7 s- h) 

+ 0' 92(oY, Ov, s- 71) - 29i (0Y, Ov, s- h) - kg2(OY, OVs- h)] 

Y& ha 
`gi qy, v, ýýts- It) 

+[ 
ögo(0Y, ýý 

,s 
h) 

+ k9ga(OY2 Ov7 s- h)] 

=o (1.012) 
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From the PDE (1.012), we can see that the coefficients go(OY, Ov, s-h), gl(0Y, Iv, s- 

It) and g2(4 ', ¢v, s- h) can be derived by solving out the following three ordinary 

differential equations (ODE), implied by (1.012), 

Dgl (0y, Ov, s- h) 

Olt = 0, (1.013) 

092( 
Y, 

OV+S-lt) 

oh 

_ -, ýU2g? loYo 
OVe S- h) - 92(OYi Ovi S h) (Po9i(0Y, Ov, s- h) - k) 

-yiV, - lt) - 91(Y, v' - h) (1.014) (gy, 22) 

and 

090(OYl Ov, s 
-kO92(gy) Ov, S- h), (1.015) 

as 

subject to the following boundary conditions go(Oy, Ov, 0) = 0, gl(0y, Ov, 0) = i0y , 

and g2(OY, cbv, 0) = zcv" 

Solving out the ODE (1.013) for g, (0y, /v, s- h) yields 

9i (cy, cv, s- h) = iqy. (1.016) 

To derive the coefficient g2(¢y, ¢v, s- h), substitute (1.016) into (1.014). This gives 

092(OY, cV) s-h) 
C911 

_ -a 
292(OY, OV, S- 11) - 92(OYi OV, S- h) (paiCby 

- k) 

--20Y - 72oY 

_ -ßa2 (92(cyt 4V, s- h) - xl) (92(cy, Qv; s- h) - x2) 1 
(1.017) 
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where xl = -B+VrB- -4AC9 x2 = -B- BA-4A, A= 2ý2, B= poicx - k, C= 2A 2 

-2 y- 
Iioy and D= v/-B2 -- 4AC. Rearranging terms in the ODE (1.017) and 

integrating both sides of the resulting equation yields 

IJ(1-1 
d92(0y, ov, s- h) =J dh 75 \92Y. OV, s-rº) - xi 92(OY, Ov, s- h) - x2 

Using the boundary conditions on the coefficients of the CF, the last equation implies 

that the closed form solution for g2(0y) Ov, s- h) is given by 

C(1- e-D(s-h)) + ioV [2D - (D - B) (1 - e-D(s-h))I- 
92 (OY, OV, s- h) = 2D - (D + B) (1 - e-D(s-h)) - OvO, 2(1 - e-D(s-h)) . 

(1.018) 

Substituting the closed form solutions of the coefficients gl (Oy, cbv, s-h) and g2 (OY)cbv, s- 

Ih), given by equations (1.016) and (1.018), respectively, into the ODE (1.015) and 

integrating gives the closed form solution for the coefficient go(qy, cv, s- h): 

go (0y, Ov, s- it) 

k© 
(D + B) (s - h) + 21n 

[1 
-D+B+ 

u2iOv (1 - e-D(s-h) }. 
2L JJJ 

  

Having derived the closed form solution of the CF F(Oy, OV, s - hl Yh, h) Vh), we 

next prove Theorem 3. 

Proof. (Proof of Theorem 3). To prove the theorem, we need to derive an 

integral representation of the early exercise premium 

T 

EQ 
f 

e-r(s-h) (6P3 - rK) I{(pa, Vs): PB>_B(V3, s)}ds 
I B(Vh, h), Vh 

defined in equation (3.. G). This can be done as follows. 
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Using the law of iterated expectations, write equation (1.019) as 

T 

f E, Q [c r(s-h) (5P3 - rK) I{(P3, Va): Ps>B(Vs, s)} 
I B(Vh, h), Vh] ds, (1.020) 

h 

where B/I [e_r(s-t`) (SP3 - rK) I{(P,, V, ): Psý: B(V,, s)} 
I B(Vh, h), Vh] represents the present 

value of the risk neutral continuous payoff of the early exercise at time h. This can 

be written as follows 

EQ [e-r(8-ft) (6 ps - rK) I{(Pa, V, ): PsB(Va, s)} 
I B(Vh, h), Vh] _ It 

- 

Se-r(8-h)E1? IN E2 
[PsI{(PaEhQ: 

IN 
PP s(va, s)} IB(Vh, h), Vh 

-rlfe-'(s-h)Eit [I{(na, Va): pe? B(V3, s)}IB(Vh, h), Vh] . 
(1.021) 

Equation (1.021) indicates that the present value of the risk neutral continuous payoff 

of the early exercise time t can be unbundled into a portfolio of the Arrow-Debreu 

type of securities [see Bakshi and Madan (2000)]. The prices of these securities are 

defined as 

EQ 
[PsI{(P8, V8): P>B(V3, s)} IB(Vh, h), Vh (1.022) 

EQIN 

and 

E2 
LI{(1'a, Va) l'a? B(Vs, s)}I 

B(Vh, h), Vh] 
i 

(1.023) 

respectively. Below, we derive analytic, integral representations (solutions) of these 

prices based on the closed form solution of the CF F(Oy, qV, s - hlYh, h, Vh), given by 

Lemma 3. Substituting these solutions into equation (1.021) will give us an analytic, 
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integral representation of the optimal exercise premium (1.019). To derive an ana- 

lytic, integral representation of the security price defined by equation (1.022), write 

EIt [(p)I 
s) 

Pe,, ý: B(v., s)}13('4, h), vI as 

ps 
Eh 

Eh (1 [Ps] 
I{(Ps, Vs): P, >B(Vs, s)}IB(Vh, 

h), Vh = 

°Or 
roo e(r-6)(s-h) } Y, h 

J dVs JQ 7r(Ys� V3I ln(B(Vh, h)), Vh)dYs, h, Eh IN 
-00 

(1.024) 

where 7r(Ys, I,, V, ) ln(B(V1, ii)), Vh) is the joint probability density function of Y3, h and 

V3 conditional on the values of Yh,, and V,,, where Ys, h and Yh, h are now considered 

at the optimal exercise boundary prices, i. e. Y9, h = ln(B(V3, s)) + (r - 6) (s - h) 

and Y,, I, = ln(B(Vl, h)). Denote the marginal characteristic function of F(oy, qj, s - 

hl ln(B(V,, h)), Va) with respect to Vh as Fv (0y, VJ ln(B(Vh, h)), Vh). This function 

is defined as 

00 

Fv (qy, VsI In(B(Vh, It)), Vh) =f e'OyY", h7r(Ys, h, Vsl ln(B(Vh, h)), Vh)dYs, h. 
_00 

Using the definition of Fv (0y, V8 ln(B(Vh, h)), Vh), the exercise boundary relation- 

ship (3.. 8) implies that equation (1.024) can be written in terms of one-dimension 
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integrals as 

Ps ýIt 
1E, 

[P81I{(P., V. ): P3? B(Va, s)} I B(Vh, h), Vh = 

°° 1J e(T_S)(s-h) f 
dVs 2ýv(VsI ln(B(VL, h)), T)+ 

27rEhQ [Ps] 
00 

°° 
Re e-'Oy[bo(s)+bl(3)W. -(r-a)(8-1a))Fv (oY - 2' V8I ln(B (Vh, h)), Vh) doY 

1 

\ 
i4by J 

_00 
(1.025) 

where 7rv(V31ln(B(V,, h)), V) is the marginal density function of joint probability 

density lr(Y,,, � "I ln(B(V,, h)), Vh) with respect to Vh, defined as 

00 

irv(V31 In(B(V1, li)), Vj 
J E11 [P3] lr(Ys, h, V3J ln(B(Vh, h)), Vh)dYs, h. 
_00 

Noticing that the CF F(Oy, Ov, s-hl ln(B(VL, h)), Vh) and its marginal CF Fv(Oy, V81 

In (B (V,, It) ), V, are linked through the following relationship 

00 

F(oy, ov, s- hi in(B(Vh, It)), V, ) =f e=ov`'°Fv (0Y, V8 in(B(Vh, h)), Vh) d1, 
)00 
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equation (1.025) can be expressed in terms of one-dimension integrals as 

[PS 

IN 
1{(P., V. ): P. ý: B(V., s)}I 

B(Vh, h), Vh 

_1 

((r_ö)(8_h) 

2+ 2irEýQ [P, ]00 

Oo 
Re 

[bo(s)+bj(s)V. -(r-bs-h))F(Oi, VsIln(B(Vh, h)), V, ) if) (c_I 
ZoY / 

-00 -00 

1 e(r-b)(8-h) 

