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ABSTRACT 

In this thesis we study the relationship between the lattice of 

submodules and the algebraic structure of a module. The key remark 

in our study will be the fact that the homomorphisms between two 

independent submadules of a module can be 'represented' by elements of 

its lattice of submoduleso Exploiting this fact we show that the 

endomorphism ring of a module which is the direct sum of more than three 

isomorphic submodules is determined up to isomorphism by its lattice of 

submodules. 

Lattice isomorphisms arise naturally in two ways, viz., through 

category equivalences and semi-linear isomorphisms. Any lattice 

isomorphism between a free module of infinite rank and a module containing 

at least one free submodule is shown to be induced by a category 

equivalence. This result is used to give new characterizations of 

Morita equivalence, 

If certain mild conditions are satisfied a lattice isomorphism 

between a free module of rank >3 and a faithful module is shown to give 

rise to a semi-linear isomorphism between the modules* If both nodules 

are free of rank n>3 then the question of whether there is a semi-linear 

isomorphism between them is equivalent to asking when an isomorphism. 

of matrix rings Rn Cý!! Sn implies a ring isomorphism R2ý S. 
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Wo study rings R with this property for any n and any ring S. 

The following are shown to be of this type (1) commutative rings 

(2) p-trivial rings (3) matrix rings over strongly regular rings 

left self-injective rings. 

Applying these results we give new examples of regular rings 

which uniquely co-ordinatize a complemented modular lattice of otder 

In particular we show such a co-ordinatization is always unique to 

within injective hull. 
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INTRODUCTION 

Associated with any module there are a number of important 

algebraic structures and it is of independent mathematical interest 

to study the interrelationship between these structures and the part 

they play in determining the structure of the module itself. In this 

thesis we attempt to carry out this programme for one of the most 

important structures of a module namely its lattice of submodules, 

Our method of attack will be to study the consequences of 

assuming that two modules have isomorphic lattices of submodules. it 

will turn out (see chap. 2) that in very general situations this will 

implY that their endomorphism rings are isomorphic. Our main interest 

however will be in the relationship between the module structures of the 

modules. 

We consider two main ways in which lattice isomorphisms arisep 

vizag category equivalences and semi-linear isomorphisms. These will 

be our canonical lattice isomorphisms - so to speak our yard-stick. 

Our aim will be to find conditions on our modules to ensure that any 

lattice isomorphism between them is canonical. However before going 

into further details we will need some notation and definitions. 

Notation 

Unless otherwise stated all rings will be assumed to contain an 

identity element 10o and all modules will be assumed to be unital. 



-7- 

We shall use the notation R"' for modules where the suffix E 

indicates that R is a ring and its position on the left of M indicates 

that M is to be considered as a left R-module. Likewise we shall denote 

a right R-module by MR. For a ring R we denote the category of all 

left R-modules by -P R 

We adopt the convention of letting the endomorphisms of a module 

act on the opposite side to the ring of operators, Honce if 
FM 

is a 

module with S- EndR(M) then S acts on the right of M and we (as we 

often shall) can consider M as a right S-module, 

if R? I is a module we shall denote its lattice of submodules by 

L(, M) and by the notation E: L( R M) 
_U 

L( 9 N) we shall understand that I 

is a lattice isomorphism between the l'attices of submodules of the 

modules ,M and S N. The lattice isomorphisn L( R Ifl) 
Oýý L(R M) defined by 

P --I, P is called the identity lattice isomorphism. and vill be 

denoted by 1 L( 

If R is a ring and Ia non-empty set then RI will denote the 

direct product of I copies of R and 
IR 

the direct sum& iseeg RI is the 

set of all maps IR and 
IR is the subset consisting of all maps 

which are zero on all but a finite number of elements of Is If I is 

finite with n elements then RI and 
IR 

coincide and will be denoted by 

n R 41 We will write Rn for the matrix ring of rank n over R. 
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lhroughout we use the convention that integral domains need not 

necessarily be commutatives References will be listed in numerical 

order under each author* 

Category equivalences 

Let R and S be rings and RuIS 
'j be the categories of all left 

R- and S-modules respectively. The categories F 
'j and SV are said to be 

equivalent if there are functors F :R Ij sP$G: s 
11 

----* R 
Ij and natural 

equivalences FG Qi 19 GFCt le The rings R and S are said to be Morita 

#v S, if the categories M and 11 are equivalent. mpS 

Now suppose that R and S are rings such that R "OS where m 

F: RUý. " S'j is the corresponding category equivalences Then if Rm 
is any R-module and S 11 a ýý it is clear that F induces a lattice 

isomorphism L(, M) ; Ld L( s N), 

In chap*3 the converse problem is consideradq i. e,, g given 

modules RM and S 11 such that L: L(FV4) Sý L(SIO 9 we study the circumstances 

under which it is possible to deduce that R O"OS and that the corresponding m 

category equivalence induces E. Our investigation of this problem vill 

lead to new characterizations of Morita equivalence ands as far as the 

author is aware, this is the first time such an investigation has been 

m, de a 



-9- 

Seni-linear isamonhisms 

Let RM and SN 
be modules, Suppose t: R tt S is a ring isomor-phism 

and s: (! Il +) S' (No +) is an abelian group isomorphism then (zo s) is 

calltd a semi-linear isomorphism if for any rER and any mcM (rm)s u 

La 
rm, we will write U, s): (R9 ýOW (so IT). 

It is clear that any semi-linear isomorphism (1, s): (Fs M, )! &(Sq, N) 

induces a lattice isomorphism L( RIOCýeL( G N). In chapters 47 the 

converse problem is considered$ ioe*, given modules RM and SN such that 

E: L(RM)C: eL(SN)q we study the circumstances under which we can deduce 

that there is a semi-linear isomorphism (L, s): (R* (So N) and that 

(to 8) induces E. 

This aspect of our problem has received rather more attention, 

particularly in the case when RM and SN are the free modules RRn and 

S Sn for some integer no The question in this case turns out to be 

equivalent to asking when the co-ordinatization of a geometry (or 

equivalently a lattice) is unique. For example if P and S are division 

rings and EtL (R R n) CeL( S 
n) for some integer n>3 then the first 

fundamental theorem of projective geometry states that there is a semi- 

, n), 
: ýd linear isomorphism (L. 9): (RO 

_(S. 
Sn) which induces E (see p. 44 

of Baer (1)). 

Von Neumann considered regular rings as a generalization of 

division rings and showed that the a& theoren holds for a particular 

type of regular ringo the so-called continuous regular rings (see 
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von Neumann (1))* The question as to whether this theorem holds when 

R and S'are W regular rings is unsolved, In chap. 6 we consider 

this problem and extend von Neilmann's re4ult and similar results in 

chap-7 of Skornyakov (1), 

In von NellmAnn (1) there are a number of interesting results 

which are not explicitly stated (see chap, 2 of this thesis for proofs 

and generalizations of these), For example let R and S be rings and 

n an integer >3 then the following results hold. 

(1) If E: L( RRL(S 
S) then RnS., 

n 

(2) If E: L( RRn) L( SSn) then Rn Sn' 

Result (2) shows that the 'uniqueness of co-ordinatization' 

problem can be reduced to one of considering isomorphisms of matrix 

rings, i. eo, when does R 
n'!: 

f Sn imply R=S, Several results are known 

for this problem, 

(1) The uniqueness part of the Artin-Wedderburn theorem (or the first 

fundamental theorem of projective geometry) gives the result if R is a 

division ring Lad hence for semi-simple Artinian ringso These results 

can be generalized to rings which are division rings and Artinian rings 

modulo their Jacobson radical, ioe. 0 local and semi-primary rings 

(see e. g. pp. 56-59 of Jacobson (1)), 
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(2) The results in Baer (1) have been generalized in Wolfson (1) 

to give the result if R and S are principal left ideal domains, We 

extend results (1) and (2) in chap. 5 and chap. 6. - 

In the general case when' RM is not free the probldm is much 

harder, There are results in Baer (2) and Baer (3) on abelian groups 

and vector spaces, The results in Skornyakov (2) generalize those in 

Baer (2Y and the first fundamental theorem of projective geometry. 

In chap. 4 we generalize Skornyakov's results-, 

q 



CHAPTER I 

FINITELY GENERATED MODULES AND 
INFINITE HATRIX RINGS 

In this chapter we consider two separate topics* In section 1 

we show that the lattice of submodules of a module is determined by the 

partially ordered set of its finitely generated submodules. In 

section 2 we give generalizations of a theorem of von Neumann, In 

particular we show that there are lattice isomorphisms between the 

lattices of submodules of direct products and direct sums of copies of 

a ring R and the lattices of left and right ideals of the various 

possible infinite matrix rings definable over R, 

1, Finitely-penerated nodules 

The results in this section are part of the folklore of universal 

algebras Le=a 1,1 is given as exercise 7 on Ps85 of Cohn (1). 

Lemma 1.3 does not appear explicitlY in the literatureq as far as I know, 

but the construction used in it appears in Birkhoff and Frink (1). 

Definition, Let R 14 be a module. A subset DC: -'L( R M) is called 

additively closed'if (1) D00 (2) if Pq QcD then P+QcD. D is 

called an ideal if it satisfies further (3) if PcD and QCPg 

c L(, I. wl) , then Q ED. 
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Lemma lels Let R Ifl. be. a module and Pa submadule. Then P is finitely 

generated if and only if P is not the sum of elements of an additive3, v 

closed set D of L(ý4) which does not contain P, 

Proof 

Let P be a finitely generated submodule of M generated by the 

finite set of elements (k nC Me Suppose further P where D 
QcD 

is an additively closed set of L(RM) with Pj po Then (a )n are 11 

contained in a finite sum of elements of D and hence in an element Q1 
nI 

of Do Thus PaZ Ra, C: Q' c Ds But EQ=P and so P, 
I QcD 

Therefore P xfhQ' cD-a contradiction, 

Suppose conversely that P pannot be written in the form EQ 
QcD 

for ary additively'closed set D with Pý Do Let Dn the additively 

closed set of finitaly generated submodules of P. Then Pa ZQ and 
QED 

so W hypothesis Pc Do ioeo# P is finitely generated. 

Definitions Let M be a module, Then we denote the partially ordered 

set of. finitelY generated submodules of M by F(R M)S By the notation 

E: F( R M) Sý. F(SN) we shall understand that E is an order preserving set 

isomorphism between the partially ordered iets of finitely generated 

submodules of the modules R 14 and S N, 

Cor, l,. Let RM and SN be modules with EtL( 
R M)=' L( S 

WO Then E induces 

F( R 14) 'ýe F(SN) a 
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Proof 

7he characterization of finitely generated submodules given in 

lemma lol is preserved under lattice isomorphism. 

It is vorth remarking that cyclic modules are not necessarily 

preserved under lattice isomorphism. as the following example shows, 

Example 1,, 2* There exist a non-cyclic module RM and a cyclic module 

SN such that L( L( S X). 

Proof 

Let R be a division ring and n an integero Then anticipating 

section 2 we know that L( RR 
n) S! ý L( Rn But Fn is a cyclic 

IRn-module and if n>1Rn is non-cyclice 

Lemma 1 Let RM and sN be modulese . 
Then L(, M) ýCý4 L(SN) if and 

only if F( R M) iY= F(s N), 

Proof 

(1) If L(O) S: L(SN) then by Corel of lemma 1,1 F(RM) SK F(SN), 

(2) Suppose on the other hand that F, (R M) jaý F( S N)e Let D(RM) be 

the set of all ideals of F( R 14). If S is any subset C D(ýO then 

O-s is an ideal c D( R 1-1) and this is clearly the greatest lower bound 
ics 

of S with respect to the order relation of set inclusion* Hence by a 

well-known result (see eag, prop. 4.1, chapel of Cohn (1)) D( R M) is a 

c omplete lattice, 
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Clearly D( R M) is corpletely determined by F( R M) and the 

isomorphism. F( R 14) Ce F( S N) can be extended-to a lattice iso=orphism 

D( R M)1ý4 D( S N). To complete the lemma we need. only show that 

L(RM) ! 2-ý D(R14)* 

Let FtL( R M) --o-D( R M) be defined by PF F(, P) and 

G: D(R 1-1) L(R 14) by DG Iq Then P FG EQ a S= of all 
QcD Qc'F(nP) 

finitely generated submodules of P-P and DGF' - set of all finitely 

generated submodules of IQ If Q1 is a finitely generated subnodule 
QCD 

of IQ then Q'Csome Qc Do Since D 13 an ideal this means that Q9 cD 
QeD CF 

and so D Do 

As F9 G are order preserving and FG - 1, GF 1 they are 

inverse lattice isomorphisms, Hence L( R M)C-- DYI) and F( R 14) gý F(S N) 

can be extende4 to L(, M)'; ýý L(-N)# 

Cor. 1, Let R It and SN be modules and K(RM) and K( S 11) be subsets of 

L(, M) and LISN) respectivelXo Suppose that F( 
R 11) C= K(, M) and 

F( N)i= K( N)s If Z1K( K( 11) as partially ordered sets then SSRS 

can be extended to an isor. orphism L(, M) P! ý L(SN), j 

Proof 

By lemm 1,1 it is clear that rtK(RM) Sý K(SN) induces 

EMR14) S-1_ F(SN). 
ý 

By le=a 1.3 we can extend I: F(, M) Sý F(, N) to a 

lattice isomorphism : L(, M)1a5 L(SN), It is not difficult to see that 

this induces E: K(' R M) !; ý K( S N). 
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2. Infinite matrix rings 

Let P be a ring and n an integer. Then von Neumann showed 

(chap. l,, part 2 of von Neumann (1)) that theke is a lattice isomorphism 

L( RR 
n) CA L( RR n) 

(actually von Neumann's proof is stated for division 
n 

rings but goes through without change for rings with a1e. g. see 

theorem 2 of Skornyakov (1)). 

An easy way to see this theorem is to note that for any integer 

nR 'M R under the category equivalences Hom (Rn, 
MnR Ij 

n 

and Rn0-: R0R 11 Now Rn and Rn correspond under these 
Pn 

n 

equivalences and so they induce L( RR 
n) n-t L( PRn Though at first 

n 
sight the lattice isomorphism constructed by von Neumann seems to depend 

on the basis chosen for Rn0 this is not so# In fact his lattice 

isomorphism is exactly the same as the one given above. 

Using the idea of our proof we can now generalize von Neumann's 

theorem to a certain class of finitely generated projective modules. 

Definition, A module RP is called a generator if every left R-module 

is a homomorphic image of a direct sum of copies of P. We call Pa 

self-, F-enerator if every submodule of P is a homomorphic image of a 

direct sum of copies of Ps If P is both a generator and a finitely 

generated projective module then we call Pa progenerator, 
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We note the following chardcterization of generators. Namely, 

RP 
is a generator if and only if some finite direct sun of copies of 

contains R as a direct summand. This follows since if P is a 

generator than R is a homomorphic image of a direct sum of copies of 

P and so is a direct summand of this direct sum, which may be taken as 

finite as P is finitely generated. Conversely it is easily seen that 

P is a generator if a direct sum of copies of P contain R as a direct 

summand, 

Theorem 1.4. Let RP be a module and S= End. R(P), Define the maps 

F: L( R P) . -- L( S S) and GiL( 3SL(R P) by QF- HON(Pq Q) and 

AG. PA for Qc L( R P) and Ac L( SS). Then 

(1) if P is a self-generator then FG -1 

(2) if P is a finitely generated projective then GF a1 

(3) if P is a finitely generated projective self-generator then 

F and G are inverse lattice isomorphisms giving L(, P) S! t L( SS). 

Proof 

(1) If Q is a submodule of P then Q FG 
=P Homrý(Ps Suppose P. is 

a self-generator then there is an epimorphisn from a direct sum of 

copies of P to This is equivalent to saying that EPf where f 

Fr. 
runs over HomR(Ps Q) ioeo P HON(Pj Q) 2, q. Thus FG 

(2) Let P* m Hom, (P,, R). If xEP and uE1: 1* then define 

(a) (x. u) as the element ER obtained by applying u to x 
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(b) (u, x. ) as the element of S- End R(P) defined by p[u. x] = 

(p. u)x for pcP, It is easily verified that [u. x] does belong to 

S and that for xq YEP and aES satisfies [u. x+ y] a [u, x] + (u,, yj 

and (up x1a w [up xal. 

Suppose now that P is a finitely generated projective module. 

Then by the dual basis lemma (see e. g. prop-3-1 of chap. 7 of Cartan and 

Eilenberg (1)) there are uic P*# xi E P, where i runs over some finite 

set, such that E[u it 'i I-1. 

GF 
Let A be a left ideal of S. Then A I! om,, (P, PA) and clearly 

GF GF i 
AA If aEA then Pa(- PA and for each i there are pk F- pe 

ii 
akEA with xia= Yp k ak Hence 

k 

I. a - E[u i, 'ila - E[ujt xial 
ii 

E[Uit Yp 
i 
ail 

ikkk 

E E(ui. Piail 
ikkk 

z z[uit piIi 
ikk 

ak 

But tuip Pi Is, icA 
as A is a left ideals Pence a is the sum of kk 

Cp OF 
elements of A and so acA. Thus ACA and A-A. 



- 19 - 

(3) Combining (1) and (2) and noting that F and G are order preserving 

it follows that F and G are inverse lattice isomorphisms: L( 
IR 

P) 2i L( S S) 

if P is a finitely generated projective self-generator. 

We note that von Neumann's theorem follows by putting PaRn 

and then Rný! fi EndR(P). 

Corol. if RP and SQ are finitely generated projective self generators 

with U- End R 
(P) a nd V- End S 

(Q) then L(, P) = L( S Q) if and only if 

L( u U) L( V V). 

Proof 

By theorem 1.4 L(RP) '-Q; L( u U) and L( S Q) '22! L( VV). 

Cor. 2s If R anc# S are rings and nq m, integers then LR n) 015 L( S so) 

if and only if L( RRn L( S 
s, 

in nn 
Proof 

Put P=Rn and SM in cor, 1 of theorew 1.4. 

Whether the conditions in theorem 1.4 can be weakened in some 

way is an open question* However we give examples to show that the 

theorem does not hold if one or other of the conditions in (1) or (2) 

are dropped, 

Example 1,5, There exists a ring R and a finitely penerated generator 

RP such that L( R P) * L(, S), where Sa End, (P)o 
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Proof 

Let R and P w7X 19 7-/p 
# where p is a prime. Then FP 

is a finitely generated generator (but is not projective). The order 

of an element of P is either infinite or p, Thus P cannot have a 

submodule Q with submodule lattice of the form Q For Q would have 

to be cyclic and so isomorphic to '2Z 
0 

or 'Z /p. which is impossibleo 

Suppose S is any ring and e an idempotent E So Then consider 

matrices of the form esee t(l-e) where 9. ts Us VE So 

(1-e) ue (1-e)v(l-e) 

I 

These form a ring with respect to the usual matrix addition and 

multiplication and this ring is isomorphic to S by the 

map s-9 
re see s(l-e) 

I- 

(1-e)s e (1-e)s(l-e) 

Now consider the case when S- End R 
(P) and e is the projection 

P ----* 
-Z/P. Clearly e is an idempotent and 

"SeW Hom 7-/p, 2Z /p) M/p (as rings) 

"S (1-9) ne Hom 
7( 

M/P 
tZ0 

(1-e), -, (I-e) ý'-e Ilom M (M . "M )C-'- 'M ( as ri ngs ) 

II 

(1-e)S e C! Hom (-Z 
9 

'E /p) e 27/p (as W -wdules) 
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Hence we can consider S to be matrices of the form 

Let AuS 
[1 

T /P -Zj 0 
then A contains only one 

. 

[-A 

non-trivial left ideal namely 
IS [o o] Hence A has a submodule 

1o 

lattice of the form A Therefore L( R P) t L( SS). 10 

ExamPle 1 6. There exist finitely generated projective modules A, 

, 3B& 
C such that if U End,, (A), V- EndS(B)q W- EndT(C) then 

II 

L(IýA) t- L(UU) 

(2) L( R A) C- L( S B) but L( U U) ;*L(VV 

3)U t-- W but L( PA L( T C). 

Proof 

(1) Let D be a division ring and n an integer > 1, Define T 
n(D) 

to be the nXn triWngular matrices (with zeros above the main diagonal) 

over D, Let RaTnW and let A= Re where e is the element of P with 

1 in the (1,, 1) th 
place and zeros elsewhere, Then e is an idempotent 

and A is a direct summand of F and so A is a finitely generated 

projective module. An easy calculation then shows that L(pA) is of the 
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form I- A On the other hand U- End R 
(A) tic * eR* S D. So as 

(n+1 )n>1 it is clear that L( R A) * L( u U)* 

0 

IC2) Let S=B for some prime p. Then SB is certainly a 

finitely generated projective module and L( S B) is of the form I IB 

Hence L(, A) CJI L( B). But S n+l: 
V- EndS(B)*=*" '27 /pn and L(UU) *- L(VV). 

110 

(3) Let T-C-D. Then TC 
is a finitely generated projective 

module and W- End T(C)! -ý-11 
D =' U* But L( TC) 

* L(RA)s 

We now consider a generalization of von Neumann's theorem in 

another direction* Firstly we need to define the vaiious possible 

infinite matrix rings over a ring F. 
Wit- 2 

Definition# Let R be a ring and Ia ate Denote by RI the set of 

maps from IxI to Re If fe 9ERI then we can define an addition 

and multiplication on RI by 

(t+g)(i 0j)-f 
(is j)+ g(i j) and (f F)( 19 j)a 

Zf(iq k)g(ko J) for (i. Ix 10 The multiplication of course is 
kcI 

only well defined if f(iq k)g(kg o for almost all kEIi, e, for 

all but a finite number of kE I# 

The various subsets of R, we now define are easily seen to be 

rings with respect to this multiplication and addition (not strictly 
I 
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rings as some of them do not contain a 1). However with this abuse of 

language we call them the matrix rings of rank I over F. 

Def i ne: 

(1) R fi a (f c RI: f419 J) *o for almost Lll (iq j))$ This is 

the ring of IxI matrices over R vith only a finite number of non-zero 

entries - the finite matrices of ranX I over R. 

(2) R 
rbI 

a (f c RI& there is a finite subset D(f)C= I vith 

o if je DI. This is the ring of IxT matrices vhose 
OJ? nO. 2L4- aA ýrkvo 

columns are zar- a-Imest every-where - the row bound2d matrices of rank T 

over Re 

R Al 0QcRI: there is a finite subset Of) CI Nth 

J) -o if ii DI. This is the ring of IxI matrices whose rows 
0,6-.. os-t- a8- 3qývo 

are zere &Inest every%f4ere - the column bounded matrices of rank I over Y, 

rfl 
w (f cRI for each iEI f(i, J) -o for almost all 

This is the ring 

number of non-zeý 

(5) Rcf, 0 if 

T. his is the ring 

finite number of 

I over R. 

of IxI matrices 

ro entries - the r 

E Fl: for each j 

of IxI matrices 

non-zero entries 

each of whose rows has only a finite 

ow finite matrices of rank I over F. 

cI f(iq J) -o for almost all J). 

each of whose columns has only a 

- the column finite matrices of rank 

We note that if I is finite with n elements then the rings 

defined in (1) to (5) all coincide and we get t-le usual matrix ring R 
r. ' 
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Lemma 1,7* Let R be a ring and Ia set. if is a free left 

(right) module of rank I then 

(1) R 
rfI 

End (R M) and R 
CfI 

!: 
-- 

End(tý) 

R (a c End( 
rbI - RM) MAC finitely generated submodule of R MI 

R 
cbI 

(a c End(ýý) aM C- finitely generated submodule of ýý) 

(3) if (e 
I) iEI 

is a basis for RM then Rf, SK la c End( RM) :eiaa0 

for almost all ic I}. 

