Characterizations of rings and modules by means of lattices.

Stephenson, W.

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/jspui/handle/123456789/1634

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

CHARACTERIZATIONS OF RINGS AND MODULES BY MEANS OF LATTICES

A thesis for the Ph.D. degree of the University of London

BEST COPY

AVAILABLE

Variable print quality

ABSTRACT

In this thesis we study the relationship between the lattice of submodules and the algebraic structure of a module. The key remark in our study will be the fact that the homomorphisms between two Independent submodules of a module can be 'represented' by elements of its lattice of submodules. Exploiting this fact we show that the endomorphism ring of a module which is the direct sum of more than three isomorphic submodules is determined up to isomorphism by its lattice of submodules.

Lattice isomorphisms arise naturally in two ways, viz., through category equivalences and semi-linear isomorphisms. Any lattice isomorphism between a free module of infinite rank and a module containing at least one free submodule is shown to be induced by a category equivalence. This result is used to give new characterizations of Morita equivalence.

If certain mild conditions are satisfied a lattice isomorphism between a free module of rank ≥ 3 and a faithful module is shown to give rise to a semi-linear isomorphism between the modules. If both modules are free of rank $n \geq 3$ then the question of whether there is a semi-linear isomorphism between them is equivalent to asking when an isomorphism of matrix rings $R_{n} \cong S_{n}$ implies a ring isomorphism $R \cong S$.

We study rings R with this property for any n and any ring S. The following are shown to be of this type (1) commutative rings
(2) p-trivial rings (3) matrix rings over strongly regular rings
(4) left self-injective rings.

Applying these results we give new examples of regular rings which uniquely comordinatize a complemented modular lattice of order ≥ 3. In particular we show such a co-ordinatization is always unique to within injective hull.

ACKNOWLEDGEMENTS

I should like to acknowledge a deep debt of gratitude to m supervisor Dr.P.M.Cohn without whose encouragement and stimulation this thesis would never have been written.

I should also like to thank Miss Lynn Harmsworth who has typed this thesis so quickly and efficiently.
Page
ABS'TKACT 2
ACKINOWLEDGEIENTS 4
INTRODUCTION 6
CHAPTERS

1. Finitely generated modules and infinite matrix rings 12
2. Endomorphism rings 23
3. Category equivalences 49
4. Semi-linear isomorphisms 64
5. Unique co-ordinatization rings 86
6. Kegular rings 98
7. Integral domains 123
REFERENCES 133

INTRODUCTION

Associated with any module there are a number of important algebraic structures and it is of independent mathematical interest to study the interrelationship between these structures and the part they play in determining the structure of the module itself. In this thesis we attempt to carry out this programme for one of the most important structures of a module namely its lattice of submodules. Our method of attack will be to study the consequences of assuming that two modules have isomorphic lattices of submodules. It will turn out (see chap.2) that in very general situations this will imply that their endomorphism rings are isomorphic. Our main interest however will be in the relationship between the module structures of the modules.

We consider two main ways in which lattice isomorphisms arise, viz., category equivalences and semi-linear isomorphisms. These will be our canonical lattice isomorphisms - so to speak our yard-stick. Our aim will be to find conditions on our modules to ensure that any lattice isomorphism between them is canonical. However before going into further details we will need some notation and definitions. Notation

Unless otherwise stated all rings will be assumed to contain an identity element $1 \neq 0$ and all modules will be assumed to be unital.

We shall use the notation R^{M} for modules where the suffix R indicates that R is a ring and its position on the left of M indicates that M is to be considered as a left R-module. Likewise we shall denote a right R-module by M_{R}. For a ring R we denote the category of all left R-modules by ${ }_{R}{ }^{\boldsymbol{\mu}}$.

We adopt the convention of letting the endomorphisms of a module act on the opposite side to the ring of operators. Hence if P^{M} is a module with $S=\operatorname{End}_{R}(M)$ then S acts on the right of M and we (as we often shall) can consider M as a right Smodule.

