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Abstract

ABSTRACT

The method of using Fuzzy Sets Theory(FST) and Fuzzy Reasoning(FR) to aid

reliability evaluation in a complex and uncertain environment is studied, with special

reference to electrical power generating system reliability evaluation.

Device(component) reliability prediction contributes significantly to a system's

reliability through their ability to identify source and causes of unreliability. The main

factors which affect reliability are identified in Reliability Prediction Process(RPP).

However, the relation between reliability and each affecting factor is not a necessary and

sufficient one. It is difficult to express this kind of relation precisely in terms of quantitative

mathematics. It is acknowledged that human experts possesses some special characteristics

that enable them to learn and reason in a vague and fuzzy environment based on their

experience. Therefore, reliability prediction can be classified as a human engineer oriented

decision process. A fuzzy knowledge based reliability prediction framework, in which

speciality rather than generality is emphasised, is proposed in the first part of the thesis.

For this purpose, various factors affected device reliability are investigated and the

knowledge trees for predicting three reliability indices, i.e. failure rate, maintenance time

and human error rate are presented. Human experts' empirical and heuristic knowledge are

represented by fuzzy linguistic rules and fuzzy compositional rule of inference is employed

as inference tool.

Two approaches to system reliability evaluation are presented in the second part of

this thesis. In first approach, fuzzy arithmetic are conducted as the foundation for system

reliability evaluation under the fuzzy envimnment The objective is to extend the underlying

fuzzy concept into strict mathematics framework in order to arrive at decision on system

adequacy based on imprecise and qualitative information. To achieve this, various

reliability indices are modelled as Trapezoidal Fuzzy Numbers(TFN) and are proceeded by

extended fuzzy arithmetic operators. In second approach, the knowledge of system

reliability evaluation are modelled in the form of fuzzy combination production rules and

device combination sequence control algorithm. System reliability are evaluated by using

fuzzy inference system. Comparison of two approaches are carried out through case

studies.



Abstract

As an application, power generating system reliability adequacy is studied. Under

the assumption that both unit reliability data and load data are subjectively estimated, these

fuzzy data are modelled as triangular fuzzy numbers, fuzzy capacity outage model and

fuzzy load model are developed by using fuzzy arithmetic operations. Power generating

system adequacy is evaluated by convoluting fuzzy capacity outage model with fuzzy load

model. A fuzzy risk index named "Possibility Of Load Loss" (POLL) is defined based on

the concept of fuzzy containment The proposed new index is tested on IEEE Reliability

Test System (RTS) and satisfactory results are obtained

Finally, the implementation issues of Fuzzy Rule Based Expert System Shell

(FRBESS) are reported. The application of ERBESS to device reliability prediction and

system reliability evaluation is discussed.
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Chapter One

INTRODUCTION

1.1 Introduction

The ultimate output of any system is the performance of some intended function.

This function may be described by some system output characteristic, such as satisfactory

supply to meet load demand in a power generating system. The term often used to

describe the overall capability of a system to accomplish its mission is system

effectiveness. The system effectiveness relates to the property of system output which is

the real reason for buying the system--namely, carrying out of some intended function.

Of the major attributes of determining system effectiveness, the one that received the

thost thorough and systematic study in recent years is reliability.

Since World War II, the reliability problem has become so acute in designing

complex systems such like space shuttle, nuclear station etc., for the reason that the

failure of these systems will result in severe consequences. Therefore, the traditional

deterministic (qualitative) reliability evaluation can no longer meet the requirement of

modern reliability evaluation. The quantitative reliability evaluation is needed . All

techniques of reliability evaluation are concerned with future behaviour of a component

or system. The time scale of future behaviour may vary between a matter of seconds, or

several decades. Hence, the reliability problems are defined as stochastic in nature, i.e., it

varies randomly with time. Probability theory has been brought into the area of reliability

evaluation, because the complete assessment of a stochastic process can only be achieved

using probability techniques. Since then probability techniques has gained its unshakeable

stand in quantitative reliability evaluation, as a matter of fact, modern reliability is

defined under the name of probability.
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The challenge to the stand of rprobability theory in reliability evaluation came

from two directions: (1) The size and complexity of modern systems have increased so

rapidly. The relationships among its subsystems and components become more uncertain.

(2) the number of emerged system evaluation data increases rapidly. It becomes more

difficult to obtain these data objectively in terms of using statistical method. The human

experts' judgement play more and more important role in decision making, including

reliability evaluation.

1.2 The Uncertainty Problems in Reliability Evaluation

Probabilistic approach to reliability evaluation are based on the premise that

probability theory provides the necessary and sufficient tool for dealing with the

uncertainty which underlies the concept of reliability in decision analysis.

This premise has been 	 Uncertainty arises in many

forms in reliability evaluation. Traditionally, uncertainty is modelled based on

randomness only. However, recently fuzziness uncertainty has caught more and more

attention in reliability evaluation. The trend in current engineering application is to

combine the subjective (human expert judgement) and the objective (statistically

obtained) information together to yield an optimal decision which should be as close to

reality as possible.

The required human observations, descriptions and abstractions during the

modelling process are always a source of imprecision. A way to classify this imprecision

that leads to uncertainty or, in case of vague descriptions, to fuzziness is described in

figure i.i[76]. In reliability evaluation, the most often occurred situations in acquiring an

objective data from the data base can be concluded as: (1) insufficient (2) unavailable.

The analysis of system overall performance by means of reliability is of

evaluating the reliability indices[4, lO]. Hence, A system reliability index depends on the

components reliability index. The component reliability index is often regarded as basic

Introduction
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Source of imprecision
	

Mathematical models

inexact measurement
	

determinstic models

dom occunce	 stochastic model

vague descriptions	 fuzzy set model

Figure 1.1 Mathematical Models For Imprecision

index, or 'root' index. .In reliability evaluation, these root indices are usually obtained

from:- (1) laboratory test such like stress test; (2) past operating records. These data

must be collected by the utilities concerned for a reasonable length of time before any

meaningful conclusion can be made from them. However, this is not easily met

requirement in various situations mainly because of:- (1) system complexity. If a system

is large and complex, there appear various failure modes, and it is difficult to define an

event precisely [70].Hence it is difficult to collect appropriate data; (2)the probabilistic

repetitiveness underlies in the collected data about the system behaviour. Especially when

the effect of environmental factors and human behaviours are considered. e.g., software

debugging processes [69]; (3) the sample size of collected data. In many situations there

are only few data available. e.g. in the astronautica area only a few space shuttles have

been built thus only a small size of samples is available.

According to the probability theory, however, the term "probability" makes sense

in reality if and only if the following premises are satisfied:-( 1) a precisely defined event;

(2) a precisely defined probability distribution of the collected data; (3) a large size of the

sample data. As these premises are not encountered, the term "probability" makes

nonsense and therefore any calculated reliability indices based on such premises may be

completely mislead.
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Certainly, there are many other uncertainty causes, however the most often

occurred situation in planning and design stage, is that the unavailability of any statistic

data. Consider a newly installed core device of a nuclear reactor, it has no previous

service record, and it is too expensive to have it tested. Moreover, some reliability

parameters, such like human operator's error rate and failure caused by environmental

factors, are unable to obtain objectively--there has no certain probability distribution

fitted human behaviours.

In the case of the lack of objective information, reliability evaluation is forced to

depend upon the subjective estimation given by human experts. The functions performed

by the reliability engineers in reliability data acquiring process are best described as[56]

"Task shall focus on the provision of information essential to acquisition,

operation, and suppon management, including properly defined inputs for estimates of

operational effectiveness and ownership cost...ensuring...efforts to obtain management

data that is clearly visible and carefully controlled."

The human experts are able to give their judgement based on the past experiences and by

comparing the similar equipment. Even in the case that there are some objective data

available but are not sufficient, the subjective estimation given by the experienced

engineers can be the complement and contrast to the objective data.

However, there are two major difficulties for human being to make the judgement.

They are the complexity of the studied system and its inherent imprecision. The overall

environment of a system, for example a nuclear plant, is a complex arrangement of

dependent interlocking events. The cognitive overload on a person who must estimate

some important quantitative data for the entire system is staggering. More often than not,

a human being is forced to neglect a set of data. Unfortunately, this can result in the

ignoring of data ultimately important to the overall result, thereby providing a sub-

optimal (or even a totally wrong) estimation. Such a wrong estimation can be both costly

and dangerously.
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On the other hand, even if the problem due to complexity was solved, the other

problem of inherent imprecision remains to complicate the task of estimation. Suppose

that one is asked to estimate the probability of a component failure, the estimation given

is as "the probability of the component failure is 0.01" is very precise. However, if the

exact probability is something like 0.0 11, the estimation given is completely false.

The problem with the precise estimation of the probability of a component failure

is that it possesses only a pseudo-accuracy--it looks great to the casual observer, but it

fails to take into account perturbations that are possible in the real world—perturbations

that are in some sense likely, taking into account Titantic effect: "If something can

possibly go wrong, they will; if they can not possibly go wrong, they still will". These

real-world events are ignored in the "precise" analysis because it is unrealistic to estimate

the probability of a component failure---there just is not and never will be sufficient data

for such a mathematically precise estimate. In fact, the word "sufficient" itself is a

subjective measurement and has great fuzziness. Therefore, all one can reasonably

estimate is the possibility of such an event taking place, given the information that one

can have on hand or can reasonably assemble. Realising this inherent lack of precise and

complete data, it would seem (at least at first glance) that rather than estimating the

probability of a component failure as 0.01, it is really more accurate to say that the failure

probability is "approximately 0.01". In making this replacement of "approximate 0.01"

for a crisp value "0.01", we are sacrificing the "precision" of the numerical estimate to

gain the believability and confidence of an inexact, "fuzzy" estimate that is both more

realistic and easier to interpret. The limitations of subjective estimate can be overcome to

some degree if Fuzzy Set Theory and Fuzzy Reasoning are employed, as they are shown

in the later chapters of this thesis.

1.3 The Current Approaches To the Problem Solving

As the fact mentioned above that the source of information is mainly human

being---that implies the information is imprecise, incoherent, and in any case is
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incomplete. Because of this, the technique for representing these imperfect information,

and of the methods for handling them, plays a substantial role in the reliability analysis.

Developing a technique to handle the subjective information, the first attempt

was using the probability theory. On contrast to the objective probability, there is the so

called "subjective probability", which tried to avoid the difficulties of the concept of

frequency encountered in applying the theory (sufficiently many observations,

repeatability of experiments, and so on) by proposing probability as a measure of the

feeling of uncertainty. The numerical value of a probability is then interpreted as a

proportion to the sum an individual would be willing to give should a proposition that he

asserts proved false. For example, the proposition like " probability of tomorrow will rain

is 0.5" implies that there is half chance that "tomorrow will not rain". However, when the

proposition becomes "probability of tomorrow will rain is likely 03" either objective and

subjective probability turn out to be inadequate to deal with the situation. It seems to offer

too normality of a framework to take account of subjective judgement. This point has

been well discussed among references [20,65]•

A commonly known subjective probability technique is Bayesian method.

Bayesian technique involves the use of probabilities, which is only natural, since the

probability is thought of as the mathematical language of uncertainty. Two concepts are

used in this technique: prior probability and posterior probability. A prior probability is

first given subjectively for the truth of a proposition. When new information is available,

the prior probability is then updated to give the posterior probability of the proposition by

using Bayes aggregation formulaE24].

Bayesian method has been successfully applied to represent and process

uncertainty in an expert system called PROSPECTOR[25]. An expert system is regarded

as the embodiment within a computer of a knowledge-based component, from an expert

skill, in such a form that the system can offer intelligent advice or take an intelligent

decision about a Yrocessing function. A knowledge based system is an expert system

except that its knowledge level may not be regarded as expert skills. In a knowledge

based approach with a new architecture centred around a "knowledge base" and an"
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FI!ure 1.2 Structure Of A T ypical Exaert System

inference engine", the problem solving strategy will replace the software tradition of

"data+algorithm=program" I' knowledge+inference=system.

Any knowledge based system , from the pioneer MYCIN by Shortliffe in

1976E78] to the latest one, will inevitably encounter with the uncertainty problem in its

knowledge acquisition. representation and reasoning processes[ 3 1 1. Many methods have

been proposed and developed to handle the uncertainty in a knowledge based system. The

most commonly known methods are single value represented Bayesian and certainty

factor Shortliffe methods, two bounded values represented Dempster-Shafer method,

and many values represented fuzzy reasoning method.

1.4 The Proposed New Approach

As it has been stated in section 1.2 that much of the uncertainty which is intrinsic

in reliability analysis is rooted in the fuzziness due to the fact that many reliability source

data are estimated subjectively by human experts. Viewed in this perspective, then it is
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not satisfactory to apply classical probability theory to reliability analysis which Is under

the fuzzy environment, as it has been discussed in the previous section1

The newly emerged Fuzzy Set Theory (FST) calls into question the validity of

applying probability theory to an area where the subjective information is

dominated[ 8O,94]. Initiated by Zadel in 1965t921, FST has been developed as a

specialised branch of modem mathematical theory which can handle the vague concept

and soft data. The application of FST to the various subjects, such as industhal conliol,

electronics production, decision support system etc., has gained overwhelming success. In

Japan it has caught fuzzy logic fever148] in recent years. New products ranging from

auto-focusing cameras to hovering helicopter, from industrial assembly line to Japans

fastest train, are using fuzzy control algorithm alone. Table 1.1 gives a list of products

utilising fuzzy logic. Not only in Japan alone, FST has gained more and more attention in

many countries. A report described how "fuzzy thinking" works was published on the

recent issues of the Economist (see figure 13).

In applying the theory of fuzzy set and possibility to the analysis of real world

problems, it is natural to adopt the view that imprecision in primary data should, in

general, induce commensurate imprecision in the results of the analysis. It is basically

this view that motivated the introduction of the concept of a linguistic variable, that is, a

variable whose values are not numbers but words or sentences in a natural or synthetic

language. The theory of fuzzy sets provides a framework for dealing with such variables

in a systematic way and thereby opens the door to apply fuzzy knowledge based

techniques to reliability analysis.

By using FST, and the concepts and techniques of its two important ext nsi

fuzzy reasoning and fuzzy arithmetic, the new proposed approach to reliability ealuati*

is presented in the following chapters of this thesis. The objectives of the condied

works are as the following:
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Lnrrr
Elevator control Fuptec/bshiba Evaluates passenger traffic

to reduce waiting tens and
enhance car announcement

___________ ___________ accuracy

Golf diagnostic	 Marurnan Golf	 Selects best golf club loran
system	 lndMduale physique and

__________________ __________________ swing
Video camcorder

	

	 Santo Fisher/(non Determines best locus and
lighting when several objects

________________ ________________ am in piclum

Washing macnine	 Matsushita	 Senses quality and quantity
of t, load size, and labric

_________ _________ type, and adjusts wash cycle

Vacuum cleaner Matsushita Senses Iloor concElon and
dust quantity and adjusts
vacuum cleaner lTøor power

Hot water heater Matsushita Adjusts heating element to
correspond to temperature
and amount of waler being
used

Air conditioner	 Mitsubishi	 DetenThnes optimum con-
slant operating level to pre-
vent power-consuming on-

________________ ________________ off cycling

Television	 Sony	 Adjusts screen brightness.
coio. and contrast

Handhold computer Sony 	 Interprets handwritten input
___________ ___________ for data entry
Auto transmission	 Subaru	 SensesdrMngslylewlden-

gino load to select best gear
_____________ _____________ ratio
Stock trading	 Yarnaichi Secunties Manages stock pofllollos
program__________________ ________________________

Table 1.1 List of Some Products Utilisin! Fuzz y !

(1) The source of uncertainty in reliability evaluation shall be explored in depth. The

human reliability engineezs knowledge of acquiring the reliability source information

shall be studied and such knowledge shall be properly organised and represented in the

form that it can be processed by an inference engine.

(2) The research shall be conducted from the root level of a system analysis. In

reliability evaluation, it is to study reliability of each individual components (devices) in

the system, and explore the source of imprecision of devices reliability index.

(3) The reliability engineers knowledge of acquiring data, analysing system

configuration and processing devices index to evaluate a system reliabilit shall be

studied and modelled in order to develop a knowledge based reliability evaluation model.

(4) Such knowledge based model shall be able to evaluate system reliability under the

circumstance that some, or all reliability source index are fuzzy data. Therefore, the

proposed knowledge based system shall be regarded as an fuzzy inference system.

burcduciion
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Medium cool

Cold	 Cool	 Warm	 lot

Room temperature. 'C
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Fuzzy set theory allows a temperature to be a
partial member of more than one set.
Memberships need not add up to 100%. 17.5C i
100% 'just right' but 16.5'C is 60% just right
and 20% cool'.

-

.Blending the rules

A fuzzy controller has a set of rules for converting
membershi p of inout sets to outout sets. In this
case, temperature is converted to motor weed
according to five rules: 1 if cold then stop; 2 if
cool then slow; 3 if just right then medium; 4 if
warm then fast; 5 if hot then full-blast.

At 17.S'C, rule 3 is invoked 100%, and the motor
turns at 50rpm. At 16.5'c. though, rule 3 is
invoked Only 60% and rule 2 is invoked 20%.

rThe motor speed is finally worked Out by centroid
averaging. The two output sets (20% slow and
60% medium) are added together to form a new
set. The line that divides this set into two equal
areas corresponds to the new motor speed (in this
case 4Srpm). The motor slows down and the
room warms up.

% Stop 	Slow	 Medium	 Feot	 Fuli..b4

:c

Motor peee mm

S

Yo
Medium

Motor spep rpm

lJ	 Ao..g. eed di aim.

Mptor owed. rpm

Pry TM'. I! St K	 IeCc. Fi

Fi!ure 1.3 Demonstration Of" Fuzzy Thinkin Works (Quota From The Ecnisnnaict)

(5) The proposed system shall be able to offer maximum flexibility for human experts

to conthbute their knowledge. Hence, a linguistic based knowledge representation and

inference mechanism shall be considered.

(6) The proposed reliability evaluation method shall be extended to one of real

industrial application, such as power generating system reliability evaluation to test its

applicability.

1.5 Structure of Thesis

Chapter 2 briefly reviews some important concepts and techniques of probability

reliability evaluation. The concepts like component and system are distinguished. The

role of reliability indices is discussed. The basic techniques and procedures of reliability

introduction
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prediction are presented underlying the names of its three sub-tasks, i.e., device failure

prediction, device total maintenance time prediction and human operator error prediction.

The speciality consideration, that is, affects of situational factors on device reliability

performance are emphasised.

Chapter 3 further discusses the relationship between the situation factors and

device reliability performance. Some commonly emerged situational factors are identified

and their relationships with predicting reliability index are presented in the knowledge

tree form. The task of prediction is divided into two integrated parts: the basic estimation

and the adjustment by affecting situational factors. Based on these, a fuzzy knowledge

based model is developed to predict device failure possibility, device total maintenance

time and human error possibility. The prediction rules are represented as if-THEN fuzzy

production rule format. The inference mechanism is developed based on fuzzy

compositional rule of inference method. A case study is conducted in order to discuss and

describe the performance of the proposed model.

Chapter 4 is concerned with the methodology of combining the inferred individual

device reliability index to yield a system reliability criteria. Two approaches are

presented. In the first approach the concepts and techniques of fuzzy arithmetic are

employed. Fuzzy reliability index is modelled( or converted) as a parametric fuzzy

number. By using fuzzy arithmetic operations the probability reliability combination

rules are extended to fuzzy reliability domain and some fuzzy reliability index are

defined. Fuzzy system reliability can be calculated by using these fuzzy reliability

combination operations. In the second approach, a fuzzy knowledge based system

reliability evaluation model is developed. Device reliability index is modelled as a fuzzy

subset labelled by a linguistic term defined on a finite discrete universe of discourse.

Fuzzy reliability combination rules are represented in fuzzy production rule format and

reasoning sequence is controlled by a specially designed algorithm. Two cases are studied

in order to discuss the performance of both approaches.

In chapter 5 the proposed fuzzy reliability evaluation techniques are extended to

power generating system reliability evaluation. Both generating units reliability data and

introduction



chapter 1
	

page 22

load data are modelled as triangular fuzzy numbers. Using the concept of fuzzy

containment, fuzzy generating capacity model and fuzzy load model are convoluted to

give a fuzzy system risk criteria. A new fuzzy generating system reliability index is then

defined as Possibility Of Load Loss. The RTS system is conducted to test the proposed

new index.

Finally, chapter 6 describes the modules of the programmed FRBESS( Fuzzy

Rule-based Expert System Shell ). The implementation aspects of fuzzy knowledge

representation and inference are discussed. Algorithms for rule compilation, reasoning

sequence control and information process are also illustrated.

1.6 Summary

This chapter is an introductory presentation in which the problem of uncertainty in

reliability evaluation has been briefly discussed. It is concluded that the existing

• probability reliability evaluation techniques has grown out of the demands of modem

technology and particularly out of the experiences in World War U with complex military

system. The objectives of developing a new techniques have been pointed out, and the

structure of the thesis has been outlined to give a coherent presentation of this research.
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Chapter Two

Probabilistic Reliability Prediction - Concepts & Techniques

2.1 Introduction

In every day life, particularly in technical area people always have intuitive sense

of reliability of the objects, say, when one is going to purchase a product he will expect

that the product will be safe and reliable. A question which often arises is "how reliable

will the product be during its operating life?". In nature, the consideration is based on the

future behaviour of the product. This question can be answered, in part, by the use of

quantitative reliability evaluation. In consequence a considerable awareness has

developed in the application of such techniques in the design and operation of simple and

complex systems.

The quantitative evaluation of the future behaviour of a product ( or system) can

be achieved using probability techniques, since the event of failure is defined as

stochastic rather than as deterministic in nature, i.e., it varies randomly with time. For

instance, reliability prediction is a part of the overall reliability assessment process which

indicates future reliability performance quantitatively by means of using probability

techniques. However, it must be pointed out that probability theory alone cannot predict

the reliability of a system without a thorough understanding of this system, such as its

design, the way it operates, the way it fails, its environment and the stresses to which it is

subjected. It is in this aspect of reliability prediction that engineering judgement is

paramount and no amount of probability theory can circumvent it. Probability theory

therefore is only a tool available to the engineer in order to transform his knowledge of

the system into a prediction of its likely future behaviour.
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The basic principle and procedure of general reliability prediction model are

illustrated in this chapter. For this purpose, The underlying reliability prediction is

defined as it carries out through its three sub tasks: device failure prediction, device

maintainability prediction, and human error prediction. The presentation of this chapter

is not intend to be a rigorous mathematical discourse on reliability prediction nor is it

intend to cover all aspects of relevant probability theory used in reliability prediction in a

detailed mathematical manner. Rather, it is intend to outline the basic concepts in

reliability predictions which will be intensively used in the thesis.

2.2 Basic Reliability Concepts and Assumptions

There are many variations on the definition of reliability but a widely accepted

form[37] is as follows:

Reliability is the probability of a device pe,forrning its purpose adequately for the

period of time intended under the operating conditions encountered.

From the definition one can see reliability of a device depend on four major factors:

Probability, Adequate performance, Time, Operating condition. The probability of a

device failure is in deference under various working conditions. The criterion of adequate

performance is a matter of engineering appraisal and appreciation.

Reliability Prediction can be defined as the process of estimating adequate

performance of a system either quantitatively or qualitatively by means of the available

statistical information and the engineer judgement Among its subtasks Device Reliability

Prediction focus on the numerical index (normally through estimating its unreliability

index) which shall indicates how often a device is out of service in given time period.

For repairable system, Maintainability Prediction provides another quantitative index for

indicating the length of time a device is out of service. Human Error Prediction, on the

other hand, concerns the adequate performance of human operators when they are

operating the device. Reliability prediction contribute significantly to a system's
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reliability through their ability to identify source and cause of unreliability. The primary

purposes of reliability prediction are of 1) identify cause and effect of unreliability 2)

predict components and system reliability (or unreliability) either quantitatively or

qualitatively. 3) provide useful reliability information for feasibility evaluation.

Reliability allows action, maintenance and logistics planning.

2.2.1. The Concept of System, Component and Their Failures

Before approaching to prediction, it is necessary to define the term "component"

and "system", as well as the relationship between component and system failure.

The term "component" is defined as that from studied object viewpoint it is a

physical device at the lowest of hardware level of a system and it is not further dividable.

A system is a collection of components physically jointed together in such a manner that,

collectively, they perform a desired function or functions. If a system is capable of

atisfactory performing and it functions at the same point of time, it will continue to have

that capability until a significant change occurs in the operating characteristics of some

components, or a group of components. If component failure is said to occur when the

characteristics of as component, or a group of components, have changed to the point

where they exceed the limits within which the system functions are satisfactorily

performed, it is apparent that the system will fail whenever a component fails and

conversely, whenever the system fails, one or more components must have failed.

The relationship between component and system failure has been established, it is

evident that the reliability of a system is determined by the number of components it

comprises and by the reliability of these individual components. One of the basic problem

is predicting the reliability of a system, then, is determining the expected reliability of the

individual components- as they are applied in the system.

Within the definition of component failure stated previously, the reliability of a

component is determined by three facts: 1) the characteristic of the component at the
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beginning of the operating period of interest, 2) the characteristic limits which constitute

failure, and 3) the magnitude of the change occurring in three factors could be determined

for every component in a system prior to each period of operation, reliability could be

predicted precisely. In fact, the ability to predict individual failure as implied here,

suggests that all failures could be prevented with a resulting system reliability of 1.0.

Unfortunately, it is not possible to determine these factors for individual components. To

do so, it would require complete knowledge of the physics and chemistry of all failure

mode and in addition, it would involve a monumental task of analysis and

computation[37].Therefore, the usual approach to predicting reliability, and the approach

proposed in later sections, is necessarily simpler and less rigorous that suggested by the

preceding discussion.

For simplicity, the word "device" is used in this thesis in referring to all individual

components which are at the lowest hardware level of a system.

2.2.2 Definition of Failure Probability, Reliability and Maintainability

The best known and probably the most frequently used expression in reliability

engineering is the probability of a device surviving a given time period provide the device

is in normal operating period.

In general, the devices of a system can be divided into two categories: repairable

and unrepairable devices. The unrepairable devices are those which no longer be able to

put back to service after their first failure. Respectively, the repairable devices are those

which be able to put back to normal service after their failure, providing they have been

properly repaired. The criterion for these two type devices is different in definition.

An important index for studying unrepairable devices is the surviving time of

device from starting service to first failure, T. The surviving time of a device is in relation

to many factors: materials, manufacture process, installation process and operation
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condition. Therefore, the surviving time of a device is a non-negative stochastic variable

and it can be determined by its.probability distribution.

The distribution function of a device surviving in general is called failure

probability function F(t). It is defined as the probability of devices surviving time equal or

less than t. In other words, it means the probability of device fail from starting service to

time t. It can be expressed mathematically as

F(t)=P[T^t],t^ 0
	

eqn 2.1

This is a cumulative Probability Distribution Function (CDF). Similarly, the

probability of a device surviving time greater than time t is called the Reliability

Function of Device, R(t). R(t) can be defined as the function of time, that is,

R(t)=IjjT>t],t^O
	

eqn 2.2

obviously, R(t) and F(t) has the relation

-	 R(t) + F(t) = 1	 eqn 2.3

Another important index to measure the repairable devices reliability is the so

called maintainability M(t). It is defined as the probability that a failed system is restored

to operable condition in a specified down time t when maintenance is performed under

stated conditions. M(t) can be expressed mathematically

M(t) = P[T^ t],t ^0
	

eqn 2.4

2.2.3 Reliability Prediction via Basic Reliability Indices

It has been stated in the preceding section that Reliability of a device is defined as

the adequacy of the product to perform the specified function in the designed

environment for a minimum length of time or minimum number of cycles or events. Such

adequacy is measured numerically as a probability, so that the probability is the first

index of a device reliability.
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The "life" of an individual device cannot be determined except by running or

operating it for the desired time or until it fails. Obviously, one can not wear out all the

products to prove that they meet the specifications. This in turn means that the statements

regarding reliability must be in terms of probability of surviving the specified life with

satisfactory performance throughout. However, in practice it is very difficult to derive

probability distributions directly. Instead, reliability is normally stated via one or more

reliability indices (parameters) which are used as the criteria of adequacy for the different

applications. For example, Loss of Load Expectation is used to measure the adequacy of

generating capacity to meet load, and Mean Time to Failure can be used to measure the

adequacy of a computer software to serve users. Many of these reliability indices are

X(t)
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Figure 2.1 A Typical Failure Rate Curve

defined and used in reliability applications. In general, these indices take forms such as:-

(l)Probability measure, e.g. reliability and availability. (2)Frequency measure, e.g. failure

rate and repair rate. (3)Time measure, e.g. Mean Time Between Failure (MTBF) and

Mean Time To Repair (MTFR). (4) Expectation measure, e.g. Loss Of Load Expectation

(LOLE).

Reliability Indices are defined to indicate reliability performance of a device, and

are used to measure the performance quantitatively. The number of indices required to

measure performance sufficiently varies and is determined by the application to which a
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device is subjected. In general, for unrepairable devices, one index such like failure rate is

enough to measure the extent of a device reliability adequacy for normal operation, but

for repairable devices, in addition of failure rate, M1TR must be considered as well to

give a complete reliability assessment.

P

P
r
0
b
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y

Figure 2.2 Reliability and Failure Probability With Constant Failure Rate

Among various reliability indices there are some indices which are accessible,

measurable, and are used in the most cases, also from them other indices can be derived.

This type of indices are the so called "basic reliability indices" . Among them Failure rate

and Mean Time To Repair are the most important basic indices in reliability analysis.

Failure rate )(t) is defined as the conditional probability density of a device

surviving before time t. failure in units of time after t. It can be expressed as

X(t)=lim !-9jt<T^t+1t1T>t]
	 eqn23

It is clear to see that the smaller the A(t), the smaller the probability of a device failure

during the time interval [t, t+AtJ, and vice versa. Therefore, failure rate X(t) is an adequate

index for measuring device reliability. Failure rate X(t) of a device will increase, stable or

decrease respectively to various operating time periods. This is shown graphically in
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Figure 2.1 and is often referred to as the conventional bath tub curve. In reliability

analysis, most of interests lie on normal operating state, in which the failure rate is treated

as a constant and failure is assumed to occur purely by chance. In this thesis, unless

otherwise stated, device failure is assumed due to random failure.

If failure rate is a time independent constant , then reliability and failure

probability have exponential distributions. They can be determined using failure rate as

R(t)=e t	A>O,t^O
	

eqn 2.6

and

F(t)=l-e	 A>O,t^O
	

eqn 2.7

Figure 2.2 shows reliability and failure probability density function with constant failure

Ite.

A

up	 DownI
1'

Vumre 2.3 Two States Exchanges Diagram

A repairable device has two states during its service life, i.e., normal

operation(UP) and out of age(DOWN) as illustrated in figure 2.3. In fact it has a

constant failure rate, similarly to an unrepairable device being a constant during its

normal operation stage. Besides, it has another index to measure the extent of

maintenance and its effect, named repair rate y (t), this is defined as
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y(t) = lim L P[t <TD ^t+t4FD > t]
t-° it

eqn2.8

where Trj is duration of device being repaired. If repair time TD has exponential

distribution, similar to failure rate, repair rate Y is a time independent constant. Therefore

similarly to the case of failure probability, maintainability can be determined using repair

rate Y as

M(t)=1-e y>O,t^O
	

eqn 2.9

Although repair rate is an adequate index for predicting maintainability, the more popular

index is MTTR rather than Y• MTFR is defined as the expectation of repair time T • If

TD has exponential distribution then the relationship between MTTR and V can be

derived as

MTrR=-	 eqn 2.10

Once failure rate and MTFR are determined, other important indices can be

derived from them. These indices include Mean-Time-Between-Failure (MTBF) for

unrepairable devices, Availability and Unavailability for repairable device. Apparently,

Reliability , Failure Probability and Maintainability are also determined. The relationship

among indices are listed in Table 2.1. Briefly, apart from the probability, depend upon the

system and its requirement there are many more reliability indices calculated and used.

The term reliability is frequently used as a generic term describing all these indices rather

than being solely associated with the term probability.