2+ 2irEý? [Ps] 

00 
e-'Oy[bo(s)-(r-b)(s-h)IF( - i, -bi(s)oY, s- hi ln(B(Vh, h)), Vh)l I 

Re 
\ ioy / 

dýY 

00 
(1.026) 

Having derived the above integral representation for the risk neutral expectation 

ESQ [PsI{(P�v, ): P2B(v�s)} I B(UL) It), UL], the state price defined by equation (1.022) can 

be calculated once a closed form solution for ESQ [P3] is derived. This can be done by 

setting Oy. = -i and c5v =0 in F(oy, Ov, s - hlYL, h) Vh), which yields 

E, I4 [p8} = ý(*-a)(s-ýý)F(-i, O, s - hi 1n(B(Vh, h)), Vh) 

= e(r-a)(s-h)B(Vh, h). (1.027) 
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Substituting equations (1.026) and (1.027) into (1.022) gives the analytic solution for 

the state price given by equation (1.022) 

IIi (bo(s), b1(s)IB(Vt, %t), Vt) 

= Eý` 
[1{(p., 

va): p'(va, 8» IB(Vt, Ii), Vh 
ESQ[PS] 

? �+( 27 rB(Vt, h)) 
00 

C-ioj"[bo(s)-(r-6)(s-h)]F( - i, -bi(s)/Y, s- hi ln(B(Vh, h)), Vh) f 
Re 

C 
ioy 

ldoY 

_co 
(1.028) 

Following similar steps to those above, we can derive the following analytic 

solution for the state price defined by equation (1.023) 

ns (bo(s), bi (s)IB(Va, 1'), Vj 

E [I 
{(p., V, ): P, ýB(V,,. )} I B(Vh, h'), Vh] _ 

2+ 

(27) 

f 
ýý 

(_ic1r[bo(s)_(r_ö)(s_h)JF( °° 
-b1(s), s- hl ln(B(Vh, h)), Vh)l 

i4by J 
doY 

00 
(1.029) 

Substituting (1.028) and (1.029) into (1.021) proves the boundary recursive 

equation (3.. 10), given by Theorem 2. 

The closed form solutions of the Arrow-Debreu security prices which enter into 

the American call option price evaluation formula (3.. 9), i. e. ll (bo(s), bl (s) I Pt, V t) 

and 112 (bo(s), bl (s) I Pt, V t), can be derived by following similar steps to those above 

setting Y3, t and Y, t as Y3, t = In P, + (r - ö) (s - t) and Y, t = In Pt. This will give us 
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the following analytic solutions: 

ni (bo(s), bi (s) I Pt, Vt) 
Q 

[P-I{(P., 
V. ): P. ý: B(V., s)j 

Et Q ý 
EQ P 

fPt, VtJ 

2+ 
(2 

Pi, 
) 

°° 
e-iOy[bo()-(r-a)(-epF(oy - i, -bl (s)oy, s- tj In Pt, V )\ f 

Re IJ dýY ioy 

_00 

and 

112 (bo (s), bi (s) I Pt, V t) 
EQ [I{(P,, 

V. ): PaýtB(Va, s)} 
I Pt7 v 

t] 

2+ 
(21r) 

00 
e e\ 
-"6Y[bo(s)-(r-a)(s-e)]F(o 

io-Y J 
bi(s)oy, s- tI In Ph, Vh)1 

doY, 

00 

which are similar in terms of functional form with those for the prices Hi (b0(s), bl (s) jB 

(Vº, h), Va) and II2 (bo(s), bl(s)I B(V,, h), Vh).   

Appendix A. 3: Chebyshev approximation According to the CB method, any continu- 

ous function b(x), where xE [-1,1], can be approximated by a linear combination of 

v-Chebyshev polynomials, denoted ww (x), as follows 

b(x) =Z qjwj (x), (1.030) 
j=1 

where wj (x) denotes the ith Chebyshev polynomial, defined as 

wa(x) = cos (j arccos (x)) 
, 

(1.031) 
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with wj(x) satisfying the recurrence 

wj+l (x) = 2xwj (x) - wj_1(x) , 
(1.032) 

with wo =1 and wl = x. 
The Chebyshev polynomials satisfy the Weierstrass theorem and meet the 

minmax criterion. According to this criterion, the Chebyshev approximating function, 

denoted L(x), is one that equals the true function b(x) at the set of v zeros values of 

wj (x), taken for x= cos (ir (j - 0.5) /v), j=1,2, ..., v. The v zeros values of wj (x) 

imply a system of the v equations with v unknown coefficients qj. Solving out this 

system with respect to qj can determine the approximating function. 

Although the Chebyshev approximating faction b(x) is defined in the finite 

interval [-1,1], we can approximate other function b(h), where h is defined in the 

interval (t, T], by rescaling the values of x to h as h=2 ((T - t) x+T+ t). This 

implies that 

b(li) =b 
(x 

= 
2hT T tl (1.033) 

Substituting x= 2i`-T-t into equation 1.030 the new function b(h) can be written T_c 
( )ý 

as 

v 

b(h) _ cihi. 
i=0 
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APPENDIX B. 

PROOFS OF CHAPTER 4 

In this appendix, we proof the results given in the chapter 4. 

Appendix B. 1: The decomposition of the American put bond option price Proof. 

Following the Carr, Jarrow and Myneni (1992), to prove the theorem, we consider the 

price PÄ (X., Ti; T2) = e_ ft rud uPn (Xs, T1; T2), instead of PA (Xs, Ti; T2) " 
Applying 

Ito's Lemma, P; (X� Ti; T2) can be written as 

d Pj (X�, Ti; T2) 

= PA (X,, T1; T2) de-fe rudu +e fi r,, dudPA (X3, Ti; T2) 

_ -1. sC_ 
ftruduPA (X�, Ti; T2) ds 

+c-ft'rudu GPA(X8, T1; 7'2)ds+ 
DPA (Xs, T1; T2) 'Q (L 

8Xa Ja 
RadW 

a/ 

Integrating the above stochastic differential equation (SDE) over the interval [t, T1] 

yields 

P1t (XT1, Ti; T2) - P; (Xt, Ti; T2) 

fc_fe'ru[p4(xS, 
Ti; T2) - r3PA (X�, Ti; T2)] ds 

T1 
i 

+ 
/' 

e J, ,.,, du ( OPA (Xs7Ti; T2)1 
uV' R dWQ JL ax3 Jss t 

T1 

= 
Jc_f: 

rudu[IPA(xs, Tl; T2) - r3PA (Xs, Ti; T2)] Aneds 

t 
Ti 

rudu [GPA (xs, Tl; T2) - rsPA (X, Ti; T2) ]A ds 

t 
TI 

- r,. du [OPA (Xs) Tl; T2) 
+fe !tI 

aXs 

]c 
RsdWQ, (2.01) 

cL 
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where A,,, and A;, 
a are appropriately index functions indicating that X3 lies in the 

continuation and exercise regions, respectively. 

Since in the continuation region, res, the American option is alive, the option 

price satisfies the PDE (4.. 9) 

GPA (Xs, Ti, T2) = r., PA (Xs, Tl; T2) . 
(2.02) 

In the exercise (stopping) region, res, we have 

PA (X, Ti, T2) =K-B (X3, T2 - s) (2.03) 

Substituting (2.02) and (2.03) into (2.01) yields 

P; (XTi, Tl; T2) - PP (Xt, Ti; T2) 
T1 

= fc_ftru{_r3Ic_ [GB (X�T2 - s) - r3B (X9, T2 - s)]} AU, ds 
c 

T1 

+ýe-I, 'r�du 
rOPA (xa) Tl; T2) 1ý- 

dWq 

L ex, 
,V 

ns s 

T1 

J c- ff rudurKA-r,, ds 

t 
T1 

+f e-ft *udu 
[DPA (exý'i' T2)l 

Q RsdWQ (2.04) 

t 

Taking expectations of both sides of equation (2.04) gives 

BQ e-fT'r�du [K -B (XTýýT2 -Ti)]} PA (Xt)Tl; T2) 

= PE (lXX, Ti; T2) - PA (Xe, Tl; 72) 
T1 

_ -EQ 
(Jeft' 

rud"rKA,, -, ds 

t 
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Rearranging terms in the last equation yields 

PA (Xt, Tl; Z2) 

(1e_ftrsKA3ds). 
't, Tl; T2) + Et 

From the last equation, we can derive equation (4.. 10) of the theorem by notic- 

ing that the exercise region can be expressed in terms of the state variables as 

7I3 = {XN, 
s : XN, S > G(YS, s)}. The recursive equation for the optimal exercise bound- 

ary, given by equation (4.. 11) of the theorem, can be derived by using the arbitrage 

condition K-B (Y� G(Y3)', T2 - s) = PA (Ys, T1; T2), holding for any times E [t, T]. 