If R^{M} is a module we shall denote its lattice of submodules by $L\left({ }_{R} M\right)$ and by the notation $E: L\left({ }_{R} M\right) \underline{N}\left(_{G^{N}}\right)$ we shall understand that Σ is a lattice isomorphism between the lattices of submodules of the modules R^{M} and S^{N}. The lattice isomorphism $L\left(R_{R}^{M}\right) \approx L\left(R^{M}\right)$ defined by $P \longrightarrow P$ is called the identity lattice isomorphism and will be denoted by $I_{L\left(R^{M}\right)}$

If R is a ring and I a non-empty set then R^{I} will denote the direct product of I copies of R and I_{R} the direct sum, 1.e., R^{I} is the set of all maps $I \longrightarrow R$ and I_{R} is the subset consisting of all maps which are zero on all but a finite number of elements of I. If is finite with n elements then R^{I} and I_{R} coincide and will be denoted by P^{n}. We will write R_{n} for the matrix ring of rank n over R.

Throughout we use the convention that integral domains need not necessarily be commatative. References will be listed in numerical order under each author.

Category equivalences

Let R and S be rings and R^{μ}, S^{μ} be the categories of all left R - and S-modules respectively. The categories R^{μ} and S^{μ} are said to be equivalent if there are functors $F:_{R}{ }^{\mu} \rightarrow S^{\mu}, G S_{S}{ }^{\mu} \longrightarrow R^{\mu}$ and natural equivalences $F G \simeq 1, G F \simeq 1$. The rings R and S are said to be Morita equivalent, $R \tilde{M}^{S}$, if the categories P^{μ} and S^{μ} are equivalent.

Now suppose that R and S are rings such that $R \tilde{M} S$ where $F:_{R}^{\mu} \longrightarrow S^{\mu}$ is the corresponding category equivalence. Then if R^{M} is any R-module and $S^{N}=M^{F}$ it is clear that F induces a lattice isomorphism $L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$.

In chap. 3 the converse problem is considered, i.e., given modules R^{M} and S^{N} such that $E: L\left(R_{R}^{M} \cong L\left({ }_{S} N\right)\right.$, we study the circumstances under which it is possible to deduce that $R \tilde{M}^{\sim} S$ and that the corresponding category equivalence induces Σ. Our investigation of this problem will lead to new characterizations of Morita equivalence and, as far as the author is aware, this is the first time such an investigation has been made.

Semi-linear isomorphisms
Let ${ }_{R} M$ and ${ }_{S} N$ be modules. Suppose $\ell: R \cong S$ is a ring isomorphism and s: $\left(M_{1}+\right) \cong\left(M_{0}+\right)$ is an abelian group isomorphism then (ℓ, s) is called a semi-linear isomorphism if for any $r \in R$ and any $m c M$ ($r m)^{s}$ m $r^{\ell} m^{s}$. We will write $(\ell, s):(R, M) \cong(S, N)$.

It is clear that any semi-linear isomorphism $(\ell, s):(R, M) \cong(S, N)$
induces a lattice isomorphism $L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$. In chapters 4 - 7 the converse problem is considered, i.e., given modules R^{M} and S^{N} such that $\Sigma: L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$, we study the circumstances under which we can deduce that there is a semi-linear isomorphism $(\ell, s):(R, M) \cong(S, N)$ and that (ℓ, s) induces $\sum_{\text {。 }}$

This aspect of our problem has received rather more attention, particularly in the case when R^{M} and S^{N} are the free modules $R^{R^{n}}$ and $S^{S}{ }^{n}$ for some integer n. The question in this case turns out to be equivalent to asking when the co-ordinatization of a geometry (or equivalently a lattice) is unique. For example if R and S are division rings and $\sum: L\left(R_{R} R^{n}\right) \cong L\left(S_{S} S^{n}\right)$ for some integer $n \geq 3$ then the first fundamental theorem of projective geometry states that there is a semilinear isomorphism $(\ell, s):\left(R, R^{n}\right) \cong\left(S, S^{n}\right)$ which induces \sum (see p. 44 of Baer (1)).

Von Neumann considered regular rings as a generalization of division rings and showed that the same theorem holds for a particular type of regular ring, the so-called continuous regular rings (see
von Neumann (1)). The question as to whether this theorem holds when R and S are any regular rings is unsolved. In chap. 6 we consider this problem and extend von Neumann's result and similar results in chap. 7 of Skornyakor (1).

In von Neumann (1) there are a number of interesting results which are not explicitly stated (see chap. 2 of this thesis for proofs and generalizations of these). For example let R and S be rings and n an integer ≥ 3 then the following results hold.
(1) If $E: L\left(R_{n} R_{n}\right) \cong L\left(S_{S}\right)$ then $R_{n} \cong S$.
(2) If $\Sigma: L\left({ }_{R} R^{n}\right) \cong L\left(S_{S} S^{n}\right)$ then $R_{n} \cong S_{n}$.

