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Abstract 

This thesis surveys the field of browse/search interactions. The results of this study form 

the basis of a specification of a representation scheme and a library of access functions 

which facilitate the creation of information-rich multimedia applications. 

Evidence is provided for the hypothesis that browsing and searching are the extreme ends 

of a continuum of data access methods and that many browse/search interactions contain a 

mixture of both with the ratio varying as the interaction proceeds. These observations 

motivate the integration of browsing and search facilities so that applications can be built 

which exhibit both types of information access. 

This work is tailored to the area of consumer multimedia with a review of the constraints 

that this imposes on the authoring process and the applications themselves forming part of 

this work. 

The specification of the functionality of the function library, together with its 

implementation and testing are described in detail. The library has been evaluated by 

constructing a number of prototype applications which demonstrate the utility and scope of 

the library. 
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1 Introduction 

People interact with infonnation in many circumstances. They browse magazines, read 

books and search for infonnation in encyclopredias. They go to libraries to browse for 

inspiration or search for infonnation. These interactions can be loosely grouped as browse 

and search processes. These same processes fonn the basis of infonnation-rich 

applications on computers. Users access infonnation held on CD-ROMs and "surf' the 

World Wide Web4 sometimes in the hope of finding something interesting (browsing) and 

sometimes with a specific goal to find particular infonnation (searching). Though research 

into specific aspects of these processes has been done within the fields of hypertext, 

hypennedia and databases, little work has been done on the theoretical underpinnings of 

integrating browsing and search within single applications. Perhaps this is because 

hypertext and hypennedia have concentrated on browsing and databases on search as these 

are the primary types of infonnation access for these types of application. However there 

is a trend for hypertext, hypennedia and databases to converge on similar representation 

schemes which would make such integration possible. 

The field of multimedia systems covers a broad range of applications which combine text, 

pictures, audio and video. There are three factors which determine the state of the art. 

These are the technology available, the products which exploit the technology and the 

research contribution. In an ideal world the research would drive the technology which 

would be realised as products. And indeed this is, to some extent what happens. 

However, technology also progresses by development (evolution if you will) and in this 

process the link with the foundations of research can become tenuous. Technology can 

advance without any more purpose than that the next step is possible. The ramifications of 

that advance are discovered after the event rather than predicted beforehand. 

In the multimedia area this technology-led progress (if it can be so tenned) is taking place in 

both hardware and the software. Hardware is evolving at a frantic pace. Users "need" 

more perfonnance, storage, screen resolution and so on. Ever more complex applications 

push the limits of what is possible with the existing technology and, as a by-product, give a 

justification for increasing the power of the hardware - a vicious circle. It is interesting to 

observe the ever increasing storage and processing requirements of the operating systems 

themselves - whose major function is to allow the user access to his applications and files. 

Improved usability is often cited as the reason for the expanded facilities offered by each 

4The World Wide Web (WWW or W3) is a global hypermedia system accessible via the Internet. Browsing 
information on the web is also known as surfing. 
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new release. However the research which could justify this expansion lags behind the 

drive to outdo competitor's offerings on number of features alone [Oren 1990]. 

It is into this maelstrom that the area of consumer multimedia has been born. Price has also 

been added to the equation of steering factors and has a very strong influence. Technology 

must be exploited to the full to support more eye catching products than are offered by the 

competition. Indeed the home computer segment of the PC market now leads in the 

adoption of advanced technology such as multimedia upgrades and even the Pentium 

processor [Kehoe 1995]. Software too must be produced within a limited budget. Re-use 

of code can help to offset the development costs and re-use of the assets offsets their 

purchase or production costs. In an article analysing the problems facing multimedia 

publishers in the consumer market and, in particular, the competition with tv, books, 

newspapers, and radio, [Carrigan 1991] writes 

"What is required are techniques that make information browsing as compelling 
as watching a film or viewing a TV documentary, [ ... ]." 

Achieving the right blend of features (to sell the product) and cost effectiveness is the 

tightrope being walked by software developers in this technology-led field. 

-

The aim of this thesis is to redress the balance a little by researching the area of multimedia 

browse and search with particular emphasis on the needs of consumer applications. 

Providing a research basis for the development of informative applications will mean that 

they can more readily provide the user with what he or she wants, namely information, 

education and entertainment. 

With consumer multimedia systems a reality and considerable commercial interest in the 

field there is a pressing need for improvements to the multimedia authoring process. 

Authoring is the process of creating the application from its components (text, pictures, 

audio and video) and is currently very time consuming and therefore costly. In particular, 

the facilities for building interesting, stimulating applications lags behind the support given 

to the process of creating visually exciting screen designs. Support for authors is largely 

non-existent - the majority of current multimedia information-rich applications are 

developed as one-off applications using bespoke software, often programmed in a low 

level language such as 'C' or even assembler. 

Generally available tools for creating multimedia applications such as HyperCard, 

MacroMedia Director and Apple Media Tool have been developed with the needs of 

multimedia as the primary design criteria. All three allow the creation of multimedia objects 

(screens) containing pictures, text, audio and video which can then be displayed. Hotspots 

allow the user to navigate between screens. Information access is thus limited to encoding 

information as screens and then displaying them. Separation of the data from its screen 
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presentation is not provided for except by resorting to the tool's programming language 

(which rather defeats the object of using the tool in the first place). The particular 

requirements of consumer (as opposed to professional) applications have also not been 

addressed. 

As an example consider MacroMedia Director. This tool was originally designed as an 

animation tool. It has a basic concept of a "stage" where "cast members" (pictures, 

graphics items, text, audio and video) can be displayed. This process is under the control 

of a "score" which choreographs the presentation. For further control including 

responding to mouse or keyboard events the author must write "scripts" written in Lingo, a 

programming language. This tool is particularly good for presentation-type applications or 

those with simple navigation. However the time-line used for the score becomes unwieldy 

for complex branching structures particularly as the relationships between items are stored 

in the score and not the objects themselves. 

Apple Media Tool takes a different viewpoint concentrating on a structure of linked 

multimedia nodes. The links originate from hotspots and can embody transition 

information such as dissolves from one picture to another. This tool makes it simple to 

construct applications with one navigable structure but adding additional structures such as 

guided tours is more difficult. Once the basic drag-and-drop positioning of nodes and links 

is exceeded the author must resort to 'C' programming to accomplish other features. 

The problem can be summarised as the lack of research into the functionality required to 

support the efficient creation of information-rich applications in the consumer domain. The 

creation of a generic function library for this type of application will reduce the need for 

expensive tailor-made software; generic in the sense that the functionality would be 

independent of target platform and application. 

The general form of the solution to this problem can be outlined as follows: 

finding the generic primitives of browsing and search, 

investigating how browsing and search should be integrated, 

considering how the data representation and structuring needs in a multimedia 

browse/search application can be met. 

The consumer multimedia area is interesting because of the necessity to satisfy the needs of 

users by providing authors with a data representation scheme and function library, based 

on a foundation of research (addressing the problem of technology driving multimedia 

software development), which can be utilised on the existing hardware that is available to 
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consumers for use in the home. This constrains the solution to be realistic thus capable of 

being exploited in the application development process reasonably quickly. 

1.1 Structure of the Thesis 

The structure of this thesis is, perhaps, slightly unusual in that it does not begin with a 

survey of the relevant research literature before homing in onto the problem to be solved. 

Unfortunately not much existing research (on consumer multimedia per se) was available to 

guide and influence this work and so in terms of defining a problem space an alternative 

approach has been followed. Since the technology of multimedia systems is currently 

driving application development it is important to look at this technology first. A problem 

in the technological space forms the basis for the research problem. Accordingly consumer 

multimedia is looked at from the technological and product perspectives first. This allows a 

problem area to be defined (in terms of those two spaces). That problem space is then 

addressed in terms of related and relevant research which allows the extraction of the 

research issues to be tackled. 

There are two basic approaches to solving problems in this field of consumer multimedia 

applications. Firstly existing software is evolved to suit the new requirements. This 

creates many difficulties as old designs are adapted and often means that unforeseen side 

effects plague the development process. The second approach is to start from scratch. 

However there is little or no theoretical or experimental background to support this process 

so that it becomes basically trial and error, often a time consuming and therefore expensive 

process. 

The rationale for using research to solve the problem, rather than the approaches just 

described, is that research provides a reasoned basis for the solution giving confidence that 

it is the right solution by knowing why it is the right solution. It is theory led and the 

theory can be tested. If the research-derived solution is found not to be correct when tested 

the model and assumptions can be challenged in a reasoned way to solve the problem. This 

avoids much of the error in the trial and error approach and the problems of historical 

decisions inherent in the evolutionary approach. The existence of research in this area will 

provide an alternative to the technology-led evolution of applications. 

This thesis commences with some background, starting by defining some basic 

terminology to be used. This is particularly important as this work touches on a number of 

disciplines and includes terminology from the consumer area as well. An examination of 

the consumer multimedia domain and the opportunities within it follows. This overview 

sets the scene for a detailed examination of the technologies and products. The section on 

technologies looks in detail at the key elements available or soon to become available for 
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systems that will support multimedia applications. In particular the use of CD's for data 

storage has acted as a catalyst to consumer multimedia, exploiting the colour displays and 

reasonable quality audio that have also become increasingly available on modest hardware. 

The embodiment of this technology in actual systems exposes the constraints that are 

imposed by the marketplace on such systems and highlights the technology-led evolution 

described above. The consumer system chosen as the target platform for the 

implementation component of the work, Compact Disc Interactive (CD-i), is described in 

detail as an example of what such systems have to offer. 

Having identified the information-rich applications in the consumer domain as an area 

lacking in research chapter 3 outlines the problem space and sets the main objectives of this 

thesis. This is to show that information-rich consumer multimedia applications can be built 

effectively by using a core function set accessing a flexible data model and integrating 

browse and search. The key steps to this are the definition of the data model, the devising 

of a method to integrate browse and search, definition of the core function set and the 

implementation of a prototype and its testing and evaluation. The scope of the research is 

also defined here to contain the research task to manageable proportions. A strategy for 

tackling the problems is then outlined. 

The next two chapters, 4 and 5, develop the research problem by looking at browsing and 

search in two ways, empirically and theoretically. In chapter 4 a number of currently 

existing examples of consumer multimedia applications and other browsing situations are 

examined with a view to extracting common features. The examples studied range from 

printed documents to multimedia applications. In chapter 5 the fields of browse and search 

are studied with a literature survey which seeks to characterise them from a theoretical point 

of view. Various existing models are examined from three perspectives: task, cognitive 

and functional. After this preliminary literature review and observational studies the rest of 

this work has been conducted as a refinement process with a cycle of devising a model, 

implementing a function set, building prototype applications to evaluate the function set and 

suggest changes to the model or implementation. These are made and the cycle repeated. 

Chapters 6 and 7 describe the solution to the problem set in the preceding chapters. 

Chapter 6 develops a model of an integrated browsing and search process and defines a 

system architecture to support it. This model draws on the empirical data derived in chapter 

4 and the theoretical work studied in chapter 5 and distils this into a model suited to the 

consumer multimedia domain. 

With the architecture and data structures defined, chapter 7 describes the development of a 

library of functions, based around a frame-representation, that allows information-rich, 

multimedia applications to be constructed. An early LISP prototype demonstrated the 
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feasibility of the structures and functionality defined in the model. The LISP programming 

environment was found to be well suited to the rapid prototyping which characterised this 

phase of the work. Unfortunately the very reasons for this proved its downfall as running 

an interpreted language on such a modest performing hardware platform as CD-i proved 

not to be viable. A switch was made to developing the prototype browser library, and the 

applications constructed to test it, in 'C'. As this new version of the library was 

developed, new functionality was added and assessments done. A formal testing process 

has also been used to test the actual functionality of the Generic Browser to ensure that each 

function meets its specification. 

In chapter 8 the important topic of how interface issues affect the Generic Browser is 

tackled. Though not the main thrust of the work it is nevertheless necessary to consider 

issues such as the feasibility of representing the user interface in the same data structures as 

the browsable information and how transition effects could be associated with the links 

between data items. 

A significant amount of work has been done building prototype applications to demonstrate 

the applicability of the work to real world situations. These prototypes have formed part of 

the evaluation process for the Generic Browser. Chapter 9 describes the prototypes and 

what modifications were made to the function library as a consequence of building them. 

To avoid the problem of unconsciously biasing the prototypes to suit the Generic Browser, 

a paper study has been carried out to show how two existing CD-i applications could have 

been built using the Generic Browser. 

These chapters form the body of the thesis. A summary chapter draws conclusions from 

the work done. Finally a chapter is devoted to further work the could be done based on the 

work reported in this thesis. This is divided into two parts, the first looks at the short-term 

developments possible with the Generic Browser. The second looks at more major, 

longer-term possibilities such as the integration of video (which is becoming increasingly 

important in the consumer domain). 
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2 Background to the Research 

This chapter sets the scene for this research into providing browsing and search utilities for 

consumer multimedia systems. It starts by defining some of the essential terminology used 

in this field, a full glossary can be found at the end of this thesis. The motivation for 

targeting consumer multimedia is then explained and the consumer domain examined from 

the perspectives of the types of activity that need to be supported and the hardware and 

available to do them. The shortcomings of existing software and the new technologies 

coming to fruition suggest an agenda for the areas of research. These are further examined 

and developed in the next chapter where the selection of the research area that comprises 

this work is chosen. 

2.1 What is Browsing? 

The term browsing is at once familiar and yet hard to define. Dictionary definitions 

emphasise a leisurely, unfocused search for information. In the computing domain 

browsing has come to mean the type of exploratory access used in hypertext systems, often 

contrasted with search as used in database retrieval. [Liebscher & Marchionini 1988] 

define browsing as the opposite of search. However [Palay -& Fox 1981] describe 

browsing used as a search activity. The problems of defining browsing will be explored 

further in chapter 5. Suffice to say here that this thesis will show that browsing and search 

are better defined as the extreme ends of a continuum rather than as two separate, individual 

access mechanisms. As one moves from browsing to search, the focus becomes more 

directed and the activity, perhaps, less leisurely. To avoid the confusion that exists because 

of the ambiguity of the terms browse and search, within this thesis the term browsing is 

used to describe the activities that lie on that continuum. 

2.2 Basic Terminology 

At this point it is necessary to define the basic terminology to be used in the remainder of 

this thesis. The key terms are defined below. Other terms are defined in the glossary. 

asset the multimedia objects such as pictures, audio material, 

text and video which are the basis of a multimedia 

application. 

browser a convenient shorthand for "browse and search 

mechanism" as in "Generic Browser". 
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digital video (DV) 

Generic Browser 

link 

full-screen, full motion video, usually MPEG (see 

below) encoded to VideoCD (white book) specification. 

Sometimes also referred to as fmv. 

the function library described in this thesis is known as 

the Generic Browser. The reasons for this name are 

largely historical-like LISP's CAR and CDR5. The 

usage of the term browser should not be taken as a true 

description of the total functionality of the library which 

comprises aspects of data representation, browsing and 

search. 

a directed arc joining two information nodes; often used 

to represent a relationship between concepts. 

MPEG Motion Picture Expert Group, the ISO standardisation 

committee that has defined the MPEG 1 digital video 

encoding/decoding standard [ISO 1993a, ISO 1993b, 

ISO 1993c]. 

multimedia application one which combines more than one of the media types 

text, pictures, audio and video 

navigation 

node 

the process of moving through an information space in a 

non-random way. 

a chunk or unit of information; often used to represent a 

concept. 

Table 1. Basic terminology. 

2.3 Consumer Multimedia 

Multimedia has been around in the professional arena for a number of years. It did not take 

off as fast as some of its most ardent protagonists such as Apple Computer might have 

hoped, but CD-ROM drives are becoming standard features of PCs and so the 

5These two functions which return the head and tail of a list respectively, have names derived from the 
architecture of the machine on which they were first implemented viz. CAR - contents of address register 
and CDR - contents of decrement register. 
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necessary high capacity storage devices have become common and support for audio and 

video is increasingly becoming a standard feature of mainstream workstations. 

Multimedia in the home is another matter entirely. There are a number of key issues which 

differentiate this market from the professional one: 

Constrained hardware environment - the consumer market is much more sensitive 

to price than the professional one. As a consequence computer based systems for 

the consumer market are generally of more modest performance (in terms of 

processing power and memory capacity). The lower purchase price of consumer 

systems requires a commensurate higher volume of sales and reduced cost of 

production. 

Low computer literacy - consumer multimedia systems must avoid alienating those 

people who are not computer literate and for whom a computer is regarded as 

difficult to use and unfriendly. This is often achieved by avoiding calling the 

system a computer and eliminating the keyboard. Interaction is then performed 

with joysticks, trackballs, buttons and similar devices. 

Low tolerance to poor response times - because the-majority of consumers don't 

know (and don't want to know) how a multimedia system works they are more 

critical of poor response times. 

No requirement to use - consumers do not have to use their multimedia systems. 

These systems must give their users pleasure or fulfil some other need. 

(Professional users generally do not have the choice, use of the system is part of 

their job or the only way they can find information). Consumer systems are in 

competition with existing uses for a person's leisure time. Possibly because use 

is optional, consumers do not tolerate uninteresting or difficult to use software. 

Because of the price sensitivity of the consumer market, it is not as easy to pass on high 

application development costs to the purchaser so there is a need to make application 

production as cheap as possible hence tools which assist in the authoring process or which 

allow re-use of code or data are in demand. 

2.4 Enabling Technologies 

Critical to the success of multimedia as a "new publishing medium" are the technologies 

which are allowing it to expand out of the mainstream computing, data storage and retrieval 

environments and into the mass marketplace. 
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2.4.1 Compact Discs for Data 

Although video disc players have been connected to PCs for interactive video (training) 

applications, the total cost of these combined systems is high, as is the cost of mastering 

the discs. These systems have therefore remained in the professional market. 

Compact disc was originally developed as a cheap medium for storing digitally encoded 

audio but it did not take long for its potential as a storage medium for any digital data to be 

realised. CD-ROMs were the first use in the computing domain, holding 600Mb of data 

including programs. Extensions and alternatives to the way the data is laid out on the disc 

have lead to a number of alternative formats. 

Acronym Standard Description Date 

CD-DA Red Book Audio CD standard 1980 

CD-ROM Yellow Book Computer Data 1984 

CD-i Green Book6 Multimedia data 1987 

(interleaved) 
~ 

CD-R Orange Book Multi-session recording to 1992 

disc (Photo-CD) 

VideoCD White Book MPEG 1 coded linear 1993 

movIes 

Table 2. CD fonnats. 

However the basis of all these standards is the same - the CD provides a cheap storage 

medium for about 650Mb of digitally encoded data. Riding on the back of the music CD 

industry's economies of scale means that the infrastructure for CD publishing is in place. 

2.4.2 Cheap Platforms 

As has already been observed the consumer is very conscious of the cost of new "gadgets" 

and so it is only with the advent of cheap multimedia platforms that this market has opened 

up. Some of the contenders in this field are briefly examined below to give the reader an 

idea of the capabilities of the target platforms of this work. 

6The Green Book CD-i standard defines not only the disc fonnat but the hardware and operating system as 

well. 
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CD-ROM - not really a platform in its own right, rather an add-on to existing 

platforms (Macintosh, PC etc.). This is the basic building block on which 

multimedia is based - cheap, removable, robust, high capacity storage. Though 

initially only available on high-end machines there is a trend to incorporate a CD

ROM drive in machines aimed at the home market. CD-ROM provides the 

minimum for multimedia in the sense that whilst it does give 600Mb of storage 

there is no interleaving of data as there in on CD-ROM XA and CD-i disc. This 

means that, for example, music data cannot be played off the disc whilst a picture 

is loading. 

Because personal computers have been designed as just that, computers, their 

multimedia capabilities are generally barely adequate. They usually have poor 

internal audio capabilities (in the case of PCs requiring an add-on card), modest 

video capabilities with only one plane and often only 8-bit CLUT graphics. But 

the unrelenting progress in the pc industry means more memory and processing 

power are available every year so a brute force approach to, say, screen handling 

has overcome most of the disadvantages of not having an architecture specifically 

designed for multimedia with add-on cards supplying the missing functionality. 

The large computer manufacturers such as Apple and IBM are always nearly in the 

consumer market. But with CD-ROM equipped machinery costing £1500 and 

more it is difficult to see multimedia versions of personal computers penetrating 

outside the traditional home computer market. However that market is an ever 

expanding one. About 7 million multimedia equipped PCs were sold for home 

use in 1994 [Cortese 1995] and CD-ROMs are now sold like computer games or 

audio CDs and even have a "top ten". 

CDTV - essentially a Commodore Amiga with a CD-ROM drive, no keyboard or 

other disks. Released in 1991, about the same time as CD-i, but with much less 

development. A lack of innovative multimedia software saw this machine fail to 

penetrate further than the home computer/games machine market where it has 

become a peripheral for existing Amiga users. Indeed, Commodore have now (in 

1994) released a successor to CDTV the CD-32 (a games console). 

CD-i - a consumer multimedia machine designed with this market as its target. 

CD-i is built around the "Green Book" standard [Philips & Sony 1990]. Modest 

memory and processing power betray its mid '80s origins. CD-i offers 

interleaved multimedia data so that, effectively, more than one file can be read 

concurrently from the disc. This allows music to be played from the disc whilst a 

picture is being loaded for example. There are two video planes allowing a range 
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of video effects, a variety of picture coding fonnats from CLUT to tv-quality 

allows the use of photographic (natural) images as well as "computer graphics" 

and finally high quality stereo audio. 

Nintendo and Sega - although producers of computer games machines, both 

these manufactures have recently produced CD-drives as add-ons to their top of 

the range games machines (these use CD-ROM fonnat and are consequently 

slow). It will be interesting to see if they branch out from their games market 

niche and into the multimedia arena proper. 

3DO - this machine is aimed much more at the games market than CD-i (which 

was developed before the dramatic rise in the fortunes of Nintendo and Sega made 

computer games a "legitimate" market to be in). Custom chips allow fast video 

processing promising excellent special effects. It is a similar story for the other 

recently (1995) released platfonns such as the Sony Playstation, Atari 

Jaguar, Sega Saturn and ... - more power, more realistic graphics but a 

concentration on games and a dearth of other software. 

Though not an exhaustive list this gives a good impression of the type of hardware 

available for consumer multimedia. To sum up, this market has shown no signs of 

adopting a single platfonn. Some companies have stayed with a standardised design and 

concentrated on the addition of digital video and the production of a large software library. 

Others, keen to cash in on the games machine bonanza are producing ever more powerful 

games consoles which now include CD drives as part of the specification. In all cases 

these machines undercut the prices of multimedia equipped PCs but there is now a fast 

growing market for consumer software for PCs as well. 

In spite of the increasing processing power of current consumer multimedia machines, with 

the exception of personal computers these improvements are largely aimed at better 

graphics processing rather than infonnation processing. The computing environment 

remains constrained with modest amounts of memory and slow CD drives for mass 

storage. (Only very small amounts of non-volatile storage are available, principally for the 

storage of game high scores and saved games.) 

One key observation is that in spite of the volatility of the hardware market there is an ever 

increasing interest in producing multimedia software. Cross-platfonn code development is 

a must for software houses so that they can "hedge their bets" while the hardware 

manufacturers try to carve out a niche for their particular combination of the basic 

multimedia components. 
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2.4.3 Digital Video 

As the whole concept of multimedia developed in the late '80s it became increasingly 

apparent that multimedia which consisted of just static pictures and simple animations was 

in a sense incomplete. There was a need for such systems to display moving pictures i.e. 

video. Hooking-up laser disc players or video tape machines was not the real answer. 

First on the scene was DVI (digital video interactive) from Intel. This system offered real

time decoding and either low quality "edit level" video for prototyping which can be coded 

on the user's PC or higher quality material coded by Intel. DVI also required an add-on 

board for the PC. The relatively high cost of a DVI equipped PC has meant that this 

system did not really take off outside limited professional uses. 

Apple Computer, long time proponents of multimedia, have developed QuickTime [Apple 

1993a, Apple 1993b], an operating system extension to integrate video at the system level 

on Macintosh and also PC. This can use a variety of compression/decompression systems. 

Apple supply a number of software codecs with QuickTime which have the advantage is 

that they do not require an add-on board to display QuickTime movies. However, needless 

to say, a powerful Macintosh is needed to display even a small (i.e. part screen) image at a 

reasonable frame rate. 

Meanwhile ISO's Motion Picture Expert Group (MPEG) were working to produce their 

standard for digital video compression/decompression [ISO 1993a, ISO 1993b, ISO 

1993c]. Philips backed MPEG for CD-i and in late 1993, after much delay, released 

MPEG decoders for CD-i. Decoders have also been promised for other platforms such as 

3DO and the Atari Jaguar. Apple have specified that QuickTime 2 will support MPEG via 

add-on hardware [Apple 1995 pp. 9-10]. 

One target area for digital video is the home video market. As well as being playable on 

CD-i systems, MPEG encoded discs with feature films on will be playable on dedicated 

digital video movie players. Because the cost of producing CDs is much less than that of 

duplicating video tapes (by a factor of three) it has been suggested that the major home 

video suppliers will kill-off VHS pre-recorded movies in favour of digital video CDs. This 

would reinforce MPEG as the standard for digital video coding and reduce the costs as 

volume forces the encoding price down. Integration of digital video with "static" 

multimedia will become expected by consumers. 

2.4.4 Consumer Applications of Multimedia Technology 

As well as the "traditional" informative applications such as encyclopredia discs or museum 

guides there are several new avenues opened by a "mass market" for information-rich 

multimedia. 

- 27 -



Home Shopping 

There is a growing interest in the possibilities offered by multimedia systems for shopping 

from home. Major catalogue companies spend large sums of money on printing and 

distributing bulky catalogues. Putting such a catalogue on a CD would reduce these 

overheads. So the first step in home shopping is the catalogue on a disc. The real 

challenge is to explore how multimedia can be exploited as a sales vehicle which was the 

area being investigated by, for example, the Esprit Homestead Project7. A catalogue with 

digital video might be more like tv advertising. Search facilities would make finding the 

right item to buy more easy. A modem connection would allow orders to be placed on the 

retailer's computer. Prices and availability could be transmitted to the consumer, 

superseding information held on the disc. 

Magazine Discs 

In 1991 Computer Graphics W orId ran an article on Interactive Magazines [Maguire 1991]. 

This explored the potential for the nascent CD-based magazine market, concentrating on 

CD-ROM as a vehicle for distribution. Maguire looked at three magazine discs: MacworId 

Interactive, Nautilus and Verbum Interactive. He was impre~sed with the quality of these 

three offerings but felt that the bottom-line was (in 1991) that the home market was "a high 

stakes long shot" though there was potential in the professional market with for example 

magazine CD-ROMs for doctors extolling the virtues of new drugs and treatments. The 

main obstacle to take-up was the lack of CD-ROM drives. Most PCs sold for home use 

now have CD-ROM drives [Kehoe 1995] so all that is required is a sufficiently cheap 

authoring mechanism so that magazine applications can be produced on a regular basis. 

A very important characteristic of magazine applications is their transient nature - they are a 

throw-away commodity. This requires that they must be produced at low cost which 

places even greater demands on the authoring tools. For such applications common 

structures and interface elements are important from two perspectives; firstly, from the 

reader's viewpoint a "house style" allows familiarity with the layouts to be built-up as 

successive issues are read; secondly, from the authoring perspective new structures carry 

an implementation overhead - indeed most paper magazines keep to a well defined style for 

many issues with revisions every year or so to keep the style fresh. 

CD-i World, the first CD-i magazine disc, used MediaMogul for authoring. MediaMogul is 

a fairly simple tool allowing the creation of screens linked by hotspots. The authoring 

7Esprit III Project 6789 Homestead had the objective of investigating the potential of home shopping from 
a CD based application and conducted extensive user trials with a CD-i based system. 
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system consists of a spreadsheet interface to the sequencing of the screens and a hotspot 

editor. Screens can show pictures or video and have audio associated with them. More 

complex structure could be produced with a better tool. There is a need for a high level 

representation scheme to allow authors to create content structure and specify interaction 

possibilities, minimise programming and reduce cost to allow magazine discs to be cheap 

enough to be marketable as throw-away commodities. 

Networked Multimedia 

Although multimedia in the home currently revolves around a single, unconnected machine, 

the burgeoning high bandwidth communication paths to the home via satellite, cable and 

(digital) telephone links, the so-called "information superhighway", mean that new avenues 

based on the idea of networked multimedia are coming to the fore in the multimedia world. 

The range is enormous. Home shopping might allow downloading of up-to-date prices 

and merchandise availability together with order placement direct from the box in the 

lounge, even browsing around a virtual store. Multimedia, multiplayer games (e.g. 

[Crawford 1993]), pay-as-you-view, video-on-demand (e.g. [Little et al 1993]) and so on. 

Many of these services will require data storage, structuring and access tools. For instance 

video on demand will need a database of movies available and may offer information such 

as reviews, plot descriptions and cast details about these films. 

Although in networked multimedia the servers will be powerful machines and so not 

subject to the tight performance constraints of machines in the home they still share the 

need for the structuring and access facilities for multimedia information. Thus research 

directed at domestic multimedia platforms is applicable to this area as well. 

2.5 CD-i - A Typical Consumer Multimedia Platform 

An important objective of this work is to demonstrate its suitability for implementation on 

the types of multimedia machine sold for use in the home. To this end all the 

implementation work has been carried out on CD-i hardware. To give the reader a better 

appreciation of the capabilities of such platforms the key features of the CD-i player are 

listed below. The CD-i hardware, disc format and system software are defined in a 

standard document known as the "Green Book" [Philips & Sony 1990].8 

8For further infonnation on the CD-i hardware and the CD-i authoring process see also [Philips IMS 
1992a, Philips IMS 1992b & Philips IMS 1992c]. 
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Key features of CD-i 

650 Mbytes of data on CD disc. Interleaved format allows more than one stream 

of data can be read concurrently. 

10MHz 68000-based CPU, 1MB RAM. 

2 video planes for CLUI graphics or DYUV coded natural images, a background 

plane for digital video and a cursor plane. 

Digital video option decodes l\1PEG 1 coded video onto the background plane. 

An additional 1 Mbyte of RAM is also available. 

High quality stereo audio. 

Real-time, multi-tasking CD-RIOS operating system based on OS-9. 

A more detailed specification of the CD-i system is given in appendix A. 

2.6 The Research Context 

Ihis PhD work has been conducted part-time whilst the author has been employed by 

Philips Research Laboratories, Redhill (PRL). Ihis thesis documents work which has 

formed a self contained part9 of a PRL proj ect the aim of which has been to make use of 

techniques from the artificial intelligence (AI) world to add value to informative CD-i 

applications. 

Ihis environment has imposed some constraints. Firstly there was a Project need to build 

prototype applications early in the work. Accordingly this was done in parallel with the 

theoretical investigations rather than delaying the prototyping activity until after the problem 

space had been fully defined. However the fact that the problem space was poorly defined 

initially meant that this prototyping helped in the initial exploration that characterised the 

problem space. The choice of the CD-i platform (see below) was clearly influenced by the 

Philips connection. Similarly total freedom of choice for implementation language was not 

possible because of the requirements of the PRL Project. However where constrained 

choices have been made the limitations of the choice are recorded. 

9Due attribution is given wherever work not performed by the author such as related work within the project 
is described. 
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2.6.1 The Choice of CD-i 

At the time that this research was started the CD-i platform was the only multimedia system 

specifically designed for use in the home (not counting game consoles that were dedicated 

to game use). CD-i was chosen because it was felt that it was important to address the 

constraints such a system (as opposed to a PC or Macintosh) would place on the work. As 

the work has progressed this choice has become less clear cut because PC's are now very 

common in homes in the US and could be regarded as consumer multimedia. Such 

platforms pose slightly different problems to CD-i. The display and audio architectures are 

not "tailor made" for multimedia and pure CD-ROM requires very careful use of the CD 

filesystem to avoid unacceptable delays. However more memory and a writable disk 

coupled with sophisticated programming environments might make such machines a good 

choice for this type of research if it were to be started now. 

2.6.2 The Film Browser 

The Generic Browser concept grew from experiences gained during the development of a 

browser implemented on the CD-i platform. This browser, The Film Browser, was 

derived from an existing browser, the Cookery Browser. The Cookery Browser was 

designed and developed in the PRL project, the application code being written by David 

Walker [Walker 1990]. 

The Cookery Browser allowed the user to view recipes for the four courses of a meal. The 

user browsed with next and previous buttons, could mark 10 items of interest, heard a short 

audio commentary for each dish and could select whether he saw a picture of the dish, the 

recipe, a description or the ingredients. An index was also provided for rapid access to the 

dishes arranged by type e.g. fish dishes, meat dishes and so on. 

The Film BrowserII [Cole 1991c] gave similar functionality but in the domain of feature 

films. In this browser, the user could see a still picture from the film, a film clip, a review 

and a cast list. The index allowed access by genre. Again marking was available with 

either all the films, all the films in a genre or all the marked films being available to browse. 

IOMarking is the attachment of annotations to an information item. 

II The author's contribution to the Film Browser was the modification of the Cookery Browser code to the 
film domain and the building of the actual application. The screen designs, asset production and voice-overs 
were contributed by other members of the project 
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Figure 1. Film Browser - access by genre and title. 

Figure 2. Film Browser - browsing screen. 
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Four key features of the Film Browser are listed below: 

browsing (navigation) 

marking 

multimedia data 

subsets 

Functionally these two browsers are very similar and it was proposed to simply change the 

data being used by the Cookery Browser together with the graphics in the interface to 

achieve the desired functionality in the Film Browser. 

Following the completion of the Film Browser the following observations were made: 

the same basic browsing functionality was used in two different applications and 

further thought suggested that these applications were by no means unique in their 

requirements for browsing facilities 

modification of an existing 'C' program, which had not been written with such 

modification in mind, was a time consuming task. The resulting new application 

used the same data structuring and access functions with a different look and feel 

to the user interface 

extending the Film Browser to allow more genres was constrained by the 

representation used (in this case the bits in an integer). A more general 

representation scheme would allow extensions without major modifications to the 

code. 

Two approaches which avoid some or all of these problems suggested themselves. 

Firstly a browser "shell" application could be written with reusability is a design 

requirement. Many of the code modifications to the Cookery Browser were as a direct 

consequence of reuse not being considered. Examples range from application specific 

variable naming to inflexible data structures. 

Whilst this approach works well when the applications are all very similar the widespread 

use of browsing interactions in multimedia software (as demonstrated later in this thesis) 

suggests a more general approach. 

The predicted widespread use of browsing in the context of the growth of consumer 

multimedia described in this chapter further adds weight to the decision to pursue this 

concept in preference to that of browser shells. 
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One issue raised but not addressed by the work on the Film Browser was that of the use of 

search. For example in a Film Browser-type application it would not be unreasonable for 

the user to request to see infonnation on all films by a certain actor. This would require the 

application to search for these films. Hence the position of search with respect to browsing 

is an issue for information-rich application development. 

The Film Browser provided the trigger to investigate browsing interactions with the aim of 

specifying a generic framework for multimedia browsing. Such a framework consists of 

both a representation scheme for the data to be browsed and the functions required to 

access and manipulate the data within the context of the browser application. As this 

investigation progressed the importance of search to multimedia applications became 

apparent. Thus search was added to the feature space to be addressed by the generic 

software. 

