
Micrometre-scale plasticity size effects in metals and ceramics: theory and

experiment.
Zhu, Tingting

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1648

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1648


OM Library 

23 1304371 5 

lill 

2 -V ýÄ t. ý t+ ih % 2- - 

Micrometre-scale plasticity size effects in 

metals and ceramics: 
theory and experiment 

Tingting Zhu 

School of Engineering and Materials Science 

Queen Mary, University of London 

Supervisors: Dr. Andy Bushby and ProE Dave Dunstan 

Nov 2008 

This thesis is submitted in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy from Queen Mary, University of London 

I 



DECLARATION 

I herewith declare that I autonomously carried out the Phl)-thesis entitled 

"Micrometre-scale plasticity size effects in metals and ceramics: theory and 

experiment". 

This thesis contains no material that has been submitted previously, in whole or 

in part, for the award of any other academic degree or diploma. Except where 

otherwise indicated, this thesis is my own work. 

I hereby affirm the above statements to be complete and true to the best of my 

knowledge 

Signature: 

2 



Abstract 

ABSTRACT 

This thesis comprises studies of size effects in the plasticity of metals and 

ceramics at length scales of the order of micrometres and includes, both experimental 

work and theoretical development. Experimental results are presented for foil flexure 

(nickel and copper) and nanoindentation (ceramics and hard metals). These studies 

were conducted because existing data does not cover a range broad enough or with 

sufficient precision to test various theories. 

With the developed bending technique, more accurate data is obtained covering 

a wide range of strain, especially around the key region of the elastic-plastic 

transition. Moreover, the interaction between grain and thickness size effect is 

successfully studied by varying the ratio of grain size over thickness of the foils. 

After carefully calibrating the indenters, the macroscopic indentation yield 

strength for ceramics and high strength metals is determined in a direct way by using 

spherical nanoindentation. The magnitude of size effect is significantly different 

between metals and ceramics. By comparing the Berkovich and spherical indentation 

size effect, the results implies that the contact size, a, is the most fundamental length 

scale in the indentation size effect, independent of the indenter shape. The 

indentation strength is found to be inversely scaled with the square root of a. 

The slip-distance theory (based on (Conrad et aL, 1967)) with. an 'effective 

length scale' reconciling intrinsic and extrinsic size effects appears able to account 

for the size effects in all contexts, without requiring strain gradient plasticity theory 

or an implicit characteristic length. 
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Chapter I- Introduction 

1 Introduction 

Knowledge of the mechanical behaviour of materials is essential in materials 

science and applied mechanics. At large size scales, above say I millimetre, most 

materials' properties are well-established and constitutive models are available. 

Classical continuum plasticity models predict identical -stress-strain responses for 

different geometrical dimensions, i. e., classical continuum answers are size 

independent. However, during the last few decades, it has become clear that 

mechanical properties can change drastically when the specimen dimensions are 

small. The strength of a material increases either when the structure is small or when 

only a small volume is under strain. The term 'size effect' covers generically all the 

ways in which this may happen. Nowadays, most material technologies rightly 

emphasise miniaturisation, from biomedical devices to thermal barrier coatinýs. 

Understanding small-scale mechanical properties is at the cutting-edge of materials 

science and technology. 

This thesis comprises studies of plasticity size effects of metals and ceramics 

including both experimental work (bending and nanoindentation) and theoretical 

development (slip-distance theory), as the existing data is considered to be not 

covering a range broad enough or with sufficient precision to test various theories. 

Another motivation is that the interaction between intrinsic (grain size) and extrinsic 

(dimensional) size effect is interesting for engineering applications, but rarely 

reported both in experiments and in theories. 
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Two of the best experimental results on size effect studies are from 

measurements of the stress-strain relationship for thin copper wires in torsion (Fleck 

et al., 1994) and for thin nickel foils in bending (St6lken and Evans, 1998). However, 

it is claimed that these data are fitted equally well by critical thickness theory as strain 

gradient plasticity theory (Dunstan and Bushby, 2004). Also, the interaction between 

grain size d and dimensional size (thickness) h is interesting, but not considered in 

these studies. Moreover, understanding the influence of material properties on these 

size effects is crucial for engineering design. Correspondingly, the bending technique 

(St6lken and Evans, 1998) i5 improved and performed on nickel (in chapter 3) and 

copper (in chapter 4) thin foils over a wider range of grain size and strain. Yield and 

work hardening size effects were clearly observed and analysed (in chapter 5). Finally, 

the influence of material properties was studied by comparing bending results of 

nickel and copper foils. 

The study of the initial yield size effect via indentation is limited in the literature 

due to the difficulty in measuring yield strength (Syed Asif et al., 1997; Gouldstone 

et al., 2000; Leipner et al., 2001; Herbert et al., 2006). Recently, Spary et al. (2006) 

determined the yield strength of soft metals through finite element simulation 

together with spherical nanoindentation and claimed that the yield strength scaled as 

the inverse cube root of indenter radius R. However, all of the metals investigated in 

their study have relatively low yield strength, in which it is difficult to determine the 

yield point with low uncertainty. Hence, the yield size effect was studied in ceramics 

and hard metals (in chapter 7) here, which possess relatively high yield strength that 
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nonetheless deform by dislocation glide or twinning. Moreover, material parameters 

are extended by studying the indentation size effect in ceramics and hard metals. 

Finally, size effect of pointed indentation is studied together with that of spherical 

indentation. 

In a remarkable number of instances the material strength scales with the 

reciprocal square root of the smallest length scale (specimen dimension, film 

thickness, grain size and contact size etc): denoted as INI (Data obtained in bending 

and indentation in this work; Hall, 1953; Ma and Clarke, 1995; Swadener et aL, 2002; 

Volkert and Lilleodden, 2006). In the majority of these cases, strain gradients are 

involved, the most cited explanation is the strain gradient plasticity (SGP) theory, 

where the size effect can be attributed to hardening due to geometrically-necessary 

dislocations (GNDs) (Ashby, 1970). A characteristic length 1* is often introduced to 

parameterise the theory. In other cases, strain gradients are not involved; for instance, 

micro-pillar compression has uniform deformation without strain gradients, but also 

appears to closely follow IM scaling (Volkert and Lilleodden, 2006). In this study, 

the slip-distance theory (Conrad et aL, 1967) naturally generates the IM scaling and 

incorporates the material parameters that influence the size effect, without requiring 

strain gradient plasticity theory or an implicit characteristic length (chapter 8). A new 

analysis of the interactions of grain size and structure size is given which yields in 

excellent agreement with experiment in different loading geometries. This model also 

suggests that the yield strain and Burger's vector are the important material 

parameters in the size effect, which agrees well with the experimental observations. 
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2 Literature review - size effects and their interpretations 

(This part has been accepted by Journal of Materials Science and Technology) 

2.1 Introduction 

The strength of a material increases either when the structure is small or when 

only a small volume is under strain. This behaviour is the so-called mechanical size 

effect. 

The size effect can be categorized as 'intrinsic'. and 'extrinsic'. Intrinsic size 

effects are due to microstructural. (internal) constraints of materials, such as grain 

size. These are mainly controlled *by processing steps in material fabrication. The 

extrinsic size effects are caused by dimensional constraints. These might be due to 

small sample size, in which physical mechanisms begin to experience the presence 

of the surface or an (external) interface (e. g. multilayer). A dimensional (extrinsic) 

constraint can also arise from the loading system, where the strained volume is small. 

Interactions between intrinsic and extrinsic size effects are particularly interesting 

for commercial use. However, currently, understanding of both the physics driving 

the size effects and their interaction is limited., 

In this study,, only the plastic behaviour (e. g. plastic yield point and work 

hardening) is considered. In other words, only the properties of material governed by 

dislocations are concerned here. There are good physical reasons why elastic 

properties do not change with size in the ranges of size considered here (e. g. no size 

dependence of Young's modulus). 
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Here, the small-scale strengthening phenomenon and historical and current 

explanations are briefly reviewed. 

2.2 Intrinsic size effect - mechanical strengthening of materials due to 

microstructural constraints 

2.2.1 Grain size strengthening in plasticity 

Grain size has long been known to have a significant effect on the mechanical 

behaviour of materials, e. g. yield strength and fracture resistance (Brown and Ham, 

1971). 

The effect of grain size was first established quantitatively by Hall (195 1) and 

Petch (1953) for the yield stress of low carbon steels as: 

r, - ro + kd -112 (2.1) 

where d is the grain size, r,, the lattice friction stress of single crystal material and k 

the Hall-Petch slope. Eq. (2.1) is generally referred to as the Hall-Petch effect. 

Although the Hall-Petch behaviour is observed frequently (bcc metals 

(Cracknell and Petch, 1955), fcc metals (Armstrong et aL, 1962; Phillips and 

Armstrong (1972)) and alloys (Shaw, 1967)), the underlying mechanism is still 

unclear. Here, several commonly cited explanations are reviewed briefly. 

In addition, there has been a growing interest in nanostructured materials, where 

d is smaller than tens of nanometres. Currently, it is strongly argued that the 

experimental results on nano-crystalline materials reveal that the Hall-Petch 
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relationship ceases to be valid. However, it is not our main concern here; a full 

review can be found in Meyers et aL (2006). 

1. Dislocation pile-up model ofHall-Petch effect 

The earliest attempt to explain the Hall-Petch behaviour is the dislocation 

pile-up model by Hall (1951) with subsequent modifications by Pctch (1953), Li 

(1963; 1970) and Cottrell (1964). This model assumes that at the grain boundary, 

there exist obstacles (e. g. locked dislocations), which will be overcome at a critical 

stress rc. Under an effective stress r, ( r, =r- ro ), dislocations nucleated in the grains 

will pile up along the slip, plane against the grain boundary due to their mutual 

repulsion. When the stress concentration at the tip of pile up, rp, reaches the critical 

value-r, dislocations will cross the grain boundary and move to the next grain. 

Imagining the simplest pile up, i. e. single-layer pile up of a group of n dislocations, as 

illustrated in Fig. 2.1, the pile up force at the tip of the array is: 

rp = nr, (2.2) 

If the pile up has a length of Lp (illustrated in Fig. 2.1), from the analysis due to 

(Eshelby, 195 1), n can be expressed as a function of the Lp: 

r, Lpb 
=- apb 

n 
(2.3) 

where a is a coefficient and y shear modulus. Now assuming that the pile-up length 

Lp equals to the grain size d, the stress is related to the grain size as: 

T.. = r. 
yv if -Y 

farpb 
Vd U 

(2.4) 
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Obstacle 
Te 

Source 

Lp 

Figure 2.1 Dislocation pile-up model. Under effective shear stress -r,, an array 

of identical dislocations piles up along the slip plane against an obstacle. The 

obstacle here represents the grain boundaries. 

This theory explains the sharp yield point of low-carbon steels very well. 

However, this well defined model suffers the weakness that the pile up is rarely 

observed directly; especially in fcc metals (Li, 1963; 1970). 

2. Grain boundary source model ofHall-Petch effect 

Attempts to obtain mechanisms which do not require the presence of pile-ups 

were made by Li (1963,1970), Crussard (1963) and Murr (1975). They proposed 

that irregularities at grain boundaries (steps or ledges) act as dislocation sources to 

provide a dislocation density near to the grain boundary (illustrated as Fig. 2.2) as: 

P (2.5) 
d 
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where m is the ledges or steps density and P is a geometrical coefficient (In (Li, 1970), 

,8= 3). Considering the Taylor's hardening law (Taylor, 1934) for forest dislocations 

hardening: 

r= ro + apbýp-- (2.6) 

and substituting Eq. (2.5) into (2.6), shear stress is related to grain size as: 

r= ro +apb 
E fim 
d 

(2.7) 

le 
-IP 

I 

're 're 

Figure 2.2 Schematic plot of grain boundary source model for Hall-Petch 

effect. Under the effective stressr,, grain boundary ledge act as a donor of 

dislocations (Li, 1963). 

3. Slip-distance model of Hall-Petch effect 

The main point of the slip-distance model proposed by Conrad et al. (1967) is 

that the presence of grain boundaries reduces the average dislocation moving distance 

s (illustrated in Fig. 2.3), and s is assumed to be linearly scaled with d. Under uniform 
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defonnation, the dislocation density can be related to plastic strain c., and slip 

distance as: 

XCPI 
bd 

(2.8) 

where ;r is a coefficient. Considering the Taylor hardening law (Taylor, 1934) Eq. 

(2.6), the stress is related to grain size as: 

b" sp, T" + auFd 
EPI 

Small Grain Size 

Figure 2.3 Illustration of dislocation mechanism in slip distance model. 

Dislocation free slip distance is decreased in smaller grain sizes. (Conrad, 

1967,2005) 

(2.9) 

C 

4. Geometrically necessary dislocation model ofHall-Petch effect 

The conventional models (Hall, 1951; Petch; 1953) of the plastic behaviour of 

crystalline metals is commonly based on the assumption that the resistance to 

dislocation glide is due mainly to the random trapping of dislocations by each other 

or boundaries during locally homogenous deformation. Such trapped dislocations are 

referred to as statistically stored dislocations (SSD) by Ashby (1970). They are 

Large Grain Size 

27 



Chapter 2- Literature review 

recognised as obstacles to ftirther dislocation motion, which results in hardening, i. e., 

Taylor forest hardening (1934). However, as anticipated by (Nye, 1953; Ashby, 

1970), an additional contribution to the density of immobile dislocations, and 

consequently to hardening, can arise when grains are caused to undergo non-uniform 

strain. These so-called geometrical necessary dislocations (GND) must occur at grain 

boundaries to prevent overlap and voids (illustrated as Fig. 2.4), i. e., to 

accommodate the deformation gradients. The density of GND can be related to the 

length scale as: 

I 
-V 

0 
P, =I(d. 

-,,, ) 
pg -= b 

where c*pl denotes the plastic strain gradient. 

4 
(a) 

(C) 

4 

4 
(d) 

Figure 2.4 If each grain of a polycrystalline metals, shown at (a), deforms in a 

uniform manner, overlap and voids would appear (b), these can be corrected 

by introducing geometrically necessary dislocations, as shown at (c) and (d). 

(Ashby, 1970) 

(2.10) 
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When the length (here the grain size d) is minimised, the density of the SSD is 

far smaller than that of the GND. Considering the Taylor hardening (Taylor, 1934) 

law of Eq. (2.6), the stress is related to the grain size d as: 

r= ro +au 
VýYe 

(2.11) 

From above, it can be seen that the Hall-Petch relationship Eq. (2.1) is generally 

true. However, various theories exist, and the underlying physics of the grain size 

effect is still not clear. 

2.2.2 Particle strengthening in plasticity 

Another common intrinsic length scale is the average particle spacing L in 

second-phase particle precipitation. In this case, particles are acting as obstacles 

hindering the dislocation movement. Plastic deformation happens when dislocations 

bow out to fully bypass the obstacles (the "Orowan mechanism" (Orowan, 1947)). 

The bypass condition is reached when: 

dd=L (2.12) 

where dd is the dislocation loop diameter. It is a function of shear flow stress as: 

dd 
= 

apb (2.13) 

Subsequently, the stress is related to the average particle spacing as: 

T 
alib 

L 
(2.14) 

This theory agrees well with experimental observations by Lloyd (1994) on 

A356-SiC. 
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2.3 Extrinsic size effect 

2.3.1 Thin film strengthening in plasticity 

Strong size effects have been observed in thin metal film coatings, when film 

thickness hf is below hundreds of nanometres. Experiments carried out 

characterizing the mechanical properties under either thermal or mechanical loading 

(Shen et aL, 1998; Hommel and Kraft, 2001; Philps et aL, 2004) have shown that the 

plastic response depends strongly on hf and on whether or not the films are 

passivated (Fig. 2.5). The yield strength is found to be inversely scaled by hf. 

dd hf D -A 
112dd hf 

(a) (b) 
Figure 2.5 The dimensional constraint on plasticity in thin films: the yield 

stress can be estimated by requiring a dislocation loop to fit into the film (dd= 

hh. Case (a): impenetrable fdm surface; case (b): free film surface. 

The size effect in thin film has been well explained by misfit dislocation 

channelling theory, which was firstly introduced by Frank and Van der Merwe (1949). 

Matthews et aL (1966) subsequently developed this idea to explain the epitaxial layer 

growth (critical thickness theory) in semiconductors. Finally, Freund (1987) and Nix 

(1989) applied detailed calculations for explaining metal thin-film coating 

strengthening. 
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A misfit dislocation is generated from the substrate, and passes through the film 

channel as schematically shown in Fig. 2.5. Plastic deformation occurs when the 

dislocation loop fits in the thin film channel (Fig. 2.5). According to the film surface 

condition, yield happens for (a) surface impenetrable, dislocation loop diameter equal 

to film thickness, dd = hf. (b) free surface, 112dd --* hf. The yield strength is related to 

the film thickness, 

Ty oc 
i7apb 

hf 
(2.15) 

The constant of proportionality, Tj for Eq. (2.15) varies according to the surface 

condition, either 1/2 or 1. In stead of simple shear modulus P, the elastic modulus is 

much more complicated in the complete calculation (Nix, 1989). Details of this 

theory can be found elsewhere (Fitzgerald, 1991; Dunstan, 1997). 

Recent experimental evidences for multilayer materials, when layer thickness is 

above hundreds of nanometres, shows that strength is scaled with reciprocal square 

root of layer thickness: -ry oc h, -1/2 (Misra et aL, 2005; Hoagland et aL, 2005). Fang 

and Friedman (2005) rather than hj-1 as given by Eq. (2.15) suggest a possible reason 

of this 'Hall-Petch' type behaviour: when the hl is big enough (e. g., above hundred 

nanometres), the Frank-Read source is able to work many times in the layer; 

hardening is attributed to dislocation interaction, where the multilayer interfaces 

behave as obstacles for dislocation movement analogously to grain boundaries. 
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2.3.2 Compressive strengthening - micropillar experiments and their 

explanations 

Micro-pillar compression experiments have attracted extensive interest during 

the last four years, Pillars with diameters ranging from 0.5 to 40ýtm have been 

machined from a bulk single crystal (including nickel (Rinaldi et a/., 2008), copper 

(Kiener ef al., 2005), gold (Volkert and Lilleodden, 2006; Greer ef a/., 2005) and 

intermetallic Ni3AI (Uchic el al., 2004, - Dimiduk el al., 2007)) by using a focused ion 

beam (FIB) microscope then subjected to uniaxial compression in nanoindenter 

systems equipped with a flat diamond punch (Fig. 2.6). These experiments provide a 

simple geometrical loading system, without interfaces and strain gradient (Budirrian 

el al., 2008). However, FIB will cause a damaged surface layer on the outside of the 

pillars, which will influence the experiment. These issues are discussed in refs 

(Volkert and Lilleodden, 2006; Kiener el al., 2005). 