Proof 

(1) Let (e 
i)iCI be a basis for R M. If ac End( R ? 4) then ei Ea(i )e 

for some a(i. J) cR and where a(i. 0o for almost all j I. The 

matrix [a(il J)l whose (i,, J) th 
entry is a(i, j) is rR rfI and It Is 

easily verified that the map a ---%# [&(i 
#jM gives the required 

isomorphism, Exactly similarly we can prove R 
CfI 

C-t'- End(I-ý). 

(2) Under the isomorphism R 1211 End( M) an element [&(i. ý)] cR rfI R. rbI 

is mapped to the endomorphism ate ERUS J)e i of R M. But 
i 

&(it J) -o for all j outside some finite set D r- I, Hence 

Ma 4= E Re i which is a finitely generated submodule of 11, 
j ED 

Conversely if aE End( R M) and Ma C. some finitely generated 

submodule of M then MaC rRe j for some finite set DCI, Hence the 
JED 

matrix representationj Of a is E RrbI' Thus the isomorphism 

P, 
rfl 

ýý End( R M) induces the required isomorphism. Similarly we get 

the result for R 
cbl" 
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(3) Under the isamorphism R 
rfI 

S! End(, ýI) an element [a(i, J)) c Rf, 

is mapped to the endomorphism &: e i- la(i. Pe 
i of R M. As 

all i 

a(iq J) ao for almost/(i. J) we have that eiaao for almost all i, 

Conversely if ac End( 
R 

M) and *iaao for almost all i then 

the matrix representation of &, t: R fio Thus the isomorphism 

R 
rfI 

Cý! End( R M) induces the required isomor-ohism. 

Lem. a 1.8. Let R be a ring and I an infinite set. If J is a set 

with JJI 
.1 

111 then R Sl 
C4z (R 121, (P Agr one 

ef ? 
1,1 

- fikiiiiliMp --- t-i-ve ly . -I. -. - 
Proof 

Since IJI 
.1 

111 and I is infinite we have IJIIII - III - IIIIJI. 

Hence I may be divided into (1) 111 parts of IJI elements or (2) IJI 

parts of III elements- To each of these partitions of I there 

corresponds a 'block' dissection of any matrix ER xi, 
Omitting the 

details it is easy to see that these lead to 

(1) RXI V (R 
xi 

) 
XI 

(2) R 
X1 

C!: t (PxI) 
xi 6 

Cor. l. If n is an integer and R. oW I are as in lemmok 1,8 then 

R 
XI .9 XI 

)n (R 
n 

), 
I wývcvo a r-4) vf , 4, v b. 

* r- 
6 

Proof 

In lemma 1,8 take J to be a finite set with n elements, 
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Using Yon Neumann's method of 'vector set representation' in 

IF& 
chap. 1 of part 2 of von Neumann (1) we prove the following theorem, 

Theorem 1#9, Let R be a ring and Ia sets Then we have lattice 

isomorphisms 

(1) L( RLR R fl fi 

(2) L( 
IRR) 25 L(R fI R 

fl 
) 

L( RR)!! 
'- L( R 

cbI 
R 

cbI 
) 

L(RI L(R R rbI R 
rbI 

Proof 

Let Q be a submodule of R. Define F: L( R) ----v L(R 
fi 

R fi) 

by, (x rPi the rows Of XE Q), F 
fi 

It is easily verified that Q 

is a left ideal of RfIa 

Let A be a left ideal of R Define G: L( P ---*. L( R) fi, P 
fi ri 

by AG, (Y CIR: y is the row of some xc A). Given i. JcI define 
R 

e(i, J) c RfI to be the matrix with 1 in the (i, J) th 
place and zeros 

elsewhere. If ycAG is the j th 
row of an element xEA then 

e(ij, J)x cA and has y for its i th 
row and zero rows othýerwise. Using 

this fact it is easily shown that AG is a submodule of P, 
I 

GF GF For any left ideal A of Rf, we have AC= A Suppose xcA 

then x has only a finite number of non-zero rows (x 
i) icD and each 
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xicAG. iaeo, xi is the j th 
row of a matrix bicA. Consider 

e(iq J)bje This has i 
th 

row xi and zero rows elsevhere and so 

GF 
x=E e(iq J)b, 6 But bic left ideal A and so xcA and AuA 

icD 

It is worth noting that this proof would break down if we did 

not know that x had only a finite number of non-zero rows (otherwise we 

could not form the sum Z e(i. J)bj), F and G could equallY well be 

defined for L( I R) and 
icD 

L( R) but we would not got A GF 
aA RR 

rfl rfI 

in this cases However as can easily be seen in both cases we do get 

FG for Qc L( I R). R 

Thus F and G are order preserving maps such that FO a 19 GF 

and so are inverse lattice isomorphisms giving L( I R)! n! t L( R R- IR fi fi 

(2)9 (3) and (4) are proved in an analogous manner, For the 

right R-modules and R we have to use a column representation and 

so get right ideals instead of left ideals, When we have the direct 

product RI we have to allow vectors to be infinite and so the 

appropria te rings in these cases are R 
ab I and R 

rbI 

Finally we note that if I is finite we get von Neumann's theorem. 



CHAPTER 2 

EIMOMORPHISM RINGS 

In this chapter we prove our basic results, For a given module 

we study the relationship between its lattice of submodules and its 

endomorphism ring, In particular we show that if a module is a direct 

sum of more than three isonorphic submodules then its endonorphism ring 

is determined up to isomorphism by its lattice of submodules. 

The methods used in this chapter are generalizations of those 

used in chap. 4 of part 2 of von Neumann (1) and are closely related to 

'the results in chap,, 3 of Baer (1) and chap*7 of Skornyakov (1). 

RM be a module and Aq Be C9 submodules. We say A Definitiono Lot 

is perspective to B with axi sC9A-B01fAnCB #1 C0 and 
C 

A (D CB G) C 

Lemm 2tl,, Lot M be a module and (M an independent set of Ri ij 

submodules of Me Suppose i. are distinct elements of I then define 

(all submodules PCMP 'k-0 M For any RE HOMR(Miq M 
tj 

M 

a 
define (a) It (m -m: mC 'M then 

,o Ithe map a ----* (a)1-1 
ij 

is a set isomorphism : I! omR(! 4 10Mi Mi 
ej. 

(2) if ac Hom R 
(M 

1 1! j then ker(a) Vin (a) M iqj and a is a 

monomorphism if and only if MiA (a) Mi 
tj 

a0 

(3) if ac HomR(Miq M then image (a) [M + (a) Ix, AM and a is i iqj 

an epimorphism if and only if [Hi + (a) MI 
qj 

r) if iMj 
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(4) if aE Ham R(I-1i I "i then a is an isomorphism if and only if 

(a) 111.4 C and in this case (a) MiOj a (a )Mjji 

(5) if ag bE Homý(Mi gM and Man IP =0 then ii 
b (a + b)Mi 

qj 
[(a) Mi 

tj 
Mi ]A( (b)If + 

(6) if ig J9 k are distinct elements of I and if ac HomR(Mi M and 

bE HoN(14j 9 14k) then (ab) V [M + (b)' I- I 'j 
qk i lk i+ (fL)"i 

gj 

Proof 

(1) For aror ac Horin(Mig 14ý) it is clear that WMitj is a submodule 

a) + ma (a),, of fl. Suppose mE Mi then m (m m 1, i9j + Mj* Ilenc 
.e 

Mc_- + Mj and so Mi Mj (a) MiOj + Mj 

a Now suppose ZE (a) Mj9jA Mi then zom-mn for some 

mC 141 and ac Mj6 Since Y'i () Mj-0 we have mao and so ma=o and 

Therefore (&)M Mi -0 and (a) M, Mi Hence the Z0 00 ijj ej 
E 

map M sends HOMR(ýqi I Mj 
iqj 

Suppose a. bc HoN(Mi M and (a) M (b) Mqjo Let iIj 
b 

m E: Mi; then there is anc Mi vith m-mnn As V10 

a0 be 
ma nbmb and we have mon and mn Hence for any in M 

so a-b and M ijj is a set monomorphism, 

Suppose PE1.1 1 tj 
then P (f) M ? I, H saye Consider 

the natural horomorphism e: H --o H/P. Clearly H/P '; f M, and 

M He So, via the isomorphism H/P 2ý Vjq e induces a homomorphism 
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atm i ---* M If ME 14 
1 then there is a UniCIU0 pcP and ncMi 

such that mn+P, From the definition of a we have n-ma and so 

(m _ ma) _PCp. Thus (a)M 
ijj 

C P. But Ps Pf) H-PI) [(a)l' 
i tj 

+j 

a (applying modular law) (a)M 
i tj 

+P tN Mj= WM 
i0i sinc 

IeP 
fN 1! jU0, 

Hence Mij is'& set epimorphism and thus a set isomorphism. 

(2) Suppose aE HoN(24it M and that ZE I' 10 
(a) ý, i Then 

zam=n-na for some m, nC Mis As Mir) M-0 we have na. o and 

m-n and so zE kor(a). On the other hand if r. E ker(a) then ma -o 

and so m- (m MR) EMA (a) Mi,, js i 

Now a is a mononorphism. if and only if kerýa) a0i. e. if and 

only if Min (a) misi 0 00 

(3) Suppose ac HomR(Mi# M then M. + (a) 1,41 
tj 

0 I'li + , ia. For if 

ZE 141 * Mlia then z=m+na for some m, ac Mi and so 

za (m + n)-(n - na) E Mi + (aNitio On the other hand if 

zCMi+ (&)M 
191 then for Some Ift, nE Mi ZM+ (n - na) (m + n) - na 

a M+ 11, 

+ ,, a). Hence we have ( 11i + (&)Mi 
11j 

I rj V, 

aMin Mi 

= 11 1a- imag* (a) 

Now a is an epimorphion if and only if' TI i i. e. if Rnd only if 

[14 
1+ 

(a)m 
i qj 

) e) ý4 j 'm j$ 
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(4) Combining (2) and (, 3) we see that ac Horn R 
0"1 is an 

isomorphism if and only if Min (a) M 
iIj -0 and 

( I'l i+ 
(a)M 

itj 
1 01 M, 10Mj" But the last condition holds if and only 

if MjC: Mi+ (&)14 
191 ioe. if and only if 11 1+ 14 jnMi+ (a)mi 

0i a 

Hence a is an isomorphism if and only if M ^-I (a) !, I i. e. if and IjMi1 61 
only if (S)m E 711 

ti 
Is 

If a is an isomorphisin then (a)M 
i SJ 

0 (m -ma: mc mil - 

(-Ma) a7l :mc mil. As m runs through Mi, (-m)a runs through 

mie Henco (a), 14 10 a (n-n a :nc It iI. 
(a -1 ) mi'O i* 

If zE (a)1ji 

jjJ 
+ Mib (5) Suppose ag bc Hom R 

(Mig Mi). then for some 

m, n cMz0(, It, _ ma) +nb . (m _ via _m 
b) 

+ (n b+ 
mb) 

(a+b bb (m -m)+ (n + n) c( a+b )M, 
i qj 

+ 

On the other hand if zc (a + b) mi j+Mib then for some m, nEMi 

9 

ZMMMM+n (m - m&) + (n - m) C (a) mi 
qj 

+Mib" 'fence we 

have (a)14 
i tj 

+Miba+ b)II +Mib and similarly (o)f. l 
i tj 

+ ýIi 

(a + b)M i tj 
+ M, a" Therefore 

b 
+Mi I A[ (b) Mi 

tj+?, 
fa (&+b Ni 

oj+I'ib)fN 
a+b)M, 

oj+lga) 

+14 
b 
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t 

Now if M arN Mba0 theng since (a + b)M AMa0, we have that 
.ii 

itj i 

(Miag Mib (a + b)? A i Ij] 
is an independent set of submodules of 

Hence Mia,, ( (a + b)II, 
Ij 

+ Mi b] 
-0 and so (a + b)M i tj 

a 

[ (a)m 
191 + Mi 

bIn( (b)Mj 
qj 

+ MilL I, 

(6) Suppose i j9k are distinct elements of I and a c llom, (11, 
,Mi) 

and bc HoN (M 14k) ' If zc (M, + ""k1M [(s`)"iqj + (b)M 
j Ok 

I then 

for some mis ic Mis nicMj and mkc we have z-mi+0+ lnk 0 

ni+ (-n 
i&+ni)+ 

(-n 
ib), 

As 04,0 mjt, ý) are independent we have 

Is, nil, n ni 
a 

_n 
b 

and so mk m -n 
bm 

-ni 
ab Therefore 

ni 
ab 

E (ab)Miolt* 

Conversely suppose zc (ab)II 
i9k , then for soca mEr, 

zaM-m 
ab , (m _ ma) + (ma 

_ (lna)b IE (1! 
1+V k] + 

(b)Mj 
qk]" 

(1) of lemma 2,, l is a key remarks It shows that if 

M10M0 then HoN (Mi 
0Mi) can be represented, by elements of 

L( R M). In the next lemma we show, how, using (5) and (6) of lemma 2.1 

we can get at the multiplicative and additive structure of End R 
(m). 

Lemma 2,2, Lot RM be a module and (11 
i)irI an independent set of 

submodules of Me Suppose that N is a module, with E: L(,! SL 

I 
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If N M, I and i, jt k are distinct elements of I then 

(1) there is a set isomorphism ii, 
j. t 11ortn(Mit M Sý 110NýOlit Nj 

(2) if a*c HomR(Mij, 11j) then (ker(a)] E. ker(ax i tj 
) and 

E [image (a)] w image (aL if a is an isomorphisir so is (pt)t 
itý 

and in this case ((a)i 
i6j) 

(a -1 )-tilif 

(3) if aE HON(Miq and bE 11omR(Mjq Mk) tften (ab)z 
i6k 

(a), 
i qj 

(b)l 
j9k 

Mb if a,, bc Hom,,, (Iv,, ! lj) and Mi'ln '1 0 then (a+b)l 

Ii 
tj 

+ (b)t 
i tj 

if there is a monomorpinism 91M - '-k tnen t is a i 'k i, j 

homomorphism. 

Proof 

(1) Define 14 itj and N iti as in lemma 2.1. Ther. E induces a set 

J somorphi sm ji But by (1) of lemma 2.1 Mi 
OJ 

: Homý("Iio !4j 

Mqj and N,, J. -HozS(Niq N )tt -N are set isomorphisms. Hence J tj 

the riap M N; l =4 191 1 Ij tj 
is a met isomorphism: Homp, ("i 

HONIS(Nig Ni 

(2) Suppose ac flomý(Mio Mi); then [(a) m i1j]z 
(10tio 

,I, 
Ni 00 

By (2) and (3) of lemma 2.1 ker(a) - M, r'*N (a)m. 
i1i and image (a) 

(Mi + (a)M 
i qj 

I () )I j. Applying E we get (ker(a)] a tj i () (&)Z 
161 N iij 

0 
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and (image, (a)] + (a)i 
ij !1 191 1 J, By (2) and (3) of 

lemma 2.1 applied to (N 
i) iEI we have (ker(a)] ker(at and 

F [image (a)] a image(at i, j 

If a is an isomorphism then by (4) of lez=a 2.1 (a)! Iij c 

M joi Therefore ('a)M iqj ZE Njj, * Hence (at 
i, j 

)N 
i1i c 7iti and 

so applying (4) of lemma 2*1 again we have that ai is an isonorphisn. 

In this case by (4) of lemma 2.1 (a)M 
i tj 

a 
1), m J, i* 

Applying E this gives (a)z 
i tj 

Ni 
OJ 

a (a)M 
i qj 

E- (a- 1W 
191 E0 

(a7l)t 
j9i N Applying (4) of lemma -1.1 once again we have 

Wt 
t1i N i9j . (a )z 

joi N J. i joil-i N, 
qjs 

Cancelling I iIj 

we get J. i 
[(a)z 

1 91 

(3) Suppose ac Pom (, 'fi Mj ) and bc Hom. 0-1, 
k By (6) of 

lemma 2.1 (ab) "i 
9k 

[mi + Yk) (a)II, 
I+ 

(b 
9k 

Applying, 

we get (ab )Zi9k Ni 
jk 

m "i i+Nk r) ((a) I itj N10,1 + (b)l 
j9k N J, k' 

((a)Ii 
tj 

(b) Ij 
9k 

IN 
i sk 

applying (6) of lemma 2.1 again. Hence 

cancelling N i9k 
(ab)t 

i9k 0 (S)t 
i tj 

(b)i 
j 9k ' 

(4) Suppose aq bc HON (141 
, Mj ) and Mi ar) Ilib J; then by (5) of 

1*rum& 2.1 (a +bW itj 
(a)M 

i tj 
+Vib (b )M, 

tj 
+ Applying 
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we get (a + b)l 
i tj 

N 
i9j a (a + b)M i jj 

F, 

b In [ (b)l-l +(,,, a), I 
ii OJ I 

+N 
(b)i 

i9j) (b )I N +ýT 
ti 

But, since 14 1a (I miba01, Ni 
(a)l 

i Jf) 11 1 
(b)l 

itJ -0 and so by (5) of 

lemma. 2.1 (a + b)L ij N ioj a [(&)i 
i 'i 

Ni 
Ij 

+Ni 
(b )t 

i 'i 
I 

0 [(b)L 
i tj 

Ni 
tj 

+Ni 
(a)t 

i9j] 

- Ha)z 
i Ij 

+ Wt 
i tj 

jNi 
j4 

Canc*lling N 191 we g*t (a + b)i i tj 
0 Wt 

i qj 
+ (b)Li, 

i & 

(5) Consider the submodules 1.1 1 and (M 
i+ 1ý) then just as in (1) 

there is a map 11(i I J9 k): Hoimr 
., 

(Mi 
9 1! + Mk j 1, k) where 

m(i; J,, k) - (all submodules Pt PM Defining '1(1-, 
. 
19 k) 

''J +Mk i 

and 
Mi; jo k) in exactly the same way gives a set isomorphism 

J(i; J9 k): HON(Miq 11 1+ Mk') C2 HOMS (Ni 9Ni+Nk). 'lam R 
(Vi 

9 ýIj 

and HomS(Ni 9Ni) are naturally embedded in Hon,,.. Wi + ?'k) and 

ýomý (Ni 0Ni+Nk) respectively, If ac Hom R 
(11: 

i I then by (2) of 

lemma 2.2 (a)l(i; J. k) c flomS(Niq Ni) and recalling the definitions 

of M(i; J9 k) and N(i; J, k we see that Vilo jo k) induces 11 
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Suppose that a. bc HomjR(Miq 14j)and that there is a 

i 

monozwrphism ac HoN(I'll, , MX). If zCM, 
S+11 14 

1 
then for some 

m. nc Ili zm ms + ma, a nb, Hence m8mnb-a. 0 (jj 
i 

e. ý 1ý k' 0) 

and as s is a monomorphism m=o,, Thus 11 1 
s+tN mb, 0. But 

5n 14, &+b a 09 Mimiaa0 as well and so repeatedly applying (4) 

we getq writing L for 1(i; J9 k)q (s)t + (&+b)t a (s+a+b)t 

= (s+a)t + (b)t 

- (s)t + (&)t + (b)l 

Hence (a, +b)k - (a)t + (b)t and so i is a homomorphism for elements of 

Homjý ( Mi 0Mj)0 But t induces Li j and so li 
tj 

is a homomor-phisn. 

Another vay of proving (5) (based on the methods of von Neumann 

(see equation 17 on p. 111 of vbn Neumann (1)) is to use the fact that 

if aq b and a are defined as in (5) then 

(&+b)Mi 
tj 

= (1 (&Mi 
J+SM'i sk)*"('ýj+Mk) 

]+( (bM 
i qj+Mk)fl(! 

ýj +sm i qk) 
i)n [mj+m il - 

Our method based on that of Baer (see p, 4T of Baer (1)) brings out 

clearly the partial additivity of Z itj for maps whose images have zero 

intersection and shows how the existence of the monomorphism s is 

sufficient to ensure full additivitys 

Theorem 2,. 
_3. 

Let R 14 be a module which is tne direct sum of an 

independent set of submodulos (V 
i) iEI where I is an index set containinr 

at least three elements, Suppose that 
RP 

is a module and that for each 

I 
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icI there is a submodule PiCmi with P S! S Pi as P-modules. if 

SN 
is a module such that E: L( R 

M) L-f L( 
S 

TI) and if QiMpir then 

(1) there is an S-module Q, such that for each iEIQ as Si 

S-modulas 

(2) there is a ring isomorphism Z: End R(P 
C_e End, Q 

(3) ther* is an abelian group iscmorphism sofoN(P, M)n_! HomS(ýq N) 

(4) consioering HomR(Ps M) as a left End., (P)-modul* and HoN(Q, N) 

an a le ft End S 
(Q)-module (Lq 3) is a semi-linear isomorphism 

(End (P)s HomR(Ps M)) t-! (Endý, (Q)s ilomS(Q, N)). 
R 

Proof 

-1 0%0 P (1) Let ai tP Ce Pi for iEI, Define ai 
tj 

aiai :Pi 
lie 

The 

a 19 j 
Os satisfy a i0i a jok Ua i9k -, a i. i P ai 

tj 
a IP for 

91 

any 11, j9kEI, 

If 10j then by (1) of lemrm 2.2 applied to (P 
i) iCI th&re 

are set isomorphisms Lij : Homr, (Pig Pj Foin Sj Define 

bi 
9j 

aa 
0i 

L 
91 

if iJ and biM1 if i "Mhen by (2) of 

lemm& 2.2 b in an isomorphism for any iq jc Let Q be any 

module isomorphic to Qt for some fixed tEIi. e. let b ae ýzt. 

