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ABSTRACT 
Pulsed low intensity ultrasound (PLIUS) is used clinically to accelerate fracture healing. 

although the mode of action is unclear. However studies suggest that PLIUS may 

stimulate endochondral ossification and consequently PLIUS may also be beneficial for 

cartilage regeneration, either in vivo or as part of a tissue engineered approach. Preyious 

studies using chondrocytes cultured in monolayer have suggested that PLIUS may 

stimulate glycosaminoglycan (GAG) synthesis, and that calcium signalling is implicated 

in this process. Therefore the present studies set out to investigate the influence of 

PLIUS on bovine articular chondrocytes in monolayer and agarose culture. This 

required the design of a bioreactor system which enabled cell-agarose constructs to be 

subjected to PLIUS, as well as a microscope-mounted test rig enabling confocal 

visualisation of intracellular calcium dynamics. 

A PLIUS system and signalling characteristics were provided by Smith and Nephew, 

Inc. (York, UK). Chondrocytes in agarose demonstrated a reduction in cell viability 

associated with PLIUS above a spatial averaged time averaged (SAT A) intensity of 

200m W /cm2
, presumably associated with transducer heating. In subsequent studies, 30 

and 100mW/cm2 were applied to monolayer and agarose cultures for up to 20 days, and 

biosynthesis was examined by assessment of GAG synthesis and cell proliferation using 

biochemical and radio-labelling protocols. Intracellular calcium signalling was 

investigated as a possible mechanotransduction pathway, using confocal mIcroscopy 

and the calcium indicator Fluo-4. 

In monolayer culture PLIUS did not stimulate total GAG content or cell proliferation at 

either 30 or 100 mW/cm2
• In agarose cultures, PLIUS had no effect on total GAG 

content at 30 mW/cm2
• At 100 mW/cm2 PLIUS induced a very small increase in total 

GAG content but there was no detectable effect on the rate of GAG synthesis in either 

model system at either 30 or 100 mW/cm2
. There were no PLIUS associated changes in 

the levels of intracellular calcium signaling in either monolayer or agarose cultures. 

Preliminary studies using Fluorescent Recovery after Photobleaching (FRAP) showed 

that PLIUS at 30mW/cm2 increased diffusion of 70kDa FITC-dextrans, although this 

clearly had no effect on GAG synthesis or cell proliferation. 

These studies indicate that PLIUS-induced fracture healing, or any potential use of 

PLIUS for cartilage repair. is unlikely to involve direct stimulation of proteoglycan 

synthesis or cell proliferation. Indeed the proposed use of PLIUS in cartilage tissue 

engineering is more limited than previously suggested. 
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Chapter 1: Composition and Structure of Articular Cartilage 

1.1 Introduction to Cartilage and Articular Cartilage 

Cartilage is a specialized connective tissue that provides support, protects underlying 

subchondral bone and forms structural models for many developing bones (Shier ef al., 

1999). Cartilage consists of cells called chondrocytes, and an extracellular matrix 

consisting of proteins, fibres and tissue fluid. The chondrocytes are responsible for the 

synthesis and secretion of matrix molecules (Junqueira et al., 1998; Poole et al. 2001). 

There are three types of cartilage which can be differentiated by the nature and amount 

of fibre contained within the matrix, namely hyaline cartilage, fibrocartilage and elastic 

cartilage, as detailed in Table 1.1. Hyaline cartilage is the most common type of 

cartilage found in the body, and forms the focus of the present thesis. 

TABLE 1.1: The three cartilage types. 

Cartilage type Characteristics and Function 

Hyaline Contains fme collagenous fibres in its matrix. 

Provides support and flexibility. 

Location 

Embryonic skeleton 

Articular cartilage 

Costal cartilage 

Respiratory system (nose, larynx, 

trachea, bronchi) 

Epiphyseal plate 

Fibrocartilage Contains many large bundles of collagenous Symphysis pubis 

Elastic 

fibres. 

Gradually merges with neighbouring dense 

fibrous tissue or hyaline cartilage. 

Tough and resilient, acts as 'shock absorber'. 

Contains dense network of elastic fibres. 

Provides flexibility and lightweight support. 

Intervertebral disks 

Menisci of Knee 

Attachment of certain ligaments to 

cartilaginous surface of bones 

Lining of tendon grooves 

External ear 

Eustachian (auditory) tubes 

Parts of larynx 

Epiglottis I 

(Based on ~ 'an Wynsberg et al., 1995; Junquiera et al., 1998; Kessel et al., 1998; Shier 

et al., 1999). 

Articular cartilage is the hyaline cartilage covering the subchondral bone ends in a 

synovial joint, as illustrated in Figure 1.1. In its healthy state it provides an almost 

frictionless gliding and load-bearing surface that is essential to normal joint function 

(Buckwalter and Hunziker, 1999; Poole et al., 2001). By deforming, articular cartilage 
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Chapter 1: Composition and Structure of Articular Cartilage 

distributes joint loads and, as a result, reduces the peak stresses to which the 

subchondral bone is exposed (Bader and Lee, 2000). 

Cartilage lacks lymphatic vessels, nerves and blood vessels and contains only one cell 

type. The chondrocytes in articular cartilage are sustained by the diffusion of nutrients. 

such as glucose and oxygen, from the surrounding synovial fluid, a process facilitated 

by joint loading (Huber et a/., 2000; Hall, 1998). 

synovial membrane 

fibrous capsule articular cartilage 

joint cavity 

FIGURE 1.1: Schematic of a synovial joint. Articular cartilage covers the 

subchondral bone. The bones are separated by the joint cavity and connected by a 

fibrous capsule, which is lined by a synovial membrane that secretes synovial fluid. 

(Adapted from Benjamin, 1999). 

Articular cartilage exhibits a complex and highly ordered structure, maintained by the 

interaction between the chondrocytes and the extracellular matrix. It varies in thickness, 

cell density, matrix composition and mechanical properties within the same joint, 

between joints and with different species (Hunziker, 1992). For humans, articular 

cartilage thickness in major load bearing joints is generally between 1.5-3.5mm thick 

(Bader and Lee, 2000), although this value is exceeded on the underside of the patellar 

surface in the knee joint. 

Articular cartilage in its adult form has a low level of metabolic activity when compared 

to other tissues, such as muscle or bone, and appears less responsive to changes in 

loading or injury. However, it has excellent durability as exemplified by its ability to 

both retain its physical properties to a large degree when subjected to stress, and, in 

many cases, provide normal joint function for 80 years or more (Buckwalter and 

Mankin, 1998). 
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Chapter 1: Composition and Structure of Articular Cartilage 

1.2 Extracellular Matrix 

The extracellular matrix consists of tissue fluid and a framework of macromolecules, 

namely collagens, proteoglycans, glycoproteins and non-collagenous proteins. Collagen 

forms a fibrillar network that provides the capacity to withstand tensile and shear forces 

(Kempson, 1979). The collagen meshwork contains a non-fibrous "filler" substance 

principally composed of proteoglycans and non-collagenous proteins (Meachim and 

Stockwell, 1979). The interaction of tissue fluid with the macromolecular framework 

gives cartilage its stiffness, resilience and ability to participate in joint lubrication 

(Buckwalter and Mankin, 1998). 

The approximate percentage of the components of articular cartilage are summarized in 

Table 1.2, in both dry and wet weight forms. 

TABLE 1.2: Proportional ranges of the major components of articular cartilage. as 

provided by various authors. 

Component 

Tissue Fluid 

Collagen 

0/0 wet weight % dry weight 

65-80 (Muir, 1979; Hall, 1998; Bader and Lee, N/A 

2000) 

68-85 (Mow and Ratcliffe, 1997) 

60-78 (Kessel, 1998) 

20-30 (Muir, 1979) 

15-30 (Hall, 1998) 

15-20 (Bader and Lee, 

2000) 

-50 (Muir, 1979) 

68-85 (Mow and Ratcliffe. 

1997) 

-60 (Buckwalter and 

Hunziker, 1999) 
~-----+ - - - - - - - - - - - - - - - - --+-----------+-----~--:------:-I 

5-10 (Mow and Ratcliffe, 25-35 (Buc/.;walter and Proteoglycan 

20-40 (Buckwalter 

and Hunziker, 1999) 

1997) Hunziker, 1999) 

3-10 (Hall, 1998) 

3-15 (Bader and Lee, 

2000) 

I---N-on-_------;- - - - - - - - - - - - - - - - - - - ~1-(-B-ad-e-r-a-n-d-L-e-e,-2-0-0-0)-+--1-5--2-0--( B=-u-c--:-h-r-a l~te-r--a-n-d:-1 

collagenous 

proteins and 

glycoproteins 

Hunziker, 1999) 
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Chapter 1: Composition and Structure of Articular Cartilage 

1.2.1 Tissue Fluid 

Water makes up the majority of the wet weight of articular cartilage (Table 1.2). The 

highest content is found adjacent to the articular surface, with a decrease towards the 

subchondral bone (Maroudas, 1979). Tissue fluid contains gases, small proteins, 

metabolites, and a high concentration of mobile cations that balance the negatively 

charged proteoglycans (Buckwalter and Hunziker, 1999), including calcium, sodium 

and hydrogen ions (Bader and Lee, 2000). 

The volume, concentration, and behaviour of the water within the tissue depend on its 

interaction with the structural macromolecules. Approximately 30% of water is strongly 

associated with the collagenous network (Mow and Ratcliffe, 1997; Bader and Lee, 

2000). The remaining bound water is associated with the hydrophilic proteoglycans 

(Kessel, 1998). Only a small proportion of the total water in cartilage is intracellular 

(Bader and Lee, 2000). 

The water associated with the proteoglycans is freely exchangeable during joint loading 

and unloading. The movement of water is important for joint lubrication and also 

chondrocyte nutrition and viability, as these cells rely on diffusion of nutrients through 

the matrix due to the absence of a vascular supply (Bader and Lee, 2000; Buckwalter 

and Hunziker, 1999). The interstitial fluid also permits the removal of metabolic by­

products (Hall, 1998). 

1.2.2 Collagens 

Collagen is the most abundant protein In the body, and is the major structural 

macromolecule in connective tissues (Vander Rest and Garrone, 1991). To date, 29 

forms of collagen have been identified, made up of more than 30 different gene 

products (Veit et ai., 2006; S6derhiill et ai., 2007). Each collagen type has individual 

characteristics enabling them to perform specific functions in various tissues. 

1.2.2.1 Collagen Structure 

The common structural feature shared by all collagens is a triple helix region within the 

molecule. This triple helix is composed of three polypeptide chains folded in a rope-like 

coil formation. Each chain is known as an alpha chain (a-chain), characterised by 

repeated sequences of three amino acids, glycine-X-y, where approximately 10-12% of 

each of the X and Y residues are proline and hydroxyproline respectively, their 
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Chapter 1: Composition and tructure of Articular Cartilage 

distribution allowing an orderly arrangement of interchain hydrogen bonds that stabilize 

the helix (Thomas et al., 1994). Each a-chain contains approximately 1000 amino acid 

residues (Bader and Lee, 2000). Glycine is the smallest amino acid and occupie the 

crowded interior of the triple helix (Muir, 1995). Its repetition as every third amino acid 

is paramount for the correct folding of the three a-chains into the helical formation 

(Culav et al., 1999), as indicated in Figure 1.2. 

Specific collagen types are formed by a variety of a-chains in various combinations. In 

some collagens all the a-chains are identical, whereas, in others two a-chains may be 

identical or, in some cases, all the a-chains are different. 

FIGURE 1.2: Portion of collagen molecule, showing three a-chains coiled to form a 

triple helix. Within each chain the amino acids are also arranged in a helix, with 

Glycine (G) facing the centre of the triple helix, as shown in the red chain. The other 

amino acids are represented by the dots. Adapted from Culav et aI., 1999. 

The prominent feature of most collagens is their ability to resist tensile loads. They 

usually demonstrate up to 10-15% elongation under tension. This is, in part, due to the 

straightening of the fibres packed in the three-dimensional arrays as opposed to the 

actual elongation of individual fibres. The intermolecular bonds between the a-chains 

of adjacent molecules impart stiffness and strength to the helical complex, which further 

resists tension (Culav et al., 1999). 

The a-chains of the major collagens are synthesized with extended extremitie . Th 

terminal ends of the collagen molecule are non-helical in nature and are important ~ r 

collagen fibril formation and for alternative functions, such as interaction with oth r 

extracellular components. After formation of the triple helix the n wly fI rm d 

c Hagen termed procollagen, is delivered by the chondrocyte into the extra llular 

pac , wh re a high proportion of the non-helical end are rem ed nzymati all . Thi . 

re ult in a h rtened molecul appr ximately 1.5nm in diamet r and 3 nm 1 n " 

6 



Chapter 1: Composition and Structure of Articular Cartilage 

termed tropocollagen (Buehler, 2006). Five molecules of tropocollagen can cross-link to 

form pentameric fibrils, characterized by a distinct banding structure when viewed 

under an electron microscope (Culav et aI., 1999). The formation of the cross-links 

requires some overlap between adjacent molecules, and the fibrils demonstrate a 64nm 

periodicity (Bader and Lee, 2000; Junqueira et al., 1998). These fibrils can aggregate to 

form fibres and bundles of fibres, as shown schematically in Figure 1.3. 

INTRACEllULAR 

Synthesis of 
procollagen 
chains at rough 
endoplasmic 
reticulum 

Formation of 
triple helix 

·-------------1-----------

EXTRACEl l ULAR 

" 
Plocollagen 
cle~lvage to 
tlOI)Ocolltlgen 

~~~ 
~ ~ ~~ Assemblyand 
~ ~ ~ ~ cross-lillkil19 