Figure 2.6 (a) FIB image of an 860 rim-diameter, 3.2 l. Lm-tall (0 0 1) gold 

pillar (b) SEM images of a deformed pillars. Slip lines are clearly presented in 

the deformed states (Greer et aL, 2005). 
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For a variety of materials, the flow strength of these micron pillars exhibits a 

strong size effect, where decreasing pillar diameter leads to a higher stress. The yield 

strength (at 2% or 5% strain) was reported to be scaled with the reciprocal square 

root of the pillar diameter (Volkert and Lilleodden, 2006; Greer et aL, 2005) 

One of the most commonly cited explanations for this size effect is the 

dislocation starvation mechanism. Dislocations leave the pillar before their 

multiplication (Shan et al., 2008; Greer et aL, 2005). Correspondingly, higher stress 

will be required for dislocation nucleation in order to continue deformation. 

However, for this dislocation starvation mechanism, there is so far, no accurate 

mathematical description able to test the result numerically (Kicner et d, 2006). 

2.3.3 Crack size effect- Griffith theory 

The famous crack size effect on brittle materials by Griffith (1920) might be the 

earliest size effect established in the literature. Griffith demonstrated experimentally 

that the failure stress of glass tubes is proportional to the inverse square root of the 

crack size. This behaviour was widely observed evidently afterwards (Lawn, 1975). 

This phenomenon is well explained by a thermodynamic law (Griffith, 1920; 

Rack, 1946). Assuming a planar crack with length 2c in a homogeneous medium, the 

total energy Ut of the system is a sum of the mechanical contribution: 

UW (2.16) I External + US., 
J'.,,, 

where WExten,, i is the strain energy caused by external loading and Us,, f.,, c, is a crack 

resistance term, originating from the material resistance to create a new free surface 

by breaking chemical bonds, 
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IIW, atemal 
; Tc 2a2 

(2.17) 
E 

where E is the Young's modulus of the material. Also, 

Us., 14cý = 4cy, 1 (2.18) 

where y, represents theftee surface tension at the cleavage surface. It is a material 

constant. 

The critical condition (failure) happens at the smallest rate of the total energy 

change with crack extension: 
dU' 

= 0. Correspondingly, failure stress is scaled as dc 

the inverse square root of the crack length as: af 
F2 -Er- 

ý ; TC 

2.3.4 Microbending and microtorsion size effects and their explanations 

In 1994, Fleck et aL (1994) carried out microtorsion experiments (Fig. 2.7 (a)) 

on thin polycrystalline copper wires with diameters ranging from 12 to 170ýLni and 

observed a very strong size effect. When the diameter of the wires is decreased, the 

strength (normalised torque) is increased significantly (Fig. 2.7 (b)). A similar 

phenomenon was observed by St6lken and Evans (1998) in microbending 

experiments (Fig. 2.7(c)) performed on thin nickel foils with thicknesses ranging 

from 12.5 to I 00ýtm (Fig. 2.7 (d)). However, the data from St6lken and Evans (1998) 

shows relatively big error bars. Also, both of these two experiments present data at 

relatively high strain, i. e., there is a lack of data around the key region of 

elastic-plastic transition or yield point (in Fig, 2.7(b) and (d)). 
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Figure 2.7 (a) Schematic plots of simple twisting of wires (Modified from 

Fleck et aL, 1994) (b) twisting size effects observed by Fleck et aL (1994); 

strength (normalised torque) is increased with decreasing radius of wire (c) 

Schematic plots of simple bending of foils (modified from Fleck et aL, 1994) 

(d) bending size effect obtained by St6lken and Evans (1998); strength 

(normalised moment) is increased with decreasing foil thickness. 

0.1 
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2.3.4.1 Strain jZradient plasticity theory 

The original and most cited explanation of non-uniform size effects is the 

well-known strain gradient plasticity (SGP) theory (Fleck et aL, 1994; Fleck and 

Hutchinson, 1993; St6lken and Evans 1998). As mentioned in section 2.2.1(4), 

dislocations can store in two different ways. One is by dislocations trapping each 

other in a random way, which is referred to as statistically stored dislocations (SSDs). 

The other one referred to as geometrically necessary dislocations (GNDs), which are 

required to accommodate the plastic strain gradient. Illustrated in Fig. 2.7 (a) and (c), 

the plastic strain epi is null at the neutral planes (elastic planes) for both the wire and 

foil. However, the plastic strain becomes greater than zero at their free surfaces. 

When the sample size is minimised, a significant plastic strain gradient Zpl in the 

system is introduced. Consequently, a high density of GND will be introduced in 

wires and foils and this corresponds to the strengthening in terms of the Taylor (1934) 

hardening law. 

However, the exact form of the coupling between hardening due to SSDs and 

GNDs is always controversial, i. e., the combination of the uniform and gradient 

terms appears in different ways. Correspondingly, different formulas of SGP theories 

exist (Nix and Gao, 1998; Gao et aL, 1999 Fleck and Hutchinson, 1993; 1997; Duan 

et aL, 2001). Two of the most cited formula of SGP theories are presented here. 
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The first, (1), is the "mechanism-based" formulation suggested by Nix and Gao 

(1998). The densities of SSI)s and GNI)s are combined in a linear summation: 

A=A+ P9 (2.19) 

where p, is the total density of dislocations, p, the density of SSI)s and pg the density 

of GNDs. In this case Eq. (2.19), the interaction between SSI)s and GNI)s are not 

considered. By inserting Eq. (2.19) into the Taylor (1934) hardening law, the 

resulting shear stress is: 

7 =, r -i--- 0 Jf (2.20) 

where ry is the macroscopic (or defined) yield shear strength. The uniform strain term: 

f(cpj), is associated with the density of SSDs and typically has a power law form, 

Ac"i) = (C', / CY)" (2.21) 

The extra characteristic length scale in the formalism (2.20) is related to the 

macroscopic yield strength by: tNG* = CC2 b(p / rY )2, where pis the shear modulus and 

a the coefficient (Gao et aL, 1999; Huang et aL, 2004). 

The second, (II), is suggested by Fleck and Hutchinson (1994), where they 

adopted the harmonic mean: 

P, = ýFPYý + PWý 

of the dislocation density, then the resulting stress: 

T=T f Y 
(FEpl2+(eFH 

PX) 

(2.22) 

(2.23) 

However, all these combination methods for SSDs and GNI)s are arithmetic. 

The physical meaning of these combinations is not clear. The existing data is not able 

to define the right formula. 
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2.3.4.2 Geometrical critical thickness theoly 

In the SGP theories, the high density of GNDs in the presence of a large plastic 

strain gradient is used to account for extra work hardening. However, as argued by 

Dunstan and Bushby (2004), the SGP theory cannot explain a size effect at the yield. 

At the onset of plasticity, there is no plastic strain gradient, hence no GNDs- 

Therefore, geometrically critical thickness theory (GCTT) was proposed for 

explaining the initial yield size effects in bending and twisting (Dunstan and Bushby, 

2004). The underlying idea is that generation of the dislocation is a cooperative 

process involving many atoms in the crystal and this process necessarily involves a 

finite 'volume rather than beginning at a point. This geometrically required small 

deformation area or volume restricts the generation (or movement) of dislocations 

and hence a higher yield stress is required. The additional (geometrically required) 

yield strain: 

b (2.24) 

where hc is the critical thickness for initial yielding, then the total yield strain is 

expressed as: 

C. y= ey + Ac = cy (2.25) 

here ey is the yield strain for bulk material. In this model, it was also claimed that if 

dislocation multiplication (significant relaxation) is considered, b in E. q. (2.25) is to 

be replaced by 5b (Dunstan, 1997; Dunstan and Bushby, 2004). 
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The calculated critical thickness hc from (Dunstan and Bushby, 2004) is related 

to the length scale, e. g. radius of the wire a,,,: 

k1 H+ a,, (2.26) 
Cy F+bEy 

Substituting Eq. (2.24) into (2.23), the yield strain is obtained. Details of the GCTT 

can be found in Dunstan and Bushby (2004). 

The data of Fleck et al. (1994) and of Stblken and Evans (1998) is fitted equally 

well by geometrical critical thickness as by strain-gradient plasticity theory (Dunstan 

and Bushby, 2004). To improve the theory, data is required to be over a wider range 

of strain (e. g. around the key region of elastic-plastic transition or yield point) and to 

be more accurate. 

2.3.5 Nanoindentation size effect 

Indentation size effects have been shown repeatedly during last two decades. 

, For pointed indepters, it is found that the hardness is inversely scaled by the square 

root of contact depth h, (Ma and Clark, 1995; Nix and Gao, 1998), illustrated in Fig. 

2.8 (a). For spherical indenters, Lim and Chaudhri (1999) first showed that the entire 

flow curve appears at higher contact pressures for smaller radius indenters in oxygen 

free copper (illustrated as in Fig. 2.8 (b)). Then, Swadener et al. (2002) presented 

that the hardness is scaled with the inverse square root of indenter radius R in 

Iridium. More recently, Spary et al. (2006) reported that the yield strength is 

increased linearly with tht inverse cube root of R by using finite element analysis 

(FEA) together with spherical nanoindentation. However, since all the materials in 
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their study (Spary et aL, 2006) have very low strength, it is very hard to accurately 

determine the yield strength. 
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Figure 2.8 Indentation size effect (a) pointed indentation size effect, where 

the hardness is inversely scaled with the square root of contact depth. The 

solid line is the theoretical fit from SGP theory (Nix and Gao, 1998). (b) 

Spherical indentation size effect is observed by (Lim and Chaudhri, 1999); 

hardness is clearly increased with decreasing indenter radius. Solid curves are 

as guides. 

40 



Chapter 2- Literature review 

These nanoindentation size effects are explained by different theories. The 

original and predominant theory is the SGP theory. Nix and Gao (1998) showed that 

the pointed indentation size effect agreed well with the SGP model (in Fig. 2.8(b)). 

Swadener et aL (2002) adopted the same SGP formula to explain their spherical 

indentation size effect. But the fit is not very good, especially for the smallest radius 

(R = 14gm). The SGP theory has been introduced and discussed in section 2.3.4.1. 

The application of the SGP theory for indentation size effect is presented in detail in 

refs (Nix and Gao, 1998; Swadener et aL 2002; Qu et aL, 2006; Qin et aL, 2007 and 

etc. ). 

An alternative approach used by several groups (Gerberich et aL, 2003; 2006; 

Zhang et aL, 2002; Kim et al, 2007) considers the indentation size effect via an 

energy balance argument based on the observations of Horsterneyer and Baskes (2003) 

for a surface to volume ratio (Al P) of the plastic deformation. They proposed that 

the work done by an applied indentation load contains both bulk and surface ten-ns 

respectively: 

Fdhp =P dV + fd, 4, (2.27) 

where F is the applied indentation force, hp is the penetration depth, P, ', is the 

indentation mean pressure, f is the surface stress, V is the deformation impression 

volume under the indenter and A, is the contact area. 

However, it is not very convincing that surface energy plays such an important 

role in the indentation plastic deformation. For instance, Nicola et aL (2007) inputted 
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bulk and surface dislocation sources into a discrete dislocation model and found that 

surface sources played a negligible role in their study. 

2.4 Interaction between intrinsic and extrinsic size effects 

The study of the interaction between intrinsic and extrinsic size effects is 

certainly an attractive topic, as they appeared frequently in the daily world. However, 

at present, studies are limited. Venkateswaran and Bravman (1992) studied Al films 

on silicon substrates and showed that the flow stress is inversely dependent on film 

thickness and grain size. However, they had only two grain sizes and were not able to 

distinguish between the Hall-Petch d-112dependence and the d-1 dependence that they 

considered more plausible. They assumed that the effects of h and d are separable. On 

the other hand, Keller et aL (1998) reported that observed yield stress size effect is a 

superposition of thickness and Hall-Petch effect. 

Recently, Hou et aL (2008) reported a size effect in polycrystalline copper under 

spherical indentation (illustrated in Fig. 2.9). They considered that the intrinsic and 

extrinsic size effects cooperated. The intrinsic (grain size d) and extrinsic (contact 

radius a in indentation) are combined in "quadrature" experimentally, where the 

indentation stress (mean pressure) is related to the a and d as: 

P. oc D-1/2 
= j(l. 5aj7 + d-1 (2.28) 
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Figure 2.9 Indentation mean pressure P,, (at aIR = 0.25) for different radius 

mdenters agamst the mverse square root of the fittmg parameter D here, 

where D-' = (I. 5a)-' + d-'. 

2.5 

Widjaja et aL (2007) simulated the wedge indentation size effect via 

two-dimensional discrete dislocation plasticity. They found that both the grain and 

penetration depth affect the hardness (or mean pressure) as illustrated in Fig. 2.10. 

The hardness is clearly increased with decreasing grain size or penetration depth. 

However, they analysed the grain and indentation size effect independently. 

Interaction between d and a (or h) was not properly considered in their study 

(Widjaja et al., 2007). 
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Figure 2.10 Hardness vs. depth for wedge indentation size effect simulated 

via discrete dislocation plasticity. (Widjaja et aL (2007)) 

2.5 Conclusions 

From this review, it can be seen that plastic size effects have been observed and 

reported repeatedly in different loading geometries during the last five decades. 

However, there are still weaknesses both experimentally and theoretically. 

Experimentally, existing data does not cover a large enough range or with sufficient 

precision to test various theories (e. g., in sections 2.3.4 and 2.3.5). Theoretically, 

various theories exist. For instance, in section 2.2.1, there are several theories 

established for Hall-Petch size effects. Also, in sections 2.3.4 and 2.3.5, although the 

SGP theory are most predominant for explaining size effects involving plastic 
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gradient, other theories still exist. Moreover, the exact formula of the SGP theory is 

still not clear. 

It is obvious that few people report the vital interaction of intrinsic and extrinsic 

size effects both in practice and theory. Whether the intrinsic and extrinsic size effect 

should be considered separately or not, and in either case, what are the underlying 

mechanics? 

In experimental work in this thesis, the experimental technique was improved in 

order to get results over a wider range (strain, size and material parameters) and with 

more accuracy (chapters 3,4 and 7). In theoretical work, a new approach based on 

Conrad et aL (1967) is proposed to explain the general size effect (different 

geometries; with and without strain gradient). The study of interaction between 

intrinsic (grain size d) and extrinsic (e. g., thickness h or contact radius a) size effects 

in experiments and theories (chapter 3,5 and 8) is also addressed. 
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3 Microbending of thin nickel foils 

(Part of this chapter has been published in Phil. Mag. ) 

3.1 Introduction 

Two of the best experimental results on size effect studies from measurements of 

the stress-strain relationship are for thin copper wires in torsion (Fleck et al., 1994) 

and for thin nickel foils in bending (St6lken and Evans, 1998). Strain gradient 

plasticity theory was applied to explain these results (Han et al., 2005, Huang et al., 

2000). However, it has been found recently that these data are fitted equally well by 

critical thickness theory and by strain gradient plasticity theory (Dunstan and Bushby, 

2004). In order to identify a more complete theory, accurate data over a sufficient 

range of strain is required. Especially, data around the key region of the elastic-plastic 

transition, or yield point is important. Moreover, the interaction between grain size d 

and dimensional (thickness) size h is certainly an interesting topic for engineering 

applications, but reported rarely in the literature (as reviewed in chapter 2). 

For the above reasons, the nickel foil flexure (bending) method of Stolken and 

Evans (1998) was extended to a range of grain sizes d extending from less than the 

foil thickness h to more than h, and to a range of strains from below yield to values 

near 0.1. Compared with the previous work of St6lken and Evans (1998), the newly 

obtained data here are improved both in accuracy and range (strain and grain size). 

The yield and work hardening size effects are clearly observed. The yield strength 

and work hardening rate are both increased with decreasing foil thickness or grain 

size. 
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In this chapter, the improved bending techniques and experimental procedures 

are described in detail in sections 3.2 and 3.3. The results are presented and briefly 

discussed in section 3.4. The detailed fitting and analysis will be shown in chapter 5. 

The bending devices were designed by my supervisor Prof. Dave Dunstan and 

built by Dr. Geoff Gannaway. The experimental works here were done together by 

my colleague Xiaodong Hou and me. 

3.2 Materials preparation and characterisation 

In order to study the thickness and grain size effect, the bending measurements 

were performed on high purity Ni foils over a range of thickness and grain size. Foils 

having three thickness (h = 10,50 and 125pm) were obtained from Goodfellow 

(Cambridge Limited, UK), of purity 99.90,99.95 and 99.99%, respectively. The 

10ýtm and 50ptm foils were electroformed. The 125ptm ones were formed by rolling. 

Various grain sizes were attained by rapid thermal annealing under vacuum. The 

grain size, texture condition and surface roughness of all foils were characterized 

afterwards. 

3.2.1 Annealing 

A rapid thermal annealer (RTA) was used to control the microstructure of the 

foils (Fig. 3.1). It was designed and built by Dr. Gillin from Physics department, 

Queen Mary University of London. It is a furnace capable of rapid high temperature 

ramp accurate to :LIT and is programmed to ramp from room temperature to I 000"C 
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in 15 seconds. This advantage is important for reducing the surface roughening 

problem that comes from significantly different diffusion rates of the surface and 

bulk material (Wee et aL (1997)). Annealing is performed in an inert environment 

(Here, Helium was used) thus preventing oxidation of the samples. 

As schematically shown in Fig. 3.1, the RTA's primary components consist of a 

vacuum chamber, graphite carbon strip elements and an optical pyrometer. The 

optical pyrometer monitors the radiated heat thereby accurately monitoring the 

temperature of the graphite strips. It is also supplemented by a standard K-type 

thermocouple that measures the ambient temperature of the electric tenninals, a 

vacuum pump to provide a vacuum environment, an inert gas feed (nitrogen or 

helium, in this case, helium) and a water cooling system to prevent overheating of 

the chamber. See Wee et aL (1997) for further description of the RTA. 

Electý-ic terminal 
,,,:, h tvates- 

cool g channels 

Graphite carbou 
Strips / 

/ 

Figure 3.1 Schematic of Main components of the RTA, redraw from 

Moreau's report (2004). 
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3.2.2 Grain size characterisation 

The grain size and structure resulted from various annealing conditions was 

revealed by etching the foils. The etching of the grain boundaries was carried out in a 

mixture of acetic (99.9%) and nitric acid (99.9%) at volume proportion five to one 

(Haynes 1984). The mixtures were freshly prepared and the foils were immersed in 

the solution for a short period, less than 2 minutes (Empirically, thicker ones require 

slightly longer time), until the grain boundaries could be revealed. After thorough 

washing in distilled water followed by acetone, the grain size was measured by 

optical microscopy (Leica DMLM equipped with a camera). Fig. 3.2 shows typical 

examples of grain images. Clear images were observed after proper etching. 

The grain size does not change according to the etching time, but as this etching 

process damages the foil, the actual foils used for bending were not etched. 

After obtaining the grain images (Fig. 3.2), the grain. sizes of the foils were 

calculated by a more accurate method compared to the traditional line-intercept 

method. First, a square was drawn on the micrograph containing many grains. Inside 

this square, the whole grains were counted for I and those cut by the side of the 

square counted for 0.5. Then the sum of all these numbers (N) represents the grain 

numbers in this square. The average grain size d is defined by: d= 
F-, SW 

I where S is 

the area of the square. Note that twin boundaries were not counted here. 
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Figure 3.2 Optical microstructure pictures of Ni foils after etching: different 

thickness foils have the similar grain size d- 30pm. (a) I Opm foil thickness 

with gram size d= 22pm; (b) 1254m foil thickness with grain size d= 274m. 