Ifence for any icIbiabtb 
t9i 

is an isomorphis-.: Q 
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(2) Suppose that iq jg k are distinct elements of I then by (3) of 

lemma 2,2 (a 
i 9k) 

Li 
9k 

a (ai 
qj 

aj 
ok) 

Li 
lk 

ioj )Lioj (a 
j gk) 

Lj 
ok* 

Hence for distinct it J# kcIbi 
lk 

0b iIj bj 
qk* 

Now if it are 

distinct elements cIaj 
ti 

(a 
i tj 

)ý' and by (2) of lemma 2.2 

(aj9i)Ij9i - ((a 
iti 

)tij)- and so bi 
tj 

bj 
91 

-bi 
'i. 

for any i 

But as we defined b 191 -1 we have that for any it J9 kcI 

b igk b itj bj 
qk 

Let fc EndR(P) then define I: End R(P) ---P, EndS(Q. ) by 

(f)L wb fa 
j 

)t 
i tj 

bj f(it J) sayq for any 10jE Firstly 

we must show that the definition of L is independent of the choice 

of i and je 

Suppose that 10kcI, If kj then f(i, J) a f(ig k). 

mi 1 
If k then f(i, k) abi (a 

i fe"k) JE i qk 
b k- 

"1 1 

10* 
bi ((a 

i fa j 
)(ajýlak) lli, 

k 
b ký 

abi Ha J1 fa i 
)t 

i9j 
(a 

J-1 ak )t 
jwk 

lb 
k- 

1 by (3) of lemna 2.2 

01wa 
iwi fa i 

)t 
i tj 

b J- 
1 I(b 

i(aj sk 
)t 

j qk 
b k- 

11 
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= f(iq J), b ibj tk 
b k-1 

a f(is J) since bib 
jok b k-1 =btb toj b jlk b k9t 

b 
t-l =1 

Thus if ig J9 kcI and 10j and 10k then f(i, J) = f(io k) &*#9 (A) 

and similarly with the same conditions on ik we can show that 

f(jp i) a f(kj i) (B) 

Suppose'that 10jE Is As I has more than three elements there 

is an element kEI distinct from i and J, Then 

f (i f (10 k) by (A) 

f(jp k) by (B) 

f(JI, i) by (A) 

Hence if ijCI then f(i,, J) f(jq i) .... (C) 

NOw 8UPPose il, jo V, JI cI and i J9 il JI, Then 

(a) if i., i f(i, J) - f(i, q J) 

- f(ill, JI) by (A) 

(b) if 10 34 1f (10 j)=f (19 11 ) by (A) 

f(ill i) by (C) 

f(ilo JI) by (A) 

Hence in every case f(it J) - f(ilg, JI) and the definition of X is 

independent of i and 

It is clear that i is a set i. SOmorphism*. FndR(P)fý' EndS(Q) so 

ve have only to show that L prese"es addition and multiplicati on, 
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Let f 
11 

f2 c End (P) and let i. J9 k be distinct elements of 1. 

t ftl 1 
Then (fl + f2) abi (a 

, 
(f 

1+f2 
)a 

i 
)t 

is jb J- 

-1 
ýl 

1 

(a 
if1ai +a if2ai itj b J- 

But a i9k is a monomorphism: P i ---* pk and so bY (5) of lemma 2.2 

titj is a homomorphism, Therefore 

(fjýf2)"jlbj(aj-lf 1ai 
)t 

itj b J-1 +bi (a J1f2ai )Lioj b1 -1 

af11+ f2 L0 Hence L preserves addition. 

-1 1 
Now (f 

1f2ubi 
(a 

if1f 2ak) li 
#k 

bk- 

a i((ai 1aj 
)(a iA )IL i9k bk 

[b 
i-l fIai )t 

it j bjýll[b i 
(a 

J- 
1f 

2ak)Ljgk b k- 
11 by (3) 

1 

of lemmgL 2.2 

u19f2L* 

fiance L preserves multiplication and addition and so is a r4ng, 

isomorphism, 

Firstly we assume that I is finite witn n>3 elements. Fix 

,jcI and apply lemma 2,, 2 to the modules Plj see# PJ. 16 Mjq Pj+lq 0@09 

4 
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0 

This gives naps h 
set 

for stEI w1nere 

h 
sqj : 110M. 9, 

(Ps, ?"i) 11OVIS (Q I" i) if t-j 

(2) htak 
't 

if t0j1,8 01 

For dC Homn(PI M define a by ds, 0b (a d)h wnere i 

Wo show firstly that the definition of aj is independent of the choice 

of if Lot il CI and V0 J9 V0 if Then 

d)h =b Ha ai, )(a d)] h i 
9j 

ii 
OJ 

bi (a 
i-l ai, )hi 

J,, 
(ai, -ld)hit 

tj 
by (3) of lemrra 2.2 

b, implies hi 
i biti, (ail' d)hi, 

qj 
as 10 J) 'i I '* ýi 

, i, 

-1 d)hi 

Hance s is independent of the choice of i. ('learly s is a set i. i 

jsomorphi9m: Horr,, (PO M Tiom, (Q, N 

Now ai 
Ik 

:PiPk is a monomorphism and so by (5) of lemma 

2*2 h igj is a homomorphism, This implies that for 

Mr, (pIM) (d +d )s 3c b (a 1 (d +d, ) )h 'To 112ji11 iti 

=bi [(a JId1)+ (a J1d2 )lh 
191 

d, )h +b (a d, )h 
tj tj 

* d1s + 
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Therefore si is also a hornomorphisn and thus an isomorphisir,. 
ni 

As I is finite IIom,, (Pj 10ýf ýD Homp'(ps ri) 
i=l 

n 
Hom s 

(Qj 101; 9 a ý1= s 
(r 

i) as abelian groups. 
i-1 

A 
If dE HoN(P, M) then d=E di for unique di c PoriT, 01, l'i De fi ne 

n 
the map s: Hom, (P. M) Hom, (Q, N) by ds disi. T'his vives 

the required isoinorphisn. 

. he case when I is infinite can be reduced to the finite case. 

For let F= (l* 
..., n) be any finite subset of 1 *.,, ith n>3.1, e t 

V ..., n. n+l) and define M ?Ii for 1, it In and 

14 M for i n+l. `hen 
it j 

it 

4) 
and so we can apply 

JTF El 
the prtývious arguments to (M, 

j), j E It# 

We note that the v. ap s(F) obtained fror. r. takinF the finite set 

F is in fact independent of F. It is sufficient to s-iow that ir' F, r, 

are finite subsets of I with : Fj > 3t jrj >ý and F<--- (, then s(F) 

The general case will then follow since FCFU-, and GC I-t) G irýply 

9(F) - s(F U G) - s(G), By induction we can assume F has n elem, -nts 

and G has n+l* We get sets ("119 

0ý9 
n+l 

S giving 
J >n+l 

n+l 
(sl f9 . *ýOjp so +10 so where y n n+2 I 

nt and 
I >n 

rise to malps (3, ani n n+l 

s SW and S, S(C, ). 
II 
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But it is clear that aia51' for I<i<n. On the other 

hand by arguments similar to those used in (5) of lemma 2.2 we have 

that s induces snl+l and sn+2 and so s, +, =9# Hence 
n+l n+l 

+ s, +2, 

n+l n+2 
s(F) =EsEs s(G). Thus the definition of s is independent 

of the choice of F. 
n 

Let fc End (P) and dc Horl. R(Pl M) where d di and di r Hom (p, RR 

and where again we reduce the infinite case to the finite case as in 
n 

Then (fd)s - (E fd i )a 
1 

(fd 

(fd 
i 

)si 

Fix icI and choose (as we may) distinct J. kcI such that 

10j and 10k., Then 

f'(d )s [b (a -1 fa )k b-1 )(b (aX-ldi)h; 
t iiik Jk kk,, 

I 

-bi(a1 -1 fak)hj 
fk 

(ak-ldi )hk 
vi 

abi (a 
J- 

1 fa 
kak- 

1di )h 
j ti 

by (3) of lemnia 2.2 

=bi(a Jý 
1 fd 

i 
jh 

j 0i 
- (fd i )s 

14 
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Therefore 
n 

(fd)s 2E (fdi)s i 1 

= 

n 

a 

x f(d)s. qence (Ep s) is a semi-linear 

isomorphism: (End 
R 

(P) , Hom (Po 
Ip 

M)) Sd_ (End 
S lomf 

.3 

Remark 1. A look at the proofs of lemmas 2.1 and 2.2 and theorem 11.3 

will show that the results proved so far in this chapter remain true 

if the conditions, that all modules are unital and all ring3 have a 1, 

are dropped. The reason why these conditions are not necessary 13 

basically because the elements of a ring R whicýi act trivially or. a 

module RM do not affect the endomorphisn ring End PC"). If we are 

hoping for stronger results say involving semi-linear isomorptiisms we 

shall see in chap. 4 that it is not possible to drop these conditions. 

Remark 2* Suppose A is a submodule of '! and for some 

Ag= $ 11 then [Hom,, (Ps A)] sw HozyiS(ý, A 
joi 

i 

Proof 

If I is infinite we CELng without affectir. ý, s, chonse as in the 

last part of (3) the finite subset F C. ' I so Viat it contains 

Suppose ac HomR(PI A) then as jabi 
(a JI a), Ii i 

,ý 
, ience 
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Qas Qb i 
(a i-i a)h itj n Qi (a 

i-i a)h 191 

is a)]E by (2) of lemma 2.2 

E (pa) Ec= A 

Therefore asj e Hom (Qq AE). But as a Eas and so Qas as A= A-. Si 
1ý 

Hence [Hoizý(PA)ISC: Hom,, (Q,, AI). A symmetrical argument pives 

[HomS(Qt A F)]s-1 C HON 
. 
(Ps A). Thus Horn, (Q, A T) C[ Hor,,, A) 113 

and so we get Homý(Q$ AE) - (Hom, (P, A)Is. 
L 

The condition that I has at least three elements in theorem 2., 

is n*cessary as th* folloving example shaws. 

Fxwppla 2.4. Lot R and S be non-isomorphic division rings such that 

2 
IRI 1- ISI then (1) L( p R)*A L( S S) (2) L( RR 

)ý! L( 
'S2 

) but 

(R2) (. 92). End, (R) 1ý End S 
(S) and End R* 

End S, 

Proof 

of the form 

4 

P, 

I- 

and L(I, R 2) is 

t 

R) tV- L( S) and L( P2 )c'-e R@nce ve have L(R sp"-, 
"). 13ut P, so 

EndR(R)! ý EndS(S) and End, (R 2 EndS(S 2 ). ver if !) and are division 

For any division ring R L( 
R 

R) 13 of the form 
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rings by the Artin-Wedderburn theorem (see e. g. isomorphism theorer 

of chayý. 3.5 of Jacobson (1)) R2n: t S2 implies F9F S. 

COL0,16 Lot I be a set with at least three elements and j, N be 

I 
modules. if RMRP and E: L( R 1-1) ý-v L(S N) then End End 

Proof 

Let (P for icI andwhere M-(DP,, Putting Mi so pi 
i F: I 

Ni in theorem 2,3 we see that there is a module Q with S Xi 

for all iEI and End R 
(P) 2f End S By lenma 1.7 EndR(M) 1ýt (End,, (? ) ) 

rfl 

and End S 
(N)Q! (End 

S(Q)) rflo 
Hence the isomorphsim End, (P)Ce End S(""") 

induces EndR(M)Q! EndS(N). 

The converse is not true. For in example 1.6 we constructei 

modules such that End (A) S!! End, (C) Lut T, (, A) R'k 0 TC R I'(-C). Aence if 

M=IA and Na 
IC 

then EndR(M):? 5 EndT(N). 
RRT 

It Is easy to see that in 

this case L( M)(* L(, 10. 

Cor 2. Lot I be a set with at least three elements and Kv be ZZA. = R 

MCAU1656 If M is a free module of rank I and L: L(, M) Pf L(, N) then R 

Endý(M) W End, (N), 

Proof 

Put PaR in cor. l. 

Cor. 3. Lot R and S be rings and n an integer 

Z: L( R)N L( S) then F. Ce S. 
Rnn -- IS n- 
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Proof 

Let eii be the matrix of Rn with 1 in the (iq i) th 
place and 

n 
zeros elsewheroo Then Rn Rneii and RneiiY P. nejj 

for 1< iIj < n. 

Putting PRe in cor. 1 we get that End (, Jý n ii n End, (S) 
n 

But Rn and S are, rings with a1 and so ar. e isomorphic to their own 

andomorphism rings. Hence Iýnu S. 

Example 2.4 shows that the condition n>3 is necessary. For there we 

sav that there are rings with L(RR)Z-e L(SS) and L(,, P 2 )1Y L( S 11: 12) but 

R 4E S and R- But by von Neumann's theorem L( FP) *2-'f L(PR2 2 
** S2' 2 

MSS L(S 
2 
S2)- 

The result in cor-3 in due to von Neumann (see theore. T. 4.2 of chap. 4 of 

part 2 of von Neumann (1)). Although his theorem is stated for regular 

rings it goes through unchanged for rings with a 1. 'ion '; eu-iann 
however proves more. lie shows that the isomorphisn s: R 

n 
ý'-e' induces 

the lattice isomorphisin E. The proof of this depends heavily on the 

fact that R is regular. Using remark 2 to tbeorem 1.3 we can show that 

if A is a left ideal of Rn such that for some 1<i<nA ID Pn ej.., 

I i0i 
then As so A's We have been unable to show that this is 

true for any left ideal A. The difficulty is to know how to deal 

with proper principal left ideals which have non-zero intersection with 
-'C 

every other left ideal i. e. 
iarrýg (fdeals in the terminoloKý of chap. 6. 

k 
In the case when R is regular this case is excluded. 
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i 

cor 4. Let R and S be rings and Ia set containing at least zx:. L;. 

three elements. if 

(1) 
R 

rfl 
R 

rfI 
) 2! ý L( s S) then R 

rfl 
oe- S 

R L( S) then R 2e C, 
R 

CfI CfI s cfl- ", 

Proof 

If I is finite then the result follows from cor. 3. If I is 

infinite then by cor. 1 to lemma 1.8 for any integer nR rfI-- 
(P 

rf. T)n 

and R 
CfI""' 

(R 
CfI)n* 

Take n"3 and# noting P 
rf! and P 

CfI 
both have 

identity element, apply cor-3. This gives R 
rf 1'. 

21 (Plrf 
I)n and 

cfIge 
('ýcfI)Oe 

Stated in another way we can say that the endororphism ring of 

a free left (right) module of rank >3 is determined up to isomorphisr. 

by its lattice of left ideals. 
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-CA'"EG(IRY E. ýUIVALF. NCFIS 
-I'll, 

In this chapter we consider lattice isomorphisms whicii are 

0 

induced by category ejuivalences. in particular we show that any 

lattice isomorphism between the lattices of subr. odules of a free 

module of infinite rank and a module containing at least one free 

element (see definition preceding lemma 3.3) is of this type. Using 

this result we give new conditions for rings !,, and ', ' to be ! 'orita 

equivalent in terms of infinite matrices over 7ý and E and in terms of 

$he lattices of submodules of Orect sums and direct products of 

copies of R and S. 

Firstly we recall scrie basic facts about c%tepý)ries. I'et 
A 

be a catagor-y. Consider the equivalence classes of objects of IýA' 

under the equivalence relation of isomorphism. I, etA 0 
be a set of 

representatives of these classes plus all the morphisms Letween V, em. 

I 
Ao skeleton forA and is a full subcatewrr7ý wnicýi '"hen is called a 

is equivalent toA. . it is easi.. 1y seen that any two skeletons c. f 

are isomorphic and that any isoriorphism between two suct, : 3r. cletons 

can be extended to a category auto-equivalence of A. "ore #ýenerally 

suppose that 
A 

and(8 are two categories and 4, 
and 

Ro 
are skeletons 

for VA_ and C respectively. '-7hen it is easy to s`iow that anY I-, nmornIAsm 

OfIA and 
$, ), can be extended to an equivalence of and 0 

Conversely any equivalence between Lý, and induces an isomornhiý-, rr, of 

, /t and 
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Suppose that R is a ring and LA. 
. 

is A skeleton for .0 the 

category of all left P-modules. Let R 11 be a module and consider the 

monomorphisms from objects in AýO 
to M, 'We can pre-order these by 

defining a<b if there is a map c such that a= cb or diagrammatically 

Ao 

Consider the equivalence relat16n ab if a<b and b<a, i. e., 

a- cb where c is an isomorphism. Then the equivalence classes forp. 

an ordered set, Aich is a latticeg lattice isororphic to Opp) by 

the map a ---o image (a). 

ýuppose that S is another ring and F:, ------ - is a catercry 

equivalence, Clearly F mans 
A to a Skeleton of and F is an order 0 

preserving set isomorphism between the monomorphisms from -4 0 
to M FmO 

FF 
the monomorphisms from Ao to !. This Fives us a lattice isomor-Dýiism 

L( R 
M) ne L( S 

W) F) 
and we say that F induces this lattice isomor-ohisr. 

We also note that this lattice isomorphism is independent of the choicý- 

of skeleton 
A 

os 

We now collect together as a theorem a numner of "orita's results 

on category equivalences. ': hese are all in "orita (1) in one form or 

another. We present then in the forn given in Bass (1). 

I 
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Theorem 3#1 

(A) Let P and S be rings and suppose F. - u Ij and G: 1ý U 

are inverse 
' 
category equivalences, Then 

(1) (P) F is a S'-R bimodule SQ, and is q binodule R'S 

(2) P and Q are progenerators both as left and right modules 

(3)R 'COf End (Q) and I& Fnd R(P) 

(4) PP and S 

(5) FQ Hom (P, -) and G C-- ! ýj liorl, 
R 

(B) If is a progenerator and R ý'- End-(,, ) and then 

Hom Q and Hom are 
R 

inverse category equivalences, 

(C) R -ý I enerator such that ' if and only if there is a proF m 

R End S 

Lemma 3,2, Suppose P, I, ' and . 11 are modules and s): (P,, "), Y (ý'. ,! ) 

is a semi-linear isomorphism. Let E: L(ý. ") be the lattice. 

isomorphism induced by (to s). Then there exi. sts a category equivalence 

F: U such that N and F induces Z. 

Proof 

Firstly suppose that and 4 are modules such that 3:;. 4 

J3 a linear isomorphisr. Le tYbe the lattice isomorohisn: I, (r,, 
I 

induced by s, Consider two skeletons Wr F& which are tne same except 

. 
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that in one we choose R V' as representative and in the other R N. The 

isomorphisn s: 11! ne N induces an isomorphisr between these two 
RýR 

skeletons which can be extended to a category equivalence F:, 

Clearly F induces E. 

More generally suppose RM and SN are modules and (t, s): 

(RI M) C-Y (SS N) is a semi-linear isomorphism. Now Z: R PýS induces a 

category isomorphism FIR 
------ 

*S0 by P) F, 
=SD where P is made 

into an S-module by tp tp for tcS and PE Now S: 
F1 

is an S-isomorphism. For if MEM and tc ') then (tm) (tt M)s 

tLzm9a tM so By the first part we can find a category equivalence 

FVU which induces the lattice isomorphism: L(S(V) F 1)td L(, Il) 2: 9 S 

induced by s. Hence F=FF is a category equivalence: WW 
12R. 

which induces the lattice isomorphism: l, ( induced by (Z 

This lemma shows that any lattice isý, rnorphism induced by a 

linear or semi-linear isomorphism can be induced by a category equivalence. 

Definition, Let RM be a module and Aa subset of 11. ! lien the left 

annihilalol-of Ag 9.,,, (A)g is defined to be (r E ? ý: rA x o). Similarl% 

if M is a right R-module we define the right annihilator of A, r, (A). 

When the ring R is obvious from the context we will omit the suffix P. 

We call IM faithful if L(M) =0 and an element MEI! is called free if 

&(M) - 0. 
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Lemma 3,3, Lot R and S be rings and Fl. P2 category equivalences: 

R 
Ij 

S Suppose RM 
is a module such that IfFI = MF2 N the--n 

we have 

(1) if T :F1 C4 F, 
2 

is a natural equivalence and T("),, N1 1N induces 

1 
L( N) 

then F1 and F2 both induce the same lattice isomornhism: 

L( R M) ': ýt L( S N). 

(2) if M has at least one free element and F and F, both induce the 

same lattice isomorphismsL( R M)': d L( S N) then there is a natural 

equivalence T: F 1 Ce F2 such that induces 1 L( S NJ* 

Proof 

(1) Let,. 41- 0 
be a skeleton for Rw and f be a monomorphism. -A 

for some A c, 4 
ot 

Then we have a commutative diagram 

F2 (f) 
F2F2., 

A>1.1 

T(A) T 

F1F 11 A 

FFFFF"= 'ýJ" , r) II and T(! ' and so A 1T(A)(f) 2mA 1(ý 1T(I'). Now I, 

induces the identity lattice isomorphism on L(, N). Hence as T(A) is 

an isomorphism ani so certainly an eDimorDhiSr, We get (A) F 
2( f)F2 = 

(A) 
F 

I(f) 
F1 

for any Ac and monomor)hism f: A Therefore 

F and F induce the swne lattice isoTrorphisr,:,, ( IV 
12 
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(2) Let m be a free element c M. Then there is a monororpiiism 

f: R -M defined by I-m, As F1 an 

isomorphism: L( R M)C-'j L( S N) we have (11. ) F I(f) F1 

is a monomorphism and hence so are (f) FI 
and 

isomorphism (R) F1 Sf (R)F2. Let Q, = (R) Fi 

dF2 induce the same lattice 

F F,. 
'low f a C-) 2(f) Z 

F,. 
71 (f) I Inus we ret an 

for i. z, 1,2. '-% en by 

(A) of theorem 3.1 Cqi is a progenerator and there is a natural 

equivalence T .F --t Qi But as , Q, q, there is a natural iiSý 

equivalence U: Q (2) - teQ, Hence TaT UT :F te F" is a 1R2121 

natural equivalence. 

I 

14 
Let be a submodule of S) N and 4, a skeleton for F0 ýTence 

for some AEA0 and monomorphism f: A - 11 we get Q= (A) F l(f) F, 

(A )F 2( f)F 2, Now we have the commutative diaiýrnor. 

AF2 
(f 2F2 

4k 

T(A) T 

F FF 
A 

and so as in the first part of the lemma we aet (A) F 

(A )F 2(f) 
F2 iss, QT(V) for any submodule 4 of Therefore T(! ') 

0 
induces 1 L( N), 

0 
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Theorem 
-1,4. 