~~~~ 

~~~)(7. 

~ + j/ a ) Fibril 

\~ 
~ ~ Fibre 

FIGURE 1.3: Schematic showing collagen synthesis, secretion and assembly. Adapted 

from eU/al et al., 1999 
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Cbapter 1: Composition and Structure of Articular Cartilage 

1.2.2.2 Cartilage-specific Collagens 

The fibrous network of articular cartilage IS composed primarily of polymerized 

collagen type II molecules that form a hetero-fibril with types IX and XI (Huber et al.. 

2000, Eyre et aI., 2006). Type II collagen is found in tissues with high proteoglycan and 

water content, suggesting specific properties that enable an ordered relationship with 

proteoglycans that create and maintain a highly hydrated matrix (Buckwalter et aI., 

1987a). Table 1.3 presents a summary of the different articular cartilage collagens. 

TABLE 1.3: Collagen types in mammalian adult articular cartilage. 

Collagen 

Type 

II 

III 

Dry weight percentage 

>90 

(Duance et al., 1999,' 

Eyre et al., 2006) 

>10 (human) 

(Eyre et al., 2006) 

Characteristics and function 

Primary component of collagen network (Duance et al., 

1999). Composed of three identical u) (II) chains (A/Iii,.. 

1979). Forms endoskeleton of cartilage (Huber et al., }OOO). 

Copolymerised molecule, covalently linked to collagen II (in 

human tissue). Possible role in tissue remodelling and repair 

(Eyre et al., 2006). 

VI <2 (Pullig et al., 1999) Binding capacity for type II collagen and non-collagenous 

proteins (Pullig et al., 1999). 

IX 

XI 

XII/XIV 

XIII 

-1 

Important role in pericellular matrix organization (Section 

1.4) and anchoring 0 f chondrocyte m surrounding 

extracellular matrix (Pullig et al., 1999; Eyre et al., 2006). 

Covalently fibril-associated collagen (Duance et al., 1999). 

(Huber et al., 2000; Bonds to superficial layers of collagen II fibrils (Buckwalter 

Eyre, 2002) and Hunziker, 1999). 

-3 (Eyre, 2002) 

Not specified 

Not specified 

Considered a proteoglycan due to presence of chondroitin 

sulphate chain (Duance et al., 1999). 

Mediator of fibril-fibril and fibril-proteoglycan interactions 

(Buckwalter and Hunziker, 1999). 

Covalently fibril-associated collagen; forms part of interior of 

collagen II fibrils (Buckwalter and Hunziker, 1999). 

Acts as template to constrain lateral growth of hetero-fibril 

(Eyre, 2002). 

Non-covalently fibril-associated collagens. Also class\?d as 

proteoglycans; possible interaction with other fibril-binding 

proteins (EJ're, }OO}). 

Transmembrane (Eyre et al.. 2006). I 
i 

X Not specified Found in hypertrophic cartilage m calcified region 

(Buckwalter and Hunziker. 1999). 

only 1 
• I 

, 

L-______ ~ ________________ _L ________________________________________ _ 
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Chapter 1: Composition and Structure of Articular Cartilage 

The arrangement and alignment of the collagen fibres reflect the mechanical stresses 

acting on articular cartilage (Culav et al., 1999). Both the diameter and orientation of 

fibres vary with depth below the articular surface (Bader and Lee, 2000) as described in 

section 104. Additionally, under pathological conditions and in ageing, the collagen 

composition of cartilage is subject to change, with evidence of collagen type I and an 

increase in levels of collagen XI (Duance et aI., 1999; Pullig et aI., 1999). 

1.2.3 Proteoglycans 

Proteoglycans are molecules characterized by a core protein covalently attached to one 

or more glycosaminoglycan (GAG) chains (Huber et al., 2000). GAG chains are 

composed of repeating disaccharide units, comprising two amino sugars, n-acetyl 

hexosamine and either hexuronic acid or hexose (Bader and Lee, 2000). Each 

disaccharide unit has at least one negatively charged carboxylate or sulphate group. so 

the GAGs can form long strings of negative charges that repel each other and attract 

water molecules and cations (Buckwalter et aI., 1987a). The core proteins are usually 

specific to each of the proteoglycan types and can vary considerably in size. The four 

GAGs found in articular cartilage are chondroitin sulphates 4 and 6, keratan sulphate 

and hyaluronan. Hyaluronan, present in relatively small amounts in articular cartilage, is 

an uncharacteristic GAG in that it is not attached to a protein core, is non-sulphated, and 

is not found as a component of a proteoglycan monomer (Culav et al., 1999). 

The most common proteoglycan, accounting for approximately 90% of total 

proteoglycan mass in articular cartilage, is the large aggregating macromolecule termed 

aggrecan (Huber et aI., 2000). This is shown schematically in Figure 1A. Aggrecan is 

composed of a core protein filament 200-400nm in length with multiple bonded 

chondroitin sulphate and keratan sulphate chains, approximately 100 chains of the 

former and 30 of the latter GAG (Mow and Ratcliffe, 1997; Muir, 1995). The GAGs 

contribute approximately 950/0 to the molecule, with the remainder composed of protein. 

As the GAG chains contain a high number of negative charges, adjacent chains repel 

each other and extend from the core protein like the bristles of a bottle-brush, 

maintaining aggrecan in an expanded form in solution (Buckwalter et al .. 1987a; Culav 

el al.. 1999). 

As seen in Figure lA, the protein core filament has three globular domains and two 

extended domains, termed G I, G2, G3 and Eland E2, respectively (Hardingham ct ai .. 
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1992). The G 1 domain is at the amino-tenninal end of the molecule, and acts as the 

binding site for hyaluronan, the interaction of which is stabilized by a glycoprotein, 

known as the link protein, which has structural homology to the G 1 domain Bader and 

Lee, 2000, Culav et aI., 1999). 

Hyaluronan 

G1 E1 G2 
rlrIn 

Link Protein 

T 
KS 

E2 

~~ III ~ I 
r. i 
r 
CS 

GAG side chains 

G3 

II 

Core 
Protein 

FIGURE 1.4: A schematic of the aggrecan molecule and its binding to hyaluronan. The 

protein core has three globular domains (GJ, G2, G3) with other regions containing the 

keratan sulphate (KS) and chondroitin sulphate (eS) molecules. Adapted from 

Hardingham et al., 1992. 

Many aggrecan molecules can bind to a single hyaluronan to form multimolecular 

aggregates, as shown in Figure 1.5. The hyaluronan backbone can range in length from 

several hundred to several thousand nanometres, and form aggregates of between 300 

and 800 associated aggrecan molecules (Poole et aI., 1982; Hardingham et al. 1992; 

Buckwalter and Hunziker, 1999). 

Aggrecan contributes to the compressive stiffness of cartilage due to the hydration of 

the large numbers of chondroitin sulphate and keratan sulphate chains occupying the 

core protein. These GAGs create a high charge density inducing an osmotic swelling 

pressure that attracts water into the matrix. Molecular swelling is resisted by the 

collagen network, which is under constant tension even in unloaded cartilage (Muir 

1995). This mechanism, in conjunction with the bonding of negatively charged GAG 

chains to regions of positive charge on collagen fibrils, limits proteoglycan expan ion t 

between 10-20% of their swelling capacity (Mow and Ratcliffe, 1997- Culav t a!., 

1999- Hall 1998- Poole eta!' 2001). 
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20-50nm 
I I 

KS rich region 

'" 

Proteoglycan Aggrecan molecule 
(200-400nm length) 

FIGURE 1.5: Schematic of an aggregating proteoglycan molecule (aggrecan) . This 

is composed of keratan sulphate (KS) and chondroitin sulphate (CS) covalently bound 

to a hyaluronan protein core molecule at regular intervals of 20-50nm via a link 

protein. Adaptedfromfigure by Mow and Ratcliffe, 1997. 

There is a small percentage «10%) of large non-aggregating proteoglycans found in 

articular cartilage, which may represent degraded aggrecans (Huber et al., 2000). Loss 

of the larger aggregating proteoglycans appears to be one of the earliest changes 

associated with osteoarthritis, immobilization of the joint and ultimate joint 

degeneration. There is also an associated loss of large aggregates with age, which may 

be influenced by a reduction in proteoglycan synthesis by chondrocytes and/or an 

increase in proteoglycan degradation (Buckwalter and Mankin, 1998). 

A number of smaller, non-aggregating proteoglycans are found in articular cartilage. 

These proteoglycans are leucine-rich and include decorin, biglycan and fibromodulin 

which account for approximately 3% of total proteoglycan mass (Huber et at. 2000) . 

Decorin contains one GAG chain, biglycan contains two and fibromodulin ha up t 

four GAG chains (Poole et at. 2001). These molecules interact with collagen and are 

thought to playa role in organizing and stabilizing the type II collagen network (M w 

and Ratcliffe 1997). Chondroadherin (CD44) a multi-functional cell urfac r c pt r, 

ha on GAG chain and is the chondrocyte receptor for hyalur nan, an h ring thi 

mol cuI to the cell urface (Taylor and Gallo 2006 ' Poole et at. 200 1). 
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Chapter 1: Composition and Structure of Articular Cartilage 

1.2.4 Non-collagenous proteins and Glycoproteins 

In addition to collagen and proteoglycans, a number of other macromolecules can be 

found in articular cartilage that help to organize and maintain the macromolecular 

structure of the matrix. Generally, these molecules are composed of a protein with a few 

attached monosaccharides and oligosaccharides (Buckwalter and Hunziker, 1999). 

Table 1.4 below summarises some of the known non-collagenous proteins and 

glycoproteins in articular cartilage. 

TABLE 1.4: The non-collagenous matrix proteins of articular cartilage 

Protein 

Anchorin ClI 

Cartilage Oligomeric 

Protein (COMP) 

Chondronectin 

Fibronectin 

Tenascin 

Link Protein 

Lubricin 

Characteristics and Function 

Collagen-binding chondrocyte surface protein. Mediates binding 

of type II collagen to chondrocytes (Heinegdrd and Pimentel. 

1992; Huber et al., 2000). 

An acidic protein appearing only in cartilage (Buckwalter and 

Hunziker, 1999). 

Role in binding type II collagen to chondrocytes. Possible role 

in repair process and matrix assembly (Huber et al., 2000; 

Poole et al., 2001). 

A glycoprotein that binds to collagen type II and GAGs, 

mediating adhesion between chondrocytes and extracellular 

matrix (Junqueira et al., 1998). 

Glycoproteins with important role in cell attachment to matrix 

components (Heinegdrd and Pimentel, 1992; Culal' et al., 

1999). 

May also playa part in the tissue response to inflammatory 

arthritis and osteoarthritis (Buckwalter and Hunziker, 1999). 

Stabilizes matrix proteoglycan aggregates (Hardingham, 1979,' 

Heinegdrd and Pimentel, 1992; Culav et al., 1999). 

A glycoprotein synthesized and localized in the superficial zone 

(see Section 1.4) of articular cartilage. Roles in cytoprotection. I 

lubrication and matrix binding (Jones et al., 2007). 

Also known as superficial zone protein (SZP), or Proteoglycan-

4 (PRG4) due to the fact that it has the potential for GAG 

attachment (Poole et al., 2001; Rees et al., 2002). 
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1.3 Chondrocytes 

Chondrocytes are the sole cell type existing in articular cartilage. These specialised cells 

produce and maintain the extracellular matrix components that provide articular 

cartilage with the mechanical and physical properties necessary for load bearing and 

joint locomotion. 

The chondrocytes contribute between 1 % and 100/0 of the volume of mammalian 

articular cartilage (Stockwell and Meachim, 1979). Under histological examination, the 

chondrocytes are contained in spaces in the matrix, called lacunae, although these 

features are not evident in living cartilage. Chondrocytes vary in size, shape, 

distribution and metabolic activity according to their distance from the articular surface. 

1.3.1 Chondrocyte Development 

Chondrocytes are derived from the mesenchyme, namely embryonic connective tissue. 

In the foetus, mesenchymal cells differentiate by retracting their extensions and 

multiplying rapidly to form mesenchymal condensations, or chondroblasts, exhibiting a 

ribosome-rich basophilic cytoplasm. The chondroblasts then begin the synthesis, 

packaging and exporting of large amounts of extracellular matrix causing the cells to 

separate from each other, at which stage the cells are now classed as chondrocytes. 

Cartilage can grow from within via a process called interstitial growth, where 

chondrocytes multiply via mitosis and these new cells go on to produce further matrix. 

This only occurs during the early stages of cartilage formation as a way of increasing 

tissue mass (Junqueira et al., 1998; Kessel, 1998). 

After growth has ceased there is no detectable cell division in healthy adult articular 

cartilage (Buckwalter and Mankin, 1998). However, chondrocytes retain the ability to 

replicate, particularly noted following damage to the collagenous network, such as in 

cases of osteoarthritis (Muir, 1995). 

It is notable that the cellularity of cartilage changes greatly with the stage of 

development. In the embryonic limb before bone is formed, the volume ratio of cells to 

matrix is approximately 1 :3. As the limb grows matrix volume increases, such that in 

the superficial articular cartilage zone where single cells tend to occur, the ratio is 1 :50 

(Hall, 1998). 
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1.3.2 Chondrocyte Organelles and Synthesis of Extracellular Matrix Components 

Chondrocytes are eukaryotic cells, characterised by a plasma membrane. a membrane­

bound nucleus and organelles, as shown in Figure 1.6. The predominant organelles 

found in the cytoplasm of the synthetically active chondrocyte are the rough 

endoplasmic reticulum (rER) and the Golgi apparatus, both of which are involved in the 

production and secretion of extracellular matrix molecules. The rER synthesises the 

core proteins and link proteins of the proteoglycans, type II collagen chains, and 

oligosaccharides. These products are secreted and transferred to the Golgi apparatus via 

membrane-bound vesicles. Synthesis of procollagen and polysaccharides occur in the 

Golgi apparatus, where they are then packaged for transport out of the celL 

approximately 3-6 hours after synthesis has occurred (Kessel, 1998). Hyaluronan is 

synthesized at the plasma membrane (Knudson, 1993). Secretory products are removed 

from the cell via exocytosis. Both proteoglycan aggregates and tropocollagen molecules 

are formed in the extracellular matrix. 

Glycogen 

Lipid--A 

membrane 

Rough endOI)lasmic reticulum 

IIlIclelis 

Exocytosis of secretory 
Inodllcts by vesicles 

FIGURE 1.6: Schematic of a typical chondrocyte with its major organelles. Adapted 

from Kessel, J 998. 

Other organelles of note (Figure 1.6) are the lysosomes, a type of vacuole present in the 

Golgi apparatus involved in intracellular digestion of waste material as well as the 

turnover of extracellular matrix via endocytosis, and the mitochondria, the organelles 

responsible for converting oxygen and nutrients into adenosine triphosphate (A TP) via 

glycolysis (StockwelL 1978~ Heywood et al., 2004). A TP is an essential energy source 

for biochemical reactions. Mitochondria are numerous in the chondrocytes of immature 
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cartilage but are more scarce and smaller in adult chondrocytes. reflecting the 10\\ 

respiratory activity in adult tissue (Stockwell, 1978, Terkeltaub et aI., 2002). 

Lipid and glycogen deposits are present in the cytoplasm, as well as the filamentous 

structures of the cytoskeleton, which can be extensive in some chondrocytes (Horton, 

1993). The cytoskeleton is composed of actin microfilaments, tubulin microfilaments 

and vimentin intermediate filaments, each with a diameter in the order of nanometres. 

These structures act to give the cell its shape and provide a basis for cell movement. 

Other functions of the cytoskeleton in chondrocytes may include cell-matrix 

interactions, cell signaling, intracytoplasmic transport, control of sectretionlendocytosis, 

control of chondrocyte phenotype, and in mechanotransduction (Durrant et aI., 1999; 

Langelier et al., 2000). 

The plasma membranes of chondrocytes are generally scalloped with many processes 

containing micro filaments that extend into the matrix. Small invaginations called 

caveolae are also prominent on the cell surface, which are involved in cell signaling and 

endocytosis and exocytosis (Horton, 1993; Durrant et aI., 1999; Schwab et aI., 1999). 

Additionally, most articular chondrocytes have a single cilium that may be involved in 

regulation of matrix turnover (McGlashan et al., 2006). 

1.3.3 Chondrocyte Metabolism 

Cartilage is an avascular tissue, which means that chondrocytes have no blood supply 

that can provide nutrition. The main pathway by which articular cartilage receives vital 

nutrients is through diffusion from the surrounding synovial fluid to the extracellular 

matrix during normal joint loading. Diffusion distances are therefore greater than with 

vascular tissues (Stockwell and Meachim, 1979), resulting in a low concentration of 

oxygen available to the cells of between 100/0 at the articular surface to under 1 % in the 

deep zones (Goldring, 2006). However, chondrocytes are able to exist under very low 

oxygen tensions compared to other cell types, metabolising glucose primarily by 

glycolysis to produce lactate via anaerobic respiration, which is preferentially 

maintained even under low aerobic conditions (Stefanovic-Racic et aI., 1994). 

Maintenance of cartilage tissue occurs vIa continued interactions between the 

chondrocyte and its extracellular matrix. Chondrocyte metabolism occurs via en,: lnatic 

reactions controlling activities, such as respiration and glycolysis, and the s~nthcsis. 
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remodelling and degradation of extracellular matrix molecules (Mow and Ratcliffe. 

1997). 

Degradation and repaIr of extracellular matrix involve proteases, enzymes that 

hydrolytically degrade proteins into peptides or amino acids. Cathepsins, a class of 

lysosomal proteases, and metalloproteinases, which are secreted by the cell, are two 

classes of proteases that can degrade both proteoglycan and collagen (Tyler et al.. I992~ 

Werb, 1992). Proteolytic components are released into the pericellular matrix and 

partially digest matrix molecules, before the breakdown products are taken into the cell 

by pinocytosis or phagocytosis and digestion completed within the lysosome (Stockwell 

and Meachim, 1979). Protease expression has been shown to increase with age and 

pathological changes (Goldring, 2006). 

Metabolic rates are influenced by changes in their mechanical and physiochemical 

environment. The main directors of metabolism are the cytokines, chemical messenger 

proteins that are synthesized by chondrocytes and released into the matrix. Cytokines 

may bind to cell surface receptors to stimulate both catabolic and anabolic effects 

(Huber et al., 2000). Examples of anabolic cytokines include transforming growth 

factor P (TGF-P), insulin-like growth factor-l (lGF-I), and interleukin-4 (IL-4), that 

have stimulatory effects on matrix synthesis and can antagonize the action of some 

catabolic cytokines (Tyler et al., 1992; Mow and Ratcliffe, 1997; Chowdhury et al., 

2006). Cytokines involved in catabolic processes include interleukin-I P (IL-I p) and 

tumour necrosis factor-a (TNF-a), which both predominate in the osteoarthritic disease 

process (Goldring, 2006). 

1.4 Articular Cartilage Zones and Matrix Regions 

Due to the structural differences in articular cartilage with depth, four layers or zones 

can be identified within the tissue. From the articular surface to the subchondral bone, 

there exists the superficial zone, the middle or transitional zone, the deep or radial zone 

and the zone of calcified cartilage (Figure 1.7). Although distinct in features. the 

superficial, middle and deep zones merge into each other and have no clear boundaries. 

However. the calcified zone is separated from the radial zone by a weakly basophilic 

line of mineral deposits, termed the tidemark (Hunziker, 1992). Depending on species 

and joint location, the superficial zone constitutes between 5-20% of articular cartilage 
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depth, the middle zone and deep zones between 30-600/0, and the calcified zone between 

5-100/0 (Meachim and Stockwell, 1979; Poole et aI., 1982; Mow and Ratcliffe, 1997). 

Each articular cartilage zone can be identified by distinct differences in the amounts and 

orientation of the different components (Figure 1.7). The chondrocytes are rounded or 

polygonal in all regions of the cartilage, except for the superficial zone where they are 

flattened or discoid (Archer and Francis-West, 2003). The collagen fibrils and filaments 

are organized into a tight network extending throughout the cartilage, which vary in 

diameter from approximately 20nm in the superficial zone to 70-120nm in the deep 

zone (Buckwalter and Hunziker, 1999; Poole et al., 2001). The proteoglycan content 

increases with increasing depth from the articular surface (Hall, 1998). 

The superficial zone is itself divided into two layers, an acellular layer and a deeper 

cellular layer. The former layer, 2-3/-lm in depth, is termed the lamina splendens, which 

consists of fine randomly arranged 2-20nm diameter collagen fibrils associated with 

abundant proteoglycan, which are most likely collagen-associated biglycan, decorin, 

and lubricin (Buckwalter and Hunziker, 1999; Poole et al., 2001). In the subjacent 

cellular layer, the discoid chondrocytes, 8-15/-lm in diameter, exist either singularly or in 

pairs, have their major axes parallel to the articular surface and secrete collagen fibrils 

arranged around the cells in the same orientation (Hall, 1998). The fibrils are organised 

in closely packed sheet-like layers, the fibrillar orientations varying both in each layer 

and between layers (Bader and Lee, 2000). There is very little hyaluronan present, 

which suggests low amounts of proteoglycan aggregates compared to deeper zones. 

This layer of the superficial zone is the most cellular region of cartilage, representing 

one third of the total number (Stockwell and Meachim, 1979). Additionally, this region 

also contains the highest concentration of collagen, decorin and biglycan, as well as the 

only region to contain lubricin, also known as superifical zone protein (Hall, 1998~ 

Poole et aI., 2001). The superficial zone exhibits the highest tensile properties found in 

articular cartilage, which is important in order to resist the shear forces generated during 

joint loading (Hall, 1998~ Buckwalter et al., 1987a). 
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FIGURE 1. 7: Schematic representation of the different zones and regions of 

articular cartilage. Matrix distribution around the chondrocytes (PM pericellular 

matrix, TM=territorial matrix, ITM=interterritorial matrix) and collagen fibre 

orientation, shoWing the presence of chondrons in the middle and deep zones, are 

shown. Based on Poole et al., 2001, and Buckwalter and Hunziker, 1999. 

In the middle zone chondrocytes are spheroidal in shape, 10J.lm or more in diameter. 

Deeper in this zone cells appear in groups of two or more, with numerous well­

developed rER and Golgi apparatus for matrix synthesis, in contrast to those in the 

superficial layer (Stockwell and Meachim, 1979). Collagen fibrils which are larger with 

diameters of between 30-70nm, are more widely spaced than in the superficial zone. 

These fibres are arranged randomly, although a degree of orientation is evident due to 

the presence of cross-linking between neighbouring fibril segments where ther i a 

folding over of radial fibre bundles to lie in the plane of the articular urfac (Eyr t 

al. 2006). 
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Deep zone chondrocytes are similar to those in the middle zone. but are arranged in 

columns oriented perpendicular to the articular surface (Hunziker, 1992). The relatively 

coarse collagen fibres occur in bundles perpendicular to the surface, passing between 

the chondrocyte columns (Culav et at., 1999). 

The collagen fibres from the deep zone project into the calcified zone of cartilage, 

where they may act to physically couple the cartilage to the subchondral bone. In this 

calcified region, collagen fibrils are radially aligned (Bader and Lee, 2000). The 

chondrocytes in this region are large and hypertrophic, surrounded by an entirely 

calcified matrix that suggests they have an extremely low metabolic activity 

(Buckwalter and Mankin, 1998). The calcified layer acts as a transition between 

uncalcified cartilage and the subchondral bone (Poole et al., 2001). 

In addition to the zonal variation seen in articular cartilage, there is also variation in the 

extracellular matrix within the zones. Indeed, there are three distinct regions, the 

pericellular matrix, the territorial matrix and the interterritorial matrix, these regions 

being roughly concentric around the chondrocytes in the matrix, as shown in Figure 1.7. 

The pericellular region, approximately 2flm wide, contains selective molecules, such as 

type VI collagen and the proteoglycans, decorin and aggrecan (Poole et al., 2001). 

There is little or no fibrillar collagen present in this region (Buckwalter and Hunziker, 

1999). However, in all regions excluding the superficial zone, a fine fibrillar basket, 

involving collagens II, VI, IX and XI from the surrounding territorial region, is formed 

around the chondrocyte and its pericellular region. This has been termed the pericellular 

basket or capsule, which forms a distinct boundary between the territorial and 

pericellular regions (Poole, 1997; Eyre et ai., 2006). Collectively, the chondrocyte, 

pericellular matrix and capsule have been termed the chondron (Poole et ai., 1987), a 

unit which is believed to provide mechanical protection of chondrocytes during 

cartilage deformation (Culav et ai., 1999, Knight et ai., 2001). Cytoplasmic extensions 

from the chondrocytes project out through the pericellular matrix into the surrounding 

territorial nlatrix, which can surround both individual cells and, in some locations, pairs 

or clusters of cells and their pericellular matrices (Buckwalter and Mankin, 1998). 

The interterritorial matrix IS the regton most remote from the chondrocytes, and 

constitutes the majority of the volume of mature articular cartilage (Figure 1.7). The 

interterritorial region is most distinct in the deep zone due to the highly organized 
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proteoglycan-collagen lattice, not apparent in the other matrix regions. Proteoglycan 

concentration is highest in the interterritorial regions of the deep zone where the 

proteoglycans are in aggregate fonn (Poole et al., 1982; Bader and Lee, 2000). 

1.5 Loading of articular cartilage 

During nonnal walking, the forces applied to the articular surface of the major load 

bearing joints of the human lower limb, such as the hip and knee, can vary from almost 

zero to several times body weight at a frequency of approximately 1 Hz (Morrison, 

1970). During more strenuous activities, however, load values can be in excess of 

fifteen times body weight. In addition, the area of contact at the joint surface varies in a 

complex manner, both spatially across the joint surface and temporally during the gait 

cycle. Under physiological conditions articular cartilage will be exposed to contact 

stresses of the order of 5-10MPa (Kempson, 1979). The stiffness of healthy articular 

cartilage is designed to enable the reduction of contact stresses placed on both itself and 

the underlying bone. The associated maximum strains have been estimated to be of the 

order of 15-300/0 in human load bearing cartilage (Broom and Myers, 1980; Guilak et 

al., 1995). This defonnation increases the effective area over which the physiological 

loads are distributed. 

The physicochemical interaction between the various components of the extracellular 

matrix is responsible for the mechanical properties of healthy articular cartilage (Bader 

and Lee, 2000). Proteoglycans are able to interact with the surrounding tissue fluid by 

means of their negatively charged glycosaminoglycan chains that repel each other and 

bind matrix water and mobile cations (Buckwalter et al., 1987a). Proteoglycans are only 

partially hydrated in cartilage tissue, and therefore exert a constant pressure to expand. 

This swelling pressure, which is known as the Donnan osmotic effect, is caused by the 

increase in total inorganic ion concentration associated with the proteoglycans, which 

increases the osmolarity in the tissue. The swelling pressure in unloaded cartilage is 

approximately 0.35MPa (Maroudas, 1979). The collagen fibril network resists the 

osmotic pressure. In unloaded cartilage, an equilibrium exists between the swelling 

pressure (P swelling) on the interstitial fluid and the hydrostatic pressure due to tensile 

forces established in the collagen network (P collagen), such that 

P (l)lIagen = P swelling Equation 1. 1 
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If a sudden compressIve force is applied to the cartilage surface, there is a rapid 

deformation of the bulk extracellular matrix with minimal volume change. This 

deformation is, for the most part, elastic and instantaneously recoverable (Armstrong et 

a/., 1984). If the external compressive force is sustained (Papplied), it causes an increase 

in hydrostatic pressure, altering the equilbrium and establishing a net pressure 

differential (~P): 

~P = P applied + P collagen - P swelling Equation 1.2 

This causes fluid flow away from the loaded tissue area and further deformation of the 

tissue. The removal of fluid increases the proteoglycan concentration within the tissue. 

which increases the osmotic swelling pressure (P swelling). From equation 1.2, there is a 

resulting decrease in the pressure differential, which reduces the fluid expulsion and 

therefore also reduces the effective deformation rate. If the compressive load remains 

constant, the rate of fluid flow away from the loaded area decreases over time until it 

tends to zero and a new equilibrium is established, where there is no pressure 

differential (~P = O): 

P swelling - P collagen = P applied Equation l.3 

The time-dependent behaviour exhibited by articular cartilage when exposed to a static 

compressive force is termed creep, and is characteristic of viscoelastic materials (Figure 

1.8). The time taken to reach equilibrium is inversely proportional to the square of the 

cartilage thickness. For relatively thick human cartilage up to 4mm it can take up to 16 

hours for the tissue to reach equilibrium (Kempson 1979). During this time up to 700/0 

of the total water content may be exuded from the tissue. 

On sudden release of the applied force, the cartilage recoils almost instantaneously, to a 

limited extent, before gradually recovering to its original thickness (Figure 1.8). This 

response is also time-dependent, as water is re-imbibed into the cartilage matrix until 

the original unloaded equilibrium is reached. Cyclic loading produces similar time­

dependent behaviour. However, the extent of recovery after each cycle is dependent on 

the form and frequency of the loading pattern (Bader and Lee. 2000). 
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The ability of cartilage to resist compression is governed by the bulk compressiye 

stiffness of the tissue, the Donnan osmotic swelling pressure and the resistance to fluid 

movement. Therefore, in order for articular cartilage to fulfil its functional role as a load 

bearing material, it is essential that the mechanical integrity of the tissue is maintained. 
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FIGURE 1.8: Viscoelastic response of articular cartilage to the application (t /) and 

removal (t2) of a compressive load 

1.6 Articular Cartilage Pathology 

Over an average life-span of 75 years in the developed world, cartilage is susceptible to 

injuries and diseases that cause changes in chondrocyte metabolism and. as a 

consequence, have a direct effect on the function of articular cartilage. These will be 

examined in the following sub-sections. 

1.6.1 Trauma and Injury 

Over-loading of the major joints, occurring, for example, during high-impact actiyity. 

can cause blunt trauma, penetrating injuries and frictional abrasions to articular cartilage 

(Buckwalter et aI., 1987b). These can, in tum, lead to mechanical disruptions of both 

cells and matrix, with loss of matrix macromolecules from the framework and~ in more 

severe cases, associated localised cell injury or death. In cases of minor injury. the 

synthetic response of the chondrocytes in producing new matrix is critical in order for 

cartilage to re-establish nonnal composition and function. 

The response of cartilage to injury is dependent on the depth of the defect into the 

tissue. Partial thickness lesions are unable to heal spontaneously due to the absence of a 

blood supply. These lesions are analogous to the fissures seen during the early stages of 
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osteoarthritis (Hunziker, 1999). Chondrocytes near the lesion may proliferate and 

synthesise new matrix, but there is no associated migration to the site of injury, and thus 

the defect is not adequately filled. However, these lesions seldom progress through the 

tissue depth (Buckwalter et aI., 1987b). 

Full depth lesions penetrating the subchondral bone elicit a typical inflammatory 

response resulting in the formation of fibrocartilage, which only has a partial 

resemblance to hyaline cartilage. Indeed, fibrocartilage does not provide a suitable 

bearing surface or adequate mechanical function, and degeneration of this tissue is 

evident within six to twelve months. This process is associated with a significant 

decrease in proteoglycan content and an extensive fibrillation of the remaining repair 

tissue (Buckwalter et al., 1987b). 

1.6.2 Ageing 

The synthetic functions of chondrocytes have been shown to change with age. In 

particular, cells produce smaller and more variable proteoglycans, and exhibit a reduced 

sensitivity to the anabolic and catabolic regulatory cytokines that regulate turnover. 

Chondrocytes in aged tissues are therefore less able to maintain and repair tissue 

following injury (Buckwalter and Hunziker, 1999). 

Superficial fibrillation is commonly seen in weight-bearing articular cartilage from 

middle age, although in the vast majority of cases this is a non-progressive and 

asymptomatic form of the condition (Buckwalter and Hunziker, 1999). Fatigue failure 

of the collagen network leads to a decrease in the tensile properties of cartilage with age 

from as early as the third decade of life (Kempson, 1982 and 1991). Collagen fibrils 

become more widely spaced and larger in diameter and are less able to withstand the 

osmotic swelling pressure of the proteoglycans, leading to localized tissue swelling 

(Huber et al., 2000). Additionally, there may be an increase in cross-linking of collagen 

via non-enzymatic glycation reactions (Buckwalter and Hunziker, 1999). 

Proteoglycan aggregate composition is altered with age, with a decrease in the number 

and size of chondroitin sulphate chains and an increase in the number and size of 

keratan sulphate chains (Hardinghan and Bayliss, 1990). Proteolytic changes to 

aggrecan monomers, hyaluronan chains and core and link proteins result in a reduction 

in both the size and nature of the aggregated proteoglycans. An increase in hyaluronan 
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concentration reported in aged tissue is due to either an increased synthesis and/or 

accumulation of degraded molecules (Buckwalter and Hunziker, 1999). Changes to the 

collagenJproteoglycan network cause a reduction in water content and softening of the 

tissue, thereby reducing its deformation capabilities and resulting in acceleration of 

degenerative processes and cartilage destruction (Huber et aI., 2000). 

1.6.3 Disease 

Arthritis is a generic term encompassing a group of conditions causing pain, stiffness 

and inflammation of the joints. These disorders can be isolated to a single joint. or be 

polyarticular in nature (Beris et aI., 2005). The factors affecting the onset of arthritis in 

a patient can be hereditary in origin, or can be due to ageing, trauma or inflammation. 

Such factors can sometimes be related (Goldring, 2006). The two most well-known 

forms of arthritis are rheumatoid arthritis and osteoarthritis. 

Rheumatoid arthritis is a chronic systemic autoimmune disorder where the immune 

system attacks the synovium in the joint capsule, causing inflammation with increased 

presence of proteases and catabolic cytokines that disintegrate cartilage and the 

underlying bone (Ritchlin, 2004). This disease affects both the major load-bearing joints 

as well as the more peripheral smaller joints in the hands and feet. 

Osteoarthritis is the most common form of arthritis, and is caused by wear and tear of 

the articular surface. Although the incidence of osteoarthritis increases with age, it is not 

caused by ageing per se, but rather, the changes to the tissue that occur with ageing 

increase the risk of degeneration (Bader and Lee, 2000). Primary osteoarthritis is 

characterized by late onset in an otherwise healthy tissue, whereas secondary 

osteoarthritis has an earlier onset and is induced by other factors such as disease or joint 

trauma (Goldring, 2006). There has been an increase in the number of young people 

who develop the disease due to traumatic changes, such as those sustained during 

sporting and other high-risk activities, often involving joint structures such as the 

anterior cruciate ligament and the meniscus in the knee. 

The earliest stage of osteoarthritis involves fraying of the superficial layer collagen. 

termed fibrillation. The cartilage then develops vertical fissures, with an associated 

disruption/loss of proteoglycan and an increase in water (Buckwalter et a/.. 1987b~ 

Buckwalter and Mow. 1992). Chondrocytes proliferate by forming clusters to synthesise 
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new matrix; however, an increase in degradative enzymes means that catabolism 

predominates, leading to further tissue breakdown (Huber et aI., 2000). Breakdown 

products can cause inflammation in the synovial space as the cells lining the joint 

attempt to remove them. Osteoarthritic lesions progress both in width and depth down 

to the subchondral bone, with associated thinning of cartilage, cell death, fibrocartilage 

formation and bony out-growth on the joint surface, the latter known as spurs or 

osteophytes (Hunziker, 2001; Buckwalter et aI., 1987b; Huber et aI., 2000). The 

resulting bone-on-bone contact during joint motion and loading is the cause of both pain 

and debilitation. Various pharmacological therapies can be used to reduce symptoms, 

primarily pain, but none have proved significantly effective at modifying or reversing 

the disease process (Goldring, 2006). 

1.7 Repair strategies 

The limited repair capacity of articular cartilage has spawned a number of surgical 

methods that have been used to alleviate the symptoms of osteoarthritis and restore 

function to the joint by stimulating repair, replicating cartilage function, or 

regenerating/replacing cartilage tissue. Some of the common repair strategies are 

summarised in Table 1.5. 

In addition to these well-established methods, scientists have increasingly examined the 

potential of a tissue engineering solution for cartilage repair. This strategy involves the 

development of a functional hyaline cartilage that can integrate with existing host tissue, 

thus reducing/eliminating the pathological changes occurring during both natural and 

surgical repair processes. This tissue engineering approach typically involves the in 

vitro culture of chondrogenic cells that are then implanted into the defect site. Cell-types 

investigated include autologous chondrocytes and mesenchymal stem cells (Brittberg et 

aI., 2001; Raghunath et aI., 2005). Cells can be manipulated during the culture process 

genetically, chemically and mechanically within a controlled bioreactor environment to 

influence cell metabolism. There are three general strategies for producing new tissue, 

which may be used alone or in combination (Fauza, 2003): 

1. Isolated cell suspensions: The most common technique involves autologous 

chondrocyte implantation (ACI), where a biopsy of healthy cartilage is 

removed from a non-loading bearing area. The biopsy is enzymatically 

digested to isolate chondrocytes, which are cultured in \'itro and re-implanted 

25 



Chapter 1: Composition and Structure of Articular Cartilage 

into the defect site, which is traditionally covered with a periosteal flap. Use of 

ACI in clinical practice has given satisfactory results, particularly over the 

short- and mid- terms, although for larger/deeper and irregular shaped defects 

ACI has been used in combination with bone grafts (Beris et al., 2005). 

2. Tissue-inducing substances: Anabolic factors have been employed to promote 

chondrogenic differentiation and matrix reconstitution (Weisser et al., 2001). 

These may be introduced ex-vivo before implantation, or incorporated into 

injectible/implantable carriers at the defect site (Goldring, 2006). Such 

morpho gens include TGF-~, insulin-like growth factor, basic fibroblast growth 

factor (bFGF), and bone morphogenic proteins (BMPs) (Raghunath et al.. 

2005, Fujisato et al., 1996; Goldring, 2006). 

3. Cells placed on/within matrix: Cells are attached to biocompatible scaffold 

materials made of either naturally occurring substances or synthetic polymers 

or ceramics, which act to guide tissue organization and growth (Fauza, 2003). 

Porous scaffolds have applications for repair of larger cartilage defects, and 

have the advantage of allowing chondrocytes to maintain their differentiated 

phenotype and function as they are cultured in a 3D environment (Raghunath 

et al., 2005, Temenoff and Mikos, 2001). Scaffolds can be protein-based (e.g. 

fibrin, collagen), carbohydrate-based (e.g. polyglycolic and polylactic acid, 

hyaluronan, alginate, agarose), made of artificial materials (e.g. carbon fibres, 

hydroxyapatite), or a combination of these (Hunziker, 2001). 

Scaffolds need to have sufficient porosity for tissue ingrowth as well as 

adequate mechanical integrity to withstand both the implantation procedure 

and the mechanical forces experienced at the joint surface post-implantation. 

Additionally, scaffolds should promote integration of regenerated tissue with 

native tissue (Frenkel and Di Cesare, 2004). Unfortunately, many of the above 

scaffolds do not have long-term functionality, in terms of biocompatibility and 

mechanical properties, to be used successfully in humans. 

Although much progress has been made in combating cartilage pathology, more 

research is required in order to produce a fully functional cartilage repair tissue with the 

necessary longevity to pre\'cnt repeated clinical intervention. 
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TABLE l.5: Various therapeutic interventions for cartilage repair and replacement. 

Intervention Rationale Disadvantages 

Lavage Goint irrigation) Removal of degradation Only short tenn pain relief. 

products from synovial space. Cell apoptosis and necrosis. 

ShavinglDebridement 'Smoothing' articular surface. Continued degeneration of tissue, 

(Hunziker, 2001) 

Abrasion Chondroplasty Instigate inflammatory response Repair tissue is fibrocartilage not 

Pridie Drilling and cartilage fonnation. hyaline cartilage. 

Micro fracture Eventual fibrillation and 

(Hunziker, 2001) breakdown. 

Osteotomy Realignment/correction of Can precipitate slow onset of 

(Hunziker, 2001) defonned joint structure and progressive osteoarthritis. 

biomechanics. 

PerichondriaVperiosteal grafts Transplantation into full depth No long tenn stability of repair 

(Beris et at., 2005) cartilage defects due to presence tissue or restoration of hyaline 

of chondrocyte precursor cells cartilage layer. 

in cambial layer of the tissue. Problems with graft attachment 

and calcification. 

Osteochondral transplantation or Full depth osteochondral plugs Chondrocyte death during graft 

'mosaicplasty' to replace lost tissue. harvesting. Problems with 

(Beris et al., 2005; Gortz and Allografts used for large matching geometry of graft(s) 

Bugbee, 2006) defects, autologous grafts for with that of defect. Absence of 

smaller defects. lateral mechanical support. 

Total Joint Replacement Removal of diseased joint Finite implantation life of up to 

(Huo et aI., 2007; Buechel, 2004) surfaces and replacement with 20 years (hip/knee), with 

functional biomaterial 'ball and decreased life-spans for 

socket' components subsequent revision replacement 

implants. 

Inflammation caused by wear 

particles, leading to loosening of 

implant and bone resorption. 

Risk of dislocation !infection 

IDVT. 

Not recommended for young 

active individuals. 
- --
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2.1 Introduction to mechanotransduction in cartilage 

The structure and composition of articular cartilage can alter in response to the forces it 

experiences during physical activity. It is the cellular component of articular cartilage, 

the chondrocytes, which maintain this structure and function. The loading of articular 

cartilage acts to stimulate the chondrocytes, which respond by altering their synthesis 

and catabolism of matrix molecules to maintain the cartilage integrity (Tammi et al., 

1987; Urban, 1994). In normal joints, load-bearing areas are thicker, exhibit a higher 

proteoglycan content and are mechanically stronger than non-load-bearing regions of 

the same joint (Buckwalter and Mow, 1992, Slowman and Brandt, 1986). They also 

contain larger chondrocytes with a greater volume of intracellular organelles (Eggli et 

aI., 1988). In order to further understand the effects of mechanical loading on 

chondrocyte metabolism, the following sections will describe in vivo and in vitro 

research into cartilage loading and the associated mechanotransduction signalling 

pathways. 

2.2 In vivo studies 

Various studies examining the effects of immobilization using animal models show that 

proteoglycan content in articular cartilage is altered by changes in load bearing of a 

joint. Load is deemed to be the significant factor in the maintenance of cartilage rather 

than joint motion. As an example, the absence of weight bearing in a canine model 

where a distal portion of the limb is amputated was shown to lead to cartilage atrophy, 

even when joint motion was permitted (Palmoski et al., 1980). 

LeRoux and colleagues (2001), using a canine model, found that cast immobilization of 

the knee significantly reduced proteoglycan concentration and shear modulus in tibial 

cartilage after four weeks. However, Richardson and colleagues (1993), in a similar 

experiment using an equine model, found no significant decrease in rates of 

proteoglycan synthesis after 30 days of immobilization. Clearly, the effects of joint 

immobilization are dependent on the experimental period, the nature of the 

immobilization, and the species and age of animals used (Tammi et aI., 1987). 

Although some of these alterations can be reversed to an extent by reloading of the 

joint. full restoration of articular cartilage proteoglycan levels was not seen in a canine 

knee model after a 50 week remobilization period, following on from 11 weeks of 

immobilization (Jortikka et aI., 1997). Furthennore, in skeletally immature joints, 
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immobilization may affect development of articular cartilage in such a way that \ery 

slow recovery or permanent alterations are induced (Kiviranta et al., 1994). 

Controlled exerCIse has the opposite effect to immobilization. For example, 

chondrocytes were shown to be enlarged after exercise in rabbits (Paukkonen et at.. 

1985), and non-strenuous exercise in beagles produced increased cartilage thickness, 

proteoglycan content and matrix stiffness (Kiviranta et al., 1988). By contrast, excessive 

and prolonged loading of the joint can damage otherwise healthy cartilage. Animal 

models of osteoarthritis can be mechanically induced by introducing joint instability or 

altering the load across the joint, with load changes affecting both chondrocyte 

metabolism and cartilage structure (Muir and Carney, 1987). 

2.3 In vitro studies 

In vitro studies investigating the effect of load on cartilage have involved the use of 

explants, isolated chondrocytes and chondrocytes seeded in 3D scaffolds. These will be 

discussed in separate sub-sections. 

2.3.1 Cartilage explants 

Cartilage explants can be maintained in vitro in a stable and controlled environment 

(Sah et al., 1992; Dumont et al., 1999). Static compression of explants causes an 

inhibition of glycosaminoglycan synthesis, as assessed by reduced radiolabelled 

sulphate incorporation, in proportion to the applied stress (Sah et al., 1992; Guilak et 

al., 1994; Buschmann et al., 1996; Li et al., 2001). Furthermore, under static 

compressIon, deposition of proteoglycan matrix around individual chondrocytes 

appeared to be directionally dependent, forming perpendicular to the axis of 

compression (Quinn et al., 1998). These effects were reported to be dependent on such 

factors as the length of the loading period. As an example, Bachrach and colleagues 

(1995) found that a compressive load of 0.1 MPa applied for 10 minutes stimulated 

proteoglycan synthesis, whereas the same load applied for 20 hours suppressed 

synthesis. The authors suggested that the effects during the former period were 

predominantly due to pressure, and the latter effects due to cell strain as fluid is exuded 

from the system. 

Dynamic loading of cartilage explants produces alterations in proteoglycan synthesis 

and other metabolic effects dependent on factors, such as the amplitude and frequency 
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of loading (Sah et al., 1989; Li et al., 2001). Buschmann et al. (1999) using loading 

regimes of both 0.01 Hz and 0.1 Hz showed significantly increased GAG s)'llthesis 

compared to control explants. The lower frequency yielded a homogeneous spatial GAG 

distribution, whereas at the higher frequency increased GAG was observed to occur at 

the periphery of the explants. The authors suggested these findings were due to 

enhanced interstitial fluid velocities at explant peripheries, supporting the idea that load­

induced fluid flow triggers the up-regulation of aggrecan s)'llthesis. 

It is important to note that when using explants to investigate chondrocyte behaviour, 

the presence of a charged extracellular matrix leads to the coupling of both mechanical 

and physicochemical effects, which may have implications when examining isolated 

signaling pathways (Bader and Lee, 2000). 

2.3.2 Monolayer cultures 

Isolated chondrocytes can be successfully grown as primary monolayer cultures. Such 

cultures, however, are not particularly suitable for studying the effects of isolated 

mechanical stimuli on cell metabolism, due to the difficulty in applying physiological 

strains. Moreover, cells cultured in monolayer do not generally maintain the 

chondrocytic phenotype. In particular, at low seeding densities under 10
4 

cells/cm2, 

cells spread out and attach to the substrate producing an elongated and flattened 

morphology. This fibroblastic phenotype is characterised by a transition to the 

production of both type I collagen and non-aggregating proteoglycans (Lee et al., 2003). 

Experiments using high-density monolayers have investigated the effect of hydrostatic 

pressure (Parkkinen et al., 1993; Smith et al., 1996), tensile strain (De Witt et al., 1984; 

Wright et al., 1997), and flow-induced shear (Smith et al., 1995, 2000) on chondrocyte 

metabolism. Such studies have generally demonstrated an up-regulation of aggrecan and 

collagen II in response to these forms of mechanical loading. 

2.3.3 Three-dimensional cultures 

The advantage of using chondrocytes seeded into scaffolds producing three-dimensional 

cultures is that chondrocytes are able to adopt a spherical morphology and thus maintain 

chondrocyte phenotype. The majority of model systems which have been investigated 