Result (2) shows that the 'uniqueness of comordinatization' problem can be reduced to one of considering isomorphisms of matrix rings, i.e., when does $R_{n} \cong S_{n}$ imply $R \cong S$. Several results are known for this problem.
(1) The uniqueness part of the Artin-Wedderburn theorem (or the first fundamental theorem of projective geometry) gives the result if R is a division ring and hence for semi-simple Artinian rings. These results can be generalized to rings which are division rings and Artinian rings modulo their Jacobson radical, i.e., local and semi-primary rings (see e.g. pp.56-59 of Jacobson (1)).
(2) The results in Baer (1) have been generalized in Wolfson (1) to give the result if P and S are principal left ideal domains. We extend results (1) and (2) in chap. 5 and chap. 6.

In the general case when R^{M} is not free the problem is much harder. There are results in Baer (2) and Baer (3) on abelian groups and vector spaces. The results in Skornyakor (2) generalize those in Baer (2) and the first fundamental theorem of projective geometry. In chap. 4 we generalize Skornyakov's results.

CHAPTER I

FINITELY GENERATED MODULES AND

 INFINITE MATRIX RINGSIn this chapter we consider two separate topics. In section 1 we show that the lattice of submodules of a module is determined by the partially ordered set of its finitely generated submodules. In section 2 we give generalizations of a theorem of von Neumann. In particular we show that there are lattice isomorphisms between the lattices of submodules of direct products and direct sums of copies of a ring R and the lattices of left and right ideals of the various possible infinite matrix rings definable over R.

1. Finitely generated modules

The results in this section are part of the folklore of universal algebra. Lemma 1.1 is given as exercise 7 on p. 85 of Cohn (1). Lemma 1.3 does not appear explicitly in the literature, as far as 1 know, but the construction used in it appears in Birkhoff and Frink (1). Definition. Let R^{M} be a module. A subset $D \subset L\left(R^{M}\right)$ is called additively closed if (1) $D \neq \varnothing$ (2) if $P, Q \in D$ then $P+Q \in D$. D is called an ideal if it satisfies further (3) if $P \varepsilon D$ and $Q \subset P$. $Q \in L\left(R^{M}\right)$, then $Q \in D$.

Lemma 1.1. Let R^{M} be a module and P a submodule. Then P is finitely generated if and only if P is not the sum of elements of an additively closed set D of $L\left({ }_{R} M\right)$ which does not contain $P_{\text {. }}$
Proof
Let P be a finitely generated submodule of M generated by the finite set of elements $\left(a_{i}\right)_{1}^{n} \in M$. Suppose further $P=\sum_{Q \in D} Q$ where D is an additively closed set of $L\left({ }_{R} M\right)$ with $P \notin D$. Then $\left(a_{i}\right)_{i}^{n}$ are contained in a finite sum of elements of D and hence in an element Q^{\prime} of D. Thus $P=\sum_{i}^{n} R a_{1} \in Q^{\prime} \in D$. But $\sum_{Q \in D} Q=P$ and so $Q^{\prime} \subset P$. Therefore $P=Q^{\prime} \varepsilon D-a$ contradiction.

Suppose conversely that P cannot be written in the form $E Q$ QED for any additively closed set D with $P \notin D$. Let $D=$ the additively closed set of finitely generated submodules of P. Then $P=\sum Q$ and so by hypothesis P, $1, e ., P$ is finitely generated. Definition. Let R^{M} be a module. Then we denote the partially ordered set of finitely generated submodules of M by $F\left({ }_{R} M\right)$. By the notation $\sum_{i} F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$ we shall understand that $\Sigma i s$ an order preserving set isomorphism between the partially ordered sets of finitely generated submodules of the modules R^{M} and S^{N}.
Cora. Let R^{M} and S^{N} be modules with $\left.\Sigma_{i L}\left({ }_{R} M\right) \cong I_{S} N\right)$. Then Σ induces $F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$.

Proof
The characterization of finitely generated submodules given in lemma 1.1 is preserved under lattice isomorphism.

It is worth remarking that cyclic modules are not necessarily preserved under lattice isomorphism as the following example shows. Example 1.2. There exist a non-cyclic module ${ }_{R} \mathrm{M}$ and a cyclic module S^{N} such that $L\left(R_{R} M\right) \cong L\left(S_{S}\right)$.