2.7 Multimedia Authoring Needs 

Authoring is the process of turning raw assets into an application. Whilst multimedia is a 

relatively young field it is growing fast (as the number of CD-ROM applications testifies). 

As the production of applications moves out of the professional marketplace the need for 

design and creativity in the authoring process increases. As all the entrants into the 

multimedia market have found, it doesn't matter how gee-whiz the hardware is, it is the 

software that makes the money. Consumers do not have to buy multimedia software. 

Richard A. Bowers, executive director of the Optical Publishers Association said in 1991 

"What's going to make multimedia - or CD-ROM go - will be people who have the content, 

and the creative and business chutzpah to pull it all together and really make this new 

medium" [Maguire 1991 p. 40]. The major players in the multimedia market are buying 

asset owners such as film and record companies e.g. Sony owns CBS records, Columbia 

and Tristar Hollywood studios, Philips owns 70% of PolyGram which owns, among 

others, Propaganda Films and Matsushita owns MCA (Universal Studios). 

When CD-i was being developed there was a critical shortage of suitable authoring 

software and so applications were developed by teams which included programmers skilled 

in 'C' or even assembler. This meant that application build costs were very high. 

Considerable effort was (and is) being expended to provide tools that increase productivity 

by reducing the amount of hand coding that is necessary and as a consequence the level of 

testing required to prove the application before release. This type of bespoke software 

development is very costly. At first sight it might seem that code re-use and portability are 

alien to multimedia and to a large extent this is the case at present, particularly on dedicated 

home machines. The alternative is to make use of application development tools. However 
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there are only a few multimedia authoring tools available for the main platforms (~Iacintosh 
and PC). 

Those multimedia authoring tools that do exist concentrate on tying together assets in the 

form of screens. This is essentially based around a slideshow presentation type of 

mechanism. Interaction is often limited to switching between presentations. Examples of 

this type of tool are: 

MediaMogul for CD-i - in MediaMogul the fundamental objects are scripts which control 

the presentation of assets and menus which allow branching between scripts. There are no 

data handling facilities at all. Within this rather constrained environment a range of 

interesting applications can be built. Good examples are the CD-i World magazine discs 12 . 

The lack of any data handling facilities within MediaMogul is restrictive however and a 

number of authors have requested such functionality to be added. One route for providing 

these features is to use the MediaMogul "plug-in" which allows extensions to the basic 

MediaMogul system 13. 

The next step up are Hypercard and MacroMedia Director (similar products are also 

available for PCs) which allow multimedia, interactive presentations to be assembled. 

These allow complex program structure but require the use of programming languages to 

achieve this. However, even in MacroMedia Director there are no database facilities for 

structuring and accessing data. 

There are not a great many tools available to assist the author of a multimedia application 

which contains a large amount of information i.e. where accessing the information is the 

purpose of the application. There are database and spreadsheet packages for PCs (though 

few, if any, have been ported to dedicated consumer multimedia boxes such as CD-i) which 

allow raw information to be stored, retrieved, and to a very limited extent displayed. The 

princi pal problem with the use of databases is their inflexible representation. 

What is lacking is the ability to put data at the heart of the authoring process rather than 

presentation. The research issues here are: what does it mean to have data-centred 

authoring? What are its advantages and disadvantages compared to the 

location/presentation model currently in use? Can the two coexist or be integrated? 

12The CD-i World discs are published by Parker Taylor and Company to accompany the CD-i World 
Joumal. 

11 A MediaIvtoglll database search plug-in has been deycloped using the Generic Browser search functionality 
described in this thesis. 
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2.8 Research Opportunities 

The prerequisites for consumers to have access to multimedia are now in place. There are a 

number of competing platforms in the marketplace. Of course the success of these ventures 

are dependent on application producers giving the public applications which will interest, 

amuse and inform them. To do this economically they will need tools to streamline the 

production process and before tools can be produced the representational and functional 

underpinnings must be developed. 

The domain of consumer multimedia has been chosen as the target for this research because 

it offers a number of interesting challenges. Firstly it is not an area that has been as heavily 

researched as, for example multimedia for teaching purposes where entertainment is an aid 

to learning rather than the primary purpose of the application. Secondly there are a number 

of constraints that this market places on the hardware. This in tum impinges on the design 

of the software components from which the application is constructed. The challenge here 

is to provide the right support to enable good application software to be written. In a 

relatively unconstrained environment many alternatives can be offered to an author without 

seriously prejudicing the performance of the application. In a constrained environment a 

more careful choice of options is required. It is also an area which is fast evolving - de

facto standards last only a year or so. This means that to be useful software must not be 

tied to a particular platform. The consumer industry's preoccupation with "the bottom line" 

i.e. minimising costs is also very relevant because this provides a driving force for more 

efficient and productive software and tools. The research issue here is the production of 

techniques and methodologies which can be implemented within these constraints. In 

particular the area of informative applications (so-called edutainment) is poorly served from 

the authoring standpoint with little or no support for information structuring for example. 

The Film Browser has shown key characteristics which are also shared by its predecessor 

the Cookery Browser. If the hypothesis that these have a wider applicability to a range of 

multimedia applications is proved then providing these as a function library for the 

application developer avoids re-inventing this particular wheel each time such an application 

is built. Preliminary investigation showed that a range of multimedia applications share 

common information access primitives such as browsing and marking items of interest and 

searching for particular information. Together browsing and searching fonn an important 

part of the field of information access. In the world of CD-i that infonnation is multimedia 

in nature with textual information forming only part of the range which also includes audio, 

video and still pictures. The additional requirements that multimedia data impose on the 

representation and processing functions of a system need to be explored in detail. 
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The essentials of application creation can be summarised as follows: 

data authoring 
tools 

data representation 
scheme 

/ 
function 

/ library 
---____ interface 

library ~ 

authoring 
tools 

Figure 3. Components of application creation. 

~ interface 
tools 

Most current applications have very little data other than screens of information so that the 

data representation is simply a means of storing these screens and the data authoring tools 

are paint and draw packages. The function library allows screens to be presented and the 

interface library translates user input from buttons and menus into screen selections. 

Authoring tools like MacroMedia Director include interface creation. 

In information-rich applications the data may not be stored as screens but as pictures and 

text and audio fragments. Structural information such as hyperlinks and other forms of 

browsable structure form part of this data. So the data authoring process now adds data 

structuring to asset creation, manipulation and storage. The interface handles the 

presentation of this data on the physical screen as well as user input and the function library 

gives access to the data objects and traverses the structures. 

For information-rich applications, a combination of an effective interaction layer on a rich 

data representation should enable interesting and stimulating applications to be created. The 

key is to address the problem of making the information easily and enjoyably available to 

the user via a mechanism that makes application creation straightforward and quick for the 

author. The first step towards this goal is to find the functionality that consumer software 

requires so that tools can be built. 
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2.9 Research Agenda 

The first area in need of research is the provision of generalised browsing and search 

facilities on the "modest" hardware of consumer multimedia machines. This requires 

small, efficient codes to be developed with the variety of platforms causing support for 

cross-platform application development to be of increasing importance. 

Underpinning authoring tools for such hardware will be data structures and access 

software. The need for an emphasis on browsing access to information, but with search 

facilities integrated at this level makes the needs of this environment stretch most existing 

models developed for the professional database application area. Accordingly there is a 

need to develop a suitable data model for the multimedia information that is at the heart of a 

wide range of potential consumer applications and to extract a rich set of access functions. 

With the designer playing a key rOle in the development of consumer multimedia 

applications and the current bias towards a "location centred" view14 of the structure of an 

application there is a need to examine how information-rich applications can be supported 

by integrating an information centred viewpoint. 

Of growing importance to the multimedia world is the integration of video with other 

multimedia assets. This means that the problems of representation of the video content 

must also be addressed together with the integration of presentation and how the inclusion 

of video affects the current application models and the authoring process. 

Another area gaining prominence with the advent of networked multimedia and the 

"information superhighway" is coping with large volumes of information. Structuring and 

access methodologies are important here. 

These are the research areas closest to the domain of multimedia browsing and search. In 

the next chapter the topics chosen for research in this thesis are described in more detail. 

14 A location centred view regards an application to be composed of a number of locations (screens of 
information), for example HyperCard's cards. A user navigates by following links between these locations. 
Structure in the data is secondary to the navigation structure. 
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3 Objectives, Scope and Strategy 

In this chapter the objectives of this thesis work are laid out in detail addressing research 

issues raised in the previous chapter. Following the objectives the scope of the work is 

presented, differentiating between the core topics of the work and those areas that are 

addressed only as far as is necessary to support the main thrust. The chapter concludes by 

explaining the strategy employed to do this research. 

3.1 Objectives 

The primary objective of this thesis is to asses the feasibility of providing a core set of 

information access functions operating on a flexible data model as a basis for the 

construction of information-rich multimedia applications in the consumer domain. Such a 

set of functions should integrate both browse and search activities to allow both access 

strategies to be provided in one application. To asses the feasibility a generic function 

library for creating information-rich multimedia applications that include browsing and 

searching access to the information is developed. This addresses the observed lack of 

information-based authoring facilities for multimedia applications reported in the preceding 

chapter. 

In the context of this work the term generic is used to indicate the generality of the software 

from two perspectives; generic with respect to platform and secondly with application. 

Platform independence means that the software is not tied to a specific platform, it does not 

depend on specific platform features or is written in such a way that such features are 

accessed through drivers which isolate them from the rest of the code. These drivers can 

then be re-written for different platforms without the main portion of the code needing to be 

modified. Chapter two has shown the rapid evolution of multimedia hardware and this 

necessitates a machine independent approach. However the constraints of the current 

generation of hardware have been used to ensure that the resulting software is realistic in 

the demands that it places on its host system and hence that the specification is 

implementable. 

Application independence means that the browse/search software is not specific to any 

particular application. There is a trade-off between bespoke software solutions and the 

generalised approach preferred here. Bespoke software allows maximum efficiency as the 

data structures and functional code are all specific only to the tasks required by one 

application. However the needs of the multimedia publication industry namely speed of 

application creation and maximum code re-use (to spread the costs over a number of discs 

and allow sequel/related discs to be produced easily) has led to the use of "engines" for 

particular classes of disc. An example is the series of art discs for CD-i such as "The 
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World of Impressionism" disc described in detail in chapter 9. These all share a basic 

browsing engine. The natural evolution of the engine approach is to make the engine 

general enough to be used for a number of different types of application (but all within the 

same basic class of application). This is the direction taken by the Generic Browser. 

There is a conflict between the goal of generality and that of efficiency and 

implementability. The more specific the solution the more tailored it can be, incorporating 

only what is necessary to solve the problem and no more. Experience in the AI world 

highlights this conflict. Early (1980's), general-purpose AI toolkits such as 

KnowledgeCraft and KEE were extremely flexible allowing researchers to concentrate on 

the AI research issues. The price of this flexibility was that the toolkits were very large and 

inefficient. As AI techniques have been absorbed into mainstream computing the toolkits 

have been pruned down reducing the choice of knowledge representation methodologies 

for example, enabling them to be implemented on PC-sized machines. An example of this 

process is Nexpert Object [Neuron Data 1990]. 

Within the overall goal of generality there are a number of key subgoals: 

3.1.1 Development of Multimedia Data Model 

A data model is important because it provides a secure foundation for the function library. 

The model should be common to both the browsing and search functions. This allows 

both processes to operate on the same data structures with integration a fundamental 

property. The alternative where separate browsing and searching sub-systems are used can 

require data to be passed back and forth and overlapping or duplicated representations of 

the information. 

In the following chapters the processes of browsing and search are investigated together 

with their data representation and structuring requirements. A suitable data model is then 

proposed. This model underpins the development of an architecture for browse/search 

applications. It has the following features: 

The data representation is object based and is suitable for multimedia data. 

The data model handles browsable structures of the following types: 

linked structures typified by "hyperlinks", 

paths - for representing sequences or narrative, 

subsets. 
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It demonstrates a uniformity of representation between the basic building blocks 

of multimedia applications: 

data items 

search queries 

search results 

histories 

paths 

The model allows the richly interlinked structures present in a wide variety of multimedia 

data and provides additional structuring for sequence or narrative. 

3.1.2 Integration of Browsing and Search 

Evidence is provided for the hypothesis that browsing and searching are the extreme ends 

of a continuum of data access methods and that many browse/search interactions contain a 

mixture of both with the ratio varying as the interaction proceeds. These observations 

motivate the integration of browsing and search facilities so that applications can be built 

which exhibit both types of information access. 

By exploiting the concept of marking the data items as a means of creating browsable 

subsets the integration of search by marking search "hits" is demonstrated. 

3.1.3 Development of a Core Function Set 

The selection of a core set of browsing and searching primitives which operate on the data 

held in the structures developed above is described. 

At the browsing end of the continuum there is an emphasis on extracting the basic, simple 

browsing functions. Syntactic (location) and semantic (content) navigation are both 

considered and their requirements distilled. 

For search the emphasis is on determining what variations on the information retrieval 

theme are needed for the consumer domain. This results in facilities for inexact 

specifications and partial matches being included. 

As mentioned above, marking plays a critical rOle in this work. Both from the author/user 

perspective where it is a valuable and necessary function, but also from the perspective of 

its use as the means to integrate browsing and search facilities. 
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3.1.4 Implementation and Evaluation 

The second thread of the thesis describes the construction of an implementation of this 

architecture and its evaluation. These two activities have formed a refinement loop where 

the model has been adjusted in accordance with the results of the evaluation of early 

prototypes of the architecture. 

The implementation of the browser runs on the CD-i platform and on Sun workstations and 

has been constructed as a library of 'C' functions. The constraints of targeting the work at 

consumer multimedia helps to ground the research in a real-world environment leading to 

immediately applicable results. 

The browser has been evaluated by the construction of new applications demonstrating 

features of the work documented in this thesis. An example of how the Generic Browser 

functions could be used to re-implement existing browsing applications adds further 

confirmation that the generality goals have been met. The use of the prototype applications 

to refine the Generic Browser specification is documented. The description of these 

processes serves two purposes: firstly it demonstrates how prototypes were used to refine 

the specification of the Generic Browser and secondly that the Browser meets its 

objectives. 

The successful implementation and testing of the generic software described herein would 

make the task of developing a tool for authoring information-rich multimedia applications 

realistic, though for such a tool, further studies of the authoring process would be required. 

This tool could become the MacroMedia Director of information-based application 

development and a core function set is an important first step. 

3.2 Scope 

At this point in this thesis it is necessary to define the scope of the work to be addressed. 

An outline of the areas to be studied will be presented and the boundary lines drawn. In a 

number of instances it will be necessary to "peek over the boundary wall" and examine 

important related areas. In these cases the depth of the examination will be restricted to that 

required to provide the context for the main thrust of this work. 

In the preceding chapter the following agenda of research topics was formulated: 

generalising browsing and search facilities 

provision of such facilities on consumer multimedia systems 

integration of search with browsing 
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data models for multimedia 

integration of information with the "location centred" model used by existing 

authoring systems 

integration of video 

networked multimedia 

As we have just seen the objectives of the thesis tackles four of the research items on this 

agenda. These are generalised browse/search facilities, targeting consumer platforms and 

requirements, the integration of browsing and search and devising a suitable data model. 

The other topics are peripheral to the main goals of the work and are not given the same 

depth of treatment. One possible method for integrating a data centred view of application 

design with the common location centred one is proposed. The use of video in 

information-rich applications is a field for research in its own right. This thesis treats video 

as a self contained asset type which allows its inclusion within the framework of the 

Generic Browser in the form of simple video clips. A line is drawn between video at this 

level and applications which are primarily video. The latter require a different model, 

perhaps based around television production and techniques. Networked multimedia is not 

addressed directly. However the main differences between networked multimedia and 

disc-based multimedia are the larger data capacity, faster access and processing speed of a 

network server and the interaction delays caused by the network. The type of data 

structuring and access facilities described here are therefore equally applicable to this 

domain. 

There are two standpoints from which the area of browsing can be examined: 

Firstly there is that of the underlying functions that determine the nature of browse 

and search possible. In this view of the browsing world, the user interface (look 

and feel) of browsing applications takes a back seat. The justification of this 

standpoint comes from the observations that firstly the user interface is primarily 

part of the design of the application and so opportunities for a generalised approach 

are limited. Secondly, that user interfaces, their toolkits and management systems 

have been much studied already. 

The other standpoint is that of the user interface components that might support 

various forms of access. Here there is a concentration on the way in which the user 

interacts with the information and not on its structuring and access. 

The work described in this thesis has developed from a computer science standpoint but, in 

view of the importance of the interface to browse/search applications, the needs of the user 
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interface have been considered and one way of linking the user interface to the 

browse/search system is described. 

data authoring 
tools 

Figure 4. Scope of the thesis. 

In order to design a comprehensive set of browse functions the process of browsing must 

be examined in some detail. Three themes are developed; the cognitive perspective, the task 

perspective and the functional perspective. 

From the cognitive perspective it is not the aim of this thesis to devise and evaluate new 

cognitive models, rather the field is examined and relevant existing models considered to 

gain an understanding of the browsing process. 

The task perspective considers types of browsing activity. This is addressed by observing 

browsing activities in a variety of settings. 

The main thrust of this thesis is in the area of the functional design of browse/search 

applications and in particular what functions are required and what data model will provide 

the structuring necessary to support these functions. An important aspect to the approach 

taken in this work is that of retaining a link with the real world of implementations running 

on representative hardware. 

The Generic Browser is at the pre-tools authoring level and offers the basic building blocks 

for the data representation, structuring and browse/search access to information. This 

thesis will describe the provision of a function library to accomplish this level of authoring. 

The library's advantages lie in its standardisation of browse/search access so that the author 

does not have to reinvent this functionality with each application he writes. As already 

mentioned the principal disadvantage of this approach is likely to be in terms of efficiency 
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either in code size or execution speed. Considerable benefit is likely to accrue if the 

Generic Browser facilities were to be added to existing multimedia tools but this lies 

outside the scope of this thesis. 

3.3 Research Strategy 

The Film Browser raised the preliminary problem of whether a generally applicable set of 

browsing primitives could be devised since this functionality seemed to be required by a 

number of applications. This problem space was then explored by the parallel processes of 

studies of real world browsing examples and the relevant literature for theoretical aspects 

together with prototype implementations and applications. The latter were used to both test 

ideas from the studies and feed back ideas themselves. This process led to the realisation 

of the importance of search and how its addition would increase the generality of the 

concept of the Generic Browser. The problem space was then enlarged to include the 

addition of search facilities and their integration with the browsing component already 

being investigated. The strategy used in both these phases has been one of a refinement 

process: 

Firstly the technology space was defined. 

The problem space was then explored to generate a set of requirements. 

The solution phase consisted of forming a model and then assessing its feasibility 

and applicability. 

The results of these assessments were then used to refine the model as shown in 

the diagram below. 
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define problem 

.. 
" .... 

form model 

" 
test feasability 

" 

test applicability 

Figure 5. Refinement loop. 

refine 
model 

For clarity the study of browsers described in chapter 4 and the theoretical characterisation 

of browsing in chapter 5 together with the specification developed in chapter 6 refer to the 

final version of the Generic Browser in which search had been included. Similarly, apart 

from the descriptions of the individual prototypes, the evaluations described in chapter 9 

use the final version of the Generic Browser. 

In the next chapter the characterisation of the problem space is continued with the 

description of a study of real-world examples of browsing activity. 
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4 Study of Browsing 

This chapter describes a conceptual analysis of browsing in different media by looking at 

real-world examples of this process. By doing so common attributes between differing 

instances of browsing behaviour can be extracted. These (and the differences) can then be 

used as a basis for a set of requirements for the functionality of the Generic Browser. This 

will provide essential real-world empirical data to back-up the theoretical model developed 

in the next chapters. 

4.1 Examples Studied 

This study opens with a look at the way in which people use printed material - the 

backbone of everyday information use. This is followed by consideration of computer

based information access and a look at existing CD-i applications to see how browsing and 

search are used in them. 

4.1.1 Printed Material 

Browsing printed material is the type of browsing with which people are most familiar. It 

is such an everyday activity that most do not even think about what they are doing. Yet it is 

this very familiarity which makes it so important to consider how such materials are used. 

Providing that functionality in the Generic Browser will minimise the need for learning and 

thus allow casual use and the sort of approachability that is a requirement in consumer 

multimedia. 

In books and magazines browsing generally consists of flicking through the pages waiting 

for something to "catch one's eye". Their physical construction makes this easy. 

Additionally, most printed material has some form of internal content structure, for example 

the chapter structure in books, references, footnotes and so on. By virtue of their 

familiarity, which is based on the general conventions of the structure of such printed 

material, the user is able to make use of cues in the layout of the material to assist in 

navigation. 

By their very nature, printed works also allow navigation and place marking by physical 

means - the thickness of the two sides of an open book is a rough guide to where one is in 

the book. Bookmarks, "post-it" notes, the folding over (or even removal) of the page 

comer allows the reader to return to pages of interest. The use of bookmarks of one fonn 

or another allows rapid navigation to known places within the book. It is possible to flip 

from one marked place to another and back so that infonnation can be compared or cross 

referenced - this is like having both pages visible at the same time. Tables of contents act 

as a sort of map to the structure of the content whilst indexes provide an alternative route to 
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the information. Information is "chunked" into sections and chapters but it is also possible 

to view the pages as an approximate chunking of the information so that page turning 

becomes a kind of previous/next navigation from one chunk of information to another. It 

does not seem to matter that this is not an exact model, the whole process has an element of 

uncertainty built in which the human mind is quite comfortable with. 

Searching in printed materials can take place using the ordering of the information in the 

work (for example an encyclop<edia or dictionary), or via indexes or tables of contents. 

Here the table of contents acts a summary of the information, searching can take place at 

this level to find an appropriate area in the book for further searching or browsing. 

Searches may also rely on previous use of a book, for example using knowledge gained of 

the structure of the information "it's in chapter 2" and physical cues "about lcm from the 

front" (by thickness). Other visual cues are the layout of the material on the page, the 

presence of pictures and the use of colour. Search is frequently combined with browsing 

with the bias varying throughout the interaction. 

Books and magazines provide a benchmark for information-rich multimedia. If computer

based information is to become as ubiquitous as the book it must take on board those 

aspects of books and other printed materials that make them so attractive to use, modifying 

them to suit the computer medium and augmenting them with facilities which are unique to 

computerised information access. 

The browse/search process often extends outside the actual book or magazine. Looking for 

a book in a books hop or library for example. Again there is structure to help; sectioning by 

topic, accession codes, subject and author indexes and so on. 

The key feature of browsing printed materials are: 

familiarity of the form based on common features 

combination of browsing and search 

physical navigation cues 

bookmarks 

tables of contents and indexes 

4.1.2 Window Shopping & Browsing Inside a Shop 

Another form of browsing activity which most if not all people engage in is window 

shopping and browsing inside a shop. In the former the aim of the shop is to entice the 

browser inside so that windows are dressed to attract passers by. Viewed from an 
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information browsing perspective, the window contents are deliberately brief, eye catching, 

hinting of more detail within. Certain key aspects may be emphasised, the price, for 

example or the quality, whatever the main selling point of the items are. These are the 

search criteria that the shopper is using. 

Once inside the shop, the customer may be more focused. He may still have not decided 

what to buy but is able to see a more complete range of the goods for sale. Assistance from 

the staff may provide useful information, as may the packaging. Stores are frequently laid 

out in a logical fashion so that the goods are grouped together by, say, function or type. 

This allows the search to be narrowed down to a subset of all the goods on sale. Related 

items often form part of displays, accessories adorn the mannequins in a clothing store. 

These, it is hoped, suggest that the customer should look at these items to complement his 

clothing purchases. This is an example of linking related items, another concept of 

importance to a general model of browse/search. 

The key features of these browsing activities are: 

maps (e.g. store guide) 

summaries (e.g. the window displays) 

subsets 

linked items (such as accessories) 

4.1.3 TV Iradio Channel Hopping 

This is an interesting browsing-type of activity in which the user "timeshares" his attention 

between a number of potential tv channels, either to get the gist of what is going on in a 

number of different programmes being shown at the same time or to monitor a selection of 

channels, waiting for something of interest to come on. This is an example of browsing in 

time, of time-varying information. Another example of browsing in time is the monitoring 

activity observed by [Ellis 1989] where users of scientific journals monitor them, 

skimming each issue when it is released, looking for items of interest. In both cases the 

user must wait for new/interesting information to arrive, no activity on his part will make it 

appear quicker. 

4.1.4 Computer-based Information Systems 

The use of computers to store and retrieve information is nearly as old as computers 

themselves. Specialised and highly efficient systems have been developed in the database 

field with the emphasis on professional use of information. The growth of the PC culture 

over the past ten years has seen the rise of database software for these machines, designed 
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so that non-database experts can construct and use database facilities. Systems such as 

dBase are widespread. They offer "traditional" query-based search on a record/field 

structure [parsaye et al 1989]. They make extensive use of indexes15 to speed up the 

search but such indexes must be re-calculated when records are added or deleted. Such 

databases are therefore regarded as essentially static, with new information being added in 

batches and the indexes re-calculated. Browsing is restricted to previous/next operations on 

retrieved records (which form a subset of the database). Such subsets can be combined 

with the results of other searches. 

Many information systems have some kind of query interface. Take, for example, the 

INSPEC systems which gives access to abstracts of scientific papers. Here the user must 

specify search terms (from a thesaurus of allowed ones) and "home in" on his area of 

interest by successive refinement of his query. There are several pitfalls in this style of 

interface. The user may have little knowledge of the structure or extent of the database. 

His first queries may well yield either far to many potential hits or too few. The use of 

Boolean connectives and special query languages mean that only those trained to use such 

systems can use them (or get the best out of them). However one advantage of the query

based approach is that the database can be narrowed down to a usable (or browsable) 

subset relatively easily. Another, perhaps more generally accessible example of such a 

system is the computerised catalogue to be found in most main public libraries. 

The alternative to query-based systems is some form of hypertext or hypermedia. As has 

been noted earlier, hypertext has not taken off as fast as some expected though the "hot 

word" concept is regularly found as part of other systems such as on-line manuals and also 

encyclo!1redia CD-ROMs such as Microsoft's Encarta or Compton's Encyclopredia on CD

i. With hypertext systems the emphasis is on exploration rather than retrieval. A good 

example of hypertext in this rOle is World Wide Web. This is a distributed hypertext 

system which uses TCP/lP protocols to allow access to hyperdocuments on sites all over 

the world. The documents use a very simple mark-up language (HTML) which allows hot 

words to be linked to other documents or pictures anywhere on the web. Users of the 

system browse the networks of connected nodes in the same way that any hypertext is used 

(albeit rather slowly when the new destination node is held on a computer on another 

continent). The growing popularity of the World Wide Web suggests that this type of 

hypertext interface is particularly suited to this type of exploratory information access. 

151n this contex1 an index is a table or file containing one or more record keys and pointers to the 
corresponding record in the main database. 
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Key features of accessing computer-based information are: 

query interface 

subsets 

hypertextlhypermedia (associative links) 

4.1.5 CD-i Applications 

To demonstrate the state of the art in applications for consumer platforms this section 

surveys a number of CD-i applications. It looks in detail at the techniques employed by the 

authors to give the user access to the information on the disc. In a companion study [Lloyd 

1993] looked at the whole CD-i application catalogue then available to see what proportion 

were based on information or used browsing as part of their interaction. He found that "at 

least 30% of the applications surveyed have an identifiable database requirement and nearly 

40% make significant use of browse facilities". 

These applications highlight the superior still image quality ofDYUV images when 

compared with, say, the 256 colour images of low-end personal computers, how the 

modest processor speed of CD-i is still able to deliver entertainment and information, the 

advantage of interleaved data masking the time taken to load data from the CD and a variety 

of interaction styles to what is basically just information whether it is sound, video, pictures 

or text. In each example the description {)f the application from the packaging is quoted to 

give an impression of the content. 

Tell Me Why 

"Tell Me Why answers over 175 questions that kids ask in five different subject areas: 

Our World, How Things Work, The Zoo, How Things Began, and The Human Body. 

The program features over three hours of fact-jilled presentations, including interactive 

exhibits, an alphabetical index, a subject directory, guided tours and secret passageways" 

This application is aimed at a younger audience. It is a disc version of the popular "Tell Me 

Why" books. These aim to provide informative answers to a wide variety of questions 

about topics such as how things work or the human body. Like the Smithsonian disc 

described shortly, Tell Me Why uses a pseudo 3D room metaphor with the user going 

through doorways to select avenues of exploration (an hierarchical contents list). 
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There are always only a few choices to be made at each level and although the textual 

names of the choices are only visible when the cursor is over the hotspot, the small number 

allows easy memory retention. The main hall (the main menu) allows selection from How 

Things Work, Our World, Zoo, How Things Began, Human Body. 

Figure 6. The entry screen for Tell Me Why - moving the cursor over the doorways displays the topic, How Things 
Began. 
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Moving through the doorway, past pictures of noteworthy people in the chosen topic area 

(which give a brief message about themselves if clicked upon) the user arrives at the next 

"menu". 

Figure 7. How Things Began - famous people gallery. 

Figure 8. Selecting the Word Origins option from the How Things Began Topic. 
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From the Word Origins doorway the user is transported to the screen shown below, 

Clicking on Tom gives "How did animal get their names?" - a slideshow with a 

commentary about animal names followed by a menu of animals each of which gives a 

brief account of where its name originates from. Clicking on Woody gives "How did some 

trees get their names?" and on Goldy gives "How did some fish get their names?", Going 

through the right-hand doorway gives Famous Firsts and the left Special Exhibit. 

Figure 9. The Word Origins screen. 
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This simple hierarchy is only one way of accessing the information held on this disc. The 

Features screen offers the following alternatives (clockwise from the top left): 

Credits and exit 

The "doorways menus" already described 

Guided Tours 

An alphabetic index 

A textual menu with the same options as the doorways 

A random jump to an information screen 

Figure 10. The Features screen. 

At any time the down arrow allows the user to go back and the yellow button takes them to 

the features screen. 

The key features of this disc are: 

a variety of structures linking chunks of information such as the topic hierarchy 

and the index 

simple point and click user interface 

browsing and search within one application 
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Time-Life Photography 

"Your television screen becomes a simulated camera when you experience TIME-LIFE's 

new interactive course in 35mm photography. In 25 step-by-step 'yi'orkshops, you'll learn 

all the basic techniques of autofocus photography - from focus lock and shutter-aperture 

control, to depth of field. Then take practice pictures and see the results instantly on 

screen, without wasting film. See how to take better pictures in a variety of situations, 

from familiar shots of family and friends, to one-of-a-kind portraits by the greats. This 

program is based on TIME-LIFE's classic Library of Photography and includes more 

than 1,000 great photos and two hours of narrated instruction." 

Time Life Photography is an example of a tutorial disc. The content is arranged 

hierarchically with an hierarchical menu structure. This offers a quick way of browsing the 

content of the disc and navigating to items of interest in the same way that a table of 

contents can be used in a book. Each item, which takes the form of a commentary with 

illustrative pictures, can be stopped, repeated or skipped and there are diversions to related 

items after which the user can resume where he left off. 

The key features of this disc are: 

hierarchical structure 

tutorial sequences 

links to related topics 

Story Machine-Magic Tales 

"Everyone loves stories with fair maidens, handsome princes, fiendish villains and 

fantastic settings. Here's a way to create stories of your very own, whether they'refairy 

tales with happy endings or thrilling adventure stories. We've supplied all the tools you 

need to devise stories from scratch: dozens of scenes, hundreds of interesting characters, a 

complete alpha-numeric keyboard for narration and dialogue ... even musical 

accompaniment to suit every plot twist! This interactive experience also comes with three 

stories already on disc which you can embellish or just watch and enjoy. Story Machine 

will bring out the imaginative storytelling streak in everyone!" 

This disc uses a multitude of browsers to make the interface to story creation simple for 

young people. The basic idea is the creation of a story consisting of characters placed on 

backgrounds with music and sound effects and an optional text box associated with each 

screen. 

- 56-



For each of these components (excepting the text box) the user selects from browsers the 

item he wants. So, as an example, the user goes to the background browser to find a 

suitable backdrop for the next scene in his story. This browser presents 54 possible 

backgrounds three at a time as shown below. 

Rctors 

Figure 11 . The backdrop browser. 

Once one is selected the user needs to populate the scene with characters. These are 

selected from a rather complex, linked set of browsers where a character group is selected 

from a set of eight, as an example perhaps the user selects the king. 
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Figure J 2. The character browser. 

The up/down buttons cycle through the nine varieties of king whose pose can be altered 

using the left/right buttons. The user can thus browse the alternatives before making his 

selection. Once selected the character is placed on the background and others added as 

required. 
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A "music browser" which is a 2D grid of icons each of which has a number of sound effect 

or music clips accessed by repeated button presses. This tool shows an example of how 

audio can be presented for browsing. Once selected the audio can be attached to the 

background to be played when the scene is displayed. 

Figure 13. The music browser. 

Once all the screens in the story have been assembled they can be played back in sequence. 

The key feature of this disc is the simplicity of the underlying browsers with a fairly 

complex interface. In each case the browser is ultimately a linear sequence of objects 

(backdrops, actors and music). 

Treasures of the Smithsonian 

"Explore the highlights of a dozen museums in this unique interactive compact disc! From 

the AIR AND SPACE MUSEUM to the NATIONAL ZOO, treasures range from the World 

War 1 ALBATROSS FIGHTER PIANE to a ZANDE HARP from Africa. Along the way 

you'll find everything from the HOPE DIAMOND to HOWDY DOODY. From 

LINCOLN'S LAST PHOTOGRAPH, to the famous PANDAS and artworks by PICASSO 

and POLLACK. You can browse through the treasures by museum, category, date, or 

theme. You can read detailed notes (who, what, where, when) and explore links between 

objects. Special features let you walk around an object, play its sounds, or zoom in on it. " 
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The interactive museum has always seemed a natural subject for multimedia applications 

and the Treasures of the Smithsonian was the first of this type of disc for CD-i. The 

opening screen gives the impression of actually walking into the museum. (See [Miller et 

al1992] for a discussion of this type of pseudo 3D virtual walk type interface). 

Figure 14. The Main Hall. 
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In the "main hall" the user selects from a number a different ways of accessing the 

information such as a time-line or alphabetic subject catalogue for example as shown 

below. 

Figure 15. The Reference option. 

Figure 16. The technology "drawer". 
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Figure 17. Topics. 

Another option is to select from a range of guided tours each with its own theme. 

Figure 18. Guided tour . 
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Figure 19. The "Airborne" tour. 

Once "inside" a collection the user can browse other items via previous and next buttons as 

well as seeing more information (textual, audio or other pictures) about the item currently 

being viewed. 

Figure 20. Information from the "Airborne" section of the museum. 
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Hypermedia links to related items are also available via a pop-up menu. Most items 

"explain themselves" through a short audio-video presentation. 

Figure 21. Related Information - a stamp with an aeronautical subject. 

The key feature of this disc are: 

a multiplicity of ways of accessing the information. These are, in effect, ways of 

grouping (people or places for example) or indexing (timeline or subject index) the 

items in the database 

a uniform browsing interface used for all items with access to previous and next 

items, further information and hyperlinks 

guided tours with a theme connecting the individual items. 