employ natural hydrogels, such as alginate and agarose. 
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Alginate is a negatively charged linear polysaccharide derived from sea algae, made of 

block copolymers of 1-4 linked ~-D-mannuronic acid (M) and a-L-guluronic acid (G) 

(LeRoux et al., 1999). In the presence of calcium or other divalent cations, alginate 

polymerises to form a non-toxic hydrogel. Alginate has similar structural and chemical 

properties to GAGs, in which chondrocytes maintain phenotype for long periods (van 

Osch et al., 1998). Accordingly, alginate gel has been widely proposed as a suitable 

scaffold material for tissue engineered cartilage repair (Fragonas et al., 2000; Rowley et 

al., 1999; Drury et al.; 2004). Indeed, chondrocytes encapsulated in alginate gel have 

been shown to synthesise matrix consisting of aggrecan, decorin and collagen types II. 

IX and XI (Hauselman et al., 1992; Petit et al., 1992). Gross compression of 

chondrocyte-alginate constructs causes cell and nucleus deformation provided that the 

modulus of the gel is greater than that of the cell (Ecell ::::: 0.5-4kPa) (Knight et aI., 2002). 

However, the most commonly utilized 3D culture system for chondrocytes involves 

agarose, a polysaccharide polymer material extracted from seaweed. Due to the 

presence of a large number of hydroxyl groups, agarose is hydrophilic, forming an 

uncharged gel. Chondrocytes seeded in agarose gel maintain their phenotype in long­

term culture as demonstrated in 2% agarose, with production of cartilage matrix for up 

to 70 days in culture (Buschmann et aI., 1992) and cytoskeletal organization similar to 

that seen in situ (ldowu et al., 2000). Newly synthesized macromolecules become 

trapped and accumulate pericellularly, forming a matrix that is of greater physiological 

relevance in terms of quantity, composition and structure than that produced in 

monolayer culture systems (Quinn et al., 2002). 

Gross compression of the chondrocyte-agarose system permits the investigation of cell 

deformation in cartilage mechanotransduction in the absence of other events associated 

with compression of a charged extracellular matrix (Freeman et al., 1994, Knight et al., 

1998a; Mauck et al., 2000). Additionally, temporal changes to chondrocyte deformation 

due to matrix elaboration can also be investigated (Buschmann et al., 1995~ Knight et 

aI., 1998b and 2006a, Lee et aI., 2000a). 

Investigation in the host lab on 3D agarose constructs revealed a reduction in GAG 

synthesis and cell proliferation under 150/0 static compression for 48 hours compared to 

controls (Lee and Bader, 1997). By contrast, dynamic compression at 15% strain was 

shown to be frequency dependent. For example, a 0.3 Hz frequency caused inhibition of 

GAG synthesis similar to that seen with static compression, whereas at 1 Hz the 
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synthesis was stimulated. At 3Hz, GAG synthesis returned to control levels. suggesting 

the possibility of a 'window~ of frequencies whereby effective fluid flow was initiated 

to produce a stimulatory response. Further temporal modeling over 48 hours using the 

1 Hz frequency yielded the maximal GAG synthesis after at least 12 hours continuous 

compression, whereas cell proliferation was maximal after 1.5 hours of continuous 

compression followed by 46.5 hours of unloaded recovery (Chowdhury et al., 2003). 

Clearly, these studies show that it is possible to regulate loading in such a way as to 

selectively stimulate metabolic activity of chondrocytes in 3D constructs. 

2.4 Mechanotransduction signalling pathways 

From the in vivo and in vitro studies described in Sections 2.2-2.3~ it is clear that 

chondrocytes sense changes in their mechanical environment and respond by altering 

their metabolic pathways. The sequence of events and pathways by which chondrocytes 

respond to mechanical loading is termed mechanotransduction. A variety of effects are 

produced by mechanical compression of cartilage that may be involved in these 

processes, although many are still poorly understood. Mechanotransduction events can 

be separated into two levels; namely, the tissue and cellular level and the intracellular 

level. 

2.4.1 Tissue and Cellular Level 

The interplay between tissue level mechanotransduction events IS summarized 

schematically in Figure 2.1. 

2.4.1.1 Hydrostatic Pressure 

The osmotic pressure differences present In articular cartilage, termed the Donnan 

osmotic swelling pressure (Section 1.5), generates a hydrostatic pressure even in 

unloaded tissue. During joint loading, articular cartilage is subject to hydrostatic 

pressure changes before deformation and subsequent events (Weightman and Kempson, 

1979). Hydrostatic pressure in human articular cartilage varies from a resting pressure 

of 0.2 MPa to 4-5 MPa during walking, and to as high as 20 MPa during more vigorous 

activity (Urban et al., 1994; Weightman and Kempson., 1979). 

In vitro studies using explants (Urban and Hall 1992), monolayer (Ikenoue ct al.. 2003) 

and 3D culture (Mizuno et aL 2002, Toyoda et al., 2003) have shown that both static 

and dynamic hydrostatic pressure in the range of 1-15 MPa produces a change in 
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chondrocyte metabolism, particularly related to GAG synthesis. However, the nature of 

the response appears to be highly dependent on the time and magnitude of the 

hydrostatic pressure. Pressures between 5 and 10 MPa generally stimulated synthesis, 

while lower pressures had either a minimal effect or inhibited synthesis. 

Hydrostatic pressure, in isolation from other factors, does not cause significant cell or 

matrix deformation or induce interstitial fluid flow (Guilak et aI., 1997: Myers et aI., 

2007). The mechanisms by which hydrostatic pressures may affect cartilage behaviour 

are unclear, but suggestions include changes to the transmembrane potential (Wright et 

al., 1992) and membrane transport activity (Hall, 1999; Browning et aI., 2004), 

affecting intracellular concentrations of ions such as Ca2
+ and K+. Stretch-activated 

channels have also been proposed (Mizuno et al., 2002), although this seems unlikely 

given that the level of cell deformation is probably minimal. However, some cell 

deformation may occur due to the pressure differential across the cell membrane. 

Hydrostatic pressure changes have been shown to alter cytoskeletal polymerization and 

organization, shown in chondrocytes seeded in monolayer (Parkinnen et al., 1993) and 

agarose (Knight et aI., 2006a). It has been recently proposed that these alterations could 

initiate changes in matrix synthesis by activating pathways involving the release and/or 

activation of cytoskeletal proteins (Myers et al., 2007). 

2.4.1.2 Matrix Deformation 

Compression of articular cartilage causes deformation of the cellular matrix, resulting in 

a variety of effects which may have a part to play in mechanotransduction. 

Interstitial Fluid Flow: The generation of spatial gradients in hydrostatic pressure, and 

subsequent matrix deformation, causes the flow of interstitial fluid, resulting in mass 

transport and fluid redistribution. Fluid flow may alter chondrocyte metabolism directly 

aiding nutrient delivery and accelerating the transport of macromolecules and other 

solutes into the cell (Yellowley et aI., 1999) as has been suggested in bone (Jacobs et 

aI., 1998; Donahue et aI., 2003). However, other authors do not believe this plays a 

major role in cartilage mechanotransduction (Hung et al. 1996a, Ferguson ct al., ~OO-l). 

in vitro studies have demonstrated that fluid flow may alter chondrocyte metabolism by 

directly exerting shear stresses on the membrane of chondrocytes and other cell t) -pes, 

activating calcium signalling (Helmlinger et aI., 1996; Hung et aI., 1996b) and mitogcn­

activated protein kinase (MAPK) signalling (Ishida et aI., 1997; Hung ct aI., ~OOO), 
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leading to stimulation of proteoglycan synthesis (Buschmann et aI., 1999, Eitler et al. 

2006). 

Osmotic Pressure: Cartilage loading leads to changes in extracellular osmolarity due to 

expulsion of water and proteoglycan-associated counter ions from the tissue. This will 

result in an increased proteoglycan concentration and movement of fluid and ions back 

into the tissue in an attempt to restore osmotic equilibrium (Urban, 1994). \1atrix 

synthesis is significantly influenced by osmolarity outside the cell, suggesting that the 

coupling of mechanical and physicochemical environments may be important as a 

process of signal transduction associated with applied loads (Guilak et at.. 1997). 

Chondrocyte culture in defined media produced maximal proteoglycan synthesis at 

osmolarities of 250-450 mOsmole, which is similar to that seen in situ (Urban and HalL 

1992). Addition of hypotonic and hypertonic medium to chondrocytes in monolayer and 

agarose (Hung et al., 2003) and explants (Schneiderman et al., 1986) caused an increase 

and reduction in sulphated proteoglycan synthesis, respectively. Responses may he 

mediated directly by osmotically-gated ion channels such as TRPV 4, which activate 

intracellular signalling cascades, or indirectly through the control of cell volume (Hall et 

al., 1996; Browning et at., 2004; Clark et at., 2008). 

Streaming potentials and currents: Deformation of cartilage induces a separation of 

charge between mobile counter ions and the negatively charged GAGs, producing an 

electrical field parallel to fluid flow (Legare et al., 2002). Streaming potentials may 

modulate matrix metabolism (for review see Sander and Nauman, 2003). In vivo and in 

vitro studies have reported modulation of aggrecan synthesis after the application of an 

electric current (Brighton et at.; 1976 and 2006). Electrical streaming potentials arising 

from mechanical loading may activate voltage-gated ion channels with associated 

alterations in membrane potential (Sugimoto et al., 1996; Wilson et al., 2004). 

pH and ion concentration: The pH of the extracellular matrix in unloaded articular 

cartilage is estimated to be approximately 6.9 and is clearly influenced by the 

concentration of ions (Maroudas, 1979). Static compression produces an expulsion of 

interstitial tluid and an increased concentration of fixed negatiyc charges from the 

proteoglycans, attracting protons into the extracellular matrix and therefore reducing the 

pH (Sah ct aI., 1992: Wilkins and Hall, 1995). Previous reports have demonstrated that 

a reduction in extracellular pH causes a decrease in matrix synthesis by chondroc~1es 
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(Gray et al., 1988, Boustany et al., 1995). It has been suggested that variation in 

extracellular pH affects intracellular pH in chondrocytes ([pHi]) via transport 

mechanisms, such as the N a + /H+ exchanger systems, al tering intracellular ion 

concentration (Hall et al., 1996). The resulting changes in [pHi] may cause other 

cellular events including alterations in intracellular Ca2~ concentration ([Ca2-]i) which 

ultimately trigger downstream changes in cell metabolism (Gray et aI., 1988). 

2.4.1.3 Cellular Deformation 

Various studies have shown that physiological levels of mechanical stress and strain 

cause changes in chondrocyte shape and volume. Compression of explants results in a 

reduction in cell dimension parallel to the axis of compression with minimal lateral 

expansion associated with the Poisson ratio for articular cartilage (Quinn et aI., 1998; 

Buschmann et aI., 1996). Guilak and colleagues (1995) found a decrease in volume for 

chondrocytes contained in explants subjected to physiological static compressive strain 

of 150/0. This effect may be due to compression-induced osmotic changes (Szafranski et 

aI., 2004) or the prevention of lateral expansion. By contrast, Lee and colleagues 

(2000a) observed no changes in the volume of chondrocytes compressed in 3D agarose 

constructs strained to 250/0. This difference may reflect the uncharged nature of agarose 

compared to the extracellular matrix cartilage, or the unconfined nature of loading. The 

extent of cell deformation is dependent on the presence and deformation of the 

surrounding extracellular matrix (Knight et al., 1998b). 

Mechanotransduction events associated with changes in cell shape and volume have 

been reported to involve activation of stretch-sensitive membrane channels and 

transmembrane receptor molecules, which may influence intracellular calcium 

concentrations and cytoskeletal organization (Guilak et aI., 1999; Roberts et aI., 2001: 

Sachs et aI., 1991; Szafranski et aI., 2004). Recent work has implicated a purinergic 

pathway involving the release of A TP in modulating downstream calcium signalling 

caused by cyclic compression of chondrocytes in agarose (Pinguann-Murphy et al.. 

2006). Additionally, chondrocyte pnmary cilia have been highlighted as 

mechanosensors that can trigger intracellular events downstream from cartilage 

compression (Poole et al., 2002; Whitfield, 2008). 
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2.4.1.4 Specific Pathways associated with 3D Scaffolds 

The events described in the previous sections and the manner in which cells sense and 

respond to them will differ based on the nature of the physical environment of the cell. 

The various scaffolds used to culture cells in 3D culture (see Section 2.3.3) provide a 

very different environment to that seen in vivo. 

The charged, fluid-filled extracellular matrix of chondrocytes in cartilage tissue in situ 

gives rise to coupled chemical and electrical phenomena during loading. These 

pathways will not be seen in cell-seeded scaffolds prior to the synthesis of extracellular 

matrix. Even then, the relative stiffness of the extracellular matrix compared to the 

scaffold material may prevent matrix deformation until a confluent matrix has been 

elaborated. However, the absence of matrix enables investigation of specific pathways 

in isolation from other factors present in vivo. For this reason, the 3D agarose model 

system has been used to investigate the role of cell deformation in isolation from factors 

associated with compression of a charged extracellular matrix. 

It is important to note that many of the biophysical events occurring in the body occur in 

combination and therefore in vitro results can only provide part of the picture on 

cartilage tissue mechanotransduction. 

2.4.2 Intracellular Level 

Load-induced changes to the extracellular environment are communicated to the 

chondrocyte, triggering an intracellular response. A selection of these events is 

discussed in the following sub-sections. 

2.4.2.1 Cytoskeleton 

The cytoskeleton is deemed to play an important role in sensing the mechanical stresses 

applied to chondrocytes in cartilage. The three cytoskeletal components form a 

framework that provide structure and shape to the cell. Actin microfilaments, vimentin 

intemlediate filaments and tubulin microtubules form a link between the plasma 

membrane and the nucleus and are believed to be involved in mechanotransduction 

processes incorporating stretch-activated ion channels, integrin receptors, and distortion 

of intracellular organelles (Janmey et at.. 1998; Millward-Sadler and Salter, 2004~ 

Wang et aI., 1993 and 2001 ~ Knight et a/., 2006b). 
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A number of studies have investigated the effects of mechanical stimuli on the 

organization of the cytoskeleton of the chondrocyte. Actin microfilaments are most 

concentrated in the periphery of the cell, and are responsible for resisting tension and 

maintaining cellular shape (Glogauer et a!., 1997), and participating in cell-cell or cell­

matrix interactions. Application of osmotic pressure (Erickson et aI., 2003. Chao et at., 

2006) and hydrostatic pressure (Parkkinen et a!., 1995) to monolayer culture, and 

mechanical compression and hydrostatic pressure in cell-seeded agarose constructs 

(Knight et aI., 2006b; Campbell et a!., 2007a) have all resulted in altered actin 

organization. Actin polymerization occurs via actin binding proteins, some of which are 

sensitive to intracellular calcium changes. Recent studies in agarose demonstrated 

mechanically induced changes in cofilin gene expression, an actin-associated protein 

responsible for actin depolymerisation (Campbell et al., 2007a). 

Microtubules are involved in cytoplasmic transport (Langelier et al., 2000) and the 

organization and distribution of organelles and other cytoskeletal elements within the 

cytoplasm. Specifically, they have been implicated in Golgi apparatus organization 

(Parkinnen et a!., 1993). Destabilisation of microtubules in primary bovine 

chondrocytes led to down-regulation of hydrostatic pressure-induced proteoglycan 

synthesis, suggesting that mictrotubules modulate pressure changes and subsequent 

biosynthesis at the Golgi apparatus. 

Vimentin intermediate filaments are closely associated with the microtubule network, 

together forming a link between the plasma membrane and the nucleus (Idowu et aI., 

2000). Both cytoskeletal components are co-localised with the mitochondria, and they 

may have a role in potential mechanotransduction processes associated with 

mitochondrial deformation (Knight et aI., 2006a). Indeed, intermediate filaments 

specifically are thought to directly transmit cell deformation from the plasma membrane 

to the nucleus (Janmey, 1998). They are also thought to contribute to the maintenance of 

chondrocytic phenotype (Blain et aI., 2006). Changes to this network may playa role in 

the early stages of the osteoarthritic process (Benjamin et aI., 1995). 

Cytoskeletal organization varies with depth in native tissue, with a directly proportional 

relationship between the extent of immunofluorescent staining and the level of loading 

experienced by tissue regions (Langelier et al., ~OOO). This suggests that a more dense 
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cytoskeleton may be present in response to greater levels of cell deformation or 

hydrostatic pressure, in order to provide enhanced structural integrity to the cells. 

Furthermore, temporal changes in cytoskeletal organization in 3D agarose cultures may 

be directly associated with elaboration of pericellular matrix and formation of integrin­

matrix attachments, with changes in the mechanotransduction pathways (Lee et al.. 

2000a). 

2.4.2.2 Nucleus deformation 

Deformation of chondrocytes in explants by application of mechanical strain causes an 

associated change to the cell nucleus, with a reduction in nuclear height and volume 

(Guilak, 1995). Similar behaviour was seen in chondrocytes cultured in agarose 

(Buschmann et al., 1996; Lee et aI., 2000a) and alginate (Knight et al.. 2002). Nucleus 

deformation may cause alterations in gene transcription and other cell activity, possibly 

involving nucleopore distortion (Pavalko et ai., 2003). 

2.4.2.3 Calcium Signalling and associated pathways 

Calcium (Ca2+) is a ubiquitous second messenger involved in many cellular processes, 

such as secretion and proliferation. In resting cells, intracellular Ca2
+ concentration 

([Ca2+];) is maintained at approximately 10-1 OOnM, but can rise to several micromolar 

on stimulation (Berridge et al., 2000). [Ca2+]; is initially elevated in a discrete area of 

the cell, giving rise to a local Ca2
+ response, before diffusion or regenerative 

mechanisms spread [Ca2+]; across the cell, causing a global response (Bootman et al., 

2001). These global [Ca2+]; signals can occur as a single transient or regular repetitive 

transients, termed oscillations. The generation of these [Ca2+]; signals requires the 

release of sequestered Ca2
+ from intracellular stores and/or an influx from the 

extracellular space. Mechanisms that increase [Ca2+]; need to be balanced by 

mechanisms that remove [Ca2+];, due to the potential toxic effects of sustained high 

[Ca2+]; concentrations. This complex system can be simplified by division into four 

parts (Berridge et al., 2000~ Bootman et aI., 2001) (Figure 2.2): 

• Ca2
+ nlobilizing signals: Stimuli act VIa vanous cell-surface receptors and 

trigger events that lead to the influx of ci+ into the cytoplasm from intracellular 

or extracellular stores. For example, the binding of ligands to G protein-linked 

receptors (GPLR) and tyrosine kinase receptors (TRK) generate signals such as 

inositol-I,4,5-triphosphate (lP3) that then bind to its specific receptor at the 
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endoplasmic reticulum (ER) to release Ca2+. Other signals, for example cell 

deformation, can trigger direct Ca2+ influx from extracellular sources. 

• ON Mechanisms: Mobilizing signals activate ON mechanisms that feed Ca2~ 

into the cytoplasm. In the release of [Ca2+]j, Ca2~ is the principle actiyator of 

these channels in process termed Ca2
+ induced Ca2

+ release (CICR). Influx of 

extracellular Ca
2
+ is controlled via various plasma membrane Ca2

+ channels: 

o Voltage-operated (VOCC): activated by membrane depolarization 

o Receptor-operated (ROCC): activated by binding of agonist e.g. A TP to 

extracellular domain of channel 

o Mechanically-activated (MACC): respond to cell deformation 

o Store-operated (SOCC): activated in response to depletion of [Ca2+]j. 

A ti t o f C 2+ ° 0 C 2+ . . I C ")+ 
• C va Ion 0 a -sensitive processes: a -senSItIve processes trans ate a~ 

signal into cellular response, regulated by two main types of Ca2+ binding 

proteins; buffers that bind to cytosolic Ca2+ and shape the amplitude and 

duration of Ca2+ signals, and sensors that respond to Ca2+ by activating diverse 

processes. 

• OFF mechanisms: These regulatory mechanisms act to remove cytoplasmic 

Ca2+ and restore a cell rest state: 

o Plasma membrane Ca2+-ATPase (PCMA) pumps and Na+/Ca2+ 

exchangers remove Ca2+ to extracellular space 

o Sarco-endoplasmic reticulum ATPase (SERCA) pumps return [Ca2+]i to 

internal stores 

o The mitochondria sequester Ca2+ during the development of a signal (via 

a uniporter) and gradually release it during the recovery phase. Once a 

cell is in its rest state, mitochondrial Na+/Ca2+ exchangers release stored 

Ca2+ back into the cytoplasm to be returned to the ER or removed from 

the cell entirely. Calcium can also leave the mitochondrion via a 

permeability transition pore (PTP). 

Chondrocytes have been shown to exhibit mechanosensitive [Ca2+1 signaling activated 

by a variety of mechanical stimuli including micropipette aspiration (Guilak et at.. 

1999; Kono et al.. 2006~ Ohashi et aI., 2006), fluid flow (0" Andrea et al.. 2000~ Edhch 

l't al., 2004), hydrostatic pressure (Mizuno, 2005), osmotic change (Erickson et at.. 

2001 and 2003) and uniaxial compression of cell-seeded agarose constructs (Roberts et 

al.. 2001: Pingguan-Murphy et aI., 2005 and 2006) . 
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Various mechanisms have been suggested through which chondrocyte mechanical 

deformation may activate [Ca2-'-]j signalling. These include stretch-activated channels 

(SACs) (Mobasheri et al., 2002), mechanosensitive release of ATP and activation of 

purine receptors (Kono et aI., 2006; Pingguan-Murphy et al., 2006), primary cilia 

deflection (McGlashan et aI., 2006), and the mechanosensitive osmochanneL TRPV 4 

(Clark et ai., 2008). 

2.5 Ultrasound 

The following sub-sections gtve an overvIew of ultrasound, a fonn of mechanical 

perturbation at high frequencies that has been used in one fonn to stimulate tissue. 

2.5.1 Physics of ultrasound 

Sound waves are produced as a result of mechanical disturbances or perturbations 

occurring in a material medium. These disturbances cause the molecules of the medium 

to vibrate, as shown in Figure 2.3. This is an essential property of acoustic propagation 

(Grandolfo and Vecchia, 1987). 

Ultrasonic sound, or ultrasound, exists at frequencies above 20kHz, that is, above the 

range of human hearing. It exhibits a shorter wavelength than audible sound, and can be 

focused into a narrow beam, which has made it possible to use ultrasound in a range of 

clinical applications (Farr and Allisy-Roberts, 1998). Ultrasound undergoes reflection 

and refraction at the interface between two different media. It is these reflections or 

· echoes' from different tissues that produce the images seen in diagnostic ultrasound 

(Section 2.5.6). 

Ultrasonic waves are produced by transducers, which are devices that convert one type 

of energy into another. These transducers are commonly made of flat disks of 

compressed polycrystalline lead zirconate titanate (PZT) or the polymer, polyvinylidine 

difluoride (PVDF). These materials are piezoelectric i.e. when defonned they develop a 

voltage across them, or conversely, they expand or contract when a voltage is applied to 

them. The movement of the faces of the disk is proportional to the voltage. The 

thickness and diameter of the disks detennine the operating frequency and the 

characteristics of the ultrasound beam, respectively (Farr and Allisy-Roberts, 1998, 

Kremkau, 1985). 
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Ultrasound can be either continuous wave or pulsed wave in nature (Figure 2.3). For 

continuous ultrasound production, an alternating current (AC) of appropriate frequency 

is applied to the transducer, resulting in continuous expansion and contraction of the 

transducer. This produces successive compressions and rarefactions in the material 

through which the ultrasound wave is passing (Figure 2.3). The wave produced is of the 

same frequency as the applied voltage. 

A 

B 

Rarefaction 

c 
/ 

.. Compression 

~ ~ ~/ 

: ::.- A. ..... ::: 

FIGURE 2.3: A) Production of sound by a transducer causzng B) regzons of 

compression and C) rarefaction of molecules of a medium, resulting in a sound wave 

of wavelength A (adapted from Farr and Allisy-Roberts, 1998). 

With pulsed wave ultrasound, either AC or direct current (DC) is used. To generate the 

pulses, short bursts consisting of a few cycles of alternating voltage are repeatedly 

applied to the transducer. With DC applications, a very short electrical voltage impulse, 

of a fraction of a microsecond duration, is applied to the transducer. This results in a 

few cycles of ultrasound produced by the transducer. 

Transducers used only for continuous ultrasound production are air-backed i.e. have air 

behind the rear face of the transducer inside the transducer assembly. For the production 

of short ultrasound pulses, a damping material is required to be placed directly behind 

its rear face. The higher the damping effect, the shorter the pulses produced. Howcvcr, 

damping decreases the efficiency of the transducer (Kremkau, 1985). 
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FIGURE 2.4: Schematic diagram showing A) continuous and B) pulsed waves of 

ultrasound (p pressure, a=amplitude, t=time, T period of wave, f=frequency). 

2.5.2 Temporal and Spatial Characteristics of Continuous Wave and Pulsed 

Wave Ultrasound 

The period of a continuous wave is the time required for one cycle to occur, and is 

inversely proportional to the frequency,/, measured in Hertz (Hz), namely: 

Tl/j Equation 2.1 

The propagation speed is the speed at which ultrasound travels through a medium, and 

is determined by the density and compressibility, related to the mechanical stiffness, of 

the medium. Frequency, wavelength and propagation speed are related by the equation: 

c fA Equation 2.2 

where A is the wavelength, and c is the propagation speed. Propagation speeds in soft 

tissues, cells suspensions and liquid media are commonly of the order of 150Oms-1
• 

Impedance, a second parameter determined by the medium, is defined by the product of 

the density of the medium and the propagation speed: 

Z=cp Equation 2.3 
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where Z is the acoustic impedance and p is the density. 

Acoustic impedance is important with reference to the reflection of ultrasound at the 

boundary between two materials. When ultrasound encounters a boundary a portion of 

the wave is reflected and the remainder is transmitted into the new material medium. 

In the case where the incident ultrasound is perpendicular to the boundary, the intensity 

reflection coefficient (lRC) represents the fraction of energy or intensity reflected, and is 

related to the acoustic impedances of the two mediums as follows: 

Equation 2.4 

where Zl and Z2 are the acoustic impedances of materials 1 and 2 respectively. as shown 

in Figure 2.5A. 

The fraction of ultrasound transmitted into the second medium is called the intensity 

transmission coefficient (lTC). When incident ultrasound is not perpendicular to the 

boundary, as illustrated in Figure 2.5B, the IRC and ITC are dependent on the incident 

angle and the relative impedances. Refraction is the change in direction of the 

transmitted ultrasound as it crosses a boundary, and is caused by the different 

propagation speeds on either side of the boundary. 

A Medium 1 Medium 2 B Medium 1 Medium 2 

/ 

FIGURE 2.5: Schematic diagram sholt'ing reflection and transmission or refaction of 

ultrasound at a A) perpendicular and B) non-perpendicular boundary (Kremkall. 

/985). 
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A further set of parameters relate specifically to pulsed ultrasound. 

• The pulse repetition frequency (PRF) is the number of pulses occurring per 

second, which, in typical ultrasound scanning equipment, is approximately 

1 OOOS-I. The inverse of PRF is the pulse repetition period (PRP). 

• The pulse duration (PD) is the length of time required for a pulse to occur. and 

is equal to the product of the period and the number of cycles (n) in the pulse: 

PD= nT = nIJ Equation 2.5 

• The duty cycle, or duty factor is the fraction of time that pulsed ultrasound is 

active. It is determined by the pulse duration and pulse repetition period: 

DF = PDIPRP = PD x PRF = nT x PRF Equation 2.6 

2.5.3 Amplitude and Intensity 

The amplitude of a wave is the maximum deviation from the normal value for an 

acoustic variable occurring during a cycle. Variables include pressure, displacement and 

particle velocity, each of which can be used to describe continuous wave or pulsed wave 

ultrasound. 

• The acoustic power (P) of an ultrasound beam is the rate of passage of energy 

through the cross-section of the beam, and is measured in watts (W). 

• The intensity of the beam (1) is the acoustic power passing through an the area of 

the cross-section, A, and is also related to amplitude, Where p is pressure and z is 

impedance: 

, 
I = PIA = p-/]z Equation 2.7 

As power and intensity are non-uniform through the beam and wilL in the case of pulsed 

ultrasound, vary with time, then several intensities must be defined: 
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• The spatial-average temporal-average (SAT A) intensity is the value calculated 

when the total power in the ultrasound beam is divided by the beam area and 

averaged over the pulsed repetition period (for pulsed ultrasound). When 

evaluated at the transducer face this is called It. 

• The spatial-peak temporal-average (SPT A) intensity is the maximum value of 

intensity occurring in the beam averaged over the pulse repetition period (for 

pulsed ultrasound) in the beam. 

• The spatial-average temporal-peak (SATP) intensity is the maximum value 

occurring in time of the spatially averaged intensity. For pulses of constant 

amplitude, as illustrated in Figure 2.6A, the SA TP intensity is represented by the 

spatial average of the intensity during a pulse, and is equal to the SA T A 

intensity divided by the duty factor. The spatial-average pulse-average (SAP A) 

intensity is the spatially averaged intensity averaged also over the pulse duration 

for pulses of non-constant amplitude (Figure 2.6B). 

• A distinction between temporal peak (TP) and pulse average (PA) values is 

required because very short pulses, as well as the longer pulses which are 

traditionally used in physical therapy, are usually not of constant amplitude. For 

constant-amplitude pulses, TP and PA are equivalent. For pulses of non-constant 

amplitude (Figure 2.6B) the spatial-peak pulse-average (SPPA) intensity is the 

maximum intensity in the beam averaged over the pulse duration. 

• The maximum intensity (I"J is the maximum value within the beam occurring in 

space. Typical values for scanning equipment range from <1 mW/cm2 to 300 

mW/cm2
• 

B 

FIGURE 2.6: A) Constant and B) non-constant amplitude pulses. 
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2.5.4 Attenuation 

Attenuation of ultrasound as it travels through a medium reduces both the amplitude and 

intensity, as illustrated in Figure 2.7. Attenuation is caused by: 

• 
• 
• 

scattering of sound in a heterogeneous media 

reflection at interfaces in the media 

conversion of sound energy to heat, termed absorption. 

Distance 
) 

I 

FIGURE 2.7: Attenuation, the reduction in amplitude and intensity of ultrasound as 

it travels through a medium (adapted from Kremkau, 1985). 

The attenuation coefficient (a) is commonly measured in decibels (dB) per centimetre. 

In soft tissues the attenuation in dBcm- 1 is approximately equal to half the ultrasound 

frequency in megahertz. In a liquid medium, attenuation is generally proportional to the 

squared frequency. Table 2.1 gives the measured attenuation coefficients for a variety of 

biological materials for a frequency of 1 MHz. 

2.5.5 Standing wave production 

Standing or stationary wave patterns are the result of reflection and interference of two 

or more acoustic waves of identical frequency, whereby reflected waves interact with 

incident waves. All standing wave patterns consist of nodes and antinodes. Nodes are 

points of no resultant displacement caused by the destructive interference of the two 

waves. Antinodes result from the constructive interference of the two waves and thus 

undergo maximum displacement from the rest position. Under these conditions the 

resultant wave appears to vibrate in regions of the medium and it is not apparent that 

these vibrations in fact caused by travelling waves, hence the term standing wave. 

Nodes and antinodes occur typically every 1)2. In practice, energy losses mean that a 

perfect reflection and a pure standing wave are never achieved. 
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TABLE 2.1: Measured attenuation coefficients/or biological tissues. 

Tissue Attenuation Model Source 

Coefficient 
i 
I 

a (dBcm-1:\1Hz-1) 

Bone 20 Bushong, 1999; Dowsett et a/. , 

1998 

3.6±0.2 Human thigh Jirik et al., 2004 

43.3-47.5 Rabbit supraspinatus tendon Sano et al., 2006 

insertion 

Blood 0.18 Bushong, 1999 

0.2 Dowsett et a/., 1998 

Brain 0.85 Bushong, 1991 

0.9 Dowsett et al., 1998 

Fat 0.63 Bushong, 1991 

0.6 Dowsett et a/., 1998 

0.3±0.0 Human thigh Jirik et al., 2004 

Muscle (normal to 1.8-3.3 Dowsett et al., 1998 

fibrous) 1.2±0.1 Human thigh Jirik et al., 2004 

Tendon 22.25-30.65 Rabbit supraspinatus tendon Sano et al., 2006 

insertion 

Articular cartilage 9.2-14.7 Superficial bovine AC Agemura et al., 1990 

-2.57 Full thickness bovine patella Nieminen et aI., 2004 

AC 

Non-mineralised 1.25-9.65 Rabbit supraspinatus tendon Sano el al., 2006 

fibrocartilage insertion 

Mineralised 43.3-47.5 Rabbit supraspinatus tendon Sano et aI., 2006 

fibrocartilage insertion 

Liver 0.94 Bushong, 1999 

0.7 Jirik et aI., 2004 

Kidney 1.0 Bushong, 1999 

Lung 41 Bushong, 1999 

Water 0.002 Dowsett et al., 1998 

Air 12 Dowsett et al., 1998 

2.5.6 Medical Applications of Ultrasound 

Ultrasound applications in medicine can be divided into three major categories, namely, 

surgicaL diagnostic, and therapeutic, each distinguished by their applied intensity lc\el. 

The majority of these applications employ ultrasound at frequencies between 0.5 and 

15MHz as stated by the National Council on Radiation Protection and Measurement 

(NCRP) (Report No. 71. Operational Radiation Safety Training, 1983, cited by Benwell 

and Bly, 1987). Table 2.2 outlines a range of their typical applications. 
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TABLE 2.2: Clinical applications of ultrasound. 

US Type 

Surgical 

Diagnostic 

Therapeutic 

Applications 

Focused beam ultrasound ablation via mechanical 

hyperthermia: High intensity ultrasound wave causes 

compression, refraction and particle movement resulting m 

kinetic energy and heat production (Williams et a!., 2004). Used 

to treat: 

• Meniere's disease, an inner ear disorder leading to vertigo 

(James 1963). 

• Hepatocellular carcinoma, osteosarcoma, breast cancer (Wu et 

al., 2004). Prostate cancer (Chaussy and Thuroff, 2003). 

• Neurosurgery (Fry and Johnson, 1978; Clement 2004). 

• Preclinical stage for cardiac surgery (Williams et a!., 2004). 

Breakdown of unwanted tissue: 

• Phacoemulsification and aspiration for cataract removal 

(Kelman, 1967). Vibrating probe (20-40 kHz) used to break 

up cataract and vacuum up fragments. 

• ESWL (extracorporeal shock wave lithotripsy). Focused 

pulsed ultrasound to break up kidney stones (Addonizio et a!., 

1984; Chaussy et a!., 1984). 

Non-invasive unagmg of vital organs, foetal development, 

peripheral blood flow, metabolic bone diseases, evaluation of 

fracture callus healing (Kaufman and Einhorn, 1993; Moed et a!., 

1998). Typical frequencies used: 

SAT A Intensity 

~10W,cm­

(Benwell 

Bly, 1985) 

and 

1 
25W /cm- (James, 

1963) 

100mW/cm-, 
1 

lOmW/cm-, 
1 

40mW/cm-, and 

lOmW/cm2 for 

• 3.5-5 MHz - general purpose abdominal scanning including A mode, manual 

heart, liver and uterus. scan B mode, M 

• 5-10 MHz - Superficial tissues such as thyroid, carotid, mode and Foetal 

breast, testis. Also used for infants. 

• 10-15 MHz - the eye. Increasing frequency improves image 

resolution but decreases penetration depth of ultrasound (Farr 

and Allisy-Roberts, 1998). 

Biomechanical measurement of fracture healing (Cunningham et 

a!., 1990). 

Pain relief, decreases soft tissue stiffness and accelerates healing 

(Dyson and Suckling, 1978). High intensities used to decrease 

joint stiffness, reduce pain and muscle spasms and improve 

mobility where heating is desired effect. Frequencies of 0.2-20 

MHz employed according to depth of tissue (ter Harr. 2007). 

Low intensities used for stimulation of cells in absence of thermal 

effects. Applications in wound and bone healing, sports therapy 

(Rubin el at., 2001; \\' arden, 2003). 

Doppler scans 

respectively 

(Repacholi, 

1987). 

<3 W /cm- (Duck 

et at., 2007) 

-----~-------
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2.5.7 Safety considerations for use of ultrasound 

Ultrasound parameters are strictly monitored in order to limit unwanted effects for 

specific clinical applications. Whereas high intensity ultrasound is used particularly for 

its heating effect on tissue, lower intensity ultrasound applications involving diagnostic 

imaging should not produce any effects that could compromise cell and tissue function. 

Safety aspects of ultrasound are detailed in reviews by Duck (2007) and O"Brien 

(2007). In brief, government regulatory bodies are guided by international standards, 

most noticeably those published by the International Electro-technical Commission 

(IEC). The current IEC guidelines (IEC 60601-2-37, 2001, cited by Duck, 2007) state 

that the temperature rise of an ultrasonic transducer surface should not increase above 

10°C or 6°C during external and internal use respectively, with a maximum surface 

temperature of 43°C. Additionally, manufacturers of diagnostic ultrasound equipment 

employing a SAT A intensity of > 100 m W /cm2 need to provide detailed output 

information (IEC 61157, 1992, cited by Duck, 2007). The US Food and Drug 

Administration have set SPTA intensity limits to 720mW/cm2 and 50mW/cm2 for 

non-ophthalmic and ophthalmic imaging, respectively (FDA 51 Ok, 1997, cited by Duck, 

2007). 

2.S.S Biophysical effects of ultrasound in clinical applications 

The biological effects of ultrasound can be separated into non-thermal and thermal 

effects, which are discussed in the following sub-sections. 

2.S.S.1 Thermal effects 

For many of the therapeutic and surgical applications of ultrasound the mechanism is 

provided by heat (Table 2.2). Ultrasound is desirable compared to other methods in that 

heat can be generated within the tissue rather than at its surface. Additionally, the spatial 

distribution of heat can be controlled by focusing of the ultrasound beam. 

The attenuation of an ultrasound beam in body tissues and water result in an increase in 

local temperature. Quantitative estimates for ultrasonic heating at any location can be 

made by calculating the local rate of heat production in calories per cubic centinletre of 

exposed tissue per second (cal/cm2 s) using the following equation: 

Heating rate = 0.055aI Equation 2.8 
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where a is the absorption coefficient (dB/cm) and I is the local time-averaged intensity 

(W/cm2
). 

With time, the rate of temperature decreases as heat is transported to cooler tissue 

(Figure 2.8). Transport occurs via blood flow in the fonn of perfusion and/or convection 

and conduction (Nyborg, 1985). 

The final temperature rise and the 50% "rise time ~, defined as the time taken to reach 

50% of the final temperature rise, are dependent on a number of factors (NCRP, 1983, 

cited by Benwell and Bly, 1987). For an unfocused continuous beam the final 

temperature rise increases with increasing intensity, absorption coefficient and beam 

diameter. The rise time increases with increasing beam diameter only (Nyborg, 1985). 
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FIGURE 2.8: Schematic plot a/temperature versus time at a point in a tissue exposed 

to continuous ultrasound. The initial rate 0/ temperature rise Ti is constant but 

subsequently reduced as heat is dissipated such that the tissue temperature tends 

towards an equilibrium value. 

2.5.8.2 Non-thermal effects 

The use of ultrasound in applications employing non-thennally induced therapeutic 

effects may indeed cause some local heating. However, the World Federation for 

Ultrasound in Medicine and Biology (WFUMB) in a comprehensive report published in 

1998 stated that OOa diagnostic exposure that produces a maximum temperature rise of no 

more than I.5°C above nonnal physiological levels (37°C) may be used clinically 

without reservation" and is hence considered as °non-thennal' (Barnett et aI., 2000). 
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The non-thennal effects of ultrasound have been attributed to a combination of 

cavitation and acoustic streaming. Cavitation refers to the fonnation, growth and 

pulsation of gas or vapour-filled voids found in a liquid or liquid-like material (Dyson 

and Suckling, 1978). Tiny bubbles are fonned at locations tenned nucleation sites. 

However, the exact nature and source of these sites are not well understood in a 

complex medium such as biological tissues (O'Brien, 2007). Bubbles, at a micron or 

sub-micron level, remain stabilized against diffusion in pores, channels and cracks. At 

sufficient ultrasound pressures, these gaseous bodies may exert mechanical stresses on 

surrounding cells or other structures or may generate chemical activity (Nyborg, 1985). 

Two types of cavitation can be distinguished: 

• Stable cavitation, in which the gas bubbles oscillate in a regular fashion for 

many acoustic cycles 

• Transient or inertial cavitation, where bubbles are fonned at the low pressure 

part of the ultrasonic cycle, resulting in rapid growth and collapse within the 

wave period. This releases a large amount of energy in a region of only a few 

mIcrons, which causes irreparable cell damage (Dyson, 1985). However. 

transient cavitation occurs at very high intensities and is not thought to be 

induced in therapeutic or diagnostic applications (Baker et aI., 2001; 0' Brien, 

2007). In high intensity applications, the risk of transient cavitation can be 

minimized by use of higher frequencies (Dyson, 1985). 

Acoustic streaming relates to the movement of fluid in an ultrasonic pressure field. 

Streaming can be divided into bulk streaming and microstreaming, the fonner referring 

to movement of fluid in a single direction, and the latter fonning as eddies of flow 

adjacent to an oscillating source (Baker et al., 2001). Connective tissue fibres and 

plasma membranes of immobile cells act as barriers to the ultrasonic field, which causes 

high velocity gradients to develop (Dyson, 1985). Microstreaming, which is more 

significant at the cellular and intacellular levels, can only occur in association with 

cavitation in vivo (Nyborg, 1985; Baker et at., 2001). 

At its most basic leveL enhanced fluid movement can increase nutrient delivery and 

waste removal associated with cells. However. acoustic streaming exposes boundaries. 

sueh as cell membranes. to hydrodynamic shear stress, which, as described in Section 

2.4.1.2. may itself represent a mechanotransduction mechanism. Proposed effects of 

cOInbined cavitation and microstreaming include increased passage of sodium and 
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calcium ions, which may lead to increased synthesis of protein, as observed in fibroblast 

cultures (Dyson and Suckling, 1978; Dinno et aI., 1989). 

2.5.9 Therapeutic pulsed low-intensity ultrasound for bone repair 

The first clinical use of ultrasound followed the discovery by Corradi and Cozzolino in 

1953 that continuous ultrasound could stimulate the formation of bone callus in rabbit 

radial fractures and proved safe for use with humans (Rubin et aI., 2001). However 

subsequent research focused on the effects of pulsed low intensity ultrasound and, in 

1983, Dyson and Brookes published data from a study of bilateral fibular fractures in 

rats showing that pulsed ultrasound (l.5 MHz or 3.0 MHz US frequency, pulsed 200J.ls 

on: 800!J.s off i.e. 20% duty cycle, SATP intensity 500 m W /cm2
), applied for 5 minutes 

four times a week, accelerated fracture healing compared to no stimulation therapy. In 

addition, these authors noted that treatment was most effective at a frequency of 1.5 

MHz rather than 3.0 MHz and during the early stages of healing. Other researchers 

extrapolated these studies to the clinical setting and found that using a lower intensity of 

30m W /cm2 and exposure time of 20 minutes a day, healed 70% of twenty-six bone non­

unions (Xavier and Duarte, 1983, cited by Rubin et al., 2001). More recent animal 

models and one in-vitro model are presented in Table 2.3. It can be seen that the 

majority of studies indicate that PLIUS has a positive therapeutic effect on bone 

healing. In particular, it influences the process of fracture healing and mineralisation in 

animal models. Furthermore, bone healing is sensitive to specific characteristics of the 

ultrasound signal. It can also be seen that the most commonly used ultrasonic signal has 

a SATA intensity of 30 mW/cm2 of carrier frequency l.5 MHz with a 200!J.s pulse burst 

repeating at l.0 kHz (e.g. Uglow et al., 2003). These ultrasonic parameters have been 

employed in various fracture healing clinical models (Cook et aI., 1997; Heckman et al.. 

1994 and 1997~ Kristiansen et al., 1997; Busse et al., 2002; Rubin et al.: 2001), and the 

apparatus is now commercially available as the Exogen Sonic Accelerated Fracture 

Healing System (SAFHS). Although this system has been used in the USA, to date, it 

has not gained worldwide acceptance as a therapeutic enhancement of bone healing. 

These studies, although highlighting the apparent benefit of using ultrasound for bone 

healing, do not provide insight into the biological mechanisms that facilitate these 

processes. Stable cavitation and acoustic micro-streaming (Section 2.5.8.2) can alter cell 

membrane penneability. In healing fractures, these acoustic pressure wa\'cs arc then 
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TABLE 2.3: Animal models employing pulsed low intensity ultrasound (PLIUS) for 

bone repair. 

Author Animal model Ultrasound regimen Results and Comments 

Pilla et Rabbit 1.S MHz, duty cycle 20% PLIUS-treated fibulas as strong as 

ai., 1990 fibula SATA30± SmW/cm2 
intact fibulas by POD 17, compared to 

osteotomy 20 mins daily after POD 1. POD28 for contralateral fibulas. 

Wang et Rat femoral O.S or 1.S MHz Max US torque to failure> controls. 

ai., 1994 shaft fracture Duty cycle 20% Enhanced stiffness with I.SMHz 

SATA 30± SmW/cm2 compared to O.SMHz. SSD between 

IS mins daily up to POD 14. I.SMHz and controls (p<O.OS). 

Yang et Rat femoral O.S MHz, duty cycle 20% Max US torque and torsional stiffness> 

ai., 1996 shaft fracture SATA SOor 100mW/cm2 controls. SSD at SOmW/cm2 (p<O.OS). 

Up to fifteen daily IS-min No SSD for DNA, collagen and 

exposures between POD 1- calcium. Aggrecan gene exp enhanced 

21. at POD7 for SOmW/cm2 (p<O.OS). 

Jingushi et Rat femoral Freq: 1.S MHz j bone mineral content and density. 

ai., 1998 fracture SATA: 30± SmW/cm2 j peak torque and stiffness. 

100, 200 or 400~s repeating jendochondral ossification. 200~s and 

at 1.0 or 2.0 kHz 1.0kHz optimal parameters. 

Eberson et Rat femur 1 MHz, duty cycle 20% j bone volume and trabecular bone 

ai., 2001 distraction SATA: 30mW/cm2 pattern factors. No SSD in stiffness, 

osteogenesis 20-mins daily from POD28. bone mineral content or density. 

Sacrifice on POD63 

Uglowet Rabbit tibia Sonic Accelerated Fracture No SSD between US and controls for 

ai., 2003 distraction Healing System (SAFHS, bone mineral content, cross sectional 

osteogenesis Exogen): area, strength and bone volume 

I.S MHz, duty cycle 20% fraction. 

SATA: 30mW/cm2 

20-mins daily up to 6 wks. 

Carvalho Rat osteopenic SAFHS parameters. No SSD in bone mineral content. 

and femoral bone 20 mins daily for 20 days. Recent bone formation shown in 

Cliquet, PLIUS-treated femora only. 

2004 

Erdogan Rabbit SAFHS parameters. j mechanical properties of PUUS-

et ai., mandibular 20 mins daily for 20 days. treated bone, assessed by 3-point bend 

2006 osteotomy test, histology and radiology. 

Nolte et In-vitro foetal SAFHS device and Increased length of calcified diaphysis 

ai., 2001 munne parameters. in PUUS-treated rudiments (P<0.01). 

metatarsal Once daily PLIUS D 1-7 of 

rudiments culture. 

POD = post-operative day. SSD = statistically Significant difference. 
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acting as high frequency micromechanical perturbations that may be a surrogate for the 

forces usually acting on bone during micromotion. Indeed, this direct mechanical effect 

of the ultrasound may produce the same cellular and intracellular changes seen with the 

compressive and cyclic loading of cells. 

In-vitro studies have shown that PLIUS may influence calcium activity (Ryaby et al., 

1989), prostaglandin-E2 (PGE2) production (Kokubu et al., 1999), platelet-derived 

growth factor release (Ito et al., 2000), transforming growth factor (TGF~ 1) (Li et aI., 

2003), and promote the maturation of collagenous matrix as a scaffold for calcification 

(Saito et al., 2004). Additionally, MAPK activity (Naruse et aI., 2003), G protein and 

extracellular signal-related kinase (ERK) activity (Chen et aI., 2003), and integrins and 

cytoskeletal reorganization (Yang et aI., 2005) have been implicated as possible 

transduction pathways. 

These results generally demonstrate the ability of ultrasound to influence cell activity in 

bone cells. Of interest is the expression of genes involved in the inflammation and 

remodelling stages of fracture repair. As an example, Yang et al. (1996) showed an 

increase in aggrecan gene expression in a rat femur model (see Table 2.3). They 

proposed that earlier stimulation of extracellular matrix proteins may alter chondrocyte 

maturation and endochondral bone formation, thereby increasing the mechanical 

properties of the healing callus. The possible influence of PLIUS on chondrocyte 

behaviour was supported by further investigations undertaken by the group using 

cultured chondrocytes in monolayer, where upregulation of aggrecan gene expression 

and extracellular matrix protein synthesis were seen, using SAT A intensities of 50 and 

120m W / cm2 (Wu et al., 1996; Parvizi et al., 1999). These authors also showed that 

calcium signalling mediated these mechanotransduction processes by release of [Ca2+]j 

and influx of extracellular calcium (Parvizi et al., 2002). 

2.5.10 Use of low intensity ultrasound for cartilage regeneration 