Proof

Let R be a division ring and n an integer. Then anticipating section 2 we know that $L\left(R^{R}{ }^{n}\right) \cong L\left(R_{n} R_{n}\right)$. But R_{n} is a cycle R_{n}-module and if $n>1 R^{n}$ is non-cycilc.

Lemme 1.3. Let R^{M} and S^{N} be modules. Then $L\left(R_{R} M \cong L\left(S_{S}\right)\right.$ if and only if $F\left({ }_{R} M\right) \cong F\left(S_{S}\right)$.

Proof
(1) If $L\left(R_{R}^{M} \subseteq I\left(S_{S^{N}}\right)\right.$ then by cor.1 of lemma $1.1 \quad F\left(R_{R} M \cong F\left(S^{N}\right)\right.$.
(2) Suppose on the other hand that $F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$. Let $D\left({ }_{R} M\right)$ be the set of all ideals of $F\left(R_{R} M\right)$. If S is any subset $\subset D\left(R_{R}{ }^{M}\right)$ then $\cap \mathrm{S}$ is an ideal $\in D\left({ }_{R} M\right)$ and this is clearly the greatest lower bound es of S with respect to the order relation of set inclusion. Hence by a well-known result (see egg. prop. 4.1 , chap. 1 of Conn (1)) $D\left({ }_{R} M\right.$) is a complete lattice.

Clearly $D\left({ }_{R} M\right)$ is completely determined by $F\left({ }_{R} M\right)$ and the isomorphism $F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$ can be extended to a lattice isomorphism $D\left({ }_{R} M\right) \cong D\left(S_{S} N\right)$. To complete the lemma we need. only show that $L\left(R_{R}^{M} \cong D\left(R^{M}\right)\right.$.

Let $F: L\left({ }_{R} M\right) \longrightarrow D\left({ }_{R} M\right)$ be defined by $P^{F}=F\left({ }_{R} P\right)$ and
 finitely generated submodules of $P=P$ and $D^{G F}=$ set of all finitely generated submodules of $I Q$. If Q^{\prime} is a finitely generated submodule QeD of $E Q$ then $Q^{\prime} C$ some $Q \in D$. Since D is an ideal this means that $Q^{\prime} \in D$ and $\mathrm{SO} \mathrm{D}^{\mathrm{GF}}=\mathrm{D}$.

As F, G are order preserving and $F G=1, G F=1$ they are inverse lattice isomorphisms, Hence $L\left({ }_{R}{ }^{M}\right) \cong D\left({ }_{R} M\right)$ and $F\left({ }_{R} M\right) \cong F\left({ }_{S}{ }^{N}\right)$ can be extended to $I\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$.

Cord. Let R^{M} and S^{N} be modules and $K\left(R_{R} M\right)$ and $K\left(S_{S}{ }^{H}\right)$ be subsets of $L\left({ }_{R} M\right)$ and $L\left({ }_{S} N\right)$ respectively, Suppose that $F\left({ }_{R}{ }^{I I}\right) \subset K\left({ }_{R} M\right)$ and $F\left({ }_{S} N\right) \subset K\left(S_{S} N\right)$. If $\Sigma\left\{K\left(R_{R}\right) \cong K\left(S_{S} N\right.\right.$) as partially ordered sets then Σ can be extended to an isomorphism $L\left({ }_{R} M\right) \cong L\left(S^{N}\right)$.

Proof
By lemma 1.1 it is clear that $\operatorname{siK}\left(R_{R}\right) \cong K\left(S_{S} N\right)$ induces EfF $\left.{ }_{R} M\right) \cong F\left({ }_{S} N\right)$. By lemma 1.3 we can extend $\Sigma: F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$ to a lattice isomorphism $: I\left(R_{R} M\right) \cong L\left(S_{S} N\right)$. It is not difficult to see that this induces $\varepsilon: K\left({ }_{R} M\right) \cong K\left(S^{N}\right)$.
2. Infinite matrix rings

Let R be a ring and n an integer. Then von Neumann showed (chap.1, part 2 of von Neumann (1)) that there is a lattice isomorphism $L\left(R^{R^{n}}\right) \cong L\left(R_{n} R_{n}\right)$ (actually von Neumann's proof is stated for division rings but goes through without change for rings with a 1 e.g. see theorem 2 of Skornyakov (1)).