2.3. The Procedures of Traditional Probabilistic Reliability Predictions

This section outlines some basic concepts and the procedures of traditional

probabilistic reliability predictions for device failure, maintenance and human operator

error.
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Repairable device	 Unrepairable device

	

Basic	 A(t) + Q(t) = 1	 A(t) + Q(t) 1
Relationship	 A(t)> 1)	 A(t) = R(t)

_____________	 Q(t) <F(t)	 Q(t) = F(t)

h(t) = A	 b(t)=A

	

-M	 -
Failure	 R(t) = e	 R(t) = e

	

PrOCeSS	
F(t) =1- et	 F(t) =1- et

f(t) =Ae	 f(t) XeM

MTBF =!	M1TF=!
______	 A	 A

m(t) = y	 m(t)=y=O

	

Repair	 G(t)=1-e"	 G(t)0

	

Process	
g( t) = t e	

g( t) = 0

	

1	 MTFR=oo
MTTR -

________________	 Y	 ____________________________

A(t)=_'' 
+

A etA+y A+y
A(t) = R(t) = e

Q(t) =	 [1-e"J	 Q(t) =F(t) = 1eM
Availability &	 A'oo = oUnavailability A - y -	 MTBF

A^yMTBF+MTrR	 Q(°°)=1

A	 MT1'R

= A + y = MTBF + MITR

A(t): Availability	 Q(t): Unavailability
R(t): Reliability	 F(t): Probability of failure
h(t): Failure rate function	 f(t): Failure density
G(t): Repair probability	 m(t): Repair rate function
MTrR Mean tune to repair 	 g(t): Repair density
A Failure rate	 MTBF: Mean tune between failure

y: Repair rate

Table 2.1 Relationships Among Reliability Indices

2.3.1. Device Reliability Prediction

The usual approach of reliability prediction, in general, can be divided briefly into

four basic procedures as illustrated in Figure 2.4. These procedures are discussed under

separate headings.
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System and failure definition

The initial step in a reliability prediction is to define the system. The term

"system" is used here to denote the particular collection of items to which a prediction

pertains. The task of defining the system, then, consists of explicitly describing the

functions and physical boundaries of the devices that constitute the system.

The term "failure" here is specified for the occurrence of any condition which

renders the system incapable of operating with its specified performance parameter limits.

The task of defining failure consists of listing or referencing the appropriate limits. This

task normally carries out by either Failure Mode Effects Analysis (FMEA) or Fault Tree

Analysis (FTA).

Construct Reliability Block Diagrams

A reliability block diagram may be considered as a logic chart which, by means of

the arrangement of blocks and lines, depicts the effect of failure of devices on the

system's functional capability. A sample reliability block diagram is demonstrated in

Figure 2.7. Device whose failure causes system failure are showing in series with other

devices, and device whose failure causes system failure only when some other devices

have also failed are drawn in parallel with the other devices. The task in constructing a

reliability block diagram can be done through either Failure Mode Effects Analysis

(FMEA) or Fault Tree Analysis (FTA). The task is to determine the complexity levels of

devices which are to be shown as separate blocks. Each separate blocks then is broken

down to its first-order subdivisions. This process of diagramming goes on until individual

block represents complexity of such an order that its reliability, or measures of

unreliability such as failure rate, can be readily predicted from device level thta.

Assign Preliminary Device Reliability (Unreliability) Measure

The procedure of estimate preliminary device reliability measures, e.g. failure rate

consists two steps. The first step is to conduct a stress analysis to determine from design

analysis, or measurement where possible, pertinent internal operating conditions like
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voltage, currents, power dissipation, etc., for each electronic device. Stress indices are

then calculated through comparison of operating conditions with rated values. The next

step is to assign failure rate, or other measure of reliability, to the individual devices. Two

types of information are combined to obtain preliminary failure rate, namely, the basic

Define the
System

Define Failure

failureMode&
Effect Analysis (FMEA)
fault Tree Analysis

Constiact
Reliability
Block Din

Modefled
Operation & Maintenance

	 Preliminary
Condition Analysis
	 Component

COMCA
	

Failure Rate

Computer System
Failure Rate

Figure 2.4 A General Device Reliability Prediction Diagram

failure rate and its stress adjustment rate of a device. The basic or standard failure rate is a

strong function of stresses which reflects the device design and production quality. The

data normally are obtained under the laboratory conditions, and are based on multi-

million operating hours accumulated in dozens of different types of systems and are over

a long term period. The basic failure rate is associated with some rated values such as the

stress boundaries, operating conditions of the test from which the basic failure rate is
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obtained. Another type of information, the stress adjustment rate, determined in the

preceding step. Preliminary failure rate therefore can be determined. One recommended

method to obtain adjusted preliminary failure rate tasks the form of an equation similar

t0E4]

xn =X o k, 	 eqn2.1l

where A is the adjusted preliminary block failure rate; X 0 is the basic failure rate; k1 is

the ith stress adjustment rate.

Modify Preliminary Device Reliability Measures

Preliminary failure rate is modified next to account for external environment

conditions. These use condition adjustment factors are determined through Operation and

Maintenance Condition Analysis (OMCA). The task of OMCA is to identify the

conditions under which the product will be stored, handled, transported and used. OMCA

should also include identification of possible misuse and maintenance practices. A

product may be used in many different environments. For instance, consider a telephone

equipment which could be placed in either the controlled environment of a centre office

or in an open field where extremely high or low temperatures may affect its operation.

Therefore, to predict reliability it must consider the different environmental factors to

which the product will be exposed. These environmental factors, except some cases such

as lunar surface operations, were obtained by comparing observed reliability with

predictions. As far as the observed data are indicative, the values selected are proper

adjustments for prediction of reliability that can reasonably be expected within the

"design state of art" and with the use of devices comparable to those presently available.

Mathematically, the modification for environmental factors are treated similarly to

the anticipated stress factors by multiplying its values on the pre-calculated preliminary

failure rate. Thus, the formula for final failure rate is in the form of

X nm = XOflK,	
eqn2.12
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where Xmn is the final adjusted failure rate; X0 is the estimated basic failure rate; K 1 is

the ith factor, m and n are the number of stress and environmental factors.

Compute System Reliabilir,'

Once the failure mode is identified, the fault-tree analysis is completed, the device

preliminary basic failure rate is estimated by considering basic failure rate suitably

Modified by anticipated electrical, thermal or other stress factors, and then further

modified by suitable factors related to the anticipated system environment, the system

reliability parameters can be estimated. System reliability is computed by entering

individual devices reliability parameters into the system reliability formula and solving

for the time periods Or mission phases of interest. The detailed system reliability

integration is further discusstd in section 2.5.

2.3.2 Maintainability Prediction

In the evaluation of a repairable system, the measure of maintainability is quite

important. How often the system fails (reliability) and how long it is down

(maintainability) are vital considerations in determining its worth. In practice, the trade-

off between these two concepts is dictated by lost, complexity, weight and operational

and other requirement.

Mean Time To Repair is the most frequent used parameter fOr maintainability

evaluation. In actual practice, however, it is to predict the total maintenance time for a

device in a specified time period. MTI'R is obtained if the total maintenance time and the

number of maintenance time interval are known, for MTTR is defined as the mean of the

total maintenance time. It can be expressed as

the total maintenance time
MTrR=

	

	 eqn2.13
the number of maintenance time interval

The same result can be obtained by using mathematical expectation, in which another

reliability index failure rate is used
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Figure 2.5 A typical Maintainability Prediction Dia2ram

xiti
MTTR= _____	 eqn2.14

xi

where tj is the maintenance time of the ith interval. The concept in predicting devices

total maintenance time is similar to the one in predicting failure rate. The prediction

consists of two parts: a test or operational record based basic estimation of total

maintenance time which reflects the allowable down time according to the design and
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production standard; and the actual maintenance condition adjustments. It was established

that any maintenance action can be classified as one of the following categories:- (1)

preparation. (2) Malfunction verification. (3) Fault location. (4) Part procurement. (5)

Repair. 6) Final malfunction test.

The time required to perform each of these categories varies from zero to several

hours, depending on numerous maintenance conditions associated with particular events,

weather, for example, causes great variations in time required for preparation. Other

adjustment factors include the skill level of maintenance personnel, their confidence and

familiarity with the device under repair, and even manner in which symptoms are

reported to them. This variability in performance time would limit the accuracy of any

maintainability prediction based on statistic.

The procedures of device maintainability prediction is presented in Figure 2.5.

The first step is to estimate the basic maintenance time in a time period, which is

normally stated by the supplier according to design and production specifications. This

basic maintenance time is adjusted thereafter in each maintenance categonsed based on

specified maintenance conditions to which a device is subjected. The sum of the adjusted

maintenance time is the total malfunction active maintenance time. The final

maintenance time is the sum of active maintenance time and adjusted maintenance

administrative time.

2.33 Human Error Prediction

Human Error rate Prediction (HERP) is still in its early age though it has evolved

over the years and seems to posses special interest to those involved in human error

analysis and prediction. The Nuclear Regulatory Commission has given considerable

emphasis to this technique in probabilistic risk assessment[371.

The current approach to HERP is mainly deterministic in nature and largely

depends on subjective estimations. The basic tool in applying HERP methodology is a

tree diagram representing the action taken by an device operator or maintenance to

complete a task. Probability values are assigned to each successive sub task success or
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sub task failure branch in the tree. These probability values are compounded in

accordance with the usual probability compounding principles to yield an estimate of

human error probability for the task under analysis. The procedure is analogous to

reliability determination for device on the basis of the reliability of the device.

One of the more interesting aspects of the technique is its incorporation of

"performance shaping factor" [14]• These are operator or maintainer and environmental

variables which influence the assigned probability of various points in the activity

sequence. Human operator variables are of mental or cognitive aspects of task

performance, such like competence, psychological stress, etc. Environmental variables

are of working condition aspects such as human interface, workload, weather, space etc.

These variables are treated as modifiers of complex human performance, and are

determined in a set of empirical models which addresses the relationship between these

variables and human performance by the correlation analysis. The final human error rate

is determined by combining the modifiers and the assigned rate.

2.4 Speciality Considerations in Reliability Prediction

Speciality Considerations are embodied through stress factors, maintenance

conditions and performance sharping factors which were discussed in the proceeding

sections. The term "situational factor" [14] is defined as a generic term describing all

these factors in this thesis.

Two concepts were permeated with reliability prediction: the basic estimation and

the situational factors. In the conventional reliability prediction the basic estimation is

calculated by human engineer based on the statistic method, therefore, the data is

probabilistic in nature. The validation of basic estimation depends on sample size, time,

data collection processing methodology of which a device is tested. The basic estimation

reflects the generality of device or human reliability performance.
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Reliability Prediction	 Stress Type	 Stress

Internal Stress	 Electrical	 Voltage, Current,

_______________ Power Dispatch

Thermal	 Heat

Mechanical	 Shock & Vtbrat1n

__________________ Temperature Cycling

_______________________ Chemical 	 Water

External Stress	 Weather	 Temperature, Humidity, etc

Location	 Pressure, Gravity,

_______________ Radiation, etc.

Maintenance	 Operating Time,

___________________ Practice Frequency

_______________ Installation	 Complexity

Table 2.2 Some Typical Stress Factors For Device Failure Prediction

Human Reliability Prediction 	 Performance Sharping Factors

Mental or Cognitive Effects 	 Competence

Psychological Stress

Education &Training Level

_______________________________ 	 Direct Field Experience

Environmental Effects	 Human Interface

Workload

Weather

Space

____________________________	 Interruption & Recreation
Table 2.3 Some Typical Performance Sharping Factors For Error Prediction

The situational factors, on the other hand, are estimated by reliability expeits

based on their engineering judgement in order to consider the affect of these fctois fl

reliability performance. Such estimation is subjective in nature and accordingly it is
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Maintainability Prediction

	

	 Maintenance Conditions

Weather

Confidence & Fami1iirity of
Maintenance

Detection Equipment Quality

Test Equipment Quality
Active Repair Time

Repairing Tools

Availability of Spare Parts

Complexity of Installation & Removal

Availability of Maintenance Record &
Device Manual

Maintenancer Training , Rest
Interruption & Recreation

Stock Planning
Administrative Time

Level of Maintenance

Transport Deployment

______________________	 Availability of Man Power

Table 2.4 Some Typical Maintenance Conditions For Maintenance Time Prediction

susceptible to human analyst influence. The situational factors are identified by both

human experts' empirical knowledge and the correlation analysis, and are determined by

comparison of their influences on the change of performance on a case by case base. The

situational factors reflect the speciality of device or human reliability performance.

Numerous situational factors are identified in Military Standards (MIL-STD) and

Military Handbook (MIL-HDBKS), as well as other text referenced in accordance with

various devices and the underlying tasks. For a particular device or an operator and its
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task under analysis, it focus on only a certain number of factors by which the stronger

influence imposes on reliability performance. Some of the commonly emerged factors

which are induced through this work are listed in Table 2.2,2.3, and 2.4.

3.5 System Reliability Combination

In general there are two major approaches to evaluate system reliability:-

(1)analytical method, and (2) simulation method. In this thesis The former method is

applied.

In the analytical approach, the method of system network diagram is widely used.

System network is constructed by a set of blocks and arcs which represent devices and

their links respectively. All device in a system network can be linked in a simple series

form, a parallel form, or a complex series-parallel mixed form. Logically, a system

network in series is that any device of the system failure will cause system failure.

Respectively, A system network in parallel is that only if all device of the system failure

will cause system failure. A simple series or parallel network is called the basic modeL A

basic model can be used to evaluate system reliability alone( e.g., system maintenance

demand) , or forms an input to the complex modeL A complex model is considered to be

a series-parallel mixed network and its calculation is made using the results of the basic

models as input.

The combination rules varies depending on whether two events are indepent,

mutually exclusive, complementary to each other, or one being a conditional event to

another, which are stated in all probability text references[4,9,lO,371. Lets assume the

events of failure and operating are mutually exclusive, and all device are Independent,

then for a series network model its reliability and failure probability can be calculated

from

	

= HR1
	 equ 2.i5

	

F3 = 1- R,	 eqn 2.16
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____________	 ______________	

Ps=PA(2Pc-Pc2)+
S	

[21'BC{' sec) 2][1-PA(2Pc-Pc2)J

figure 2.6 An Example of Calculating A Complex S ystem Reliability
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where Rj is the ith device reliability. Similarly, for a parallel system consists two devices

with reliability RA and RB it can be integrated as

R 8 = RA + R B - RA x R B	eqn 2.17

If there have more than two device in the parallel system then it is to have the remain

device reliability integrated with the calculated reliability Rs using eqn 2.17 and repeat

the process until all device are calculated. A complex model can be calculated by using

eqn 2.15 and eqn 2.17 in turn wherever they are applicable.

To illustrate how a complex model is evaluated a sample system is presented in

figure 2.6, which shows how a complex system reliability is calculated in a step by step

manner. In this example the symbol P stands for reliability.

Briefly, a system reliability calculation normally encounter a complex series-

parallel model. System maintenance is usually calculated as the product of each

individual device maintainability. Human reliability is normally treated as a parallel event

to a device reliability . Their product is the total reliability of a device.

2.6 Summary

In this chapter some of the fundamental concepts and techniques of device

reliability prediction required in this thesis for further studying have been introduced and

discussed.

The traditional probabilistic reliability prediction are divided into three sub

prediction processes: device failure, maintenance time and human error. The concepts and

procedures of each predictions are illustrated. It is believed that only if all three predictiOn

are conducted then a complete reliability indication can be obtained. Particular interest is

on the situational adjustment factors of reliability prediction which are identified and

weighted based on human engineer's judgement. This awareness forms the backbone for
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further research which are presented in the later chapters. Finally, in this chapter a system

reliability combination method is described and an example is given.

Probabilistic Reliability Prediction —Concevts & Techniaues



Chapter 3
	

Page 46

Chapter Three

Fuzzy Knowledge Based Device Reliability Prediction

3.1. Introduction

The discipline of reliability engineering encompasses a number of different activities,

reliability estimation and prediction being the most important ones[7,37]. The conventional

methods which are used very widely are based upon probability methods, where the

probability of failure of a system is expressed in terms of the statistical information

(probability of failure) of its sub-systems or components(see Chapter 2). However, in the

situation that there has no such statistical information available, for examples, a newly

invented device which has no service history, a core equipment for nuclear reactor which is

too expensive to obtain its reliability data, or a part of space shuttle which is too difficult to

obtain its reliability data to accomplish the task of reliability assessment, reliability engineers

have to predict the basic reliability indices of these equipment subjectively through their

experience or by comparison of the similar devices[2'5]. More often, even under the situation

that the basic reliability index of a device is obtainable by laboratory test or through the

sufficient operation record, because of the fact that the use conditions varies, these obtained

objective information has no generality unless reliability engineers adjust it according to the

actual working environment[4,7,37]. The adjustment made by engineer is based upon his

judgmental knowledge which is subjective too. Those subjective information contains both

randomness ( refer to the frequency occurrence of the event) and fuzziness (refer to the

compatibility of the prediction). As a matter of fact,

It is recognised, however, that there is always some degree of subjectivity in

reliability prediction. Consequently, it is not expected that accurate prediction can be made

without the application of good judgement- prediction is still both an art and a science[4]."
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A fuzzy reliability prediction framework is presented in this chapter. The term

"reliability prediction" refers to the process of predicting individual device and operator

reliability performance. The reliability performance are evaluated through the basic

reliability indices such as failure possibility, maintenance time and human error possibility.

3.2. New Approach to Component Reliability Prediction

The probabilistic method is used in the reliability predictions. The device failure rate,

Mean Time To Repair and human error rate are important concepts in device reliability.

However, it is said that human judgement holds a central position in all reliability

predictions of complex technical system according to the following fapts:

(1) It is necessary to collect a large sample size of data to estimate the meaningful basic

reliability indices. However, in practice, it is not likely that enough data can be collected to

estimate these indices. Under the situation that the statistic data are either unavailable or

incomplete the basic reliability indices have to be estimated by experts based on their

engineering judgement.

(2)Device reliability, maintainability and human reliability are affected by many factors, e.g.,

the environment in which devices is operated and repaired, the environmental task condition,

psychological stress of a human operator, etc. In the conventional reliability predictions the

basic failure rate, Mean Time To Repair and human error rate are adjusted by experts based

on their engineering judgement in order to consider the effect of many factors on reliability.

In traditional approach to reliability predictions, human experts' judgements are expressed

quantitatively as either a subjective probability singleton, or a confidence interval. Such

expression has been criticised by the facts which were discussed in Chapter One The

arguments are based on the fact that the inherent uncertainty in human experts' judgement is

fuzziness in nature rather than randomness. To clearly illustrate it, consider a imaginary
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dialogue which simulate a session of completing reliability work sheets by a reliability

expert:

Query:

Reliability Expert:

Query:

Reliability Experts:

Query:

Reliability Expert:

Query:

Reliability Expert:

Query:

Reliability Expert:

Query:

Reliability Expert:

Query:

Reliability Expert:

What is the name of the system?

Bntish Nuclear Merseyside Plant

What is the name of the device under analysis?

Reactor ALPHA.

Is reactor ALPHA at the lowest hardware level?

Yes.

Does reactor ALPHA fail to sever power often?

There has no sufficient test record for this new device. However, by

comparison with other similar reactors, the frequency of a failure per year is

about 5. it could only be 3, sometimes even 8 failures per year might occur.

Is the environmental condition, for example, the operation room

temperature has significant influence on the failure of reactor Alpha?

If so, what is the extent of such effect?

Yes. In general if the temperature is very high then reactor Alpha fails

frequently.

Is the weather condition contribute significantly to the maintenance time of

reactor Alpha? if so, what is the likely relationship between them?

Yes If the weather is extremely jtor hQ then the preparation time

for maintenance is much longer.

Do human operators play important role in reliability of reactor Alpha?

Yes, very much. The more competent the operators are, the

chance the reactor fails.

From the above hypothetical dialogue, there are four observations: 1) There are various kinds

of domain knowledge existing such as cause-effect relations between reliability performances

and the situational facts affecting reliability performance, the extent of such affecting etc.. 2)

The relation between reliability performance and the situational factors is not a necessary and

sufficient one. So it is difficult to express this kind of relation precisely in terms of

quantitative mathematics. 3) Knowledge of reliability performance is comparatively easy to

be expressed in the form of natural language with which the human is usually associated. 4)

Human experts express their knowledge in a very imprecise way as is reflected by the natural
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language expression. These observations have, in fact, formed a backbone of the fuzzy

knowledge structure (rules) in this chapter which is based upon human judgmental and

experiential knowledge.

Although there are many proposed approaches of applying fuzzy concepts to the

reliability analysis, to the author's knowledge, Onisawa is the only one who emphasises the

necessity of applying fuzzy concepts to modelling relationship between reliability

performance and its affecting factors[70]. Being aware of the fact that such relation largely be

concluded by human experts based on their experiences, and the fact that such experiences

are comparatively easy to be expressed qualitatively rather than quantitatively, he proposed in

his model that the qualitative relation between reliability and affecting factors can be

expressed in the form of a set of rules. Three typical factors are considered in determining

device reliability, namely the environmental condition; quality of maintenance and the device

working time. Fuzzy terms like 'good', 'bad', 'high', 'low' are contained in rules in the form of

'if the quality of maintenance is good, then the device reliability is high'. Such fuzzy terms are

then defined in a likelihood space within the interval of [0,1]. It assumes that human expert's

estimation is usually expressed in the form of a triplet [AL, AM, Au] where AM is the

recommended value of failure rate, XL is its lower bound and X is its upper bound. A

subjective given membership function is defined in which the estimated rate and its bounds

are treated as the parameters. By mapping from probability space to likelihood space fuzzy

concepts like "Failure Possibility" and "Error Possibility" are introduced in. Such mapping is

defined in accordance with possibility and probability consistence principle, which implies

that even if the rate is estimated to be very small from the viewpoint of probability reliability,

there is a high possibility that device breaks down. The computation of system failure

possibility are based on fuzzy T-norm and T-conorm operators as illustrated "AND" and

"OR" gate.

By reviewing Onisawa's work, it is discovered that apart from his pioneering

contribution of introducing fuzzy concepts into reliability analysis, there are still many issues

Fuzzy Knowledge Based Reliability Prediction
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which need to be further explored, such issues are-: (1) A detailed, systematic work is

necessary t to fully explore the relations between reliability performance and many associated

situational factors. The exploration should be conducted not only device reliability but also

human reliability as they make a complete reliability prediction process. (2) A fuzzy

linguistic reliability prediction framework is necessary to be developed. Such fuzzy model

should be able to accommodate the inherent uncertainty associated in human experts'

knowledge expression and gives maximum flexibility for such expressions. (3) A formal

reasoning strategy should be developed to process imprecise knowledge from "root source"

data to decision level. It have been proved that the only appropriate tool for this purpose is

the possibility theory based fuzzy approximate reasoning[9698}.

Nevertheless, Onisawa's pioneer work has motivated the author to develop a fuzzy

rule based framework for reliability predictions. Such framework can be illustrated

graphically in Figure 3.1., and is presented in the following sections. In a broad sense,

reliability prediction should include the system integration process. However, in this thesis

the term of "reliability prediction" is defined to refer to the process of individual

device(which is at the lowest hardware level) reliability index prediction only . The process

of computation of fuzzy reliability information in order to analyse system performance is

presented in the next chapter.

3.3. Fuzzy Sets Theory and Fuzzy Reasoning Based Reliability Prediction

The building of a fuzzy rule based reliability predictions framework would have to

accommodate a variety of uncertainties illustrated in the above section. The first type of

uncertainty namely "imprecision" is related to the inaccuracy of empirical results and the

subjectivity of certain judgement. Fuzzy terms in the statement of the hypothetical dialogue

such as" roughly around", "extremely cold" and " much longer" are ill defined. This type of

impression is associated with the degree—how extremely cold is -5° C of temperature? There

is no clear boundary for a definition which is imprecise and fuzzy in nature like "extremely

Fuzzy KnowledRe Based Reliability Prediction
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Figure 3.1 Outline of the Modules of the New Pr000sed Approach
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cold", but nevertheless such linguistic quantities are personally meaningful and are important

for decision makers. The second type of uncertainty namely "vagueness " is in relate to the

human problem solving strategies, i.e., the concepts used and the cause-effect relationship

expressed. Human beings when making decisions tend to work with imprecise concepts ( as

indicated in section 3.2) which can often be expressed linguistically. According to Zadeh[94]

"For many purpose, a very approximate characterisation of a collection of data is

sufficient because most of the basic tasks peforned by humans do not require a high degree

of precision in their execution. The human brain takes advantage of this tolerance for

imprecision by encoding the 'task-relevant' information into labels offuzzy sets which bear

an approximation relation to the primary data"

Similarly, the way in which a reliability engineer expresses a judgement on reliability

performance is likely to be as a rather vague relationship, using ill defined linguistic

quantifies such as STRONG, NORMAL, HIGH, etc. A typical example might be

IF the comparative influence of the internal stress is positive strong

AND the comparative influence of the external stress is negative weak

AND the basic failure estimation is low but not too low

THEN the chance of device failure is more or less moderate

3.3.1. Fuzzy Sets As A Representative Tool For Imprecise Knowledge

In brief, there exists a need to represent " imprecision" and "vagueness" in an

integrated way. For instance, extremely cold weather significantly influence the chance of

device failure. Hence, this implies that there is an interaction between these two types of

uncertainties.

In this section, some of the basic concepts of fuzzy sets theory (FST) are introduced

and are illustrated with examples. It is shown how fuzzy sets can be used to represent such

Fuzzy KnowledRe Based Reliability Prediction
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imprecise concepts as "high", "strong" etc. these are notions that have an important intuitive

meaning, but which are difficult to represent in a precise, mathematical way.

4	 7	 9	 x

Fiaure 3.2 Crisp Set and Fuzzy Set

In classical Boolean logic, sets consist of a collection of elements which may be

grouped together. An object is either an element of the set or it is not. The characteristic

function of the set can take the values 0 or 1. to represent the element's grade of membership

in the set. This is the usual definition of a set. To dtsi the traditiouaL kind of ta ftoni

fuzzy sets, they will be referred to as crisp sets as illustrated in Figure 3.2. The operation

which can be applied to crisp sets are familiar union, intersection and complement. These sets

can be used to represent classes of objects where there is a well defined boundary between

members of the set and non members. In Figure 3.2, an example of the set of numbers which

lie between 4 and 9 are shown. This set is well defined, in that any number is a member if it

is between 4 and 9. The characteristic function of this set will take values 0 and 1.

However, not all classes are so well defined. For example, a set like "between 4 and

9" one would have no hesitation in placing number 5, 8 within this set. But what about

number 5. 8 for a set like "around 7"? They are likely to be found within the set, but whether

they can be strictly classified as members of the set is not so easy to decide. In this case."

around 7" can be defined as a fuzzy set to group these numbers, and assign each number a
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grade of membership which lies somewhere in the interval 0 to 1. The actual value of the

grade of membership is chosen by the person who defines the set and represent that

individual's understanding of the meaning of the set. Fuzzy sets are not crisp in nature as

illustrated in Figure 3.2 where a fuzzy set describe the set numbers that are" around 7". The

symbol .t is used to denote grade of membership.

3.3.2. The Use of Linguistic Description in Reliability Prediction

In order to permit the manipulation of fuzzy concepts to represent vague reliability

prediction rules, "linguistic variables" are required to represent the predicting variables. A

linguistic variables is a fuzzy variable whose value in any one particular instance is a fuzzy

subset of a universe of discourse coded by linguistic descriptions[3].

The overall reliability prediction is obtained in a traditional approach as the product of

basic estimation, (i.e. failure rate, maintenance time and human error rate) and a set of the

associated situational factors. The basic estimation can be either a numerical value or a

linguistic value, depending on the source of information obtained. An assignment of values to

the situational factors is subjective by the nature of human judgmental and experiential

knowledge. Such assignment in a traditional approach is in the form of a crisp numerical

value which is obtained by comparing reliability performance before and after a situational

factor applied. It can be expressed mathematically as

Value of a situational factor reliability performance after a situational factor applied
reliability performance under the normal condition

eqn 3.1

The above equation can be interpreted as the degree of the comparative influence of a

situation factor applied on reliability performance. Thus, the numerical variable
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comparative influence" defined as F whose universe of discourse range in 0 c F <00 in

theory is the base variable for the situational factors. For the convenience of linguistic

vocabulary, the universe of discourse of this variable can be extended to - <F <cc by a

logarithm transfer formula ( see eqn 3.3). A linguistic value such as "positive strong"

therefore can be defined and interpreted as a label for the fuzzy restriction which

characterised by its grade of membership (compatibility) function on the points of the

universe of discourse, namely "the comparative influence".

The basic estimation, on the other hand, can be derived either by statistic method or

by human judgmental knowledge. According to Karwowski, even an event " failure" is

clearly stated, and the concept of probability as suitable for reliability prediction is well

defined, it does not provide for the sharp probability estimates needed to generate adequate

reliability estimation. Instead, the quantification of" chance of failure" is imprecise since it

uses linguistic descriptions like: extremely high, moderate, more or less low, etc. Karwowski

argued that in the causes where human judgement and adjustment are essential, the

assignment of probability is vaguely defined. Based on such fact a linguistic variable"

Possibility of Failure" is defined for device reliability prediction with the typical fuzzy labels,

such as : high, moderate, low etc., and with the understanding that "possibility of failure" is

synonymous with a familiar frequency measure" failure rate". Linguistic variables and its

fuzzy labels for maintenance time prediction can be also defined with the understanding that

the linguistic variable for basic estimation shall be synonymous to a time measure.

It is emphasised by Feagons [27] ,that although the meaning of the proposed linguistic

values are open to individual interpretation, the differences in subjective assessments can be

resolved by extending the precision of associated verbal defmitions through discussion

among the experts in the field of reliability analysis. It is very important that the structure of

verbal descriptions does not cause misunderstanding, and this can be prevented if the agreed

upon definitions are provided. As indicated by Cooley and Hicks [17], primary linguistic

values should have an intuitive appeal and be easily differentiated. For this reason, A sets of
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linguistic prediction variables and their labelled primary linguistic values are proposed in

table 3.1 for device failure possibility, maintenance time, human error possibility predictions

respectively. Based on these defined variables and values a prediction rule for device

maintenance time in the natural language form may be defined as

IF	 the comparative influence of the variance of active maintenance time is
normal AND the comparative influence of the variance of maintenance
administrative time is positive strong AND the basic estimation of the
maintenance time is more or less long

THEN the total device maintenance time is much long

Primary Linguistic Value	 Fuzzy Reliability Predictions Variable

Lowest, Low, BetweenJow_and_moderate,
Moderate, Between_moderate_and_high, High,	 Failure Possibility

Highest____________________________________________

Shortest, Short, Between_short_and_medium,
Medium, Between_medium_andJong, Long, 	 Maintenance Time

Longest______________________________________

Positive_strong, Positive_weak, Normal.	 The Comparative Influence Of A Situational
Nagative_weak. Naganve_strong	 Factor

Table 3.1 Fuzzy Lin2uistic Reliability Prediction Variables and Their Labels

33.3. Interpretation of the Linguistic Values

The founthtion of linguistic definition using fuzzy sets theory consists of three basic

concepts -: fuzzy variables, primary linguistic values and modification rules. In order to

develop the primary linguistic values for fuzzy reliability prediction variables, a degree of

membership or possibly rating is assigned to each possible value of a linguistic (prediction)

variable. The assignment of linguistic values is based on the canonical form of S and P

function defined by Zadeh [971, as
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X;a.,b,c)	 = 0	 x^a

=2[(x-a)/(c--a)]2	 a^x^b

=1-2[(x-c)I(c-a)f 	 b^x^c

= 1	 x^c

lX;b,c) =Xc-b,c-b/2,c)	 x^c

1-X;c,c+b/2,c+b) x^c	 eqn3.2

where X is the base value

a isXat which S=0

b isXat which S =0.5

c isXat which S=l

S curve	 P curve	 S scurve

0
UNIVERSE OF DISCOURSE

ure 33 S and P type Fuzzy Number

The above type of fuzzy numbers are illustrated in figure 3.3. In choosing the linguistic

variable X for reliability predictions, the following guidelines were taken into consideration

[20L:((1) The variable should accurately reflect the meaning of the linguistic value; (2) The

values associated with a particular linguistic variable should not change because of low or

moderate uncertainties, (3) Strong judgement changes should be recognised by the

appropriate movements along the universe of discourse, and (4) Small changes in judgement
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should not significantly affect the results of the model. In reliability prediction. the scales of

the universe of discourse of the situational factors and the basic estimation values vary

significantly in accordance with the different type of devices. Furthermore, even for the same

type of device the scales can be too broad to define a set of sensible linguistic values on it.

