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Abstract 

This thesis presents boundary element formulations for buckling and non- 
linear buckling analysis of plates. Dual boundary element formulations are 
also presented for linear and nonlinear buckling, and large deformation analy- 
sis of crack behaviour in plates. 

Reissner plate theory is adopted to represent shear deformable plate bend- 
ing, and two dimensional plane stress is used to model the membrane be- 
haviour of plate. By taking into account the nonlinear interaction between 
forces and rotations in the equilibrium equation, the nonlinear formulation 
is formed by coupling equations of shear deformable plate bending and two 
dimensional elasticity. 

The boundary element formulation for plate buckling is developed. Plate 
buckling equations are written as a standard eigenvalue problem. Buckling 

coefficients and buckling modes are obtained using this formulation. Initially, 
the boundary is discretised into quadratic isoparametric elements, and the 
domain is discretised using constants cells. Next, the dual reciprocity method 
is utilized to transform the domain integral into equivalent boundary integrals. 
Examples are presented for plate buckling problems with different geometry, 
loading and boundary conditions. The results obtained are shown to be in 
good agreement with analytical and finite element results. 

The Dual Boundary Element Method (DBEM) for buckling analysis of 
plate is also developed. The plate buckling equations are also presented as a 
standard eigenvalue problem, which would allow direct evaluation of critical 
load factor and buckling modes for cracked plates. 

Geometrically nonlinear boundary element formulation is developed to 
analyse large deformation and nonlinear buckling of plates. Different load in- 
cremental approaches and solution procedures are presented. Nonlinear terms 
are evaluated using a radial basis function. Large deformation analysis for 
Fracture Mechanics problems is also presented. Five stress intensity factors 
are calculated, i. e. three for plate bending and two for membrane. Crack 
Opening Displacement (COD) is used to compute the stress intensity fac- 
tors. The nonlinear buckling of thin plate is also presented. Two models of 
imperfection are introduced in the formulation, i. e. a small uniform trans- 
verse loads and distributed transverse loads based on eigenvectors. A simple 
numerical algorithm is presented to analyse the problems. Finally, nonlin- 
ear buckling analysis of cracked plate is presented. Numerical examples of 
nonlinear buckling and large deformation problems are presented. The BEM 
results presented are shown to be in good agreements with analytical and other 
numerical results. 
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Chapter 1 

Introduction 

1.1 General 

Since the early 1940s researchers have been concerned with development of methods 

for studying the behaviour of buckling and failure of plate structures. The buck- 

ling investigation on compression members is particularly important in engineering 

structures. Buckling phenomenon of structure members in compression has been 

investigated by researchers analytically, experimentally and numerically. Analytical 

solutions of plate buckling based on the classical plate theory can be found in [90] 

[23]. In recent years, numerical methods have been widely used to investigate the 

problem [54] [72] [83]. Review of experimental of works on buckling can be found in 

[93]. 

Similarly, geometrically nonlinear behaviour of thin walled structures is an im- 

portant problem in engineering. Bending of rectangular plates with large deflection 

was presented by Levy [50] [51] using a solution of von Karman's equation in term of 

trigonometric series. An approximation of the analysis of large deflections of plates 

was introduced by Berger[17] which has since become known as the Berger equation. 
There are two basic theories of plates. The first theory is known as the classical 

theory and it was first proposed by Kirchhoff [47] in 1850. The Kirchhoff theory 

neglected the shear deformation through the plate thickness. The other theory is 

known as the shear deformable plate theory and it was first proposed by Reissner 

[71] in 1947. The shear deformation and the transverse normal stresses are taken 
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into account in this theory. Reissner [71] modelled the plate structure as a two- 

dimensional structure with an assumed stress variation through the plate thickness. 

In dealing with stress concentration problems such as, stresses at an edge of a 
hole when the hole diameter became so small as to be of the order of magnitude of 

the plate thickness, the classical theory is known to provide inaccurate results. In 

this respect, Reissner [71] showed that results obtained by the Kirchhoff's theory of 

thin plates was not in agreement with the experimental results. Moreover, when the 

Kirchhoff theory is applied to crack problems, it leads to difficulties when combined 
bending and membrane stress fields are required. On the other hand, the shear 
deformable theory is known to overcome the problems associated with the applica- 

tion of the classical theory. The other important feature of shear deformable plate 

theories is that they can be used to analyse both thin and thick plates. 

1.2 Review for Buckling and Geometrically Nonlinear 

Analysis of Plates 

In general, there are three popular numerical methods used in practical problems, 

the Finite Different Method (FDM), the Finite Element Method (FEM), and the 

Boundary Element Method (BEM). 

The direct solution of the differential form of the governing differential equation 
is used in the FDM formulation. Review of the FDM applications to the classical 

and shear deformable plate theories can be found in [38,89]. The FEM can also 
be used to solve the integral representation of the differential equation [104]. The 

application of the Finite Element Method in the classical Kirchhoff and in shear 
deformable plate theories are presented by Zienkiewicz and Taylor [105]. Fracture 

mechanics of plate bending based on shear deformable plate theories has been solved 

successfully by FEM. Boduroglu and Erdogan [26], Sosa and Eischen[76], Sosa and 
Herrmann[77] presented stress intensity factor solutions for several crack geometries 

of the Reissner plates. 

The FDM and FEM are called domain methods as the discretisation of the 

problem domain is required. On the other hand the boundary element method 
[20] is known as a boundary type method. The most important feature of boundary 
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elements is that only boundary discretisations is required. Accurate value of interior 

stresses and displacements can be achieved since the BEM provides a continuous 

modelling of the interior without discretisation of the domain. 

Based on the classical theory of plates, the implementation of BEM to plate the- 

ory are performed. Plates with smooth boundary analysis based on the Kirchhoff 

theory was introduced by Forbes and Robinson [33]. Later, Bezine [16] and Stern 

[79] studied plate problems with corner points and different types of boundary con- 

ditions. In the Kirchhoff theory, additional integral equations for the normal slope 

are obtained from the derivatives of out-of-plane deflection. Further development 

of the method for plates with relatively complex geometries, loading and supports 

is performed by Hartmann and Zormantel [37]. Other applications of the plate 

bending formulation can be found from the works of Stern [80], Stern and Lin [81], 

Abdel-Akher and Hartley [1][2], and Karami et al. [45]. 

The application of the BEM to Reissner plate analysis was first presented by 

Vander Weeön [94,95] in 1982. In Weeön's work, the boundary integral equations 

are derived from the Betti's theorem and fundamental solutions are derived using 

the Hörmander's method. Following his formulation, Karam and Teiles [44] reported 

that Reissner's plate model can be used to analyse both thin and thick plates. They 

also developed the formulation to account for infinite regions. A similar formulation 

to that of Vander Weeön's work [94] is presented by Barcellos and Silva [15] to study 

Mindlin plate model. The difference between their formulation and the Reissner 

formulation is in the shear factor constant. Westphal and Barcellos [101] discussed 

the importance of the neglected terms in the fundamental solution derived by Vander 

Weeen [94], that the terms have no effect on the results. Later, other fundamental 

solutions for the Reissner plate is derived by El-Zafrany, Debbih and Fadhil [29] 

using the Hankel integral transformation. The results were shown to be same as 

that of Vander Weeön's results [94]. In [30], a modified form of the fundamental 

solutions were derived, by separating parts of the kernel representing the effect of 

transverse shear, to allow analysis of thin and thick plates. Recent advances in plate 

bending analysis with the boundary element method can be found in the book edited 

by Aliabadi [9]. 

More recently, the boundary element method (BEM), has provided a powerful 
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solution to the field of plate buckling. Syngellakis and Elzein [82] extended the 

boundary element solution of the plate buckling based on Kirchhoff theory to ac- 

commodate any combination of loadings and support conditions. Nerantzaki and 

Katsidelakis [58], developed a BEM-based method for plate buckling analysis of 

plates with variable thickness. Lin, Duffield and Shih [52], developed a more gen- 

eral boundary element formulation for wide variety of boundary conditions and 

arbitrary planar shapes to investigate the stability of elastic plate. The boundary 

element method for buckling analysis of shear deformable plates was developed by 

Purbolaksono and Aliabadi [64]. Elastic buckling analysis of plates using boundary 

element can also be found in [24] [85]. 

During the last decade, the Dual Boundary Element Method (DBEM) has been 

established as a robust numerical method for fracture mechanics problems. Based 

on displacement and traction integral equations, DBEM has been applied to many 

fracture mechanics problems e. g. elastostatics, thermoelastic, elastoplastic, stiffened 

panel, concrete cracking, composite materials and dynamics, as reviewed by Aliabadi 

[7][8]. The application of the dual boundary element method to analyse Reissner 

plate bending problems was reported by Ahmadi-Brooghani and Wearing [4]. 

Buckling analysis of cracked panels is investigated by only few researchers ana- 
lytically and numerically. Stahl and Keer [78] studied stability of simply supported 

rectangular cracked plates using an analytical approach. Vafai and Estekanchi [92] 

investigated the buckling behaviour of edge cracked plate subjected to axial loads. 

Liu [54] presented the buckling analysis of rectangular Mindlin plates having cracks 

using differential quadrature element method. A new boundary integral equation 
is presented by Purbolaksono and Aliabadi [65] to analyse buckling problems of 

cracked plates. 

The application of the boundary element method to nonlinear large deformation 

is relatively new with only a few publications dealing with the topic. Tanaka [84] 

presented a coupled boundary and inner domain integral equations in terms of stress 

and displacement functions based on von Karman's equation. Kamiya and Sawaki 

[43] investigated the large deflection of elastic plates based on the Berger equation. 

Ye and Lin [102] analysed the finite deflection of thin plates by the boundary element 

method. One of the other works can be found in [12] by Atluri and Pipkins. Based 
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on the general nonlinear differential equations of finite deflection of the plate, an 

integral equation formulation for the geometrically nonlinear analysis of the Reissner 

type plate was proposed by Lei, Huang and Wang [49]. Later, Sun, He and Qin [66] 

derived the exact boundary equation for the analysis of the nonlinear Reissner plate 

based on a variational principle. 

The boundary element method has also been applied to analyse nonlinear prob- 

lems in the plate stability. Contributions to the nonlinear buckling analysis of thin 

plates by BEM were made Manolis and Beskos [55], Kamiya, Sawaki and Naka- 

mura [42], Costa and Brebbia [24], Kawabe [46], Qin and Huang [67], and Tanaka, 

Matsumoto and Zheng [86]. The review of the application of BEM to the stability 

analysis of thin plate can be found in Liu [53] and Syngellakis [83]. 

This thesis presents the formulation of boundary integral equations for the buck- 

ling analysis of shear deformable plates for the first time. The formulation is formed 

by coupling boundary element formulations of shear deformable plate and two dimen- 

sional plane stress. Plate buckling equations are presented as a standard eigenvalue 

problem. 

The formulation for plate buckling problem is next extended to analyse plate 
buckling problem of cracked plates by the dual boundary element method. The 

critical load factor and buckling modes of cracked plate buckling are obtained. The 

dual reciprocity method is utilized to deal with the domain integrals that appear in 

the formulation. 

Geometrically nonlinear boundary element formulation is also developed to analyse 
large deformation and nonlinear buckling of plates: Different load incremental ap- 

proaches and solution procedures are presented. Nonlinear terms that appear in the 

domain integrals are evaluated using an approximation function. Large deformation 

formulation to analyse Fracture Mechanics problems is also developed. Five stress 

intensity factors are obtained, i. e. three for plate bending and two for membrane. 

The nonlinear buckling formulation of thin plates is also presented with introducing 

two models of imperfection; i. e. a small uniform transverse loads and distributed 

transverse loads based on eigenvectors. A simple numerical algorithm is presented 

to analyse the problems. Finally, the formulation is extended to nonlinear buckling 

problem of cracked plates. 
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1.3 Overview of the Present Work 

The aim of this thesis is to investigate and develop boundary element methods for 

buckling and geometrically nonlinear analysis of shear deformable plates. 

Chapter 2 describes some basic concepts of the shear deformable theory for 

elastic plates, two-dimensional plane stress, and geometrically nonlinear plates. A 

brief review of linear elastic fracture mechanics related to two-dimensional plane 

stress and plate bending problems, buckling of thin plates and eigenvalue problems 

are also presented. 

Chapter 3 presents the boundary integral equations for shear deformable plates 

and two-dimensional plane stress problems. The quadratic isoparametric elements 

are used to discretise the boundary integral equations. The treatment for the eval- 

uation of the singular integrals is described. Transformation of domain integrals to 

boundary integrals using the dual reciprocity technique is presented. The traction 

boundary integrals that will be used to form the dual boundary integral equations 

are also presented. 

Chapter 4 presents the boundary integral equations for buckling analysis of 

shear deformable plates. Plate buckling equations are presented as a standard eigen- 

value problem. The formulation is formed by coupling boundary element formula- 

tions of a shear deformable plate and two dimensional plane stress elasticity. The 

domain integrals which appear in this formulation are treated by two different meth- 

ods: initially the integrals are discretised using constant cells, and next, they are 

transformed into equivalent boundary integrals using the dual reciprocity method. 

The eigenvalue problem of plate buckling yields a critical load factor and buckling 

modes. To demonstrate the accuracy of the proposed method, several examples with 
different geometry, loadings and boundary conditions are presented. 

Chapter 5 presents the dual boundary integral equations for the buckling analy- 

sis of the Reissner shear deformable cracked plates. The boundary integral equation 

is presented as an eigenvalue problem. The domain integrals which appear in this 

formulation are transferred to boundary integrals using the dual reciprocity method. 

The plate buckling equations are presented as a standard eigenvalue problem, which 

would allow for direct evaluation of the critical load factor and buckling modes. 
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Several examples with different geometries, loadings and boundary conditions are 

presented to demonstrate the accuracy of the proposed method. 

Chapter 6 presents the boundary integral equations for geometrically nonlinear 

shear deformable plates. In the large deformation analysis, initially the domain is 

discretised using constant cells. An approximation function is used to calculate the 

derivatives of the nonlinear terms in the domain integral. Next, meshless domain us- 

ing the dual reciprocity technique is presented [98]. The nonlinear buckling of a thin 

plate is also presented in this chapter. Two models of imperfection are introduced in 

the formulation, i. e. a small uniform transverse load and distributed transverse load 

evaluated based on eigenvectors. Next, large deformation analysis of cracked plates 

is presented. The analysis is performed using the dual boundary element method 

(DBEM). Five stress intensity factors are obtained, i. e. three SIFs from plate bend- 

ing problem and two SIFs from membrane problem. Several examples are presented 

and comparisons are made with analytical results, the other numerical results and 

the published results. 

Finally, Chapter 7 presents conclusions and future works. 
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Chapter 2 

Basic Concepts 

2.1 Introduction 

In this chapter, basic concepts for elastostatic analysis of shear deformable plates 

and two-dimensional plane stress for linear and geometrically nonlinear problems are 

presented. The fundamental concepts of fracture mechanics and a brief review of the 

buckling of thin plates and general algebraic eigenvalue problem are also reviewed. 

The theory of elastic plates and two-dimensional plane stress are presented by 

Reissner [71], Mindlin [56] and Timoshenko and Goodier [88], while the fundamental 

concept of fracture mechanics can be found in Sih [74], Broek [22], Anderson [11] 

and Aliabadi and Rooke [6]. 

Indicial notation is used throughout the thesis. Greek indices will vary from 1 to 

2 and Roman indices from 1 to 3. The partial derivative of (... ) with respect to the 

coordinate xp is expressed by comma subscript, such as 
a 

OX0 
and (... ), n stands for the derivative of (... ) with respect to the outward normal n. 

2.2 Governing Equations of Linear Elastic Plates 

The elastic behaviour of shear deformable plate bending and two dimensional 

plane stress theories can be considered separately. Consider an arbitrary plate of 

thickness h as shown in Figure 2-1. The xi -x2 plane is assumed to be located at the 

middle surface x3 = 0, where -h/2 < X3 < +h/2. The generalised displacements for 

bending and shear are denoted as w; and for in-plane as ua, with the sign convention 
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W2 
W2 

Figure 2-1: Plate geometry. 

x3 

w3 X2 
X1 

w1 w2 u1 A! y U2 

. r- 11 I2 

Figure 2-2: Definition for generalized displacement and traction terms. 

as shown in Figure 2-2. Detailed definition of the generalised displacements can be 

found in [71] 
. 

2.2.1 Stress resultants and stress couples 

The bending stress resultants Map, and the shearing stress resultants Qa can be 

defined as: 

+h/2 
M«ß = 

/h/2 
X3QaßdX3 
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r+h/2 
Qa =J Ua3dx3 (2.1) 

h/2 

where o are the three-dimensional components of stresses through the plate thick- 

ness and 0.3 are the components of the transverse shear stresses. 

The membrane stress resultants Nap are defined as: 

r+h/2 
Nap =J 

h/2 
oapdx3 (2.2) 

Based on the two-dimensional theory of elasticity, stresses aap due to membrane 
forces are assumed to be uniformly distributed over the thickness, and as proposed 
by Reissner [71] for shear deformable plate bending, the stresses due to bending 

and twisting moments o vary linearly and the transverse shear stresses 0 a3 vary 

parabolically over the thickness. Hence, the stress components can be expressed via 

the following relationships: 

ýa/j=1 Nap +7 Map 

and 

(2.3) 

l2 
Qa3 2h 

3 
1- 

(2h3 
J QC, (2.4) 

The generalised bending and shear tractions at a boundary point can be defined 

as 
linear Ai near Pa = Pa = Maß1Zß and = Qana (2.5) 

and membrane tractions 
linear _ linear lß (2.6) 

where np are components of the outward normal vector to the plate boundary. 

2.2.2 Strain-displacement relationships 

The transverse shear strains 7a3 of the element can be written as 

'Ya3 - IPa = Wa + W3, a 
(2.7) 
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the curvature relationships or the flexural strain n,, p as 

K�ß = 2X�ß = wa�ß + wß,, (2.8) 

and the in-plane strains eýgßear of the element as 

cäiýear _1 (ua, A + uß, a) 
(2.9) 

2.2.3 Equilibrium equations 

The notation (. )12 is used to denote (. )12 +e y12dx1; the notation (. )21 is used 

to denote (. )21 + -)x dx2, etc (see Figure 2-3). After taking the equilibrium of 

moments and forces, ignoring the higher order terms, the linear elastic equilibrium 

equations of shear deformable plates can be written as follows: 

8M11+0M21 
_Qi_p (2.10) 

8x1 JX, 

0M12 
+ 

5M22 

öxi - Q2 =0 (2.11) 

aQl 
+ 

9Q2 
+q=o (2.12) 

äx1 äx2 

äN11 
+ 

ON21 
=0 (2.13) äx1 äx2 

ON12 
+ 

äN22 
_0 (2.14) 

äx1 8x2 

The equilibrium equations can be formed by considering the equilibrium of a 

typical plate element having dimensions of dxl x dx2 xh and under uniform load q 
(per unit area), which is regarded to be positive when it is applied in xi directions 

(see Figure 2-3). These equations are derived in a similar manner to the section 2.3 

and can be written in indicial notation as follows: 

Mßß - Qa = 0; (2.15) 
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Figure 2-3: Stress resultant equilibrium in a linear plate element. 
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Qa, a +q=0; (2.16) 

and 
Mine' =0 (2.17) 

2.2.4 Stress resultant-strain relationships 

The stress resultant-strain relationships for plate bending are derived by Reissner 

[71] as follows: 

= 
1-v 2v 

Map D2 
(2Xap 

1- v 
X"r76«ß) 

R«=Cb« (2.18) 

and based on Hooke's law for two-dimensional plane stress, membrane stress resultant- 

strain relationships can be written as follows: 

Näß ý'' =B12y (leap + 12yye y. ý 6,0) (2.19) 

Equations (2.18 - 2.19) represent the generalised Hooke's law. Equations (2.18) 

and (2.19) together with equations (2.7 - 2.9) represent the stress resultant-displacement 

relationships as follows: 

1- v 2v 
Maß =D2 

(wa, 
ß + WR, a + 1- vý'7,7baß 

Q« = C(wa +W3, a) 
(2.20) 

and 
lnear 

-1-y 
2v 

Ni-B2 U", o + uß, a + 1- vu r, 7Sap I (2.21) 

where B(= Eh/ (1 - v2)) is known as the tension stiffness; D(= Eh3/ [12 (1 - v2)]) 
is the bending stiffness of the plate; C(= [D (1- v) a2] /2) is the shear stiffness; and 
Sap is the Kronecker delta function, which has property 

lifer=ß 
bap = (2.22) 

O ifa 54ß 
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2.2.5 Equilibrium equations in terms of displacements 

The equilibrium equations could be rewritten in terms of the displacements. By 

substituting (2.20 - 2.21) into (2.15 - 2.17), the equilibrium equations in terms of 

displacements are obtained as follows: 

and 

19 DV2w1 +D (1 + v) axe 
C 

axe + axi) - Cwl -C axi =0 (2.23) 

D 
(1 + v) 

ä (Owl awe 
+ D02 w2 - Cwt - Caw3 =0 (2.24) 

2 äx1 äx2 19x1 äx2 

CV2w3 +Caý`a'1 +Caw2 +q =0 (2.25) 
Ox, äx2 

Bv2u1 +B (1 + v) 0X 0X2 2 

(_9U1 
+ axi) =° (2.26) 

B 
(1 +v) 

x 

(OX2 l- au2) 
+BV2u2 =0 (2.27) 

21 1/ 

2.3 Governing Equations of Geometrically Nonlinear Plates 

2.3.1 Strain-displacement relationships 

The transverse shear strains and the flexural strain of the element are the same 

with the ones for linear plates. But the strain-displacement relationships of in-plane 

strains and displacements are now coupled with bending strains and displacements. 

The in-plane strains of the element are written as follows 

_ 
linear nonlinear Cap - cap + Ecß 

where 

cnap linear 
= 

1W3 
aW3 2 ,a 

and el"e" is defined as in equation (2.9). 
CIO 

The generalized membrane tractions can be defined as 

(2.28) 

(2.29) 
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to = tl1iinear + tnnonlinear (2.30) 

where 

tnfanlinear - Nno linearnß (2.31) 

and t1linea'' is defined as in equation 2.6. 

2.3.2 Equilibrium equations 

To derive the nonlinear equations for shear deformable plates, the nonlinear inter- 

actions between forces and rotations must be taken into account. Therefore the 

equations representing equilibrium of forces and moments must be derived for the 

plate element in the deformed state. In the derivation of the equilibrium equations, 

the sketches of force and moment intensities are separated as shown in Figure 2-4. 

The rotations ßi and 02 in Figure 2-4 represent the angle between a coordinate 

and the corresponding tangent on the middle surface of the plate element at its upper 

corner. The force and moment intensities and rotations vary across the element. 

After taking the equilibrium of moments and forces, simplifying and ignoring the 

higher order terms, the nonlinear equilibrium equations of shear deformable plate 

can be written as follows: 

aM11 aM12 
ax + axe - Ql =0 (2.32) 

0M22 OM21 
axe + axl - Q2 =0 (2.33) 

'Q1 5Q2 ä2w ä2w ä2w ö2w 
äx1 + axe + Nil 

ax1 + Nie öxlöx2 + N22 
ax2 + N21 öxiöx2 +q :0 (2.34) 

8N11 
+ 

ON12 
=0 (2.35) 

Ox1 axe 
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X3 
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r 2 

+ 

Figure 2-4: Stress resultant equilibrium in geometrically nonlinear plate element. 
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aN22 
+ 

aN21 
_o axe axl 

(2.36) 

The above equations can be written in a compact form using indicial notation 

as below: 

Maß, ß - Q. =0 (2.37) 

Qa, a + (NaßW3, ß), a +q=0 (2.38) 

Naß, p =0 (2.39) 

where, 

_1-v 
2v 

M«P 
2 

D(w«, Q + p, a + 
1- vw7,7s«A) 

(2.40) 

Qa = C(wa + W3, a) (2.41) 

linear (2.42) Naß = N1' r+ Nn 

N, pear =12V B(Ua, ß + uß, a + 
12yyV yc ySaß) (2.43) 

NCIO linear = 
1-v 

2 
$(, W3, ßw3, a +1v 

vW3,7w3,7aaß) 
(2.44) 

in which the tension stiffness B, the bending stiffness of the plate D, the shear 

stiffness C, and the Kronecker delta function Sqp are the same as the ones defined 

in section 2.2. 
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2.3.3 Equilibrium equations in terms of displacements 

By substituting (2.40 - 2.44) into (2.37 - 2.39), the equilibrium equations in terms 

of displacements are obtained as follows: 

Dä OW1 awl ciw3 
D02w1-+ +2 (1 -}- v) äx2 axe +T- Cw1 _C exi =0 (2.45) 

D (1 -}- v) 
ä äw1 

_äw2 + DV2w2 - Cwt - Cäu'3 =0 (2.46) 
2 äx1 

C 
äx2 äx1 äx2 

r2 awl awe a2w CIv w3 + axi + axe 
] 

+B 
[ 

axi 
(aul 
axl + vau2axe /J+ 

[02W (aU-2 
+ vaull a2w u, +B v) +q=0 (2.47) 

axe x2 axi l 
[(1_ 

axlaxe 
(äx2 

axl 

and 
Bv2u1 +B (1 + v) Üý 

(_i 

ax2 
+ 

ax1 
2) + 

2 

B9 19w3 aw3 
-v 

19W3 aw3 
+ 

(1 
- v) a aw3 19W3 0 (2.48) 

2 axl axl axi axe axe 2 ax2 
(axl 

ax2 
) 

B (1 + v) äx1 
(äx2 

- 
axl) + Bv2u2+ 2 

B0 19w3 äw3 
-v 

19w3 aw3 
+ 

(1 - y) Ba 
aw3 (9w3 0 (2.49) 

2 äx2 axe axe awl aX1) 2 awl axi axe - 

2.4 Boundary conditions 

There are three possible boundary conditions considered in this work, i. e. clamped, 

simply supported and free boundary. These boundary conditions can be summarised 
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as follows: 

Clamped boundary condition 

wt = 0, wn = 0, w3 = 0, ut = 0, and u� =0 (2.50) 

Simply supported boundary condition 

Wt = 0, w3 = 0, Mn = 0, and ui =0 or u2 =0 (2.51) 

Free boundary condition 

Mt: --0) Mn-=07 p3=--07 Nt = O, and N=O (2.52 

2.5 Basic Concepts of Fracture Mechanics 

Since the pioneering investigation in 1920 by Griffith [361, followed by Irwin [40] in 

1948, and through rapid developments during 1960s and 1970s Fracture Mechanics 

has become the primary approach for analysing, predicting and preventing failures 

in structures. Although a relatively new scientific discipline, fracture mechanics 

considerations are nowadays a requirement for engineering design, particularly in 

aircraft structures. 