In addition, the microstructure of the cross section of foils was characterized in 

the scanning electron microscope (SEM) (Carl Zeiss Supra-40 FEGSEM) by electron 

backscattered diffraction (EBSD, HKL5, Oxford Instruments, UK). This was done by 

my colleague X. Hou at the National Physics Laboratory (NPL). Typical examples of 

EBSD images are shown in Figs. 3.3-3.5. The pole figures obtained by EBSD are 

shown besides the image figures (Figs. 3.3-3.5). 
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x 

AB 

Figure 3.3 (A) EBSD of the cross section of aI Ogm nickel foil with 6ýtm 

average gram size; (B) Pole figures illustratmg the texture in the 10 [tm foil. 

A B 

Figure 3.4 (A) EBSD of the cross section of a 5%trn nickel foil with 30pm 

average gram size; (B) Pole figures illustrating the texture in the 5%Lm foil. 

A B 

Figure 3.5 (A) EBSD of the cross section of a 125ýtm nickel foil with 27pm 

average gram size, (B) Pole figures illustrating the texture in the 125pm foil. 
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The grain sizes measured by EBSD (Figs. 3.3-3.5) and the surface etch technique 

(Fig. 3.2) were consistent. Moreover, these images illustrate the grain structure and 

assern bly in the cross section of foils, which is useful to study the interaction of grain 

and thickness size effect. The pole figures indicated a relatively random texture. In 

other words, the annealing process eliminates any preferred orientation introduced by 

previous processing. 

The summary of the metallurgical results of all foils used is tabulated in table 3.1. 

It can be noted that there is no measurements of grain size for foils as received (in 

table 3.1). This was not considered useful, as the received foils were not used in the 

experiments. 

Annealing the foils showed that the grain growth rate of the I Opm foils was very 

low, whereas 125[tm foils grew at a relatively high rate. Consequently, it is difficult 

to grow large grains for the lOpm foil and so limits the grain size which foils can be 

grown. Thus, the grain sizes of the three different thickness foils were grown to have 

the same grain size as the initial grain size of the 125pm foil. For 125[Lm foils, 

annealing at low temperature (half the melting temperature) was found necessary to 

get rid of the work hardening effect, while keeping a small grain size. 

Although it was not possible to choose annealing conditions that generated the 

same grain sizes, d, for each foil thickness, it was feasible to obtain d=3 Optm at each 

thickness. They have been highlighted as bold red in the table 3.1. 
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3.2.3 Surface roughness characterisation 

The surface roughness was measured using a Dektak 3ST surface profilometer. 

Fig. 3.6 shows a typical example of surface profile for a 50ýtm thickness nickel foil 

with grain size d= 14[tm. Half of the difference between each neighbouring peak 

(e. g., (hi-h2)12 shown in the Fig. 3.6) is defined as the roughness of the foil at certain 

scan position (e. g., (hi-h2)12 shown in the Fig. 3.6, is defined as the roughness for 

scan length at about 410gm). The average roughness is calculated by averaging the 

roughness through a certain scan length (in this study, typically through 500gm) 
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Figure 3.6 A typical surface profile (using a Dektak 3ST) for a 50[im foil, 

with grain size d= 14pin. The average surface roughness is about 0.61im. 

The surface roughness characterisation results are tabulated in table 3.1. 

Roughness is relatively small compared to the foil thickness (less than 5%). Also, it 
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can be observed that the roughness is slightly decreased for most foils after 

annealing. In conclusion, the roughness will not have much effect on the bending 

results. 

Table 3.1 Annealing conditions and corresponding grain sizes of nickel foils. 

Bold red values were the chosen annealing conditions to obtain consistent 

gram sizes for h= 10,50 and 125pm. 

Thickness, h 

ttm 

Annealing 

Conditions 

(Temp & time) 

Grain size, d 

ltm 

Average Surface 

roughness 

/ pm 

10 As received 0.42 

1000c' IN 6 0.27 

1000C, 300s 12 0.36 

1000(" 900S 22 0.45 

50 As received 0.31 

700c 30s 5.5 0.17 

1000,5s 14 0.59 

1000C, 15S 27 0.34 

1000c, 120s 50 0.14 

125 As received 0,20 

700c, 30s 30 0.09 

1000c, 5s 85 0.03 

1000c, 120s 220 0.04 
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3.3 Bending techniques 

The load-unload technique was carried out, which Is familiar in mechanical 

testing of materials. Flexure on thin metal foils was applied, as schematically shown 

in Fig. 3.7. 

Figure 3.7 Schematic plot of the load-unload bending method. The solid line 

represents the foil loaded to conform to the mandrell the dotted line represents 

the foil after elastic recovery to the unloaded state. Radii R, and R2 are 

measured by optical, non-contact methods. 

The principle of the design is to bend a foil of thickness h and width w, to a 

prescribed radius of curvature R, and this introduces a known strain, which is partly 

elastic and partly plastic, and which at the surface is 

h 
, cs =- 

2Rý 
(3.1) 
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The foil is then unloaded, and it relaxes elastically to a larger, permanent radius 

of curvature R2 (Fig. 3.7). The increase in radius provides a determination of the 

bending moment M at the radius RI. At the radius R2 the bending moment is zero. At 

the radius R, simple elastic beam theory gives, for the bending moment normalised 

by wh 2 

M Eh( IIf 
Ac M"= 

vvh2712ýRI-R2 
=6 (3.2) 

where E is the relevant elastic modulus for a wide beam (for Ni here, E= 220GPa). 

Two bending instruments were designed and applied. One was named as 

four-point bending device, which was used for obtaining bending moment at small 

strain (-0.2%) region. The other one was referred to lap-top bending device, which 

was used for relatively high strain (-10%) region. 

3.3.1 Four-point bending --small strain bending 

As schematically shown in Fig. 3.8, the foil is placed on a stainless steel shim 

and constrained by two weighted rollers at both ends. A screw device drives a wedge 

that lifts the central rollers thereby setting the curvature 1C, (loading 

curvature K, =I/R,, where the radius of loading curvature is RI) in the range 0- 

I cm7l. One of the weighted rollers is then removed, unloading the foil, and allowing 

it to relax elastically to a smaller, permanent curvature, Ký (unloading 

curvature ic, =1/ R2, where the radius of the unloaded foil is R2). The numerical value 

of curvatures K are measured by a non-contact optical profilometer (OTM3 from Wolf 

& Beck Sensorik, Germany) to scan the top of the foil (Fig. 3.8 (A)). 
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Figure 3.8 (A) Schematic plot of four-point bending machine, which is used 

for small strain (about 0-2%) bending. The foil is laid on a shim that is in a 

4-point bend and constrained by two weighted rollers at both ends. The screw 

drives a wedge that lifts the middle two rollers. This increases the 4-point 

bend and thus decreases the radius of curvature on the foil. (B) The 3D 

isometric view of the four-point bend machine. Foil, shim and weighted bars 

are not shown for clarity. (Designed by Prof Dunstan and redrawn from Dr. 

P'ng's PhD thesis) 
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The profilometer does not provide the curvature of foil automatically. It can only 

record the surface profiles in X (horizontal) and Y (vertical) direction. As a typical 

example, a couple of surface profiles are illustrated by black dots in Fig. 3.9. Fig. 3.9 

(A) shows the foil with when loaded (RI) and (B) shows the foil after unloading 

elastically (R2). To obtain the radius of curvature of the foils, the Mathematica 

version 4.2 was used to plot the measured profile and then to fit the profile with a 

mathematical simulation of a circle (as shown in Fig. 3.9 as blue lines). Subsequently, 

the radius of curvature R, and R2 for each increment of the screw were calculated. 

These values were used to calculate the M, and c, by applying Eqs. (3.1) and 

(3-2) respectively. Results will be presented and discussed in section 3.4. 
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Figure 3.9 Typical examples of surface profiles for foils exported by 

Mathematica, 4.2. Black dots are recorded surface profile data from optical 

profilometer. The blue line is the mathematical simulation as a circle for the 

surface profile. (A) A IOpm foil is bent and corresponds to RIZO. 035m (B) 

The foil is unbent and corresponds to R2--0.59m. 
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3.3.2 Lap-top bending-high strain bending 

Apparatus shown in Fig. 3.10 provided for the foils to be bent by a metal plate 

(yellow card shown in Fig. 3.10) around a mandrel (drill blanks) of radius from 3mm 

to 100pm, covering the range of curvature ic from 3cm-' to 100cm-1. In this 

apparatus, a laser beam was reflected from the straight part of the foil beyond the 

mandrel, and the deflection of the laser beam was used to deduce the loaded and 

unloaded curvature ic of the foil. The tracks of laser beam were recorded on a chart 

roll. 

For each size mandrel, foils were bent to a series of angles 01 (Fig. 3.11) to 

minimize (average out) the errors. The angles were controlled by stoppers on the 

working bench. 

Fixing the fod 

(A) 
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Nickel foil 
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Figure 3.10 (A) Schematic diagram of lap-top bending. The foil, mandrel and 

stopper are illustrated. Laser beam and chart roll are not included in this 

picture. The picture of the equipment is inserted at the bottom right comer. (B) 

Schematic plot of working principle of the equipment, which is used to 

measure flexure behaviour at relatively high strain (up to 10%). The foil is 

bent around a mandrel by a metal plate to a known radius RI. By measuring 

the movement of the reflected laser (recorded by a chart roll), the curvature 

change from load to unload can be obtained in order to calculate the bending 

moment from Eq. (3.2). (Device is designed by Prof Dunstan; Fig, 3.10 (a) is 

helped by Dr. Gannaway, who built this device) 

The detailed procedure and calculation method for obtaining Af,, and 6, is shown 

as following. 

The bent part of foil (illustrated as the red line in Fig. 3.11) is the same before 

and after bending, and it is possible to calculate the arc of bent part of the foil 

(highlighted as red in Fig. 3.1 1) by using radius times centre angle. So, 

Initial 
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RIO, = 
R202 (3.3) 

Then, 

R2 
- 

RIO, 
01 -AO 

where AOrepresents the difference between a and 02, as AO= 01-6ý. 

Figure 3.11 Schematic plot of lap-top bending measurement. Foil is bent to a 

certain angle 01 around a mandrel with radius R, and released to a permanent 

radius R2, with angle 02. The red Imes illustrate the bent pan of foil. 

(3.4) 

The non-nalised moment, M, is calculated by substituting Eq. (3.4) into (3.2): 

Eh (A0) 
124 01 

Since AO is relatively small, mathematically, 

AO= 
1 

-11 , ; ýý 
IL 

t9 ý' 2 'CF 21cF 

(3.5) 

(3.6) 

where 1L is the average moving distance of the laser beam before and after bending; 

IcF is the distance between chart roll and foil. For better understanding, these 

parameters are illustrated in Fig. 3.12. Then, substitute Eq. (3.6) into (3.5), 
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Eh 
(1, ) 

12R1 21(, FO, 
(3.7) 

where the distance IL is calculated from the difference between the loading and 

release point on the chart roll. R, is the mandrel radius, 1CF is measured by ruler, 01 is 

controllable by the stopper on the working bench. Thus, it is able to obtain M,,. 

For a fixed mandrel size (RI), i. e. a fixed strain, to minimize (average out) the 

error, the foil was bent to a series of angles, 01 (Fig 3.11). At each angle, loading and 

unloading was repeated several times. The deflection points of laser beam 

corresponding to loading and unloading were recorded as PI and P2 (Fig. 3.12) each 

time on the chart roll. Laser moving distance 11, is the distance between PI and P2 

( in Fig. 3.12). The distance between the chart roll and the foil /(-/;, Is also illustrated 

in Fig. 3.12 two dimensionally 

Figure 3.12 Schematic diagram of lab-top bending experiment. Foil was bent 

to a certain angle; the deflection of laser is recorded on the chart roll as P1. 

Then the foil is released, the deflection of laser is recorded as P2. The distance 

between PI and P2 is IL. The distance between chart roll and foil is 1cF. 
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Fig. 3.13 shows a typical example of lap-top bending result for a 50ýtm 

thickness foil wrapping around a mandrel with radius R1= 0.5mm. The foil was bent 

to a series of angles 01, from 10' to 60'. Loading points (PI) were recorded as 

4 circle' and unloading point (P2) were recorded as 'cross' (raw data in Fig 3.13(a)). 

The distance between PI and P2 is the laser moving distance IL. (In addition, the red 

lines on the chart roll paper are just showing the paper is nearly the end of the 

current roll). Corresponding results were plotted as 1L against 01 in Fig 3.13. Then, a 

linear function was applied to fit through the data. The term IL / 01 in Eq. (3.7) was 

obtained as the slope of the straight line. In Fig. 3.13, slope is in unit of mm/degree. 

For calculation in Eq. (3.7), it has to be changed to unit of mm/rad. Subsequently, M,, 

was obtained from Eq. (3.7) by inputting the obtained value of IL / 01. The surface 

strain is calculated from Eq. (3.1). 

In other words, all the points measured in Fig. 3.13 results in a single point in 

the final stress (bending moment)-strain curve (Figs. 3.14 and 3.15). 

&V 
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9wV vc 

p 

-. 

'cx 

--I... J, *, 4t0 
S 
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(b) 

Figure 3.13 A 50Wn foil wrapped around a mandrel with radius R, = 0.5mm, 

was bent to a series of angles 01 ranging from 10* to 60'. (a) Part of raw data 

recorded on the chart roll. Loading points (PI) were recorded, as 'circle'; 

unloading points (P2) were recorded as 'cross'. The distance between PI and 

P2 is laser moving distance IL. (b) Corresponding IL was plotted against bent 

angle 01. The solid line is the linear fit through the data. 

3.4 Foil bending results and discussion 

The results of the bending measurement are presented as plots of the normalised 

bending moment M,, (stress) against the surface strain, C, (Figs. 3.14 and 3.15). In 

this chapter, only the data are presented. Possible fittings and analysis will be 

discussed in chapter 5. It can be seen that many more strain points were obtained on 

the bending stress-strain curves over a wider range of strain and grain size (Figs. 
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3.14 and 3.15), compared with the existing data obtained by St6lken and Evans 

(1998). 

The results are presented in a manner that highlights the separate dependencies 

on foil thickness and grain size. Those summarized on Fig. 3.14 are for foils having 

similar grain size but differing thickness. Whereas, the corresponding results on 

Fig. 3.15 are for foils having the same thickness but four different grain sizes. 

Firstly, the thickness size effect is studied by comparing foils having similar 

grain size (d = 30jtm) but different thickness (h = 10,50 and 125gm) as in Fig. 3.14 

(a) and (b). In Fig. 3.14 (a), the increase of M,, with decreasing thickness is clearly 

observed. For example, at 0.05 surface strain, the M,, of the IOPM foil is over 

140NTa, where the 125pm one has M,, only 40NTa. Also, the slope of the 

stress-strain curve in the plastic region (e. g. between 0.01 to 0.05 strain) is increased 

in thinner foils. For 101im foil, the slope is about 300ONTa, where the 125pm foil 

has the slope of 60ONTa. If the linear work hardening is considered here and the 

bending work hardening rate is defined as the slope of stress-strain curve in the 

plastic region, i. e. between 0.01 to 0.05 strain, it is apparent that the work hardening 

rate is increased with decreasing thickness at fixed grain size. Fig. 3.14(b) highlights 

the small strain region which is obtained from 4-point bending (Fig. 3.8). The clear 

departure from the theoretical elastic line (yielding) can be observed. If yield is 

defined as a significant departure from the elastic line, in Fig. 3.14(b), the yield 

strength is increased as decreasing thickness. Detailed fittings and analysis are 

presented in chapter 5. 
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Figure 3.14 Normalised bending moment M,, vs. surface strain c, for the foil 

thicknesses: pink diamond: 10ýtm, red triangle: 50[im and green sphere: 

125pm. Grain sizes are approximately 30pm in all three foils. Solid line is the 

theoretical elastic line. (a) Full strain range (b) The region at low strain is 

shown in more detail. Departure from the elastic line is clearly observed and 

increased in thinner foils. 
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Then the grain size effect was studied by comparing foils with the same 

thickness (h = 50gm) but different grain sizes (d = 6,14,27 and 50ýtm) as shown in 

Fig. 3.15 (a) and (b). In Fig. 3.15(a), the increase of M, with decreasing grain size is 

clearly observed. For example, at 0.05 surface strain, the M, of the 6gm grain size 

foil is over 150MPa, where the one with 50gm grain size has M, only 40MPa. Also, 

the slope of the stress-strain curve in the plastic region (between 0.01 to 0.05 surface 

strain) increases with decreasing grain size. For 6ýtm grain size foil, the slope is 

about 250OMPa, where the 50ýtm grain size foil only has the slope of 50OMPa. If the 

bending work hardening rate is defined as the slope of stress-strain curve in the 

plastic region, i. e. between 0.01 to 0.05 surface strain, it is evident that the work 

hardening rate is increased with decreasing grain size at fixed thickness. Fig. 3.15(b) 

highlights the small strain region which is obtained from 4-point bending (Fig. 3.8). 

The clear departure from the theoretical elastic line (yield) can be observed. If the 

yield is defined as a significant departure from the elastic line, the yield strength is 

increased with decreasing grain size in Fig. 3.15(b). 
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Figure 3.15 M,, Vs. 6,, for h= 50prn foil with different grain sizes. Pink 

diamond: d=5.5pm; blue square: d= 141im; green triangle: d= 27PM and red 

circle: d= 50pm. Solid line is the theoretical elastic line. (a) Full range of 

strain (b) The small strain range is shown in more detail. The departure point 

from elastic line is observed and increases in smaller gram sizes. 
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3.5 Conclusions 

With the improved bending technique, data contained more strain points were 

obtained, with minor errors, on the bending stress-strain curves compared with the 

existing data reported by St6lken and Evans (1998). 

The data reported here is over a wide range of strain. Especially, data around the 

key region of the elastic-plastic transition, or yield point were obtained. 

The data reported here cover a wide range of grain size. The corresponding 

ratios of d/h ranged from 3) to 0.03. This provides an extensive data set from which 

the interaction of grain and thickness size effect can be studied. 

Detailed fittings and analyses follow in chapter 5, but at first glance, the data 

show that the yield strength and work hardening rate increases in thinner foils as well 

as in smaller grains. These are new results which cannot be observed in the existing 

data (St6lken and Evans, 1998). 
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4 Microbending of thin copper foils 

4.1 Introduction 

Understanding the influence of material properties on size effect is certainly 

crucial for materials science and engineering applications. Therefore, the improved 

bending technique was performed on thin copper foils to study the influence of 

material properties on size effect. Both copper and nickel possess the same structure 

(face centred cubic (fcc)) but very different moduli (e. g. the elastic modulus of 

copper is about half that of nickel). Correspondingly, by comparing the bending 

results of nickel and copper, the effect of material properties on size effect Will be 

revealed. In this chapter, the bending results for copper foils are presented and 

discussed. 

4.2 Materials and methods 

The bending measurements were performed on high purity copper foils over a 

range of thickness and grain size. Foils having three thicknesses (h = 10,50 and 

125ptm) were obtained from Goodfellow (Cambridge Limited, UK), of purity 99.9% 

or higher. The foils were known to be electrodeposited with very small grain sizes. 