[Rankin 1991] suggests that an alternative to the database inspired informative CD-i 

applications such as "Treasures of the Smithsonian" would be to bias towards generating a 

rewarding experience as the user browses using a "trip to the shops" metaphor. 
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4.1.6 PhotoeD 

PhotoCD (PCD) is a standard that defines the encoding method and disc structure for 

storing scanned images (specifically from 35mm photographs 16) on CD. 

Users of Photo CD send their films off for processing and receive back a PCD disc (the disc 

holds -100 images and can be updated so that the images do not have to be added "ail in 

one go") with his pictures on it. He can then show these pictures using a CD-i player 

connected to his tv. On each PCD disc is a CD-i application program that offers two 

picture browsers and a sequence building facility. 

Figure 22. PhotoCD on CD-i. 

In the first browser the viewer sees one picture at a time and navigates with previous and 

next buttons. 

16For other fonnats Kodak have introduced PhotoCD Professional that can store images from larger format 
film. 
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Figure 23. Picture-by-picture browser. 

In the other there is a 2D picture browser with a 5x5 grid of mini-pics and next and 

previous page buttons. 

Figure 24. Minipic browser. 
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Using the sequence editing facility he can make slideshows which can either run 

automatically or be stepped through manually at the touch of a button. 

Figure 25. The sequence editor. 

This disc shows simple, linear browsing of, in this case, picture objects. The sequence 

editor allows the user to create simple presentations - a sequence of pictures with variable 

time delays between them. 

4.2 Observations 

So what are the common features of the browsing/searching interactions arising from the 

conceptual analysis described above? 

4.2.1 Printed Materials are Easy to Browse 

The physical accessibility of books and magazines enables readers to get to the infonnation 

in a variety of ways very easily. Stories can be read from beginning to end, magazines can 

be "dipped into", reference works can lead the reader from entry to entry hopping 

backwards and forwards within the book. Our familiarity with the conventions of these 

materials means that we already have basic mental models of the likely structure of a work 

even before we start to read it. 
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Perhaps our dependence on these conventions goes a some way towards explaining why, 

as [Conklin 1987] describes, people get lost so easily in hypertext systems which do not 

necessarily conform to book conventions. 

4.2.2 Browsing Primitives 

If these interactions are examined closely, stripping away the interface, a small number of 

browsing primitives can be found. 

previous/next page!channellitemlscreen - single choice (sequence/tour/narrative) or 

multiple choice 

goto particular page!channellitem/screen 

maps/indexes/contents lists 

Browsing is essentially a "where next" sort of interaction. The interface presents the 

choices - often as simple as next/previous item. 

4.2.3 Combined Browse and Search 

Search behaviour is often part of the interaction, with browsing mixed with the proportions 

varying during the course of the interaction. 

4.2.4 Browsing is Simple 

It is not difficult to find examples of what appear, at first sight, to be complex browsers. 

In the CD-i world a good example is the Magic Tales disc described above. Close 

inspection of this browser reveals that the complexity is in the interface. Underlying this 

are a number of simple, linear browsers. The apparent complexity comes from the 

overlaying of several of these within one, complex, interaction device. 

4.2.5 Subsets are Important 

A good way to reduce the "agoraphobia" caused by the sheer volume of information is to 

provide a means of breaking that information down into manageable chunks or subsets. 

For example the chapter and section structure of printed works, guided tours on themes in 

the Smithsonian and the topic hierarchy in Tell Me Why (the deeper into the hierarchy one 

goes the smaller the subset). 
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4.2.6 Marking 

The ability to indicate items or locations of interest for subsequent review or re-visiting is a 

common requirement in browsing situations for example bookmarks used in printed 

materials. 

4.3 Summary 

In chapter 2 four key aspects of the Film Browser were described namely: 

browsing (navigation) 

marking 

multimedia data 

subsets 

It was postulated that these were more generally useful and this analysis has shown their 

use in a number of different existing browsing situations or applications. This suggests 

that these features form a useful starting point for the requirements of the Generic Browser 

developed in the next chapter in which browse and search will be considered from a more 

theoretical point of view. 

The analysis detailed in this chapter combined with the theoretical examination in the next 

will be brought together in chapter six to form a model of browse and search suitable for 

implementation on consumer platforms. 
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5 Characteristics of Browse and Search 

The previous chapter has looked at examples of browsing in the real world. To 

complement these this chapter examines research into the processes of browsing and search 

in the relevant literature. The aim here is to characterise these processes in sufficient detail 

that a model can be constructed to provide the basis of the function library: the tangible 

result of this thesis. 

The previous chapter demonstrates browsing is a commonly used strategy for exploring 

information. This is, in a sense, its problem when one attempts to characterise it. 

[O'Connor 1985] observes that browsing "is still a term with a profusion of definition and 

consequent confusion". At first sight it is attractive to define browsing as the opposite of 

search as do [Liebscher & Marchionini 1988] with browsing being "an alternative to the 

complex Boolean search strategy" for "relatively simple and broad" search queries. 

There is an overlap between these two activities; browsing can be used as a form of search 

(for something interesting) and that search can be used for exploration and discovery, 

traditionally the preserve of browsing. In between the extremes lie activities such as 

browsing used as a search mechanism for example [Palay & Fox 1981]. Here the user 

knows what he seeks but rather than specify it to the system as some form of search query 

he chooses to navigate round the information structure looking for it. 

Rather than trying to provide a hard and fast separation between browsing and search this 

thesis proposes the alternative of viewing information access as a continuum with pure 

search at one end and pure browsing at the other. 

Browse 

liesurely 
not focused 
exploratory 

Search 

focused 
goal directed 

Figure 26. Browse-search continuum. 

The ends of the browse search continuum are "ideal" cases and are much less common than 

examples which contain combinations of both activities. It seems from personal 

observation that most information access/exploration activities contain both browsing and 

searching and that the proportion of each varies during the task. 
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For example, consider some activities possible with an Argos catalogue 

find information on a particular Timex watch 

- pure search 

look at information on all Timex watches 

- search for Timex watches then browse 

look at ladies' accessories 

- search for section then browse (many items) 

look at anything (browsing for enjoyment or to fill time) 

- pure browsing 

Other examples are using an encyclopredia or the ACT College Search CD-i application 

which will be described in detail later. 

5.1 The Task Perspective 

Browsing's utility in information systems has blossomed with the advent of 

hypertextlhypermedia as an alternative to the traditional information retrieval (IR) 

mechanisms which largely rely on variations of and extensions to Boolean search. 

[Marchionini & Shneiderman 1988] observe that with such systems the searcher is usually 

a professional or relies on the expertise of one such as a librarian who is an expert in 

translating the users goal into the required combinations of search terms. They describe 

browsing as "an exploratory, information seeking strategy that depends on serendipity" 

which is "especially suitable for ill-defined problems and for exploring new task domains". 

Some authors have avoided the problem altogether and included search within a model of 

browsing. For example [Salomon 1990] divides browsing into three types in his model. 

These are: goal directed search, goal directed browsing (where the user discovers a goal in 

the course of browsing) and casual browsing. 

Browse 

casual 
browsing 

goal 
directed 
browsing 

Search 

goal 
directed 

search 

Figure 27. Salomon's components of browsing. 

In a similar vein [Cove & Walsh 1988] also have three components to their model: search 

browsing where the user has a specific goal; general purpose browsing where the goal is 

more general such as to find something interesting and serendipity browsing where the user 
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has no goal (other than the hope that something may turn up). These similarly fit with the 

idea of a continuum. 

Browse 

serendipity 
browsing 

general 
purpose 
browsing 

Search 

search 
browsing 

Figure 28. Cove & Walsh's components of browsing. 

From the user's point of view the difference between browsing and search centres on the 

user's goal. In the case of search the user wishes to find a particular piece of information. 

By contrast when browsing the user may have one of a variety of goals such as to pass the 

time, for the pleasure of the experience, in the hope of finding something interesting or to 

get an overview of the information space. 

[Laurel et al 1990 p. 26] describe two types or "modes" of information access. These are 

instrumental and experiential. The instrumental mode is characterised by "a deliberate 

search for information to fill a particular need" and the experiential mode by "a more casual 

approach, often seen in activities such as browsing and exploratory learning". 

Browse Search 

experiential instrumental 

Figure 29. [Laurel et aIrs "modes". 

Because the goal of a search is well defined it is straightforward to see when it has been 

achieved - there is a tangible result. The search process has an element of closure 

associated with it [Ellis 1989]. In browse interactions there is less precision in the 

definition of the goal and so the measure of success is less tangible. Browsing is an open 

ended activity, often pursued at a leisurely pace. [Marchionini 1989] takes a similar view. 

He describes tasks having a specific objective, for example finding a fact such as "the first 

year speed skating was introduced into the Olympic games", as a closed task which may 

best be found using search. Tasks better suited to browsing such as collecting information 

about a topic, for example "find information about women who have travelled in space", 

are described as open tasks. 

Browse 

open 
task 

Search 

closed 
task 

Figure 30. Marchionini' s components of browsing. 
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[Waterworth & Chignel 1991] attempt to make a distinction between responsibility (user or 

system) for selecting routes through an information space and the purpose of the 

exploratory behaviour. They define two dimensions as follows: 

Targeted Discovery 

User Handles NA VIGATIONAL NAVIGATIONAL 

Structure QUERY BROWSING 

System Handles MEDIATED MEDIATED 

Structure QUERY BROWSING 

Table 3. Dimensions of browsing [Waterworth & Chignel 1991]. 

Navigational browsing is typified by the link following of hypertext, the user only having a 

vague idea of what he is looking for. In navigational querying the user is still browsing but 

the topic is fairly precisely defined. In mediated browsing the user constructs queries such 

as "search Renaissance" to browse topic areas. Mediated search is typified by the Boolean 

search of many IR systems for example "search (Renaissance and Art) and (Religion or 

Christianity)". 

The authors do not provide evidence for these being two continua, rather they just provide 

examples of each of the four extreme cases. This suggests an alternative view - that they 

have identified four categories of browsing activity which lie on the browse-search 

continuum as shown below: 

Browse Search 

Navigational Navigational Mediated Mediated 
browsing querying browsing querying 

Figure 31. Waterworth & Chignel's browsing activities. 

So from a task perspective the browse-search continuum spans a range of goal specificities. 

At the browse extremity there is only a vague goal - browsing to fill time for example. At 

the other extreme there are very well defined goals with the search for a specific piece of 

information. If the goal is simply to find something of interest then success or failure 

seems cut and dried, however such a goal is frequently tied up with gaining enjoyment in 

the actual process of exploring the information. 
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Browse 

occupy 
time 

entertainment find 
something 
interesting 

Search 

exploration find 
specific 

information 

Figure 32. Task perspective on the browse-search continuum. 

5.2 The Cognitive Perspective 

The models described above attack the problem of characterising browse/search from a task 

perspective. It is also useful to consider what kind of behaviour is used to carry out 

browsing and search activities. Carmel et al choose to consider these cognitive aspects 

observing [Carmel et al 1992] that there has been "relatively little research on the basic 

human cogniti ve processes in browsing". They develop a GOMS 17 model of browsing 

which comprises three distinct browsing strategies: scan-browse, review-browse and 

search-oriented browse as shown in the diagram below. 

17GOMS analysis [Card et al 1983] characterises users' cognitive activities in terms of Goals, Operators, 
Methods which use the operators to satisfy the goals, and Selection rules for choosing between the 
methods. 
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Figure 33. Three browsing strategies [Cannel et al 1992]. 

Search-oriented browse is the process of scanning to find and reviewing to integrate 

(update the user's mental model) information relevant to a fixed task. Review-browse does 

the same process for transient browse goals that are constrained by motivation (such as 

how interesting the information is). Scan-browsing is simply the process of scanning to 

find interesting information without any review. 
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[Garber & Grunes 1992] also describe a cognitive model, in their case for the task of 

selecting images from a photo library. 

Generate 
criteria and 
weightings 

Retrieve set of 
images 

Enter picture 
and similarity 

criteria 

View images and 
information about 

the images 

add 
criterion 

add 
restriction 

Put on or remove 
from light table, etc. 

change 
criterion 

Figure 34. Search strategies [Garber & Grunes 1992]. 

pull target 
image 

re-define 
search 

Their model is basically the same as Carmel et aI's search-browse. Again there is an 

iterative refinement process consisting of producing criteria for the search (in this case with 

a browser for the characteristics) followed by retrieval. The result is then viewed 

(browsing), the search parameters modified and the search repeated. 

[Liebscher & Marchionini 1988] observe that for the Boolean, analytical search strategy 

"formulating search queries for answering complex questions requires a very high 

cognitive load". [Marchionini 1989] also notes the high cognitive load required to 

formulate queries and the low cognitive load of the recognition strategy used when 

browsing. 
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Browse Search 
low cognitive load high cognitive load 

Figure 35. Variation of cognitive load. 

In a paper on modelling a browsing interaction [Peck & John 1992] make a useful 

distinction between browsing and querying viz. "Browsers typically involve recognition of 

access paths, as opposed to description of access paths used in query languages, ... "18. 

Though the point they are making concerns the importance of perception in the browsing 

task, their distinction is generally applicable to the types of browse/search under discussion 

here. 

At the search end of the continuum the user does not have to model the structure of the 

database, rather he must have a knowledge of the indexing methodology used. In 

browsing, information is obtained by the user interpreting and traversing the structure. The 

cognitive load is imposed by the navigation process and the requirement to model the 

structure of the information space. The use of placeholders, for example bookmarks, 

reduces the cognitive load of having to remember locations in the structure (this is the 

concept of marking developed later). In searching the user must model the search 

characteristics and also process the result to find the relevant items and modify the query to 

increase relevance 

5.3 Integration of Browse and Search 

[Liebscher & Marchionini 1988] observe that "an alternative to the complex Boolean search 

strategy is a simple browse strategy". A relatively simple and broad search query is used to 

put the user "somewhere in the ball park" where scanning can locate the information 

sought. They note that library users prefer to browse through the library stacks rather than 

use the catalogue. [Jerke et al 1990] suggest combining the techniques of querying and 

navigating in a hypertext environment where "the user may specify his overall intentions by 

formal query which results in appropriate starting points for navigation through an 

information network according to the Hypertext paradigm." 

One aspect not emphasised in these models is the dynamic nature of many information 

access activities. Particularly outside the professional information retrieval field which is 

dominated by traditional databases, it is not possible to characterise an interaction as either 

browse, search or any point in between, rather the type of access changes with time. For 

18my emphasis 
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example, a reader may open a magazine and start to browse, happening on an item of 

interest he reads it and then searches for related articles. 

Browse 

open magazine 
& browse 

interesting item found 

Search 

search for 
related item 

Figure 36. Shift of activity during interaction. 

What started out as a typical browsing interaction, leisurely, unfocused has become goal 

directed and more search-like part way through. 

This is an important aspect of information access which indicates the need to integrate 

browsing and searching interactions within the same application. As [Carmel et al 1992] 

put it "[ ... ] in cognitive reality, anyone of these browsing strategies might be interrupted or 

abandoned in favour of a different task, different strategy, or other activity. [ ... ] The three 

browsing strategies identified are the components of complex browsing behaviour." 

Similarly, [Duchastel 1990] notes that a "broad issue search will involve some constrained 

browsing, and conversely, browsing may well provoke the learner into investigation of 

particular issues that require search. In a sense, multimedia usage is a process that involves 

a constant interplay between browsing and searching." 

As another example suppose that a reader of an encyclopredia who starts by browsing in a 

leisurely way with no fixed search goal in mind, finds something interesting and follows 

references to find out more - a searching activity. The converse is also true when, whilst 

searching for an encyclopredia entry, the reader becomes side-tracked by an interesting item 

and starts browsing that item. [Laurel 1991 p. 25] describes this as a "mode swing" 

between browsing and focused searching "modes". And in [Laurel et al 1990] "One mode 

may lead to another. An experiential activity such as browsing [ ... ] may become a goal

directed instrumental [search] activity. Likewise the instrumental user may digress into 

experientially motivated behaviour." Researchers at Apple recorded this behaviour in 

studies of the users of multimedia databases and in delegates' use of the information kiosks 

which were set up by Apple at CHI '8919 [Salomon 1990]. 

19CHI '89 - The Computer-Human Interaction conference held in Austin Texas April 30th to May 4th 
1989. 
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5.4 The Functional Perspective 

So far browse and search have been considered from both task and cognitive perspectives. 

To enable a function library supporting such activities to be constructed a functional model 

must be extracted and to do this the processes must be viewed from the "machine 

perspective". This perspective is necessarily more fine grained than the task or cognitive 

views which consider the user's interaction with the system as a whole. That system must 

be opened up to allow the functional requirements to be exposed. 

From the foregoing discussion in this chapter there is good evidence that a generally useful 

information access system needs both browse and search elements. [Halasz 1988] 

observes that 

"[ ... ] navigational access by itself is not sufficient. Effective access to 
infonnation stored in a hypennedia network requires query-based access to 
complement navigation". 

from the experiences of users of the Notecards system (a general hypermedia 

environment). 

Browsing is a process of finding information by navigating the information space whilst 

search involves giving the system some kind of retrieval specification. From a functional 

perspective the continuum becomes navigation to retrieval. 

Browse Search 

navigation retrieval 

Figure 37. Browse-search continuum - functional perspective. 

5.4.1 Navigation 

Navigation is the process by which a user determines where to go next or how to get from 

place to place. There are three basic ways to specify the next node to go to, structurally, 

topically and presentationally. 

structurally - These links form a structure where the links are just the means by which 

the system allows the user to get from node to node. A good example would be the 

"previous" and "next" buttons in a HyperCard stack. The user does not know what will be 

on the next card, the links just forming a browsable structure. 

topically - These links, on the other hand, have meaning encapsulated in the link itself 

and relate the content of the two nodes at their ends. In this case the links form part of the 

information. [Carmel et al 1992] suggest that information should be provided as 

successively more detailed levels in separate nodes. An example might be a link labelled 
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"explanation" linking a node which describes an event with a node giving a more detailed 

account of why the event took place. 

presentation ally - Here the user specifies the next node by how the information is 

presented i.e. by which media type [O'Docherty & Daskalakis 1991]. For example the 

next node containing a picture. An example of this type of navigation occurs in the Apple 

Guides demonstrator featured in the CHI '9120 video. Here the user can select from a 

menu where the media type of the information is indicated by an icon. [Andersson 1991] 

too has a media selection palette as one of his "minimal set of generic tools" for accessing 

hypermedia. 

Navigation can be completely free as in a pure information system where there is a 

collection of information and a mechanism to get from item to item. In this case there is no 

"priority" given to any item, they are all treated the same so the user has complete freedom. 

When a structure is present in the information there are two possibilities: either the structure 

is just part of the information and freely traversable or the user is required (or just enticed) 

to follow a path through the information space defined by the author [e.g. Zellweger 1989, 

Marshall & Irish 1989]. Navigation is assisted by leaving place markers which form the 

user's own structure to the data space. 

5.4.2 Retrieval 

In information retrieval terms search is the process of matching a set of characteristics 

supplied by the user with the items in a database. In some systems a hit is only generated if 

all the characteristics match. Others have more flexibility allowing partial matches. 

Weighting schemes allow quantitative distinctions between the degree of a characteristic 

present at different nodes. Weighting also makes it possible for characteristics in the query 

to be given different importance. For example, when choosing a skiing holiday resort 

closeness to the airport may be desirable but much less important than the provision of 

snow cannon. Giving a larger weight to the "snow cannon" attribute than to the "closeness 

to the airport" attribute would ensure that resorts with snow cannon would be higher up on 

the hit list than those close to the airport. Those with both facilities being at the top of the 

list. 

The search process can be characterised by a user specifying what he wants (in some 

formal way), the system doing the search on his behalf and returning a set of matching 

items. This is an iterative refinement process the user revising the query in the light of the 

20CHI '91 - The Computer-Human Interaction conference held in New Orleans, Louisiana, April 27th to 
May 2nd 1991. 
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search results. The items in the database are classified by the assignment of a number of 

key characteristics of the information to each item. These are then available for searching 

on. In the IR field databases are usually interrogated using (often cryptic) query languages 

that do not encourage casual access to the information. An example of this is the SQL 

database query language [e.g. Cannan & Otten 1993]. For example: 

Select Name 

from Cust-address 

where City = "BevHls" and 

amount > 5000 

This would find all the customers living in Beverley Hills who have more than 5000 

widgets. 

The success of this type of search is defined in terms of two quantities, recall and 

precision. Recall is the ratio of the number of relevant hits to the number of relevant items 

in the database and precision is the ratio of the number of relevant hits to the total number 

of hits. 

Such query-based search requires that the user can describe what he is looking for. It is 

often the case that a mismatch between how the user specifies the query and how the 

indexer marked-up the items in the database leads to poor precision. As [Laurel 1991 p. 

24] puts it "people experience the requirement for precision as troublesome". This problem 

is particularly acute when the user meets the database for the first time and/or uses it 

infrequently. This is exactly the most common situation in the consumer domain. Solving 

this problem motivates the quest for a suitably flexible search mechanism and the 

integration of search with the more familiar (for a non-technical audience) activity of 

browsing. 

Although large bodies of information can be created for multimedia systems such as CD-i, 

these traditional access methods are unsuitable for the consumer market (and there is no a 

priori reason to think that a more comfortable access method would not be useful in the 

professional domain). A vital area of search problems exists where the user cannot (or 

does not want to) give an exact specification for the query and is quite happy with inexact 

matches, rather requiring the "best fit" to his specification [e.g. Gerber & Grunes 1992]. 

This may be used as a starting point for browsing [e.g. Liebscher & Marchionini 1988, 

lerke et al 1990] as described above. 
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5.5 Generic Browser Facilities 

Considering the results of the review in the previous chapter in conjunction with the 

discussion of browse and search above the basic facilities to be provided by the Generic 

Browser can be outlined. These will be fleshed-out in the next chapter. 

This chapter has shown considerable evidence for viewing browsing and search as the 

extremes of a continuum of information access mechanisms. This in tum suggests that 

both browse and search facilities should be combined within one application framework. 

Within this overall framework a number of requirements can be seen. 

In an information-rich environment the provision of hyperlinks is necessary for the 

leisurely browsing described as "casual browsing" by Salomon and "serendipity browsing" 

by Cove & Walsh. This type of "open task" as described by Marchionini can be seen as 

the page-flicking browsing of paper texts. This is the navigation extreme of the functional 

continuum. 

At the retrieval extreme Marchionini places the "closed task" of search, Salomon "goal 

directed search" and Cove & Walsh "search browsing". At this end of the browse-search 

continuum many IR systems use a version of the Boolean search mechanism characterised 

by a matching of characteristics specified in a query with items in the database. The 

problem of how the user is going to specify what he is searching for must be addressed. 

For example he might want to search by feature, by category, by media type or for a 

specific thing. It is desirable that the user should not be required to know how the system 

categorises or characterises its information in order to be able to specify his query. 

The most obvious drawbacks inherent in the hyperlink approach are firstly that not all users 

would feel confident enough to explore without any guidance and secondly, as [Conklin 

1987] describes, there is plenty of potential to get lost. 

These problems are more important in the consumer domain. They make the middle 

ground of the browse/search continuum, where Cove and Walsh place "general purpose 

browsing" and Salomon places "goal directed browsing", attractive. These avoid pure 

search with its problems of constructing the query and pure browse where the user may 

feel the agoraphobia of complete freedom to browse. 

The dynamic nature of mixed browse and search shown by Laurel and Duchastel must be 

addressed in the integration. This is the type of browsing exhibited when using the CD-i 

application "Tell Me Why" for example. The user may also wish to get additional 

information on a particular item, compare one item with another and easily move to related 

information [Rudd & Cole 1991]. 
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As well as the free browsing exemplified by hyperlinks, consumer applications require 

support for authors to choose the way in which the information is presented. The guided 

tours of "Tell Me Why" and "Treasures of the Smithsonian" demonstrate this requirement. 

The review of browsing also showed that the ability to divide up the information space into 

subsets is a requirement and this is borne out by the "simple browse strategy" described by 

Liebscher and Marchionini where the information space is reduced by an initial search 

creating, in effect, a subset for browsing. This would also cater for the less adventurous 

user who would be unlikely to stray too far in an unconstrained browsing environment. 

This is particularly true if the user is able to refine the selection to home in on things that 

interest him as was demonstrated in the Apple GUIDES application demonstrated at CHI 

'91. 

Marking as a tool for navigation is exemplified by the use of bookmarks in printed 

materials and its use for tagging items of interest for later review in the "ACT College 

Search" disc. 

It may also be useful to be able to retrace a path (rather like following a piece of string 

unrolled as one traverses amaze). Examples of this are HyperCard's "recent" command 

and the Trailmaker Tool [Hooper Woolsey 1991]. 

5.6 Summary 

In the previous chapter the four key elements were proposed as a basis of a generic 

browsing application framework. These were 

browsing (navigation) 

marking 

multimedia data 

subsets 

This chapter has shown how the addition of search allows a more general solution and 

addresses a wider range of potential applications. To summarise these requirements; for a 

range of applications that use browse and search, such systems should allow the user to: 

• browse and search multimedia data 

• browse freely in the information space 

• look at related items 

• have information presented as an overview or in detail 

• mark items, possibly with a value 
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• collect sets of items for further browsing 

• leave navigational placeholders to allow an item to be 

revisited 

• retrace steps i.e. to backtrack 

• follow guided tours 

• search for items by a variety of query mechanisms 

• freely move between browsing and searching access 

Building on this understanding of the processes of browsing and search and how they 

might be used the next chapter takes these requirements and develops them to build an 

architecture for the Generic Browser. 
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6 An Architecture for Multimedia Browsing 

This chapter discusses the design of the Generic Browser. It addresses the requirements 

laid down in the previous chapter with an architecture for browse/search systems. This is 

described below together with a set of functional requirements for its implementation. Its 

foundation is a data model which is amenable to the representation of information for both 

browsing and search. The facilities for browsing and search are then addressed together 

with their integration. The architecture thus constructed forms the theoretical basis for the 

implementation work described in the following chapter. It should be noted that the 

architecture described here is that of the final version of the Generic Browser incorporating 

the feedback from the prototype applications. Where such feedback has significantly 

altered the architecture, this has been indicated below. 

6.1 Data Model 

Most hypermedia systems use a data model that originated with hypertext systems [Conklin 

1987]. This node-link model stores information in objects (nodes). These objects are 

joined in a browsable structure by links (arcs) forming a directed graph. Information 

retrieval systems also store information in objects (often the actual documents in the 

database). The similarity of the data models for these two domains (which have browsing 

and search as their respective primary information access methods) makes this model 

appropriate for the Generic Browser where browsing and search are to be integrated. 

The dynamic nature of browse/search interactions suggests that using a single data 

representation for both browsing and search is necessary. If separate representations are 

used information such as marks would have to be maintained in both representations (so 

that searches and browsing of marked items was possible for example). 

Any data model constructed for browse/search applications must be rich enough to 

represent a number of key aspects of the data. [Parsaye et al 1989 p. 249] suggest the 

following from a hypermedia perspective: representation of text & graphics; representing 

concepts; representing organisational structures; representing the relations between 

concepts. These are equally applicable to consumer multimedia, however here text and 

graphics covers everything from computer graphics through photographic images to video 

and audio. 
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The Generic Browser model has the following components: 

information nodes - multimedia data elements 

links - the basic structuring elements, multiple types 

paths - to represent sequences 

subsets - collections of nodes 

The data model is a dynamic model. All of the above can be created, deleted and modified 

during application execution. One consequence of this is that additional information 

pertinent to the browse/search functions can be stored in the nodes. This preserves the 

object oriented nature of the browser with node-specific browser information being held 

within the node to which it applies. 

The approach detailed here maintains the distinction between data and its presentation. This 

has been advocated by a number of authors [e.g. Campbell & Goodman 1988, Andersson 

1991] and is part of the MHEG21 model [e.g. Price 1993, Kretz & Colaibs 1992] which 

makes a clear separation between "content" and "projector" objects. 

In the Generic Browser model a conscious decision was made to represent multi-stream 

multimedia presentations such as synchronous voice-overs with slideshows as single 

objects. This precludes the use of Generic Browser navigation functions from within such 

"objects" effectively regarding them as linear presentations. For a wide range of 

applications this approach is adequate and is the approach taken by both HyperCard and 

MacroMedia Director - multimedia application development tools popular on the Macintosh. 

It is usually the case that the presentation "player" has some controls such as those found 

on a VCR so limited interaction is still possible. An example of this is Apple's Quicktime 

system extension [Apple 1993a, Apple 1993b] which provides limited controls for movies 

in any application. 

The justification for this approach is twofold. Firstly, in the fast-moving field of consumer 

multimedia interest in the use of video and complex synchronised multi-stream temporal 

data has developed quite recently, in particular stimulated by advances in video 

compression technology. When the scope of the thesis was defined such information was 

not particularly common in multimedia applications (a look back to the examples of CD-i 

discs in chapter 4 shows no use of video for example). 

Secondly, the advent of digital video has stimulated considerable interest and a whole area 

of new research is considering the problems of synchronising multi-stream multimedia 

21MHEG is a standard for real-time interactive communicating applications being written by ISO's 
Multimedia and Hypermedia information coding Expert Group. 
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presentations [e.g. Hardman et al 1993a]. The Amsterdam hypermedia model [Hardman et 

al 1993b] combines hypertext and multimedia models and integrates the representation of 

time and the temporal relations between components of a presentation. A similar evolution 

of the Generic Browser model will probably be necessary to enable it to represent 

interactive video. The scope of such modifications has prohibited their implementation for 

this thesis. 

6.2 Representation Schemes 

Underlying any information-rich application's navigation facilities is a structure holding the 

information. This representation scheme has a profound effect on the ease with which 

navigation and search functions can be built. It also affects the facility with which the 

author can assemble his data for the application. The expressive power of a data 

representation scheme governs the types of information that can be readily represented. 

Early in the consideration of the Generic Browser the decision was made to adopt an 

object-oriented methodology. 

The key points of object orientation are threefold: 

encapsulation - all the data about one item stored in one place 

inheritance - class members inherit default values from their parent class 

object identity - every object has a unique identifier 

Object-orientation is an accepted technique in hypermedia, database and artificial 

intelligence research. In database research, object-oriented databases are a particularly 

active area. In the hypermedia (and hypertext) field, an object centred view has been 

prevalent from the start. For example HyperCard uses an object oriented representation. 

Here the "card" is the basic information holder (encapsulation). Hypercard extends its 

object orientation to include methods as well as data so that objects contain functional 

information about how the data within them is processed. In current hypermedia research, 

the use of object oriented representations and programming continues [e.g. Hamakawa & 

Rekimoto 1993]. 

In the artificial intelligence world, a major representation system, frames, is also object 

centred. Frames, like objects, have data encapsulation, inheritance and object identity. 

Though some frame systems allow procedural attachment, most of these schemes are not as 

general as the methods of object-oriented programming. 
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6.2.1 Frames 

What are frames? 

A frame system is a representation scheme first described by Minsky [Minsky 1981] and 

developed within the AI community. The basic concept is that of a flexible data structure 

for each item (known as a "frame"). This frame contains "slots" which contain "values". 

The slots are used to store the attributes of the item being represented by a given frame. A 

collection of frames is sometimes known as a frame-base. There can be any number of 

frames in the frame-base, slots in the frame and values in each slot. A further important 

feature of frames is that their structure is dynamic. Run-time creation of frames is 

supported as is the addition and deletion of slots and values. This is in contrast to many 

database systems where the structure is essentially fixed at run-time. 

Frames address the key features of an object oriented representation as follows: 

encapsulation - the user does not access the information in the frame data structure 

directly, rather there is a suite of access functions to do this 

inheritance - is provided by relations, in particular is-a and instance links allow 

class hierarchies with inheritance to be built 

object identity - the frame-name forms a unique identifier through which all the 

information in the frame is accessed 

As an example, suppose that there was a requirement to represent a collection of holiday 

resorts. A frame representing a resort would look as shown below: 

or textually: 

san-tropez 

instance resort 

location south-ot-trance 

hotels abc 

Figure 38. Pictorial representation of a frame. 

(san-tropez 

(instance resort) 

(location south-of-france) 

(hotels a b c)) 

san-tropez is the name of the frame; instance, location and hotels are slots; resort, south-of

france, a, band c are values in their respective slots. 
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A relation is a link in a frame-based system. It is used to represent a relationship between 

two concepts. It is represented as a slot (with the name of the relation) with a value of the 

name of the destination frame. The frame-based system will automatically create an 

"inverse relation" - a slot in the destination frame pointing back to the source frame. For 

example if location in the previous example was made a relation, south-oj-france would 

become a frame, linked to san-tropez as shown below. 

~ san-tropez 

instance resort 

location south-ot-trance ..... south-of-france -
hotels abc instance place 

location+inv san-tropez 

Figure 39. A relation between two frames. 

If the application needs to know what resorts were in the South of France it need only get 

the contents of the inverse of the location relation slot (location+inv). 

Why Frames? 

Having decided to pursue an object centred approach to the data representation for the 

Generic Browser a choice of methodology has to be made. [Halasz 1988] states 

"it is clear that a liberal borrowing of ideas from frame-based and object-based 
technologies would be very beneficial to the advancement of hypermedia 
systems". 

This remark was made in the context of the desire to integrate hypermedia and AI 

technology and although he does not give concrete examples of the benefits he does 

observe that "at a high level of abstraction hypermedia systems, frame-based systems, and 

object-based systems present nearly identical data models". This suggests that there is no 

fundamental reason why any of these representation schemes might not be used as the basis 

for an information browsing system. 

A frame system was chosen because a compact implementation could be built to run on a 

CD-i player. This was based on previous experience of larger, workstation-based AI 

toolkits offering frames (such as KnowledgeCraft). These gave experience of the essential 

elements. Indeed the first implementation in this work was a prototype frame system, built 

to verify this assertion22. 

'J'J 
--XKC a LISP frame system [Cole 1991b]. 
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Comparison with Object-Oriented Databases 

In some senses frames provide a subset of the facilities provided by an object-oriented 

database. Whilst frames offer data inheritance, object-oriented databases also provide for 

method inheritance. An object's methods (which define what can be done with the data 

within the object) can be stored locally or inherited from the class hierarchy above. 

Object-oriented databases are an area of active research in the database field. As such there 

are no such systems available for porting to a "modest" platform such as CD-i. The 

complexity of this type of database also suggests that a small, efficient implementation for 

such a platform would not be straightforward and that some of the capabilities would be 

unnecessary. 

6.3 Multimedia Data 

In the earlier review of the needs of consumer multimedia the importance of the 

representation scheme being able to represent all types of multimedia data - text, audio 

(music, sounds and speech), still pictures, graphics and video was presented. These are 

the raw components, the very "stuff', of a multimedia application. 

Any given object will have one or more pieces of data of any of the above types associated 

with it. Since the object is being represented as a frame the multimedia data must be stored 

in the frame representation. This is fine from a conceptual standpoint, however, from 

implementation experience consideration has to be given to how such frames would 

actuall y be stored on the target machine. 

Though the actual data itself (such as a bitmap for a simple image, for example) could be 

stored in the frame representation, it is often more convenient to store it elsewhere and 

reference that location in the data node. The most compelling reason for this is the sheer 

size of multimedia data files. On CD-i a single, full-screen, high quality image consumes 

lOOk bytes, 1 second of stereo audio 17k bytes. It is impractical to store such items in 

memory. In the case of CD-i this data would be held on CD. 
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Object_1 

Picture data stored within the node 

ObjecC1 

pointer to picture .. ... 
, 

Picture data stored elsewhere (in a disk file, for example) 

Figure 40. A voiding storing picture data in a frame. 