An easy way to see this theorem is to note that for any integer $n R \tilde{M}_{n} R_{n}$ under the category equivalences $\operatorname{Hom}_{R}\left(R^{n},-\right): R^{\mu} \longrightarrow R_{n}^{\mu}$ and $R^{n} \bigotimes_{n}-R_{n}^{\mu} \longrightarrow R^{\mu}$. Now R^{n} and R_{n} correspond under these equivalences and so they induce $L\left(R_{R} R^{n}\right) \cong L\left(R_{n} R_{n}\right)$. Though at first sight the lattice isomorphism constructed by von Neumann seems to depend on the basis chosen for R^{n}, this is not so. In fact his lattice isomorphism is exactly the same as the one given above.

Using the idea of our proof we can now generalize von Neumann's theorem to a certain class of finitely generated projective modules. Definition. A module R^{P} is called a generator if every left R-module is a homomorphic image of a direct sum of copies of P. We call P a self-generator if every submodule of P is a homomorphic image of a direct sum of copies of P. If P is both a generator and a initeiy generated projective module then we call P a progenerator.

We note the following characterization of generators. Namely. R^{P} is a generator if and only if some finite direct sum of copies of D contains R as a direct summand. This follows since if P is a generator then R is a homomorphic image of a direct sum of copies of P and so is a direct summand of this direct sum, which may be taken as finite as R is finitely generated. Conversely it is easily seen that P is a generator if a direct sum of copies of P contain R as a direct summand.

Theorem 1.4. Let ${ }_{R} P$ be a module and $S=\operatorname{End}_{R}(P)$. Define the maps $F: L\left({ }_{R} P\right) \longrightarrow L\left({ }_{S} S\right)$ and $G: L\left({ }_{S} S\right) \longrightarrow L\left({ }_{R} P\right)$ by $Q^{F}=\operatorname{Hom}_{R}(P, Q)$ and $A^{G}=P A$ for $Q \varepsilon L\left(R_{R}\right)$ and $A \in L\left(S_{S}\right)$. Then
(1) if P is a self-generator then $F G=1$
(2) if P is a finitely generated projective then $G F=1$
(3) if P is a finitely generated projective self-generator then F and G are inverse lattice isomorphisms giving $L\left({ }_{R} P^{\cong} \cong\left(S_{S} S\right)\right.$. Proof
(1) If Q is a submodule of P then $Q^{F G}=P \operatorname{Hom}_{R}(P, Q)$. Suppose P. is a self-generator then there is an epimorphism from a direct sum of copies of P to Q. This is equivalent to saying that $Q=$ Ep e where f runs over $\operatorname{Hom}_{R}(P, Q)$ i.e. $Q=P \operatorname{Hom}_{R}(P, Q)=Q^{F G}$. Thus $F G=1$.
(2) Let $P^{*}=\operatorname{Hom}_{R}(P, R)$. If $x \in P$ and $u \in D$ then define
(a) (x, u) as the element εR obtained by applying u to x
(b) $[u, x]$ as the element of $S=\operatorname{End}_{R}(P)$ defined by $p[u, x]=$ (p, u) x for $p \in P$. It is easily verified that $[u, x]$ does belong to S and that for $x, y \in P$ and a εS satisfies $[u, x+y]=[u, x]+[u, y]$ and $[u, x] a=[u, x a]$.

Suppose now that P is a finitely generated projective module. Then by the dual basis lemma (see egg. prop.3.1 of chap. 7 of Tartan and Eilenberg (1)) there are $u_{i} \varepsilon P_{*}, x_{i} \varepsilon P$, where 1 runs over some finite set, such that $\left[\left[u_{1}, x_{i}\right]=1\right.$.

Let A be a left ideal of S. Then $A^{G F}=y_{P}(P, P A)$ and clearly $A \subset A^{G F}$. If a $\varepsilon A^{G F}$ then $P a \subset P A$ and for each it here are $p_{k}^{1} \varepsilon P$. $a_{k}^{1} \varepsilon A$ with $x_{1} a=\sum_{k} \cdot p_{k}^{1} a_{k}^{1}$. Hence

$$
\begin{aligned}
a=1, a=\sum_{i}\left[u_{i}, x_{i}\right]_{a} & =\sum_{i}^{\sum\left[u_{i}, x_{i} a\right]} \\
& =\sum_{i}^{\sum\left[u_{i}, \sum_{k} p_{k}^{1} a_{k}^{i}\right]} \\
& \left.=\sum_{i k}^{\sum} u_{i}, p_{k}^{1} a_{k}^{1}\right] \\
& =\sum_{1 k}^{\sum \sum\left[u_{i}, p_{k}^{i}\right] a_{k}^{i} \quad .}
\end{aligned}
$$

But $\left[u_{i}, p_{k}^{i}\right] a_{k}^{1} \in A$ as A is a left ideal. Hence a is the sum of elements of A and so $a \in A$. Thus $A^{G F} C A$ and $A=A^{G F}$.
(3) Combining (1) and (2) and noting that F and G are order preserving it follows that F and G are inverse lattice isomorphisms: $L\left({ }_{R} P\right) \cong L\left({ }_{S} S\right)$ if P is a finitely generated projective selfagenerator.