  

Appendix B. 2: Integral representation of the early exercise premium In this part of 

the appendix, we present the proof of Theorem 5. To this end, we first present the 

joint Cr and its extended transform of the state variables for the affine term structure 

model [see Duffie, Pan and Singleton (2000)]. 

B. 2.1 The Extended Transform and CF of the affine term structure model The ex- 

tended transform of the CF of the state variables of the affine term structure model 
[see equation (4.. 1)], is defined as 

\ 
(J) (Xt) T2 - t; 0, ýP) = Et 

(exp(fT2 
rsds)XT2eT2 I, 

/ 

while the CF is defined as 

- t; )= E(exp(fT2 rsds)eT2 , 
r(X, T2 

) 

where 0= (01) 02,1 .., 4N)' and cp = (cpl, c02) ..., cpN)' are N-dimension vectors of con- 

stant parameters. Duffle, Pan and Singleton (2000) show that the solution of the 
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extended transform of the CF is given by 

(1 (XL) T2 - t; Os o) 

= 

(((T2_t; 
)+ 

_ 

(CT2_t; 
+ 

Z en (T2 
- t; 02 V) Xn, t P (Xt, T2 - t; 0) 

n-1 
N 

E en (T2 
- t; 0) (P) Xn, t eXP(D (T2 

- t; 0) 

n-1 

-{ 
E(T2-t; )X 

, t) 7 
n=1 

where C (T2 - t; 0, cc) and ýn (T2 - t; 0, cp) should satisfy the following ODEs: 

DA (T2 
- t) NN 

0 (T2 - t) -a0 + Nnln2en2cn1 
(T2 

- 
t) 

n1=1 n2=1 

NNN 

T7E UnliO'n2iL)i Cn1 (T2 
- t)Cn2 (T2 

- t), and 

n1=1 n2=1 i=1 

UCn(T2-t) NN 

0 (T2 
- t) -an -E> tn1n2n1 (T2 

- t) 

n1=1 n2=1 

NNN 

2E 

(11 

Cn1iQn2i0i `in1 
(T2 

- t)Cn2 (T2 
- t) 

) 

n1=1 n2=1 i=1 

with 

(2.05) 

(2.06) 
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C9( (T2 
- ti Ot V) 

NN 

=ZZ hnin20n2enl (T2 - t; 0, Ü(T2 
-t 

ni=l n2=1 
NN 

(ýý +7 Unliýn2iLoi £nl 
(T2 - t; 0) 

Sn2 
(T2 

- t; 07 

r 191=1 192=1 i=1 

DZn(T2-ti 0, N N 

(7ýT2 - t) - Kn1n2Sn1 (T2 
- ti 

n1=1 n2=1 

NNN 
+7 

ZZý 
UniiQn2ißi Ent (T2 

- t; 0) eng (T2 
- t; ý' 1P) 

n1=1 n2=1 i=1 

with the initial conditions ((T; cp) =0 and 6i (T; cp) =Wi, i=1,2, ... N. For the CF, 

V (T2 - t; 0) and Si (T; 0) must satisfy the following ODE 

OD(T2-t; lýJ) 
Ü(T2 

- t) 

NN 

= a0 -E hn1n20n2en1 (T2 
- t; q) 

n1=1 n2=1 
NN 

2 2ý 1: 
N 

Lý ýniian2iüi eng (T2 
- t; 0) En2 (T2 - t; 0) 

7 
(2.07) 

n1=1 nz=1 i=1 

and 

DE- (T2 - t; 0) 
NN 

19(T2 - t) -an -7Z hnln2En1 (T2 
- t; 

nl=1 n2=1 

NN 
+2 ZE 

N 
E 

OniiQn2iNi Enl (T2 - t; 0) eng 
(T2 - t; 0) 

7 
(2.08) 

111=l 792=1 i=1 

subject to the initial conditions E� (0; ¢) = 0n and V (0; 0) = 0. Note that the 

functional forms of the PDEs (4.. 6) are the same, but they different only in the initial 

conditions. 
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B. 2.2 Proof for Theorem 5 Proof. First notice that the solution of the European 

price in equation (4.. 10) is given by 

PE (Xe, Ti, T2) = KB (Xt, T1 - t) T1 (Xt, T1 - t) (2.09) 

-B (Xt, T2 - t) T2 (Xt) T2 - t) 7 

where 

00 
Xt T. ) =2+ 27r 

f 
rte ` iv , -iv jog xT, (Xt, Tj - t; vj)) dv, for j=1,2 

\ 
-00 

With 

1 
Ti (Xt, Ti - t, vi) =B (Xt, TI _ t) 

r (x t, T1 - t, vi) 

1 
'Y'z (11'e)Ta - t, v2) =B (Xt TZ _ t) 

r (Xt, T2 - t, v2) 

vl = [ivCi (T2-t), ivC2(T2-t),..., iUCN(T2 -t)]' 

V2 = [(1 + iv) Cl (T2 
- t), (1 + iv) C2 (T2 

- t) 
, ..., 

(1 + iv) CN (T2 
- t)]', 

[see Chacko and Das (1999)]. 

Notice that the early exercise premium can be written as 

T1 T1 

EQ J c-fý rudUr, KA,,, ds =Kf EQ (eftSrsA) ds. (2.010) 

tt 
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Let price 11 (Xe, s- t) be given by 

1eft rudur A 
TQ 

S {X1Vaiýi(Ya 
, S)} (Xt' 

S- t) _ ýI. I1i 

t EQ eft rudurs) t> 11 

then (2.010) can written as 

T1 

EQ 
% 

e- ft r°durKAýads 

t T1 

=K% EQ (eft8u 
rs) II (Xt, s- t) ds 

. tt 
T1 

=KJ <I> (Xt, s-t; Vo, V1) II (Xt, s- t) ds, (2.011) 

t 

where Vo = (0,0, 
..., 0)', Vi = (al) a2, ..., aN)'. 

Given the closed form of the CF [see section (B. 1)], the closed form solution 

of II (Xe, s- t) can be calculated as follows: 

ri(Xt, s-t) 
e 

f; r°du7' 
Q .Af XN. 

°iG(Y-, S)} 

= Et 
Q 

(eft r�dur3) 
Ixt, 

co 00 
1 

00 00 

=2+ 
2ý 

J dX1, s 
f 

dX2, s... J dXN-i,, J eft' 'r 
N)du 

00 -00 -00 -00 
e-fvG(S'eýs) l 

r9 ) Re 
GA) 

(Xt, s-t; V (O), V(1)) 
PN (Xt, s-t; iv, Ys)) dv 

00 00 00 00 1 CW r 
efts ruN)du +2 + 2ý dX1,3 J dX2, s... J dXN_l, s Je 

-00 -00 -00 -00 
e_u1&(Y�s) al 

Re 
(iv(l) 

(Xt, s-t; V (O), V (I)) iav 
(Xe, s-t; iv, YS) I dv (2.012) 
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where 
N-1 

71u = a0 +Z anXn, t, 
n=1 

w 
rN(xt, s-t; iv, Y8) =7 

00 

and 

am , XNdu iVXN /// e '" e je f l(Ys) 
XN, 

sý 7 Si (Yi XN, 
t)7 

OdXN, 
sý 

f ((Y., XN, s)', s; (Yt, XN, t)', t) is the transition probability density function. 

Under the assumption that the early exercise boundary is a linear function of 
N-1 

the state variables, i. e. G (Y3, s) = AO,, +E ýn, sXn, t, equation (2.012) implies 
n=1 

ri(, Yt, 5-t) 
00 co 00 00 

2+ JJ... JJ of 
3 r(N)dur(N) 

7 

-00 -coo -00-00 
N-1 11 

n=1 / Pýr(, ý'týS-týivýY8) Re 
iv11(Xe) S-t; V(O), V(1)) 

00 00 00 00 

dX1,9dX2,8... dXN-l, 3dv + 
2+ 27r 

JJ... 
II 

eh r du 

00 _00 -00-00 
N-1 

exp 
(_iv 

Ao, s +EA., sX", e ä 
n=l -)) ße 

iv(J) (Xt, s-t; V(O) 
I 
V(1)) iövPN(Xt, s-t; iv, Ys) 

dX1,9dX2, S... dXN_l, 3dv. 
(2.013) 

The closed form solution of the extended transform of CF [see B. 1] implies that 

,,, (Xt, s-t; 00, ý00) 
00 00 00 N-1 

=JJ... J eft r"N)durýN) exp -iv An, 
3Xn, s 

_00_00 -00 n=1 

rN(Xt, S- t; iv, Y3)dX1, sdX2, s... dXN_l, s, 
(2.014) 
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Where 00 = (-ivA,, 
s, -iVA2, sß ..., -iVAN-l, s, 

iv) and cpo = (a1; a2) ..., aN-1,0) 

r'(Xt, s-t; c50) 

00 00 00 N-1 

f°rüN)du 
_e exp -iv An, sXn, s 

00-00 -00 n=l 

I'N(Xt, s-t; iv, Ys)dX1, sdX2, s... dXN_l, s. (2.015) 

Substituting equations (2.014) and (2.015) into (2.013) yields 

11 (Xt, s-t) 
00 

= 1+ 
1 

Re e-iVAO' (I) (Xt, s-t; 0o' Wo) dv 
27r 

f (iv(I)(Xt, 

s-t; V(0), V(1))) 
00 

00 
aN (e_sZ (5o, s- t) P (Xt, s-t; o)l 

-}- 2ý 
f 

Re 
vý (Xt, s-t; V (0), V (1)) / 

dvý 

_0 

With 

Z (s - t, qo) 

äv(0, s-t) ' D&(0, s-t) = OON 
+ 

n=1 
OON 

I 
ß=ýo 

Using the boundary arbitrage conditions, we derive the boundary recursive equation 

given by Theorem 5.   