For the sake of simplicity, such difficulties can be greatly reduced by the following methods:

(1) divide devices into several categories in which all devices shall possess similar

characteristics, e.g., electronic devices. Thus, the interested universe of discourse can be

bound into a manageable scale, and a limit number of linguistic values can be sensibly

defined on such scale. For example, the values of the situational factor for electronic devices

range from 0.1 to 10 in most cases U, 2]. (2) the points of a universe of discourse can be

converted by a properly defined transition formula, so that a set of more meaningful linguistic

values can be defined on a new universe of discourse. In reliability predictions, such

transition formula might be defined in the form of

f(x) = a log(x) ^ b
	

eqn3.3

where x is a variable on the original universe of discourse

a , b are parameters

f(x) is a variable on the new universe of discourse

Thus if let a=25 and b=0, the range of a universe of discourse" the comparative influence of

x stress" is transited from [0.1, 10] to [-5 , 5] . A linguistic value "positive strong" defined on

the new universe of discourse is more appropriate and meaningful. (3) to simplify

computation a continuous variable normally be discrete so that fuzzy computation can easily

apply on to a limit number of values. In general, a set of discrete numbers can be divided

into a few categories. Each categories has a fuzzy label (linguist value). For example, a

continuous variable "the comparative influence of x stress " in [-5 , 5] can be divided into 5

categories, namely PS, PW, NO, NW, NS. The grade of memberships for the chosen

linguistic values are represented by a siring of numbers rather than a continuous function. In

the computerised version of the proposed systems, the users are able to derive the
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representations of the primary linguistic values by using the canonical of the S and P

functions (eqn 3.2), and adjusting the appropriate parameters. It must be emphasised that the

definitions of the most important linguistic values are empirical and the satisfactory result by

applying such pre-defined linguistic values are largely depended on assessor's experiences. It

also need to point out that the assessor himself is a essential source of fuzziness, since the

same fault event may be perceived differently depending upon the individual experience and

preferences in reliability analysis.

Once the universe of discourse and the primary linguistic values of a fuzzy variable are

determined, other linguistic values can be derived from the primary linguistic values by using

the modification rules. The modification rules are a set of pre-deflned fuzzy operations which

are normally called " linguistic hedges". A linguistic hedge is defined in the way that it is a

fuzzy subset of the primary linguistic term. There are two basic types of linguistic hedges,

using the shift operator and the power operator. A power operator, such as" very " will

changes the shape of the primary fuzzy linguistic term like "positive strong". If" very is

represented by a power operator:

p,,(x) ix)
	

eqn 3.4

This definition ensures that the grade of membership of an individual in the set "very PS "is

less than the grade of membership in the set" PS ".Thus " very PS "is a subset of" PS ".

This seems sensible enough. (see figure 3.4 ). However, the problem with power operator is

that the grade of membership for" PS" and "very PS" reach the grade 0 and 1 at the same

points. This might be satisfactory for some applications, but in other cases it is preferable to

use a shift operator such as:

=	 - c)
	 eqn35
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POWER OPERATOR

POSiTIVE_STRONG

Y POSITIVE_STRONG

The universe of discourse

SHIFr OPERATOR

LESS THAN POSITIVE_STRONG

POSrrIVE_STRONG

MORE ThAN POSrnVE_STRON

The universe of discourse

Figure 3.4 Shift and Power LinEuistic Hedie

Shift operators do not affect the shape of the fuzzy set in the way that power operators do.

they merely shift it along the axis. Both operators satisfy the subset identity; ensuring for

example that" very PS "is a subset of" positive strong":

(x) ^	 (x)

- c) ^ J1poeñiveslroiig (x)	 eqn 3.6

Hedges like " very ","rather" , "great than "and" less than " on the primary term "pOsitive

strong "are illustrated in figure 3.4. Words and phrases such as "more or less", "much",

fairly" , and "extremely "etc. are also defined as hedges in fuzzy sets theory. These Hedge

operators can be combined to produce more complex expressions such as "positive weak but

not too weak" (see Appendix I). By using hedges it offers great power for representing

meaning.

3.4. Constructing Fuzzy Relations of Prediction Variables
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Instead of establishing the functional relationship for non-fuzzy variables in

conventional problem analysis, fuzzy logical relations are essential to be constructed in all

fuzzy models where fuzziness is seen as an attribute. The construction of such logical

relations is based upon-: (1) a knowledge tree which is represented in a logical form of

relating one decision variable to the others, and (2) a set of fuzzy connective operators. (3) a

selected fuzzy implication function.

3.4.1. Reliability Prediction Knowledge Trees

To predict reliability performance under a fuzzy environment, the domain knowledge

of device and operator state, the situational factors etc must be organised in a logical manner

such as to arrange the knowledge into a knowledge tree. Three typical knowledge trees for

predicting generalised device failure possibility, maintenance time and human error

possibility ale illustrated in Figure 3.5, 3.6, and 3.7 respectively. These knowledge trees

represent the domain knowledge of reliability prediction, such as the knowledge of-: (1)

concepts and relations, (2) facts and heuristics, (3) policy and procedures. They are mainly

deducted from the relevant literature [2,4,7,14,37,50,70] throughout this study. However, in

real applications the type of knowledge has to be identified so that proper elicitation of

knowledge tree can be carried out. The process of knowledge elicitation is the so called

"knowledge pruning" in Knowledge Engineering (1(E). The problem solving process is then

by pruning through the knowledge tree to select and establish the correct path from the "root

variable" (e.g. reliability source information) toward the "target variable" (e.g. prediction

goal) of the knowledge tree.

3.4.2. Fuzzy Relational Metrics Construction

Knowledge tree is normally represented in the form of a group sets of "IF-THEI'

"rules. The rules in each knowledge source can be quite complex in form with nested IF

statements, antecedents linked together by AND or OR connectors, consequence which

recommend decision as well as suggesting other IF conditions etc. However, rule acquired in
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Figure 3.5 Knowled2e Tree Of Device Failure Posbilitv Prdidii
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FTizure 3.6 Knowkdge Tree Of Device Total Maintenance rime Prejcij
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Figure 3.7 Knowled2e Tree Of Human Operator Error Possibility Prediction

Fuzzy Knowledge Based Reliability Prediction



Chapter 3	 Page 65

this thesis have been chosen to have a classical "IF-THEN" structure to reduce the -

representation complexity (see Appendix ifi).

Each branch of a decision tree constructs a ruleset. A branch node represents a rule

consequent premise. The leave which is connected to this node represents an antecedent. An

antecedent leave can be a consequent branch node for another ruleset if it has leave beneath

it. Thus, the number of rulesets is the number of branch node in a decision tree.

A ruleset consists rules which have same linguistic variables but different values in

order to present all possible situations. For illustration, a rule in a ruleset which is a fuzzy

conditional assignment of a device reliability prediction situation is described as (IF X is A

[condition] THEN Y is B[consequent]), where X is an antecedent condition representing the

degree of comparative influence of a situational factor on device reliability performance,

and Y is the consequence of the degree of degradation of device reliability performance,

respectively. To represent the relationship between the objects of X and Y is to translate them

into a conditional possibility distribution of fuzzy relation R where

II R (X,Y) =Px-.y(X,Y) =I{j.i(x),,.t(y),x EX,y €Y}	 eqn3.7

A fuzzy relation R is simply a fuzzy set defined in a Cartesian product space (X x Y) or

effectively R is fuzzy matrix of X and Y. To construct R, a fuzzy implication operator I must

be assigned, where R is characterised by a multi-values membership function JL R (x, y) and is

expressed by

1(x,y) I( I t ,i1 )
	

eqn3.8

Implication operator I can be interpreted here as a combination operator to be determined for

conditional possibility statement, namely

Possibility (x=a and y=b)= Possibility (y=b given x=a) I Possibility (x=a) eqn 3.9
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Many implication operators have been suggested since the generaiised modus ponens initially

stated by Zadeh [55] • However, The choice of fuzzy implication operators remains critical in

any fuzzy reasoning based decision systems, for it directly influences on the fuzzy reasoning

performance. In another word, the success of applying fuzzy reasoning to any decision

systems largely depends on how to select an appropriate implication operator. A discussion

and comparison of some typical fuzzy implication operators toward the design of Fuzzy Rule

Based Expert System Shell (FRBESS) is described in Chapter 6.

33. Fuzzy Reasoning Based Reliability Predictions

Mathematically, three properties of fuzzy sets are required for fuzzy reasoning: (1)

Implication function (2) Aggregation of rules (3) Inference mechanism. The rules of fuzzy

inference are based, in the main, on two principles: (a) entailment principle, and

(b)translation principle [64] .The translation principle deals with the translation of a fuzzy

variable to its possibility distribution. The entailment principle consists of two concepts:-

conjunction rule and projection rule. On combining these two rules (usually conjunction

followed by projection), Compositional Rule of Inference (CRI)[ 621 is obtained which

constitutes the founthtion of human reasoning.

33.1. The Outline of Fuzzy Reasoning

Informally, Fuzzy Reasoning (FR) is the process by which a possible impreci

conclusion is deduced from a collection of imprecise premise. Hence, the nature of FR is

regarded as approximate ratter than exact and also semantic rather than syntactic. Several

different approaches of fuzzy reasoning have emerged as stated in Dubois and Prade's review

paper [22] Accordingly to Dubois et al there are two alternative but equivalent approaches of

fuzzy reasoning: fuzzy logic based truth value restriction reasoning and possibility theory
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based multi-values compositional rule of inference. However, it has appeared that the former

approach has less attraction due to its philosophical drawbacks though it has a favourable

computational aspect than the later approach. This thesis follows the current research trend in

fuzzy reasoning and concentrates on Zadeh's approach using the compositional rule of

inference technique.

Once the implication operator was determined, fuzzy relation, or the so called "fuzzy

matrix" for it is represented by a matrix form, of a rule can be constructed based on the

selected implication function (eqn 3.8). The next task to proceed fuzzy reasoning is to

aggregate all rules in a ruleset to form a single rule in terms of combining each fuzzy matrix

of a rule into a ruleset matrix. In differ to the ordinary "IF-ThEN" production system of

which the deduction process is to select the rules which are triggered, fuzzy "IF-THEN" rule

system is working on a "partial matching" methodology by which all rules must be

encountered for their impact. Aggregation of all rules in a ruleset is to simplify reasoning

process. Such process normally invokes disjunction operation(MAX) to make sure that all

rules are considered will lilcely have an effect. Hence, for N rules in a rulest, each individual

fuzzy relational matrix is aggregated to form an overall R of the ruleset

N

R =o R 1 	eqn 3.10

where o donates the operator MAX. The composite rule, after aggregation process, can be

translated from contour plot to numbers by dividing it up into a finite number of squares and

finding the maximum grade of membership in the square. This will only be an

approximation, but it is usually adequate. Let it still be an abstract rule (IF X is A THEN Y is

B), denote the input set by A, and the composite rule which relates the linguistic variables of

input and output ( or antecedent and consequent) by R, to find the consequence B of Y due to

X can be inferred by the composition of A and R which can be expressed as:

llx - A(input data)
H(yIx)— R E R A .. B ={p(x,y)I(x,y)}]

flyisHxoR==ji =MAX(MIN(iRpX)) 	 eqn 3.11
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where 'o' is the composition of fuzzy relations and (.tp ,jt 3,) are the membership functions

of R, X and Y. A typical fuzzy inference sequence with two fuzzy rules is shown in Figure

3.8. The compositional Rule of Inference has many remarkable mathematical properties.

Reasoning both forwards and backwards can be accomplished. Reasoning forward is the case

where both A and R are known and it is to find the consequence B. On the contrary,

reasoning backwards is the case where B and R are known and it is to seek the set of possible

input A which could have caused a particular output B. In the case of reliability predictions it

is natural to adopt forward reasoning.

3.5.2 Reliability Prediction Using FR

The situational factors were identified; the basic estimations were classified; and the

knowledge trees were established. What remains to do is to deduct the information at

decision level, which are approximate but adequate, of Device Failure Possibility, Device

Total Maintenance Time, and Human Error Possibility. Such process will accomplish a

complete reliability prediction task in a generalised meaning. Fuzzy compositional rule of

inference is utilised for this purpose.

The following example is aimed to indicate how CR1 is applied to device reliability

prediction. Suppose that due to the effect of both external stress and internal stress, e.g. the

influence of over heat, strong humidity etc., significant impact on device reliability

performance (degradation) may occur which will leads to the event of device failure. The

possibility of device failure is subjected to a number of factors such as random failure within

the designed expectation (represented in the basic failure estimation). For the sakç of

simplicity, it is assumed that the device failure is only due to the fact of environmental stress.

Using the expressive capability of fuzzy reasoning, the fuzziness of the above situation can

be linguistically synthesised as an IF-THEN condition:
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Figure 3.8 A Typical Inference Sequence With Two Fuzzy Rules
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IF	 the comparative influence of environmental stress is positive strong

THEN the device failure possibility is high

The above rule can be translated into an abstract form as

IFXisPSTHENYisHI

where X be the antecedent condition representing the comparative influence of an

environmental stress on a device reliability and Y be the consequence deduction of the

possibility of a device failure. If the universe discourse of X and Y are defined as the discrete

sétsintherangeof:

X €[-5,5];Y €10,101

and the linguistic terms set for each linguistic variable are:

X-{nagetive_strong(Ns), nagetive_weak(NW), normal(NO), positive_weak(PW), positive.strog (PS)}

Y- {lowest(LT), low(LO), between_low_andmoderate(BLAM), niodeiate(MO),
emoderateandhigh(BMAH), high (Hi), highest(HT)}

Then X and Y can be translated into possibility distributions by using S and P fuzzy numbers

ifwedefinePS andHlas

x
	

Y

= x:2,3.5,5
	

ji 111 (y) =S(y.7,8lO)

Poss(x): fl	 [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.22, Q78,L0]

Poss( y):= II = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.50,0.78,L0J

A two dimension implication matrix RAB between X and Y would result by using

Mamdani's implication operator (i.e., A - B = min(a1,b))

Fuzzy Knowledge Based Reliability Prediciion
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reliability cause a "high" possibility of device failure can be inferred through the above

procedures.

In addition to the device reliability prediction, device maintenance time and human

error possibility can also be inferred using CR1. Suppose the variance of the prepantion time

has a significant influence on the length of active maintenance time. The condItIonal

statement might be described as

IF the comparative influence ofthe preparation L positive weak

THEN the variance of active maintenance time is more or less normal

or If X is PW Then Y is more_orJess (NO). PW and NO are defined as P type fuzzy

number and fuzzy hedge "more_or_less" is defined as

0.(x) I(X)as	 eqn3.12

Hence,

Poss(x): fl	 [0,0,0,0,(0,0.22,0.78,L0,0.78,0.22I

Poss( y): =	= [0,0,0,0.47,0.88,1,0. 88, 0.47,0,0,01

Similarly, a two dimension implication matrix R_ can be evaluated using Lukasiewiczs

implication operator (i.e.,A -+ B min(l,1-a 1 +b))

11.0

I tO
I to
11.0
11.0

R = 1 tO
10.78
10.22

I 0.0

10.22

Lo.78

to to

to to

to o

to to

LO to
tO LU

tO 0.78

0.69 0.22

0.47 0.0

0.69 0.22

to 038

to toi
to tol
to to'
LO LO'
1.0 LO
to to1

0.78 0.78

0.22 0.2211
0.0 0.0
0.22 0.2211
0.78 oasj
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with the composition relation defined in eqn 3.11, and A fuzzy input N = "very

positive_weak", A fuzzy output B'"normal" can be inferred using R

PA'OR = MAX(MIN(12A.(x),JLR(x,y))

= [0,0,0,0,0,0,0.05,0.61,1.0,0.61,0.05] oR

= [0.22,0.22,0.22,0.61,0.88.1.0,0. 88,0.61,O.22,0.22f'

Through the above two examples it can be observed that-: (1) in application of CR! it is not

necessary to have all antecedent of a rule matched EXACtlY so that the consequent of the

rule can be hired, such as in the case of a hedge or unlimited number of hedges can be

ombined into the fuzzy statements. It implies two aLlvantages of using CR1: great expression

power, and tolerance of knowledge gap. (2) implication operators play an important role in

the overall performance of a fuzzy decision process. As in the second example, all

membership values in the output vector are greater than the values of desired fuzzy label.

These observations will be discussed in detail in Chapter 6.

Nevertheless, fuzzy reasoning (CR1) offers an effective tool for proceeding reliability

performance prediction under the fuzzy environment. In the next section, a case study of

using FST and FR to predict individual device and human reliability performance by means

of device failure possibility, maintenance time, human error possibility are presented.

3.6. Case Study

The validation of the proposed fuzzy reliability prediction framework is examined in

this section by using the developed Fuzzy Rule Based Expert System Shell(FRBESS).

Reliability Test System (RTS) (presented in Appendix ifi) is employed for this purpose. The

main reason to adopt RTS as the case for test is that it has the consistence with the following

chapters where we will further examine the validation of fuzzy system reliability

computation and its application to electric power generating system reliability. It must be
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pointed out that the some of data in this section are artificially assigned, such as the

situational factors of the units.

3.6.1. ModeHing Consideration

There are 32 units in RTS. Among the units those bear with the same capacity are

classified into the same category. The associated reliability data are unit failure rate (X),

Mean Time To Repair (MTIR), Scheduled Maintenance Time (SM1), and Forced Outage

Rate (FOR) which can be obtained from A and M1TR (see Appendix ifi).

For simplicity but without losing generality, a group of six 50 MW hydro units is

selected for study. If it is assumed that each unit in the group has exactly same design quality,

reliability characteristics, and use conditions, thus the case is simplified to study a unit in this

group. The aim of the study is to evaluate failure possibility, maintenance time, and human

error possibility of this unit with the available data which are given in Table 3.2.

It is assumed that a limit number of the situational factors have significant influence

on the unit reliability performance. All the other factors as they were stated in Figure 3.5,3.6,

and 3.7 axe ignoble for the reason of less significant adjustment effect. This assumption

makes effective knowledge pruning so that it will greatly benefit the computation aspect.

Further assumption is made on the pruned knowledge tree that expert judgmental knowledge

can directly apply on all variables listed in Table 3.2. Therefore these prediction variables are

regarded as the "basic variables" whose values can be retrieved from the users.

The values of basic variables are distinguished into three commonly used format,

namely natural language expression, numerical interval and numerical singleton as they are

shown in table 3.2. FRBESS can accommodate all three type of data by using a "converter"

to convert numerical data into a possibility distribution, and vise verse. Furthermore,
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FRBESS also has the ability to convert an inferred possibility distribution to its

corresponding natural language expression upon to the request (see Chapter 6).

For comparison, the original non-fuzzy crisp data and the fuzzy data of the two cases

are listed together. Column 1 of table 3.2 lists the assigned non-fuzzy crisp data, in which a

situational factor, say electrical defect, has the adjustment multiplier 2.5 means that it has

the positive effect on the failure of the unit with the value 2.5 as the degree of such effect

Similarly, a factor " Variance of maintenance" has the negative effect on the unit failure with

the degree of 05.

The considerations are on defining the proper universe of discourse and fuzzy terms

set on these universe of discourse.

The universe of discourses

The universe of discourse is the particular range of linguistic variables that we are

interested in. It is the part that the defined fuzzy set will refer to. For the basIc estim2te

failure rate of the studied unit in RTS, we could sensibly choose the universe of discourse

between iO-3 to iø 5 (time per hour). Since most of failure frequencies for this type of unit

have the failure rate in this range. Moreover, a smaller range (if it is applicable) in general

will give a sensible indication as well as the computation efficiency. Similarly, we could

choose the universe of discourse between 0.1 to 10 for the combined situational factors,

since the situational factors are the multiplier to adjust the basic estimation and us vabs are

normally within this range except under some extraordinary siIiiatii such as iI lunar

operation which is inapplicable in this case. Therefore, it is reasonably to define iI unise

of discourses as:

X={device failure possibility, basic failure estimation, hnman tn - possibility, basic

estimation; x€[10 3, iO5j/p.h.}

Y={device maintenance thne, basic maintenance time estimation ; yE[1, 1001 honr}

FILrzV Knowlexfte Based Reliability Prediction
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RTS 50MW High Unit	 Original Values

Unit Failure Possibility

(1)The Basic Estimation 	 0.0001/h

(2)The Situational Facor

Electrical Defect 	 2.5

Thermal Defect	 2

Variance of Weather	 2

Variance of Maintenance	 0.5

Unit Maintenance Time

(1) The Basic Estimation
	

20(h)

- (2) The Situanonal Factor

Fault Detection
	

2

Removal, Fix & Installation
	

1.7

Preparation
	

0.5

Maintenance Training
	

0.8

Part Stock Planning
	

1.5

Case 1

rxxjderate

quite (positive_strong)

mcxe...than (positive_weak)

more than (positive_weak)

nagetive_weak

less_than (between_medium_and_long)

riue_than (positive_weak)

positive_weak

nagauve_weak

less_than (normal)

less-than (less than (positive_weak)

Case 2

moderate

[4,5]

3

3

-3

[6,7]

[3,4]

positive_weak

-3

less_than (normal)

2

Human Error Possibility

(1)The Basic Estimation	 0.0001/h

(2)The Situational Factor

Competence	 0.5

Physiogical Stress	 1.2

Workload	 2

weather	 2

Table 3.2 The Data List For RTS Hydro Unit Reliability Prediction
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Z1={ internal stress, external stress, variance of active maintenance, variance of maintenance

administrative; zi E[101,10J}

Z2={ electrical defect, thermal defect, variance of weather, variance of maintenance, fault

detection, removal, fix & installation, preparation, maintenacer training, part stock planning;

z2E[0.3, 3]}

The universe of discourse then be mapped to an eleven elements arbitrary set by using eqn

3.3. As an example, let a=-5 and b=15 the universe of discourse of the internal stress can be

transferred from range [0.1,10] to [-5,5]. This process makes sure that the fuzzy set defined

on the universe of discourse will have more sensible linguistic meaning, say, a fuzzy set

could be defined as "positive_strong" if its grade of membership is zero on the negative axis

and is great than zero on the positive axis. The inferred result then can be transferred back to

its original universe of discourse whenever it is necessary by using the reciprocal function of

eqn 3.3.

Linguistic terms sets

On the defined arbitrary universe of discourse, the vocabulary of fuzzy sets (primary

terms set) are defined as they are illustrated in Figure 3.10. One of consideration in defining

terms set is that the fuzzy sets must overlap. This means that there are some failure possibility

that are not strictly 'moderate', say X10 4. Whatever rules apply to low failure possibility

are likely to have a degree of valithtion for the category "moderate" too. This will ensure that

a rule based predictor using CR1 would trigger more than one rule at a time, with a reduced

effect for those rules which have low degrees of validity.

3.6.2. Prediction By Using FRBESS

FRBESS is a fuzzy rule based expert system shell which is developed to

accommodate and evaluate imprecise information based on the principles of fuzzy sets theory

and fuzzy reasoning. It consists three main modules: (1) an interpreter, (2) a fuzzy rules
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compiler; (3) an inference mechanism. The main procedures of predicting reliability

performance of RTS hydro unit are illustrated below. The detailed functions and the design

aspects of FRBESS are referred in Chapter 6.

Rule & Data Interpretation

To predict the failure possibility of a hydro unit, the first step is to load the rule base

and data base into FRBESS. The rule base for predicting reliability performance of the hydro

unit is presented in appendix III, where rules are in MACSYMA's list format which is the

same as USP format. All rules are in "IF-THEN" format and the antecedents of a rule are

linked by "AND" connector. The rules are grouped into the named rulesets (see appendix ifi).

The data base contains the definition of the universe of discourse and fuzzy terms sets as they

are presented in Figure 3.10. Once the knowledge base are loaded, FRBESS then translate all

linguistic and numerical expressions into the form of discrete possibility distributions by

using the rule interpreter and information processor of FRBESS.

Determining reasoning path

The next procedure is to determine the reasoning sequence. FRBESS provides a built-

in facility based on the backward chaining strategy to construct reasoning path using the rule

base loaded in the working memory. The method of determining reasoning path can be

briefly explained by using the rules of predicting the unit failure possibility. First of all, it is

to determine the "goal", say, The unit failure possibility, FRBESS then search the rule base to

find the ruleset which has the consequent statement" Failure possibility". If there is one then

put it into the empty path list in the working memory. For the ruleset being hired, FRBESS

then search its antecedents part and triggered the first antecedent After searching the rule

base if it finds another ruleset whose consequent part matches this antecedent then put this

ruleset into the path list as the first element, otherwise put the antecedent into the open list

This procedure repeats until all rulesets requfred for predicting "goal" are placed in the path

Fu2zv KnowiedRe Based Reliabilirv Prediction



Chapter 3
	

Page 79

list with the sequence. In the case of RTS hydro unit with the "goal" determined as Failure

Possibility FRBESS generates 3 lists as

OPEN =[electric_defect, thermal_defect, variance_of_weather, variance_of_maintenance,

basic_failure_estimation]

CLOSE=[]

PATH=[internal_stress, external_ stress, failure_possibility]

Compile and aggregate rules

Once the path list is determined, the rules of each ruleset in the path list are then

compiled into relational matrices form, and aggregate these matrices into a single matrix for

each ruleset using the methods described in the last section.

Control of reasoning

The control of reasoning is carried out by using three lists generated by "chaining"

command. As for the example of hydro unit failure possibility prediction, FRBESS first will

put the first ruleset "internal stress" in the path list into the working memory and check up

whether its two antecedents "electric defect" and "thermal defect" are the member of the

open list. If they are then FRBESS will first search the data base to find data, if it succeed

then FRBESS will carry out the reasoning procedure by the commend "infer" otherwise

FRBESS will prompt user to supply the data. Once the "internal stress" is inferred then

FRBESS will move it away from the path list and select the first element in the new path list-

-this time is "external stress" and repeat the above procedure until the path list is empty.

Thus, the "goal" is achieved.

For demonstration, a consultation session of predicting RTS hydro unit failure

possibility ( in case 1) is printed and presented in Figure 3.12.

35.3. Results
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The results of predicting RTS hydro unit reliability performance by using FRBESS are

presented and discussed in comparison with the result obtained by using the probabilistic

techniques as described in Chapter 2.

CASEI

(a) The inferred failure possibility of hydro unit is [0, 0, 0, 0, 0, 0, 0.22, 0.22, 0.78, 1.0,

0.22], its corresponding natural language expression is "failure possibility of the unit is

between_moderate_and_high" which is obtained by using the least distance method, and its

defuzzified crisp value is 8.31 which is corresponding to 4.6 x 10 4lper hr. by using the

centre of gravity method.

(b)The inferred maintenance time of hydro unit is [0,0,0,0,0.22,0.22,050,0.78,0.78, 1,

033], its corresponding natural language expression is "total maintenance time of the unit is

between_medium_andjong" , and its defuzzified crisp value is 7.6 which is corresponding

to 34 hr.

(c) The inferred human error possibility on hydro unit is [0, 0, 0, 0.5, 0.5, 1, 1, 1, 0.78,

0.33, 0.33, 01, its corresponding natural language expression is "human error possibility of

the unit is moderate" , and its defuzzified crisp value is 6.6 which is corresponding to

2.l x lO4Iperhr..

CASE 2

(a)The inferred failure possibility of hydro unit is [0,0,0,0,0, 0, 0.22,050,050, 1, 1], its

corresponding natural language expression is " failure possibility of the unit is high", and its

defuzzified crisp value is 8.6 which is corresponding to 5.25 x 10 4Iper hr..

(b)The inferred maintenance time of hydro unit is [0, 0, 0, 0, 0.50, 0.50, 0.33, 0.78, 0.78,

050,0.22], its corresponding natural language expression is " total maintenance time of the

unit is between_medium_and_long" , and its defuzzified crisp value is 6.9 which is

corresponding to 24 hr..
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(c) The inferred human error possibility on hydro unit is [0, 0, 0, 0.22,0.5, 1, 1, 0.78, 0.78,

0.33, 0.33,], its corresponding natural language expression is "human error possibility of the

unit is moderate" , and its defuzzified crisp value is 6.4 which is corresponding to 1.9 x 10

4/per hr..

By using the data in the first column of table 3.2, the results can be obtained using the

traditional method. For failure possibility it is 5x 104/per hr., and 40.8 hr. for the

maintenance time and 2.4 x 10 4/per hr. for human error possibility. It is interesting to

observe that the results inferred by using fuzzy reasoning are quite close to the results

obtained by the traditional method. Only one exception in this study is that in case 2 the

deducted maintenance time is about 50% of the value obtained by traditional multiply

function . Therefore, it can confidently declare that the proposed fuzzy reliability prediction

model is able to give the effective indication of reliability performance, and it has good

compatibility with the traditional probabilistic modeL

3.7. The Concluding Remarks

Most of the preliminary sections were concerned with the importance of human

judgmental knowledge in reliability prediction, especially when varies situational adjustment

factors are conducted.

The proposed approach is an attempt to model the knowledge of reliability engineer's

predicting process under the fuzzy environment by using linguistic description, fuzzy

inference techniques based on Fuzzy Sets Theory and Fuzzy Reasoning. The reliability

performance are evaluated in three aspects, namely device failure, device maintenance and

human error, which give the complete reliability indications. To test the validation of the

proposed model a case study is conducted. The result proves that the fuzzy model delivers

appropriate conclusion.

Fuzzy KnowledRe Based Reliabilin' Predicnon
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Chapter Four

Fuzzy Knowledge Based System Reliability Evaluation

4.1 Introduction

One of the challenging engineering endeavours of the past three decades has been

the design and development of reliable large-scale systems for space exploration, military

applications, power distribution and commercial operations. The design of such systems,

unlike the design of individual devices, involves the broader aspects of organising

composite equipment, operating and maintenance schedules, and the skills required to

ensure system performance as an unified entity. System reliability performance is of

primary concern and, therefore, the consequence of failure must be evaluated adequately.

Human reliability engineer's role in reliability prediction has been discussed and

their empirical knowledge to aid predicting individual device reliability has been

modelled and evaluated in the last chapters. To integrate these individual devices

reliability so that the overall reliability performance of a complex system can be obtained,

it demands to develop an appropriate model by which the inferred fuzzy individual

devices reliability indices can be accommodated and processed. Such fuzzy model shall

be able to deliver the adequate information at system reliability level.

This chapter presents two approaches to evaluate system reliability based on the

inferred individual device reliability indices. A fuzzy arithmetic based system reliability

combination model is discussed first. Some relevant fuzzy concepts are introduced whidh

form the foundation for the proposed approach. The second part of this chapter presents a

fuzzy knowledge based system reliability combination model. The fuzzy technique

employed are fuzzy logic operators and compositional rule of inference, which were

outhned in chapter 3.

Fun Knowledge Based System Reliabilit'' Evaluation
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4.2 Overviews of Current Approaches To Fuzzy System Reliability Calculation

To the author's knowledge Noma was the first one who introduced the newly

emerged fuzzy set theory into reliability evaluation in 198 i[ 661. Since then the

application of FST to reliability analysis has attracted many researchers and it has gone

through a substantial development A brief survey of some popular approaches to fuzzy

reliability analysis are presented below:

Noma was the first one who formulated the initial statement of fuzzy reliability in 1981

by using the concept of fuzzy probability[ 66]. Not much different to the conventional

reliability, in his approach he considered system failure is a random event and the

subjective description ik"a device fail to serve its function is probably" where the term

'probably' is a fuzzy restriction on the probability space. System reliability calculation

was through the extension principle by using the probability "AND", "OR" combination

rules.

Sugeno and Onisawa proposed a fuzzy fault tree analysis model in 1984[ 81 ]. En this

model a concept "Failure Possibility" is expressed as a possibility distribution of which

its parameters determined by three points estimate failure rate. The centre estimate

failure rate was then classified into 10 groups. Each group has a qualitative label like

"probable", "improbable", etc.. The idea behind is that even the probability is small, the

chance of a device failure(possibiity) still could be high. This assumption is in

accordance with the probability and possibility consistence principle. System reliability

calculation is through a pair of T-norm and T-conorm operators which are derived using

the extension principle. The model distinct to other approaches in its attempt to use a

conceptional measure "possibility", which has nothing to do with the familiar concept

like probability, frequency, etc.

Singer proposed a simple fuzzy fault tree analysis model[791, where a reliability index,

say, failure rate is modelled as a LR type fuzzy number. System reliability calculation is

then by using the extension principle to calculate the parameters of fuzzy number. The

result is also a LR-type fuzzy number.