Let be a free module of infinite rank and Na S 

module with L: L( V)ýý Then, if '-I contains at least one free R 

element, Z is induced by a category equivalence F: 

Furthermore a category equivalence G: 11 induces Z if and only 
0 

if there is a natural equivalence T: FL-- G, such that T(IO induces 

1 
L( 

sW 
Proof 

Let (e 
i)icj be a basis for 

p" and let ýj, = (lie 
i)T. Tly 

theorem 2.3 there is an 3-module Sý such that 'ý '5_X' 11,1 for all iFI and 

a semi-linear isomorphism (t, s): (End 
R 

(R) 
, HOT- F( "P 11 

)1 12ý 

[End (Q), Hom, (Q, N)] i. e. (1, s): JR; 1ý, Jte [ý: nd, 
'(, 

), Hon, (, J, S0 

Let ycN be free. Now N and so there is a finitc- 
i El 

L, 

subset FC I with n elements, say, such that yE ED ýý. i 
Hence for 

iEF 

every finite subset GCI with n elements has a free element y 
i CO 

As Re i is finitely gbneratedi, by cor. 1 to lemma 1.1 so is Q, j 

say by m elements* Let H be any finite subset of I containing mn 
n 

elements such that iJH. Then HG of disjoint subsets C of H 

where each G contains n elements. We have f) 0 and i 
kcH 

containd a free element y Hence there is a free subinodule 
kcG 

kG 

m 
of rank m, namely (D: ýy, 9 such that U r) J. As I,, is generated 

j 

by m elements there is an epinorphisri f: U By (2) of 

F-1 
- 

E- 1 
lemma 2*2 there is an epimorphism g: U "'eit 1ý lut Pei 
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T- 
1 

is free and so proýective. Hence Fle i 
ýý a direct summand Of U 

Hence by (2) of lerma 2.2 we get q i 
C_'! direct summand of U. "Ut UiS 

free and hence ýýjq and therefore ý,, is nrojective. 
-1 

Let P= (Sy)E , then P is finitely generated. Fxactly as 

before there is a finite subset DCI such that if G Re 
k t'.,,. en 

k cD 
11 0P=J and there is an epir. orphism g: ', ' ') of lerun 

. 3Y 

Y, As tefore t, there is an epinorphisn f-%' his means tha 

is isomorphic to a direct summand of VI Thus a direct s 
k c: ý 

of copies of Q contains S as a direct sumnand and so (,,. i3 a generat 

Therefore 'I is a progenerator. Jut 1, nt! End_ (ýý) and so by (C) of' 

P=J and there is an epir. c. -phism g: '. ' 

there is an epinorphisn f, %' Y, 

E 
is isomorphic to a direct summand of V 

of copies of Q contains S as a direct sum 

theorem 3.1 RIS. 
14 

Now the functor Hom 17 (q, -): q" is a category equivalence 

by (H) of theorem 3.1, considering Q as a ripht P-module via the 

soinorphi sm k: P Ce End S Now 9 eving that (Zg s) is a semi-linear 

isomorphisn. [R, [Znd, (, ý, ), Fori 
S 

(. ýj ý1)1 'Is equivalent to sayinF, týlat 

0 ITOM iSa R-isomorphisn. ! ýCt ! 'on, (',, 
-) and let 

G LA be a category equILvalence inducinw týie I 
2RF attice isomorphi-irr 

induced by s- 
1. 

Let G, aG then G is a category equivalence: 

IJ 
SR 

If A is a finitely generated subnodule Qf " then for some finite 

subset E we have AC (D Pei Hence n. remark 2 to theoreir. Z. -; ) 
T)S-1 

i CE 
W. 0 Hom A- 'A i. e. AZ G=A. Let F 1-c %. -, equivalence: T) 

k cD 

.3 y(- of lernma 

As tefore this means that S 

(ý4 
N, Thus a direct sum 

k c: ý 

mand and so (., i3 a generator. 
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such that there is a 

a category equivalen, 

L( S N)Sý L( S N) as the 

Then F is a category 

GF induces 1 
L( N)s 

submodules A of M we 

natural equivalence T: GF 1=1. Let F2 be 

ce: S 
Ip 

S 
ý' inducing the same lattice isonorphism: 

isamorphism TOM): 11 -m"m' N. Define Fa7F,. 
SS1 r- 

equivalence: Rw -----+ SW such that the equivalence 

Since Al GaA for all finitely generated 

have that AZ - AF for all finitely generated 

submodules A of M. Thus by le=a 1.3 F induces the lattice 

isomorphism So 

The last part'of the theorem follows from lemma 3.3. Later 

(cor. 1 lemma 4.1) we will show that the isomorphism T(V) inducing the 

T identity lattice isomorphism on L(SIO must in fact be left multiplication 

by some unit contained in the centre of S. 

It is not clear whether the condition that N has at least one 

free element can be weakened. - If however 3N is not faithful the 

theorem need not hold as the following example shows. 

ExamPle 395* There exist a free nodule 1.11 of infinite rank,, a non- 

faithful module N and a lattice isomorphism E: L( !! ); f p L( N) S where P 

Proof 

Let R be a Noetherian ring and let Sw the direct product of P 

with a non-Noetherian ring T. Then R is Noetherian while S is not and 

Ao R 7&p s. Let PI, be any free module of infinite rank. We can consider MR 

M as a S-nodule by lettirig the connponent T of ý- act trivially on 1'. 
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I 

Denote this S-module by SN, 
It is easily seen that SN is unital 

and that L( R M)Sf L( S N) since every R-submodule of M, is a S-subrodule 

of 11 and conversely, 
df 

Cor, l, Suppose R and S are rings and I is an inflnite set. Then 

(a) L( IR) ^-j L(I S) implies'R -, OS R -- S 11 

(b) L( B1 )e L( SI) iniplies P 0- s. R 

Proof 

9 (a) This follows immediately from theorem 3.4 as 
I 

IS contains a 

free element. 

(b) Let 11 MMRRI and SN=SSI and suppose E: L( 
R V) 44 LS N). We have 

R 
1: j 111 0P1 10 IR I GORI Hance there are submodules P1 and TI 2 of M 

such that P0 P2' 
I 

RI 04 R, and subnodules TI and 1 11 
119 

P129 P21 P22 

such that, P, PP and PPP where P '* P ýý': P 
11 12 2 211D 22 1 21 22" 

and P ! 2ý P 13 IC* R, Let QE and ý4i T) 
I 

where I<i, j 2. 
2 11 '12- ij 

rij 
i 

Then by (2) of lemma 2*2 Q 4ar Q Q, 
I 12, f r. 

1,01.1 Q2 and 21 221Y 
Q'l 9 41 '= 

2* 

Hence Q ED QQ ýýt' Q9QaN and similarly Q C4 14. 11 12 '42 2122- 

Now PlSe RI so P contains a free module of infinite rank. 1 

Lot (e be a basis for this free module. Then as Q, =PE we i iCI 

have PE and SI contains a free module of infinite rank. 1 
(^1 Q2 "0 Q2 

The arguments used in theorem 3.4 then show t'hat (Re F is a 

progencrator and R S. 
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Definition, A ring R is called subcommutative if every left ideal of 

R is a two-sided ideal i, e, for any given elements a. xcR there is 

an element yeR with ax a ya. The notation subconnutative has been 

used by Barbilian in another context, 

Let R be a subcommutative ring and Rx a cyclic left R-module 

on generator xo Then L(x) is a two sided ideal of R and so for any 

element reR L(x)r C L(x)e Hance L(x)rxC: z(x)x -0 iseo 

L(X) C: L(Rx), But X(Rx) C L(x) and so L(x) = t(Rx). 

Exploiting this fact we show in our next corollary that the 

condition that SN has a free element in theorem 3.4 can be dropped if 

S is subcommutatives 

Cor*2# Let R be a ring and I an infinite set. Suppose that S is a 

subcommutative ring and N is a faithful. module with E: L( I R)C"-! L(, N). SP 11 
Then 

Proof 

I 
Let (e be a basis for Re Let 1 be a fixed eleMent of 1. i iCI 

Then by theorem 2.3 there are isomorphisms si :Q1Qi where Qi= (Re 
i 

flow Ql is finitely generated by n elements xl, xn say, As 

IL(Q L(Q and hence E(Q L(N) - Ol, since 

S 
is faithful. But since S is subcommutative we have that 

nn 
L(xi LOX i) and so 

Oi(x nL (Sx I1 12 0' 

11 
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n 
t1ow consider the element yEN where y-ExtSi and 

iiC Qi, , is an independent set of subriodulon of N, ve x8 As (Qi)ic 
na 

have (Y) n Z(xi a 1) 
0 L(xi 0 since the s Is are all isomorphisms. 

11 

Hence-N has a free element and the result follows from theorem 3.4. 

Cor#3, Let R. S be commutative rings and I an infinite set* Sunpose 

OSN is a faithful module with Z: L( RR)-! U L(SN), Then R; t S. 

Proof 

S is obviously subcommutative, Hence by cor.? R---S. But m 

this imPliCs (see e. g. (7) of Morita 1 of Bass (1)) that centre (R) C-ie 

centre (S) ites R! -! ý S. 

Theorem 3.6. Let R and S be rings and I an infinite set then the 

folloving are equivalent 

(1) R -, os 

R fl 
le 3 fi 

R 
rbI2ýý 

SrbI 
', 

a 

(4) R 
cbIt- 

ScbI 

MIR) L( I S) R 

L( 
IR S-- Ls s R 

sI R, I-It L L( R s 

1,01) *;? # L(S I ps 

*Part of this theorem was communicated to the author as a conjecture due 
to Lavvere in the form R`ýAOS if and only if "the infinite matrices over 
R and 0 ar* isomorphic #t .M 
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I 

0 

I 

9 

Further if any one of the equivalent conditions (1) to (3) hold then 

R and RcfIQ5 Scf I qhe ! en"rse se-ed not hel-do 
rf I Srf I 

Proof 

Let SQ be a progenerator. Then for some integers m and n there 

are modules SF and SG such that Qn0S0F and Sm aQ 4) G, Hence we 

get the foll(wing isomorphisms 

II "I I I. 9ý(Qn),., Ce IS '(D IF q IS 9) s (D F '2! 13 4a 
IQ ne I( Sm) 

GG In! So Thus there is an isomorphism 

So Similarly noting that (A S B) I qF A, 4ý B1 for S-modules A 

and B we can also prove Q 04 S 

Suppose that R"S then there is a category equivalence 

F: RS 
11 and for some progenerator SQ we have RFQ, But F 

preserves direct sums and direct products and so (IR )F IQ2e, S and 

IFII (R ) !* Qil^e S Hence we get lattice isonorphisns L(, R)tý L( S S) and 

L( RRI)?! L( SSI and so (1) implies (5) and (T). By symmetry we get 

(1) implies (6) and (8), 

By (A)(3) of theoren 3,1 we have that R W_ End Now S 

S and so there is a ring. isomorphism L: End S( 
I End S( 

defined by fLas -1 fs for fE End S( 
I 
Q). Hence bv (1) of lemma 1.7 

(End (Q)) "" S i. e, R&S By syrnetry we also have 
S rfI rfI rfl - rfl' 

CrI 
tt s 

CfI* 
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Now suppose ac End, (IQ) and image (a) is contained in a S 

finitely generated submodule. Then it is clear that image (a I) is 

also contained in a finitely generated submodule and conversely. By (2) 

of lemma 1.7 we see that j induces (End S i6ef R r-4 S S rbI rbI rbI- rbI' 
By symmetry we also have R 

cb IS cbI* I 

Let IQV (P Qi where Qit Q and 
is 

. (P Si and Si'ýe. S. 
ici iCI 

I Let ac EndS( Q) then's careful look at the constituent parts of the 

isomorphisr, st Q r, -, *r, S shows that if Qa-o for almost all i then it i 

follows that Sia ao for almost all i and conversely. Hence by (3) 

of lemma 1,7 x induces (End S(Q))fi te sf, i. ee R fliýý fI* 

Hance (1) implies (2) to (8) and R ow C- 
CfIý ý CfI and P 

rfI ýý4 q 
rf! ' 

since any ring isomorphism of twq rings certainly induces a lattice 

isomorphism. between their lattices of left (right), ideals we have by 

theorem 1*9 that 

(2) i; nplies 0) and (6) 

(3) implies (8) 

(4) implies (T) 

and by corsl of theorem 3.4 

(5) implies (1) and by symmetry so does 

(T) implies (1) and by symmetry so does 

Hence the conditions (1) to (8) are equivalent. Wt: CoTlatmde 
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M 'llwe ý ..... ...... I "ý,: krgs P, and S suctri-t-tirat-for any ilia 
6 

rfl- rf, 

Neetherl aw v-4 ug o6nd 9 Fi 
rfI 

(note 9 hm- a 

Rrri (RfIJtfI 

0 

co, r#lo Let R be a ring and'I a set cont-aining at least three elements. 

If E: L( R 
XI 

R 
XI 

)t! L( s 
X, 

s 
Xi 

) where x-f, rfl cf. rb, cb then RxIte S 
xi, 

Proof 

If I is finite this is cor-3 of theorem 2.3, 

If I is infinite and x= rf or cf this is cor. 4 of theorem 2.3. 

If I is infinite and x-f. rb or'cb then by theorem 1,9 it follows that 

(1) L( 
I R)'W L( 

I S) if f R-S 

(2) L( RRI)! 
ai L(SSI) if x- cb 

III 

. 
(3) L(Pý)'* WSS) if xa rb 

In any of the cases (1) to (3) it follows from theorem 3.6 that 

xi = R"s 

f 



CHAPTER 

SEMI-LINEAR ISOMORPHISM-S 

In this chapter we consider lattice isomorphisms, which give 

rise to semi-line&r isomorphisms. In the first part of the chapter 

we assume that our modules can be decomposed into a direct sum of more 

than 3 subnodules e ach containing a free element. In the second part 

of the chapter we impose restrictions on our modules similar to (but 

more general than) those in SkornytLkov (2). We also consider cyclic 

preserving lattice isomDrphisms i. e. lattice isonorphisns under Vhich 

the image and the inverse inape of a cyclic module is again a cyclic 

module. In particular we show that if there is a cyclic preserving 

lattice isomorphism between the lattices of subnodulea of a free nodule 

of rank >3 over an inverse symmetric ring (a fairly mild ring condition) 

and a faithful module then there is a semi-linear isonorphisr. between 

them. A generalization along sirilar lines is viven of a theorer. of 

Skornyakov. 

In remark I to theorem 2.3 we pointed out that a number of 

theorems in chapter 2 were true wit'hout inposing the restrictions that 

ail rings have a1 and all modules are unital. We now give some very 

general examples to show that some sort of restrictions are necessary 

to get theorems on semi-linear isonorphisns. 
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Suppose that S is a ring without a 1. We can adjoin a1 by 

making the abelian group S $-alnto a ring with a1 where we define 

multiplication by (s, n)(t, m) - (st + nt + ms nm) for any n, mF 

and s, tc So Denote this ring by S1 The map s (3,0) is a 

ring mononorphism: S -S1i. e. S is embedded in S1 and SI has a1 

namely (o, 1). 

Suppose SN 
is a module; then N can also be considered as a 

Sl-module by defining (s. n)p - sp + np for sc C# nc and pEN. 

Clearly every left S 
1- 

submodule of N is also a left 3-subnodule and 

conversely. Hence L( N) L(A). 
S 

Suppose that SN is a module which is not necessarily faithful. 

? qow Z(N) is a two-sided ideal of S and so S/ZCT) is a ring. Denote it 

by There is a natural ring epimorphisrr, D: - 7 and we can 

consider N as a left S-nodule by defining for t E-. and xFM tx - SX 

where s* = t. It is easily shown that this definition does not depend 

on the choice of s and gives us a well defined ý-nodule, which we note 

is faithful. Clearly every S-submodule of N is also a S-submodule and 

conversely. Hence L(, N) 

Let RM be a module and suppose that we want to prove a theorem 

of the form: if 
SN 

is any module with s,,: L( 
RM) 

Qý L(, I; ) then there is 

semi-linear isomorphism: (R, 14)'2'5 (S, N). ýTf 7, does not have a1 we 
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know L( S N)'-ý5 L( 1 
N) and so there are semi-linear isonorphisms (Fj 

(Ss N) and (R$ I)Cf (S 10 
N' ). Hence there is a semi-linear isomorphism: 

(Sj N)ýK (S 19 
IN ), This is impossible as S' 1 

has a1 while S does not, 

Similarly if 14 is not faithful then we know that L( T, (-, -V) and so SS 

there is a semi-linear isonorphisn: (S. (7,31 But this is 

impossible as SN 
is not faithful while is. These examples show that 

to get theorems about semi-linear isomorphisms we must assume that all 

rings have a1 and that all nodules are faithful. 

Definition. Lot R P! be a module and ca unit c R. 1, et P be the 

ring isomorphism defined by r crc- 
1 

and 9: (t'j +) : -- 0,19 +) be the 

abelian group isonorphism defined by m ----w cm. It is easily seen 

that (1, 3): (R, M)SO (JR, 11) is a semi-linear isomorphism. We S fty 

that (, tg 9) is the unit semi-linear isornrphism defined by c. Ar*, 

unit semi-linear isomorphism induces the lattice isomorphism 1 T, ( 1-1) 

and our next lemma shows that the converse is also true for free modules 

of rank > 2# The proof follows that of prop. 3 of chapter 3.1 of Baer (1). 

Lemma 4, ý, Let RM be a free module of rank > 2. A ser-i-linear 

isomorphism (L9 s): (R (R, V) induces the lattice isomomhisr, 

if, and. only if (i, s) is a unit seni-linear iqomrphisn. 

Proof 

Let (k, s) be a unit seri-linear isomorphism: (P, ! ') 2ý (p, -) 

given by some unit cc7, if mr 'V then -RIm;. (cpc- I 
)CT-. 

= 

cRin Rm. Hence if T is a submodule of I' then PF PD and so 
PEP 
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Ps=Z( Rp Z R'P 
PEP PEP 

Thus (Z. s) induces 1 I 

Suppose conversely that (LO s) induces 1 L( 
R MY Let x be a free 

1% Then (Rx)o = (Rx)l 
L( M) a Týx and so Rxs - Rx. Ilence element E 11 1 

there are a, bER with x- bx s 
and x3= ax. Since x is free so in x 

and we get ab a ba = 1. Hence for any free element xCI! there is a 

unit f(x) CR such that xs - f(x)x. 

Let (e 
i) iEI be a basis for Consider a fixed basis eler. ent 

e and any other distinct basis elerent ejo Then e1s= f(e, )el and 

ea f(ei)ej, sow (el +ei) is a free element and so 

f(e 1 
)e 

1+ f(e i 
)e, e1S+eiaz (e 

I+ ei)s f(e, + ei)(e 1+ei 

f(e +ei )e 
1+ f(e +ei )e,, Thus f(e 1) f(el +ei)- f(e i 

). Hence 

for any icI f(e 1 :- f(e i)-c where c is a unit. Let 10icI and 

rcP then e1+ rei is free. Thus ce I+ 
(re, )s 21 f(e 1 

)e 
1+ 

(re 
i 

)s 

5 
+ (rej)' - (e 

1+ re i) f(e I+ re, )(e, + rei) f(e 1+ re i 
)e 

1+ 

f(e + rei)reis Hence c f(e I+ re i) and so (re - f(e I+ rei)re i 

creis Similarly since rank of M>2 we can shov that (rel sa crel, 

S r1ow for any element xa Er i ei cM we have xs v (Erie, )s = E(r ie i) 

Ecrie ia cEr ia10 cxp Hence s is left multiDlication by the unit c. 
L -1 -1 S Suppose rER then re (re 

1)s 3a cre 1= cre ce, a arc e10 But 

e18 is free and so rI cre- 
1 

and (L, s) is the unit semi-linear 

isomorphism defined by c. 



- 68 - 

Cor. l. if 
RM 

is a free module of rank >2 then a linear isonorphism 

S: R 
J,! 1=: ý 

RM 
induces 1L( 

M) 
if and only if s is left multiplication by 

a unit cE centre of R. 

Proof 

Left multiplication by a unit CE centre of R is clearly a 

Jý 1.. 0 linear isomorDhism inducing 1 
M)f If S: is a linear isomorphism 

L( R 
P 

inducing I 
L( M) then (1, s) is a semi-linear isomorphism inducing I 

where 1 is the identity ring isomorphisin r ----* r. Hence by lemma 

s) is a unit semi-linear isomorphism for some unit ccR and so for 

any rERrar crc_ 
I i, e. cc centre of P. 7hus s is left 

multiplication by a unit cc centre of R. This nroves the remark made 

at the end of theorem 3.4. 

It is easy to see that the condition rank > .2 cannot be 

weakened. Let D be any division ring with a ring autonornnism s: D ýý ', 

which is not inner (e. g. the corplex numbers where s is conýugation). 

consider D as a left D-nodule then (so s): (D, D) ne (D, D) is a semi- 

linear isomorphism inducing 1MD As a is not an inner automorphisn 
D 

is not a unit semi-linear isomorphism. 

Theorem 4.2. Let RV be a module which is the direct sum of an 

independent set of submodules (P 
i) icl, where 1. is an index set containing 

at least three elements and where for each ic1 there is a free elevient 

ei C Pis Suppose SN 
is a module with and such that. fnr 

some icI and free element fiEN ('Re 
i) fi. Then 
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(1) there is a semi-linear isomorphism. s). -(Bq ! '):: V 

(2) defining Pf -FP and Q* then ( 49 s) induces E:!, ( Pý) 
i 

joi 
iRI 

L( Qj*) Si 
(3) to s) is unique to within unit semi-linear isomorphisr. with 

respect to property (2) 

(4) if I is infinite then (to s) induces E: L(,! A)C_ýe L( , I). 

Proof 

(1) Putting P- R9 Q-S in (4) of theoren 2. ý, we get a ser. i-linear 

isomorphism ( Z, s End 
R( 

R) , Ifor;, (R 
, M) [',,,. 'nd, ( SO HomS( ý',, N) i e. 

(to 9RI M)ý-- ! (So M) 

(2) By remark 2 to theorem P. 3s)i nduces 1: L P* ) Cýt 
Ri 

(3) suppose (V, s) is another lattice isomorDhism inducing 

E: L( P*j ) tA L(Sý4*) then ( Z, s 9.1 sI )-l induces 
-ince P, * t%Ai 

a free module of rank >2 we have by le.,, Lna 4.1 

that (to s) and Wo s') differ by a unit semi-linear isonorphisn. 

If I is infinite then any finitely generated submodule A of M iý,; 

contained in PI for some ic1. Thus we see that (L, S) induces 

J: F(R M),, U F( SN). Hence by lemma 1,3 (1, s) indtices 

Cor. l. Let RM be a free module of rank >3 on free generators (e 
i) ic"* 

suppose SN is a nodule with Z: L( R 
M)ý: - L( 

S 
N) where, for Rome iET 

E 
and free element fi c N, (Rei) . Sfi' 'nen there is a semi-linear 

isomorphisn ( 19 s ): (R$ V) ý: Ie (S 
I N) which for iny F_ I induces 

P* ) ý*. Ne L( where P* Y Pe i and j- 13 *, 1 
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Proof 

This follovs immediately from theorem 4.2 putting Pi a Re,, 

We have already noted in example 2.4 that this corollary fails 

if the rank of M' < 3. Our next theorem shows that even if the rank of 

14 a2 the rings R and S are closely related* 

Theorem 4.3. Lot RM be a free module of rank 2 on free generators el 

and e 2' Suppose S 11 is a module with Z: L( R ! ')ne L(,:, N) such that, for 

same free element f, E NI, (Rel)E a Sf 1. Then 

(1) there is a set isomorphism t: R S with lt if 1 

(2) if acP then (Ra) t= 
Sa 

t 
and (Z W) t= 

E-(-k 
t) 

(3) t induces the lattice isomorphism I, ( P)*'Nd induced by R 

T6 : L( R Re i 
)::! L( 1) Sf i) for i=1,2. 

(4) if U(B)t U(S) are the groups of units of P and S respectively then 

U(R) t. U(S) 

ttt 
if aq bcR and Rarl Rb x0 then (a + b) a+b 

Proof 

These results are basically translations of the results of 

lemna 2.2 to our particular case. 

By (1) of le=a 2,2 there is a set isomorphism t 
192. 

HomR(Fejq Re flon, (Sf,, (Fe Now tliere is an isonorrhign 2 2) 

Re, Cýe Iýe 2 defined by e e, ) and so by (2) of lerar. s. 2.2 there in 

isomorphism Rf '-"4(Re defined by ff for some r pi vitn 122 

i(f 2)= 
Z(f 

1) - 
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There is a set isomorphism x: R Horý(Rel, Re 
2) 

defined by 

r (e 
1 ------ * re 2 

). Similarly there is a set isomorphism y: 

S 1'O9,3(Sfl, Sf2)* Thus we have a set isonorphism t- XL1#2y -1 

RS with 1t. 1. 