6.3.1 Content Modelling 

"I keep six honest serving men 
(They taught me all I knew); 
Their names are What and Why and When 
And How and Where and Who" 
Rudyard Kipling23 

As was explained earlier when the Generic Browser data model was defined it was decided 

not to try to represent temporal aspects of multimedia data. However, applications will still 

need to represent the content of multimedia nodes so that they may be searched. This is 

more of a challenge for pictorial and audio data than for text, but considerable progress in 

the field of content modelling has been made. For example the BBC's Telclass system 

[Evans 1987] is a concept classification scheme used to classify the content of video tapes 

for later retrieval. A hierarchy of concepts, each with a numeric code has been devised. 

Each piece of video is classified using these concepts and allocated a composite code. The 

2JThe Just-So Stories [1902] - The Elephant's Child. 
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retrieval process simply requires concept terms of a suitable specificity (depth in the 

concept hierarchy) to be matched against the database. At MIT's Media Lab part of an 

ongoing research programme is investigating content classification schemes for movies 

[e.g. Davis 1993, Davenport et al 1991, Evans 1993]. Again these revolve around 

conceptual hierarchies, in Davis's case the concept hierarchy is iconic and covers action as 

well as objects and locations. Information about the shot (film type, camera position etc.) 

and post production effects are also included. Rather than divide the video into discrete 

"clips", Davis describes a multi-layered annotation which avoids this segmentation by 

treating video as a continuous stream of frames. So an annotation marking a change in 

weather will have different start and end points to, say, one indicating characters entering 

and leaving a scene for example. 

When modelling the content of pictures (or audio) there is a trade-off between the richness 

of the representation and the amount of information that must be stored per asset. With this 

in mind, the approach taken with the Generic Browser prototypes is based on picture 

library classification practice. These systems use variations on "who, what, where, when" 

characteristics [Shatford 1986]. The Generic Browser classification scheme does not aim 

to be state-of-the art, rather to demonstrate how such a content model can be handled by the 

Generic Browser (both from a representation and retrieval point of view). Each of the 

characteristics (who, what, where, when) are held as slots, the values being keywords or 

other items in the information base. 

The choice of content model is, of course, open to the application developer, the key point 

is that there is information associated with a picture, regardless of where it is used. There 

is also information that is solely dependent on the context i.e. where the picture is used -

this could be represented in the interface if that were also described using frames. 

The structure outlined above shows one method of encapsulating this picture specific 

information by associating a frame with each picture. Rather than store the data (or a 

pointer to the data) in a slot in the object frame, that slot will contain the name of a content 

frame. This will be a member of the relevant subclass of content; picture, audio, text and it 

will contain content information and a pointer to the actual data as shown below. 
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Object_1 

pointer to picture .... pic_ 0'-ObjecC 1 -. 

who 

what 

where 

pictu re _data 

" 

Figure 41. A picture object encapsulates the infonnation about the picture of a physical object. 

Examples of content objects in each of the multimedia data classes are shown below: 

(a-picture 

(is-a picture) 

(who) 

(what) 

(where) 

(when) 

{view etc.} 

(picture-data) ) 

(a-video 

(is-a video) 

(who) 

(what) 

(where) 

(when) 

(duration) 

{camera info, shot etc.} 

(video-data) ) 

(a-sound 

(is-a audio) 

(duration) 

{content who, what, where, when} 

{speaker who, what, where, when} 

(sound-data) ) 

- 93 -



(a-text 

(is-a text) 

(text-data) ) 

6.4 Models of Browsing and Search 

The Generic Browser model of browsing defines it as a navigational process moving from 

one node to another either by following links or predefined paths. The browsing activities 

can encompass the whole set of nodes or just a subset. Annotation of nodes is specified. 

In contrast the Generic Browser model of search views this as a process operating on a 

collection of nodes rather than a node at a time. Search is a filtering process which creates 

subsets of "hits". These hits need not be perfect matches. Both the characteristics of the 

data and the search terms in the query may be weighted and queries can be negative. 

6.5 Browser Information Structures 

Structure is vital to browsing. Without structure the information can only be processed 

serially, if at all. Two types of structuring are described below. The first is the hyperlink 

structure, now well established as a support for browsing of information. A second 

structure, the path, complements hyperlinks by supporting authored paths (such as guided 

tours) through the information. 

Users build a mental model of the browsable structure. This may be exact, allowing direct 

navigation to sought after information, or just a "feel" for the shape of the information 

space. In both cases, though, the user doesn't feel lost and is able to navigate. Indeed 

personal experience of an early prototype frame editor24 highlights the problem nicely. In 

this editor the order that the frames were presented to the user in a linear browser was that 

of the hashed frame identifiers. This had two main disadvantages for the user: firstly the 

order of the frames in the browser changed when frames were added or deleted and 

secondly there was no easily observed order such as alphabetic and so it was impossible to 

predict where a given frame would occur within the sequence. This unsatisfactory ordering 

was soon changed but this simple example highlights how important it is for the users of a 

browser to be able to form a mental model of the structure. 

Interesting multimedia applications will, no doubt, contain a mixture of the freedom of 

hyperlinks where the user decides weather he wishes to explore or not, and the more 

constrained path browsing in which the author has decided on the progression through the 

24 The FRED frame editor was developed by Martin Shiels at PRL. 
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information. Browsing subsets of the whole information space is another way to reduce 

the cognitive load imposed by the freedom of browsing. These three mechanisms, 

hyperlinks, paths and subsets are the structural primitives of the Generic Browser. 

6.5.1 Hyperlinks 

Vannevar Bush is usually credited with the origin of the concept of hyper links. In his 

paper entitled "As We May Think" [Bush 1945], he describes a machine he calls a memex. 

This opto-mechanical device allows items of infonnation to be linked together by 

"[ ... ] associative indexing, the basic idea of which is a provision whereby any 
item may be caused at will to select immediately and automatically another. 
This is the essential feature of the memex. The process of tying two items 
together is the important thing." 

The associative links that Bush describes are equivalent to current "hyperlinks". 

Structuring information in this way is attractive because they offer the opportunity to 

structure it in a similar way to that which the human mind is thought to. This should make 

such infonnation easier to assimilate and remember. 

From this node and link paradigm has grown first hypertext and then hypermedia. The 

basic principle remains the same. Each node contains a piece of information. It is linked to 

related infonnation by the hyperlinks. The user browses such a structure by following the 

links that interest him. For example, in a hypertext, various keywords may be highlighted. 

Selecting a highlighted word causes a link to be traversed to another node containing related 

information. 

Hyperlinks are now well established as a browsable structure and must, therefore, form 

part of any generalised browsing framework. However, in their basic form hyperlinks are 

rather crude and a possible refinement, typed hyperlinks, is described below. 

Generic Link Types 

Hypertext systems often have only one link type. Clicking on a "hot" concept, word etc. 

traverses the link to a new display of more infonnation about the concept or word selected. 

One could thus view the link as a "more infonnation" or "elaboration" relation. Of course 

the user has no way of knowing what sort of additional information will be available except 

by traversing the link and having a look. In some ways this lack of precision is in harmony 

with the idea of using the hypermedia system to explore the information space. In this case 

an element of serendipity occasioned by finding the unexpected at the end of a hyperlink is 

probably acceptable. 

A less exploratory access mechanism would need to have the links annotated in such a way 

that the user was aware of what he would find by traversing a link without actually having 
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to do so. In text, a simple example is "for more information see ... on page ... ". Here the 

user knows that he will get more detail by turning to the specified page. If the text said "for 

background information see ... " then the reader is again able to decide whether to go and 

look or not. Contrast this with hypertext where all the user has is some indication of "hot 

words". He knows that there is some related information at the end of the link but not how 

relevant or how it is related to what he is currently reading. [Andersson 1991] describes an 

annotation facility as being essential so that users of trails of links would have some idea of 

why they were following the links and what they should expect to see at a given node. 

Journals such as New Scientist frequently use "extra information" boxes. These are 

chunks of detailed information (or different perspectives on the main story) which are 

printed within the article, differentiated from it by a coloured background. These boxes are 

referenced from the text and the reader can glance at the box to see what it contains before 

deciding whether to divert to read the box there and then, wait until the end of the article or 

not read it at all. 

Considering these information boxes in more detail it becomes apparent that there are a 

number of different types of information presented in this way. Background to a story may 

be kept separate to allow a fast pace to the main thread. Extra detail on various aspects of 

the feature can be kept separate from the main text so that readers who want a less detailed 

view can get one by reading the main text alone. Contrasting arguments are also offered in 

this way. 

Of course the extra information does not have to be textual. Figures can also be regarded as 

supporting information which the reader is free to view or not as he wishes. 

One of the problems with hypermedia is that there is no "story"; no narrative structure 

(except within the nodes where the information ought to be coherent). To address this 

problem an alternative structure (paths) is introduced in the next section. Suffice to say for 

the moment that paths are sequences of nodes and so can capture the ordering required by 

an author. However there is a danger of simply regarding these two structuring 

methodologies as mutually exclusive. Interesting structures combining both techniques are 

possible. For example a path describing an event (which, because of its complexity, 

requires a number of information nodes) could have links at each node to related 

information. If these links were typed, the author would be able to indicate to the user what 

sort of a diversion he would get if he followed the link. Provision should be made to allow 

return to the original path at any time. This type of structure allows an author to "get his 

point across" at the same time giving the reader freedom to get extra information if he 

wishes in a more exploratory way. 
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If such a combined use is to be made of links and paths both structuring methods need to 

use a common representation i.e. they must both work with the same type of nodes. In the 

case of the Generic Browser this uniformity is provided by using frames. 

Where links are annotated the user will have to interrupt reading the information to evaluate 

whether an embedded link is worth following. If the author can use arbitrary link types the 

user will have no foreknowledge of the possible links (the vocabulary of link types if you 

will) and so will have a high cognitive load imposed upon him by their presence. An 

alternative worthy of consideration is to restrict the types of links to a standardised set. 

Whatever set of links is chosen, the destination of the links must be hypermedia objects. In 

other words the links must be suitable for referencing multimedia data. Such a set must be 

both flexible enough for the author to capture the relationships between the data and yet 

small enough so that the differences between the relations in the set are readily understood. 

There are, of course, many possible sets of relations which might be suitable for this task. 

One such set is described by [Parsaye et al 1989 pp. 244-246]. An alternative approach is 

described below. 

During work researching the automatic addition of illustrations to computer-generated 

textual explanations, a similar problem was encountered; that of describing the relationship 

between an illustration and its accompanying text. 
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A number of possible relation sets were considered including functional relations such as 

those proposed by [Brody 1984, Levie & Lentz 1982, Duchastel & Waller 1979, 

Alesandrini 1984] and, more promising, rhetorical relations [Grimes 1975 pp. 207-209, 

Hobbs 1978]. One well researched set of rhetorical relations is that used in Rhetorical 

Structure Theory (RST) [Mann & Thompson 1987]. RST is a theory for describing the 

relations between the components of multisentential text. This relational structure has been 

adapted to form the basis for planning the generation of coherent multisentential text. [e.g. 

Hovy 1988, Moore 1989]. More recently, interest has also been shown in widening the 

scope of such generation systems with the aim of allowing multimedia responses to be 

generated [e.g. Andre & Rist 1990]. From the RST set of twenty three relations nine have 

potential to link pictures to text. They are: 

circumstance 

solutionhood 

elaboration 

background 

evidence 

restatement 

summary 

sequence 

contrast 

It seems likely that a subset of these might be appropriate offering application independence 

and a range of types of attached information. 

To assess the suitability of RST for describing the links between illustrations and text a 

selection of illustrated documents were analysed. It was found that it was certainly 

possible to use RST relations to describe how the illustrations fitted into the rest of the 

rhetorical structure. The main problem encountered was that of the ambiguity of pictures. 

However, variety is the spice of life and the author tends to agree with [DeRose 1989] who 

opines that "[ ... ] no closed taxonomy is likely to be adequate for all future purposes, so 

coining new types should be possible". DeRose's solution to the problems inherent in 

such freedom - restricting new types to being sub-types of a standard taxonomy is perhaps 

trusting too much in the ease with which such a taxonomy could be created. 

From the Generic Browser perspective it seems very desirable to allow the author freedom 

to choose the types of links he wishes to use in a given application. If future research 

comes up with a "universal" set of links such a system will be able to support them. 
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6.5.2 Paths 

The concept of a path or ordered collection of nodes was introduced in Bush's original 

paper [Bush 1945]. As well as associative links, Bush envisaged that linked items would 
form a "trail". 

"when numerous items have been thus joined together to form a trail, they can 
be reviewed in turn, rapidly or slowly, [ ... J It is exactly as though the physical 
items had been gathered together from widely separated sources and bound 
together to form a new book. It is more than this, for any item can be joined 
into numerous trails." 

Such a trail encapsulates two ideas; a history of where one has been - the literal trail, the 

route that was taken and also the idea of a route that one might take. The latter when, as 

Bush suggests, the trail is given to someone else. For the Generic Browser a single object, 

a path, is used to represent any ordered sequence of nodes and can thus represent both 

these types of sequence. 

The idea of a path derives from the commonly occurring need to browse information 

sequentially. A typical example of a path is a "guided tour". This type of path is frequently 

found in information systems for example [Hammond & Allinson 1988] and the tours in 

the "Tell Me Why" CD-i disc. As will be discussed further below, a path should be 

thought of as an object in its own right, providing a way of attaching "meta" information to 

a sequence of nodes. Whilst a path could be regarded as just a simple list of items for 

display, to be more generally useful paths must provide additional capabilities. 

In its simplest form a path supports a "page flicking" metaphor although a wide variety of 

interpretations of this basic interaction are possible, built upon the basic functionality of the 

path. 

Paths Contrasted with Hyperlinks 

The path is a navigation structure that defines which nodes the viewer should visit and does 

not depend on the content of the nodes to do this. This is in contrast to hyperlinks where 

the link information is held in each node (see diagrams below) 

path_1 

ObjecC1 ObjecC5 Object_3 ObjecC1 

Figure 42. Objects on a path. 

- 99-



ObjecC1 
~ Object_5 

link - link 

---. Object_3 

link r-

Figure 43. Objects connected by hyperlinks. 

Paths are a location representation structure with just the nodes and their browse order 

stored. Link browsing on the other hand concentrates on the relationships between the 

nodes. With paths there can be meta information which pertains to all the nodes on the 

path. There is no such information available for a sequence of nodes linked by hyperlinks. 

Bush's original trails were a record of the links traversed to get a particular view of some 

part of the information base. In the Generic Browser it is the nodes to visit rather than how 

to get from node to node that forms the path construct. One advantage of Bush's system is 

that the additional information conferred by the link types forms part of the "story". 

Hypertext may not be coherent, not a narrative. There is a need to be able to construct 

paths which convey a coherent message. This is similar to the process required when 

converting normal text into hypertext [e.g. Gotel 1990] hence the interest in the "typed" 

hyperlinks described above. 

Another distinction between paths and hyperlinks is that a path structure exists separate 

from the data items that it links together and thus an individual node can appear on many 

paths. Paths can be considered as "views" or alternative structures of the data space. 

Links between nodes are part of the node structure and stored in the nodes themselves. 

Multiple hyperlink structures with common nodes are more difficult to represent. 

It is important to realise the difference between a hyperlink structure as presented to a user 

and the use of a linking or relation structure for implementation purposes. From the point 

of view of providing a comprehensive set of browsing functions both paths and hyperlinks 

must be provided. From an implementation perspective either or both of these types of 

browsing mechanism may be represented using relational links within the knowledgebase. 

Indeed Bush's trails are actually constituted from items joined by associative links but with 

a trail there is an order imposed on the network of nodes and the user can follow the trail. 
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The combination of hyperlinks and paths form a rich set of structuring primitives and both 

are required in the Generic Browser. 

Paths as Objects 

A path is an object containing not just the list of nodes actually on a path but additional 

information which is specific to the path as a whole. Recall Vannevar Bush's trails which 

he described as "items [ ... J bound together to form a new book". 

The path structure is, in a sense, meta to the data - any individual node says nothing about 

the content that is inherent in the path as a whole. For example the path may give narrative 

form to a collection of nodes, express an opinion, provide a contrast and so on. 

Because a path is a browsable structure as opposed to just a collection of data, such as a 

set, information about how that browsing process behaves can be stored in the path object. 

For simple paths the behaviour at the ends of the path needs to be stored. The operation of 

the next and previous commands are defined by this information. The following 

alternatives should be provided: 

stop when the end (or beginning) of the path is reached 

restart at the end (or beginning) of the path, continuing browsing from the start (or 

end) 

goto a specified node on reaching the end (or start) of the path. 

This last option allows paths to be chained together. Another option, that of calling a 

function at the end of a path, was considered. However, as will be seen in the next section 

the constraints of the implementation prohibited its inclusion in the Generic Browser. 

One possibility not listed above is that of reversing the direction of browsing at the ends of 

the sequence. Whilst this is a possibility it means that "next" and "previous" alternate their 

meanings. This is an unnecessary confusion so this option is not included (it is 

straightforward to achieve this functionality in the application using the basic options 

described above). 

In the Generic Browser paths are stored in frames. This makes paths objects in their own 

right and preserves their uniformity with other structures in the Generic Browser. 

In some instances, such as a slideshow, the path will be traversed automatically with no 

intervention from the user. For some narrative paths only forward browsing may be 

allowed (albeit at a pace determined by the user). For other paths the user may be able to 
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browse both forward and backward at will. These differing types of functionality can all 

be provided using the basic functions described below 

Functions for Browsing Paths 

Since the path is used for navigation (browsing) functions must exist to traverse the path. 

Since a path is an ordered sequence "previous" and "next" functions fulfil this need. As 

noted above, the behaviour of these functions at the ends of the sequence is a property of 

the path. Also it must be possible to add and delete nodes from the path. Since the path is 

conceptually an object in its own right, it must be possible to access the contents of the path 

(i.e. all the nodes on the path in order). For each path, the current position on that path 

must be stored. This is known as the currentJrame_on-path and is another example of 

data which applies to the path as a whole i.e. as a single object. The previous and next 

functions update this information and a function to access the currentJrame_on-path 

provides the means by which the path nodes are accessed. 

Expanding the Path Concept 

Further consideration of the requirements of path-type structures reveals some areas which 

are not covered by the linear paths discussed so far. The issues raised by branching paths 

and related issues such as the representation of temporal data within path objects are 

considered below. 

Branching Paths 

The rationale of path structures is that they provide an author with a high level construct for 

representing sequences of nodes. These can be used for guided tours, explanations, 

slideshows and so on. Although such structures can be encoded functionally as part of the 

application code, such an approach is not general and hides the node structure (part of the 

application data) within the program code. Having a path construct enables the author to 

work simply with the data, secure in the knowledge that functions exist to traverse the 

structures that he is authoring. 
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Given these advantages it is natural to wish to continue to describe more complex structures 

in the same way. Branching paths are the next step in complexity. Here, the user may be 

presented with a number of alternatives at various points along the path. These branches 

may rejoin the "main path" or form alternative "endings". For example 

/D-E-F\ 
A-8-C I-J 

\G-HI 
Figure 44. A branching path 

In this example of a branching path there are two branch points C and I. The two branches 

DEF and GH rejoin but this is not a requirement and tree structures are possible. 

These objects could be used for a number of types of application: 

interactive stories - these have existed in book form for some time [e.g. Harrison 

1985, Packard 1993] and have been put on computer using hypertext which can 

handle all the jumps from one text (or multimedia) fragment to another. Such a 

multi-threaded plot structure also maps directly onto a branching path structure. 

documentaries - An evolution of linear documentaries might well allow limited 

freedom to choose which aspects of a topic will be viewed (whilst still retaining 

the author's sequencing information). 

quizzes - computer-based quizzes are often based around some form of multiple 

choice mechanism. These choices could be represented as the branches of a 

branching path, each branch containing a message as to whether that particular 

answer is correct or not, even, perhaps, why it is (or is not). The actual questions 

would be the branch points. 

A key issue with branching paths, and one which ties representation issues with interface 

issues, is that of how the user should be presented with the choices at the branch point. 

From the representation perspective provision needs to be made in the branching path 

structure so that presentation information can be stored with the appropriate branches of the 

path. From an interface viewpoint there must be a mechanism to display the choice 

information, capture the user's choice and trigger the appropriate branch in the browser. 

As an example suppose that the branch choices are to be offered to the user as a menu. 

When a choice point is reached, the menu strings for each branch (which must be stored 

with the branch) must be extracted to build the menu. When the user makes a selection. his 
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choice must be decoded against the menu items to find which branch is to be traversed and 

the user informed accordingly. 

Two types of branch selection mechanisms need to be catered for: 

user selection (via buttons, menu or other interface widgets), 

automatic selection under the control of the application - for example random 

selection, selection of branch from those not yet visited, selection of branch that 

most closely matches the current theme etc. 

A structure for branching paths 

Having considered the requirements of branching paths, their representation needs to be 

drawn up. One variation on this theme is explored below25 . In this representation the 

branch point is signalled by the path item being a list; thus 

(a ((b c) (d e)) f g) 

represents 

b---c 

--a f -g 

d---e 

Figure 45. A branching path structure 

When the path-pointer (the user's position on the path) encounters a list the user would 

have to follow one of the sublists. At the end of that sublist the next item in the main list 

would be visited. 

In the case of a "diversion" from the main path the structure looks as follows: 

z'" 
-a-------p-q-

Figure 46. A "diversion" from a path 

25 Although limited prototyping of branching paths has been done, this representation and the other aspects 
of branching paths are still at an early stage of development. 
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and is represented: 

(a ((yz) ()) pq) 

At this point there is no means of representing the message to be displayed at the branch 

point. To solve this problem there could be a sub-type of path called, perhaps, "branch" 

which inherits all the path data plus has information for presenting itself as an option at a 

path choice point. So 

(a ((b c) (d e)) f g) 

would be represented 

(a (Bl B2) f g) 

where 

(Bl (is-a branch) (presentation-info xx) (path b c)) 

(B2 (is-a branch) (presentation-info yy) (path de)) 

Considering this representation there is still a need for a choice point frame to contain 

information on how the choices are to be presented and selected. Maximum flexibility 

needs to be provided at this choice point. Ideally there needs to be a hook so that a user

defined function can be called. 

(a B f g) 

(B (is-a choice-point) (has_choices Bl B2) 

(selection_method menu)) 

(Bl (is-a branch) (path b c) ) 

(B2 ( is-a branch) (path d e) ) 

The next problem to consider is how to attach extra data such as the message to display for 

each of the choices. These messages are each associated with a branch and so could be 

stored in the branch path frame. For example 

(Bl (is-a branch) (choice-entry "choice 1") 

(path b c)) 

Given that there needs to be a choice point frame, this could be the first item in the branch 

list. One possible structure for a choice point would include a list of the branches. 

Alternatively the actual branches could follow the choice point frame in the branch list. 
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What happens at the end of the branch is also important. Since the branch is a path it is 

possible to set the "at end slot" so that the branch can never be left (by browsing). If the 

end is passed, the user should return to the main path after the branch. Thus the "at end" of 

a branch should allow for returning to the previous path. Similarly, if backwards traversal 

of the path using the previous_on-path function is enabled, the "at start" of a branch should 

return to the choice point. 

This raises the problem of what to do when a recombination node, where several branches 

meet, is reached using the previous_on-path function - should this be treated as a choice 

point too for example? 

There are a number of options: 

branching paths are completely bi-directional 

backwards traversal of branching paths is inhibited 

previous_on-path skips branches and goes back to the previous choice point 

One could have the behaviour of the path following mechanism dependent on the type of 

frame in the path e.g. data item, choice point etc. 

This gives 

(choice-point 

(sub-paths <branch_l> <branch_2» 

(choice-presentation <menu> I <random> 

I <auto> I ... )) 

(branch 

(is-a path) 

(path) 

(at_end) 

(at_start) 

(choice_entry IIchoice string ll
)) 

In order to cope with nested paths there needs to be some kind of "path return stack" to 

keep track of the paths left so that they can be rejoined at the end of the diversion. 

Another aspect of a path being an object in its own right is that it is possible to search 

paths. One might wish to find all paths that go through specified nodes for example. This 

was one of the reasons why storing paths as a single list in the path frame was found to be 
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preferable to using the "forward & back" slots mechanism which was used in the first 

prototype. 

To summarise, a methodology and representation for branching paths has been outlined 

here. The key aspects are having a branch sub-type of path which can appear in the path 

list, a modified path traversal mechanism that is sensitive to the type of object (node or 
• 

branch) next on the path and a path stack on which the current path is pushed whenever a 

branch is followed and popped when the end of the branch is reached. A full 

implementation of branching paths has not been done, however preliminary prototyping 

suggests that it should be a straightforward enhancement to the Generic Browser. 

6.6 Navigation 

The process of browsing data held in frames is straightforward. An important concept for 

browsing in the Generic Browser is that of the "current frame". This is the "you are here" 

of the Generic Browser. All the frame browsing functions update this current frame. 

Since the "current frame" is simply a frame identifier the interface component can use this 

to extract information from the current frame and display it for the user. The process of 

browsing has now become changing the current frame, either by following links or 

traversing path structures and then displaying information from the new current frame. The 

concept of a current frame ties in with the idea of a user having a focus whilst browsing, an 

item that is receiving his attention - this focus is the current frame. 

6.7 Marking 

"Read, mark, learn and inwardly digest" 
The Book of Common Prayer 

Marking is a powerful concept. It allows items in the database to be identified as belonging 

to subsets, created by either the system or the user of the application. Subset browsing has 

already been identified as an important means of avoiding the user loosing his way in the 

information space. When marking is applied to the navigation structure of the application, 

perhaps on a screen by screen basis, the user can use marks as placeholders in the same 

way as bookmarks are used whilst reading, enabling a particular "place" in the application 

to be returned to at a later date without the need for tedious backtracking [e.g. Canter et al 

1985]. 

Having identified the need for marking facilities it is necessary to consider what kind of 

support for marking should be provided. An example of the most basic form of marking is 

that provided in HyperCard. Here there is just one mark type which can be placed on any 

card. Marks can also be placed on cards that match a criterion using HyperTalk commands 

such as 
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mark cards where "Apple" lS in background field 

"Company" . 

The unmark command can also be used with search patterns. Hypercard allows a number 

of operations to be performed on marked cards such as printing marked cards, showing 

marked cards and go to next and previous marked cards. 

A generalisation of the mark concept would allow :-

an arbitrary number of named marks on any frame 

values to be associated with marks 

treatment of a set of similarly marked objects as a single object 

browsing of marked sets 

This would allow subsets to be created by marking. Such collections of frames could be 

browsed or form a restricted part of the frame-base for other operations. 

As will be seen later in this section, marking forms the basis for the integration of search. 

By using marking itself, the Generic Browser is able to identify search hits in such a way 

that they can be immediately offered for browsing. 

The provision of marking as the means of creating subsets of the information in the frame

base makes it desirable to provide basic set operations so that such subsets can be 

combined. 

6.8 History Mechanisms 

A history is a record of where the user has been or what he has done. In this section, a 

variety of "history" mechanisms are discussed. Uses of history information such as 

allowing the user to retrace his steps if he gets lost and offering unvisited information to 

him will be discussed. This will be followed by a description of the facilities offered by the 

Generic Browser. 

6.8.1 Navigational History 

In this type of history the system records where the user has been, usually in the order in 

which he visited each location. The primary use of this information is for providing some 

form of backtracking within an application often via a "go back" button. This allows the 

user to retrace his steps, returning to previously visited locations in reverse chronological 

order. This function requires that a list of all locations visited is maintained by all functions 

which change the current location within the application. In many interactions it will be 
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undesirable to keep all the locations visited and so a maximum backtracking depth may be 

enforced restricting the user to being able to only go back a fixed number of steps. In 

applications where branches or decision points are common, another strategy for restricting 

the backtracking is to allow backtracking to the last decision point or branch, either via the 

intermediate steps or directly. Of course, go back functions can also work on a data centred 

view rather than a location-based view. In this case, backtracking simply retraces the 

user's step through the data items visited. 

An alternative backtracking mechanism gives the author more control over where the user 

goes when he chooses to backtrack. Rather than the system recording where the user has 

been, go back information in each node points back to the location the author wishes the 

user to return to. The problem with this mechanism is that it does not encapsulate any form 

of context i.e. how the user got to the current node. In the case of there being a number of 

routes to a given node it is reasonable to expect that there may be a variety of suitable 

backtrack destinations. This lack of generality makes this type of backtracking unattractive 

for the Generic Browser although it could be implemented for specific applications using 

information stored in the data or location frames. 

This information is extra-nodal. 

6.8.2 Statistical Information 

The system records how often an item or location has been visited. For example, it may be 

useful for an application to know whether, and if so how many times, a given location or 

data item has been visited. Similarly, statistical information can be recorded for each 

function though this is probably of more interest to the program developer than of use 

within the application itself. For the Generic Browser, such statistical information should 

only be recorded for the items visited. 

This information exists within the nodes. 

6.8.3 Temporal Information 

The system records when an item or location was visited. Though a navigational history 

records where a user has been, in order, it does not record when a given location was 

visited. In some applications this may be useful information. 

This information also resides within each node. 

6.8.4 Action History 

The system records what happened. Related to the go back function an undo function is 

most commonly found in editors. It actually undoes the effects of previous actions. Thus 
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rather than a location or items visited history, it is necessary to maintain a record of all the 

functions called via the user's actions so that their effects my be undone when the undo 

command is invoked. 

This information exists outside the nodes. 

Though undo functionality is useful in editing-type applications it is of less use in general 

information browsing and searching applications. Provision of undo capability imposes 

considerable overheads on all the functions used by the application in that they must be 

reversible and, when they are called, record all the information necessary for reversal at 

some later time. For these reasons, it has been decided not to offer undo functionality in 

the Generic Browser. 

A particular item to note from the above is that some history information is stored in a 

separate history data structure (navigational and action history) and some is placed within 

the node itself (statistical and temporal history). 

6.9 Search Methods 

In this section a number of different search facilities will be examined and their utility for 

consumer multimedia systems investigated. The one chosen for the Generic Browser, the 

vector space model, will be examined in detail. It is not the purpose of this work to 

develop new search algorithms or techniques, rather it is to show how search can be 

integrated with browsing for consumer applications. Accordingly a representative search 

mechanism, vector search, has been chosen to illustrate how an established technique can 

be used in the framework of the Generic Browser. With consumer applications largely 

occupying the "middle ground" of the browse-search continuum, applications which are 

pure search will be rare. Far more likely is that search will be used to establish a subset of 

the database for subsequent browsing as was shown in the previous chapter. 

The type of search described here matches the characteristics of objects against a query 

specification. This allows all media types to be treated in the same manner. Of course 

there are specialist search techniques for the different media. For example, text search is 

addressed by full-text retrieval techniques [Salton 1989 pp. 255-274]. Pictures and video 

can be accessed by the pattern and region matching techniques which are still a very active 

area of research in areas such as image compression and object recognition. Both of these 

examples show the search process operating on the data (content) itself rather than on a 

representation of the content as is the case with searching content models. 
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6.9.1 Basic Search Functions 

The role of search within the Generic Browser is to extract a subset of the data that can be 

used as the basis for further searches or as a set of objects to be browsed. 

A frame-based system is not a database and since no search functions are provided basic 

ones such as those listed below are required: 

get all frames with a particular slot 

get all frames with a particular value in a specified slot 

As marking is used to generate browsable structures within the frame-base, equivalent 

functions that mark the resulting frames rather than returning them are also required. In 

addition it is desirable to be able to perform these functions on subsets of the database. 

Accordingly functions that search either a class or a marked set are also required. 

6.9.2 Vector Space Model 

The basic search functions described above are used for locating items that exactly match 

the search criteria. Other search tasks require the location of the "best match" even if this is 

not an exact match. Many consumer search tasks, such as choice of a holiday for example, 

fall into this category. Here the user homes in on a short-list of potential holidays by 

choosing those characteristics that he thinks are desirable or those which he definitely does 

not want (see negative queries below). The search mechanism produces a ranked list of 

hits so that the user is free to choose from those items which match (or nearly match) his 

requiremen ts. 

The method chosen to provide this type of search is based on the "vector-space model" 

[Salton 1989 pp. 313-326] which is often used in text retrieval systems. This methodology 

was also used with success in the Apple Guides prototype [Don et al 1991]. 

How it Works 

The vector-space search method works as follows. Each item is described by a number of 

characteristics. The presence or absence of these characteristics is recorded for each item, 

usually as a set of vectors where Iij records the presence or absence of characteristic j in 

item i. For simple systems, this is a vector of D's and 1 IS, but more complex systems can 

be built where weights for each characteristic are recorded. The query is expressed in the 

same way - as a query vector Qj. The search process consists of evaluating a similarity 

measure between each item vector and the query vector. This measure is usually some 

variation of the vector distance (such as the inner product) between the query and items in 
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an n dimensional space (where n is the number of characteristics). The hits can then be 

ranked according to their similarity with the query. 

An attractive feature of the vector search method is that the query and items are stored in the 

same way. Thus in the Generic Browser, in common with the other objects. the items are 

frames as are the queries. 

Similarity Measure 

[Noreault et al 1981] evaluated the effectiveness of 24 (out of a possible 67) similarity 

measures. They concluded that at best there was a 20% improvement compared with a 

random ordering of the output and that a large number of the measures performed almost as 

well as the best. Given that, for efficiency reasons, the simplest similarity measure is very 

attractive and that, for consumer applications, accuracy is less important than execution 

speed, the inner product similarity measure has been chosen for use in the Generic Browser 

where 

n 

SXY = LXi'Yi 
i=1 

where ex is the angle between the term vectors. When the terms are linearly independent 

their vectors are orthogonal (at 90°) to each other. cos(900) = 1 so the formula simplifies to 

n 

Sxy = LXiYi 
i=1 

For comparison, the cosine similarity measure is calculated as follows: 

This is substantially more complex than the inner product and thus takes more computation 

time. If greater accuracy were required a different similarity measure could easily be 

substituted for the inner product. 

In the Generic Browser the result of the vector search is that each frame "hit" is marked 

with its similarity to the search query, making a marked set of hits. 
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Advantages and Disadvantages 

Salton describes three main advantages of the vector-space search method [Salton 1989 pp. 

317-319] 

1) Items can be ordered in decreasing order of similarity with the query allowing them to be 

displayed in decreasing order of presumed importance. 

2) The size of the retrieved set can be adapted to suit the user. For casual users only the top 

few items need be displayed. A more exhaustive list may be supplied to specialists. 

3) Items retrieved early in the search, which are most similar to the query, can be used to 

improve the query using relevance feedback. (This is of more use in text retrieval.) 

Salton also compares the vector-space model with two other information retrieval methods, 

Boolean model and probabilistic model and finds the vector-space model "the simplest to 

use and in some ways the most productive". 

Simply searching for the presence or absence of particular characteristics is a fairly course 

mechanism. More subtlety can be provided by weighting. Weights are values attached to 

the characteristics in the data frames and/or the query (the same mechanism is used for both 

data and query, a useful uniformity of representation). This allows the author to represent 

degrees of the characteristics when describing objects. For example, he may wish to 

describe a resort as fairly quiet. It is not sensible to try to give and exact amount of 

quietness, all the same, it must be possible to indicate that this particular resort is quieter 

than another. This is where weights are used, the relative quietness of the resort being 

denoted by, say, one having a quietness of 0.3, the other 0.5. 