Furzv Knowledee Based Scte,n Reliability Evaluation
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Kauffman proposed a generalised fuzzy reliability model in which the concepts like

"survival possibility" and "possibility of failure" were defined similarly to eqn 2.6 and

2.7 respectively. With understanding of the fact that the reliability source information is

obtained from human experts and it is subjective therefore, Hence, failure rate is defined

as a trapezoidal fuzzy number rather than a crisp number. In his approach the system

reliability calculation is obtained by extending the classical reliability combination rules

into a fuzzy discourse. Calculating the parameters of fuzzy device failure rate yields the

system reliability which is also in a trapezoidal form.

By reviewing the current approaches to the system reliability calculation it is

observed that-:(l) with the recognition of the fact that the reliability information are

mostly subjective in nature, the basic reliability indices are modelled by a well-formed

parametric fuzzy number. e.g., LR type, triangular and trapezoidal fuzzy number. (2)

Fuzzy extension principle based arithmetical operators are intensively used for system

reliability calculation.

2:2.1 The Terminology of Fuzzy Arithmetic

The author's initial research effort on system reliability calculation was conducted

on developing a fuzzy arithmetical reliability calculator, which followed the current

research trend. The motivation of developing a fuzzy arithmetic system reliability

evaluation technique laid on:-(1) system reliability evaluation involves combining many

individual device reliability indices. The combination process inevitably invokes

intensive computation. Fuzzy arithmetic technique has been proved that it is a efficient

tool for such task[46,47]. (2) Although the technique has been applied to the reliability

field, it is still a relatively new area in which there are many problems to be solved, e.g.,

how to define a reliability index using a appropriate fuzzy number, definition of fuzzy

reliability combination rules etc..

To illustrate the fuzzy arithmetical system reliability calculation, the terminology

of fuzzy arithmetic such as possibility theory, linear parametric frzzy number and the

extension principle which were not covered in chapter 3 are introduced in this section.
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a-cut of fuzzy set

The relation of ordinary set and fuzzy set can be represented by a -cuts of the

fuzzy set. The a -cut of a fuzzy set, defined as Aa, is a ordinary set which is defined as

A a = (xIp A (x) >a,a €[O,lJ,x EX)
	

eqn4.1

Aa is an ordinary set of which the element has its membership value greater than some

threshold a, a E[0, 1]. By introducing the a-cut a fuzzy set can be translated to a

0	 x

Figure 4.1 The Relationshi p Between The Ordinary Set and Fuzzy Set

ordinary set and vice versa. The relation of the fuzzy set and ordinary set is demonstrated

inFigure4.l.

Possibility theory

Possibility theory is a diverse of fuzzy set developed by 7deh in 1978( 1011. The

following is Zadeh's powerful presentaiion

Let Y be a variable taking value in X, then a possibility distrIbution, F(y),

associated with Ymay be viewed as a fuzzy constraint on the values that may be assigned

to Y. Such a distribution is characrerised by a possibility distribution function which

associates with each the 'degree of ease' or the possibility that Ymay take X as a value.
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From the definition given by Zadeh, it is clear that a possibility distribution reflects the

constraint on the values of Y and it is a special type (i.e., the universe of discourse is the

real line) fuzzy set of which the membership function is coincide with the possibility

distribution, as shown in chapter 3. In some cases, the constraint on the values of Y is

physical in origin; In many cases, however, the possibility distribution that is associated

with a variable is epistemic rather than physical. A basic assumption in fuzzy logic is that

such epistemic possibility distributions are induced by propositions expressed in a form

of natural language. Hence, it provides an useful tool to represent the vagueness

associated with the linguistic variables.

Fuzzy numbers

A fuzzy number is a number that is characterised by a possibility distribution or is

a fuzzy subset of real numbers. In general, a fuzzy number is both a normal and convex

fuzzy subset of real line. A fuzzy set A is said to be normal if one of its element has the

highest grade of membership, that is, ji (x)=l. If the universe of discourse is the set of

real numbers and fuzzy subset A is monotonically decreasing on its right side sharp and

monotonically increasing on its left side sharp, then fuzzy subset is said to be convex.

Therefore, any fuzzy number is a possibility distribution. Simply examples of fuzzy

numbers are fuzzy subsets of the real line labelled, for example the linguistic terms

defined in chapter 3 such as high, moderate, long, short, etc.. A special case of a fuzzy

number is an interval. Viewed in this perspective, fuzzy arithmetic may be regarded as a

generalisation of interval arithmetic.

By the assumption that the reasonable approximation can be tolerated, fuzzy

arithmetic can be simplified greatly and be more representiable for this task. It is

expedient to represent the possibility distribution associated with a fuzzy number in a

standardised form that involves a small number of parameters---usually two or three---

which can be adjusted to fit the given distribution.

Linear parametric fuzzy number
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In general two types of parametric fuzzy numbers are commonly used for

information retrieval purpose: linear type and non-linear type. The non-linear fuzzy

numbers like S and P type fuzzy numbers have been demonstrated in figure 3.3. Two

widely used linear type fuzzy numbers are triangular (TFN) and trapezoidal (TrFN) fuzzy

number. Their possibility distribution can be defined as a triplet (a,b,c) and a quadruplet

(a,b,c,d) as follows:

TFN(X;a,b,c)	 = 0

= x -a

b-a
c-x
c-b

ifx <acrx >c

ifa^x^b

ifb^x^c
eqn 4.2

where a, c is the left and right end point, that is, membership of T(x=a=c) =0 and b is the

peak point at which T(x=b) = 1. Similarly TrFN can be represented by a quadruplet

TrFN(X;a,b,c, d) =0

x -a
b-a

=1

= d-x
d-b

if x <acrx >d

ifa^x^b

ifb^x^c

ifb^x^d
eqn 4.3

a	 b	 a	 C	 b	 C	 d

Figure 4.2 Triangular (TFN) and Trapezoidal( TrFN) Fuzzy Number

The parametric fuzzy numbers like TFN and TrFN are better described with the aid of a

diagram as shown in Figure 4.2. It is clear that TFN is the exception of the TrFN, that is,

if b=c then a TrFN become a TFN. Both TFN and TrFN has linear sharps so that the

linear operations like addition, subtraction and scalar multiplication yield a TFN or TrFN
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respectively. However, the other operations like multiplication do not exactly given a

TFN and the approximation can be defined with reasonable divergence.

The extension principle

One of the basic ideas of fuzzy set theory which provides a general extension of

non-fuzzy mathematical concepts to fuzzy environments is the extension principle. This

is a basic identity if a mapping or a relation to be extended from variable in the universe

of discourse X to fuzzy subset of X, more specially, suppose that f is a mapping from the

universe of discourse X to another universe of discourse and A is a fuzzy subset of X

expressed as

A=11(71)+
x1

then the extension principle asserts that

f(A)	 f(1(Xl) + + M(xfl))
x l 	 xn

= p(x1) +......+

f(x1)	 f(x)

eqn 4.4

eqn 4.5

Thus, the image of A under f can be deduced from the knowledge of the images of

X i,....X under f. More simply, by extension principle fuzziness on a universe of

discourse can "travel" to another universe of discourse if there is a functional relationship

between the two sets, and this process can repeats as far as any inherent function

relationship between the sets exists.

Fuzzy arithmetic

Fuzzy arithmetic on fuzzy numbers is accomplished by using the extension

principle defined in eqn 4.4. Let * denote an arithmetic operation such as addition,

multiplication, subtraction or division and C=A*B be the result of applying to the fuzzy

numbers A, B. By the use of the extension principle it can readily establish that the

possibility distribution function of A*B may be expressed in terms of those of A and B

according to the relation

Fuzzy Know1ede Based System Reliability Evaluanon



JC..A*B(Z) = SU {min[j.t(x),.i(y)]}
z_x y

eqn 4.6

(3) symmetric image -A =(-cl, -bi, -al)

(4) scalar production kx A=(kx al, kx bi, kx ci)

111
(6) inverse	 A-'

c 1 b 1 a1
eqn 4.14
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Let two TFN be represented by the triplets as A=(al, bi, ci) and B=(a2, b2, c2), by eqn

4.1 and eqn 4.6 the addition of A and B can be derived asan example

A a = [(bi -al)a ^ al,cl -(ci - bl)aJ	 a € [0,1]

Ba =[(b2-a2)a +a2,c2 -(c2- b2)a]	 a E[0,1]

eqn 4.7

where Aa and Ba are the a -cut sets of A and B respectively. By eqn 4.6 it has

f(A + Ba) = {[(bl + b2) - (al - a2) Ia + (al + a2) ,(ci + c2) - [(ci + c2) - (bi + b2) ]a}

=[(b-a)a +a,c-(c-b)a]

= f(A+B) a	 eqn4.8

where a=al+a2, b=bl+b2, c=cl+c2. Hence, the addition of TFN A and B is defined as the

triplet

(1) addition

Similarly it has

(2) subtraction

A+B=(al+a2, bl^b2, cl+c2)

A-B=(al-cl, bl-b2, cl-a2)

eqn 4.9

eqn 4.10

eqn 4.11

eqn 4.12

It is shown that if A and B are TFN, then so are A+B, A-B etc.. Furthermore, the

characterising parameters of A+B depend upon a very simple and natural way on those of

A and B. However, this is not necessarily true for those non-linear mathematical

operations. Non-linear operations can only be defmed approximately [47] as

(5) product	 Ax B (ai x a2, b 1 x b2, ci x c2)	 eqn 4.13
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(9) exponential

eqn 4.15

eqn 4.16

eqn 4.17

Chapter 4
	

Page 93

(7) division A(
al b 1 C1

,-, -)I c2b2a

lnA (in a, in b, ln c)

eA 	(ea1,eit,e)

(10) n-th power
	

A (a", b, c'')
	

eqn 4.18

Because of the reproducibility property of possibility distributions, the computational

effort involved in the manipulation of fuzzy numbers is generally not much great than the

required in the conventional interval arithmetic. As the given example was shown on

using TFN, the operation on TFN is the operation on its three parameters. Perhaps this is

the main reason why the current fuzzy reliability models favour fuzzy arithmetic method.

4.3 Fuzzy Arithmetical Reliability Calculation

Let TFN(X; a,b, c) denote a fuzzy constant failure rate which is modelled as a

triangular fuzzy number, by the extension principle as stated in eqn 4.5 and eqn 4.17,

Fuzzy Reliability can be defined mathematically as

Fuzzy_Reliability(t) = max{min[TFN(X),tjJ}
fe

= 1TN(e,e,e)	 eqn 4.19

where Fuzzy_reliability is a possibility distribution represented by the parameters of a

fuzzy constant failure rate on the time space. It is clear that for each time interval Fuzzy

Reliability is a TFN. Relatively, it can also define Fuzzy_Failure_Possibility as

Fuzzy_Failure_Possibility = TFN(1 - e,1 - e,1 - e t )	 eqn 4.20

Some other reliability indices can also be obtained using the extension principle. For

example, if TFN(A;a ,bA , CA) and TFN(y;a,b,c) denote for fuzzy failure rate and

fuzzy repair rate respectively, fuzzy availability and unavailability can be obtained as

t^0
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a	 b	 c
Fuzzy_Availability 

=	 + , 'b, + b 'aA + a

TFN(_
a 	 b	 c

Fuzzy_unavailability 
=	 ^b 'a+a	 eqn42l

Reliability combination rules can also be extended to fuzzy reliability calculation by the

extension principle. The classical probability logical connectors such as AND, OR, can be

extended to fuzzy numbers as

(1) "OR" (series connected two independent devices)

1FNfajl(Fi ;al,b 1,cl) OR TFNfji(F2;a2,b2,c2)

=TFN(FlF2;ai+al_c1 x c2,bl+b2_bl x b2c1^c2_a1xa2)	 eqn4.22

TFNreliabili ty(R1 ;al,b 1 ,c 1) OR TFNreliabjiity(R2;a2,b2,c2)

=TFNreliability(R1R2; al x a2, bi X b2,cl x c2)	 eqn 4.23

(2) "AND" (parallel connected two independent devices)

1'FNfaj ue(F1 ;al ,b 1 ,c 1) AND TFNfajiu(F2;a2,b2,c2)

TFNfajiure(F1F2; al X a2, bi x b2,cl x	 eqn 4.24

TFNreliability(R1 ;al,b 1,c 1) AND TFNreijabjjjtv(R2;a2,b2,c2)

=TFNie1jabj1jty(R1R2; al + al—cl x c2,bi + b2 - bi x b2, ci + c2 - al x a2) eqn 4.25

The extension principle can apply to not only the well-formed parametric fuzzy numbers

but also any type of possibility distributions which may be ill-formed. An interesting

example is to obtain FOR(availability) in the case study of chapter 3., where the inferred

unit failure rate and maintenance time are ill-formed as they were described in section

3.63, chapter 3. If the total maintenance time is equal to MTR then fuzzy FOR for case

1 can be calculated as

Fuzz' Knowl&fre Based System Reliability Evaluation



it,, (x)

crrR (Y)

PFOR(Z)

x:x xlO5/h

y:y(h)

Chapter 4
	

Page 95

- 0 0 0 0 0 0 0.22 0.22 0.78 1 0.22
1'1.6'2.5'4'3'10' 16 ' 25 ' 40 '63'100

- 0 0 0 0 0.22 0.22 0.50 0.78 0.78 1 0.33
1'1.6'2.5'4'6.3' 10' 16 '25'40 '63'100

=	 max	 (min(p,(x),p(y)))
FOR-	 1

A MTrR+1
-	 0	 0.22	 1	 0.22
- 0.9999""'0.9980'" ' 0.9618'""0.9091

0.22 0.22 0.22 0.50 0.78 0.78 0.78	 1	 0.33 0.22
0.998'0.997'0.996'0.994'O.990'0.985'0.975'0.960'O.94O'0.910

The obtained fuzzy FOR was approximated, e.g., let p (0.9937)=j.t (0.9901)p (0.9900).

The disadvantage of computing non-format possibility distribution using the extension

principle is obvious, as in the above example the concluded FOR distribution should

consist 100 grade of memberships. In general a fuzzy arithmetic operation on a possibility

distribution with n memberships yields n 2 memberships. Beside, any approximation

introduced may cause the consequence of losing some useful information.

43.1 Converting Non-format Fuzzy Data To TFN

One particular problem founded during research is that an effective fuzzy

arithmetic model demands that the subjective reliability source data are modelled as the

well-format paramethc fuzzy numbers. It assumed that the reliability experts should be

able to estimate reliability data at device level and these information are in good format

so that they can be easily processed in terms of fuzzy arithmetic. Unfortunately, this is not

the case in most situations. As an example, by questioning the credit of such subjective

estimation this study has lead to more deep level where the source of uncertainty of

reliability data were relatively more clearly explored. As it has been discussed in chapter

3, the source of uncertainty has two-fold: The subjective estimated basic reliability data,

and the varies situational adjustment factors. Understanding the fact that the natural

language is the most nature and appropriate way for a human expert to express his

empirical judgement, it has been established that the possibility theory based multi-

dimensional fuzzy reasoning(CRI) is a suitable tool for evaluating those vague and
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Figure 4.3 Converting An Ill-structured Fuzzy Data to TFN

imprecise information at device level. However, the inferred device reliability data are

not well-formed fuzzy number in some cases. Rather, they could be any type of

possibility distributions (see section 3.6.3, chapter 3).

An attempt to convert any-format fuzzy data to TEN has been made. By using a -

cut and Centre of Gravity (COG) method (see chapter 6), a TEN type reliability data

TFN(X; a,b,c) can be generated, where b is defined as COG and the two ends of a a-cut

are b and c respectively. The converted data is an approximation but the important

information are maintained. Most importantly, it provides a way to combine the model

presented in last chapter with this approach for a complete fuzzy system reliability

evaluation. The method of converting an any-format fuzzy data to TEN is shown in figure

4.3.

4.4 Fuzzy knowledge based System Reliability Calculation

Motivated by the successful application of fuzzy reasoning to industrial control, in

which the control process were induced to a set fuzzy control rules. It is natural to adopt

the idea of developing a fuzzy knowledge based system reliability model in which the

fuzzy combination rules and its reasoning algorithm. The outline of the proposed model

is presented graphically in figure 4.4
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INPUT DATA
Rule-base:
-combination rules
-control metal rules
Data-base
-liguistic terms set
-configuration set

OUTPUT DATA
-compressed crisp data
-qualitative expression
-graphic plot

Fiaure 4.4 Fuzzy Knowledge Based System Reliability Evaluation Model

4.4.1 Fuzzy Reliability Combination Rules

Empirically, one can infer that the chance of both devices failure causing system

failure is equal or less than the chance of each device failure; and the chance of either

device failure causing system failure is equal or greater than the chance of each device

failure. This empirically observation may be induced into a fuzzy rule form

IF	 Two devices A and B are in series connection

AND the chance of device A survive is moderate_possible

AND the chance of device B survive is quite_possible

THEN the chance of the combined system AB survive is slightly_possible

The first conditional statement of the above rule is deterministic meta-rule, which is

designed for controlling the reasoning process. The remained statements are ambiguous,

since it consists linguistic expressions like "moderate_possible, etc.. It has been stated in

chapter 2 that a probability combination rule for two series connected devices reliability
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is the product of each device reliability, which is in accordance with the above statement.

The process is rigorous if the available data are rigorous as well. However, it is not the

case in this application as it has been argued thoroughly. Beside, it has been well argued

in fuzzy control applications that even in the reality the input and output are deterministic

in nature, when these information reflected to the human being's brain they become fuzzy

information, e.g., high temperature, low pressure, etc.[54]. Human experts then adjust the

obtained information in accordance with their own experience and knowledge, so that an

appropriate decision can be made. By simulating a human expert's fuzzy reliability

combination process, two sets of combination rules for series and parallel connected

system reliability (survive) can be induced as they are presented in appendix IV.

Fuzzy reliability combination rules can be induced either by the reliability experts,

or through the experimental method. The experimental method is by adjusting the input

for the antecedents of a rule to examine the correspondence of the inferred consequence,

and finally determine the most appropriate correspondence between the antecedents and

the consequence of a rule.

Apart from reliability combination rules, failure frequency combination rules are

frequently used as well in reliability analysis, particularly for Fault Tree Analysis(FTA)

which is aimed to obtain frequency of occurrence of the top event. Such combination

rules may be stated as

IF	 Two devices A and B are in parallel connection

AND The failure frequency of device A is hourly

AND the failure frequency of device B is daily

TH the failure frequency of the combined system AB is more than weekly

Fuzzy combination rules for both series and parallel connected system failure frequency

are induced and presented in appendix IV. The linguistic expressions such as daily,

moderate..,possible etc. are defined in figure 4.6.

4.4.2. Combining Individual Device Reliability Using ERBESS
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The device reliability evaluation process using FRBESS has three stages: Interpret

the linguistically expression embedded in fuzzy combination rules into their possibility

distributions; compile fuzzy combination rules to generate their relational matrices by a

chosen implication operator, and aggregate these matrices into a single rule-set matrix;

infer system reliability by using a set of meta rules to control the reasoning sequence.

The data-base for combining system reliability contains three part of information:

(1) linguistic primary terms definition; (2) reliability data of each individual devices in

the system, which can be in the form of linguistically expression, numerical interval or a

crisp value; and (3) configuration list in which it contains the information of how devices

are connected. The rule-base contains (1) combination rules and (2) meta control rules.

The processes of data interpretation, rule compiling and aggregating are the same as that

of devices reliability prediction (see chapter 3). The combination reasoning process

carries out using four lists, i.e., a path list which is the configuration list in the data-base;

a close list which contains the name of those already being combined devices; an open list

which contains the name of all devices in a system to be combined; and a current list

which contains a set devices currently in process. A current list can be the path list, or

any one of sub-list of the path list. Instead of generating by the build-in chaining"

facility of FRBESS as it is in device reliability prediction, the path list in reliability

combination process is obtained from the data-base, and the other two lists are generated

by sorting the path list. The path list plays an important role in the combination process.

For example, suppose there are three devices A, B, and C. A and B are parallel connected

and C is series connected to A and B, a typical path list for combining system ABC is in

the form of

path=[c, [a, b]']

where a list with a quota means that all elements in the list are parallel connected,

otherwise they are series connected. A sorting process then is used to re-order these

elements in the path list by using the depth search techniques as

path=[[a, b]', ci

open=[a,b, ci
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close=[]

The idea of sorting is to put the most nested sub-list of the path or any one of current list

at the first priority to be processed. In the above example there has only one nested list so

that the sorting process accomplished and the open list was also created. Fuzzy inference

process can then be applied using the above three lists until the path list and the open list

become empty.

4.4.3 Control of Reliability Combination Process

A combination rule in a rule-base can be described in the natural language form as

IF	 the chance of the current system survive is any

AND the chance of device X survive is quite_possible

THEN the chance of the newly combined system survive is quite_possible

Or it can be represented in an abstract form as

IF	 S is any and X is quite_possible then S' is quite_possible

In the above combination rules the string "the current system" represents the devices

which were already combined. The initial state of the current system is set as null, which

corresponds to a fuzzy term as "any". The control strategy of determining the

combination sequence is explained as :- (1) select the first element in the path list, if it is a

string then it means there has no list element in the path list and combination process

can apply to the path list, otherwise if it is a list as to the above three device system it find

lists [a,b]'; then (2) select the first element of this new list to examine whether the

element is a list or a string. If it is a list then the selection process will repeat (1) and (2)

until a string is found, otherwise if it is a string, say, 'a', then (3) retrieve its data from the

data-base, if there is no data for 'a' in the data base then check the open list. If 'a' is in the

open list then prompt the user to supply a data. (4) rule 1 is hired and 'a' replaces X, Infer

the current system 'S' by composite to the initial combination ruleset matrix; (5) combine

all elements in the current list, i.e., 'a' and 'b', using meta rule for selecting either series or
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parallel combination ruleset. (6) once the list [a,bJ' are combined, check the next element

to the list, if it is string then replace the current list by this new list, say, path list and

repeat (5) otherwise replace the list by a string which represents the inferred list and

place it at the last place of the path list, also move 'a' and 'b' from the open list to the

close list. (7) restart the process from (1) until all elements in the path list become string

then combine these elements, and delete them from the path list. (8) Once the path and

open list become the empty lists then quit the combination reasoning process. The above

combination reasoning procedures can be organised by a set of meta rules. The

combination sequence control algorithm is described in figure 6.7, chapter 6.

The control strategy for selecting of combination rules is relatively simple. There

are two control rules for combining parallel and series system reliability: If there is a

device list with a quota then the aggregated fuzzy relational matrix generated from the

parallel combination rule-set should be invoked; otherwise if there is a device list

without quota then the fuzzy series matrix is invoked. This control process is also

implemented by meta rules. The detailed discussion of implementing combination

control is presented in chapter 6.

4.5 Cases Study

Two cases are studied by using the proposed fuzzy knowledge system reliability

evaluation model. The results of the study are then analysed in comparison with the

classical probability combination method (see chapter 2) and fuzzy parametric system

reliability combination method in section 4.2.

4.5.1 Modelling Considerations

Case one

The first case to be studied is the example system presented in figure 2.6 of

chapter 2, where five devices formed a series-parallel mixed complex system. The

assigned reliability for each device are:

PA=O5; PBI=PB2=O.l ; PC1=PC2=O.Ol
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The above data can be transfered to the universe of discourse "the chance of survive"

using eqn 3.3 and fuzzification method (see chapter 6) as

JAOQ = [0.00,0.O0, O.00,0.00,0.00,0.O0,0.00,0.00,0.O0,0.4Q 0.60] 	 x =

PBI( X) = 11B2(X ) = [0.00, 0.00,O.00, O.00, O. 00,0.00,O.00,O.00,L00,O.00,O.O0J	 x = 1,...,10

1 Q (x) = 1 2(x) = [0.00,0.00, O.00,O.00,0. 00,0.00,L00,O.O0,O.00,O.00,O.00] 	 1,...,10

The assigned reliability can also be fuzzified to form a triangular number TFN(x; a,b,c)

by considering a 5% divergence so that they can be

TFNA(x;0.475,0.500,0525);	 TFNB 1=B2(x;0.095,0. 100,0.105);

TFNC1=c2(x;0.0095, 0.010,0.0105)

The configuration list for this case is defined according figure 2.6 as

config:[[B1, Cl], [A, [Cl, C2]'], [B2, C2]J'

In this case it is aimed to combine all 5 devices to obtain the system survive possibility.

Case 2

In this case two groups of RTS units(see appendix II) are considered. They are 4

20 MW turbine units and 3 100 MW fossil steam units. The failure rate of 20MW units is

obtained from RTS and the failure rate for 100MW units is modified as

A1 A2 = A3 = A4 = 0.0022;	 A5 = A6 =A7=0.045

Similarly, they can be transferred to the universe of discourse "the failure frequency" as

= jz 2 (x) = p 3(x) i4 (x) =[0.00,0.00,0.00,0.00,0.32,0.68,0.00,0.00,O.00,O.00,O.tJO]
ji 5( x) = p 6 (x) = p7 (x) =[0.OQ 0.00,0.0O,0.00,0.00,0.00,0.00,0.30,0.70,OOO,O.00]

ThesefailureratearefuzzifiedtobeTFNbyconsideringa 7%divergenceas

AI2'34 (x;L86 x 10,2.0 x 10,2.14 x 10)

TFN	 _ (x; 4.19 x 10-2 ,4 .5 x 10_2 , 4.82 x 102)
A,-A6

It is assumed that all units in a same capacity group are series connected, and two groups

are parallel connected. Hence, the configuration list for this case can be defined as

Conflg:[[ul, u2, u3, u4J, [uS, u6, u7JJ'
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In this case it is aimed to combine 7 units to obtain the top event "system failure

frequency".

4.5.2 Combination Reasoning Using FRBESS

After loading the data-base and the rule-base, the process of interpreting the data-

base is automatically carried out by FRBESS. The first task of the combination reasoning

is to compile and link SDIS (Self Defmed Inference Sequence) control Algorithm by

"switch" command. The next process is to sort the path list using the "sort" command. It

is aimed to-:(1) place the most nested sub-list at the first place of a current list, and the

second most nested list at the second place, and so on until the process priority is sorted;

(2) always place the list elements before the string elements in a list. For case 1, the

"sort" command will result as

path=[[[Cl, C2]', Al, [B2, C2], [Bi, Cl]]'

The process of compiling the rule-set generates three rule-set matrices: initial

cOmbination matrix, series combination matrix, and parallel combination matrix. The

combination reasoning process is carried out then after, using the meta control rules to

determine the sequence of devices to be combined to the current system and to select an

appropriate connection matrix for inference. The combination sequence for case 1 is

demonstrated below:

step!: path=[[[C1, C2]', A], [B2, C2], [Bl,C1]]'; current list :4[C1, C2]', A];

step2 current list=[C 1, C2]'; combine Cl with the current system(null) using initial matrix

step3: current list=(C2}'; combine C2 with the current system(Cl) using parallel matiix

step4: current list=[A]; combine A with the current system(Cl,C2) using series matrix

step5: path=[[B2, C2], [Bl,Cl], Si]'; current list=[B2,C2]; Sl=result(C1,C2, A)

step6: current list=[B2,C2]; combine B2 with the current system(null) using initial matrix

step7: current list=[C2]; combine C2 with the current system(B2) using series matrix

step8: path=[[B1,Cl], Si, S2]'; current list=[Bl,Ci]; Sl=result(Cl,C2); S2=result(B2,C2)

step9: current list=[B 1 ,C 11; combine B! with the current system(null) using initial matrix

steplO: current list=[Cl]; combine Cl with the current system(Bl) using series matrix

step!! :path=[S 1, S2, S3]';current list=[S 1 ,S2,S3];S lesu1t(C l,C2,A); S2=result(B2,C2);S3=result(B l,C 1)

stepl2: current list=[Si,S2,S3]';combine Si with the current system(null) using initial matrix

stepl3: current list=[S2, S3J'; combine S2 with the current system(S1) using parallel matrix

step 14: current lsit=[S3]'; combine S3 with the current system(S l,S2) using parallel matrix

Fuzzy Knowled2e Based System Reliabilüv Evaluation



Chapter 4
	

Page 104

stepl5: path=[], open=J]; quit the combination reasoning process

For demonstration, the computer session of two cases studies are printed and

presented in figure 4.5.

4.4.3 Results and Discussion

The results of calculating system reliability by using fuzzy rule-based

combination model are presented and discussed in comparison with the results obtained

by using fuzzy arithmetic model (section 4.2) and classical probability model.

case!

The inferred system survive possibility is [0.00,0.00, 0.00,0.00,0.22,0.50, 0.60,

0.78, 0.33, 0.33, 0.33, 0.33]. Its corresponding qualitative expression is

the_current_state(survive) of system is quite....possib1e. By using COG method it results

6.24 which is corresponding to 0.0 14 after transferring back to its original universe of

discourse.

The calculated TFN by using egn 4.23 and eqn 4.25 is (0.01077, 0.01192,

0.013 15). The calculated survive probability by using eqn 2.15 and eqn 2.17 is 0.01192.

Case 2

The inferred system failure frequency possibility is [0.22,0.32,0.68,0.30, 1.00,

0.70, 1.00, 0.22, 0.00, 0.00, 0.00]. Its corresponding qualitative expression is

the_currentstate(failure) of system is betweenjweekly, monthly]. By using COG

method it results 3.92 which is corresponding to 0.00096/ hr. after transferring back to Its

original universe of discourse.

The calculated TFN by using egn 4.23 and eqn 4.25 is (0.00092, 000113,

0.001385). The calculated system failure frequency by using eqn 2.14 and eqn 2.16 is

0.00113/ per hour.
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macsyma-417 ii-

Copynght (C) 1982 Massacnusetts Institute 01 Technology.
All Rights Reservea.
Enhancements (c) 1982. 1991 Symbolics. Inc. All Rights Reserved.
Type 'DESCRIBE(TRADE_SECRET); to see important legal notices.
Type 'HELPO; for more information.

Checking password tile: /usr/localllib/macsyma_41 7/systern/passwd-1 392550124-41 7.text
(Cl) FRBESS (CONSULT):

•	 FUY RULE BASED EXPERT SYSTEM SHELL
version 1.0

•	 by
*	 Lel Wang
*	 1991

FRBESS => load(survive_comoinatlon.clb, survive_combination.m);

file SURVIVE_COMBINA11ON.DB is loaded
"'file SURVIVE_COMBNA11ON.RB is loaded

FABESS ==>switch(SDIS);

SOIS is compiled and linked

FRBESS => sorpath)

PATH=ff(C1, C2y, A). 1B2. c21. [51, Cl))'

CLOSE=Q

OPEN= (Cl, C2_ B2, 	 Bi. Cl)

FRBESS =>compile(rb_combinaflon_survive):

Select the implication operator for generating fuzzy relational matr, chose either 1.2, 3, 014
1. Mamdanis 2. Lukasiewiczs 3. Gaines-Rescfler 4. Godel

3;

relation arrays for all rulesets in RB_COMBINA11ON_SURV1VE are generated.

FRBESS > infer(systern=null(open));

goal(systern) aithieved: the_current_Slate of system is
[0.00. 0.00, 0.00, 0.00, 0.22,0.50. 0.60. 0.78. 0.33.0.33. 0.33)

FRBESS ='express(goal);

"' The goal is expressed approximately as:
the_current_state of system is qurte_possle

FRBESS =plot(goal);

1.0

0.8

0.6

0.4

0.2

0.0
0	 1	 2 3	 4 5	 6	 7 8	 9 10

the_current_system

FRBESS =>compress(goal):

Fiaure 4.5 Trace Of A Com puting Session Of Two Sample Systems Evaluation
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Fe saved as /userslkeagwang/FRBESSltestftestsession6

FRBESS => reset);

FRBESS => ioad(failure_comoination.db, Iure_combination.m);

file FAILURE_COMBINA11ON.DB is loaded
file FAJLURE_COMBINAT1ON.RB is liaded

FRBESS =>swih(SDlS);

SDIS is comptied and linked

FRBESS => sort(patfl)

PATh=(( 01,112, U3, U4J, 1115, 06, U7JT

CLOSE=[J

OPEN= [Ui, U2, U3, 114,115,06,071

FRBESS =>compite(rb_combinaiion_failure);

Select the implication operator for generating fuzzy relational matrix, chose either 1,2. 3, or 4
1. Mamdani's 2. Lukasiew,czs 3. Gaines-Rescher 4. Godel

relation arra for all rulesels in RB_COMBINAI1ON_FAJLURE are generated.