Foils were annealed to obtain various grain sizes. The grain sizes are 

characterized by etching in alcoholic ferric chloride and optical microscopy (Leica 

DMLM equipped with a camera). The method has been explained in detail in chapter 

I The etching time for copper foils was about 30s to 120s, mostly depending on foil 

thickness. The thicker the foils the longer time it required. Typical optical grain size 
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images of copper foils are shown in Fig. 4.1, which are of foils with thickness h= 10 

and 50gm but similar grain size dtý 60gm. It can be seen that grains are clearly 

observed after proper etching. Grain size calculation method has been described in 

chapter 3. Twin boundaries were not counted. 

Figure 4.1 Optical microstructure pictures of Cu foils with different thickness 

but similar grain size d- 60pm. (a) I Opm foil with gram size d= 60pni, (b) 

50ýLm foil with gram size d= 58pm. 

The summary of annealing conditions and corresponding grain sizes of all foils 

used is tabulated in table 4.1. 
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Table 4.1 Annealing conditions and the corresponding gram sizes of copper 

foils. Bold red values were the chosen annealing conditions to obtain 

consistent gram sizes for h= 10,50 and 125gm. 

Thickness, h 

gm 

Annealing Conditions 

(Temp & time) 

Grain size, d 

ILM 

10 700'C, 5s 17 

700'C, 30s 27 

1000'C, 300s 57 

50 700'C, 30s 23 

1 0001c' I OS 57 

1000'C, 120s 80 

125 700'C, 5s 26 

1000, C, 5s 65 

1000'C, 120s 155 

Annealing the foils (table 4.1) shows that the grain growth rate of the copper 

foils is much higher than that of nickel foils (table 3.1). For instance, for lOgm 

thickness foil, the largest grain size is approximately six times of the thickness (table 

4.1). This suggests that copper bending is highly suitable for use in the study of the 

interaction between grain and thickness size effect, since it is easier to obtain a wide 

ratio of d1h in copper foils. 

The developed bending techniques (described in chapter 3) were applied here on 

copper thin foils including four-point bending (small strain region, -0.2%) and 
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lap-top bending (relatively high strain region, -10%). The calculation method of 

normalised bending moment M, and surface strain c, was described in chapter 3. For 

copper, the relevant elastic modulus for a wide beam in bending (plane strain 

Young's modulus) was E= 125GPa. 

4.3 Bending results and discussion 

4.3.1 Grain and thickness size effects in copper bending 

The results of the bending measurements are presented as plots of the 

normalised bending moment (stress) M,, against the surface strain C, in Figs. 4.2 & 4.3. 

These are presented in a manner that highlights the separate dependencies on foil 

thickness and grain size. Those summarized on Fig. 4.2 are for foils having the same 

grain size but different thickness. Whereas, the corresponding results on Figs. 4.3 are 

for foils with the same thickness but different grain size. 

Firstly, the thickness size effect was studied by comparing foils - having fixed 

grain size (d-- 60ptm) but different thickness (h =I 0,50 and 125ttm) in Fig. 4.2 (a) and 

(b). In Fig. 4.2 (a), the increase of whole stress-strain curves with decreasing 

thickness is clearly observed. For example, at 0.05 surface strain, the normalised 

bending moment of the 101im foil is over 80MPa, whereas the 1251tm one has 

normalised bending moment only I OMPa. Thinner foils are stronger than thicker ones. 

Fig. 4.2(b) highlights the small strain area, which is obtained from 4-point bending 

(Fig. 3.9). The departure of data from the theoretical elastic line is observed. If the 

yield is defined as a significant departure from the elastic line, in Fig. 4.2(b), the yield 
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stress increases in thinner foils. The M,, is about 7NTa for I Ogm foil and below 2MPa 

for 125gm foil. 
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Figure 4.2 M,, Vs. -c:,, 
for foils: h=I Opm (blue cubic), h= 50Pm (green 

triangle) and It = 125prn (red diamond). dz 60ýtm in all three foils. Solid line 

is the theoretical elastic line. (a) Full range of strain is shown. Work hardening 

rate increases in thinner foils. (b) The data at small strain is shown in detail. 

The clear departure from elastic line is observed and increases in thinner foils. 
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Then, the grain size effect was studied by comparing foils with the same 

thickness but different grain sizes as in Figs. 4.3. In Fig. 4.3(a), all foils are having 

same thickness h= 50gm, but different grain sizes, d= 17,27 and 57[tm. The 

increase in flow stress (at fixed strain, e. g. e, = 0.0005) with decreasing grain size is 

evident. In Fig. 4.3(b), all foils have h= 10[tm but d= 23,57 and 80ptm. The flow 

stress-strain curves seem to have relatively no difference dependent on grain size. 

Noted here, for Fig. 4.3(b), all the grain sizes are much greater than the thickness. 

The ratios of d1h are very high, which are from 2 to 6. However, in Fig. 4.2(b), the 

ratios of d1h are from 0.5 to 6. Also, such a high ratio was not obtained in nickel foil 

bending experiment reported in chapter 3. The lack of dependence on grain size 

observed in Fig. 4.3(b), could suggest that when d is several times bigger than h, the 

grain size effect vanishes. It is certainly reasonable. Assuming d >> h, the situation is 

the same as bending a single crystal thin film, where there is no grain size effect and 

only a thickness effect. However, the exact ratio at which grain size effect disappears 

has not yet been determined in this study. Foils having a wider ratio of d1h are 

certainly useful for the study of the exact interaction between d and h. This would be 

an interesting future work. 
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4.3.2 Comparison between bending results of nickel and copper foils 

At this stage, the bending results of copper and nickel foils can be compared 

primarily, in order to study the influence of material parameters on size effects. 

Copper and nickel possess same fcc structure and similar Burger's vector, but their 

elastic moduli are very different. In this thesis, the thickness and grain size effects are 

compared separately to explore the effect of material properties on the size effect. 

Firstly, the grain size effect on bending strength was compared between copper 

and nickel. In Fig. 4.4 the bending stress-strain curves are shown for foils having 

same thickness (h = 50gm) but different grain sizes (d = 30 and 55pLm). The black 

solid curves are guides to the eye. Copper and nickel foils both exhibit that the 

strength is increased as decreasing the grain size. 

In order to determine the strength at same plastic strain for copper and nickel, 

e. g. cpj = 0.02%, the 0.02% plastic strain line is plotted as dotted lines shown in 

Fig. 4.4. For nickel, it was found that at 0.2% plastic strain, with grain size decreasing 

from 55 to 30ýtm, the strength of nickel increases about 3.8MPa, i. e. AM,, = 3.8MPa. 

However, for the same condition, the strength of copper increases about 2MPa, i. e. 

AM,, ;: z 2MPa (in Fig. 4.4). AM,, at different plastic strains for nickel and copper are 

shown in Fig. 4.5. 

Then, considering the difference of relevant elastic modulus in bending (plain 

strain Young's modulus) between nickel (E = 220GPa) and copper (E =125GPa), the 

enhancement of strength is normalised by the elastic modulus respectively. The 

corresponding normalised enhanced strengths AM, /E against different plastic strains 
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of nickel and copper are shown in Fig. 4.5. The solid curves are guides for the eye. 

From Fig. 4.5, it is seen that the normalised strength AA4,., ' E of copper and nickel are 

nearly the same over a range of plastic strain. This expresses the size effect in terms 

of strain rather than stress. In this form the grain size effect seen in bending does not 

depend on elastic modulus. This suggests it is a geometrical effect. 

2MPa 

0.00025 0.00050 
Surface strain 

0.00075 0.00100 

Figure 4.4 M, Vs. E, for foils all having same thickness h- 501im. Solid and 

hollow points are for N, and Cu respectlvelyý d- 30pm (circle), d= 55pm 

(square). Blue line is the theoretical elastic line for Ni. Pink line is the 

theoretical elastic line for Cu. The black solid curves are guides to the eye. 
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I 

Figure 4.5 "/E is plotted against plastic strain Ep, for same thickness foils 

(h = 50pm). The enhancement of strength is cased by decreasing the gram size 

d. Solid and hollow points are for Ni and Cu foils respectively. Solid curves 

are guides to the eye. Blue is for Nickel and pink is for copper. 

Then, the thickness size effect was compared between nickel and copper. In 

Fig. 4.6, the bending stress-strain curves are shown for foils having similar grain size 

(d z 301im) but different thickness (h = 10 and 125gm). The black solid curves are 

guides for the eye. Copper and nickel foils both show that the strength is increased 

with decreasing foil thickness. 

Now, considering the difference of relevant elastic modulus of bending (i. e., 

plain strain Young's modulus) between nickel (E = 220GPa) and copper (E 

=125GPa), the enhancement of strength is normalised by the modulus. The 
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corresponding normalised strength AM, /E against plastic strain of nickel and copper 

is plotted in Fig. 4.7. The solid curves are guides for the eye. From Fig. 4.7, it is seen 

that the normalised strength AM, /E of copper and nickel are nearly the same over a 

range of plastic strain. This expresses the size effect in terms of strain rather than 

stress. In this form the thickness size effect seen in bending does not depend on 

elastic modulus. This suggests it is a geometrical effect. 

0 

0.0005 

Surface strain 
Figure 4.6 M,, Vs. E,, for foils all having similar gram size d-30pin. Solid and 

hollow points are for Ni and Cu respectively: hýI Opm (square) and h= 

125Wn (circle). Blue line is the theoretical elastic line for Ni. Pink line is the 

theoretical elastic line for Cu. The black solid curves are guides to the eye. 
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Figure 4.7 AM, /E is plotted against plastic strain Fp, for similar grain size 

foils (d z 30pm). The enhancement of strength is cased by decreasing the 

thickness h. Solid and hollow points are for Ni and Cu foils respectively. Solid 

curves are guides to the eye. Blue is for nickel and pink is for copper. 

The analyses here are considering the size effect in terms of strain rather than 

stress, i. e., dimensionless size effect. From the analysis, the dimensionless size 

effects including extrinsic (thickness) and intrinsic (grain size) both show no 

dependence on the material properties. They are geometrical effects. This result is in 

good agreement with Spary et aL (2006), who studied indentation size effect in 

metals. However, both our bending and their indentation (Spary et A, 2006) 

experiments are on soft fcc metals. Hence, these cases may only be able to indicate 

that the size effects are independent on the elastic modulus of materials. So it is 
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certainly useful to explore wider range of material parameters, e. g., structure (fcc and 

bcc), Burger's vector, etc. 

4.4 Conclusions 

By comparing bending results of copper and nickel in terms of strain instead of 

stress, both the grain and thickness size effects show no dependence on material 

properties, i. e., elastic modulus. This is in agreement with the conclusion of Spary et 

aL (2006) that the dimensionless (strain instead of stress) size effect is mostly 

geometrical. 

It is useful to devise experiments that test material parameter over a wider range, 

e. g., ceramics and metals. However, bending a ceramic foil is difficult. For this 

reason, indentation is performed to study the size effect in ceramics and metals, 

where they have very different Burger's vector (about two times difference) and yield 

strain (about ten times difference). The details will be presented and discussed in 

chapter 7. 
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5 Bending stress-strain curves analysis 

(This part is published in Phil. Mag. ) 

5.1 Introduction 

The new nickel bending stress-strain curves described in chapters 3, were 

motivated by the observation that the data of Fleck et al. (1994) and of St6lken and 

Evans (1998) was fitted equally well by critical thickness theory as by 

strain-gradient plasticity theory (Dunstan and Bushby, 2004). However, there was no 

data around the key region of the elastic-plastic transition, or yield point; that is 

important for distinguishing the two different theoretical approaches. 

Another motivation was to study the interaction between grain size (intrinsic) 

and dimensional (e. g. thickness) size effect, which is crucial for the engineering 

applications, but reported rarely in the literature both in experiments and theories (as 

reviewed in section 2.4). The Hall-Petch (graift size) effect has not been 

systematically studied in small structures (i. e. structures with a characteristic length 

(thickness) h- (grain size) d). Venkateswaran and Bravinan (1992) studied Al films 

on silicon substrates and obtained the flow stress and its dependence on film 

thickness. However, they had only two grain sizes and were not able to distinguish 

between the Hall-Petch dlý2 dependence and the d-1 dependence that they considered 

more plausible. They assumed that the effects of h and d are separable. Thompson 

explained their results using critical thickness theory (and introducing a critical grain 

size as well as a critical thickness) but the theory necessarily yields a d-1 dependence 
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rather than the Hall-Petch d'12 (Thompson, 1992). Other than this, critical thickness 

effects have not been studied as a function of grain size. Strain-gradient plasticity has 

not been studied as a function of grain size, nor through the yield point. Mechanistic 

explanations or theoretical explanations for these effects do not consider interaction 

between them. 

New nickel foil bending data have been presented in chapter 3. In this chapter, 

these data are analysed in detail. The yield and work hardening size effects are 

studied. Careful consideration of interaction between grain and thickness size effects 

is taken. In conclusion, even with the improved data obtained here, it is clear that 

better data around the elastic-plastic (yield) point is still required. However, in the 

plastic region, the data shows that the strain-gradient or critical thickness effects and 

the Hall-Petch effect on the work-hardening and the flow stress are intimately linked. 

This implies a reconsideration of the mechanisms both of the Hall-Petch effect and 

of strain-gradient plasticity. The result also implies that the grain boundary and free 

surface may have the same effect on material strength. 

5.2 Bending stress-strain curve analysis and results 

Nickel foil bending data reported in chapter 3, are fitted using classical 

plasticity theory (solid lines in Fig. 5.1), with linear work-hardening, using 

a(c) = Ev C: 5 CO 
c(c) = qO + kep cr-: a co 

(5.1) 

where E is the relevant elastic modulus (plain strain Young's modulus) in bending, 

co is the yield stress, k is the rate of linear work hardening, and rp =c- colE is used 
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as a close approximation to the true plastic strain, e- o(e) / E. In classical 
I 

plasticity theory, plastic yield occurs when the stress reaches the yield stress. The 

beam is deformed elastically from the centre, z=0, to z=± zo where zo is defined by 

Ezo / R, = cro. From ± zo to the free surfaces at z=± V2h the deformation is plastic. 

This gives the following expression for the bending stress when plasticity occurs, 

I 12h 2 -ýz 
2E2 112h 

( (z 
-z M. =v za(c)dz = '- dz +vz co +k 

f-112h 
-9 fO 

R, 
E., 

R, 

=S- 
)(, 

_ 
k)+ke, 

4 12E'cý2 E6 

) 
dz 

(5.2) 

and this is the function fitted to our data in Fig. 5.1. Linear work hardening is 

adequate to describe the data as can be seen from Fig. 5.1 at large strains. This fitting 

(Fig. 5.1) is done by post doc in our group Dr. Chris Walker. Close inspection around 

the yield point (Fig. 5.1 inset) shows that the onset of yield is more complicated than 

the model assumes. There can be some plastic yield at as little as half the bending 

stress corresponding to co. In what follows, therefore, oo is referred to as the 'fitted 

yield stress' - this can be considered to represent the onset of gross or macroscopic 

plasticity. 
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Figure 5.1 The data are plotted as normalised bending stress M, against 

surface strain e, over the full range of our experiments, for the foil thicknesses 

(i) 10 gm, (ii) 50 pm and (iii) 125 jim. Grain sizes are approximately 30gm in 

all three foils. The data of St6lken and Evans (1998) is shown with their error 

bars (+). In the inset (linear scale) the region at low strain is shown in more 

detail. The solid curves are fits using classical plasticity theory, Eq. (5.2), 

with the two fitting parameters co and k. 

It is clear from Figs. 5.2 and 5.3 that both co and k depend upon both d and h, 

increasing as the grain size and foil thickness are decreased. Traditionally these are 

separate effects (Venkatraman and Bravman, 1992). The data in Fig. 5.2 for oo are 

consistent with this. The fitted yield stress data agree with 

cro (d, h) = 
330 430 aýp 

-+ 
Gýý 

'+- 7 ý=d h= d= h 
(5.3) 
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with co in MPa and d and h in microns (solid lines in Fig 5.2), that is, additive 

effects for h and d, and - perhaps surprisingly - with no breakpoint between d<h and 

dA. The first term may be interpreted as the Hall-Petch effect (the inverse square 

root of grain size) (Hall, 195 1; Petch, 1953) with the constant a, 'p = 0.33MPa rn 1/2 
, 

independent of foil thickness. Values of cr,, for bulk nickel from 0.16 to 

0.45MPam'/' have been reported (Ebrahimi et al., 1999; Hansen, 2004). Our value 

is in this range, in accordance with the classical Hall-Petch behaviour at the yield 

point. The second term is an additive term for the critical thickness effect which 

increases the yield stress in the thinner foils, independent ýf grain size. The critical 

thickness term has been previously observed by Moreau et al. (2005) and the full 

theory was given in Dunstan and Bushby (2004). 

Grainsize, d (gm) 

50 20,10 

d-1/2 

0.4 

Figure 5.2 The fitted yield stress ao is plotted against the inverse square root 

of the grain size for the three foil thicknesses lOgm (m), SOpm (9), and 

125pm (A). The solid curves are the fits of Eq. (53). 
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In contrast to the yield-point data, the work-hardening data in Fig. 5.3(a) for k, 

the effects of d and h are multiplicative. The work-hardening data fit well to 

k(d, h) = 
120 

(5.4) V _d vfh- 

with k in GPa and d and h in microns. Normalising by multiplying by 4h, the nine 

data points fall on a single straight line (Fig. 5.3(b)). From the data of St6lken and 

Evans (1998), the k values are estimated of 1 GPa for their 50[tm foil with 71 ýLm 

grain size, and 2.5GPa for their 12.5ýtrn foil with 31 [trn grain size. Our equivalent k 

values, from Eq. (5.4), ' are 2GPa and 6GPa respectively, consistent within their error 

bars. 
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Figure 5.3 In (a), the work-hardening parameter k is plotted against the 

inverse square root of the grain size, for the three thicknesses I Oltrn (m), 50Pm 

and 125prn (A). The solid curves are the fits of Eq. (5.4). In (b), the 

work-hardening parameter is normalised by multiplying by -, 
fh and the 

solid line is a fit to the data for all three foil thicknesses. 
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However, other fits are possible. A square-root work-hardening law might be 

used at small plastic strains instead of the linear work-hardening of Eq. (5.1). This 

fitting (Fig. 5.4) of stress-strain curves was done by the undergraduate student with 

our group: Bruno Ehrler. This square-root work hardening would fit the data around 

the elbow in Fig. 5.1 more accurately and it would yield different values for the fitted 

yield point o-O (values of co are much smaller than in the linear work-hardening fit 

but not zero, as illustrated in Fig. 5.4). 

Surface strain, c. 
Figure 5.4 The normalised bending moment M,, against surface strain e, for a 

IOWn foil with grain size d= 30pm. The solid line is the fit by square root 

hardening. And the dotted line is the fit by Eq. (5.1). In the inset (linear scale) 

the region at high strain is shown with dotted line fitted by Eq. (5.1). 