The linear elastic assumptions are commonly used for most of the studies on 
fracture mechanics. The theory is well known as the Linear Elastic Fracture Me- 

chanics (LEFM). One of the most important parameters used in LEFM analysis is 

the stress intensity factor (SIF). Crack growth, life prediction and residual strength 

of engineering structures are determined using the stress intensity factors. Therefore, 

accurate evaluation of stress intensity factors is important. 

For crack analysis of plates, five stress intensity factors are obtained, two SIFs 

due to membrane loads (as shown in Figure 2-5(a) and (b)) and three SIFs due to 

bending moments and shear loads (as shown in Figure 2-5(c), (d) and (e)). 

41 



, Q% 

K1h K2b K3b 
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Figure 2-5: Crack modes. 

The stress resultant intensity factors are denoted as K1, K2 and K3 respectively. 

Subscript m is added for stress intensity factors and stress resultant intensity factors 

due to membrane loads, and subscript b is added for stress resultant intensity factors 

due to bending and shear loads. 

2.5.1 Crack tip elastic fields 

Using the local polar coordinate system shown in Figure 2-6, the elastic fields in the 

vicinity of a crack tip are given by Sih [74] as: 

0 
M11 = 

2ýrcos2 (1-sin2sin ZB 
1 

K2b 
-= sin 

Z (2+coscosT) 2 e+ 
0 (1) (2.53) 

0 
M22 = 

27rr 
cos 2 

(1-+ 
+ sin 

0 
sin 

32) 
-{- 

Kim 

(b) 

K2m 
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Figure 2-6: Crack tip. 

Zerr 
sin 

0 
cos 

0 
cos 

2e 
+0 (1) (2.54) 

M12 
2Klb ýr 

sin 
0 

cos 
0 

cos 
3+ 

K2b 

22r cos 
2 (1 

- sin 
2 

sin 
gel 

-}- 0 (1) (2.55) 

Ql =- 
Zar 

sin 2 -i- 
0 (1) (2.56) 

Q2 = 27rr cos 2+0 (1) (2.57) 

Kim BIB 3B1 
Nli = 2, grcos2 

l1 -sinsin 
) 

K2M 

2, r 
sin 

2 (2 
+ cos 

2 
cos 

32 
I -}- O (1) (2.58) 

N22 =ým cos- I 1+ sin 
2 

sin 
32 )1 

-rr 

+ 
K2"` 

sin 2e cos 22 
e 30 

V2- -7r cos 2 +0(1) (2.59) 
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N12 
2Kim ýrr 

sin 
0 

cos 
0 

cos 
30 

+2 

K2m 
27rr cos 

2 (1- 
sin 

0 
sin 

32 )-I- 
O (1) (2.60) 

for stress resultants, and 

wl 
1 

Ev 
(h312) Fr [Klb 

COS 
0 (i 

+v -cos 0) 

0 (5+v 
-cos 8+0 (r) (2.61) -}-K26 sin 2l l+ v 

)l 

W2 
I+ 

Ev 
(T312) 

2ý sin 
2 (1v 

cos B1v 

+K2b cos -321+v- cos 01+0 (r) (2.62) 

w3 _ 
24 

5Eh 
v) F 

Kf 3b sin 
2+0 

(r) (2.63) 

u_ 
2(1-}-v) FT [K B (1-v 2B 1 Eh 1i11 cos 2 1-}- v -I- sin 2/ 

+KZm sin 
2 (_2 

1v+ cost 2J+0 
(r) (2.64) 

ua = 
2(1+v) v) 2ý [Kl,,, 

sin 
2I2 

v- 
cos20 

-I-K2,,, cos 2 
(1 

+v+ sine 
2 )J 

-{- 0 (r) (2.65) 

for displacements[961, where (r, 0) are the polar coordinates measured from the crack 

tip, Kirn and K27, are mode I and mode II membrane stress resultant intensity 

factors respectively, Klb, Kea, and K3b are two bending and shear stress resultant 

intensity factors respectively. 

2.5.2 Stress intensity factors evaluation 

Stress resultant intensity factors can be explicitly derived from equations (2.53 - 
2.60). Substituting 0=0 in equations (2.53 - 2.60), the stress resultant intensity 
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factors can be expressed as: 

Klb = lim M22'.. / 2r (r, 0) (2.66) 
r-40 

K2b = lim M12 27rr (r, 0) (2.67) 
r-+O 

K3b M Q2 2Irr (r, 0) (2.68) 

Kir, = 1im N22 27rr (r, 0) (2.69) 
r-+o 

and 
K2m = lim N12 27rr (r, 0) (2.70) 

r-0 

By omitting the 0 (r) terms in equations (2.61 - 2.65) for small r and substi- 

tuting 0 with fir, the displacements on the crack surfaces near the tip are obtained 

as: 
1Owl w2 w2 

Awl Iwl wl 

AW3 = W3 - W3 (2.71) 

I Due u2 u2 

I Dul ul 
0=1800 

ul 
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hen the stress intensity factors can be written in terms of displacements on the T 

crack surfaces, as 

{K} = [Fc] {w} (2.72) 
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where 

and 

Klb 

K2b 

{K}= K3b 

Kim 

K2m 

Eh3 i 
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2.6 Buckling of Thin Plates 

(2.73) 

(2.74) 

The theoretical buckling stress of a flat panel is the stress at which a stability 

condition of equilibrium configurations occurs between the straight and the slightly 

bent form [34]. It marks the region in which a continued application of load results 

in accelerated growth of deflections perpendicular to the plane of the plate. This 

important phenomenon describes that buckling initiates the physical processes which 

lead to the eventual failure of the plate. 

The need for approximate methods to analyse buckling problems arises from 

the fact that exact solutions can be found for only a limited number of problems. 

Timoshenko [90], Sokolnikoff [75], and Bleich [19] discussed extensively the different 

methods of buckling analysis and their applications to wide range of problems. 

2.6.1 Calculation of critical loads 

The critical values of the forces acting in the mid-plane of a plate can be obtained 
by assuming that from the beginning the plate has some initial curvature or lateral 

loading. Those values of forces at which deflections are growing indefinitely are com- 

monly called as the critical values [90]. Recently, it has been shown that eigenvalue 
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Figure 2-7: Simple buckling model. 

uIf-waves 

formulations can be introduced to obtain the critical values for the linear buckling 

of thin plates [23]. 

For the illustrated simple model of a plate shown in Figure 2-7, the critical values 

of the buckling load can be represented in the form: 

(Nv), iti, = 
7r2bD (2.75) 

where k is buckling coefficient, b is the width of the plate and D is the bending 

stiffness of the plate. The magnitude of k depends on the aspect ratio a/b of plate. 

Different aspect ratios are also providing different number of half-waves when the 

plate buckles [90]. 

2.7 Eigenvalue Problem 

Algebraic eigenvalue formulation has been used to analyse a wide variety of problems. 
In this thesis, eigenvalue formulation is used to obtain the buckling coefficients of 

plates. The general algebraic eigenvalue problem is given by 
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(A - )I)X =0 (2.76) 

where I is the identity matrix, A is an arbitrary square matrix nxn, X is the 

unknown vector and A is the eigenvalue. A non-trivial solution to this system of 

linear homogeneous equations exists if and only if the determinant is equal zero. 

det (A - AI) = 

all -A a12 ... ain 

a21 a22 -A"' a2n 

=0 (2.77) 

I and an2 "' ann -A 

The above equation is called as the characteristic polynomial equation. Its roots 

are called the eigenvalues and the corresponding vectors eigenvectors. 

2.8 Summary 

In this chapter, the basic concepts for the elastostatic theories of shear deformable 

plates and the two-dimensional plane stress were reviewed. Some basic fundamen- 

tal concepts of fracture mechanics, buckling of thin plates and general algebraic 

eigenvalue were also reviewed . 
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Chapter 3 

The Boundary Element Method 

for Shear Deformable Plates 

3.1 Introduction 

The Boundary Element Method (BEM) has developed into a powerful numerical 

method for the solution of linear elastic problems. Although its development for 

plates has not been as rapid as for the two- and three-dimensional problems, recent 

applications to more complex problems, such as cracked plates [28], stiffened panels 

[99], geometrically nonlinear [49] and buckling analysis [82] have been encouraging. 

Based on the classical Kirchhoff plate theory, Forbes and Robinson [33] presented 

a BEM formulation for plates with smooth boundaries. Later, Bezine [16] and Stern 

[79] studied plate problems with corner points and different types of boundary con- 

ditions. In the Kirchhoff theory, the additional integral equations for the normal 

slope are obtained from the derivatives of out-of-plane deflection. Further devel- 

opment of the method for plates with relatively complex geometries, loadings and 

supports is performed by Hartmann and Zormantel [37]. Other applications of the 

plate bending formulation can be found in the works of Syngellakis [83], Stern [80], 

Stern and Lin [81], Abdel-Akher and Hartley [1] [2], and Karami et al. [45]. 

The application of the BEM for Reissner plate analysis was first presented by 

Vander Weeen [94,95] in 1982. In Vander Weeen's work, the boundary integral 

equations are derived from the Betti's theorem and the fundamental solutions are 
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derived using the Hörmander's method. Following his formulation, Karam and Teiles 

[44] reported that the Reissner's plate model can be used to analyse both thin and 

thick plates. They also developed the formulation to account for infinite regions. A 

similar formulation to that of Vander Weeen's work is presented by Barcellos and 

Silva [15] to study Mindlin plate model. The difference between their formulation 

and the Reissner formulation is in the shear factor constant. Westphal and Barcellos 

[101] discussed the importance of the neglected terms in the fundamental solution 

derived by Vander Weeen [94], and demonstrated that the terms have no effect on 

the results. Later, other fundamental solutions for the Reissner plate were derived 

by El-Zafrany, Debbih and Fadhil [29] using the Hankel integral transformation. The 

results were shown to be the same as that of Vander Weeen's results [94]. Rashed 

and Aliabadi [70] presented fundamental solution for thick foundation plates. In 

[30], a modified form of the fundamental solutions were derived, by separating parts 

of the kernel representing the effect of transverse shear, to allow analysis of thin and 

thick plates. Recent advances in plate bending analysis with the boundary element 

method can be found in the book edited by Aliabadi [9]. 

The need for numerical tools to model cracks in structures has led researchers to 

development of methods which are efficient and can provide accurate results. One 

such method is the dual boundary element method [63]. The dual boundary ele- 

ment method is formed by using both displacement and traction integral equations. 

The method has been successfully applied to solve many applications of fracture 

mechanics problems [7][8]. 

In this chapter, the derivation of boundary integral equations for the analysis 

of linear elastic shear deformable plate bending and two dimensional plane stress 

elasticity are presented. The boundary is discretised into quadratic isoparametric 

elements. The domain integrals which appear in this formulation are transformed to 

boundary integrals using the dual reciprocity technique [98]. The traction integral 

equations of shear deformable plates bending and two-dimensional plane stress are 

also presented [28][68]. The integrals are used to form the dual boundary element 

formulation to analyse crack problems. 
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3.2 The Integral Representations 

The equilibrium equations of shear deformable plate in equations (2.10 - 2.14) can 

be rewritten as follows [98]: 

Dä 
_äw1 

äw2 äw3 
DV+2 (1 + v) äx2 

( 
axe + axl - cwl -c ex, =o (3.1) 

D 
(1 + v) 

ä äw1 
- 

äw2 
+ DV2w2 - Cwt - Caw3 =0 (3.2) 

äx1 

C 

öx2 19x1 19x2 

CV2w3 + Caws + Caw2 +q=0 (3.3) 
äx1 äx2 

Bv2u1 +B (1 + v) - +ä-= 0 (3.4) 
19X2 äx2 ) 

B 
(1 + v) ä1 

Cäx2 

-aiJ+ Bv2U2 =0 (3.5) 

Equations (3.1 - 3.5) can be rewritten as follows [98]: 

L6kwk + f; =0 (3.6) 

and 

Läpuß 

=0 (3.7) 

where Lk is the Navier differential operator for shear deformable plate bending 

problems 
Lap=D(2 v) [(V2-A2)S", 

p+ 
(1+v)aasa0 

(3.8) 

Lb 
(1- v) D a2 

a (3.9) 2 Ö2a 

bb (3.10) L3q = -La3 

L33 = 
(1 

Z) 
D,, 2.2 (3.11) 

with fa =0 and f3 = q, A (= 10/h) is shear factor, while ais the Navier p 
differential operator for two-dimensional plane stress problems 
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Lap = sv2saQ +B (2+ ") 
aas aa- (1 - Zs,, a) (3.12) 

By considering the integral representations of the governing equations (2.15 - 
2.17), the integral equations for plate bending problems can be derived from the 

following integral identities [69]: 

and 

in I(Maa, Q - Qa) Wä + (Qa, a + q) W3*] dSZ =0 (3.13) 

J ýNäßý p') UädSZ =0 (3.14) 

where Ua and W, * (i = a, 3) are weighting functions. Equation (3.13) is an integral 

representation related to the governing equations for bending and transverse shear 

stress resultants, while equation (3.14) is an integral representation related to the 

governing equations for membrane stress resultants. 

3.2.1 Rotations and out-of-plane displacement integral representa- 

tions 

Using the weighted residual method [21], the integral representations related to the 

governing equations for bending and transverse shear stress resultants can be derived 

[69]. Integrating equation (3.13) by parts and applying the Green's identity 1, gives: 

Jr 
MapnpWädl' -J MapWa*, pdfI -JQ. W, *, dfZ 

+J QanaWW d1' -f Q«W3, 
adQ +J qW3 df2 =0 (3.15 

'The Green's identity between two functions P and u, a, can be written as follows[35]: 

, audil 
fn Pu, gd) =/ Pun. dI' - 

fn P 
r 
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then, by substituting the relationships for pý near in equation (2.5), equation (3.15) 

can be written as follows: 

jp, inearw; 1f - 
ýSZ 

MpWä, Pd .l- 
ýý 

Qa(Wä + W3aýdcl 

+J qW3 dc =0 (3.16) 

where (j = a, 3). Replacing the bending and shear stress resultants (Map and 

Qa) with the generalised displacements and their derivatives using equation (2.18), 

equation (3.16) can be written as 

r D(1- v) 2v Jr pi nearwý ý" - 
in 

W a'Q 
2 

(WIl0 
+ WQ, a + (1 - V) 

SQ1A'wý(r) 
} 

dSZ 

- Jý C(wa + w3, a) (Wä + W3, a)dcl +f qW3 dcl =0 (3.17) 

then Green's identity can be applied to the integral Maß and rearranging the third 

integral of equation (3.17), gives: 

lp, iinearW, *dr- 
1, 

,ß1 

D(12 v) (WInp 
+ wßna + (12vv) 

Sapw ynyl dI' 

+ 
D(12 v) (WI, 

w 00 +Wow 'pa + ý12vv) wryw«, R7Saßl dSt 

qW3 dSl =0 (3.18) -fQ. (wa + w3, a)dQ + 
in 

Making use of the relationships wp = waS,, Q; w. y = wa6.. y; na = nQSap and 

my = npSß.,, the Green's identity, and together with equations (2.5) and (2.18), 

the equation (3.18) will become: 

J (W* linear P*w)a, j 

+J [(MýQß - Qý)w- + Qa, 
ciw3]dSl +J W3 qd) =0 (3.19) 

The (")* state can be chosen arbitrary. If the state is defined for concentrated 

generalised loads: two bending moments (i =a=1,2) and one concentrated shear 
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Figure 3-1: Fundamental state due to bending moments and shear forces. 

force (i = 3) at an arbitrary source point X' E St as shown in Figure 3-1, then 

equation (3.19) can be rewritten after introducing the direction of the load i as 

follows: 

[wj 
i (X,, x) p` "e°' (x) - P1 (X', x) wj (x), dr (x) + J0 Ws3 (V, X) gdcz (X) 

+ 12yy117 
(X) W 3,7 ()e 

, X) Sap] dil (X) 

+f [M äa, ß(X', X) - Qja(X', X)] wa(X)dst(X) n 
+fQq, a(X', X)w3(X)dQ(X) =0 (3.20) 

n 

where xEr and XE SZ are field points. By choosing the (")* state to represent the 

fundamental state such as: 

M 
aß, A(X', X) - Q: a(X', X) + S(X', X)sia =0 

Q a, q(X', X) + S(X', X)Si3 =0 (3.21) 

where S(X', X) is the Dirac delta, and making use of the following property: 

f5(X', X)ws(X)dc t= wi(X') (3.22) 
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Equation (3.20) can now be written for an internal source point V as: 

wi (X') +P *i(X', x)wj(x) dI' (x) =JW jlxl , Xlpý near (x) ý. (x) fr1 
+J W3(X', X)q(X)dSZ(X) (3.23) 

n 

where W (X', x) and P1ý (X', x) are the fundamental solutions for rotations and out- 

of-plane displacements and bending and shear tractions respectively. It represents 

the displacement or the tractions at the point x or X in the direction j due to unit 

load applied at X' at the direction i. The kernels W, "j and Pj are given in Appendix 

A. 

3.2.2 In-plane displacements integral representations 

The integral representations related to governing equations for membrane stress 

resultants can be solved in a similar way. Separating the term in the bracket in 

equation (3.14) then integrating by parts and applying Green's identity, gives: 

f 
Näß nrnßu dr - 

JSl 
Naiýnearu pdý =0 (3.24) 

Utilizing and substituting equation (2.19) into (3.24), gives: 

[tUdr 
a_1B12y (tLaß 

+ up, a + 12yyWi iSaß) U ßdSZ =0 (3.25) 
r 

Integrating by parts the second integral of equation (3.25), gives: 

[inearuir 
_fB12y 

(uQnß 
+ uan« + 

12vvv1n 
oaß) Uý`, ßdr 

+ 
[B1 

2v( uaU, *, RQ + ußUU, pa + 12yy5aßu. YUý, R7) d SZ =0 (3.26) 
fn 

Making use of the relationships up = uaöap; u7 = ua&aj; na = npSap and 717 _ 

nßSp. y, and for NaQea' in equation (2.19), and the Green's identity, the equation 
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Figure 3-2: Fundamental state due to membrane stresses. 

(3.26) can be written as 

tlgnearUa*dr 
j-j 

uaTadr + in uaNN*p, ßdcl =0 (3.27) 

The (. )* state (as shown in Figure 3-2) are defined for concentrated generalised 

loads: two concentrated membrane forces (0 = 1,2) at an arbitrary point X' E S2. 

Thus, equation (3.27) can be rewritten after introducing the direction of the load 0 

as follows: 

Iu ()C) x) tiin, (x) dr (x) -Ji ga (x', X) ua (x) dr (x) 

+ 
in 

Neap, p (X', X) ua (x) d1 (X) =0 (3.28) 
n 

By choosing the (")* state to represent the fundamental state such as: 

NBaßß (X', X) + E(X', X )ae« =0 (3.29) 

and making use of the Dirac delta property (3.22), equation (3.28) can be written 

for an internal source point X' as: 

uo (X') +J 1TBa (X', x) ua (x) dI' (x) 

=1u (X', x) tlinear (x) dI' (x) (3.30) 
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Figure 3-3: Semi-circular region around the source point x' on the boundary. 

where Uea(X', x) and Tea(X', x) are the fundamental solutions for in-plane displace- 

ments and membrane tractions respectively. It represents displacements or tractions 

at the field point x or X in the direction a due to unit load applied at the source 

point X' in the direction 0. The Kelvin fundamental solutions UB. and Tea are given 

in Appendix A. 

3.3 Boundary Integral Equations 

If the point X' is taken to the boundary, that is X' -º x' E r, the distance r tends 

to zero and, in the limit, the fundamental solutions will contain singularities. In 

analysing the limit, a semi-circular domain with boundary r and radius e centered 

at the source point x' is introduced, as shown in Figure 3-3. 

Equation (3.23) can be written as follows : 

wi(x')-i-lim 
frrar; P (x', x)wj (x) d (x) =umf (x) 

dr (x) 

E--0 £--+0 - r. +r. 1l 

Wi3(X', X)q(X)dcl(X) (3.31) +f 
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and equation (3.30) can be written as 

ug (xý) +l im J Tea (2) x) u', (x) dr (x) 
E-'o r-r�+r. - 

= lim J UB« (Xý, X) tlänear (X) dI' (x) (3.32) 
E--0 r-r. +rs 

Taking into account all the limits and the jump terms, the boundary integral 

equations are obtained as follows: 

Cif (2)RIIj (X, ) +Jp; (_ 2, X)wi (x) (Ir (x) =JW (2e, X)pý near (x) c, (x) 

+f W3(x', X)q(X)dSl(X) (3.33) 
n 

and 
CBa (x') ua(x') + fTia(x'x)ua(x)dr(x) 

=IU (XI, X)t, iinear(x)dr(x) (3.34) 

where x', xEr are source and field points respectively, cj j (x') and co,, (x') are the 

jump terms. The value of c1, (x') and co,, (x') are equal to 2Stq and 2SBa respectively 

when x' is located on a smooth boundary. 

Equations (3.33 - 3.34) represent five boundary integral equations, the first two 

in (3.33) (i =a=1,2) are for rotations, the third (i = 3) is for the out-of-plane 

displacement and two in (3.34) (a =1,2) for in-plane displacements. 

By applying the divergence theorem, the last domain integral in (3.33) can be 

transferred to boundary integral, in the case of a uniform load (q = constant) to 

give: 

W 3(x', X)q(X)dQ(X) =qf Vi q(x', x)na(x)dr(x) (3.35) 
ra r 

where V; are the particular solutions of the equation V eB = W. The expressions 

for V0 are: 

V 
1287rD 

r2 2 
[(4 In z- 5)Sap + 2(41n z- 3)r, gr, ß] 4 

v3'Q 
1287r-D(1 

,R 
v)X2 

[32(21nz -1) - z2(1- v)(41nz - 5)] (3.36) 
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If q is not uniform, then this term cannot be taken out of the integral. The 

transformation of domain integrals for other distribution cases of q can be carried 

out by using the dual reciprocity technique, as explained in section 3.5. 

3.4 Numerical Implementation 

3.4.1 Discretisation 

The geometry and the function along the boundary is discretised using quadratic 

isoparametric boundary elements, while for the domain, constant cell elements are 

used. To avoid difficulties with discontinuity of the tractions at corners, semi- 

discontinuous elements are used. Shape functions for continuous and semi-discontinuous 

elements are illustrated as in Figure 3-4. 

Assuming that q is uniform, equation (3.23) can be rewritten in a discretised 

forms as: 

N. 3 e=+1 

cij (x')wj(X') +> wjm 
J 

P. 
7(X17X)'*m(Z)Jn(e)d 

n=1 m=1=-1 

N. 3 £+1 
ýnmlinear W*. (2, X)-DM(e)J, (e)d 

nn=l m=1 =-1 

N. =+1 

-I-4E 
fV 

ä(X', X)na(ý)Jn(ý) (3.37) 
n=1 C=-1 

and equation (3.30) can be written as 

N. 3 C=-1-1 

n=1 m=1=-1 

N. 3=+1 
ý` [ý team linear f 

UBa (X', x»m (e) Jn ()d (3.38) 

nL=1 m=1 
Jý=-1 

where Ne is a number of boundary elements, 1m are the quadratic shape functions. 

For a continuous quadratic element, they are defined as: 
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Figure 3-4: Shape functions for continuous and semi-discontinuous elements. 

-I)cý) 

-Iblc = 
2ýýý 

+ 1) 

and for a semi-discontinuous element, with nodes placed at 3,0, +1, as: 

, qý'si(O = lö6(6 -1) 

(3.39) 
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psi() _ -23 
2 (ß-1)(C+3) 

1)3 
6+ 2) 

Si TO 

and for an element with nodes are placed at _ -1,0, +3, as: 

, Dss() _ O6 
2 

C(C - 3) 

, Dssý) _ -2(C+1)(ý- 3) 

X53(0 = 06(C'+' 1) 

(3.40) 

(3.41) 

The internal node position in semi-discontinuous element is chosen arbitrarily at -3 

or +3, not very close to the element end point to avoid near singularity problems. 