Following on from the chondrocyte work highlighted in Section 2.5.9, there has been 

growing interest in the possible use of PLIUS in the management of cartilage injury and 

disease. A number of studies are highlighted in Table 2.4. 

In addition to these studies, the use of both pulsed and continuous LIUS has been 

investigated for its etTect on mesenchymal stem cells (MSCs). Ebisawa and colleagues 
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TABLE 2.4: Studies investigating the effect of pulsed 10\1.' intensity ultrasound 

(PLIUS) on cartilage biosynthesis using SAHFS parameters as described in Section 

2.5.9 unless otherwise stated. 

Author Model Ultrasound Results and Comments 

regimen 

Cook et aI., Rabbit patella Once daily Histology demonstrated PLIUS T 
2001 osteochondral defects 20/40 mins up to cartilage repair. Beneficial effect of 

52 wks doubling dose. 

Nishikori et Cultured rabbit Once daily 20 mins PLIUS T chondroitin sulphate synthesis. 

al.,2001 chondrocytes in for 3 weeks No SSD in cell proliferation or construct 

Atellocollagen® gel stiffness. 

Zhang et Chick embryo Single 20 mins Immunohistochemical staining for ColI 

aI., 2002 proximal and distal after 24 hr culture. types II and X and aggrecan over 7 days. 

sterna (PS and DS) SSD for PLIUS-treated PS for all 

explants markers, and in DS except for ColI X. 

Zhang et Chick embryo DS Single 20 mins T proliferation at 2mW/cmL lost by day 7. 

aI., 2003 chondrocytes in using 2 or 30 30 mW/cm2 ~ cell proliferation. 

alginate bead culture. mW/cm2 after 24 hr PLIUS T CoIl II but not aggrecan exp by 

culture. day 7. 2mW/cm2 inhibited CoIl X expo 

Duda et al. BACs in copolymer Once daily 20 mins No effect ofPLIUS based on indentation 

(2004) scaffold nude mice after POD1 up to testing, histology for matrix formation, or 

model. 12 weeks. gene exp for CoIl types I and II, TGF~. 

Mukai et Rat neonatal distal Once daily 20 mins PLIUS T ColI type II and aggrecan 

aI., 2005 femur chondrocyte from D5-DI5. mRNA, ~ ColI X, T DNA content, 

aggregates. ~alkaline phosphatase, T TGF~. 

Hsu et aI., Primary cultured IMHz,67mW/cm2, PLIUS T cell proliferation and sGAG and 

2006 HACs seeded in 10 mins daily for collagen II content by 4 weeks which 

polyester scaffolds. up to 7 wks. returned to control values by 6 weeks. 

Kopakkala- 12-24 month femoral 1 MHz, i sGAG synthesis. PLIUS did not induce 

Tani et aI., BACs in monolayer 580mW/cm2 heat shock protein 70, which was induced 

2006 culture. 10 mins D9-13. with equivalent direct heat. 

Hsu et aI., Primary HAC Single 20 mins PLIUS T integrin exp with downstream 

2007 monolayer after 24 hr culture. PGE2 and COX-2 expo 

SSD = statistically significant difference. BAC = bovine articular chondrocytes. HAC = 

human articular chondrocytes. Exp = expression. COX-2 = cyclooxygenase. 

(2004) found that daily 20 minute PLIUS (SAHFS parameters) enhanced TGF-p­

mediated chondrogenic differention of human mesenchymal stem cell (hMSC) pellets, 

as assessed by aggrecan deposition. PLIUS in the absence of TGF-p had no effect. In 
") 

contrast, Lee and co-workers (2006) found that continuous LIUS (1 MHz, 20OmW/cm-) 

58 



Cbapter 2: Response of Articular Cartilage to "ecbanieal Stimuli 

was able to induce chondrogenesis in rabbit MSCs (rMSCs) in the absence of TGF-~. 

Another study by Schumann and colleagues (2006) found that daily 20 minute 

stimulations in the first week of hMSC aggregate culture reduced proteoglycan and 

collagen gene expression, and had no effect on matrix content at day 21 of culture. In 

contrast, an increased 40 minute exposure enhanced these markers as well as matrix 

deposition in both aggregate and composite scaffold cultures. 

Purported LIUS mechanotransduction pathways involved in the downstream metabolic 

response of chondrocytes include SACs and integrins, with downstream [Ca2+]i and c­

lun N-terminal kinase (JNK) and ERK pathways (Choi et al., 2007; Parvizi et aI., 

2002). 

A recent study by Noriega and co-workers (2007), involved the use of continuous 

ultrasound at higher frequencies than previously seen. HAC-seeded chitosan scaffolds 

were treated with continuous ultrasound of 1.5, 5.0 or 8.5 MHz (estimated intensity 

30mW/cm2) twice in a 24 hour period and then left in culture for 10 days before 

analysis. The application time of the ultrasound varied between frequencies so as to 

keep the number of ultrasonic cycles (-4.3 x 106
) the same for all experimental groups. 

US-stimulated constructs were found to have enhanced aggrecan and collagen II gene 

expression that was directly proportional to frequency. US-stimulated constructs were 

also seen to have greater viability, and increased collagen content was seen for those 

stimulated at the two higher frequencies. Of note, cell morphology was also altered at 

these latter frequencies. The 5.0 MHz frequency was found to be optimal with regard to 

cell proliferation and collagen content, and the authors proposed that this frequency was 

in the region of chondrocyte resonance and therefore could provide appropriate strain 

levels to induce mechanotransduction effects. 

From the above review of the literature, it is apparent that there may be a role for 

ultrasound in the repair of cartilage defects and tissue engineering. However. more 

research is required, using both 3D scaffold systems and in "ivo animal models, to 

optimise the ultrasonic signal and determine the ultrasound-induced 

mechanotransduction processes that affect chondrocyte biosynthesis in order to clarify 

whether the use of ultrasound is advantageous in cartilage tissue engineering 

applications. 
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2.6 Aims and Objectives 

As discussed in the previous sections, pulsed low intensity ultrasound (PLIUS) has been 

shown to enhance both fresh fractures and bony non-unions (Heckman et al., 1997, 

Cook et al., 1997, Kristiansen et aI., 1997), the process of which involves the 

stimulation of earlier expression of cartilage specific genes (Yang et al., 1996) thereby 

altering chondrocyte maturation and endochondral bone formation. In vitro studies of 

rat chondrocytes in monolayer reported up-regulations of proliferation, collagen type II 

synthesis and aggrecan synthesis (Wu et aI., 1996; Parvizi et al., 1999). Furthermore 

increased synthesis of aggrecan has also been reported in chondrocytes in 3D collagen 

gels (Nishikori et aI., 2001). One possibility is that PLIUS activates an intracellular 

calcium ([Ca2+]i) signalling pathway (Parvizi et aI., 2000), similar to that which 

mediates increased proteoglycan synthesis in chondrocytes subjected to more 

physiological mechanical loading in agarose (Pingguan-Murphy et aI., 2006; 

Chowdhury and Knight, 2006). However, the potential mechanotransduction processes 

by which pulsed low intensity ultrasound induce alterations in cellular metabolism is 

largel y unknown. 

The aims of this project are therefore to: 

1. Examine the effects of PLIUS on glycosaminoglycan (GAG) matrix synthesis 

and cell proliferation, using the well-established in-vitro 3D cell-seeded agarose 

model system (Buschmann et al., 1992 and 1995; Lee and Bader, 1995 and 

1997). 

2. Identify the influence of PLIUS on [Ca2+]i signalling as a possible 

mechanotransduction pathway. 

The following objectives will need to be undertaken in order to fulfil the above aims: 

1. Design a system for applying PLIUS to chondrocytes cultured in agarose over a 

20 day period. 

') Determine the influence of PLIUS on cell proliferation and synthesis of GAG in 

bovine chondrocytes cultured in 3D agarose constructs. 

3. Repeat the PLIUS study undertaken by Parvizi and colleagues (1999) in boyine 

chondrocyte monolayer culture. 
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4. Design a rig that will enable microscope visualisation of [Ca::!~]j dynamics in 

cells subjected to PLIUS within monolayer cultures and 3D agarose constructs. 

5. Examine the effect of PLIUS on Ca2~ signalling in chondrocytes in both 3D 

agarose and monolayer systems. 

6. Examine the influence of PLIUS intensity, duration and frequency of PLIUS 

exposure on sGAG synthesis, cell proliferation and [Ca2+]j signalling. 
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3.1 Introduction 

This chapter details the materials and methods employed in the subsequent experimental 

chapters, as well as a series of characterisation studies. 

The cell-seeded agarose model systems used for the metabolic and calcium signalling 

experiments are described. To review briefly, chondrocytes are isolated from bovine 

metacarphalangeal cartilage via enzymatic digestion and cultured in a 3D agarose 

construct. The procedures for preparing reagents necessary for cell culture and 

subsequent assays are also detailed. 

The ultrasound apparatus is described. This applies pulsed low intensity ultrasound 

(PLIUS) to constructs maintained within a tissue cell-culture incubator. 

A rig had to be designed for calcium signalling experiments that allowed PLIUS to be 

applied to 3D constructs, whilst mounted on the stage of an inverted confocal 

microscope to enable live cell imaging. Optimisation of both these ultrasound rigs is 

described. 

A series of characterisation studies are described, examining the nature of the PLIUS 

signal, its spatial variation, standing wave generation, attenuation and heating effects. In 

addition, a range of biochemical assays are detailed, which will be subsequently used to 

quantify the effects of PLIUS on matrix synthesis and metabolism. This is followed by 

detail of a study examining the effect of PLIUS intensity on chondrocyte proliferation, 

sGAG synthesis and viability in 3D agarose constructs. 
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3.2 Cell culture methods 

The following sub-sections detail the procedures utilised for preparation and culture of 

chondrocytes in agarose. 

3.2.1 Cell-seeded agarose model 

The cell-seeded agarose model has been characterised in a number of studies 

(Buschmann et al., 1992; Lee and Bader, 1995). Chondrocytes seeded in agarose gels 

maintain their phenotype in long-term culture up to 70 days, forming a cartilaginous 

matrix, as opposed to chondrocytes in monolayer which de-differentiate with time in 

culture (Buschmann et al., 1992; Quinn et al., 2002). In addition, the relative stiffness 

of agarose compared to the cells per se enables application of controlled cell 

deformation through gross compression of the cell-agarose constructs (Lee et at., 

2000a). For these reasons, the cell-agarose model has been used widely in the host 

laboratory in a range of cell deformation and mechanotransduction studies (Lee and 

Bader, 1995; Knight et al., 1998b; Idowu et at., 2000; Roberts et al., 200 L Chowdhury 

et al., 2001; Bader et al., 2002; Shelton et al., 2003; Pingguan-Murphy et at. 2005; 

Heywood et al. 2006). 

3.2.2 Preparation of culture medium and other solutions 

Standard Chondrocyte Culture Medium: Oulbecco's Modified Eagles Medium 

(OMEM) (Sigma, UK) was used for culturing chondrocytes. A 500ml bottle of OMEM 

was supplemented with specific additives, as detailed in Table 3.1, and filtered using a 

0.22f.1m pore cellulose acetate filter before being aliquoted and frozen until required. 

The resulting medium is referred to as OMEM + 16.10/0FCS. The preparation of culture 

medium was undertaken in a sterile environment within a laminar flow hood. 

Pronase: Pronase is a proteolytic enzyme commonly used in solution to degrade 

proteoglycan contained in the extracellular matrix of articular cartilage. In a laminar 

flow hood, powdered pronase type E (BOH Laboratory Supplies, UK) was dissolved in 

OMEM + 16.1 % FCS at a concentration of 700 units.mr1
, filtered using a 0.22 f.1m pore 

cellulose acetate filter and then frozen in aliquots of lOmI until needed. 

Collagenase: Collagenase is an enzyme used to catalyse the hydrolysis of collagen. In a 

laminar flow hood, powdered collagenase Type Xl (Sigma UK) was dissolved in 
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DMEM + 16.1 % FCS at a concentration of 100 units.mr l
, filtered using a 0.22/lm pore 

cellulose acetate filter and then frozen in aliquots of 30ml until needed. 

TABLE 3.1: Additivesfor standard chondrocyte medium. 

Additive Stock Amount Final Function 

concentration added Concentration 

Penicillin! 5,000 units/ml 5rnl 40 units/ml Antibiotic 

Streptomycin 5 mglrnl 0.04 f.lglrnl , 

L-Glutarnine 200rnM 5rnl 1.61rnM Energy Source 

HEPES 1M 10rnl 16.1rnM Buffer 

L-ascorbic N/A 0.075g 0.69f.lM Physiological nutrient and 

acid free-radical scavenger 

Foetal Calf N/A 100ml 16.1% Physiological nutrients 

Serum (FCS) e.g. growth factors 

All reagents obtained from Sigma, UK. 

3.2.3 Isolation of bovine articular chondrocytes 

Articular chondrocytes were isolated from the cartilage removed from the 

metacarphalangeal joints of steers aged 18-24 months, using well established 

procedures (Kuettner et aI., 1982; Lee and Bader, 1995; Knight et al., 1996). Bovine 

front feet, obtained from a local abattoir, were washed in warm water to remove dirt 

before being soaked in 70% (v/v) Industrial Methylated Spirit (IMS) for 10-15 minutes. 

Each foot was then transferred to a sterile laminar flow hood and sterile equipment used 

to extract the cartilage from the joint, as described below: 

Cartilage Explant Extraction: Scalpels were used to remove the skin of the bovine foot 

and expose the underlying tissue (Figure 3.1a), so that the synovial joint could be 

disarticulated (Figure 3.1 b). Full-depth articular cartilage was then removed from the 

proximal surface using a scalpel (Figure 3.1 c) and placed in a petri dish filled with 

DMEM+16.1% FCS. 

Isolation of chondrocytes: Once all the proximal cartilage had been removed from the 

articular surface, the DMEM+ 16.1 % FCS was aspirated from the petri dish and the 

cartilage shavings were finely chopped up using two scalpel blades simultaneously. The 

cartilage pieces were transferred into a 60ml falcon tube, to which 10mi of pronase 

solution was added. and then placed onto a rolamixer for one hour at 37°C. The pronase 

solution was aspirated and 30ml of collagenase solution added to the tube, which was 
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placed on the rolamixer at 37°C for 12-16 hours. After this time period the resulting 

cloudy mixture was passed through a cell sieve into a second falcon tube to remove any 

undigested cartilage. The cell suspension was spun in a centrifuge (2000rpm 5 mins) 

the supernatant discarded and the cells washed with 10ml DMEM+ 16.1 %FCS. The cell 

suspension was spun and washed for a further two times and fin all y suspended in 10mI 

ofDMEM+16.1%FCS. 

A 

FIGURE 3.1: Photographic sequence showing the key stages in the opening of a 

bovine metacarphalangeal joint (A, B) and extraction of articular cartilage from the 

proximal joint surfaces (C). 

A small aliquot of cell suspension was removed and diluted 1: 1 with trypan blue, a stain 

that stains non-viable cells blue whilst excluding viable cells. Once mixed the solution 

was applied to a haemocytometer and the cell number counted. Cell number was 

estimated using the following equation: 

Where: 

N x 2 X VIOla I 
Total cell number = -----

v" 

N = Number of cells within the grid of the haemocytometer 

2 = dilution factor 

VlOlal = Total volum of cell suspension (ml) 

VII = Volume ofhaemocytometer chamber (lO-4ml) 

Equation 3.1 



Chapter 3: Development of ,'Iodel System for Imestigating Effect of PUtS 

From this equation both chondrocyte yield and yiability were calculated. The 

chondrocyte suspension was adjusted to the desired cell concentration by addition or 

removal of DMEM+ 16.1 %FCS. Cell concentration was adjusted to 8x I 06 cells.mr l for 

the matrix synthesis experiments (Chapters 4 and 5)~ and 20x 106 cells.mr1 for 

experiments examining calcium signalling (Chapter 6). 

3.2.4 Preparation of chondrocyte-agarose constructs 

Low gelling agarose (Type VII, Sigma, UK) was employed for preparing the constructs. 

Earle's Balanced Salt Solution (EBSS, Sigma, UK) was added to agarose powder to 

fonn a 60/0 (w/v) solution of low gelling agarose. This was then autoclaved to melt the 

agarose and ensure sterility and mixing. The molten gel was then transferred to rollers at 

37°C for 15 minutes to cool down to physiological temperatures, before adding an equal 

volume of cell suspension at a concentration of either 8x 106 cells.mr l or 20x 1 06 

cells.mr], yielding either 4xl06 cells.mr] 3% (w/v) or IOxl06 cells.mr l 3% (w/v) low 

gelling agarose suspension. This was placed on the 37°C rollers to ensure that the 

agarose and cells mixed and there was minimal retention of air bubbles in the solution. 

Constructs were gelled differently depending on which PLIUS system was being 

employed as described in sections 3.6 and 3.7. 

3.3 Ultrasound apparatus 
The ultrasound equipment was provided by Smith and Nephew Inc. (York, UK). The 

ultrasonic signal exhibited a series of nominal characteristics. namely a Spatial Average 

and Temporal Average intensity (SAT A) of 30m W /cm2 of carrier frequency 1.5MHz 

with a 200J.ls pulse burst repeating every 1000J.ls (presented graphically in Figure 3.2). 

The ultrasonic driver box (A in Figure 3.3) controls six transducers mounted in a frame 

made of Delrin® polyoxymethylene (B in Figure 3.3) specifically for use with a 

standard six-well plate (C in Figure 3.3). The duration of the ultrasound stimulation is 

controlled by a switch on the circuit board inside the driver box, equivalent to four 

prescribed settings of 10. 20, 30 and 40 minutes. However, unless stated otherwise. a 

twenty minute duration was routinely used to be equivalent to both the time used in 

pre\'ious studies and that used in the clinical setting (Cook et al.. 1997; Heckman cl at. 

1994: Nishikori et al.. 2001; Zhang et al .. 2002). 

The ultrasonic box has manual off and on controls. In order to automatically control 

how often the 20-lninute ultrasound treatment was applied. a timer module designed b: 
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a technician in the host department was incorporated into the system (labelled D in 

figure 3.3). The timer could be programmed to trigger the ultrasound signal after any 

time period ranging from seconds to hours. 

1000IJS 

f----I 

667ns 

FIGURE 3.2: The ultrasonic signal employed for the experimental work 

undertaken in this thesis. A 200 JiS burst sine wave of frequency 1.5 MHz repeats 

every 1000JiS (duty cycle 20%). The 200JiS burst is composed of approximately 300 

cycles, each of duration 667ns. 

Coupling gel (Exogen, USA), a viscous gel placed between the ultrasonic transducer 

and culture plate wells, was used to minimise an air gap between surfaces, allowing 

transmission of ultrasound. Smith and Nephew also provided an LED indicator for each 

transducer to monitor its functional state of 'off or 'on' (Figure 3.4). 

In addition to the above equipment, a secondary ultrasonic driver box was available to 

vary the Spatial Average and Temporal A verage (SA T A) intensities of the pulsed 

ultrasound to six settings between 13 and 30OmW/cm2. However, this system differed 

from the one described above, incorporating only three output ports, enabling only three 

transducers to be used at anyone time, each providing three different intensities of 

ultrasound. 
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B 

FIGURE 3.3: Ultrasound apparatus employed for cell stimulation. Ultrasonic box (A) 

controls six transducers set in a frame (B) that transmits PLIUS to chondrocyte­

agarose constructs gelled in six well plates (C). A timer-box (D) is used to control the 

daily number of 20-minute ultrasound treatments given to cells. Coupling gel (E) is 

used to eliminate any ultrasonic attenuation between the transducers and wells. The 

transducers and six-well plate can be maintained within a humidified cell culture 

incubator. 

FIGURE 3.4: LED indicator placed on transducer with coupling gel. The LED glowed 

yellow when PLIUS was transmitted. 

3.4 Pulsed low intensity ultrasound (PLIUS) signal 

As described in section 3.3, the ultrasonic signal emitted from the equipment provided 

by Smith and Nephew Inc. was pre-set in accordance with commonly used parameter. 

An oscilloscope (HAMEG 20MHz Storage HM205-3) was used to vi uali e thi 

ultra onic signal, both a it was produced by the driver circuit (henceforth referr d t a 
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the input signal) and when it left the transducer box and entered the biological system 

through the transducer (referred to as the output signal). 

The typical US input and output signal were obtained, as illustrated in the fonn of 

temporal voltage profiles in Figure 3.5. 
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FIGURE 3.5: The temporal voltage profiles showing input (A and B) and output 

ultrasound signals (C and D) emitted from the PLIUS transducer at a SATA intensity 

of 30mW/cm2. A and C show the pulsed nature of the ultrasound, which has a 20% 

duty cycle. Band D show expanded sections of the ultrasound signal from which the 

frequency could be estimated at 1.5 MHz. 

The reduction in voltage seen for the output profiles are a result of the resi tance 

incurred in the transducer. The approximate wavelength of the ultrasound was obtain d 

from the input and output sine waves. This value was estimated by counting the numb r 

of waves to the neare t wavelength in an 8J.ls time period: 
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number of waves / time taken for waves 

12 waves / 8x 10-6 seconds = 667ns 

As the time period of a wave is the inverse of its frequency (j), the wavelength (/y) in a 

specific medium was calculated using the formula: 

A=ct Equation 3.2 

where c = speed of sound. The wavelength of the ultrasound in air was calculated as 

0.22mm, where Cair = 33Om/s. In water, A was calculated as 0.987mm, taking Cwater as 

148Om/s. These results corroborated the information provided by Smith and Nephew 

Inc., and confirmed that the ultrasonic equipment was operating within optimum 

parameters. 

3.5 Attenuation of PLIUS 

As described in section 2.5.4, when ultrasound travels through a medium it dissipates 

energy via scattering, reflection and absorption. The nature of the PLIUS signal from 

the system used in the present work required some investigation. In particular, the 

attenuation of the PLIUS signal was examined in terms of: 

• distribution of pressure waves 

• production of standing waves 

• attenuation of the signal through the model system and 

• production of heat. 

The latter two events, which were investigated solely by Smith and Nephew Inc., are 

discussed in Section 3.10. 

3.5.1 Spatial variation in PLIUS intensity 

Characterisation of the distribution of the ultrasonic signal with distance from the 

transducer surface is of particular importance when attempting to understand the 

possible mechanisms by which PLIUS produces a therapeutic effect. Colleagues at 

Smith and Nephew Research Centre (York, UK) undertook a study at Natural Physical 

Laboratories at Teddington. It involved a needle hydrophone to measure the SAT A 

intensity across the central 12mm diameter face of an ultrasonic transducer in water 

emitting the 30mW/cm~ signal. A spatial intensity profile was produced showing 

71 



Chapter 3: Development of Model S stem for Investigating Effect of PLUS 

variation in intensity both across the surface of the transducer and with increasing 

distance from the transducer face (Figure 3.6). 

A) 

6.0 

4.8 
SA T A intensity 

mW/cm l
) 

3.6 . 100-110 
0 . 90 -100 

2.4 it l[ 
Central axis 

n Q) 80-90 
$ :::l 

of transducer 
1.2 _ ~ 0 70-80 -. 

• o Q) 

0 60-70 0.0 3 Q 
n 0 
$ (/) 0 50-60 

1.2 a:: 40-50 .... ..., 
$ Q) 

2.4 '5' ~ .30 -40 .... a. 
3 6 ~ ~ . 20-30 

. $ 
. 10-20 -. 

4.8 . 0-10 

6.0 
0 <.0 ..... t-- N co ('") 0"> ~ 0"> 0 0 0 0 0 
0 ~ ('") 0"> ~ ~ 0"> Lq N ~ <.0 ~ 0"> Ui N 
0 0"> 0"> co co co t-- t-- t-- <.0 <.0 <.0 Ui Ui Ui ..... ..... N ('") -.::t Ui <.0 t-- co 0) 0 ..... N ('") -.::t ..... ..... ..... ..... ..... 

Distance from transducer face (mm) 

B) 

110 -N 100 E 
u 90 
~ 80 
E 70 -
~ 60 
f/) 50 c 
CI) 40 -c 30 

Nominal intensity 

~ 20 I-
~ 10 
UJ 

0 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Distance from the transducer face (mm) 

FIGURE 3.6: A) Spatial profile of ultrasonic intensity for a typical transducer 

emitting a 30mW/cm2 signal showing the variation in intensity over its fa ce with 

increased distance from the source and B) corresponding plot of SATA intensity 

versus distance from the centre of the transducer. Image obtained from Smith and 

Nephew Inc., York, UK. 

It can be seen from Figure 3.6 that there is a considerable variation in the inten ity f 

the PLIUS ignal with distance through water particularly in the near field. It i id nt 

that th PLIUS ignal i not unifonn over the transducer face at any di tan If th 
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profile from the centre of the transducer is examined (Figure 3.6B), at distances 

approximately 10Smm from the transducer face the signal intensity exceeds 

100m W Icm
2

, threefold greater than the nominal intensity. To achieve an intensity of 

3 OmW/cm
2

, the distance from the centre of the transducer was approximately 78mm 

(Figure 3.6B). Additionally, it is clear that at distances greater than 120mm from the 

transducer, the intensity levels remain fairly constant at approximately 100mW/cm2
. It 

should be noted however, that the attenuation characteristics of a system other than 

water would influence these intensity profiles. 

3.5.2 Standing wave investigation 

In a pilot investigation, it was noted that standing waves occurred while gradually 

adding water to a well exposed to PLIUS. Therefore the relationship between standing 

waves and fluid height was investigated in a six-well plate placed on the PLIUS 

transducer plate. Theoretically, standing waves occur with a periodicity of A/2. Thus by 

using the wavelength value estimated in Section 3.4, for the present system to transmit 

ultrasound to water, standing waves would be predicted to occur at intervals of 0.493 

mm. 

A 2270~1 volume of water was required to fill one well of a six-well plate to a height of 

2.Smm. To this volume, increments of 22.7~1 were added and the appearance of 

vibrations in the water was noted by eye. Values of 0, O.S and 1 were assigned to 

indicate no vibration, an isolated area of vibration and full vibration, respectively. 

Figure 3.7 shows the resulting graph of fluid height against appearance of standing 

waves. The periodicity values for the four standing waves (calculated from periods t1-t4, 

shown in Figure 3.7) were 0.S2Smm, 0.62Smm, O.SSmm and O.4Smm, respectively. 

This provides a mean periodicity of O.S4mm+0.07, the range of which encompasses the 

theoretical value of 0.493mm. 
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FIGURE 3.7: Graphical representation of standing waves occurring in water placed 

in the well of a six well plate stimulated with PLIUS, based on observation of 

vibration in water. The broken line represents the same dataset, but includes 

incidences where a small degree of vibration was apparent. The average standing 

wave periodicity oft/-t4 was calculated as 0.54mm± 0.07. 

3.6 Design and development of microscope mounted ultrasound rig 

The following sub-sections detail the design and development of a microscope mounted 

ultrasound rig necessary for the undertaking of calcium signalling experiments (Chapter 

6) along with associated components. 

3.6.1 Rig design 

The aforementioned rig needed to fulfil the following design specifications: 

1) The coupling of the ultrasonic transducer to the cell system should be 

accomplished with no intervening air gap 

2) The cells should be imaged on the inverted stage of a confocal microscope 

3) The cells should be maintained in a physiological environment, namely, hydration 

with culture medium maintained at 37°C. 

As the rig needed to be mounted on an inverted mIcroscope, then the ultrasonic 

transducer had to be positioned above the cell model system. The rig was therefore 

designed in two parts; a chamber which would be placed onto the stage of the 

microscope and a lid component incorporating the transducer, which would be used to 

cover the chamber and enclose the cells. Figure 3.8, 3.9 and 3.10 illustrate the two 

components. 
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The stainless steel base-plate of the chamber component of the rig (Figure 3.8) formed a 

pre-existing component of a rig designed previously in the host laboratory (Knight, 

1997), with dimensions to fit onto the stage of the confocal microscope. The gap in the 

base plate allowed for placement of a glass coverslip (22x4Omm), which was sealed 

with silicon grease to make the chamber watertight. Attached to the underside of the 

base plate were two heater pads and a thermistor (l.25W, 50x25mm, 12V DC, RS Stock 

No.245-499). These components connected to a commercial temperature control unit 

(Intracel, Herts., UK, Figure 3.9) via the connection shown in Figure 3.8, enabling the 

chondrocyte medium to be maintained at 37°C in order to simulate physiological 

conditions. 

The 70x7Omm chamber component (Figure 3.8) was designed to contain the construct 

and be filled with the appropriate chondrocyte medium in order to both hydrate the 

construct and to ensure no air gap lay between the ultrasound transducer (contained in 

the lid of the rig, Figure 3.10) and the construct. This arrangement ensured that a 

continuous pathway for ultrasound transmission was maintained. 

The lid component of the rig (Figure 3.10) incorporated an area where the transducer 

could be located. The base of this area was composed of the bottom of one well of a six­

well plate, in order to more closely replicate the system used to stimulate cells for the 

metabolic studies (Section 3.3). Coupling medium was placed between the transducer 

and the base for continuity of ultrasound transmission to the chondrocytes. The lid 

component of the rig slotted into the chamber component of the rig, to provide a flush 

connection. Perspex spacers were used to create space within the chamber for the 3D 

constructs/monolayer, as seen schematically in Figure 3.11. Once the rig was set up 

with construct in place, the chamber could be filled with medium via the channel in the 

lid (Figures 3.10 and 3.11) and maintained at 37°C by the temperature control unit 

(Figure 3.9). 
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FIGURE 3.8: Chamber component of microscope ng. A 70x70mm perspex 

chamber was attached onto a pre-existing stainless steel base-plate. 
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FIGURE 3.9: Photograph of the temperature control unit (Intracel, U.K.) attached to 

the base plate of the confocal rig. 
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FIGURE 3.10: A) Diagram of a cross-section through the lid component of the rig 

and B) photo of plan view of lid component of rig. 
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FIGURE 3.11: Schematic of confocal rig setup. 
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3.6.2 Preparation of 3D chondrocyte-agarose constructs for use in the microscope 

mounted test rig 

Bovine chondrocytes were extracted and isolated as described in Section 3.2.3. Low 

gelling agarose (Sigma, UK) was used to prepare a final lOx 1 06 cell/ml concentration in 

3% (w/v) agarose suspension. A stainless steel mould was used to produce cylindrical 

constructs of dimensions 5rnm diameter and 5rnm depth (volume 98.5!J.I), one of which 

is shown in Figure 3.12. All mould components were sterilized beforehand in a clinical 

autoclave. A sterile glass slide was taped to the bottom surface of the mould before the 

chondrocyte/agarose suspension was pipetted into each well. A second glass slide was 

placed on top of the mould to remove excess gel and ensure correct dimensions, and all 

components taped together before placing the mould into a sterile 150rnm diameter 

Petri dish (Falcon, Oxford, UK), which was subsequently placed at 4°C for 20 minutes. 

Once gelled, the constructs were removed from the mould using a 1 ml pipette (Falcon, 

Oxford, UK). Each construct was placed in a 50rnm Petri dish containing DMEM + 

16.1 % FCS and incubated overnight at 37°C/5% C02, before the calcium imaging 

experiments were undertaken. 
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FIGURE 3.12: Photograph of a 5mm diameter x 5mm height chondrocyte-agarose 

construct on a coverslip. 

3.6.3 Optimisation of microscope mounted test rig - prevention of specimen drift 

The confocal rig was tested using the 3D chondrocyte-agarose constructs. A coverslip 

was fixed to the chamber using silicon grease, and a single construct was placed into the 

chamber. The lid was placed over the chamber after the 5mm spacers were positioned 

between them. However, two potential problems arose, both associated with construct 

location. When filling up the rig with BFDMEM + 16.1 % FCS, previously heated to 

37°C in a water bath, the construct tended to move due to movement of fluid. This 

makes continuous imaging of individual cells very difficult to achieve. Secondly, using 

the lid as the means to secure the construct proved both ineffective and also highlighted 

the fact that closing the lid could cause deformation of the construct, which might 

trigger an intracellular signalling response which could mask any effect of the pulsed 

ultrasound signal. 

Thus, it was necessary for the constructs to be fixed in some way to the chamber of the 

rig. A perspex insert was designed into which the cell-agarose could be located and held 

in the chamber by means of a screw (Figures 3.13 and 3.l5). The insert used in 

conjunction with a mould for casting (Figure 3.l4), enabled a 5x5x5mm cell-agarose 

construct to be gelled. Two 3mm diameter cylinders were drilled into the insert (Figure 

3.13) so that the cell-agarose construct could be anchored in the insert thereby 

tabilising the construct during the imaging period. A number of these Perspex in ert 

were made. The mould and insert assembly were made sterile by placing in 70% 

lndu trial Methylated Spirit (70% IMS) and leaving it in the hood for two hour pri r t 

us . 
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By holding the construct in this manner, it was now unnecessary for the lid of the rig to 

be in contact with the construct. Another set of Perspex spacers were used so that there 

was a fluid gap between the top of the construct and the lid. 
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FIGURE 3.13: Construct mould/insert for the confocal rig. A) shows the top of the 

construct, B) side view of construct and C) base of the construct. A hole was made in 

the base of the rig chamber so that the insert could be held down by a screw. Pink 

denotes the 5x5x5mm chondrocyte-agarose construct and the two 5x3mm diameter 

'anchors' for stabilising the construct .. 

FIGURE 3.14: Perspex inserts positioned In mould for casting of cell-agaro 

Ii pension in inserts. 
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FIGURE 3.15: Photograph of construct insert, containing a 5x5x5mm cell-agarose 

construct (demarcated in black), in the chamber of the confocal rig. 

3.7 3D model system for matrix synthesis experiments 

For the matrix synthesis experiments, low gelling agarose (Sigma, UK) was used to 

prepare a final concentration of 4xl06 cells/ml in 3% (w/v) cell-agarose suspension. 

Each well of a six-well plate was filled with cell-agarose suspension to yield a 3mm 

height gel using a positive displacement pipette. The gels were covered with 6.6ml of 

DMEM + 16.1%FCS and cultured for 24 hours in a 37°C 5% CO2 incubator before 

being used in the experiments. At each prescribed experimental time-point, a 6mm 

diameter sterile corer was used to remove a number of cylindrical constructs from the 

central region of the agarose gels, in the manner shown in Figure 3.16. 

FIGURE 3.16: S hemati of well plate howing location of 6mm diameter core remov d from /l­

agaro. e gel. Core 1: central cor. Core _-7: peripheral core. We/l diameter i 34 mm ).tlilile Ih 

underlying ultra oni tran du er i 30 mm. 
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3.8 Standard protocols for biochemical analysis 

The following sub-sections will outline the standard methods used to analyse the 3D 

chondrocyte/agarose culture, as part of the investigation into the influence of PLIUS on 

cell metabolism. 

3.8.1 Digest of chondrocyte-seeded agarose constructs 

Prior to the biochemical assays, the cored cell-agarose constructs were digested to 

separate the chondrocytes and any associated extracellular matrix from the embedding 

agarose (Lee and Bader, 1997). This was achieved with a solution of papain digest 

buffer, made by adding 0.788g of cysteine hydrochloride and OA03g of 

ethylenediaminetetraacetic acid (EDT A) (Sigma, UK) to 480ml of phospate buffered 

saline (PBS) (Sigma, UK), and adjusted to pH6 before making up to 500ml with PBS. 

A volume of 1 ml papain digest buffer was added to each construct in a small bijou tube 

and placed in a 70°C oven for 1 hr 30 minutes, samples being vortexed after 45 minutes. 

Samples were then cooled in a 37°C oven. lOll1 agarase (1000 units.mr l, Sigma, UK), 

an enzyme that digests the polysaccharide backbone of molten agarose into alcohol 

soluble oligosaccharides, and 5111 papain (560 units.mr l, Sigma, UK), a protoeolytic 

enzyme, were added to each construct and allowed to digest overnight at 37°C and then 

for an hour at 60°C. Once digested, samples could be assayed immediately or frozen at 

-20°C for later analysis. 

3.8.2 DMB assay for total sGAG content in constructs 

Digested constructs were assayed for sulphated GAG (sGAG) concentration using a 

spectrophotometric assay based on dimetyl-methylene blue (DMB) (Farndale et a/., 

1982). DMB is a dye that complexes with sGAGs causing a metachromatic shift in 

absorbance maximum from 600 to 535nm. A solution ofDMB was prepared in 1 litre of 

distilled water by weighing out 0.016g of DMB powder and adding 5ml ethanol. 2g 

sodium formate and 2ml formic acid (all Sigma, UK) before being adjusted to pH 3.0. 

A set of standards were prepared using shark chondroitin 4-sulphate (Sigma, UK) at a 

stock concentration of 1 mg.mr l, which was diluted using distilled water to 

concentrations of between 10 and 1 OO~lg.mrl, in increments of 10 Ilg.mrl. Distilled 

water was used as the 0 Ilg.mrl standard. A 40pl volume of the standards was pi petted 

in duplicate into separate wells of a 96-well plate. The same volume of the digested 
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constructs and aspirated medium was also pipetted in duplicate in separate wells. 

Samples and standards were vortexed prior to pipetting to ensure that contents were 

well mixed. Pipette tips were changed regularly to prevent cross-contamination. A 

volume of 250J..lI DMB was added to each well containing the standards and samples 

and the 96-well plate placed into a spectrophotometer (Multiskan Ascent, 

Thermolifesciences, Hampshire UK) to measure the absorbance at 535nm uSIng a 

programmed protocol. Absorbance values from the chondroitin sulphate standards were 

plotted and a linear model fitted to the data. A typical calibration curve is shown in 

Figure 3.17. This data was then used to calculate absolute concentrations of sGAG in 

each construct based on the measured absorbance values. These values were normalized 

to construct weight. 
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FIGURE 3.17: A typical standard curve obtained from chondroitin sulphate 

standards. 

3.8.3 DMB assay for sGAG content in medium 

Sulphated GAG content in the culture medium was assayed using OMB, in the same 

way as digested chondrocyte/agarose constructs described in Section 3.8.2. However, 

adjustments were made to the normalised spectrophotometer value of the concentration. 

The total sGAG values for medium obtained from the OMB assay gave a value that 

when corrected represented the concentration of sGAG in the 6ml of medium used to 

maintain the chondrocytes. However, it is invalid to associate this absolute medium 

value directly with the value ascertained for the construct, since the sGAG 

concentration contained in the medium was attributable to all the chondroc)te-agarosc 

gel in the well. By contrast, the sGAG concentrations for the constructs were obtained 
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from those constructs cored from the chondrocyte-agarose gels in the well. Therefore a 

volume factor was used to correct for the medium values, using the following equation: 

corrected medium sGAG = total sGAG in medium x [ volume of construct ] 
total volume of agarose in well 

Equation 3.3 

Therefore the sGAG in the medium was multiplied by a calculated value of 0.026. In 

addition, the total sGAG recorded at a time-point represented the cumulative of all 

medium collected up to that time-point, in order to correlate with the construct sGAG 

measured at each time-point. It is these corrected values that will be used throughout the 

thesis for 3D culture experiments. However, it should be noted that the sGAG measured 

in the medium is representative of the sGAG released by chondrocytes distributed 

throughout the well, whereas the constructs used for sGAG measurement originated 

from the central region of each well, directly above the ultrasound transducer. Therefore 

the final corrected sGAG content in the medium might reflect spatial differences in 

local ultrasound intensity. 

3.8.4 Fluorimetric assay of DNA 

Hoechst 33258 (Sigma, UK) is a DNA specific fluorimetric dye that is activated by 

binding to associated adenine-thymidine base pairs within DNA chains (Araki et aI., 

1987). Binding causes a conformational change that emits fluorescence at 460nm. This 

assay uses two working solvents, namely papain digest buffer and Saline Sodium 

Citrate (SSC) Buffer. SSC buffer was prepared at a stock concentration of x20 by 

adding 87.65g of sodium chloride and 44.1g trisodium citrate to 480ml distilled water, 

adjusting the pH to 7.0 with 1M NaOHI 1M HCI and making up to 500ml with further 

distilled water (all reagents Sigma, UK). The buffer was diluted to a x2 concentration. 

An equal volume of 2xSSC was added to papain digest buffer and this solution used to 

prepare a set of standards, using calf thymus DNA stock (1 ~g.mrl, Sigma, UK). This 

stock solution was diluted to 20 ~g.mrl and used to prepare serial double dilutions 

yielding concentrations of 20, 10, 5, 2.5, 1.25, 0.625 and 0.313~g.mrl. The 2xSSC: 

papain digest buffer was used as the 0 ~lg.mr 1 standard. 

1 00~t1 of standards were pi petted in triplicate into the separate wells of a 96-well plate 

and digested samples pipetted in duplicate into the remaining wells. San1plcs and 
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standards were vortexed before use and pipette tips changed regularly to prevent cross­

contamination. 

A working concentration of Hoechst (lllg.mr1
) was prepared by replacing 20111 of 20ml 

2xSSC: papain digest buffer with 20111 of stock Hoechst 33258. IOOIlI of this was then 

added to every well containing standards and samples, and fluorescence measured at 

460nm using a fluorimeter (Fluostar Galaxy, BMG Labtechnologies, Ayelsbury UK) 

and associated software. Fluorescence values from the Hoechst 33258 standards were 

plotted and a linear model fitted to the data, as shown in Figure 3.18. The standard 

curve was used to quantify the total DNA content in chondrocyte/agarose constructs in 

Ilg.mrl. This method provided an approximation of cell number based on 7.7pg DNA 

per bovine chondrocyte (Kim et aI., 1988). DNA values were normalised to construct 

wet weight. 
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FIGURE 3.18: A typical standard curve obtained/rom Hoechst 33258 standards. 

3.8.5 Cell viability determination 

Cylindrical constructs were cut in half vertically and placed into 600lli of DMEM + 

16.1 % FCS supplemented with 5111 Calcein-AM and 5111 Ethidium Homodimer-2 (both 

Molecular Probes, UK) and incubated at 37°C for a period of 40-45 minutes. Calcein­

AM is a non-fluorescent neutral membrane-permeable molecule, which enters the 

cytoplasm and is hydrolysed by endogenous esterase forming a highly negatively 

charged calcein, which is unable to diffuse out of the cell. This molecule binds with 

calcium and fluoresces green (wavelength 500-530nm) when exposed to blue light 

(wa\'c1ength 488nm). In the absence of the enzyme, dead cells will not fluoresce. 
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Ethidium Homodimer-2 is a highly positively charged molecule that binds to both RNA 

and DNA. The molecule can only enter the cytoplasm through the compromised 

membranes of dead cells. By binding to the DNA, the fluorescence is increased more 

than 30 fold, emitting red fluorescence (wavelength 600-650run) when exposed to green 

light (wavelength 568 run). 

After the incubation period, each construct was placed with its flat surface on a glass 

coverslip (22x4Omm), and visualised using a fluorescence microscope (Nikon, UK) 

with a xenon lamp fluorescent light source. Live and dead cells were counted 

throughout the depth of the construct using a standard sampling area of 0.5 x 0.25mm, 

determined as the width and half the depth of a 1 mm2 eyepiece graticule in association 

with a x20 objective, using methodology developed in the host laboratory (Heywood et 

al., 2004). Counting commenced from the top of a construct and continued down to the 

base to ascertain the viability in the area furthest from and closest to the PLIUS 

transducer, respectively. Chondrocyte viability for each sampling area was calculated 

using the following equation: 

C 11 . b'l' ( live cells ) 100°/ e VIa I Ity = x 10 

live cells + dead cells 
Equation 3.4 

3.9 PLIUS intensity and temporal changes in sulphated GAG content 

Using the six-well plate model system set up for 3D chondrocyte-agarose culture 

described in Sections 3.2.2 and 3.7, a study was undertaken to determine the influence 

of PLIUS intensity on sGAG content, cell proliferation and cell viability in constructs 

over a culture period of 9 days. 

3.9.1 Method 
'} 

Gels were subjected to ultrasound intensities of 13, 30, 70, 100, 200 or 300 m W /cm-

applied for 20 minutes once every 24 hrs, at 37°C/5% CO2. Culture medium was 

changed every 2 days, and all aspirated medium was stored. At day 9, constructs were 

collected, weighed and assayed for total sGAG content using the DMB method (Section 

3.8.2) normalised to construct wet weight, and total DNA content using the Hoescht 

33258 method (Section 3.8.4). Culture medium was also assayed for total sGAG content 

(Section 3.8.3). The central core, labelled core 1 in Figure 3.16, was retained for cell 

viability measurements (Section 3.8.5). 
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3.9.2 Statistical analysis 

Previous work in the host lab revealed data which was normally distributed for each cell 

activity parameter (Chowdhury et aI., 2001). Accordingly, unpaired Student's t-tests 

were used for analysis to compare PLIUS-stimulated constructs with non-stimulated 

controls. A confidence level of 50/0 (p<0.05) was considered statistically significant. 

3.9.3 Results 

Total sGAG content was calculated for each of the six constructs in the PLIUS groups 

and control groups. Values were normalised to wet weight, and means and standard 

deviations calculated. Figure 3.19 and Table 3.2 indicate the sGAG values in both the 

constructs and medium. 
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FIGURE 3.19: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG 

content in agarose-chondrocyte constructs. Cells were exposed to increasing PLIUS 

SATA intensities up to 300mW/cm2 every 24 hours from day 1 to day 9. Data 

represents means sGAG content normalised to wet weight + standard deviation 

(n =6). Statistically significant differences are indicated at p<O.05 (*) and p<O.OOl 

(***) 

From Figure 3.19 it can be seen that for intensities up to and including 100mW/cm
2 

sGAG values for PLIUS stimulated constructs are comparable to the control value 

(p>0.05). However, at the two higher intensities, total sGAG was significantly lower 

than for the control (p<0.05 for 20OmW/cm2 and p<O.OOl for 300mW/cm2). 
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TABLE 3.2: Effect of pulsed low intensity ultrasound (PLIUS) on normalised sGAG 

content in agarose-chondrocyte constructs. Cells were exposed to increasing PLIL'S 

SATA intensities up to 300mW/cm2 every 24 hours from day 1 to day 9. Values for 

construct represent mean (n=6). Values for medium (n=2) represent the cumulative of 

medium collected at days 2, 5, 7 and 9. 

Mean normalised sGAG at day 9 
I 

Ultrasound Intensity 
(mW/cm2) o (control) 13 30 70 100 200 300 
construct 0.740 0.749 0.744 0.705 0.756 0.647 0.364 
medium 0.051 0.068 0.076 0.075 0.065 0.066 0.074 

construct + medium 0.791 0.817 0.820 0.780 0.821 0.713 0.438 

medium (% of total) 6.5 8.3 9.2 9.6 8.0 9.3 16.9 

By examining the corrected medium sGAG values (Table 3.2), it can be seen that all of 

the PLIUS stimulated constructs released more sGAG into the medium than the control 

constructs. Indeed, the medium values for the SAT A intensities are all fairly similar, 

ranging between 0.065-0.076 !J.g sGAG/!J.g construct. When the medium value is 

represented as a percentage of the total (construct and medium), PLIUS-stimulated 

values are increased from control values by a small amount up to an intensity of 

200mW/cm2
• However, in the case of 30OmW/cm2

, this percentage value is increased to 

over two-fold of control values, associated primarily by the low sGAG in constructs at 

this intensity. 

Figure 3.20 illustrates the total DNA results for the six PLIUS intensities and the control 

constructs. It can be seen that all DNA values for the PLIUS-stimulated constructs are 

lower than that of the control. Indeed, the majority of the mean values are statistically 

significantly lower than the control values. For example, the differences at SAT A 

intensities of 13mW/cm2 and 100mW/cm2 were significant at the 5% level, whereas at 

intensities of 70, 200 and 300mW/cm2
, the differences were significant at the 0.1 % 

level. 

Using the previously mentioned converSIon factor of 7.7pg of DNA per bovine 

chondrocyte (Kim et aI., 1988), the number of cells present in culture and the amount of 

sGAG produced per cell was estimated, as indicated in Table 3.3. It can be seen that for 

PLIUS stimulated systems there was a reduction in cell number, particularly at 

intensities of 70mW/cm2 and greater. By contrast, the amount of sGAG produced per 

cell was generally higher for PLIUS-stimulated constructs compared to non-stimulated 
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constructs. The one exception to this trend was the lower sGAG produced per cell for 

the PLIUS intensity at 30OmW/cm2 (Table 3.3). 
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FIGURE 3.20: Effect of pulsed low intensity ultrasound (PLlUS) on DNA content in 

agarose-chondrocyte constructs. Cells were exposed to increasing P LIUS SAT A 

intensities up to 300mW/cm2 every 24 hours from day 1 to day 9. Data represents 

mean DNA content normalised to wet weight + standard deviation (n =6). 

Statistically significant differences are indicated at p<0.05 (*) and p<O.OOl (***). 

TABLE 3.3: Mean values of approximate cell number and amount of sGA G synthesised 

by each chondrocyte in agarose-chondrocyte constructs. Cells were exposed to 0, 13, 

30, 70, 100,200 or 300mW/cm2 PLIUS every 24 hours from day 1 to day 9 (n=6). 

PLiUS intensity (mW/cm<:) 

0 13 30 70 100 200 300 

Cell number (x 10J
) 908 822 811 682 765 711 723 

sGAG prod uced/cell (g x 0.87 1.00 1.01 1.14 1.07 1.00 0.61 

10.1°) 

Cell viability results as summarised in Figure 3.21 , showed that for both control and 

PLIUS-stimulated constructs of SATA intensities 13-100mW/cm2
, cell viability was 

maintained at greater than 85% throughout the depth of the construct. However at a 

SATA instensity of 20OmW/cm2
, a decrease in viability to approximately 60% wa 

recorded. By contrast a significant loss of cell viability was evident in the con truct 

ubjected to 300mW/cm2
. It i evident that the values decrease with di tance fr m th 

top of the con truct. Thu in the bottom third of the construct adjacent to the PLIU 