Going further, one may be doubtful of the physical meaning of a yield stress in 

a soft metal. What is observed may be interpreted not as a yield stress but as the flow 

stress at the lowest resolved plastic strain. Then it may be more instructive to plot the 
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raw data diffýrently rather than plot the fitted o-o. Following Thompson (1992), the 

flow stress should depend upon grain size and structure size as d-1 + h-1. Fig. 5.5 

shows a log-log plot of bending moment at a wide range of strains against an 

effective length or size 1,, ff given by f-'Cff = d-' + h`. ' At all strains, the data are 

consistent with straight-line fits. However, at low strains, where square-root work 

hardening fits better, the gradients are very close to '-1/2', indicating a square-root 

dependence on the effective sizeteff * 

At high strains, where linear work hardening fits better, the gradients are very 

close to '-V as in Thompson's theory. This is interesting, as Thompson's (1992) 

theory would be expected to be valid at small plastic strains rather than at high. The 

theory certainly does not predict the power j-1/2 observed here at small strains. eff 

gloo 

lo '0 m 
1 10 

Effective size, f, -ff 
(pm) 

100 

Figure 5.5 The data for the bending stress at three different values of strain 

and all nine combinations of grain size d and foil thickness h are plotted 

against the effective size defined by: i-' = d-' + V. On the log-log plot eff 

the data show little scatter and are consistent with slopes varying from '-1/2' 

at low strain to '-I' at high strain. 
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5.3 Discussion 

In order to study the yield and work hardening size effect, linear and square-root 

work hardening analysis were applied to fit the nickel bending data respectively. The 

results show that the square-root work hardening fits -better at small strain region 

(elbow of the stress-strain curve, i. e. elastic-plastic transition region), whereas linear 

work hardening fits better at relatively high strain region. The yield strength are 

different (but none of them zero) from these two different fits. Even with the data-set 

which covers wide range of strain that reported here on Ni foil-bending, better data 

around the elastic-plastic point is still desirable before the decision can be made as to 

whether a yield point is a valid and useful concept or not and whether critical 

thickness theory is relevant to it. 

The clear symmetry shown between d and h in work hardening coefficient k 

(Fig. 5.3) and flow strength in Fig. 5.5, and the absence of any breakpoint in the data 

or the fits between d<h and d>h, may suggest that different ways of delimiting a 

finite volume or thickness have the same effect on the strength, whether the strained 

volume is delimited by grain boundaries or by the free surface. 

0 
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5.4 Conclusions 

The yield study has not yet been completed. Better data around the elastic-plastic 

point (elbow of the stress-strain curve) is still required. 

The clear symmetry shown between d and h in work hardening coefficient k 

(Fig. 5.3) and flow strength in Fig. 5.5, and the absence of any breakpoint in the data 

or the fits between d<h and d>h, may suggest that the grain boundary and free 

surface have similar effect on material strength. 

No existing theories predict the totality of the results reported here. 

Understanding the underlying mechanics is certainly a crucial future work, for 

instance, the meaning of effective length Iff, which combine the intrinsic and extrinsic 

effect. 

A possible explanation of effective length Iff will be presented in chapter S. 
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6 Nanoindentation calibrations 

(This part has been published in Journal of Mechanics and Physics of Solids) 

6.1 Introduction 

Indentation testing is one of the most popular means for measuring the 

mechanical properties of materials at small length scales. It is essentially that a hard 

tip, whose mechanical and geometric properties are known, is pressed into a sample 

whose properties are unknown. The tip is usually made of diamond. As for 

nanoindentation, it is simply an indentation test in which the length scale of the 

penetration is measured in nanometres. It is popular, because the size of the specimen 

can be extremely small and the procedure is usually non-destructive. More general 

introductions can be found in Fisher-Cripps (2001). 

There are various shapes of indenter tip. They can generally be divided into 

pointed and spherical indenters. Pointed indenters include: Vickers, Berkovich, 

Knoop and conical and so on, in which the shape is self-similar with depth. They are 

relatively easy to produce. A spherical indenter has the advantage that it can induce a 

large area of contact at a given depth, and provide the smooth transition from an 

elastic region to a plastic one. This is useful in studying the fully elasto-plastic 

relationship of the material. 

Careful calibration of the indenter tip shape is a 'prerequisite to any 

nanoindentation test, because the mechanical properties are highly related to the tip 

geometry (Johnson, 1987; Fisher-Cripps, 2001). There are primarily two methods 
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for calibrating tips: AFM direct imaging and reference-material methods (Bushby 

and Jennett, 2001). According to Bushby and Jennett (2001), these two calibration 

methods are in good agreement. In this work, for convenience and consistency, all 

indenters (Berkovich and spherical indenters) were calibrated by indenting into 

reference materials (Bushby and Jennett, 2001). Multiple reference materials were 

applied, since there were too many unknowns for using a single material. 

For this work, the main aim for applying spherical indentation, is to study the 

initial yield size effect, i. e., the elastic-plastic transition. Hence, different size 

indenters were required. Also, it is necessary to have the low uncertainty in indenter 

effective radius, at the depth when yield happens. Berkovich indentation was also 

applied to enable to the comparison to be made with the spherical indentation size 

effect (in chapter 7). 

This chapter will describe and discuss the experimental details and results of 

indentation calibration (both Berkovich and spherical indentation). Before going into 

the experimental details of calibration, basic concepts of spherical and Berkovich 

nanoindentation are introduced. These are referred to a lot in the following 

calibration and chapter 7 (study on indentation size effect). 

Spherical indenters were applied for most of this work. Therefore, spherical 

indentation concepts will be the focus of this chapter. 
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6.2 Spherical indentation calibration 

All the spherical indenters used in this work are made of diamond, due to its 

high hardness and elastic modulus. However, the diamond indenter often deviates 

from an ideal spherical shape due to the difficulty of polishing an anisotropic crystal 

into a spherical shape. Hence, careful calibration of the tips is necessary before using 

them. 

All spherical indenters were calibrated by indenting into several reference 

materials using the multiple partial-unload method. 

6.2.1 Multiple partial unload indentation 

The multiple partial unloading indentation technique was developed by Field 

and Swain (1993,1995). It permits the elastic and plastic components of indentation 

to be separated and hardness and elastic modulus to be calculated at each step as a 

function of penetration and/or contact. 

The material response is detected throughout the loading cycle by continuously 

recording the force F and penetration depth hp. The indentation loading proceeds 

incrementally. Following each load increment to a force Fj, the load is reduced 

(partial unloading) by a small amount (in our experiments, to 0.75FJ) before 

proceeding to the next higher load increment, F, +1. Force and penetration are 

recorded at each load and partial unload step. Details are in Bushby, (2001). 

Using the partial unloading technique, the shape of the unloading curve can be 

calculated for each pair of load (point 1) and unload (point 2) data (FI, hj; F2, h2) 
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using Hertzian mechanics (Fig. 6.1). This approach assumes that the unloading is 

wholly linear elastic. 

Fl, hl 

20 40 
41. 

60 80 100 
P tnetration /nm 

120 140 

Figure 6.1 A typical example of a force - penetration data set. The fully 

loaded points diamond, partial unloaded points circles. The solid line is the 

load-uriload cuz-ve that passes through Points F1, hi and F2, h2. This 

load-unload results In a residual depth h, 

160 

The elastic displacements, h, of the unloading curve are given by (Johnson, 

1985): 

9) 
1/3 

F)2-A 
16 

(y (R 
R 

1/3 

(6.1) 

where F is the applied force on the indenter, E* is the composite (indentation) 

modulus of the two surfaces in contact given by 

v2 VJ2 

Ei 
(6.2) 

in which E is the Young's modulus and v is the Poisson's ratio for an isotropic 

material (other combinations of the elastic constants are required for single crystal 
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materials) and subscripts s and i refer to the indented surface and indenter 

-ý 
I respectively, and 

(R 
- R, 

) 
is the relative curvature between in the two surfaces in 

which R is the indenter radius and R' is the radius of the residual impression, 

positive curvature indicates a convex surface (Fig. 6.2). R' can be calculated from: 

22 

R, a +h 
2h,. 

(6.3) 

where h, is the depth of the residual impression and a is the radius of the circle of 

contact between the indenter and surface such that: 

22 
=2Rhc-h c 

where h, is the depth in contact with the indenter (Fig. 6.2). 

1 

hell 

hc 

Figure 6.2 Schematic plot of relationship between the depth of loaded and 

unloaded indentations. (Modified from Field and Swain 1993,1995) 

(6.4) 

The depth of the residual impression, h, that would occur on unloading from 

force F, can be calculated by applying Eq. (6.1) at points I (load) and 2 (unload) 

giving: 

2)2/3 h, (Fl /F h2 

F, 
2 

)2/ 3 Fl 
(6.5) 

98 



Chapter 6- Nanoindentation calibration 

This method assumes that the indenter radius is the same at points I and 2. 

Such an assumption is reasonable and does not introduce significant errors providing 

the partial unloading step is small (typically F2 = 0.75FI) and the indenter radius 

does not change by more than a factor of 2 over the full range of ifidentation depth. 

The depth in contact with the indenter, h,, can then be calculated using the 

result of Sneddon (1965) as: 

h, +h, 
2 

(6.6) 

This result assumes that the indenter is effectively rigid and that there is 

negligible lateral shrinkage in the plane of the indented surface on unloading and 

gives the same result as that calculated by analysis of the unloading slope (Oliver 

and Pharr, 1992). 

6.2.3 Experimental details for spherical tip calibration 

6 2.3.1 Experimental methodsfor spherical calibration 

Spherical indenters were indented into several well-known reference materials 

using the multiple partial unload technique. This technique was developed by 

Bushby and Jennett (2001). All nanoindentation tests were performed on UMIS 

2000 instrument (CSIRO, Lindfield NSW, Australia). The equipment is able to 

control and record the penetration depth, force and time accurately. In other words, 

the raw data obtained from equipment are penetration depth, force and time. 
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Load controlled nanoindentation experiments are carried out, the true 

displacement into the surface for increment i is given by: 

h, =h. +hO -CfFi (6.7) 

where h. is the measured displacement, ho is a correction 'applied post-hoc for 

determination of the actual contact with the solid surface (by projection of the 

loading data to zero load or examination of the change in contact stiffness), Cf is the 

instrument frame compliance (typically - 0.2nm/mN) and F, is the force for 

increment i. Correspondingly, the true displacements are determined. 

Indenting into several reference materials of independently measured elastic 

properties allows the apparent indenter radius to be calculated using Hertzian 

mechanics. 

Substituting Hertzian mechanics equations (6.4) and (6.3) into (6.1) and solving 

for R gives: 

(2Qh, 2ý2+ (2h, - 2k + Qh, 2- Qh, 2)R + (h, ' - h, 2)=O (6.8) 

where Q= 16 E *2 h,, the positive root of which gives the apparent indenter radius 9 F2 

for a given reference material. 

The effective indenter radius, Rff (hj, can not be determined from indentation 

into a single reference material since in reality there are too many unknowns. The 

instrument frame compliance may be effected by the mounting of the indenter tip 

and the elastic constants used for the diamond may vary from indenter to indenter 

depending on the quality and orientation of the diamond. It is normally necessary 

to use indentation data from at least three reference materials covering as wide a 
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range of elastic modulus as possible in an iterative calculation process. R,, ff is 

sensitive to the value of E* (including the elastic constants of the indenter material) 

at low values of h,, whereas Rff is sensitive to Cf at high values of h, Using 

reference materials with a wide range of elastic constants, these differences can be 

identified. Inserting known values for the elastic constants of the reference 

materials and iterating values for the frame compliance and the elastic constants of 

the indenter material, the effective tip radius and instrument frame compliance may 

be found to within a few percent uncertainty by superposition of all the data. 

6Z3.2 Material properties 

The properties of the 4 reference materials used are tabulated in Tab. 6.1. The 

choice of reference materials is important to ensure homogeneity, low surface 

roughness and minimal or no surface oxide. 

Table 6.1 Elastic constants of the reference materials 

Glassy 

Carbon" 

Fused 

Silica' 

Silicon 

(001)b 

Tungsten b Diamond 

(indenter)b 

Elastic modulus (GPa) 36 72.9 168 410 1150 

Poisson's ratio 0.2 0.16 0.16 0.29 0.07 

" Young's modulus determined by the Surface Acoustic Wave technique (Herrmann et al. 

2003). 

b Apparent indentation modulus calculated for indentation of single crystals (Swadener et aL 

2001) 
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6.2.4 Results and discussion for spherical tip calibration 

Fig. 6.3 shows results of Rff (h, ) for three indenters. The superposition of the 

results for each indenter from all four of the reference materials, spanning an order 

of magnitude of elastic modulus, demonstrates that all parameters have been 

successfully calibrated. The indenter radii are close to their nominal values of 

450nm, 3ýtm and IO[Lm, and the frame compliance is found to be Cf = 0.24nm/mN. 

The uncertainty in effective radius increases at low contact depths for all indenters 

due to the influence of surface roughness on both the reference material and indenter, 

and due to other near surface effects such as oxides and absorbed layers. However, 

at contact depths at which the yield pressure usually happened (denoted as red 

arrows in Fig. 6.3), the uncertainties are reduced to the order of a few percent. The 

uncertainty in determining the indenter radii is small compared to the difference in 

radius between the different tips used. These are important for studying the spherical 

indentation yield size effect as presented in chapter 7. 

In total, six spherical tips were applied in this study, with the indenter radius 

ranging from 0.5 to 90[tm. 
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Cortad dept[I h nm) 
Figure 6.3 Effective indenter radius Rff as a ftinction of contact depth, h,, for 

three indenter tips of nominal radii (a) lOgm, (b) 3Am and (c) '/2ýtm, each 

indented into the four reference materials, glassy carbon (0), fused silica (0), 

(001) single-crystal S1 (0) and tungsten (x). The red arrows denote the 

contact depths at which the yield pressure usually happened 

6.3 Berkovich indentation calibration 

Pointed indenters are delicate, hence careful calibration is necessary. The shape 

of the Berkovich indenter is illustrated schematically in Fig. 6.4 (a). 

In this study, a Berkovich indenter was calibrated by indenting in to several 

reference materials using fully load-unload method (Oliver and Pharr, 1992). 
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Figure 6.4 Schematic plots of Berkovih mdentation. (a) The shape of 

Berkovich indenter (b) An example of force (T) -penetration depth (hp) plot 

by using fully load- unload technique. Stiffness S is defined as the slope of the 

dF 
initial portion of the unloading curve dh, 

6.3.1 Fully load-unload method for Berkovich indentation 

Material response is detected throughout the fully load-unload cycle by 

recording the force F and penetration depth hp. The analysis method follows Oliver 

and Pharr (1992). 

Stiffness, S (in Fig. 6.4(b)) can be expressed as, 

dF 2 
S= 

dhP Vir E* VA (6.10) 

where 
dF 

is defined as the slope of the initial portion of the unloading curve, dhP 

illustrated from the load-depth graph (Fig. 6.4(b)). A is the actual area of indent. 

Unloading 

loading 

-47 
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Rearranging Eq. (6.10) gives: 

A 
dF 

)2 7r14E dhp 

The ideal contact area Aj for Berkovich indentation is related to the contact 

depth h, as: 

A, = 24-5k' 

where the contact depth can be calculated as: 

k= h., 
u - 

0.75F /S 

in which h,,,. is the max penetration depth illustrated in Fig. 6.4. 

6.3.2 Experimental details for Berkovich indentation calibration 

(6.12) 

(6.13) 

The effective ratio of A/A, is calibrated as a function of contact depth hc, by 

indenting into three reference materials using fully load-unload technique. For every 

single reference material, the indenter was loaded over a range of different forces. 

Three reference materials used were: glassy carbon, fused silicon and sapphire. 

Properties of materials are listed in table. 6.1. 

6.3.3 Results and discussion of Berkovich indenter calibration 

The calibration result of the Berkovich tip used here is shown in Fig. 6.5. This 

can be assumed as the profile of the tip without loading into materials. The effective 

ratio-depth curve is fitted by three different functions at different range depth for 

accuracy. The superposition of the results from all three of the reference materials, 

105 



Chapter 6- Nanoindentation calibration 

spanning an order of magnitude of elastic modulus, demonstrates that all parameters 

have been successfully calibrated. The effective ratio is close to the theoretical value 

of 1, which means the shape of the indenter is relatively accurate (e. g., (9 in Fig. 

6.4(a)). The uncertainty in effective ratio increases at low contact depths for all 

indenters due to the influence of surface roughness on both the reference material 

and indenter, and due to other near surface effects such as oxides and absorbed 

layers. 

F--- -- 
25 

2 

1.5 

1 

0.5 

0 
0 100 2M 300 4M -9m 

Oortact depth h, (" 
600 

Figure 6.5 Effective indenter ratio A/ Ai against contact depth, h,, for 

Berkovich tip indented into the three reference matenals: glassy carbon (green 

circle), fused silica (blue diamond), and sapphire (pink cube). This can be 

assumed as the profile of the tip without loading into materials. The black 

curves are fitted by three different functions at different depth ranges for 

accuracy. The fitting equations are illustrated in the graph. 
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6.4 Conclusions 

For spherical indentation calibration, the uncertainty in Rff is small compared 

to the difference in. radius between the different tips used. R,. ff is known with an 

uncertainty of a few percent, at depths which yield usually happens (Fig. 6.3). These 

ensure the accuracy of study for spherical indentation yield size effect in chapter 7. 

Berkovich indenter is successfully calibrated, which ensure the accuracy of the 

study of indentation size effect in chapter 7. 
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7 Size effect in nanoindentation 

(In this chapter, the first part has been published in Journal of Mechanics and Physics of Solids 

and the latter part has been published in Journal of Physics D: Applied Physics) 

7.1 Introduction and background 

As reviewed in section 2.3.5, indentation size effects (with different indenter 

shapes) have been observed and reported repeatedly during the last two decades. 

However, the study of the initial yield size effect via nanoindentation is limited 

in the literature. For pointed indenters, there is a significant flow starting from an 

early stage in the indentation cycle. Consequently, it is hard to observe the initiation 

of plasticity and few papers report size effects at yield, often manifest as the delayed 

onset of yield or 'pop-in' behaviour due to the low dislocation density and small 

strained volume (Gane and Bowdon, 1968; Goundstone et aL, 2000). Spherical 

indenters induce a larger area of contact at small depths, and this enables the entire 

stress-strain curve to be measured, including the transition from the elastic regime to 

plastic deformation. However, there are still difficulties in characterizing initial yield 

behaviour and defining a reproducible yield point. The yield strength of the ductile 

metals is so low that the elastic regime is below the resolution of the measuring 

system (Gouldstone et al., 2000; Herbert et aL, 2006). In contrast, for hard ceramics, 

the main difficulty is the discontinuous yield phenomenon known as 'pop-in' (Syed 

Asif et aL, 1997; Leipner et al., 2001). 
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Hence, the size effect in the initial yield strength was studied via indentation on 

a series of ceramics and tungsten in this thesis, because they have relatively high 

yield stress that nonetheless deform by dislocation glide or twinning. A rigorous 

method was demonstrated to determine the onset of plasticity in ceramics using 

spherical nanoindcritation, even when pop-in occurs. This enables us to measure the 

well-defined and reproducible yield pressures of high-strength materials with a high 

degree of accuracy. Noted here, this yield is the 'fitted yield stress', which can be 

considered to represent the onset of gross or macroscopic plasticity. 