The Jacobian of transformation for boundary elements is defined as: 

Jn (O = 
F19 axe () 

(3.42) 
a 

where 
ýC) is the derivative of the global coordinates xe with respect to the local 

coordinate C, and the normal as: 

n« (ý) =1 
8xß () 

W«R3 (3.43) 
J(ý) aý 

where waß3 is the permutation tensor and is defined by the following set of rules: 

Wap3 = +1, if a, ß, 3 is a clockwise cyclic sequence 

Wa, ß3 = 0, if a, ß, 3 is an acyclic sequence 

waß3 = -1, if a, /3,3 is an anti clockwise cyclic sequence 

For every collocation node, equations (3.37 - 3.38) will give the following linear 

system of equation in a matrix form: 

Hp 0S w GP 0 
(3.44) 

0Hu0 G° 
5x5 5x1 0 5x5 

p 

5x1 

+0 
5x1 

where w= {wi, w2iw3}T, u= {ul, u2}T, p = {pl, p2ip3}T, and t= {ti, t2}T are 

displacement and traction vectors for plate bending and plane stress formulations 
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respectively, b= {0,0, q}T is domain load vectors, Hp, H8, GP and G' are boundary 

element influence matrices for plate bending and plane stress formulations respec- 

tively. The matrices H", H3, GP and G9 then form plate bending influence matrices. 

After performing all of the collocation process, equations (3.37 - 3.38) can be writ- 

ten as 

[H]5Nbnx5Nbn {w}5Nbnx1 

[G]5Nbnxl5Nbe {P}15Nbexl + {Q}5Nbnx1 (3.45) 

where [H] and [G] are the well-known boundary element influence matrices [21], 

{w} and {u} are the boundary displacement vectors, {p} and {t} are the boundary 

traction vectors, and {Q} is the domain load vector. Nbn and Nbe are number of 

boundary nodes and boundary elements respectively. 

After imposing boundary conditions, equation (3.45) can be written as: 

[A]5Nbnx5Nbn 
lx}5Nbn = if 

}5Nbn (3.46) 

where [A] is the system matrix, {x} is the unknown vector and If } is the vector of 

prescribed boundary values. 

3.4.2 Treatment of singularities 

Several different orders of singularities in integrands appear in the boundary integral 

equations. These singular integrals are treated separately based on their order of 

singularity. The standard Gauss quadrature formulae is used to evaluate numerically 

all of the regular integrals. The influence matrix [G] and the load vector matrix {Q} 

contain weakly singular integrals, which are treated using a nonlinear coordinate 

transformation as in Teiles [87]. However, for better numerical accuracy, as was 

shown by Okada et at. [59], a suitable number of element sub divisions must be 

used with the non-linear transformation. In this thesis four element sub divisions 

are used. 

Strongly singular integrals in the influence matrix [H] are computed indirectly by 

considering the generalised rigid body movements. This can be achieved as follows: 
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ra 

W3=Cra 

Figure 3-5: Rigid body rotations. 

If a traction-free problem is considered, five independent cases may be observed, 

that is, two rigid body rotations: 

" u1 = 0, u2 = 0, w1 =0 and w2 = 0, then w3 = -Cri, 

. u1=0, u2=0, w2=Cand w1=0, then w3=-Cr2 

as shown in Figure 3-5 and a rigid body out-of-plane translation: 

0 u1=0, u2=0, w3=C, w1=0, and w2=0 

for the rotations and out-of-plane displacement integral equations, and two rigid 

body conditions for in-plane translations 

0 ul=C, u2=0, wl=0, w2=0, andw3=0 

" u2=C, ul=0, wl=0, w2=0, andw3=0 

for the in-plane displacements integral equations. The term C is an arbitrary con- 

stant, and ra denotes components of vector r in xa coordinates. 

By applying the above cases to the system of equations in (3.45), the following 

expressions can be written: 

Hta (x1) f [F (x', x) + (-ra)P 8 (x', x)]dr(x) 

Hi3(x') _ -J P3(x', x)dr(x) 

H(3+e)(3+a)(x') 
fTo*a(x, 

x)dr(x) (3.47) 
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where H"(x'), Hi3(x') and H(3+0)(3+")(x1) include the diagonal sub-matrix and the 

jump term rij in the influence matrix [H]. All terms in the integrals in equation 

(3.47) were already computed except the second term in the first integral. Fortu- 

nately, in the second term of the first integral, the distance r" cancels the weak 

singularity in PP3 and the strong singularity in P33 in the singular element under 

consideration. 

3.5 Transformation of Domain Integrals 

The domain integrals which appear in the boundary integral equations derived in 

sections 3.2 and 3.3 can be transformed to boundary integrals with the use of the 

dual reciprocity technique [61]. Recently Wen, Aliabadi and Young [97] used the 

formulations developed by Dirgantara and Aliabadi [27] and transformed the do- 

main integrals into boundary integrals. The plate can be discretised into quadratic 

isoparametric boundary elements. 

The integral equations (3.23) and (3.33) can be recalled as follows : 

wi (X') +f ý'"ý (X', x)w5 (x) d' (x) =f Wtý (X?, x)p near (x) dF (x) 
rr 

+f Wi3(X', X)q(X)dSZ(X) (3.48) 
n 

and 

ci; (X')w, (X') +J (X', x)w, (x) dr (x) =fWt; (x', X)ýý 
near (x) dr (x) 

+J W3(x', X)q(X)dc (X) (3.49) 
n 

The equations (3.48) and (3.49) contain a domain integral as follows: 

tisgdS2, (3.50) ID = 
in W 

Assume that the term q are the body forces, therefore it can be approximated by 
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M 

q=E f'(r)gm (3.51) 
M=l 

where f (r) is a radial basis function, see Appendix B, the O? are a set of unknown 

coefficients, r= (xi - xi )2 + (x2 - x2 )2, M is the total number of the selected 

points. 

The Oj are coefficients which are determined by values at the selected points M 

as follows 

0= F-lq (3.52) 

where F matrix is obtained by collocation of the selected points M. 

From the particular solutions w,,,, j, which satisfy the differential equation, i. e. 

Lajwmj =0 

and 

(3.53) 

L3Ami _ Fm(r) (3.54) 

where L; j is the Navier differential operator for shear deformable plate bending 

problems, see section 3.2. 

Then, equation (3.50) can be transformed to be: 

ID-Mý 
[kkX'- 

We7X)pmk (x) ý(x) 

m=1 I` 

+J Pik(X', X)wmk (x) di' (X)] (F-14)m (3.55 

where the particular solution w, 3, 
ýk and pmk for radial basis function Fm (r) =1+r 

were derived in [97] and are given in the Appendix B. 
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3.6 Internal Stress Resultants 

The stress resultants at domain point X' can be evaluated from equations (3.23) 

and (3.50) by using relationships in equations (2.20) and (2.21), obtained as: 

Maß ()V) =f WWpk(V'x)pknear(x)dr(x) -f Päßk(X', X)wk(X)dr(X) 

+J Wp3 0V, X)gdSZ(X) , (3.56) 
n 

QA (Xýý =f Wpk(jV'X)Pknear(x)dr(x) 
-jP, (X', x)wk(x)dr(x) 

+f W3Q3 (X', X) qd) (X) (3.57) 

and 

U 1ýX'ýXýt! 0.1'ýXýý, ýXý _ 
fTß7(X', 

x)u.., (x)dr(x) (3.58) 
r 

In the case of a uniform load, the domain integral f- W p3(X', X)q(X)dSl(X) in 

(3.56 - 3.57) can be transferred to boundary integral, by applying the divergence 

theorem, to give: 

fWp3(X1, X)q(X)dcl(X) =q 
rQ 

Q()C, x)dr(x) (3.59) 

The kernels W ßk, 1ßk and QQ are linear combinations of the first derivatives 

of W *j, Pi*j and VQ where the kernels U, *,, ßy and T. *Q, 
y are linear combinations of the 

first derivatives of UUß and T, *, Q. The kernels Wyk, ' jk, Q Q, Uaß, 
y and TTQ, 

y are 

given in Appendix A 

3.7 Traction Integral Equations 

The traction integral equations are obtained by taking X' to the boundary lead- 

ing to hypersingular integral representation of the shear deformable plate bending 

problems. The integrals in (3.56 - 3.58) can now be written as 
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2Maß(x') =f Waßk(Xý'X)pknear/X1dr/Xl _f Paßk(X', X)Wk(X)dr(X) 

+f Wß3(x', X)gd)(X) 
n 

(3.60) 

2QQ(X') =f 
W3ßk(X', 

X)pknear(X)dr(X) -f 
P3ßk(X', X)Wk(X)dr(X) + 

+j W3, (x', X)gdQ(X) 
n 

(3.61) 

and the integrals in equation (3.24) become hypersingular integral representations 

of the two-dimensional plane stress elasticity problems, 

2Nap(x') +J TTR7(x', x)uy(x)dr(x) =fUß,, (X', X)t., (X)dr(X) (3.62) 

The traction integral equations correspond to the integral equations in (3.60 - 
3.62) are 

2 
pl"inear (x') + nß (xý) f P«py (x', x)w y (x) dr (x) + nQ (X') j P3 (Xý, X)w3 (X) ý'(X) 

= nß (X') 

r 
W. * p, 

(xF, x) 
prynear (x) dr (x) + np (x')J WWß3 (x1, x)A near (x)d, (x) 

+np(x') 
in 

W ß3(x', X)4d1(X) 
n 

(3.63) 

2 
p3 near (x') + nß (X') 

f 
P3ß 

, 
(x', x) u (x) dr (x) + nß (x') J P3p3 (X', X) u3 (X) dr 

(X) 

=np(xýý 
f 

W3Q, (xý, XýPryneaX(x)c +/X\'i np(x! ) f W3Q3(x', X)p3near(X)ý"(x) 

+na(X') f u'3a3(x', x)gdcz(x) (3.64) 
n 

and 

2t°` (x') +np(x') 
fTßy(x', 

x)w1(x)dr(x)+ 

= nß(x') Jr Uaßry(X%X)tlinenr(x)dr(x) (3.65) 
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Equations (3.63 - 3.65) represent five integral equations in terms of boundary 

tractions, and can be used together -with the five displacement integral equations 

(3.33 - 3.34) to form the dual boundary integral formulation. The treatment of 

singularities for the traction boundary integrals is described in Appendix C. Do- 

main integrals which appear in the traction integral equations are transferred to the 

boundary by employing the dual reciprocity technique as described in sections 3.5. 

3.8 Summary 

Boundary element formulations for the linear elastic shear deformable plate bend- 

ing and two dimensional plane stress were reviewed in this chapter. The singular 

integrals which appear in the formulation are treated individually based on the 

order of singularity. The weakly singular boundary integrals were treated using 

the non-linear coordinate transformation, while the strongly singular integrals were 

computed indirectly using generalised rigid body movement. The domain integrals 

due to the transverse loads q can be transferred to boundary integral, either of the 

case of uniform loads (q = constant) or distributed loads using the dual reciprocity 

technique. The traction integral equations of shear deformable plates bending and 

two-dimensional plane stress are used to form the dual boundary element formula- 

tion to analyse crack problems. 

68 



Chapter 4 

Buckling of Elastic Plates 

4.1 Introduction 

Buckling analysis of compression panels are particularly important in aerospace 

structures. Phenomenon of the plate buckling has been investigated analytically 

and experimentally since the first experimental observation almost 150 years ago 

[93]. Analytical solutions of plate buckling based on the classical plate theory can 

be found in [90] and [23]. Numerical method such as the Finite Element Method 

(FEM) has been used by many researchers to investigate the problems [72][32][14]. 

Liu [54], applied the differential quadrature element method based on the Mindlin 

plate theory to the buckling analysis of discontinuous rectangular plates. 

More recently, the boundary element method (BEM), has been applied to 

the field of plate buckling. Syngellakis and Elzein [82], extended the boundary 

element solution of the plate buckling based on Kirchhoff theory to accommodate 

any combination of loadings and support conditions. Nerantzaki and Katsidelakis 

[58], developed a BEM-based method for buckling of plates with variable thickness. 

Lin, Duffield and Shih [52], developed a more general boundary element formulation 

for wide variety of boundary conditions and arbitrary planar shapes to investigate 

the stability of elastic plate. Other works on elastic buckling analysis of plate using 

boundary element can also be found in [24] [85]. 

In this chapter, the derivation of boundary integral equations for the buck- 

ling analysis of shear deformable plate are developed. Plate buckling equations are 
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written as a standard eigenvalue problem. The formulation is formed by coupling 

boundary element formulations of shear deformable plate and two dimensional plane 

stress elasticity. The domain integrals which appear in this formulation are treated 

in two different ways: initially the integrals are evaluated using constant cells, and 

next, they are transformed into equivalent boundary integrals using the dual reci- 

procity method (DRM). The eigenvalue problem of plate buckling yields a critical 

load factor and buckling modes. Examples with different geometry, loading and 

boundary conditions are presented to demonstrate the accuracy of the formulation. 

4.2 Boundary Integral Equations 

Here, the in-plane stress resultants in the domain due to external loads on the 

boundary is considered to be unknown. Therefore, determination of in-plane stress 

resultants in the domain is the first step in the solution of plate buckling. Next, the 

plate buckling equations are derived from the plate bending equations. Critical load 

factors are introduced into the equations as multiplication factors of body forces or 

transverse loads. 

4.2.1 In-plane Stress Resultants 

In the absence of body forces, the boundary integral representation of in-plane 

displacement is given by 

CBQ(x')ua(X') +I TBa(x', x)ua(X)ý(x) = 
[U3a(x, 

x)te0r(x)dr(x) 
r 

(4.1) 

where Cea(x') are jump terms. The value of Coa()e) is equal to 160,, when x' is 

located on a smooth boundary. 

The boundary integral of in-plane displacements in the domain can be expressed 

as 

ua(x') + Ba(x', X)ua(X)dr(X) =f Uea(x', X)tänear(x)dr(x) (4.2) Jr rr 

70 



The in-plane stress resultants at domain point X' are written as 

Na earoC) =I UI,, (xý, X)tlliinear(X)dr(X) -I Tn«p(Xý, x)u, &(X)dr(x) (4.3) 

The fundamental solutions TB,,, Uea, Uö.,,, Q and Töaß are the same as those described 

in the section 3.4 and are listed in Appendix A. 

4.2.2 Plate Buckling Problem 

The plate bending equation is transformed into an equivalent plate buckling formu- 

lation by introducing critical load factor A as follows: 

Csj(Xý)w+(Xý) +j F(x', x)ww(x)dr(x) 

=fW,, (x', x)Pýnear(x)dr(x) +A 
f 

w; (xe, X)9(X)dcl(X) 
rn 

+A 
f W3 (x' , X) (Na earw3, ß), a (X) dcZ (X) (4.4) 

where p aT are described in equation (2.5). The terms Cj, (x') are equal to 25; j 

when x' is located on a smooth boundary. 

Expanding the last integral in equation (4.4), gives: 

Csjw; (x') + j1(x', x)w(x)dr(x) 

_j W(x', x)p r(x)dr(x) +Af W3(ß', X)4(X)d9(X) 
n 

ear +X Jwi (x', X) (N, 1, 
, w3, ß + N, "; W3 ßa) (X) dSZ (X) (4.5) 

n 

The deflection equation w3 at the domain points X' is required as an additional 

equation to arrange an eigenvalue equation, as follows: 

W3ýX') =fW (X', x)pjnear(x)dr(x) -1 Pgj(V, X)wj(X)dl'(X) 
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+X 
ýý 

W33(X', X)q(X)dfl(X) 

ear 
-I A W33 (V, X) (Naß, a 

Tw3, 
p -F' Naß w3, ßa) (X) dcl (X) (4.6) 

To arrange an eigenvalue equation, the derivatives of w3, ß(X) and W3, aß(X) have 

to be expressed in terms of w3(X), see section 4.2.3. 

Equation (4.5) can be written as 

cijwi(x') + jPi(x', x)w3(x)dr(x) 

=f wj(X/, X)pjnear(X)ý"(X) 

+A j Wi3(xl, X)9(X)dQ(X) 
rn, 

+A J Wis ()e, X) (Nä%3, ä rf (r), # -' W3) (X)dQ(X) 

+'\ 
f 

WA (x'ý X) (Na ear f(r), aý' -l f(ry, ), lýý, "-l W3) (X)dSt(X) (4.7) 
sa 

The equation (4.6) can also be written as 

w3(X') =f W3j(X', X)pli"(x)dr(x) 

r 

-r P3* (Xl, x)wj (x)dr(x) 

+A f W33(X', X)4(X)dfl(X) 

+Aj W33(X', X)(Näý7f(r), P]'-lw3)(X)dl(X) 

+a W33(X'vX)(Nap, r f(T), ýF-lf (r), pF-iw3) (X) dII(X) (4.8) f 

Equation (4.7) can be expressed as 

C=jwi(x')+jP(x', x)wa(x)dr(x) j, 

= 
f Wj(x', x)pjnear(x)ý. (x)+A /' W3(x', X)fb(X)dsi(X) (4.9) r . In 
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where 

lb =q+ Nßß ä rf (r), AF-1w3 + N, 3... f(r), aF-lf (r), pF-1w3 (4.10) 

Thus, equation (4.8) can also be written as 

w3(X') =f W3j(Xl, X)linear (x)dr(x) 

-I P3j 
(XI, x)wj (x)dr(x) 

+A 
f W33 (X', X) fb (X) df (X) (4.11) 

The kernel solutions Pj and Wj are the same those described in section 3.4. 

4.2.3 Evaluation of the Derivative Terms 

The w3, p(X) and w3,,, ß(X) terms are approximated by a radial basis function f (r) 

as follows; 

M 

w3(x1, x2) _E 
fm(r)Tm (4.12) 

M=1 

where the a radial basis function is chosen f (r) =c+r and c2 =2, and M is the 

total number of selected points. 

r= 
V(Xl 

- xi)2 -{- (x2 
- x2 )2 (4.13) 

The 1m are coefficients which are determined by values at the selected points 

M as follows 

IF = F-iw3 (4.14) 

Therefore, the first derivative of deflection W3, p is expressed as 

'w3, P(xl, x2) = f(r), Q(F-1W3) (4.15) 
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Figure 4-1: Models with cell elements. 

The second derivative of deflection W3, aß can be derived in a similar way as above 

IF = F-1w3, Q 

Therefore, 

W3, aß 
(xi, X2) =f (r), 

a 
(F-1`g, 3, ß) 

Substituting equation (4.15) into equation (4.17), gives: 

(4.16) 

(4.17) 

W3^3 (X1) x2) =f (r),, F-1 (f (r), QF-1w3) (4.18) 

Similar to the above expressions, the derivative of in-plane stress resultants Naß"Ican 

be expressed as 

1Vý pr (x1, x2ý =f (r), 
aF-'N' enr 4.19) 

4.3 Numerical Implementation 

As described in Chapter 3, quadratic isoparametric boundary elements are used to 

discretise along the boundary, while for the domain, the constant cell elements (as 

shown in Figure 4-1) are used to describe the geometry. 
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Equation (4.9) can be rewritten in a discretised forms as 

NQ 3 £=1 
Cijwi(x') -F w9 a 

it 
Fj (x', x)Ma(e)JJ(Z)d 

n=1a=1 =-1 

Ne 3 
_1 

=EZ pr 
linear JW 

, (x', x)Ma(S)Jn(e)dS 

kk=l aa=l _1 

NO n=1 f=1 
fö In= J Wi8 (x', X )'Jk (b, ij)d d77 

n=1 _1= _1 

(4.20) 

where Ne and NN are number of boundary elements and internal cells respectively; 

J, a(6) is the Jacobian of transformation for boundary elements (see Chapter 3). VI 

are the quadratic shape functions, and defined as follows: 

ý2() = (1-)(1+) 

ý3 (ý) =2 ý( + 1) 

The Jacobian of transformation Jk(e, 17) for cell elements is defined as: 

s(N321 + N2 +Ni) 

where Nsj is a minor of 

axl (ý, 7) 19X2(e07) 19x3 (e, 77) 
ae aý aý 

axi (71) 19x2 (e, 77) 5x2(j) 

a? 7 077 a? 7 

(4.21) 

(4.22) 

(4.23) 

There is a weak singular term in the domain integral in equation (4.9). When the 

integral is computed numerically using cell discretisation, the weak singular kernel is 

treated using a triangle to square transformation technique as explained in Aliabadi 

[6]. 
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In this case, equation (4.9) can be expressed in matrix form as 

Hpw - G1'p = AG3fb (4.24) 

where Hand GP are boundary element influence matrices for plate bending, while 
G3 is the domain coefficient matrix. 

4.4 Transformation of The Domain Integral 

In the boundary integral equation (4.9), there is a domain integral which can be 

written as follows: 

Ip=J W3fbdQ (4.25) 

The dual reciprocity method for shear deformable plate developed by Wen, Ali- 

abadi and Young [98] can be used to evaluate the equation (4.25). Assume that the 

term fb are the body forces, therefore they can be approximated by 

fb = ,f 
(r)mq57 (4.26) 

m=1 

where f (r) is a radial basis function, see Appendix B, the Oj are a set of unknown 

coefficients, r is denoted as the equation (4.13), M is the total number of the selected 

points. 

The ¢j are coefficients which are determined by values at the selected points M 

as follows 

0= F'-lfb (4.27) 

The boundary integral equation (4.9) can be rewritten as 

Cij (X')wmj (X') + Pij (x', x)wmj (x) (x) 

r 
=f TV'j(x', x)Pmj(x)dr(x) +fW s(x', X)Fm(r)d9(X) (4.28) 

r, 
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where r= IX - x'I and Fm(r) is radial basis function.. The domain integral in 

equation (4.25) can now be expressed in terms of boundary integrals as 

in 
3(xl, X)fb(X)dc (X) 

M 

_ 
OM [Cjj (x')wmj (X') +j Pij (x', x)t mj (x)dr(x) 

M=l 
Jr 

-f W*j(X,, X)ßmj(X)dI (X)] (4.29) 
r 

The boundary integral equation (4.9) can be written in a discretised form as 

N. 3 £=1 
Cijwi(x') +EE wjm 

1, 

ý 
P ij(X', X)ým( )Jn(b)d 

n=1 m=1 --1 

N. 3 Z=1 
iý"r` Wij(X', x). Dm(Z)Jn(Z)d +X IP (4.30) 

kk=l m=1 

le=-l 

Equation (4.30) can be expressed in matrix form as 

Hpw - G"p = A(Hpw - Gpp)F-lfb (4.31) 

where * and p are matrices of nodal values of particular solutions on the boundary, 

while HPand G" are the same as in the section 4.3. 

4.5 Numerical Procedure 

In this section, the numerical procedure for calculating the critical load factor is 

presented. The first step is to solve the boundary integral equation of in-plane 

problem and calculate the stress resultants at the domain points. The second step 

is to solve boundary integral equation of buckling problem. 

4.5.1 Determination of the in-plane stresses 

After discretising and introducing boundary conditions into equation (4.1), the re- 

suiting system of algebraic equations can be arranged as 
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[C] {u} + [H$] {u} = [G3] {t} (4.32) 

where coefficient matrices H' and G8 are obtained from the integral of the product 

of fundamental solutions, shape functions and the jacobian. (see Chapter 3). 

The known and unknown quantities in equation (4.32) can be rearranged as a 

set of linear algebraic equation: 

[A] {X} = {F} (4.33) 

where matrix X contains the unknown vectors of u and t. The vector F is obtained 

by multiplying the related matrices of H8 or G" by the known vectors of u or t. 

Once equation (4.33) has been solved, in-plane stresses N11, N12, and N22 in the 

domain (equation 4.3) can be calculated. The stresses are required to solve the plate 

buckling problem. 

4.5.2 Solving the plate buckling problem 

Similar to the in-plane stresses procedure, after applying boundary conditions to the 

equation (4.9), the resulting system of algebraic equation can be written as: 

[C] {w} + [Hr] {w} = [GP] {p} + a(Geq] {fb} (4.34) 

in which Geq = G3 for domain cell discretisation, and Gey = (HP* - GPp)F-1 for 

the dual reciprocity method. The q(X) quantities in the equations (4.7) and (4.8) 

are set to zero. The term fb(X) (equation 4.10) can be expressed in term of w3(X), 

as follows 

fb(X) = f(X)w3(X) (4.35) 

where fb,,, = Nli 
ä7'f 

(r), pF-1.. ý., Na ear f(r), af (r), pF-1 

Equation (4.34) can be arranged in a similar manner as equation (4.33), and give 

[BJ3NX3N 
{YI3N =A IKI3NXL {W3}L (4.36) 
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K= Gegfb,,, (4.37) 

where the matrix B contains the coefficient matrices HP and GP. N and L are the 

number of boundary elements and domain points, respectively. 

The equation (4.11) also can be written in matrix form as follows: 

[I] {W3IL = [BB]Lx3N 
IY13N +, X [KKJLXL 

{W3}L 
(4.38) 

where matrix [I] is an identity matrix. The matrix [BB] contains coefficient matrices 

related to the fundamental solutions of W3j and P3j. The matrix [KKI are obtained 

by multiplication of coefficient matrix related to the fundamental solution W33 and 

matrix fw. 

The equation (4.36) can be rearranged in term of unknown vector {Y}3N, 

(4.39) 
{ }3N =A [B]3Nx3N IK13NxL {W3}L 

where matrix B'1 is the inverse matrix of B. 