Appendix B. 3: Proof for Theorem 6 In this part of the appendix, we present the proof 

of Theorem 6. To this end, we first need to prove the following lemma. 

Lemma 10 Let 

00 s 

rn (Xe, s-t; iv, , y. 
, 
(n)) 

=f exp(J a�X�, du + ivX�., )f 
(Xs� s; Xt, t) dXn 

s 
(2.016) 

-oo t 
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and define sample characteristic function as 

rn, 
m 

(Xt 
,s-t; 

iv, X('» 

00 8 00 

exp(a�X�udu + ivXXs) Z 
J 

-00 t 
l--oo 

(2.017) 

A[l6Xn+Xn 
�l6Xn+Xn 

+1] f 
(X,, s; Xt, t) dXX, 

s, 

where A_ (X1, 
s, 

X2, 
si ... ' 

Xn-l, 
s) 

Xn+l, 
s, ... ' 

XN, 
s), 

bý'n = Xn ax _ 
Xmin 

and SXn = 

Xn +1 
-X;, ', then 

_ 00 
I' (Xt 

'S-t; 
iv, x("» =Z in, 

m 
(i) rn (Xt� s-t; i(v - jvn o), x., (n» 

n, m 
j=-00 

where v 2r 
ri, 0 = 6X�' 

19eVVn, 0(Xn +Xn +1)/2 SXn 
5'a _iv ii, m 

ý) = SX 

and 

I sin (2 jvn, otX Sa -jvn, o6x = CjZ -v., o6x 2 

W 
Proof. First, define the Fourier series i9,,,, =E A[zox�+xn 

, 
ibxn+xn +l], where 

19.,,,, is the periodic function with period 6X,,. The Fourier transform of 19n,,,,, is defined 

as 

xmex 
n 

fV 
e i'Vn, OXRjeA [Xn 

iXn+ljC4lls OAn f 

Xnmin 

{ vn, 0 Xn +Xn +1 

-e 
)/2 ýXn 

Sal iVn, o (Xm -m 
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where v, l, o =' and Sa(x) = ! 111 
xx . 

Given ý9n,,,. (j), we write the Fourier series as bXn 

00 00 

_ 3, 
mm 

(j) ein' '" (2.018) 19n. tn - 
n[lbXn 

I Xn , lbXn Xn +1] 
l=-oo j=-00 

Substituting equation (2.018) into (2.017) yields 

00 

I'n, 
m 

(xt, 
S-t; iii, x(n)) _ 19,,, m 

C%) rn (Xe, 
S- tý i(1/ 

- 
jvn, p), 

ýi'(n)) 

j=-co 

Since Sa(x) = 8!! X exponentially collapse to zero in both tails, we do not need many 

terms 19n, �L 
W rn (xe, 

S-t; ý'ýýý, 2(U - jvn, O)) in the above expansion.   

Next we prove Theorem 6. 

Proof. To prove the theorem, we will follow similar steps with those that 

we follow to prove Theorem 5. Here, we will only concentrate on deriving the ana- 

lytic forms of the prices of the Arrow-Debreu securities. Given that now G (YS, s) is 

approximated by 

G (Y., s) G" (Y,, s) 
Al Al Al 

11=1 12=1 1N_1=1 

G11,12 JN-, 
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the prices of the Arrow-Debreau securities can be calculated as follows 

all (Xt, s-t) 

eftr. durA 
s {XN,, >C(Ye s)} 

Eq t EQ (e ft rudurs) 
I Xt, t 

00 00 00 00 

_00_00 _00_00 
. Al Al Al (exp (-iv (. 
1: 

_ 
r 

i_ 
Gzl, 

12r... 
ýLN-1 

(y" 
S) A=11,12, 

---, IN-1 
\11=1 £2=1 £N-1=1 

Re 
iv4 (Xt, s-t; Vo, Vl) 

rN (Xt, s-t; iv, Y3)] dX1,3dX2,3... dXN_l, sdv 
00 00 00 00 

-}- 
2 

-i- 
27r fJ... Jf elft r, 

ý, Nýdu 

-00-00 -00-00 
bi Al M 

exp -2v 
EE fj Gil (Ys, s) Ab, 

Re 
11=112=1 1N_1=1 

iv<I, (Xt, s-t; Vo, Vi) 

iäv 
rN (Xt, s-t; iv, Ys)] dX1,9dX2,3... dXN_l,, dv 

Since the two tails of probability density of X, a, 3 exponentially approach to 

zero [see Lemma 10], if we appropriately truncate X, l, s as [Xmin, X, ", ] 
, we have 

00 
n[Xn 

, Xrmi +1]FN 
(ýýt, s-t; iv 

, 
YS) ý' E A[16Xj+ 

, 16Xj+Xý +11rN (Xt7 S-t; iv, Ys) 

1=-00 
J 

(2.019) 
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Then, 11M (Xt, s- t) can be written as 

II, Ar (Xt, s- t) 

=1+y 

00 

Re 

(ß_2vAoa ýj (xe) 
s-t; g511, 

l2, ""lN_1 
, WO 

) 

dl/ 
217r 

,T 
iv(b (Xt, s-t; Vo, Vl) 

-ia+00 
ne 

(e'0.3 
(XL, 

s-t; (ý11,12,..., 
1N_11 7'°) )dv 

'T 

27r f 1L 
v(ý' 

(Xt, 
s-t; V0, Vi) 7 

_00 

where 

<II (xe, t; o'ýPo) 11,12,..., lN_1 

bf Af h1 00 00 00 
_ 
ý1, li (ni) 

11=1 12=1 IN-1=1 n1=-oo n2=-O0 nN_1=-o0 

192,12 (n2) 
... 19N-1, IN_1 (nN-1) ýD 

(XI, 
s-t; ýa1,12,..., 

ºN_1, coo) 

and 

l11 
(xe, 

S-t; ýl1, 
I2,..., tN_1 a Wo) 

Af Af Al 00 00 00 

11=1 12=1 IN_i-1 111=-00 ny=-oo nN_1=-o0 

191,1i (ni) 192,12 (n2) 
... l9N-1,1N_1 (nN-1) ZIS-t, 011,12,..., 

lN_1) 
r 

(xe, 
s-t; 011 

ºa,.... N_1) 

-2L, \2 
s7 ... 7 -2LA 

N-1 
S) 

2U) 

0*1, _ 
(-iva119 

- inlvl, o, -iv. >2is - in2v2 p, ..., -ivýN_i s- 
inýr-lvN-l, o, iv) 

lI2...., lN_1 
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Appendix B. 4: Calculation of the Hedging Parameters: the deltas and gammas In 

this appendix, we derive the analytic formulas of the hedging parameters: the delta 

and gamma. To this end, we need to derive the first derivative of the American bond 

put option with respect to the state variable X,,, t. This constitutes the sums of the 

derivatives of the European call price PE (Xe, T1; T2) and the early exercise premium 

with respect to X. 