In this study, a clear increase in yield pressure with decreasing indenter size is 

observed. When the data are normalised by their bulk yield pressure, the data for 

tungsten with bcc crystal structure follow the same relation as those of the 

previously investigated fcc metals (Spary et aL, 2006). All of the ceramics 

investigated also display a similar increase in the yield pressure that is proportional 

to the inverse cube root of indenter radius and when noinialised, again, all data fall 

on a single line. However, the normalised data for metals and ceramics fall on lines 

of quite different gradient. That is, the magnitude of the size effect is different for 

metals and ceramics in spite of appearing to have a similar range of elastic modulus. 

Another key result is that the yield stress of ceramics scales with the inverse 

cube root of R and that this scaling is experimentally indistinguishable from the 

inverse square root of contact radius, a. For pointed indenters, as addressed in 

chapter 2 (section 2.3.4), an increase in measured hardness, H, is usually associated 

with a decreasing indenter penetration depth, h., with the proportionality H oc 114hp 
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(Ma and Clark, 1995; Nix and Gao, 1998). However, hp is known to be linearly 

dependent on the contact size a; for instance, in Berkovich indentation, a-, 2.8hp. So 

for both spherical and pointed indenters, it may be that the contact radius is the 

important parameter rather than hp or R, and that indentation pressure might scale as 

the inverse square root of a. Here, the Berkovich and spherical indentation size 

effects of sapphire are compared. The results strongly support the idea that the 

indentation size effect is driven by the geometry of contact and inversely scaled by 

the square root of the contact size, independent of the shape of the indenter. 

In this chapter, the method to find the yield strength for ceramics (with or 

without pop-in) and high strength metals is briefly introduced. Details were 

published in Zhu, et aL (2008a). This method is demonstrated to be comparable with 

Spary's (2006) method by testing tungsten. The results of yield size effect study are 

presented and discussed. The normalised yield pressure for tungsten (bcc) follow the 

same relation as those of the previously investigated fcc metals. However, the data 

for metals and ceramics fall on lines of quite different gradient. Remarkably, by 

comparing spherical and Berkovich indenter size effects, it strongly supports that a 

single length scale of the contact size dictates the geometrical part of the indentation 

size effect, independent of the shape of the indenter. The strength (yield pressure and 

hardness) is proportional to the inverse square root of the contact size. In conclusion, 

the magnitude of the size effect appears to be geometrical (from comparing bending 

results of copper and nickel in chapter 4; Spary et aL, 2006), but now material 

parameters are distinguished allowing theoretical deduction. 
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7.2 Experimental details 

7.2.1 Experimental methods 

Nanoindentation tests were conducted on a UMIS 2000 instrument (CSIRO, 

Lindfield NSW, Australia). A series of ceramic single crystals and a tungsten metal 

single crystal were subjected to nanoindentation. Each material was tested using the 

multiple partial-unloading method (Field and Swain, 1993; 1995) with different 

radius spherical indenters (from 450nm to 90Am) to determine the transition from 

elastic to plastic behaviour as a function of radius. In the partial-unloading method 

the indentation loading proceeds incrementally. Following each load increment to a 

force F1, the load 'is reduced (partial unloading) by a small amount (in our 

experiments, to 0.75Fi) before proceeding to the next higher load increment, Fj +1. 

Details have been given in chapter 6. 

In the work of Spary et al. (2006), a different method was used to determine the 

indentation stress-strain relationship. They applied known indentation loads, and 

measured the contact radius, a, afterwards by atomic force microscope (AFM) or 

optical microscope. The only reason was to consider the pile-up effect of a, which is 

known to be a problem in soft metals (Lim and Chaudhri, 1998; 1999). Jayaweera et 

al. (2001; 2003) have verified the calculated value a by scanning electron 

microscope (SEM) and AFM for ceramics. At the elastic-plastic transition, no 

pile-up is anticipated (Jayaweera et al., 2001,2003). The method of calculation a in 

this work was from Field and Swain (1993,1995). Details were described in chapter 

6 and elsewhere (Field and Swain, 1993; 1995; Bushby, 2001). 
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Knowing a as a function of indentation load, F, two important plots can be 

obtained. Firstly, the indentation stress-strain curve can be plotted. The indentation 

stress'is defined as the mean pressure acting over the projected contact area, 

P,, = F1 7ra2 (7.1) 

The indentation strain is expressed as, 

a/R (7.2) 

The indentation strain is a normalised contact dimension which expresses the 

geometry of the contact regardless of the spherical tip radius (Bushby, 2001). Then 

the plot of P. against a/R is the so-called indentation stress-strain curve. 

Secondly, the elastic modulus-depth plot can be obtained. Ibis provides a very 

useful tool to confirm the quality of the data, since elastic modulus is a well-known 

material constant. 

Sapphire is indented by the Berkovich indenter using fully load-unload 

technique (Oliver and Pharr, 1992). The load cycle was: load to maximum force 

collecting 40 data points; hold for 30s; unload to zero collecting 40 data points; and 

hold at 10% of maximum force for 30s to assess thermal drift. The force - 

displacement data were analysed using the method of Oliver and Pharr (1992) to 

determine the contact depth as described in chapter 6. The projected area of contact, 

A, is then found from the shape function for the indenter appropriate to the contact 

depth, h,, and the mean pressure expressed as hardness, H= FIA. 
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7.2.2 Materials 

The materials investigated here are: (i) sapphire, a-A1203 (I Iý 0)-oriented 

single crystal; (ii) a 2.51im thick layer of ln., Gaj_,, As grown epitaxially on InP 

(100)-oriented single-crystal substrate with x=0.53, so that the Ino. 53Gao. 47As (IGA) 

was lattice matched to the InP with no coherency strain; (iii) InP (100)-oriented 

single crystal; and (iv) GaSb (100)-oriented single crystal. (v) W (100) oriented 

single crystal. The properties of these materials are given in table7.1. The properties 

of four meta Is used by Spary et aL (2006) are also tabulated in table7.1 for 

comparison later. 

Table 7.1 Properties of materials studied 

Crystal 

structure 

Grain size 

Pm 

E* / GPa 

Indentation 

modulus 

V 

Poisson's 

ratio 

ju 
/ GPa 

Shear 

modulus 

b/nm 

Burger's 

vector 

Sapphire Hexagonal Single crystal 428 a 0.22r ISO 0.475 

Inp Zinc-blende Single crystal 91' 0.36' 22.5 0.414 

IGA Zinc-blende Single crystal 93.8' 0.33r' 28.9 0.413 

GaSb Zinc-blende Single crystal 86.5' 0.3 V 24 0.430 

w bcc Single crystal 400b 0.29b 140 0.240 

Al fcc 330±40 70b 0.35b 26.5 0.286 

CU fcc 70±30 125 b 0.34 b 43.5 0.256 

Ni fcc 45±15 220b 0.3 lb 78.6 0.249 

Ir fc c 30 Slob 0.26 b 202 0.272 
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'Apparent indentation modulus calculated for indentation of single crystals (Swadener and Pharr, 

2001) 

Spary el aL, (2006) 

7.3 Detennination of yield -- gross yield point in spherical indentation 

The yield pressure is normally identified as the first deviation from the elastic 

behaviour on the indentation force-depth plot or the stress-strain curve. However, 

most of the indentations in the ceramics studied here do not give a well-defined yield 

point in this sense, because of discontinuous yield, an abrupt jump in penetration 

depth. This phenomenon is often called "pop-in" behaviour. For small indenters and 

single crystal specimens, it is a common phenomenon, due to the small contact 

volume and few dislocations before loading. It is not our purpose to analyse the 

phenomenon of pop-in; that has been done adequately elsewhere (Syed Asif et aL, 

1997; Gouldstone et aL, 2000). However the pop-in behaviour gives us a 

discontinuous force-de th plot and stress-strain curve. Here, the few continuous data 
,p 

sets were used and a method was developed to determine a well-defined and 

reproducible yield pressure. Then, it is demonstrated that this yield pressure can be 

determined without significant error from the majority of indentations in which 

pop-in occurs. Details of determining this method were published in Zhu et aL 

(2008a). Here, only the method is described. 

For indentation data, the stress-strain curve is the plot of indentation stress (P. ) 

against indentation strain (a / R). The elastic region of this plot (solid lines in Fig. 

7.3. ) can be predicted from independent measurements of elastic modulus and has a 
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slope of 37c /4 E* 

P- 
4E* (a) 

(7.3) m 3; r 
ýR) 

where E* is the indentation modulus. The theoretical elastic line is plotted using E* 

93.8GPa value from table 7.1 as the solid line in Fig. 7.3. 

- The plastic part of the plot is described by Meyer's law (Tabor, 195 1), 

P =k m 
(R) 

(7.4) 

where k and n are material constants. The exponent n assumes power law hardening 

for the material and typically has a value between 0 for perfect plasticity and 0.7 for 

ductile metals. In our data the elastic region is well defined, due to the relatively 

high yield stress of the materials chosen, and the departure from the elastic line is 

clear. A power law curve could be fitted to the plastic part of the plot if necessary. 

Fig. 7.1 shows a typical example of yield determination. The yield point is defined as 

the intersection of the elastic line and the fit to the plastic curve for both continuous 

data and for data with pop-in. Details were published in Zhu et aL (2008a) 
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indentetion stroin, a/R 
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Figure 7.2 The indentation stress-strain curves of InGaAs. The solid line is 

the theoretical elastic line and the dotted line is the linear regression fit to the 

data in the plastic region. The yield point is defined as the intersection of the 

dotted and solid lines. (a) a continuous data set, (b) a data set with 'pop-in'. 
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7.4 Results and discussion 

7.4.1 Indentation yield size effect 

Indentation stress-strain data for sapphire are plotted in Fig. 7.2 (a) for three 

different indenter radii (R = 0.5,3 and 10ýtm). The solid line represents the 

theoretical elastic response (as in Eq. (7.3)). In Fig. 7.2(a), data have been chosen that 

display a smooth transition from elastic to plastic response (dashed line). However, 

Ino. 53Gao. 47As or InP mostly showed pop-in behaviour, especially for smaller 

indenters, since they possess low dislocation density. 

Also for the same three data sets, the experimental elastic modulus calculated 

from the data is plotted against the contact depth in Fig. 7.2 (b). The elastic 

modulus is about 435GPa, which is very comparable with theoretical calculation by 

Swadener and Pharr (200 1) method for anisotropic materials (listed in table 7.1). Also, 

the modulus is seen to be constant with contact depth and does not change for 

different radius indenters whereas the pressure at yield (Py) increases significantly in 

Fig. 7.2 (a) for smaller radius indenters. Furthermore, the elastic modulus does not 

change significantly at the elastic-plastic transition. An apparent reduction in elastic 

modulus would indicate a cracking event rather than yielding (Bushby, 200 1). 
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Figure 7.3 a-A1203 was indented by indenters of nominal radii V2 gm (0), 3 

ýtm (0) and 10 [tm (0). In (a), the indentation stress-strain curves are plotted. 
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elastic line. The aotted line is the linear regression fit for plastic part. In (b) 

the elastic moduli generated from the same raw data set are plotted against 

contact depth, h,. The solid line is the theoretical value of indentation modulus 

(table 7.1). The dotted line is linear regression fits for all data. 

Indentation stress-strain curves for the single crystal of tungsten were generated 

with a range of indenter radii (R = 3gm, lOgm 30gm and 90gm) using the partial 

unloading technique (open symbols in Fig. 7.3(a)). The theoretical Hertzian elastic 

response is plotted as the solid line. Again, a clear departure from the elastic line was 

observed, which denotes the yield pressure, Py, which is seen to increase as indenter 

radius decreases in a similar manner to that observed for the ceramic materials. 

Noted, it is clear that some non-elastic deformation has taken place before Py. 

However, here the concern is the onset of gross or macroscopic plasticity as claimed 

in section 7.1. 

Also included in Fig. 7.3(a) are two data sets from the same material using the 

approach of Lim and Chaudhri (1999) and the method described for experiments on 

nickel in Spary et al. (2006) (solid symbols in Fig 7.3(a)). In this method the contact 

area is not determined from the nanoindentation data but directly from metrological 

scanning probe microscopy measurements for the 7prn radius indenter and from 

optical microscopy for the 90ýtrn radius indenter. It can be seen that these two 

methods are very comparable considering the relative uncertainties in each method. 

The experimental elastic modulus calculated from the same four data sets are 

plotted against the contact depth h, in Fig. 7.3 (b). The value is about 400GPa, which 
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is reasonable (listed in table 7.1). Furthermore, the elastic modulus does not change 

significantly at the elastic-plastic transition. A slight reduction in measured value 

would be associated with sink-in (Bushby, 2001). 
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Figure 7.3 Tungsten stress-strain curves were plotted in (a) Partial unloading 

indentation and contact area is calculated (illustrated as open circles) indenters 
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of nominal radii 3ýLm (0), IOAm (0), 30gm (0) and 90ýtm (A). Fully unload 

indentation have been taken and the contact area is determined directly (Lim 

and Chaudhri, (1999)) and treated as solid circles. Nominal radii of indenters 

are 7tim (0) and 90ýun (A). The solid line is the theoretical elastic line. In (b), 

the elastic modulus generated from the same data is plotted against contact 

depth, h, The solid line is the theoretical elastic modulus line (tableM for W). 

The dotted line is the linear regression fit for all data. 

A clear increase in yield pressure with decreasing indenter size is seen in 

Fig. 7.3(a), while the measured elastic response remains constant and close to the 

theoretical value for all indenters. The yield pressure, Py, for each of the four 

ceramics tested is plotted in Fig. 7.4 (a) as a function of the inverse cube-root of 

indenter radius, R'113. The error is the standard deviation of 49 tests I made for each 

data point in the plot. Linear fits to the data for each ceramic are shown as solid lines. 

The yield pressure seem to scale linearly with the inverse cube-root of indenter 

radius, R-113, for all of the ceramics, is in agreement with Gerberich et al. (2002) and 

Spary et al. (2006) for metals. However, in the present data set there is 

significantly less scatter than for the metals, due to the well-defined reproducible 

yield point in the ceramics, and so the relationship with R is unambiguous. The 

yield pressure PO in the absence of a size effect, or for an infinite indenter radius, is 

defined in Fig. 7.4(a). Normalizing by Po, Fig 7.4(b) shows that the data fall on a 

single line even though their PO values vary by a factor of 6. This result is also 

similar to the data for fcc metals (Spary et aL, 2006) but again with less scatter. 
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Figure 7.4 In (a) Py are plotted for sapphire (0), InP (0), InGaAs (A) and 

GaSb (0) against R-113. The solid lines are linear regression fits to the data. 

The intercepts are the yield pressures PO that would be expected for infinite 

indenter radius. In (b) the yield pressures normalised by Po are plotted and the 

solid curve is a single linear regression fit to the data for all four materials. 
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In Fig. 7.5, the normalised yield pressure is plotted for tungsten as a function of 

the inverse cube root of indenter radius. The data for the fcc metals from Spary et aL 

(2006) are included on the plot. They determined the equivalent tensile yield strength 

for each metal required to simulate the indentatio n data for each indenter radius 

using a FEA modelling method. These values were normalised by the uniaxial 

yield strength from bulk compression tests. Comparing these normalised values to 

our normalised yield pressure values for the bcc tungsten, it illustrates that they are 

in excellent agreement (as shown in Fig. 7.5). The data appeared more scattered 

about the regression line than for the ceramics, due to the greater uncertainties 

associated with determining the (relatively low) yield point of the fcc metals that are 

fully discussed in Spary et aL (2006). Fig. 7.5 also includes the ceramics data 

regenerated from Fig. 7.4 (b). The Fig. 7.5 illustrates that the metallic materials and 

ceramic materials fall on lines with quite different slopes. That is, the rate of increase 

in yield pressure with decreasing indenter radius is much greater for metals. 
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F1 t3 (mi 1/3 ) 

Figure 7.5 Normalised yield pressures are plotted for metals W (0), Al (A), 

Cu (*), Ni (0), Ir (*) and ceramics, open circle, A1203 (0)9 

lnO. 53GaO. 47As(A), GaSb (0), InP (0) against R-113. 

A more useful descriptor of the geometry of contact for both pointed and 

spherical indenters might be the contact area, characterized by the size of contact, a. 

In Fig. 7.6, the yield pressure (Py - Po) normalised for PO is plotted against the inverse 

square root of the contact radius a for tungsten and ceramics, calculated directly 

from the raw data. All of the data of ceramics again falls on a straight line. The 

tungsten and ceramic materials again fall on lines with quite different slopes. The 

gradient for the metal is about 3 times steeper than the gradient for ceramics. Here 

the data are slightly more scattered than in Figs. 7.4(b) and 7.5, since in Figs. 7.4(b) 

and 7.5, the measured values of a and their random errors now appear in both the 
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ordinate and abscissa, whereas in Figs. 7.4(b) and 7.5 the data are plotted against the 

independently determined indenter radius R. Noted, the other metals studied in Spary 

et aL (2006) are left out, because it was impossible to measure the a at yield, from 

their method. 

The fact that the magnitude of the size effect is greater in metal than ceramics 

shown in Fig. 7.6, implies very strongly that the material parameters must play a role 

in determining the magnitude of the indentation size effect, as well as the geometry 

of the indentation stress field. These results are similar to Fig. 7.5, in which the 

norinqlised yield pressure against the inverse cube root of indenter radius was plotted. 

In that case, it enables us to compare our data to the earlier work of Spary et aL 

(2006), and showed that the tungsten displayed the same magnitude of normalised 

size effect to that of a range of fcc metals. 

Referring to table7.1, it is seen that both the metals and ceramics presented here 

include a variety of crystal structures. All of the materials are either single crystal 

or have relatively large grain sizes so that the influence of grain size is only likely to 

affect the indentations made with the large indenters (data for metals only). The 

range of elastic modulus for both the metals and ceramics cover an equally wide 

range. The Burger's vectors for the ceramics are about twice that of the metals. 

However, it is not apparent how this difference could account for these differences in 

the relative rate magnitude of the size effect here (Figs. 7.5 and 7.6). 
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Figure 7.6 Normalised yield pressure I 

PO against dlý2 is plotted for 

a-A1203 (0). InP (11), InGaAs (A) GaSb (0) and W (0) as function of 6-1ý2 

The solid lines are linear regression fits for the data. For tungsten, Py 

1.83dlf2; for all ceramics, Py = 0.552 a"r2. 

In the indentation work of Spary et aL (2006) and bending work reported in 

chapters 3 and 4, all the materials investigated are soft metals. The conclusion was 

that the size effect is geometrical. However, the material parameters are extended 

here by studying the indentation size effect on ceramics together with metals. This 

allows the material parameters to be distinguished and hence helpful for theoretical 

deduction. 
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7.4.2 Length scale study in indentation size effect 

If the indentation size effect, that is increase in yield strength, is proportional to 

I/a"2 for spherical indenters (as shown in Fig. 7.6), it is interesting to see if the same 

is true for pointed indenters and the hardness size effect. In the literature for 

pointed indenters, most papers discuss the hardness size effect for metals and 

consider that the hardness depends on penetration depth h.. This contrasts with 

spherical indenters, for which yield point and R, or here a, are proposed as the 

relevant variables rather than hardness and hp. 