The substitution of the equation (4.39) into the equation (4.38) yields: 

[I]{W3}L =\ [BB]Lx3N [B]3Nx3N IK13NxL IW3}L 

+A EKK]LXL 1W3IL (4.40) 

Then, 

II] {W3IL = \([BB]Lx3N [B]3Nx3N IKI3NXL 

+ [KK]LXL) {W3}L (4.41) 

The equation (4.41) can be written as a standard eigenvalue problem equation 

as follows: 

(ýtlýý -1 RID) {W3IL =0 (4.42) 
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where [t&] = [BB]Lx3N [B]3Nx3N [K]3NXL + [KK]LXL" 

Buckling analysis of shear deformable plates has been presented as a standard 

eigenvalue problem. Buckling modes correspond to the problem can be obtained by 

solving equation (4.42). 

4.6 Numerical Examples 

Several numerical examples are presented to demonstrate the accuracy of the 

proposed method for analysis of plate buckling problems with different geometries, 

loadings and boundary conditions (see Figure 4-2 ). The BEM results are compared 

with analytical and finite element results. In the following examples, the buckling 

coefficient K is defined by 

b2 
K 

DT 

where T is critical compression load u, or critical shear load rre,., b is the width or 

diameter of plates and D is flexural rigidity of plate as described in Chapter 2. 

4.6.1 Convergence study of simply supported square plate sub- 
jected to compression loads 

In this example, a square plate as shown in Figure 4-3 is analysed. Six different 

BEM meshes of domain cells and domain points are used. A convergence study of 

the simply supported square plate is performed and the buckling coefficients K are 

compared with the analytical result [90]. 

The number of boundary elements and cell elements are shown in Table 4.1, and 

the number of domain points in Table 4.2. It can be seen, that convergence of the 

results is achieved with increasing number of cells and domain points. It can also 

be seen that the BEM results are in good agreement with analytical results. 
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Figure 4-2: Plate buckling model with different geometries, loadings and boundary 

conditions. 
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Figure 4-3: Square plate subjected to compression loads. 

Table 4.1: Buckling coefficients using domain cells. 

No Boundary Domain K BEM K analytical % error 
1 20 elems 5x5 cells 4.241 4.000 6.030- 
2 24 elems 6x6 cells 4.173 4.000 4.325 
3 28 elems 7x7 cells 4.143 4.000 3.575 
4 32 elems 8x8 cells 4.079 4.000 1.975 
5 36 elems 9x9 cells 4.068 4.000 1.700 
6 40 elems 10 x 10 cells 4.041 4.000 1.025 
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Table 4.2: Buckling coefficients using the dual reciprocity technique. 

No Boundary Domain K BEM K analytical % error 
1 32 elems 5x5 points 4.189 4.000 4.720 
2 32 elems 6x6 points 4.141 4.000 3.515 
3 32 elems 7x7 points 4.060 4.000 1.510 
4 32 elems 8x8 points 4.032 4.000 0.808 

5 32 elems 9x9 points 3.985 4.000 0.387 
6 32 elems 10 x 10 points 3.999 4.000 0.025 

ß'X-ß 

side 

end end 

side 
ý" 

-b -ýI 

6x b 

Figure 4-4: Square and circular buckling models. 

4.6.2 Square and circular plates subjected to compression loads 

with different boundary conditions 

Examples of buckling problems for square and circular plates subjected to com- 

pression loads with different boundary conditions are presented. The models are 

shown in Figure 4-4. Initially, the square plate is discretised into 40 boundary ele- 

ments and 100 domain cells, and next analysed using the dual reciprocity technique 

with 32 boundary elements and 100 domain points. The circular plate is discre- 

tised using 16 boundary elements and 49 domain cells. It is also analysed using 

the dual reciprocity technique with 16 boundary elements and 32 domain points. 

Table 4.3 presents the BEM results of the examples as well as analytical and finite 

element results obtained using I-DEAS [48] with 400 quadratic elements for square 

plate and 240 quadratic elements for circular. As it can be seen from Table 4.3 that 

BEM results are in good agreement (the maximum error is less than 4%) with both 

analytical and finite element results. 
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Table 4.3: Buckling coefficients of square and circular plates. 

Boundary Condition Domain Cell DRM FEM Analytical 
I-A 10.387 10.142 10.392 10.070 
I-B 4.041 3.999 4.011 4.000 
I-C 7.757 7.683 7.796 7.690 
I-D 6.972 6.781 6.882 6.740 
I-E 1.724 1.712 1.718 1.700 
I-F 1.417 1.428 1.422 1.440 
11-A 5.779 5.889 5.921 5.910 
II-B 1.661 1.689 1.714 1.702 

I square plate 

II circular plate 

A: sides and ends clamped 

B: sides and ends simply supported 
C: sides clamped, ends simply supported 

D: ends clamped, sides simply supported 

E: one side free, one side clamped, end simply supported 

F: one side free, the other side and ends simply supported 
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Figure 4-5: Rectangular plate subjected to compression loads. 

4.6.3 Rectangular plate subjected to compression load with differ- 

ent boundary conditions 

In this example, a rectangular plate (as in Figure 4-5) subjected to compression 

loads with different boundary conditions is presented. The buckling coefficients K 

for different aspect ratio a/b are presented in Figure 4-6 and the accuracy achieved 

by BEM can be considered satisfactory. The legends in the Figure 4-5 stand for 

boundary conditions as follows 

cccc : sides and ends clamped 

ssss : sides and ends simply supported 

cscs : ends clamped, sides simply supported 

sfsc : one side free, one side clamped, end simply supported 

sssf : one side free, the other side and ends simply supported 

The buckling contours and modes of simply supported rectangular plate are 

presented in Figures 4-7 and 4-8 respectively. From Figure 4-8, it can be seen that 

increasing the aspect ratio a/b will increase a number of half-waves. Contour plot 

presented in Figure 4-7 are related to the buckling modes. 

4.6.4 Rectangular plate subjected to shear loads 

In this example, shear buckling of rectangular plate with different aspect ratio a/b is 

presented. The buckling model is shown in Figure 4-9. Boundary conditions applied 

are simply supported and clamped. The results are plotted in Figure 410 and are 
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Figure 4-6: Buckling coefficients of rectangular plate with different boundary con- 
ditions. 
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Figure 4-7: Contour plot of simply supported rectangular plate buckling. 
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a/b =1 

Figure 4-8: Buckling modes of simply supported rectangular plate. 

compared with analytical and finite element results. Good agreements (< 1.5% 

error) is achieved in both cases. Buckling contours and modes of simply supported 

rectangular plate are also presented. The contour types of buckling is shown in 

Figure 4-11. The shear buckling modes of simply supported rectangular plate call 

be seen in Figure 4-12. 

4.6.5 Rectangular plate with a hole subjected to compression loads 

In this example, a rectangular plate with a hole (Figure 4-13) subjected to com- 

pression loads is presented. The aspect ratio of the plate is a/b = 2. The buckling 

coefficients with different aspect ratio d/b (diameter of hole to width of the plate) 

are plotted as shown in Figure 4-14. The results are compared and show good 

agreements (< 2.5% error) with finite element results. 
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Figure 4-9: Rectangular plate subjected to shear loads. 
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Figure 4-10: Shear buckling coefficient of rectangular plate. 
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a/b =4 

a/b =3 

a/b =2 

Figure 4-11: Contour plot of shear buckling of simply supported rectangular plate. 

2 

Figure 4-12: Shear buckling modes of simply supported rectangular plate. 
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Figure 4-13: Rectangular plate with a hole subjected to compression loads. 
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Figure 4-14: Buckling coefficients of rectangular plate with a hole subjected to 

compression loads. 
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Figure 4-15: Secondary buckling coefficients of simply supported rectangular plate 
under compression loads 

4.6.6 Secondary buckling of simply supported rectangular plate 

subjected to compression loads 

In this example, secondary buckling mode of simply supported rectangular plate 

subjected to compression loads is investigated. The primary buckling mode of the 

example is shown in Figure 4-16. The results are plotted with different aspect ratio 

and are compared with analytical results. The results in Figure 4-15 are considered 

satisfactory. Secondary buckling modes are plotted in Figure 4-17 . 
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Figure 4-16: Primary buckling of simply supported rectangular plate under com- 
pression loads 

one half-wave thrArý hnIf-\A/r1\/PC 

Figure 4-17: Secondary buckling mode of simply supported rectangular plate sub- 
jected to compression loads 
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4.7 Summary 

In this chapter, the boundary element method formulation of buckling analysis of 

shear deformable plates was presented. Plate buckling equations were written as 

a standard eigenvalue problem. The domain integrals which appear in this formu- 

lation are treated in two different ways: initially the integrals are evaluated using 

constant cells, and next, the dual reciprocity method (DRM) is used to transform 

the domain integrals into equivalent boundary integrals. The eigenvalue problem of 

plate buckling yields the critical load factor and buckling modes. 

Several examples of plates buckling with different geometries, loadings and bound- 

ary conditions were presented. The results presented were shown to be in good 

agreement with analytical and finite element results. 
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Chapter 5 

Buckling Analysis of Cracked 

Plates 

5.1 Introduction 

The boundary element method is a powerful numerical tool for general stress analysis 

of crack problems. The difficulty which appears in modelling of crack problems is 

due to coincidence of the crack surfaces that makes point collocations on two crack 

surfaces generate identical equations [10]. To overcome this difficulty, several special 

techniques have been developed to model cracked structures. Among these the most 

general are the sub-region method [18] and the dual boundary element method [39]. 

In this chapter the dual boundary integral equations for the buckling analysis 

of the Reissner shear deformable cracked plate are presented. The domain integrals 

which appear in this formulation are transferred to boundary integrals using the 

dual reciprocity method. The plate buckling equations are presented as a standard 

eigenvalue problem, which would allow direct evaluation of the critical load factor 

and buckling modes. 

5.2 The Dual Boundary Integral Equations 

A cracked body shown in Figure 5-1 is considered with r+ and r- referring to the 

upper and lower crack surfaces respectively, and I'b denotes the rest of the boundary. 
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L) 

x+ r+ 

X- r- 

r= rb+r++r- 

Figure 5-1: A cracked body. 

The equations (4.1) and (4.4) can be recalled to represent the boundary integral of 

the displacement components ua and wi for collocation points on the upper crack 

surface, that is x+ E r+ [10], 

2u, (X+) + 2ua(X) +ir T 
a(X+, x)uc(x)dr(x) 

= 
1u; 

a(x, x)t'(x)dr(x) (5.1) 

and 

2wj(x+) +wj (x )+j1(xtx)wi(x)dr(x) 

=[W; (x+, x)p; (x) dr(x) 

+A 
I 

WA (x+, X) (Naß,. *, w3, Q + Näß earw3, Qa) (X) dcZ (X) 

+X 
fW 3(x+, X)4(X)dcZ(X) (5.2) 
n 

where x+ and x7 are referring to collocation points on the upper and lower crack 

surfaces respectively. 

94 



The deflection w3 at the domain points X' is required as an additional equation to 

arrange an eigenvalue equation, by recalling equation (4.6) as follows: 

w3(X') -f 
W3j(Xý, X)linear (x)dr 

-J Pg'j(e)X)211j(X)dl'(X) 

+A j W33(X', X)4(X)d1(X) 

i3, ear 
. 

rw3, 
R + N, ' W3, Qa) (X)dSl (X) (5.3) +ý 

r W33 (X', X) (NZ, 

As the source point x+ is coincident with xE r-, therefore the extra free terms 

2ua(x) and 2wj(x) will appear in equations (5.1) and (5.2). The collocation at 

x will also give the same integral equations as equations (5.1) and (5.2). This 

situation will provide an ill-conditioned system of algebraic equations. 

In order to overcome the above difficulty, the traction integral equations are 

used for collocations at xE r-. For collocations on xE r-, the in-plane stress 

resultants boundary integral equation can be expressed as 

Na ear(x )+N, 1�'ý ear/X-}-1 +r 7+, --�(x 
, x)u'Y(X)dr(X) 

Q7ýX 
)týnearXýýýXý (5.4) (Ü« a{ =J 

r 

and the plate bending stress resultants boundary integral equation can be written 

as follows 

1 M«Q(X M. 2M., 6(X+) + fPp(x, x)w(x)dr(x) 
+fP 

r 
p3(x , x)w3(x)dr(x) 

= fWß1(xx)Pi(x)dr(x) -F 

+A 
J 

Waß3(x , X)gdI (X) 
J 

Waß3(X 
eXýP3near/X)ý"(X) 

rl 

+A 
/ Waß3 

(X , 
X) (NB 

,B 
rW3,,, + NB, $ edr, w3, ýve) (X)dfZ(X ) 

in 
(5.5) 

95 



and 

Qß(X )+ 
ZQQX++fPp(x, x)w1(x)dr(x) 

+J Pgß3 (X 
, x)w3 (X) (X) 

J �(x , x)p� (x)dr(x) +j W3ß3 
(X , X)p3 near (x) dr(x) 

+A fw ß3(x , X)gdl(X) 

+A J W3 a3 (X , X) (NN, B rw3, ýv + NBA ear w3.0) (X)dsi(X) (5.6) 
n 

Multiplying equations (5.4 - 5.6) by the outward normal np(x-) and denoting 

that np(x+) = -nß(x ), the traction integral equations for a boundary source point 

at lower crack surface x- are as follows: 

2tlýinear(X 
)_ 

Ztlcinear(X+) + tß(X JTß (X X)2L7(X)CT(X) 

nß (x-) 
f 

U, (x 
, x)irynear(X)aT(x) 

r 

and 

(5.7) 

Zpa(x) 
- 

2p, (x+) +nß(x) JP ß�(x 
, x)wy(x)dI'(x) 

+ nß(x)JrPPß3(x >x)w3(x)dr(x) 

= nß (x) 
f 

WWß (x 
, x)p7 (x) dr(x) + nß (x') JW ß3 (x > x)p3 linear (x) dr(x) 

rr 
+Xnß(x) 

I 
WWp3(x >X)4dfl(X) 

+)tnß (x) J Wßß3 (X 
> X) (N o rW3, ý0 + NB, ý earw3, c2o) (X)dSZ(X) (5.8) 

n 

2P3(X )- 2P3 (X+) +na(X )j P3 ß7(X , x)w,, (x)dr(x) 
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+nß (i c-) 
f 

P3ß3 (x 
, x) w3 (x) fi(x) 

= nß (x-) 

J 
W3ßry (x 

, x)p1(x) dr(x) + nß (x )f W3ß3 (X 
v x)p3 near (x) dr (x) 

-I-Anß(X )JI W3ß3(x 
, X)gd0(X) 

+Anß (x) [Wß3(x, 
X)(No, o rW3ýýv + Ne earw3ý , o) (X)dcl(X) (5.9) 

n 

To arrange an eigenvalue equation, the derivatives of W3 have to be expressed in 

terms of w3(X), see section 4.2.3. Equation (5.2) can be written as 

wj (x+) +2 wj (x-) +f 1'tß (x+, x)'wj (x) d (x) 

f 
W' (X+, x) 

pý near (x) dr (x) 

Jr 

+X 
f Wi3 (x+, X) (N1 'f (r), PFw3) (X)df2(X) 
r 

+A 
(W 3 (x+, X) (N 7x f(r), Q -' f (r), p -1W3) (X) dT (X) 

I 
+A W3(x+, X)q(X)dc1(X) (5.10) 

The plate bending stress resultants equations (5.5) and (5.6) are written as 

M«3(X )+ 2M«Q(x+) +j Päp'(x , x)w7(x)dr(x) 

+f p,, -, 3(x , x)w3(x)dr(x) 

Waß, (X 'X)pY(X)aT(X)+ 
Waß3&X 

, X)p3near(x)dr(x) 

+A 
[Wp3(x, 

X)qdcl(X) 

+I \f W«ß3X , X) (No 
, 
gar f(r), OF-lw3) (X)dQ(X ) 

n 

+\J W«ps(X )X)(NBAearf(r), 8ý,, -lf(r), ýý,. -lwg)(X)dIz(X) (5.11) 
n 

and 
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QQ(X ) 2QQ(X+) + 
fPß(x_, 

x)w. Y(x)dr(x) 

+J P3ß3(X , X)w3(x)dr(x) 
f 

W3�, 
(x , x)p�(x)dr(x) +r W3ß3(X 

, x)p3near(X)ý(X) 

+ý 1 W3ß3 (x) X)gd9 (X) 
Jn 

+.. \j W ß3(x , X)(Ne, ý; 0 rf(r), +ýF-iw3)(X)dSZ(X) 

-I-A 1n W3as(X X) (Nei ear f(r), oF-1 f(r), +Gý, -1mss)(X)dcz(X) (5.12) 

Traction boundary integral equations for plate bending can be expressed as 

Zpa(x) 
- 

1pa(x+) 
+ nß(x) 

f 
P«P1(x , x)wy(x)dr(x) 

+nß (x-) 

J 
Paß3 (X-, X)w3 (X) dr(X) 

r 

nß (X) 
f 

W«ß7 (X 
, x)p7 (x) dI' (x) + np (xl) f 

W«p3 (X 
, X)p3 (X) dr(X) 

rr 

+, \nß(x) 
f 

W«p3(x , X)9d1(X) 
n 

+, \nß (x-) 
j 

W«p3(X , X) (Ne e rf(r), +GF-iw3)(X)dQ(X) 

+, \nß (x) fý 
Waß3(x X) (Nei ar f(r), BF, f(r)' F-1w3) (X)dfZ(X) (5.13) 

and 

i3(X )- ZP3(X+) 
nQ(X )f P32 ß-, 

(x 
, x)wy(x)dr(x) 

+nß (x-) Jr 
P3ß3 (X X)2U3 (X)dI'(X) 

nß (x-) f Wsß7 (X 
, X)p7 (X) dr(X) + nß (X )l W3ß3 

lX , X)P3 (X) dr(X) 

+Anß (x-) 
J 

W3ß3 (X , X)gd9 (X) 

10 
+, \nß (x-) f 

Wäß3(X , X)(No, ' *f(r)�pF-'w3)(X)dn(X) 
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I 

J X) (N0 e+Anß(x) W 3(x 'f(r), eF-1f(r)�pF-1w3)(X)dc(X)(5.14) 
n 

By recalling equation (4.8), the deflection equation w3 at the domain points X' as 

w3(X') =J W3j(X', X)Pjnear(x)dr(x) 

rll 

-f P3j (X', x)'wj (x)dr(x) 

+X I W33(X', X)9(X)dl(X) 

+X Jý W33(X', X) (Näß a''f (r), PF-lw3) (X)d1(X ) 

--a J W33 (X ý9 X) (Na ear f(r), «F-l f (r), ßF-'w3) (X) dSt (X5.15) 

By recalling equation (4.10) as 

fb =q+ Nl, 'p'ýff (r), PF-1W3 + Nä3"' f(r),,, -1f (r), PF-ßw3 (5.16) 

Therefore equation (5.10) can be expressed as 

2wß (x+) + wi (x-) + jP(xtx)wi (x) dr (x) 

=JWij (X+ X)pj'ýnear \(x) 
dr 

l(x) 

+X 
IW3 (x+, X) fb (X)dc (X) (5.17) 

The equations (5.11) and (5.12) are written as 

2Maß(X )+ 2M'P(X+) +J Paß, (x-, X)w, (X)ý'(X) 
r 

+I Päß3(X , X)w3(X)dr(X) 
r 

=j Waßry(x 
, X)p7(X)dr(x) +f Waß3(X 

'X)Zý3near(X)d"(x) 

+ý J Waß3(X , X)fbdZ(X) (5.18) 
n 
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and 

2 Qß (x+) + 
jP7(x, 

x)w(x)dr(x) Qß fix) + 

+J PSQ3 (X 
, X)w3 (X) aT(X) 

r 

- Jr 
W3Q7\X X)1ýry(X)ý(X) + 

Jr 
W3Q3(x 

v x)p3(x)a 

+% 

J 
W3ß3 

(X , 
X)fbdf (X) 

The traction boundary integral equations (5.13) and (5.14) 

(5.19) 

2P«(X) 
- 2Pa(X+) +np(x) Jr P, *�R, 

y(X , X)w7(X)dr(X) 

+nß (x) 
f 

Päps (x-, x)w3 (x) dr(X) 

of (x) J Wýß, ý, 
(x 

, x)p7(x)dr(x) + nß(x') 
fW 

3(X 
, X)p3ýear(x)dr(x) 

rr 
+Anp(x )J Wäp3(x, X)fbdZ(X) (5.20) 

2p3(X 
)- 2p3(a{{ nQ(X 

J 
P3Q7(X X)w7(x)dr(X) 

r 
+np(x )J P3Q3 (x, X)W3(x)dr(x) 

r 
= nQ (x ) 

Jr 
W3Q7 (x 

, x)p7 (x) Cr (x) + nß (x ýj W3Q3 (x 
, X)P3 near (x) d" (x) 

+Anp(x J 
W3ß3(x X)fbd9(X 

il 
(5.21) 

The deflection equation w3 at the domain points X' can be written as follows 

w3 (X') =J W3j 
(X', X)p"near (x)dr(x) 

r 

-f Psi (XI, X)wj (X)dr(x) 

+a J W33 (X', X) fb dQ (X) (5.22) 
i) 
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Equations (5.1) and (5.2) and (5.7,5.20,5.21) represent displacement and trac- 

tion integral equations respectively on the crack surfaces, and together with the use 

of the displacement integral equations in equation (4.1) and (4.9), that is 

CBa (x') ua (X') + JT9*a(xl, x)uo(x)dr(x) 

= (x'ýx)t ne,, (x)dr(x) (5.23) 
Jr r 

and 

Cj (X')w j (X') + 
fi; 

(x', x)wj (x) Cý, (x) =1 W{'j (De, X)pjinear (x) dr (x) 

+A 
fW3 (x', X) fb(X)dct(X) (5.24) 

for collocation points on the rest of the boundary rb, form the dual boundary integral 

formulation. 

Domain integrals which appear in the formulation are transferred to the bound- 

ary by employing the dual reciprocity technique as described in sections 3.5 and 

4.4. As the source point x+ E I'+ is coincident with xE r-, it is important to 

note when the dual reciprocity technique is applied to a structure containing cracks, 

domain integrals will contain extra free terms as in equations (5.17 - 5.19). 

The domain integral in equation (5.17) is rewritten as: 

JIW, 
(x', X)fb(X)dn(X ) 

_L2 
wrºý9 (X+ý + wmj (x + Pij 

(X', X)wml (x)dr(x) 
m=1 

r 

- *j(x', x)Pmj(X) dr(x)I ý' -l 
. 
fb (5.25) 

Jr r 

The domain integral in equation (5.18) is rewritten as: 

=; [ Mmaß(x) + 
jWß3(xX)fb2(X)d(X) 

m-1 
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+f PýßýýX ýX)wm7ýX)ý'ýX) r 

-{-J Pn63(X 
sX)lU. 3(X)aT(X) 

-J W, *ß, 
r(x , X)P,,, y (x)dr(x) (5.26) 

-J Waß3(X 
, X)pm3(X)dr(X)]F-1 fb} 

rJ 

The domain integral in equation (5.19) is rewritten as: 

fWß3(x-X)fb2(X)dc2(X) 
= {ý [2Qmß(X) + ZQmß(X+) 

m=1 

+f P3ß7(X 
, X)wm7(X)d(X) 

+J P3ß3(X 
, X)w, 3(x)dI'(X) 

ß7(X , X)i3my(X)dF(X) (5.27) -J W3 

r 

-f W3ß3(X 
)X)Pm3(X)dr(X)]F-1 

f'6} 

5.3 Numerical Implementation 

5.3.1 Crack modelling strategy 

As described in Chapters 3 and 4, to discretise the boundary including crack surfaces 

into elements, isoparametric quadratic elements are used. Discontinuous elements as 

shown in Figure 5-2 are used for modelling the crack surfaces to satisfy the continuity 

requirements of displacements and tractions at collocation points for displacement 

and traction integral equations. 

The general modelling strategies used in this work are similar to those used in 

[63] and can be summarized as follows: 

. crack boundaries are modelled with discontinuous quadratic elements, as shown 

in Figure 5-3, in such a way that each node of one of the crack surfaces is co- 

incident with the node on the opposite surfaces; 

9 the traction equations (5.7), (5.20) and (5.21) are applied for collocation on 

one of the crack surfaces; 
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Figure 5-3: A cracked plate. 
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" the displacement equations (5.1) and (5.17) are applied for collocation on the 

opposite crack surface and for the other non-crack boundaries the displacement 

equations (5.23) and (5.24) are employed; 

. continuous quadratic elements are applied along the remaining boundary of 

the body, except at the intersection between a crack and an edge, where dis- 

continuous or semi-discontinuous elements are required on the edge in order 

to avoid a common node at intersection, and also at boundary corners, where 

semi-discontinuous are preferred. 

This simple strategy is robust and can be used effectively to model general crack 

problems by DBEM. 

5.3.2 Special crack-tip elements 

To deal with the behaviour of displacement fields near the crack tip, a set of 

special shape function has been used for crack tip elements similar to those reported 

by Mi and Aliabadi [57] for three dimensional elasticity problems. In this work, a 

discontinuous quadratic element with _ -3,0, +3 is used. The quadratic shape 

function -1)D for a discontinuous quadratic element are given as: 

"D() = 
3ý(2 

-1) 

., DD(ý) = 4C(2 + 1) (5.28) 

The variation of the displacements along the element is required to have the form 

of u (6) = ON" (ý) = ai + a2 + a3 (r). If the crack tip is located at C= -1, 
then the shape function in the form Na () = ai + a2 1++ a3 (1 + C) is used. 
On the other hand, if the crack tip is located at ý= +1, then the shape function in 

the form N" (ý) = bi + b2 T+ b3 (1 - C) is used. If Na (C) is set to equal 1 at 
the collocation node a, and 0 at the other nodes, a set of linear system of equations 

are established and the unknown constants can be obtained. 