Since we have that f1 and f2 are free we get lattice isomorphisms 

Ei : L(RR)!:! e L( S S) induced by ElLtL(2Rei)Eý L(SSfi) for ia 11,2. If A is 

a left ideal of R then Ae + A(e +e Ae + Ae a Ae + A(e +e 
I11211r22j212 

Applying E we get Af+ B(f +fAf+AfAf +B(f +f2) where, 1121221111 

B is a left ideal of S and A(e 1+e 2) B(f 1+f2). If tcA then 

tf Sf 2+ b(f I+f2) where bc Be Thus tob and A 13. 

2 
similarly Aa Be If on the other hand bcB then b(fl +f 2) 

sf1+52f2 where sicA for i= 11 2. Hence ba81aa2cAA 
11E2r1z2 

and so B= A r% A. '"herefore A. B-A. Thus Z, aT2 say. 

For any acP there is afc lion R 
(Re, 

6 Re 2 defined by e 

ae 2' By (2) of lerira 2,2 we have (A) inage (f) imave (ft 
192 

E (B) ker(f) . ker(ft 192)' 

From (A) we deduce that (Rae 
2 Sa te2i. 

e. (Ra) Aa Sa t if 

bc Ra and g E. HomR(Relq Re2) is defined by'el -- be 2 then inage(p)c- 

image (f). Hence Sb t f-- Sa t for any bc Ra and so (Ra) tC Sa t. 

t t- 
1tttt 

symmetrically (Sa ) 4= Ra and thus Sa C: (Ra) and (Ra) a Sa - (Fa) 

If A is a left ideal of R then clearly AtCAA and by sym:, Letry 

AtA tý 
ý. lience AAtt=A. (A C: (A ) A. and AA Thus t induces 

and (Ra) t, Sa t' 
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From (B) we deduce that (t,,, (a)ej)ý Z, (at)fl iae, Z, (a)'ý 

Oa t 
Therefore LR(a) 

t (a) P, 
=I (a t now U(R) S 

t 
(a C R: z R 

(a) -0 and Ra = P)s Hence U(R) U(S). If a, bER and 

t 
Rao Rb 0 then it is clear from (4) of lemma 2.2 that (a + b) 

tt 
a+b 

We now show how we can drop the assumption th, at fi is free in 

theorem 4#2 by imposing suitable restrictions on P, S and E. 

Lemma 4.4. Let RM be a module and X, Y subnodules such that X () Y-0. 

.4 Suppose N is a module where E: L( 14)td L( 14) and for some x1 ET 
S P. 

f. YE, E E- 
1 

arid X-jM=; *z# X Sx' ,Ya Sy' and R(x + y) (,. ', (xl + y' Th en 

X Rx and Ya Ry, 

Pr 

We have Si' + Sy' 0 S(x' +y+ "x' (x' +y+ Sy 

Applying I we get X+Yw R(x + y) +Xa P(x + y) + Y. Hence 

x+Y- R(x + Y) +Y 

a F(X + Y) + J; ýv +Y 

a RX + RY +Y 

=x 

Intersecting X with both sides we get X= Fx. : 7inilarly Y Py. 

N. This le== is prop#9.1 of Baer (A 

Definition, Let R be a ring such that any elements x, yE sftti5f'yir. F- 

xy -I also satisfy yx - 1. Then P is called an inverse symmetric rini-. 
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ring R is not inverse syrmetric if and only if it contains a 
I 

copy of itself as a proper direct su=and, In fact it is not difficult ý 

to see thatq for any module R 
! ', End R 

(11) is inverse symmetric if and only 

if IM does not contain a copy of itself as a proper direct surmtand. 

If R is not inverse spimetric then 'R contains an infinite direct 

sum of isomorphic left ideals generated by idempotents (see Jacobson (2)), 

Hence any sort of minimum or maximum condition on principal left (riFýt) 

ideals or on left (right) annihilator ideals is sufficient to ensure a 

ring is inverse sycLmetric. Other obvious exa&. ples of such rings are 

commutative rings and integral domains, We shall see in chapter 6 that 

this condition also arises naturally in the study of regular rings, 

Le=na 4.5. Let RM be a module and x. ycM with Rx n Ry - 0. Suppose 

SN 
is a module with L( S N) where for some xI, y, cN 

(Rx) E. SxI and (Rq) Sy'. 
* 

Then if 

either (1) (S(xl + yt))' is cYclict L(x) m0 and R is inverse syr%metric 

or (2) L(x)C L(y) and S is subcý tative 

then L(x' )C Z(Y' )- 

Proof 

E-1 (1) suppose (S(X' + yl)) is cyclic and R(x + yl) for some x, r Rx 

and Y, E Ry, By lerim 4.4 Rx - Rx and Ry Ry and so there are a. tr 

with x, = ax and x- bxlo Hence x bax and if I(x) -0 we get ba 

if R is inverse sy=etric then ab 01 and so a 13 a unit and x, - ax is a 

free element. 
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Since x1 is free there is a homo=rphism fiRx 1 ----*, Ry 1 defined 

by x -yl Ide can "represent" f as in lemna 2,1 by (m -mfI 

mC RX 1 
R(x +y By (1) of lemma 2.2 there is a homomorphism 

g: (Rx 
1 

(Py 
1 which is "represented" by (R(x 

1+y1 Is (X, + V, 

i, e. x' 9 Hence I(x' Z(-y' jt(yl 

(2) Suppose that L(x)4= Z(y). Then there is an epimorphism 

f: Rx - Ry defined by x --- y. Hence by (2) of lemma 2.2 there 

an epimorphism g: sx' --- Syt defined by x' ---- ty' for sone tcS 

such that Styl - Syl. 'We have then that i(xl)g= L(tyl). If ") is 

subcormutative then Z(y') = I(Syl) , q(ty, ). Hence X(x' )C: Z(yo'). 

Definition, Let RM and SN be modules such that E: L(p11)ne L(, N). 

Define the following conditions on E. 

(C For any XEM there is ayEN with (Rx) Sy. 

(C2 For aWj YE 11 there is aXE !ý with (Sy) , Rx. 

If E satisfies C1 and C2 we call Ea cyclic preserving lattice 
c 

isor-orphian and we write L( R M) 2e L( fý I). 

Theoren 4.6. Let R 14 be a m. dule which is the direct sum of an 

independent set of subr. odules (P 
i 

)i 
C It 

where 1 Is an index set 

containing at least three elements and where for each icI there is a 

free element eiE Pi, . )uppose that N is a faithful rrodule with 
c 

E: L( RM) !; ý I, (N if 

RS 
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either (1) R is inverse symmetric 

or (2) S is subcom=utative 

then there is a semi-linear isomorphisne. (R. M) t_-! (9 
1 N). 

Proof 

Let e1 be a fixed element of (e 
i) icio As E is cyclic preserving 

(Re Sf 1 for some f, c N. By theorem 4.2 we need only show that 

f1 is a free element. 

By theorem 2,3 Sf for each icI and so (Rai) 

Sf for some ficN with t(f i k(f Let QiaP, P* -EP and 
joi 

If qc Q* then since E is cyclic preserving there is a iiEi 

pc Pý with (Rp) a Sq. 

Now Re P* = 0, (Re 
i Sfjo (Rp) Sq and 0- X(e i )C 1(p). 

-1 
Furthermore (S(f 

i+ q) )E is cyclic since Z is cyclic preserving, 

Hance if either (1) or (2) hold it-follows from lemma 4.5 that 

I(q). But q was any element c and so L(f I(f )C 

The. refore I(f oar) -n L(Q L(N) U0 as S 
11 is faithful. 

iEI icI 

Thus f, is free and the result follows, 

Cor. 11. Let RM be a free module of rank >3 and SN a faithful module 

such that E: L( R M) tc: ý-L( S N). If R is inverse symmetric then there is a 

9 e-ni-linear isomorphism: (R, M)'ýe (13,11). 

Proof 

Put Pi = Pei in theorem 4.6 where (e 
i)icl are a ba3is for IR v. 
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Cor. 2. Let RV be a free module of rank >3 and SN a faithful module 

with E: L( R 
M) "=: L( S 11). If E satisfies condition C1 and 5 is sub- 

cormutative then there is a seni-linear isonorDhism: (R, Ij)CJ. (7$ 11). 

Proof 

Let (e i)i ,I 
be a basis for 1.4 and (Pei)E - Sfj for element3 

(fi)i 
EI 

of N with 1(f i)- X(f i) for all J, j E: 1. By theorem 4.6 we 

need only show that X(fi) a L(q) for any qcE Sf Suppose 

qE8jfi for some (s )j 
C1 E So Then L(q) t(s f, But 

joi joi 
. 
E( fi)- It 

E S3tS L(f 
iH- 

It 
C S: t8j (f 

since 5 is subcommutative. Henqe E (f i )ý= i(q) and the 
J-Oi 

result follows . 

The following example shows that the conditions on " in cor. 1 

and cor. 2 cannot be dropped. 

?, Ixample_ 4j. There exist free rodules ", :I of rank such that 

E: L( R 
?! )ýe L( 

S 
N) where (1) Y satisfies C2 (2) F is inverqe syr=etric 

S is comnutative (4) Pt* f", 

Proof 

Let S by a com=utative field and n an integer > 3. Then since 

(S 
3)n 

(S) 
3n we have by von Neumann's theoren a lattice isoriorphisn 

E: L( n) 3n). If we put R= IS then I and is inverse S333 

Symmetric (it is Noetherian for exanple) and n is a free nodu'le 

of rank > 3. S is commutative and j _Sý, 
3n is a free module of rank > S. 
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3ut an., cy, -iic moduie over a field Z, iru5t be c--- S and so/sLmple. 

"A 

any lattice inomorphic imaFe of a cyclic module over ' is again simple 

and so cYclic. Hence 2 3atisfies C2 (but not C 

7he . 11. attice isomorphisms E: L( Otif- L(, N) and : 1, ( . 3) 2ie T, (-:: ) 
aS-t, 

show that cor, '. need not hold if I' does not satisfy one of the conditi, ýns 

C or C,,. '--'he lattice isornorphism I: L( T shows that cor.: ' 
I IR 

neei not. hold if ,' does not satisfýr C,, even if it satisfies C,. 

'. 'o far we have assumed a rather explicit forn for our modules 

viz. that they can te split Into a direct sun of more than three 

submodules. We now impose rather different restrictions allowing us 

to stuly modules which are not necessarily cf this type. The conditions 

-we consider are s, ',. iwhtly weaker versions c., f týie fr)lloving conditions, 

(2). wnic! -. ý apoear in "kornyakov 

1)e_f i ni ti on. module is called admissitle if the following proDerties 

hold. 

For arcý x, :. -, z there is a free element w with Rw0 

!. 1' 4-1 7 and u are free elements c !' such that 1; ur) Nt 

and 'ýxfl -'ýY then týiere is a free element wr', ' with Pw rl ! ýx 

Py w 

Dpfinitirn. het and ,NA modules and K(, ") and K( sublattices 

resnect to the operatIons + and cf 4j) and 1) respective!:. 
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Suppose further F( R 111) C- K( R 10 and F( SIT)c r, (SN)o A lattice 

isomorphism r: K(, M) '-"o K( S N) is called a projective mApping, if 

(1) z is cyclic preserving 

(2) there are free elements uc 14, ul-c 11 with (Ru)E w Sut. 

Theorem 
_(Skornyakov). 

Loet R be an inverse sy=etric ring and RM an 

admissible module# Suppose S 11 is a module and Z: K( R 11) C& K( SIO is 

a projective mapping, Then there is a semi-linear isomorphism: 

(R, (So N) inducing Es 

Remarks, 

(1) Corol to lemma 1*3 shows that no generality is gained by a3suming 

MR 11) Ct? K(SN) rather than L(RMMtt L(SII) @ 

(2) From condition- ýIl for admissibility' there is a free element. wl 

such that Ro A Rw a 0. a free element w such that Rv t) Rw a 01 121'2 

free element w3 such that (Rv 1 ýO Rw2 )r% Rw 3a0 and a free element w4 

such that (Rw Hence condition M implies 10 I'w2 C'ý- Rw 3) (ý Rw4 "0'I 

that 14 has a free submodule of rank 4. So far we have seen that the 

existence of a fr6e module of rank 3 is usually all that is needed to 

get theorew on peni-linear isomorphisms. For example a vector space 

of dimension 3 does not satisfy 11 and so is not admissible* 
I 

Skornyakov's theorem thus fails to generalize the first fundamental 

theorem of projective geo=etr7 (see Chap, 3,1 of Baer (1)) for dimension 3. 
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In our theorem we replace conditions 1,1l, 1, ý by weaker conditions 

Slt S 2' We will show in chap#7 that any left module of rank >3 over 

a left Ore domain satisfies S 1, and S 
2" Hence our theorem gives a true 

generalization of the first fundamental theorem of projective geometry. 

(3) We show (cefs theorem 4.6) that if R is inverse symmetric, T. cyclic 

preserving and N faithful then E is a projective mapping. Alternatively 

if we only assume that there are free elements ucM. u' cN with 

(RU)r a Sul i, e, drop the conditions that R is inverse symmetric and r 

is cyclic preserving then the conclusions of Skornyakovwd theorem still 

hold (cefo theorem 4s2). 

(4) Finally we note that in this case the lattice isomorphism Z is 

induced by the semi-linear isomorphism. 

De_finitions Let M be a module then we define the following conditions 

on 

(S 1) For any xo Y. zc It with Rx f's Ry -0 there is a free element w 

such that (Rx + Ry)f) Rw (Ry + Rz)f) RW 0 (Rz + RX)r% RW a 0, 

(S 
2) If tcM and u. x. are free elements cM with (Ru + Pt)e) px 

(Ru + Rt)() Ry a0 and Rxfl Fýy 0 0. Rutl Rt 0 then there is a free 

element wC 11 such that Ru A- Rw w Rt n Rv Rx n Rw a Ry f% Rw - 0. 

We note that condition 14 1 implies Si for iw 1% 2. 

Theorem 4.8. Let IA be a module satisfyinp conditions S1 and S2 and 

Na module with E: L( M)4 L( N), If there are free elements u r, SFS 

ul cN such that (Pu) Sul then there is a semi-linear isonorphisn: 

(ps mýlx; g (S, N) inducing 
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Proof 

We follow Skornyhkov's proof making the necessary modifications. 

Suppose that x is a'free element with (Rx) SxI for some xI c 

and that P is a submodule with Rx np rs 0. Putting P, - Rx P2 NP we 

have by (1) of lemma 2e2 a set isomorphism 1192: 11OL'Op 'xt P)2r llom, (Sx 

As x is free this gives rise to a map h(x, X'): P P defined as 

follows If pcP and fc Horip (Rx i, P) P =Rx Sx, I 

is defined by xp then we define 

f 
ý92 

P_ h(xq xl ) to be x'f 11 2m 1) 1 say' 

1, 

By (2) of lerma 2.2 we note that P2 up 

(rip) image(f)E - image(fl 192 SPIO 

If y is a free element cP then the map f: Rx ----* Fýj defined by 

x -- y is an isomorphism. Hence by (2) of lemma 2,2 (f)l 
162 

is an 

isomorphism. If y' a yh(xq x') then we have L(x') 0 L(y') and since 

by (2) of lemma 2,2 (f L )-1 - (f -1 )L we get Y-h(y, y') a xf, 1*2 291 

Suppose pcP and Pqrl Rp m 0, Then we have twomaps h(x, xl) 

and h(yq Y') mapping Rp, - (Rp) Put P1a RX9 P2u Fýr, P3a Rp in 

le=a 2o2o Let f: Rx - Iýr and gtRy - Pp be defined by x-y 

and Y . --* P respectively* 

p 1 RX BY (3) of le=a 2,2 (fg)L 
193 " (f)l 

1,02 Ll 
92 

if 
(g) L 2g3* NOW xfF ap and so x'(fjz) ', 

I, 
- 

P 2' 3 
s3r Ry L2 ph(x,, xl). By def inition of yl, xl(f)l 2 t 

19 1 10 

p3 
1 

. Rp OP 
yt and so xf(f)tl*2 L (g) 

2*3 7'(7)12q"3 

p My* y') , Hence ph(x, xl) ph(yj, y'). 
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(2) Let'a. b. ac 14 and a' c He Suppose a. b are free and that 

(Ra)l -Sal andý&I)Rb =EbtN Rc - RctIRan 0, If bl a Wag a') 

then ch(a. a' ch(b , b' 

Proof 

By S, there is a free element dc 11 such that 

(A) (Ra 9 Rb) M Rd -0 

(B) (Rb (6 RC) (N Rd -0 

(Rc 11) Ra) r% Rd a0 

Let d' nd Mag a')* Applying (1) we get from 

(A) that bl - bh(a, a') = bh(dq dl) 

(B) that ch(dq dl) = ch(V, bl) 

(C) that ch(d. d) - Wag al) 

Hence ch(av. a') - ch(bg bl ). 

From now on we assume that uc 11, ul cN are free ele ments with 

(Ru) W Sul* 

(3) Suppose xj yc 11 are free elements and (Ru + Pt)r% Rx 

(Ru + Rt) e% 11y w0 for some tc M& If xf = xh(u, ul) and y'. = yh(u,, ul) 

then th(xq X') - th(yq yl)s 

Proof 

(gL) Su2pose Rxr% Ry a 06 Putting aau a' u ul baxc in (2) 

we get yl a yh(u. ul) n yh(xo x'), 

Putting aax, a# a x1l b= ys c-t in (2) we get th(xq xl) 

th (Y 9 Y' ), 
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(b) Suppose Ru n Rt = Os Putting awu. a' a ut,, b=x. ct in (2) 

we get th(u. ul) a th(xq xt)s Similarly th(ug ul) = th(yq y') and so 

th(xq xI )m th(yq Y' )* 

(c) Suppose Rxr% RyJ-0, RuA Rt 0 Oe Since (Ru + ', Rt)f) Ex 

(Ru + Rt)(% Ry a0 we have by S2 (precisely where this condition is needed) 

a free element wcM such that Ru (\ Rw a Rt tI Pw a Rx IN Rw a rýy n RW 0, 

Let ws - wh(u, U'). 

Putting aau. a' w ul, bnw. c=x in (2) we get xh(u, ul) 

xh(w9w') 0 x*, 

Putting a vq a' = w'q b x. cat in (2) we get th(w. w') 

th(xg X*)s Similarly th(w. w') th(ye y') and so th(x, x1) n th(yq y'). 

(4) We now define a map s: 11 ----# N as follows* Le ttcM. By S, 

there is a free element x -c 1.1 with (Ru + Rt)fN Rx - 0, Let x' so 

xh(us ul) and define to a th(xg'xl)o If y is another free element with 

(nu + Rt) r% Ry =0 then by (3) th(yq y') - th(xq x') and so a is well 

defined, 

We note that if Bur% Rw 00 for some free element wcN then 

uS w uh(vg w') where wl u wh(u. ul)o Hencp by (1) u5U Uto Suppose 

tcM and Ru n Rt = Oe If w is a free element with (RuS Rt)A Pw u0 

3 
then by (1) we Cet th(up ul) - th(w. v. 1) t 

We note that if tc 11 and w is a free ele=ent with (Pu + Rt) n rv 0 

r 
then to a th(W* w') and so by (1) Sta - (Pt) Hence I satisfies Cl. 



83 

We now show s is a homomorphism. Suppose tc Mand v is a free 

element c It with Ru n Rw u Et A Rv m Oo Then there is a free elenent 

w1r 14 with (RU + Rt) A RWI 0 (Ru, (P Rv) (I Rwl w (Rt (D Rw) n Rwl a 0. 

Suppose wl ww It a vh(u. ul) and w1l mw16wV1 h(u. ul). Then by (1) 

Wi- IwW1 h(u. ul) = wlh(vg wl) and th(v, wt) a th(wl, w1l) a ts, Thus 

ve have shovn that if Ru. r% Rv - Rtr% Rw =0 then ts m th(w. ws). 

Now suppose a. bc1.1 and Ps. n Rb = 0, By S there is a free 

element w such that (Ra Q) Rb) f) Rw (Ru + Raif% Rv (Ru + Pb) r% Rw 

Thus (a + b)s a (a + b)h(w. ws), as ah(wo vs) and ba -a bh(w. ws). 

Put Pl a RWO P2 0 Ra Qý Rb in (4) of lemm 2o2s Let 

La : Pw - Ra and Lb: Rw - Rb be defined by w-a and v-b 

respectively# Then (L 
a+Yx lj2 0 (La) L 102 + (Lb)LI#2* Hence 

(a + b)a (a + b)h(w. wa) - ws[(la + 'tb)Ll$21 * w$[(L a 
)L 

it' + 

(Lb)11#2 a h(wq ws) +b h(w. ws) - as + bas 

Now suppose Rat) Rb 0 Os Then by 51 there is a free element 

wcM with (Fa + Rb)rl RW N*Oo We note then that R(a + b)n Bw 

Rae% R(b + w) a Rbf) Rw a 0-@, Hence (a + b)e + we (a +b+ w)G 

.s 
a+ (b + w)$ n as + be + we, Therefore (a + b)8 as + be and s 

is a homomorphism, 

6) We now show that s is an isomorphism: (M. +) -3r (N So far 

we have not used the fact that ul is frees This fact will be essential 

in proving that s is an epimorphisme 

0. if t3ao for some tE 14 then (Rt)E - St5 -0 and so tao. 

Hence S is a monomorphismo 
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Ml 
Let qcN then by corol of lemma 1.1 (Sq) is finitely 

nn 
generated = Rp, ++ RPO 'ay' Then Sq =r (Rpi)': -E Spis 

n 
)n 

1 

and so qaZ tipi for s. ome (ti 1c so 
I 

S1 there is a free element w, CM with (T>pi + Rum Rwi - o. 

flow by (1) IN in) - t(ua) - L(U') -0 as U' is free* Hence 

Sw s Spi aw0 and vs is free* Put Pa Rwi and P2 - Rpi. Then in11 

by (1) of le=a 2.2 there is a map fIRW i- Rp, such that ft 192 =9 

where g is defined by wia ---+ t ipi 
s If Pil Uwif then pilh(wig vi 5) 

snsn t, pi 0 ise. 9 
(pil)s - tipis. Hence q=I tip ipi 

I)s as 3 is 

a homomorphisms. s is thus an epimorphism and so an isomorýhism, 

(7) Let rcP then (Rru)l - S(ru)sc= Sul. Hence (ru)' - tul for isome 

unique tarLC Se Then as in Skornyakov's proof or as in (14) on 

p. 49 of Baer (1) it follows that L is in fact a ring isomorphismtR Sg S 

and that (Z# s) is a semi-linear isomorphism: (R, (So 11). 