FRBESS => inter(systeni=nuii(open));

goal(syslem) archieved; the_current_state of system
[0.22. 0.32. 0.68. 0.30. 1.00. 0.70. 1.00, 0.22. 0.00. 0.00. 0.001

FRBESS =>compress(goal);

The compressed goal s 3.92

FABESS —>express(goal):

_- The goal s expressed approximately as:
the_current_state of system is betweenjweeldy. morithtyj

FRBESS —_>plotgoal)

0.0 •'''''''
0 1	 2 3 4 5 6 7 8 9 10

the_current_system

FRBESS =>save(%, testsession7);

File saved as /users/keag/IwangIFRBESS/test/testsession7

FRBESS ==>bye:

Exit consulting session. GOOD BYE
Time= 3695950 msecs

Figure 4.5 Continued...
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X = (failure rate, x E [10,1] / the failurenumber perhour} Y = (the fxquency of failure, y € [0,10]}
y=alog(x)+b; a=2, b=10
hourly=[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.22, 0.50, 0.78, 1.001
daily=f 0.00, 0.00,0.00,0.00,0.00,0.22,0.78, 1.00,0.78,0.22,0.00]
weekly=[0.00, 0.00,0.00,0.22,0.78, 1.00,0.78,0.22,0.00,0.00,0.00]
monthly=[0.0O, 0.22,0.78, 1.00,0.78,0.22,0.00,0.00,0.00,0.00,0.00]
annually=(1.00, 0.78,0.50,0.22,0.00,0.00,0.00,0.00,0.00,0.00,0.001

0	 certuin

•	 almost.certain

N	 quite_possible

-+.- moderate_possible

•	 slightly..possible

--O--- alznostjmposslble

1.	 impossible

The cbance of survive

X {J)robability of survive, x E[10 5,L0 I	 Y thechance of survive, y E[0,10]}
y=alog(x)+b; a=2, b=10
certain=[0.00, 0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,033, 1.00]
almost_certain=[0.00, 0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.22,0.78, 1.00]
quite....possible=[0.00, 0.00,0.00,0.00,0.00,0.22,0.78, 1.00,0.78,0.22,0.00]
moderate_possible=(0.00, 0.00,0.00,0.22,0.78, 1.00,0.78,0.22,0.00,0.00,0.00]
slightly.possibile=[o.00, 0.22,0.78, 1.00,0.78,0.22,0.00,0.00,0.00,0.00,0.00]
almostjmpossible41.00, 0.78,0.22,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00]
impossible=[I.00, 0.33,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00]

Figure 4.4 Linguistic Definition For The System Survive and The Failure Freauencv
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From the results obtained it is found that fuzzy rule-based combination model is a

appropriate approach to calculate system reliability, since the COG results of both cases

are quite reasonable in comparison with the results obtained from the classical probability

combination method. The possibility distribution obtained in case 2 is less indicative, for

it has more than one peak. It may be due to the large knowledge gap appeared in the rule-

base. However, its qualitative expression obtained by using least distance method

delivers good indication. On the other hand, it is not surprise to find that the results

obtained by using fuzzy arithmetic method are well matched, since the operators were

extended from the classical probability combination operators.

Method Inference - nference -

Figure 4.7 Benchmark Of Computational Effieiencv Of Two Approaches

Another aspect of comparison is the computational efficiency of both arithmetic

and fuzzy inference approach. Using case 1 as an example, the computing time using

fuzzy knowledge based model is almost 8 times of the computing time using fuzzy

arithmetic model(see figure 4.7. It is found that during a consultation session the most of

computing time for fuzzy inference model are spent on rule interpretation and relational

matrix generation. The computational efficiency of fuzzy inference approach can be

improved to a significant extent by the method of compiling all rules off-line and saving

fuzzy relations in array form for future consultation.

4.6 The Concluding Remarks
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The main concern of this chapter is how to calculate the system reliability if the

device reliability data are vague and imprecise as they were estimated subjectively.

Section 4.2 briefly reviewed the current approaches in applying FST to the subject

of reliability evaluation. An intuitive explanation has been given in order to avoid

unnecessary formalism. In section 4.3, Some fuzzy reliability combination operators are

defined based on the concepts of fuzzy arithmetic. Based on them fuzzy reliability and

failure possibility, as well as some fuzzy reliability index are defined which can be

regarded as the extension of the classical probabilistic reliability in a fuzzy system. It is

understood that fuzzy arithmetic based system reliability evaluation method has the merit

on its computing efficiency, since what to be processed are a few parameters of a fuzzy

reliability dat&

The proposed fuzzy rule-based system reliability evaluation model has been

described in section 4.4, where the knowledge of system reliability evaluation can be

induced into fuzzy rules form. By using the possibility theory based fuzzy reasoning the

reliability index at system level can be deducted. Techniques of device combination

sequence control and different fuzzy connection matrix selection are presented. To

illustrate how fuzzy system reliability evaluation model works, two cases are studied in

section 45 and the results are discussed.

Fuzzy Knowledge Based S i crem Reliability Evaluaaon
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Chapter Five

Application Of Fuzzy Reliability Techniques To Power Generating

System Analysis

5.1. Introduction

A basic element in power system planning is the determination of how much

generating capacity is required to give a reasonable assurance of satisfying the future load

requirement. This capacity should be capable of supplying the demand under conditions

of generating unit forced outages and unforeseen variations in the system load

requirements.

Significant steps forward in the use of probability methods for the assessment of

power system reliability performance developed by Calabreas[ 13], Halperin and

Adler[36]. Since then, a large number of reliability indices have been proposed and some

of them have been taken into the practise in power system planning. A reliability index is

defmed broadly to be a quantity that measures and quantifies some aspect of system

reliability performance. The various reliability indices used in the electrical power

industry can generally be grouped into two broad categories-: (a) deterministic indices,

which reflect postulated conditions; and (b) probabilistic indices, which consider the

stochastic uncertainty inherent in power system operations. The school of probabilistic

indices permit the quantitative evaluation of system alternatives by taking directly into

consideration the parameters that influence reliability, such as the capacity of individual

generation units and the forced outage rate of each unit.

To measure power system reliability performance adequately by any one of those

probabilistic indexes, no matter whatsoever its consideration is on duration, frequency or

the expectation , refer and get validity from the basic reliability indices such as Mean

Avolication of Fuzzy Re1iabi1irt Techniaues to Power Generacin2 System Analysis



chaprer5	 page 111

Time To Failure (or failure rate), Mean Time To Repair (or repair rate) allocated to each

individual unit. At the planning and design stage, however, these parameters of some

units are insufficient or unavailable in terms of statistics under the certain circumstance.

For example, a newly installed nuclear steam unit is perhaps without sufficient operation

and test records to obtain any meaningful statistical conclusion. Besides, power system

reliability analysis is to assessing the adequacy of existence of sufficient generation,

transmission, and distribution facilities within the system to satisfying customer load

demand. Therefore, forecasting the future load demand is a organic part of reliability

analysis. However, the same problem is raised as to collect sufficient data to foresee the

future demand. Because of the rapid change of the social and industrial patterns in

modern time, it becomes more difficulty to forecast the future based on the past data.

The well-experienced human experts may remedy the defects of lack of statistic

data to a certain degree, as a matter of fact the role of a human expert plays in judging the

unit reliability has been recognised for Iong[ 4,29,3'TJ. However, so far this subjective

judgement has been forced to follow the axioms of probability theory which do not allow

the tolerance on the value being given. Comparing the statement of" The occurrence of

a hydro unit failure per year is 2 days" and the statement of "The occurrence of a hydro

unit failure per year is more likely 2 days. It could be one day in some cases but anyhow

won't be more than five days", which one of the above statement is more nature and

easier for a human expert to express his judgmental knowledge? The answer is obvious.

While the traditional probability theory lost it merit on representing and handling

this type of imprecise information, as a contrast, fuzzy set and possibility theory provide a

unified mechanism to accommodate the human experts' judgmental knowledge. Zadel,

the founder of the theory, has often expressed his belief in the pervasiveness and breadth

of fuzziness such as:

"The pervasiveness offuzziness den yes from the fact that, in most ofthe classes of

objects that we form in our perception of reality, the transition from membership to non

membership is gradual rather than abrupt. This is true of the class of tall men, beautiful

women, and larger numbers. And it is true of the meanings of such concepts as meaning,

Arnilication of Fuzzy Reliability Techniaues to Power Generatin g System Analysis



chapterS	 ige 112

intelligence ,truth, democracy, and love. In fact, the only domain of human knowledge in

which non-fuzzy concepts play the dominant role is that of classical mathematics. On the

one hand, this endows mathematics with a beauty, power, and universality unmatched by

any other field. On the other hand, it severely restricts its applicability infields in which

fuzziness is pervasive---as is true, in particular, of humanistic systems, that is ,system in

which human judgement, perception, and emotions play a central role. [95]"

Electric power system analysis, like any other physical systems analysis, has no

exception lying more or less on human being's judgements. Therefore, based on the fact

that in power system reliability analysis there are source information of which not only

the randomness but also fuzziness encountered, we are able to amend the concept of

fuzzy reliability into the area by considering both source data of generating capacity

outage and load demand as fuzzy data

In this chapter, it first reviews the basic concepts and techniques currently in use

in the field of power generating system reliability analysis. Among varies reliability

indices it is concentrating on the most widely used index LOLP. In the later section, fuzzy

arithmetical reliability evaluation technique is amended to power generating system. For

this purpose a fuzzy peak load model is proposed together with the possibility of capacity

outage model, based on them a new index called Possibility of Load Loss (POLL) is

defined. The proposed fuzzy power generating system reliability model is tested by

using the practical RTS and the results obtained are analysed in section 5.4.

5.2. The Basic Concepts of Power Generating System Reliability

The term "reliability" as applied to power systems has a very wide range of

meaning. These concerns can be divided into the two general categories:-(1) system

adequacy; and (2) system security. System adequacy relates to the existence of sufficient

energy to supply customs. It is associated with static system conditions without

consideration of any system disturbance. System security, on the other hand, relates to
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the ability of the system to respond to disturbance arising within the system. The system

reliability as it discusses here is only refer to system adequacy.

In power system studies, the time period is generally divided into two periods: one

concerned with planning(long-term period) and the other concerned with operation(short-

term period). In reliability evaluation of generating capacity the same subdivision is

made. Although the method of analysis is different in the two time periods, the basic

question is the same: "How much generating capacity is excess of the expected load level

(reserve capacity) is required in order that the risk if not meeting this load is less than an

acceptable value?". The term "generating system reliability evaluation" is usually defined

as that the total system generation is examined to determine its adequacy to meet the total

system load requirement. The generating system reliability model is shown in figure 5.1.

totaltotal
system	

(:IIIIII)	 I	 - system
loadgeneration

Figure 5.1 Generating System Reliability Evaluation Model

Power generating system is a sub-system of power system. When evaluating the

reliability of generating System, it is generally assumed that the other parts of power

system (transmission system, distribution system) are reliable, that is, if generating

capacity are sufficient to meet the load, transmission and distribution system can transmit

electricity to any load site, and would not cause shortage of electricity due to over load or

bus-bar voltage beyond the limitation. Therefore, at any time, the measurement of system

in normal operation or failure is that whether generating capacity can meet the demand àf

the forecast load. To improve generating system performance, or in another word to

increase the reliability of a generating system, They are two ways to achieve it:-(1)

increase the availability of the generating units; or (2) enlarge the generating reserve

capacity. Obviously, the concept of reliability is closely associated with the reserve.

Azn,lication of Fuzzy Reliability Techniaues to Power Generatin' S ystem Analysis



Unavailability(FOR) = ___
x+ y

eqn5.1

chapterS	 page 114

Similarly, reliability is also associated with the cost of installation and operation of the

added units. So far there has no simple equation among them yet.

5.2.1. Generating Capacity Model

Generating capacity model has two parameters: unit size(generating capacity) and

unit forced outage rate (FOR).

Out of the most important parameters is the forced outage rate--which is the

probability of finding the unit on forced outage at some distant time in the future.

Mathematically it is defined as unavailability given in table 2.1, chapter 2 as

A FOR does not include any concepts of frequency and duration. For instance, if the

failure rate and repair rate are doubled, FOR remains unchanged. Although techniques

are available to account for frequency and duration of generating states, the most widely

used and accepted technique for evaluating generating capacity reliability is based only

on the concept of FOR.

The fundamental basis for evaluating the reliability of generating systems is the

capacity outage probability table. As the name suggests, it is a simple array of capacity

levels and the associated probabilities of existence. A typical outage probability table is

evaluated using the binomial distribution, i.e., it considers the unit only has two states: in

service and outage. The best method of deducing the capacity outage probability table is

recursive technique, i.e., starting with the smallest unit, one unit is added to the table at a

time until all units have been processed. Because of the discrete nature of the capacity

outage states it is found that a very large system will lead to very intensive computing by

using the well-known recursive techniques. Alternative model-building techniques were

proposed attempting to improve the computing efficiency[9l, among them the continuous

normal distribution model and the Fourier transform model are two examples. The aim is

Aoz1icazion of Fuzzy Re1iabilit'. Techniaues to Power Generatine System Analysis



chapterS	 page 115

to obtain a single entry in the table using only a few parameters which are derived from

units size, FOR and the number of units in a system. However, it is found that the

continuous model is not sufficiently accurate when compared to those obtained using the

recursive technique. On the other hand, the Fourier transform model improves the

accuracy only when the system is large enough. In this chapter it is the recursive

technique being adopted.

The capacity outage probability table usually accounts on both individual and

cumulative probability. The cumulative probability table has several advantages over the

individual probability table, whereas the individual probability table indicates the

probability of a certain outage capacity state, the cumulative probability corresponding to

this value indicates the probability of this outage capacity or greater. Consequently, the

probability of zero capacity or greater being out of service is unity. Besides, the value of

expectation, say LOLP, will be no difference by using either individual or cumulative

probability tables.

- In practice, the available system capacities are not constants as units are added to

or removed from system for keeping risk level remained or for periodic inspection and

maintenance. A single capacity outage probability table is therefore not applicable if the

system becomes larger and consists many units, it is impractical to completely rebuild the

table each time a unit is to be added or removed. The basic system capacity outage

probability (and cumulative probability) table can be modified directly and a new table

developed. Such process can be done through following equation

P(x) =P1(x)(1-q) +P(x-c)q	 eqn5.2

Where P(x) is the probability of an outage capacity equal to or exceeding capacity x

after adding the unit of capacity c with outage probability q, and P- 1(x) is the probability

of outage capacity equal to or exceeding capacity x before adding the unit. Using this

equation, assume the first unit has P(0)=p, P(c)=q and p(x-c)=O if x<c. To have

cumulative probability table , assume the first unit has P(0)=l, P(c)=q and P(x-c)=1 if

x<c.
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To illustrate how a capacity outage probability table is obtained by using eqn 5.2,

consider a subsystem of RTS which consists three 100MW fossil steam units and two

50MW Hydro units. Their FOR are given as 0.04 and 0.01 respectively (see appendix II).

The calculated capacity outage probability table are listed in table 5.1.

	

Capacity	 Out	 Capacity In	 Individual	 Cumulative
______________ ______________ 	 Probability	 Probability

0	 400	 0.867130	 1.000000

50	 350	 0.17518	 0.132870

	

100	 300	 0.108480	 0.115352

	150	 250	 0.002190	 0.006872

	

200	 200	 0.004527	 0.004682

	

250	 150	 0.000091	 0.000155

	

300	 100	 0.000063	 0.000064

	

350	 50	 0.000001	 0.000001

	

400	 0	 0.000000	 0.000000

Table 5.1 The Capacity Outage Probability Table of A Sample System

5.2.2. Load Model

In last section a capacity outage probability table is used to evaluate the

probabilistic risk assuming a constant load level. In practice, however, load vary and

therefore a load model as well as a generation model is required for system reliability

assessment.

The load models which are currently in use are three types:-(1) The simplest and

quite extensively used model is daily peak load model in which each day is represented

by its daily peak load: (2) The individual daily peak loads can be arranged in descending

order to form a daily peak load probability distribution; and (3) a cumulative peak load

probability distribution is known as the peak load duration curve. Three typical load
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Figure 5.2 Three Typical Tvies of Load Models

models are illustrated in figure 5.2. All the load models are based on the assumption that

daily peak load last whole day.
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Choosing a possible load model convoluted with the generating capacity model

will result a possible system risk index. For instance, the units are in days if the daily

peak load variation curve is used and in hours if the load duration curve is used. In

Reliability Test System (see appendix II), the annual peak load is suggested as 2850

MW. Three tables of load data are given on weekly, daily and hourly peak load in percent

of the annual, weekly and daily peak respectively.

5.2.3 Review of techniques for reserve capacity

The estimation of the reserve of generating capacity is an important task for

whatsoever power system planning, design and operation[ 331. This section mainly

discusses the popular approaches to estimate generating capacity reserve. The techniques

currently in use to estimate reserve capacity are six types as following:

•	 Percentage reserve margin method

•	 Largest unit reserve method

•	 Loss of load probability (LOLP) method

•	 Frequency and duration (F&D) method

•	 Loss of energy probability (LOEF) method

•	 Loss of load expectation (LOLE) method

The first two methods are deterministic criteria methods and the remainder are

probabilistic methods. They are briefly discussed here in turn. In the next section, the loss

of load probability (LOLP) method wifi be discussed in detail.

5.2.3.1 Non-probabilistic Methods

Percentage Reserve Margin Method

The most common 8rule-of-thumb" of non-probabilistic methods are percentage

reserve margin, a reserve equal to the largest unit or a combination of both. Percentage

reserve margin requires the system reserve capacity being a fixed percentage (e.g., 20-

25%) of system peak load of a year. This method can not account for difference in system
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size and system load characteristics (load sharp, load forecast uncertainty) nor can they

account for the impact of different sizes (FOR, maintenance schedule etc.) and types of

generating units. Consequently, two systems having the same percentage reserve or a

reserve equal to the largest unit, can have vastly different probabilistic risks, that is,

probability of not meeting the load. To illustrate this using the system given in table 5.1,

assume that the expected load demand is 300 MW, the installed capacity is such that there

is a 25% reserve margin, then the cumulative probability of not meeting the load from

table 5.1 is obtained as

P(capacity out ^ reserve)=0.1 15352

Largest Unit Reserve Method

Largest unit reserve method has the same shortage as the percentage reserve

method. It requires the reserve equal to the largest unit in the system. For illustration, the

example is still used. Assuming that the expected load demand is 300 MW, the largest

unit in the system is 100 MW fossil steam unit, the cumulative probability of not meeting

the load is

P(capacity out ^ reserve)=0.1 15352

5.2.3.2 Probabilistic Methods

Loss of Load Probability Method

LOLP method is developed based on the approach of using probability theory to

determine the reserve capacity , which was first introduced in power system reliability

evaluation by Calabress in 1947. This method has considered the impact of unit size, load

size and maintenance schedule. Actually, LOLP index is the value of expectation, that is.

if for a certain system it has LOLP as 0.1 cl/a, it indicates that there should has the

expected 0.1 day (2.4 hour) load loss in a year due to shortage of generating capacity

from the probability of mean.
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The advantage of LOLP method are easy calculation, clear physical meaning.

However, it can not reflect the daily load change, nor the number of times and duration of

load lose.

Frequency and Duration Method

F&D method was introduced in power system reliability evaluation by Halpering

and Adler in 1958 , and developed by Ringlee and Wood (1966). It identifies the expected

frequency of encountering a deficiency and the expected duration of the deficiencies. It

therefore contains additional physical characteristics which makes it sensitive to further

parameters of the generating system, and so it provides more information to power

system planners. The index has not been used very widely in generating system reliability

analysis, partly for the reason that it requires more source data and its calculation is more

complicated in comparison with LOLP method.

Loss of Energy Probability Method

LOEP method was given by AJEE in 1960. LOEP equals to the ratio of electrical

energy loss due to load loss and total energy to meet the load.

Loss of Load Expectation Method

LOLE method is the extension of LOLP method. It has the number of days of load

loss in a certain period(usually a year) due to the shortage of electricity supply as a index.

In general, all of these four methods described above are based on the criterion of

generating capacity meet the demand of load. Therefore, each method requires two

models: (1) a generating capacity model; and (2) a forecast peak load model. The

applicable system capacity outage probability table is combined with the system load

characteristic to give an expected risk of loss of load, which is the aim of generating

system reliability analysis.

The above described indices are generally calculated using direct analytical

techniques. Analytical techniques represent the system by a mathematical model and
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evaluate the reliability indices from this model using mathematical solutions. A

conceptual analytical model for evaluating power generating system adequacy indices is

shown in figure 5.3.

generation	 load
model	 -—---	 model

model

Figure 53 Conceptual Tasks For Generating System Reliability Evaluation

5.2.4 Widely Used LOLP Approach

-	 The loss of load probability is the most widely accepted and used probabilistic

method for evaluating the risk level in generation system. Its definition is presented in last

section. The time units are in days or hours depending upon the load characteristic used.

Prior to combining the outage probability table it should be pointed out that there

is a difference between the terms "capacity outage" and "loss of load". The term "capacity

outage" indicates a loss of generation which may or may not result in a loss of load. This

condition depends on the generating capacity reserve margin and the system load level. A

"loss of load" will occur only when the capacity of the generating capacity remaining in

service is exceeded by the system load level.

A particular capacity outage will contribute to the system expected load level by

an amount to the product of the probability of existence of the particular outage and the

number of time units in the study interval that loss of load would occur if such a capacity

outage were to exist It can be seen from the peak load duration curve of Fig. 5.1 that any

capacity outage less than the reserve will not contribute to the system expected load loss.
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Outages of capacity in excess of the reserve will result in varying numbers of time units

during which load loss could occur. Expressed mathematically, the coniribution to the

system loss of load made by capacity outage qj is pjtj time units. The total expected load

loss for the study interval is given as

Loss Of Load Probability = t) = p(C < L1)t1	 eqn5.3

where C is the capacity in service and Li is the peak load at time i. To illustrate this,

consider the system presented in table 5.1, and assume the system load has its

characteristics as individual daily peak load shown in figure 5.2, then

LOLP = p.(capacity in <peak load)t

= (0.004682 + 0.000155 + 0.004682 + 0.115352 + 0.115352 ^ 0.006872 + 0.006872)

= 0. 253967 days I week

Suppose in a year the system configuration and load characteristic remain unchanged,

therefore, the annual (364 days) loss of load risk level is

LOLP=52 x 0.253967=13.21 days! year

Although LOLP approach shows its advantage for evaluating generating system

reliability, it shall indicate that in practice it may need to combine two or more

probabilistic method to evaluate a certain complicated system.

5.3 Fuzzy Generating System Reliability Evaluation

Similar as in probabilistic power generating system analysis, the aim of fuzzy

generating system reliability evaluation is that to measure the adequate of sufficient

generating capacity to satisfying the load demand. The difference between two

approaches lies on the fact that in fuzzy generating reliability framework the units

reliability data and the load level are seen as fuzzy data. Hence, in a fuzzy generating

system reliability model the tasks are to construct fuzzy outage capacity model and fuzzy

load model, then combine these two models in order to determine the risk criterion.
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5.3.1 Fuzzy Outage Capacity Model

It has been recognised that there are common situations in power system

reliability analysis that some, or all of units of a system whose failure and repair

information are statistically insufficient or unavailable and hence it has to depend upon

human expert's subjective judgement. These information then are not only encountering

sole randomness but also fuzziness, for human being's judgment are fuzziness in natural

as Zadel emphasised. Therefore, the forced outage rate is a fuzzy data for it is determined

by the subjectively obtained failure and repair information. The fuzzy FOR is the fuzzy

unavailability given in eqn 4.21, where FOR is represented as a triangular fuzzy number

TFNFOR(x; a, b, c).

To calculate the possibility of outage capacity, Similarly as in the probability

case, eqn 5.2 in section 5.2.1 is used to calculate the possibility of outage capacity. The

eqn 5.2 is extended into the possibility distribution in the way as following: let fuzzy

FOR for a unit be represented as a triplet TFNFOR(a, b, C) and C is the capacity of this

unit; let the current possibility of outage capacity be TFNn-i(an-1, bn-i, cn .. 1). Then,

instead of calculating the possibility of outage capacity directly, it is to calculate their

three parameters a, b, c and an-i, bn-i, cn-1 . The possibility of outage capacity after

added a new unit is given as

The possibility of outage capacity =TFNn(x; an(x), b(X), cn(x)) eqn 5.4

where

a.jx) = a 1 (x) x (1 - C) + a, 1 ( x - C) x a
b(x)=b,1(x)x(1-b)^b1(x-C) xb
c(x) =c 1 (x) x (1-a) +c 1 (x- C) XC	 eqn 5.5

where TFN(x) is the possibility of an outage equal to or exceeding a capacity state x

after adding a capacity C unit with an outage possibility TFNFOR(a, b, c), and Tn-i(x) is

the possibility of outage equal to or exceeding a capacity state x before adding the unit.

Similarly, for the first unit being added it is assumed
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TFN(x=0)-TFN(x; 1,1,1)

TFN(x=C) = TFNF0R(x; a, b, c)

TFN(x=x-C)=TFN(x; 1, 1, 1) if x<C
	

eqn 5.5

That is, three parameters a, b, and c are cumulated. Further assumptIon are made on the

parameters a,b,c, for the situation that if they are greater than 10 then these parameters

are assigned as 1.0. Hence, similar to the capacity outage probability table, we are able to

construct the capacity outage possibility table where the single crisp probability is

replaced by the fuzzy number on the unit space.

5.3.2 Fuzzy Load Model

Since the determination of peak load in a certain duration is an extremely difficult

task, and human experts' judgmental knowledge are the favourable aid to the load

forecasting, the load model are determined more or less subjectively as well as the

capacity model. That is, similar as previous definition of fuzzy data for the capacIty

model, fuzzy peak load can be expressed as the vague statements such like daily peak

load is more likely around 150 MW. It should be no less than 120 MW and aX exceed

200 MW". Such expression can be modelled as a TFN. Let y be tl variable ou

universe of discourse Y, where Y is the peak load level, and also let TFNk, be

represented by triplet (a, b, C), then the possibility of the peak load at a time invaJl ea

be defined as

Peak Load=TFN1(y; a,b, c)
	 n 5.6

To determine a generating system risk level it demands to combine both fuzzy capacity

outage model and fuzzy load model. In a fuzzy capacity model all the possible outage

states are listed in the form of a discrete series. Hence, the estimated fuzzy peak load has

to be discrete in accordance with the capacity outage model so that the process of

combination can be carried out. The process of discreting considers two possible

situations:-(l) at least one capacity state of an outage capacity model is within the
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boundary of a load capacity distribution. In this case it is simply to calculate the grade of

membership of the corresponding load capacity using eqn 4.2; (2) none of the capacity

state is within the boundary of a load capacity distribution. In such case it can use the

fuzzification technique which is described in chapter 6. Briefly, if there has a fuzzy load

estimation TFNIOad(y;a,b,c) and there are two possible capacity states Cl and C2 which

are next to a and C. The grade of membership of load level at Cl and C2 can be obtained

as

b-Cl	 C2-b
C2-Cl'	

j.i1(C2) = C2-Cl
	

eqn5.7

The time interval of fuzzy peak load could be a year, a season, a week, a day or an

hour, depending on which type of load models is preferred. However, by applying the

extension principle and the derived operators which were given in chapter 4, a fuzzy

peak load at a time interval can be translated to any other intervals.

5.3.3 Possibility Of Load Loss (POLL) As A Possibilistic Index

Based on the fuzzy capacity outage model and fuzzy load model given in the last

section. it is able to define a new reliability index called" Possibility Of Load Loss".

Indeed this new index is the extension of LOLP, of which the probability of reserve

capacity less than peak load is in a interval where each probability has a value it, it

E[O,l] associated. it is the degree of possibility. POLL is defined as

POLL = TFN(I1I capacity out reserveta1,b1,c)

= TFN(Fij capacity in C peakload];a1,b,c1)
eqn5.8

where C means fuzzy containment, since both capacity out and peak load are fuzzy

event. The operation of fuzzy containment is to measure the degree of a fuzzy data
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Fl!ure 5.4 Demonstration of Fuzzy Containment Operation

containing another fuzzy data (see figure 5.4). If A and B are two fuzzy numbers, the

degree of A contained in B can be calculated

- 1B(

j'J.IA(X)dx

or ifAandBarediscretefuzzynumbers,then

n
JA(I)IB(Xi)

H= 1=0

1.IA(X)
i0

eqn 5.9

eqn5.1O -

5.3.4 Algorithm For Calculating POLL

To calculate POLL, let X be the universe of discourse of capacity in service

probability, Y be the universe of discourse of possible capacity in service state. TFN(x

aj, b, Cj) is the possibility of the ith capacity in service and i(yj) is the grade of

membership of a load level at yi. It is known that the operations on TFNs yield a TFN.

Therefore, Possibility Of Load Loss can be determined as

where
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n
a1ji(y1)

*	 1=0a

10
U

b .t (y1)

b-
fJ.t(Yi)

i= 0
U

:ci.i (y1)
*	 1=0

U

i0

eqn 5.12

The algorithm of combining fuzzy capacity model and fuzzy load model to give a

possible risk level of load loss is demonstrated graphically in figure 5.6. The detailed

explanation is also given in the next section, where a numerical example of a RTS

subsystem is employed.

5.4 Case Studies

Two case studies are conducted in this section. The first case is to study a small

system reliability in which 5 units are connected together to produce the total capacity of

400 MW. The aim of this case study is to demonstrate how the proposed fuzzy power

generating system reliability model works in detail. In the second case the practical

Reliability Test System (RTS) which consist 32 units is tested by the proposed method.

5.4.1 Case I

A subsystem of RTS which consists three 100 MW fossil units and two 50 MW

hydro units is selected for study. The large capacity fossil units are for the base load and

the small capacity units are for the peak load. The estimate of MTR and MITF for both

type of units are given in appendix II. Based on these information the units FOR can be

calculated.
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a	 h	 C	 1.0 X

Figure 5.5 Algorithm of Possibility Of Load Loss Index Calculation
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If there is the situation that a human expert expressed his judgement on units

failure and repair information in a way like "the given estimate for both type of units

should allow a small divergence", and if' small' be interpreted as 10% divergence, then

the units failure and repair information can be modelled as fuzzy numbers. The units

outage information thus obtained will be

50MW unit: TFNM(h;l8,20,22)
	

TFN	 h; 1782,1980,2178)

lOOMWunit: TFN.(h;45,50,55)
	

TFNM.(h;l080,1200,1320)

the forced outage rate for 50 MW units:

'TPN	 (h ; 18,20,22)
TFN F0R (x; a, b ,c)	 = ___________________________________________________

TFN.(h; 1782,1980,2178) ^ TFNM(h;18,20,22)

18	 20	 22
TFNFOR(X;282;80;	

^18

= TFNFOR(X;0.0082,0.O100,0.0122)

the forced outage rate for 100 MW units:

TFN MTFR (h; 45.50,55)
'IPNFoR(x;a,b,c)	

= irS .(h; 1080,1200,1320) + TFNM(h;45,50,55)

45	 50	 55
= TFNFOR(X;1320 

+ 55'1200 ^ 50'1080 ^ 45)

= TFN FOR (X; 0.0327. 0.0400,0.0489)

To construct the fuzzy capacity model, consider first that a 50 MW unit being added to

the empty table. Two capacity outage states are: 0 MW and 50 MW. According to eqn

5.5', the possibility of capacity outage for above two states are obtained as

TFNy=0(x; 1,1,1); and TFNy5O (x; 0.0082,0.0100,0.0122)

add each unit in the system in turn by using eqn 5.4 and eqn 5.5, the capacity outage

possibility table is obtained as shown in table 5.2. In this table the three parameters are

truncated at a cumulative probability of I O8. The system has 9 states.

The load model used is individual daily peak load listed in figure 5.2. To

calculate POLL, three cases are suggested as:
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Table 5.2 A Capacity Outage Possibility Table For Case I Study

(a) 10% fuzziness of M1TR and MTIF estimation of all the units; 10% fuzziness of all

daily peak load estimation.

(b) 10% fuzziness of MTFR and MTrF estimation of all the units; 30% fiznness of au

daily peak load estimation

(C) no fuzziness aboutMTrR andMTrF estimationofall theunits 30% fuzzinessofaff

daily peak load estimation.