The first of the European bond put option price with respect to Xn, t can be 

calculated as 

ci PE(X, T1; T2) 
oXfl, t 

00 I2 

t7X 
B (XX, T1 - t) + 

2ir 

I 
Re 

(ive-'YtogKa 
P (Xt, TI - t; vl)1 dv 

I, t 
_00 

00 

-1 
a2 

ýX 
B (Xt, T2-t)--l 2- t) - 

2ý 

J Re 
(ive-:,. togKa9 P (Xt, T2 - t; v2)) 

-00 
I, c ., t 

00 
_ 

2{B 
(Xc, T1) C� (Ti - t) + 

27r 

J1 Re 
(IVe-"log x£n (T1 - t; vi) P (Xt, T 1-t; v1)) 

-00 
00 

J Re g-ivlogK£n (T2 
- t; v2) P (Xt, T2 - t; v2) -2 B (Xt, T2) C (T2 

- t) -- l 
7r IV 

-00 

while that of the early exercise premium can be calculated as follows 

a n, t 
00 

Re e-ivAO" 
iv T7r 

00 

a \I1 (Jý (xe, 
s-t; ýPo 

/) 
dv 

00 
aN f /e-i ,', ci 

- 2J Re 
(v 

äX 
(Xt, 

s-t; ý 
)) dv, 

., t 12 N-1 

-00 
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where 

!ý I) (xe, S-t; q1 ýPo) 
VXI. 

't 
12 N'1 

Al Rf 11f co 00 00 
37 Z 

... 
ZZZ... Z ? 1,11 

(nl)X2,12 (n2) 
... 19N-1,1N_i (nN-1) 

(1=112=1 ! N-1=1 n1=-00 n2=-00 nN_1=-00 
N 

X [e 
n 

(s - t; (Po) +( (s - t; (Po) +Z enl (s - t; Wo) Xn1, t En Cs 
- t; Ot1, 

t2,..., tN_1 / 
nl=1 

(xt 

ýs 

and 

XP (xe, S-t; 
Ciý,,, l t,, t2,..., tN_1 
ll! 111 M 00 00 00 

___ 
... 191,11 (ni) 

2,12 
(n2) 

... '19N-1,1N_1 (nN-1) 

l1=1 12=1 IN-1=1 nl=-oo n2=-oo nN_1=-o0 

Z 
(s 

- 
t; 

11,12.... ! N_1) 
Gn 1S-t; 

0ll, 
l2..... ZN_1) 

r 
(x7 

S-t; ý11, 
Z2,..., IN_1 

) 

Adding the above two derivations will give us the delta hedging parameter. To derive 

the gamma parameter, we need to derive the second, cross derivative of European 

option and early exercise premium with respect to Xj, t and X1, t. The former of these 
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derivatives can be calculated as follows: 

a2 
P. XT "T 

rt, t tn, t 

= 
7{ 

B (Xt, Ti - t) Cn (Ti - t) Cm (Ti - t) -I- 
00 

KJ 
Re 

(ZVe-"'ý°s1C£n 
(Ti - t; t" v1) £m (Ti - t; " vi) I' (Xt, T1 - t; t" vi)) 

-00 

2B(. 
l't, T2-t)Cn(T2-t)C, n(T2-t) 
00 1% Re e-iv l°sjt£n (T1 - t; t" vz) £m (T1 t; vz) r (Xt, T1 t; 2) 

,/-ý-ý 
27r 

(IV 

00 

while the latter can be calculated as follows 

02 

c7. l' 
2 

HA1(Xt, s- t) 
u, t ln, t 

00 
1 (e-i"O's 02 

2ý 

I 
Re 

iv OX öX 

(xe, 
S-t; ý, 

1, º2,..., ýN_1 7'0)) 
dv 

-00 

e-iv 
- 2aiv 

00 

1r J 
Re 

1/ Öx Üi1' 

(x� 
s-t; lýt1, l2,..., tN_1 

W0) 

J 
dvi 

n, t m, t 
-00 

where 

02 

C71' Ü. 1' 
I> xt, s -t; tÄ ' o) 

tt, t m, t 
tl"t2 rN-1 

Af Af Af 00 00 00 
_ 

... 
E 

1,11 
(n1) 192,12 (n2) 

... l9N-1,1N_1 ýnN-1) 

I1=1 12=1 IN_1=1 n1=-oo n2=-00 nkr-1=-o0 
fc1l (s 

- t; wo) Sn 
\ýS 

- t; ot11> + Sn 
(s 

- t; t° ). 6, 
n 

(s 
- t; ýt1, 

r2,..., tN-1 

N 

-} c (S-t; 
0) +Sn(s-t; ý00) Xn, t 

Em 
(S- 

t; « 

J l1, t2,..., IN_1 

n=1 

`n 

(S 

- 
t; 0'.. 

" 2...., IN-1 
r 

(xt, 
s-t; ýt1. 

t2,..., tN-1 
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and 

a2 \ 

Il, l2,..., 3N_1 OX1 
tOXmýt 

(xe, 

D1 D1 111 00 00 00 

11=112=1 1N-1l1 =-oo n2=-oo nN_1=-o0 

191,11 (n1) 192,12 (n2) 
... 19N-1,1N_1 (nN-1) Z 

(S 
- t, (ýtl, 

t2,..., trv-1) 

En 
ýS 

- tj ýI1. 
tZ..... tN-1) Gm 

(S 
- t; (ßll, 

t2,.... t]V_1) 1 
(xi, 

S-t; (ýIl. 
t2...., tN-1 

) 

Adding the above two derivatives gives us the closed form solution for the gamma 

hedging parameter. 

Appendix B. 5: CFs for Vasicek's, CIR's and ATSM models 

B. 5.1 Vasicek Model In an n-factor extension of Vasicek's model, the instantaneous 

interest rate is determined by n state variables as 

N 

rt =E ajXj, t = ao + a'Xt 
j=1 

where a' = (al, a2i ..., aN) and Xj, t ,j =I ... N, under risk neutrality follows the O-U 

process 

dX;, t = hj (O - Xj, t) dt + crdW, Q 
. 

For simplicity, we assume that Corr(dWiQdW9) =0ij and let ao =0 and Z, t 

a2 = 1, for all j. As we know, O-U process implies that Xj, t is normally distributed 

with mean 

Et(Xj�) = Xj, te-"1(s-t) -f- Bj ý1 - e'-; (s-t)) 
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and variance 

Var(Xj, s) 

Denote r=T-t, then the CF for the N-factor Vasicek model is given 

rT 
r (Xt, T; q) = Et 

(exp(J 
rsds)e'bXT 

t 

= exp(E[E (T; 
0)X. 

9, t 
+D7 (T; 0)]), 

j=l 

where 

E; (T; 0) = O; b; (t, T) - B; (t, T), 

(fO 
D(T; cb) _ T(B(t, T) -T) -2 21- 

o'B4ýt, 
T) 

+ 1i7B7O; Bj (t, T) 

22 

-I-sj2' Bý (t, T) + ý4' (2Bý (t, T) 
- r7B. 7(t, T)) 

Bj (t, T) =1 (1 - e-'j') , r1i 

and 

bj (t, T) = e-'j' 

129 



The extended CF for this model is given by 

(exp(fT 
(I' (Xe, r ;, )= Ersds)XTeT 

/ 
N 

E (en 
(T; 

0, w) Xn, 
t + (n (T; 0, w)) 

n=1 
N 

exp(Z &j (T; 0) Xj, t + Dj ('r; qS)), 

j=1 

where 

en (T - t; 0, co) =W �b� 
(t, T) 

and 

22 

ýý (T 0, ý0) = ýon si Bj Bj (t, T) +2 Bj2 (t) T) +2' (2Bý (t, T) - rýj Bj (t, T) 

B. 5.2 CIR model For the CIR model with N-state variables, the instantaneous 

interest rate is given by 

N 

rt ajXj, t = a0 + a'Xt, 

j=1 

where Xj, t follows the risk neutral process of CIR model 

dX;, t = t; (9; - X;, t) dt + o-; X;, tdW7Q. 
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The CF of the instantaneous interest rate for this model is given by 

(exP(f T 
r (Xt, T; o) = Et rsds)eT) J 

N 

= exp(Z [Ej (T; 0) Xj, t + Dj (T; q5)J), 

j=1 

where 

Ej 
2 (2dß + bo) ciec'T - (2cj + Oja) djed; T 

(T ý) = ý. J (2cj + cbjorj2) edir - (2dß + ojQj2) eci" 

__ 
2 (c; - d; ) 

Dj (r; 0) = 
orj 

In 
(2cj + 0, a) ed'T - (2dj + Oja) ec'T 

-i + [KC ý+ 2oß -rj - rý + 2vß 
cj =2 and cj =2 

The extended CF is given by 

(I' (X, T; ý) = E(exp(fTrsds)coxTeT) 

N 

_ 
, (Z�(T; 

, 
)Xn, 

t+(n(T -ti0, W)) 

n=1 

exp(E £j (T; 0) Xj, t + Dj (T; q5)), 

j=1 

where 

4 (t 
,+ 

2Qn) e n. r 
(r; 