We note that vo Newman's theorem follows by putting $P=R^{n}$ and then $R_{n} \cong \operatorname{End}_{R}(P)$.

Coral. If ${ }_{R} P$ and S^{Q} are finitely generated projective self generators with $U=\operatorname{End}_{R}(P)$ and $V=\operatorname{End}_{S}(Q)$ then $L\left({ }_{R} P\right) \cong L\left(S_{S} Q\right.$ if and only if $L\left(V_{U}\right) \cong L(V V)$.

Proof

By theorem $1.4 L\left({ }_{R} P\right) \cong L\left(V_{U} U\right)$ and $L\left({ }_{S} Q\right) \cong L\left({ }_{V} V\right)$.
Cor.2. If R and S are rings and n, m integers then $L\left(R_{R} R^{n}\right) \cong L\left(S^{m}\right)$ if and only if $L\left(R_{n} R_{n}\right) \cong L\left(S_{m} S_{m}\right)$.
Proof
Put $P=R^{n}$ and $Q=S^{m}$ in cor. 1 of theorem 1.4 .

Whether the conditions in theorem 1.4 can be weakened in some way is an open question. However we give examples to show that the theorem does not hold if one or other of the conditions in (1) or (2) are dropped.

Example 1.5. There exists a ring R and a finitely generated generator R^{P} such that $L\left({ }_{R} P\right) \neq L(S S)$, where $S=\operatorname{End}_{R}(P)$.

Proof

Let $R=\mathbb{Z}$ and $P=\mathbb{Z} \oplus \mathbb{Z} / p$, where p is a prime. Then R^{R} is a finitely generated generator (but is not projective). The order of an element of P is either infinite or p. Thus P cannot have a submodule Q with submodule lattice of the form Q. For Q would have to be cyclic and so isomorphic to \mathbb{Z} or \mathbb{Z} / p, which is impossible.

Suppose S is any ring and e an idempotent ε. Then consider matrices of the form $\left[\begin{array}{ll}e s e & e t(1-e) \\ (1-e) u e & (1-e) v(1-e)\end{array}\right]$ where $s, t, u, v \in S$.

1
These form a ring with respect to the usual matrix addition and multiplication and this ring is isomorphic to S by the $\operatorname{map} \mathrm{s} \longrightarrow\left[\begin{array}{ll}e s e & e s(1-e) \\ (1-e) s e & (1-e) s(1-e)\end{array}\right]$

Now consider the case when $S=\operatorname{End}_{R}(P)$ and e is the projection $P \longrightarrow \mathbb{Z} / p$. Clearly e is an idempotent and

$$
\begin{aligned}
& \text { e } \operatorname{se} \boldsymbol{\mathcal { X }} \mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathrm{p}, \mathbb{Z} / \mathrm{p}) \cong \mathbb{Z} / \mathrm{p} \text { (as rings) } \\
& e s(l-e) \cong{ }^{\operatorname{Hom}} \mathbb{Z}(\mathbb{Z} / \mathrm{p}, \mathbb{Z})=0 \\
& (1-e) s(1-e) \cong \operatorname{lom}^{(\mathbb{Z}, \mathbb{Z})} \cong \mathbb{Z} \quad \text { (as rings) } \\
& \text { (l-e)S } e \cong{ }^{H o m} \mathbb{Z}^{(\mathbb{Z}, \mathbb{Z} / p) \cong \mathbb{Z} / p(\text { as } \mathbb{Z} \text {-modules })}
\end{aligned}
$$