The possibility distribution of daily peak load can be dthvet Fw day e it has

fuzzy peak load estimation TFN(y; 225, 250, 275), It is mapped to a finite disczete set

Y=[0, 50, 100, 150,200,250, 300,350,4001 MW as

(a) ji( y) = [0.00,0.00,0.00,0.00, (100,L00,0.00,0.00,0.00]

(b)ji(y) = [0.00,0.00,0.00,0.00,0.33,1.00,0.33,0.00,0.001

(c) .i(y) = [0.00,0.00,0.00,0.00, (133,100,0.33,0.00,0.00]

The possibility of load loss for day one can be calculated as

For case (b)
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* Øx O+...+O.003072 x 33+O.0O451O x LO+O.091156 x O.33+...+O.944586x0
a	

0+...+0.33+1^O.33+...-'-O
= 0.021449

b' 
Øx 0^...^0.004682 x Ø33 + 0.006872 x 1.0 + 0.115352 x 0.33+...+0.944586 x 0

-	 (J+...+O.33 +1 ^ O.33^...+0
= 0.0280019

* Øx 0^...^0.007154 x 0.33 + 0.010476 x 1.0 + 0.145632 x 033^..^O 944586 x 0
C -
	 0+...^O.33+1^0.33^...+0

= 0.0366839

POLL	 (1))=TFN(x; 0.021449,0.0280019,0.0366839) days/day

Similarly, for day one it has

POLLcas (a)=TFN(X;O.0045lO, 0.006872,0.010476) days/day

POLLcase (c)=TFN(X;0.028001 9,0.0280019,0.0280019) days/day

Among the above results, POLL for case (a) considered fuzziness in both capacity

outage and peak load level. All three parameters are greater than 0.0 10476 which is the

upper boundary of the probability of 150MW reserve capacity. This result is quite

reasonable, since there has a degree of possibility (0.33) that the load level is higher at

300 MW, which has an associated higher probability. Such effect has been reflected in

the result as the calculated value lies somewhere in between the probabilities of 150 MW

and 100 MW reserve. POLL for case (b) only counted fuzziness in capacity outage, since

the fuzziness of peak load has no effect on the result after it has been mapped to the finite

capacity set. POLL for case (C) has a crisp output because of non-fuzzy capacity outage

assumption. The result was weighted among three probabilities associated with possible

load loss capacity states because of the fuzziness in peak load estimation.

A weekly POLL can also be obtained as the sum of the calculated daily POLL

using the daily peak load model stated in figure 5.2.

5.4.2 Case H

The RTS system was developed in order to create a consistent and generally

acceptable system and data set that could be used in both generating system and
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composite system reliability evaluation[731. The RTS system consists of 32 units. The

total installed capacity in this system is 3405 MW. The generation reliability data are

given in table A2.1, appendix II, where 3 basic indices namely units MTTR, MTrF,

scheduled maintenance together with the derived FOR are presented.

The load data are given in table A2.2 and A2.3, where they appear as the weekly

and daily peak load as a percentage of annual and weekly peak respectively. The data in

table A2.2 and A2.3 define a daily peak load model of 364 days with Monday as the first

day of the year. The suggested system peak load is 2850 MW. The system reserve can be

determined as 555 MW.

The conventional risk evaluation model was first programmed. The program

contains three subroutines:-(1) capacity outage table calculation; (2) the daily peak load

table calculation; (3) risk evaluation program. The exact state capacity table was

generated where the cumulative probability was truncated at 10-6. It was found from the

table that the cumulative probability of 556 MW capacity outage is 0.084578. Hence, the

LOLP for the peak day (On Tuesday of 51th week of the year) was determined as

0.084578 days/day. By the sum of 364 LOLP for each day in the year it is obtained that

the loss of load probability for the year is 1.36886 days/year.

The program was later converted to accommodate and process fuzzy data by

replacing single probability and load variable with three parameter variables. Using the

fuzzy generating system risk evaluation program it first created the system capacity in

service possibility table. Some of representative capacity states are shown in table 5.3.

To evaluate the RTS system risk level under fuzzy environment, three cases are

suggested as

(A). All the generation unit reliability data has 10% fuzziness; 364 daily peak load data

has no fuzziness.

(B).All the generation unit reliability data has 10% fuzziness, 364 daily peak load has 5%

fuzziness.
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0
	

3405
	

(0.937954, 1.000000, 1.000000)

12
	

3393
	

(0.710916,0.763605,0.832965)

20
	

3385
	

(0.681803,0.739483,0.805297)

24
	

3381
	

(0576531,0.634418,0.694688)

40
	

3365
	

(0.403343,0.433434,0.474830)

100
	

3305
	

(0.486527,0547601,0.613325)

120
	

3285
	

(0.458972,0312059,0.564659)

160
	

3245
	

(0.409415,0.450812,0.518734)

265
	

3140
	

(0.272251,0.335567,0390144)

400
	

3005
	

(0.208705,0261873,0.331104)

500
	

2905
	

(0.072369,0.122516,0.189772)

556
	

2894
	

(0.036779,0.084578,0.145596)

600
	

2850
	

(0.025894,0.062113,0.118830)

650
	

2755
	

(0.009759,0.049419,0.089925)

700
	

2705
	

(0.007874,0.042461,0.082231)

750
	

2655
	

(0.007011, 0.038471,0.079652)

800
	

2605
	

(0.006133,0.024719,0.066318)

850
	

2555
	

(0.005846,0.014731, 0.052590)

900
	

2505
	

(0.005225,0.011608,0.050012)

950
	

2455
	

(0.00305 1, 0.007492,0.009235)

1000
	

2405
	

(0.001874,0.004341,0.007266)

1100
	

2305
	

(0.000938,0.002353,0.005115)

1200
	

2205
	

(0.000498,0.000791,0.001103)

1300
	

2105
	

(0.000204,0.000401,0.000782)

1400
	

2005
	

(0.000087,0.000102,0.000428)

1500
	

1905
	

(0.000019,0.000040,0.000071)

1600
	

1805

Table 5.3 Some of Representative RTS Capacity Outage Possibility Data

Case (A) result

The possibility of load loss for the peak day is obtained as
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POLL = TFN (x; a 0367794,0.084578,0.145596)
	

days /day

I
0

-)	 x-a036779
- '0.084578 - 0.036779

x-a145596
to. 084578- 0.145596

if x > 0.l45596a x <0.0367794

if 0. 036779 ^ x < 0.084578

if 0.145596 ^ x < 0.084578

By the sum of 364 POLL it obtains the annual POLL as

POLL=TFN(x; 1.296654, 1.368861, 1.450095) dayS/ )TC&

sc (B) result

The possibility of load loss for the peak day is calculated as

POLL=TFN(x; 0.08984 1, 0.095920,0.102762). days/thy

By the sum of 364 POLLIt has

POLL=TFN(x; 1.353442, 1.5385998, 1.690034) days/ year

From the obtained results it has found that-(1) in case (A) the calculated the peak

thy andtheannualPOLLhasthevalueofitscentreparameter asthesameofthevalue

calculated by the conventional method where only single crisp probability is counted.

This is due to the assumption of non-fuzzy load data. The fuzziness of the generation

units failure and repair data are represented in the form of triangular fuzzy number in the

result, in which each probability within the boundary has an associated possibility value,

e.g., a probability of 0.06 has an associated possibility as 0.49, which can be interpreted

as there has 0.49 degree to believe that the loss of load probability is 0.06 days/day is

true; (2) in case (B) the calculated results has reflected the inherent fuzziness in the load

data. Comparing the calculated POLL with the POLL in case (A) it found that the POLL

in case (B) is larger than the POLL in case (A). It is because in the later case the fuzziness

of load data has been considered. The peak load at 2950 MW has the possibility of 0.30.

At this capacity state it has a large probability of load loss. The fuzzy generating system

reliability model has counted in such effect and reflected this possibility in the result.
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Therefore, the obtained results are quite convinced, and it concludes that the proposed

model is valid.

5.5 The Concluding Remarks

Reliability evaluation is an important aspect of any power generating system.

Although there are a number of techniques available, none of them considered the

inherent fuzziness uncertainty in human experts' judgmental knowledge expression of

reliability source data estimation. This chapter has described one particular technique

based on the concept of fuzzy arithmetic, which is the one of important and core

branches of FST.

In this chapter the fuzzy reliability model has been emerged into electrical power

generating system evaluation in order to determine the risk criterion under the fuzzy

environment, based on the assumption that the statistical information of both generation

units reliability and peak load are insufficient or unavailable.

The fuzzy capacity outage model and fuzzy peak load has been constructed, which

can accommodate various vague statements and process these fuzzy data by modelling

them as parametric fuzzy numbers. By convolution of these two models , a possibilistic

index named "Possibility Of Load Loss" is determined. The fuzziness encountered in

source information, which may be important to decision makers, will be kept and

reflected in the final result The supporting argument for using the new index is that the

decision makers should have more options to make decisions with certain degree of

confidence.

To test the validation of the proposed model, this approach was applied to the

RTS system. The results demonstrated that the proposed model is the extension of the

conventional model. The real merit of the proposed technique is that it can be used to

determine the generating system risk level when some, or all of source data are fuzzy in

nature, while the conventional model is incapable to handle this situation.
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Chapter Six

Implementation of Fuzzy Rule-Based Expert System Shell(FRBESS)

For Reliability Evaluation

6.1 Introduction

Attempts of using the currenlyt available fuzzy knowledge based shell systems for

reliability prediction and calculation have failed. It was practically due to:-(1) There had

no sufficient fuzzy inference systems available for trial when the research was

conducted; (2) The only available system in the computer centre was REVEAL, and it

had been off-loaded for a long time so that there was no support at all (e.g. introduction

bulletin, user manual etc.). It came to no alternative but to develop a customised fuzzy

knowledge based environment. This chapter outlines the fundamental structure of a fuzzy

rule-based expert system shell called FRBESS which had been programmed. It also

examines and discusses several key design issues of this system that are directly related to

the implementation of the outlined reliability prediction and calculation framework in

chapter 3 and chapter 4.

The first fuzzy inference system emerged was FUZZY by LeFaivreE 52] in 1974.

After ten year ICL developed REVEALE 39I. Since then some other systems have been

reported include CADIAG, ARIES, SPHINX and spuEl55281. The list of fuzzy based

knowledge system is by no means exhaustive. These systems have some successes in

their application domains, due to their careful selection of fuzzy techniques and

operations (such as definitions of linguistic variables, fuzzy operations and inference

mechanism etc.). From a practical point of view, the implementation of FRBESS is

particular relevant because it is important to learn how this fuzzy inference engine can be

constructed in such a way to achieve maximum effectiveness so that the underlined fuzzy

rules can be closely represented and hence be reasoned to their absolute meaning.

Imolemenrazion ofFuzzy Rule-Based Eroert System Shell(FRBESS) For Reliability Evaluation
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KNOWLEDGE BASE

U
INFERENCE MECHANISM

U
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relation matrix
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matrix aggregation
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U
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natural lanuae 110

nunuic 1/0

plot of fuzzy set

Figure 6.1 The Modules Structure of FRBESS

Inwle,neniuion of Fuzrt' Rule-Based Exoert Suem Shell (FRRFiS1 For RdabiluzvEwih.*icsi



Chapter 6
	

page 138'

6.2 Fundamental Structure of FRBESS

The proposed skeletal frameworks presented in figure 3.1 and figure 4.4 have

been elaborated in a specific details as far as implementation is concerned. Briefly,

FRBESS consists of two files (knowledge base) and a main program (inference engine)

that constantly interacts these two files, that is, the rule base and the data base. The

outlined structure of FRBESS is presented in figure 6.1.

To apply the system to a problem, the knowledge engineer or the expert himself

first designs his model. He then enters it into the knowledge base ifies in the computer by

creating a file. If the knowledge engineer/expert also wants to use his own defined data(

instead of using the default linguistic values), in this case he can input his own fuzzy

terms and inference rules into the knowledge base. The system also allows the expert's to

define their own inference control strategy by entering a set of meta control rules into the

rule base under MACSYMA syntax. The input meta rules need to be compiled into USP

source code so that the system will control the reasoning sequence based on the user

defined strategy rather than by default the depth-first forward reasoning strategy.

The inference engine consists of four main program modules. These modules are:-

(1) a rule compiler; (2) an inference mechanism; (3) an information processor; and (4) an

user friendly interface. The rule compiler first translate all linguistic terms embedded in

rules into their associated fuzzy sets, according to the definition of fuzzy sets and hedge

operation defined in the data base, then compile these fuzzy sets in a rule into a fuzzy

relational matrix according to a chosen implication operator, and further aggregate these

matrices of a ruleset into a single matrix. The user consultation session starts by asking

questions about the values of premise variables. Once the values of all premise variable in

a ruleset retheved, no matter they were from the data base or from the user interactively,

the compositional rule of inference can apply and the value of a consequent variable is

deducted. The process repeats until the 'goal' is achieved. Two auxiliaries modules are to

handle the interpretation of data, i.e., fuzzy non fuzzy into its appropriate form.
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The first task to implement a knowledge system is to select an appropriate

computer language. The successful knowledge systems have originally been implemented

by a list of languages such as USP, PROLOG, C, and FORTRAN. Among them USP

and PROLOG are the most widely adopted languages for Al implementation, since they

have strong support for symbolic computation. Some other considerations in selecting a

language are flexibility of control, support of exploratory programming methodologies,

late binding and constraint propagation, and a clear and well-defined semantics. In the

case of FRBESS implementation, apart from the above consideration, the support of

numerical processing is another factor should be considered, since FRBESS is fuzzy

inference system which is different to the production system in the conventional sense.

Because of the nature of fuzzy matrix processing the intensive numerical computation is

inevitable in all fuzzy inference systems using CR1. Based on these considerations,

MACSYMA was selected for FRBESS implementation. Having been Developed by MiT

and Symbolics, inc. for over two decades, MACSYMA is a comprehensive 'expert

system' for mathematical computing[ 8586]. Written in LISP, it is a large, interactive

computer algebra system and programming environment designed to assist engineers,

scientist and mathematicians in solving a wide spectrum of mathematical problems. The

advantages of using MACSYMA for FRBESS implementation are:-(l) powerful

symbolic processing ability. MACSYMA is often regarded as a 'symbolic language'. It

inherits all USFs symbolic features such as list processing, and provide a powerful tools

for natural language processing. (2) With the build-in 300,000 lines LISP code

knowledge base MACSYMA makes the numerical processing much easier and faster. (3)

its comprehensive interactive interface provides a nice environment for system

development (4) its build-in LISP compiler and the automated LISP code translation

ability provide the familiarity and flexibility to the skilled USP users. On the other hand,

the disadvantages of using MACSYMA are that:-(1) As a high level, expensive language

it is not popular in most application environments; (2) with the large knowledge base it

requires fairly large amount of computer space for both RAM and ROM. Hence, it makes

the language only available on the later large capacity computers. Nevertheless, for the

purpose of implementation, MACSYMA seems to be an appropriate tool.
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6.3 Knowledge Representation in FRBESS

In general, it is most helpful to understand what kind of knowledge is represented

in a system before trying to grasp the representation language. By common usage,

knowledge is anything one knows, so it surely includes what is found in the knowledge.

But knowledge also includes how things are related. A representation language includes

the brevity and the explicitness with which certain kinds of facts can be stated.

The knowledge base contains the facts and rules that embody the expert's

knowledge, and there are various ways of representing the knowledge obtained from

experts and translated into the knowledge base such as production rules, frames, etc.. The

most common inference strategy used in knowledge systems is the application of a logical

rule where the rule says, "if A then B", so that when A is known to be true, it is valid to

conclude that B is true. Representing the rule in this way , it makes the rule simple and

hence the reasoning based on it is easily understood.

6.3.1 Data Representation

Data representation in FRBESS is a set of lists which represent:- (1) facts. The

facts list contains the current inference deductions , initial fuzzy assertions, and system

data such as component data and configuration list. (2) fuzzy definitions. They are fuzzy

linguistic terms definition, hedge operators. (3) auxiliary list. It contains the auxiliary

data developed during the inference process. Because of the occurrence of these various

different types of data in the problem environment, an unified structure is needed for data

representation. Similar to a frame based system, FRBESS employs a general "object-

attribute-value" (OAV) triples for data representation. An OAV can be expressed as

The Attribute A of Object B has Value C

Hence, for the problem of reliability prediction and calculation, the data base may

consists of data as
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(1) Numeric data: ['external_stress, "the_comparative_influence, '5.3]

(2) linguistic data: ['umtJA), 'failure_frequency, 'monthly]

(3) symbolic data: ['components_list_(X), 'connection, 'parallel]

(4) control data: ['matrix, 'parallel, 'hire]

It should notice that the list representation in MACSYMA syntax is different to that of in

USP syntax. A MACSYMA list has comma to separate elements.

5.3.2 Rule Representation

The structure of rules in FRBESS is a antecedent-consequent pair in which both

condition and consequent premises are implemented as the conjunction of OAV triples.

For example, a reliability prediction rule defined as

rulel: IF	 the comparative influence of variance of weather is positive strong

AND the comparative influence of variance of maintenance is negative weak

THEN the comparative influence of external stress is more than normal

The above English like rule is rendered for FRBESS as an OAV structured rule

[rule 1,

[con, ['variance_of_weather, 'the_comparative_inference, 'positive_strong],

Cvariance_of_maintenance, 'the_comparative_inference, 'nagetive_weak]],

['external_stress, 'the_comparative_inference, 'more_than(normal)]]]

In the above rule, 'con' represents the 'conjunction' operation. A rule is formed by three

parts: a rule name, a sub-list which contains all condition premises, and a sub-list contains

the consequent premise. Each premise sub-list has an OAV structure.

In the fuzzy reasoning technique, the fuzzy production rule format plays a major

role in the representation of the imprecision of the problem. The IF-1'HEN format as
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stated above is only one possibility that can be found in fuzzy inference system. Other

various formats, such as Zadeh's IF-THEN-ELSE format as an example, have their

advantageous points depending upon applications. Considerations for selecting a rule

format are:-(l) adequately represent the problem solving knowledge; (2) support by a

given fuzzy implication operator. Based on these consideration, it has been found that the

IF-THEN format is an appropriate choice for FRBESS because that ;-(l) the format can

be easily arranged into fuzzy CASE format [ mamdani 81] The CASE format is that its

IF part rules represent a collection of approximately disjoint and exhaustive conditions,

with the THEN part rules all referring to the same output fuzzy variables. This kind of

rule structure is useful in systematically eliciting an experts knowledge about a physical

system that is moderately well known such as reliability prediction. On the other hand,

rules stated within a CASE statement must necessarily be compact enough so that no

knowledge gaps are occurred; (2) The IF-THEN format has the ability to decompose any

individual, potentially complicated piece of knowledge into simple implementable rule

sets. It can also specify alternative output conditions as in the ELSE part of Zadeh's

format. This can be accomplished by introducing to the same antecedent(s) of a new rule

a different consequent. In this way, the IF-THEN format can be viewed as a

generalisation of the different types of rule format, and is the most suitable format to

represent imprecise and uncertain knowledge in FRBESS.

6.4 Design of a Rule Compiler

There are three steps to compile rules in the rule base into an appropriate fuzzy

relational matrix form in FRBESS. They are described in the following sections.

6.4.1 Rule Interpreter

The first part of fuzzy inference in FRBESS is to translate the linguistic terms

embedded in the rule base into their associated fuzzy sets form. The task is to search

rules in the rule base in turn, and to translate the value part of a rule (in linguistic form)

into fuzzy set based on the definition of fuzzy linguistic terms which are stored in the data

Imolemenrarion of Fu2'rJ Rule-Based Exoert Swtem Shell(FRBES1 For Reliability Eiluation



Chapter 6
	

page 143'

base. If there are linguistic hedges in the rule base. FRBESS will firstly translate the

primary terms into fuzzy sets,, then apply the hedge operators, which are defined in the

data base, on these fuzzy sets. In FRBESS, fuzzy sets are programmed as an array of 11

discrete quantity levels with respect to their universe of discourses and the fuzzy value of

a fuzzy variable is represented as a two dimensions lx 11 matrix. As an example, fuzzy

set 'high' is defined in FRBESS as

Object=uthL(A)

fuzzy_term=liigh

bigh[O]:.00

'high[lJ:=O.00

high[2]:.00

'highj3]:=O.00

'highf4]:=O.00

'high[5]:=O.00

'highl6]:=O.00

'highj7]:.22

'highf8]:=030

high[9]:.78

high[1O]:=1.00

6.4.2 Fuzzy Relational Matrix Generator

To compile a fuzzy production rule into a fuzzy relational matrix, it has two steps

as (I) the antecedent parts of a fuzzy rule are first combined together using the fuzzy

conjunction rule ( equivalent to MIN operation) to form a nile antecedent matrix; (II)

through the use of a fuzzy implication operator, the antecedent matrix is then combined

with the consequent part of a fuzzy rule to yield a relational rule matrix.

6.4.2.1 Implication Operators Selection

Because the role of an implication operator is vital for the accuracy of a fuzzy

inference system, it was examined to select the "adequate" operator for implementing

FRBESS.
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Figure 6.2 Ajgorithm of Fuzzy Rule Compiler
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The study of the generalised modus ponens, initially stated by Zadeh[941 has

motivated a lot of research related to the choice of implication operations. A lot of

theoretical studies have been conducted into understanding basic characteristics of fuzzy

implication operators[226O6i623O}. Mizumoto and Zimmermann[62] have scanned the

various existing implication functions so as to classify them according to their behaviour

on a set of properties, with emphasis on the transportation of linguistic hedges such as

'very' and 'more or less' from the premises to the conclusion. The studies on the effect of

choosing one implication or another on the resulting inference have also been

conducted[49,72,771. In general, it is concluded that there has no unique criteria for

judging an implication operator. The preference is largely application oriented.

Implication Operators

Lukasiewicz
Mamdarti

Fuzzy Modus Ponens

Gaines-Rescher

K.leene

Godel

Mathematical Equivalent
A-' B=MIN(1,1-a1+b1)
A - B=MIN(a,b)

A - B=MAX(1-a1,b1)

	

11	 ifa1^b,
	A.B=j0	

ifa1>b

1	 1	 ifa1^b
A-' B=mjfl(1_a.b) if 

a >b

11	 ifa.^b.
I	 .1A-'B=c

if a 1 >

Table 6.1 List of Some Well-known Implication Operators

A popular method of comparing implication operators is that to observe their

inference performance by giving various input. Six popular implication operators are

listed in table 6.1. An example is given aimed to compare and distinguish among the

chosen implication operators to be implemented in FRBESS. Let X be the universe of

discourse 'length', X=[1,2,3,4,5], two initial fuzzy sets are defined on X as A=' short' =[1,

0.5,0.1,0,0] and B=[0, 0,0.1,05, 1]. The composite fuzzy relations between A and B in

accordance with the implication operators listed in table 6.1 are given in table 5.2. We

consider various types of input as in the following cases:
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I. A'=A=[l, 0.5,0.1,0.0]

II.A'=not A=[0, 0.5,0.9, 1, 1]

ffl.A'=anything=[l, 1,1,1,1]

IV. A'=unknown40, 0,0,0,0]

V. A'=more or less A=[1, 0.7,0.3, 0,0]

VI. A'=more than A=[0, 1,0.7,0.3,0]

VII. A'={precise input}=[0, 1,0,0,0]

By using the above fuzzy input propositions A', the corresponding inferred fuzzy output

B' for each implication operator are obtained through the MAX-MIN operation. Table 6.2

shows the sensitivities of the inferred result B' under the six implication operators.

The characteristics of each implication operator can be summarised by various

cases of using different values of input A' . In case I, the inferred results of fuzzy set B'

under Mamdani, Gaines-Rescher, Kleene and Godel implication operators are exactly

obtained as B=B', and the result under Lukasiewicz and Fuzzy Modus Ponens are

approximately obtained as BB'; In case II, none of 6 operators produce a reasonable

result. This might be due to the situation where the actions are not able to decide under

such conditions. In case ifi, when the input fuzzy proposition A' is completely uncertain,

apart from Mamdani operator all the other operators suggest an output B' with the greatest

uncertainty, i.e., B'=A'. As an exception, Mamdani operator produce a certain information

B' which is equal to B. In case IV, for all 6 implication operators the inferred results are

nil fuzzy set. These results are convinced since it is iogically to deduct nothing if nothing

is known. In case V, when a linguistic hedge 'more or less' applied there are 3

implication operators, namely Gaines-Rescher, Kleene, and Godel operator, returned the

exact solution. In case VI, none of the operators gave the exact solution but the later 3

implication operators delivered acceptable results , when a shift hedge operator was

considered in the input . In case VII, Only Gaines-Rescher offered a reasonable

approximation.

From the obtained results, it is found that (I) the results obtained by using

Lukasiewicz and Fuzzy Modus Ponens implication operators are almost same, so as for
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Lukasiewicz

10	 0 0.1 0.5 11
10.5 0.5 0.6	 1	 ii

R 1 =I0.9 0.9	 1	 1	 ii

1	 i	 1	 1	 ii

Li	 1	 1	 1	 ii

Mamdani

[0 0 0.1 0.5	 11
Jo 0 0.1 0.5 0.51

R2 =I0 0 0.1 0.1 o.il

100 0 0 0'

Lo 0 0 0 0]

Fuzzy Modus Ponens

10	 0 0.1 0.9 F

10.5 0.5 0.5 0.5 1

R3 =I0.9 0.9 0.9 0.9 1
I i	 1	 1	 1	 1

[1	 1	 1	 1

11
ii
ii
ii

1]

Gaines - Rescher

.10 0 0 0 11

10 0 0 1 ii
R4 =l0 0 1 1 il

Ii	 1	 1	 1	 ii

Li 1 1 1 ii

Kleene

[0 0 0 0

lo 0 0.1 1
R5 =l0 0 1 1

Ii	 1	 1	 1

Li 1	 1	 1

Godel

[0 0 0.1 0.5 11

Jo 0 0.1	 1	 ii

	

R6 =I0 0 1	 1.
Ii	 1	 1	 1	 1'

Li 1	 1	 1	 ii

Table 6.2 Fuzzy Relational Matices Generated using Different Types Implication Operator

c R1	 R	 R3	 R.4	 R	 ___________

I	 [03,05,05,05, 1] [0,0,0.1,05, 1] 	 [05,03,0.5,03, 1] [0,0,0.1,0.5, 1] 	 [0,0,0.1,03, 1]	 [0,0,0.1,05, 1]

II	 [1,1,1,1,1]	 [0,0,0.1,03,05]	 [1,1,1,1,1]	 [1,1,1,1,11	 [1,1,1,1,1]	 [1,1,1,1,1]

III	 [1,1,1,1,1]	 [0,0,0.1,03,1]	 [1,1,1,1,1]	 [1,1,1,1,11	 [1,1,1,1,1]	 [1,1,1,1,1]

IV	 [0,0, 0,0,0]	 [0,0,0,0,0]	 [0,0,0,0,0]	 [0,0,0,0,0]	 [0,0,0,0,0]	 [0,0,0,0,0]

V	 [03,05,0.6,0.7, 1] [0,0,0.1,05. 1]	 [03,05,0.5,0.9, 1] [0,0,03,0.7, 1] 	 [0,0,03,0.7, 1]	 [0,0, 03,0.7, 1]

VI	 [0.7,0.7,0.7, 1, 1]	 [0,0,0.1,03,051	 [0.7,0.7,0.7,0.7, 1] [03,0.3,0.7, 1, 1]	 [0.3,03,0.7, 1, 1] 	 [0.3,03,0.7, 1, 1]

VII	 [05,03,0.6,1,1]	 [0,0,0.1,03,03]	 [0.5,03,03,05,1] [0,0.0.1,1]	 [0,0.0.1,1.1]	 [0,0,0.1,1,1]

Table 6,3 Comnarison of the Results Obtained Using Different T ypes Impication Operator
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the results obtained by using Gaines-Rescher, Kleene, and Godel implication operators,

so that these 6 implication operators can be divided into 3 groups with Lukasiewicz etc.

as the first group and Mamdani implication operator as the third group. Sembi(1980), and

later Chui (1989)[] had discussed two important factors for assessing implication

operators' relative merits as the 'characteristics' and 'inclusiveness t. From the above results

it can be observed that the first group operators (Lukasiewicz etc.) are the most inclusive

implication operators. Hence, the inference using these operators are relative vague and

likely the less realistic solution will be deducted. On the other hand, Mamdani implication

operator is the most less inclusive implication operator among the listed 6 operators, and

the inclusiveness for the group of Gaines-Rescher etc operators is somehow in between

the another two groups; (II) The less inclusive implication operator such as Mamdani

implication operator requires strong evidence to support B if A is established. Therefore it

is applicable when an exhaustive set of conditions is known. It further requires that no

major knowledge gaps such as in CASE knowledge structure. On contrast the

Lukasiewicz group operators are more flexible than Mamdani and Gaines-Rescher group

operators.

x5

xl

Jpr	 f1 N /
/.

Figure 6.3 A Conceptual Rule Model

As a conclusion it is found that both Gaines-Rescher group implication operators

and Mamdani implication operator are applicable to the problem of reliability prediction

and calculation, where the inherent uncertainty of knowledge is to a moderate extent and
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the knowledge gaps can be reduced to a acceptable level by carefully organising the IF-

THEN rules. The Gaines-Rescher group implication operators are more preferable since

they have the better performance when the hedge operations (both shift and power)

emerged, which is the situation frequently occurred in constructing a knowledge base.

Above all, the Gaines-Rescher is the 'best' implication operator within the scope of

comparison performed in the above cases studies.

However, bearing in mind that FRBESS is tend to be designed as a generalised

fuzzy expert system shell, it is necessary to consider all possible situations where a user

may prefer to have alternatives in selecting an appropriate implication operator for his

problem solving domain. Based on such consideration, FRBESS is designed to offer the

options for users to select any one of 4 programmed-in implication operators. These

programmed implication operators are Lukasiewicz, Mamdani, Gaines-Rescher and

Godel operators. During a consultation session FRBESS will prompt first for a user to

select his preferable implication operator before it starts to compile rule&

6.4.3 Rule Matrix Aggregation Algorithm

The last task for rule matrix generator is to aggregate all generated single rule

matrices into a ruleset matrix. A set of fuzzy rules represented in a CASE (see last

section) structure is connected by 'ELSE, such as in the format of" If X is Al Then Y is

B i" ELSE "If X is A2 Then Y is B2" ELSE......ELSE "If X is A Then Y is Be".

The most popular definition for ELSE connective operation is to treat it as the

same of disjunction operation. A disjunction operation compares two grade of

memberships and selects the smaller one. It can be represented as MIN operation. Hence,

the aggregation of rules in a ruleset is achieved by a disjunction operation (or MfN) on
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determine the goal
creat empty lists
OPEN, CLOSE, PATH

read the rule base
select a nileset

NO
	

Does the consequent
match the goal?

YES

put the consequent into
PATH at the first place

select an antecedent
of this ruleset
read the rule base

Does the antecec	 YES
match a ruleset's

NO

put the antecedent into
OPEN at the first ulac

YES
	

More antecedent
in this ruleset?

YES

NO

Is there any
	 select the 2nd element

antecedent which is not
	 in PATH read its

in PATH or OPEN -	 antecedents

NO

END

Figure 6.4 A Decision Variables "Chaining" Algorithm
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all rule matrices. If there are N rules in a ruleset, each individual fuzzy relation in every

rule is aggregated to form an overall R of the ruleset as

R = UR 1	eqn 6.1

where U denotes MAX operator (fuzzy disjunction). The complete rule compiling

Algorithm in FRBESS is graphically shown in figure 6.2.

6.5 Design of a Fuzzy Inference Mechanism

The fuzzy inference mechanism in FRBESS consists of two major program

blocks: an inference sequence control module; and a fuzzy compositional of rule

inference module. They are described in the next sections.

6.5.1 Decision Variables Chaining Algorithm

To permit fuzzy inference to be carried out in a logical manner which reflects not

only the problem structure but also the intrinsic relationship (i.e.) chaining among

decision variables, three lists which represent the tree structure of a problem solving

strategy are necessary to be constructed. An inference sequence control can be

implemented using these lists.

In FRBESS, it provides a build-in backward depth-first chaining facility using the

'chaining' commend. Also it allows user to define their own chaining strategy in terms of

inputting three lists into the rule base in the meta rule form.