((2cn + Omni) ednr - 
(2dn + Onorn) e`'n7)2 

and 

Sn lTi 
ýý ý) = 

2r£nenýn 

(ýT `ýCn--On+ ý2n)ea" (2CCýn+OnQ2 
n)e 

n=1,2, ..., 
N 
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B. 5.3 ATSM models For the Affine term structure models (ATSM) of Dai and Sin- 

gleton (2000), for simplification reasons we assume that the instantaneous interest 

rate under risk-neutrality determined by N=3 state variables as 

drt = ! tr (mt - rt) dt +V dW, tj 

dV = w� (9� - V) dt + o'v V dWQ , 

and 

dOt = km (B�, - mt) dt + Q, n mtdWQ, t, 

where Corr (dWQ647? ) =p and Corr(dW, QdWQ, 
t) = Corr(dWQ dWQ, t) = 0. The 

CF of the instantaneous interest rate for this model is given by 

)= E(exp(fT rsds)eT 
/ 

r (Xt, T; q5 

= exp(Er(T; 4')rt+Ev(T; 
0)Vt +Ein (T; 0)mt+D(T; cb)), 

where 

Üsr(Ti0) 
= -1-ti. rEr(r; 

), 

07- 
Os, 

;e 
_2 

(Ti4') 

_ fc'Ev(Ti+r2Er(Ti+pVEr(Ti0) Ev(Ti+2£v 
Or 

(Ti0) 
j 

DE ýTi0) 
= h, r£r(Ti0)tmem(Ticb)+2£m(Ti0) and 

OD (, r; 0) 

= hvev£v (T; 0) + hmemEm (Ti 0) 
, or 

subject to the following restrictions Er (T; 0) = q,., ET, (T; ¢) = 0� and Ems, (T; 0) = Im 

and V (0; 0) = 0. Solving the above ODEs, we can derive the following closed form 
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solutions 6r (T; 0), 6v (r; 0), 6 
m. 

(T; 0) and D (T; 0) : 

Sr (7-; 0) =1 '+' )e_r_!., ( 

Kr Kr 

£v (7-; 0) 
61 (he-'rTJi 

(T) +pe-KrTall (T)] 
=+ 1 (2n, ) [a1,71 (T) + (pe_Nr7)1-b ý2 /7)J 

l 

e-Kr(1-b)T [(he-'r' +1- b) 
. 
72 (r) + pe-r-rT, 72 (T)J 

(2n )+ (pe-,,, )I-b 

`aril 

(T7 ý) 
- 

hmZq(WT) - uT 
(Z9-1(wr) 

- 
Zq+1(wr)] 

and 2 

2. Iüv8v Ste' (1-e ' )al (0) + h(l-e-lrl), T (0) 

n 
ýv I 

Si. jl ýr) + e-kr(1-b)Tý2 (T-) 

2hmOm 
I 

Zg(0) 
+ n 0,2 - i--- 

me Zq(wr) 

where 7i (T) = Ha, b (pe-krT), 71'(T - t) =6 Ha+i, b+i (Pe-"rT ), 
X72 

(r) `H a-b+1,2-b 
(pe-KrT) 

, 

X72 
(T) _a bGlHa-b+a, 3-b (pe--, -) and Zq(wr) = 62Jq(Wt)+N9(wt), where H. (. ), Jq(. ), 

Yq(), and JV (. ) respectively denote the confluent hypergeometric function, first kind 

Bessel function, second kind Bessel function and Neumann function. The remaining 

parameters h, p, a, b, q, w, -, uT, 61, and 62 are defined as follows: 

2hor 
2 r, 2 (p+i 1-P2), P=-2h-P5�or, a=4ýh+2bh 

rrT /ý v rcbr 

by Am 2`! 
'y 

-ZfSrT -2Kcr(T-t) b= 1- 
, q_- )'w7=- o',,,. e , UT= 2 a�, e 

S, rr 
-icr(h +1- b) + Z0, v0r] 

j2(ý) lýrP. 72(ý) 
61 

[-hr%b +2 vOr1 J1(0) - KrPJ1(O) 

62 = 
(hm -u Or) Yv(wo) + uo1'Q-1(wo) - uoý'v+l(wo) 
(KML - Qmgr) Jq(wo) + uoJv-1(wo) - uoJq+l(wo) 

133 



Taking the derivative of CF yields the extended CF, which is given by 

Et 
(exp(fTrsds)coxTeT) 

(er(Ti0, c0) rt+ev(Ti0, v)V +Sm(Ti0, c0) mt+C(Ti0, c)) 
N 

CXP(E £j (r; 0) Xj, t + Dj 
lT i 0)) 

j=1 

where 

er 
(r; 

0º (p) = ire-IrT , 

Sv 
(T i Y'ý ý) - ýr 

Sir [he KrTý%1 (T) Pe-ý`rT ý1 (T )ý 
+ 

C° J 
{o1a71 (T) + (pe_, 

rT)1-b 2 
(T)J 

al [hre ýrr ýl (T) + Pre-Krr. 11 (T )] 

C°/ 
[S1 

1 
(T) + (Pe_ýrT )1-6 

2 
(T)J 

(Sl 
[IEe-KrTýlr 

(T) + Pe-ýrT Jr 
lT 

)I1 

C °3m) 
[s«(T) 

+ (PenrT )1-b ý2 (T)J 

e nr(1-b)T [hre-K'rT J2 (T) + Pre-r-rT J (7-)] 

(2a-;. -) 
[x171 (T) + (Pe-KrT )1_b J2 (T)] 

e-ß: r(1-b)T [(he-' r' +1- b) Jr 2(T) + Pe-"rT, Tr (T)] 
_ 

C/ 
[a1 

1 
(T) + (Pe_tcrT)1-b ý2 (T) 

l 
Qtn 

[sir. 
71 (T) + (pre-r)1-b 72 (r)] 

61%1 (r) + (pe_ýrT)1-6 
2(7) 

J- 

£v (Ti ý) 
[5iJir 

(T) + (Pe-KrT)1-b 
. 
%2r (T)J 

2(7-) 
6191 

(T) + (Pe_NrT 
)1-b 

'T 
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m lT i 0,4 _ 
Vmurm [-7q-1 (wr) 

- Zq+l (wr)] 
+ 

Q nZq(wr) 

hmZq, v(wr) - UT [Zq-l, 
v(wr) - Zq+l, 

v(wr)] 
S. 

`T 
i 0) 

.iAi Zq(wr) 
A 

zq(WT) qv 
(W1) 

a 
KmJq(Wt) - Ur [Jq-l(wt) 

- 
Jq+i(ut)] 

_ 

Em' 
`T; 

0) 
J (wt +V 

r 2r 
u2 Z (WT) coS 

r 2r Zq(wT) q\ 
)q 

4> 
2hrn©, 

n 
Zq, 

v(wr) 
2hvOy 

-h(1-e-Krr) 
{ hr�2 (0) + J2r (0) 

>ve/ T" 
Q2 Zq(wr) 

car 
cv 61J1 (T) + e-icr(1-b)7(T) 

+a1rJ1(0) 
+ SihrJ1(0) + S1J1r(0) 

slaýl ýT) + 

-Sleh(1-e"`rr)a71 

(0) + 6h(1-e-Krr)aý2 (0)eh(1-e'Krr) 
[61rJ1 (T) 

61, %1 (T) + e-K, (1-b)rJ2 (7. )]2 

+151, %1r (T) + G' Kr(1-6)Tj 2r 
(-r)1 1 

and 

-CTv puv 4nrbp_v(hror - h) 
%Er = 

(p 
+i1- p2) ' pr = -21t, a= 2h +2v 21 

rr 
(4r 

rpv rcr) 

W7- 
Iame 

2KrT7Ur 
2 

o-me 2ý`rT 

r 
Om 

2ßv] J2(O) - hrprj2(0) - trpJ2r(0) 
Ölr 

[-ti, 
rlt 

+ 2Uvq5r] 
ý71(O) - KrPJi(0) 

- 

(-iirýIl +1- b) + 2ýv7r] 
2r(0) 

+ 
b1 [-/lrhr + 

20 
] Jj(0) - hrprJl(0) 

[-i 
r%t'ý' 

! U20,. ] j1(o) - tirýJjl(o) [-! trh+ Z0 rý 
Yl(0) - l'rp, %llýý 

Sl [-hrh + Z0 
r +] 

Ar(O) - rrpjlr(0) 

[-! irlt + 1,72 Or J1 (o) 
- krPJ1 (O) 
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s2r 
_ 

(KM 
- Q.. ) Y4(wo) 

(Km 
- Or2m0T) Jq(wo) + uoJq-i(wo) - uoJq+i(wo) 

b2ll'm-Qm)J9(wo) 

ýýhm - ýmcr) Jq(wo) +uoJq-i(wo) - uoJq+i(wo)] 

62v _ 

(, im -° 
n« 

r) 
Y9, 

v(wo) 
+ uoY9-l, v(wo) - uoYq+l, v(wo) 

_ (KM 
- Qmtr) J9(wo) + uoJ4-1(wo) - uoJq+l(wo) 

S2 
(hm 

-0 r) 
J9, 

v(wo) 
+ uoJ9-i, v(wo) - uoJ9+l, v(Wo) 

(KM - or2m0r) JQ(wo) + uoJq-i(wo) - uoJq+l(wo) 

uomy9-1(wo) - uomY9+i (wo) 
_ sa"" 

(hm - °m0r) Jq(wo) + uoJe-i(wo) - uoJe+l(wo) 

62 uomJg-i(wo) - uomJ9+iand(wo) 
(ttm - U2moT) Jq(Wo) + uoJv-i(wo) - uoJv+i(wo) 

ýi here lr (T) = Ha, b (Pe-r, "r) + "Ha+1, b+1 (pe ? T) pry ýi (r) = bHa+1, b+1 (pe-Krr), 

J12 (T) = Ha-b+1,2-b (Pe-krr)' 
L72 

(T) = a26b1Ha-b+2,3-b (pe_ T) and Lýy(wr) _ 62Jq(Wt)+ 

INq(wt). Hq(. ). 
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APPENDIX C. 