Therefore, the shape functions for crack tip elements with the crack tip located 
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at are 

Ni-1) () =2 
C3 - 115 

+ 

16 -2 (5.29) 

N2-1)()-3( 
15-, /-3) -12 1+ +2( 15+ý 

(5.30) 
2( 15+v/3- -6) 

N3-1> () =2 
(v _ 315 

+16_2 
(5.31) V3- - 

and for crack tip element with the crack tip located at ý= +1 are 

Nl+i) (ý) =3 
(3 - V35)5 

+ ýý 
6-2 

(5.32) 

N2+1) _ 
3(V- 15C-12V1- +2( 15+y') 

(5.33) (ý) 
2( 15+/-6) 

N3+1) (ý) =2 
(V1-5 - 

13) 
C5 

-+ -+ 

2VT 

-6-2 
(5.34) 

5.3.3 Crack modelling consideration of the dual reciprocity tech- 

nique 

In the implementation of the dual reciprocity technique for the dual boundary el- 

ement analysis, difficulties will appear due to the coincidence nodes along crack 

surfaces. The existence of two coincident collocation points would make the coeffi- 

cient matrix F singular and requires a special treatment. However, as will be shown 

next, this difficulty is overcome due to the cancelling of the integrals over the two 

crack surfaces. 

Similar to the discussion reported in Salgado and Aliabadi [73], the contribution 

of the integration over crack boundaries can be calculated by considering a colloca- 

tion point x' and two coincidence nodes x and x+ on opposite crack surfaces. The 

integrals can be written in matrix form as 

W=[ H (x', x+) H (X', x) 
J *k `X', X+) 

Wk (X', 
X 

(5.35) 
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x+) G 
Pk (X', X+) 

Pk (X', X_) 

It can be observed that particular solutions and fundamental solutions have 

properties as follows: 

Pk (x') X+) _ -Pk 
(x', X-); and 

2uk (x', x+) - wk (x', X-) ; and 

Pik (x', x+) = -pik (x', X-); and 

Pißk (x') x+) _ -P ßk (x'))X-); and 

Wilk (x', x+) = Wilk (x', X-); and 

W ak (x', x+) = 'i/3k (x', X-); and 

iß (x', x+) _ -iß (x', x-) 

üß (x', x+) = üß (x', x) 

TTß (x', x+) = -TTQ (x', x-) 
T., ß7 (x', x+) = -TTß (x', x-) 
UUQ (x', x') = Up (x', x-) 

Uäß7 (x', x+) = Uäß7 (3e, x-) 

(5.36) 

Substituting properties in equation (5.36) into the matrix in equation (5.35), it 

can be seen that the contribution of the integration over crack boundaries to the 

coefficient matrix is equal to zero. Therefore, it is not necessary to include the 

crack boundaries in the integration process of domain integrals. In that case, the 

difficulties mentioned above are eliminated since the exclusion of crack boundary 

also means that there will be no dual reciprocity collocation points along the crack 

boundaries. 

5.3.4 Treatment of the singularities 

There are three different orders of singularities occurring in the dual boundary in- 

tegral equations, i. e. weakly singular, strongly singular and hypersingular integrals. 

The weakly singular integrals are cancelled using a bi-cubic nonlinear coordinate 

transformation as described in Appendix C. Strongly singular integrals along the 

non-crack boundaries are evaluated indirectly using the consideration of generalised 

rigid body movements as described in Chapter 3. 

On the crack boundaries, the strongly singular and the hypersingular integrals 

are evaluated using a singularity subtraction method based on the Taylor series ex- 

pansion around the singular point for bending and shear integrals, and subsequently, 

the singular terms are integrated analytically [5]. For straight elements along the 
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crack, the evaluation of the strongly singular and the hypersingular integrals in 

membrane integral equations are most effectively carried out using direct analytic 

integrations. Details of the singularity subtraction method and direct analytic inte- 

grations are described in Appendix C. 

5.4 Numerical Procedure 

Similar to the procedures described in Chapter 4, a numerical procedure of cracked 

plate buckling analysis by the dual boundary element method is presented. The first 

step is to solve the dual boundary integrals of in-plane problem and then calculate 

the stress resultants at the domain points. The second step is to solve the dual 

boundary integral formulation for buckling problems. 

5.4.1 Determination of the in-plane stresses 

After discretising and introducing boundary conditions into equations (4.1), (5.1) 

and (5.7), the system of algebraic equation can be arranged in terms of the known 

and unknown quantities as follows: 

[A] {X} = {F} (5.37) 

where matrix X contains the unknown vectors of displacements u and tractions 

t. The vector F is obtained by multiplying the related coefficient matrices by the 

known vectors of displacements u or tractions t. 

Once equation (5.37) has been solved, in-plane stresses N11, N12, and N22 in the 

domain (equation (4.3)) can be calculated. The stresses are required to solve the 

cracked plate buckling problem. 
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5.4.2 Solving the plate buckling problem 

After applying the boundary conditions to equations (5.24), (5.17), (5.20) and (5.21), 

they can be written in a matrix form as: 

[C] {w} + [HP] {w} _ [Gp] {p} + ? [Geq] {fb} (5.38) 

in which Hpand GP are boundary element influence matrices for plate bending, 

* and p are matrices of node values of particular solution on the boundary and 

Geq = (H"* - GPp)F-1. The q(X) quantities in the equations (?? ) and (?? ) are 

set to zero. Then, the term fb(X) in equation (5.16) can be expressed in term of 

W3(X), as follows 

fb(X) = f(X)w3(X) (5.39) 

where fbw= Ni q' f (r), PF-1,,. F, NaQear f(r), ýf (r), aF"-1 

Equation (5.38) can be arranged in a similar manner as equation (5.37), and give 

[B]3Nx3N {Y}3N =A [K]3NXL {W3}L (5.40) 

K= GPQfb,,, (5.41) 

where the matrix B contains the coefficient matrices Hp and GP. N and L are the 

number of boundary elements and domain points, respectively. 

The equation (5.22) can be also written in matrix form as follows: 

[I] 
IW3}L = [BB]Lx3N 

{Y}3N +A EKK]LXL {W3}L (5.42) 

where matrix [I] is an identity matrix. The matrix [BB] contains coefficient matrices 

related to fundamental solutions. The matrix [KK] are obtained by multiplication 

of coefficient matrices related to the fundamental solutions with matrix fb,,,. 

The equation (5.40) can be rearranged in term of unknown vector {Y}3N, 

{ }3N =A IB]3NX3N IK]3NXL 
{W3}L 5.43) 
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where matrix B-1 is the inverse matrix of B. 

The substitution of the equation (5.43) into the equation (5.42) yields: 

[I]{W3}L =X [BB]Lx3N [B]3Nx3N [K]3NXL {W3}L 

+A [KKJLXL {W3}L (5.44) 

Then, 

[I1 
1W3IL - 

\([BB]Lx3N IBJ3Nx3N LK)3NxL 1 

+ [KKILXL) {W3}L (5.45) 

The equation (5.45) can be written as a standard eigenvalue problem equation 

as follows: 

(ý'/ýý - [I]) {W3IL =0 (5.46) 

where [ b] = [BB]Lx3N [BJ3Nx3N IK]3NXL + IKK]LxL" 

Analysis of shear deformable cracked plate buckling problems has been presented 

as a standard eigenvalue problem. Buckling coefficients correspond to the problem 

can be obtained by the solution of equation (5.46). 

5.5 Numerical Examples 

Several numerical examples are presented to demonstrate the ability of the proposed 

method to solve cracked plate buckling problems with different geometries, loadings 

and boundary conditions. The buckling coefficients K are defined as described 

in section 4.6. The calculated values of K are compared with analytical [78] and 

differential quadrature element method [54] results. 

5.5.1 Convergence study of simply supported rectangular cracked 

plates subjected to compression loads 
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Figure 5-4: Rectangular plates with a central crack subjected to compression loads. 
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In this example, convergence of the presented formulation is assessed by solving 

a simply supported cracked plate as shown in Figure 5-4. Two configurations of 

rectangular plate with aspect ratio a/b =2 are considered here: (i) a longitudinal 

central crack with 2c/a = 0.25 and (ii) a transverse central crack with 2c/b = 0.25. 

Both models are discretised into 8 elements on the long sides and 4 elements on 

the short sides. Each model has different meshes on the crack surfaces. The BEM 

results are shown in Figure 5-5. As it can be seen, the buckling coefficient for model 

(i) in Figure 5-4 is not sensitive to the number of elements on the crack surfaces and 

convergence is achieved with only 8 elements on the crack surfaces. The convergence 

for model (ii) can be achieved after the crack surfaces are modelled using 14 elements. 
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Figure 5-6: Variation of buckling coefficients for the plate (aspect ratio a/b = 1) 
with a longitudinal central crack. 

5.5.2 Simply supported rectangular plates with a longitudinal cen- 

tral crack 

Here, the problem of the rectangular plate with a longitudinal central crack 

subjected to compression loads is studied again. The model is similar to that shown 

in Figure 5-4 (i) but the aspect ratio of the plate is varied. Two configurations are 

considered: (a) the plate with aspect ratio a/b =1 and (b) the plate with aspect 

ratio a/b = 2. Stahl and Keer [78] have analysed the first case. Both cases were 

analysed by Liu [54]. Buckling coefficients for different aspect ratios of crack length 

to the length of plate 2c/a are presented in Figures 5-6 and 5-7. Figures 5-8 and 

5-9 present the change in the buckling modes of rectangular plate with aspect ratio 

a/b = 2. For the case of short cracks (aspect ratio 2c/a up to 0.25), the buckling 

modes are illustrated in Figure 5-8. When the aspect ratio 2c/a is greater than 0.25, 

the buckling modes change as shown in Figure 5-9. It can be seen from the Figures 

that the present results are in very good agreements (less than 1% difference) with 

those presented in Stahl and Keer [78] and Liu [54]. 
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Figure 5-7: Variation of buckling coefficients for the plate (aspect ratio alb = 2) 

with a longitudinal central crack. 

Figure 5-8: Mode A: initial mode of simply supported rectangular plate with a 
longitudinal central crack. 
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Figure 5-9: Mode B: second mode of simply supported rectangular plate with a 
longitudinal central crack. 

5.5.3 Simply supported rectangular plates with a longitudinal edge 

crack 

In this example, a rectangular plate with a longitudinal edge crack subjected to 

compression loads is presented. The model is shown in Figure 5-10. Two configu- 

rations of edge crack plate are considered: (a) aspect ratio a/b =1 and (b) aspect 

ratio a/b = 2. The second case has been analysed by Stahl and Keer [78], and Liu 

[54] has investigated both cases. Buckling coefficients for different aspect ratios of 

crack length to the length of plate c/a are presented in Figures 5-11 and 5-12. It can 

be seen from the Figures that good agreements ( less 1.5% difference) are achieved 

with those presented in Stahl and Keer [78] and Liu [54]. 

5.5.4 Rectangular plates with a longitudinal central crack and dif- 

ferent boundary conditions 

A rectangular plate with a longitudinal central crack subjected to compression 
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Figure 5-11: Variation of buckling coefficients for the plate (aspect ratio a/b = 1) 

with edge crack. 
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Figure 5-12: Variation of buckling coefficients for the plate (aspect ratio a/b = 2) 
with edge crack. 
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Figure 5-13: Variation of buckling coefficients for the plate (aspect ratio a/b = 2) 
with a longitudinal central crack and different boundary conditions. 
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Figure 5-14: Rectangular plates a/b =2 with a longitudinal edge crack and different 
boundary conditions. 

loads with different boundary conditions is presented. The model is similar as shown 

in Figure 5-4 (i) with aspect ratio of the plate a/b = 2. Buckling coefficients for 

different aspect ratios of crack length to the length of plate 2c/a are presented in 

Figure 5-13. The legends in the Figure 5-13 are similar to those defined in section 

4.6.3, i. e. 
cccc : sides and ends clamped 

ssss : sides and ends simply supported 

cscs : ends clamped, sides simply supported 

scsc : sides clamped, ends simply supported 
As it can be seen, the buckling coefficients decrease with increasing 2c/a for all 

four different boundary conditions. The buckling coefficient is the highest for cccc 

and the lowest for ssss. 

5.5.5 Rectangular plates with a longitudinal edge crack and differ- 

ent boundary conditions 

Here, a rectangular plate with a longitudinal edge crack subjected to compression 
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Figure 5-15: Rectangular plate with two symmetric cracks emanating from a hole. 

loads with different boundary conditions is analysed. The model is similar to that 

shown in Figure 5-10 with aspect ratio of the plate a/b = 2. Buckling coefficients for 

different aspect ratios of crack length to the length of plate c/a are presented. The 

results of this example are shown in Figure 5-14. The legends in the Figure 5-14 are 

similar with those described in section 5.5.4. The buckling coefficients are shown to 

decrease with increasing crack length to width ratio. 

5.5.6 Rectangular plate with two symmetric cracks emanating from 

a hole 

This example involved a simply supported rectangular plate with two symmetric 

cracks emanating from a hole subjected to compression loads with different boundary 

conditions. The model is shown in Figure 5-15 . The aspect ratio of length to width 

of the plate a/b = 2. Buckling coefficients for different aspect ratios of crack length 

to the length of plate 2c/a, and two different hole sizes R/b = 0.1 and R/b = 0.25 

are presented in Figure 5-16. 

The K value for R/b = 0.1 and 0.25 are higher than R/b = 0. In all cases, the 

buckling coefficients decrease with increasing ratio of 2c/a. 
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Figure 5-16: Variation of buckling coefficients for simply supported plate (aspect 

ratio a/b = 2) with two symmetric cracks emanating from a hole. 

5.5.7 Rectangular plate with two collinear cracks 

In this example, a rectangular plate with two collinear cracks subjected to compres- 

sion loads with different boundary conditions is analysed. The model is shown in 

Figure 5-17 with aspect ratio of the plate a/b = 2. Buckling coefficients for different 

aspect ratios of crack length to the length of plate 2c/a and 2e = 0.5a are presented 

in Figures 5-18. The buckling coefficients for ssss are almost half of those obtained 

for cccc. 

5.5.8 Rectangular plates with a transverse edge crack 

In this example, a rectangular plate with a transverse edge crack as shown in Figure 

5-19 subjected to compression loads is analysed. Aspect ratio of the plate a/b = 2. 

Two boundary conditions are applied: (a) all sides simply supported (ssss) and (b) 

One long side clamped and the others simply supported (sssc). Buckling coefficients 

in different aspect ratios of crack length to the length of plate c/b are presented in 

Figure 5-20. As expected the values of K for ssss are lower than sssc. 
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Figure 5-18: Variation of buckling coefficients for simply supported plate (aspect 

ratio a/b = 2) with two collinear cracks. 
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Figure 5-19: Rectangular plate with a transverse edge crack. 
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Figure 5-20: Variation of buckling coefficients for rectangular plate (aspect ratio 
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Figure 5-21: Rectangular plates with a transverse central crack subjected to com- 
pression loads. 

5.5.9 Simply supported rectangular plates with a transverse central 

crack 

In this example, a simply supported rectangular plate with a transverse central crack 

subjected to compression loads is analysed. The model is similar to that shown in 

Figure 5-4 (ii) with aspect ratio of the plate a/b = 2. Buckling coefficients for 

different aspect ratios of crack length to the length of plate c/b are presented in 

Figures 5-21. Mode A in Figure 5-21 denotes initial modes for the case of a short 

crack (c/b = 0.0 to c/b = 0.25) as shown in Figure 5-22. It can be seen from 

Figure 5-21, as the crack length reaches ratio c/b between 0.25 - 0.275, the buckling 

coefficient has a big jump. After the crack length reaches ratio c/b = 0.275, the 

buckling modes change as shown in Figure 5-23. This phenomena occurs due to the 

change of buckling mode. 
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MODE A 

Figure 5-22: Mode A: an initial mode of simply supported rectangular plate with a 
transverse central crack. 

Figure 5-23: Mode B: second mode of simply supported rectangular plate with a 
transverse central crack. 
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5.6 Summary 

In this chapter, the dual boundary element formulation for buckling analysis of shear 

deformable plates was presented. The traction integral equations were applied on 

one of the crack surface, while the displacement integral equations were applied 

on the other crack surface and on all non-crack boundaries. The plate buckling 

equations were presented as a standard eigenvalue problem. 

Discontinuous elements were used to discretise crack surfaces, while continuous 

elements were used to model all non-crack boundaries, except for corners boundaries 

and the intersection between a crack and an edge, where semi-discontinuous elements 

were used. 

Several examples of cracked plates buckling with different geometries and bound- 

ary conditions were presented. The BEM results presented were shown to be in good 

agreements with analytical and other numerical results. 
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Chapter 6 

Geometrically Nonlinear 

Analysis of Plates 

6.1 Introduction 

Geometrically nonlinear behaviour in solid mechanics is one of the important prob- 

lems in engineering practice. Bending of rectangular plates with large deflection 

was presented by Levy [50] [51] using a solution of von Karman's equation in term 

of trigonometric series. An approximate analysis of large deflections for plates was 

introduced by Berger [17] which has become known as the Berger equation. The 

application of BEM to geometrically nonlinear problems is relatively new. Tanaka 

[84] presented a coupled boundary and inner domain integral equations in terms 

of stress and displacement functions based on the von Karman's equation. Kamiya 

and Sawaki [43] investigated the large deflection of elastic plates based on the Berger 

equation. Ye and Lin [102] analysed the finite deflection of thin plate by boundary 

element method. Based on the general nonlinear differential equations of finite de- 

flection of the plate, an integral equation formulation for the geometrically nonlinear 

analysis of the shear deformable type plate has been proposed by Lei, Huang and 
Wang [49]. Sun, He and Qin [66] derived an exact boundary equation for the analysis 

of the nonlinear Reissner plate based on a variational principle. 

The boundary element method has also been applied to analyse nonlinear prob- 
lems in the plate stability. Contribution to BEM analysis of nonlinear buckling of 
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thin plates have been made Manolis and Beskos [55], Kamiya, Sawaki and Naka- 

mura [42], Costa and Brebbia [24], Kawabe [46], Qin and Huang [67], and Tanaka, 

Matsumoto and Zheng [86]. The review of the application of BEM to the stability 

analysis of thin plate can be found in Liu [53] and Syngellakis [83]. 

In the analysis of the geometrically nonlinear plate bending problems, one of the 

difficulties is to evaluate domain integrals in the boundary integral equations. The 

domain integrals consist of coupling of the plate bending and membrane terms. 

Here, for large deformation analysis, initially the domain is discretised using con- 

stant cells. Then meshless domain using the dual reciprocity technique is presented. 

An approximation function is used to calculate the derivatives of the nonlinear terms 

in the domain integral. 

The nonlinear buckling of thin plate is also presented in this chapter. Two models 

of imperfections are introduced in the formulation, i. e. a small uniform transverse 

load and distributed transverse load based on eigenvectors. A load incremental 

numerical algorithm is presented to analyse the nonlinear problems. 

Next, large deformation analysis of cracked plates is presented. The analysis is 

performed using the dual boundary element method. Five stress intensity factors are 

obtained, i. e. three SIFs from plate bending problem and two SIFs from membrane 

problem. 

Finally, the nonlinear buckling of cracked plates is presented. The problem 

is analysed using the formulations for nonlinear buckling of thin plates and large 

deformation for cracked plates. 

Several examples are presented and comparisons are made to demonstrate the 

accuracy of the proposed method with analytical results and other numerical results 

results. 

6.2 Boundary Integral Equations 

The integral equations for the geometrically nonlinear shear deformable plate bend- 

ing problems can be derived by considering the integral representations of governing 

equations (2.37 - 2.39). The integral representation related to the governing equa- 

tions for bending and transverse stress resultants as: 
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i I(Map, P - nw a)Wc + (Qa, a + (Naßw3, Q), a + q)W3 JdcZ =0 (6.1) 

while the integral representation related to the governing equations for membrane 

stress resultants can written as 

in Nap, pUadSZ =0 (6.2) 

Derivation of boundary integral equations for the geometrically nonlinear plate 

bending problems is similar to the linear analysis as described in Chapter 3. Ap- 

plying the Betti's reciprocal theorem to the governing equations for bending and 

transverse stress resultants at arbitrary domain point X', gives: 

wi(X') + fP(X', x)w(x)dr(x) 

Iwý (X,, x) p' near (x) dr(x) + 
fý 

Wes (X', X) q (X) dSl (X) 

+f Wis(X', X)(N«pw3, P), «(X)dSZ(X) (6.3) 

In the same way, boundary integral equation for the displacements of two dimen- 

sional elasticity at domain point X' can be presented as 

ua()v) + 
Jr 

r 

_I Ue`a(X'ý x)tlänear(x)dr(x) +fn 119a(X', X)Na 
r'y (X)dc (X) (6.4) 

Then after taking the point X' to the boundary, that is X' -º x' at r, boundary 

integral equations are obtained as follows: 

Csjws(x') + jF(x', x)wj(x)dr(x) 

= 
Jr 

, 
(x,, x)pjnear(x)dr(x) +fW (x', X)q(X)dcl(X) ra 
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+f Wj3(x', X)(NapW3, ß), a(X)dfl(X) (6.5) 
t 

for plate bending problems and C; j = St? 12. 

Coaua(x') + TBa(x', x)ua(x)dr(x) Jr 
_ UBa(X', X)tIlinear(x)dr(x) + 

[U(x', 

fl 
X)N l inear(X)dSZ(X) (6.6) 

r 

for in-plane problems and CCa = Sea/2. 

6.3 Large Deformation Analysis 

In this section, two methods related to the evaluation of domain integrals which 

appear in the formulation, i. e. domain integral method and approximation function 

method are presented. 

6.3.1 Domain Integral Method 

The nonlinear terms which appear in the domain integrals are calculated directly 

using a domain integration procedure. Integrating by parts the last terms of the 

equations (6.5) and (6.6), gives: 

C; jwi(x') +1 Psj(x', x)wj(x)dr(x) 

wij (2, x)pj near(x)dr(x) + 
in 

W 3(x', X)4(X)dcl(X) 

+fW3 (X', x) (Naßw3, ß) na (x)dr(x) 
r 

-f W3(x', X)(Nýßw3, ß)(X)dT(X) (6.7) 
n 

and 

Coaua(x') +I T6a(x', x)ua(x)dr(x) 

r 

I UBaýX', Xltlainear/Xldr(x) 
f 

UBa(X', X)N Linear 
(x)dr(x) 

r1 
`1 \1 Jr 
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_J U0.17(XºýX)Nn Linear (X)dQ(X) 
ý 

Equations (6.7) and (6.8) can be simplified as follows: 

(6.8) 

Cj3w; (x') +J Pý(x', x)wi(x)dr(x) 

= 
fWi(x', 

x)p3(x)dr(x) + 
jW1(x', 

X)q(X)dcl(X) 

-jW ts (x', X) (Naßw3, R) (X) dSt (X) (6.9) 

and 

Coaua(x') + 
[Ta(x', 

x)ua(x)dI'(x) 

=fUea (X', x) to (x) dr(x) -ju; a,,, (X', x) N ianear (X) dsi (X) (6.10) 
r 

in which, 

{p} = [Mapnp, Qana] and {t} = [Napnp] 

To calculate the nonlinear terms for this approach, two additional integral equa- 

tions are required: the derivative of deflection W3,. y equation, 

w3,7(e) =f W37,7(X', x)pi(x)dr(x) -j P3,, 
7(X', x)w7(x)dr(x) + 

J 
W33,7(X', X)q(X)d2(X) 

il 

-n W33,7a(X', X)(Naßw3, ß) (X) d0(X) (6.11) 

and membrane stress resultant Min.. ' equation as: 

Na ear (V) =J UÄap(X', x)t0(x)dr(x) -r 
jTap(X'x)ut(x)dr(x) 

- 
ýý 

UöaR, y()V, X) oryr'i near(X)dcz(X) (6.12) 
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6.3.2 Approximation Function Method 

An alternative formulation is presented here for dealing with the domain integrals 

due to the nonlinear terms. The main reason for proposing this new formulation is to 

avoid direct calculation of the hypersingular integral which arises in equation (6.11). 

Although, the evaluation of these integrals is not too demanding with constant cells, 

higher order cells will pose some difficulties. The approximate function method 

proposed here would avoid the difficulties for higher order cells. The boundary 

integral equations can be expressed by recalling equations (6.5) and (6.6) as: 

CCjw2 (x') +j P"*j (x', x)w, (x)dr(x) 

_f W* (x', X)pj near(x)dr(x) +fW (X', X)q(X)d11(X) 
r si 

+f Wis(x', X)(N ßw3, R), a(X)dI(X) (6.13) 

and 

Coau«(x') + TL(x', x)ua(X)dr(x) 
Jr r 

= Jr UBa(x', x)tlýinear(x)dr(x) + 
in 

Ü6a(x', x) ýonlinear(X)dSZ(X) (6.14) 

in which, 

{plinear} = [Mapnp, Qlainearnq]; {tlinear} = [N,, 3 U ea rna] 

To calculate the nonlinear terms, three additional integral equations are needed. 