If P is a subnodule of M then Ps is a subrodule of N. Hence 

sII. PZ Rp)g -E Sps -E (Pp) E Rp) = P, Hence (1,8) 
P cp Pep pep PEP 

induces 19 We note that condition 91 ensures that for any p c'M there 

a free element wcM with RpA Rw = 01 ioess cyclic modules are tot 

large in Me 

Since M contains a free module of rank >2 we have by lemma 4.1 

I 
that (L9 9) is unique up to unit semi-linear isomorphism. The arbiguity 
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can be thought of as s, rising because of the ambiguity in the choice of 

ul which is only determined to within unit by the equation (Ru) 

We renarked in the proof that the fact that ul was free was used 

only once in the proof. The theorem however is not true in general if 

-1 we do not nake this hypothesis as the lattice isomorphism E : L( S N) 

L( R M, ) of example 4.7 shows. 

rTI 
. heorer. 4.9.. Let 

RM 
be a module satisfying conditions S1 and S. and 

c 
Na faithful nodule with T: L( 141) L( N)# if either (1) P is inverse 

SRS 

symmetric or (_2) S is subcommutative then there is a semi-linear 

isonorphisn: (Ro M); ý (S, 11) inducing 

J 

Proof 

Let u be a free element E 1! and ul EI be such that (Pu)l - Sul. 

Suppose qEN and p F. M with Rp - (Sq)ý' i3y. S1 there is a free 

element w F- 'I such that (Ru + Pp) n Pw -0 and where 9wl = (Pw) E 
for 

some WIC : 1. 

NowO= Z(w)c L(p) and Pwr)Rp aO and 

0- L(w) k(u) and RwrN Ru 0 

3y lemma 4.5 Z(wl )C-- I(q) and k(w') = t(ul Therefore E(ul ) C-, i(q). 

3ut q was any element rN and so L(U')C: 101) =ý as N is faithful. 

Thus u' is free and the result follows fror. theorem 4.8. 

, 

:'I 

-11 

1ý 



I CHAPTER 5 

UNIQUE CO-ORDINATIKTION RINGS 

In this chapter we consider lattice isomorphisms between the 

lattices of submodules of free modules of the same rank. This is shown 

to be equivalent (if rank n> 3) to the problem of considering when a 

ring isomorphism Rn i4 Sn implies a ring isomorphism Rfýf S. A ring R 

with this property for all rings S and integers n is called a unique 

co-ordinatization ring. We study these and associated rings giving their 

elementary properties as well as a number of examples. 

Theorem 5.1. Let R and S be rings and n an integer > 3. Then 

,, 
n) n) f and only if R *!: d S L( R 

2-: f L(Sin 
n' 

Proof 

By cor. 1 of theorem 2.3 L( RR 
n) '--' L(c,, S n) implies that End (, n) 

End, (Sn) i. e. Rn "ý Sn. 

By cor. 2 to theorem 1.4 if Rn': 'ý Sn then L(, 9 n) 2! ý 

De_finitions A ring F is called a unique co-ordinatization ring (u. c. ring) 

if for any ring S and integer nRnS rr always implies 7 So 

In analogy with the co-ordinatIzation theorems for projective 

geometry and more generalV for complemented modular lattices we say 

'r L C. -I 1, ( ,n) that a lattice L is co-ordinatized by a ring 7ý il 
P, for some 

integer n. Theorem 5.1 shows that for fixed n>3 any co-ordinatization 

by a u. c. ring is unique up to ring isomorphism - hence the terminology. 
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Let M and N be free nodules of rank n with bases (e 
RS 

and (f )n resoectively. Suppose I: R S!! S is a ring hism. Then 11s omo rp. 
nn 

B: Eri ei rrifi is an abelian group isomorphism: (14, (Nq +) 
11 

and (tt s): IR, (SI N) is a semi-linear isonorphism. '17his gives 

us the following corollary. 

Cor. l. Let R be a u. co, ring, Sa ring and n an integer > 3, if 

,n L( P. n)"4 L( 
R ==- S 

) then there is a serd-linear isomorphism: (R, n ),,,, (', 
, n). 

1. ) 

Proof 

By theorem 5.1 Rn CJ- Sn and as R is a u. c. ring this implies 

that R SýS- The result then follows from the remarks above. 

We now note the following criterion for a ring to be a direct 

product of rings. 

A ring R is the direct product of a set of rings (P 
i) iCI if Rnd 

only if there is a set of central idempotents (e 
i iCI of R such that 

(1) Ri =J- ei Re i for all iEI 

(2) if rcR and re, No for all icI then r 

(3) given a set of elements (a 
i) iCI of P then there is an element 

acR with ae aiei for all icI. 'de will write P 'Y- ý F. i 
ici 

Ler%ma 5.2# Let 11, be a ring and n an integer. Taen Rn fc- r 

'SWIA 
ici 

gsome u; seof rings CT 
if and only if r for vOf 

iEI 611-9 44U(q) 

rings (R with (R 
i iEI 
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Proof 

if Rn C-*-e N Ti then there are central idem. potents (fi)i, 
j c Rn 

ici 

with Ti 1ý4 fiRnf i' For ecR write diag(e) for the matrix 0 

The central idempotents of Rn are then precisely the r-\ 

I, 

) e 

elements diag(e) where e is a central idempotent c R. 

Let fi diag(e i) where ei cP is a central idempotent and define 

Biaei Rei* It is easily seen that since (f 
i)iCI satisfy conditians 

(2) and (3) for direct products so do (e and so P Rio 
ici 

But (Ri)n 0 (e 
i Re i)n 0fiRn fi: ýý Ti# 

Conversely suppose R and (e 
i) iEI are the associated 

central idempotents. Defining fi diag(e i) it is easily seen that 

R ; ýe T", fiRnfi, 11 (e 
i Pe 1 ! 25 r, (R 

i) n' J EI JEJ JEJ 

Lema 5.3. 

Proof 

The class of all u. c. rings is closed under direct products. 

Let (R be &ýýof uace rings and suppose R tt r Rio 
icl 

Suppose further that for 
. 

some ring 3 and integer nRn Sf- ý" 
n* 

by 

le=a 5,2 S PS H (P and so C=' N where (T'i )n Ilut n icl n icl nS 

Ri is a u. c. rine and so Pi 'Ll s Hence PPi ! ýe. P and 
jcl iET 

p is a u. c. ring. 

Definition. A ring 7 13 called a strong unlquf- co-orlinatization rinr 

nv 
, -, 

n (s. u. c. ring) if for any P-riodulle P and integer n T, always 

implies RP at RR. 



- 89 - 

We will show later that anY s. u. c. ring is a uoc* ring. 

A useful way of describing S. u. c. rings is in terns of the semi- 

group of the isomorphisn types of finitely generated projective modules. 

For a ring R the set 7% of iso=orphism types <P> of finitely 

generated projective modules RP is an additive semigroup under the 

operation <P> + <Q> a OID 
ýQ> , 

We call an element a of Ptn additive 

semi-group torsion free if for any integer n and element b 'na - nb 

implies a-b. In this te=. inoloKy we see that R in an s. u. c. ring if 

and only if <R> is a torsion free element in 

Ler=--5.4 

The class of s. u. c. rings is closed under direct products. 

Proof 

r-uppose (F is a so% of s. u. c. rings and R7R JEJ 
iti i where 

(e 
iCI are the associated central idempotents. , uppose , 

I, is a 

module and n an integer with Rn ne Pn, 

.. 
n,., . -r have therefore For each iEIei_ip as R nodules and we I 

that (e 
i Re i) 

n-. 
' 

(ei )n .. ei Re i-modules. "Ance ot i Pe i 
ýX Pi and Ri is an 

s. u, c, ring we have that p Re I-v eP a3 e Re rodules and hence as ii ý" ii i- 

R-inodules. 

r )ince p. n every element Of P can be written as a vector 

r n). 
The -mp p- (eip)il of 7 eirl is therefore 

EI 

an isomorphism P '--*2 PaP,, Therefore !, !ý;, e 1 4, ei- P'e 
i lie, ! ýý F aft i(I iEIiC 

R-. modules Hance P is an S. u. c. rinsr- 
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Lemma 5,5. Let R be a ring then the following are equivalent 

(1) R is an s. u. c. ring 

(2) For any integer n and left ideals A. B of RnAn= T-1 nn 

implies A Q( B. 

Proof 

For any integer n there are inverse category equivalences 

F: R 
IA 

R 
11 and Ge RW...... 

V where (, n)F .Rn and ('n)G - Rn. 
nn 

, n,,, n Suppose R satisfies condition (2) and for some module 

(, F)n,,.., (,,, F)n 2) R P. Applying F we get - Rn. Hence by condition (I 
F. I PF '-"' R Applying the inverse equivalence G we get Pl::! R. Hence P 

is an s, u. c. ring, 

Sup, oose R is an s, usc, ring and An, Bn. P for left iaeals 
n 

G)n ri)n 
. n. Aq B of 'n' Applying G we get (A (B As ? is an *. u. c. 

GG 
ring we get A -! Y R =ýrB Applying F we have tnen A te 3 and so R 

3atisfies condition (2). 

Cor. 1, Any sausc. ring is a u. c. ring. 

Proof 

Let IR be an s. u. c. ring and suppose n is an integer and Sa 

ring with 1: 111 n 
CrI S 

no 
Lot e i1i and f 

191 be the matrices of 1i 
n and Sn 

respectively with 1 in the (191) th 
place and zeros elsevhere. Then 

n 
R MID Re and for any 1< iq jnRe %milarly 

nnn1,125 nej j 
n 

Cf 191 and f il i= 
f 

I 01 
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nn 
Applying I we have Rn Rnei 

,j 
(D Rn (f i9i)L, By 

condition (2) of lemm, 5.5 Rne 101 1; 1! P, 
n 

(f 
161 Taking endomorphism 

rings we have RýeRe t-- fI i~ )f'. ' P ff = (f f i, i n i, i- i, i n J. i,, i n i, i 

fi 
J'i 

f 1) 
nf 191 Ce q Therefore R is a u. co ring. 

7he converse to cor. 1 does not hold i. e. there are u. c. rinpa 

which are not s. u. c. rings, This will be proved later - see cor. 1 of 

theorem 5#9* 

Lýerj"a-5.6, Let R be a ring and J(P) its J&cobson radical. if 

R/J(P) is an s, u. c. ring then P is an ssu. c. ring. 

Proof 

we recall the following lemma which is prop. 1 on p. 53 of 

Jacobson (1). If el, e. are non-zero idempotents and el, e2 are their 

images under the natural ring homomorphism R- PlJOP) a 717 then 

Fe S-! Re as left ideals if and only if -R -e, are isomorphic ns 121 

left ideals. 

P, uppose R is an s. u. c. ring and that for sore integer n and 

nn independent sets of isomorphic left ideals (A 
i Of Iýn we have 

nn 
ABP, As (A nI (B n are direct sur%rande of P they are n11n 

generated by idemootents (e n (f n rearectively. Furthermore since 

(A )n and (B )n are independent we can take the idemiDotents (e n 
and 11 be 

111 

(f )n to/orthogonal i. e. eeff 1111 
.1ao 

if 10 
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'Now consider the natural ring homomorphism Rn ---v R IJ(R T 

ji)n, (ii)n where J(R 
n) 

is the Jacobson radical Of Rne Let (1 
le 

-n -F )n )n, )n, )n, n (e 
i 

be the images of (Ai 
1 

(Bi 
1 

(ei 
1 

(f 
i)1 respectively. 

since ; -)n and (-F ýn are orthogonal sets of idempotents and i 
nn 7n; 

1 
-A 

i and RnfiBi we see that 11 and are independent 
nn 

sets of left ideals of Rn and 4ýp Fn Turther by the lemma 

in Jacobson (1) they are sets of mutually isor. orphic lelf"t ideals. 

3ut T(R 
n 

[JU01 
n 

and so '; 7 
nIRn 

/J(P 
n9n 

/[J(P) 

(R/J(R) In0 CF) 
no 

15y hypothesis TF is an sou. c. rinr,. Hence by 

lenna 5.5 Therefore by the lemma in Jacobson (1) Alýje 'Xi- 

and so R iS an e. uoc. ring. 

We now prove a result which subsumes the known results on 

s. u. c. rings. I 

Definition. A ring R is called p-trivial if there in a finitely 

generated projective module RP such that every other finitely renerated 

projective P-module is of the forn Pk for some unique integer k. -'ýUch 

rings have been studied in Cohn (2). 

: -)efinitiono A ring R is said to have invariant basis number 

if any two bases for a free left P-module always huve tGe sarr niLmber 

of elements. 

Definition. A ring h is called a (local) V. F, A (projective-free) 

if every (finitely generated) ProActive left '-module is free. 
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i 
Suppose R is p-trivial and RP is the associated finitely 

k 
generated projective module. 7"hen for some unique integer kRaP 

S= End But P is a progenerator and thus and so Rý,,! S k where S R(P)' 

.R -IS. By the p-triviality of R it is clear that S is a local P, F, m 

ring with I. B. -N, It is now easy to see that p-trivial rings are 

precisely the class of all matrix rings over local P. F. rings with I. B., ýI. 

We can give another characterization of p-trivial rings, viz., 

a ring R is p-trivial if and only if the additive semi-group -S 
R of 

isomorphism types of finitely generated projectives is isonorphic to 

the additive semigroup of non-negative integers. Tf R is p-trivial it 

is clear that every element of 
6R 

is torsion free and so in Particular 

<,. R> is torsion free* By the remarks following the definition of s. u. c. 

rings we have the following theorer. 

Theorem 5.7. Fvery p-trivial ring is an sou. c. ring. 

Definition. A ring 9 is called semi-pri,. -Ary if P/. T(R) is Ftn Artinian 

ring (see chap, 3*9 of Jacobson (1)), 

Cor. l. A semi-primary ring is an s. u, c. ring. 

Proof 

A division ring is certainly a local P. r. ring and so any sil-ple 

Artinian ring is p-trivial and hence an s. u. c. ring. iýy lerxia 5.4 a 

direct product of simple Artinian rings is an ssu*c. ring and so in 

particular a semi-simple Artinian rinr is an ssu. c. rinp. 
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BUt if R/. T(R) is Artinian it is certainly also serd-simple and so 

by le=a 5-0 P is aq s4u. cs ring. We have in fact proved nore than we 

needed. We have shown that if RIJ(P) is the direct product of simple 

Artinian rings then R is an s. u. c. ring. 

The following rings were already well known to be s. u. c. rings. 

our corollary includes all these an special cases. 

(1) Division rings - the first fundamental theorem of projective 

geometry (see theorem 1 of chap*5.4 of Baer (1)). 

(2) Semi-siriple Artinian rings - the uniqueness part of the Artin- 

Wedderburn theorem (see e. g. theorem 2 of chap. 3.4 and the isomorphien 

theorem of chap. 1.5 of Jacobson W). 

(3) Artinian rings - Krull-F; chmidt theorem. 

(4) 'latrix rings over local rings (see e, F. theorem 3 of chap. 3.10 

of Jacobson (1)). This result also follows directly from tie well-knain 

result that a local ring is a P. F. ring with 1.3. N. (eee Kaplansky (1)). 

Definition. A ring F is called a seri free ideal rinr (Beni-fir) if 

(1) R has I. B. N. (2) every finitely generated left ideal of R Is free. 

It can be shown that a semi-fir =st in fact be an integral 

domain and that it is in fact a P. F. ring vith and so T-trivial 

(see Cohn (2) and Cohn (3)). 
f 

cor. ". A semi-fir is an o. u. c. rini,. 
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Clearly a principal left ideal domain is a seri-fir. Wolfson 

has shown that if R and S are principal left ideal domains and Rn ev S 

for sor. e integer n then Rtv- S (see Wolfson (1)), Our corollar-I 

includes this as a special case. . The full generalization of Wolfson's 

results in the infinite case are given in chap-. 7. 

We cannot drop the condition that a semi-fir has I. B. N. in 

cor, 2 as the following example due to P, I!. Cohn shows. 

Exammple 5.8. There is an integral domain P all of whose left ideals 

are free and a ring S such that R 3ýý, S3 but F; t S. 

Proof 

Leavitt has considered integral domains which do not have I. B. rl. 

In particular in Leavitt (1) an example of an intexral dorain R is riven 
23 

such that n not F. Thus p3~ P. 
4^.. 

p, 5~ p6 and t&kinr endom. rphism. 

rings we got R "ý P6 V: "ýý (n2)3* 

Put SWR 'lhen R, 12ý but PC TS since R beine an interral 2' 3 

dormain cannot have any proper direct summands. Furtherr-ore theorem 

3.1 of Skornyakov (3) shows that every left ideal of P in free, Our 

next theorem is an unpublished result due to Kaplansky. 

Theorem 5.9 (Kaplansky), HVery com. utative ring is a uoc. rinF. 

Proof 

I, et R be comutative and suppose for some integer n and ring " 

0, that Rn ̂= 
n, 
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For any integer t define St(xl, so*, xt) to be the polynomial 

(in non-cor=ting indaterminates), 1(-l)sx 
S1x 82 ... x 9t where s runs over 

all permutations of (1,29 oeeq t) and (-I)s - +1 or -1 according a3 8 

is an even or an odd permutation, 

Now it is shown in Anitsur and Levitzki (1) that the elerent3 

of Rn satisfy the identity SAA 19 X29 **@I On )-o and hence so do 

the elements of S 
n 

t "I Let e iqj be the matrix of Sn Vith 1 in the (i$ J) place and 

zeros elsewhere. If tcS then by te i1i we mean the matrix with t 

in the (ig J) th 
place and zeros elsewhere. 

Let aq bcS and consider the 2n elements (ael. 
l. Lel,,,, el,, 

ee9a These satisfy 2920 e293 n-2, n-l' n-lqn-1 n-l, ng "In, I 

S 2n 
(x 

1. x., X2n 0. Substituting we see that the only non-zero 

terrm arise from cyclic perrutations and interchanging ae 1,1 ftnd be it 1. 
! Aultiplying on the left and right by e (and noting e,,,, ea o) n, n Ln 
if j0L we get (ab - ba)e 

nn ao ite. ab - ba - o. Therefore ') Is 

cornutatives but R ; Ir centre Pte centre P C! e centre S fY centre '; te nn 
Hence R is a u. c. ring. 

Cor. l. There are u. c. rings which are not 8. u. c. rings. 

Proof 

Let 11 be a Dedekind domain and suppose I,, I, are ideals of 

Then 111; 12 2e 1ý , Ti 
I12 

(see e. g. theore-, (a) of Kaplansky (. ') ). 
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Suppose P has an ideal A which is not principal but such that 

A*A is principal. Then 1, (T) A -n-e PGA. A !ýRTP. But A is not 

principal and so A IfR. Therefore R ir. not an a, u. c. ring but since 

it is commutative it is a usc. ring. 

2 An exam., le of such a ring is 71 [xl/(x + 5) - P. where 

A- (2,1+x). it is not difficult to show that A is not Drincipal and 

that A. A a P. 2. It can also be shown that R is the intepral closure 

of 2Z in the quotient field K of 2. But K is a finite algebraic 

extension of Q' the quotient field of IS)i, nce 7 is a Dedekind 

domain we have by a well known theorem (see-e. g. theorem 19 of chap. 5 

of Zariski and Samuel (1)) that P is a Dedekind domain. 

I 



6 
c; LAP-. ER 

REGULAR RINGS 

Von 3eumann showed (theorem 14.1 of von Neumann W) that any 

complemented riodulmr lattice L of order n>4 is lattice isomorphic to 

F( P, R n) for some regular ring R, Further implicit in his proof is the 

fact that if L is upper and lower continuous then the co-ordinatizing 

ring R is unique up to isonorphisn (see e. g. chap. 7 of a: -orkyakov (1)). 

In this chapter we consider the uniqueness of the co-ordinatizing ring P 

if the continuity conditions on L are weakened. In particular we show 

that any two co-ordinatizing rings for L have isovorphic injective hulls 

and so in some sense the co-ordinatization of 1- is unique up to 'quotient 

ring de also show that the following classes of regular rings are 

s. u. c. ringsi 

(1) direct products of rratrix rings over strongly regular rinR9 

The co-ordinatizatinn of upper continuous regular rings. 1, by 3uc. h 

rings is therefore unique# An interesting corollary to (ý) is that 

y left self-injective ring is an e. u. e. ring. ever 

Y)efinition. A ring R is called regular if for eve" acP there Is an 

element XER such that aa axa. 

, do shall assume a number of ,., ell-known facts about regular ringi. 

Tiie lornofs of' tnese riay be found in von Nieumann (1) or -wornymkov (1). 
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Let R be a regular ring then the following results hold. 

(Al) Every finitely generated left (right) ideal of R can be generated 

by an idempotent. Further F( R R) and FORR) are corplemented mdular 

lattices with respect to the usual operations + andtl . 

-(A2) The maps A --- L(A)o B ----, 3iB) are inverse lattice anti- 

is=orphisms F(R. ) ---, + F(O) and F(O) F(RR) respectively, In 

particular if acR then L(a) c F( IR R) and r(a) c F(N ), Let n be an 

integer* 

W) A ring R is regular if and only if Rn is regulars. 

(A4) if R is a regular ring then F( R 
n) is a complemented modular 

lattice and for any xERn L(x) c F(RR). 

(A5) Any projective left R-module over a reCular ring is a direct sum 

of elements of F(, R) (see Kaplansky (1)), 

Definition, A regular ring R is called (countably) corplete If the 

lattice F(RR) is (countably) corapleteg iseot. every (countable) subset 

ACF (R R) has a least upper bound (l. u. b. (A)) and a greatest lower bound 

(g. l, b*(A)), As completeness is a selr-dual concept for lattices, it 

is a left-right concept for regular rings, 

Definition. A ring R is called a Baer ring, if, for every subset BC. R, 

L(B) is a principal left ideal generated by an idempotento This 

definition is left-right syr=etric since r(B)- rtr(B) a (1-e)P vhere 

e is an idempotent such that L(r(B)) a Re. Theso rings have been studied 

in Kaplansky 
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Lemma 6,, l,. A regular ring R is complete if*and only if it is a Baer 

ring. In this case if (A i)iEI is a'subset C-F(, R) then g, l. b. (A 
i), C, 

() Ai and lou*b. (Ai )iEI w tr( E Ai). 
iCI ici 

Proof 

Suppose R is a complete regular4ýing and (A OICI is a subset 

F( R R), If A=g. l, b. (A 
i) icl then A= n Ai. If however xE0A 

iEI ici 

then Rx c F( R R) and so Rx C g, lob, (A 
i) iEI = A. Hence r) A iC A and an 

iCI 
g. l. b. (A 

i) ij =A Ais Suppose B is a subset of R then 
iCI 

X(B) L(b) c F( R R) since 1(b) c F( RR) for all bcB. Thus R is 
bEB 

a Baer ring* 

Conversely let R be a regular Baer ring and (A dirI C-- F( F R). 

Then for some Idempotent ec Rr( E Ai) a (1-e)R and so 
ici 

EAiCWZ Ai) a 1((l-e)R) a Re E F( R). Hence Lr( LA is an upper iti ici 13 
ici 

bound for (A )Ir 
i 'is 

Suppose Rf (f an idempotent) is another upper 

bound for (A Then AiC Rf for all iEI and so (1-f)RC: r( rA 
i EI 

Hance Lr( EAi )C Rf and therefore Lr( EAil. u, b. (A 
i) icie As is 

,i CI iCI 
well4known the existence of loueb's in a lattice imPlies the lattice 

is completes Thus R is complete and g. l. b. (A 
i) ici 

() A, and 
ici 

l. u. b. (A 
i) LCI kr( EAi 

iEI 

Let R be a regular ring. 