Similarly, it is often the case that a user querying a database with more than one 

characteristic may want to indicate the relative importance of particular characteristics. 

Weights can be used here in the query as well. 

The vector space model's chief disadvantage is that it requires the characteristics to be 

linearly independent and if they are not it produces inaccurate similarity measures. This 

may not be a problem when using this method for inexact searching because the user will 

not be expecting complete accuracy, indeed, this restriction is widely ignored in the 

information retrieval field without adversely affecting the methods utility [Raghavan & 

Wong 1986]. 
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6.9.3 Negative Queries 

The basic idea behind negative queries is the desire to be able to specify characteristics 

which the user does not want in the items found by a search. There are a number of 

approaches that are possible. 

A simple solution is to have a negative search function which returns all the items in the 

search set that do not contain specified characteristics. This can be combined with the 

normal search functions to allow the user to specify both characteristics that should and 

should not be present in a hit. 

This method works fine for Boolean search methods but the situation becomes more 

complex when inexact matches are permitted. 

One possibility is that negative query terms should be treated the same as positive ones. 

That is to say that a negative term decreases the similarity measure rather than increasing it 

when that term is found in a data item. This captures the idea that the user "probably 

doesn't want" a particular characteristic. However, unless weighting is allowed, if the 

number of positive terms was large compared with the negative ones the effect of the 

negative terms would, in many searches, be overwhelmed. This is unlikely to be 

transparent to a typical consumer who does not expect to see items which have 

characteristics that he has flagged that he doesn't want. For these situations a pure rejection 

filter is most appropriate. 

For the Generic Browser, in keeping with its philosophy of being general, both of these 

facilities should be offered. 

6.9.4 The Integration of Search with Browsing 

As has already been shown number of authors have considered the potential benefits of 

combining some form of search facility with the browsing mechanism usually found in 

hypermedia systems particularly hypertext [e.g. Faloutsos 1990]. 

An integrated system is described in [Jerke et al 1990]. It allows formal search queries to 

be used to find suitable locations in the information network for future browsing. In the 

particular implementation they describe, the results of the search (holiday destinations) are 

presented on a map from where the user selects one as a starting point for multimedia 

browsing. The authors found the basic concept of providing both access mechanisms 

useful in this type of application. 

For the Generic Browser the aim is to integrate the search mechanism closely with that 

provided for browsing. To this end the search component generates the results of the 
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search as a marked set. This means that these items can be browsed with no extension to 

the browsing functions already specified. 

At this point it is important to note where compromises in either the browse or search 

components have been made in order to provide the level of integration required by the 

Generic Browser. The main compromise has been in the search engine. For efficiency 

reasons most database systems operate on highly optimised data representations which are 

geared to the requirements of the search mechanisms [Salton 1989]. For example some 

systems store the data in a tree structure where the nodes are positioned in the tree 

according to the search key. This reduces the search time. Others use so-called hash tables 

to reduce the amount of space required for the index structure. In the Generic Browser the 

data representation has to be amenable to browsing as well as search and the resultant 

scheme is less suited to efficient search. Some of this inefficiency could be alleviated by 

performing the search operations on the underlying "internal" datastructures (below the 

frame level). It would also be possible to build indexes of the type mentioned above for 

static parts of the database. 

6.9.5 Function Search 

Work on the Cruise Browser26 revealed a missing class of search operations, that of 

comparing a value associated with each item with one in the search query. For example, 

there might be a requirement to extract all cruises costing less then £200 per day. Here the 

search function must compare the search specification of £200 with the daily cost in each 

cruise frame, only generating a hit when the target frame has a lower cost. This is an 

example of the class of search functions that use a comparison function. This function is 

Boolean and returns true when the query value compared with the target value is true. This 

generates a "hit". Because standard Boolean comparison operators (less than, greater than 

etc.) are likely to be required in many applications these should form a set of provided 

functions. 

6.9.6 Combining Search Operators 

[Fox et al 1988] describe a modified version of the vector search model where sub-matrices 

within the document matrix are processed by different search operators. For example, the 

normal similarity measure could be used for some terms, a weighted version on others and 

a function applied to a third part of each document vector. 

26The Cruise Browser an electronic version of a cruise holiday brochure, described in detail in chapter 9. 
was built as part of the Homestead Esprit project. 
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This provides an attractive way to combine search operators. If such a mechanism were 

provided the type of search to be used would have to be indicated in the query frame. 

6.9.7 Variations of Multimedia Search Mechanisms 

In [Faloutsos et al 1990] a number of variations on the basic search theme have been 

suggested for further research. These are considered below in the context of how the 

Generic Browser addresses these issues. 

Operations on search result lists - because the Generic Browser produces a marked 

set containing the search hits it is straightforward to process this list. As will be seen in the 

next chapter this is particularly straightforward using the LISP-like list processing 

functions that form part of the frame-based system (Cframes). 

Relevance weighting and ranked output - ranked output is already part of the vector 

search functions provided by the Generic Browser and that type of search is also amenable 

to relevance feedback [Salton 1989 pp. 319-326] though this is more important where the 

number of items is very large as it is in text retrieval applications. However weighting does 

reduces the efficiency of the search because of the extra processing required. 

Restricted search domain and neighbourhood searches - marked sets and classes 

provide two varieties of restricted search domain. Neighbourhood searches are not catered 

for explicitly in the Generic Browser though producing a marked set from neighbouring 

nodes would allow this type of search. Such a marked set would have to be created by 

finding all the links leading from the current frame and marking their destinations. This 

process could be repeated for the nodes so found to spread the "net" wider. 

String search within an article, string specification by pointing to the 

current text and incorporation of string search in the authoring tool - these 

refer to string search which is only really applicable to a text-based system rather than the 

more general frame-based system of the Generic Browser. It may be necessary to include 

string search on slot contents, however, if the database was mainly composed of text held 

in frames, experience to-date suggests that text fragments are more conveniently stored as 

files rather than as the contents of a slot. A separate string search routine could be used to 

scan these files. 

Although it is possible to do string searches on the text in a multimedia information base, in 

all probability there will not be very much text. This is because text is less easy to read on 

a tv screen than a computer monitor and users are more likely to want audio and pictures 

than screenfuls of text. The lack of a keyboard in consumer multimedia systems such as 

CD-i makes the interface to string search very difficult to provide cleanly. 
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Speeding the search - obviously this is a goal for any software developer and the 

Generic Browser is no exception. In the prototyping phase of the development of the 

Generic Browser, speed has not had the highest priority though a first pass at improving it 

will be described. 

6.10 Authoring Perspective 

There are essentially two "customers" of the Generic Browser. So far we have 

concentrated on the needs of the user of a browsing application. This person uses the 

Generic Browser indirectly as he uses the application. If he is able to do what he wants 

then the combination of the skill of the author with the functionality of the Generic Browser 

has been successful. The other customer is the author of the application. He makes use of 

the basic building blocks provided by the Generic Browser to construct the application for 

the end-user. The Generic Browser is one level below authoring tool kits in the authoring 

process since it provides the basic functionality that tools would have to make available to 

authors. 

These functions may be used directly if the application is written as a 'C' program where 

the author would make calls to the Generic Browser library or indirectly because the author 

is using a tool which is itself based on the Generic Browser. 

The advantages for the author of using the Generic Browser are firstly it is general. If an 

author develops an application as a one-off in, say, 'C' then the subsequent applications 

will either involve re-coding from scratch or, more likely, modifying the old code. The 

latter process is error prone particularly if the code was not written with re-use in mind. 

Using the Generic Browser means that both the data representation and access functions are 

standardised so that techniques developed using them can be exploited in subsequent work. 

The Generic Browser also promotes the production of clearer code because of its object 

oriented approach. This should in tum reduce maintenance problems. By addressing the 

area of information-rich multimedia applications, where there is little existing support, with 

a generic solution a gap is filled and wasteful bespoke applications can be avoided. 

Although the authoring level allows Generic Browser functions to be used to realise 

functionality that is not provided by the Generic Browser directly the aim of the Generic 

Browser is to provide the basic building blocks so that if more complex functionality is 

required it is straightforward to produce it using the Generic Browser without resorting to 

clever tricks such as accessing the Generic Browser data structures directly. To put it 

another way the Generic Browser must provide the author with the functions needed to 

produce an application that offers the user the functionality that she wants. The extra 

requirements of the author revolve around clarity and uniformity of representation and 
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sufficient breadth of functionality to make addressing the user's needs straightforward. If 

the author is to use a tool based on the Generic Browser the same requirements apply from 

the tool builder's perspective. 

6.11 Summary 

Chapter 5 generated a set of requirements that are addressed by this architecture as follows: 

• browse and search multimedia data 

This requirement has meant that the representation must address the need to 

reference multimedia data stored outside the frame representation (stored on CD 

for example). This can be achieved by storing the filename (or offset within one 

large datafile) in a slot in the object frame. 

It has also meant that a content representation must be able to be stored with each 

item (to enable searching of all media types). The technique of storing attributes 

to represent the content of a media object has been shown. The flexibility of the 

frame system allows authors to choose the granularity of their content 

representation by defining the relevant slots and ranges of allowed values. 

• browse freely in the information space 

The use of relations in the frame system allows lists, hierarchies or networks of 

items to be created. A mechanism to browse this structure (i.e. traverse these 

links) is then required. 

• look at related items 

The relational links of the frame system provide exactly what is required to link 

related items together. 

• have information presented as an overview or in detail 

This requirement can be addressed in two ways, firstly the data can be stored 

within the data frame in more than one version, the correct one being selected by 

the application. Alternatively the detailed view of the data can be treated as a 

related item linked to the overview by, say, a more information relation. Both of 

these are catered for with a frame system. 

• mark items, possibly with a value 

The data representation scheme must allow marks to be stored with the data items 

so that subsequent browsing is possible. The dynamic nature of frames allows 
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slots and values to be created at run-time. This is the necessary underpinning for 

the concept of marking. 

• collect sets of items for further browsing 

This is addressed by allowing sets of marked items to be browsed. 

• leave navigational placeholders to allow an item to be revisited 

Marks can be used for this purpose. 

• retrace steps i.e. to backtrack 

By ensuring that all navigation is performed using Generic Browser functions the 

necessary history information can be stored by these functions when they execute. 

• follow guided tours 

These can be constructed using the path construct. 

• freely move between browsing and searching access 

The use of marking of search hits enables the results of a search to be browsed. 

• search for items by a variety of query mechanisms 

The vector space search mechanism described above provides an alternative to the 

simple matching that is also required. The hit marking mechanism is applicable to 

any search mechanism that is required. 

6.12 Functional Specification of the Generic Browser 

The architecture described above has been used to generate a functional specification for the 

Generic Browser. In this case, the term generic is taken to mean independent of 

application, not biased towards a particular form of browsing/searching and independent of 

the data and its presentation. 

The Generic Browser comprises two main functional units 

the browse engine 

the search engine 

Both of these components operate on a common data representation. 
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Figure 47. Components of the Generic Browser. 

There are two components needed by the Generic Browser which are intimately tied to the 

application and which therefore cannot be provided in generic form. These are a 

presentation component and a search term specification component. 

Generic Browser Functional Specification 

The Generic Browser will provide: 

• a data structuring environment using a frame representation scheme, 

• hyperlinks between objects (possibly named) and a means to traverse them, 

• a mechanism to enable items to be marked with the following features: 

o an arbitrary number of named marks on any item 

o values to be associated with marks 

o reatment of a set of similarly marked items as a single object 

o browsing of marked sets 

• a path object which "contains" a sequence of data items and information specific to the 

path as a whole, 

• a means to traverse paths, 

• a means of recording a history of data items visited and a mechanism to backtrack 

through that history, 

• a search mechanism that marks data items with specified characteristics, 
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• a search mechanism based on the vector space model with the following features: 

o operates on the data held in frames 

o represents the query as a frame 

o marks the "hit" frames with a similarity value 

o supports two mechanisms for negative queries, 

• a search mechanism that applies a function to compare query and target characteristics 

and marks the resultant hits (function search), 

This functional specification above has formed the basis for the implementation described 

in the next chapter. 
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7 Library Implementations 

This chapter opens with descriptions of the two main phases of the development of the 

Generic Browser library. The first prototypes were implemented in a version of LISP but 

following unattractive performance evaluations on the target platform, CO-i, a move to a 

'C' -based implementation was made. There then follows a more detailed examination of 

the implementation of the main features of the Generic Browser function library.27 

7.1 CD-i - The Target Platform 

As has been stated in chapter 3 this work aims to be general and at the same time 

implementable. In particular it is targeted at consumer multimedia platforms. To 

demonstrate the practicality of the Generic Browser concept the implementation work 

covered by this thesis has been performed on the CO-i consumer multimedia platform. The 

specification for such a machine appears in appendix A. 

Code for CO-i players is generally developed on a more powerful platform, in this case a 

Sun workstation. A 'C' cross-compiler on this machine produces OS-9 code which is 

linked with the relevant libraries to produce a module that will execute on a CO-i player. 

7.2 Lisp Version 

Having chosen frames as the basis for the Generic Browser work it was necessary to 

provide a frame-based system on the CO-i player. No frames-based system was already 

available so the decision was made to implement one especially for the Generic Browser. 

The initial choice of implementation language was LISP. Previous Project prototyping 

work had been implemented in LISP on Sun workstations for convenience. At the time of 

choosing CO-i as the target platform another project was considering LISP as the basis for 

an extensible authoring language (similar to HyperTalk) and compatibility with that exercise 

was thought to be useful. 

LISP is powerful and flexible and, because it is interpreted, is particularly suited to the 

rapid prototyping methodology used for this work. Preliminary work on the Generic 

Browser library was carried out on a Sun workstation which allowed faster prototyping. 

However the target platform was kept in mind and a suitable LISP interpreter for porting to 

CO-i sought. 

27 All implementations of the Generic Browser Library and of XKC were done by the author. 
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7.2.1 XLISP 

The public domain LISP interpreter called XLISP28 implements a subset of COMMON 

LISP. It is written entirely in 'C', with source code provided. The key feature of this 

system, its small size, making it suitable for use on the CD-i player. 

XLISP having been ported29 to CD-i the interpreter was modified to enable it to be called 

as a 'C' function [Cole 1991a]. This was accomplished by modifying XLISP so that rather 

than, as is usually the case with LISP, the XLISP process being the main program, a 'C' 

program could call the XLISP evaluator as a subroutine. This was necessary because on a 

CD-i player an application is a set of 'C' functions that are called by a supervisor program 

that handles events such as mouse clicks etc. 

7.2.2 XKC 

With the XLISP interpreter ported to the CD-i player the next step was to write a frame

based system in XLISP. One problem with the choice of a frame-based representation is 

its potential size. This is because the frame approach was developed in the AI world where 

efficient use of computing resources came second to high level representations and 

powerful toolkits3o. Previous work in the Project31 had been done using 

KnowiedgeCraft32 running on Sun workstations. This experience allowed a minimal set of 

functions to be specified containing the following: 

create/delete frames 

add/delete slots 

add/delete values 

create and manipulate relations 

28XLISP was written by D.M. Betz and placed in the public domain. 

29XLISP was ported to the CD-i player by David Eves at PRL. 

30It is interesting to note that over the last few years there has been a shift in the AI w.orld t~wards . 
applications of AI techniques that run on readily available platforms such as PCs. ThIS has In tum gIven 
rise to more efficient implementations of AI tools running on such machines. 

31The Intelligent CD-i Project was investigating how techniques of AI might be used in consumer 
multimedia applications such as a Cookery Advisor. 

32KnowiedgeCraft is a comprehensive AI toolkit which has the disadvantage of requiring a powerful, virtual 
memory workstation to run on. 
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Inheritance over is-alinstance links was specified as was provision of "typeless" data33. 

The principal omission from this list as far as "traditional" frame-based systems are 

concerned was demons. These allow functions to be called when the values in a slot with a 

demon are changed. Provision of demons has a major impact on the run-time efficiency of 

the system making it run slower. It was felt that their absence from XKC would not 

adversely affect the Generic Browser. This has been borne out in practice. All that 

demons provide is an automatic mechanism for triggering procedures when data is 

changed. If the Generic Browser needed to call a function when data was changed this 

could be done more efficiently by including a call to that function before or after the call to 

change the data. 

A simple frame system offering the core functions above was written in XLISP [Cole 

1991b]. This was based on the frame manipulation functions described in [Winston & 

Hom 1984 ch. 22] and was known as XKC. For reasons of compatibility with 

KnowledgeCraft, the functions were named to correspond with the KnowledgeCraft 

conventions, in particular frames were referred to as schemas. 

7.2.3 Generic Browser Prototype - Basic Functionality 

The LISP version of the Generic Browser was written using XKC and XLISP running on 

the Sun. This implementation was regarded primarily as a frame browser (search had not 

been included at this stage). It was envisaged that the user would browse items connected 

by "previous" and "next" links. As will be seen later, when the prototype applications are 

described, the use of just these links was not found to be sufficiently flexible and so the 

concept of paths was explored as the primary browsable structure. 

Though lacking a number a features later considered essential (not least the integration of 

search) this first version of the Generic Browser proved to be an invaluable test-bed for the 

ideas which form the concept of the Generic Browser. The function set implements the key 

functions of the Film Browser described in chapter 2. The following functions were 

implemented in the LISP version: 

33 All data items be they text, Boolean, integer, floating point or the names of frames are treated the same, 
without the need for declaring their type. 
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Browsing 

next/previous 

next/previous marked 

next/previous tagged 

traverse a link 

backtrack 

Marking & Subsets 

add/delete a mark 

add/delete a tag 

Multimedia Data 

The frame representation used was found to be ideally suited to the 

representation of multimedia data 

7.2.4 Marks and Tags 

The LISP implementation distinguished between marks with and without values (known 

respectively as tags and marks). It became clear in project discussions that this was not a 

justifiable distinction. The separation of marks and tags was found to be an 

implementational convenience rather than a conceptual difference. Subsequent versions of 

the Library had marking with optional values which was found to be much more intuitive. 

In the LISP version marks were represented by connecting all marked frames by a 

relation34 with the name of the mark. To allow access to marked frames the frame marked

items was linked to the start of each chain of items connected by relations with the name of 

the mark as shown below. 

34 At a conceptual level infonnation nodes are linked together to fonn a browsable structure. At an 
implementation level these links are implemented using relations. 
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~ Frame_1 .. Frame_2 

I 
... 

my_mark 
marked_items 

my_mark -

your_mark -

• Frame_3 

~ 
Frame_4 

your_mark your_mark ~ 

Figure 48. Marked items data structures (LISP version). 

In the example above Frame_l and Frame_2 are marked with my_mark. Frame_2, 

Frame_3 and Frame_ 4 are marked with your _mark. my_mark and your _mark are 

relations. 

The disadvantage of this structure is that marked_items forms part of the linked list so that 

the next/previous_marked functions must avoid it as the mark list is traversed by following 

the relations. Also the members of a given marked set can only be found using 

gecreiatives on marked_items. The get_relatives function is provided XKC (and other 

frame-based systems). It returns a list of all frames linked to a specified one by a given 

relation. So to find all the items marked with your _mark the following would be used: 

get_relatives ( "marked_i terns" , 

get_inverse ("your_mark") ) ; 

It would be more efficient to have a single object that contained a list of all members. A 

path is just such an object and subsequent versions of the Generic Browser utilise paths to 

hold marked sets. Here the path is constructed by the system at run-time. This contrasts 

with the use of a path by an author to create a browsable sequence. 
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7.2.5 Node structure and Use of Relations 

The user defined relations which are part of XKC (and Cframes35) provide a mechanism to 

support a form of hyperlinks. User defined relations automatically maintain the inverse 

relation; this provides bi-directionallinks at no cost to the author. Though the standard 

XKC functions are used to create and delete links, link traversal is handled by the Generic 

Browser. This allows the changes to the current frame to be recorded in the history. There 

is a strong similarity between the links in hypermedia and these relations. 

The primary distinction that can be drawn between hyperlinks as found in, say, 

HyperCard, and the relational links in a frame system revolves around the anchors36 of the 

link. In a frame system the relations link frames together whereas in HyperCard the link 

goes from a button on a card to another card. In the first case the anchor can only be placed 

on the data node whereas hypermedia systems generally allow the anchor to be within a 

node such as on a button or "hot" word. 

Figure 49. Screen linked to screen. 

35Cframes was written and implemented by M.A. Shiels [Shiels 1991a). 

361n hypermedia terminology an anchor is the source of a link in hypertextlhypermedia systems. 
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Figure 50. Hotspots linked to screens. 

Frame to frame linking means that "true" hypertext cannot be implemented just using the 

relations provided in the Generic Browser. This is because there is no way to associate the 

individual words in the text (which would either be held as a value or values in a slot or, 

more likely, in a separate asset) and the links to other frames. 

This shortcoming of the use of relations as hyperlinks can be addressed as follows: If the 

links are not sensitive to the context and every occurrence of a specific word always causes 

a specific link to be followed (a dictionary definition or glossary entry for example), links 

for each word can be made and placed in a look-up table. These can then be used to 

translate between the word selected, as a piece of text, and the link to be followed. For 

straightforward applications the word and the name of the link can be the same. This 

lookup table approach could be extended to cope with words used in context by treating 

each "hot" area in the document as a separate entry in the table. This table would then 

supply the required link name. This may seem unnecessarily complex but a real application 

will already have some fonn of mapping between the pointer location and the hot word in 

the text so this could be extended to return the link to be followed. 
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/ '\ look-up table 

The cat sat 
.. cat cat_link ... 

• .. mat mat_link .. 
on the mat 

... 

"-

frame_42 

caClink -

maClink 

I text .. maCframe -

• caCframe 

Figure 51. Look-up table links hotspots to frames. 

An alternative of simply recording the name of the target frame in the lookup table could be 

used. However if links are used then inspection of the frames will show which frames 

may be accessed from it and, more importantly, using the traverse_link function allows the 

history mechanism already provided for links to be kept up-to-date. If links are not used, 

the application will have to take care of the history information itself. 

7.2.6 Refinement of the LISP Version 

The first LISP prototype was refined by modifying the implementation of the library and 

testing the result in a simple browsing application. This prototyping activity continued 

throughout the development of the library and though the actual prototype applications were 

small scale their utility has been that they forced an application developer's viewpoint on 

the evaluation of the library as it evolved. It was during this prototyping phase that the 

interactive nature of the LISP programming environment was most useful. 
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As an example of the LISP version of the Generic Browser the following code fragment 

creates three frames, Jrame-l ,Jrame-2 andJrame-3 and links them together with ne .. rt 

relations (the inverse relations, previous, are created automatically). The current frame is 

then set to Jrame-l and the subsequent frames browsed by traversing the next relations. 

7.3 'C' 

;;; first create the frames 

(create-relation 'next :lnverse 'previous) 

(defschema frame-l (next frame-2)) 

(defschema frame-2 (next frame-3)) 

(defschema frame-3 (next frame-l)) 

, , I now browse 

(goto-schema 'frame-l) 

(next) 

I I I frame 2 

(next) 

I I I frame 3 

(next) 

I I , frame 1 again 

Implementation 

The biggest disadvantage of using an interpreted language such as LISP and XLISP in 

particular was that, running on a CD-i player, its runtime performance was poor [Shiels 

1991a]. So, whilst it was a useful "proof of concept" exercise it was clear that a more 

efficient, higher performance implementation was required if it were to be possible to build 

realistic applications using the Generic Browser. 

This section will describe the evolution of the Generic Browser implementation as the 

changes and refinements suggested by the prototype were incorporated and themselves 

tested in subsequent prototypes. 

7.3.1 Object Orientation 

Given the obviously object oriented style of a frame-based system the question naturally 

arises as to why the Generic Browser was not written in an object oriented programming 

language such as C++. The principal problem is again performance. A C++ compiler 

produces larger, slower code than a pure C implementation. In view of this and given the 

inherent modest performance of the CD-i player, C was chosen instead. However an 
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object oriented style has been maintained as far as possible in the Generic Browser function 

set. For example parameters are modified using function calls rather than modifying global 

data directly and all information pertaining to an object such as a path is stored in the object 

(in this case the path frame). To achieve the required response time, it was decided to use 

the Clisp library [Drasch 1989] to provide the underlying LISP-like functionality in C. On 

top of this, a frame-based system (Cframes) similar to XKC was built by another project 

member [Shiels 1991 b]. To complement Cframes the Generic Browser work was recoded 

from LISP into Cframes and C. 

The Cframes version of the Generic Browser included some new functions: 

create, add and delete from a path 

find (and mark) frames with slots containing specified values 

perform a vector search, marking the result 

These are discussed in more detail below. 

7.3.2 Implementation Schemes for Simple Paths 

Two possible implementation schemes for paths are considered below. In the first the path 

is represented as a list in a dedicated path frame. In the second, the path structure is formed 

by linking instantiations of the relevant nodes together. 

Paths as Lists 

Since a simple path is just an ordered list of data items, one possible implementation is to 

use a list to hold the contents of the path. This has the advantage that the path object can 

now exist in its own right (as a frame, with the path list itself as values in a slot). 

The first problem with this implementation is that there is no link in the frame-base between 

the data items and the paths on which they appear. Thus it is not possible to inspect an item 

frame to see which paths that item is on. Obviously this can be solved by searching all the 

paths but a better solution is to maintain this information in the data frames as well (with an 

"on-path" relation for example). 

This highlights a situation encountered several times during the design of the Generic 

Browser, that it is necessary to decide whether to recompute a piece of information every 

time it is needed or whether to cache it in the data frames. This extra information would be 

updated each time the frame access and manipulation functions are called. Another example 

is that of marking (which will be described more fully shortly). The mark is a piece of 

information attached to a data item. Consequently it is stored in the data frame. But it is 

frequently desirable to access all marked items (to browse the marked set for example). As 
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a result, a list of all the items marked with a particular mark is stored in a special marks 

frame. Thus to access the marked set, rather than having to search the entire frame-base, 

one slot access is all that is required. The overhead of providing this ease of access is that 

all the functions that modify marks must maintain the integrity of the information in the 

marks frame as well as that in the data item. 

An important aspect of storing a path as a list is that there is a need to be able to traverse the 

path. So, the position within the list must be stored (the current frame on the path). 

Although the list is stored in order, there is no concept of an index to a list in Cframes, nor 

in XKC for that matter. In 'C', this would be a trivial problem as an array could be used. 

Two potential solutions are considered. 

Firstly the path list can be split at the current frame, storing the two parts in two separate 

lists. Traversing the list simply requires list surgery to move items from one list to the 

other; the head of one of the lists being the current frame. 

For example, if kettle, toaster, iron, coffee_maker andfood-IJrocessor are items on a path 

domestic-IJroducts and iron is the currentJrame_on-IJath then the path frame will look like 

this: 

(domestic-product 

(instance path) 

(forward iron coffee_maker food-processor) 

(back toaster kettle)) 

Going forward along the path moves iron from the forward slot to the back slot. The 

currentJrame_on-IJath is now coffee_maker, the head of the forward slot value-list as 

shown below. 

(domestic-product 

(instance path) 

(forward coffee_maker food-processor) 

(back iron toaster kettle)) 

The second solution is to store an index to the current frame. This requires an efficient 

function to extract the nth item from a list. 
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Taking the same example: 

(domestic-product 

(instance path) 

(path_list kettle toaster iron coffee_maker 

food-processor) 

(path-ptr 3)) 

Traversing the list is now simply a matter of incrementing (or decrementing) the index to 

the current frame as shown below. 

(domestic-product 

(instance path) 

(path_list kettle toaster iron coffee_maker 

food-processor) 

(path-ptr 4)) 

The advantage of the first scheme is that handling end conditions whilst traversing the list is 

particularly straightforward since at either end of the path one of the two sublists is empty. 

Its disadvantage is that the list surgery is not very efficient. The second method is almost 

the exact opposite as traversing the path is efficient whilst the end conditions have a larger 

overhead. Also, handling additions and deletions from the path is more costly than in the 

first method. 

One notable advantage of the second approach of using an index to the current frame is that 

the actual path frame can be created (and modified) using a frame editor as the path is 

simply stored as a list. The split list method is not quite as intuitive for the frame editor 

user. 

Normally these implementation details are hidden from the user of any Generic Browser 

functions, indeed, for test purposes, in the Cframes implementation, a compiler switch can 

produce Generic Browser libraries with either method for storing paths. 

Paths as Link Structures 

An alternative to the list structures described above is to link path items together. Simply 

linking data nodes together with a path relation, whilst conceptually simple is 

implementationally flawed. Specifically, consider the case where a particular data item 

needs to appear twice in the path (a slide show for example). If an attempt were made to 

construct such a path using, say, "next" and "previous" relations a problem is found when 

the data item must be linked to its neighbours in the path for the second time as relations 

can only have one destination. 
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A possible way around this problem is to use instances of the data nodes. These would 

inherit all the data from the actual data item, but each item could have as many unique 

instances as were required to build the path. The instances being linked by the path 

relations. This approach is shown in the diagram below. 

~ Car ~ Aeroplane 

depicted_by depicted_by 

Car_instance_1 Aeroplane_instance_1 Car _i nstance_2 

instance f-- instance f- instance 

path_link - path_link ~ -.. 

Figure 52. Use of instances and links to form a path structure. 

-

The disadvantages of this method are the extra storage for the instances (although the use of 

inheritance minimises the data actually stored in the instance nodes) and the problem of 

naming the instances. It was felt that this solution did not confer advantages in sufficient 

measure to compensate for these deficiencies and was not taken further. In the final 

version of the Generic Browser paths are stored as lists with a path pointer providing the 

current frame on the path. This was chosen because it was seen as very desirable that the 

path be stored as a single list. 

7.3.3 Marking 

The concept of marking has always been important in the development of the library. 

Named marks allow more than one marked set to exist in the database at anyone time. 

This is essential if marks are to form the basis of subdividing the database and of denoting 

the results of searches. This is in contrast to HyperCard which though it has the facility to 

mark a card, only one mark is allowed per card and only one set of marked items per stack. 
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Also part of the design of marking in the Generic Browser is the ability to add a value to the 

mark. 

There are two aspects to the implementation of marks in the Generic Browser. Firstly the 

mark and its value must be stored in the item frame. Secondly there is the requirement to 

browse marked sets. The former is easily accomplished by adding a marks slot to the item 

frame. This has mark-value lists as its values. For example suppose the FerrarCF40 

frame was to be marked with a desirability factor (on a scale of one to ten) then the result 

would look as follows: 

{Ferrari_F40 

(is-a supercar) 

{marks (desirability_factor 10)) 

and similarly 

{Ford_Escort 

(is-a basic_car) 

(marks (desirability_factor 3)) 

and, to demonstrate multiple marks 

(Bentley_Turbo_R 

(is-a luxury_car) 

{marks (desirability_factor 8) 

(affordability 2)) 

The need for marked sets to be brows able suggests that there should be an object to 

represent the marked set. In the Generic Browser the natural choice is to use a path. When 

the mark manipulation functions of the Generic Browser are invoked they perform two 

basic actions: one updates the marks slot in the item frame, the other updates the path 

associated with that particular mark. 

For example, when the Ferrari_F40 frame is modified as shown above the mark function is 

called. This puts the (desirabilityJactor 10) value in the marks slot and adds FerrarCF40 

to the desirabilityJactor path (if it is not already there). In the Generic Browser subsets 

created by marking and subsets created by an author and expressed as paths use the same 

underl ying representation. 

7.3.4 History Mechanisms 

In the previous chapter four types of historical information were examined; navigational 

history (backtracking), statistical information, temporal information and action history 
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(undo). In the Generic Browser prototypes only backtracking has been implemented. Of 

the other three, an undo facility that allowed the effects of any function to be reversed is not 

particularly useful in multimedia applications. Unless only a single step undo were 

provided there would be a large overhead of storing all the necessary information for each 

function call to allow it to be undone. This type of history mechanism is of most use in 

editor-type applications not information browsers. In a browser, backtracking is really a 

navigational tool rather than a mechanism for undoing since all that has been done is to 

view information. It is not possible to undo the fact that an item has been browsed even if 

one can remove a tag from it. 

Statistical and temporal information would be easy to add to the data nodes each time one 

was visited using Generic Browser functions however none of the prototype applications 

needed to make use of such information and the final version of the Generic Browser does 

not provide it37. Since all navigation in the Generic Browser ultimately calls a single 

function, gotoJrame, this function could also update the statistical information as each 

node is visited. Temporal information can be recorded in the same manner. Statistical and 

temporal information would be stored in nodes as marks with values. When an item is 

visited it gets marked, subsequent visits update the mark value - thus it is easy to process 

visited nodes by searching with a threshold filter to get most popular for example. If an 

application required these types of history information then they could easily be added to 

the Generic Browser. 

History as a Path 

For history information that is not stored in the nodes such as navigational information 

(which nodes have been visited and in what sequence), some kind of ordered list is 

required, accessed as a stack. A stack is a last in, first out (LIFO) data structure where the 

most recent item placed on the stack is the first to be removed. As history is "created" the 

information, such as a new location, is placed on the stack. The process of backtracking 

simply becomes popping items off the stack. In the case just mentioned, popping an item 

from a navigation history returns the last node visited. A "go back" function simply goes 

to that node (without pushing anything onto the history stack). 

In the Generic Browser the history is stored as a path rather than in a special data structure 

(such as a history stack) for reasons of uniformity of representation. Navigation along that 

path is a special case because only backwards travel through the history is allowed. 

(Though in principle there is no reason why a user shouldn't go back and forwards through 

37This decision was also influenced by the efficiency constraints of CO-i where enlarging the data nodes 
with history infonnation was not seen as a good idea unless actually required by an individual application. 
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the history it is difficult to see how this would be presented to the user in such a way as not 

to confuse him.) As the user goes backwards the historical nodes are removed from the 

history path as though it were a stack. Of course, unlike the nonnal path functions, 

go_back does not update the history. For example if the user visits frames 12 /517/6/4 

then the history would be as shown below: 

f2 

history 

I (21 (5 

start end 

Figure 53. The History path. 

If the user then backtracks one step, the current frame becomes /6 and the history is as 

shown below: 

0 
0 history 

1 (21 1 
f4 

0 f5 f7 

start end 
f6 

0 

Figure 54. Backtracking along the History path. 

This use of a special path for recording a history of the nodes visited was the first stab at 

providing a history mechanism in the Generic Browser. As the Generic Browser was used 

in prototype applications it soon became apparent that this type of history was too inflexible 

in that all it recorded was the nodes. 

A "go back" function implemented using it would force the user to retrace his steps one at a 

time, particularly unnecessary in a browser forming part of a larger application. In this 

case, the author would like to be able to specify the destination of a "go back" function on a 

screen by screen basis. 
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A solution to this problem which does not require additional functionality in the Generic 

Browser is as follows: when the application program receives a trigger to change screen 

the destination of the "go back" function for this new screen is added to a history path 

(providing that the "top" item in the path is currently different - this avoids repeated nodes 

on the top of the stack); when the user wishes to backtrack the history path is simply 

browsed using the go _back function. 

Alternatively the go back functionality might have been implemented using a backtrack 

relation which, for each frame, would point to the frame to backtrack to. This was rejected 

because it did not take into account how the user got to the current frame. This contextual 

information may well affect the go back destination. 