PROOFS OF CHAPTER 5 

In this appendix, we proof the results given in the chapter 5. 

T 

Appendix C. 1: Proof of Theorem 8 Proof. Let pu(t, T) = log P°(t, T) Jf (t, u) du, 

u 
where P-'(t, T) = P( 

ý, Üý = exp(pU(t, T)). To prove the theorem, first apply Ito's 

lemma for a jump process to the forward log-bond price pU(t, T). This yields 

dpu(t, T) 
T Al T 

_-f µ4(t, u)dudt -V: (t) 
f 

u, n, f(t, u)dudZQ(t) 

u M=l v 

/' /' 
-JJ %t(i) (x, t, u)duµ(P) (dx, dt) 

i-1 
Cu 

At 1 
--Zi (Sm(t, T) - S, 2� (t, U)) dt 

ni=l 
Lr 

-J (d(') (x, t, T) - d(i) (x, t, U)) A(')Q(dx, t) dt 
i=1 C 

+Z (S.. (t, T) - Su, (t, U)) dZQ(t) 
rn=i 

L 

+J (D() (x, t, T) - DM (x, t, U)) µ(i) (dx, dt). 
i=1 

G 
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Applying Ito's Lemma to PU(t, T) implies 

dP'(t, T) 

_ -exp(-p'(t, T))dpu(t, T) +1 exp(-pU(t, T))d2PU(t, T) 

L 

+ exp(-7)U(t-, T )) Zf {exp (D(: ) (x, t, T) - DM (x, t, U)) - i} 1i() (dx, dt) 
, _1 

_ -PU(t, T) 
2 (S, n(t, T) - S, 2, (t, U)) dt + PU(t, T) Z (Sm(t, T) - Sm(t, U)) dZQ(t) 

m=1 m=1 
L 

-PU (t, T) (0) (x, t, T) - d(')(x, t, U)) X(')Q (dx, t)dt 
i=1 

C 

A( 
+2PU(t, T) (S.. (t, T) - Sm(t, U))2 dt 

Hfl=1 
Lr 

+PU (t-, T) ZJ {exp (D(') (x, t, T) - D(') (x, t, U)) - 1} µ()(dx, dt) 
i=1 

C 

Al 

= PU(t, T) E (S�, (t, T) - S,,, (t, U)) (dZQ(t) - S�, (t, U)dt) 
m=1 

+PU (t _, 
T) 

d(t) (x, t, T) - d(i) (x, t, U) [µ('. ) (dx, dt) 
J 

d(1) (x, t, U) +1 

- (d(') (x, t, U) + 1) A(i)Q(dx, t) dt] . 

Notice that under the U-forward measure, PU(t, T) is martingale. Thus, transforma- 

tion from the risk-neutral, Q measure to the U-forward measure implies 

dZU(t) = dZQ(t) - Sm, (t, U)dt, and 

A(')u(dx, t) = (d(0(x, t, U) + 1) A(')Q (dx, t), 

which completes the proof of the theorem.   

Appendix C. 2: Closed form solution of the CF W 1(o, T3}pT0 (t, TT, ), V(t)) In this sub- 

section of the appendix I derive the closed form solution of the CF JU(0, T8IpTO (t, Tu, ), V (t)). 
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To this end, I first need to prove the following Lemma. This Lemma gives the closed 

form solution of 'I'U (cb, T, I pT0 (t, T,, ), V (t)) under the general assumptions of the HJM 

model, defined by equations (5.. 1)-(5.. 2). 

Lemma 11 (B. 1) Given the definition of characteristic function, 

T. IPT°(t, Tw), V(t)) = Eu 
[exP 

E O; PT°(To, Z'S) 
s=1 

the closed form solution of TU(0, T3jpT°(t, TTJ), V(t)) is given by 

M 

`I'"(O, TBIp'`° (t, Tom), V(t)) = exp E ojp7b (t, Ts) + A(t) + Bm (t)Vm(t) 
s=1 m=1 

(3.01) 

where A(t) and Bm(t), for m=1,2,..., M, satisfy the following ODEs: 

Üljm(i) w 

'_ ýt 
= 

ZO. 
In(t, 

1s) 
- 2'm(t, 

T0) 
-'Sm(t, 

U) (SITZ ý'sý 
- 

Sm(t, 77 

e=1 
L 

WW 

+7 ZZ 0e, Os2 (Sm(t, Tsi) - Sm(t, To)) (Sm(t) Ts2) - Sm(t, Tý)) 
y al=1 32_1 

-Srn(t, To)-t Bm(t) +1 Bý2n(t) (3.02) 

att) _EB., º(t)h;; ©Q (3.03) 
1,4=1 

wL 

+EE Oe 
I(d() 

(x, t, Ts) _ d() fix, t, To)) a(i)Q fax, 
s=1 i=1 

L 

+ 
ic 

exp TO)ý 

i=1 s=1 

subject to A(To) =0 and B1 (To) =0 for j=1,2,.., M 
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Proof of Lemma. Under the U-forward measure, the dynamics of the 
T, 

log-price 1576 (t, T8), given by PT0 (t, T3) _-Jf (t, u) du, can be calculated as follows: 
To 

T) dpm (tr e 
M T' L To 

- ;, 
l(t) J o, -, f (t, u)du dZm(t) -Ef1 h(i) (x, t, u)du 

P) (dx, dt) - 
trt=1 7+o x=1 

C 
TO 

ýf T. U T8 U 

v', (t) 
J crn, f 

(t, J) J tTm, f 
(t, u)dudy -J am, f (t, y) 

1 
o, -, f (t, u)dudy dt 

"i=1 To t TO t 

L T, 

+ff h(')(x, t, u)eD(`)(x, t, u)duA(i)Q(dx, t)dt 
i-1 C 

TO 

DI 

-E 
2 (S,, (t, T8) - S�, (t, To)) (S�, (t, Ts) + Sm(t, T0) - 2S, n, (t, U)) dt 

m=1 
L 

->f (d(t' (x, t, T8) - d() (x, t, To)) a(i)Q (dx, t)dt G i=1 

h1 

+E (S., (t, T, ) - S., (t, To)) <(t) 
M=l 

Lr 

+EJ (D(i) (x, t, T, ) - D(i) (x, t, To)) µ(i) (dx, dt). 
i=1 

C 
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T 

Let S,,, (t, T) =J Q�, (t, u)du, then the above equation can be written as 

1 Af 
(/ dpý0(t, Ta) - -7 

Z 1'n (t) (S�, 
(t, Ts) - Sm(t, T0)) 

`m=I 
(S(t, T3) + Sm(t, T0) - 2Sm(t, T0)) dt 

t 
dC=) (x, t, T3) _ d(z) (x, t, To)) A(z)Q (dx, t)dt _Z 

Igý ( 

i=1 

rr 
- VZ(t) (Sm(t, T8) - Sm(t, T0)) 9 (t) 

m=1 
Gr 

+J (D(z) (x, t, Ts) - D('. ) (x, t, To)) µ(') (dx, dt). 
i=i g 

Since the characteristic function should constitutes a martingale under the U-forward 

measure, the following PDE should hold, derived after applying Ito's lemma to the 
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characteristic function, 