A conceptual rule model can be represented as shown in figure 6.3, where X is

'leaves' of the tree representing 'root' decision variables. N is a set of 'node' of leaves

intermediate decision variables or sub-goals. Once the inference goal is determined, A

"chaining" algorithm is used to extract the relationships among decision variables from

the inference rules. These relationships are represented by three lists named OPEN,

CLOSE and PATH.

Imolementarion of Fuzzy Rule-Based Exoen System Shell(FRBESS) For Reliability Evaluation



Chapter 6
	

page 152'

OPEN=fx]

	

X5	 PATH=[&4]
OPEN=(}

OPEN=

	

[xlx2,x3,x7,x6,x5]	 OPEN5] -

	

xl	 -

PATh]OPEN= x, - 
I 1

	

___	 OPEN=[]

	

[x2,x3,x7,x6,xS]	

--

	

X3 - - -	 [f1,f3,f2,f4] 'j	 7'

	

OPEN=fx3,x 7,x6,x 	 f3

--, PATH=[tf2,f4]

	

X7	
OPEN=[x,x5]

OPEN=[x7,x6,x5]

Figure 6.5 illustration of the Backward Depth-first Searching Strate2y

A PATH list contains the name of all intennediate decision variables (sub-goals)

and decision goal , which are extracted from the inference rules in the rule base. The

name of the decision variables in PATH list is in accordance with the name of the

aggregated ruleset matrix, so that when an element of PATH list is called then its

corresponding fuzzy relational matrix is instantly hired for reasoning. A OPEN list

contains the name of all 'root' variables. The variables in OPEN list are waiting to be

called when an element of PATH list is selected. When a variable of OPEN list is called,

the data of this variable is put into the working memory as the input of a condition

premise ready for reasoning. To speed inference process, the elements in OPEN and

PATH list are arranged in orders (in accordance with the forward reasoning sequence) so

that it does not need to search the whole list to find a expected element. A CLOSE list is

initially an empty list. Once the data of a variable of OPEN list is retrieved, the name of

this variable is then moved to CLOSE list, so that when a reasoning session finished the

CLOSE list should contains the name of all variables initially in the OPEN list.

An algorithm for chaining decision variables in a rule base and construct three

lists using backward depth-first searching technique are shown in figure 6.4. The

PATh=[4]
OPEN=[ I
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element in PATh

estimate the nuniher
of antecedent variab
in this ruleset

select fir antecedent
variable, check its
name in OPEN

is it
OPEN?

YES

acquire data for this
variable from the
data base

check this
name inC

YES	 it in

matrix, save the result in
the data base

More anteceden
variables?

NO

remove the element from 01

re elements
	 YES

ileset) in PAll

goal achieved

Fi2ure 6.6 Algorithm To Control Forward Reasoning Sequence
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backward depth-first chaining technique is better to be demonstrated graphically in figure

6.5, which uses the same conceptual model shown in figure 6.3.

6.5.2 Inference Sequence Control Algorithm

The control of inference sequence for a problem solving which can be represented

by a iree structure is quite simple. A tree represented knowledge model implies that each

ruleset in this model is hired only once during a consultation session, such as the case for

a conceptual rule model shown in figure 6.3. A PATH list generated as stated in section

65.1 has embedded forward reasoning strategy. A forward reasoning is that based on the

condition of all root variables are known it is to infer from the bottom of a tree to the

top (goal). The PATH list and OPEN list have their elements arranged in order with the

forward reasoning sequence: start form the first element (ruleset) of PATH list, FRBESS

selects those condition evidence ( elements) in OPEN list and retrieves their data either

from the data base (if any) or from the use by asking queries. By applying CR! algorithm

the first element of PATH is inferred, this sub-goal is then stored into the data base and

the name of ruleset is removed from PATH list. The process will repeat from the first

element in PATH list again until the PATH list becomes an empty list At the stage when

PATH and OPEN lists are empty and CLOSE list contains all root variables, the

reasoning goal is achieved. The algorithm for control of a forward reasoning sequence is

shown in figure 6.6.

However, in some applications the control of reasoning sequence is a relatively

complicate task. For example, the inference sequence for a rule-based reliability

calculation is in an iterative manner, i.e., a ruleset is hired repeatedly to deduct a desired

goal. Based on such consideration, FRBESS has been designed to offer the maximum

flexibility in the reasoning sequence control, in terms of allowing an users to define his

own control strategy by inputting a set of meta rules into the rule base. The meta rule set

named SDIS (Self Defined Inference Sequence) must be written in MACSYMA syntax

and is compiled by FRBESS into LISP execution code after the rule base was loaded. By
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listdepthl+1,makea
current list record S(1

element of S(I)

Is italist	

1=1 +

member?

NO
select first
element of S(I)

Store the interred current sysi
state in the data base

Jr
combine the next element

apply	 NO	
qcombination	 Is there a uota on the current list9

i—J*—ly.
parallel

linove from OPEN to CLOSI
- store the new current system
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itempty?	
NO	

i i i

END

Fiaure 6.7 Al2orithm To Control Reliabilit y Combination Reasoning Sequence
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using a command "switch" FRBESS will replace the build-in forward reasoning control

module by SDIS, which is then linked in FRBESS.

SDIS must be implemented by using three lists. In the case of the fuzzy rule-based

reliability calculation, these three lists are generated by a "sorting" algorithm. Briefly,

sorting process is to rearrange the system configuration list given in the data base, into the

form that the most nested sub-list should be put at the first place. Once the reasoning

priority is determined, these elements will then be put into a PATH list for reasoning.

The algorithm for control of inference sequence in the fuzzy rule based reliability

calculation model is shown in figure 6.7. The aggregated fuzzy ruleset matrix for parallel

and series connected units combination are hired in sequence under the control.

6.5.3 Compositional Rule of Inference (CR1) Algorithm

The last part of the inference algorithm is to produce or infer possible solutions

from external assertions to the relational matrix. The general structure of this algorithm is

based on the compositional rule of inference defined in eqn 3.11,

B' = A'oRA... B	egn 6.2

where A' is a fuzzy assertion and B' is an inferred consequent corresponding to A'. The

operation on their membership functions is as follows:

IB(Y) = V(PA.(x) A R (A,B))
	

eqn 6.3

where A and v are maximum and minimum fuzzy operations respectively between the

matrix A and matrix B. Its effect is to use A" to reduce the dimensionality of matrix "R"

to that of the same order of matrix B. If there have a couple of fuzzy assertions, it is to

composite these assertions one by one to the relational matrix. The final inferred fuzzy

conclusion is always in a vector form (fuzzy subset, or possibility distribution).
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Figure 6.8 Compositional Rule of Inference Algorithm
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A fuzzy compositional rule of inference algorithm in FRBESS is shown in figure

6.8. Because of the mathematical structure of CR1, it inevitably involves multi-

dimensional matrices computation. To improve the computing efficiency for FIRBESS, it

adopts two methods as (1) restrict the number of antecedents in a rule is no more than 5.

The rule has more than 5 antecedents can be rectified by artificially assigning an

intermediate sub-conclusion, then divided by two linked rules. (2) prior to a consultation

session, the relational matrix are off-line generated and stored in the computer. The

experience shown that the large amount of computing time are consumed by high

dimensional matrices calculation. The computing time for actual inference is relatively

tolerable.

6.6 Design of aJnformation Processor

For a fuzzy inference system, the input for the various applications may be in the

format of a numeric (both singleton and interval)or a linguistic expression. The output

under the request may need a graphic plot display in addition to the numerical and

linguistic output Therefore, there has to implement an input and output control module

for FRBESS.

In the information processor module, prior to any data processing the first task is

to determine an unique level for the universe of discourse of all variables to be inferred.

In FRBESS, a 11 elements array is defined as the arbitrary universe. All the real universe

of variables are mapped to this universe of discourse using eqn 3.3. When the possible

solution is inferred, the result can be transferred back to the original universe by using the

reciprocal function of eqn 3.3.

6.6.1 Translation of Non-fuzzy Data

The process of translating a numerical input into fuzzy subset is called

"fuzzification". Two types of likely numerical input are considered: numerical singleton
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a	 x	 b	 X

Figure 6.9 Translatin2 Numerical Data Into Fuzz y Data

and interval. In FRBESS, the numeric singleton can be fuzzified via using the following

function as

where a and b are two point values on a universe of discourse, x is a numerical singleton

between a and b, 11(a) and 11(b) are the grade of membership of x at a and b respectively.

The above definition agrees with intuitive meaning that if x is more close to b then the

possibility of x at b is higher than the possibility of x at a. Similarly, a numerical interval

can be translated into a fuzzy subset by

b-x 1 	 x,-a
____	 -
b-a	 b-a

eqn 6.5

where a and b are two point values on a universe of discourse, xi and x2 are the left and

right point of a numerical interval, xi and X2 are within the interval [a, bi. If a numerical

interval crosses one or more points of a universe of discourse, then a, b are the points

which a left or right interval point is in between. The grade of memberships for the

crossed points of universe of discourse are 1.0. The fuzzification of a numerical input is

show in figure 6.9.

6.6.2 Compression of Fuzzy Data
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Under the situation that an inferred possible solution should be output as a crisp

value, such as in the case of indusirial control, FRBESS has the programmed fuzzy data

compression facility which is based on the Centre of Gravity (COG) method. The

compressed fuzzy value using COG is calculated by weighting all the elements in the

universe of discourse of X with their membership values. The COG method can be

expressed as

n

x 1 xp(x.)

eqn 6.6

where Xj is the point value of a universe of discourse, j1(xj) is its associated membership

value. The merit of the COG method is that it counts in all the possible values on a

universe of discourse. The strenth of using COG is particular demonstrated when all ill-

structured fuzzy values are presented, such as it is shown in figure 6.10.

Universe of discourse	 X

Viaure 6.10 Compression of a Fuzzy Value

6.6.3 Linguistic Approximation

The last type of man-machine communication during a consultation session is

linguistic expression of an inferred solution, which is computed in FRBESS by a process

called 'Linguistic Approximation' (LA). LA is a re-translation procedure of the possibility
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distribution into its equivalent linguistic proposition, such as "less than normal but not

weak".

The method used in FRBESS to translate a possibility distribution into its

linguistic expression is the least distance method. The least distance method is expressed

mathematically as

N(A,B) = 1_!(A(x) -B(x1 ))
	

eqn 6.7

where A is inferred fuzzy set and B is a pre-defined linguistic term. If N is 1.0 then A is

translated as B, In general the smaller N is the less similar two fuzzy sets are. In

FRBESS, algorithm for linguistic approximated was programmed as: (1) calculate the

distances between inferred fuzzy set A and all primary linguistic terms. If there has a Nj

which is 1.0 then translate A into ith linguistic term, otherwise (2) select two linguistic

terms Ti and T2 which have the biggest values of calculated N, apply hedge operation

on Ti and T2, re-calculate N for Ti and T2.(3) select the minimum N. Translate the

inferred fuzzy set into the corresponding linguistic term.

To obtain a meaningful linguistic approximation, some consideration were also

programmed into FRBESS. These are:-(i) for the sake of computing efficiency, only a

limited number of hedge operators are selected for measuring distance. The selected shift

operators are: more than, less than, and between. The selected power operators are: very,

more or less, not. (2) the sequence of applying hedge operation is that the shift operators

firstly are called first. (3) If there have two Ns and the corresponding linguistic terms are

next to each other, apply hedge 'between' first. (4) a threshold is given in FRBESS as 0.8.

The hedge operation should be continuously applied until a N which is equal or great than

0.8 is obtained. Hence, in the case of reliability calculation the process of linguistic

approximation returns an output such as' The failure frequency of 50 MW hydro unit is

between( lessjhan(yearly), morejhan(morejhan(monthly)))'.
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6.7. Command Environment of FRBESS

By typing 'help' command, FRBESS will list a set of commands on the screen.

These commands are:

load < filename>
display <arg>
determine <var>
compile <erg>
chaining <erg>
infer < var>
he < erg>
save <filename>
print <filename>
compress <var>
express <var>
plot <var>
edit <erg>
switch<arg>
why <>
reset <>
bye <>

-load data-base, rule-base etc.
-display rules, data etc.
-determine reasoning goal
-compile rules into the matrices form
-construct reasoning path using backward depth-first searching method
-Infer goal using CR1 method
-list all commands or files under the current drectory
-save the consultation session into a named file
-pnnt out a named file
-perform fuzzy data compression
-perform linguistic approximation
-plot the possibility distribution of an inferred fuzzy variable
-edit data-base and rule-base.
-link an user defined process to the system
-explain why a query is needed to be answered
-remove all data in the working memcy
-end of consultation

The communications between a user and the system are in an interactive manner.

FRBESS was implemented on a SUN SPARC station using MACSYMA. The

environment of user interface provided by both hardware and software is friendly enough

so that no further efforts wasted on developing a 'user friendly interface'.

One important feature for a real knowledge based system is that it should consist

of an explanation facility. Such feature was implemented in FRBESS. An explanation for

why a particular query to be answered by a user in a FRBESS session is:

is the_comparativejnfiuence of variance_of_maintenance?
wh

***flle reason for asking question is that the ruleset external_stress" is currently being hired.
It has already been established that
Hypothesis: variance_of_weather
It is aid in concluding the sub-goal external_stress by determining

*aa Hyphesis: variance_of_maintenance
**awhat is the_comparativejnfiuence of variance_maintenance?
nagetive_wealc

6.8 The Concluding Remarks

In this chapter, the design and key aspects of a fuzzy rule-based expert system

shell(FRBESS) have been discussed. This principally consists of selecting the appropriate

data and rules representation format, and devising efficient algorithms for rules
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compilation, compositional rule of inference, and inputioutput data process. The

discussed system has been implemented in the form of a software package named

FRBESS by using MACSYMA computer language. FRBESS has been tested by using

proposed reliability prediction and calculation (see case studies, chapter 3 and chapter 4)..

It has also been tested by using Terjersen's energy forecasting model and Chui's

voltagelvar control model. The result has shown that FRBESS is a generalised fuzzy

knowledge based system.

Implementation of Fun'y Rule-Based Exoen System Shell(FRBESSJ For Reliability Evaluation
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Chapter Seven

Conclusions

7.1 Summary

The introductory part of the thesis examines the general uncertainty problems

which affects the decision making process in reliability analysis, and the relevant

problems in power system reliability evaluation within the scope. The importance of

utilising human knowledge and taking human judgmental advice has contributed to yield

better decision in some obscure situations where mathematical description can not be

achieved. With the aid of nowadays computer technology, it has discovered that the

knowledge based system with human experts' knowledge representational and inferential

capability are capable to aid reliability analyst to make quality evaluation. The inherent

uncertainties associated with the knowledge based system have been addressed. The

various current approaches attempting to manage the uncertainty have been stated and

discussed. Through the investigation, the important role played by human experts in

reliability evaluation has been established. Human experts judgmental knowledge are

expressed naturally in linguistic rather than numeric. Therefore, the uncertainty

concerned in knowledge representation and inference process is mainly fuzziness.

Motivated by this observation, a new reliability analysis formulation is proposed based

on the newly emerged innovative concepts such as Fuzzy Set Theory and Fuzzy

Reasoning.

The basic concepts and techniques of the conventional probability reliability

evaluation were presented in chapter 2. The general ingredients of an overall reliability

prediction have been underlined as (1) device reliability prediction; (2) device

maintainability prediction and human operators error prediction. The definition and usage

of various reliability indices were illustrated. The importance of adequate estimation of
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basic reliability indices were also addressed, since the accuracy of a system reliability

assessment depends upon the adequate estimation of device reliability indices. The

speciality consideration for reliability indices estimation was emphasised, for the cunent

probability approach pursues the 'generality' of a system reliability performance.

However, because of the limitation of the techniques in use, e.g., sample size, variance of

test methods, environmental conditions etc., the estimated reliability indices using the

conventional statistical method usually do not permit the generality. Therefore, the

speciality study must be conducted in any reliability prediction process.

With the awareness of the importance of speciality consideration in reliability

prediction, the deficiency of using probability techniques to evaluate the situational

factors was addressed. It was found that because of the variability and complexity of

determining the situational factors, it is incapable to evaluate the situational affects on

reliability performance in terms of statistical method. Therefore, the situational factors in

reliability prediction are largely determined subjectively based on reliability experts'

experiences and knowledge. The uncertainty associated in such subjective knowledge is

fuzziness in nature rather than randomness, as it has been well argued by Zadel and man

others. Based on this, a fuzzy nile-based model for predicting device reliability was

presented in chapter 3. The source of uncertainty in reliability prediction was carefully

studied. It has been discovered that the uncertainty may exist under two situations:- (1) it

is completely lack of statistical information or the available records are not sufficient. In

this case the human experts' subjective estimation is the sole 'reliability' source, and the

human being's thought and expression are imprecise in nature. (2) It is impossible to

determine the relationship between a device reliability performance and a situational

factors. The experienced reliability engineers can remedy this problem to some extent,

however, his/their judgement inevitably consists of the inherent uncertainty. Hence,

Some commonly emerged situational factors were identified and their relationships with a

device reliability performance were established in the form of a class structure. Three

sub-models were proposed, namely device failure possibility prediction, device total

maintenance time prediction and human operators error possibility prediction. The model

was built based on Zadel's powerful Fuzzy Set Theory and Fuzzy Reasoning. Reliability
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Experts' prediction knowledge was represented in a set of fuzzy rules and organised into

the well-known "IF-ThEN" production rule format. By inputting his estimation of a

device failure, maintenance time and human error possibility into the presented fuzzy

reliability prediction model, a reliability analyst should have an overall assessment on the

reliability performance of this device. This objective was achieved as demonstrated by

the results obtained from the case studies

The methodology of combining individual device reliability to assess reliability

performance at system level under the fuzzy environment was presented in chapter 4.

Two important fuzzy techniques were employed for this purpose, namely fuzzy

arithmetic and the possibility theory based fuzzy reasoning. In fuzzy arithmetic approach

the individual reliability indices were modelled as the parametric fuzzy numbers or

converted to well-format fuzzy numbers if the inferred indices from fuzzy prediction

model were ill-structured. A set of reliability combination operations were defined based

on the extension principle, and carried out by manipulating a few parameters of the fuzzy

numbers. In fuzzy rule-based approach, fuzzy individual device reliability indices are

modelled as a set of linguistic terms on a finite discrete set. The reliability combination

were carried out using Compositional Rule of Inference method, together with a carefully

designed inference control algorithm. Both approaches delivered the convinced results in

case studies. The former approach has the merit on computing efficiency, however its

data format is rigorous. The later approach compromises on data format since it is able to

accommodate and process any type of fuzzy value defined on a universe of discourse.

Hence, it has the consistence with the device reliability prediction model, and two model

can be integrated together so that an overall system reliability performance can be

inferred.

The proposed fuzzy reliability techniques were extended to the area of power

generating system adequacy evaluation , where the aim of reliability analysis is to

measure the adequacy of the supply of a generation system to satisfy a load demand.

The source of fuzziness in generating system reliability evaluation was stated and

discussed in chapter 5. Because of the fuzziness existed in both unit reliability data and
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forecast load data, these data were modelled as triangular fuzzy numbers. The presented

methodology for convoluting both fuzzy generating model and fuzzy load model was

based on the concept of fuzzy containment, i.e., the degree of a fuzzy load level contained

in a fuzzy capacity in service state. An new possibilistic index named Possibility Of Load

Loss(POLL) was defined and the algorithm to calculate this index was given. The

proposed fuzzy generating system reliability evaluation model was tested on RTS. The

results obtained proved the validation of the model.

A fuzzy rule-based expert system shell (FRBESS) for reliability evaluation was

implemented. The structure of FRBESS and its key features were presented in chapter 6.

FRBESS is a fuzzy inference system which consists of a knowledge base( rule and data),

a rule compiler and an inference mechanism. The implemented inference method is fuzzy

compositional rule of inference. FRBESS has been applied to the cases studies in chapter

3 and chapter 4.

7.2 Original Contributions

Application of knowledge based system to reliability evaluation alone is a

relatively new research. With the participation of fuzzy arithmetic and fuzzy reasoning,

the major contributions of this thesis are summarised in the following:

(a) The fundamental uncertainty problem structures in general reliability prediction

were analysed. Through the study it discovered that there are two major concepts in

reliability predictions: the basic estimations which reflect the design, manufacture

characteristics of a device, and the adjustment factors which reflect the usage and

environment characteristics. The inherent imprecision and uncertainty in reliability

prediction were then explored. An overall reliability prediction was defined as the

integration of three sub-predictions: device failure prediction, device maintenance time

prediction and human eor prediction. Human experts' role in these reliability

predictions were emphasised under the situations such as (I) when the basic estimations

are unavailable or insufficient; and (II) to determine the relationship between the
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situational factors and a device reliability performance, and estimate the degree of such

effects.

(b) The affection of situational factors on reliability performance was analysed. The

concept of 'speciality' was emphasised on contrast to the concept of generality in

probability reliability prediction. Various types of commonly emerged situational factors

in reliability prediction have been studied, and the relationship between a device

reliability performance and its affecting situational factors was established. These

relationships were represented in the form of a set of decision trees, so that the

knowledge of reliability prediction can be easily acquired from these trees and

represented in a IF-THEN production rule form.

(c) A fuzzy knowledge based reliability prediction model was developed. The model

is free to accommodate and process any type of information (linguistic and numeric).

Reliability prediction techniques and strategies were modelled as a set of fuzzy

production rules. The process of reliability prediction is therefore automated. The model

is in the stream of Knowledge Based Systems (KBS) with the participation of fuzzy

concepts.

(d) A computationally vary efficient fuzzy arithmetic reliability calculation method

was developed. The conventional probabilistic reliability combination rules were

extended to include the capability of combining individual device with fuzzy reliability

data. Various fuzzy reliability indices were defined based on this extension.

(e) A fuzzy knowledge based system reliability combination model was developed.

The knowledge of reliability combination was induced into the form of fuzzy production

rules. An effective combination reasoning sequence control algorithm was also

developed.

(1)	 The proposed fuzzy reliability techniques were extended to the area of power

generation system reliability evaluation. Both fuzzy generating capacity model and fuzzy

load model were developed. By convoluting these two models using a developed fuzzy
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containment algorithm, a new index for generating system reliability evaluation was

defined as Possibility Of Load Loss (POLL).

(g) The proposed index POLL was applied to Reliability Test System(RTS) to

highlight its applicability and test its validation. The results obtained were analysed in

comparison with the results obtained using conventional probabilistic techniques.

(h) A Fuzzy Rule-based Expert System Shell was implemented on MACSYMA.

Using FRBESS, the proposed fuzzy knowledge based reliability prediction and

calculation model were tested through two case studies. The programmed FRBESS also

provides a basis for further research.

73 Research Extensions

The problem of applying Al techniques to reliability analysis has only been

touched in this dissertation. The scope of research extension in these areas is immense,

Areas which to the author's belief are grounds for fruitful further research are identified in

the following:

(a) With respect to reliability evaluation, two directions of further development can

be pursued:- (1) developing a fully integrated fuzzy linguistic inference model which

can be used in reliability prediction and calculation under the fuzzy environment. Such

model shall have full flexibility to handle all possible situations with an inference engine

which can effectively handle fuzzy and non-fuzzy data. (2) Further exploring the inherent

uncertainty in reliability analysis. The relationship between situational factors and

reliability performance is still vague. Besides, various failure modes should be carefully

studied, e.g., common mode failure.

(b) With respect to the application of fuzzy reliability techniques to power system,

further research may conduct in developing a fuzzy knowledge based method to

generating capacity model. It has been recognised for long that the recursive techniques

for constructing a system capacity outage table is too time consuming. For a large system
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with many different types generating units it is extremely difficulty to produce such table

so that it can be convoluted with the load model to determine a system risk level. Many

attempts for remedying this problem in terms of calculating a capacity outage state

probability directly have been reported. Human experts' heuristic knowledge may help to

solve this problem to a certain extent. A fuzzy rule may be stated as" IF there are two

types of unit combined in the system AND the first type consists of a few numbers of

units with fairly large unit capacity as well as more or less high forced outage rate AND

the second type consists of many numbers of units with small but not too small capacity

as well as very low forced outage rate, THEN the chance of a medium size capacity

outage is very probably". The representation and inference mechanism for this type of

knowledge need to be carefully studied. This type of knowledge can be extended to

evaluate system risk by entering a peak load condition premise. Furthermore, the fruitful

future research may be conducted in extending fuzzy knowledge based approach into

power generation expansion planning where the economical constraint and future load

demand can be treated as fuzzy models as well as the reliability constraint.

(c) With respect to FRBESS, its computing efficiency may be improved by using

fuzzy truth value inference instead of CR1. A fuzzy rule then is stated as "If X is high is

true then Y is B is more or less true" where A and B are fuzzy values. Instead of

compiling the fuzzy value A and B, a fuzzy truth value inference is to aggregate its truth

value like 'true' and 'more or less true'. The truth value can be represented either in

linguistic term, or as a single possibility value. This type of fuzzy inference system is a

real type of production system, since the pattern "X is high" must first be matched exactly

then the rule is hired. On contrast, in a CR1 based fuzzy inference system all rules must

be hired to participate an inference process. Therefore, the truth value based fuzzy

inference system has the advantage by means of computing efficiency in comparison with

CR1 based fuzzy inference system.
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Appendix I

Fuzzy Sets & Fuzzy Reasoning Operations Defined In FRBESS

AJ-1. Fuzzy Sets Primitive Operators

Intersection:

AflB( x) =L A(x) A IIB(x)

where A denotes MJN operation.

Union:

IJ A U B( X) i. A(X) V J1(X)

where V denotes MAX operation.

Complementation:

P_A(X)hJ1A(X)

Product

JA,B(X ) = JIA(X) x 
JB( x)

Normalisation:

Ncrm(A) = IJA(X)

IA'( x)

where IA(X) SUPQLA(X))

Concentration:

Ji CON(A)( X) PA(X)

Di1atiofl

JJ DIL(A)( X) IJA(X)

Intensification:

INr(A)( X) i. A °3( x)	 ifA(x) >= 0.5

Ji Nr(A)( X) 1A2(x)	 ifJlA(x) <0.5
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A.I-2 Fuzzy Connectives

Conjunction:

Alias "AND" Operation:

Disjunction:

Alias "OR" Operation:

AANDB= M1N(A,B)

A OR B MAX(A,B)

A.I-3 Fuzzy Hedge Operators

Shift Operators

more_than(A) :=.i A(x + a)

less_than(A)

between(A,B)	 :41A(X)

=1

Power Operators:

very(A)	 :11A(X)

more_orJess(A)	 :=p A (x)

more_orJess(A)=fairly(A)=much(A)

above(A)

ifx<=awhereIA(a) = 1

ifa<x<=bwhere(b) =1

if x>b

if x<O.5

if x>O.5

below(A)	 :=lJ.IA(X)
	

if x>O.5

:=O
	

if x<O.5

not(A)
	

:=complement(A)

indeed(A)
	 :=2*very(A)
	

if xz=O5
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:=1(2*very(not(A)))	 if x>O.5

quite(A)	 :=2*very(very(A))	 if x<=O.5

:=1(2*very(1very(A)))	 if x>O.5

plus(A)

niinus(A)	 :=?J A (x)

extremely(A)	 :=ji A (x)

highly(A)	 :=plus(very(A))

slightly(A)	 :=INT(MORM(plus(A) AND (not(very(A)))))

pretty(A)	 :=NORM(indeed(very(A)) AND indeed(A))

rather(A)	 :=NORM(indeed(very(a)) AND very(A))

sort_of(A)	 :=NORM(not(very(very(A)) AND more_orJess(A))

alias(veiy, much)

alias(more_or_less, fairly)



Appendix II
	

Page 184

Appendix II

IEEE Reliability Test System(RTS)

Al. General Data

Total Installed Capacity=3405 MW.

Study load period=364 thys=8736 hours.

Annual peak load=2850 MW.

Annual Load Faetor=61.4%.