The first equation is obtained by recalling equation (6.3), that is 

Wz(c) + 
fF(X', 

x)w(x)dr(x) 

=f wi(X', x)pjnear(x)d, (x) +f Wi3(X', X)q(X)dcl(X) 
rn 

+f W 3(X', X)(NaßW3, Q), a(X)dQ(X) (6.15) 
n 
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The second equation is the derivative of deflection w3,. y given as 

W3, W) =f W39', (X', x)linear (x)dr(x) -f P3 -, (Xi, x), w3(x)dr(x) + 
ff 

W33, Y(V, X)q(X)dQ(X) 

3, -y (X', 
X) (N«PW 3, P), a (X) dIZ(X) (6.16) + 

in 
W3 

The third equation is the membrane stress resultant Nne" equation as 

N linear oV) =r Uiap (x' X)tlinenr (x)dT(x) - 
jT öap (V, x)uo (x)dT (x) 

(x)dQ(X) (6.17) +J Uöap(X', x)Nö ýý"ý°r 

As it can be seen, the nonlinear domain terms are now represented on (N«pw3, p), a. 
The fundamental solution W33,,, in equation (6.16) has a lower order of singularity 

than W33,, 
ya appearing in equation (6.11). 

Equations (6.3), (6.5) and (6.16) can be rewritten in the other forms as follows: 

w+(c) + 
fF(X'x)w(x)dr(x) 

= 
[w(X1, x)pe(x)ir(x) + 

in 
Wi3(X', X)q(X)dfZ(X) 

n 

+j Wj*3(X?, X)(N«Pu'3, P), a(X)dfz(X) (6.18) 

Cijwi (x') + 
jP1(x', 

x)w3(x)dr(x) 

=J 
Ws(xi'x)pj""(x)dr(x)+ f Wi3(x', X)4(X)dl(X) 

rý 
+j Wi3 (x', X) (NNQ, aw3, P + Ncßw3, ap) (X) dcz (X) (6.19) 

n 
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2U3,1'(XI) =I W3.9,7(X', X)pjneur(X)dr(x) 

-J P3.1,7(X', x)w. 9(x)dr(X) 

+f W33, ry(X, X)q(X)d1(X) 

+J W33,. 
y (X', 

X) 
(Naß, aw3, ß + NaPW 3, aß) (X) dcz (x) (6.20) 

in 

The domain integrals which appear in equations (6.17 - 6.20) are also evaluated 

using the dual reciprocity technique as described in sections 3.5 and 4.4. 

To calculate the derivatives of the nonlinear terms, the nonlinear terms are ap- 

proximated by the approximation function f (r) as described in section 4.2.3. The 

nonlinear terms Nöy 7inea'' which appear in the in-plane equations (6.6) and (6.17) 

are evaluated as: 

M 
Nnno nlinear (xl 

i x2) _. f(r)mTm (6.21) Aly 
m=1 

where M is a number of selected points. 

IF = F-1{Nn,, linear} (6.22 

Nf linearrxi, 
X2) -f (r) 

., 
r, -1 Bonlinear} 6.23) 

7,7 ll17 

There are four approximations to calculate the nonlinear terms which appear in 

the plate bending equation as follows: 

Approximation Function Method I 

The nonlinear terms (Naßw3, ß),,, in the equations (6.3), (6.5) and (6.16) are calcu- 

lated as: 

M 
(Naßw3, Q)(Xl, X2) _E .f 

(r)'xP' (6.24) 
m=1 
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IP = F-1 {Naßw3, ß} (6.25) 

(Naßw3, p), a(xl , X2) = f(r), aF-1{Napw3, p} (6.26) 

Approximation Function Method II 

The nonlinear terms (NNQ, aW3, ß + NaßW3, ap) in the equations (6.18), (6.13) and 
(6.20) are calculated as: 

For Nap, « : 

M 

Naß(X1, x2) _ .f 
(r)"z'I`"` (6.27) 

M=l 

= F'1{N,, p} (6.28) 

Naß, a(X1) X2) = f(r), aF-1{N«p} (6.29) 

For W3, ap : 

M 

W3, ß(X1, X2) _Ef (r)mg1m (6.30) 
m-1 

`I' = F-' 1w3, ß} (6.31) 

w3, ap(xl, x2) = f(r), «F-1{w3, P} (6.32) 

Approximation Function Method III 

The term N,, Q,,, is calculated in the same way as the equations (6.27), (6.28) and 
(6.29). But the terms w3, ß and W3, ap in the equations (6.18), (6.13) and (6.20) are 

calculated as follows: 
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M 
W3 (x19 x2) =Z .f 

(r)mwm (6.33) 
m=1 

IP = F-' {W3} (6.34) 

W3, p(X1) x2) = f(r), pF-1{w3} (6.35) 

W3, aa(x1, x2) = f(r),,, -1 f(r), AF-l{w3} (6.36) 

Approximation Function Method IV 

This approximation is the same as approximation III, but comprises of selected 

points on the boundary and in the domain. That is 

N+M 

w3(xly X2) ° .f 
(r)m Pm (6.37) 

m=1 

where N is a number of boundary nodes. 

6.4 Incremental Approach and Solution Procedures 

In this section four methods are presented for dealing with the nonlinear problem. 

6.4.1 Total incremental method 

In this method, the load is divided in the small load steps, and the equations are 

represented as a system of algebraic equations as follows: 

[Hp]{wk+l} + [G]{pk+l} = [Bp]{(Naßw3, a) ä+ (k + 1) q} 

[Hm] ruk+l} +[. ] {tk+l l_ [B'ºn] {N.; 'j1 ear ýký 
J 

where k denotes incremental step-th; superscript (. ) is incremental of term. 

(6.38) 

(6.39) 
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Once the matrices [HP], [GP], [BP], [H"`], [G"`] and [B"`] have been formed, they 

can be stored and used in each increment without any further change. Moreover, the 

re-solution of the system of equations can be carried out fast if the LU-decomposition 

method is adopted. The LU-decomposition is slightly modified to store the matrix 

coefficients in the core, which are reused in each increment. 

In the process of loading step, the approximation (k + 1) th is estimated using the 

approximation kth for the terms on the right hand side. Suppose that N',, # (k) and 

w3,0 (k) express the approximations kth. The initial values of the first loading step 

(k = 1) can be set for example Naß linear (k) =0 and w3, p (k) = 0. The loading step 

in each increment, q= (k + 1) Q. 

Relaxation procedures are adopted to improve the numerical results. When the 

nonlinear terms are calculated in each step of increment , the deflection w3 and its 

derivative w3,0 can be modified as follows: 

wk+1 =e w3+1,,. 1-, (1- e) w3 (6.40) 

w3 p1 =6 w3 p1 + ý1 - e) w3, ß 
(6.41) 

where e is chosen as 0.5 and k>2. Flow chart of the total increment method is 

shown in Figure 6-1. 

6.4.2 Accumulative load incremental method 

Alternatively the total load could be presented as an accumulative load incremental 

method. The Naß nonlinear are written as 0 

o nonlinear (k) B k1 °kokok N11 =2 [2w3, 
l w3,1 + w3,1w3,1 + 

2v(w3,21 w3,2 + w3,2w3,2)] (6.42) 
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Start 

Read 
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Compute coefficient matriceos 
lr 
elated to the fundamental solution & 

assume the initial values of Naß = 0.0 and W3, a = 0.0; q 

k k-1 
q=q +q 

Solve a system of algebraic equations 
(6.38) & (6.39) 

Calculate Nap 
ar and 

w3 a at internal points to calculate nonlinear terms, and then apply 
relaxation procedure as in equations (6.40) & (6.41) 

Write 
output 

No 
Final step 

Yes 

End 

Figure 6-1: Flow chart of the total increment method. 
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o nonlinear (k) B k-1 °kokok N22 =2 [2w3,2 w3,2 + w3,2w3,2 + 

2v(w3,1 'W3,1+ w3,1w3,1)] (6.43) 1 

o nonlinear (k) v k_1 c )k ok ()k -1 ok/ N12 =2 B[w3,1 w3,2 + w3,1w3,2 -+3,21 w3,1ý (6.44) 

The equations can be written in terms of the incremental values. The loads is 

divided in small load steps, and the equations are represented as an incremental 

system of algebraic equations: 

[HP] {wk+l }+ [GP] {rk 
i1}_ 

[Bp] { (Naßw3, Q) «+ 9} (6.45) 

[Hm]{ük+l }+ [G7n] {tk+l }= [Bm] {N pýßnonlinear (k) 
} (6.46) 

0 

where k denotes incremental step-th; superscript (. ) is incremental of term. 

Similar to the total incremental method, once the matrices [HP], [GP], [BP], 

[Jim], [G] and [B'] have been calculated, they can be used in each step of in- 

crement. The loading is provided in small constant loading step 
Q. Then the in- 

cremental quantities obtained at each loading step are simply summed up. The 

modified LU-decomposition is adopted to solve the system of equations. The relax- 

ation procedures as described in equations (6.40) and (6.41) are applied. Flow chart 

of sub-incremental accumulative method is shown in Figure 6-2. 

6.4.3 Euler method 

The Euler method is similar to the accumulative load incremental method, but the 
0 Naß nonlinear are now expressed as first derivative of Naß as follows; 

o nonlinear (k) 
kokkok (Nil = B(w3,1 w3,1 +vw3,2 w3,2) (6.47) 

o nonlinear (k) 
k *k kok / N22 = B(w3,2 w3,2 +vw3,1 w3,1) (6.48) 
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Solve an incremental system of algebraic equations 
(6.45) & (6.46) 

o linear (k) ok 
Calculate Naß and W3, a at internal points 
to calculate nonlinear terms, and then apply 

relaxation procedure as in equations (6.38) & (6.39) 
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Naß 
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Figure 6-2: Flow chart of accumulative load incremental method. 
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o nonlinear (k) 1_ vkokkok 
N12 =2 B(w3,1 w3,2 +w3,2 w3,1) (6.49) 

o 
where 2v3 al = w3 

k 

, a+ W3, « 

Therefore the system algebraic equations can be written as follows: 

ok}1 ok+1 ok ok o 
[B] {w }+ [C] {p }= [D] {(NýQ w3, a + Nap W3, Q), ý+ q (6.50) 

[E] {ük+l }+ [F] {tk+l }= I1{N�ß, Qnonlinear 
(k) 

i 6.51) 

k+l kok 
where Nap -- Naß+ Naß 

The loading is also provided in small loading step qO. The previous incremental 

quantities obtained are simply summed up in each loading step. The modified LU- 

decomposition is also adopted to solve the system of equations. The relaxation 

procedures as described in equations (6.40) and (6.41) are applied. Flow chart of 

Euler method is similar to the flow chart for sub-incremental accumulative method. 

6.4.4 Nonlinear System of Equation Method 

This method can only be applied to the domain integral method. By introducing 

the increment terms into the equations (6.9), (6.10), (6.11) and (6.12) , such as 

2lJs 
+1 

=w+ 2Ui i ua+l = 2/'a+ 1la i etc. 

The boundary integral equations for plate bending can be rewritten as 

Caj(wi (x')+ ws(x )) +j Pty(xý, x)(u'ý (x)+ wj (x))dr(x) 

= 
jW(x', 

x)(p(x)+ij (x))dr(x) + 

in 
W 3(x', X)(9k(X)+ q (X))dI(X) 

-f W`3(x', X)((Nkp+Nap)(w3, p+W3. a))(X)dsi(X) (6.52) n 

Ignore the higher order incremental terms, gives 
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0 
Ctj (i (X')+ wti (X)) +Ij (x', x) (wj (X)+ t (x))dr(x) 

0 I 
=W (X', X) ýý (X)+ Pj (X)) ý(X) 

[Wj(xl, 
X)(qc(X)+ q(X)) dl 

(X) Jf2 

-fW 3(2)X)(Nýßw3, ß+Naß w3, ß)(X)dcz(X) 
sc 

-f Wi. 3(x', X)((1 
2 

vB(w3, 
ß w3, ß + 

2 

w3, ß w3, � 
+ 21 v 

vw3, '1- w3,7 Saß))w3, ß)(X)dcl(X) 

W linear 

-f Wi3(xý7X)(N«Q u'3, R)(X)dQ(X) (6.53) 
sý 

The boundary integral equations for membrane: 

CO«(u«ýA+ u« (x'ý) +f TBa(X', X)Iu (X)ý' u« (Xýýý(X) 

r 
= jU(x', x)(t(x)+t(X))ý'(X) 

_f Uea"ry(Xº, X)Näoniinear k(X)dSi(X) 
2 

-J UB«, 
ry(Xº, 

X)(1 
2 

vB(w3, 
a w3,1 

S2 

}" w3, « w3�, +21 
vu'3, +7 w3, +7 &-ß))(X)dcl(X) (6.54) 

Derivative of the out of plane displacement: 

// //, � 
O 

w3,7(Xý) + w3,7 (X') =r W37,71Xýý X) lt'j 
(X) +pj (X)) aT(X) - 

fP(X', 
x)(v4(x) -}- 

0 
w (x)) dr 

(x) + 

I W33,7(Xý, X)(gk(X)+ 4(X)) d1(X) - 

J 
W33 

, rya 
(X X) (Näß2"3, 

ß + Naß W3, ß) (X) d1(X) 

140 



j W33, 
rya 

W X) (1 
2VB 

(w3 W 3, a +W j3 w3, a 

+21 v 
vw3,7 

w3,, bap)w3, Q)(X)dI(X) 

0 linear i 
W33, rya 

(X') X) (Naß w3, p) (X) dQ (X) (6.55) 

Membrane stress resultants can be written as: 

o linear 
Na ear k(V)+ Nßß (V )=I UÖaß(X', X)(tÖ(x)+ 

o t0 (x))dI'(X) 

Jr 
Töap0Xý, x)(uöýx)+ n (X))d'(x) 

- Jý 
UDa/j"7(e 

, 
X)Nnrnlinear k(X)dQ(X) 

f 
U4ap, 

7 ()v, 
X) (1 

2v 
B(w3,0 W3,. y 

(6.56) 

+ 2g3,0 2v3,7 +2 
1v , uw3, r7 w3,, 1 

a«Q))(X)dcz(X) 

Rearranging the equations (6.53), (6.54), (6.55) and (6.56), so all the unknown 

incremental terms are on the left hand side as given: 

000 

ci f wi (x'» (X', x) wi (x) dr(x) -f Wý3 (x', x) Pj (x) dr(x) -I' Jr rr 
in Wi3 (x', X) (N«(i w3, Q) (X) d2(X) + 

in 
W (x', X) (w3, 

Q 

0 
1-v 

B(w3 Q w3, ß + W3, Q w3a ++'2' w3,7 w3,7 ScQ)))(X)dc1(X) + 2 1-v 
o linear iýWi3(x', 

X)(w3, ß Naß )(X)cW (X) 

C 

_ 
jW(xl, X)(q1c(X)+ q (X)) d (X) - Ci; wi (X') +jW; (X', X)p (x)ar(x) + 

-fW; (X', X)(Nýaw3, a)(X)dQ(X) -fP,, (x', X)w; (X)ar(X) (6.57) 
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for plate bending problems. 

CBa u« (X') +I Toa(2, x) ua (x)ý(x) - 
ir U Ba(X', X) t« (x)ý(x) + 

SaQ))(X)dý(X) 
r 

in 
UBa, ry(21 

X)(1 
2 

vB(w3, 
a W3, ry +W3, a W3, ry +21 v 

VW3, n W3,17 

UBa, 
ry(xý, 

X)N linear k(X)dcz(X) 
- = Jr 

UB«(XI 
, X)ta(X)ý(X) - CBaua(Xý) - 

in 

Ir 
Te«(3e, X)uý(X)ý'(X) (6.58) 

for membrane problems. 

w3, 'Y Jr 
W39,7 ýXý X) 1ý9 (x) (x) +j P31,7 (X', x) w. 9 (x) dr (X) - 

J 
W33, 

rya 
(X', X) \w3, ß 

(1 
2vB 

(w3, p w3, a + W3, (3 'w3, a 
+ 

21 
v vw3,7 

w3,7 8aß)))(X)d9(X) - 
in 

W33,7a(Xý, X)(Nap w3, P)(X) d9 (X) 

o linear 

- Jý 
W33,, 

ya(X', 
X) 

(Nap w3, p) (X)dZ(X) 

W37, 
, 
WIX)Pj(x)dr(X) -w3 , 7(X/) - 

fn 
W33,7a(Xý, X)(N«Aw3, Q)(X) dI(X) + 

fn 
W33, 

ry(X', X)(4k(X)+ 4(X)) dZ(X) -j P3j, 
1'(X', x)'tvý (x)dr(x) 

6.59) 

for the derivative of deflection. 

o linear 

Naß (X') -f Uöaa(X', x) o to (X)dr(X) + jTLß(X'x) 4 (x)dr(X) + 
in 

Uöaa, 7 
(X', X) (1 

2vB 
(W3,0 w3,7 + w3,0 w3,7 + 

0 

,, 7 
6 ß))(X)dcZ(X) 21 v 

vw3, n W3 

r 
UQaß(Xý, x)tä(x)ý(x) - Ni 

at - fTp(X', x)u(x)dr(x) 

- Jý Uß, ry()V, 
X)Npy linear(X)dQ(X) (6.60) 

for linear membrane stress resultants. 

It can be seen that there are ten unknown incremental variables 
p (x), w (x), 
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oo 
linear 

t (x) and ua (x) on the boundary, and five variables Nap , w3, o in the domain. 

The equations (6.57), (6.58), (6.59) and (6.60) can be solved simultaneously and 

gives the final system of equations: 

A AX = AF (6.61) 

In this case, matrix A is updated in each load increment. 

For an iteration process, Newton-Raphson procedure is adopted together with 

the equations (6.57), (6.58), (6.59) and (6.60). The matrix A is updated in each iter- 

ation. The iteration calculation is repeated until satisfying the following convergence 

condition for kth iteration and (k + 1)th iteration: 

I wmax - wmax IE (6.62) 
wmax 

where is e is a small convergence parameter. Flow chart of simultaneous integral 

method is shown in Figure 6-3. 

6.5 Numerical Examples 

To assess the accuracy of the proposed methods for analysis of the large defor- 

mation problems, several examples with two restraint models as shown in Figure 6-5 

and combination of them are presented. BEM models for domain cell integration 

and the dual reciprocity methods are shown in Figure 6-4. Comparison are made 

with other numerical methods and analytical results. In the following examples, the 

non-dimensionalised parameters are expressed as follows: 

a4 qE 
h4 (6.63) 

Z=wh 
max 

(6.64) 

where a denotes the radius of circular plate or width of square plate, h is the plate 
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Figure 6-3: Flow chart of nonlinear system of equation method. 
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a. Domain cell model 

111 1 1 11 11 (4 aý 

-0 I 
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.00 
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- 

b. DRM model 

Figure 6-4: BEM models. 

q 4 

Figure 6-5: Restraint models. 
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thickness, q is the uniformly lateral distributed load, E is modulus of elasticity and 

W3 is lateral deflection. The abbreviations used are: 
AFM : approximation function method (domain cells) 

DIM : domain integral method (domain cells) 

DRM : dual reciprocity method 
for domain integral evaluations. 

TIM : total increment method 

Euler : Euler method 

NSEM : nonlinear system of equation method 
for solution procedures. 

6.5.1 Study of different approximation functions 

This example is used to study the accuracy of the different approximation function 

methods proposed for large deformation analysis. Four different approximations as 

described in section 6.3.2 are used to evaluate the nonlinear terms which appear 

in plate bending equation. A simply supported square plate subjected to uniform 

transverse loads is solved. Assuming the center of plate is at the origin of coordinate 

system (0.0,0.0), then the boundary condition for this case as follows: 

Along x=± a/2: 
Along y=± a/2: 

Ui=U2=W3=0 

U1=U2='W3=0 

BEM meshes with 20 quadratic boundary elements, 25 domain cells (for domain 

integration) and 25 domain points (for DRM) are used (as shown in Figure 6-4). 

The normalised maximum deflection values Z are plotted in Figure 6-6 and 6-7 and 

compared with finite element results [60). It can be seen from the Figures 6-6 and 

6-7 that the results of all approximations are in good agreements (less than 1.5% 

difference) with finite element results. 

6.5.2 Total incremental method vs. accumulative load incremental 

method 

In this example, the accuracy and efficiency of the total increment method and the 

sub increment method are compared. A comparison is also made of both methods 
in case of the implementation of the relaxation procedure described in section 6.6.1. 
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Figure 6-8: Comparison of total increment method and sub increment method. 

In this case study, a clamped square plate subjected to a uniform transverse loads 

q is analysed. If the origin point (0.0,0.0) is located at the center of plate, then the 

boundary condition for this case as follows: 

Alongx=±a/2: u1=u2=w1=w2=w3=0 

Alongy=±a/2: u1=u2=w1=w2=w3=0 

BEM meshes with 20 quadratic boundary elements and 25 domain points are 

used in this analysis. The normalised maximum deflection values w are plotted as 

shown in Figure 6-8 and compared with finite element results [60]. It can be seen 

from the Figure 6-8, that the accumulative load incremental method is identical with 

the total incremental method. The results of both methods are in good agreements 

with the reference results. By introducing the relaxation procedure, the numerical 

results can be improved. Without relaxation procedure, the increment process may 

have less step of increments. 
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Figure 6-9: Clamped square plate subjected to a uniform load q. 

6.5.3 Clamped square plate 

In this example, a plate subjected to a uniform distribution load q (see Figure 6-4 

and Figure 6-5) is presented. Considering the origin point (0.0,0.0) as a center of 

the plate, then the boundary condition for this case as follows: 

Along x=± a/2: ul = u2 = wi = w2 = w3 =0 

Alongy=±a/2: u1=u2=w1=w2=w3=0 

BEM meshes with 20 quadratic boundary elements, 25 domain cells (for domain 

integration) and 25 domain points (for DRM) are used (as shown in Figure 6-4). 

The problem is analysed with different solution procedures, i. e. total increment 

method, Euler method and nonlinear system of equation method with iterations 

and no iterations. The normalised maximum deflection values Z are plotted in 

Figure 6-9. 

The results are compared with the finite element result [60] and analytical result 

[51]. Most BEM results are less than 3% differences with the references but the 

results obtained using approximation function method with solution procedure of 
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Figure 6-10: Simply supported square plate subjected to a uniform load q. 

Euler method provide higher errors with increasing values of Q. 

6.5.4 Simply supported square plate 

Here a simply supported plate subjected to a uniform distribution load q (see Figure 

= 6-4 and Figure 6-5) is analysed. The other boundary conditions are: ul = U2 

W3 =0 along all sides. 

BEM meshes with 20 quadratic boundary elements, 25 domain cells (for domain 

integration) and 25 domain points (for DRM) are used (as shown in Figure 6-4). 

The problem is analysed with different solution procedures, i. e. total increment 

method, Euler method and nonlinear system of equation method with iterations 

and no iterations. The normalised maximum deflection values Z are plotted in 

Figure 6-10. The normalised BEM values of maximum deflection of the plate, finite 

element result [60] and the analytical result [51] are plotted in Figure 6-10. Good 

agreement (< 2% difference) is achieved with the references. 
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clamped and the others simply supported. 

6.5.5 A square plate with two opposite edges clamped and the oth- 

ers simply supported 

A plate subjected to a uniform transverse load q (see Figure 6-4 and Figure 6-5) 

is analysed. The boundary conditions for this case are as follows (the origin point 

(0.0,0.0) as the center of the plate): 

Along x=± a/2: u1 = u2 = wl = w2 = w3 =0 

Alongy=±a/2: u1=u2=w3=0 

BEM meshes with 20 quadratic boundary elements, 25 domain cells (for domain 

integration) and 25 domain points (for DRM) are used. The problem is analysed 

with different solution procedures, i. e. total increment method, Euler method and 

nonlinear system of equation method with iterations and no iterations. The nor- 

malised maximum deflection values Z of the present method are plotted in Figure 

6-11 and compared with the finite strip results [13]. The present results are in good 

agreement with the reference. 
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Figure 6-12: Clamped circular plate subjected to a uniform load q. 

6.5.6 Clamped circular plate 

A circular plate subjected to a uniform distribution load q (see Figure 6-4 and 

Figure 6-5) is analysed. The perimeter of the plate is restrained from rotations 

and translations; ul = U2 = Wi = W2 = W3 = 0. BEM meshes with 16 quadratic 

boundary elements, 49 domain cells (for domain integration) and 25 domain points 

(for DRM) are used (as shown in Figure 6-4). The normalised maximum deflection 

values Z of the present method are plotted in Figure 6-12 and compared with the 

finite element results [62]. BEM results are largely in good agreement with the 

reference (less than 1% difference). But the results obtained using approximation 

function method with solution procedure of Euler method provide the highest errors. 
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6.6 Nonlinear Buckling Analysis 

The nonlinear buckling analysis can be analysed by making use of equations for large 

deformation analysis, which the nonlinear terms are approximated by the approxi- 

mation function. Equation (6.6) can be rewritten as 

TBa(x', x)ua(x)ý(x) Coaua(x') + Ir 

[Ua(X', 
X)ta(X)dI'(X) - n1(x) J 

U9a(Xýv? C) lV . _inear(X) ý, (X) 

rr 
+f U«(x', X) ryinear(X)dsi(X) (6.65) 

n 

The internal in-plane stress resultants can be expressed as 

NýQear()V) 
_I Uoap(X', x)to(x)dr(x) -f Töaß(X', X)uo(X)dr(x) 

_n 
(X) 

J 
UUaQ(X', X)Nry 

linear (x)aT(x) 

+f U3 (X', X)Nrlinear (X) dcz (X) (6.66) 
n 

where traction boundary condition is expressed as 

tllinear = to - tnnonlinear (6.67) 

tnonlinear = Nnonlinearn 
a cry ry 

Recalling equation (2.44) as 

nonlinear _1-yy Nary 
2 

B(W3,7w3, 
a +1- 

vw3'ßw3, 
QS(x7) (6.68) 

Derivatives of deflection w3, y on the boundary can be approximated by consid- 

ering a radial basis function f (r) as described in section 4.2.3. The deflection can 
be approximated as follows 
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N+M 

W3(Xl) X2) °> f(r)mJ! m (6.69) 
m=1 

where N and M are selected points on the boundary and in the domain respectively 

XP = F-1{w3} 

We can now define the derivatives as 

(6.70) 

w3,. y(xl, x2) = f(r),. yF-'{w3} (6.71) 

Therefore the nonlinear membrane traction tnonllne°" can be calculated by making 

use of equations (6.68) and (2.31). Equations (6.16) and (6.17) are used to calculate 

nonlinear terms at internal points. 