7.3.5 Search 

A number of different search mechanisms provide the search facilities in the Generic 

Browser. The "basic" search functions find frames with particular value(s) in specified 

slot(s). Care has been taken within the design of the Generic Browser so that new or 

revised functionality can be added at a later date. In particular, using marks to indicate the 

results of a search means that alternative search mechanisms can simply be added, marking 

their "hits" in the same way as the vector search. 

The final implementation of the vector search mechanism works directly on the information 

stored in frames (rather than vectors held as, say, arrays). This is a trade-off between 

efficiency and the uniformity of representation which makes life easier for authors of 

applications using the Generic Browser. In particular the searchable information is in the 

data - the frames describing the objects to be searched and not embedded in the program 

code. 

To use the vector search facility in the Generic Browser a query frame is constructed. This 

will contain those slots which the user wants searched in the frame base. The values to be 

matched are placed in these slots in the query frame. The class of frames to be processed 

and a list of slots to be searched are passed to the vector search function. The vector search 

routine then matches the values stored in the query frame slots with those in the 

corresponding data frames. The procedure stores the similarity value as a mark in the data 

frame and keeps an ordered list of all the frames with a non-zero similarity measure in a 

search_result slot in the query. For simplicity and to optimise execution speed the 

similarity measure used is the inner product measure described in the previous chapter. 

This similarity value is simply the number of characteristics that are present both in the 

query and in the item under test. 
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Weights and Normalisation of the Search Results 

Although both weights and normalisation of similarity measure have been prototyped the 

efficiency of the search functions deteriorates as the complexity of the calculations for each 

term in every item increases and so these versions of the search functions are not currently 

included in the library used for CD-i applications. 

It is possible to simulate weighting by repeating characteristics either in an item (to indicate 

that the characteristic in question is more strongly present in that item) or in the query 

(indicating the characteristic is more important than the others in the query). 

The similarity value is also not normalised because it is usual for the order to be more 

significant than the absolute value the values returned allowing relative ranking. If 

normalisation is important to an application it is a simple matter to divide the similarity 

measures by the number of search characteristics. 

Negative Queries 

One of the requirements of the Generic Browser's search facilities is to be able to handle 

queries of the form "find all frames not containing ... ". As [Raghavan & Wong 1986] 

observe there is no reason why the elements of the search query should not be negative. 

Using a negative term in the query vector will reduce the similarity measure when it is 

matched in an item thus demoting that item in the ranked list of matching items. 

The drawback of such negative query terms is that items that match the negative query term 

are not excluded from the search result, merely demoted in the order. Two solutions to this 

problem have been considered:-

Modification of the vector search mechanism. This can easily be modified to exclude terms 

matching negative queries. However this may cause problems if weights are to be used 

when it may be desirable to allow negative query terms rather than simply excluding them. 

Provision of a separate function for excluding items from the search result. The database 

could be searched with the exclusion function to eliminate items matching a pattern. 

Subsequent searches could then be done on the resulting marked set. Negative query terms 

can now be used to reduce the rank of items which they match. 

The search process 

To do a vector search, three stages are required: 

set up the query frame 

do the search 

process the result 
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For example given a frame base as follows: 

(f1 

( is-a x) 

(sl a c d g j ) 

(s2 p q r) ) 

(f2 

(is-a x) 

(sl a b c d g j)) 

(f3 

( is-a x) 

(sl d e f)) 

To set up a search query a new frame is made with the slot to be searched, s 1. In the query 

frame, query 1, the slot s 1 contains the characteristics to be matched, namely, a, h, c, g, j. 

Note that if other slots were to be included in the search, those slots and the search values 

would also be included in the query frame. 

define_frame ("(query1 (sl abc g j)) "); 

now calling the search function 

vector_search_class ("x", "sl", "query1" , 

"search_tag1") ; 

will result in 

(f1 

(f2 

(f3 

( is-a x) 

(sl a c d g j ) 

(s2 p q r) 

(marks (search_tag1 

( is-a x) 

(sl a b c d g j) 

(marks (search_tag1 

(is-a x) 

(sl d e f)) 

4) ) ) 

5) ) ) 
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(query1 

(sl abc g j) 

(search_result f2 f1)) 

The result can now be processed. Note that the actual value for each search hit is the 

number of characteristics present in both that frame and the query. The slot search result is 

ordered so that the best match is at the start of the list. 

If slot s2 were to be included in the search as well, the query would be defined as 

define_frame (" (query2 (sl abc g j) (s2 p r))"); 

and the call to vector search would be 

vector_search_class ("x", "(sl s2)", "query2" , 

"search_tag2") ; 

with the result 

(f1 

(f2 

(f3 

(is-a x) 

(sl a c d g j) 

(s2 p q r) 

(marks (search_tag2 6))) 

(is-a x) 

(sl abc d g j) 

(marks (search_tag2 5))) 

(is-a x) 

(sl d e f)) 

(query1 

(sl abc g j) 

(search_result f1 f2)) 

A further, more concrete example is given at the end of this chapter. 

- 141 -



Performance Issues 

Analysis of the performance of the Generic Browser vector search routines showed that 

their performance was somewhat slow. This was particularly true for larger numbers of 

nodes as the performance decreased non-linearly. 

The vector search routines perform three basic steps: 

1) The relevant subset of the frame-base is extracted as a list of frame names (except when 

the whole frame-base is to be searched when the underlying Cframes data structures are 

accessed directly). 

2) For each frame in this list each slot in the query is compared with its counterpart in the 

data frame. A cumulative count of matches is kept for each frame. Once the query slots 

have been compared with those in a given frame the accumulated match is added to that 

frame as a mark and the frame name appended to the result list. 

3) Once all the frames have been searched the list of hits is placed in the query frame's 

search_result slot. 

It is the second step which is most time-critical. Two actions can be taken to improve 

matters. Firstly maximally efficient code can be used. In particular, the LISP-like 

conventions used with Cframes where functions are repeatedly called, should be replaced 

with single calls and local variables which is more efficient in 'C'. 

Secondly the marking process can be split into two phases, the marking of the frame and 

the adding of the frame name to the mark's path. The name of the path frame is added to 

this path at the currentJrame_on-fJath position, an aspect of paths not important for 

marking. This process is inefficient and this becomes significant in the vector search 

functions because the mark function is called for each hit. The solution used in the Generic 

Browser has the marks added to the frames as they are "hit" in the search loop. At the end 

of this loop the search result list is added to the end of the mark's path. (It must go at the 

end to avoid invalidating the currentJrame_on-fJath) 

As part of the work in the PRL project the Cframes library itself was modified to include 

vector search - but without marking, simply returning two parallel lists - the hit frames and 

their similarity measures.38. This Cframes vector search was much more efficient (scaling 

linearly with number of frames) than the original Generic Browser version it was based on 

as it operated on the Cframes internal data structures avoiding Cframes' character-based list 

38These modifications to Cframes were done by its author M. Shiels. 
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processing used at the Generic Browser level. The Generic Browser was modified to use 

this Cframes vector search function within the its vector search functions. Also a 

mark_allJrames_in_list function was implemented to allow the results of the Cframes 

vector search to be marked. 

7.3.6 Mechanisms for Branching Paths 

The ideas for branching paths described in the previous chapter have received only limited 

exploratory implementation and have not been used in the prototype applications. 

7.3.7 Debugging and Error Handling 

Two versions of the Generic Browser library have been implemented: a debug version with 

error checking and a non-debug version optimised for speed. In the non-debug version of 

the library there is no error checking. This maximises efficiency at the expense of 

robustness. Although the application can be tested linked to the debug version of the 

library, unless that testing is very rigorous it is possible that an error may escape detection. 

In this case, the program will crash when the error condition is encountered. This may 

seem rather drastic but it is better that the application programmer precedes calls to the 

Generic Browser library with protective tests on the arguments. This need only be done in 

those parts of the code where problems may occur (and also allows remedial action to be 

taken by the program - a facility not possible in the more general error handling provided 

by the library). This provision of an unprotected non-debug version and a debug version 

with error handling is only necessary because of the performance constraints of CD-i. On 

more powerful platforms the error handling could be left in the non-debug version. 

For compatibility, the Generic Browser uses the error handler in the Cframes library39. 

This error handler prints out a suitable error message together with the function call with 

the offending argument highlighted. This type of error detection requires that each 

argument to a given function is tested for validity. To do this a set of test functions 

covering all possible types of invalid argument for Generic Browser functions was 

produced. 

For example new -path takes two arguments, the first is the path and the second is the new 

list of frames to become the path. The first argument must be tested to ensure it is not null, 

is a valid frame name (i.e. is not a list), that a path of that name exists or, if not that a frame 

of that name does not exist so that a new path can be created. The second argument must 

be a list (or nUll). 

39developed by 1. Goodlet at Sussex University 
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The debug version of the library is compiled with the relevant compiler switches set to 

produce code suitable for use with the system's symbolic debugger. The penalty for this is 

reduced execution efficiency and increased code size. Consequently the non-debug version 

is compiled with the switches set for execution efficiency and so there is no information for 

the symbolic debugger. 

7.3.8 Test Suite 

A vital part of any software development procedure is that of testing. A test suite has been 

written which tested the individual functions from three perspectives: 

Firstly each function is tested to ensure that it performs to specification. For example the 

next_on-path function is provided with a path and the current frame is then checked before 

and after the function is called to prove that it has operated correctly. 

The second test checks that the functions behave correctly when erroneous values are 

passed to them. For example if the next_on-path function is not passed a path as its 

parameter a suitable error condition should be invoked depending on what has been passed 

(null, a non-path frame etc.). 

The final aspect of the testing checks boundary values, that is those pathological cases 

which may catch out the code. For example what happens when next_on-path is called 

when the end of the path has been reached? 

In addition to these tests some simple performance measures have been included which 

compare the time taken for particular functions to execute compared with a simple Cframes 

function such as get_values. As the prototype library has been refined repeated running of 

the test suite has preserved the basic functional integrity. 

7.4 A Worked Example 

As an example of how the Generic Browser is used, this section will take the reader 

through the creation of a simple application. This example is based on an electronic version 

of a skiing brochure, whose function is to help the user choose a skiing holiday. 

Listed below is an unstructured collection of characteristics of skiing holidays. This can 

form the basis for choosing what frames should fonn the basic class structure, how the 

instances of these classes should be related together and what their content should be. 
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• which country e.g. France, Austria, Switzerland 

• what level of skiing expertise e.g. beginner, expert 

• type of accommodation e.g. hotel, chalet 

• ski runs available e.g. cross country, black runs, moguls 

• cost 

• which resort e.g. Obergurgl, St. Anton 

The user needs to be able to access the information in a variety of ways. He will probably 

want to browse the resorts in a particular country or browse the accommodation at a resort. 

He may want to specify certain characteristics of, say, the resort and only browse those 

resorts that come close to his specification. On the way he will want to mark items of 

interest for later review. 

Having accumulated a selection of things associated with skiing holidays they must be 

sorted out into frames, relations and slots. The basic objects, which represent the 

conceptual objects in the domain, will be represented as frames. These are: 

country 

accommodation 

resort 

These objects can be placed in a class hierarchy. The root node "entity" is simply a 

placeholder to enable a single hierarchy to be constructed, a convenience when using 

graphical editors. 

entity 

Figure 55. The basic class hierarchy 

Some of these higher level objects will themselves split into more detailed objects. For 

instance accommodation can be divided into chalets, apartments and hotels, as shown 

below: 
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entity 

hotel 

Figure 56. Types of accommodation. 

As an example of the frame definitions, the accommodation class frame would have the 

following structure: 

(accommodation 

(is-a entity) 

(is-a+inv hotel apartment chalet)) 

Now that the basic class structure has been defined, the next step is to choose how to 

represent the characteristics of these objects. 

Users often select resorts by which country they are in. This link between resorts and 

countries must be represented in the frame-base. There are two possibilities. Firstly there 

could be a country slot in each resort frame or, secondly, the resorts can be related to their 

country frame using a user-defined relation. In the former case a search would have to be 

instigated to find the resorts located in a particular country. The latter case maintains this 

information automatically (this imposes a small memory overhead but is faster than using a 

search). For most applications the relational approach is preferred. 

In the case of using just a country slot the resort frame would look like this: 

(Obergurgl 

(is-a resort) 

(country Austria)) 

Now to find all Austrian resorts the following Generic Browser call would be needed: 

find_all_frarnes_in_class ( "resort ", II country" , 

"Austria") ; 

If the relation approach is used the following frames are needed: 
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{country 

(is-a+inv Austria)) 

{Austria 

(is-a country) 

(inverse_of-place Obergurgl)) 

(Obergurgl 

(is-a resort) 

(place Austria)) 

Now all that is needed to find Austrian resorts is: 

get_relatives ("Austria", "place") i 

The following could be used as a (less clear) alternative: 

get_values ("Austria", "inverse_of-place") i 

Apart from simply browsing the resorts in a particular country, the user may want to 

specify some features which make particular resorts attractive to him. The application can 

then promote these resorts to the front of the series to be browsed. To do this each resort 

frame must contain some representation of the characteristics of that resort. For the 

purposes of this example five resorts will be used. The table below summarises the 

characteristics pertaining to each of the resorts 
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Lech e e e e 
Obergurgl e e e 
St. Anton e e e e e 
Verbier e e e e e e 
Zermatt e e e e e e 

Table 4. Resort Characteristics. 

Each of these characteristics will belong to the class characteristic as shown below: 
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~--------~ snow_cannons 

Figure 57. The characteristic class. 

The characteristic frame looks like this: 

(characteristic 

(is-a+inv beginners 

pretty_traditional_settings 

good_cross_country_trails 

snowboarding_&_monoskiing 

traffic free 

snow_cannons 

ski_guides 

short transfer times 

non_skiers 

good_nightlife 

glacier_skiing) ) 
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Each resort is now linked to the relevant characteristics by characteristics relations: 

pretty _traditionaLsettings 

zermatt 

Figure 58. Zermatt's characteristics. 

So the relation definition looks like this: 

(characteristics 

(is-a relation) 

(inverse characteristic_of)) 

And an example of a resort frame looks like this: 

(zermatt 

(characteristics pretty_traditional_settings 

traffic free 

snow_cannons 

non_skiers 

good_nightlife 

glacier_skiing) 

(is-a resort) 

(place Austria)) 

Each resort has a variety of accommodation on offer. The accommodation class is sub

divided into hotels, apartments and chalets. These types of accommodation will have 

characteristics in the same way that the resorts have and the same relational structure can be 

used to represent them. 
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In the Generic Browser the basic browsable structure is the path. In this example 

application there is a requirement to be able to browse the resorts. This is achieved as 

follows: 

First a path is created with all the resorts in it. 

gb _ crea te _pa th ( "resorts" , 

get_relatives ("resort", "is-a")); 

The application can now browse the resorts by simply using the relevant functions: 

To get the name of the frame resulting from the above use: 

A common requirement in browsing applications is to allow the user to flag those items of 

interest in the set he is browsing and to allow him to browse just that subset. The Generic 

Browser supports these processes as follows: 

Here the current frame is added to the marked set my _ mark. There is no value for this mark 

so NULL is used. Values are associated with marks to denote, for example, degree of 

interest in a particular item. 

The marked frames can be browsed using: 

gb next_mar ked ( "my_mar k") ; 

gb _previous _marked ( "my_mark") ; 

There can be any number of marked items in a marked set and any number of marked sets 

(each with a different name). 

The next requirement that must be addressed is to provide the user with a means of 

indicating which characteristics of, say the resorts, he is interested in and selecting 

appropriate resorts from the frame-base. This selection process compares the specification 

given by the user with the characteristics of each resort and computes a similarity value. 

This value reflects how closely a particular resort matches the user's requirements. The 

Generic Browser vector search function provides this functionality, conveniently marking 
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each searched frame with a mark value of the similarity between that frame and the 

specification encoded in a special query frame. 

To illustrate how to use the vector search function the requirement for selecting resorts will 

be used. The first step is to create a query frame. This contains those slots which it is 

desired to match. In this example there is a single slot, characteristic, which is being 

searched. The values in this slot are the specification given by the user. So, if the user 

wants to find a resort with glacier _skiing and snowboarding_&_monoskiing then the query 

frame will be: 

(query 

(characteristics glacier_skiing 

snowboarding_&_monoskiing)) 

This frame can be created using, for example, cf_defineJrame. 

The vector search function is now invoked as shown here: 

gb_vector_search_class("resort", "characteristic" 

"query", " search_tag" ) ; 

There are two results of executing this search. Firstly a new slot named search_result will 

be created in the query frame. This will contain an ordered list of the frames which, to 

some degree, matched the query. These frames are listed in order with the closest match 

first. 

Secondly, the matching frames are marked. The marked set is called search_tag and each 

mark has as its value how good the match was. The query frame and the matching resort 

frames resulting from performing this search are shown below. 

(query 

(characteristics glacier_skiing 

snowboarding_&_monoskiing) 

(search_result verbier st_anton zermatt)) 
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(verbier 

(characteristics pretty_traditional_settings 

snowboarding_&_monoskiing 

snow_cannons 

short_trans fer_times 

good_nightlife 

glacier_skiing) 

(is-a resort) 

(place Austria) 

(search_tag 2)) 

(st_anton 

(characteristics snowboarding_&_monoskiing 

snow_cannons 

ski_guides 

non_skiers 

good_nightlife) 

(is-a resort) 

(place Austria) 

(search_tag 1)) 

(zermatt 

(characteristics pretty_traditional_settings 

traffic free 

snow_cannons 

non_skiers 

good_nightlife 

glacier_skiing) 

(is-a resort) 

(place Austria) 

(search_tag 1)) 

verbier is top of the list as it matches both search criteria. Both st_anton and zermatt match 

one apiece and follow in the list. The other resorts contained neither search term and so are 

excluded from the result. 
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To browse the result of the search the application simply browses the marked set named 

search_tag using 

7.5 Summary 

The functional requirements of the Generic Browser were laid out in chapter 6. Key 

features of the implementation of these requirements are summarised below. 

The use of a frame representation scheme has been shown to be a feasible structure for 

implementing the Generic Browser. The relational links provided by the system can be 

used to link data frames into a variety of topologies ranging from simple linear lists through 

hierarchies to networks. A single function is used to traverse links from the current frame. 

Because relations are named objects in a frame representation, named links are 

automatically provided. This means that application designers can experiment with the 

possibilities of indicating the type of information available by following a link at the source 

rather than the user having to traverse the link to find out. 

The use of a marks slot in the data frame to store mark-value pairs allows an arbitrary 

number of named marks (with values) on any item. To fulfil the requirement that a set of 

marked its can be treated as a single browsable object all items with a given mark are stored 

as a path with the name of the mark. This enables marked subsets of the database to be 

browsed without having to provide a special set of browsing functions (the path browsing 

functions being used). 

Aside from its use to support browsing of marked subsets, the path construct enables 

sequences of data items to be treated as an object, a guided tour for example. Browsing 

functions for paths have been provided. 

A further use of paths is their use to store a navigation history. As each browser function 

changes the current frame the history path is updated. A special backtrack function allows 

the history path to be browsed without updating the history. 

Basic search functions that allow data items with specified slots, optionally with particular 

values, to be found. The result of these searches is a marked subset available for browsing 

(as a path). An alternative search mechanism based on the vector space model has also 

been implemented to demonstrate a means of non-exact matching. Again the search results 

in a marked subset. Because the searchable characteristics are stored as values within each 

data item's frame any items found by browsing can be used as a basis for further search to 
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find other items "like this one" by simply creating a new search query frame with the same 

characteristic slots and values. 

Two requirements have not been implemented in the final version of the Generic Browser 

due to time constraints - negative query handling and function search. Mechanisms for 

how these could be achieved within the Generic Browser framework were described in the 

last chapter and there should be no problem in adding these functions to the Library. 

A characteristic of this implementation is the uniform use of frames for all of the data 

structures used by the Generic Browser both external and internal to the browser itself. 

Paths are stored in frames and marks are stored as paths. Searching takes place on frame 

representations of the data and the result is a path of marked frames. The query is also held 

in a frame. This use of frames means that the data is both readable and modifiable by the 

author and at the same time amenable to efficient manipulation by the browser functions. 

Two examples show this: the choice of representing a path as a single list in the path frame 

as this is most intuitive for an author and the decision not to use instances for data nodes to 

form a path because of the difficulties of naming instances in such a way that the conceptual 

framework was not blurred by the needs of the path representation. 

Clarity has also been maintained at the expense of some performance degradation by the 

decision to store the search characteristics in the frames. This is also important because it 

preserves the uniformity of representation between the query and the data and ensures that 

the characteristic information is available in a browsing as well as for the search. The 

trade-off between caching commonly required information and calculating it when required 

was also highlighted. On systems such as CD-i it is better to do a little work often (cache 

information such as the items in a marked set) rather than a lot of work from time to time 

(searching all the frames for those in the marked set) because, in general, the user is not 

tolerant of long delays. The result, an evolving prototype library, has been tested by using 

it to construct a series of prototype applications. These are described in chapter 9. 
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8 User Interfaces 

The field of research into user interfaces is a large one and it is not the intention of this 

thesis to address this area in detail. The purpose of this chapter is to see what user interface 

issues are raised by the Generic Browser approach and how these can be addressed. 

The user interface of an application can be divided into two components, the so-called look 

andfeel. The look is the presentation component and detennines what the controls such as 

buttons and sliders look like, together with the overall graphical design of the application. 

The feel is the interaction mechanism; how the buttons, sliders and menus work. Together 

these two components implement the interaction design of the application. 

For a browser the user interface often appears simple consisting of just previous and next 

buttons. Even if browsing does not present a major challenge to the interface designer the 

addition of search does pose some problems especially in the consumer domain. In 

particular how should the user specify search criteria - the form filling interface used in 

professional applications may not be suitable particularly if a text keyboard is not available. 

The presentation of the search result is less of a problem as in the Generic Browser this is 

available as a marked subset for browsing interaction. 

In addition consumer applications are seldom just an interface to data often having some 

kind of location structure (screens) which the user navigates. The link between this and 

navigation within the data is investigated to see if it is desirable to integrate them and if the 

same functions can be used for both. 

These issues and others have corne to light as a result of, in particular, the prototyping 

work and are discussed below. 

8.1 Generic Browser Interface and Widget Set 

One question raised early in the development of the Generic Browser was the possibility of 

there being user interface controls which are specific to browse/search applications. As the 

prototypes were developed this possibility was borne in mind but none were found. The 

considerable research that has gone into the refinement of the basic user interface widgets 

provided by Graphical User Interface (GUI) toolkits made such special controls unlikely 

but it was useful to have this demonstrated in practice. 

It was also suggested that there might be a generic interface for browsing applications. 

Again the study of browsers did not indicate this, partly because the look of an application 

is very important in the consumer domain. What can be said however is that whilst there 

does seem to be a convention of conducting browsing using some form of previous and 
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next buttons, no such convention exists for search so that the interface to search facilities is 

very much up to the interaction designer. 

Over the past few years there has been a shift from bespoke user interface development 

from scratch to the use of GUI toolkits. (This is exactly the type of shift that the Generic 

Browser promotes for data structuring and access.) A GUI toolkit provides a standard set 

of widgets (buttons, sliders, cursors, windows etc.) which can be instantiated to form the 

interface to a specific application. 

This GUI layer, the functional component of the user interface, should not be confused 

with the presentation layer which specifies the physical manifestations of the interface 

objects. For example the GUI layer specifies a button of a certain size with a specified 

callback, the presentation layer specifies the button graphics i.e. how it should appear on 

the screen. This "look" is defined by the designer and is usually unique to one application 

or a range of related applications. 

control presentation 

control function 

application function 

graphic/interaction 
design 

GUI 

Generic Browser 

Figure 59. Application interface structure. 

In most GUIs functions known as "callbacks" are associated with the interface widgets 

such as buttons. When the button is "pressed" the callback function is executed. From the 

Generic Browser perspective, browser functions are most likely to be found in these 

callback functions for buttons. For example if there are "previous" and "next" buttons in a 

simple browsing application previous_onyath and next_onyath functions will be found 

in the button callbacks. 
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Figure 60. How the user's input triggers the Generic Browser. 

8.2 Navigable Structures 

GUI button 
callback 

...... 
... 

Throughout the development of the Generic Browser there has been a clear separation 

between the browsing functionality and the user interface. It was anticipated that 

infonnation-rich applications would have a simple interface to the Generic Browser 

functions which would control the navigation through the infonnation by telling the 

application where the infonnation is. The presentation of that infonnation would be the 

responsibility of the application. This division is similar to that proposed in the Dexter 

Hypertext Reference Model [Halasz & Schwartz 1990] where a storage layer contains 

descriptions of the data and a runtime layer presents the data to the user according to 

presentation specifications. 
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Runtime Layer 

Presentation of the hypertext; 
user interaction; dynamics 

Storage Layer 

a 'database' containing a 
network of nodes and links 

Within Component Layer 

the content/structure inside 
the nodes 

Figure 61. Layers of the Dexter Model [Halasz & Schwartz 1990] . 

Essentially the Generic Browser model has one location with many assets. As existing 

applications were studied it became clear that an alternative model with the application 

viewed as a network of locations each with one or more associated assets was also 

prevalent in consumer applications. In such a structure there are significant links between 

the browser and interface components of the application. There is a browsing navigation 

interaction as the user traverses the structure of the actual application itself, screen by 

screen, and it is necessary to see how such a model can be accommodated by the Generic 

Browser. As an example The W orId of Impressionism CD-i disc (described in detail in 

chapter 9) has such a location structure as shown below: 
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Overview 

Introduction 

Cafe 

Art 
Gallery 

Windows on 
Impressionism 

Music 
Gallery 

Sources 

Epilogue 

Figure 62. The top-level structure of The World of Impressionism CD-i Disc. 

There is a hierarchical navigable structure of screens in which buttons allow movement 

between the screens. This structure acts as a nested menu leading to leaf nodes which are 

browsers as shown below. 

, , 
location structure .' , , , 

, , , , 

, , , , 

, 
, , , 

, , , , , , , 

, , , 

, , 

, , , , 

Figure 63. Hierarchy with browsers at leaf nodes. 

.... browser window 

The important decision that has to be made when designing such an application is where the 

dividing line between structures held as data and structures embedded in the program code 
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should be made. In this example the browsable information would be held as data but the 

location structure would be embedded in the program. Embedding the basic structure 

within the program code has been a feature of many applications developed for CO-i so far. 

However the trend within authoring is towards having more of the program structure as 

data because this makes application creation simpler and therefore less costly. The route 

taken to achieve this is typified by Apple Media Tool (AMT) on the Macintosh. Here the 

author puts together the structure of the program using a graphical editor. The nodes of the 

structure are the locations that the user can visit, the links define how they get there and 

include hotspot information, picture transitions etc. A similar level of functionality is 

provided by MacroMedia Director. As has already been mentioned none of these tools 

addresses the needs of data structuring and this suggests that a marriage between this type 

of tool and the Generic Browser would solve the problem of data browsing and search in 

applications developed with these tools. 

To do this integration would require that the Generic Browser function set be made 

available so that these functions could be executed when a link were traversed or button 

pressed. Essentially AMT can be regarded as providing the GUI functionality with Generic 

Browser functions used in its callbacks. Of course since AMT is an application creation 

environment the whole application and not just the interface can be developed using it. 

An alternative to this approach of combining the Generic Browser with an existing 

authoring system is to have "location structures" represented as frames. The data items 

could be linked as leaf nodes to the locations, inheriting (across instance or user-defined 

relations) all the interface information such as where to go next as shown in the diagram 

below. 
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location hiararchy data hiararchy 

is-a is-a 

Figure 64. Object linked to both location and data hierarchies. 

In this example the object instance is an instance of both a location object and a data object. 

It would have links to form a navigable structure such as that in The W orId of 

Impressionism. 

Some frame systems would not allow such a stretching of the semantics of is-aJinstance, 

only permitting an object to be a member of one class. An alternative would be to use 

another relation, provided that inheritance is permitted over such user defined relations. In 

both these cases the system must allow multiple inheritance. If this were not permitted the 

display mechanism would have to traverse the link to the location object to extract the 

display information. 

The problem with this approach is that once the basic location structure is represented 

within the frame description it becomes necessary to continue with the integration and 

include the user interface objects such as buttons and their hotspots as well. This leads to 

an authoring environment like those described above. 

The representation of hotspots is a particular problem in the 'C' implementation of the 

Generic Browser described in this thesis. Hotspots require callbacks which are functions. 

This wouln mean that some reference to the callback function would need to be stored in 

the frame representation. It is not possible to just store the name of the callback function 

since the function must be callable. It would be necessary to store the address of the 

function. This is only available at compile time requiring special post processing of the 

compiled code to extract this information and store it in the frames. This is not really 

practical and it ties together the development of the program control code and the authoring 
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of the database which is what storing the location structure as data was designed to avoid. 

It is interesting to note however that callbacks would be easy to implement in the LISP 

version of the Generic Browser as there is no distinction between code and data in LISP 

and the value (name of the callback function) stored in the callback slot could be executed. 

8.3 Presentation Aspects 

Presentation is the look of the application both its graphic design and also the views of the 

data. For instance a path can be viewed both one data item at a time in a simple browser or 

with the whole path displayed as a map. Other views are indexes to the entire database or 

to subsets such as only those items marked as interesting by the user. The Generic 

Browser provides sets of data to the application program. It is up to the application 

designer to decide how best to display this information to the user; to choose the view. 

For some applications it may be desirable to store some display information with the data. 

The flexibility of the frame representation allows information about the display of a given 

item to be held in a variety of places depending on its generality. For instance the position 

of an image could be stored in the picture description frame if that image is always 

displayed in the same place. If, on the other hand, the image is used in several situations at 

different screen locations instances of the picture description frame can be used as shown 

below. 

pic_oCObjecC 1_insC 1 

ObjecC1 instance Object_1 

depicted_by rt. pic_oCObjecC1 

screen coordinates 

used_in browser_5 
... i nstance+i nv ~ 

who 

what 

where 

picture_data pic_oCObjecC 1_ insC2 

'--- instance Object_1 
1r 

screen coordinates 

used_in browser_1 
I 

Figure 65. Use of instances of a picture object to store display specific data. 

Most information will be inherited but the screen coordinates can be different in each 

instance. 
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8.4 Transition effects 

As well as information on how an individual item will be displayed transition effect 

information is also required so that visual effects such as wipes and dissolves can be used 

as the user moves from one picture to the next. (Similar effects such as fades can be used 

between audio items.) There are two possibilities in the Generic Browser, transitions 

between items joined by links and between those on a path. 

8.4.1 Transitions Between Linked Items 

One approach would be the inclusion of transition effects within link descriptions. To do 

this in the Generic Browser links would have to become instance frames of a class of the 

link type. So, for example if there was a more_information link which was to be described 

in this way there would have to be one instance of this link-type for each time the link was 

used. These could then have extra transition information stored within the link instance 

frame as shown in the diagram below. 

instance car 

~ more_info_1 

instance transition 

effect dissolve 

effecCduration 10 

Figure 66. Transition information stored within link frames. 

Note that this method only works for one-to-one relations and not one-to-many, a new 

relation would be used for each item of related information in this latter case. The problem 

is then how to ascertain all the possible linked items from a given node. One possibility is 

for the get_relatives function in the underlying frame system to be modified so that it can 

take a class of relations as a parameter, rather than a single relation. get_relatives returns a 
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list of all the frames linked to its first parameter by the relation given as its second 

parameter. For example, suppose that all the relations linking the FerrarC250_GTO frame 

to other items of information were members of the class additionaCinfonnation. A call to 

the modified get_relatives would be: 

get_relatives ("Ferrari_250_GTO" , 

"additional_information") 

This would return not those items linked to Ferrari_250_GTO by the 

additional_information relation but by any relation in the class additionaCinfonnatioll. 

8.4.2 Transitions Between Items on a Path 

For paths the situation is more straightforward. One solution is to intersperse the assets 

with the effects in the path list. For example: 

(capital_tour 

(is-a path) 

(path London Effect 1 Paris Effect 2 Rome ..... )) 

which give a structure as shown below: 
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capitoLtour 

London EffecC 1 Paris Effect_2 Rome EffecC3 Prague 

A .,. 

- - - 1 ------------ --------------, 

'Y 'Y 
London EffecC1 

instance capitoLcity .... pic_oCLondon .. instance effect 

depicted_by I 
who 

effect_type dissolve 

effect_duration 5 
what Big_Ben 

where London 

picture_data 

n 

I 

I / 

/ I 

Figure 67. Effects between objects on a path. 

Though solutions have been shown for storing display-related information within the 

database the most tidy solution is the integration of the Generic Browser functionality 

within an authoring environment such as AMT. The data structure can be constructed by a 

content expert and the application structure put together by a graphics and interaction 

designer with little actual programming (in the coding sense) being required. 

8.5 Constraints Imposed by the Target System 

The final aspect of the user interface which deserves mention here is that of the particular 

constraints imposed by the system on which it is implemented. The look and feel of an 

application can be strongly influenced by that target system. This is particularly true of the 

more modest hardware in the consumer domain. The look is influenced by display 

facilities such as the number of colours that can be displayed, the screen resolution and the 

transition effects that are available. The feel is affected by the interaction devices such as 

keyboards, mice and other controllers. As an example the CD-i player does not have a 

keyboard, relying on an X -Y position device with two additional buttons. This means that 

interfaces to applications on this type of system must address the additional problems of. in 
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particular, the lack of a text entry keyboard. It is therefore important to be able to offer 

search capabilities without the user having to be able to type search terms into the system as 

would be the case with database query languages such as SQL. Techniques such as 

indexes, context sensitive term completion and query by example need to be examined and 

evaluated to demonstrate their utility or otherwise in such a restricted environment. 

Resolution of these problems will also benefit the design of applications running on less 

restrictive hardware if that design allows operation by the use of a point and click type of 

interface as this should be more convenient for the user than one in which text must be 

typed in. 

8.6 Summary 

This chapter has considered how user interface issues raised by the Generic Browser 

concept can be addressed. In particular special widgets have not be found to be necessary 

for browse/search application interfaces, nor is there a common "look" to such 

applications. It is suggested that applications structured round a network of graphical 

screens, some of which containing browsers or search facilities could be represented using 

the frames used in the Generic Browser but that a better route would be to integrate the 

Generic Browser into an application development tool such as Apple's Media Tool or 

MacroMedia's Director. 

The next chapter looks at the way in which the Generic Browser has been evaluated. 
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9 Evaluation of the Generic Browser 

The purpose of the evaluations described in this chapter is twofold. Firstly continuous 

testing and evaluation has been possible using the prototype library implementations and 

applications. This has allowed the progress of the research to be monitored against the 

evolving specification the final version of which is described in chapter 6. Secondly the 

final version of the Generic Browser is evaluated to measure whether the objectives set in 

chapter three have been met by the Generic Browser. In summary these objectives are 

firstly: 

to show that a suitable basis for the construction of information-rich multimedia 

consumer applications can be provided by a core set of information access 

functions operating on a flexible data representation and that the function set 

should integrate browsing and search facilities. 

Within this primary objective the following subgoals were defined: 

development of a suitable multimedia data model 

demonstrate how browsing and search could be integrated 

select a core function set 

These goals were to be addressed by the construction of a function library that meets the 

requirements developed from these goals. Thus the implementation of the Generic 

Browser is the evaluable object in this work i.e. does it demonstrate the premises 

summarised above? 