(A6) The set of elements of F(, R) which are two-sided ideals are 

precisely those generated by central idempotents. This subset of F( 
R 10 

I 
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is denoted by C( R R). C( R R) is a. complemented distributive lattice, 

The elements of C( R R) can also be characterized as thoce elements of 

F(, R) having unique complements, An element of C(, R) is generated by 

a uniql4e central idempotent, 

W) Suppose R is a complete regular ring. Then C( P. R) is a complete 

lattice and golob's and l. u. b's calculated in C(, P) are the same as if 

they were calculated in F( R R). 'If Ac F(RR) then there is a least 

element C(A) of C( R R) containing A i, e. C(A) an (B c C( R R)tB= A). 

C(A) is called the central envelope of A. 

Lemma 6.2, If R is a complete regular ring and Ac F(R R) then 

C(A) - rl(A), -ft 

Proof 

As A is a left ideal L(A) is a two-sided ideal, Since R is 

complete L(A) v F( R R) and hence e C(RR), Thus rL(A) c C(,, RR) and 

A C: rL (A)*' Therefore C (A) C: ri (A), 

Suppose C(A) a Re where e is a central iderip6tento Then 

(i - e)A -0 and R(l - e) = L(A), Hence rL(A)C r(E(l. a)) w Re a C(A). 

Therefore C(A) a 

Definition. Let L be a lattice with least element 0, Suppose a. b, cc 

L, Then we say that a is in perspective with b with axis c9a Pv bI if 
c 

a oN cwbAcu0 and avcnbVc (c 
*f, chap, 2). 



102 - 

Definitions Let L be a complete lattice and (a 
i) icl a set of elements 

of Le If J=I define a a, # (a 
i)iF-I is called independent, if 

ici 

aG 00 for all finite subsets F. 0CI with Ff) 0 se aF ' 

(a is called strongly independent ifAa 0 for an,, -subsets i iCI 

J. CI with 0 J.. 00 

Definitions Let L be a lattice'with least element 0. An element EL 

is called finite if it contains no infinite sequence of independent 

pairwise perspective elements. Otherwise it is called infinite. 

Amemiya and Halperin have studied finiteness in coir. plete 

co=plemented modular lattices. We collect together a number of their 

results which we shall need-later on. 

V 

Lerima 6.3. Let L be a complete complemented modular lattice then 

if (a i)l is an independent sequence of pairwise perspective elements 

of L then there is a strongly independent sequence (b i )", of rairwise 

perspective elements of L such that VbVa and a, w bls 
1 

(2) if (a and (b are two strongly independent families of i, i iCI i iCI 

such that ab for all iCI and (V aA (V b0 then i 
ici JEJ 

VaV bi 
ici irl 

(3) if (ai)n is a finite set of elements of L such that for each ia 1n 

is finite then Va is finite, 
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Proof 

(1) 6.1 

(2) is cor. 1 of theorem 3.4 of Amemiya, and Halperin (1) 

(3) is cor. 2 of theorem 6*3 

Definition, A regular ring R is called finite if F( R R) is finite 

(as a lattice) and infinite otherwise. R is ca, 11ed proýerly infinite 

if everyelement of C( R R) (considered as an element of F( F R)) is infinite. 

Lemma 6.4. A countably complete regular ring P is finite if and only 

if it is inverse symmetric. 

Proof 

As we remarked in chap. 4 the results of Jacobson (2) thow that if 

R is not inverse syrmetric then there is an infinite direct sun. of 
I 

isomorphic left ideals generated by idenpotents.. But if As BE F( F R) 

and AABa0 then by (4) of lerma 2,1 R A! nE' 
IB 

implies A %o B. Hence if 

R is finite R must be inverse symmetric. 

Conversely suppose (if possible) that a countably complete 

regular ring R is bOth inverse symmetric and infinite. By (1) of 

lemma 6,3 there is a strongly independent sequence (A 
i 

)I of pairwise 

perspective elements of F( R R). ". "he sets (A 
21)70 

(A 21-1)70 
(A 

21+l)l 
ft 00 40 

are all strongly independent and (VA 
21)A 

(VA 
21-1 

VA 
21) A 

111 

A 
2i+l 

00 But A 21 , -' A 
21-1 and A 

21 ̂ . -P A 
21+l 

for in Is 20 3 
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CO 

Hence by (2') of lemna 6, -4, we -have VA 
21 0"4 VA 

21-l and VA 
21 0%. o VA 

21+l' 
40 t"1111 

Thus if AVA 21-l and BVA 21+l then A un-61 B and A; j? P. But 

c F(, 2) and is a direct sur=and of R and so of A. Hence we have 

C, DE F( R R) with B(D C-A and A(D D=R. 'Therefore R=B 11) C 4) D 

and, since A=V 
ýB$B$D 

2_e R and C00. R then has a COPY of itself as 

a proper direct summand and so cannot be inverse symmetric. This is a 

contradiction. 

Remark, Kaplansky calls a Baer ring finite if it is inverse sy=etric 

(see Kaplansky (3)). ýur lemma shows that for corplete regular rings 

the two definitions of finiteness coincide. 

Definition. A regular ring is called strongly regular if every 

idempotent of R is central i. e. F( R) = C(, R). Using (A6) it is easy to RI 

see that a regular ring is strongly regular if and only if it is 

subcomnutative. 

Examples 

(1) Direct products of division rings 

(2) Boolean rirws 

Theoren 6.5. Let R and -1 be Boolean rings (not necessarily containinr, 

identitY elements if E: T, ( F) 'ýý L(,, ")) then there is a ring isomorphism: 

S inducing Ee 

Proo f 

Even fin. itely generated left ideal of a Boolean ring is 

generated by a unique element of the rinx (even if the ring Aoes not hnwý 
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a I)e Suppose that acR then (Ra) E is a finitely generated left ideal 

of ý; and so = Sa t for some uniquely defined atCS. 

Further we have that Ra n i(a) 00 and Ra 9 i(a) =P and i(a) 

is the unique left ideal with this Droperty. But applying E we get 

L. 
t 

(Ra)E n p. (a)v -0 and (Ra)E (D j(a)ý =3 and so ns (Ra)E m '. -)a we have 

z(a)E - j(a 
t ). 

SupDose al, bcR. 

Rab a Ra rl Rb and so (Rab)E = (Ra)E n (Rb)E- Sa tn Sb tatbt. 

ttt Hance (ab) =ab 

(2) R(a+b) - 9(&-ab)+R(b-ab) (uslng the fact that X+x-o for any XE H) 

- [Pan X(b)] + [Rbn Z(a)b Therefore applyinw Z we wet 

R (a+b) Ea[ (Ra) EA 
i(b) 

T, j+ [(Rb) zn 
I(e. ) rI 

a (Sa tnk (') t )] + [Sb tA L(a t 

- S(a t+bt 

Hence (a+b) tat+bt and so t is a ring horomorphism. 

EIt, 
If at o for some acR then (Ra) L'a 0. Thus Ila 0 

and so a-a 
-1 

If cc ") then (Sc is a finitely generated left ideal of 

E,, t 
and so = Ra for some acP. Therefore F', c - (Pa) p and sn c 

Thus t is a ring isonorphisn. ý', ince for any acR (PR) 7, (PPL) t 

t induces E. 

This theorem is not true for stronply regular rings In aeno! -ral 

e. g. take R and ý7 to be non isomorphic division rings. This is becau: 7- 
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we have no way of getting at the structures of the groups of units of R 

and S (the only possible unit for a Boolean ring is the identity element). 

The following remark shows that for arbitrary rings we can however still 

get at the structure of the central idempotents. 

Remark. 

If for any ring R (containing a1 now) we denote the set of 

central idempotents by C(R) thentC(R) is a Boolean ring with respect to 

ring nuitiplication and addition "qý" defined by e (p fne+f- ef - ef 

for e, fc C(R). A similar proof to that of theoren 6.5 shows that if 

S) for any rings R and S then there is a ring isomorphism: 

C(R)2! f C(S). 

Lerima 6.6. Let R be a strongly regular ring. 

(1) If A and B are left ideals and R then A=B 

(2) For any integer nRn is a finite regular rinF. 

Proof 

(1) Let vR AILý 
RB and let bcB, Then for some aEAbaaS and 

Ra a Re, where e is a central idempotent E F. '11bus Rb a Ras a (Ta)s 

(F. e)s 0 (Re. e)s - Re. es - (Pes)e C Re r-- A. Hence bEA and so BCA. 

similarly ACB and thus A=B. 

In a strongly regular ring every left i(leal is a two-sided ideal. 

Hence the maximai left ideals of R are exactly the naximal two-sided 

ideals of ! ý'. But the Jacobscn radical of a revular rinF is zero and 
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hence 0 (all maximal two-sided ideals of R) n 0, Therefore ()(all 

maximal two-sided ideals of Rn )=0.1 

Suppose if possible that Rn is infinite for some integer n. 

Then there is an infinite direct sum of isomorphic left ideals 

(R 
nei): generated by idempotents (ei):. Since a, 0o there is a 

maximal two-sided ideal of Rn not containing el, This must be of the 

form (M) 
n where M is a maximal two-sided ideal of R. 

Now Rne1 týl Rnai for i 1I, 2j 3 1.. and so there are elements 

Pi c Rn ei qi c Rnel with a, piqi and ei qipi. If ei r, 11 
n 

then 

Pic Nn and so a, CMn-a contradiction. Hence aiit! n' 

As (R 
n ei): form a direct sum we can choose without loss of 

generality the first (n + 1) ai Is to be orthogonal. Now consider the 

natural ring horomorphism &: R 
nRn 

/M 
n 

id (R/m) 
n' 

Then as aiiMn 

ail, 0 0. 

Now M is not only a maximal two-sided ideal but also a maximal 

left ideal, Hence R/M is a division ring and so (R/M, ) does not nthan 

contain any direct sum of non-zero left ideals with more/n nembers. 

But (e 
i 

')ln+l are (n+l) non-zero orthogonal idempotents of (R/:! ) 
n and so 

[(R/M) e a]n+l is a direct sum of (n+l) non-zero left ideals -a n11 

contradiction. Hence R is finite. 
n 

As finiteness always implies inverse Sy=etrY*&! W we have the 

following corollary. 
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"or, lo If IR is a strongly regular ring R is inverse symmetric for 
n 

any integer n. 

Cor. 2. A strongly regular ring has I. B. N. 

Proof 

Suppose R is strongly regular and SmSj n for integers m, n 

with m>n. Then if m>n Rn has a copy of itself as a proper direct 

summand. Thus Rn 'cannot be inverse symmetric contradicting cor. l. 

Hence m=n and R has I. B. N. 

Theorem 6.7. A direct product of matrix rings over strongly regular 

rings is an s. u. c. ring. 

Proof 

Let R be a strongly regular ring and T-Rm for some integer m. 

Suppose TP is a module with Pn CneT n. where n is an integer. Now there 

is a category equivalence F: T 
JO ,RP guch that TR In, if RQa PF 

n Rmn. then Q 

Q is a finitely ; enerated projective and so by (A5) is a finite 
t 

direct sum of cyclic submodules, say Q- QD Rx,, 3ow R is strongly 
i-l t 

regular and so subcommutative. Therefore if yl aYXi then L(y 1) tt 

nz(xi 0 Z(Rx i (, mn) , 0. Thus G) P. Y 1 1 

w, iere y is free. 

Therefore Q n., P n,,, , nn. Supposet(,. j 00 then there is a 1-1 

central idempotent ecF such that e(41 and so (eRe)n,,.: ý, (elle)mn. 
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But eRe is strongly regular and so by cor. 21 of lemma 6.6 it aas I. B. N. 

Hence either m=1 or j(041) u 0. If m01 we can repeat the process 

until we get rn, Then n (DRmn~ Pmn. But by cor. 1 of M. 
le=a 6.6 R 

mn 
is inverse symmetrit and , mn does not contain a coDy 

of itself as a proper direct su=mnd. Fence 1ýr, m0 and QaRM, 

Applying the inverse category equivalence to F we get P% 

Therefore T is an a. u. c. ring and the theorem follows by lerma 5.4. 

Definition. Let L be a complete corplemented modular lattice. Then L 

is called upper continuous if for every directed set I and subset 

(A 
iCI CL such that 11 

.1 
'2 implies Ai A, and for any BcL then 

2 

BAl. u. b. (A 
i) iCI 0 l. u. b. (13 &A i) iEI* L is called lower continuous 

if the dual condition holds. If L is both upper and lower continuous 

L is called continuous. We note that in an upper continuous lattice 

the notions of strong independence and independence coincide (see e. g. 

prop. 75 of Skornyakov (1)). 

Definition. A regular ring R is called upper continuous. lower 

continuous or continuous according as R) is upper continuous$ lower 

continuous or continuous. 

Upper continuous regular rings are closely related to left self- 

ghow. injective regular rings as the following results of Liturni c 

Lemna U. ") 

(1) Any left self-injective realar ring is upper continuous 
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(2) Any upper continuous regular ring is the direct product of a 

strongly regular ring R1 and a left self-injective regular ring R 2' 

Proof 

(1) See cor, l of theorem of Utumi (1). 

(2) See cor. 1 of theorem 4 of Utumi (2). 

Not every upper continuous regular ring is left self-injective. 

Utumi has remarked (p. 604 of Utumi (2)) that the example given on p. 526 

of Kaplansky (4) is such a ring, viz. 9 the ring of all sequences of 

corplex nunbers for which all but a finite number of entries are real. 

Definition. Let RY be a nodule and Pa subr. odule. If for every 

non-zero submodule Q= M PO Q00 then P is called large in M and ý-! is 

said to be an essential extension of P, We denote this by writing 

paI WI 
I" 

Definitione An element r of a ring P is called singular if L(r) CIR. 

The set of all singular elements of R form a two-sided ideal S(R) called 

the singular ideal of Re We quote a number of facts about such rings 

all of which may be found in Johnson (1) or Lambek (1). 

If R is a ring with S(R) =0 and Aa left ideal of R then there 

is a unique maximal left ideal E(A) of R such that A =1 E(A). The 

operator E has the folloving properties 

(1) E(O) -0 
(2) E(E(A)) E(A) 

(3) E(Ae'ý B) Z(A)r) E(B) where B is another left ideal. 
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A left ideal of R is called closed if P(A) = A. The set of 

all closed left ideals is denoted by F( R R) and is an upDer continuous 

complemented modular lattice with respect to the operations AAB 

A ri B and AVB- E(A + B). 

For any r: odule R M, as is well known. there is a unique minimal 

injective module I(! ý) containing V. WI) is called the injective 'hull 

of M. I(V) can also be characterized as the unique maximal essential 

extension of M so we always have I(M) (see Eckirann and Schopf (1) 

for uetails). I 

Suppose R is a ring with S(R) u0 and that I(P), the 

injective hull of R. In this case Q can be given a ring structure 

(corpatible with the structure of P) and ý, is then a left self-injective 

regular ring. Further E( 
R 

R) QtF( Q)(using (1) of le? rra 6. ý this shows 

incidentally that E( R 
F) is an upT)er continuous corplenented modular 

lattice). Q can also be regarded as the -axinal ring of quotients of 

-7 in the sense of Utumi (see e. w. Lairibek (1)). 

Examples of rings with zero sinaular Ideal are 

simple rings 

integral dorrains 

(3) regular rinFs (by (AC 

I'eTrnh 6#94 A rerular ring R is upoer continuous if and only if 

F(R 7"). In this case 'for any left ideal A T: (A) 
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Proof 

Noting that a direct sumnand of P is always closed the lemma 

follovs immediately from theoren 2 of Utumi 

Corol. If R is an upper continuous regular ring and A, 3 are left 

ideals then E(A+B) a E(A) + E(B). 

Proof 

, ýýy lerma 6.9 E(A), -r, (ß) C F( R R) and so E(A) + E(3) F, F( p 

F(P, R). Hence E(A) + E(B) is. a closed left ideal containing A+ :5 

and so E(A+, 3)4= E(A) + E(B). But AC A+B and 13 C A+b and we have 

E(A)C: E(A+B) and E(B)C-- E(A+B). Therefore E(A+B) = E(A) + E(B). 

Lenma 6.10a Suppose R is an upper continuous regular rinp and A, 3 

are left ideals of R with f: AQý B. Then there is an isomorphism 

g: E (A) 
-0t -E(B) and if A fl B-0 then g can be chosen so that Ir IA 

I 
Proof 

By (2) of le=a 6.8 there are central idempotents el, e. such 

that e1+e2ý1 and R, ae1 Re 1 
is a strongly regular ring and P2 

e2 Re2 is a left self-injective regular ring. 

'"he isomorphism f tA -Zý* B splits into two isomorphisns 

f1: Ae 1Be1 and f2 : Ae 2 
S! t Re 2' By (1) of lemira 6.6 Ae 1= Tic 1 and so 

F, ( Ae E(Be 1) and we can take g. 1 as the identity map: E(Ael);! ý E(Be 1). 

'low R2 is a left self-injective regular ring and so E(Ae 2 and 

E(Be 2 are the injective hulls of Ae2 and Be 2 respectively. Hence the 

isomorphism f2 : Ae 2 21t Be 2 can be extended to g2: F., Ue 
2) 

S4 Z(Be 2)i. e. 

Ift 

g, jlAe 2zf 2* 
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By cor. 1 of lem.. a 6.9 E(A)== E(Ae 
I 

E(Ae 2) and E(B) = 

E(Be )ED E(3e, ). Combining g and g: F(A)St E(B). If prN B 
11 92 we 6et 

0 then Ae, Be, C: A0B=0. Hence fwf2 and g-r2 and so gJA = f. 

Lemma 6.11. Let R be a conplete regular ring and As BE F( PIR 
). Then 

C (A) () C (B) 0 (see WD if and only if there are no non-zero Al g 

'*, BI BIC F( R R) with A1 C= A and B1CB such that A1 

Proof 

I, et C(A) - Re and C(B) = Rf vhere e and f are central idempotents. 

3uppose A,. 31E F(RR) with A1CA and Bl= 13 and that s: A 
1 

C4 3 
10 

Then A, A1e and so BA1s (A 
1 e)s - (eA 

1 
)s - eAls =A1seC C(A). 

Hence 3 C(A)n C(b) 0 and io A, 0 B, = 0. 

Suppose there are no A,, B, C F(; 
jR) with 00 AlC: A, 00 Rlo= b 

and A, Sg Ble Let acA and bcB and let t be the R-homomorphism: 

Ra - Rab defined by right =Itiplication by L. Now ker(t Ra r) 

L(b) E F( 
R 

R) and so is a direct summand of ra i. e. ker(t)iS CA for 

some Cc F( 
R 

10. 

But CCA and CY Rab C-- B and so by hypothesis ab a o. Hence 

AB =0 and so A C: L(B) giving by lemira 6.2 C(B)C: r(A). Thus 

AC (B) =0 and so C(B)A -0 and C(B)C: L(A). We get therefore that 

C(A),, --- z(C(B)) and so C(A)C(B) - 0. Cince NO and C(B) are wenerated 

by central idempotents we have then C(A) 0 C(", 3) = 0. 

This is a ring version of a well known lattice result (see e. c. 

prop. 66 of sitorayakov (1)). 
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Lemma 6.1". Let R be an upper COntinuous regular rinF and At F( R). iiL R 

Then there are elements A,, A2$ B19 B2 cF (R11 ) such that (1) A=A1 (D A2 

(2) BaB1 (D B2 (3) A1 12ý B1 (4) C(A 2) n C(B 2)-0. 

Proof 

Without loss of generality we can assume At) B-0. BY Zorn's 

lemma we can pick left ideals A19A BlQ B such that B, and 

if there are 
lell't ideals A 29 B2 with A1CA2= Aq B1CB2MB and 

g: A 2 'ý! B2 and gJA Imf then A, mA2 and B., aB 20 

By lemma 6.10 since A ri Ba0 we have A1- E(A 1) and 

B, = E(Bi ) i. e. A1 and B1 are closed left ideals. By lerma 6.9 we 

get A19 Bl E F(nR)s 

Let A0A fD A and BaB EE) B where A, Bc F(,, R). Now 121222 

there are no non-zero A 31 1ý3 Y(RR) with A3C: A2 and B3CB2 with 

A3%B 3' Otherwise we could extend f: A 1 
9ý Ble Hence by lemma 6.11 

C (A 
2 

)() C(B 2)-0. 

This is the ring form of a well known lattice result (see e. g. 

satz 1.1 of chap. 4 of limeda (1)). 

Cor, lo Let R be an upper continuous regular ring and e. f idempotents 

Then there are central idempotents hl, h with h+ h2 =1 and 21 

Reh 1 
Pf direct su=and of Rfh 

1 and Rfh 
2 

le direct summand of Peh,,, 

Proof 

By lerma 6,12 there are idempotents e 19 e2l f'l I f2 cF such that 
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(1 ) Re 'Re (D Re 2 

(2) Rf Pf (D Rf 2 

(3) Re Rf 1 

(4) C(Re2)t'ý C(Rf 2)w0. 

Let C(Rf 2)= Rh 1 where h1 is a central idempotent and let 

h2=1- hle Then C(Re2 )4= L(C(Rf 2 Rh 2 and so Re 2 h, a 0. 

Similarly Rf 2h200. 

Therefore Reh, a Re 1h1 (D Re 2h, Re Ih1 24_ Rf 1h1 which is a 

direct summand of Rfhl, Similarly Rfh '24 direct summand of Reh,. 2 

This result is le=! ia 3.4 of Kaplansky (5). 

Theorem 6,13, Let R be a finite upper continuous regular ring and 

n, v n. Fý A, Bc F( R) - If n is an integer and A then'A I. TJ B. 
R 

Proof 

By lemma 6.12 there are A,, A 2* Bl* B2 c F(J) with 

(1) A-A 6) A (2) BwBWB (3) Al:: ý B, 4)C (A -)M0. 1212 2)n C("32 

nnP then Let C(B 2 
Rh where h is a central idempotent. If A 

multiplying by h and noting Ah=0 and B, =nh we get (A h)r"- 03 h )n BI) n 
2211 a) 

, 
St (hRh). But AIh '39 Bh and (hRh) is a finite regular ring. But 

hRh cannot contain a copy of itEelf a 

B2m0, Similarly A2 '2 0 and we get 

I%e corresponding theorem for 

usually stated with the assumption of 

(see e. g. prop. ýl of Skornyakov (1)). 

s Ft proper direct summand henc(ý 

A=A1;! ý 'ý, 1-B. 

comnlemented modular lattices is 

upper and lower continuity 

ýIowever, a careful loo: - at trie 
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proof shows that the assumption of lower continuity can be replaced by 

the assumption of finiteness, Our theorem is the corresponding ring 

version of this modified theorem. 

Lenna 6.14. A ring R is left self-injective if and only if for some 

integer nRn is left self-injective, 

Proof 

A ring S is left self-injective if and only if there is an 

U injective progenerator for S Hence any ring Morita equivalent to S 'is 

also left self-injective. In particular since f6r any integer n 

R P*JP F, is left self-injective if and only if R is left self-injective. Mnn 

I am indebted to P&M. Cohn for this elegant proof vhich shortens 

earlier proofs in the literature (see e. g, theorem 8.3 of utumi (4)). 