tran duc r. iability alue were Ie than 5% at a SAT A intensity of 300m W /cm-. 

9 



..... hapter 3: Development of Model S)-stem for lnestigating Effect of PLI 

100 

- 90 ~ 
~ 80 Q) 
"S: - 70 0 
""0 

intensities Q) 60 ~ 

(mW/cm2
) .... 

Q) 
Q. 50 -- control 

.~ 13 :0 40 
<tI 30 "S: 30 
Q) -e--70 
u 

20 c: 100 
<tI 
Q) 

E 10 --+--- 200 
- 300 

0 
0 500 1000 1500 2000 2500 3000 

depth from top of construct (micrometres) 

FIGURE 3.21: Cell viability in agarose-chondrocyte constructs at 9 days of culture. 

Cells were exposed to increasing PLIUS SATA intensities up to 300mW/cm2 every 24 

hoursfrom day 1 to day 9. Values represent mean (n=6). 

3.9.4 Discussion 

The results of the study generally indicate that the application of PLIUS to chondrocytes 

seeded in 3D agarose constructs had no statistically significant effect on sGAG 

synthesis and cell proliferation over a nine day culture period at intensities up to and 

including 100mW/cm2
. Indeed, stimulated chondrocytes remained viable (Figure 3.21) 

and were able to produce comparable amounts of sGAG when compared to 

chondrocytes in non-stimulated constructs (Figure 3.19 and Table 3.2). 

Table 3.2 indicates that PLIUS appears to increase the amount of sGAG released from 

the agarose constructs into the medium. This was evident at all intensities, suggesting 

that the pressure waves resulting from the ultrasound were promoting transport of 

sGAG molecules from the construct into the medium. However there was no systematic 

trend to suggest that sGAG levels in the medium increased with increasing PLIUS 

intensity. 

The DNA content with chondrocyte-agarose constructs was measured at day 9 (Figure 

3.20). The total DNA content in constructs was significantly lower in PLIUS-stimulated 

culture than control at all intensities with the exception of the relative low inten ity f 

3OmW/cm2
. From the results shown in Figure 3.20 and Table 3.3 it appear that PLI 

inhibit cell pr liferation over the nine day period particularly at high r AT 
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intensities. However, when total sGAG content was nonnalised to cell number (Table 

3.3), it was apparent that although a lower amount of cells are contained in the PLIUS­

stimulated constructs than controls, total sGAG content for both groups were 

comparable up to 100m W /cm2 (Figure 3.19). This finding implies that the amount of 

sGAG produced per cell was greater in the PLIUS-stimulated groups than in non­

stimulated controls. The findings suggest that PLIUS stimulated individual cells while 

simultaneously reducing cell proliferation, giving a net sGAG response which is similar 

to that in control constructs. This possibility will be further examined in Chapter 4 with 

the analysis of cell activity. 

At SATA intensities of 200mW/cm2 and above, sGAG content was significantly lower 

than the control value (Figure 3.19). The viability results displayed in Figure 3.21 show 

that at these PLIUS intensities cell viability is severely compromised. However, the 

total DNA results (Figure 3.20) did not show the extent of cell death seen at 200 and 

300mW/cm
2

. This can be attributed to the fact that the Hoescht 33258 used for the assay 

binds to associated adenine-thymidine base pairs within DNA chains, regardless of the 

status of the cell viability. 

In many of the therapeutic and surgical applications of ultrasound, their effectiveness 

involves the generation of tissue heating, such as hyperthennia treatment and tissue 

ablation (Section 2.5.6). Therapeutic levels of ultrasound «lOW /cm2
) are used in 

cancer therapy, sometimes in conjunction with drug delivery (Feril et aI., 2002; 

Lagneaux et aI., 2002). Along with heat, cavitation (Section 2.5.8.2) has been proposed 

as a non-thennal effect of therapeutic ultrasound in cancer treatment, leading to 

mechanical shear stress, increased cell penneability and production of free-radicals 

(Tabuchi et al., 2007; Feril and Kondo, 2005). It is well established that at high 

intensities cell lysis is induced, whereas at lower intensities apoptosis is the 

predominant mechanism of cell death (Feril et aI., 2005). A wide variety of ultrasound 

signals have been examined in studies using cell suspensions of human leukaemia cell 

lines (Feril et al., 2002, 2003, 2005; Lagneaux et aI., 2002; Tabuchi et al., 2007). Feril 

and colleagues found that non-thennal PLIUS treatment (1 MHz resonant frequency, 

100Hz PRF, 1 minute) induced apoptosis at SATA intensities of greater than 

200mW/cm2 (2005, Tabuchi et aI., 2007). Although the PLIUS parameters used in the 

present chapter (namely 1.5 MHz resonant frequency, 1 kHz PRF, 20 minutes) are 

different from those utilised by Feril and colleagues, it appears likely that PLIUS at 
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intensities as high as 20OmW/cm2 and 30OmW/cm2 can cause pennanent damage 

leading to cell death in the chondrocyte-agarose constructs. This could be caused by a 

combination of heating and non-thermal effects. Progressive decrease in cell viability 

with increasing proximity to the well plate surface was demonstrated for 3D cultures 

exposed to 30OmW/cm2 (Figure 3.21). The lowest values for cell viability are evident 

within 1 mm of the culture well plastic and the underlying ultrasound transducer. This 

suggests that absorption heating of the transducer and/or the plastic well plate may be 

the primary cause of cell damage. Any heat incurred at the base of the 6-well plate 

would dissipate through the construct towards the construct/medium interface. 

Accordingly, cells located closer to the medium would be less affected and would more 

likely maintain their viability levels. 

Another factor to consider when examining the viability data was the availability of 

nutrients for the chondrocytes from the medium. The bioreactor arrangement was such 

that diffusion of nutrients could only occur via the top surface of the agarose gel; thus 

the diffusion distance was considerably greater for chondrocytes towards the bottom of 

the constructs. A study by Heywood et al. (2004) revealed that the optimum conditions 

for 3D chondrocyte culture to maintain high viability throughout the depth of a 

construct required a volume of 6.4ml per million cells. The present arrangement of the 

3D-culture system precluded the use of such an equivalent high volume. Volumes of up 

to 10ml were initially used in preliminary experiments; however, it proved difficult to 

prevent the occurrence of infection due to spillage of medium, and a volume of 6.6ml 

was used. Accordingly, with a prescribed volume of 6.6ml, chondrocyte viability was 

maintained in the absence ofPLIUS. 

Studies in conjunction with Smith and Nephew Research Centre (York, UK) have 

investigated the attenuation and heating properties of the Exogen signal (1.5 MHz 

resonant frequency, 1 kHz PRF, 3OmW/cm2 SATA intensity), which can shed some 

light on the physics of the signal in relation to the set-up of the experimental system. 

Attenuation studies were undertaken using equipment at the Physics Department of the 

University of Leeds (Chan et at., 1978; Dyer et al., 1992). The attenuation co-efficient 

of the well-base of a polystyrene six well plate was calculated to be 1.71 dH'cmlMHz. 

This value is equivalent to that measured in muscle, non-mineralised fibrocartilage and 

articular cartilage (Dowsett ct aI., 1998), and provides a low level of attenuation when 
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compared to mineralised fibrocartilage, tendon and bone (Sano et al.. 2006) (Table 2.1). 

The thickness of a well-base was measured as 1.367mm. Therefore attenuation in the 

well base whilst using the Exogen signal could be estimated as 0.35dB. The relatively 

low level of attenuation seen in the well-plate plastic suggests that the effect of the 

higher PLIUS intensities on viability is unlikely to be caused by differential heating of 

the plastic well base. 

Measurements were also made to investigate the temperatures encountered within the 

in-vitro apparatus in conjunction with the PLIUS transducer. Studies undertaken at the 

National Physical Laboratories, Teddington, used an infrared camera to examine the 

self-heating of the base of empty wells of a 6-well plate coupled to an ultrasonic 

transducer at room temperature. After 10 seconds of PLIUS, the temperature rose by 

1.6°C, with a 10°C increase after 180 seconds. These temperatures were concentrated in 

the centre of the transducers. The actual transducers are approximately 22mm in 

diameter, and are encased in a thermosetting resin material of diameter 3Omm. It is 

important to note that in a cell culture system, energy would be transferred from the 

transducer into the biological system. Thus, the high temperatures seen here are likely 

demonstrative of the high attenuation of ultrasound in air (Table 2.1). 

Other experiments, involving gradually filling a PLIUS-stimulated well with water, 

indicated variation in the temperature rise occurring in the water with depth (Figure 

3.22). One possible explanation for this temperature variation is that incident PLIUS is 

being periodically reflected at the interface of the well culture plastic and reflecting 

back into the transducer, interfering with its subsequent oscillations and therefore 

reducing the power output and causing increased heat production. 

When Figure 3.22 is compared to the results of the standing wave study undertaken in 

Section 3.5.2 (Figure 3.7), some similarity can be seen. Due to the lack of data from 

Figure 3.23 (compared with that in Figure 3.7), a definitive conclusion cannot be made 

with respect to the periodicity of the temperature change cycle. However, it does appear 

that the wavelength of the temperature rise phenomena may well be approximately 

0.5mm, as was seen in the standing wave study. Taking into consideration that both 

phenomena occur due to attenuation of the incident ultrasound signal, it is likely that 

that two do in fact correlate in terms of periodicity. 
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FIGURE 3.22: Graphical representation of temperature rise (after 10 seconds) with 

increasing depth of water placed in the well of a six well plate being stimulated with 

PLIUS. (Data adapted from that obtained courtesy of Smith and Nephew Research 

Centre, York, UK). 

Researchers at Smith and Nephew investigated different well-plate configurations 

involving the use of water baths and tilting of the transducer (data not presented). 

Tilting of the transducer caused a reduction in recorded temperature. Of note was that 

when the transducer was positioned 8mm from the well in a water bath, the initial heat 

rise was approximately three times lower than that seen in the original configuration 

but, after one minute, the rate of increase was equivalent to that obtained when no water 

bath was used. 

Kopakkala-Tani et al. (2006) employed a 110mm water gap between ultrasound 

transducers and bovine chondrocytes cultured in monolayer, with the belief that 

increased water mass would reduce the temperature changes. However, after a ten 

minute exposure to an average intensity of 580mW/cm2 the temperature rise in the 

plastic bottom of the well plate was found to be 6.9°C. Observation of Figure 3.6 

indicates that for a 30m W /cm2 transducer, the intensity seen in an equivalent distance in 
? 

water is three times that of the incident intensity, namely between 80 and 90mW/cm-. 

Thi implies that there is no characteristic reduction of PLIUS intensity with di tanc , 

which would have an influence on heating effects. 

Further inve tigation by Smith and ephew indicated that th PLIU P w r utput 

d crea ed with increa ing urr unding temp ratur . Betwe n 21 C and 37° it wa 

4 



~"Mpter 3: Development of Model System for Investigating Effect of PLIUS 

found that the incident power decreased at approximately 0.7% per degree. This implies 

that for the present experimental setup, there was approximately a 100/0 reduction in 

power at the transducer/well interface. A further experiment showed that a highly 

reflecting surface (air-filled foam) caused a high power output from the transducer, 

which was approximately twice that of an absorbing surface. Voltage changes measured 

in the transducer implied that these reflections can interfere with the transducer, 

changing the acoustic impedance of the material. 

The wide range of temperature and attenuation investigations highlighted in this chapter 

show that significant changes can occur in the ultrasound signal when used in 

conjunction with a cell culture system. It is evident that variables such as distance from 

transducer, the temperature of the system, depth of fluid and the properties of material 

interfaces all playa major role in the final incident PLIUS power due to the attenuation 

of the ultrasound, a combination of scattering in heterogeneous media, reflection at 

interfaces and conversion of energy to heat (absorption). Indeed, it may be concluded 

that multiple reflections interfering with the transducer output may be a greater factor 

than the heat produced by absorption. 

The system used in this thesis employs PLIUS coupled to the base of the transducer 

plate. The absence of a fluid gap between the two implies that any heat produced by the 

transducer would be directly transmitted to the well contents. There is likely to be a 

great deal of reflection and absorption in the chondrocyte agarose system, due to factors 

such as: 

• The incidence of regular temperature variations and standing waves (periodicity 

-0.493 mm in water) 

• The heterogeneous nature of the cell culture system and the depths of each 

component 

• The intensity of ultrasound used (and its efficiency) 

• Heating of the ultrasound transducer 

Although these attenuation effects are very difficult to interpret and display, the results 

of the study undertaken in this chapter indicates that PLIUS does not have an adycrse 

effect on cell metabolism and sGAG synthesis of chondrocytes in the present 3D culture 

system, within a specified SAT A intensity range. 
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3.10 Conclusion 

From the above results and discussion (Sections 3.9.3 and 3.9.4 respectively), it appears 

that although PLIUS causes a decrease in chondrocyte proliferation, viability was 

maintained at over 85% throughout the depth of both control and PLIUS-stimulated 

constructs over a 9 day period for SATA intensities up to 10OmW/cm2
. Moreover, as 

there was no significant difference between control and PLIUS stimulated constructs in 

relation to sGAG content for these intensities, there was some indication that PLIUS 

may stimulate individual cells in the system, as the amount of sGAG produced per 

chondrocyte was greater for the PLIUS stimulated constructs than controls (significant 

at 70 and 100m W /cm2
). However, cultures exposed to the higher intensity PLIUS of 

200 and 30OmW/cm2 were adversely affected causing cell death. From the extensive 

investigations completed in conjunction with Smith and Nephew (York, UK) and NPL 

(Teddington, UK), it is likely that the mechanism by which the PLIUS exerts cell death 

at higher intensities is due to a high degree of acoustic reflections in the system which 

interfere with the PLIUS signal and cause self-heating of the transducer, which 

transmits this heat to the substrate i.e. the well plate/culture interface. Cell death is 

unlikely to be caused by attenuation of the PLIUS signal in the well culture 

plastic/agarose as these materials only produce low attenuation. 

The possible beneficial effect of PLIUS on sGAG synthesis in chondrocyte-agarose 

culture was shown for intensities up to 100m W /cm2 over a 9 day period. In order to 

investigate this further, temporal studies will be carried out to examine the effects of 

selected PLIUS intensities on cultures at various time-points over a 20 day period. 
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4.1 Introduction 

Previous studies examining the effects of pulsed low intensity ultrasound (PLIUS) on a 

variety of cell types in both monolayer and 3D model systems have shown that 

ultrasound influences cellular mechanisms (Dinno et aI., 1989; Pilla et al., 1990; Parvizi 

et al., 2002; Naruse et aI., 2003; Schumann et al., 2006). In particular, studies using 

chondrocytes in both monolayer and gel systems have suggested that PLIUS may 

stimulate sulphated glycosaminoglycan (sGAG) synthesis (Parvizi et aI., 1999; 

Nishikori et aI., 2001) 

This chapter tests the hypothesis that PLIUS stimulates the synthesis and elaboration of 

sGAG and that this response is influenced by the intensity of the ultrasound. Based on 

the developmental and intensity experiments in Chapter 3, an optimized chondrocyte­

seeded agarose model system was exposed to PLIUS at intensities 30mW/cm2 and 

100m W /cm2 over a period of 20 days. At specific times throughout this culture period 

biochemical assays were employed to quantify sGAG synthesis and cell proliferation. 
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4.2 Materials and methods 

4.2.1 Preparation of chondrocyte-agarose constructs 

Chondrocytes were isolated from bovine articular cartilage and seeded in agarose 

constructs according to the standard procedures described in Section 3.2. To review 

briefly, articular cartilage was digested with pronase and collagenase and the isolated 

chondrocytes seeded at a final concentration of 4xl06 cells.mr l in 30/0 (w/v) low gelling 

agarose (Sigma, UK). Each well of a six-well plate was filled with cell-agarose 

suspension to yield a 3mm height gel using a positive displacement pipette. The agarose 

was gelled at 4°C, then covered with 6.6ml of DMEM + 16.1 % FCS and maintained at 

37°C / 5% CO2 for a period of up to 20 days. Medium was changed every 2-3 days. 

4.2.2 PLIUS regime 

Each sample of a six-well plate was stimulated with PLIUS by placement of the plate on 

the six transducers with the use of coupling gel and manipulation of the plate to 

eliminate any air bubbles (Figure 3.2). Constructs were incubated for a period of 24 

hours before stimulation with PLIUS at one of two SATA intensities, 30mW/cm2 and 

100mW/cm2
, such that: 

• Three separate chondrocyte isolations were performed at 3OmW/cm2
, denoted by 

0504, 1204 and 0305. 

• Two chondrocyte isolations were performed at 100m W /cm2 studies, denoted 

0805 and 1005. 

The six wells were exposed to one 20 minute period of PLIUS every 24 hours from day 

1 to day 20 (where day 0 is the day of seeding into agarose). 

• For the two isolations, 1204 and 0305, a subsequent group of specimens was 

exposed to 30m W /cm2 PLIUS using a modified ultrasonic box, which enabled 

an additional set of 6 well plates to be exposed to a 20 minute period of PLIUS 

every 12 hours (twice a day). 

For each experiment, control constructs remained non-stimulated in separate six-well 

plates. 

4.2.3 Temporal changes in sGAG and DNA content 

At days 1, 4, 8, 11, 15, 19, medium was removed from the wells and replaced with fresh 

medium supplemented with 10 JlCi/ml 35S04 and 1 JlCi/nll eH] thymidine (both 

Amersham Biosciences, UK) for a 24 hr period. This enabled the assessment of the rate 

of sGAG production and chondrocyte proliferation, respectively. After the ~4 hour 
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incubation period the medium was removed and stored, and 6mm diameter constructs 

(n=6) were removed from the specimen in the well using a sterile corer in the manner 

described in Section 3.7. At day 1, constructs had not been exposed to PLIUS. At all 

other time-points, both constructs and medium were harvested from the well exposed to 

PLIUS and from the corresponding non-stimulated controls. All constructs were 

weighed and frozen. At the end of the experiment constructs were digested for the 

biochemical assays, as detailed in Section 3.8.1, with total sGAG content and total DNA 

content determined using the DMB and Hoescht 33258 methods, respectively. The 

standard protocols for incorporation asssays are detailed below. 

4.2.4 Incorporation of 804 into sGAGs 

DMEM+ 16.1 %FCS was supplemented with 10 JlCi/ml 35S04 and used to maintain 

chondrocyte/agarose constructs for the prescribed period, after which both medium and 

constructs were collected. Incorporation of S04 into newly synthesized GAG was 

determined in both digested agarose/chondrocyte constructs and the collected media, 

using the alcian blue precipitation method (Masuda et aI., 1994). Alcian blue is a 

cationic dye that binds to sulphate groups on the GAG chains of proteoglycan. The 

buffers in this assay are detailed in table 4.1. 

75JlI of acetate buffer, 25JlI of sample and 150JlI of alcian blue solution were added to 

individual wells of a multi screen plate (0.45Jlm pore filter, Millipore, UK). The plate 

was agitated for 1 hour at room temperature, vacuum aspirated and the wells washed 

three times with acetate buffer supplemented with 0.1 M sulphate. This washing step 

was designed to remove non-incorporated S04 molecules and unbound dye. The base of 

the plate was removed to expose the filters, which were allowed to dry at 37°C for 1 

hour and punched out into scintillation vials, using a multiple-punch assembly 

(Millipore, UK). A volume of 0.5ml guanidine hydrochloride solution was added to 

each vial and agitated for 1 hour to dissociate and solubilise the S04-labelled 

proteoglycan molecules bound to the alcian blue. After this period 4ml of scintillation 

fluid (Ultima Gold MY, Perkin Elmer, USA) was added to the vials. Additionally, 1 0~t1 

aliquots of original medium were measured out into separate scintillation vials with 4ml 

of scintillating fluid added, in order to provide a total measure of incorporation rate. All 

vials were placed into a scintillation counter (Wallac 1409 DSA, Perkin Elmer, USA) 

and a prewritten protocol used to measure radioactive counts. 
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TABLE 4.1: Details of buffers and reagants used for aldan blue assa)' for the 

measurement ofS04 incorporation. 

Buffer Composition Quantity Source 

Acetate Buffer (pHS.S) Sodium Acetate 2.05g (0.05M) Sigma, UK 

Magnesium Chloride.6H2O 8.64g (0.085M) Sigma, UK 

Distilled Water 500ml 

Alcian Blue Alcian Blue 8GX 0.2g (0.2% wv) Sigma, UK 

Acetate Buffer (pH5.8) 100ml 

Acetate Buffer with Sodium Acetate 2.05g (0.05M) Sigma, UK 

O.l:vI Sulphate Magnesium Chloride.6H2O 5.08g (0.05M) Sigma, UK 

Sodium Sulphate 7.lOg (O.IM) Sigma, UK 

Distilled Water 500ml 

4M Guanidine Guanidine Hydrochloride 190.6g Merck, UK 

Hydrochloride in Propan-2-o1 166.7ml Merck, UK 

33% Propan-2-o1 Distilled Water 333.3ml 

The incorporation rate of S04 into newly synthesized GAG was calculated using the 

following equation (Lee et aI.., 1998): 

so . . (bound counts of construct and medium) x 0.81 1000 
4 IncorporatIon = x 

(total counts in control medium) x (h) x total DNA 

where: 

Total DNA 

0.81 

Equation 4.1 

hours that chondrocyte/agarose construct was exposed to the 

radiolabelled medium 

amount of DNA in Ilg in cells (calculated using Hoechst 33258 

DNA assay) 

Concentration of S04 in labelled medium (mM) 

Units of incorporation: 11M S04/h/Ilg DNA. 

4.2.5 Incorporation of eU] thymidine into DNA 

Thymidine is one of the four nucleotides which make up DNA. Radiolabelled [3H] 

th)'lnidine incorporation into newly-synthesised chondrocyte DNA was measured by the 

trichloroacetic acid (TC A) precipitation method (Lee and Bader, 1997). TeA 

precipitates nucleic acid polymers longer than approximately 20 nucleotides. resulting 
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in a separation of the radiolabelled nucleotides incorporated into nucleic acid from the 

unincorporated label. 

Solutions of 100/0 and 20% (w/v) TCA were prepared using TCA powder (Sigma, UK) 

and dH20. These were stored and used at 4°C in order to prevent dissolution of 

precipitated nucleotides. 100J.!1 10% TCA was pipetted into each well of a multi screen 

plate (0.45J.!m pore filter, Millipore, UK) before being vacuum aspirated. 100 J.!l 

20% TCA was then added to each well, prior to 100J.!1 of digested construct sample and 

a further 100J.!1 20% TCA. The plate was agitated for 1 hour at room temperature, the 

wells then vacuum aspirated and washed once with 100 J.!l 100/0 TCA to remove excess 

non-incorporated eH] thymidine. The base of the plate was removed to expose the 

filters, which were allowed to dry at 37°C for 1 hour, before being punched out into 

scintillation vials using a multiple-punch assembly (Millipore, UK). A volume of 0.5ml 

0.01 M potassium hydroxide solution was added to each vial and agitated for 2 hours to 

dissociate and solubilise the eH] thymidine labelled DNA bound to the TCA. After this 

period, 4ml of scintillation fluid was added to the vials and placed into a scintillation 

counter and a prewritten protocol used to measure radioactive counts. The incorporation 

of eH] thymidine into newly synthesized DNA was calculated by dividing the counts 

per minute by the amount of DNA ascertained from the Hoescht 33258 assay, giving 

units of incorporation in CPM/J.!g DNA. 

4.2.6 Statistical analysis 

Previous work in the host lab revealed data which was normally distributed for each cell 

activity parameter (Chowdhury et aI., 2001). Accordingly, unpaired Student's t-tests 

were used to compare PLIUS-stimulated constructs with non-stimulated controls at each 

time-point. A confidence level of 5% (p<0.05) was considered statistically significant. 

4.3 Results 

The following results display the total sGAG content, total DNA content, S04 

incorporation rate and [3H] thymidine incorporation following stimulation using PLIUS 

intensities of 30mW/cm2 and 100mW/cm2
• It should be noted that those studies 

involving two cell isolations, 0504 and 0805, were terminated at day 16, due to a 

bacterial infection beyond that time point. 
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4.3.1 Total sGAG content 

4.3.1.1 The effect of a SATA intensity of 30mW/cm2 

Total sGAG content was estimated for each of the six constructs in both the PLIUS and 

control groups, normalized to weight wet, and a mean value and standard deviation 

determined. The results for the three 30m W /cm2 isolations 0504, 1204 and 0305 are 

presented in Figure 4.1. Table 4.2 summarises the statistical data relating to the 

differences between the two stimulation groups and the non-stimulated control, for each 

time point. The corresponding data for sGAG released into the medium from the three 

isolations is presented in Figure 4.2 and Table 4.3. 

Figure 4.1 shows an increase in total sGAG content over the 20 day culture period for 

agarose constructs from the control group and the groups exposed to once-daily 

ultrasound (termed PLIUSx 1), and twice-daily ultrasound (termed PLIUSx2). Close 

examination of the results generally reveal few differences and no systematic trends in 

the mean total sGAG between the control and PLIUSx I-stimulated constructs. Indeed, 

Table 4.2 indicates only two cases of significant up-regulation of sGAG for stimulated 

constructs and two cases of significant down-regulation, from a possible seventeen 

time-points over the duration of the three isolations. 

By contrast, the results for the two isolations in which constructs were stimulated twice 

per day, indicated that this regimen (PLIUSx2) consistently yielded the lower values for 

total sGAG. Indeed in 8 out of the 12 comparisons, PLIUSx2 yielded statistically 

significantly lower values of total sGAG in the construct compared to control values 

(Table 4.2). Indeed, there was only one comparison in which PLIUSx2 was significantly 

higher than the control value, namely day 5 values for isolation 1204. Comparison of 

the two stimulation groups revealed that the PLIUSx 1 group generally yielded 

significantly higher mean total sGAG values (Figure 4.1 B and C). The only exception 

was for isolation 0305 at day 9, where PLIUSx2 yielded a higher sGAG content than the 

PLIUSx 1 group (p<0.05, Figure 4.1 C). However, this difference was only of the order 

of a few micrograms, and the other experimental data for total sGAG values with 

PLIUSx2 revealed significantly lower values than for the other two groups (p<O.OI or 

p<O.OO 1, Figure 4.1 C and Table 4.2). 

Figure 4.2 presents the mean total sGAG released into the medium. The medium values 

for each time point are cumulati\e, so that comparisons could be made between sGAG 
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content in the constructs and medium at each time-point. It can be seen that there is a 

fairly constant rate of sGAG release over time. Generally, for the three separate 

isolations, the sGAG values for the medium at each time point were comparable for 

both experimental and control groups. However, beyond 12 days of culture the 

differences in sGAG were more noticeable between groups, although there were no 

systematic trends. For example, a higher GAG content was released into the medium for 

the control group at day 16 for isolation 0504 (Figure 4.2A). By contrast isolations 

1204 and 0305 (Figures 4.2B and 4.2C respectively) indicate that the PLIUS-stimulated 

chondrocytes release slightly more sGAG into the medium than those in controls at days 

16 and 20. Close examination of values between experiments reveal that the mean 

sGAG released in the medium corresponding to isolation 0305 is comparably higher 

than for the other two isolations (0504 and 1204). 

TABLE 4.2: Summary of results investigating the effect of PLIUS on elaboration of 

total sGA G content in chondrocyte-agarose constructs exposed to once or twice daily 

30mW/cm2 PLIUS, as determined by total sGAG content. r(1) represents statistically 

significant up-regulation (down-regulation) of sGAG content compared to controls. 

The 

Isolation PLIUS 

intensity/freq uency 

0504 30m 

PLIUSxl 

1204 30m 

PLIUSxl 

0305 30m W fcm 

PLIUSxl 

1204 30m W fcm 

PLIUSx2 

0305 30m 

PLIUSx2 

Time-point (day) 

reo pe lil'el) , wilh red and blue highlighting up- and down-regulation from control . 
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FIGURE 4.1: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG content 

in agarose-chondrocyte constructs undertaken from three separate isolations (0504, 

1204 and 0305). Cells were exposed to 30m W/cm2 PLIUS either eve,y 24 or 1_ hOllr 

(termed PLIUSx1 and PLIUSx2, re pectiveZ~· Value represent mean ± landard 

deviations (n =6-7). Stati tical differences beflveen PLIUSx1and PLIUSx_ are indical d 

uch that * p<0.05; ** p<O.Ol; *** p<O.OOl. 
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FIGURE 4.2: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG relea ed 

into the medium from agarose-chondrocyte constructs from three separate isolation 

(0504, J 204 and 0305). Cells were exposed to 30m W/cm 2 PLIUS either every .... 4 or J 2 

hour {termed PLJUSx J and PLIUSx2, re 'P ctl\ e(l~. Values are cumulative and 
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Figure 4.3 presents the mean total sGAG corresponding to the sum of that measured in 

the constructs and that released into the medium. It indicates the variance in sGAG 

values over time for the three isolations and the increased ratio of sGAG found in the 

medium for isolation 0305. The corresponding values for the ratio of sGAG content in 

the medium compared to the total sGAG (construct + medium) for all three isolations 

are summarised in Table 4.3. 

TABLE 4.3: Effect of pulsed low intensity ultrasound (PLIUS) on the ratio values of 

sGAG content released in the medium when compared to total sGAG content (construct 

+ medium). Results were obtained from three separate isolations (0504, 1204 and 

0305). Experimental groups involved cell-seeded constructs exposed to 30mW/cm2 once 

(PLIUSx1) or twice (PLIUSx2) every 24 hours. Control groups remained non­

stimulated. 

Percentage of total sGAG in medium 

Isolation 0504 Day 2 Day 5 Day 9 Day 12 Day 16 Day 20 
Control 13.97 12.42 11.44 13.45 18.23 n/a 

PLlUSx1 (30mW/cm2) 14.60 12.30 10.31 11.75 14.75 n/a 

Isolation 1204 Day 2 Day 5 Day 9 Day 12 Day 16 Day 20 

Control 21.16 19.98 12.23 12.87 13.49 13.93 

PLlUSx1 (30mW/cm2) 25.06 13.98 11.49 11 .98 13.19 15.37 

PLlUSx2 (30mW/cm2) 28.48 18.73 13.79 13.96 15.38 16.77 

Isolation 0305 Day 2 Day 5 Day 9 Day_12 Day16 Day 20 

Control 22.26 24.15 22.18 22.61 25.01 26.12 

PLlUSx1 (30mW/cm2) 22.41 26.42 25.38 24.85 27.31 28.93 

PLlUSx2 (30mW/cm2) 21.70 25.68 24.55 31.16 30.03 33.52 
Highlighted entries indicate differences between stimulated and control values. 

Examination of Table 4.3 reveals that generally no specific pattern could be seen in 

medium ratios for the three experimental conditions. However there were some cases in 

which differences were apparent between the medium sGAG levels for stimulated and 

non- timulated cell cultures as highlighted in the table. As an example, for isolations 

1204 and 0305 at later time-points, the twice-daily stimulation regimen (PLIUSx2) 

yi ld d increased release of sGAG into the medium. 
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FIGURE 4.3: Effect of pulsed low intensity ultrasound (PLIUS) on total sGA G 

content in agarose-chondrocyte constructs and sGAG released into the medium 

undertaken from three separate isolations (0504, 1204 and 0305). Cells were exposed 

to 30m W/cm- PLIUS either every 24 or 12 hours (termed PLIUSx1 and PLIUSx2, 

re pecti\'e~y). Values for con truct represent mean (n =6-7). Values for medium are 

cumulative and repre ent mean (n =2). 
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4.3.1.2 The effects of a SAT A intensity of lOOmW/cm2 

The wet weight nonnalized total sGAG results for the higher 10OmW/cm2 SATA 

intensity are illustrated in Figure 4.4. Table 4.4 summarises the statistical data related to 

the differences between the two stimulation groups and the non-stimulated control 

group for each time point. Figure 4.4 reveals a general increase in sGAG over time for 

both the PLIUS and control groups, as was evident for the 3OmW/cm2 data. This trend 

is most pronounced with isolation 0805. By contrast, isolation 1105 yielded an increase 

up to day 9 and, thereafter, the total sGAG values remained fairly constant for both the 

experimental and the control groups. 

For both isolations, PLIUS was associated with significantly higher total sGAG content 

when compared to controls for the majority of time-points (Figure 4.4). Indeed, the 

differences were found to be statistically significant for 9 of the 11 comparisons (Table 

4.4). However, close examination of the 0805 data reveal that the main stimulatory 

effect of PLIUSx 1 was achieved from day 1 to day 2. Beyond day 2, the temporal 

gradients appear to be similar for both groups indicating an equivalent rate of sGAG 

synthesis (Figure 4.4A). 

The corresponding mean total cumulative sGAG released into the medium is presented 

in Figure 4.5. It can be seen that there is a fairly constant rate of sGAG release over 

time. Furthennore, the cumulative sGAG values in the medium were generally 

equivalent for the PLIUS-stimulated and non-stimulated groups for the majority of time 

points. The only exception to this trend was the values for day 20 in the isolation 1105, 

which revealed a higher sGAG release in the control group (Figure 4.5B). 
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FIGURE 4.4: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG content 

in agarose-chondrocyte constructs undertaken from two separate isolations (0805 and 

1105). Cells were exposed to 100mW/cm2 PLIUS every 24 hours (termed PLIUSx1). 

Values represent mean ± standard deviations (n=6-7). 

TABLE 4.4: Summary of results investigating the effect of PLIUS on elaboration of 

GA G elaboration in chondrocyte-agarose constructs exposed to once daily 

100mW/cm2 PLIUS, as determined by total sGAG content. r(!) represents statistically 

ign~ficant up-regulation (down-regulation) of sGAG content compared to controls. 

Isolation PLIUS Time-point (day) 

intensity/frequency 2 20 

o 05 N/A 

PLIU xl 

1105 100m 

PLIU x l 

The signijican e l£1l'el p<O.05, p<O.O I and p<O.OOI are repre en led by one, two or th,. 

re.\pe til 'e~v, with red highlightin~ up-regulation from ontrols. 
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FIGURE 4.5: Effect of pulsed low intensity ultrasound (PLJUS) on total sGAG 

released into the medium for agarose-chondrocyte constructs from two separate 

isolations (0805 and 1105). Cells were exposed to 100m W/cm2 PLJUS every 24 

hours (termed PLIUSx1). Values are cumulative and represent the mean (n=2). 

Figure 4.6 shows the mean total sGAG corresponding to the sum of that measured in the 

con truct and that released into the medium. The corresponding values for the ratio of 

GAG content in the medium compared to the total sGAG (construct + medium) ~ r the 

two i olation are detailed in Table 4.5. It can be seen from Figure 4.6 that the t tal 

GAG level obtained from i olation 1105 are approximately 50°/0 low r than th e 

obtain d from i olation 0 05. 
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FIGURE 4.6: Effect of pulsed low intensity ultrasound (PLlUS) on total sGAG 

content in agarose-chondrocyte constructs and sGA G released into the medium 

undertaken from two separate isolations (0805 and 1105). Cells were exposed to 

100mW/cm
2 

PLIUS every 24 hours (termed PLIUSx1). Values for construct represent 

mean (n=6-7). Values for medium are cumulative and represent mean (n=2). 

TABLE 4.5: Effect of pulsed low intensity ultrasound (PLlUS) on the ratio values of 

sGAG content released in the medium when compared to total sGAG content (construct 

+ medium). Results were obtained from two separate isolations (0805 and 1105). 

Experimental groups involved cell-seeded constructs exposed to 100m W/cm2 PLIUS 

e\ery 24 hours (termed PLIUSx1). Control groups remained non-stimulated. 

Time-point ~days) 

Isolation 0805 Day 2 Day 5 Day 9 Day 12 Day 16 Day 20 

control 24.70 22.85 19.10 20.37 22.81 n/a 

PLlU5x1 (100mW/cm 2
) 19.58 20.38 18.50 18.91 21.42 n/a 

Isolation 1105 Day 2 DayS Day 9 Day 12 Day 16 Day 20 

control 18.99 18.50 16.24 20.10 26.10 35.03 

PLlU5x1 (100mW/cm2
) 14.84 15.73 15.16 20.63 22.80 26.14 

lIighli~"led entric indi ate diffi l' n s b twe n timlilat d and ontrol "alll 
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Table 4.5 reveals some noticeable differences between the medium sGAG levels for 

stimulated and non-stimulated cell cultures. For example, for four out of six time-points 

with isolation 1105, the percentage of sGAG in the medium was higher for control 

cultures than PLIUS-stimulated cultures. This suggests that once-daily PLIUS at 

100m W /cm
2 

may inhibit the release of sGAG into the medium for this isolation of 

chondrocytes. 

4.3.2 Total DNA content 

Total DNA content was calculated for each of the six constructs in both the PLIUS and 

control groups, normalized to weight wet, and then a mean value was estimated. The 

results of 30m W /cm2 stimulation for isolations 0504, 1204 and 0305 are presented in 

Figure 4.7. Total DNA results for the two isolations undertaken for the 100mW/cm2 

stimulation (isolations 0805 and 1105) are presented in Figure 4.8. A summary of the 

statistical data for both intensity levels is provided in Table 4.6. 

Figures 4.7 and 4.8 show that overall, for the two PLIUS-stimulated groups (PLIUSxl 

and PLIUSx2) and control group, there was only a moderate level of DNA increase over 

time, indicating low cell proliferation over the 20 day culture period. It is clear that 

different isolations yielded a marked variation in total DNA levels at day 1, despite the 

fact that the nominal seeding density was prescribed at 4x 1 06cells/ml. In particular, the 

DNA levels for chondrocytes used in isolation 0305 were much lower than those seen 

for the other four isolations over the 20 day period of culture (Figure 4.7C). The 

statistical data presented in Table 4.6 showed that in the majority of cases, PLIUS at 

30m W /cm2 had no significant effect on DNA levels (p>0.05). There was no systematic 

trend seen for the cases for which there were significant differences between PLIUS and 

control groups. 

At an intensity of 100m W /cm2
, some statistical differences in the DNA content were 

found between PLIUSx 1 and control groups at equivalent time points (Figure 4.7, Table 

4.6). In 5 out of a possible 11 time-points a down-regulation of DNA content was seen 

for PLIUS-stimulated constructs (p<0.05), specifically at days 5 and 9, evident with 

both isolations (Figure 4.8, Table 4.6). 
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FIGURE 4.7: Effect of pulsed low intensity ultrasound (PLIUS) on total DNA content 

in agarose-chondrocyte constructs undertaken from three separate isolations (0504, 

1204 and 0305). Cells Yt ere expos d to 30m W/cm- PLIUS either e\ ery 24 or 12 hOllr 
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FIGURE 4.8: Effect o/pulsed low intensity ultrasound (PLIUS) on total DNA content 

in agarose-chondrocyte constructs undertaken from two separate isolations (0805 and 

1105). Cells were exposed to 100mW/cm2 PLIUS every 24 hours (termed PLIUSx1). 

Values represent mean ± standard deviations (n=6-7). 
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TABLE 4.6: Summary of results investigating the effect of PLIUS on cell proliferation 

in chondrocyte-agarose constructs exposed to once or twice daily 30m W/cm- or 

lOOmW/cm
2 

PLIUS, as determined by total DNA content. f(l) represents statistically 

significant up-regulation (down-regulation) of sGAG content compared to controls. 

Isolation PLIUS Time point (day) 

intensity Ifreq uency r-----2-,----S-.---9----r--1-2-.-----16---.----2-0---l 

0504 30mW/cm 

PLIUSxl 

1204 30mW/cm 

PLIUSxl 

0305 30m 

PLIUSxl 

1204 30mW/cm 

PLIUSx2 

0305 30mW/cm 

PLIUSx2 

0805 

PLIUSxl 

1105 100mW/cm 

PLIUSxl 

N /A 

N /A 

The ignificance levels p<O.05, p<O.OI and p<O.OOI are represented by one, two or three symbols, 

respectively, with red and blue highlighting up- and down-regulation from controls. 

4.3.3 CeU activity 

The total sGAG and total DNA data detailed in the previous sections can be employed 

to provide an assessment on cell activity in terms of sGAG. The calculation is based on 

the conver ion that bovine chondrocytes produce 7.7pg of DNA (Kim et aI., 1988). A 

ummary of the data is presented in Table 4.7. 

It can be een that for all isolations the amount of sGAG produced per cell increa e 

with time in culture. Thi might be predicted due to the greater increase in total GAG 

over th culture period (Figure 4.3 and Figure 4.6) when compared to the relati ely 

mall D A increa e over time fi r all i olation . There were a few ca e where PLI 

timulated chondr cyt produc d ignificantly high r r lower GAG am unt wh n 

ompar d to ontr I c 11 . F r timulat d at 30mW/ m-, it an n that 

th r wa no v rall in rea In G G pr du tivit fi r 11 u j ct d t ith r n - r 
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twice-daily PLIUS. For the higher intensity of 100mW/cm2
, it can be seen that for the 

majority of time points (8 out of 11 cases) there was increased sGAG productivity in 

PLIUS-stimulated chondrocytes compared to controls. 

TABLE 4.7: Mean amount of sGAG per cell in chondrocytelagarose construct. 

Constructs exposed to once or twice daily 30mWlcm2 or lOOmWlcm2 PLIUS (n=6-7). 

Isolation PLIUS Regimen Mean sGAG/cell (x10' at time point 

intensity 1 2 5 9 12 16 20 

0504 30m Control 
0.22 0.39 0.74 1.07 1.34 N/A 

PLIUSxl 0.17 
0.23 0.41 1.13 1.25 N/A 

1204 30mW/cm Control 

PLIUSxl 0.17 

PLIUSx2 
0.95 1.63 

0305 30m Control 
0.65 0.96 1.82 2.57 3.56 4.72 

PLIUSxl 0.5 
0.57 0.82 1.65 3.57 5.21 

PLIUSx2 
0.62 0.94 1.82 3.12 4.25 

0805 100mW/cm Control N/A 
0.34 

PLIUSxl N/A 
1105 100mW/cm Control 1.31 1.09 1.98 

PLIUSxl 0.28 
1.23 1.31 2.04 

ignificant differences from controls are highlighted in red or blue (up- or down-regulation 

respectively) (p<O.05). 

4.3.4 804 incorporation 

The rate of incorporation of S04 into newly synthesized GAG for chondrocytes exposed 

to 30 and 100m W/cm2 is presented graphically in Figures 4.9 and 4.10, respectively. 

Incorporation rates are represented as percentage of control values. Statistics relating to 

the e data are included in Table 4.8. 

Figur 4.9 indicates that at 30mW/cm2
, for the majority of time points (22 out of 24 

ca ), b th PLIUSx 1 and PLIUSx2 systems exhibited either comparable or lower 

mc rporation rates than control cultures. However, there was some variation between 

i lati n and therefore no y tematic pattern of incorporation rates could be di cern d 

vcr the cultur peri d. 

Th data ~ r i lati n 1204 yi ld d a maximum m an valu at b twe n da -9 and 11-

12, where PLI - timulat d ultur r a h d an qui val nt r high r in rp r ti n rat 
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than controls. Thereafter, the values declined so that at the end of the culture period they 

were less than 75% of control values. It is worthy of note that between days 11-12 the 

PLIUSx2 stimulated culture exhibited a two fold increase in sulphate incorporation 

compared to controls (p<O.OOl) (Table 4.8). Such an increase was not evident at any 

other time point or isolation at this SA T A intensity. 

A 
Isolation 1204 - 30rrW/crrt 

250 

.-.. 

~ 200 
0 
~ c 
0 150 u • FLIUSx1 ...... 
0 
III 100 o FLIUSx2 
0> 
m -c 
III 
U 50 ~ 

III a. 

0 

1-2 4-5 8-9 11-12 15-16 19-20 

time interval (days) 

B 
Isolation 0305 - 30rrW/crrt 

250 

...-.. 
'::R. 0 200 .....-
(5 
~ -c 150 0 

• FLIUSx1 u ...... 
0 o FLIUSx2 III 100 0> 
~ 
C 
III 
U 

50 ~ 

III a. 

0 

1-2 4-5 8-9 11-12 15-16 19-20 

time interval (days) 

FIGURE 4.9: Relative effect of pulsed low intensity ultrasound (PLIUS) on the rate of 

S04 incorporation in agarose-chondrocyte constructs undertaken from two separate 

i olation (J 204 and 0305). Cells were exposed to 30m Wlcm2 PLIUS either e ery 24 or 

1_ hour (t rmed PLIUSxi and PLIUSx2, respectively). Values represent mean PLIUS 

. S04 incorporation (units: pM 35S0./hlj.1g DNA) as a percentage of control value with 

1'1'0,. bar hOll ing landaI'd d ·dation (n =6-7). 
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With isolation 0305, the majority of PLIUS-stimulated cultures appeared to fluctuate 

over time between 50% and 100% of the control incorporation rates. The only time 

point where a stimulatory effect was seen was between days 4-5, for the PLIUSx2 

culture (p<0.01). It is also worthy of note that at 19-20 days, the PLIUSx2 stimulated 

cultures yielded a sulphate incorporation of only 10% of that of the control value. 

TABLE 4.8: Summary of results investigating the effect of PLIUS on sGAG production 

in chondrocyte-agarose constructs exposed to once or twice daily 30mW/cm2 and 

lOOmW/cm2 PLIUS as determined by rate of 35S04 incorporation. ra) represents 

statistically significant up-regulation (down-regulation) of incorporation rate compared 

to controls. 

Isolation PLIUS 

intensity/frequency 

1204 30m 

PLIUSxl 

0305 30m 

PLIUSxl 

1204 30m 

PLIUSx2 

0305 30m W /em 

PLIUSx2 

0805 100m 

PLIUSxl 

1105 100m 

PLIUSxl 

Time interval (days) 

1-2 4-5 8-9 11-12 19-20 

The significance levels p<O.05, p<O.OJ and p<O.OOJ are represented by one, two or three symbols, 

,. pe tively, with red and blue highlighting up- and down-regulation from controls. 

Figure 4.10 shows that for cultures stimulated with PLIUS at 100mW/cm2
, the majority 

of ulphate incorporation rates were between 75-125% of control values. It is worthy of 

note that the differences in most of the comparisons were statistically significant with 

tiv xhibiting higher incorporation rates than controls, and four exhibiting lower rates. 

In a imilar manner to the 30m W /cm2 isolations however no discernible pattern of 

incorporation wa evident, with contra ting findings between the two isolation at many 

tim interval (Table 4. ). 
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Comparison of the two PLIUS intensities revealed that, overall, 3D-cell cultures 

stimulated with 100m W /cm2 produced the greatest increase in sulphate incorporation 

rates when compared to non-stimulated controls. However, the differences were 

generally less than 50% and the pattern of change was variable between isolations. 
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FIGURE 4.10: Relative effect of pulsed low intensity ultrasound (PLIUS) on the rate 

of 35 S04 incorporation in agarose-chondrocyte constructs undertaken from two 

eparate isolations (0805 and 1105). Cells were exposed to 100m W/cm2 PLIUS every 

24 hours (termed PLIUSx1). Values represent mean PLIUS 35 S04 incorporation (units: 

JLM 35S0 4/h/j.Jg DNA) as a percentage of control with error bars showing standard 

deviation (n=6-7). 

4.3.5 r3H]thymidine incorporation 

Th rat of incorporation of [H]thymidine into newly ynthe ized 0 A f; r 

ch ndrocyte expo ed t 30 and 100 m W /cm- i pre ented graphically in Figure 4.11 

and 4.12, re pectively. Incorporation rat are repre ented apr ntag f c ntr 1 

value. tati tic r lating to the e data ar pr ented in Table 4.9. 
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FIGURE 4.11: Relative effect of pulsed low intensity ultrasound (PLIUS) on the rate 

of t H} thymidine incorporation in agarose-chondrocyte constructs undertaken from 

two separate isolations (1204 and 0305). Cells were exposed to 30mWlcm2 PLIUS 

either every 24 or 12 hours (termed PLIUSxl and PLIUSx2, respectively). Values 

r present mean PLIUS t H}thymidine incorporation (units: CPMlj.1g DNA) as a 

percentage of control with error bars showing standard deviation (n=6-7). 

E arnination of Figure 4.11 suggested some consistency of data between the two 

timulation regimen . Indeed for many of the time-points PLIUS-stimulated group 

yi Idcd eH]thymidine incorporation rate which were at lea t 1000
0 of tho e of the 

orr ponding c ntrol . However any increa were only f; und to be tati tically 

igniticant in 2 ut of 24 tim -point over th two i lation (Tab I 4.9). Furth nn r , 

th c ditlcren c occurred in th arne i olati n, namely i olati n 1204 f; r th PLI· ? 
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group between days 4-5 and 8-9. Additionally, down-regulation of CH]thymidine 

incorporation rates was seen for PLIUS-stimulated groups for 10 out of the 24 time 

points (Table 4.9). Comparison between isolations showed some variation specifically 

that thymidine incorporation ratios were generally lower for isolation 0305 most 

noticeable for the PLIUSx2 group after day 9. 

TABLE 4.9: Summary of results investigating the effect of PLIUS on cell proliferation 

in chondrocyte-agarose constructs exposed to once or twice daily 30mW/cm- or 

lOOmW/cm2 PLIUS, as determined by (Hjthymidine incorporation. 

Isolation PLIUS Time interval (days) 

intensity/frequency 1-2 4-5 8-9 11-12 15-16 19-20 

1204 30m 

PLIUSxl 

0305 30m 

PLIUSxl 

1204 

PLIUSx2 

0305 30mW/cm 

PLIUSx2 

0805 N/A 

PLIUSxl 

1105 

PLIUSxl 

The ignificance levels p<O.05, p<O.Ol and p<O.OOl are represented by one, two or three symbol, 

re pe livel , with red and blue highlighting up- and down-regulation from controls. 

At the higher intensity of 100mW/cm2 (Figure 4.12) it can be seen that there is a fairly 

imilar pattern of CH]thymidine incorporation over the culture period for the two 

i olation . However isolation 0805 tended to have lower percentage values compared to 

c ntr 1 than isolation 1105. 

Although Figure 4.12 show 6 cases in which PLIUS [3H]thymidine incorporation rate 

w r at lea t 100% of control value, thi was only statistically significant in three ca 

(Tabl 4.9 p<O.OI). Additionally there were three ob erved ca e f down-regulati n 

(Table 4.9 p<0.05) ne of which ccurr d at day 19-20 fi r i lati n 1105. Ind d thi 

alu wa ry 1 w c mpar d t ther tim -point . 
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Comparison of Figure 4.11 and 4.12 revealed no noticeable difference in [3H]thymidine 

incorporation between chondrocytes stimulated at 30mW/cm2 and 10OmW/cm2
. 
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FIGURE 4.12: Relative effect ofpulsed low intensity ultrasound (PLIUS) on the rate 

of t Hj thymidine incorporation in agarose-chondrocyte constructs undertaken from 

two separate isolations (0805 and 1105). Cells were exposed to 100m Wlcm2 PLIUS 

every 24 hours (termed PLIUSx1). Values represent mean PLIUS r3Hjthymidine 

incorporation (units: CPMlj.1g DNA) as a percentage of control with error bars 

showing standard deviation (n =6-7). 