Hence we can consider S to be matrices of the form

$$
\left[\begin{array}{ll}
\mathbb{Z} / p & 0 \\
\mathbb{Z} / p & \mathbb{Z}
\end{array}\right] \text {. Let } A=S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { then } A \text { contains only one }
$$

nontrivial left ideal namely $\mathrm{S}\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Hence A has a submodule
lattice of the form $\left.\right|_{0} ^{A}$. Therefore $L\left({ }_{R} P\right) \neq L\left({ }_{S} S\right)$.
Example 1.6. There exist finitely generated projective modules \mathbb{R}^{A}, $S^{B} V_{T}{ }^{C}$ such that if $U=\operatorname{End}_{R}(A), V=\operatorname{End}_{S}(B), W=\operatorname{End}_{T}(C)$ then
(1) $L\left({ }_{R} A\right) \neq L(U W)$
(2) $L\left({ }_{R} A\right) \cong L\left({ }_{S} B\right)$ but $L\left({ }_{U} U\right) \neq L\left(V_{V}\right)$
(3) $U \cong W$ but $L\left(R_{R} A\right) \neq L\left({ }_{T} C\right)$.

Proof
(1) Let D be a division ring and n an integer >1. Define $T_{n}(D)$ to be the $n \times n$ triangular matrices (with zeros above the main diagonal) over D. Let $R=T_{n}(D)$ and let $A=$ Pe where e is the element of P with 1 in the $(1,1)^{\text {th }}$ place and zeros elsewhere. Then e is an idempotent and A is a direct summand of P and so A is a finitely generated projective module. An easy calculation then shows that $L\left({ }_{P^{A}}\right)$ is of the
form $\left\{\boldsymbol{o}^{A}\right.$. On the other hand $U=\operatorname{End}_{R}(A) \cong e \operatorname{Re} \cong D$. So as $n>1$ it is clear that $L\left(R_{R}\right) \neq L(U)$ 。
(2) Let $S=B=\mathbb{Z} f^{n}$ for some prime p. Then S^{B} is certainly a finitely generated projective module and $L\left({ }_{S} B\right)$ is of the form Hence $L\left({ }_{R} A\right) \cong L\left({ }_{S} B\right)$. But
$V=\operatorname{End}_{S}(B) \cong \mathbb{Z} / P^{n}$ and $L(U U) \neq L\left(V_{V}\right)$.

(3) Let $T=C=D$. Then $T C$ is a finitely generated projective module and $W=\operatorname{End}_{T}(C) \cong D \cong U$. But $L\left({ }_{T} C\right) \neq L\left(R^{A}\right)$.

We now consider a generalization of vo Newman's theorem in another direction. Firstly we need to define the various possible infinite matrix rings over a ring P . non-emptyDefinition. Let R be a ring and I armet. Denote by R_{I} the set of maps from $I \times I$ to R. If $I, G \varepsilon R_{I}$ then we can define an addition and multiplication on R_{I} by

$$
(f+g)(i, j)=f(1, j)+g(1, j) \text { and }(f, f)(1, j)=
$$

 $\mathrm{k}_{\mathrm{E}} \mathrm{I}$
only well defined if $f(i, k) g(k, j)=0$ for almost all $k \in I$ fife. for all but a finite number of $k \varepsilon$.

The various subsets of R_{I} we now define are easily seen to be rings with respect to this multiplication and addition (not strictly
rings as some of them do not contain a l). However with this abuse of language we call them the matrix rings of rank I over R. Define:
(1) $R_{f I}=\left\{f \in R_{I}: f(1, j)=0\right.$ for almost all $\left.(i, j)\right\}$. This is the ring of $I \times I$ matrices over R with only a finite number of non-zero entries - the finite matrices of rank I over R.
(2) $R_{r b I}=\left\{f \in R_{I}\right.$: there is a finite subset $D(f) \subset I$ with $f(i, j)=0$ if j Di., This is the ring of $I \times I$ matrices whose a most all 3evo columns are zexo almet-evorywhere - the row bounded matrices of rank I over R.
(3) $R_{c \in I}=\left\{f \in R_{I}\right.$: there is a finite subset $D(f) \subset I$ with $f(i, g)=0$ if $i \notin D\}$. This is the ring of $I \times I$ matrices whose rows almost all 3世vO are zere-alment everywhere - the column bounded matrices of rank I over :
(4.) $P_{r f I}=\left\{f \in R_{I}\right.$ for each $\mathcal{I} \in I f(1, j)=0$ for almost all $\left.j\right\}$. This is the ring of $I \times I$ matrices each of whose rows has only a finite number of non-zero entries - the row finite matrices of rank I over R.
(5) $R_{c f I}=\left\{f \in P_{I}:\right.$ for each $j \in I f(i, j)=0$ for almost all i\}. This is the ring of $I \times$ matrices each of whose columns has only a finite number of non-zero entries - the column finite matrices of rank I over E.