A2. Generating Unit Reliability Data

Table A1.4 - Generating unit reliability data

Forced	 Scheduled
Unit size Number of outage MTTF MTTR maintenance

	

MW	 units	 rate	 hr	 hr	 wk/yr

	

12	 5	 0.02	 2940	 60	 2

	

20	 4	 0.10	 450	 50	 2

	

50	 6	 0.01	 1980	 20	 2

	

76	 4	 0.02	 1960	 40	 3

	

100	 3	 0.04	 1200	 50	 3

	

155	 4	 0.04	 960	 40	 4

	

197	 3	 0.05	 950	 50	 4

	

350	 1	 0.08	 1150	 100	 5

	

400	 2	 0.12	 1100	 150	 6

A3. Load Data

Table Al.2 - Daily peak load in percent of weekly peak

Day	 Peak load

Monday	 93
Tuesday	 100
Wednesday	 98
Thursday	 96
Friday	 94
Saturday	 77
Sunday	 75
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Table A1.l - Weekly peak load in percent of annual peak

Week	 Peak load	 Week	 Peak load

1	 86.2	 27	 75.5
2	 90.0	 28	 81.6
3	 87.8	 29	 80.1
4	 83.4	 30	 88.0
5	 88.0	 31	 72.2
6	 84.1	 32	 77.6
7	 83.2	 33	 80.0
8	 80.6	 34	 72.9
9	 74.0	 35	 72.6

10	 73.7	 36	 70.5
11	 71.5	 37	 78.0
12	 72.7	 38	 69.5
13	 70.4	 39	 72.4
14	 75.0	 40	 72.4
15	 72.1	 41	 74.3
16	 80.0	 42	 74.4
17	 75.4	 43	 80.0
18	 83.7	 44	 88.1
19	 87.0	 45	 88.5
20	 88.0	 46	 90.9
21	 85.6	 47	 94.0
22	 81.1	 48	 89.0
23	 90.0	 49	 94.2
24	 88.7	 50	 97.0
25	 89.6	 51	 100.0
26	 86.1	 52	 95.2

Table A1.3 - Hourly peak load in percent of daily peak

Winter weeks	 Summer weeks Spring/Fall weeks
	1-8	 & 44-52	 18 - 30	 9-17 & 31-43

Hour	 Wkdy	 Wknd Wkdy	 Wknd	 Wkdy	 Wknd

12-1 am	 67	 78	 64	 74	 63	 75
1-2	 63	 72	 60	 70	 62	 73
2-3	 60	 68	 58	 66	 60	 69
3-4	 59	 66	 56	 65	 58	 66
4-5	 59	 64	 56	 64	 59	 65
5-6	 60	 65	 58	 62	 65	 65
6-7	 74	 66	 64	 62	 72	 68
7-8	 86	 70	 76	 66	 85	 74
8-9	 95	 80	 87	 81	 95	 83
9-10	 96	 88	 95	 86	 99	 89

10-11	 96	 90	 99	 91	 100	 92
11-Noon	 95	 91	 100	 93	 99	 94

	

Noon-i pm 95	 90	 99	 93	 93	 91
1-2	 95	 88	 100	 92	 92	 90
2-3	 93	 87	 100	 91	 90	 90
3-4	 94	 87	 97	 91	 88	 86
4-5	 99	 91	 96	 92	 90	 85
5-6	 100	 100	 96	 94	 92	 88
6-7	 100	 99	 93	 95	 96	 92
7-8	 96	 97	 92	 95	 98	 100
8-9	 91	 94	 92	 100	 96	 97
9-10	 83	 92	 93	 93	 90	 95

10-11	 73	 87	 87	 88	 80	 90
11-12	 63	 81	 72	 80	 70	 85

Wkdy - Weekday,	 Wknd - Weekend
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APPENDIX III

Fuzzy Device Reliability Prediction Rules For Chapter 3 Case Studies

I'	 the ruleset for predicting device total failure possibility of the test unit	 /

RB_FAILURE:[

1* ruleset for determining the_failure_possibility of (device_(x))*/

['the failure_possibility,

[rulel,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],

[ external_stress, The_comparative_influence, 'normal],

['device_(x), 'the_basic_failure_estimation, 'high]],

['device_(x), 'the_failure_possibility, 'highj]],

[rule2,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],

['external_stress, 'the_comparative_influence, 'normal],

['device_(x), 'the_basic_failure_estimation, 'moderate]],

['device_(x), 'the_failure_possibility, 'moderate]]],

[rule3,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],

['external_stress, 'the_comparative_influence, 'normal],

['device_(x), 'the_basic_f ailu re_estimation,'low]],

['device_(x), 'thejailure_possibility, 'low]]],

[rule4,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],
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['externaLstreSS, 'the_comparative_influence, 'positive_strong],

['deviceiX), 'the_basic_failure_estimation, 'high]],

['devicejX), 'the_f ailure....possibility, 'high]]],

[rule5,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],

[' external stress, 'the_comparative_influence, 'positive_weak],

['device_(x), 'the_basic_failure_estimation,'high]],

['device_(x), 'the_failure_possibility, 'less_than(high)]J],

[rule6,

[[con, ['internal_stress, 'the_comparative_influence, 'positive_strong],

[ external_stress, 'the_comparative_influence, 'normal],

['device_(x), 'the_basic_failure_estimation,'high]],

['device_(x), 'the_failure_possibility, 'highjl],

[rule7,

[[con, ['internal_stress, 'the_comparative_influence, 'positive_weak],

['external_stress, 'the_comparative_influence, 'normal],

['device_(x), 'the_basic_failure_estimation,'high]],

['device_(x), 'the_f ailu re_possibility, 'less_than(hig h)]]],

[rule8,

[[con, ['internal_stress, 'the_comparative_influence, 'nagetive_weak],

['external_stress, 'the_comparative_influence, 'normal],

['devicejx), 'the_basic_failure_estimation,'high]],

['device_(X), 'the_failure_possibility, 'more_than(moderate)]]l,
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[rule9,

[[con, ['internal_stress, 'the_comparative_influence, 'nagetive_strong],

['external_stress, 'the_comparative_influence, 'normal],

['device(x), 'the_basic_f ailure_estimation,'moderate]],

['device_(x), 'the_f ailure .possibility, 'low]]],

[rulel 0,

[[con, ['internal_stress, 'the_comparative_influence, 'normal],

['external_stress, 'the_comparative_influence, 'nagetive_weak],

['device_(x), 'the_basic_failure_estimatiofl,'high]J,

['device_(x), 'the_failure_possibility, 'more_than(moderate)]]],

[nilell,

[[con, ['internal_stress, 'the_comparative_influence, 'positive_weak],

['external_stress, 'the_comparative_influence, 'nagetive_weak],

['device_(x), 'the_basic_f ailure_estimation,'moderatelj,

['device_(x), 'the_failure_possibility, 'moderate]]],

[rulel 2,

[[con, ['internal_stress, 'the_comparative_influence, 'nagetive_weak],

['external_stress, 'the_comparative_influence, 'positive_weak],

['device_(x), 'the_basic_failure_estimation,'low]],

['device_(x), 'the_failure_possibility, 'low]]]],

/* ruleset for determining intemal_stress*/

['internal_stress,

[rulel,

[[con, ['electric_defect, 'the_comparative_influence,'normal],
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['thermal_defect, 'the_comparative_influence, 'normal]],

['internal_stress,' the_comparative_influence, 'normal]]],

[rule2,

[[con, ['electric_defect, 'the_comparative_influence,'positive_strong],

['thermal_defect, 'the_comparative_influence, 'positive_strong]],

['internal_stress,' the_comparative_influence, 'less_than(positive_strong)]]],

[rule3,

[[con, ['electric_defect, 'the_comparative_influence,'positive_strong],

['thermal_defect, 'the_comparative_influence, 'positive_weak]],

['internal_stress,' the_comparative_influence, 'more_than(positive_weak)]],

[rule4,

[[con, ['electric_defect, 'the_comparative_influence,'positive_weak],

['thermal_defect, 'the_comparative_influence, 'positive_weak]],

['internal_stress,' the_comparative_influence, 'more_than(positive_weak)]]],

[rule5,

[[con, ['electric_defect, 'the_comparative_influence,'nagetive_weak],

['thermal_defect, 'the_comparative_influence, 'positive_weak]],

['internal_stress,' the_comparative_influence, 'normal]]],

[rule6,

[[Con, ['electric_defect, 'tFie_comparative_influence,'positive_weak],

['thermal_defect, 'the_comparative_influence, 'nagetive_weak]],

['internal_stress,' the_comparative_influence, 'normal]]],

[rule7,

[[con, ['electric_defect, 'the_comparative_influence,'normal],
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['thermal_defect, 'the_comparative_influence, 'normal]],

['internal_stress,' the_comparative_influence, 'normal]J],

[rule8,

[[con, ['electric_defect, 'the_comparative_influence,'normal],

['thermal_defect, 'the_comparative_influence, 'nagetive_strong]],

['internal_stress,' the_comparative_influence, 'more_than(nagetive_weak)]]J],

/ ruleset for determining external stress*/

['external_stress,

[rulel,

[[con, ['variance_of_weather, 'the_comparative_influence,'normal],

['variance_of_maintenance,'the_comparative_influence,'normal}],

['external_stress,' the_comparative_influence,'normaljfl,

[njle2,

[[con, ['variance_of_weather, 'the_comparative_influence,'positive_weak],

['variance_of_maintenance ,'the_comparative_influence,'nagetive_weak]],

['external_stress,' the_comparative_influence,'normal]]],

[nile3,

[[con, ['variance_of_weather, 'the_comparative_influence,'positive_weak],

['variance_of_maintenance ,'the_comparative_influence,'normal]],

['external_stress,' the_comparative_influence,'less_than(positive_weak)]]J,

[rule4,

[[con, ['variance_of_weather,'the_comparative_influence,'positive_strongj,

['variance_of_maintenance ,'the_comparative_influence,'nagetive_weak]],

['external_stress,' the_comparative_influence,'more_than(normal)]]],
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[rule5,

[[con, ['variance_of_weather, 'the_comparative_influence,'pOSitive_strong],

['variance_of_maintenance ,'the_comparative_influence,'normal]],

['external_stress,' the_comparative_influence,'less.jhan(positive_weak)]]]],

1$

p**wlesets for predicting maintenance time of the test unit **i

RB_MAINTENANCE:[

r ruleset for determining the_total_maintenance_time of device (x) /

['the_total_maintenance_time,

[rulel,

[[con, ['active_maintenance, 'the_comparative_influence,'normal],

['maintenance_ad ministration,' the_comparative_influence ,'normal],

['device_(x), 'the_basic_maintenance_estimation, 'between_medium_and_Iong]J,

['device_(x),'the_totaLmainteflance_time, 'between_medium_and_Ion gill,

[rule2,

[[con, ['active_maintenance, 'the_comparative_influence,'no rmal],

['maintenance_administration,' the_comparative_influence,'normal],

['device_(x), 'the_basic_maintenance_estimation, 'medium]],

['device_(X) ,'the_total_maintenance_time, 'medium]]],

[nile3,

[[con, ['active_maintenance, 'the_comparative_influence,'normal],

['maintenance_ad ministration,' the_comparative_influence ,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'medium]],
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['device_(x) ,'thejotal_maintenance_time,'more_than(more_than(betWeen_mediUm_afld_lOflg))]

[rule4,

[[con, ['active_maintenance, 'the_comparative_influence,'positive_weak],

['maintenance_administration,' the_comparative_influence,'normal],

['device_(x), 'the_basic_maintenance_estimation, 'medium]],

['device_(x),'the_total_maintenance_time,'more_than(more_than(between_medium_and_long))J

[rule5,

[[con, ['active_maintenance, 'the_comparative_influence,'positive_weak],

['maintenance_administration, the_comparative_influence ,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'between_medium_and_long]],

['device_(x) ,'the_total_maintenance_time, 'longest]]],

[rule6,

[[con, ['active_maintenance, 'the_comparative_influence,'positive_weakj,

['maintenance_administration,' the_comparative_influence,'positive_weakl,

['device_(x), 'the_basic_maintenance_estimation, 'medium]],

['device_(x) ,the_total_maintenance_time, 'longest]]],

[rule7,

[[con, ['active_maintenance, 'the_comparative_influence,'normal],

['maintenance_administration,' the_comparative_influence ,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'between_medium_and_longil,

['device_(x) ,'the_total_maintenance_time, 'longest]]],

[rule8,

[[con, ['active_maintenance, 'the_comparative_influence,'positive_weak],

['maintenance_administration,' the_comparative_influence ,'normall,
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['devicejx), 'the_basic_maintenance_estimation, 'between_medium_and_long]l,

['devic&_(X) ,'thejotal_maintenance_time, 'longest]]],

[ruleg,

[[con, ['active_maintenance, 'the_comparative_influence,'nagetive_weak],

['maintenance_administration,' the_comparative_influence,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'longj],

['device_(X),'the_tOtaLmaintenanCe_time, 'longfl],

[rulel 0,

[[con, ['active_maintenance, 'the_comparative_influence,'nagetive_weak],

['maintenance_administration,' the_comparative_influence ,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'mediumfl,

['device_(x),'the_total_maintenance_time, 'mediumlfl,

[rulell,

[[con, ['active_maintenance, 'the_comparative_influence,'nagetive_weak],

['maintenance_administration,' the_comparative_influence ,'positive_weak],

['device_(x), 'the_basic_maintenance_estimation, 'shortfl,

['device_(x) ,'the_total_maintenance_time, 'shorL]]l,

/ ruleset for determining active_maintenance */

['active_maintenance,

[rulel,

[[con, [fault_detection ,'the_comparative_inhluence,'normal],

['removal&fix&installation,'the_comparative_influence,'normal],

['preparation,'the_comparative_influence,'normal]],

['active_maintenance,'the_comparative_influence,'normal]]],
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[rule2,

[[con, ['fault_detection ,'the_comparativeJnfluence,'positive_weak],

['removal&fix&instaHation,'the_comparative_influence,'posftive_weakj,

['preparation,the_comparative_influence,'nagetive_weak]J,

['active_maintenance,'the_comparative_influence ,'between(normal,positive_weak)JJ],

[niIe3,

[[con, ['fault_detection ,'the_comparative_influence,'positive_weak],

['removal&fix&instaflation,'the_comparativeJnfluence,'positive_weakj,

['preparation,'the_comparative_influence,'normalj],

['active_maintenance,the_comparativejnfluence,'less_than(positive_weak)]]],

[rule4,

[[con, ['fault_detection ,'the_comparative_influence,'posflive_strong],

['removal&fix&installation,'the_comparative_influence,'positive_weakj,

['preparation,'the_comparative_influence,'normalJ],

['active_maintenance,'the_comparative_influence,'more_than(positive_weak)JJJ,

[rule5,

[[con, ['fault_detection ,'the_comparative_influence,'positive_strong],

['removal&fix&installation,'the_comparative_influence,'positive_weak],

['preparation,'the_comparative_influence,'nagetive_weakj],

['active_maintenance,'the_comparative_influence,'between(positive_weak,positive_strong)]J],

[rule6,

([con, ['fault_detection,'the_comparative_influence,'normalj,

['removal&fix&installation,'the_comparative_influence,'positive_weak],

['preparation,'the_comparative_influence,'nagetive_weakj],
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[active_maintenance,'the_comparative_influence ,'normal]]],

[rule7,

[[con, ['fault_detection ,'the_comparative_influence,'nagetive_weak],

['removal&fix&installation,'the_comparative_influence,'normal],

['preparation,'the_comparative_influe nce,'positive_weak]],

['active_maintenance,'the_comparative_influence ,'normal]]],

r ruleset for determining maintenance_administration */

['maintenance_administration,

[rulel,

[[con, ['maintenancer_training,'the_comparative_influence,'normal],

['part_stock_planning,'the_comparative_influence,'norrnal]],

['maintenance_admimistration,The_comparative_influence ,'normal]]J,

[rule2,

[[con, ['maintenancer_training,'the_comparative_influence,'normal],

['part_stock_planning,'the_comparative_influence,'positive_weak]J,

['maintenance_admimistration,'the_comparative_influence ,'between (normal,nagetive_weak)]]],

[rule3,

[[con, ['maintenancer_training,'the_comparative_influence,'nagetive_weak],

['part_stock_planning,'the_comparative_influence,'positive_weakj],

['maintenance_admimistration,the_comparative_influence ,'normal]]],

[rule4,

[[con, ['maintenancer_training,'the_comparative_infIuence,'nagetive_weak,

['part_stock_planning,'the_comparative_influence,'normal]],

['maintenance_admimistration,'the_comparative_influence ,'between(normal,nagetive_weak)]JJ,
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[rule5,

[[con, [maintenancer_training,the_comparative_influence,positive_strong],

[part_stoCk_plan ning,'the_comparative_influ ence,'nagetive_strong]],

['maintenance_admimistration,the_comparative_influence ,'normalj]lJ

Is

/**** the rulesets for predicting human error possibility of the test unit

RB_ERROR:[

1* ruleset for determining the_human_error_possibility */

['the_human_error_possibility,

[rulel,

[[con, [mental&congnitive_stress,' the_comparative_influence,'normal],

['environmental_stress,'the_comparative_influence,'normal],

['device_(x),'the_basic_error_estimation,'mocjeratej],

['device_(x) ,'the hu man_error_possibility,'moderate]]],

[rule2,

[[con, ['mental&congnitive_stress,' the_comparative_influence,'normal],

['environmental_stress,'the_comparative_influence,'positive_weak],

['device_(x) ,'the_basic_error_estimation,'moderatej],

['device_(x) ,'the_hu man_error_possibility,'between(high,between_moderate_and_high)]]],

[rule3,

[[con, ['mental&congnitive_stress,' the_comparative_influence,'nagetive_weak],

['environmental_stress,the_comparative_influence,normal],

['device_(x) ,'the_basic_error_estimation,'moderate]],
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['device_(x) ,'the_hu man_error...possibility,'between(Iow,between_Iow_and_moderate)]]J,

[nile4,

[[con, ['mental&congnitive_stress,' the_comparative_influence,'nagetive_weak],

['environmentaLstress,'the_comparative_influence,'positive_weak],

['device_(x) ,'the_basic_error_estimation,'moderate]],

['device_(x) ,'the_hu man_erropossibiIfty,'moderate]]],

[rule5,

[[con, ['mental&congnitive_stress,' the_comparative_influence,'positive_weak],

['environmentai_stress,'the_comparative_influence,'positive_weakj,

['device_(x) ,'the_basic_error_estimation,'Iow]],

['device_(x) ,'the_human_error....possibility,'between(moderate,between_moderate_and_high)]]],

1 ruleset for determining mental&cognitive_stress *1

['mental&congriitive_stress,

[rulel,

[[con, ['competence,'the_comparative_irifluence,'normal],

['phychological_stress,Thecomparative_influence,'no rmal]J,

['mental&congnitive_stress,'the_comparative_influence,'normal}]},

[rule2,

[[con, ['competence,'the_comparative_influ ence,'nagetive_weak],

['phychological_stress,'the_comparative_influence,'normal]],

['mental&congnitive_stress ,'the_comparative_influence,'between(nagetive,normal)]]],

[rule3,

[[con, ['competence,'the_comparative_influence,nagetive_weak],

['phychoogicaI_stress,'the_comparativeJnfIuence,'positive_weak,
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['mental&congnitive_stress,'the_comparative_influence,'normal]]],

/ ruleset for determining environmental stress */

['environmental_stress,

[rulel,

[[con, ['workload,' the_comparative_influence,'normal],

['weather,The_comparative_influence,'normalj],

['environmental_stress,'the_comparative_influ ence,'normal]J],

[rule2,

[[con, ['workload,' the_comparative_influence,'posftive_weak],

['weather,'the_comparative_influence,'positive_weak]],

['environmental_stress,'the_comparative_influence,'less_than(positive_weak)]J],

[rule3,

[[con, ['workload,' the_comparative_influence,'posithie_weakj,

['weather,'the_comparativeJnfluence,'positive_strong]],

['environmental_stress,'the_comparative_influence,'more_than(positive_weak)]]],

[rule4,

[[con, ['workload,' the_comparative_influence,'positive_strong],

['weather,'the_comparative_influence,'positive_weakj],

['environmental_stress,'the_comparative_influence,'more_than(positive_weak)]]],

[njle5,

[[con, ['workload,' the_comparative_influence,'positive_strong],

['weather,'the_comparative_influence,'positive_strong]],

['environmental_stress,'the_comparative_influence,'positive_strong]]lJ

1$
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pa. the data sets for the test unit.reliabilitY prediction"/

it contains the definition for fuzzy terms and the universe of discourses

p S and P fuzzy number definition /

S(x,a,b,c):=if x<=a then 0 else if (x>a and x<=b) then 2((x-a)I(c-a))2 else if (x>b and <=c) then 1$

P(x,d,e):= if x<=e then s(x,e-d, e-d/2,e) else if x>e then 1-s(x,e, e+d/2, e^d)$

I the definition for the universe of discourses /

1(x) :=mIog(x)+n$

g(x) =10 exp((x-n)/m) $

(m: 5, n: 25, the_total_failure_possibility :make_discourse(f( 1 Oexp(-5)), f(1 Oexp(-3))),

the_human_error_possibility: make_discourse( f(l0exp(-5)), f(1 Oexp(-3))) $

(m:0,n:5,the_total_maintenance_time: make_discourse( 1(1 Oexp(0)), f(1 Oexp(2))) $

/ fuzzy terms definition , fuzzy subsets are defined as 11 levels discrete set. The functions

"make_S_distribution" and "make_P_distribution" are for transferring P and S types fuzzy number to the

set of X=[O,1,2,3,4,5,6,7,8,9,10] *1

lowest: make_S_distribution(O,10,2,0.5,O)$

low: make_S_distribution(0,10,3,1 .5,0)$

between_Iow_and_moderate:make_P_distribution(0, 10,3,3) $

moderate: make_P_distribution(0,1 0,3,5) $

between_moderate_to_high: make_P_distribution(0, 10,3,7) $

high: make_S_distribution(0, 10,7,8.5,10) $

highest: make_S_distribution(0,10, 8, 9.5, 10) $

shortest: make_S_distribution(0, 1 0,2,0.5,0)$

short: make_S_distribution(0, 10,3,1 .5,0)$

between_short_and_medium :make_P_distribution(0, 10,3,3) $

medium: make_P_distribution(0,1 0,3,5) $

between_medium_to_long: make_P_distribution(0, 10,3,7) $
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long: make_S_distribution(0,1 0,7,8.5,1 0) $

longest: make_S_distribution(O,10, 8,9.5, 10) $

positive_strong: make_S_distribution(-5,5,2,3.5,5) $

positive_weak: make_P_distribution(-5,5, 3, 3) $

normal: make_P_distribution(-5 ,5 ,3 , 0) $

nagetive_weak: make_P_distribution (-5,5,3 ,-3) $

nagetive_strong: make_S_distribution(-5,5, -2, -3.5, -5) $

/ special terms set /

any: [1,1,1,1,1,1,1,1,1,1,1] $

unknown: [O,0,0,0,0,0,0,0,0,0,0J $
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Appendix IV

Fuzzy System Reliability Combinatjo Rules For Ch4 Case Studies

/	 The rulesets for combining system reliability ****/

RB_Combination_Survive:[

1* ruleset for initial system combination */

['initial_combination,

[rulel,

[[con, ['the_current_system, 'su rvive_possibility,'anyJ,

['the_adding_unit_(X), 'Survive_possibility, 'certain]],

['the_current_system, 'survive_possibility,'certain]]],

[njle2,

[[con, ['the_current_system, 'survive_possibility,'anyj,

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility,'almost_certain]]],

[rule3,

[[con, ['the_current_system, 'su rvive_possibility,'any],

['the_adding_unit_(X), 'survive_possibility, 'quite_possibie]L

['the_current_system, 'survive_possibility,'quite_possible}]J,

[njle4,

[[con , ['the_current_system, 'survive_possibility,'any],

[the_adding_unit_(X), 'survive_possibility, 'moderate.J)OSSibtel],

['the_current_system, 'survive_possibility ,'moderate_possible]]l,

[rule5,
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[[con, ['the_current_system, 'su rvive_.possibility,'any],

[the_adding_u nit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility,'slightly_possible]]],

[rule6,

[[con, ['the_current_system, 'survive_possibility,'any],

['the_adding_u nit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility,'almost_impossible]]J,

[rule7,

[[con, ['the_current_system, 'survive_possibility,'any],

['the_adding_u nit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility,'impossible]]]],

P ruleset for series_connected units combination */

[senes_connection,

[rulel,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule2,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility,'almost_certain]]],

[rule3,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_u nit_(X), 'survive_possibility, 'quite_possible]],
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['the_current_system, 'survive_possibility,'quite_possible]]],

[njle4,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility,'moderate_possible]]],

[rule5,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility,'slightly_possible]]],

[rule6,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility,'almost_impossible]J,

['the_current_system, 'survive_possibility,' almost_impossible]]1,

[rule7,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility,'impossible]],

['the_current_system, 'survive_possibility,'impossible]]],

[rule8,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility,'certain]],

[ the_current_system, 'survive_possibility, 'almost_certain]]],

[rule9,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unitjX), 'survive_possibility,'almost_certain]],
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['the_current_system, 'survive_possibility, 'less_than(almost_certain)]]],

[rulel 0,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'suMve..possibility,'quite_possible]],

['the_current_system, 'survive_possibility, 'less_than(quite_possible)]]],

[rulell,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility,'moderate_possible]],

['the_current_system, 'survive_possibility, 'less_than(moderate_possible)]]]

[rulel2,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_u nit_(X), 'survive_possibility,'slightly_possible]],

['the_current_system, 'survive_possibility, 'less_than(slightly_possible)]]I

[nilel3,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility,'almost_impossible]],

['the_current_system, 'survive_possibility, 'less_than(almost_imposSible)]]]

[rulel4,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'su rvive_possibility,'impossible]],

['the_current_system, 'survive_possibility, 'less_than(impossible)l]l,

[nilel 5,

[[con, ['the_cu rre nt_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility,'certainj],
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[ the_current_system, 'survive_possibility, 'quite_possible]]],

[rulel 6,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibiflty,'almost_certain]],

['the_current_system, 'survive_possibility, 'less_than(quite_possible)]]],

[rulel 7,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility,'quite_possible]],

['the_current_system, 'survive_possibility, 'less_than(moderate_possibIC)]]]

[rulel8,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility,'moderate_possible]],

['the_current_system, 'survive_possibility, 'less_than(slightly_possible)]]],

[rulelg,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_u nit_(X), 'su rvive_possibility,'slightly_possible]],

['the_current_system, 'survive_possibility, 'less_than(almost_impossible)l]l,

[rule2O,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'su rvive_possibility,'al most_impossible]],

['the_current_system, 'survive_possibility, 'less_than(impossible)]]],

[nile2l,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'certain]],
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['the_current_system, 'survive_possibiUty, 'moderate_possible]]],

[ru le22,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility,'almost_certain]],

['the_current_system, 'survive_possibility, 'less_than(moderate_possible)]l],

[rule23,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility,'quite_possible]],

['the_current_system, 'survive_possibility, 'less_than(slig htly_possible]]],

[rule24,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'impossible]]],

[ni1e25,

[[con , ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility,'certainj],

['the_current_system, 'survive_possibility, 'slightly_possible]]],

[rule26,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility,'almost_certain]],

['the_current_system, 'survive_possibility, 'less_than(slightly_possible]J],

[rule27,

[[con, ['the_current_system, 'su rvive_possibility,'slightly_possible],

['the_adding_unit_(x), 'survive_possibility,'quite_possible]],
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['the_current_system, 'survive_possibility,'less_than(impossible)]]],

[rule28,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility,'certainj],

['the_current_system, 'survive_possibility,'almost_impossible]l],

[ru le29,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_u nit_(X), 'survive_possibility,'almost_certain]],

['the_current_system, 'survive_possibility,'less_than(impossible)]]],

[rule3O,

[[con , ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility,'certain]],

['the_current_system, 'survive_possibility,'impossible]]],

[rule3l,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility,' almost_certain]],

['the_current_system, 'survive_possibility, 'very(less_than(impossible))]J]],

P ruleset for parallel connected units combination */

[parallel_connection,

[rulel,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'more_than(very(certain))]]],

[rule2,
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[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, ' ye ry(certain)]]],

[rule3,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule4,

[[con, ['the_cu rre nt_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule5,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule6,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule7,

[[con, ['the_current_system, 'survive_possibility, 'certain],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility, 'certain]]],
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[rule8,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

[the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'very(certain)]]],

[rule9,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'certain]]],

[rulel 0,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'almost_certain]]],

[rulell,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'almost_certain]]],

[rulel2,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

[ the_current_system, 'survive_possibility, 'almost_certain]]],

[rulel3,

[[con, ['the_current_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'almost_certain]]],
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[rulel4,

[[con, ['the_curie nt_system, 'survive_possibility, 'almost_certain],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

[the_current_system, 'survive_possibility, 'almost_certain]]],

[rulel 5,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]]],

[rulel 6,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'almost_certain]]],

[rulel7,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'more_than(quite_possible)]]],

[rulel 8,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],

[rulel9,

[[con, ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],
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[rule2O,

[[con, [the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'quite_,possible]]],

[rule2l,

[[con , ['the_current_system, 'survive_possibility, 'quite_possible],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],

[ru 1e22,

[[con , ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]],

[rule23

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'almost_certain]]],

[rule24,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],

[rule25,

[[con , ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_u nit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'more_than(moderate_possible]]],
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[rule26,

[[con, ['the_current_system, 'survive_possibility, 'mode rate_possible],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility, 'moderate_possible]]],

[rule27,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'moderate_possible]]],

[rule28,

[[con, ['the_current_system, 'survive_possibility, 'moderate_possible],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility, 'moderate_possible]]],

[rule29,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]fl,

[rule3O,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'almost_certain]]],

[rule3l,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_u nit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],
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[rule32,

[[con, [the_current_system, 'survive_Possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_Possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, ' moderate_possible]]],

[rule33,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility,' more_than(slightly_possible]]],

[rule34,

[[con , [the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'slightly_possible]]],

[rule35,

[[con, ['the_current_system, 'survive_possibility, 'slightly_possible],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility, ' slightly_possible]]],

[ru 1e36,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossiblel,

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]]],

[rule37,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_u nit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'almost_certain]]],
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[rule38,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],

[ru 1e39,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility, 'moderate_possible]],

['the_current_system, 'survive_possibility, 'moderate_possible]]],

[nile4O,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility, 'slightly_possible]]],

[rule4l,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'more_than(almost_impossible)J]],

[rule42,

[[con, ['the_current_system, 'survive_possibility, 'almost_impossible],

['the_adding_unit_(X), 'survive_possibility, 'impossible]],

['the_current_system, 'survive_possibility, 'almost_impossible]]],

[rule43,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, 'certain]],

['the_current_system, 'survive_possibility, 'certain]]],
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[rule44,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, 'almost_certain]],

['the_current_system, 'survive_possibility, 'almost_certain]]]],

[rule45,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, 'quite_possible]],

['the_current_system, 'survive_possibility, 'quite_possible]]],

[rule46,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, ' moderate_possiblelj,

['the_current_system, 'survive_possibility, 'moderate_possiblejj],

[rule47,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, 'slightly_possible]],

['the_current_system, 'survive_possibility, 'slightly_possibleljJ,

[rule48,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility, 'almost_impossible]],

['the_current_system, 'survive_possibility, 'almost_impossible]]],

[ru le49,

[[con, ['the_current_system, 'survive_possibility, 'impossible],

['the_adding_unit_(X), 'survive_possibility,' impossible]],

['the_current_system, 'survive_possibility, 'more_than(imposslble)]}l]
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1$

ruleset for combining system failure frequence possibility ****/

RB_Combination_Failure:[

/ ruleset for initial system combination */

[initial_combination,

[rulel,

[[con, ['the_current_system, 'failure_frequency, 'any],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, 'hourly]]],

[nile2,

[[con, ['the_current_system, 'failure_frequency, 'any],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'daily]]],

[rule3,

[[con, ['the_current_system, 'f ailure frequency, 'any],

['the_adding_unit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, 'weekly]]],

[rule4,

[[con, ['the_current_system, 'failure_frequency, 'any],

['the_adding_unit_(X), 'failure_frequency, 'month'y]],
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['the_current_system, 'failure_frequency, ' monthly]]],

[rule5,

[[con, ['the_current_system, 'failure_frequency, 'any],

['the_adding_unit_(X), 'failure_frequency, 'annually]],

['the_current_system, 'failure_frequency, 'annually]]],

1 ruleset for parallel connected unrts combination */

[parallel_connection,

[rulel,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, 'daily]]],

[rule2,

[[con , [the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'weekly]]],

[rule3,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_u nit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, ' monthly]]],

[rule4,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_u nit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'annually]]],

[rule5,
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[[con, [the_cu rre nt_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, 'weekly]]],

[rule6,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure frequency, 'daily]],

['the_current_system, 'failure_frequency, 'monthly]]],

[rule7,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_u nit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, 'monthly]]],

[rule8,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'annually]]],

[rule9,

[[con, ['the_current_system, 'failure_frequency, 'weely],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, ' monthly]]],

[rulel 0,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'annually]]],

[rulell,
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[[con, ['the_current_system, 'failure_frequency, 'monthly],

[the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failu re_frequency, 'annually]]]],

/ ruleset for series connected units combination */

[series_connection,

[rulel,

[[con , ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_u nit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, 'more_than(hourly)]]],

[nile2,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'hourly]]],

[rule3,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, 'hourly]]],

[rule4,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, ' hourly]]],

[rule5,

[[con, ['the_current_system, 'failure_frequency, 'hourly],

['the_adding_unit_(X), 'failure_frequency, 'annually]],
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['the_current_system, 'failure_frequency, 'hourly]]],

[rule6,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unitjX), 'failure_frequency, 'hourly]J,

['the_current_system, 'failure_frequency, 'hourly]]],

[rule7,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'more_than(daily)]fl,

[rule8,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, 'daily]]],

[ruleg,

[[con, ['the_current_system, 'failure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'daily]]],

[rulel 0,

[[con, ['the_current_system, 'faiLure_frequency, 'daily],

['the_adding_unit_(X), 'failure_frequency, 'annually]],

['the_current_system, 'failure_frequency, 'daily]]],

[rulell,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],
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['the_current_system, 'failure_frequency, 'hourly]]],

[rulel 2,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'daily]]],

[rulel 3,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'fa?ue_frecuenc'. 'more_tac(w€ez',

[rulel 4,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'weekly]]],

[rulel 5,

[[con, ['the_current_system, 'failure_frequency, 'weekly],

['the_adding_unit_(X), 'failure_frequency, 'annually]],

['the_current_system, 'failure_frequency, 'weeklyjfl,

[rulel 6,

[[con, ['the_current_system, 'failure_frequency, 'monthly],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

[ the_current_system, 'failure_frequency, 'hourly]]],

[rulel 7,

[[con, ['the_current_system, 'failure_frequency, 'monthly],

['the_adding_u nit_(X), 'failure_frequency, 'daily]],
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['the_current_system, 'failu re_frequency, 'daily]]],

[rulel 8,

[[con, ['the_current_system, 'failure_frequency, 'monthly],

['the_adding_unit_(X), 'failure_frequency, 'weekly]],

['the_current_system, 'failure_frequency, 'weekly]]],

[rulel 9,

[[con, ['the_current_system, 'failure_frequency, 'monthly],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'more_than(monthly)J]],

[rule2O,

[[con, ['the_current_system, 'failure_frequency, 'monthly],

['the_adding_unit_(X), 'failure_frequency, 'annually]],

['the_current_system, 'failure_frequency, 'monthly]]],

[rule2l,

[[con, ['the_current_system, 'failure_frequency, 'annually],

['the_adding_unit_(X), 'failure_frequency, 'hourly]],

['the_current_system, 'failure_frequency, 'hourly]]],

[rule22,

[[con, ['the_current_system, 'failure_frequency, 'annually],

['the_adding_unit_(X), 'failure_frequency, 'daily]],

['the_current_system, 'failure_frequency, 'daily]l],

[rule23,

[[con, ['the_current_system, 'failure_frequency, 'annually],

['the_adding_uflit_(X), 'failure_frequency, 'weekly]],
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['the_current_system, 'failure_frequency, 'weekly]]],

[rule24,

[[con, ['the_current_system, 'failure_frequency, 'annually],

['the_adding_unit_(X), 'failure_frequency, 'monthly]],

['the_current_system, 'failure_frequency, 'monthly]]],

[rule25,

1$

[[con, ['the_current_system, 'failure_frequency, 'annually],

['the_adding_unit_(X), 'failure_frequency, 'annually]],

['the_current_system, 'failure_frequency, 'more_than(annually)J]]]

RIL.

U'.Y.
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