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4.4 Discussion 

The hypothesis examined in the present set of experiments was that PLIUS stimulation 

of chondrocytes seeded in 3D agarose constructs would lead to an up-regulation of 

chondrocyte activity. The latter was assessed by an up-regulation of sGAG and cell 

proliferation. The results, however, were very inconclusive, and a null hypothesis was 

confirmed. This was more apparent for experiments undertaken employing a SAT A 

intensity of 3OmW/cm2
• At the higher intensity IOOmW/cm2 studies appeared to show 

PLIUS-enhanced sGAG elaboration as assessed by total sGAG DMB assay (Figure 

4.4), although this effect was marginal and there was no other observed effect of 

IOOmW/cm2 in terms of total DNA content, or the rate of synthesis ofsGAG or DNA. 

The assays measuring total sGAG generally produced similar results between separate 

isolations in terms of both absolute values and the temporal pattern of behaviour. For 

example, at 30m W /cm2 results for all three isolations indicated a total sGAG content in 

both constructs and medium which increased at a fairly constant rate with time up to 

and including day 20 (Figure 4.3). This inferred that in this 3D system, cells were still 

actively producing sGAG by day 20. This corroborates with unpublished data from the 

host laboratory, which showed continued elaboration of sGAG in agarose constructs 

over a 30 day period. For the higher intensity 100m W /cm2 studies, isolation 0805 

showed a similar pattern of sGAG production to that evident with 30mW/cm2 (Figure 

4.4A). Isolation 1105 however, indicated that sGAG content reached a plateau at day 9 

and remained fairly constant thereafter (Figure 4.4B). Additionally, sGAG values for 

the latter isolation were approximately 600/0 of that of previous values. These 

observations were true for both PLIUS-stimulated and control cultures, indicating that 

these differences are attributable to the activity of the cell population isolated for a 

particular experiment. Indeed, a variance seen between separate isolations in terms of 

mcasured control values meant that separate responses to PLIUS could not be directly 

compared. 

The aforementioned variation between isolations was also observed in terms of sGAG 

released into the medium by the 3D cultures. In most cases, however, very similar 

amounts of sGAG were measured in the medium between the experimental groups. 

Nc\crthelcss there were a few cases in which an increased ratio of sGAG in the medium 
..., . 

was noted in either PLIUS-stimulated cultures (for the 30mW/cm- studIes. Table 4.3) or 

the control studics (for the IOOm\V/cm': studies, Table 4.5). There was no conclusivc 
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evidence that PLIUS affected the transport of sGAG within the agarose construct and 

into the medium. However, of note is the difference between sGAG contents of cored 

agarose constructs and medium samples. As described in Sections 3.7, 6mm cylindrical 

constructs were cored from the chondrocyte-agarose gel at each time-point, and analysis 

done on these constructs. However, for medium calculations, all medium associated 

with the gel was collected, and the measured sGAG content value corrected to enable 

comparisons with the cored constructs, as described in Section 3.8.3. Therefore, 

whereas the measured sGAG contained in constructs is representative of that produced 

by chondrocytes located in the central region of the well, directly above the ultrasonic 

transducer, the sGAG located in the medium is that produced by chondrocytes 

throughout the 3D gel. A proportion of these cells would not have been directly exposed 

to the PLIUS signal, and it is therefore possible that local differences in sGAG release 

in relation to the position of the ultrasonic transducer may be undetectable in the total 

volume of culture medium. 

The majority of the total DNA content data at both SA T A intensities revealed no 

marked temporal change in DNA levels (Figures 4.7 and Figure 4.8). The one exception 

was seen at 30m W /cm2 with isolation 0504 (Figure 4.7 A), which appeared to indicate a 

degree of cell proliferation. However, examination of the corresponding total sGAG 

data did not indicate that the proliferation translated into an associated increase in 

sGAG content (Figure 4.1). The chondrocyte, whose primary function is to produce 

matrix, is not known for detectable levels of cell proliferation in healthy adult articular 

cartilage (Mankin, 1964); the bovine steers obtained by the host lab from which 

chondrocytes were isolated are skeletally mature. Therefore, the relative constancy of 

DNA levels over time might be predicted. The application of either once- or twice-daily 

PLIUS in the majority of cases had no effect on DNA content when compared to 

controls at 30mW/cm2
• However, at the higher 100mW/cm2 intensity, approximately 

500/0 of time-points showed an inhibition in cell proliferation when compared to control 

cultures (Table 4.6). 

Cell actIVIty was measured, by normalizing sGAG content to the number of 

chondrocytes present (as determined by DNA content), to provide a more reliable 

indicator of cell production of sGAG (Table 4.7). All isolations indicated a temporal 

increase in the amount of sGAG produced per cell over time, which was predicted due 
.., 

to the associated low relative increase in DNA. The majority of results at 30m W /cm-
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showed no increase in sGAG productivity for cells stimulated with either PLIUS 

regimen. However, at the higher intensity of 10OmW/cm2
, there was an increased sGAG 

synthesis in PLIUS stimulated chondrocytes compared to controls. 

The radiolabelling protocols for S04 and eH]thymidine incorporation were undertaken 

to further investigate cell activity by assessing the rates at which chondrocytes were 

synthesising sGAG and DNA. S04 incorporation results showed a significant degree of 

down-regulation compared to controls (Table 4.8) for most time intervals. Comparison 

with the findings obtained from the total sGAG assays (shown in Tables 4.2 and 4.4), 

revealed some disparity between the two data sets. For cultures stimulated with 

PLIUSx1 at 3 OmW/cm2
, the down-regulation seen in terms of S04 incorporation rate 

was not significant when estimated by total sGAG content. There was a greater degree 

of agreement between S04 incorporation rate and total sGAG content with the 

3OmW/cm2 PLIUSx2 and 10OmW/cm2 cultures, the former corroborating a down­

regulatory effect and the latter an up-regulatory effect. However, it is important to note 

that the two assays measure different indices of sGAG synthesis. Thus, total sGAG 

assay is a measure of the cumulative sGAG produced up to each time point from the 

beginning of the culture period, whereas incorporation of S04 measures the synthesis of 

new sGAG over a specified 24 hour period over the duration of the culture. Therefore 

the temporal effects observed with the incorporation assays may have little relationship 

to the total sGAG content. By overall examination of S04 incorporation it was evident 

that sGAG stimulation by PLIUS at 30mW/cm2 either had no effect (as seen for 

PLIUSx 1 cultures) or a partial detrimental effect (as seen for PLIUSx2 cultures) on total 

sGAG content, both confirming a null hypothesis. At 10OmW/cm2
, however, there was 

a greater degree of significant sGAG elaboration for the PLIUS-stimulated groups, as 

evident from the results of both assays. 

[3H]thymidine incorporation results (Figures 4.11 and 4.12, Table 4.9) showed that for 

the majority of time-points there was no difference between PLIUS-stimulated groups 

and controls (17 out of 35 time-points), and a down-regulation in 13 time-points. There 

was some disparity between total DNA and eH]thymidine results when attempting to 

cxamine significant differences between PLIUS-stimulated and non-stimulated control 

constructs (Tables 4.6 and 4.9). However. in a similar manner to the discussion related 

to sGAG synthesis, total DNA and eH ]thymidine incorporation assays measure 

cumulativc and newly fonned DNA. respectively. Overall it appeared that there was 
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minimal effect of PLIUS on DNA levels in 3D chondrocyte-agarose cultures, 

confirming a null hypothesis. 

Cook et al. (2001) reported that increasing PLIUS treatment time from the standard 20 

minutes to 40 minutes resulted in a statistically significant improvement in the 

histological appearance of cartilage in osteochondral defects in a rabbit model. In order 

to ascertain whether a similar finding could be achieved for chondrocytes in a 3 D 

system, PLIUS at 3OmW/cm2 was applied either once or twice daily (termed PLIUSxl 

and PLIUSx2 respectively). The results generally indicated no marked difference 

between the two regimes. Indeed, in some cases PLIUSx 1 results were significantly 

higher than PLIUSx2 results, although the reverse was also evident. The clearest 

differences between the two regimes could be related to the total sGAG data (Figure 

4.1), where PLIUSx2 tended to yield lower sGAG contents than PLIUSx 1 treated 

constructs. Isolation 0305 had a noticeable decrease in sGAG content for the PLIUSx2 

group after day 9 compared to the two other groups. The corresponding sulphate and 

thymidine data at 19-20 days showed that incorporation rates for the PLIUSx2 

stimulated cultures were only 10% of those of control cultures. This might be 

attributable to impaired viability due to early stages of infection by the end of the 

experimental period, as evidenced with other isolations e.g. 0504. Overall no advantage 

was seen in stimulating constructs in the present system twice a day with 30m W /cm2 

PLIUS. These findings do not support the work of Cook and colleagues (2001), 

although their use of an in-vivo model system clearly precludes a direct comparison. 

There were few instances with each assay where a stimulatory effect of PLIUS was 

consistently evident. It should be stated, however, that there was limited reproducibility 

between isolations. Indeed, it has been reported that different cell populations respond 

differently to ultrasound (Leskinen et al., 2005). The steer hooves obtained weekly from 

the abattoir varied both in terms of age, condition and breed, and therefore it is likely 

that cell metabolism could have differed between isolations, although by choosing 

multiple hooves for chondrocyte isolations to make up a mixed cell population, this 

effect was minimalised. 

Studies in the literature highlighting a stimulatory effect of PLIUS employed neonatal, 

embryonic and mesenchymal stem cells (Nishikori et at., 200 1 ~ Zhang et at., 2003 ~ 

Ebisawa et £II., 2004~ Cui et at., 2006). Such populations are well established to be more 
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metabolically active than skeletally mature cells, such as those used in the present set of 

experiments. Indeed a number of studies employing adult chondrocytes showed no 

stimulatory effect of PLIUS, as ascertained from histological analysis and 

eH]thymidine and S04 incorporation (Duda et aI., 2004 and Choi et aI., 2006 

respectively). 

It is important to reiterate that differences in cell-culture systems will have a major 

effect on the metabolic performance of cells. The present system involved casting a 

layer of chondrocyte-agarose gel in six-well plates and covering with a volume of 

medium. In this arrangement, only the top surface of the gel will be continually exposed 

to the medium. It is reasonable to assume that chondrocytes in the gel receive different 

amounts of nutrients depending on their position relative to the medium. Additionally 

as discussed in Section 3.9.4, the amount of medium present per cell is lower than that 

recommended for chondrocytes in 3D-culture (Heywood et aI., 2004). Efficient nutrient 

delivery is essential to maintain optimum cell function. However, a depth-viability 

study, undertaken over a 16 day culture period with the 3D-culture, showed that at 

30mW/cm2 the majority of cells remained viable over 90% throughout construct depth 

at day 16 (Figure 4.l3). It is possible that a stimulatory effect of PLIUS at the lower 

intensity of 3 OmW/cm2 cannot be seen in this 3D system. 
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Another factor to consider is the distance between the ultrasound transducer and 

chondrocyte-agarose gel. The present system facilitates PLIUS application by using 

coupling gel to fix a six-well plate to transducers. The transducer is only a few 

millimeters distant from the chondrocytes. However, the use of the Exogen device for 

fracture healing works at a depth of penetration of 3.5cm from the bone (Nelson et al.. 

2003). Figure 3.6 showed that the intensity of the PLIUS signal varied considerably 

with distance from the transducer, and along with attenuation of the signal by the 

various materials of the body, the ultrasound intensity on the bone mayor may not 

actually be 3 OmW/cm2. Indeed, Zhang et al. (2003) found that the SATA intensity of 

2mW/cm2 to be more effective than 30mW/cm2 when stimulating collagen synthesis in 

chick sterna explants. Additionally, the establishment of standing waves in the culture 

could inhibit cell activity, both at the construct/medium and medium/air interfaces. 

Indeed, a water bath has been used to maintain a working distance between the 

ultrasonic transducers and six-well plate (Kopakkala-Tani et al., 2006). It is possible 

that such changes to the experimental system would generate an alternate set of data. 

In conclusion, based on the present experimental arrangement, the application of once 

or twice-daily PLIUS at intensity 30mW/cm2 did not have a discernable effect on sGAG 

synthesis or proliferation of chondrocytes seeded in a 3D agarose system. Overall, 

application of PLIUS at a higher intensity of 100m W /cm2 did appear to have some 

increased stimulatory effect on cell activity based on sGAG and DNA results, which 

will need to be investigated further. 
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5.1 Introduction 

The results of the previous chapter revealed that for chondrocytes seeded in the 3 D 

agarose system, pulsed low intensity ultrasound (PLIUS) at 3OmW/cm2 applied either 

once or twice-daily had no significant effect on sGAG synthesis or cell proliferation. 

However, use of a higher selected SATA intensity of 10OmW/cm2 appeared to have 

some increased stimulatory effect, although this was highly variable. These results 

appeared to conflict with previous work undertaken by two research groups (Parvizi et 

al., 1999; Nishikori et al., 2001), who found a stimulatory effect of PLIUS with regards 

to sGAG synthesis in rat chondrocyte monolayer and rabbit chondrocyte 3D collagen 

gel systems, respectively. Therefore, the studies described in the following chapter 

were undertaken to determine whether the nature of the response was highly dependent 

on the model system employed. Consequently, a bovine chondrocyte monolayer culture 

system was adapted with a protocol similar to that employed by Parvizi et al. (1999) in 

order to test the hypothesis that PLIUS stimulates the synthesis and elaboration of 

sGAG in a monolayer system. SATA intensities of 3OmW/cm2 and 100mW/cm2 were 

used to examine whether the response was influenced by the intensity of the ultrasound. 

Biochemical assays were employed to quantify sGAG synthesis and cell proliferation 

over an eight day culture period. 
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5.2 Materials and Methods 

5.2.1 Preparation of chondrocyte monolayer culture 

Chondrocytes were isolated from bovine articular cartilage, according to the standard 

procedures described in Section 3.2. To review briefly, articular cartilage was isolated 

from the proximal surface of bovine metacarphalangeal joints prior to digestion with 

pronase and collagenase. The isolated chondrocytes were then checked for viability 

(>95%) and seeded in the wells of six-well plates at approximately 1 million cells per 

well (-100,000 cells/cm2), filled with 6ml of DMEM + 200/0 FCS and maintained at 

37°C / 50/0 CO2 for 72 hours before exposure to ultrasound. 

5.2.2 PLIUS regime 

Each six-well plate was stimulated with PLIUS by placement of the plate on the six 

transducers with the use of coupling gel and manipulation of the plate to eliminate any 

air bubbles (Section 3.3). Cultures were stimulated once daily with PLIUS at one of two 

SATA intensities, namely 30mW/cm2 and 100mW/cm2. 

Two separate chondrocyte isolations were performed at an intensity of 30mW/cm2 

studies, labelled 0206 and 0306. Two chondrocyte isolations were undertaken at an 

intensity of 100mW/cm2, labelled 0905 and 1205. After the initial 72 hour culture 

period, wells were exposed to a 20-minute period of PLIUS once at day 3, 5 or 7 (where 

day 0 is day of plating), based on the protocol adopted by Parvizi et al. (1999). Control 

cultures remained non-stimulated in separate six-well plates. Medium was changed on 

day 3, 5 and 7, and saved for subsequent analysis. 

5.2.3 Temporal Changes in sGAG and DNA Content 

After the final PLIUS stimulation, both test and control medium was removed and 

replaced with 2ml medium supplemented with 10 J,lCi 35S-sulphate and 10 J,lCi eH] 

thymidine for a 24 hr period, for the assessment of the rate of sGAG production and 

chondrocyte proliferation, respectively. After the 24 hour incubation period - occurring 

at days 4, 6 or 8 of culture - the medium was removed and chondrocytes were digested 

with 1 ml of papain digest buffer (see Section 3.8.1) with 5Jll papain (560 units.mr i
. 

Sibrma, UK). Cell digests were then pippetted into bijou tubes for subsequent analysis. 

Total sGAG content in both cell digest and culture medium was determined using the 

DM8 method (Section 3.8.2) and total DNA content in the digest was determined using 
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the Hoescht 33258 method (Section 3.8.4). Incorporation of sulphate into newly 

synthesized GAG was determined using the alcian blue precipitation method (Section 

4.2.4), and eH] thymidine incorporation into newly-synthesised chondrocyte D~A was 

measured by the trichloroacetic acid (TCA) precipitation method (Section 4.2.5). 

5.2.4 Statistical Analysis 

Previous work in the host lab revealed data which was normally distributed for each cell 

activity parameter. Accordingly, unpaired Student's t-tests were used for analysis to 

compare PLIUS-stimulated constructs with non-stimulated controls at each time-point. 

A confidence level of 5% (p<0.05) was considered statistically significant. 

5.3 Results 

The following results display the total sGAG content, total DNA content, sulphate 

incorporation rate and [3H]thymidine incorporation following stimulation using PLIUS 

at intensities of30mW/cm2 and 100mW/cm2
. 

5.3.1 Total sGAG Content 

5.3.1.1 30mW/cm2 studies 

Sulphated GAG content was estimated for each of the six samples of the PLIUS and 

control monolayer groups, normalized to wet weight, and a mean value and standard 

deviation determined. The sGAG content released into the medium was also calculated, 

as well as the ratio of sGAG content in the medium compared to the total sGAG 

(monolayer + medium). The results for the two 30mW/cm2 isolations 0206 and 0306 

are presented in Figure 5.1 and Table 5.1. They indicate a consistent increase in sGAG 

content over the 8 day culture period for chondrocytes in both the control group and the 

group exposed to once-daily ultrasound (termed PLIUSxl) in terms of: 

total sGAG content (Figures 5.1 C and D) 

content in the monolayer alone (Figure 5.1 A and B) and 

percentage of total sGAG contained in the medium (Table 5.1). The medium 

values for each time point were cumulative, so that comparisons could be made 

between sGAG content in the monolayer and medium at each time-point. 

Close examination of the results reveal that in the majority of cases there was no 

difference between the total sGAG content of stimulated and non-stimulated cells. 
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FIGURE 5.1: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG content 

in chondrocyte monolayer culture undertaken from two separate isolations (isolations 

0206 and 0306). A and B show sGAG contained in monolayer alone. C and D show total 

sGAG content split between monolayer (ML) and that released into the medium (M). 

Experimental groups involved chondrocyte monolayer culture exposed to 30mW/cm­

once every 24 hours (PLIUSxl) after a 72 hour initial culture period. Control groups 

remained non-stimulated. Values represent mean with error bars showing standard 

deviation (n =6). Values for medium are cumulative. Statistical differences between 

PLJUSxl and control are indicated such that * p<0.05. 

TABLE 5.1: Effect of PLJUS at 30mW/cm1 on the ratio values ofsGAG content released 

in the medium when compared to total sGAG content (monolayer + medium). Results 

were obtained from two separate isolations (0206 and 0306). 

Percentage of total sGAG in medium 
Isolation 0206 Isolation 0306 

Control PLlU5x1 Control PLlU5x1 

Day 4 58 56 58 60 
Day6 60 60 64 66 
DayS 68 68 71 73 
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However, some of the differences where found to be significant for isolation 0206 at 

day 6, where the total sGAG content and the sGAG content in the monolayer alone was 

higher for the control group (p<0.05, Figures 5.l C and 5.1 A respectively), and day 8, 

where the total sGAG content and the sGAG contained in the medium was higher than 

the control (p<0.05, Figure 5.lC). Both cell isolations gave comparable values for 

sGAG content at each time-point (Figure 5.l). The percentage of total sGAG released 

into the medium increased with time in culture from approximately 56% to 68% for 

isolation 0206, and 58% to 73% for isolation 0306 (Table 5.1). 

5.3.1.2 lOOmW/cm2 studies 

The total sGAG results for the higher 100mW/cm2 SATA intensity are illustrated in 

Figures 5.2 and Table 5.2. The results clearly indicate a general increase in total sGAG 

content over time for both the control and PLIUS groups (Figure 5.2C and D), as was 

evident for the lower intensity of stimulation. This trend is most pronounced with 

isolation 1205 (Figure 5.2B and D). 

Table 5.2 shows an increasing ratio of sGAG content in the medium over time from 

220/0 to 50% for isolation 0905, and 35% to 53% for isolation 1205. For both isolations, 

at all time-points, there was only one difference which was statistically significant, 

namely that for isolation 0905 at day 8, where more sGAG was released into the 

medium in the control monolayer (p<0.05, Figure 5.2C). 

5.3.2 Total DNA content 

Total DNA content was calculated for each of the six samples of the PLIUS and control 

monolayer groups, normalized to weight wet, and then a mean value was estimated. The 

DNA content for the 30mW/cm2 stimulations (isolations 0206 and 0306) and the 

100m W /cm2 stimulations (isolations 0905 and 1205) are presented in Figure 5.3, with 

corresponding controls. 

For both the PLIUS-stimulated monolayer and control groups at both SAT A intensities, 

there was an increase in total DNA content with increasing time in culture. The one 

exception to this trend was evident with isolation 0306, where there was a slight 

decrease in DNA content between days 6 and 8 for both control and PLIUS-stimulated 

groups (Figure 5.38). 
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FIGURE 5.2: Effect of pulsed low intensity ultrasound (PLIUS) on total sGAG content 

in chondrocyte monolayer culture undertaken from two separate isolations (isolations 

0905 and 1205). A and B show sGAG contained in monolayer alone. C and D show total 

sGAG content split between monolayer (ML) and that released into the medium (M). 

Experimental groups involved chondrocyte monolayer culture exposed to 100m W/cm2 

once every 24 hours (PLIUSxl) after a 72 hour initial culture period. Control groups 

remained non-stimulated. Values represent mean with error bars showing standard 

del ialion (n =6). Values for medium are cumulative. 

TABLE 5.2: Effect of PLIUS at 100mW/cm2 on the ratio values of sGAG contenl 

relea ed in the medium when compared to total sGA G content (monolayer + medium). 

Re Ilils were obtained from two separate isolations (0905 and 1205). 

Percentage of total sGAG in medium 

Isolation 0905 Isolation 1205 

Control PLlU5x1 Control PLlU5x1 

4 22 22 35 36 
6 28 26 45 45 
8 50 49 52 53 

~----------~---------------------
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The values for DNA content were generally comparable for each time-point for three of 

the four isolations. The exception was for the 0905 isolation, particularly at day 4, 

which yielded lower DNA values than the 1205 isolation (Figures 5.3C and D). 

Nonetheless for all four isolations at each time point, there were no statistically 

significant differences between PLIUS-stimulated and control cultures (p>0.05). 
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FIGURE 5.3: Effect of pulsed low intensity ultrasound (PLIUS) on total DNA content in 

chondrocyte monolayer culture undertaken from four separate isolations and at two 

PLIUS SATA intensities. Isolations 0206 and 0306 were stimulated with PLIUS at 

30m W/cn/ (Figures A and B respectively), and isolations 0905 and 1205 at 100m W/cm
2 

(Figur C and D, respectively). Experimental groups involved chondrocyte monolayer 

culture exposed to PLIUS once e~ery 24 hours after a 72 hour initial culture period. 

ontrol groups remained non-stimulated. Values represent mean with error bars showing 

tandard d via/ion (n =6). 
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5.3.3 CeU activity 

The total sGAG and total DNA data, detailed in the previous sections can be employed 

to provide an assessment on cell activity in terms of sGAG productivity. Specifically 

using the factor of one bovine chondrocyte produces 7.7pg of DNA (Kim et at. 1988) 

the DNA values obtained from the Hoescht 33258 assay were used to calculate both the 

cell number and consequently the mean sGAG produced per cell (Section 4.3.2). A 

summary of the data is presented in Table 5.3, which shows that in the majority of cases 

there was no difference between cell sGAG productivity between PLIUS-stimulated and 

non-stimulated chondrocytes. This was true for both the 30m W /cm2 and 100m W /cm2 

isolations. There was a overall increase in sGAG production with increasing time in 

culture, although for the 100m W /cm2 studies there was a decrease between days 4 and 

6, which subsequently increased by day 8 (p<0.05). These trends were seen for both 

stimulated and non-stimulated cultures. 

TABLE 5.3: Mean amount of sGA G per cell in chondrocytes cultured in monolayer. 

Constructs were exposed to once daily 30mW/cm2 or lOOmW/cm2 PLIUS from day 3 in 

culture (n =6). Statistically significant differences from controls are highlighted in red 

or blue (up- or down-regulation respectively) (p<O.05). 

Isolation PLIUS Regimen Mean sGAG/ceU (xlO' at time point 

intensity Day 4 Day6 DayS 

0206 30m Control 0.29 0.31 0.33 
PLIUSxl 0.28 0.30 0.32 

0306 30m Control 0.31 0.35 0.44 
PLIUSxl 0.31 0.34 0.43 

0905 Control 0.60 0.45 0.50 
PLIUSxl 0.56 0.47 0.45 

1205 Control 0.49 0.42 0.44 
PLIUSxl 0.42 0.43 

5.3.4 804 incorporation 

The rate of incorporation of sulphate into newly synthesized GAG for chondrocyte 

xpo d to 30 and 100 mW/cm2 is presented graphically in Figure 5.4. Incorporation 

rate ar repre ented as a percentage of control values. 

Figure 5.4A and 5.4B, related to timulation inten itie of 30m Wi cm2
, re eal n 

igniticant difference in ulphate inc rporation rate betwe n timulat d and n n-
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stimulated monolayer cultures. Indeed for both isolations the stimulated group was 

between 960/0 and 107% of the control values. At the higher 100m W fcrn2 intensity. there 

was some variation between isolations 0905 and 1205 in terms of incorporation relative 

to controls at days 4 and 6 of culture. However, none of the differences were 

statistically significant between control rnonolayers and those stimulated with 

10OmWfcm2 (Figure 5AC and D). 
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FIGURE 5.4: Relative effects of pulsed low intensity ultrasound (PLIUS) on the rate of 

S04 incorporation in chondrocytes in monolayer, undertaken from four separate 

isolations and at two PLIUS SATA intensities. Isolations 0206 and 0306 were stimulated 

"tith PLIUS at 30m Wlcm2 (Figures A and B respectively), and isolations 0905 and 1205 

at 100m Wlcm- (Figures C and D respectively). Experimental groups involved 

chondrocyte monolayer Cllltilre exposed to PLIUS once every 24 hours after a 7_ hour 

initial clIltllre period. Control group remained non-stimillated. Value represent mean 

PLIUS S04 incorporation (linits: f.1/l-fSO./h lf.1g D A) a a p rcentage of control with 
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5.3.5 fH]thymidine incorporation 

The rate of incorporation of eH]thymidine into newly synthesized D A for 

chondrocytes exposed to 30 and 100 mW/cm2 is presented graphically in Figure 5.5. 

Incorporation rates are represented as a percentage of control values. 
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FIGURE 5.5: Relative effects of pulsed low intensity ultrasound (PLIUS) on the rate of 

t H} thymidine incorporation in chondrocytes in monolayer, undertaken from four 

eparate isolations. Isolations 0206 and 0306 were stimulated with PLIUS at 30mWlcm
2 

(Figures A and B respectively), and isolations 0905 and 1205 at 100m Wlcm
2 

(Figures C 

and D, respectively). Chondrocyte monolayer cultures were exposed to PLIUS once 

every 24 hours after a 72 hour initial culture period. Control groups remained non-

timulated. Values represent mean PLIUS [3 H}thymidine incorporation (units: CPMlj..lg 

DNA) a a percentage of control lvilh error bars showing standard deviation (n=6). 

Stati tical d~fferellces between PLIUS:x1 and control are indicated sLich that *p<0.05. 
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As with the sulphate incorporation data, Figure 5.5 shows that in 10 out of 12 cases 

there was no statistically significant difference in [3H] thymidine incorporation between 

PLIUS-stimulated and non-stimulated cultures. At both SAT A intensities, there were 

marginal differences between isolations in terms of PLIUS-stimulated incorporation 

rates relative to controls. However, there were two cases for which the difference 

between PLIUS-stimulated and non-stimulated cultures at the higher 10OmW/cm~ 

intensity were statistically significant. One example involved isolation 0905 at day 8, 

where the former was significantly higher than the latter, and the other for isolation 

1205 at day 4, where the former was significantly lower than the latter (p<0.05 in both 

instances ). 

5.4 Discussion 

The hypothesis examined in the present chapter was that PLIUS stimulation of 

chondrocytes seeded in monolayer would lead to an up-regulation of chondrocyte 

activity. This was assessed by the elaboration of sGAG and cell proliferation. The 

results, however, overwhelmingly support a null hypothesis. For all isolations, the vast 

majority of PLIUS-stimulated chondrocyte mono layers behaved very similarly to their 

control counterparts (p>0.05). Although some variation was seen between isolations, 

these were generally found to be common for both PLIUS-stimulated and non­

stimulated groups and can therefore be attributed to isolation-specific differences as 

opposed to changes specific to PLIUS stimulation. 

Total sGAG and total DNA content, and to a lesser extent 35S-sulfate incorporation and 

eH] thymidine incorporation results, revealed a temporal increase in culture. However. 

by day 8, the cells were generally fully confluent in the wells (Appendices 1 and 2), 

which could account for the reduction in increase in sGAG and DNA content between 

days 6-8 in culture when compared to days 4-6 in culture (Figures 5.l, 5.2 and 5.3). 

Minimal differences were found between PLIUS and control groups, with one case of 

signiticant difference in the sGAG results (Figure 5.1 A), one case for the cell activity 

results (Table 5.3) and two cases with the eH] results (Figure 5.5C and D) (p<0.05). 

However, of the four cases, only two yielded a stimulatory effect of PLIUS on 

monolayer cultures (Table 5.3 and Figure 5.5C. p<0.05). There was no significant 

PLIUS-induced promotion of sGAG release into the medium (Tables 5.1 and 5.2). In 

addition, comparison of the results from the two lc\"c1s of ultrasound intensity rc\"ealcd 
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no data to suggest that either was likely to consistently stimulate primary bovine 

chondrocytes cultured in monolayer cultures. 

Examination of published studies employing chondrocytes in monolayer showed some 

differences in methodology when compared to the present work. For example, Parvizi 

and colleagues (1999) cultured chondrocyte monolayer using condyle cartilage from 

neonatal rats. They used PLIUS at SATA intensities of 50 and 120mW/cm2
, for 10 

minutes daily from day 3 in culture. A water bath was used to apply PLIUS to the six­

well plates with a 3mm water gap. A 2mm height of medium was used to culture the 

cells. Although different methods were used to measure proteoglycan and cell 

proliferation, these authors reported a temporal increase in proliferation. However, there 

were no significant differences between control and PLIUS-stimulated cultures at any 

time, which is consistent with the presented findings. Parvizi and colleagues (1999) 

reported that microscopic examination directly after PLIUS stimulation at day 4 with 

the higher 120mW/cm2 SATA intensity revealed cell detachment from the plate. In the 

present study, a seeding density was utilized that was six-fold greater than in the 

previous study. By day 3 of culture, there were areas of confluence in the 6-well culture 

plates, although in the centre of the plate (where microscope images presented in 

Appendices 1 and 2 were taken) confluency was reached between days 6 and 8. No 

detachment of chondrocytes was seen after stimulation with PLIUS at either 30 or 

100mW/cm2 at any time-point up to day 8. 

Parvizi and co-workers (1999) also reported no effect of PLIUS on levels of collagen I 

and II mRNA, although there was an increase in aggrecan gene expression at days 6 and 

8 for stimulated cultures, at both 50 and 120mW/cm2
. In terms of the downstream 

synthetic response of these cells, the authors noted that S04 incorporation was enhanced 

by PLIUS, as shown by the greater rate of increase between days 4 and 6 for stimulated 

cultures when compared to controls (p<O.OOI). However, closer examination of these 

results, which are reproduced in Figure 5.6, revealed that there were no significant 

ditferences in the absolute values of S04 incorporation between experimental groups at 

any time-point. Furthermore, the apparent . increased' S04 incorporation rate seen 

between days 4 and 6 for PLIUS-stimulated cultures was mainly due to a slightly raised 

value for the control culture at day 4 (circled in red in Figure 5.6). Therefore, a PLIUS­

stimulated increase in S04 incorporation is not substantiated from their results. Indeed. 

the only clear influence that PLIUS has on rat chondrocyte monolayer culture involves 
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enhanced expreSSIon of the aggrecan gene at days 6 and 8 of culture. Clearly this 

increased gene expression did not translate into significant increases in proteoglycan 

synthesis as indicated in Figure 5.6. 
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FIGURE 5.6: Sulphate incorporation data obtained by Parvizi and colleagues (1999). 

The red circle highlights initial incorporation values at day 4, where control rates were 

slightly raised compared to PLIUS-stimulated cultures. 

A more recent study undertaken by Kopakkala-Tani and co-workers (2006) employed 

bovine chondrocytes cultured in monolayer, in a similar manner to that presented in the 

pre ent chapter. They reported that a PLruS of SATA intensity 580mW/cm2
, applied 

once daily for 10 minutes, was able to stimulate sulphate incorporation over a five day 

period. 

There were a number of differences between Kopakkala-Tani' s study and the present 

tudy namely: 

A higher PLIUS inten ity wa employed in the previou study 

A 10 minute timulati n pen d wa u ed a oppo ed to the 20 minute u d in 

the pre ent work 
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Kopakkala-Tani and colleagues (2006) initiated the PLIUS stimulation regimen 

after 9 days of monolayer culture, whereas the present study commenced 

stimulation after 3 days of culture 

The authors employed a IIOmm water gap between the ultrasonic transducers 

and culture well plates. 

The intensity study described in chapter 3, found that an intensity of 300mW/cm2 was 

sufficient to cause gross cell death throughout the depth of a 3D agarose construct. The 

use of a 110mm water gap by Kopakkala-Tani and colleagues (2006) would have, to 

some extent, dissipated any heat production by such a high intensity and thereby 

reduced the incidence of cell death. Their application of PLIUS after 9 days in culture 

suggested that their cells had already attained confluence. As such, they reported 

significant differences between control and stimulated cultures after the second PLIUS­

stimulation, occurring on day 10 of culture. In contrast, in the present experimental set 

up, ultrasound was applied between days 3-7. Confluency was attained toward the end 

of this experimental period (Appendices 1 and 2). There is the possibility that 

monolayer confluency may playa role in PLIUS-stimulation. However, the intensities 

employed in the present work and by Parvizi and colleagues are much lower that that 

used by Koppakala-Tani and colleagues in their study. It is possible that intensities up to 

120mW/cm2 may be lower than the threshold for chondrocytes in monolayer to 

appreciably sense the ultrasonic signal and respond accordingly in terms of stimulatory 

sGAG synthesis. Additionally the use of a water bath by the latter group may alter the 

PLIUS signal in such a way, both in terms of incident signal and reduction of residual 

heating, as to cause promotion of extracellular matrix synthesis. 

In conclusion, based on the present experimental arrangement, the application of once­

daily PLIUS at intensities of 30 and 100m W /cm2 had no effect on sGAG synthesis or 

proliferation of chondrocytes seeded in a monolayer system. 
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Chapter 6: Calcium Signalling in PlIUS-stimulated ChondroQ'tes 

6.1 Introduction 

Mechanotransduction, as highlighted in section 2.3 of this thesis, involves events at the 

tissue level, the cellular level and the intracellular level. Intracellular calcium ([Ca2+]j) is 

a ubiquitous second messenger involved in many cellular processes. Mechanical 

perturbation of the cell membrane has been shown to cause increases in the [Ca2-]i 

concentration of several cell types, including chondrocytes (Guilak et aI., 1994~ 1999; 

Xia and Ferrier, 1995; Hung et aI., 1996a and 1996b; Eifler et at. 2006). Pulsed low 

intensity ultrasound (PLIUS), equivalent to high frequency micromechanical 

perturbations of the order of kPa, may produce the same intracellular changes seen with 

compressive and cyclic mechanical loading (Pingguan-Murphy et aI., 2006). Indeed, 

one study reported that calcium signalling mediated ultrasound-stimulated aggrecan 

synthesis in rat chondrocyte monolayer cultures (Parvizi et at., 2002). In addition, they 

reported that ultrasonic intensity influenced calcium response. However, an equivalent 

study examining the effects on chondrocytes seeded in 3D constructs exposed to PLIUS 

has not been reported. 

The present chapter tests the hypothesis that pulsed low intensity ultrasound activates 

[Ca2+]j signalling in bovine chondrocytes, both in monolayer and 3D culture, and that 

this response is influenced by the intensity of the ultrasound. This will be undertaken by 

labelling chondrocytes with Fluo-4, a fluorescent indicator dye, and recording changes 

in [Ca2+]i using confocal microscopy techniques. As detailed in Section 3.6, a rig was 

designed which could be mounted onto the stage of a confocal microscope enabling 

simultaneous ultrasonic stimulation of chondrocytes and confocal imaging. Briefly, 

cells were labelled with Fluo-4 and then exposed to PLIUS for a period of 10 minutes. 

Temporal confocal imaging examined the calcium levels in cells of interest in real-time 

over the experimental period. Separate constructs/monolayers served as controls in the 

absence of PLIUS exposure. In a separate set of experiments investigating the effects of 

PLIUS intensity on [Ca2+]j levels, cells were exposed to a regimen in which the intensity 

of PLIUS was increased over a 20-minute exposure period. 
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6.2 Materials and methods 

The following sections detail the preparation of the chondrocyte cultures, cell labelling 

and imaging techniques, and calcium measurement protocols. 

6.2.1 Preparation of bicarbonate-free chondrocyte medium 

Bicarbonate-free DMEM (D5030, Sigma, UK) (Pingguan-Murphy, 2006) was 

reconstituted according to manufacturer~s instructions. 800ml of distilled water (dH20) 

was added to the powder and mixed using a magnetic stirrer. Small amounts of HCI or 

NaOH were added to adjust the pH to 7.4, as measured using an electronic pH meter 

(Fisherbrand, Hydrus 300, Orion Research Inc., USA). A further 200ml of dH20 was 

added to make the volume up to 1 litre. Serum and other additives were used to 

supplement the medium, as previously described in table 4.1. In addition 1 gllitre 

glucose (Sigma-Aldrich, Poole, UK) was added. The medium (termed BFDMEM + 

16.1 % FCS) was filtered using a 0.22Jlm pore cellulose acetate filter before being 

aliquoted and stored at -20°C. 

6.2.2 Preparation of 3D chondrocyte-agarose constructs 

Chondrocytes were isolated from bovine articular cartilage and seeded in agarose 

constructs, according to the standard procedures described in Sections 3.2. and 3.6. 

Briefly, articular cartilage was digested with pronase and collagenase and the isolated 

chondrocytes seeded at a final concentration of lOx 1 06 cells.mr) in 30/0 (w/v) low 

gelling agarose (Sigma, UK). Constructs were gelled at 4°C for 20 minutes in specially 

made perspex moulds that could be held inside the chamber of the microscope-mounted 

ultrasound rig (both detailed in Section 3.6). Construct dimensions were 5x5x5mm. The 

constructs were placed in a 140mm Petri dish (Sterilin, UK), covered with 60ml of 

DMEM + 16.1 % FCS and maintained at 37°C / 5% CO2 for up to 24 hours prior to the 

start of the calcium imaging experiments. 

6.2.3 Preparation of chondrocyte monolayer culture 

Bovine chondrocytes were isolated as described in Section 3.2.2, cultured in monolayer 

at a concentration of 20,000 cells/cm2 area and maintained in DMEM + 16.1 % FCS at 

37°C / 5~0 CO2 for a T2 hour period prior to the start of the calcium imaging 

experilnents. 
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Initially, monolayers were cultured on 22x4Omm glass coverslips, for subsequent 

placement into the appropriate gap at the base of the confocal mounted rig, using silicon 

grease as a seal. However, when the coverslips were removed from culture, their 

underside needed to be dry in order for the silicon grease seal to remain airtight. 

Attempts were made to dry the underside of the coverslip with tissue paper~ but this 

proved difficult without disrupting the monolayer, and inevitably there were problems 

with leaking of the rig once the confocal medium was added to the chamber. This 

compromised the transmission of PLIUS and made imaging impossible. 

For this reason the use of the rig was discontinued for use with monolayer imaging 

experiments, and was replaced by a system involving 35mm glass-bottomed sterile Petri 

dishes (MaTtek Corp., USA), the glass component of which permitted high resolution 

microscopic images to be taken. Chondrocytes were seeded into these dishes as 

described above and made up to a total volume of 2ml. They were incubated at 37°C / 

5% CO2 for a 72 hour period prior to the calcium imaging experiments. 

6.2.4 Fluo-4 labelling of constructs and monolayers 

Fluo-4, a single-wavelength indicator, was chosen for calcium imaging experiments as 

it had been successfully used to label chondrocytes in previous studies in the host lab 

(Knight et aI, 2003; Pingguan-Murphy et aI, 2005). 

The acetoxylmethyl (AM) ester form of Fluo-4, termed Fluo-4AM, was used for 

calcium imaging experiments. Fluo-4 is a predominantly negatively charged molecule, 

and therefore impermeable to the lipid bilayer membrane of the cell. However, the 

uncharged hydrophilic nature of the AM ester masks the negative charge on the 

carboxyl groups, enabling transportation across the cell membrane. Inside the cell 

esterase enzymes hydrolyse the ester to expose the carboxyl groups, allowing the Fluo-4 

to become fluorescent and preventing its transport back out of the cell. Fluo-4 is 

maximally excited at a wavelength of 494nm, with excitations between approximately 

425nm and 525nm (Gee et al., 2000). However, the fluorescence intensity is 

proportional to the concentration of Ca2
+, as shown in Figure 6.1, thereby enabling the 

use ofFluo-4 as a [Ca2+]; indicator. 

A 5pM solution of Fluo-4AM was made up uSIng BFDMEM + 16.1 % FCS. 

Chondrocyte-agarose constructs were incubated at 37°C in this solution for 1 hour, 
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before being incubated for 10 minutes in BFDMEM + 16.1 % FCS, tenned the post­

staining period, to remove excess label immediately prior to imaging. Monolayer 

cultures were stained with the same concentration of Fluo-4AM for 30, 45, or 60 

minutes. An acceptable level of staining of chondrocyte monolayer cultures was 

achieved in 30 minutes, followed by a 10 minute post-staining period. 
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FIGURE 6.1: Fluorescence emission spectra of Fluo-4 in solution with free Ca2
+ 

concentrations as labelled. Adapted from the Invitrogen™ website. 

6.2.5 Application of PLIUS to chondrocytes 

The microscope mounted test rig described in Section 3.6 was used to apply PLIUS to 

chondrocyte-agarose constructs, while enabling simultaneous visualisation of cells 

labelled with Fluo-4. 

A discussed in Section 6.2.3, the ultrasound rig proved to be unsuitable for monolayer 

experiments. Instead, 35mm glass-bottomed sterile Petri dishes were used to culture the 

chondrocytes. An ultrasonic transducer, with a diameter of 30mm fitted into each dish. 

la tic bands were wrapped around the diameter of the transducer to increase its 

effective diameter, so that it could be positioned and stabilised inside the dish while 

leaving a fluid-gap between chondrocytes and transducer (Figure 6.2). 

fier po t- taining, the Petri di h wa placed onto the stage of the confocal micro cope 

and the tran ducer appr priat ly po itioned. Preheated BFOMEM + 16.1 % FCS wa 

149 



Chapter 6: Calcium ignalling in PLIU -stimulated Chondroc 1es 

added to the dish using a 1 ml syringe with an attached needle to ensure complete 

contact between the fluid and the transducer. This arrangement permitted continuous 

PLIUS transmission to the chondrocyte monolayer. 

Transducer ----

10mm 

Elastic band 

Glass-bottomed dish 
- containing BFOMEM + 

16.1% FCS 

FIGURE 6.2: Glass-bottomed dish (MaTtek Corp., USA) and adapted transducer for 

application of ultrasound to dish contents. A syringe was used to add additional fluid 

to the dish to ensure continuous PLIUS transmission to chondrocytes. 

6.2.6 Ultrasound regime 

In the first set of experiments, PLIUS at 30mW/cm2 was applied to chondrocyte cultures 

for a continuous 10 minute period. Control cultures were left non-stimulated for 10 

minutes. In separate experiments, the effects of PLIUS intensity were investigated. 

PLIUS intensity was incremented over 20 minutes, divided into 5 four minute periods 

corresponding to exposures of 0, 30, 70, 100 and 200m W /cm2 PLIUS respectively, as 

using the regimen shown in Figure 6.3. Control cultures were left non-stimulated for a 

20 minute period. 

Confocal imaging for both sets of experiments involving both monolayer and 3D 

constructs took place simultaneously over the 10 or 20 minute experimental period. 

6.2.7 Confocal system and experimental parameters for calcium imaging 

Visualisation of labelled chondrocytes took place using a confocal microscope system 

(UltraVIEW LCI, Perkin Elmer, Cambridge, UK) with an associated inverted 

fluorescent microscope (TE Eclipse, Nikon, Kingston-upon-Thames, UK) and a 

computer workstation for image analysis. 

La er excitation wa set at 488 run with fluorescent emission detected above 500 run. 

Image containing at lea t 15 cells per field of view were captured every 4 econds over 

th imaging period with a 20x Plan Apo objective len yielding a pi el ize of 1.0 1 ~m. 
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6.2.8 Cell selection and identification of calcium transients 

The Ultra VIEW Temporal software was used to analyse the calcium signalling 

experiments. Chondrocytes were selected for analysis that had a homogeneous 

distribution of the Fluo-4 label. Cells that indicated compartmentalisation were 

excluded from the analysis due to compartment-specific environmental effects on the 

fluorescence spectra (Diliberto et al., 1994). Circular regions of interest (ROls) were 

placed around individual cells, as shown in Figure 6.4. 
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FIGURE 6.3: Schematic diagram showing the nature of the increasing PLIUS 

intensity applied to chondrocytes cultured in either monolayer or 3D-agarose 

constructs over a 20-minute period for calcium signalling experiments investigating 

the influence of PLIUS intensity. 

The mean intensity within each ROI was calculated at each time point, and an intensity 

greyscale was plotted against time to show the temporal variation in [Ca2+]i 

concentration. Figure 6.5 illustrates two typical greyscale plots, one from a chondrocyte 

cultured in 3D-agarose, and the other from a chondrocyte cultured in monolayer. Both 

re ponses indicated that the individual chondrocyte utilised [Ca2+]i' characterised by a 

rapid increase in greyscale intensity followed by a rapid decrease to baseline levels the 

piked shape termed a [Ca2+]i transient. These transients were manually identified by 

ob ervation of the greyscale plots and both the number of transients and the time of the 

peak of each transient was recorded for each cell (Pingguan-Murphy et al. 2005). The 

apparent increase in baseline intensity seen in Figure 6.5A may represent an element of 

p cimen drift (as di cu sed in Section 3.6.3) and had no influence on data retrieval. 
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A B 

FIGURE 6.4: Selection of cells for calcium signalling analysis. A shows a typical 

field of view of chondrocytes seeded in agarose gel, cultured as described in Section 

6.2.2. B shows a typical field of view of chondrocytes in monolayer culture, as 

described in Section 6.2.3. Yellow circles show ROls around cells chosen for 

analysis. Red circles show compartmentalised cells which were not used for analysis. 
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FIGURE 6.5: Two typical greyscale plots, A from a chondrocyte in 3D agarose culture, 

where the cell underwent three [Ca2+]i transients, and B from a chondrocyte in 

monolayer, where the cell underwent two [Ca2+] i transients. 

6.2.9 Statistical analysis 

Experiments were repeated over a number of weeks in order to yield a minimum of ten 

amples each for PLIUS-stimulated and control conditions. Previous work in the host 

lab revealed data which was nonnally distributed for each cell activity parameter 

(Pingguan-Murphy et al. 2006). Accordingly unpaired Student's t-te ts were u ed for 

analy i to compare PLIUS- timulated con truct with n n- timulated c ntrol . A 

eonfid nee 1 vel of 5~o (p<0.05) wa con ider d tatistieally ignifieant. 

6.2.10 ummary of c 'pcrimental test procedures 
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A summary of the confocal imaging experiments described in the previous sections is 