In Fig. 7.7, values of Py are plotted for sapphire as a function of the inverse 

square root of contact size, a, for five spherical indenters with different radius. Also 

plotted are the hardness values obtained with the Berkovich indenter as a function of 

the smallest contact dimension, calculated as the square root of projected contact 

area divided by 343. The Berkovich data are seen to superimpose on the spherical 

data extremely closely. The regression fits have almost the same slope, although 

the fit to the Berkovich data this is strongly influenced by the smallest contact sizes. 

This is an extraordinary result, since the spherical data were determined at the onset 

of gross yielding, while the Berkovich data are determined after some plastic 

deformation. Furthermore, the shape of the contact areas are quite different for the 

two indenter geometries and one would expect the shape of the edge of contact and, 

particularly, the comers of the Berkovich indentions to have a pronounced influence. 

These results strongly support the argument that the important length scale in the 

indentation size effect is determined by the contact size. The contact size a, might be 
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the most important characteristic length scale, but not penetration depth h. and/or 

indenter radius R. 
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Figure 7.7 Yield pressure (spherical indenters 0) and hardness (Berkovich 

indenter A) as a function of inverse square root of smallest contact length for 

indents in sapphire. Solid line is a regression fit to the data from spherical 

indenters. The dashed line is a regression fit to the data from the Berkovich 

indenter. 

128 



Chapter 7- Size effect in nanoindentation 

7.5 Conclusions 

The gross or macroscopic yield strength for ceramics (with or without pop-in) 

and high strength metals is determined. This method is demonstrated to be 

comparable with Spary's (2006) method by testing tungsten. 

When the data are normalised by their bulk yield pressure, the data for tungsten 

(with bcc crystal structure) follow the same relation as those of the previously 

investigated fcc metals. However, the normalised data for metals and ceramics fall 

on lines of quite different gradient. This implies the material parameters played an 

important role in length scale plasticity. 

By comparing Berkovich and spherical indentation size effect of sapphire, the 

results implies that a single length scale of the contact size dictates the geometrical 

part of the indentation size effect, independent of the shape of the indenter. The 

indentation strength (yield pressure and hardness) is found to be proportional to the 

inverse square root of contact size. 

In conclusion, contact size, a, is the universal scaling factor for the indentation 

size effect. The magnitude of size effect appears to be geometrical (chapter 4; Spary 

et aL, 2006), but now material parameters are distinguished allowing theoretical 

deduction. 

A possible theoretical explanation is given in chapter 8. 
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8 Analysis of the inverse square-root size effect in the plasticity of 

metals and ceramics 

(Part of this chapter is published in Journal of Materials Research and the other part has been 

submitted to Journal of Mechanics and Physics of Solids) 

8.1 Introduction 

As reviewed in chapter 2, the origin of the size cffect can be generally divided 

into microstructural (intrinsic) and dimensional (extrinsic) lengths. Microstructural 

size effects include those due to grain boundaries (Hall, 1951; Petch, 1953) and 

particle reinforcement (Lloyd, 1994). Effects of dimensional size have been 

presented for compression of pillars (Greer et al., 2004; Volkert and Lilleodden, 

2006), torsion of wires (Fleck et al., 1994), bending of foils (St6lken and Evans, 

1998; Ehrler et al., 2008), indentation (Ma and Clark, 1995; Nix and Gao, 1998; Lim 

and Chaudhri, 1999; Swadener et al., 2002; Zhu et al., 2008a; b) and other 

geometries (Nix, 1989; Espinosa et al., 2004). 

In a remarkable number of instances, material strength scales with the inverse 

square-root of the smallest length scale. The bending results reported in chapter 3 

and 5 show that the stress in bending is proportional to the inverse square-root of the 

effective length scale 1 "2 at small strain region; the indentation size effect flei 

reported in chapter 7 shows that the indentation mean pressure (or hardness) is 

proportional to the inverse square-root of the contact size, lla'ý2 for both pointed and 

spherical indentation; classic Hall-Petch effect shows the yield stress or flow stress is 
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proportional to the inverse square-root of grain size, lld'ý2; and the recent data 

(Volkert and Lilleodden, 2006; Greer et al., 2005) shows that the yield strength of 

pillar under uniaxial compression is proportional to the inverse squarc-root of the 

pillar diameter, I/D1/2, herein designated as 1141 scaling. 

In the majority of these size dependent cases, strain gradients are involved, and 

there is a general agreement that the size effect can then be attributed to hardening 

due to geometrically-necessary dislocations (GNDs) (Nye, 1953; Ashby, 1970; Nix 

and Gao, 1998). A characteristic length 1* is often introduced to parameterise the 

theory. However, in other cases, strain gradients are not involved; for instance, 

micro-pillar compression has uniform deformation without strain gradients, but also 

appears to closely follow IM scaling (Volkert and Lilleodden, 2006). General 

models capable of predicting IM for such a diverse range of tests and 

microstructures have yet to emerge and it is not apparent why such an exact 

relationship should hold. Moreover, strain gradient plasticity theories (Fleck et al., 

1994; Gao et aL, 2000; Swadener et aL, 2002; Han et al., 2005) can predict INI 

scaling for some situations but the physical interpretation of the characteristic length 

1* in these theories is not always clear. 

Furthermore, polycrystalline nickel bending data presented in chapter 3 and 

polycrystalline copper spherical indentation data obtained by Hou et aL (2068) show 

that the interaction between dimensional (thickness in bending and contact size in 

indentation) and grain size effects. An understanding of the combination of size 

effects is essentially necessary for applied mechanics and engineering. Existing 
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theories for combining microstructure and extrinsic size effects are rarely found in 

the literature (as reviewed in chapter 2). 

No existing theory predicts 1141 behaviour both for the situations where I is the 

order of the grain size, d, and where I is the order of the structure size, h. Still less 

are there any theoretical approaches which address the situation where I is the order 

of both d and h. Our approach is to reconsider the classic theory of Conrad et aL 

(1967) in which the key factor is the distance that a dislocation can move. This 

theory readily captures the size effect with and without strain gradient, and in any 

case without requiring the characteristic length 1* (Nix and Gao, 1998, Fleck and 

Hutchinson, 1993, Qin et aL, 2007) used in strain gradient plasticity theory. Then, 

in a new analysis of the interactions of grain size and structure size, the effective 

length scale at when d is the order of structure is considered, thus the length scale 

parameter leff is defined including both extrinsic and intrinsic length scale. This 

approach gives a model which yields in excellent agreement with experimental data. 

Finally, in chapter 7, Fig. 7.6 shows that the normalised yield pressure for 

metals and ceramics fell on quite different slopes when plotted against a'112 , that is, 

the magnitude of the size effect appeared to be greater in metals than ceramics. 

This result implies that material Parameters must be important in length scale 

plasticity. It is not clear which material parameter could account for the difference in 

the size effect between metals and ceramics (as discussed in section 7.4.1). Current 

theories do not appear to have identified the material property basis that can explain 

these observations. 
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In this chapter, two possible equivalent derivations of a mechanical model are 

presented that can give the general 1141 behaviour with and without strain gradient, 

and in any case without the extra characteristic length 1* used in the strain gradient 

plasticity theory. This 'slip distance' theory based on Conrad et aL (1967) was 

extended to explain the polycrystalline materials size effect by defining an effective 

length scale Iff, including all extrinsic and intrinsic effects. This slip-distance theory 

also naturally incorporates the material parameters that influence the size effect. This 

model suggests that the yield strain and Burger's vector are the important material 

parameters in the size effect. The theory is in good agreement with experimental 

observations. 

This slip-distance model was inspired by Prof. Evans, during his visit in Queen 

Mary last Autumn. 

8.2 Slip-distance models for size effects 

First of 'all, two analyses are introduced which essentially attribute the 1/41 

behaviour to the Taylor hardening (Taylor, 1934) under fairly standard assumptions 

but without requiring a strain gradient. 

8.2.1 Mechanical analysis of slip distance 

Under homogeneous loading, mobile dislocations are considered to account for 

the plastic strain. Each of them is supposed to travel a mean free path, an average 

distance Y, limited by obstacles such as grain boundaries, or indeed by encountering 

a free surface. The plastic strain is: 
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ep, = p. bY (8.1) 

where p. is the mobile dislocation density and b is the effective Burger's vector. We 

take the mean free path Y to be proportional to the characteristic length scale I such 

as the distance to a grain boundary or a free surface, 

A (8.2) 

where A is a proportionality coefficient of the order of unity. ' Let the mobile 

dislocation density be proportional to the total dislocation density, 

P. = ýP (8.3) 

where ý is a proportionality coefficient and with 0<ý<1. Then the plastic strain 

is: 

cpl = (ý / A) pbl (8.4) 

Assuming that hardening is due only to dislocation-dislocation interactions; 

equivalently, the dominant change during plastic flow is dislocation density. This is 

essentially the Taylor's model of forest hardening (Taylor, 1934), and so following 

his expression: 

r= -ro + apbV-p (8.5) 

where p is the shear modulus, r is the shear stress, no is the initial yield stress in 

shear for a single crystal and a is a material coefficient of the order of unity (Gao, 

1999; Huang, 2004). Substituting from Eqs. (8.1) - (8.4), Eq. (8.5) becomes 

1/2 

CC b 
Fepl 

o+ (8.6) 

Note that 1141 strengthening is predicted, and it is also linked directly with 

square-root power-law work-hardening. 
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8.2.2 Model for slip distance analysis 

The analyses of section 8.2.1 result that: 

r ro + Cp-, fb- P (8.7) 11 

where C is the coefficient C=a( 'I of the order of unity. 

The derivation is suspected to be equivalent, as the fundamental basis for the 

analyses is the assumption that dislocations are the primary source of obstruction to 

dislocation movement (Taylor work hardening). The inverse square-root length 

scaling IM arose in both methods and linked directly with the square-root work 

hardening. The size effect arises independently of strain gradient. The density of 

geometrically necessary dislocations is anyway proportional to the plastic strain and 

so is subsumed into the coefficient ý of Eqs. (8.3) and (8.4). This coefficient thus 

subsumes the characteristic length I* used in the strain gradient plasticity theory. 

The tensile flow stress is related to the shear flow stress by, 

o- = Ar (8.8) 

where A is the Taylor factor, of the order of unity, which may be interpreted as an 

isotropic expression of the crystalline anisotropy at the continuum level. A value of A 

= 3.06 is given for fcc metals (Bishop and Hill, 1951; Kocks, 1970; Huang et al., 

2004). Then, 

cr = co +A Cp-, rb Pl 
ji- (8.9) 
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8.3 Characteristic length for polycrystalline materials 

In single crystal structures, the length I which determines the effective slip 

distance x, is relatively easy to identify. For instance, in pillar compression, it is the 

diameter D of the pillar; in bending, it is the thickness h of the foil; in twisting, it is 

the diameter of the wires and for nanoindentation, we expect it to be the contact 

radius a of the indent. However, it will be more complicated in polycrystalline 

materials, because of t he influence of the grain size, d. 

The extrinsic size effect and the intrinsic size effect due to grain size are 

expected to interact when they are both of significant scale. The mean slip distance 

should be determined by an effective length Iff determined both by grain size and by 

dimensional (extrinsic) constraints. In what follows, the grain structure is supposed 

to be independent of the dimensional constraint - as if, say, a foil was cut out of a 

bulk material after the grain structure was formed. 

Consider a one-dimensional external size constraint, for instance, a foil 

undergoing bending, with thickness h and grain size d, as shown in Figs. 8.1 and 8.2. 

A dislocation may ideally be taken to pass along the h direction, as indicated in the 

figure by the broken arrow, although, in reality, its slip plane in different grains 

would be at various angles to the h direction. 

Noted that in the limiting case with d>h, the dislocation slip distance x is 

only influenced and scaled by h, because the dislocation will not generally encounter 

grain boundaries but can only experience the boundaries delimiting h (the free 

surfaces). On the other hand, in the other limit, d<h, x can be simply taken as 

136 



Chapter 8- Analysis of the inverse square-root size effect in the plasticity 

scaled by d, because a moving dislocation generally encounters grain boundaries 

before it encounters the foil surface. 

Fig. 8.1 is drawn to illustrate the case where d and h are comparable but d<h. 

If the grain structure is independent of the presence of free surfaces, then we have 

part-grains at both surfaces of foil (here drawn as half-grains). A path length h 

traversing N grains would imply a value for Iff of 

leff 

However, the number of internal whole grains may be counted as 
h_1. 

Counting the 
d 

two surface part-grains as grains, we add 2, giving 

Nh+I 
d 

Substituting Eq. (8.11) into Eq. (8.10), 

hh leff =-=- 
Nh +1 

1+ 
dhd 

which can also be written as 

1=I+I 

I, ff dh 

(8.11) 

(8.12) 

(8.13) 
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h 

(a) 

I 

I 

d 

(b) 

Figure 8.1 (a) Schematic diagram of a foil cross section of thickness of h with 

gram size d. The broken arrow shows a path available to a dislocation along 

the thickness direction. (b) Electron backscattenng diffraction (EBSD) 

orientation map of the cross-section of a 50pm nickel foil with the average 

gram size d= 14ýLm. Some grain boundaries are highlighted to show a 

structure resembling the schematic of (a). 
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The situation must also be considered where d and h are comparable but d>h, 

as shown in Fig. 8.3(a), in which again the paths of dislocations are shown by broken 

arrows. Some may have the whole distance h available from surface to surface in a 

single grain, while others will be influenced by a grain boundary. 

In Fig. 8.3(b), this situation is represented as a path length through a whole 

grain, length d, but interrupted by free surface boundaries. This figure is directly 

analogous to Fig. 8.2(a), and the analysis is the same, except that Eq. (8.10) becomes 

d leff ý-- Ar 

Now: 

N= d 
+1 h 

Substituting Eq. (8.15) into Eq. (8-14), 

dd1 I, =-= --!. - = vj/ 

which again can be written as 

d 
.1+I hhd 

dh 
III 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

So the same expressions are obtained, Eqs. (8.13) and (8.17), for Iff in the cases 

d<h and d>h. This expression also has the correct behaviour in the limits d >> h 

andd<<h. Note, however, that it is obtained assuming that the dislocations slip in 

the direction of h. Other directions have greater lengths (with aI /cos 0 term), and so 

in fits to experimental data we may expect a non-unity coefficient on h-1. 

Experimental measurements may check this model. As an example, a 

cross-section electron backscatter diffraction (EBSD) image (EBSD, HKL5, Oxford 
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Instruments, UK) of a nickel foil is shown in Fig. 8.1 (b) The sample possess 50gm 

thickness and with grain size around 14ýtm, i. e. d<h. In Fig. 8.1(b), the grain 

boundaries are highlighted to illustrate a structure resembling the schematic of Fig. 

8.1(a). Fig. 8.2(c) shows an optical microscopic cross section picture of another 

nickel foil, with 125ýtm thickness and with grain size around 200gm, i. e. d h. 

Some grains extend from one free surface to the other, while elsewhere grain 

boundaries appear within the thickness, as in the schematic diagram of Fig. 8.2(a). 

I 

(a) 

T 
I 
I 
I 

_A 

d 

(b) 
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(C) 

Figure 8.2 (a). Schematic diagram of a foil with thickness h and grain size d, 

for d>h. The broken arrows indicate paths available to dislocations. Some 

dislocation path lengths are equal to h, while others are stopped at internal 

grain boundaries. In (b), an alternative way of considering this situation is 

shown. A foil section may be cut out of a large-grain material at a random 

position relative to the gram shown. In most cases, the whole foil thickness is 

available to provide a path to a dislocation. However, h1d foils contain a grain 

boundary, so that the available path is only part of the foil thickness. in (c), an 

optical microscopic image of a cross section of a125gin nickel foil with an 

average grain size of 200pm is shown. Some grams extend from one free 

surface to the other, while elsewhere grain boundaries appear within the 

thickness, as in the schematic diagram of (a). 

In the case of nanoindentation, the plastic zone extends radially in three 

dimensions. Under an axi-symmetric indenter (conical, spherical, and including as an 
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approximation Berkovich and cube comer indenters), the contact radius is a. 

Following Johnson (1987), the effective deformation zone is considered as a 

hemisphere with radius a and volume V= '137ra 3, shown schematically in Fig. 8.3. A 

three-dimensional analogue of the foregoing argument would consider the number of 

part-grains (grains intersecting the hemispherical surface), which is of order 271a 2/ Cý' 

and conclude that the number of grains participating in the deformation is therefore 

not V,, d but V/d+ 27ra 2/ d2. (See the schematic diagram shown in Fig. 8.3). As 

above, an effective length, 1, ff, can then be derived. 

d 
Figure 8.3 Schematic of the plastic deformation zone beneath a spherical 

indentation with contact radius a. The plastic zone is approximated to a 

hemisphere of radius a, after Johnson (1987). Grains in the metal are 

considered as cubic in shape with side length d, some of which may be wholly 

within the plastic zone and others partial within. 
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More simply, we note that what matters are only the slip planes and the 

distances dislocations can move along them. Thus the one-dimensional analysis 

above should remain applicable. However, the volume is not a sphere and has a 

different size in z (a) and in x and y (2a). So different effective lengths will be 

expected in these directions, 

I=I=I+I 
Ix ly d 2a 

I+I 

d, a 

Some suitable average should be taken, e. g., 

I I(I+I+I=I+2 
3 Ix ly I., d 3a 

(8.18) 

(8.19) 

(8.20) 

Thus, as in the one-dimensional case above, we may expect fits to experiment 

to require a non-unity coefficient on d-1. 

8.4 Comparison with experiments 

8.4.1 Bending size effect 

The studies are made on the bending moment induced in nickel foils as a 

function of curvature. The full data-set and details of the experimental methods were 

described in chapters 3-5. Three foils with different thickness of 10pm, 50gm and 

125gm were tested, with gain sizes ranging from 6gm to 200[tm. Ratios of d/h 

range from 3 to 0.03, thus providing a stringent test of expressions in d-1 + h-1. 

Fig. 8.4 shows the experimental data for normalised nickel bending moment M, 

at c, = 0.1% (These data is taken from chapter 3 of nickel bending). To calculate the 
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theoretical normalised bending moment, we apply the slip distance expression 

, ff 
in polycrystalline Eq 1 

. (8.9) for the stresso-(z), and for the effective length scale 1, 

bending we use Eq. (8.17), where h is taken to be the foil thickness. Then, 

cr = ao +A Cp Jb + dh 

Approximating that co; zt, 0, so throughout the foil, vp, = vc. Then, 

c(z)=AC, q, fb- 
-T 

In order to compare the theory with obtained experimental 

normalised bending moment M,, isevaluatedas: 

h 

2P cr (z) zdz 
M" ==-A Cp Jb + 

wh2 5dh 

(8.21) 

(8.22) 

results, the 

(8.23) 

The theoretical fit is obtained from Eq. (8.23), with parameter values of F, = 

0.1%, A=3.06 (for fcc metals (Kocks, 1970; Huang et aL, 2004)), CO ': tý 0, P= 78GPa 

and b=0.245nm and with C as the only fitting variable. A best fit is obtained by 

applying C=2.8 ± 0.05. The result is plotted as the dotted line on Fig. 8.4. It can be 

seen that the fitted strength with foil thickness and grain size is highly consistent with 

the measurements. 