M 

o= xIJU(O, T3InT°(t, TW), V(t)) +E IP° (0, TIPT°(t, ý',, ), V(t)) (k* 0* - hmUm) 
m=1 

wm 

- `I'mo °(e, T, )(0, TsIPT°(t, Tw), V(t)) Vm(t) 
s=1 m=1 

[s(tT8) 
- 2sm(t, T0) - s�i(t, U) (sm(t, Ts) - sm(t, TO))J 

w 

-I If °(t, T5)(0, T3IPT°(t, T ), V(t)) 
8=1 

(d(i) d(') (x, t, To)) A(i)Q (dx, t) 

i=1 fý 
ar 

+ry 
ýj Tm 

m(0, 

T3IYT0 (tf Tu), (t))Vm 

G 
m=1 

+2 I' 
TO(t, Tsl)PTO(t, Taa)(gfT8 i'T0 

(t, Tu), V (t)) 

s1=1 82=1 

Al 

Z v. (sm. (t, Tsi) - Sm(t, To)) (Sm(t, Ts2) - Sm(t) To)) 
m=1 

+`I'U(o, T3IPTO(t, Ta, ), V(t)) 
Lw 

exp (cI (D(i)(x, t, TS) - D(i)(x, t, To)) -1 A(i)u (dx, t), 

i=1 G 
s=1 

w 
subject to xI; U(O, T3IpTO(TD, TW), V(To)) = exp Eo,, O(TO, TS) 

. 
S-i 

Following Duffle et al (2000), the closed form formula of IPU (q, Tsj pT0 (t, TW), V (t) ) 

is given by 11'°(O, TSIpTO (t, Tu), V(t)) = exp ýSPTO(t, T8) + A(t) + m? Bm(t)Vm(t) 

S-i 
subject to A(To) =0 and B,,, (To) = 0, for m=1,2, .., M. Substituting this formula 
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into the above PDE, I can transform the resulting PDE to an ODE as follows: 

_mc 
`ý (( 

aß 

tt- L0s 
[s(týTsý 

- SmtýT0ý - Sm(t3 U) (smlt, Tsý - 5mýtýTOýý 

-1 
1 s- 

+ 
ý32 

32 (Sm. (t, T31) - Sm(t, TO)) 

s1=1 s2=1 

(Sm(t, 
T82) 

- 
Sm(t)TO)) 

- Iý"Bm(t) + 2Bý2nlt) 

- 
OA(t) 

- B", (t)wg9Q + ýs (d(1) (x, t, TS) - d(i) (xý t, To)) A(=)Q(dx, t) at 

f 

r =1 s=1 z=1 
L 

+J exp ýs (D(ý) (x, t, Tn) - D(i) (x, t, To)) -1 ý(i)U(dx, t), 

which proves the result of the Lemma.   
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Given the above Lemma, I now can derive the formula of the CF WU(0, T8 I pTh 

(To, T,, ), V (TO)) for the case that the volatility and the intensity parameters, e-,,,,, f (t, T) 

and A(x)Q(dx, t), are respectively given by o",,,,, f(t, T) =p [1 - exp(-, .. 
(T - t))] 

and a(x)Q(dx, t) = affil y(i)(x)e-txdx, and the jump magnitude function is given by 

h(Z) (x, t, T) = x. This CF is given in the next Lemma. 

Lemma 12 Provided the above specifications of vm, f (/t> T), aýzýQ(dx> t) and h(0(x> t, T) = 

x, the Cr, %I1U(¢, T. IpTO (t, TTJ), V (t)), given by above Lemma can be written as 

wm 

'Fu(O, T, lp70 (t, T,, ), V(t)) = exp E OjpT° (t, T8) + A(t) + X: Bm(t)Vm(t) 
s=1 m=1 

where 

T=To - t, 

Qj, 

k tae-amT "m 2Rm 2Q+n 

nT T CY -a T1 , LJ20m 
2är7e-Qm 

+Ym ( 

2'-e m/ 

at 
(e'2 f 

SZJ rý ( -e-QmT) -}- Yk( e-QmT)l 
.QQL 

2Pm pm 
2ßm 2Qm 

J A(r) -ZhmBm In + V)-r, 

M=l 
QJ k 23m) 

+Yk 
2(2 -) 
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a=2 (exp(-ßm. (Ts - t)) +1- exp(-ß�,, (U - t))) (exp(-ßm(TS - t)) - 1) 
s=1 

+ 
"82 

s2 (exp(-ßm(Tsl 
- t)) - 1) (exp(-ßm(TS2 

- t)) - 1) 
, 

sl=1 sy=1 

al 
a2 

and 

ý= 2Qmý 
+ 

Za `! 2Äm mF1V 
2ßý-ý 

2 
JZpm 

+l 
) kJ2wr� (2)+ 

2i 

(J- 

-1( N 
;m 

w 
1) __ 

ý(_)os 
- 

T, 22z [e_Tam-)+T82f2 l 

(T T, (z) 
-I-. a 

f,.,,, (- 

(;; 
-' . l, (T 

-r P-1 -L TT -(i) -, 
s=1 

,Z.. . t. 1 LJ ''-8 - U, 1 v) �Gx T- 

i_1 
\s-1 

- exp -Urn(i) + 
U2ý(1>2 

2 

2) 

Proof. Given that sm(t, T) =Q [1 - exp(-ý3,,, (T - s))), 7- = To - t, then 

ODE in Lemma (B1) can be written as 

aBý ýT) =2 B2 (7-) - kB�, (T) + ae-2ßmT 7 

where 

(3.04) 

5 2ß22 
(exp(-ßm(Ts - To)) +1-2 exp(-/3m(U - To))) (exp(-ßm(Ts - T0)) - 1) 

s-1 m 

IPSI'PS2U 
12 -f- _ (exp(-ß. (T� - To)) - 1) (exp(-ß. (T82 - To)) - 1) . 2ß 2 

a1-1 aZ-1 m 
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Equation (3.04) is of Ricatti's form, and thus its solution is given 

Bm(? )_-2u ý()), (3.05) 

where u11(T) satisfies the ODE 

um (T) + ku (T) +2 e-2, omT = 
0. (3.06) 

Let us define X= e-flmT and um(T) =W (X ), then equation (3.06) can be written 

as 

X 20 2ax2 
+(1- p�)X OW 

OX + 2, 
-2 x2w(x) = 0. (3.07) 

m 

If I denote Yi, (X) = Jt'ýwm T( 
2-X), where Z=X the last equation can be 

written as 

z20 NZZ) + Zalp(Z) + (z2 
- 

4k2 (z) = 0. (3.08) 

This is Bessel's equation of order tam, and its solution is given by 

qf(Z) = a1J2ßm (Z) + a2Y k (Z). (3.09) 

Given (3.09), the solution of u�!. (T) [see equation (3.06)] is 

um (Tý .X 2wm 
(al 

J2 k( 2ý2 
X) + a2Y pm (ý ce X )) 

. \my 
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Notice that B�ß(0) =0 is equivalent to u (0) = 0. According to this initial condition, 

I can write 

al 
a2 

and 

Y+ 2a Y `J 

m( 
2pm) 2 2ßm -1 \ 

V-A-M 

" 2,6M "I"1 

( 
2/jm 

211 

kJ-20 ( 
2c/ 

+ 
2ý 12 

m-1ý 
2 -ý - . 

J20m+1ý 
2Qmý/ 

fn v 

c J' k( 2- -e-RmT) + y' k( e-amT) 
Bm(r) _k+ tae-AmT 2/im 

Qn` 
2Pm 

ýe-QmT/ JLJ2ým ( 
2pýe-RmT) 

l ým 
( 

2,6 

where 

QmT) (ý 
J _ 

(J.. 

l( 
/ie 

e'Qm 
) 

Ic +1 
( _ßmT) J 

2 
T 

1ý 
G V ýp 20 m m 

a 
e-QmT 2 

a 
e 2 -1( 

Y f3 -QmT) -k 2e-QmT 
f2 

20 207n ý m ] m 

Given that h(O)(x, t, T) =x and A('')Q (dx, t) = 3(1)'y(i) (x) e-xtdx, where 'yO (x) _ 
- 

=_u10) 
2 

1 24)2 , 
ODE (3.03) in Lemma (B1) becomes 

21C 
ez 

ax 

OA(T) M(-r) 

ÖT - 
`- i 26m (T) 

where 
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=- 
ýýiý 

- e-Tsm+x, 
32 

»2 
0 

[e_Tam+T822 

21 

i=1 s=1 

L (Z 0s(T3-To)+U)2ýx ZW 

exp - 
(Z 

03 (TS - To) +U m(Z) + s_1 
2 

i_1 s=1 

- exp -Um(2) + 
U2o. 2 

2 

The solution of the above ODE yields 

[ 

2Rm ZQm 2Pm 2Qm M 
(e_kT, 2 QJ k -e-, -") +Y k( . e-amT )] 

A(? ) _ 
M=l 

-2ýQ BQ In 
Q J2Rm ( 

2) +Y 
pm 

-I- V)7-. 
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