In common with any software library the Generic Browser presents some problems when it 

comes to evaluation. With complete applications it is possible to test whether the 

application fulfils the user's requirements. With a library, which is a component of the 

final application, this is more difficult. This is largely because shortcomings of the library 

can be masked by the application - in a sense software can "do anything" given a skilled 

programmer. 

To overcome this problem the testing of the Generic Browser divides into three strands. 

Firstly there is the basic functional testing of the library to ensure that it performs as 

specified. Secondly the Generic Browser has been used to build a number of prototype 

applications. By careful monitoring of the coding process - actively looking for code 

which is only present to circumvent a shortcoming in the Library, it has been possible to 

avoid the pitfall of coding around any problems. Each prototype has assisted in refining 

the specification of the library. The third thread of this evaluation has been a paper study 
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considering how an existing application could have been built using the final version of the 

Generic Browser. That is what data structures would be required and how the Generic 

Browser functions could be used to reproduce the functionality of the application. The aim 

here has been to ensure that the prototypes applications were not biased to the capabilities of 

the Generic Browser. 

Thus the Generic Browser has been evaluated throughout its development. It has been 

subjected to continuous evaluation through the development of the prototypes both at the 

concept level - are these the right functions for the job? and at the implementation level - do 

the functions perform correctly? 

9.1 Formal Test Program 

As detailed in chapter 7 a test program was written with the aim of exercising all of the 

routines in the Library. As well as valid arguments used to test the correct functioning of 

the routines, invalid arguments were also supplied to each routine to test the error handling 

built into the functions. 

9.2 Prototype Applications 

As has already been pointed out it is difficult to assess function libraries alone since their 

utility can only be demonstrated by using them to produce applications. Accordingly 

considerable use of prototype applications has been made to evaluate the progress of the 

Generic Browser. Feedback from the creation of these applications formed the basis for 

modifications to the library whereupon the cycle was repeated. It must be emphasised that 

for all of the prototype applications the primary concern is functionality not look and feel. 

Each of these prototype applications is described below. 

9.2.1 Simple picture browsers 

This first prototype was built before the full Generic Browser specification was worked 

out. It was constructed to explore and experiment with preliminary ideas of frame 

browsing namely traversing a network of frames linked by previous and next relations. 

This browser was implemented in XLISP and XKC on a Sun and subsequently ported to 

the CD-i player. The library required no changes to run on the player, only the 

display/interaction part of the prototype needing to be recoded. This is in line with the 

requirement that the Generic Browser be platform independent. This prototype application 

consisted of a simple linear browser often frames, each a member of the class item, linked 

together by next/previous relations. Each frame had a picture associated with it and the 

display portion of the program used the filename held in a slot in each frame to load the 
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picture associated with the current frame. As a trivial demonstration of the data 

independence of this application, a single command modified all the picture file names from 

those of a set of vintage cars to that of a set of picture of places in Italy. Thus the frame 

structure remained constant but the content of the frames being browsed changed. 

---. ObjecC1 .... Object_2 
I 

-,.. 

next next .. ... 
• previous previous 

pointer to picture pointer to picture 

n ,r 

II I 
I 

/ 

Figure 68. Linked frame structure of the picture browsers. 

This prototype highlighted the need for a path structure. Specifically, it was not found to 

be possible to create a variety of different sequences using the previous and next relations. 

A different approach was required and the path structure was developed as a result. 

Evaluation of this new component in the Generic Browser was started in the next 

prototype. 

9.2.2 The Fl Browser 

To provide demonstration materials for an internal workshop, where Cframes and the 

Generic Browser were to be demonstrated, two further browser applications were planned. 

The first was to be a browser of Formula One motor racing events. The envisaged use of 

such a browser would be for use in selling motor racing holidays. The second browser was 

to be one with information about guitars, their players and their manufacturers. Time 

constraints led to one prototype containing two sets of data being built, but it is useful to 

distinguish between the two browsers although they were, in fact, just different options 

within one larger demonstration program. 

The F 1 browser extended the simple picture browser to include text fragments and multiple 

pictures associated with each item. 
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Though the F 1 Browser was initially coded in XLISPIXKC performance problems forced 

a reappraisal of the use of XLISP on the CD-i player. A new version of the Generic 

Browser written in 'C' and using the Cframes frame library was then written. The Fl 

Browser was re-written to test these new libraries. A simple terminal-based text menu 

interface with pictures on the CD-i player screen allowed all the Generic Browser functions 

to be tested. 

The browser offered the following options on its main menu: 

print all frames 

print all marked 

print all path 

print slideshow 

print all tagged 

print current frame 

These functions allow the current state of the browser to be investigated. The user can 

check that, for instance, marking has taken place correctly by printing the current frame 

followed by all the marked items to see if it is there. 

print history list 

This option prints the contents of the history, node by node, to the terminal. 

backup through history list 

This is the function that is usually found in the callback of the return or go back button of 

an application. 

goto frame 

Go directly to any frame in the database. This option calls 

goto_frame (select_from ( get_relatives ( II i temll , 

lIis-a ll ))); 

where item is the root node of all the information nodes in the database. The get_relatives 

call finds the frames connected to item by an is-a relation. The selectJrom function simply 

allows the user to choose from a menu. 
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goto marked frame 

goto frame on path 

go to tagged frame 

These allow the user to go directly to particular frames in the marked set, on a path or in the 

tagged subset. In the very first version of this application there was only one marked set 

with the members linked by next marked and previous marked relations. This required the 

following code for this option: 

goto_frame (select_from ( get_relatives ( "marked_i terns" , 

"previous_marked")}}; 

With the development of paths it was decided to treat marked items as members of a path 

rather than items linked by special relations. This means that navigating a marked set and a 

path use the same mechanism allowing all subsets to be treated in the same way. 

goto_frame (select_from(append(reverse (get_values ( 

"my-path" , "back"}}, 

get_values ( 

"my-path", "forward"}}}}; 

The complexities introduced by the use of forward and back slots in the path frame can also 

be seen here. As explained in chapter seven these were superseded by a slot with a list of 

the path members and an index. Again, acquiring the members of a path becomes a 

provided function in later versions of the Library so this type of code would be replaced 

by, for example: 

At this stage proper object oriented techniques had been only partially observed in the 

Generic Browser. In particular the current frame was a global variable. This was, of 

course extremely dangerous because modification of the current frame was possible by the 

application, circumventing the Generic Browser. Later versions of the Library have 

functions for accessing the current frame ensuring that all access to this variable is through 

the Generic Browser (which can then record changes in its history). 

It can also be seen that the concept of tagging remains distinct from marking at this time. 

Later versions of the Library combine these under the term marking, allowing and optional 

value (tag) to be associated with a mark. 
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mark 

Marks the current frame with a specified mark, e.g. 

mark ( "my_mark" ) ; 

mark path 

This option added the current frame to a path. In a demonstration a path could be built up 

by navigating around the information nodes adding them to a path at will using this option. 

The result could then be played back as a slideshow. 

next 
. prevIous 

These options exercised the traversal of frames linked by next and previous relations. In 

this version of the Library there were special functions (called "next" and "previous") for 

this purpose. These were included because it was thought that the basic navigation of a 

browsing application would revolve around a basic architecture of next and previous-linked 

nodes. Further studies revealed that this is a simplistic view. Applications typically have a 

number of subsets of nodes which need to be accessed by next/previous-type browsing. 

These are catered for in a much more suitable manner by the use of paths. 

next marked 

previous marked 

Previous/next browsing for the members of a marked set. 

next path 

previous path 

Previous/next browsing for the members of a path. 

next tagged 

previous tagged 

Previous/next browsing for the members of a tagged set. 

slide show of history 

This option simply allowed all of the nodes visited to be re-displayed as a slideshow. 

slide show of path 

This option presented the members of a path as a slideshow. 
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slide show 

This option was a pre-programmed slideshow (it also used a path for the members of the 
show). 

tag 

untag 

These options allow marking with a value and the removal of same. 

unmark current frame 

Strips off the mark from the current frame. In this application only one mark is used. Full 

generality would require the user to select from a list of all of the marks associated with the 

current frame. This again demonstrates the need for the unification of marks and tags 

because the user may well not make any distinction and want all marks (tags included) to 

appear in this list. 

remove from path 

Takes the current frame off the path. In this application only one path is used but the 

Generic Browser allows as many as required. 

use Fl pictures 

use guitar pictures 

no pictures 

These allowed different databases to be tested within the same application framework. 

The main contribution of this application was as a testbed for the re-implementation of the 

Generic Browser in 'C'. It was possible to compare the operation and performance of 

browser functions in the LISP and 'C' versions of this prototype. 

The path structure was also implemented in the version of the Generic Browser used for 

this prototype The combination of the practical exploration of the path concept in this 

implementation and the results of the parallel literature study characterising browsing led to 

the addition of the path as a browsable object in the Generic Browser specification. 

9.2.3 The Guitar Browser 

With the conceptual structure provided by Phil Lloyd [Lloyd 1991], this was the first (if 

small) demonstration that the Generic Browser library could be used to build a realistic 

application - the previous example being more of a testbed. 
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The aim of the Guitar Browser was to have pictures, text and sound associated with each 

item, to have more than one browsable subset (manufacturers, guitars and players) and to 

demonstrate content browsing using links such as makes/made by, plays/played by as well 

as the normal next/previous. The Guitar Browser further explores the problems of 

previous/next relations by having these three browsable subsets. 

• manufacturer 
next / previous .. manufacturer .. ... 

. ~ ~ 

makes / made by 

" " 

• guitar .... 
next / previous 

guitar .. 
~ 

plays / played by 

" 

• player .. next / previous 
player rc .. ... 

Figure 69. The Structure of the Guitar Browser. 

No significant modifications to the Generic Browser library were required to support this 

application. However the use of next/previous links to define browsable sets as used in 

this example was recognised as being too restrictive. It works here because each of the 

sets, manufacturers, guitars and players is completely separate from the others. So a next 

relation can be used. If, however, an item needed to be in two browsable sets (if a player 

were also a manufacturer, for instance) the next relation would have to have two 

destinations. This is within the syntax of relations but has no meaning since there is no 

way to know when traversing the links in one set (manufacturers, say) whether the next 

item is the player or manufacturer just based on the information encoded in the relation. 

This resulted in the move to the use of paths for subsets. So in this example each of the 

subsets manufacturers, guitars and players would become a path. 

This example, whose development overlapped with that of the Fl Browser, provides 

concrete evidence of the need to use paths for subsets and not the previous/next relations 

which had originally been thought to be adequate. 
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9.2.4 Ski Browser 

The addition of search together with on-screen interface elements via the PRL GUI 

library40 marks the Ski Browser as an important prototype. From this exercise, a valuable 

insight into the problems of presenting search in a multimedia application on a CD-i player 

was gained. 

The Ski Browser was designed as a multimedia ski brochure and is described in detail in 

chapter 7. To recap the idea was that a user of the system would locate a skiing holiday by 

choosing a holiday area then tell the system what sort of skiing holiday attributes were 

important to him. The system would then search the relevant resorts for those which most 

closely matched the specification. The user would then browse the resorts. At any time the 

user would be able to ask the system to find "similar" resorts (searching the database with 

the current resort's characteristics). Once a resort was chosen the user could browse the 

hotels available there. 

Figure 70. The Ski Browser control panel. 

From an interface perspective the Ski Browser is a browser-based application. The current 

item is always being shown. A control bar offers the following options: 

40rhe PRL om library provided om facilities on the CD-i platform and was developed at PRL by Richard 
Allen. 
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previous and next buttons 

These buttons allow the current path (resorts or accommodation) to be browsed. The 

current item is displayed. 

previous marked and next marked buttons 

These buttons allow the browsing of marked items. Items are marked either by the user 

(via the mark menu) or by the search process. In this application no distinction is made 

between user and search created marks although this would be possible if desired. 

mark menu 

This menu allows marks or tags (included for demonstration purposes) to be added to the 

item on display. An option for clearing all marks is also provided. 

browse menu 

This menu allows the user the choice of browsing resorts or the accommodation offered at 

a particular resort. 

search pop-up 

This dialogue box has options for specifying the search query (using the simple text menu 

shown below), setting the search query to be the set of characteristics of the current resort 

to allow similar resorts to be found and a button to perform the search. A slider control is 

also provided to vary the match threshold so that the degree of similarity required for an 

item to be a hit can be controlled - the displayed number of hits is updated as this control is 

operated. 

slideshow menu 

Marked items or the accommodation of the current resort can be displayed as a slideshow. 

print menu 

A number of diagnostic printout options are provided on this menu. This can be used to 

demonstrate the effects of, say, doing a search on the database. 

The search process in this prototype was not integrated into the frame representation. The 

search characteristics were held as a separate data structure (a 'C' array) representing the 

matrices of the vector search method. This application allowed the vector search method to 

be explored in more realistic surroundings. It highlighted the need for full integration of 

the search process with that of browsing. Extra code was required to "bridge the gap" 
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between the browsing offered by the Generic Browser and the results of the search 

process. This was done by marking each hit from the search. 

The feedback from this application was the use of marking to integrate search hits. This 

method for integrating browsing with search was added to the specification of the search 

component of the Generic Browser. 

9.2.5 Cruise Directory 

As part of the Esprit Homestead project a prototype application was built to demonstrate a 

version of the Generic Browser that was part of Philips' contribution to the work. Of the 

three retail partners in the consortium, Page & Moy, a specialist travel company, had 

requirements which were ideally suited to solution using the Generic Browser. Of the 

other two, the Barclays application was banking services and was not browse/search 

oriented, and the Freemans application, a clothing catalogue, was less advanced from a 

design point of view at that time. 

Page & Moy's requirement was for a CD-i version of their (paper) Cruise Directory. This 

listed the cruises offered by all the major cruise companies, grouped by area of the world. 

Page & Moy' s requirements were crystallised into an interaction design by designers at 

Barclays TV and Video Unit. 
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Video 
-------- Introduction I 

I 
I Search by 

r-1 HOliday:~ .-
: Characteristics I Customer specification 
----- __ J 

Area of World 

- Porst of Call 

Cruise Ships -
Cruise Lines 

+ " " " 
The World 

Ports of Call Cruise Ships select 1 area Cruise Lines 

from 11 select 1 from 900 select 1 from 95 select 1 from 25 , • • 
Video Ports in .... Ships of a Line Visuals of 

of Area Selected Area .... select 1 selected ship 

• J .. 
Ports of Call Itineraries 

Itineraries Visuals of ship , 
" + 

Cruise Itinararies of 
Visuals of --. ... selected ship Browser -- selected ship select 1 

l 
+ 

Book 
Cruise 

Figure 71. Cruise Browser structure. 

With this specification the author built a first prototype using placeholder assets and with 

the CD-i support library BALBOA providing the hotspot mechanism. The structure of 

"locations" was hard coded into the program because this aspect of the design was the 

responsibility of another partner in the Homestead project. This Cruise Browser prototype 

was constructed using the final version of the Generic Browser. 

The Cruise Browser structure consists of a hierarchy of "locations" as shown in the 

diagram above. Following an introductory video the user is given a choice of ways in 

which he might like to choose his cruise holiday. 
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Figure 72. Cruise Browser main menu. 

He can select to search for cruises with particular characteristics or browse the cruise 

directory in a number of different ways. He can select the area of the world in which he 

wants to cruise. The system the allows either all itineraries in that area of the world to be 

browsed or offers a list of all the ports of call in that area. The user can then select ports of 

interest and the system then finds all the cruise itineraries which pass through those ports. 

This search uses a best match process. The user then selects his preferred itinerary in a 

browser and makes his booking. Alternatively the user can select a port and the area of the 

world is found for him. 
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Figure 73. Area of the World menu. 

Figure 74. Itinerary browser. 

The user my prefer to choose his cruise based on a particular cruise line or ship and these 

are both supported; the user either selecting a cruise line followed by a ship from that line 

or a ship from a list of all the ships. He is then presented with a browser of the itineraries 

being sailed by that ship, makes his choice and books his cruise. 
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Figure 75. Cmise Line menu. 

In this prototype, which served as a demonstrator prior to a final implementation which was 

constructed elsewhere in the Homestead project, the choice of cruise by characteristic was 

not implemented because of a lack of interface designs at that stage of the project. However 
, 

the search mechanism was used in the choice of itinerary by ports of call option. 

The basic data structures were straightforward. Frames were created for areas of the 

wodd, ports of call, cruise lines and cruise ships. Each had pointers to assets where 

appropriate and were linked by relations such as "has ships", "location" and "visits". 

Navigation between the various locations "vas handled outside of the Generic Browser. 

When a hotspot was selected the user was transported directly to the next location. As 

already mentioned this location structure was hard coded in this prototype, however in the 

final Homestead version this hotspot management was handled by a suite of software 

developed by another part of the project. So although not handled by the Generic Browser 

the navigation structure was held as data rather than being embedded in the program code. 

This prototype highlighted a missing type of search mechanism - that which allows a 

function to be used to compare the query with data items. An example was how to fmd 

cruises cheaper than a user specified amount. Although the cruises could be categorised by 

price and the user's request mapped onto a price category it would have been better to be 

able to translate the request directly into a query . 
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It is useful to compare the Cruise Browser with the Ski Browser. Both have essentially the 

same requirements of search then browse. However the Ski Browser has a very simple 

interface and is basically a browsing application with the facility to change what is being 

browsed by performing a search. All navigation is within the data space. By contrast the 

Cruise Browser has a more sophisticated interface and requires the user to navigate around 

a series of screens rather than having a continuously available menu as in the Ski Browser. 

This additional navigation is outside the data space and highlights the potential problems if 

the interface is completely separated from the browsing functionality. For instance the 

interface needs some form of history mechanism to allow backtracking through the network 

of screens with the browser offering a similar facility for the data. This suggested the 

linkage between the browser and the interface described more fully in the previous chapter. 

Work on interface design for the Cruise Browser showed how difficult it is to present a 

search facility within a consumer application targeted at a platform without a keyboard. For 

the limited freedom to choose search characteristics in this application a solution was found 

but more general search facilities would probably need some form of text input. Browsing 

on the other hand seems completely natural in this application. There is a great deal of 

research currently addressing the interface problems of providing search facilities to 

consumer-type users. One area of interest is the use of agents which do searches on behalf 

of the user. This may well be the way that interface design for search progresses. 

However the underlying search facilities and their link with browsing remain important 

whether it is the user who controls them directly or via an agent or if the search carried out 

entirely by the system. 

The Cruise Browser was built with the final version of the Generic Browser and as such 

demonstrates the ability of the Library to support the development of a real application. 

Aside from reservations on the performance of the search component of the Generic 

Browser no modifications to the specification were generated during the development of 

this application and its subsequent integration into the Homestead demonstrator. 

9.2.6 Summary of modifications to the Generic Browser Specification 

Chapter 3 described the prototyping work as part of a feedback loop which led to the 

refinement of the Generic Browser specification. The prototyping work contributed two 

significant additions to the specification: 

The first modifications to the specification surround the addition of the path as a browsable 

object. The original idea for creating browsable subsets had been the use of relations to tie 

the objects together. The early prototyping showed the flaws in this scheme and the path 

concept was developed. As described in chapter 7 the path has become the primary 

browsable object in the Generic Browser as it was also used for recording marked items. 
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The need for the inclusion of search into the specification came partly from the study of 

browsing and partly from the requirements for the Ski Browser. This application had a 

search mechanism added "on top of' the Generic Browser and provided the insight 

required to use marking as the means to integrate search. This too became part of the 
specification. 

The Cruise Browser demonstrated the need for function search as well as matching search. 

9.2.7 Critique based on Prototypes 

This succession of prototypes has served two purposes. Firstly it has tested each stage in 

the development of the Generic Browser in as realistic setting as was practical. Problems 

thrown up by the prototyping, whether in the conceptual design or simply bugs in the 

implementation have enabled following prototypes to progress the state of the Generic 

Browser art. Secondly this testing gives practical credence to the hypotheses advanced by 

this thesis. Namely that it is possible to produce consumer multimedia applications with a 

core set of functions. The data representation structures proposed here have been found 

quite capable of holding the required infonnation. The integration of browsing and search 

has been demonstrated in realistic applications. 

One observation that can be made looking back over all of the prototype development is 

that, in contrast with each application being written stand-alone each prototype has 

benefited from the work on previous ones. Techniques of how best to use the Generic 

Browser facilities are re-usable as are basic data structures. As hypothesised in section 

6.10 this is a clear advantage of using this approach over existing methods saving time and 

effort for the author. A consequence of re-use of techniques and code fragments should 

also be greater reliability and indeed less time was spent debugging low level code in the 

construction of the later prototypes. 

The disadvantages of this approach are firstly that new prototypes take longer to design and 

build than it would to evolve a single prototype. This must however be offset against the 

greater freedom to test different application designs which is more difficult if one 

application must be evolved. A second problem which is common to all multimedia 

prototyping is limited availability of assets. It takes time to scan pictures and record audio 

tracks and at the prototype stage only a modest set can be put together. This makes 

performance testing a problem particularly where a process is non-linear with time such as 

the search routines described in this thesis. The solution here would be to duplicate assets 

where appropriate and automatically generate large databases for testing purposes. The 

third problem encountered while building and testing the prototypes was the needs of the 

interface. These simple prototypes only test the tie-up between the Generic Browser and 

the interface to a limited extent. As this work has progressed the importance of a stronger 
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link has been realised. To explore this connection in more detail would require a greater 

interface design contribution in the prototyping phase. 

9.3 Reimplementation of Existing Browsers 

One of the problems with creating prototype applications to test the library has been that the 

amount of design in the test applications has been small. In any but the very simplest of 

applications the role of the designer becomes dominant. The structure of the application is 

dictated by the design rather than being a consequence of the data structure and the interface 

becomes very important. Though the prototypes described above have proved invaluable in 

the development cycle it was felt that it was necessary to demonstrate the generality of 

Generic Browser architecture and functionality showing that it is capable of supporting the 

structures present in existing multimedia applications. The approach taken has been to 

perform a paper study analysing the structure of two applications from the CD-i catalogue 

to see how these would be implemented using the Generic Browser. Both the data 

structuring aspects and the access functions have been considered. The principal difference 

between the prototypes described above and these real applications is one of scale. The 

prototypes have made do with relatively few assets (tens rather than hundreds). The real 

applications have hundreds of assets. The size of the navigable or searchable domain has 

increased accordingly. However the complexity is not significantly greater than the 

prototypes. 

The two examples have been chosen to cover a wide range of Generic Browser 

functionality and to be as different from each other as possible. While both discs require 

basic browsing The World of Impressionism has the type of location structure highlighted 

in chapter 8 and the ACT College Search disc includes search. 

9.3.1 World of Impressionism 

This disc presents the art of the 19th Century as a sort of interactive documentary. It is 

basically composed of a hierarchy structure of menus the leaves of which are slideshows 

with accompanying narration and or music. The menu structure is as follows: 
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Overview 

Introduction 

Cafe 

Art 
Gallery 

Windows on 
Impressionism 

Music 
Gallery 

Sources 

Epilogue 

Figure 76. The Wor1d of Impressionism top level structure. 

Figure 77. World of Impressionism main menu. 

The Windows on Impressionism option leads to the following menu screen: 
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Figure 78. The Windows on Impressionism menu - the Paris option is centre of bottom row. 

Each of the options in the window leads to another level. That for the Paris options is 

shown below: 

Figure 79. The Paris map. 
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This map is preceded by an introductory sequence of stills with a narration and background 

music. Choosing a location on the map again.leads to a narrated sequence of stills. 

Figure 80. Selecting an option on the Paris map. 

From a Generic Browser perspective this application can be constructed as a hierarchy of 

screens with paths (the slideshows) as the leaf nodes. For example: 

(main_ introduction 

(has-path intro-path) 

(leads_to cafe)) 

(cafe 

(has-path cafe_intro) 

(leads_to overview art_gallery sources 

windows_on_impressionism music_gallery 

epilogue) 

(back_to main_introduction)) 

(cafe_intro 

(is-a path) 

(path titlel title2 three_girls girl_CU 

girl-painting ... ) 

(soundtrack main_intro_soundtrk) 

(display_time 3 seconds)) 
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(three_girls 

(is-a picture) 

(pic_file three_girls.d)) 

The main challenges here are twofold. Firstly, in this application the user navigates a set of 

screens i.e. it is not the data but the interface structure that is being browsed. Secondly the 

slideshows have a narration that runs while a number of pictures are being shown. 

The first problem is dealt with by using a frame representation for the screen structure, 

using relations to link the screens as shown above. As the user navigates he/she follows 

leads_to links (using the gb_traverse_link function which maintains the necessary history). 

At each change of screen the intro sequence (a path) is played, followed by the enabling of 

the menu hotspots (which are outside the Generic Browser representation, being embedded 

in the application). 

The problem of the narration is eased by the fact that each image in the slideshows is 

shown for the same length of time with the same transitions between each one. Thus the 

soundtrack and picture duration information can be placed in the path frame. However 

there is no link between the soundtrack and the picture sequence, both just play from a 

synchronised start position. 

A notable advantage of the frame representation used above is that assets which are used in 

several presentations (common in this disc) are stored once, pointers to them being stored 

in the paths. This contrasts with a possible alternative which would be to use video clips 

for the presentations. Here each use of a picture is stored separately (as part of each video 

presentation). 

Once the basic application has been developed it would be straightforward to replace the 

World of Impressionism screens and assets with art from another era. The basic browsing 

application would remain the same since it traverses a structure held as data. 

9.3.2 College Search Disc 

The ACT College Search disc is a CD-i applications that makes use of search. The disc is 

aimed at schoolleavers in the United States who must choose their college. The search 

criteria are the courses and facilities offered by the various colleges. The structure of this 

disc is as follows: 
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College 
Information 

Introduction 

College 
Search 

Enrolment 
(how many students) 

Admission 
Selectivity 

Location 
(by state) 

Majors 
(select major and course) 

Student Life 
(e9 sports, campus activities) 

Next 
Steps 

Figure 81. Structure of the College Browser disc. 

Affiliation 
(e9 Christian, Othodox) 

Annual 
Cost and 

Financial Aid 

The main part of the disc is a hierarchy of menus allowing the user to build a search 

specification using the seven main characteristics shown in the diagram above. 

Figure 82. The Location option. 
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Figure 83. The State menu. 

Figure 84. Selecting Texas - note the reduced number of universities (82). 

A search is made and the results presented as a menu allowing browsing of the search hits. 

Individual colleges can be marked. This subset is also available for inspection at any time 

and is used to hold possible candidate colleges. When a college is selected to be examined 
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in further detail a slideshow presentation is followed by a menu of further information 

items such as admission information and spo.rts offered. 

Figure 85. University Information menu. 

In a Generic Browser implementation, each college would have a frame. This would 

contain slots for the characteristics such as courses offered and location, the extra 

information about the college and links to the "slideshows" that advertise each one. For 

example: 

(MIT 

) 

(instance college) 

(majors_offered food_sciences architecture 

city-planning ... ) 

(sports_offered baseball basketball golf .. . ) 

(ACT code 1858) 

(address "77 Massachusetts Avenue, Room 3-108 , " 

"Cambridge, MA 02139") 

(admissions_office-phone "(617) 253-4791")} 
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The search characteristics appear in the majors_offered and sports_offered slots while the 

extra infonnation is in the address and admissions_office~hone slots. 

The application would consist of a mechanism to present information extracted from the 

frames as menus and update the search query based on the user's selections. The user's 

favourite colleges form a marked set. Again, like the World of Impressionism example the 

hierarchical menu structure, though simple, could be represented as frames allowing a 

similar disc for example for the UK UCCA system to be produced easily. 

In this example the search mechanism only uses exact matches. This could be duplicated 

by the Generic Browser or, greater freedom could be added by allowing a variable 

threshold which would prevent the "no hits" situation which is possible with the ACT disc. 

9.4 Summary 

The evaluation of the Generic Browser has taken on several forms. Basic functional testing 

has formed an integral part of the implementation of the Library. The construction of 

prototypes has allowed evaluation to form part of the refinement loop used in the 

development of the Generic Browser. This has prevented this development going off 

course and forced it to address real-world problems of application design. At the same time 

the prototypes demonstrate the main thrust of the thesis - the provision of integrated browse 

and search functions on a consumer platform. By doing a paper implementation of existing 

applications the possible pitfall of only evaluating possibly "Generic Browser friendly" 

prototypes has been avoided. Two examples have been shown. The next chapter reviews 

the work reported in this thesis and draws conclusions from it. 
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10 Summary & Conclusions 

The main aim of this thesis was to show that a suitable basis for the construction of 

information-rich applications in the consumer domain could be provided by a core set of 

information access functions operating on a flexible data structure. The Generic Browser 

demonstrates that this objective has been realised as a working implementation on 

consumer hardware and tested with prototype applications. 

The domain of consumer multimedia was chosen to limit the scope of the work to 

manageable proportions and to consider an area where little theoretical work has been done 

- the field being almost entirely technology led. 

Having identified the key features of the processes of browsing and search, real world 

examples were also studied to augment the theoretical analysis. The resulting 

characterisation divides into two aspects. Firstly the data structures required for browsing 

and search have been considered and secondly the basic function set required to build 

information-rich consumer applications. A specification for a test implementation was 

developed and a function library built. In keeping with the desire to keep a firm grasp on 

the practicalities of the real world the implementation was performed on a current 

generation consumer multimedia platform, CD-i. 

10.1 Contribution 

This work has contributed to knowledge about browse and search interactions and the 

software systems that underpin them. It has done so by developing an integrated model 

that views browse and search as two extremes of the information access continuum. It 

further shows that the ratio of browse and search in a particular application can vary as the 

interaction proceeds. This means that an application does not have to be categorised as 

either browse or search but can be a dynamic combination of the two thus alleviating the 

problem of classifying multimedia applications that exhibit both browsing and search 

behaviour. 

The theoretical basis for this model, distilled from the relevant literature, has been given a 

grounding in the real world by the results of a study of existing browsing applications. 

The characteristics derived from this study having been incorporated in the model. In 

particular the basic simplicity of the browsing process has allowed the specification of a 

core set of functionality. 

This has been implemented as a 'C' function library running on the CD-i player. 

Implementation on a real consumer multimedia platform has been crucial to this work as it 

demonstrates that this approach is viable on this type of system within the constraints that it 
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imposes. The minimalist approach taken for the function library implements only what is 

strictly necessary to achieve the functionality that is actually of use to an application 

designer. A small, efficient kernel still looks attractive even when the platform is more 

capable as would be the case if the Generic Browser Library were to be used on existing 

PC or Macintosh machines, or if it were used in a server on a networked multimedia 

system. 

The frame-based data model that complements the function library has been chosen to be 

flexible enough to cope with the requirements of representing multimedia data and also the 

principle browsable structure of the Generic Browser, namely paths. The requirement for a 

"sequence" object or path to complement the node-link data representation commonly found 

in hypermedia applications has been shown and its realisation in the Generic Browser 

demonstrated. Indeed the path structure has also been used within the Generic Browser 

itself as the representation of marked subsets. 

These marked subsets have been developed in the Generic Browser from a simple facility 

for tagging nodes as the information space is traversed into a critical component of the 

browsing system. Apart from providing very flexible marking facilities for the user, 

marking is used as the mechanism for representing the results of a search. By this device 

search hits are immediately available to be browsed and browsing and search are effectively 

integrated. 

10.2 Conclusions 

To conclude this thesis it is necessary to reflect on what has gone before, to step back and 

consider what has been achieved and to question the decisions made during the work in the 

light of their later effects. 

The choice of the consumer domain was a key decision early in this work. Though clearly 

influenced by the fact that this work was carried out in a commercial research laboratory 

this would have been a totally inadequate justification on its own. However, examination 

of the consumer domain revealed it to be under researched. It is currently a technology-led 

field with a high turnover of ideas. These ideas are not generally based on a bedrock of 

research and are tested by releasing them onto the market, the rapid rate of new software 

releases masking those applications that fail. By targeting this research at this domain it is 

hoped that it has been possible to redress this balance to a small degree. However it is 

perhaps unrealistic to expect to see change in the way that browse and search applications 

are constructed during the lifetime of this PhD project because of the time that it takes for 

research to be absorbed into industry practice. 
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The biggest hurdle is how to get the results of such research taken up. The commercial 

multimedia industry is composed of many, often small, companies where a combination of 

designers and programmers produce one-off or short series of applications. It is unlikely 

that the existence of research such as that documented here will cause an immediate change 

of working practice. It has become clear during the course of this research that the use of 

application development tools such as MacroMedia Director and Apple Media Tool is the 

direction that authoring for multimedia applications is going, particularly since these tools 

are already in use on PC and Macintosh platforms. These tools raise the level of the 

programming task, even allowing non-programmers to develop applications almost 

unaided. Adding functionality to such tools seems the most likely route for the infiltration 

of Generic Browser techniques into mainstream application development. 

This was not foreseen at the start of this work when it was anticipated that the Generic 

Browser would become part of the application programmer's armoury in the way that GUI 

toolkits have. The Generic Browser's core function set without bells and whistles is ideally 

suited to integration within an environment such as MacroMedia Director demonstrating that 

this approach was the right one for this work. 

Considering the choice of CD-i for the implementation work, again the Philips connection 

played a part but also when this work was started CD-i was the only suitable consumer 

platform. The trend for the number of PCs in the home to reach levels where a PC should 

be regarded as a consumer platform was not anticipated. If this work were being carried 

out in today's environment PCs should be considered as the target platform for this type of 

research. However it has still to be proved that PCs in the home are really consumer 

machines rather than work machines used to play games and use edutainment CD-ROMs. 

This highlights one of the problems of researching in an environment that is evolving fast 

as the technology changes. To some extent this causes the goal posts to move as the 

research is done. Another example is the rise in importance of video. When this work was 

started there was no full-screen, full motion video available on Macintosh or PC let alone 

home entertainment systems so video was not considered as important as it undoubtedly is 

now. 

The use of frames as the data representation scheme has been shown to be valid from the 

point of view that frames are clearly flexible enough to represent multimedia information 

and the path structures central to the Generic Browser. That very generality and in 

particular the typeless data used by the frame system used here does impose a performance 

penalty. Experience with the prototypes showed that this is only significant where large 

numbers of frames must be processed such as in the search routines. This problem is 

addressed in detail in the next chapter. The use of frames to store hypertext as opposed to 
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hypermedia would not be ideal. The problem stems from words in a text not being primary 

objects in the Generic Browser, rather a fragment of text is treated as an asset. This is 

similar to the way in which the video is dealt with. 

The development of the path structure from just a sequence for display purposes to a 

primary browsable object is important. The process of authoring imposes structures onto a 

collection of data nodes and it was found that just using links between the nodes was not 

flexible enough. The path answers this problem by having the structure stored in its own 

right. This allows multiple structures without interference between them. This is similar to 

the concept of views used in the database field. The use of paths for marked subsets and 

histories has allowed a single unified representation to be used for all structure imposed on 

the basic data nodes (with the exception of the use of relations as hyperlinks which are still 

possible). Further research into more complex path structures than the linear ones 

implemented in the final version of the Generic Browser is suggested in the next chapter. 

A goal of this work has been to find a way to integrate browsing and search and this has 

been accomplished through the use of marked subsets. The Generic Browser methodology 

also uses the same representation for the data for both browsing and search. If completely 

separate subsystems are used for browsing and search the different data representations 

would have to be linked in some way and synchronisation maintained. 