6.6.1 Initial Imperfections 

In this chapter, initial imperfections are introduced to analyse nonlinear buckling 

problems. Two initial imperfection models as shown in Figure 6-13 are presented 

for this analysis: 

i. Uniform distribution of the transverse loads qo in the domain 1 

ii. Distributed transverse loads qo(x, y) in the domain SZ related to the eigenvec- 

tors of the eigenvalue problem. 

The first model is shown in Figure 6-13 a. This model allow for only few non- 

linear buckling problems to be analysed accurately, especially for geometries 

of square and circular models. The second model shown in Figure 6-13 b is 

generally recommended, as imperfections can be modelled based on the eigen- 

vectors. The eigenvectors are related to the buckling modes, so the second 

model can represent the initial imperfections that should be distributed in the 

domain. 
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6.6.2 Numerical Algorithms 

A simple numerical algorithm can be performed to analyse nonlinear buckling, in 

which no iterations are required. The algorithm can be summarized as follows: 

" Step 1: Introducing initial imperfection by uniform distribution qo or distrib- 

uted transverse loads qo(x, y) and a load increment Aa, let first step k=1 

and final step kfi"` 1 and initial values of N«Qea'' =0 and w, « = 0. 

9 Step 2: Compute the coefficient matrices related to the fundamental solutions. 

They can be stored in the core and used in each increment without further 

change. 

" Step 3: Solving the linear system equation of the boundary integral equa- 

tions to obtain boundary values. Then calculate the in-plane stress resultants 
Millar and derivative of deflection w,,, in the domain. 

. Step 4: Apply the relaxation procedure (see equations (6.40) and (6.41)). 

Then calculate the nonlinear terms Ný nonlinear (k) 
and [NcßW3, ß], 

(aý 
using the 

approximation function described in section 6.3.2. These nonlinear terms will 
be used for the next step k+1. 

" Step 5: Calculate the nonlinear membrane traction tä°ft"'ea' on the boundary. 

" Step 6: Print results in each step. If step k is final step kfina1, go to Step 7, 

otherwise k=k+1, go to Step 3. 

" Step 7: The calculation process terminates. 

The flow chart that represents the detail of procedures described above is pre- 

sented in Figure 6-14. 

6.7 Numerical Examples 

Several numerical examples are presented to demonstrate the ability of the proposed 

method to analyse nonlinear buckling problems with different geometries, loadings 
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Figure 6-14: Flow chart of the nonlinear buckling analysis. 
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Figure 6-15: Nonlinear buckling model. 

and boundary conditions. The nonlinear buckling model is shown in Figure 6-15. In 

the following examples, the normalized compression stresses K ,, j are defined by 

b2 
K,, l ý2Dý (6.72) 

where o- is compression stress, b is the width or diameter of plates and D is flexural 

rigidity of plate as described in chapter 3. The normalised deflection Z is given by 

equation (6.64). 

6.7.1 Convergence study of a simply supported square plate sub- 

jected to uni-axial compression loads 

In this example, a square plate modelled using 20 quadratic boundary elements 

subjected to compression loads at its ends as shown in Figure 6-15 is analysed. Five 

different distributions of domain points are used for the dual reciprocity calculations. 

The initial imperfection is introduced by a uniform transverse load qo = 0.005 units 

and in the case of 0u =4 units. Convergence study of the simply supported square 

plate is performed and the relationship between the normalized compression stresses 

K ,, l and the normalized deflection Z are plotted in Figure 6-16. The results given by 

Levy [50] are also plotted in Figure 6-16. Following conclusions can be summarized 

from the Figure 6-16: 
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Figure 6-16: Convergence of the normalized compression stresses Kra and deflection 
Z for different number of domain points. 

. The convergence of the results can be achieved with 49 domain points. 

" The critical value of the normalized compression stress is in good agreement 

with the analytical result, that is &I 4. 

. The BEM results are in good agreement with Levy's exact solutions [50]. 

6.7.2 Simply supported square plate subjected to uni-axial com- 

pression loads with different initial imperfections and incre- 

ments of load 

In this example, a simply supported square plate subjected to uni-axial compression 

load is analysed with different imperfections and increments of the load. A BEM 

mesh with 20 quadratic boundary elements and 49 domain points are used. The 

relationship between the normalized compression stresses &I and deflection Z for 

different initial imperfections and in the case of OQ =4 units of compression loads 

are plotted in Figure 6-17. 
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Figure 6-17: Nonlinear buckling of the simply supported square plate for different 
imperfections. 

The relationship between the normalized compression stresses K, at and deflection 

Z for different increment of compression loads and in the case of qo = 0.005 units 

of uniform transverse load are plotted in Figure 6-18. It can be seen from Figure 

6-17 that the bigger value of initial imperfection provides a lower critical buckling 

load. While Figure 6-18 shows that the bigger value of compression load increment 

provides a bigger critical buckling load. Good agreements are achieved when the 

increments of compression loads are applied as Aa =4 units. 

6.7.3 Circular and square plates subjected to a uniform normal 

compression loads 

Here nonlinear buckling analysis of circular and square plates as shown in Figure 

6-19 subjected to uniform normal compression loads are presented. Two boundary 

conditions, i. e. simply supported and clamped are applied. BEM meshes with 

16 quadratic boundary elements and 33 domain points for circular plate, and 20 

quadratic boundary elements and 25 domain points for square plate are used. In this 
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Figure 6-18: Nonlinear buckling of the simply supported square plate for different 
increments of compression loads. 

case, the increments of compression loads as Au =4 units and initial imperfection 

as qo = 0.005 units are applied. The normalized compression stresses K,, t and the 

normalized deflection Z together with critical value of each model are plotted in 

Figure 6-20. It can be seen from Figure 6-20 that the results are in agreement with 

the analytical critical values. 

The legends in Figure 6-20 are denoted as follows: 

c-ssss : simply supported circular plate 

s-ssss : simply supported square plate 

c-cccc : clamped circular plate 

s-cccc . clamped square plate 

cv-c-ssss : critical value of simply supported circular plate 

cv-s-ssss : critical value of simply supported square plate 

cv-c-cccc : critical value of clamped circular plate 

cv-s-cccc : critical value of clamped square plate 
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Figure 6-20: Nonlinear buckling of the circular and square plates subjected to uni- 
form normal compression loads. 
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Figure 6-21: Half-wave modes for rectangular plates with different aspect ratio a/b 
due to uniform imperfections. 

6.7.4 Analysis of the uniform distribution and distributed imper- 

fections 

In this example, two imperfection models, i. e. uniform distribution and distributed 

transverse loads (as described in section 6.4.1) are assessed. A simply supported 

rectangular plate as shown in Figure 6-15 is used to investigate the proposed imper- 

fection models. Considering the origin point (0.0,0.0) as a center of the plate. In the 

case of uniform distribution, the increments of compression loads as Aa =4 units 

and initial imperfection as qo = 0.005 units are applied. 

Normalized deflections Z (= h) for the points along x-axis are plotted in Figure 

6-21. It can be seen from the Figure that due to uniform imperfections, the plate 

will buckle in odd number of half-waves for different aspect ratio a/b. 

In the case of distributed model, imperfections are introduced based on the 

buckling modes of eigenvalue results for the same geometry. For the rectangular 

plate, distribution of imperfections can be introduced and modelled as shown in 

Figure 6-22. 
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Figure 6-22: Simplified imperfections for rectangular plates. 

The normalized compression stresses K, at for different aspect ratio of the plates 

are plotted in Figure 6-23. It can be seen from Figure 6-23 that the uniform imper- 

fection of transverse loads provides inaccurate results with the increasing of aspect 

ratios, while the results of the distributed one is in good agreements with analytical 

results. 

6.7.5 Nonlinear buckling analysis of a rectangular plate with dif- 

ferent boundary conditions 

Here nonlinear buckling analysis of a rectangular plate as shown in Figure 6-15 

subjected to a uniform normal compression loads is presented. Three boundary 

conditions are applied, i. e. 

. model 1: all sides clamped (cccc) 

" model 2: two opposite loaded side clamped and two others simply supported 
(cscs) 

" model 3: three sides simply supported and one unloaded side free (sssf) 

The normalized compression stresses Ka and the normalized deflection Z to- 

gether with critical value of each model are plotted in Figure 6-24 for model 1, 

Figure 6-25 for model 2 and Figure 6-26 for model 3. Deformations for rectangular 

plates with the above boundary conditions are shown in Figure 6-27. 
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Figure 6-24: Nonlinear buckling analysis of rectangular plates with all sides clamped. 
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Figure 6-26: Nonlinear buckling analysis of rectangular plates with three sides simply 
supported and one unloaded side free. 

166 



Figure 6-27: Nonlinear buckling deformations for rectangular plates with different 
boundary conditions. 

It can be seen from Figure 6-24, that the results are in agreements with the 

analytical critical values. 

6.8 Fracture Mechanics Analysis 

The procedures described in Chapter 5 will be used to analyse the large deforma- 

tion of cracked plates. The boundary integrals on the upper crack surface I'+ are 

expressed as follows: 

1ua(x+)+ 
u(x) +TQ(x+, x)uct(x)dF(x) jr 

_ e0(xx)ttänear(x)dF(x) +U ea(x+, X) äý, linear(X)dS2(X)(6.73) 
r sz Jr 

and 
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2wß(x+) +wß(x (xjF(x+, x)wj (x)dr(x) 

=J IVij 
(x+, x)Piinear (x) (x) 

+i 1VA(x+, X)(Naßw31R), a(X)dcl(X) 

+I tVzs(x+, X)4(X)dn(X) (6.74) 

As the source point x+ on the upper surface is coincident with x on the lower 

surface r-, extra free terms Iuq(x) and ßw5 (x) will appear as shown in equations 

(6.73 - 6.74). The collocation at x will also give similar integral equations as 

equations (6.73 - 6.74). 

The in-plane stress resultants boundary integral equation can be expressed as 

ZNIýipnenr(X) 
Näiear(X+) 

ir 
TA�, ß(x , x)u0(x)dF(x) 

=j UA ß(x+, X)tlQ. ' (x)dr(x) 
r 

+r UA ß(X+, X) , 
linear(X)d9(X) (6.75) 

Jn 

and the plate bending stress resultants boundary integral equation can be written 

as follows 

2M 
ß(x) +2 ýt«ß(X+) + fPp(x, 

x)wy(x)dr(x) 
+J Paß3(X 

, X)W3(x)dr(x) 

r 
V 

OP 7 
(7t X)p Y 

(X)dr(X) + 

Jr 
WýQ3 (X X)pl nerv (x)dr(x) =J1 

+f WVýß3(X , 
X)4dcl(X) 

t 

+j TVýßs(X , X)(Noow3,, v), o(X)dQ(X) (6.76) 

168 



2Qß(x) + 2Qp(x+)+ 
fPp7(C7x)w7(x)dr(x) 

+1 P 3(X 
, X)W3(x)(ý\X) 

=J `V3ßß lX s x)pry(X)dr(X) +I W333(X 
, X)p3near/Xýý/X` 

-}- J 
V3ß3 (x 

, 
X) Qd1(X) 

n 

+J IV* (X 
, X)(Ne1Gw3, sa), o(X)dfl(X) (6.77) 

i2 

Multiplying equations (6.76 - 6.77) by the outward normal no (X-) and denoting 

that np(x+) = -nß(x ), the traction integral equations for a boundary source point 

at lower crack surface x are as follows: 

tl«inear (X )-2 tlnear (x+) + nß (x-) J TAaß (X 
, X)ut (X) dI'(X) 

= nß (x-) fUÖ. 
ß(x , x)tä r(x)dr(x) 

r 
UÖaß (x 

, 
X)N, &onlmear 

(X) dil (X) 

iZ 

and 

(6.78) 

2pa(X )- 2pa(x+) +nß(X) JrP, 'ß7x 
, x)w7(x)dr(x) 

+ riß (x) J PýQ3(x 
, x)w3(x)ý(x) 

r 

= nß (X) f 
«ßß, (X 

, x)P7 (x)dI'(x) + nß (X') 
J 

Wp3 
(X ,X 

)p3 nerv (x) d, (x) 

rr 
+nß(x) 

f 
1VVß3(x, X)gdcZ(X) 

n 

+nß(x-) 
f 

tiV. *(x, X)(Ne+Gw3, W), e(X)dI(X) 

2P3(X 
)- 2P3(x 

)+ nß (x 
) 

Jr 
P3Q7(X X)Y1)7(X)Cr(X) 

+nß(x )1 P3Q3(X 
, x)w3(x)dr(x) 

(6.79) 
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Figure 6-28: Crack tip element. 

= nß (X) 
fw 

(x 
, x)p (x) dr(x) + nß (X )J w�-ß3 (X 

, XýP3 near (x) dr(x) rr 

+nß (x) f W3ß3 (x , X) gdcl (X ) 

r 
+nß(x) / Wäßa(X , X)(Nopw3�, ), o(X)d2(X) (6.80) 

To calculate the nonlinear terms, additional integral equations are required, i. e. 

equations (6.15), (6.16) and (6.17). 

6.9 Stress Intensity Factors Evaluation 

The displacements on the crack surfaces near the crack tip can be obtained as 

discussed in Chapter 2. Five stress intensity factors (SIFs), three SIFs for plate 

bending problem and two due to membrane loads have to be computed. The stress 

intensity factors are carried out using the Crack Opening Displacement (COD). 

Crack surfaces are discretised using discontinuous elements with nodes located 

at C=-3,0, +3, then the distance of every node at crack tip elements is given in 

Figure 6-28. The value of SIFs can be obtained at any point in crack tip elements 

as follows: 

{K}AAS = 
51 [Fc] ({w}A 

- {w}A1) (6,81) 

and 
{K}BBB = 

el 
[Fc] ({w}B 

- {w}B') (6.82) 

where Fc is defined in equation (2.74). 
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Figure 6-29: A cracked square plate. 

Using extrapolation technique to the crack tip elements, SIFs can be obtained 

as follows 

{K}t'P = 
rAAI {K}BB' - 

rBBI {K}AA'1 (6.83) 
rAA' - rBB' rAAI J 

where rAA' = 6l and rBB' = 21. 

6.10 Numerical Examples 

Numerical examples are presented to assess the ability of the proposed method to 

analyse large deformation of cracked plates. The cracked plate model is shown in 

Figure 6-29. In the following examples, the normalized stress intensity factors for 

plate bending are defined by 

Kith = (Eh4K ßa2) (6.84) 

While the normalized stress intensity factors for membrane are defined by 

Kimm = (E, h /a) (6.85) 
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where Klb and Klo,,, are defined in equation (2.73). 

In this example, large deformation analysis of the cracked square plate as shown 
in Figure 6-29 subjected to a uniform transverse loads q is presented. Two different 

boundary conditions are applied , i. e. fully clamped and simply supported. For full 

clamped condition is given as follows : 

Along x=± a/2: 

Along y=± a/2: 

and simply supported as 

Along x=± a/2: 

Along y=± a/2: 

Ul=u2='W1=W2=W3=0 

U1='u2=W1=w2=w3=0 

U1=U2='w3=0 

u1=u2=w3=0 

where the origin point (0.0,0.0) as a center of the plate 

The analysed model is summarized as follows: 

. Modulus elasticity E= 30000000 units 

" Thickness h=0.01 units 

" Poisson ratio v=0.316 

" Plate dimension =2 by 2 unit square. 

" Crack length, 2c = 0.4 units 

0 
" Increment load q=0.01 units 

The normalized stress intensity factors for the clamped boundary condition are 

shown in Figures 6-30 and 6-31. While the normalized stress intensity factors for 

the simply supported boundary condition are shown in Figures 6-32 and 6-33. The 

non-dimensionalised parameter Q is defined in equation (6.63). 

It can be seen from the Figures 6-31 and 6-33, that the normalized stress intensity 

factors in membrane increase significantly after few increment of loads. While the 

normalized stress intensity factors in bending as shown in Figures 6-30 and 6-32 

decrease if compared with the linear results. 
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Figure 6-30: The normalized stress intensity factors in bending of the clamped 
cracked square plate (2a = 0.4). 
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Figure 6-31: The normalized stress intensity factors in bending of the clamped 
cracked square plate (2a = 0.4). 
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Figure 6-32: The normalized stress intensity factors in membrane of the simply 
supported cracked square plate (2a = 0.4). 
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Figure 6-33: The normalized stress intensity factors in membrane of the simply 
supported cracked square plate (2a = 0.4). 
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6.11 Nonlinear Buckling Analysis of Cracked Plates 

The dual boundary integral equations are extended to allow for nonlinear buckling 

analysis of cracked plates. The displacement equation (6.6) can be rewritten as 

2ua(X+) 
+ 

1ua(x 
)+j T9a(x+tx)ua(X)dr(x) 

ir UBa(X+, X)ta(X)[ý'(X) - ny(x) 
Ju 

ýX+, XýN? linear(x)dr(lX) 
\1 

r 
oct 

+f UBa(X+, X)N"ar,, tinear(X)dfz(X) 
a Yý7 (6.86) 

The in-plane stress resultants boundary integral equation can be expressed as 

2 Nlý ear (X )+1 Ni ear (X+) +/T �p 
(X+, X)ut (X)ý(x) 

ß I, fu 
ap(xtx)tä(x)dr(x) -n y(x) 

fU 
ß(X+e X)NnonlinearýXý('ýXý 

��, 
X)dc(X) +n UA (x+, X)Nn�onear (6.87) 

The traction integral equations for a boundary source point at lower crack surface 

x is written as 

1 linear 1 linear w 
Zta ýX - tý (X+) + np(x) 

r 
TT�, ß(X , X)UA(X)dr(X) 

= nß (x) fUp(x, x)ti(X)dI'(x) 

-nß(X 
)J Uß (X 

, X)NNVlinear(x)ny(x)[l, (x) 

rl 

-ýnß(X 
) 

Jý I UÖa(i(x X)NÖ 7inear(X)dcz(X) (6.88) 

where traction boundary condition is denoted in equation 6.67. 

Derivative of deflection W3,. y on the boundary can be approximated by considering 

a radial basis function f (r) as described in section 4.2.3. Therefore terms W3,. 1 can 

be expressed as follows 
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M 

w3(xl, x2) _> ,f 
(r)mwm (6.89) 

M=l 

w3,7(xi, s2) -f 
(r),. F-1{w3} (6.90) 

where M is selected points on the boundary and in the domain respectively 

6.12 Numerical Examples 

Here, the nonlinear buckling problem of a rectangular plate with a longitudinal cen- 

tral crack subjected to compression loads is studied. The model is similar to that 

shown in Figure 5-4 (i) but the aspect ratio of the plate is varied. Two configura- 

tions are considered: (a) the plate has aspect ratio a/b =1 and (b) the plate has 

aspect ratio a/b = 2. Three different ratios of crack length to the length of plate 

are presented, i. e. 2c/a = 0.4,0.5 and 0.6. The normalized compression stresses 

&I and the normalized deflection Z are plotted as shown in Figures 6-34 and 6-35. 

Considering the origin point (0.0,0.0) as a center of the plate, the normalized deflec- 

tion Z denotes deflection W3 at point (0.0,0.25b) per thickness h. For aspect ratio 

2c/a = 0.6, the deformations are illustrated in Figure 6-36. The results presented 

are in agreement with the analytical critical values. 
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Figure 6-34: Nonlinear buckling of square plate with a longitudinal central crack. 

6 

5 

4 

Kni 3 

2 

1- 

0 
0 

r------ 

-- cv 2c/a=0.4 ---- -- " cv 2c/a=0.5 ----- cv 2c/a=0.6 
2c/a=0.4 2c/a=0.5 -2c/a=0.6 

0.1 0.2 0.3 
Z 

0.4 0.5 0.6 

Figure 6-35: Nonlinear buckling of rectangular plate (a/b=2) with a longitudinal 

central crack. 
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Figure 6-36: Nonlinear buckling deformations for simply supported rectangular 
plates with a longitudinal central crack. 

6.13 Summary 

In the analysis of the geometrically nonlinear plate bending problems, the dotnaiii 

integrals consist of coupling of the plate bending and membrane terms. 

In the large deformation analysis, initially the domain is discretised using con- 

stant cells. Next, the domain integrals are transformed to the boundary integrals 

using the dual reciprocity technique. An approximation function is used to calculate 

the derivatives of the nonlinear terms in the domain integral. 

The nonlinear buckling of thin plate is also presented. Two models of impcr- 

fection are introduced in the formulation, i. e. a small uniform transverse loads , und 

distributed transverse loads based on eigenvectors. A simple numerical algorit luiis 

are presented to analyse the problems. 

Next, large deformation analysis of cracked plates is also presented. '1'}uß aui, aly- 

sis is performed using the dual boundary element method. Five stress intensity 

factors are obtained, i. e. three SIFs from plate bending problem and two S1Fs frone 

membrane problem. The normalized stress intensity factors in nieinbrane increase 

significantly after few increment of loads. While the normalized stress intensity 

factors in bending decrease if compared with the linear results. 

The last analysis is the nonlinear buckling of cracked plates. The problem is 

analysed using the formulations for nonlinear buckling of thin plates and large de- 

formation for cracked plates. 
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Several examples are presented and comparisons are made to demonstrate the 

accuracy of the proposed method with analytical results and the other numerical 

results. The BEM results are in good agreement with the references. 
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Chapter 7 

Conclusions and Future Work 

This chapter presents the final conclusions of the thesis and recommendations for 

extensions of the present work towards future research. These conclusions are based 

on the proposed methods described in the previous chapters, by which the main 

objectives outlined in Chapter 1 were achieved. 

7.1 Summary and Conclusions 

In the work presented in previous chapters, several new developments were reported. 

These include: normal boundary element formulations for linear and nonlinear buck- 

ling analysis of plates, dual boundary element methods for linear and nonlinear 

buckling analysis of plates. 

The conclusions of the work are that the proposed boundary element methods 

are effective for buckling analysis of plates with different geometries, loadings and 

boundary conditions. The method can also be applied reliably to solve buckling 

problems of cracked plates and geometrically nonlinear problems. 

In chapter 4, the boundary integral equations for buckling analysis of shear do- 

formable plates were derived. Plate buckling equations were written as a standard 

eigenvalue problem. The formulation was implemented in FORTRAN code using 

quadratic boundary elements. The domain integrals were evaluated using cell into- 

gration and the dual reciprocity technique. The eigenvalue problem of plate buckling 

yields a critical load factor and buckling modes. Several examples were analysed. 
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The results were compared to results of the analytical and the finite element method. 

The following conclusions can be made based on the results presented in chapter 4: 

1. The boundary integral equation can be used as an effective tool to solve buck- 

ling problems of plates with different geometries, loadings and boundary con- 

ditions. 

2. The evaluation of domain boundary integrals using the dual reciprocity tech- 

nique were found to be more accurate than domain integration using constant 

cell discretisation. It is anticipated that higher order cells would provide more 

accurate solution. However, higher order cells would require more elaborate 

integration schemes to deal with strongly singular integrals. Preparing models 

of the problems using the dual reciprocity technique is much easier than the 

corresponding domain integration using constant cell. 

3. The BEM results were shown to be in good agreement (most results are less 

than 2% difference) with analytical and finite element results. 

Chapter 5 presented the dual boundary integral equations for the buckling analy- 

sis of the Reissner shear deformable cracked plates. The domain integrals which 

appear in this formulation were transferred to boundary integrals using the dual 

reciprocity method. The boundary integral equation for cracked plated buckling 

were presented as a standard eigenvalue problem, which would allow direct evalua- 

tion of critical load factor and buckling modes. Some examples were analysed. The 

results were compared with analytical and differential quadrature element results. 

The conclusions made from the results are: 

1. The dual boundary element method can be used as an effective tool for mod- 

elling crack problems in presence of buckling. 

2. The dual reciprocity method coupled with the dual boundary clement method 

provided accurate solutions of buckling coefficients. 