shown in Figure 6.6. 

Preparation of 3D chondrocyte­

agarose constructs 

(Section 6.2.2) 

24 hour culture period 

(Section 6.2.2) 

Preparation of chondrocyte 

monolayer culture 

(Section 6.2.3) 

72 hour culture period 

(Section 6.2.3) 

Fluo-4 labelling (Section 6.2.4) 

10 minutes continuous PLIUS 

of SAT A intensity 30mW/cm2 

with simultaneous confocal 

Imagtng 

(Section 6.2.6) 

(Sections 6.3.1 and 6.3.2) 

I 

20 minutes intermittent PLIUS 

of increasing SAT A intensity 

from 0-200mW/cm2 with 

simultaneous confocal imaging 

(Section 6.2.6) 

(Sections 6.3.3 and 6.3.4) 

FIGURE 6.6: Summary of experimental procedures with relevant sections. 

6.3 Results 
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6.3.1 Effect of PLIUS on calcium signalling in chondrocytes in 3D culture 

A total of ten experiments were conducted for control and PLIUS-stimulated constructs 

using three separate cell isolations. The subsequent data for the 10 minute calcium 

signalling experiments was pooled, representing a total of 200 chondrocytes each for 

both the PLIUS-stimulated and control constructs. 

Figure 6.7 represents a cumulative plot showing the percentage number of cells 

exhibiting at their first [Ca2+l transient over the experimental period. Overall there was 

a similar shape for both conditions, with between 30 and 35% of chondrocytes 

exhibiting their first calcium transient over the 600 second experimental period. It can 

also be seen for both PLIUS-stimulated and non-stimulated control chondrocytes there 

was a similar percentage of cells, approximately 100/0, responding for the first time 

during the initial 60 second imaging period. Thereafter, up to 540 seconds subtle 

differences between group responses were evident. For example, the rate of increase of 

cell number eliciting a [Ca2+]i response appeared greater between 180-540 seconds in 

the PLIUS stimulation group. However beyond 540 seconds no additional cells elicited 

a response for either of the groups. 
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FIGURE 6.7: Cumulati\ e number of chondrocytes in agarose constructs exhibiting a 

[Ca- J i transient 0\ er the 10 minute experimental period. PLIUS-stimulated 

hondrocytes l1 ere exposed to continuous 30mW/cm- PLIUS. Controls remained nOI1-

timulated. A total of 200 cells were analysed for each experimental group. 

The total perc ntag of c lIs exhibiting [Ca2+]i tran ient at 5 and 10 minut are 

illu trat d in Figure 6. A and 6. B, r pectiv ly. Th data ha b n furth r di ided int 
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those cells showing 1-3 transients and those showing [Ca2+1 oscillations of 4 or more 

transients. This classification has previously been adopted in the host laboratory 

(Pingguan-Murphy et aI., 2005, 2006). 
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FIGURE 6.8: Number of [Ca2+Jj transients elicited by chondrocytes in agarose 

culture at 5 and 10 minutes (Figures A and B respectively), divided into cells eliciting 

between 1-3 transients, and those eliciting 4 or more transients. PLIUS-stimulated 

chondrocytcs were exposed to continuous 30mW/cm2 PLIUS. Controls remained non­

stimulated. Data represents mean percentage of chondrocytes responding per 

construct (n=10 constructs for both control and PLIUS groups). Dotted lines 

represent total percentage of cells responding for each given experimental condition. 

Error bars represent standard deviation for each parameter. 

At five minutes, it can be seen that there was very little difference between the total 

percentage of cells responding in PLIUS and control groups, with mean values of 34%) 

and 32.5%, respectively (p>O.05, Figure 6.8A). Additionally, 1 ~o of control 

chondrocytes elicited 4 or more [Ca2+]i transients, whereas none were seen for the 

stimulated group. 
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At ten minutes, there was agam no significant difference between the experimental 

groups in terms of total percentage of cells responding (p>O.05, Figure 6.8B), with 35% 

of PLIUS-stimulated chondrocytes showing a response compared to 33% of controls. 

There was a slight increase in the number of cells exhibiting 1-3 [Ca2+]i transients in the 

PLIUS-stimulated group (31.5% compared to 28.5% for controls). Conversely, there 

was a slightly higher proportion of chondrocytes in the control group that exhibited 4 or 

more [Ca2+]i transients (4.50/0 compared to 3.5% for the PLIUS-stimulated cells). 

However, none of the differences were statistically significant (p>O.05) 

The temporal nature of [Ca2+]i signalling, divided into five 2 minute intervals, is 

presented in Figure 6.9. A general decrease in calcium response was seen with time in 

terms of the percentage of cells responding over a given time period, from 18.5% to 6% 

for control chondrocytes, and 16% to 9% for PLIUS-stimulated chondrocytes. There 

were no statistically significant differences between PLIUS-stimulated and control 

chondrocytes over any two minute interval (p>O.05). 
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FIGURE 6.9: Temporal profile of [Ca2+Ji signalling exhibited by chondrocytes in 

agarose 0' er the 600 second imaging period, divided into two minute intervals. Data 

represents the mean percentage of chondrocytes exhibiting a transient within each two 

minute inten'al. Error bars represent ± SEM for n=10 constructs, for both control and 

PLIUS group. None of the comparisons were statistically Significant (p>0.05). 

6.3.2 Effect of PLIUS on calcium signalling in chondrocytes cultured in 

monolayer 
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A total of ten experiments were conducted for control and PLIUS-stimulated 

monolayers, using three separate cell isolations. The data was pooled, representing a 

total of 200 chondrocytes for each experimental group. 

Figure 6.10 represents a cumulative plot showing the percentage of cells exhibiting at 

least one [Ca2+]i transient over the experimental period. It can be seen that there was a 

difference between groups with regard to the percentage of cells responding over the 

600 second experimental period. PLIUS-stimulated chondrocytes at all times elicited a 

reduced number of transients than non-stimulated controls. Indeed, the first instances of 

[Ca2+]i response occurred at earlier time-points for control cells than for PLIUS­

stimulated cells. However, the rate of increase of cell number eliciting a [Ca2+]i 

response, as demonstrated by the gradient of the curves, is similar for both groups over 

the first 240 seconds. Nonetheless, beyond 360 seconds of imaging, the curves appear to 

converge. Overall, approximately 47.5% of control chondrocytes and 45% of PLIUS­

stimulated cells demonstrated a [Ca2+1 response over the 600 second experimental 

period. 
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FIGURE 6.10: Cumulative number of chondrocytes zn monolayer exhibiting a 

[Ca2+Ji transient over the 10 minute experimental period. PLIUS-stimulated 

chondrocytes were exposed to continuous 30m W/cm2 PLIUS. Controls remained non­

timulated. A total of 200 cells were analysed for each experimental group. 

The total percentag of cells exhibiting [Ca2
+] i tran ient at 5 and 10 minute are 

illu trated in Figur 6.11 A and 6.11 B, re pectively. The data has been further di ided 
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into those cells showing 1-3 transients and those showing [Ca2
-]; oscillations of 4 or 

more transients. 
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FIGURE 6.11: Number of [Ca2+h transients elicited by chondrocytes in monolayer 

culture at 5 and 10 minutes (Figures A and B respectively), divided into cells 

eliciting between 1-3 transients, and those eliciting 4 or more transients. PLIUS­

stimulated chondrocytes were exposed to continuous 30mW/cm2 PLIUS. Controls 

remained non-stimulated. Data represents mean percentage of chondrocytes 

responding per construct (n= 1 0 monolayers for both control and PLIUS groups). 

Dotted lines represent total percentage of cells responding for each given 

c)'perimental condition. Error bars represent standard deviation for each parameter. 

At five minutes, it can be seen that control chondrocytes elicited a higher total 

percentage of [Ca2+]; transients than the PLIUS-stimulated cells (46% compared to 

360
0 , Figure 6.11 A), although this ditTerence was not statistically significant (p>O.05). 
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Additionally, 2.5% of control chondrocytes elicited 4 or more [Ca2-r]i transients 

whereas no cells exhibited these number of transients in the stimulated group. 

However, by ten minutes there was minimal difference between experimental 

conditions, with respect to both the number of cells exhibiting 1-3 transients and those 

exhibiting 4 or more transients (Figure 6.11B). A total of 47.5% of control chondrocytes 

elicited a calcium response, compared to 44% of PLIUS-stimulated chondrocytes, a 

difference which was not statistically significant (p>O.05). The percentage of cells 

eliciting 4 or more transients was approximately 5% for both groups. 

The temporal nature of [Ca2+]i signalling, in terms of the percentage of cells responding 

in 2 minute intervals over the 10 minute period, is presented in Figure 6.12. 
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FIGURE 6.12: Temporal profile of [Ca2+Ji signalling exhibited by chondrocytes in 

monolayer culture over the 600 second imaging period, divided into two minute 

intervals. Data represents the mean percentage of chondrocytes exhibiting one or more 

transients within each two minute interval. Error bars represent ± SEM for n = 10 

monolayers for both control and PLIUS groups. Only one comparison was statisticall 

significant with * = p <0.05. 

Compari on of both groups revealed that PLIUS-stimulated cells were Ie re ponslve 

than control cells for the fir t two minute interval (p<O.05). There were no furth r 

ignificant differences between experimental condition after thi time with b th 
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PLIUS-stimulated and control groups having a similar range of absolute values over the 

imaging period, between 11-20% for the fonner and 11-22% for the latter group. 

6.3.3 Influence of PLIUS intensity on calcium signalling in cbondrocytes in 3D 

culture 

A total of fifteen experiments were undertaken for control and twenty-four experiments 

for PLIUS-stimulated constructs from five separate cell isolations. The pooled data 

represents a total of 323 control and 478 PLIUS-stimulated chondrocytes. 
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FIGURE 6.13: Cumulative number of chondrocytes in 3D agarose constructs 

exhibiting a [Ca2+Ji transient over the 20 minute experimental period. PLlUS­

stimulated chondrocytes were exposed to PLIUS of increasing intensity from 0-

200m W/cm2 as displayed in Figure 6.2. Controls remained non-stimulated. White and 

black legends represent the PLIUS SATA intensity being employed for a given 2 minute 

period in mW/cm2
. Dotted lines indicate time period 300-360 seconds. A total of 323 

control cells and 478 PLIUS-stimulated cells were analysed. 

Figure 6.13 is a cumulative plot showing the percentage number of cells exhibiting at 

1 a ton [Ca2+]i tran ient over the twenty minute imaging period. Both group exhibited 

orne increa in the percentage number of cells re ponding thr ugh ut th 

xperirnental period. Ind ed, both gr up behaved imilarly ~ r th fir t 120 en. 
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with approximately 15% of cells exhibiting a [Ca2+]i transient. Thereafter, PLIUS­

stimulated chondrocytes elicited fewer transients than non-stimulated controls for all 

subsequent time-points. This is most noticeable between 300 and 360 seconds, as 

depicted by dotted lines in Figure 6.13, where there is an increase in the gradient of 

response for non-stimulated chondrocytes compared to the response of cells which, 

during this period, were being stimulated with PLIUS at an intensity of 3 OmW/cm2
. 

Between 480 and 720 seconds, the increase in cell percentages eliciting their first [Ca2+1 
transient was similar for both groups. During this period, stimulated chondrocytes were 

exposed to 7OmW/cm2 PLIUS. After 720 seconds the two rates of response diverge 

again. Thus by the end of the 20 minute experimental period approximately 40% of 

control cells had exhibited at least one calcium transient, compared to approximately 

350/0 for PLIUS stimulated chondrocytes. Close examination of the PLIUS-stimulated 

curve suggested that there was no consistent instantaneous change in [Ca2+]i response 

during time-points at which the PLIUS stimulation was either switched on or off. 

Figure 6.14 illustrates the number of [Ca2+]i transients exhibited per cell, presented as a 

percentage of the total cell population. It shows that there was a small reduction in the 

proportion of cells exhibiting transients in the stimulated group, when divided into cells 

eliciting between 1-3 transients (240/0 compared to 27%) and those eliciting 4 or more 

transients (11 % compared to 12.5%). However there were no significant differences 

between groups (p>0.05). 

Figure 6.15 presents the mean percentage response of PLIUS-stimulated chondrocytes, 

in terms of [Ca2+]i transient, normalised to control chondrocytes over the 20 minute 

imaging period, which has been divided into ten 2 minute intervals. Figure 6.l5A-E 

shows the mean values for each of the five separate cell isolations used for the imaging 

experiments. In addition, the data was pooled for all five experiments, and mean values 

were estimated as illustrated in Figure 6.I5F. A normalisation process was established 

to accommodate any temporal change in the non-stimulated controls over the imaging 

period. For example, Figures 6.9 and 6.12 reveal a decline in the total number of cell 

t 61 



60 -

55 -

50-

45 . 
C'I .= 40 -
'0 

§ 35 -
Q. 

K: 30-1 .... 
~ 25 ~ 
QI 
(.) I 

<f!. 20 l 
15 -

10 • 

5 ~ 

o -l-- ___ "L--__ _ 

control 

Chapter 6: Calcium Signalling in PLiLS-stimulated Chondroc~tes 

------ ----~-----------

PLiUS 

experimental condition 

FIGURE 6.14: Number of transients elicited by chondrocytes in 3D agarose 

constructs over a 20 minute period, divided into cells eliciting between 1-3 transients, 

and those eliciting 4 or more transients. PLIUS-stimulated chondrocytes were exposed 

to intermittent PLIUS of increasing SATA intensity between 0-200 mW/cm2
. Controls 

remained non-stimulated. Data represents mean percentage of chondrocytes 

responding per construct (n= 15 for control constructs and n=24 for PLIUS-stimulated 

constructs). Dotted lines represent total percentage of cells responding for each given 

experimental condition. Error bars represent standard deviation. 

responders in non-stimulated constructs and monolayers, respectively. Hence, for each 

of the selected two minute intervals, the mean number of chondrocytes exhibiting one or 

more [Ca2+]j transients in the stimulated group was divided by the corresponding mean 

number of cells in the control group, and a percentage value estimated. 

Figures 6.15A-E clearly indicate that the cell response varied with different cell 

isolations. Figure 6.15A and Figure 6.15E show that for the majority of time-points the 

calcium response of PLIUS stimulated chondrocytes were inhibited, with values of 

approximately 50-700/0 of the corresponding controls. Indeed, in Figure 6.15E, six out of 

ten tiIne-intervals were significantly lower than controls (p<0.05), corresponding to 

three "on" (PLIUS stimulation) and three "off" periods. Figure 6.15A appears to show 

the inhibitory effect of PLIUS on chondrocytes at all intensities, although only at 

100mW,cm2 were the differences statistically significant. This effect is temporary. 

howc\'t.~r. as chondrocytes recover in the subsequent two minute period with higher 

mean percentages of responders than for the periods where PLIUS was applied. 
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Figures 6.15B, C and D showed that for the majority of time-points PLIUS-stimulated 

chondrocytes were either equivalent or above the corresponding values for controls. 

However, these data sets also revealed some cases of temporary inhibition associated 

with PLIUS, most noticeably at 100m W Icm2
, which was statistically significant in one 

case (Figure 6.15C). It should also be noted that the response of PLIUS-stimulated 

chondrocytes was greater than 200% compared to controls during the two minute period 

that they were being stimulated with 200m W Icm2
, corresponding to between 960-1080 

seconds. These values were higher than the responses seen in both the preceding and 

subsequent two minute intervals (Figures 6.15C and 6.15D). However. these differences 

were not statistically significant (p>0.05). 

The pooled data from the five experiments (Figure 6.15F) indicates a inhibitory effect of 

PLIUS at 30, 70 and 100mW/cm2
, and a possible stimulatory effect at 200mW/cm

2
. 

However, in only one case were these differences statistically significant, namely the 

inhibitory effect at 100m W /cm2 (p<0.05). 

6.3.4 Influence of PLIUS intensity on calcium signalling in chondrocytes cultured 

in monolayer 

A total of sixteen experiments were undertaken for both control and PLIUS-stimulated 

constructs over three separate cell isolations. The pooled data represents a total of 240 

chondrocytes each for both control and PLIUS-stimulated chondrocytes. 

Figure 6.16 is a cumulative plot showing the percentage of occurrence of cells 

exhibiting one or more [Ca2+]i transients over the 20 minute imaging period. It can be 

seen that both groups behaved similarly for the first 240 seconds, by which time 

approximately 35% of chondrocytes had elicited their first response. After 240 seconds, 

PLIUS-stimulated chondrocytes elicited a greater number of transients than non­

stimulated controls for all subsequent time-points. By the end of the experimental 

period approximately 65% of PLIUS-stimulated chondrocytes had exhibited their first 

calcium transient, compared to approximately 600/0 for control cells. Close examination 

of the stimulated curve revealed changes in the rate of increase of cell numbers 

~xhibiting a [Ca 2+]i transient occurring at 240 and 480 seconds, coinciding with the 

onset of PLIUS stimulation of 30mW/cm2 and 70m\V/cm
2

, respecti\'cly. Howc\,cr, at 

later times there appcared to be periods where no ncw PLIUS-stimulated cells were 

responding, for example, between 540 and 600 seconds and between 660 and 900 
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seconds. Furthennore, there were no additional stimulated responders after 1020 

seconds, whereas control chondrocytes continued to respond for the vast majority of the 

imaging period. 
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FIGURE 6.16: Cumulative number of chondrocytes in monolayer culture exhibiting a 

[Ca2+Ji transient over the 20 minute experimental period. PLIUS-stimulated 

chondrocytes were exposed to PLIUS of increasing intensity from 0-200m W/cm 2 as 

displayed in Figure 6.2. Controls remained non-stimulated. White and black legends 

represent the PLIUS SATA intensity being employed for a given 2 minute period in 

mW/cm2
. A total of240 cells were analysed for each experimental group. 

Figure 6.17 illustrates the number of [Ca2+]i transients exhibited per cell over the 20 

minute period, presented as a percentage of the total cell population. It can be seen that 

there was a slightly higher proportion of chondrocytes exhibiting transients in the 

stimulated group when compared to controls. This was the case for both cells eliciting 

between 1-3 transients (37.5% compared to 35%) and for cells eliciting 4 or more 

transients (25% compared to 24%). However, neither of these difference wer 

ignificantly different (p>O.05). 
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, 

---------------~----------------
I 
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control PLiUS 

experimental condition 

FIGURE 6.17: Number of transients elicited by chondrocytes cultured in monolayer 

over a 20 minute period, divided into cells eliciting between 1-3 transients, and those 

eliciting 4 or more transients. PLIUS-stimulated chondrocytes were exposed to 

intermittent PLIUS of increasing SATA intensity between 0-200 mWlcm2
. Controls 

remained non-stimulated. Data represents mean percentage of chondrocytes 

responding per monolayer (n=16 for both control and PLIUS-stimulated monolayers). 

Dotted lines represent total percentage of cells responding for each given experimental 

condition. Error bars represent standard deviation. 

Figure 6.18 presents the mean cell [Ca2+]; transient response as a percentage of control 

for each of the three times that experiments were undertaken (Figure 6.18A-C), as well 

as the pooled data for the three cell isolations (Figure 6.180). As explained in Section 

6.3.3, the mean number of stimulated cells was normalised to the mean number of non­

stimulated cells for each two minute period. 

Figures 6.18A-C show that cell response varied considerably between cell isolations. 

Figure 6.18A shows that for the majority of time-points the [Ca2+]i response of PLIUS 

stimulated chondrocytes was comparable or higher than controls. However. differences 

were only significant during the interval 480-600 seconds, during which time 

chondrocytes were exposed to 7OmW/cm2 (p<0.05). During the final two minutes of 

imaging in this isolation, stimulated chondrocytes showed a significant decrease in 

[Ca2+]i transients when compared to control cells (p<0.05). Figure 6.188 shows a more 

\'ariablc pattern of response. It appeared that during periods where PLIUS was applied 

there was generally an inhibitory response for all intensities up to and including 
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100m W /crn
2

• However, none of the differences were statistically significant (p>0.05). 

Figure 6.1SC also showed a varied pattern in tenns [Ca2-]j response. Indeed in the first 

four minutes, there was an apparent difference between groups (p>0.05), even though 

PLIUS stimulation was not active. During periods where cells were exposed to 

3OmW/crn2 and 7OmW/crn2 mean percentages exceeded 1000/0 of the control values, 

whereas the opposite trend was evident when cells were exposed to 100m W /cm2 and 

200mW/cm2
. However, none of these differences were statistically significant (p>0.05). 

The pooled data from the three experiments (Figure 6.1SD) generally indicated that, for 

the majority of time periods, stimulated cells exhibited a [Ca2+]j response which was 

equivalent or in excess of control values. This was found to be significant at 600-720 

seconds, during which time chondrocytes were not experiencing PLIUS (p<0.05). By 

contrast, for two intervals, stimulated cells exhibited responses less than 75% of control 

values (Figure 6.1SD). These differences were only statistically significant during the 

last two minutes of the imaging period between and 10S0 and 1200 seconds. 
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6.4 Discussion 

The hypothesis examined in the present set of experiments was that PLIUS stimulation 

activated [Ca
2
+]i signalling in bovine chondrocytes seeded in 3D agarose and monolayer 

culture, and that this response was influenced by the intensity of the ultrasound. The 

results detailed in sections 6.3.1-6.3.4 confirm a null hypothesis. 

Overall analysis of the ten minute experiments, where chondrocytes were exposed to 

continuous application of 30m W /cm2 PLIUS, showed that there was no stimulatory 

effect on [Ca
2+]j signalling behaviour, evidenced for cells both in 3D agarose culture 

and monolayer culture. Cumulative plots illustrating the percentage number of cells 

exhibiting their first [Ca2+]j over time showed that in agarose, PLIUS appeared to have 

an inhibitory effect between 180 and 300 seconds. However, the rate of increase of cell 

response was such that by the end of the experimental period the total percentage of 

cells responding was comparable for both groups, in the region of 350/0 (Figure 6.7, 

Figure 6.8). In monolayer, there was an approximate 20 second delay in response 

associated with PLIUS-stimulated chondrocytes, although the rate of increase of cell 

number eliciting a [Ca2+]j response was similar for both experimental groups for the first 

240 seconds (Figure 6.10). A divergence in curves, seen at approximately 300 seconds, 

was not translated into a PLIUS-related inhibitory effect (Figure 6.11 A). At the end of 

the ten minute experimental period, the total percentage of cells exhibiting a [Ca2+]i 

response was approximately 450/0 for both groups (Figure 6.11 B). A small proportion of 

PLIUS-stimulated chondrocytes continued to respond after 540 seconds, which was not 

evident in control cells in monolayer culture. 

Comparison of the temporal nature of [Ca2+]i signalling in both culture systems revealed 

a general decrease in calcium response over the ten minute period, of between 7-12.5%) 

(Figures 6.9 and 6.12). The only exception to the pattern was seen for PLIUS-stimulated 

chondrocytes in the monolayer system, during the first and last two minute interval 

(Figure 6.12). However, by examining the corresponding cumulative plot (Figure 6.10). 

these differences can be attributed to the fact that stimulated chondrocytes began 

responding at a later time than controls, and continued responding in the last sixty 

seconds of the experimental period. after controls had ceased to respond. 

Exposing chondrocytes to an increasing PLIUS intensity signal over a 20 minute period 

(Figure 6.3) failed to highlight any stimulatory effect on [Ca2+]j signalling behaviour. 
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For chondrocytes cultured in agarose, the cumulative percentage of cells exhibiting 

[Ca
2
+]; transients was lower for stimulated cells than for controls for the majority of the 

experimental period. However, this difference was seen during the period before the 

onset of PLIUS stimulation (Figure 6.13). The rate of increase of cell number eliciting 

[Ca
2
+]; response did decrease at 240 seconds, coinciding with the onset of 30m W /cm:!. 

However, this apparent inhibition was not statistically significant when examining the 

total percentage of cells eliciting [Ca2+]i transients at 20 minutes (Figure 6.14). By 

contrast, PLIUS-stimulated cells cultured in monolayer exhibited a higher cumulative 

percentage of [Ca2+]i transients than controls at all times after 240 seconds (Figure 

6.16). However, as with the 3D system, there was no statistically significant difference 

between groups when observing the total percentage of cells exhibiting [Ca2+]; 

transients at 20 minutes (Figure 6.1 7). 

Figures 6.15 and 6.18, illustrating the normalised temporal profiles of [Ca2+]; signalling 

of stimulated chondrocytes cultured in agarose and monolayer respectively, highlights 

the variation in cell signalling behaviour with separate cell isolations. In the vast 

majority of cases, no significant differences were seen between PLIUS-stimulated and 

non-stimulated systems. When data was pooled (Figure 6.15F and Figure 6.180), the 

two culture systems exhibited different responses in relation to PLIUS stimulation. 

Chondrocytes in agarose appeared to show a dose dependent inhibition in [Ca:!+]i 

signalling during the periods where PLIUS was applied at SAT A intensities 30, 70 and 

100m W /cm2
, which recovered in subsequent two minute periods when the PLIUS was 

removed. However, the difference was only significant for the latter intensity. The 

relative increase in [Ca2+]i signalling evident on stimulation with 20OmW/cm2 was not 

significant. In monolayer, [Ca2+]; response was more varied, and no particular pattern 

was evident with relation to increasing PLIUS intensity. The only instance of an 

apparent dose dependent inhibition of [Ca2+]i signalling was observed at 100m W /cm
2

, 

although this was not significant (p>0.05). 

Comparison of the [Ca2+]; signalling behaviour of the two cell culture systems revealed 

that for both groups, an increased subpopulation of chondrocytes responded in 

monolayer as opposed to in agarose, which was evident for both the 10 and 20 minute 

experiments. Comparable data is summarised in Table 6.1. For the 10 minute imaging 

experiments, it can be seen that the higher percentages seen in monolayer were 

attributable to those cells eliciting 1-3 transients. In both agarose and monolayer, 
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approximately 5% of cells exhibited 4 or more transients, irrelevant of experimental 

condition. Table 6.1 also highlights that for the 20 minute imaging experiments, there is 

an approximate twofold increase in the percentage of monolayer chondrocytes 

exhibiting 4 or more transients when compared to those in agarose, observed for both 

control and PLIUS-stimulated cells. 

TABLE 6.1: Summary of results illustrating signalling behaviour for all experimental 

conditions in terms of percentage [Ca2+] i transients. Of note, the 10 and 20 minute 

imaging periods cannot be directly compared due to the difference in employed PLIUS 

intensity profiles. 

0/0 [Ca2+]i transients 
Agarose No. 10 minutes 20 minutes 

[Ca2+]i (Figure 6.8B) (Figure 6.14) 
transients 

Control PLIUS Control PLIUS 
Total 33 35 39.5 35 
1-3 28.5 31.5 27 24 
4+ 4.5 3.5 12.5 11 

Monolayer No. 10 minutes 20 minutes 
[Ca2+]i (Figure 6.11 B) (Figure 6.17) 
transients 

Control PLIUS Control PLIUS 
Total 47.5 45 59 62.5 
1-3 43 41 35 37.5 
4+ 4.5 4 24 25 

The 10 and 20 minute imaging periods cannot be directly compared in terms of the 

response of PLIUS-stimulated chondrocytes, due to the difference in SAT A intensity 

profiles that cells are exposed to. However, some differences were noted. In agarose. 

there was an increase in the percentage of control cells responding, from 33% to 39~ 0 

for 10 and 20 minutes, respectively. The total percentage of PLIUS-stimulated cells 

responding remained approximately 35%. Additionally, there was an increase in the 

percentage of cells exhibiting 4 or more transients by 20 minutes to approximately 12%, 

three times that evident at 10 minutes, for both PLIUS-stimulated and control groups. 

For monolayer cultures, there was an approximate 10% increase in the total percentage 

of cell responders for control chondrocytes at 20 minutes compared to at 10 minutes, 

from 47.5 0 0 to 59%, with an approximate 20% increase for PLIUS-stimulated cells. 

from 45 0 0 to 62.5 0 o. Again, a greater proportion of chondrocytes exhibited 4 or more 
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transients at 20 minutes, at approximately 25%, representing a 5 fold increase to that 

found after 10 minutes of imaging. 

In both agarose and monolayer, only a subpopulation of chondrocytes elicited a calcium 

response. Full depth cartilage is used for cell isolation, representing a heterogeneous 

chondrocyte population (Aydelotte et aI., 1988, 1992). It is possible that the observed 

[Ca2+]i signalling behaviour is due to this heterogeneity. The increased level of [Ca2+]; 

signalling seen in monolayer compared to agarose may be due to differences in culture 

conditions. In monolayer, the relative increase in cell-cell contact as well as attachment 

of chondrocytes to the well plate surface, may yield a greater level of [Ca2+]; signalling. 

A previous study (Parvizi et aI., 2002) reported an increase in [Ca2+]; levels in neonatal 

rat chondrocyte monolayer cultures when applying PLIUS in the range of 25-

100mW/cm2
. Fura-2 was used as the fluorescent label, which gave an estimate of [Ca2+]; 

concentration. The present experimental method employed Fluo-4, which did not 

measure [Ca2+]; concentrations but rather enabled the amount and frequency of [Ca2+]; 

transients to be measured, which could then be compared to control chondrocytes. It is 

unlikely that PLIUS would increase [Ca2+]i concentrations without altering [Ca2+]i 

transient behaviour, especially as Parvizi and colleagues appeared to show changes to 

both variables. As well as the difference in cell type and age used, the group did not use 

a control population of chondrocytes in their study. Therefore a direct comparison could 

not be made. However, it is evident from the current work that pulsed low intensity 

ultrasound was unable to stimulate [Ca2+]; signalling in bovine chondrocytes in both 

monolayer and 3D agarose culture using the present system. In fact, an inhibitory dose­

dependent response was evident in agarose that was significant at 100mW/cm
2

. 

Monolayer cultures remained largely unaffected. 

The implications of the present findings with regard to mechanotransduction are 

discussed in the following chapter. 
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Chapter 7: Discussion and Future Work 

7.1 Introduction 

The previous chapters of this thesis examined the potential use of pulsed low intensity 

ultrasound (PLIUS) for cartilage repair interventions by determining its influence on 

proteoglycan synthesis, cell proliferation and calcium signalling in chondrocytes seeded 

in 3D agarose and monolayer systems. This involved designing a system for application 

of PLIUS to chondrocytes cultured in agarose, as well as a rig that enabled microscopic 

evaluation of cells subjected to PLIUS. 

This chapter will evaluate the model systems and experimental techniques employed in 

this thesis before discussing the implications of the results with regard to PLIUS­

induced mechanotransduction effects and the use of PLIUS for enhancement of 

cartilage repair. Suggestions for future work are proposed as well as a summary of the 

key findings of the thesis. 
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7.2 Rationale for methodology 

7.2.1 PLIUS regime 

The ultrasound system used in this thesis (Figure 3.3) was provided by Smith and 

Nephew Inc. (York, UK), and exhibited a characteristic output signal of a 1.5 MHz 

frequency pulsed 200/-1s sine wave repeating at 1000Jls (Figure 3.2). As detailed in 

Chapter 2, this output, or similar, has been used extensively in research investigating the 

influence of PLIUS on bone and cartilage tissues (Sections 2.3.9 and 2.3.10 

respectively). The system routinely employed a SA T A intensity of 30m W /cm2, 

equivalent to that of the commercially available Exogen Sonic Accelerated Fracture 

Healing System (SAFHS). Additional equipment, also provided by Smith and Nephew 

Inc., allowed for the variation of the SATA intensity between 13-300mW/cm2. A 

number of other published studies investigating possible cartilage modification by 

PLIUS have employed SATA intensities ranging from 2mW/cm2 (Zhang et aI., 2002) to 

580mW/cm2 (Kopakkala-Tani et al., 2006). Based on the results of an initial study 

described in Section 3.9, an additional SATA intensity of 100mW/cm2 was chosen for 

the sGAG elaboration studies described in chapters 4 and 5. In addition, SATA 

intensities up to 200mW/cm2 were employed to examine the effect of PLIUS intensity 

on calcium signalling in chondrocytes in agarose (Chapter 6). 

Within the overall study, culture systems were subjected to single PLIUS exposures of 

between 2 and 20 minutes. A once-daily twenty minute exposure represents the current 

recommendation for those employing SAFHS treatment for fracture healing (Smith and 

Nephew, Inc.). However, in a study involving osteochondral defect repair in a rabbit 

model, a beneficial effect was reported if the daily PLIUS dose was doubled to 40 

minutes (Cook et al., 2001). Accordingly, PLIUS was employed twice a day at 12-hour 

intervals for the 3OmW/cm2 temporal agarose studies undertaken in Chapter 4. 

7.2.2 Rig and system design for PLIUS transmission 

The equipment provided by Smith and Nephew Inc. was operable in conjunction with 

the use of a six well plate, whereby PLIUS was transmitted via the base of each well. 

Therefore, the 3D agarose system used to investigate effect of PLIUS on temporal 

sGAG elaboration in agarose needed to be cultured in such plates. In addition, the gel 

was required to remain fixed or stationary during ultrasonic stimulation to remove any 

other factors, such as enhanced mass transport, that could contribute to the elaboration 

of extracellular matrix components. This made it difficult to employ the .5 x 5 mm 
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cylindrical or cube-shaped agarose constructs commonly utilised for 

mechanotransduction studies in the host laboratory. As a consequence, it was decided to 

cast the chondrocyte/agarose suspension directly into the individual wells of a six well 

plate to a 3mm height, and cover the gel with DMEM + 16.1 % FCS. 

At selected time-points, 6mm diameter cylindrical constructs were removed from the 

centre of the chondrocyte/agarose gel using a sterile corer (Figure 3.l7). Outer regions 

were not used due to the non-uniformity of the PLIUS intensity field (Figure 3.6) and 

the fact that with a 22mm diameter transducer, the central region of the construct was 

more likely to be exposed to the nominal PLIUS signal intensity specified by the 

system. By contrast, such site-specific selection for biochemical analysis was not 

possible when exposing monolayer culture to ultrasound. 

For calcium signalling experiments, a custom-designed microscope mounted rig was 

required in order to visualise viable cells in chondrocyte/agarose constructs exposed to 

PLIUS stimulation. The design and developmental process of this rig is detailed in 

Section 3.6 (Figures 3.8-3.16). To review briefly, 5x5x5 mm constructs were cast in a 

Perspex insert that was held in the chamber of the rig, covered with medium, and 

exposed to ultrasound using a single PLIUS transducer positioned in the lid component 

of the rig. 

The main difference in the PLIUS transmission between the two systems is that with the 

former, ultrasound was transmitted directly from the transducer to well contents via the 

base of the well plate. However, due to the use of an inverted confocal microscope used 

for calcium imaging experiments, the transducer needed to be placed above cells. In 

order to maintain some consistency between the systems, the base of a well of a six well 

plate was cut out and used as the component of the lid through which the PLIUS was 

transmitted (Figure 3.10). Additionally, a fluid gap was employed so that the lid of the 

rig was not in direct contact with the construct to minimise the possibility of construct 

compression during insertion into the rig. Both designed systems fulfilled the aims of 

the thesis, namely to investigate the effects of PLIUS on chondrocyte biosynthesis and 

calciUIn si!:,Tflalling in a 3D model system. 
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7.2.3 Cell source 

The cells used throughout this thesis were chondrocytes obtained from the proximal 

surface of the metaphalangeal joints of bovine steers aged between 18 and 24 months. 

This cell source is readily available, and a typical joint can provide 40 million cells. 

Skeletally mature bovine articular cartilage has been utilised in a number of studies 

investigating cartilage properties (Kerin et a/., 1998; Schinagl et al., 1997) and the 

associated chondrocytes have been used in mechanotransduction studies by a variety of 

groups (Li et al., 2001; Langelier and Buschmann, 2003; Browning et ai., 2004; 

Kerrigan et a/., 2006) including the host laboratory (Lee and Bader 1995; Lee et ai., 

2000a and 2000b; Knight et al., 2001; Lee et al., 2003; Heywood et ai., 2004; 

Pinguann-Murphy et a/., 2005; Knight et al., 2006a and 2006b; Campbell et a!., 2007; 

Akanji et a!., 2008). Although the use of bovine chondrocytes limits extrapolation to the 

clinical setting, alternative human allogenic sources are restricted in availability and 

there is an inherent variability associated with factors such as age and clinical history. 

7.2.4 Cell model systems 

The chondrocyte/agarose system used in Chapters 3, 4 and 6 is well characterised, 

having been used in a range of studies investigating chondrocytic phenotype and 

biosynthesis (Benya and Shaffer, 1982; Buschmann et al., 1992; Kelly et al.; 2004). 

Indeed, chondrocytes seeded in low concentration agarose gel can maintain their 

phenotype in long-term culture for up to 70 days in culture (Buschmann et a!., 1992), 

with cytoskeletal organization similar to that seen in situ (Idowu et a!., 2000). This 

system has been utilised for mechanotransduction studies both in the absence and 

development of extracellular matrix (Freeman et a!., 1994; Buschmann et a!., 1995; Lee 

and Bader 1995; Knight et aI., 1998a and 1998b; Quinn et a!., 2002), and has been 

widely used in the host laboratory to investigate downstream mechanotransduction 

effects of dynamic compression (Lee and Bader, 1997; Chowdhury et a!., 2003; 

Pingguan-Murphy et al. 2005). 

Agarose represents only one of the options for a 3D scaffold material. As described in 

Section 2.1.2.3, alginate, a negatively charged polysaccharide, has some structural and 

chemical similarity to GAG, which makes it advantageous for tissue engineering 

applications, and has been employed within some studies in the host lab (Knight et al .. 

2002; Heywood ct aL 2004; Campbell et ai., 2006). However, it is this similarity to 

GAG that can prove a disadvantage when investigating specific aspects of chondrocyte 
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mechanotransduction. For example, a charged extracellular en\'ironment may 

undoubtedly influence transduction channels and the deposition of extracellular matrix. 

Furthermore, the gelation process may introduce some degree of heterogeneity to 

alginate gels, which can influence factors such as cell organisation and morphology 

(Aydelotte et aI., 1998). Thus, the agarose system was considered to represent a more 

suitable and easy to use 3D model environment for monitoring the biosynthetic 

behaviour of chondrocytes exposed to PLIUS. 

As described in Section 2.1.2.2, the use of monolayer culture for investigation of 

chondrocyte mechanotransduction events can be problematic due to the loss of 

chondrocytic phenotype with time and passage in culture, and the difficulty of applying 

physiological levels of strain. However, a number of studies employing PLIUS have 

used this culture system to investigate extracellular matrix synthesis (Parvizi et al.. 

1999; Saito et al., 2004) and a number of associated signalling pathways (Kokubu et at.. 

1999; Parvizi et al., 2002; Chen et aI., 2003; Hsu et al., 2007~ Choi et aI., 2007) in both 

osteoblasts and chondrocytes. 

7.2.5 Cell seeding densities 

At present there is no defined optimum initial cell density for cartilage tissue 

engineering, with reported values ranging from 0.4 x 106 cells.mrl up to 130 x 10
6 

cells.mr l (Ruggiero et al., 1993; Vunjak-Novakovic et al., 1999; Mauck et al., 2003~ 

Ng et aI., 2006). The continued viability and functionality of cells of a given 

concentration are dependent on factors such as the volume of nutrients available to cells 

and the presence of media supplements (Mauck et al., 2003). For the temporal 

biosynthesis studies undertaken in Chapters 3 and 4, a cell concentration of 4 x 10
6 

cells.mr l was chosen for culture in agarose, which is commonly used in the host lab for 

48 hour dynamic strain experiments (Lee and Bader, 1997; Lee et aI., 2000b; 

Chowdhury et aI., 2003, 2006. 2008). This cell concentration was sufficient to produce 

quantifiable levels of sGAG and DNA over a 20 day period, using the standard 

biochemical assays described in Section 3.8. 

As previously mentioned, the cell culture system designed for investigation of PLIUS 

effects on chondrocyte biosynthesis involved a 34mm diameter cylindrical' slab' of gel 

of 3mm in depth covered with 6.6ml DMEM + 16.1 % FCS. A study conducted in the 

host laboratory by Heywood and colleagues (2004), employing various chondrocyte 
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densities ranging from 5-40 x 10
6 

cells.mr!, reported that a ratio of 6.4 ml of medium 

per million cells maintained homogeneous viability in alginate constructs of dimension 

50 x 25 x 4 mm. For the present system, this ratio was equivalent to 0.5ml of medium 

per million cells. However, chondrocyte viability was maintained throughout the depth 

of the agarose gels over a 16 day period (Figure 4.13), thus indicating that the medium, 

which was changed every 2-3 days, could maintain the culture over the length of the 

experimental period. 

For the calcium signalling experiments, a cell seeding density in agarose of 10 x 106 

cells.ml- l was selected. This represented a ratio of 4ml of medium per million cells. This 

higher concentration enabled approximately 20 chondrocytes per field of view to be 

visible with a x20 objective (Figure 6.4), thereby facilitating an adequate population 

size per construct for appropriate data analysis (Roberts et aI., 2001; Pingguan-Murphy 

et al., 2005 and 2006). Cells were cultured for up to a 24 hour period before being used. 

A number of studies have investigated the effect of PLIUS in a monolayer primary 

chondrocyte system, employing cell densities ranging from 6 x 103 cells.cm-2 to lOx 

104 cells.cm-2 (Parvizi et aI., 1999 and 2002; Kopakkala-Tani et aI., 2006~ Hsu et aI., 

2006 and 2007). Two seeding concentrations for monolayer culture were used in the 

present work. 10 x 104 cells.cm-2 was adopted for the 8 day sGAG elaboration 

experiments undertaken in Chapter 5. However, for the calcium signalling experiments 

in Chapter 6, a reduced seeding concentration of 2 x 104 cells.cm-2 was selected to 

improve visualisation and analysis of isolated chondrocytes during confocal imaging. 

7.3 PLIUS-induced mechanotransduction 

It is important to address 1) the individual factors impacting on the nature of the 

chondrocyte response to PLIUS stimulation, 2) the possible mechanisms by which 

PLIUS influences cell function, and 3) the implications of the present work on the use 

of PLIUS for bone and cartilage tissue engineering applications. 

7.3.1 Variabilit), issues 

The chondrogenic response to a given stimuli, and its relevance to the clinical situation, 

is dependent on various factors such as the species of the cell source, the location from 

which it was derived, and the age and health of the donor, as well as the subsequent 
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culture method (Urban, 2000; Giannoni et aI., 2005; Isogai et aI., 2006 Lee et a!.. 2006; 

Choi et al., 2006). The cells used for this thesis were bovine chondrocytes isolated from 

the full depth of the cartilage of skeletally mature metacarphalangeal joints. In order to 

ensure appropriate cell numbers for each study, cells were pooled from a number of 

joints. Moreover, this served to eliminate any donor-specific differences in response, 

which has been reported following PLIUS exposure of the same cell type (Kopakkala­

Tani et ai., 2006). However, when comparing results from replicate studies, it became 

clear that there was variation in chondrocyte metabolic behaviour between separate cell 

isolations. Indeed, for chondrocytes cultured in the 3D agarose system, total sGAG 

content (Figures 4.3 and 4.6), sGAG release into the medium (Tables 4.2, 4.4, 5.1 and 

5.2), DNA levels (Figures 4.7 and 4.8) and the incorporation rates of S04 (Figures 4.11 

and 4.12) and eH]thymidine (Figures 4.13 and 4.14) over the test period varied between 

replicate studies, independently of PLIUS stimulation. In addition, cell activity levels. in 

terms of sGAG produced per cell, estimated with chondrocytes cultured in both agarose 

and monolayer (Tables 4.7 and 5.3, respectively) reaffirmed the batch-to-batch 

variation. 

Accordingly, the results from each isolation were presented separately, as opposed to 

pooling the data between batches. The same approach was adopted for the monolayer 

data in Chapter 5, although the variability between replicate cultures was not as 

pronounced in this culture system. Variability was also evident in the calcium signalling 

behaviour of chondrocytes from the same isolation, seen for those cultured in both 

constructs and monolayers. However, for the purposes of analysis, the data was pooled 

for both the 10 minute studies (Figures 6.7-6.12) and the 20 minute intensity studies 

(Figures 6.13-6.18). The 20 minute temporal profiles for the intensity studies (Figures 

6.15 and 6.18 for agarose and monolayer, respectively) were presented both for separate 

isolations and as a mean of the experiments, highlighting both the variability and 

specific trends in chondrocyte calcium signalling observed over the experimental 

period. 

The metabolism of the chondrocytes is known to differ between the sub-populations 

present in cartilage. Indeed, data published from the host laboratory found that 

superficial and deep bo\'ine chondrocytes were responsible for different synthetic 

mechanotransduction effects and uncoupled pathways when exposed to dynamic 

loading (Lee ct a!., 1998 and 2000b). Although the chondrocytes used for the presented 
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work were isolated from full depth cartilage, the ratio of chondrocyte sUb-popUlations 

was not controlled. This could explain the observed variation in chondrocyte metabolic 

behaviour, which has been previously reported in the host laboratory (Chowdhury et al.. 

2003; Akanji et ai., 2008). 

7.3.2 Effect of PLIUS intensity 

An initial nine day study using chondrocytes seeded in agarose revealed a decrease in 

viable cells at SATA intensities of 200 and 30OmW/cm2 (Figures 3.20-3.22). 

Furthermore, at 300mW/cm2
, the degree of viability was directly proportional to the 

distance from the transducer. Studies undertaken by Smith and Nephew Inc. 

demonstrated a range of thermal effects even when operating at a SAT A intensity of 

3 OmW/cm2
, including self-heating of the transducer, and temperature rises of 1°C 

within 10 seconds occurring in the well plate (see Section 3.10 and Figure 3.23). 

Although these studies were not carried out on cell culture systems, it is apparent using 

the present apparatus and associated chondrocyte models, cells will be exposed to a 

degree of heating during PLIUS stimulation. 

A recent study by Kopakkala-Tani and colleagues (2006), employing a 110mm water 

gap between the transducer and well plate, found that after 10 minutes of PLIUS 

(average SATA intensity 58OmW/cm2
, 1 MHz frequency, Is PRP, 200/0 duty cycle), a 

temperature rise of 6.9°C was found at the base of a well plate containing culture 

medium. This temporal rise in temperature was comparable to that caused by equivalent 

direct heat, transmitted via a water bath; however, accumulation of the heat shock 

protein 70 (Hsp70) was reported for bovine chondrocytes cultured in monolayer after 

direct heat exposure that was not elicited by PLIUS exposure. A PLIUS-induced heat 

rise appeared not to have a detrimental effect on these cultures, which showed increased 

S04 incorporation compared to untreated controls over a five day period. These findings 

are in contrast to those presented in Chapter 3, which showed reduced sGAG 

elaboration at the higher SA T A intensities. A direct comparison cannot be made, 

however. due to the difference in experimental arrangements. The use of a water bath hy 

Kopakkala-Tani and colleagues permitted the transfer of PLIUS-induced heat to the 

surroundings at a greater rate than that in the present system. The loss of cell viability 

seen for higher intensities may be due to the effect of heat as opposed to the ultrasonic 

intensity per se, as the SAT A intensity used by Kopakkala-Tani and co-workers was 

approximately twice that employed in the present work~ based on the intensity tield 
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characterisation study undertaken by Smith and Nephew Inc. (Figure 3.6), the effectiye 

intensity experienced by chondrocytes in their study could be even higher. 

Based on the results of the study in chapter 3, subsequent experiments utilised the 

10OmW/cm
2 

SATA intensity as well as 3 OmW/cm2
• However, the enhanced sGAG per 

cell in PLIUS-stimulated agarose cultures exposed to up to 20OmW/cm2 for 9 days 

(Table 3.3) was not reproduced for subsequent experiments at 3OmW/cm2 data in 

chapter 4 (Table 4.7). In fact, the majority of experiments undertaken in chapters 4 and 

6 showed that chondrocytes were not stimulated by exposure to PLIUS at 30mW/cm2
, 