An important question arises out of this choice of solution; what compromises, if any, have 

been made to either the browse or search mechanisms to enable this integration to take 

place? Because examination of consumer applications shows that browsing interactions 

dominate access to the information (and is preferred to search) the search component has 

been tailored to fit within the framework developed for browsing. 

This type of integration of the search process has placed some constraints upon it. In 

particular search systems are usually optimised, often by the provision of indexes. These, 

once calculated, speed up the search process. Such optimisations have not been possible 

with the dynamic data structures used by the Generic Browser as indexes only work with 

static data. However much of the data in consumer applications is static. If static data were 

treated separately within the frame-based system the search mechanism could be optimised 

for accessing this static data (using indexes perhaps). 

A second aspect of the tailoring of the search process is the choice of search algorithm. In 

the consumer domain inexact matching is preferred as it allows the application to find the 

closest matching items rather, for example, returning no hits at all if the search query is too 

strict. The chosen use of marking to integrate search does, however, mean that alternative 

or additional search mechanisms are easily added to the Generic Browser. What has been 
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demonstrated is the mechanism for integration with an example search function. Other 

search functions would use the same marking mechanism. 

The prototyping of the library has been complemented by the building of prototype 

applications in a feedback loop where the results of the application building process have 

been used to refine the library. This strategy for working has been found to be very 

beneficial as it brings shortcomings and problems to light as soon as possible. However 

the bulk of the testing of the Generic Browser has been carried out by the author. Though 

this was unavoidable it would seem desirable to extend the testing by having others define 

and perform tests. This would allow verification that the functionality that has been 

provided is useful and highlight those areas where changes need to be made. 

As observed in the previous chapter the prototypes demonstrated that considerable 

technique and structure re-use was possible from one application to the next. This is 

important as is demonstrates that the Generic Browser has indeed shown that it can 

facilitate the authoring of multimedia applications. 

Standing back from this work the most significant shortcoming is the performance issue. 

The final version of the Generic Browser Library is still a research prototype with 

performance taking second place to demonstrating the concepts of the Generic Browser 

model. To be used in real applications performance would have to be improved. 

The Generic Browser library allows authors of information-rich applications to avoid 

developing the browsing and search facilities from scratch thereby reducing code 

development and debugging time. In its current form it is still a research prototype but 

since it is already implemented on a representative multimedia platform all that remains to 

be done to make it generally useful is to refine the efficiency of the implementation. This 

and opportunities for further research arising from this work are discussed in the next 

chapter. 
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11 Further Work 

Any piece of work such as this has to draw to a close from the perspective of what should 

be written-up as a thesis so that it can be reviewed and evaluated and for others to benefit 

from what has been done. This chapter considers in what ways this work might be 
continued and built upon. 

11.1 Further Work on The Generic Browser 

This section looks at improvements which could be made to the Generic Browser in the 

relatively short-term, in particular those issues which would allow it to taken up as part of 

an application development tool. 

11.1.1 Improving Performance 

In terms of making the results of this research available to the application development 

community the issue of performance would have to be addressed. Certainly for CD-i, the 

prototype library, and in particular the search process, is not fast enough when handling 

large amounts if data. 

The most effective way to address these performance issues is to re-implement the Generic 

Browser functionality as part of the frame-based system layer, in this case Cframes. This 

would be advantageous because the frame data structures would be accessed directly rather 

than via access functions. 

The Generic Browser is constructed using Cframes functions for data access. A browsing 

application therefore accesses information through two layers, the Generic Browser and 

Cframes. Because the Generic Browser also uses Cframes for its internal storage 

requirements inefficiencies also arise because of the representation scheme used by 

Cframes. 

Cframes represents all data in its frames as character strings in a table structure. This 

confers the important advantage from the user's perspective that there are no data types in 

Cframes, all data is treated the same and different types can co-reside as values in particular 

slots. From the Generic Browser perspective, though, this very flexibility is a 

disadvantage since it carries an overhead. Cframes must determine the type of the data item 

and, if necessary convert from the character representation into the appropriate type for the 

required operation. 

Take for example the use of a counter by the Generic Browser. Since this is a numeric it is 

clearly very inefficient to store this as a character string since every time it is used it must be 

converted to and from its numeric representation for the purposes of manipulation. 
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Similarly the access method used for frames where a symbol table converts from the 

character string, the name of the frame, into the address of that frame's information in the 

table. From the Generic Browser perspective it would be more efficient to work with this 

lower level representation - the frame (or slot) address and only convert back to the 

character form when absolutely necessary. 

For these reasons it would be very desirable to integrate the Generic Browser into Cframes, 

allowing all operations to be carried out internally with the most efficient representations. 

As an indication of the gains to be had by this integration Project member Martin Shiels has 

added the Generic Browser search mechanism to Cframes leading to an order of magnitude 

speed increase (though no marking took place). 

Further research into the types of search algorithms and functionality is necessary to 

broaden the scope of the search offered by the Generic Browser. The basic mechanism of 

using marking to integrate search with browsing has been shown to be effective. The 

challenge is to improve the efficiency of search within the Generic Browser data structures 

and to examine different types of search. 

Additional speed improvements may be achieved by differentiating between static and 

dynamic data in the frame system. This would then allow the static portion of the database 

to be indexed to improve search efficiency. This optimisation would, of course, only work 

for those situations where the data in the final application was fixed, on a CD-ROM or CD-i 

disc for example. 

A more drastic alternative would be to choose to implement the Generic Browser 

philosophy in, say, C++. Rather than implement a frame system to hold the data, the 

browsing mechanism could be adapted to browse C++ objects. 

11.1.2 Integration with an Authoring Tool 

As this work has progressed it has become increasingly clear that, particularly with the 

increasing importance of PCs for multimedia applications, the integration of Generic 

Browser functionality within the authoring environments preferred for those platforms 

would offer an excellent opportunity to make the Generic Browser available to a wider 

audience. The lack of Generic Browser functionality within such tools as MacroMedia 

Director and Apple Media Tool has already been noted and, for using either of these tools to 

construct information-rich applications, this omission would have to be circumvented. 

Extending either of these tools would be relatively straightforward. In the case of 

MacroMedia Director there is a documented mechanism for calling external functions 

(written in 'c' for example) called XFNs. To add Generic Browser functionality the 

Library would have to be modified so that the individual functions conformed to the XFN 
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standard. The Cframes library would have to be similarly modified (to allow the 

manipulation of the data held in the frames). To use the Generic Browser in MacroMedia 

Director, the XFN's would simply be called from LINGO scripts. 

11.2 Other Research Issues 

As well as refining the existing Generic Browser, which should be mainly a development 

process, research issues have been raised by the Generic Browser which it has not been 

possible to address within the scope of this thesis. 

11.2.1 Branching Paths 

Linear paths have been shown to be an extremely useful and flexible structure. Some 

thought has also been given to a representation for branching paths. Such structures are 

now receiving attention within the area of multimedia content research, specifically as a 

representation for multipath story structures. These are already used in interactive fiction 

and are one possible structure for interactive movies. This latter avenue is being explored 

by a new project at PRL, the Hands-on Movies Project of which the author is a member. 

Development of branching paths within the Generic Browser would allow it to be used to 

support the navigation of a rich variety of non-linear story structures. Detailed exploration 

of branching paths would be one direction of further research based on the Generic 

Browser. 

11.2.2 Video 

The second area for new research based around the Generic Browser is that of the 

representation and integration of video. Video is increasingly becoming important in the 

consumer multimedia arena particularly as MPEG digital video playback becomes 

prevalent. Very soon the use of video within multimedia applications will become 

ubiquitous and the Generic Browser will need to be enhanced to integrate it. Research 

issues such as browsing time-based material (video and audio) and the synchronisation of 

playback of a number of pieces of video and audio give some indication of the new areas 

that will need to be addressed. The use of a flexible representation scheme that will allow 

content description would seem necessary and the research done for the Generic Browser 

provides a sound starting point. In information-rich applications video will be only a part 

and there will be a need to integrate other multimedia objects and provide navigational 

structures for these data. Again the research presented in this thesis provides the basis for 

information browsing. 
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11.3 Agents 

In the tv programme "Hyperland" [Adams 1990] Douglas Adams presented his view of 

what the tv of the future would be like. Adams believes that the tv of the future will be 

interactive and include agents that allow the viewer (or, more accurately, user) to tell the 

system what he is interested in. The system then offers a variety of information items that 

conform with this stated interest. The user selects one and views the information. At any 

time the system agent can be summoned to provide assistance or to change the area of 

interest. Other information agents (depicted as video icons or "picons") pop up and try to 

attract the user's attention when they have information that may be of interest to him. 

Though Adams was speculating on the future, his ideas are close to what is possible using 

the multimedia platforms now, or soon to be, available. At CHI '9141, Apple showed the 

latest prototype to come out of its GUIDES project. One of the aims of this work is "to 

integrate browsing and searching activities under one interface umbrella" [Don et al 1991]. 

The CHI demonstration combined this browsing/searching activity with interface agents 

(guides) which provided navigational assistance by suggesting possible next topics for the 

user. Each guide has a different point of view and thus offers selections with different 

slants. With the guides portrayed as video icons this system is very like that proposed in 

Hyperland. 

Such agents need to search the database and flag items of interest for the user to review at 

her leisure. An interesting development of the Generic Browser architecture would be the 

addition of agents. In a sense the search mechanism already in place is a very simple agent 

and indeed the vector space search mechanism underlies Apple's guides. Further research 

could be pursued in the direction of the agent mechanism itself. How the user's interests 

can be communicated to and represented by the agent for example. The frame 

representation scheme used in the Generic Browser would seem to have the flexibility for 

supporting research into this area. 

11.4 World Wide Web 

Since this research was started the World Wide Web has become a consumer product 

thanks to the growth of PCs in the home and the reduction in price of connection hardware 

(modems) and the increase in the number of service providers who offer Internet access via 

phone connections. 

41CHI '91 - The Computer-Human Interaction conference held in New Orleans, Louisiana, April 27th to 
May 2nd 1991. 
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The WWW offers a rich area for exploring browsing and search. Infonnation nodes are 

held in a network data structure with each node having a unique address or URL. Nodes 

contain a representation of their content written in a text mark-up language called HTML. 

When the user browses a node the browsing application interprets the HTML and displays 

the text, links and embedded pictures for the user. HTML offers minimal display 

formatting options with most characteristics such as font, text size, highlighting etc. 

dependent on the user's browser application. Existing browsing tools such as NCSA 

Mosaic and Netscape are fairly primitive offering only the ability to follow hyperlinks with 

search only available via special database sites. Limited marking is available through the 

use of bookmarks which record URLs. Video on the Web is treated as it is in the Generic 

Browser i.e. as indivisible chunks which are "played" by the browser application. 

One avenue of research would be to consider how the facilities offered in the Generic 

Browser could be offered on the Web. For example, paths could be used to fonn 

structures of URLs. This would allow guided tours around the Web. 

From the Generic Browser perspective HTML techniques could allow hypertext support 

within the Generic Browser. Rather than URLs embedded in the text, frame names could 

be used instead. A modified interpreter could then present the text as on the Web and when 

the user clicked on the hot words another frame of text could be displayed. 

Sun Microsystem's newly released "Java" programming language [Sun 1995] offers the 

possibility of "active" documents i.e. ones which contain code that will be executed on the 

user's machine rather than just relying on the user's browser to provide access to the 

information. Perhaps the Generic Browser facilities could be implemented in the "Java" 

programming language. This would allow self browsable documents which could contain 

paths and search facilities. 

11.5 Summary 

The potential for further research work on and stemming from the Generic Browser has 

been shown in this chapter. The Generic Browser forms a foundation onto which more 

complex models can be built, to integrate video for example. The world of multimedia and 

in particular that part which serves the consumer market will not stand still and, if it is to 

remain relevant and lead the development process, neither can the research activity. The 

consumer market is a challenging arena because it has a strong tendency to be led by the 

technology. Research must continue to strive to redress this balance. 
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Glossary 

anchor 

at end 

at start 

CLUT 

current frame 

An anchor is the source of a link in hypertextlhypennedia 

systems. 

"at end" is the behaviour of the path navigation function 

gb _next_on-path at the end of the path. 

"at start" is the behaviour of the path navigation function 

gb-previous_on-path at the start of the path. 

Colour lookup table is a technique used in computer 

graphics systems whereby a selection of colours (usually 

expressed as the number of bits assigned to record each 

entry - thus 8-bit gives 256 colours, 7-bit 128 and so on) are 

stored in a table. Indexes to the table are stored for each 

pixel in the display buffer. 

At anyone time, a single frame will be the focus of the 

application and this is referred to as the "current frame". 

current link relation The current link relation is the relation used by the 

gb -previous and gb _next functions. 

current frame on 

path 

current path 

DYUV 

frame base 

The name of the current frame on the path is known as the 

"current frame on path". This can be viewed as a pointer 

into the path list. The gb_next_on-path and 

gb -previous_on-path functions move this pointer within the 

list and hence change the "current frame on path". 

The name of the path currently being browsed is known as 

the "current path". If no path is being browsed this is the 

name of the last one browsed. The current path is changed 

by gb ~oto -path. 

Delta YUV is a coding scheme used to compress the 

infonnation required to display tv quality pictures. DYUV is 

used in CD-i. 

A collection of frames is generally known as a frame-base. 
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history 

inheritance 

inner product 

A special path (called history) in which all frames visited 

using Generic Browser functions are recorded. 

In a frame system, inheritance allows default values in a 

class structure to be held in parent nodes and inherited by 

siblings lower in the hierarchy. 

~ cat 

num-Iegs 4 

Paddington Mannaduke 

instance instance 

colour black/white colour marmalade 

Figure 86. An Inheritance Hierarchy. 

In the diagram above information common to all cats is 

stored in the cat frame and inherited by the instances. Thus 

Padding ton would inherit four legs, as would Marmaduke .. 

(get-value 'Paddington 'num-legs) 

would return 4. 

The inner product is a vector similarity measure used by the 

vector search function in the Generic Browser. 
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marking The facility for putting a mark on an information item is 

known as marking. It is used to indicate an item that is of 

interest. The use of different marks allows the database to 

be divided up into various sets. The Generic Browser 

allows browsing of such marked sets. For some purposes it 

is desirable to associate a value with a mark. An example of 

this might be a preference rating for items being browsed. 

An application can then make use of this extra information to 

produce sorted subsets for further browsing. 

navigation Navigation is the process of moving the application's focus 

around the frame base, changing the current frame. 

path An ordered list of items that can be browsed with 

previous/next functions (i.e. in a linear fashion) is known as 

a path. An item can appear in a path any number of times. 

Paths are used purely for navigation. 

The Generic Browser maintains various pointers into the 

network of browsable items. The most important of these 

are the current frame and the current path. In addition, the 

position within any marked set, marked set, or on any path, 

is also maintained and updated when the relevant navigation 

functions are called. In order that applications can allow 

their users to retrace their steps, a simple history mechanism 

is provided with a gb~o_back function that backtracks 

through the frames already visited. 

path frame A path frame is the actual frame containing the path 

information such as the actual list of items on the path (the 

path list), a pointer to the current path frame within that list 

(current frame on path) and information that enables the 

navigation functions gb_next_on-fJath and 

gb-fJrevious_on-fJath to know what to do at the start and 

end of the path. 

path list The actual list of data frames on a path is known as a path 

list. 

pixel A pixel is single point on a screen display. 
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weight A value attached to a characteristic or query tenn to modify 

that terms contribution to a search is known as a weight. 
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Appendices 

A CD-i - A Typical Consumer Multimedia Platform 

An important objective of this work is to demonstrate its suitability for implementation on 

the types of multimedia machine sold for use in the home. To this end all the 

implementation work has been carried out on CD-i hardware. To give the reader a better 

appreciation of the capabilities of such platforms the specification of the CD-i player is 

detailed below. The CD-i hardware, disc format and system software are defined in a 

standard document known as "The Green Book" [Philips & Sony 1990].42 

A.I CD-i Disc Format 

Before describing the CD-i hardware it is important to provide details of the disc format 

which is also part of the CD-i standard. 

capacity 

A CD-i disc can hold a maximum of 650M bytes of data. This could b~ 

100 million words 

250,000 pages of A4 text 

72 minutes of MPEG video 

72 minutes of CD-DA music 

19 hours of speech quality audio 

7000 full colour natural images (DYUV) 

120,000 graphics screens (CLUT) 

or a proportional mix of any of these. 

tracks and sectors 

A disc is made up of tracks. These form a spiral on the disc surface. There is a maximum 

of 99 tracks on a CD-i disc and these can be of two types: data or CD audio. Each track is 

made up of sectors each of 2352 bytes. The data in a sector can be anyone of five types -

audio, video, data, empty (used for packing in real time files) and message (used to warn 

CD-DA users that a CD-i disc must not be played in a CD audio player). 

The data on the CD is random access but the seek times can be quite long. The Green 

Book defines a maximum of three seconds to seek from the edge of the disc to the centre. 

42For further infonnation on the CD-i hardware and the CD-i authoring process see also [Philips IMS 
1992a, Philips IMS 1992b & Philips IMS 1992c]. 
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(In practice most players achieve a better seek time than thI'S) The st d d 1 
. . . an ar a so guarantee 

that wIthIn any 20M bytes the seek time will be less than a second. 

The data rate from the disc is 172k bytes per second. This data stream can be divided into 

up to 32 channels, up to 16 of which can be used for audio. 

interleaving 

This channel structure is the key to interleaving. Data in different channels can be mixed 
sector by sector, on the disk. 

audio sectors 

data stream 

video sectors 

Figure 87. Interleaved data. 

This means that, for example, audio can be played as a picture is being loaded. Here the 

audio, B stereo for example, takes 4 channels. The picture data uses another channel. 

Interleaving makes it possible for different audio standards to be used on a single disc 

allowing lower quality (less disc space) for speech whilst a higher quality is used for 

music. Parallel audio tracks can be used applications such as multilingual discs and 

seamless cuts are possible between audio channels. 

real-time files 

, 

Another important optimisation used in CD-i is the provision of the so-called real-time file. 

In an ordinary file system such as that used with a CD-ROM [ISO 1988], the disc looks to 

the system like any other peripheral device and the files on the disc are accessed through a 

directory structure. For multimedia this has the disadvantage that whenever a different file 

is accessed the directory must be consulted for the file information to allow the seek to be 

made. This slows down disc access which for slow devices such as CD drives i 

significant. Real-time files are not read as in conventional filesystems but are 

asynchronously streamed into specially allocated memory buffers. 
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A.2 Player Architecture 

The "base-case" CD-i player has a 10MHz 68000-based CPU with 1M bytes of RAM and 

8k bytes of non-volatile RAM. The CD can store 650M bytes of data accessed at 172k bit 

per second. There are four video planes: a background plane (used for digital video), two 

foreground planes (which can display a variety of different formats including CLUT 

graphics and DYUV coded natural images) and a cursor plane. CD-i audio is ADPCM 

coded to a variety of quality levels in either mono or stereo. 

The CD-i player runs a version of the OS-9 operating system called CD-RTOS. This is a 

real-time, multi-tasking operating system similar in character to UNIX. 

functional blocks 

DMA 
controller 

CPU 
68070 

RAM 

ROM 

NVR 

,....--

--~ 

system bus 

CD 
interface 

CD-DA 
decoder 

audio 
processor 

video 
processor 

pointing 
device 

clock! 
calendar 

-----CD disc 

speakers 

screen 

Figure 88. The functional units comprising a CD-i player. 

As the data is read off the disc the system determines what type of data is in the sector 

(from the sector header). The data is then either passed immediately to the audio decoder or 

DV decoder or buffered in the player's memory ready for use by the application. CD-DA 

data is passed to the CD audio circuitry whilst ADPCM audio is decoded through its own 

decoder. The video decoder handles all picture data except DV. The player's RAM is u ed 

to hold the application software, sound maps, fonts, video images and graphics. 
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screens and planes 

The CD-i display hardware has four planes. All the planes are displayed simultaneously 

with only the relative positions of planes A and B being switchable. The plane closest to 

the cursor plane is known as the front plane, the one behind it, closest to the background 

plane, is known as the back plane. 

r 

r 

r 

'-

~ 
'-

plane A or 8 
~"-

plan e 8 or A 

'" 

r 

"-

background plane 

/ backplane 

/ 
'" 

'" 

front plane 

/cursor plane 

/ 
'\ 

./ 

Figure 89. CD-i Plane Structure. 

Information on underlying planes is revealed by the use of transparent areas on the planes 

above. Thus to see a DV movie both planes A and B are made transparent. If VCR 

controls are required these are drawn on plane A or B. The cursor plane is transparent 

except for the cursor itself. 

A wide range of video effects are availably using either planes A or B or both. 

Single plane effects: 

Cuts - the image is changed instantaneously to another. 

Partial updates - not all the screen need be changed. 

Scrolling - the image can be larger then the display. In this case horizontal and/or vertical 

scrolling are provided. 

Mosaic effects - an effect where the image can be filtered into larger and larger blocks. 
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Fade up or fade down - the intensity of the image can be modified allowing fades up 
from or down to black. 

Two plane effects: 

Dissolve or cross fade - here the image on one plane is dissolved with the image on the 

other so if plane A is being displayed, a dissolve will end up with plane B and vice versa. 

Cut - an instantaneous swap between which plane is front. 

Wipes - the back plane is revealed top to bottom or left to right or bottom to top or right to 
left. Variations on this theme are: 

curtain - here the reveal either starts at the sides and progresses inwards (closing) 

or vice versa (opening). 

blind - the image is divided into horizontal stripes each of which does a top to 

bottom wipe. 

square - the back image is revealed from all the sides inwards or from the centre 

outwards. 

Transparency 

video 

chroma key - here a specified colour is made transparent. Wherever this colour 

appears in the image on the front plane, the image on the plane below is visible. 

mattes - here a specified region (of any shape) on the front plane is made 

transparent. 

The maximum screen size (normal resolution43) is 384 x 280 pixels (107520 pixels). 

Within this is a so-called safety area which is guaranteed to be displayed on any properly 

adjusted television. Important information or interaction objects should not lie outside the 

safety area. Because CD-i can be used in both PAL and NTSC environments a 

compromise called compatibility mode is generally used for discs which must play in both 

environments. 

43CD-i can display at "double resolution" which doubles the number of pixels horizontally and "high 
resolution" which doubles both horizontal and vertical giving 768 x 560 (interlaced). 
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maximum screen 
. 

safety size area 

PAL 384 x 280 320 x 250 

NTSC 360 x 240 320 x 210 

Compatibility mode 384 x 280 320 x 210 

Table 5. CD-i screen sizes. 

Considerable flexibility is provided by a range of image coding methods designed to give 

maximum image compression and quality for differing types of image. 

RGB 5:5:5 - this coding method gives no compression. 32,767 colours are available 

with a colour value being stored for each pixel. Each image consumes about 200k. This 

method is used for high quality natural images. It requires both planes A and B for a single 

tmage. 

DYUV - delta luminance colour difference. With this coding method each image is 

compressed to about 90k. It is best suited to natural images. The differences between 

pixels, line by line, are stored because the eye is more sensitive to changes in luminance 

(brightness) than chrominance (colour). 

CLUT - colour look up table. This method is best suited to graphics images. It comes in 

three flavours - CLUT8, CLUT7 and CLUT4 depending on the number of bits used to 

store the clut index. Thus CLUT8 offers 256 colours, CLUT7 128 and CLUT4 16 colours 

all from a palette of 16 million. CLUT7/8 images consume about 90k bytes per image. 

CD-i players can have a different clut for each line of the picture (though this must be 

traded off against the memory required for the cluts). 

RLE _ run length coding is used where there are large blocks of a single colour in the 

image such as cartoons. It records the colour and the number of pixels of that colour. For 

cartoon-type images the compression leads to images taking about 10k bytes. 

QHY _ quantised high-resolution Y (luminance). This method uses both planes (A and B) 

to improve the sharpness of DYUV images. 

CD-i allows the image coding method to be specified on a line-by-line basis so that the 

screen can be split into a number of horizontal bands of different coding types. This might 

be used to have sub-titles to DYUV encoded images displayed using CLUT7 which is 

better suited to text. 
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digital video 

A digital video cartridge is available for CD-i players. This has O.5M bytes of RAM for 

video buffering and an extra 1M byte of RAM available to the system. The cartridge allows 

MPEG 1 encoded video to be played from the CD onto the background plane. 

audio 

To complement the video flexibility CD-i offers a range of audio quality levels. The 

application designer can trade-off fidelity for disc space. 

level Sampling data rate channels fraction of total time per quality 

rate disc disc (hours) 

bandwidth 

CD-DA 44.1 kHz 20 kHz I stereo 111 1.2 CD audio 

CD-i ADPCM 37.8 kHz 17 kHz 2 stereo 112 2.4 new LP, no 

level A hiss 

4 mono 114 4.8 

level B 37.8 kHz 17 kHz 4 stereo 1/4 4.8 FM radio 

8 mono 1/8 9.6 

level C 18.9 kHz 8.5 kHz 8 stereo 1/8 9.6 AM radio 

16 mono 1116 19.2 

Table 6. CD-i audio formats. 

As well as playing audio direct from disc CD-i can place the sound data into a memory 

buffer called a soundmap. This can then be played on-demand without further access to the 

disc. One second of level A audio needs 80k bytes of memory, one second of level C 

audio 10k bytes. Soundmaps are often used for the "clicks" associated with pressing a 

button. 

B Generic Browser Functions 

This appendix lists the functions implemented in the final version of the Generic Browser. 

For each function the syntax is shown followed by a brief description of what the function 

does. 
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B.t Function Arguments 

The parameters to all Generic Browser functions must be pointers (char *) to null 

terminated strings. The function descriptions use the following abbreviations: 

c the name of a class, 

f the name of a frame, 

m the name of a mark, 

p the name of a path, 

q the name of a query frame, 

r the name of a relation, 

s the name of a slot, 

v a value. 

All print functions send their output to stdout. Lists are printed with the start of the list on 

the left. 

B.2 Relation Functions 

#include <gb.h> 

char *gb_get_link_relation( 

gb ~et_Iink_relation returns the current link relation or NULL if there isn't one. 

#include <gb.h> 

void gb_new_link_relation( r ) 

char *r; 

gb_new_link_relation makes the current link relation r. 

#include <gb.h> 

char *gb_next( ) 

gb _next makes the current frame the frame reached by following the current link relation. 

gb_next return TRUEV AL if it is successful, NULL if it fails. 
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#include <gb.h> 

char *gb-previous( 

gbyrevious makes the current frame the frame reached by following the inverse of the 

current link relation. gbyrevious returns TRUBV AL if it is successful, NULL if it fails. 

gbyrint_link_relation prints the name of the current link relation as set by 

gb _new_link_relation. 

B.3 Path Functions 

gb_add_toyath adds the current frame to path p. The frame is inserted immediately before 

the current frame on path. 

void gb_create-path( p, path_list) 

char *p; 

char *path_list; 

gb_createyath generates a new path frame p with path path_list. 

void gb_delete-path( p ) 

char *p; 

gb_deleteyath deletes the path frame p. 

gb~et_allyaths returns the names of all the paths in the frame base as a Cframes list. If 

there are no paths in the frame base, NULL is returned. 
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char *gb_get_at_end( p ) 

char *Pi 

gb-$et_at_end returns the "at end" value for pathp. Valid values are "stop" which means 

that nothing happens when gb _next_on-path is called at the end of the path; "restart" 

causing a circular path, and "goto frame" which makes the current frame frame when the 

end of the list is reached. If p does not exist or is not a path, NULL is returned. 

char *gb_get_at_start( P ) 

char *Pi 

gb -$et_at_start returns the "at start" value for path p. Valid values are "stop" which means 

that nothing happens when gb-previous_on-path is called at the start of the path; "restart" 

causing a circular path, and "goto frame" which makes the current frame frame when the 

start of the list is reached. If p does not exist or is not a path, NULL is returned. 

char *Pi 

gb-$et_currentJrame_on-path returns the "current frame on path" from path p. If p does 

not exist or is not a path, NULL is returned. 

gb-$et_current-path returns the current path or the last path visited if not currently on any 

path. 

char *gb_get-path ( P ) 

char *Pi 

gb-$et-path returns the names of all the frames on the path p, in order, as a Cframes list. 

If p does not exist or is not a path, NULL is returned. 
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void gb_goto-path( P ) 

char *Pi 

gb-$oto-path makes p the current path. The "current_frame_on_path" of the old path is 

maintained and will become the current frame if gb-$oto-path is used to return to this path. 

If p does not exist or is not a path, nothing is done. 

void gb_new_at_end( P, v ) 

char *Pi 

char *Vi 

gb _new _at_end sets the "at end" value for path p to v. Valid values are "stop" which 

means that nothing happens when gb_nexCon-path is called at the end of the path; "restart" 

causing a circular path, and "go to frame" which makes the current frame frame when the 

end of the list is reached. 

void gb_new_at_start( P, v ) 

char *Pi 

char *Vi 

gb_new_at_start sets the "at start" value for path p to v. Valid values are "stop" which 

means that nothing happens when gb-previous_onyath is called at the start of the path; 

"restart" causing a circular path, and "goto frame" which makes the current frame frame 

when the start of the list is reached. 

char *Pi 

char *path_listi 

gb _new -path makes path_list the path for path frame p. 

gb _next_on-path sets the current frame to the next frame on the current path. The 

behaviour of this function at the end of the path is defined by the "at_end" value for the 
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path. By default paths are circular i.e. the path is restarted when the end is reached. 

Returns TRUEY AL if successful, NULL on failure. 

char *gb-previous_on-path( 

gbyrevious_onyath sets the current frame to the previous frame on the current path. The 

behaviour of this function at the end of the path is defined by the "at_start" value for the 

path. By default paths are circular i.e. the path is restarted at the end when the start is 

reached. Returns TRUEY AL if successful, NULL on failure. 

gbyrint_allyaths prints out a list of all the paths in the frame base. 

char *p; 

gb_print_at_end prints the "at end" value for path p. 

char *p; 

gbyrint_at_start prints the "at start" value for path p. 

void gb-print_current_frame_on-path( p ) 

char *p; 

gbyrint_currentJrame_onyath prints the name of the current frame on path p. 

void gb-print-path( P ) 

char *p; 

gbyrintyath prints the names of the frames on path p. 
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void gb_remove_from-path( p ) 

char *p; 

gb_removeJrom-path removes the current frame from path p provided that the application 

is "on path" p i.e. the "current frame on path" is the current frame. If p does not exist or is 
not a path, NULL is returned. 

B.4 Mark Functions 

void gb_delete_all_marked( m ) 

char *m; 

gb_delete_all_marked deletes the mark m (and its values) from all frames. 

char *m; 

gb_delete_mark deletes mark m (and its value) from the current frame. 

char *m; 

gb-.$et_mark_value returns the value of mark m in the current frame. If no such mark 

exists on the current frame, NULL is returned. 

char *m; 

gb -.$et_all_marked returns a list of all the frames marked with mark m. If there are no such 

frames, NULL is returned. 
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void gb_rnark( rn, v ) 

char *rn; 

char *v; 

gb _mark marks the current frame with mark m and associates value v with this mark. 

char *gb_next_rnarked( rn ) 

char *rn; 

gb_next_marked makes the current frame the next in the list of those with mark m. Note 

that this list is "circular". Returns TRUEV AL if successful, NULL on failure. 

char *gb-previous_rnarked( rn ) 

char *rn; 

gb-previous_marked makes the current frame the previous in the list of those with mark m. 

Note that this list is "circular". Returns TRUEV AL if successful, NULL on failure. 

char *rn; 

gb -print_all_marked prints the names of the frames with mark m. 

void gb_unrnark( rn ) 

char *rn; 

gb_unmark removes mark m (and its value) from the current frame. 
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B.S Basic Search Functions 

char *gb_find_all_frarnes( s, v ) 

char *s; 

char *v; 

gb Jind_allJrames returns a list of all frames in the frame base which have a slot s where 

the value v appears as one of the values in this slot. If there are no such frames, NULL is 
returned. 

char *gb_find_all_frarnes_in_class( c, s, v ) 

char *c; 

char *s; 

char *v; 

gb Jind_allJrames_in_class returns a list of all frames in the frame base which are in class 

c and have value vas one of the values in slot s. If there are no such frames, NULL is 

returned. 

char *rn; 

char *s; 

char *v; 

gbJind_all_markedJrames returns a list of all frames in the frame base which are marked 

with mark m and have value v as one of the values in slot s. If there are no such frames, 

NULL is returned. 

char *s; 

gbJind_allJrames_with_slot returns a list of all frames in the frame base which have slot 

s. If there are no such frames, NULL is returned. 
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char 

char 

char 

*s; 

*v; 

*m' , 

gb _mark_allJrames finds all frames in the frame base which have value v as one of the 

values in slot s and marks them with mark m. 

void gb_mark_all_frames_in_class( c ) , s, v, m 

char *c; 

char *s; 

char *v; 

char *m; 

gb _mark_allJrames_in_class finds all frames in the frame base which are in class c and 

have value v as one of the values in slot s and marks them with mark m. 

B.6 Vector-Space Search Functions 

void gb_vector_search_class( c, s, q, m) 

char *c; 

char *s; 

char *q; 

char *m; 

Does a vector search on all the frames in class c using query q and marking the result with 

mark m (marked with the similarity measure). Note that search terms are held as values in 

slot s (in both the data frames and the search query frame q). s may be a list, in which case 

each slot in the list is used for searching. The inner product similarity measure is used. 

Weighted terms are not supported. 
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gb_ vector _search_marked( ) 

void gb_vector_search_marked( ml, s, q, rn2 ) 

char *ml; 

char *s; 

char *q; 

char *m2; 

Does a vector search on all the frames marked with ml using query q and marking the 

result with mark m2 (marked with the similarity measure). Note that search terms are held 

as values in slot s (in both the data frames and the search query frame q). s may be a list, 

in which case each slot in the list is used for searching. The inner product similarity 

measure is used. Weighted terms are not supported. 

B.7 History Functions 

gb_add_to_history adds the current frame to the history path. The following functions 

update the history when they are called: 

gbJotoJrame() 

gb_next() 

gb yrevious() 

gbJotoyath( ) 

gb_next_onyath( ) 

gbyrevious_onyath( ) 

gb _next_marked() 

gbyrevious_marked( ) 

gb _clear _history deletes the contents of the history path. 

gb Jet_history returns the history path as a Cframes list. 
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gb--$et_history_status returns TRUEV AL if history recording is switched on, NULL 
otherwise. 

gb--$o_back retraces one step back through the history list. This function treats the history 

like a stack, removing the last location visited each time it is called. Obviously the changes 

to the current frame resulting from calling the gb --$0 _back function are not recorded in the 

history. 

gb _history _off switches off the history recording mechanism. 

gb_history_on switches on the history recording mechanism. All changes to the current 

frame (except those caused by gb~o_back) are recorded in the history path until 

gb_history _off is called. 

void gb-print_history( 

gb -print_history prints, in reverse chronological order, the names of those frames visited. 

B.8 Miscellaneous Functions 

gb--$et_currentJrame returns the name of the current frame. 
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gb_goto_frame( ) 

void gb_goto_frame( f ) 

gb-$otoJrame makes f the current frame. 

gb_print_current_frame( ) 

void gb-print_current_frame( 

gb yrint_currentJrame prints the name of the current frame. 
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