Theorem 6.15. A finite left self-injective regular ring is an s. u. c. 

ring. 

Proof 

If R is a left self-injective regular ring then by (A3) and 

lemma 6.14 for any integer nRn is also a left self-injective reguiar 

ring. Hance by (1) of lemma 6.8 P, 
n 

is upper continuous and in 

particular is complete. 

Nov F( 
P. 

n) fV F( 
RRn) 

is complete and by (3) of lemma 6.3 

(since P ig finite) we have F( RR 
n) is finite. Hence F( 

RR 
is finite 

n 
and so Rn is an upper continuous finite regular ring. If Aq B are left 
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n nW , y theorem 6.13 AB and 'ý is an ideals with AB then b, 

s. usce ring. 

Remark* If R is an upper continuous regular ring then Pn need not be 

upper continuous, Indeed if R is an upper continuous regular ring 

which is not left self-injective then Rn cannot be complete if n>1. 

For if it were then by theoren 4.3 of Amemiya and Halperin (1) Pn would 

be upper continuous. 'Then by corollary of theorem 3.3 of Utumi (4) 

Rn is left self-injective and so R is left self-injective, which is not 

so, Hence we cannot use the methods of theorem 6.15 to prove directly 

that a finite upper contiriuous regular ring is an s. u. c. ring. This 

however is true as the following corollary shows. 

Cor. 1, A finite upper continuous regular ring is an s. u. c. ring. 

Proof 

Let R be a finite upper continuous regular ring. Then by (1) 

of lemma 6.8 R is the direct product of a strongly regular ring R. and 

a left self-injective regular ring R 2" 

By theoren 6.7 RI is an s. u. c. ring and by theorem 6.15 so is 

R 2* Hence by lemna 5.4 R is an s. u. c. rinF. 

Theorem 6.16. A properly infinite upper continuous regular ring P is 

an 9. u. c. ring. 

Proof 

Since R is properly infinite there is an infinite independent 
RLCV-W"Sý 

or set (A 
i irI , mmAmai4y isomorphic left ideals E F( R 

TJ By Zorn'r, lemna 
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we can take t'his to be maximal among such sets. Let (e 
i 

)iC, and e 

be idempotents with Aiw Re i and Re a l. u. b. (A 
i)i CI 

and let Re 
1 be a 

fixed member of (A 
i) ici, 

By cor. 1 of lemma 6.12 there is a central idempotent h with 

Be 1(1-ft)! U direct summand of Re(l-e)(1-h) 

(I-e)h 129 direct summand of Re h. 

ow h0o for if ho then Re direct summand of P(l-e) and we could NI 
IP&ir W ý. s5zý 

extend the set (Re of isomorphic independent elements of 

F( H R) thus contradicting the maximality of (Re 
i) icio 

Since R is upper continuous 

i 
Reh - 9h n Re - RI. i (1 1. uob. (Re 

i)i ei 

- I. u. b. (Rh A Re i)i cl 

I. u. b. (Re 
ih) icI 6 

lherefore 00 Rib = Reh (D R(l-e)h T 

l. u, b. [(Re h)i, -e)h) R(l 

Wet d. = (I-e)h then Rd 
0 

Qý direct summand of Pe I h. I Hence we can write 

for each icI Re iha Rf $ Rd i where Rd 
Ov 

(di)iF-I are idem-ootents. Hence Ph = l. u. b. 

Putting F, = MOO Rflq B20 Rd 1 ID Rf 29 "' 

where (3i)i,, is an infinite independent set 

T'd i and (f 
i) icI and 

(Rd IID Rfit Rd 
0 

we get Rh - 1. u. t. (B 
i) icl 

P41vivi-se 
of isomorphic 

elements of F(,, P, ). 
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Since I is infinite it can be written as the disjoint union 

of a countable number of sets (I each with the same cardinal 
nwl 

nn1 

as 1. Define B, l. u. b. (B then Rh 1. u, b, (3, But 
i iCI I 

EBFEi and so by lernma 6.10 F( rBF, ( rB1 Thus by 

Eln i CI 11 El n 
iEI 

I 

lemma 6.1 and lerqma 6.9 .3 lad. B Hence we have that (3 is an Inn 

inderendent countable set of -- ----- . 
isonorphic elements of F Tý 

Since R is properly infinite we may repeat the argunent on 

R(l-h). By transfinite induction we get that R=l. u. b. of a countable 
FOLLY 

independent set (C ), 
cJ 

of 
ZLYkw=" 

isomorDhic elements of P(, i 

For arky integer nJ can be written as tne disjoint union 
n 

UIJk of countable subsets Jk Of J- Define CJl. u. b. (C 
JEJ 

k-l kk 

Now since J and Jk are both countable we have ECEC and so 
jCJ JCJ k- 

arg"aing as before l. u. b. (C 
j01. u. b. (C 

J)jf,. T k 
i. e. CJP. But 

n n. 
J. usba(C j) JEJ W I. u. b. (C 

J)1CJ,,, 
n. 

k k=l k 

Now supnose J is PL riodule with P n,,., n., Let S=F. nd 

and taking endonorphisri rings we get S Ce P. Since R is upper cofitinuous n 

and regular then so 's ýýn' By (A3) S is regular and the lattice 

isomorphism F(,, S )ný! F(' S n) shows that S is upper continuous. 
nS 

n 

7uppose f is a central ilempotent of ", then there is a central 

idenpotent e of Q such that elýe! V(fSf) 
-I . 

As P is properly infinite ePe 
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is infinite and hence so is (fSf) 
n. 

But F( 
fSf 

fSf n) is a complete 

lattice and infinite* Hence by (3) of lemma 6.3 fSf must be infinite. 

Otherwise F( 
fSf 

fSfn) would be finite# Therefore S is properly infinite. 

n Now S is also upper continuous and so by the first part SV S 

But RP in a progenerator for R 
IJ and so by (B) of theorem 3.1 there is a 

category equivalence F: SRV such that (S) FMP, 
But SnS and 

.0 (Sn)Fj SF p pn n 
=C i#e. Pntv- P. Therefore Qý R tif R and so R is 

an s, u, c. ring. 

The first part of this proof in closely modelled on lemmas 3.5 

and 4.5 of Kaplansky (5). 

n Remarks In the proof we showed that for any integer RRVFR In 

fact it can be shown that -R#-V RI where I is a countable set. W W- *R 

Theorem 6.17. An upper continuous regular ring is an s. u. c, ring. 

Proof 

Any complete regular ring R is the direct product of a finite 

regular ring RF and a properly infinite regular ririg RI (see e. g. 

prop. 2 on p. 9 of Kaplansky (3))* 

If R is upper continuous then so are R. and RI, By cor. 1 of 

theorem 6.15 and theorem 6.16 RF and RI are s. u. c, rings. Hence by 

lemma 5.4 R in an s. u. c, ringe 

Cor. l. Any left self-injective ring R is an 9-u. c. ring. ft 
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Proof 

By theorera 4.3 of Utwni (4) if R is left self-injective then 

so is R/J(R). But lemina 8 of Utumi (1) shows that RIJ(R) is regular 

and so Rl,, (R) is an seu. c. ring. 

s. u. c. ring, 

Therefore by lemma 5.6 R is an 

Utumi has made the following definitions (see Utumi 

Definition. A ring R is called left continuous if 

(1) for every left ideal A of R there is an idempotent ecR with 

R 

(2) if B is a left idedl and f an idempotent cR and B 1/ Rf then B is 
I 

generated by an idempotent. 

, rheorem 4.6 of Utumi (4) shows that if R is a left continuous 

ring then RIJ(P) is an upper continuous regular ring and so R/J(P) is 

an s. u. c. ring. This gives us the following corollary. 

Cor. C-. A left continuous ring is an s. u. c. ring. 

Theorem 6.18. Let R and S be rin93 with zero singular ideal and with 

injective hulls I(F) and I(S), If Rn Iry Sn for some integer n then 

I(R) I(E). 

Proof 

Let F be the category equivalence: R F. 
li with (R n)F mRn 

nF(,, n 
Then [I(R )l M 1(0 n)F I(R 

n 
Now I(Rn) )n and so taking 

endomorphism ring5 and noting End R 
(I(R))-Ce I(R) as rings we have that 

(I(R)) n: 4 End (T (", 
n) n, R 

n 
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But-(I(R)) 
n 

is a regular ring and hence semi-simple (in the 

sense of Jacobson), so'it follows (see e. g, sections 5 and 9 of 

Lambek (1)) that Rn has zero singular ideal* Hence I(P 
n) 

is a left 

celf-injective regular ring and VR 
n)Q!? 

End R 
WR 

n 
(I (R) )no 

n 
Similarly I(S 

n 
)ýY Ws)) 

no 

If Rn C4- Sn then VR 
n),; 

y I (Sn ) and so (I(R)) 
nl-V= 

(I(S))n* 

But I(F) and I(S) are left self-injective regular rings and so by 

theorem 6.17 I(S). 

Cor. l, Let R and S be regular rings such that Rn q4 Sn for sore 

integer no Then I(R)St- I(S). 

Proof 

Both R and S have zero singular ideal and so the result follows 

from theorem 6.18. 

This corollary shows that any co-ordinatization by a regular 

ring of a complemented modular lattice order ý, 3 in unique up to 

injective hull or left quotient ring. The problem as to whether the 

co-ordinatizationyin general unique seems difficult. Our results give 

some indication that it might be possible to prove this if the lattice 

is complete. 



. 7. 

'. l""L'-', ', jFAL. - 
'-' "'IA':. -' 

, -. e cur res.., ts to tqe Darticular case cf 

. Lntegra, iomains. 

oefinition. An integral domain is called a left Ore domain if for any 

non-zero elements a, bcR RafN Rb 0 0. Otherwise R is called a 

non-Ore ý, omain. 

If H is a non-Cre domain then there are non-zero elements 

a, bc7,, with Ra rl RL = 0. It is clear tnen that [, I? bn" is Ft countably 0 

infinite indeoendent set of princinal left ideals of P. ': '. '! Us P contains 

a free module of infinite rank. 

As is well known a left Ore domain 1,1, can be embedded in a 

division ring such that every element of ', can be written in the form 

a-lb for some a, br 11. is called t1ne quotient rinw of 

(a b are any finite set of elements of ,) wnere (a; )nnC 
i-11 

tInen they "can be put over a common derioninatcr" i. n. there are 

elements (c n, 
aEF such that a b, = a- 

I 
c, for ia1, ..., r. 

Definition. Let R be a left Iýre domain wit:, quotient ring, '. ')UpPo! 7e 

I, ension of is a module. Then tl,, e rank of -1: is defined to be the dim 

as a vector space over The set T(-) is ft 

subinodulle of ýý called the torsion submodule. 't can easi.. r vo- ;: -, owr, 

r ý- "0 - t'- atr, - ý r" (")1. -in (1 o r, 1yif1 (9 m=oin. -) 
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Lemma 7,1. Let R be a left Ore domain and Ma module of rank R 
Then 

R 
M' satisfies conditions S1 and S2 of theorem 4.8. 

Proof 

Let Q be the quotient ring of R, Any element ucQ9M is 

of the form r (r 
1 
-1 tM for some integer n and elements 

rig ti EnR and m, c M. Now for some r, ci cR ri-lt ia r-lc i and 

so ur r-1cidD r, iw r-l(l 0 m) where =-rcimi 
Jai ival 

Suppose xg y. zcM and Na Rx + Ry + Rz. Then QN 

Q(l OD X) + QU a Y) + Q(l 0 Z). Now suppose either (1) one of 

xj yj zc T(M) or (2) x. yo z are free elements but (Rx, Ry. Rz) is 

not an independent set of submodules. 

In case (1) one of 1 OD x. 1 OD y0 10 z is zero and so 

dim(Q 0 N) < 2. 

In case (2) there are elements a. b, cER two of which at 

least are non-zero such that ax + by + cz - o, Then if a0o (1 M x) - 

a-' (a 0 x) - a-' U0 ax) 

a-1 [14D -(by + cz) I --a-lb(l Q) y) +-a-lc(l dD z), 

Hance QU OD x) C: QU C& y) +Q(l 0 z) and so dim(', Is N) < 2. 

But dim('ý(M M) > 3 so in either case (1) or (2) there is a free 

element vEM with q(l 49 w) 0(Q0 (Rx + Ry + Rz) Ia0. Hence 

Rw n [Rx + Ry + Rz) - 0. 
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Suppose neither case (1) or (2) holds then x. y. z are free 

ele'ments and (Rx. PY6 Rz) is an independent set of submodules, if 

vm x+y+ zthenvis free andRwf% (Rx+ Pqr) = Rwf)(Ry + Rz) a 

Rw n (Rz + Rx) - 0. 

Hence M satisfies condition Sl, As in lemma 2 of Skornyakov 

in this case S2 is a consoquence of Sl, 

Theorem 7,2, * Let R be a left Ore domain and RMa module of ran4 > 3. 

if SN is a faithful module such that ýZ: L( 
R 

M)Clc4L( 
S 

N) then there is a 

semi-linear isomorphism inducing E. 

Proof 

By lemma 7.1 M satisfies S1 and S 2* Further R is an integral 

domain and so is inverse symmetric. The result then follows from 

theorem 4.9. 

We note in this case the semi-linear isonorphism induces the 

lattice isomorphism. This is also true for our results on free nodules 

if the-rings considered are integral domains, First we ne*d a lemna. 

Lerna- 
_7,. 

3, Let M be a module and a$ bg c c N' such that 1(a)C X(b) 

and (Raj Rb, Rc) are independent6 Then R(a +b+ c) a [F(a + b) & Fc)() 

[R(a + c)(E) Rbl. 

Proof 

R(a + b) + Re = Na +b+ c) + Rc 

R(a + c) + Rb a R(a +b+ c) + Pb 
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Hence [R(a+b)6) Re I r) [R(a+c)19 RbI w [R(a+b+c )+Re ] fN [R(a+b+c)+Rb) 

a R(a+b+c) + [R(a+b+c)+Rcir) Rb (aPPlying the modular law) 

0 R(a+b+c) + [R(a+b)a) lic I nRb 

= R(a+b+c) + R(a+b)t) Fb (since (Ra. Rb, Rc) are independent) 

= R(a+b+c) + L(a)b 

w R(a+b+c) (since L(a) C L(b)). 

Theoren--7.4. Let P be an integral domain and RMa free module of 
c 

rank > 3e If N is a faithful module with E: L( N) then there SRS 

is a semi-linear isomorphismi(Rl M)I_ 
. 
ýf (SI, N) inducing E. 

Proof 

Let (a ) be a basis for Mo Define P* nF Re and i iCI i 
joi 

i 

(Pr)'. By theorem 4.6 there is a semi-linear isomorphism (t, s): 

M)ý! f- (S6 N) which for each icI induces E: L( PI) ! v- L(SQ*). Ri 

Let mErieic Me If riao for some icI then mc 

and so (Rm) qn Ass=e r0o for any ic1. 

Since I has at least three elements we can write m in the forin 

x+y+z where xur1e1ymr2e2 and z=Er ei. But x is free 
10192 

and (Rxq Ry. Rz) are independent and so by le=a 7.3 we got Rm 

R(x +y+ z) - (rycDR(x + z)in [Pz 19R(x + YH. Now Fx, R(x + Z)C: 

PO and Ry, R(y + z)C: and so (Rx) E, 
qx R(x + z) 

E- 
S(x s+z8 

2 pi* 

(Ry) Sys 9 R(y + z) S(. V3 + Z15). 
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Therefore (Rm) (Sys CI) S(xg+zg )n [SzB (D SW + ys )I 

S(x 3+ ys + zs ) since LW) -0 and (7)x Sj Sy 81 Szs 

are independeh. flence (Rm) Ea Sn sa (Rin)s and it is now clear that 

( ig a) induees S. 

We now prove a generalization of a result in Wolfson 

Wolfson shows that if R and S are both principal left ideal domains and 

I is a non-empty set then R 
rfI 

nv- S 
rfl 

implies RC! S. 

Definttion. A ring R is called indecomposable if R contains no 

idempotents other than o or 1 i. e. R has no proper left ideals as direct 

su=and3o 

Theorem 7s5. Let R be an indecomposable ring and Sa ring. Suppose 

I and J are non-empty sets and that R 
rfI rfJ* 

If either (1) S is a local P, F. ring and I and J are finite 

or (2) S is a P, F. ring 

then R! 
--'! 

S. 

Proof 

(1) Suppose I and J are finite with n and m elements respectively. We 

have then Rn LU Sn and withou 

both > 3, By von Neumann's 

E: L( RR 
n) n! L( 

SS 
M)* 

Let (e n be a basis 

generated projective. if S 

t loss of a 

theorem we 

for Rn and 

is a local 

enerality can assume n, m are 

have a lattice isomorphism 

Q (Re Now Q is finitely 

P. F. ring then Q is free. 

f 
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But Re 1 has no proper direct su=ands and hence neither does Q, Hence 

Q =st be free on one generator ioes Q! Y S. Therefore by cor, l of 

theorem 4o2 R!: e S. 

Ij (2) Suppose t: R 
rfl 

S9 S 
rfJ' 

Lot R 1.1 URR and SN=SS BY lelmma 1.7 

R 
rfI 0 End, (M) and S 

rf. T 0 End S 
(N). Let e be the idempoient of R 

rfI 
th 

with 1 in the (19 1) place and zeros elsewhere, If fa et then 

R2e aR rf 1fs rfJ 
f, 

no idempotents other than 

the image of f# Hence N: 

Nov N- Nf 6) N(l - 

Since R is indecoMosable fS 
rfJ 

f contains 

o or 19 But fS 
rfJ 

f '. R? ý End S 
Olf) where Nf is 

f has no proper direct summands* 

- f) and so Nf is prqjectivea If S is a 

P. F, ring then Nf is free, Therefore as Nf has no proper direct 

summands Nf is free on one generator and so RW End (Nf)12ý S, 

Cor. 1'. Let R be an intseral domain and Sa ring. Suppose I and J are 

non-empty sets, If either (1) S is a local P. F. ring and I and J are 

finite or (2) S is a P, F* ring then R 
rfl 

! a-, S 
rfJ 

implies Rne S. 

Proof 

Since R is an integral donain it is indecomposable. The result 

then follows from theorem 7,5, 

As a principal left ideal domain is a P, F, ring cor. 1 includes 
I 

the results of Wolfson as a special case. 

Theorem 7,6. Let R and S be non-Ore domains with Z: L( R P, )C: f L( S S). 

Then 
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(1) if E satisfies C, or C2 then R Zt S 

2)R '*"' S 
m 

(3) if S is a local P, F. ring RS 

(4) 1 (R) tt I (S) 

Proof 

Since R is a non-Ore domain it contains a free module of infinite 

ranke Let(e be a basis for it. 

(1) Suppose E satisfies Clo Then (Re 
i), -Sf i for some fi c So 

Now E induces L( (E) Re )! 2! L(, Pi 
Sfi). As S is an integral domain 

fi is a free element and so by corel to theoren 4.2 RýYv hýv symmetrr 

the result holds if E satisfies C2* 
OD 

1 

(2) Let IR 111 = (1) Re i and 3 "N Then N contains free elerents and 
iml 

so L( M)fv L( K) implies by theoren 3.4 that R"-fS. 
R -- S 

(3) From (2) R ne End S 
(Q) where SQ is a progeneratore If 5 is a local. 

P, F. ring then (4 is free* Since R is indeco=posable Q has no proper 

direct r-11mmands and so is free on one generator. "Mierefore Rnl S. 

(4) R and S both have zero singular ideal and so I(R) and I(S) are left 

self-injective regular rings and E( R)Ce F( " C. I(R))j, F( F 104) ýI I(S) 

Now Ac E( R R) if and only if for any left ideal B., A CIB 

implies A-B. Hence it is clear that E: L( induces 

M R) N E( S) and so F( I(F))tv- F( 
FS 100 - 

I(s), 07)). 
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Suppose A. is a left ideal of I(R). - Then A is a R-submodule 

of I(R) and so A0R00. Let o0ac A() R and suppose there is an R 

element qc I(R) with qa = oo If q0o then are non-zero elements 

r. scR such that rq a so But sa a rqa ao and this is impossible 

since s0o and a0 oo Hence qwo and t I(R) 
(a) - 0. 

We have shown that every left ideal A of I(R) contains a free 

element ise. contains a copy of I(R) as a direct summands Clearly I(R) 

is properly infinite and upper continuous so by theorem 6,16 

I (R) ný I (R) 
n 

for any integer no 

Take n>3 then by cor, 3 of theorem 2*3 and lemma 1,3 

I(R)!: d I(R) 
n 

'-. Ld I (S 

Remark 1, In (4) we could have taken S to be any ring with zero 

singular ideal. 

Remark 2. The results of this theorem would seem to indicate that for 

any non-Ore domains F and S EtL( 
R 
R)S! f L( S S) implies RC-e S. We have 

been unable to prove this& 

Finally we note that the injective hull of a non-Ore domain 

has some rather remarkable properties* 

EX! gple_L.. 6. Let R be a non-Ore domain and Q its (left) injective hull, 

Then 

(1) Q is left self-injective but not right self-injective 

is upper continuous but not lower continuous 
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(3) Q is simple 
I V, ig ke 

(4) for any countable set IQ Ce Q an Iv; M Q-modules 

(5) for any integer n Q'_ 
.! 
ý Qn 

(6) every finitely generated left ideal of Q is free on one generator 

(7) Q is a left -and right P,, F, ring. 

Proof 

(1) Q is left self injective and so upper continuous. If Q were also 

right self injective then Q would be lower continuous and hence 

continuous. But Q is infinite and as is well known a continuous regular 

ring is finite (see e. g. prop. 80 of Skornyakov W)a Hence Q cannot 

be right self injective. 

(2) The arguments above show that-Q cannot be lower continuous. 

(3) Any non-zero left ideal A of Q contains an element a with LQ (a) -0 

(see proof of (4) of, theorem 7,5). But aQaeQ for some idempotent 

ecQ and so (1 - e)a - o. Therafore e=1 and aQ w Q. Thus AQ aq 

for all non-zero left ideals A and so Q is sirple, 

(4) and (5) follow from theorem 6.16 since Q is properly infinite and 

upper continuous 

(6) Let Q be any ring and QA and QB injective modules. ' Suppose there 

are Q-monomorphisrs A ---* B and B ---* A, Then Burrby has shown 

(see Bumby (1)) that AlýýB, 
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Nov if AE F( Q Q) then A is a direct summand of Q and so is ' 

Q-injectives But A contains Q as a direct summand (see proo; of. (4) 

of theorem 7-5). Hence by Bumby's result AWQi, e, every finitely 

generated left ideal of Q is free on one generator, 

(7) By a result of Bass (corollary of theorem 3 of Bass (2)) Q is a' 

right PeF, ring. But by KaPlansky (1) every projective left Q-module 

over a. regular ring Q is a direct sum of finitely generated left ideals 

of Q4 Hence by (6) Q is also a left P*F, ring, 

0 
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