whether cultured in agarose or in monolayer. The employment of an additional ~O 

minute daily PLIUS stimulation for agarose cultures (tenned PLIUSx2 in chapter 4) 

also did not lead to an up-regulation of matrix synthesis. Indeed, for sGAG content in 

particular, a down-regulation was evident for the majority of time-points (Figure 4.1). 

This finding is in contrast to previous studies for which a longer/more frequent period of 

PLIUS stimulation caused an increased biosynthesis (Cook et aI., 2001; Schumann et 

aI., 2006; Park et aI., 2007). It is possible that additional PLIUS exposure may inhibit 

cell activity in the present experimental system. 

At the higher intensity of 100m W /cm2
, the results are inconsistent. Although a marginal 

stimulatory effect was observed in tenns of sGAG elaboration in agarose constructs 

(Figures 4.4 and Table 4.3), no such stimulatory effect was seen in the monolayer 

system. Furthennore, the results of the calcium signalling experiments indicated an 

inhibitory chondrocyte response at 100m W /cm2 in both agarose and monolayer cultures 

(Figures 6.15F and 6.18D, respectively), which was statistically significant in the 

former (p<0.05). Whether this inhibitory calcium transient behaviour was due to the 

100m W /cm2 SAT A intensity alone, or an accumulation of effects from exposures to 

lower magnitude intensities is unclear. However, most notably for the chondrocytes 

cultured in agarose, cells appeared to recover in the two minute period between 

successive PLIUS exposures, based on the nonnalised percentage of chondrocytes 

eliciting a calcium transient (Figure 6.15 and 6.17). Parvizi and colleagues (2002). in 

their investigation of the events underlying ultrasound-stimulated aggrecan synthesis in 

neonatal rat chondrocyte monolayer cultures, reported an increased intracellular calcium 

concentration resulting from PLIUS intensities between 25-1 OOm W /cm
2

. Furthermore. 

their use of calcium channel blockers, that depleted both intra- and extracellular calcium 

stores, led to an inhibition of ultrasound-stimulated proteoglycan synthesis. This implies 
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coupling of the two processes in their work. Therefore, the apparent up-regulation of 

sGAG elaboration seen for chondrocyte-agarose cultures exposed to the higher 

IOOmW/cm
2 

SATA intensity in the present work is unlikely to be due to any calcium 

signalling mechanism, based on the results obtained in Chapter 6. 

It has been suggested that different intensities of PLIUS may elicit different pathways of 

cell response, as seen with mineralization of osteoblasts in monolayer (Saito et aI., 

2004), and cell proliferation and proteoglycan synthesis in intervertebral disc cells 

cultured in alginate (lwashina et aI., 2006). Therefore it is possible that there is some 

mechanism by which chondrocytes in agarose transduce the 100mW/cm:! signal into 

increased elaboration of sGAG not apparent at the lower 3 OmW/cm2 intensity. 

However, whether there are any beneficial effects of increasing SATA intensity is not 

clear from the literature, with some studies reporting a directly proportional relationship 

between intensity and cell activity (Harle et al., 2005; Choi et aI., 2006; Hsu et aI., 

2006), while others suggest that lower intensities were more effective (Tien et aI., 2008; 

Ebisawa et al., 2004; Zhang et al., 2003), and other studies indicate little difference 

between intensity levels (Parvizi et al., 1999). What is evident is that the relationship 

between ultrasonic intensity and promotion of cell activity varies widely between 

specific culture systems, the nature of the PLIUS signals employed, and the markers of 

cell activity under investigation. 

The stimulation of sGAG elaboration at the higher 100m W /cm2 SAT A intensity, as 

assessed by DMB assay, remains questionable. This marginal effect may be attributed to 

an isolated cell-donor specific response as opposed to a generic indication of the 

effectiveness of PLIUS at this intensity, particularly as the rate of sGAG production was 

very similar for one of the cell isolations (Figure 4.4A). Further investigations are 

required to elucidate any stimulatory processes at this intensity. 

7.3.3 Comparison of monolayer and 3D culture 

PLIUS was not generally found to stimulate bovine chondrocytes in either agarose or 

monolayer culture. However, the employment of the two culture systems highlighted 

differences with regard to metabolic response, that was unaffected by PLIUS 

stimulation or cell isolations. The results from the biosynthesis experiments undertaken 

in chapters 4 and 5 could not be directly compared due to differences in the 

experimental set up and methods for sample harvest. However, in generaL monolayer 
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systems showed approximately 50-100% greater sGAG and DNA content and 

incorporation rates compared to chondrocytes cultured in agarose. In addition, a greater 

sub-population of monolayer chondrocytes exhibited changes in calcium concentration 

compared to those in agarose constructs (approximately 300/0 greater at 10 minutes and 

150/0 greater at 20 minutes). 

In an agarose culture environment, chondrocytes produce extracellular matrix that is 

trapped in the 3D framework and can accumulate pericellularly. The formation of this 

pericellular matrix creates a steric hindrance that limits the movement of newly­

synthesised further matrix molecules out into free space, and results in altered 

mechanotransduction effects with time and a decreased synthetic response. This effect 

is not as pronounced in monolayer culture, as synthesised matrix molecules are more 

able to be released into the culture medium. Indeed, as much as 700/0 of monolayer 

produced sGAG was released into the medium (Tables 5.1 and 5.2), in comparison with 

15-30% seen for in the agarose system (Tables 4.3 and 4.5). However, as monolayers 

approached confluency, a decrease in synthetic response was observed. 

The phenotypic status of chondrocytes cultured in monolayer is known to alter over 

time in culture (Lee et aI., 2003; Barlic et aI., 2008). The extent to which chondrocytes 

lose their phenotype is dependent on the initial seeding density (Murata et aI., 1998; 

Galois et at., 2006). For example, four month old bovine calf chondrocytes exhibited a 

reduction in collagen II and aggrecan expression and induction of collagen I expression 

compared to native cartilage when cultured in monolayer for twelve days at both low 

and high seeding densities of 4 x 104 cells.cm -2 and 60 x 104 cell.cm -2, indicating partial 

dedifferentiation which was generally more marked at the lower seeding density (Galois 

et aI., 2006). However, in another study, phenotype was maintained for neonatal rat 

chondrocytes seeded at 1.7 x 104 cell.cm2
, and cultured for eight days (Parvizi et aI., 

1999). It is likely that the adult bovine monolayer cultures utilised for the metabolic 

studies undertaken in Chapter 5, at a cell density of 10 x 104 cell.cm-
2

, as well as the 2 x 

104 cells.cm-2 monolayers used for the calcium signalling experiments in Chapter 6, 

would have experienced a loss of chondrocytic phenotype over the respecti\'C eight and 

three day experimental periods. A number of studies have shown that PLIUS stimulates 

chondrogenic gene markers in mesenchymal stem cells and primary chondrocytes. 

cultured in both monolayer and aggregate form (Parvizi ct aI., 1999~ 7v1ukai el al .. 2005: 

Ikeda et aI., 2006; Schumann ef aI., 2006). Whether PLIUS is able to stimulatc agt,Tfccan 
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gene expreSSIon In the present system requires investigation. However. any up­

regulation of GAG specific genes in monolayer did not lead to increased protein 

synthesis, as demonstrated by both S04 incorporation and OMB results. 

It is well documented that cell behaviour can vary in 20 and 30 culture (Gruber and 

Handley, 2000; Pederson and Swartz, 2005; Martins and Kolega, 2006). Thus the 

increased chondrocyte proliferation occurring due to expansion in monolayer culture 

would enhance the telomeric age of cells in this system compared to that in agarose, 

which may influence the response of cells to a given stimulus. Additionally, the cell 

spreading associated with monolayer culture would influence the nature of focal 

adhesion formation, and the resulting chondrocyte mechanosensitivity. Physical aspects 

of the PLIUS signal, such as the production of standing waves, substrate heating, and 

purported micro streaming, may have a greater effect on monolayer chondrocytes 

systems due to all cells existing in one plane on the surface of the well plate, which, in 

the present system, was in direct contact with the transducer. However, the studies 

undertaken in Chapter 5 were unable to elicit any PLIUS-induced effects. In any case, it 

is possible that the ultrasonic signal may need to be altered between 20 and 3D cultures 

in order for both systems to experience a biosynthetic response after exposure to PLIUS. 

Whether any of the above influences the sensitivity of 20 or 30 cell systems to PLIUS­

induced phenomenon is still open to question based on the present findings. 

7.3.4 Influence of PLIUS of chondrocyte biosynthesis 

The findings of a number of in-vitro studies investigating PLIUS influence on 

chondrocyte behaviour, including those presented in this thesis, are summarised in 

Table 7.1. It can be seen that some of the present findings contrast with those from the 

published literature, for which markers of sGAG synthesis, namely aggrecan gene 

expression, incorporation rates of S04 into newly formed sGAG, and downstream 

sGAG accumulation, were found to be up-regulated by PLIUS. With the exception of 
') 

marginal increase in total sGAG content seen in agarose culture at 100mW/em-

(discussed in Section 7.3.2), PLIUS did not stimulate chondrocyte sGAG synthesis in 

the present model systems. The present findings were, however, in accordance with 

those of most other studies demonstrating minimal effects of PLIUS on eell 

proliferation. The exceptions to this trend was reported in one study employing a SATA 

intensity of 2mW/cm2 on ehondrocytes isolated from chick embryos (Zhang et a/., 2()O_~. 
"I _ 

Table 7.1 ), and another involving 20 minutes daily PLIUS stimulation at 30m \\' em- tor 
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TABLE 7.1: The influence of pulsed low intensity ultrasound (PLIUS) on the metabolic 

behaviour of chondrocytes. 

Study 

Present 

work -

Chapter 3 

Present 

work -

Chapter 4 

Present 

work 

Chapter 6 

Nishikori 

et al. 

(2001) 

Culture 

system 

Agarose 

Agarose 

Agarose 

Collagen 

gel 

Zhang Alginate 

et al. beads 

(2003) 

Present 

work 

Chapter 5 

Monolayer 

Cell source PLIUS signal 

18-24 month 1.5 MHz, 

primary M CP J 

RACs 

20% duty cycle 

13-300mW/cm1 

18-24 month 1.5 MHz, 

primary M CP J 

RACs 

20% duty cycle 

30 & 100mW/cm1 

18-24 month 1.5 MHz, 

primary MCPJ 

RACs 

20% duty cycle 

30-200mW/cm1 

10-wk-old hip, 1.5MHz 

knee, shoulder 20% duty cycle 

rabbit 30mW/cm2 

chondrocytes 

16-day-old 1.5MHz 

chick embryo 20% duty cycle 

sternal 

chondrocytes 

18-24 month 

primary MCPJ 

RACs 

1.5 MHz, 

20% duty cycle 

30 & 100mW/cm1 

Kopakkala- Monolayer 12-24 month I MHz, 

Tani et al. pnmary femoral 20% duty cycle 

(2006) BACs 58OmW/cm2 

Parvizi Monolayer 3-5 day old rat I MHz, 

et al. femoral 20% duty cycle 

(1999) chondrocytes 50 & 12OmW/cm2 

Present 

work 

Chapter 6 

Parvizi 

Monolayer 18-24 month 1.5 MHz, 

primary MCPJ 

RACs 

20% duty cycle 

30-200mW/cm1 

Monolayer 2-3 day old rat I MHz, 

Daily PLIUS Effect of PLILS 

dose 

20 mins daily nc viability or sGAG 

DI-D9 content 13-100 mW/cm1• • I 

!210-300mW/cm1. : 

!total DNA content 

20/40 mins nc sGAG synthesis 

daily DI-D20 except jl00mW/cm1, nc 

DNA synthesis, nc total 

sGAG or DNA content. 

! 40 min stimulation 

10/20 mins nc [Calli signalling 

on Dl behaviour except 

!100mW/cm1 

20 mins daily j sGAG synthesis 

01-021 nc cell proliferation 

nc gel stiffness 

20 mins on nc viability or aggrecan 

02 expo jPLIUS coil II exp 

Cell proliferation: j2, 130 

Coil X exp: 12 

20 mins daily 

D3-D8 

nc sGAG synthesis, NE 

DNA synthesis, 

nc total sGAG or DNA 

content 

10 mins daily j sGAG synthesis 

09-013 nc HSP70 induction 

10 mins daily j aggrecan expo 

03-08 j sGAG synthesis 

nc cell proliferation 

nc ColI I or ColI II expo 

10/20 mins nc [Cazl1 signalling 

on D3 behaviour 

2-10 mins on PLIUS HCaz+], cone. 

el al. femoral 20% duty cycle 03 Chelating [Ca~+], !PLlLS 

(2002) chondrocytes -25-IOOmW/cm2 induced sGAG synthesis. 

MCPJ = metacarphalangeal joint, BAe = bovine articular chondrocytes. j. ! and nc 

denotes up-regulation, down-regulation and no change, respective~v. 
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10 days, which induced a marginal increase in DNA content in neonatal rat chondroc)1e 

aggregate cultures (Mukai et al., 2005; see Table 2.5). Given that these two studies 

show a disparity at 3OmW/cm
2

, it is evident that the nature, duration and intensity of the 

PLIUS signal are critical in this process. Indeed, Zhang and colleagues reported a down­

regulation of cell proliferation one week after one single 20 minute PLIUS dose at this 

higher intensity. Of note, this study additionally implies the promotion of collagen II 

expression in chick chondrocytes. By contrast, no such PLIUS-induced effect on 

collagen expression was seen in neonatal rat chondrocytes (Parvizi et at., 1999). 

It should be noted that the majority of studies reporting PLIUS-induced up-regulation 

employed immature chondrocytes (Table 7.1). The main function of chondroC)1es 

during development are mitosis and matrix production to increase tissue mass (Section 

1.3.1). Indeed cellularity and cell organisation in bovine articular chondrocytes (SACs) 

ex-vivo have been shown to alter with age (Jadin et at., 2005). Additionally, fetal, calf 

and adult BAC explants have been shown to respond differently to static and dynamic 

loading (Li et aI., 2001), implying that these younger cells may be more sensi ti ve to a 

given mechanical stimulus. Although the role of PLIUS in cell proliferation remains in 

question, from Table 7.1 it is probable that sGAG synthesis is stimulated by PLIUS in 

immature cells. 

SACs have been classed as 'adulf from 12 months, implying that at that stage they are 

skeletally mature (Galois et al., 2006). This paper further reported an inversely 

proportionality relationship between sGAG deposition in collagen gels and cell age. 

From Table 7.1, the only other study employing skeletally mature cells is that of 

Kopakkala-Tani and colleagues (2006). However, their study demonstrated a PLIUS­

induced up-regulation of sGAG synthesis in monolayer culture, in contrast to thc 

present work. Possible reasons for this difference have already been described in 

Sections 5.4, 7.3.1 and 7.3.2. 

Dynamic compression studies conducted in the host laboratory utilise time courses of 

stimulation ranging from 1.5-48 hours, frequencies between 0.3-3Hz and cYLolic 

compressive strain amplitudes of between 0-150/0, equivalent to a range of compressivc 

stress from 0-5MPa. It has been estimated that a 1.0MHz PLIUS signal of SATA 

intensities from 25 to 100m W /cm2 translates to average peak pressures of 1 1 1 --' 51 kPa 

(Parvizi et at., 2002). Therefore, the ultrasonic signal presented in this thcsi~ applies a 
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level of compressive strain at least 14 times lower than that experienced by cells during 

dynamic compression studies, and as such be described as a high frequency 

micromechanical perturbation. Despite the differences in culture set up between the 

dynamic compression studies and the present work, it is apparent that these two types of 

mechanical stimulation lead to vastly diverse effects on the metabolic and biosynthetic 

behaviour of chondrocytes cultured in agarose constructs. 

In terms of the PLIUS signal, it is unclear as to which aspect contributes to the 

metabolic effects seen for the majority of the studies presented in Sections 2.5.9.2.5.10 

and Table 7.l. Although a number of recent studies have examined a variety of 

ultrasonic signals, employing both pulsed and continuous wave. no definiti\'e 

relationship has been confirmed. Edlich and colleagues (2001), investigating oscillating 

fluid flow in BAC monolayers, proposed that high oscillation frequencies would lead to 

minimal flow-induced cell changes, due to the reduction in net fluid transport. 

Concordantly, Parvizi and colleagues (2002) speculated that their 1.0MHz ultrasonic 

signal would introduce cells to an effective hydrostatic pressure due to the large 1.5mm 

wavelength in comparison to chondrocyte dimension, and that it was the pulsed 200ms 

pulsed signal (200/0 duty cycle, repeated at 1.0kHz) that may provide cell perturbations 

and/or deformations. Another facet of the PLIUS signal employed in the present system 

is the formation of standing waves in the wells of the six well plates due to the medium­

air interface (see Section 3.5.2), which may contribute to the temperature distribution in 

the well plate (see Section 3.10), and, in turn, influence cell metabolism. The occurrence 

of standing waves every -0.5mm meant that they were unavoidable when establishing 

the height of the culture medium in the present system. Some studies have employed 

systems whereby no liquid-air interface is present in order to have increased control of 

the PLIUS signal, as well as using ultrasound-absorbing material to eliminate retlections 

(Harle et aI., 2001; Zhang et al., 2003; Mukai et al., 2005; Iwashina et al.. 2006). 

However, the precise effects of standing waves on a cell system. such as chondrm:y1es 

in 20 or 30 culture, are largely unknown and require further investigation. 

The pathways by which PLIUS may induce downstream chondrOCyte bioS)TIthesis. and 

the factors affecting this, which have been highlighted in Chapters 2. 3 and the present 

chapter. are summarized in Figure 7.1. 
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The possibility of cell defonnation due to PLIUS has not been broadly investigated. In a 

recent study, a 5MHz continuous ultrasonic signal elicited alteration of cell morphology 

in HAC-seeded chitosan scaffolds, with associated up-regulation of cell proliferation. 

viability and gene expression (Noriega et al., 2007). However. a lower 1.5YlHz pul~eJ 

frequency did not elicit an equivalent effect. The possible involvement of integrins and 

stretch-activated channels implies that the acoustic energy from the PLIUS signal may 

have the ability to modify cell membrane penneability without inducing alteration of 

cell shape, involving microstreaming and/or fluid shear. 

,--- ~-- ~ ----, 

i Factors affecting cell . PLiUS related variables: 
sensitivity to PLlUS: - Frequency 

I 

j:ce:1I source - SATA intensity 
- Cell maturity - Attenuation effects 

- cell __ cUI~~~~yste~m---..J_+L-! _______ ~ • .,...-L-_D~O~S-a-g-e-------.J 
In vitro PLiUS stimUlation of 

chondrocytes 

? Hydrostatic pressure 
(Section 2.2.1.1 ) 

(Parvizi et al., 2002) 
... ... 

? Acoustic fluid streaming 
(Section 2.3.8.2) 

(Harle et a/., 2005) 

I 

,-
?Cell deformation 
(Section 2.2.1.3) 

?Fluid shear 
(Section 2.2.1.2.1) 

Stretch activated channels and integrins 
(Section 2.5.10) (Choi et a/., 2007; Hsu 
et al., 2007; Zhou et a/., 2004 & 2007) 

Intracellular signalling (Section 2.5.10): 
- [Ca2+]j (Parvizi et al., 2002) 
- MAPK pathways (Choi et al., 2007; Hsu 

et al., 2007; Zhou et al., 2004 & 2007) 

Alterations in matrix turnover 
(Table 7.1, Section 2.3.10) 

I 

h I d I intensin.· ultrasollnd (PLIL ~)') FIGURE 7.1: Possible pathways by whie pu se 0\1' 

a/Teets matrix biosynthesis in cultured ehondroeytes. 
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The results of the present work did not confinn any of the pathways in Figure 7.1. Then? 

is a possibility that PLIUS is able to elicit non-calcium related signalling. which would 

require further investigation in both agarose and monolayer systems. Howe\'er. based on 

the present results, any perceived signalling pathway did not give rise to an enhanced 

matrix synthesis. However PLIUS may affect catabolic as well as anabolic pathways. 

which may result in a net positive, net negative or no effective change with respect to 

sGAG elaboration in the presented systems. Catabolic markers may thus be investigated 

in future work. 

The enhanced fluid movement by PLIUS may result in an increased nutrient deli H?r\ 

and removal of waste products in a cell culture system. Indeed, Cui and coworkers 

(2006), who exposed rabbit MSCs seeded in PGA constructs to 0.8 MHz continuous 

ultrasound at SATA intensity 200mW/cm2 in an in-vivo nude rat modeL reported a more 

widely distributed and dense ECM deposition compared to control constructs. They 

attributed this to increased transport in the stimulated constructs. The role of di ffusion 

and mass transport in in-vitro PLIUS-related activity was investigated in a preliminary 

study. 

7.3.5 PLIUS-induced diffusion in agarose culture 

An additional hypothesis was proposed through which PLIUS may influence 

chondrocyte biosynthesis in agarose culture and particularly in intact tissue; namely that 

PLIUS enhances diffusion and thereby influences cell metabolism by: 

I) Enhancing nutrient delivery to cells, and/or 

2) Increasing matrix transport away from cells, so reducing steric inhibition. 

A preliminary study was performed in a cell-free agarose system to investigate the 

influence of PLIUS on diffusion of fluid, using the microscope technique of fluorescent 

recovery after photobleaching (FRAP). Fluorescent molecules are allowed to permeate 

into the sample, and then an intense laser beam is focused on a small area. eliciting 

d h hi h· th t reates '1 dark region irreversible fluorophore breakdown, terme p 0(0 cae mg. a c . l 

. . d 11 cturns to this hleachcd 
In the subsequent fluorescence lmages. Fluorescence gra ua yr. . 

.' f th fl . , 'nt molccuks region at a rate dependent on the diffusion charactenstlcs 0 c uoresu.: .. 
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7.3.5.1 Materials and Methods 

Low-gelling agarose was made up as described in Section 3.2.3, in the absence of cell~, 

PBS (Sigma) was used in place of DMEM to dilute the agarose to 3% (Wr\'). The cell­

free agarose was gelled in the perspex inserts described in Section 3.6.3 to tonn 

5x5x5mm constructs. These were then incubated for 24 hours at 37°C in 0.0010 oW \' 

solutions of fluorescein isothiocyanate (FITC) labelled dextrans of molecular weights 

4kDa, 70kDa and 500kDa. The smallest 4kDa dextran is equivalent to the molecular 

weights of growth factors and hormones such as TGF-~ and IGF-l, while 70kDa i~ 

representative of small non-aggregating proteoglycan molecules, such as biglycan and 

decorin, and 500kDa the larger proteins such as cartilage oligomeric matrix protein 

(COMP) and fibronectin (Leddy and Guilak, 2003). 

After incubation, the construct and its respective FITC dextran solution were placed in 

the test rig, described in Section 3.6, and mounted on the stage of a confocal microscope 

(Leica SP2). An optimised FRAP protocol, similar to that previously used in the host 

laboratory (Campbell et ai., 2007a and 2007b), was used to quantify dextran diffusion 

with and without exposure to PLIUS at 30mW/cm2
• A series of five pre-bleach confocal 

images were recorded at 3% of maximum laser power. A 50llm diameter bleach region 

was then created, and a sequence of images recorded at a rate of one every 0.844s up to 

approximately 30 seconds post-bleach, at 30/0 laser power. Mean intensities measured 

within the bleached region at time t (It) were normalized to the mean pre-bleached 

intensity (Ip) and the first post bleach intensity (II) using the equation: 

I = I, - 11 xl 00 
normalised I p - 11 

Equation 7.1 

All experiments were performed at room temperature. Ten FRAP procedures wen: 

conducted for each experimental condition. 

7.3.5.2 Results 
. . c: 70kD FITC d' tran in the ab"encc l)t FIgure 7.:" illustrates a typIcal FRAP process lor a - LX ' 

. (F· ,7 1 A) Jnd the resultinl! PLIUS, showing both the confocal Image sequence Igun: .- ~ 

. d t bl "!Ching period, It can nonnalized FRAP curve (FIgure 7.28) o\'er the 30 secon pos L. ~ 
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be seen that by 30 seconds there is . approxImately 8 -00 re oyen. and th t 
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FIGURE 7.2: Representative FRAP analysis for 70kDa Fl~ -d xlran shOl\ il1~ A) 
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Where: 

It = Ip - ([AI X exp(-tlTI)] + [A2 X exp(-tlT2)] + C) 

AI/A2 = amplitude of exponential term I /term 2 

TI/T2 = time constant of exponential tenn l/tenn 2 

C = pre-bleach intensity for t ~ infinity. 

(Half life)t = 1n2 X T t 

Equati n .2 

Equati n . 

Figure 7.3 presents the half-lifes (tl and t2) for each dextran with and without PL . In 

the case of the 4kDa dextran, the recovery was best fitted by a single expon ntial and 

therefore t2 values are not presented. 

It is evident that there is a proportional relationship between the molecular wight and 

half-life recovery of the dextrans, evident with and without PLIUS expo ure. At 4kDa 

and 500kDa, PLIUS had no significant effect on diffusion in terms of th half Ii 

values (p>O.05). By contrast, PLIUS enhanced diffusion of 70kDa dextran refl ct d b 

statistically significant reductions in both tl and h values compared to control . 

• Control 

• Ft.IUS 
t1 • Control 

30 30 - • PLIUS 1/1 -
"C 25 * 

1/1 25 
c "C 

0 20 Il c 
20 Co) 0 

QI 15 
Co) 

1/1 QI 15 - 1/1 

QI 10 -QI 10 := ~ 

* n 
~ 5 ~ 5 IV 
~ 0 IV 

~ 0 
4 kDa 70kDa 500 kDa 4 kDa 70 kDa 500 kDa 

molecular weight molecular weight 

FIGURE 7.3: Effect of PLIUS on diffusion quantified using FRAP. Value r pr lit the 

mean half lives (t1 and t2) for recovery of FITC-dextrans with molecular w i hI. 0.1 4. 

70 and 500 kDa, with or without exposure to PLIUS (J.5MHz, 200ms pHI d at 1. Ok II: . 

SATA intensity 30m W/cm2) (n= 10). In the majority of cases, the 4kDa re 0\' ':\ \\ Q . be. I 

fi . . I t I ' 1 Error b r /JIdi lit ltted by a smgle exponentzal, and hence t2 va ues are no s 10).\' . 

d 
., ., ';.{; diffi b ,., 'e 11 PLIU and Olltro! stan ard devlatLOns. StatIstzcally slgnzJ,cant l erences ellt 

groups are indicated (* = p<0.05). 
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7.3.5.3 Discussion 

FRAP analysis demonstrated that increasing molecular weight w . d . 
as assoCIate wIth a 

reduced diffusion, as denoted by statistically significant differences in half life. In 

addition, PLIUS at 30mW/crn
2 

promoted diffusion of 70kDa dextr I I an mo ecu es 

(p<0.05), but not 4kDa and 500kDa. The reason for this molecular weight dependent 

effect of PLIUS on diffusion is unclear, as are any resulting biological consequences. 

PLIUS may enhance the diffusion/transport of molecules such as biglycan and decorin. 

which are of a similar molecular weight and have a role in stabilizing cartilage 

extracellular matrix (Taylor and Gallo, 2006; Poole et aI., 2001). Consequently PUL'S 

may influence the formation of the pericellular matrix within the agarose cultures. 

Furthermore, this could potentially reduce matrix-induced steric inhibition of matrix 

synthesis, although the present studies found no overall effect on total sGAG production 

(Section 4.3.1). 

In addition, PLIUS enhanced diffusion at 70kDa may Increase the loss of matrix 

molecules from the agarose constructs. Indeed, the preliminary intensity study 

undertaken in Section 3.9 appeared to show that PLIUS promoted sGAG release into the 

medium from agarose constructs (Table 3.2). However, further assessment in Chapters .. 

and 5 failed to replicate this trend (Tables 4.2 and 4.4 for agarose systems at 30 and 

IOOmW/cm2
, respectively). Based on these results, it does not appear that PLIUS at 

30mW/cm2 can influence diffusion to the extent that it can lead to an increase in total 

sGAG synthesis in agarose cultures. Nevertheless, these preliminary results suggest a 

possible mechanism through which PLIUS may modulate cell and tissue beha\ iour, 

potentially including the widely reported effects in fracture healing. 

7.3.6 Use of PLIUS in cartilage repair strategies 

The rationale for the present work was to identify some of the processes h: \\ hich 

PLIUS could stimulate cartilage metabolism in order to assess how this may he 

activated during the bone healing process, and furthermore. to assess the potential use of 

PLIUS in cartilage repair and cartilage tissue engineering applications. 

. h d . l' 'ultured in agaftl"';c l)[ \0 The present work has demonstrated that pnmary c on roc) cS c . 

., AG tl '. This is in contrast \\ lth monolayer were not stimulated Into Increased sG syn leSIS. 
. . 11 l' lllcrc·l...;cd Jl.!l.!rl'l'an 
III l'ivo studies involving the heahng fracture ca us. \\ lerL < • ~ ... 

. . I' 'hPLIL'S(Yanct'fal 1(96). expressIOn was demonstrated after stlmu atIOn WIt ..... 
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Research into the use of PLIUS for cartilage repair has mainly conce tr d 0 0 

n ate on In-ntro 

studies with an aim of using this fonn of mechanical stimulatI'o t' b O 

n or Ioreactor 

conditioned tissue engineered cartilage constructs for suroical inter\'entIO t' 01 
er on 0 cartI agl' 

defects. However, the literature is confusing in tenns of whether 10 0 0 t . 
\\ In enslt\ 

-' 

continuous or pulsed ultrasound can positively affect long-term cartilage bios~nthesis, 

as would be necessary for tissue engineered 3D scaffolds. The use of skeletally mature 

cells, as employed in this thesis, is relevant to the clinical situation, where the majl)rity 

of patients seeking surgical intervention for cartilage injury are adults, and a tissue 

engineered approach to cartilage repair is likely to involve the use of autologous edb. 

However, a recent paper by Tien and co-workers (2008), evaluating the effect of PUGS 

on human child articular chondrocytes cultured in agarose, found that cells harv~sted 

from older donors were less responsive to PLIUS stimulation. This highlights the 

possibility that PLIUS of the present parameters may have at most a limited effect on 

tissue culture of skeletally mature chondrocytes. An alternati\"C tissue engin~ering 

approach may be to employ the present PLIUS signal to stimulate autologous 

mesenchymal stem cells (MSCs) into chondrogenesis, given that the cartilaginous tissue 

formed during the endochondral ossification process in bone develops from this edl 

type. A recent study by Schumann and colleagues (2006) demonstrated some 

stimulatory effect of PLIUS on proteoglycan and collagen marker expression and matrix 

deposition in hMSCs cultured in 3D scaffolds. 

7.4 Future work 

There are several directions in which future work on the PLIUS-indueed 

mechanotransduction effects can proceed. These are briefly discussed in separate sub­

sections. 

7.4.1 Further investigation of the 100mW/cm2 signal 

The present findings reveal only marginal stimulation of chondroc~1l' sGAG 

accumulation in agarose culture when employing a SAT A intensity of 100m \\ eJ11~. In 

order to investigate if this finding is reproducible with additional chondrocyte hatches. 

. ' d These include tWICC-further experiments at the higher SAT A IntensIty are propose 0 • 

• • 0 4 ThO Id he followcd up h\ dally stImulation (PLIUSx2) as used In Chapter 0 IS COU . 

examination of calcium signalling behaviour and diffusion. 
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7.4.2 Influence of PLIUS on other ECM molecules 

Although the present work has indicated that PLIUS has no effect on total sGAG 

production as assessed by total sGAG and incorporation assavs furth . k . . er \\or (llulJ 

investigate whether the size and type of sGAG found in PLIUS Stl' ltd I - mu a e eu tures 

differ from that in a non-stimulated system. Additionally, the effect of PLIUS on 

production of the other major extracellular matrix molecule. collagen. could be 

examined. Due to the fact that collagen has a relatively low turnover compared to 

sGAG, it may be more suitable to assess collagen at a gene expression le\eJ by 

observing chondrogenic markers such as aggrecan and collagen II, as well as ct)lIagcns I 

and X, using real-time quantitative PCR as undertaken in the host laboratory 

(Chowdhury et aI., 2008; Akanji et al., 2008). However, it is important to note that up­

regulation of these markers does not necessarily lead to synthesis of the protein 

molecules. 

7.4.3 Other intracellular mechanotransduction events 

As mentioned in Section 7.3.4, SACs, integrins and MAP kinases have been implicatcd 

as possible pathways involved in PLIUS-induced mechanotransduction. In the l'\Cnt of 

a PLIUS-induced stimulation of extracellular matrix synthesis (Sections 7.4.1 and 

7.4.2), the signalling pathways could be investigated in agarose constructs. as well as in 

monolayer. The role of both anabolic and catabolic cytokines could also be i l1\'Cstigatcd. 

For example, TGF-1 ~ has been implicated in PLIUS-induced up-regulation of collagen 

II and aggrecan gene expression in neonatal rat aggregate culture (Mukai et aI., 2005), 

and in chondrogenesis of hMSCs (Ebisawa et al., 2004). Two recent studies have 

demonstrated a down-regulation of MMP-1 gene by employment of low intcnsity 

ultrasound in chondrocytes cultured in aggregate and alginate culture (Park et at.. 2007: 

Choi et aI., 2006). Other studies have implicated downstream COX-2 and prostaglandin 

production after exposure to PLIUS (Kokubu et al.. 1999; Hsu et at.. 2()()7). These 

studies imply a possible role for PLIUS in regulation of the processes assocIated with 

osteoarthritis. 

. lId anisation could a]...l) POSSible PLIUS-induced changes to organelle morp 10 ogy an org 

b · . i.". I' . d FRAP tudt·,· undertaken in the Ill'''! e InvestIgated. Indeed, conloca Imagtng an s L:S 

. 1 . on and hvdnl"ltatic 
laboratory have investigated the effects of mechamca compress} . 

. .' d 1U 'kar di";ll)rtion 111 
pressure on actin cytoskeletal, mitochondnal orgamsatIOn an I L 

I '000' K . 'ht ct al "Ill( l(),l ,1Ild 
BACs cultured in agarose and monolayer (Lee et a ., - a, mg .. -
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2006b; Campbell et aI., 2007a and 2007b). These methodoloaie ld b .. 
e' S cou e adopted :ur 

use in the present systems. 

7.4.4 Alteration of the model system and PLIUS signal 

The main drawbacks of using the current 6-well plate system wI'th \\"h' h t . I IC 0 stImu ate 
chondrocytes with PLIUS are: 

the proximity of the well plate to the transducer 

the attenuation of the signal in air leading to likely residual heating etTecls. and 

reflection at the air/liquid interface, leading to standing waves. 

The employment of a water bath to distance the transducers from cells, similar to that 

used by Kopakkala-Tani and colleagues (2006), would enable use of the far field 

ultrasonic signal which is more stable and closest to the nominal SATA intensity 

(Section 3.5.1). 

Other measures for minimising these effects could also be examined such as elimination 

of the air/liquid interface and use of absorbing materials to eliminate reflection hack 

into the ultrasonic transducer/culture system (Harle et aI., 2001; Zhang et al.. ~()()3: 

Mukai et aI., 2005; Iwashina et al., 2006). Investigation would be required in order to 

assess the effective PLIUS signal after the incorporation of such changes. 

PLIUS parameters per se could also be varied, such as alteration of the daily dose to ccll 

systems, changing the duty cycle of the pulsed signal, and elimination of the puls~d 

component entirely, with modification to a continuous ultrasonic signal. However. the 

latter two suggestions would again require some modifications to the existing system. 

Zhang and colleagues (2003) use of a PLIUS signal of 2mW/cm2 SATA intensity led tu 

some interesting observations, particularly with reference to cell proliferation. The 

authors did not explain their use of this lower intensity, but it is possihle that it 1~ a 

reflection of attenuation through the tissue of a major articular joint. This rna: therefore 

represent a more realistic signal to employ for investigation of PUGS tl)r 

mechanotransduction in tissue engineering applications. 

Ad . . I . . human chondron1es llr 
dItIonally, cell source could be altered to emp oy pnmar;. . 

~ PLIUS' 'h ndn)cvte hi(I";Vl1the"is mesenchymal stem cells to investigate the role of 111 co. . " 

and chondrogenesis. 
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7.5 Final summary 

Pulsed low intensity ultrasound (PLIUS) is used clinically to accelerate fi' h' 
acture cJhng. 

However, the mode of action is unclear although studies suggest that I't . I may shmu ate 

bone healing processes such as endochondral ossification (Claes and \\"11' ~ '00-1 It. _ ) 

Consequently PLIUS may also be beneficial for cartilage regeneration either ill "i\"o or 

as part of an in vitro tissue engineered approach. Previous studies by Parvizi and 

colleagues (1999, 2002) using chondrocytes cultured in monolayer have suggested that 

PLIUS may stimulate sGAG synthesis, and that calcium signalling is implicated in thi~ 

process. However, this model system is far from ideal in terms of both maintainin ll 
::-

chondrocyte phenotype and providing pure PLIUS without artifactual heating or fluid 

flow (Section 7.3.3). Furthermore, close inspection of the original previously published 

data (Parvizi et ai., 1999) indicate that it is not as robust as suggested (Section 5.4 and 

Figure 5.6). Therefore the present studies attempt to investigate the influence of PLIUS 

on chondrocytes within a more appropriate 3D agarose model system, as well as 

repeating the original monolayer experiments. The hypotheses proposed were that 

PLIUS stimulated the synthesis and elaboration of sGAG, that this was influenced hy 

the intensity of the ultrasound, and that calcium signaling mediated these processes. In 

order to perform this investigation, a bioreactor system was designed so that agarosc 

cultures could be subjected to PLIUS stimulation. In addition, a separate test rig was 

developed enabling calcium signalling experiments to be undertaken on the stage pf a 

confocal microscope. 

Chondrocytes in agarose were stimulated with PLIUS at SAT A intensities ranging from 

13~300m W /cm2 for periods of up to 20 days, and biosynthesis was examined h~ 

assessment of extracellular matrix elaboration and cell proliferation using standard 

biochemical protocols. Additionally, calcium signalling in these cells was investIgated 

as a possible mechanotransduction pathway, as in other forms of mechanical loading 

(Roberts et aI., 2001, Pingguan-Murphy et aI., 2005 & 2006). HOWl'\Cr. the 

experimental studies revealed that PLIUS had no stimulatory etTect on chondrocyte 

. d 11 h thesis was continned. metabolIsm based on the parameters explored, an a nu ypo ' . 
.. . d . 1 ., (Chapters .; and ()) alsl) Further studIes InvolVIng chondrocytes culture m mono a) cr . -

failed to highlight any stimulatory effect of PLIUS in this system. 
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Chapter ~: Discussion and Future \\ or'" 

The findings of the present study may be summarised by the following statements: 

PLIUS did not influence chondrocyte viability in agarose constructs oyer J 

nine day culture period for SATA intensities up to and ' I d' mc u mg 

10OmW/cm
2

• Cultures exposed to the higher 210 and 30Om\\' cm~ intensitlc: 

were adversely affected causing cell death. This is likely to be due to 

attenuation in the transducer casing material, resulting in heat production. 

PLIUS at 3OmW/cm
2 

did not stimulate sGAG production or proliferation in 

bovine chondrocytes seeded in a 3D agarose or monolayer system. 

Increasing the daily dose of 3 OmW/cm2 PLIUS from 20 to 40 minutes had no 

influence on sGAG synthesis or cell proliferation in agarose cultures. 

PLIUS at 100mWcm2 had a marginal stimulatory effect on total sGAG 

content seen in agarose. However, this was not seen in monolayer culture. :\t 

this power there was also no stimulation of total DNA content or rates of 

sGAG or DNA production in bovine chondrocytes seeded in a 3D agarosc or 

monolayer system. 

PLIUS at 30mW/cm2 had no significant effect on intracellular calcium 

signalling in a 3D agarose or monolayer system. 

Calcium signalling experiments involving an incremental PLIUS SA T:\ 

intensity increase over a 20 minute period demonstrated a signi ticant 
., 

inhibitory response, when agarose constructs were stimulated at 100m \\', cm~ 

(p<0.05). 

PLIUS at 30mW/cm2 caused increased diffusion of 70kDa FITC dcxtrans 

through cell-free agarose compared with control constructs. There was no 

effect at 4 or 500kDa. 

. b f h (0 d t at ')O()4' Hsu cf al.. The presented results, along wIth anum er 0 ot ers u a e .. - . . 

2006) suggest that PLIUS has limited potential for stimulating proteoglycan S!llthcSI~ in 

. . I d d thc proposed L1"l' 01 3D constructs as part of a tissue engineenng repaIr strategy. n ee . 

1· . d th 'yiously su\!,\!'c"tl'd. PLIUS in cartilage tissue engineering may be more ImIte an pre ~~ 
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APPENDIX 1: Microscope images taken to accompan 
study in Chapter 5 30m\V/cm

2 monola~ er 

A B 

Microscope images showing central region of well of chondrocyte mono/ay r 6-\\ t; II 

plate culture. A, C, E show control monolayer culture at da, 3, 5, alld 7 0..1 II/flll'l 

respecti\ ely. B, E, F show monolayers after application 0/- 0 millut .. Om II ~ n( 

PLIUS at days 3, 5, and 7 of culture respectively. 



APPENDIX 2: Microscope images taken to accompan 1 
study in Chapter 5 OOm\\'/cm

2 
monola~ er 

A -r-----------_~ B 

SOJim -

Microscope images showing central region of well of chondrocyte mono/ay r 6-\1 til 

plate culture. A, C, E show control monolayer culture at da. s 3, 5, all o · II/tun. 

re pectively. B, E, F show monolayers after application of _ miJlIlI . J OVmH ~ 11( 

PLIUS at days 3, 5, and 7 of culture respectively. 
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IltroductiOD . 
PuJsed low intensity ultrasound (PLlUS) has been ~dely documented to 

omote bone fracture healing and callus format~on both m animal 
:OOels [I) and clinical trials [2]. More recent studies have shown that 
PLIUS stimulates chondrocyte synthesis of g1ycos~oglyc~ by ~p­
reguJating gene expression [3,4], Consequently, there IS an. IOcre~mg 

terest in the application of PLIUS for the treatment of cartilage IOJury 
:d disease, either directly or in conjunction with tissue eng~~ering 
strategies involving cells in 3D constructs. The present study utilizes a 
well-established 3D chondrocyte model system to test the hypothesis 
that pulsed low intensity ultrasound st~ulates the. ~thesis and 
elaboration of glycosaminoglycan and that thiS response IS mfluenced by 
the intensity of the ultrasound. 

Mdbod 
SRecimen Preparation. Articular chondrocytes were isolated from bovine 
metacarpal-phalangeal joints by digestion in pronase and coBagenase 
and seeded at 4xl 06 cells/ml in 3% agarose (Sigma) [5]. Each weB of a 6 
well plate was filled to a height of 3 mm with 4 ml of ceB-agarose 
suspension and gelled at 4°C. The cell-agarose gels were covered with 6 
ml ofDMEM+20%FCS (Sigma) and maintained at 37°C I 5% C02. 
!JItrasound Stimulation. Ultrasound transducers (supplied by Smith & 
Nephew Inc.) [3,4], were used to apply a 20 min period of pulsed low 
intensity ultrasound to each well of the 6 weB plate at a spatial and 
temporal averaged intensity of 30 m W Icm2

. The frequency was set at 1.5 
MHz with a pulse burst of 200 liS repeating at 1 kHz. Controls remained 
unstimulated in separate 6 well plates. Medium was changed every 2 to 
3 days and the aspirated medium was frozen for biochemical analysis. 
Temporal changes in sulphated GAG content. At days 1,2,5,9, 12, and 
16, samples of 6 cylindrical constructs, 6 mm in diameter, were excised 
from the central region of a well, weighed and frozen for subsequent 
biochemical analysis. At the end of the experiment, individual constructs 
and their associated culture media, were assayed for total sulphated 
GAG (sGAG) content using the DMB method [6]. 
Effect of ultrasound intensity. Separate cell-agarose gels were subjected 
to ultrasound intensities of 13,30, 70, 110,209 or 300 mW/cm2 applied 
for 20 mins every 24 hrs. At day 9, constructs were assayed for total 
sGAG content as previously. In addition, a separate group of constructs 
were subjected to intensities of 13,30, 110, or 209 mW/cm2

. On day 8 
of culture, medium was supplemented with 10 IlCilml 35S04 for a 24 hr 
period after which incorporation of 35S04 into newly synthesized sGAG 
was calculated using AJcian blue precipitation and normalized to DNA 
content determined using the Hoescht 33258 method [3,5]. 
Cell Viability. At all time points and ultrasound intensities, separate 
specimens were stained with calcein AM and ethidium homodimer 
(Molecular Probes) and visualized using confocal microscopy to 
determine cell viability throughout the thickness of the construct. 

Rrsults 
Cell viability was maintained at greater than 95% in aU constructs except 
those subjected to 300 mW/cm2

, where there was significant loss of cell 
vllbility towards the base of the construct in contact with the bottom of 
the plate. This was attributed to rapid heating caused by attenuation of 
the ultrasound in the plastic. There was an increase in total sGAG 
content over a 16 day period (Fig. 1). From day 5 to day 12, the two 
groups diverged with pulsed low intensity ultrasound treated constructs 
shoWing a slightly greater sGAG content. However, there were no 
staustlcally significant differences in total sGAG content between 
ultrasound treated constructs and controls at any time points. There were 
abo no statistically significant differences in total sGAG content at day 
9 between controls and constructs treated with ultrasound at intensities 
from 13 to 209 mW/cm2 (data not shown). At 300 mW/cm2 there was a 
reducuon In sGAG content which was attributed to the loss of viability 
&I tillS Intensity In apparent contrast, 35S04 incorporation measured 
~en days 8 and 9 indicated that ultrasound significantly stimulated 
the ~lltheslS of sGAG at intensities up to 209 m W Icm2. Maximal 
stlmulauon occurred at 13 m W /cm~ with a reduction in synthesis at 110 
and ~OQ mW/cm2 (Fig. 2). The amount of sGAG released into the 
medium was unaffected hv ultrasound treatment . . 

1200 
C 
CD 
C 1000 
8 
C) 800 
«~ 
C) ~ 600 
CIl ~ 
~ ~ 400 
.!!! 

200 

---+- Control 

~ Ultrasound 

iii 
E o 
c O+---~--~--~----~--~--~--~---. 

o 2 4 6 8 10 12 14 16 

Days in culture 

Fig. 1. Effect of PLIUS on sGAG content normalized to wet weight for 
constructs exposed to 30mW/cm2 every 24hrs. Error bars indicate SEM. 
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Fig. 2. Effect of PLIUS intensity, applied every 24 hrs, on sGAG 
synthesis from day 8 to 9. Incorporation of ~5S04 normalized to DNA 
levels in IlM35S04/hrlllgDNA. Error bars indicate SEM n=7 (* p<0.001) 

Discussion 
The present study has utilized a well-characterized agarose model which 
maintains chondrocytic phenotype and reduces potential artifacts 
associated with ultrasound-induced heating of the culture plates and 
fluid flow caused by standing waves. Results indicate that PLJUS 
stimulates chondrocyte synthesis of sGAG as indicated by JSS04 
incorporation (Fig. 2). However this was not translated into an increase 
in total sGAG content (Fig. 1). This suggests that there is a limited 
period at which PLIUS may have a stimulatory effect on chondrocytes in 
agarose, specifically days 8 and 9. This may be associated with the 
presence of sufficient pericellular matrix to provide a mechanical 
interface enabling perturbation of cellular mechanoreceptors. This 
hypothesis is supported by previous studies in which PLJUS has 
increased GAG content for chondrocytes in monolayer [3] or in 3D 
coBagen gels [4]. In both these model systems the cells are attached to 
their pericellular environment in contrast to the situation in early agarose 
cultures. Thus the pericellular environment and presence of matrix may 
significantly influence the metabolic response to ultrasound as is the 
case with mechanical strain [7]. Clearly if pulsed low mtenslty 
ultrasound is to be optimized for cartilage repair and tissue engineering, 
it will be necessary to elucidate the associated mechaniSms so as to 
translate the increases in sGAG synthesis to increases in matrix content 
and tissue mechanical properties. 

References 
[I] Azuma Y, et al (2002) J Bone Min Res. 16:671-80. (2) Heckman ID, 
et al. (1994) J Bone Joint Surg. 76:26-34. [3) Parvizi J, et al (1999) J 
Orthop Res. 17:488-94. [4] Nishikori T, et al. (2002) J BlOmed Mat Res. 
59:201-6. [5] Lee DA, et al (1998) Biochem Biophys Res Comm 
251:580-5 [6] Farndale RW, et al (1982) Connect T/SS Res. 9.247-8 [1] 
Hunter CJ, et al. (2004) Osteoarthris Cartilage 12 117-30 

Acknowledgements 
The authors gratefully acknowledge EPSRC and Smith & !\icphew. llK 
who support N Vaughan on an EPSRC CASE PhD studentshlp M~1 
Knight is funded hy an EPSRC Advanced Research Fellowship . 


	510796_0000
	510796_0001
	510796_0002
	510796_0003
	510796_0004
	510796_0005
	510796_0006
	510796_0007
	510796_0008
	510796_0009
	510796_0010
	510796_0011
	510796_0012
	510796_0013
	510796_0014
	510796_0015
	510796_0016
	510796_0017
	510796_0018
	510796_0019
	510796_0020
	510796_0021
	510796_0022
	510796_0023
	510796_0024
	510796_0025
	510796_0026
	510796_0027
	510796_0028
	510796_0029
	510796_0030
	510796_0031
	510796_0032
	510796_0033
	510796_0034
	510796_0035
	510796_0036
	510796_0037
	510796_0038
	510796_0039
	510796_0040
	510796_0041
	510796_0042
	510796_0043
	510796_0044
	510796_0045
	510796_0046
	510796_0047
	510796_0048
	510796_0049
	510796_0050
	510796_0051
	510796_0052
	510796_0053
	510796_0054
	510796_0055
	510796_0056
	510796_0057
	510796_0058
	510796_0059
	510796_0060
	510796_0061
	510796_0062
	510796_0063
	510796_0064
	510796_0065
	510796_0066
	510796_0067
	510796_0068
	510796_0069
	510796_0070
	510796_0071
	510796_0072
	510796_0073
	510796_0074
	510796_0075
	510796_0076
	510796_0077
	510796_0078
	510796_0079
	510796_0080
	510796_0081
	510796_0082
	510796_0083
	510796_0084
	510796_0085
	510796_0086
	510796_0087
	510796_0088
	510796_0089
	510796_0090
	510796_0091
	510796_0092
	510796_0093
	510796_0094
	510796_0095
	510796_0096
	510796_0097
	510796_0098
	510796_0099
	510796_0100
	510796_0101
	510796_0102
	510796_0103
	510796_0104
	510796_0105
	510796_0106
	510796_0107
	510796_0108
	510796_0109
	510796_0110
	510796_0111
	510796_0112
	510796_0113
	510796_0114
	510796_0115
	510796_0116
	510796_0117
	510796_0118
	510796_0119
	510796_0120
	510796_0121
	510796_0122
	510796_0123
	510796_0124
	510796_0125
	510796_0126
	510796_0127
	510796_0128
	510796_0129
	510796_0130
	510796_0131
	510796_0132
	510796_0133
	510796_0134
	510796_0135
	510796_0136
	510796_0137
	510796_0138
	510796_0139
	510796_0140
	510796_0141
	510796_0142
	510796_0143
	510796_0144
	510796_0145
	510796_0146
	510796_0147
	510796_0148
	510796_0149
	510796_0150
	510796_0151
	510796_0152
	510796_0153
	510796_0154
	510796_0155
	510796_0156
	510796_0157
	510796_0158
	510796_0159
	510796_0160
	510796_0161
	510796_0162
	510796_0163
	510796_0164
	510796_0165
	510796_0166
	510796_0167
	510796_0168
	510796_0169
	510796_0170
	510796_0171
	510796_0172
	510796_0173
	510796_0174
	510796_0175
	510796_0176
	510796_0177
	510796_0178
	510796_0179
	510796_0180
	510796_0181
	510796_0182
	510796_0183
	510796_0184
	510796_0185
	510796_0186
	510796_0187
	510796_0188
	510796_0189
	510796_0190
	510796_0191
	510796_0192
	510796_0193
	510796_0194
	510796_0195
	510796_0196
	510796_0197
	510796_0198
	510796_0199
	510796_0200
	510796_0201
	510796_0202
	510796_0203
	510796_0204
	510796_0205
	510796_0206
	510796_0207
	510796_0208
	510796_0209
	510796_0210
	510796_0211
	510796_0212
	510796_0213
	510796_0214
	510796_0215
	510796_0216
	510796_0217
	510796_0218
	510796_0219
	510796_0220
	510796_0221
	510796_0222
	510796_0223
	510796_0224
	510796_0225
	510796_0226
	510796_0227
	510796_0228
	510796_0229
	510796_0230
	510796_0231
	510796_0232
	510796_0233
	510796_0234
	510796_0235
	510796_0236
	510796_0237
	510796_0238
	510796_0239
	510796_0240
	510796_0241
	510796_0242
	510796_0243
	510796_0244
	510796_0245
	510796_0246
	510796_0247
	510796_0248
	510796_0249
	510796_0250
	510796_0251
	510796_0252
	510796_0253
	510796_0254