Now, consider whether the value of C is reasonable, where it need to be applied 

again that C is a function of A, ý and a, as C=a (A A and ý can be estimated. 

For foil bending, since dislocations would not traverse the neutral plane, the mean 

free path of the dislocations is smaller than half of the characteristic length. We apply 

here: A=3. The fraction of mobile dislocation density could be taken as ý -- 0.3 from 

Hackel6er et aL (1977). In this case, C=2.8 gives a=0.88. The value of a cited in 
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the literature is between 0.2 - 1.2 (Gao et aL, 1999; Huang et al., 2004). So the value 

for C is reasonable. 
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Figure 8.4 Nickel foil bending data (chapter 3, for all different thickness and 

grain size foils) as normalised bending moment M,, at 0.1% surface strain 

111 
versus Ijý2 (where =+). The dotted line is the theoretical Iff dh 

prediction using Eq. (8.23), with the best fit value of the free parameter, C 

2.8 ± 0.05 (112 = 0.95 1). 
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8.4.2 Indentation size effect for polycrystalline materials 

Recently, Hou et aL (2008) performed spherical nanoindentation on single 

crystal and polycrystalline copper. They used different radius indenters on samples 

with a range of grain sizes. Their data shows interaction between the grain size effect 

and the indentation size effect. Three indenters were used with the contact radii a 

ranging from 0.82ýtm to 50gm. The grain sizes varied from 1.15gm to infinite large 

(single crystal), giving ratios of d/a in the range from infinite to 0.3. This data set is 

therefore able to provide a stringent test of slip distance theory and of size effects 

that use expressions in d-1 + d-1. The results for indentation mean pressure 

measured at an indentation strain of 0.25 are replotted from Hou et al. (2008) in 

Fig. 8.5. 

In order to compare these results with the theory, the indentation mean pressure 

P,, is evaluated as (Tabor, 195 1), 

P=2.8a (8.24) M 

To calculate the theoretical indentation mean pressure, we use again the slip distance 

theory expression Eq. (8.9) for stress cr, and for the effective length scale Iff in 

polycrystalline indentation we use Eq. (8.20). Then, 

-b- 12 
c= cro + ACp -+ i 

F--Pl F 
-1 -- i 3a 

(8.25) 
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Again, co is approximated as 0. Under these assumptions, it is possible to evaluate 

the plastic strain in indentation (Huang et aL, 2004) as 

0.2c 
.. d= 0.2 a (8.26) 

R 

whereeind is the indentation strain, conventionally defined as aIR for spherical 

indentation (Fisher-Cripps, 2000; 2001; Bushby, 2001). The theoretical prediction of 

P. is therefore, 

2 
+i P. = 2.8 ACpvFb 

1+ 1ý0.2etnd (8.27) 
3a 

Using Eq. (8.27), with parameter values Of Cind ý 0.25, A=3.06 (for fcc metals 

(Kocks, 1970; Huang et aL, 2004)), o-O ; ý-, 0, p= 43.5GPa, b=0.256nm, C is the only 

free fitting parameter. A best fit is obtained by using C=0.84 + 0.02, plotted as the 

dotted line in Fig. 8.5. The predicted variation of strength with contact radius and 

grain size is consistent with the measurements. 

Now, the reasonability of the value of C is considered. C= Ct (A is recalled. 

In indentation, a dislocation is supposed to move across the plastic zone. Since the 

indentation contact size a is the characteristic length here while the plastic zone 

radius is about 3a (Johnson, 1987), a dislocation is supposed to travel farther than the 

characteristic length. It is reasonable to take 2 ze 1/3. As for from Hackel6er et al. 

(1977), the fraction of mobile dislocations could be taken as sze 0.3. Then, C=0.84 

gives a= 0.80. The values of ct cited in the literature are between 0.2 and 1.2 (Gao et 

aL, 1999; Huang et aL, 2004). So the value of C=0.84 is not unreasonable. 
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Figure 8.5 Polycrystalline copper indentation experimental data replotted 

from Hou et aL (2008) as P. (at 0.25 indentation strain) against 1 1/2 

(where 
I+2). 

The dotted line is the theoretical prediction using Eq. 
I, ff d3a 

(8.27), with the best fit value of the free parameter, C=0.84 ± 0.02 (R 2 

0.803). 

Remarkably, the wedge indentation size effect via, two-dimensional discrete 

dislocation plasticity carried out by Widjaja et aL (2007) recently agrees with this 

theory as well. The data are shown in chapter 2 as Fig. 2.9. In these data, due to the 

finite size of the block in their simulation, the elastic hardness is h-dependent 

(Widjaja et aL, 2007). So, in Fig. 8.6, the plotted hardness is normalised by the elastic 

hardness (illustrated in Fig. 2.9, (Widjaja et aL, 2007)). 
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Figure 8.6 Wedge indentation simulation data replotted from Widjaja et aL 

(2007) as normalised hardness against Ij"2 (where 
I=I+2). 

The 
Iff d 3a 

dotted line is the theoretical prediction using Eq. (8.27) with the best fit value 

of the free parameter C=1.01± 0.02, (k2 = 0.957). 

The theoretical pressure is obtained by using Eq. (8.27), with parameter values 

of ci,, d = 0.0 1, A=3.06 (for fcc metals (Kocks, 1970; Huang et aL, 2004)), Oo ; ý-, 0, U 

26.3GPa, b=0.286nm, C is the only free fitting parameter. A best fit is obtained by 

using C=1.01 ± 0.02, plotted as the dotted line in Fig. 8.6. The predicted variation 

of strength with contact radius and grain size is very consistent with the 

measurements. With inputting the same parameter A and ý as for polycrystalline 

copper indentation (A = 1/3 and ý;:: ý 0.3), then C=1.01 gives a=0.95. The values of 
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a cited in the literature are between 0.2 and 1.2 (Gao et aL, 1999; Huang et aL, 2004). 

So the value of C=1.01 is not unreasonable. 

8.4.3 Indentation yield size effect - material parameters study 

In chapter 7, it is showed that the normalised gross yield pressure scales with 

the inverse square-root of contact size a for all materials investigated. However, the 

normalised data for metals and ceramics fell on quite different slopes in spite of 

similar ranges of elastic modulus in both sets of materials (F ig. 7.6). Here, the aim is 

to investigate which material parameters are accounting for the different magnitude 

of size effect in metals and ceramics. 

To calculate the theoretical indentation mean pressure at gross yield, the 

slip-distance theory is used again: expression Eq. (8.9) for stress, a, and the contact 

size a for the effective length scale 1, ff. Taking the apparent plastic strain at yield, CYPI 9 

(calculated as o-O divided by the Young's modulus) to be a small value equivalent to 

the elastic strain at the onset of yield, gives the measured yield strength scaling: 

-p' 
uy = tro + ACu-5 3r-y 

J-a (8.28) 

To investigate the influence of material parameters that could result in different 

magnitude of size effect for ceramics and metals, Eq. (8.28) at the yield point was 

considered: 

cy-ao ACp-, Fb F. 
YP' 

0*0 ao Va- (8.29) 
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if 

co = Aro = AnlxyP' 

where n is a constant, and it is assumed as an order of unity here. 

Hence (8.29) comes to: 

0-Y - co C-, Fb (I 

CO Fef, 4 y 
Hence, 

a., - Co Crb- 
P. CO 

From Eq. (8.32), if it is normalised by these moduli, it becomes 

(8.30) 

(8.31) 

(8.32) 

Py - PO (8.33) 
PO ) F--YP' 

=C(I) 
Normalising Fig. 7.6 (which plots A against d'12) further by a factor of 

IcI Vb gives the plot of Fig. 8.7 with all data falling close to a single line. The --y" 

slope of the Fig. 8.7 should be C (as in Eq. (8.33)). 

This would suggest that the different slopes in Fig. 7.6 arise because material 
I 

properties b and rfl are very different for ceramics and metals. 

For clarifying all the parameters used in this theory, the properties for the 

investigated materials are listed in table. 8.1. (Some of the parameters have been 

presented in table 7.1 already). 
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Table 8.1 Properties of the materials studied. 

Shear 

modulus 

.u/ 
GPa 

Burger's 

vector 

b/nm 

Macroscopic 

yield stress 

co / GPa 

Plastic strain 

at gross yield 

15ý PI 

a-A1203 150 0.475 4.6 0.011 

InP 22.5 0.414 0.78 0.0086 

InO. 53GaO. 47As 36 0.413 1.3 0.014 

GaSb 24 0.430 0.90 0.010 

w 150 0.240 0.50 
1 
0.0011 

In indentation, a dislocation is supposed to move across the plastic zone. Since 

the indentation contact size a is the characteristic length here while the plastic zone 

radius is about 3a, a dislocation is supposed to travel farther than the characteristic 

length. It is reasonable to take Az 1/3. As for from Hackel6er et al. (1977), the 

fraction of mobile dislocations could be taken as z 0.3. This gives, C in the range of 

0.9 <C<1.02 (appeared in Fig. 8.7), giving a in the range of 0.95 <a<1.07. The 

values of a cited in the literature are between 0.2 and 1.2 (Gao et aL, 1999; Huang et 

aL, 2004). So the values of C are not unreasonable. 
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Figure 8.7 Normalised yield pressure against T, plotted 

( 

PO 

'N-(Ob-YPI Ia 

for a-A1203 (0), InP (0), InGaAs (A) GaSb (0) and W (0) as function of 

d-1ý2. The solid line is fitted by slip distance theory, equation (8.39) for each 

set of data using the material parameters listed in table 7.1. 

8.5 Discussion 

The mechanics model introduced here predict the inverse square-root size effect 

of plasticity in general deformation with or without a strain gradient and, in both 

cases, it is without an extra characteristic length parameter 1*. 

The only free fitting parameter C in the theory is obtained from the best fit for 

experimental data. The value of C is found by this process to an accuracy of about 

±2%. In the different loading geometries, by estimating the value of the coefficients 
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A (the proportion of the dislocation mean free path to the characteristic size) and ý 

(fraction of mobile dislocations), the coefficient a is obtained. The'value of a is 

similar, all are close to 1.0. This is in good agreement with the cited values in the 

literature (Gao et aL, 1999; Huang et aL, 2004). The values obtained for C appear to 

be intuitive and could be predicted from sensible estimates of a, A and ý. 

The ability of the approach presented here to combine different length scales, 

both intrinsic and extrinsic thus defining an effective length scale, is compelling. In 

the bending of thin foils the grain boundaries and free surfaces appear to have the 

same effect in limiting the slip distance and controlling the size effect. Similarly in 

the case of indentation the grain boundaries and extent of plastic zone also appear to 

present the same limitation of dislocation movement. These results imply that 

increased strength at small length scales can be achieved however the slip distance is 

delimited; by grain boundaries, free surfaces or strain gradients. 

The material properties that influence the magnitude of size effects are also 

identified within this slip-distance model. The model suggests that the magnitude of 

the size effect is controlled by the yield strain and the Burger's vector for the material 

Eq. (8.33). In Fig. 8.7, in spite of the wide range of materials represented, the value of 

the constant C, that is the gradients of Fig. 8.7 for the different materials, are very 

similar, ranging from 0.9 to 1.02 and not in any systematic way by material class, 

shear modulus or yield strain. The resulted a is also close to 1.0, which is in good 

agreement with the literature (Gao et aL, 1999; Huang et aL, 2004). This implies 

Burger's vector and Pmust be the effective material parameters as predicted from E; 
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the slip-distance theory Eq. (8.33). 

8.6 Conclusions 

Comparison with experiments in a diverse range of loading geometries shows 

that the theory of 'slip distance' is consistent with the experimental observations 

showing 1141 scaling. 

Within the theory, different intrinsic and extrinsic length scales can be 

successfully combined to define an effective length scale for the material, Iff. 

The model also suggests that the magnitude of the size effect is controlled by 

the yield strain and the Burger's vector for the material, which agrees well with 

experimental observations. 
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9 Overall discussion 

In order to clarify the whole story of this thesis, this chapter is placed. 

From analysis of nickel bending data in chapter 5, the clear symmetry is shown 

between d and h in work hardening coefficient k in Fig. 5.3 and flow strength in 

Fig. 5.5, and the absence of any breakpoint in the data or the fits between d<h and d 

> h, suggest that different ways of delimiting a finite volume or thickness have the 

same effect on the material strength, i. e., independent on the boundary conditions. In 

other words, the grain boundary and the free surface may have the same effect on 

strength of materials. 

Furthermore, in chapter 7, the fact that the indentation mean pressure (or 

hardness) is proportional to the inverse square-root of the contact size, Ila 1/2 
, 

independent of the indenter shape, is intriguingly similar to the classic Hall-Petch 

effect in which the yield stress or flow stress of a metal is proportional to the inverse 

square-root of the grain size, I Id 1/2 (Hall, 1951; Petch, 1953), to recent data showing 

that the yield strength of pillars under uniaxial compression is proportional to the 

inverse square-root of the pillar radius, I/D1/2 (Volkert and Lilleodden, 2006), to the 

bending data presented in chapter 3 showing bending stress at small strain is 

proportional to the inverse square-root of the effective length, 1&112. These may 

further demonstrate that it is finite or restricted volumes that are responsible for the 

increased strength, rather than the boundary conditions at the edges of these volumes. 

In other words, the physics of the Hall-Petch effect, the uniaxial compression of 

pillars, and the indentation size effect, must be the same although the finite volume is 
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defined respectively by grain boundaries, by free surfaces, and by the edge of a strain 

field. All these different size effects may be unified to a single size effect. 

In conclusion from all these experimental evidence, the general 1141 behaviour 

should be valid, universally (with and without strain gradient) and might start from 

the same origin. Also, the effective length scale must be defined to include all 

extrinsic and intrinsic length scales. 

Correspondingly, a theory based on the slip-distance model of Conrad et aL, 

1967) is suggested, which naturally generates the 1141 with and without strain 

gradient. The effective length is determined including all extrinsic and intrinsic 

effects. In chapter 8, it is shown that the theory agrees well with experiments in 

various loading geometries (Figs. 8.5-8.7). Fittings for other geometries can be found 

in the submitted paper Zhu et aL (2008c). 

Another key result found in this study is the influence of magnitude of size 

effects due to material parameters. In chapter 4, by comparing the bending results of 

copper and nickel, the size effects (both grain and thickness size effects) appear to be 

geometrical, i. e., independent of material parameters. This agrees well with Spary et 

aL (2006), who studied indentation size effect. However, both of these two studies 

(bending in chapter 4 and Spary et aL, (2006)) are performed on soft metals, where 

the only significantly different material parameter is the elastic modulus. In Lpter 7 

(Figs. 7.5 and 7.6), it is observed that the normalised yield pressure for metals and 

ceramics fell on quite different slopes in spite of similar ranges of elastic modulus in 

both sets of materials; that is, the magnitude of the size effect appeared to be greater 
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in metals than ceramics. This result implies that material parameters as well as 

geometry must be important in length scale plasticity. Which parameters can account 

for the difference in the size effect between metals and ceramics? 

In chapter 8, the slip-distance model suggests that the magnitude of the size 

effect is controlled by the yield strain and the Burger's vector for the material. These 

two factors are very different between metals and ceramics, but not between metals. 

This explains why the magnitude of size effect is distinguished in chapter 7 for 

indentation on metals and ceramics, but not obvious in bending nickel and copper 

foils (chapter 4) or nanoindentation on a series of soft metals (Spary et aL, 2006). 

The theory shows good agreement with experimental observations (Fig. 8.8). 
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10 Conclusions 

More accurate data are successfully obtained over a wider range of strain (0 to 

0.1) and grain size (d /h ranged from 3 to 0.03) from bending of nickel and copper 

thin foils. However, the yield study has still not been completed. Better data around 

the elastic-plastic region is required. The symmetry between d and h in work 

hardening coefficient and flow strength and the continuity of data or fits between d< 

h and d>h, may suggest that the grain boundary and free surface have the same 

effect in plastic deformation. Comparing the bending results of nickel and copper, 

both grain and thickness size effects are geometrical, i. e., independent on material 

properties. 

The direct method of determining gross yield strength for ceramics and high 

strength metals by using spherical nanoindentation, is proved to be comparable with 

Spary el aL (2006) from finite modelling simulation together with indentation. The 

normalised yield pressure shows similar dependence on contact size for all ceramics, 

while the metals show very different slope. That is, the magnitude of size effect i's 

appeared to be greater in metals than ceramics. By comparing the Berkovich and 

spherical indentation size effects, the results imply that the contact size a is the most 

fundamental length scale in indentation size effect, independent of the shape of the 

indenter. The indentation strength is inversely scaled with the square root of a. 

Taking the Hall-Petch, pillar, bending and indentation size effects together, it 

may be concluded that the strengthening of the materials is driven by the restricted 

strain volume. The delimited boundary condition of the volume is not relevant. 
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The slip-distance theory (based on (Conrad et aL, 1967)) appears able to 

account for the size effects in all contexts (uniform or non-uniform, with or without 

grain size interaction with extrinsic size and for different geometries), without 

requiring strain gradient plasticity theory or an implicit characteristic length. The 

slip-distance model also suggests that the magnitude of the size effect is controlled 

by the yield strain and the Burger's vector of the material, which agrees with 

experimental observations. 

This thesis presents data which in most experiments is improved the literature 

data in accuracy or in range of parameter. The improved data has highlighted the 

ubiquity of the 1141 behaviour and suggested a common origin. Slip-distance theory 

is certainly shown to be consisted with an 'effective length scale' reconciling 

intrinsic and extrinsic size effects and predicting a wide range of geometrical size 

effects. 
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11 Future work 

The study of material yield is certainly interesting and useful to be completed. 

Better technique may be required for achieving that, e. g., twisting a long wire. 

In the bending of nickel foil (chapter 3 and 5), it is shown that the strength is 

inversely scaled with the square root of effective length Iff together with a 

square-root work hardening, at small strain region. However, at high strain, the linear 

work hardening is operating and the strength is scaled with the reciprocal of Iff. Is 

this generally true for all different loading geometries? If so, why the size effect is 

changing with different work hardening behaviour? Why it is different between 

small and high strain region? What is the underlying physics? 

Whether the shortest contact length is always the dominating length in size 

effect? By testing this, the best experiment may be on asymmetric subjects: e. g., 

knife edge indentation and wall-pillar compression tests. 

Furthermore, in this thesis, interaction between intrinsic and extrinsic size 

effects is studied experimentally and theoretically. However, this is limited by the 

interaction between two sizes. It will be very interesting to study the interaction 

among more sizes, e. g., interaction among indention contact size, film thickness and 

grain size effects. A possible theory for this is also proposed and shown in the 

Appendix. 
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Appendix 

Appendix 

The situation of polycrystalline thin film coating indentation size effect is 

considered. In this case, three size will interact, i. e., thickness h, indentation contact 

size a and grain size d. 

a 4 

d 

Figure A. 1 Schematic of the plastic deformation zone beneath a spherical 

indentation with contact radius a, on a thin film with thickness h and grain 

size d. In thin film coating, grains non-nally shows column structure. 

So different effective lengths in these directions are expected. 
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Some suitable average should be taken, e. g. (similar as in session 8.3), 

II+I+I=2+2+I 
3 /. 
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