3. The BEM results are obtained in good agreement (< 1.5% difference) with 

analytical and differential quadrature element results. 
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In chapter 6, the boundary integral equations for geometrically nonlinear prob. 

lems of shear deformable plates were presented. The domain integrals include cou- 

pling terms of the plate bending and membrane terms. In the large deformation 

analysis, initially the domain was discretised using constant cells. Later, the dual 

reciprocity technique is employed to transfer the domain integrals to the bound- 

ary. The nonlinear buckling analysis of thin plates and cracked plates was also 

presented. Two models of imperfection are introduced in the formulation, i. e. a 

small uniform transverse load and distributed transverse load evaluated based on 

eigenvectors. Next, large deformation of cracked plates were also presented. The 

analysis was performed using the dual boundary element method. Five stress inten- 

sity factors were obtained, i. e. three SIFs from plate bending problem and two SIFs 

from membrane problem. Several examples were presented and comparisons were 

made to show the agreement of the proposed method with analytical results, the 

other numerical results and the published results. The following conclusions can be 

made based on the proposed method and presented results in chapter 6: 

1. Once the coefficient matrices have been formed, they can be used in each 

increment without any further change. Moreover, the system of equations 

can be carried out fast if the LU-decomposition method is adopted. Hence, 

computational time of the proposed method to solve the problems is faster 

than the finite element method which needs to update the stiffness matrices 

in each increment. 

2. In large deformation, four different approximation functions to evaluate the 

derivative terms were presented. All approximations were shown to provide 

good agreement with finite element results. 

3. The BEM large deformation results from different solution procedures show 

good agreement with analytical and other numerical results. The best method 

and solution procedure for solving large deformation is combination of approx- 
imation function method and total increment method. 

4. Eigenvectors are very useful to introduce initial imperfections to the nonlinear 
buckling problems, especially for complex geometries. 
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5. The BEM nonlinear buckling result of square plate modelled using 20 quadratic 

boundary elements and 81 domain points are in a good agreement with an- 

alytical result. Other BEM results also show satisfactory agreements with 

buckling coefficients K from analytical and finite element results. 

6. The nonlinear buckling formulation is also a robust method for analysis of 

cracked plates. 

7. In large deformation, the normalized stress intensity factors in membrane in- 

crease significantly after few increments of the load. While the normalized 

stress intensity factors in bending decrease if compared with the linear results. 

7.2 Future Research 

The application of the boundary element method for buckling analysis of cracked 

plates and geometrically nonlinear problems presented in this work can be extended 

further to several area of researches, and are described as follows: 

1. Buckling analysis of assembled plate-structures including in presence of crack. 

2. To analyse buckling problems of shells with or without crack. 

3. Buckling analysis of stiffened cracked plates and shells. 

4. Nonlinear buckling- analysis of assembled plate-structures, stiffened cracked 

plates and shells 
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Appendix A 

Fundamental solutions 

A. 1 Plate Bending Problem 

The expressions for the kernels W; j and P; j are given by Vander \VcUn (941 as 
follows: 

W(, # 8irD(11 - v) 
{[8B(z) - (1- v)(2 In z -1)]b"p 

- [8A(z) + 2(1- v)]r, "r, Q} 

Wa3 = -W3" = 81 
(21n z -1)rr, " 

W33=12 [(1- v)z2(lnz -1) - 81nz) (A. 1) 87rD(1- v), \ 

and 

P7*a = 4ýT 
((4A(z) + 2zK1(z) + 1- v) (S r,,, + r, anw) 

+ (4A(z) +1+ v)r,. yn,, - 2(8A(z) + 2zK1(z) +1- v)r, ar,. yr,,, ] z 
Pryg =T [B(z)n 

y- A(z)r, ý, r, n] 

Pia -(87r y) I (2 
(1 

+ 
v) 

In z -1ý na + 2r, ar,,, L 
-1 P33 = 27ýr r, n (A. 2) 

The expression for the kernels W3j, B and W33,07 are written as 

195 



W0 
SSD 

(2r, or, a + (21n z -1)bge) 

Ar, o 
[(21nz 

- 1) - z(1$ V) 

l 
(A. 3) W33,0 

8 D1 

W3 o, 8L 
[(2lnz 

- 1) + 2r, or, 7 - 
8(öz 

(i 
2r, o , ý)1 (A. 4) 

The expression for the kernels P3 f, e is written as 

1'3a, e 
-(l - v) [C( 

(1 ii), 
B ) na + r, ano - 3r, or, nr, a + öoor, nJ 

P33-B 
2irr2 

[no - 2r, or, n] (A. 5) 

The expression of WWk, Psýk and Qp are [94]: ý 

W. py - 41 
[(4A(z) +2zK1(z) +1- v)(6p. r, a +6 . rjp) 7rr 

- 2(8A(z) + 2zK1(z) +1- v)r, ar pr,. y + (4A(z) +1+ v)bapr,. 1J 

Wý p3 ° -(l 
87r 

v) [ (2 (1- y) In z -1) Öap + 2r, ar-01 
2 

W3 
, 

[B(z)a7p - 
A(z)r, 

'Yrýpl 

1 W303 
7crrp 

(ßi. 6) 

D(1- v) 
4irr2 

{(4A(z) + 2zK1(z) +1- v)(b"yanp + ö. rpla) 

+ (4A(z) +1+ 3v)ö,, pn. y - (16A(z) + 6zIC1(z) + z2Ko(z) +2- 2v) 

X [(ncxr, Q + n/r, a)r, 7 + (ö r, Q 'f' S7Qr, aýr, ný 

-2 (8A(z) + 2zK1(z) +1+ v) (b. pr,. yr,,, + n_1r, ar, p) 

+ 4(24A(z) + 8zK1(z) + z2Ko(z) +2- 2v)r, ar, pr,. yr, n} 

P"Q3 
D(14irr ), \2 

[(2A(z) + zICl(z))(r, Qna + r, anß) 
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- 2(4A(z) + zK, (z))r, «r, ßr, n + 2A(z)b«Qr, n] 

_ -D(1- v)A2 P3ß7 
4irr 

[(2A(z) + zKl (z)) (S7Pr, + r, -, nß) 

+ 2A(z)n7r, Q - 2(4A(z) + zKi(z))r,. yr, ßr, fl 

P3ß3 _ 
D( - )AZ 

[(z2B(z) + 1)np - (z2A(z) + 2)r, Pr,,, ] (A. 7) 

-r 41nz-3 1-v rn +r��n + (1 + 3b r 

+ 4[(1- v)r, «r, Q + vö«P]r, n} 

3ß = U- 
1 

21nz-1)nß -}-2r r 

where 

A(z) = Ko(z) +zf Ifi(z) - 
zl 

B (z) = Ko (z) +z 
[Ki(z) 

-z1 (A. 9) 

in which Ko(z) and Ki(z) are modified Bessel functions of the second kind [3), 

z= Ar, A is the shear factor defined in section 2.3.4, r is the absolute distance 

between the source and the field points, r, a = r,, /r, where ra = xa(x) - x. (3e) and 

r, n = r, ana. 
Expanding the modified Bessel functions for small arguments: 

Ko(z) _ 
[-y-ln(2), + [-'i +1-1n(2)] 

((11)2 

+[_i+1+ 
2-1n(2)J (x42 

J (2! )2 
+ 

[_7+1++_1n()j1 ((3 
)2 

3 
-}.... (A. 10) 

j z2/)i 2 
Ki (z) =--y+2 -1n() 

( zW 
il 

r1( 
-I-ry+1+4-1n(2)J 

zZ/ )12I3/2 

L1 
(2/ )s z 

- 
[-7 

+1+1+6-In(2)J 223! 
-! -... (A. 11) 
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where ry = 0.5772156649 is the Euler constant. Substitute equations (A. 10 - A. 11) 

into (A. 9) and take the limit as r -º 0: 

= -1 
*i 

ö A(z) 
2, 

11(z) =2 111 öln(2) +'y+ 2J 
(A. 12) 

As it can be seen, A(z) is a smooth function, whereas, B(z) is a weakly singular 
O(lnr). Therefore Wi*j is weakly singular and P; j has a strong (Cauchy principal 

value) singularity O(1/r). 

In this work, the modified Bessel functions are evaluated using polynomial ap- 

proximations given by Abramowitz and Stegun [31 
. 

A. 2 Two-dimensional Plane Stress Problem 

The expressions for the kernels U,,,, and Tea are well known (Kelvin solution) for 

two-dimensional plane stress problems, and are given as [103] : 

UB" 
4irB (1- v) 

[(3 
- v) In 

(1) 

Tbe,, 
+ (1 + v) r, or, al (A. 13) 

_1 TB" = _L jr,,, [(1- v) öo" +2 (1 + v) r, or, aj 7rr 

-}- (1- v) [nor, a - ntr, o] } (A. 14) 

where Uea are weakly singular kernels of order O(ln 
r) 

and 7 are strongly singular 

in order O(1/r) . 
The expressions for the kernels U,, *, Q, and TTQ 

y are : 

IJäR7 =4r [(1- v) (S ýýrýp + Sypr, a - SýRr, 7) +2 (1 + v) rýýr, Rr, 'rý (A. 15) 

B(1-v) {2rn [(1-v) ör+v r)-4(1-}-v)rar r T«Q7 - 47rr2 , 
+2v (nar, pr, 7 + npr, ar, 7) + (1 - v) (2n_, r, ar, p + npbn. r + naap7) 
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- (1- 3v) 7z7b,, p} 

The expression for the Kelvin Uea, p and TB., p are written as 

(A. 16) 

UBaQ 
4ýB (11 - v) r 

[(1 + v) (Sop + bap - 2r, or, ar, p) - (3 - v) r, pbpa] (A. 17) 

TB,, 04 r2 
{(np - 2r, pr, f) [(1- v) 60,, +2 (1 + v) r, or, a] 

+r, pr, � [(1 - v) be., +2 (1 + v) r, or, aj 

+r,,, [2 (1 + v) ((aoa - r, or, p)r. a + (bra - r, ar, 3)r, o)] (A. 18) 
+ (1- v) [no (bap - r, ar, p) - nQ (bep - r, or p) -rX (nor,,, - nar, o)] } 

The expression for the kernel UäAY, e is written as 

1 U007, e 47rr2 
[(1- v) (bya(bpo - 2r, ßr, o)) 

+ (1 - v) (b7p(ö o- 2r, pr, o) - bap(b. yp - 2r,. yr, ©)) 
+2 (1 + v) (SQv + bpo + 6. y© - 3r, or, pr,. Yr, o)] (A. 19) 
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Appendix B 

Particular solutions 

Particular solutions derived by Wen, Aliabadi and Young [97]are used for the dual 

reciprocity technique in the thesis and are given in the following sections. 

B. 1 Particular solutions for plate bending 

Governing equation for shear deformable plate bending problem can be written as 

w= ITCV (n. 1) 

where particular solutions of displacement *= {wl, tuziw3}T, o= {c 
, e2, e3}T is 

arbitrary constant vector and components of matrix 11 are 

z Hap = 2Saß V4 -[(1 + V) V2 +(1 - V)X2)1 ax022Q 

H3a = -Ha3 = -(1 - U)(V2 - X2) 
0 

a 

H33 = (v2 - %2) [2 02 -(1 - v)A2]/A2 (B. 2) 

The function cp can be defined from equation (B. 1) such that 

D(1- v) (p2 - \2) p4 W+ F(r) =0 (B. 3) 
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If el = 0, e2 =0 and e3 = 1, the particular solution used in equation (3.55) can be 

written as 
1a0 Wmc, = -Tax, 

Wm 
1 

2[2V2v)A2 
] (B. 4) 

(1- v)D. 

where 

V4, O(r) + F(r) =0 (B. 5) 

The particular solutions of moment and shear force can be determined from equa- 
tions (2.20) and (2.21). The tractions on the boundary can be obtained by 

Pma = Ma0nß, Pm3 = Gana (13.6) 

If radial basis function F(r) =1+r, The function di(r) can be solved from equation 
(B. 5) 

r4 rs C64 
+ 225) 

(B. 7) 

and the rotations and deflection can be deduced 

31r X1ra wm1-- 
(16 

+45) 
D 

3_1r x2r2 
w"`2 

(16 
+ 

45 
)D 

(B. 8) 

_1 
2r r2 11 Cr\ (4+2; 

5) D 

The particular solutions of moments Map and shear forces lp can be determined 
by equations (2.20) and (2.21) to give 

/23 
Mmii =-8 -F 

15 (xi -f- vxz) + (1 + v) 116 + 
45 /J 

11 T A-112 + V) 18+15)(21x2) 

2 
ft-m'22 =- 

[(8 
15r 

) (vx i -F" x2) -I" (1 -1" v) C16 -} 45ll 
(B. 9) 

/J 
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1 
s 3r) 
m1 = -- + 

2r 

32 (+) 

and the tractions on the boundary can be obtained from relationships in equation 
(B. 6). 

For the derivative of function Fa = xa/r, the solution lia(r) can be found 

P xa (13.10) 
45 

and particular solutions 1i k are 

w; l,, = -(3xi -F- r2) 
r 

45D 

i_xxr 
W; n2 _15D (13.11) 

w, lns 
= -[30 - (1 

- v)i12r21 
Txi 

45(1- v), \215 

and the particular solutions of moments Map and shear forces (p are 

Mmli=-15 
[(1+3r) 

+ 
(+r)] 

r 

Zl 
_(l_V)12 m12 ý 

15 

Mm22=-15 
[LI (1+3r) 

+ 
((13 

. 12) 

(-1+r) 

11 x1x2 nwm2=-3 
r 

for a=1, and 
2 x1x2r 

Wml 15D 

r w;,, 1= -(3x2 + r2) 45D 
(B. 13) 

Wm3 = -[30 - (1- v)A2r2] rX2 
45(1- v)A2D 
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and the particular solutions of moments M,, p and shear forces Qp are 

r (51 m= -15 I+Tl + (51 +3T/J 

,Ü- v) 15 r 
ý' r 2 xl (x2 

/ 

Mm22 = -15 
[v CxT-, 1 -1- r) -I- 

T2 
-I- 3rJ J (II. 14) 

1X1X2 
r 

2 
Qm2--3 

\27, 
'+'r/ 

fora=2. 

B. 2 Particular solutions for two-dimensional plane stress 

An expression displacement particular solution ü can be found in polar coordi- 

nates with the use of the Galerkin vector Gap as 

maýTý _ Gaý. 
y.. y(r) -' 

12v 
«ýA1ýrý 

(13.15) 

where Gap satisfies 

04 G-t 
a+ (1 

2 E26 
)B r=0 

(B. 16) 

and a solution is determined by 

3 
0a 

45 (1 
x 

v) B 
a°`Q (B. 17) 

Substituting equation (B. 17) into equation (B. 15), then the displacement particular 

solutions can be arranged as 

12 rxl 1+V xi 
Um1 (1- v)B 

[3 
30 

(+3xir)] 

u"`2 15(1-v)B 
ýlr 2 ý'x2r (B. 18) 
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and using strain displacement relationships in equation (2.9), the strain are obtained 

as 

a, ltiii=-ýl? 
v) \r1+3/ 

1 
D+ 

42 vC 
r3+6T1ý'3r/J 

2 xlx2 1+v 3xix2 
ßl =- (1- v) 

[ 
6r 30 

(_x3lx2 
0+r/J 

1 (B. 19) m22 = (1 
? 

v)1 
30v 

(44 
+ 2r\ 

The particular solution for membrane stress resultant can be derived by sub- 

stituting equation (B. 19) into the stress resultant-strain relationships in equation 
(2.19) to give: 

1 Nmll=B[(1-V) 111+v } 

Nm 12 = B(1 - v)Em12 

N, 22 =B R(1- *m122 + Z1 a] 
(13.20 

and the traction particular solutions are obtained from 

ima = Nmaßnp (B. 21) 

In the same way, displacement particular solutions ü, ýno can be obtained as fol- 
lows: 

_1) u"`i 15(1-v)B 
(Xý 

r 
+xlr 

2 rx2 
_ 

1+V 
um2 (1- v)B 3 30 + 3x2 (8,22) 

(r 
r)J 

and the strains are 

22 1+v 
_-xix2 Em11 = (1- v) 30 

( 

r3 
+ 2r) 

22 X1X2 1+V X2xl 3x1 ZZ ßm12 =- (1- v) 

[ 
6r 30 

( 

r3 
+r 

JJ 

2_2 x2 r 1+ v x2 6x2 
(B. 23) ßm22 (1 v) 

[(r 
+ 3) 30 - r3 

+r +3r)] C J 
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The particular solution for membrane stress resultant are 

Nmll=B [(1-v)g211+ "En c*1 

g2 
M12 = B(1 -1/)Em12 

Nm22 =B [(1- v)Em22 + zi ] (B. 24) 

and finally the traction particular solutions are obtained from 

tma = Nmcrßfp ß. 25) 
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Appendix C 

Treatment of Singularities 

C. 1 Bi-cubic Nonlinear Coordinate Transformation 

This coordinate transformation was developed by Teiles [87]. Consider the integral 

ý}1 
j=1 

.f 
(77) dgl (C. 1) 

in which f (77) is singular at a point 77'. Using a third-degree non-linear transforma- 

tion 

77(ry)=a73+b72+cry+d (C. 2) 

such that the following requirement are met: 

ärylq, 
=0 

d2 

; ryie=0 
=1 77(l) 

r7(-1) _ -1 

The following solution is obtained 

1 
Q a= 

b=- 

(C. 3) 
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3(/)2 
C=Q 

d= -b 

where ry' is the value of ry which satisfies q 
(ry) 

= r7'; this parameter can be calculated 

by 

ý' _ (x'77' + 171' 1) 3+ (q'? " - 117" 1) 1 +, 1' (C. 5) 

where 7)* = (r/)2 - 1. Therefore, equation (C. 1) becomes 

I_ 
+f 

1 1+3 

1f (7 - 1)3 +y [+ 3,3 ('Y -'y)2 dry (C. 6) 

The above transformation can be used to calculate integral with a logaritmic sin- 

gularity for any position of the singularity. The main advantage of the transforma- 

tion is that since the Jacobian cancels the singularity, standard Gaussian quadrature 

can be employed without the need to separate the regular part from the singular 

term in the numerical evaluation of the integrals. 

Q= 1+3 (, /)2 (C. 4) 

C. 2 Triangle to Square Transformation 

sing L. 

(al 

singular 

44444 

4ý". 

44 

(b1 

Figure C-1: (a) Transformation of triangle to square ; (b) Subdivision of quadrilat- 
eral element into four triangular sub element. 

The procedure for the triangle to square transformation was presented by Ali- 

abadi and Rooke [6]. This procedure is used to cancel weak singularity in an integral 
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u 

., 

. "" 

il= 

iii ; ý; i 

Figure G2: Systematic use of transformation of variable technique. 

over the domain. Consider a triangular element, shown in the Figure C-1(a), which 

has a singularity at (ý, 77) = (-1, -1) in the local (ý, 71) plane. The singular integral 

is transformed in the following manner, 

ý1 
J£M(, 

7l) J (ý, 7l) d7dý _ 
/1 [M (C"l) J (e,, 7) Jc (ý,? l) dude (C. 7) 

1 -1 
Rf1 f-1 R 

where C=u and 71 = [(1 + u) v- (1 - u)]. The Jacobian of this transformation -15 
J° (C, 77) =2 (1 + C) exactly cancel out the singularity [6]. 

For constant cell element, where the singular point is at the centre of the quadri- 

lateral element, as shown in Figure C-1(b), the element is divided into four triangular 

element and each triangular element is transformed to square, as shown in Figure 

C-2. The transformation are 
triangle I: ý= 1(1 + ul) and 77 =2 (1 + ul) vi; 

triangle II :ý=2 (1 + v2) u2 and q=2 (1 + v2); 

triangle III :e=2 (u3 -1) and 71 =2 (1- u3) v3i 

triangle IV :e=2 (1- v4) u4 and 77 =2 (v4 -1); 
Hence, 

Jc (ui) =ä (1 + ul) 

Jc (v2)=ä(1+v2) 

Jc (u3) =4 (1 - u3) 

Jc (v4) =4 (1 - V4) 
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'1M (x, 17)) J (ß, 1i) di7d = 
J_'1 

J1M 
(' 1l) J (' , 7) J` (ui) 

duldvl + 
R 

iiM (e, 1]) J (e, 71) Jc (v2) 
du2dv2 + R 

11M 
(Z, 71) J (e, 11) Jc (us) 

du3dv3 + R 
iiM (Z, 17) J (e) 1]) Jc (V4) 

du4dv4 (C. 8) ýiýi 
R 

where the Jacobian factors cancel out the R singularity. 

C. 3 Treatment of Singularities for The Traction Bound- 

ary Integral 

In the traction integral equations, the singularity order is higher than the displace- 

ment integral equations. In the [H] matrix, the kernels Pßß3 and Pß7 are strongly 

singular, whereas, the kernels Päß, 
ß,, 

P3ß3 and T(pr are hypersingular. In the off- 

diagonal sub-matrices, the shape functions will reduce the order of singularity by 

one. This means that, element entries in [H] matrix corresponding to the kernels 

P* and P3Qy become smooth, whereas, elements of the kernels P,, *P, 
y aP3 

P3ß3 and 

Tap still remain strongly singular. 

In [G] matrix, the off-diagonal sub-matrices are smooth again due to the shape 

functions reducing the order of singularity. The diagonal matrices, on the other 

hand, contain the kernels Wß3 and W* which are weakly singular and the W. *Q, 
7,, 

W3*Q3 and U7 which are strongly singular. 

The singular integrals mentioned above are treated individually based on their 

order of singularity. The weak singularity is treated using a nonlinear coordinate 

transformation as in Teiles [87]. The strong-singular and the hypersingular integrals 

are evaluated using a singularity subtraction method based on the Taylor series 

expansion around the singular point, as in Portela, Aliabadi and Rooke [63], and 

the singular terms are integrated analytically. 

As an example, the integral which contains strongly singular kernel of 0 (1/r) 
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can be regularised as follows: 

r 
Pi f (x'' x)w; (x)dr(x) = wý 

f+i , 
(ý) 

de (C. 9) Jr. J1 
where f3 () = Ptj(C', C)ýp (C)J(C) (c - c'); r denotes the boundary of the singular 

element, I)" is the element shape function corresponding to the node n in the element 

under consideration and J is the Jacobian of the transformation from xa coordinate 

system to the local coordinate system C (i. e., dI' = J(e)de). The term fi"j (ý) is now 

a regular function. The integral in the right hand side of equation (C. 9) can be 

regularised with the aid of a Taylor series expansion of the function ff (ý) about the 

singular point ý' in the local coordinate system, as follows: 

. ft; ()=f; (ý')+f; '(')( -C')+2, f;; "(')( -ý')2+.... (C. 10) 

By substracting the first term of the Taylor expansion of the function f (t) and 

then adding it again, equation (C. 9) can be written as 

+1 fi; 
d 

+1 f; ýý) -f (cý) 
+ fi j (C') +1 

, 
ýC. 11) 

The first integral in the right hand side is now regular and the second integral 

which is strongly singular can be integrated analytically to give, 

i e' 
1n 

l1+,, 
(C. 12) 

The hypersingular integrals of 0 (1/r2) can be treated in a similar way, 

TýQý (xý, x)ury (x)dI'(x) = uý, J 11 
dß (C. 13) 

where gß () - TýQ; (', )ý"(C)J(C) (- £')Z is a regular function. The integral 

on the right hand side of equation can be regularised with the aid of the first and 
second term of a Taylor series expansion of the function gn , Q, (C) about the singular 
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point C' in the local coordinate system, as follows: 

9äpyýýý = 9äpy(ý) + 9äpyI( I) (- Cl) + 29ýp7 ýI)2 + .... (C. 14) 

By substracting the first and the second terms of the Taylor expansion of the 
function g. Qy(ý) and then adding it again, equation (C. 13) can be written as 

+1 n +1 gn gn,,, 
dC ajo-y a 

2 

9ä/3- (ei) f +1 d 
-f' 9äm M f +1 

ýC. 15) 

where aßy' denotes the first derivatives of gäp . At the collocation point the function 

gaß is required to have continuity of its second derivatives. The requirement is 

automatically satisfied by the use of discontinuous elements, since the nodes are 
internal to the element. In equation (C. 15) the first integral on the right hand side 
is now regular, and the third integral is identical with the one given in equation 
(C. 11). The second integral on the right hand side is hypersingular and can be 

integrated analytically to give, 

+i d_11 

J-i (-l)2 _ (1 + ý') - (C. 16) 

The last type of singularity observed is hypersingular of O 
(-!. 

+ In (r)/ I. This 

type of singularity can be treated in a similar way to the hypersingular integral 

of 0 (1/r2) except there is an additional weakly singular term to be treated. The 
integral is given as 

r +1 

Jre P,, Q7(3e, x)w7(X)dr(X) = u'7 
J_1 

Pýp7ýýýº )ý'"ýý)Jýý) (C. 17) 

The hypersingular integrals can be solved as follows 

fF1, 
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[e' 
, 

9«pry 9äp7; (2') (C - ý') 
- häpr (c') In 

+9«p7 
+1 aý 

2 gä 7 (C, ) 1+1 C' +hap7 (£') f1 In (C. 18) 
J1 (C _ 

where 9apy () =Päß, 1(', 
(C)J(C) (C - ý')2 on which P,, * (C', £) are part of the 

kernels which contain 1/r2. The term hap () = Pä2(C', C), jý"(C)J(C)/ In IC - C'I 

and PQ (C, C) are part of the kernels which contain In The functions gä (C) py 

and hnp, 
y 

(C) are regular and can be expanded in terms of a Taylor series expansion 

about the singular point C' as before. 

The first integral on the right hand side of equation (C. 18) is now regular, the 

second integral on the right hand side which is hypersingular can be solved ana- 
lytically using (C. 16), the third integral is identical with the one given in equation 
(C. 11). The last integral on the right hand side which is weakly singular can be 

integrated analytically to give, 

+1 ' 

Ji lnlý- 'Id =1nl(1- ') (1+ ýýI - 'lnl1+tiI-2 
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