We note that if I is inite with n elements then the rings defined in (1) to (5) all coincide and we get t.le usual matrix ring R_{n}.

Lemma 1. . Let R be a ring and I a set. If $R_{R}^{M\left(M_{R}\right)}$ is a free left (right) module of rank I then
(1) $R_{r I I} \cong \operatorname{End}\left(R_{R} 1\right)$ and $R_{c I I} \cong \operatorname{End}\left(M_{R}\right)$
(2) $R_{r b I} \cong\left\{a \in \operatorname{End}\left(R_{R}^{M}\right): M a C\right.$ finitely generated submodule of $R^{M\}}$ $R_{c b I} \cong\left\{a \varepsilon \operatorname{End}\left(M_{R}\right)\right.$: a MC finitely generated submodule of $\left.M_{R}\right\}$
(3) if $\left(e_{i}\right)_{i \varepsilon I}$ is a basis for R^{M} then $R_{f I} \subseteq$ (a $\varepsilon \operatorname{End}\left(R^{M}\right): e_{i} a=0$ for almost all i E $I\}$.

Proof
(1) Let $\left(e_{i}\right)_{i \varepsilon I}$ be a basis for R_{R}^{M}. If a $\varepsilon \operatorname{End}\left(R_{R}^{M}\right)$ then $e_{i}=\sum_{j}(i, j) e_{j}$ for some $a(i, j) \in R$ and where $a(i, j)=0$ for almost all $j E I$. The matrix $[a(i, j)]$ whose $(i, j)^{\text {th }}$ entry is $a(i, j)$ is $\varepsilon R_{r f I}$ and it is easily verified that the map $a \rightarrow[a(i, j)]$ gives the required isomorphism. Exactly similarly we can prove $\mathrm{K}_{\text {cf I }}$ End (\% K_{R}).
(2) Under the isomorphism $R_{r f I} \cong \operatorname{End}\left(R_{M}^{M)}\right.$ an element $[a(1,1)]$ c $R_{r b I}$ is mapped to the endomorphism ate $\longrightarrow \sum_{j} a(i, j) e_{j}$ of $R^{M .}$ But $a(1, j)=0$ for all j outside some finite set $D C I$. Hence Ma $\subset \sum_{j \varepsilon D} R e j$ which is a finitely generated submodule of M.

Conversely if a ε End (R^{M}) and $\mathrm{Ma} C$ some finitely generated submodule of M then $M a C \sum_{j_{\varepsilon} D} \mathrm{Ve}_{\mathrm{j}}$ for some finite set $D C I$. Hence the matrix representation of a is $\in \mathrm{R}_{r b I}$. Thus the isomorphism $P_{r f I} \approx \operatorname{End}\left({ }_{R} M\right.$ induces the required isomorphism. Similarly we get the result for $\mathrm{R}_{\mathrm{cbI}}$.
(3) Under the isomorphism $R_{r f I} \cong \operatorname{End}\left({ }_{R} M\right)$ an element $[a(i, j)] \in R_{f I}$ is mapped to the endomorphism are $\underset{i}{ } \longrightarrow \sum_{j} a(1, j) e j$ of R^{M}. As $a(i, j)=0$ for almost $/(1, j)$ we have that $e_{i} a=0$ for almost all 1 . Conversely if a $\varepsilon \operatorname{End}\left({ }_{R}{ }^{M}\right)$ and $e_{i} a=0$ for almost all i then the matrix representation of a $\varepsilon \mathrm{R}_{f I}$. Thus the isomorphism $R_{r f I} \cong \operatorname{End}\left(R_{R}\right)$ induces the required isomorphism.

Leman 1, 8 . Let R be a ring and I an infinite set. If J is a set with $|J| \leq|I|$ then $R_{F I} \cong\left(R_{f I}\right)_{F J} \cong\left(R_{f J}\right)_{f I}$ where-x-ctenderore of 1

Proof

Since $|J| \leq|I|$ and I is infinite we have $|J||I|=|I|=|I||J|$. Hence I may be divided into (1) $|I|$ parts of $|J|$ elements or (2) $|J|$ parts of $|I|$ elements. To each of these partitions of I there corresponds a 'block' dissection of any matrix $\varepsilon{ }^{R}{ }_{x I}$ ' Omitting the details it is easy to see that these lead to
(1) $\mathrm{R}_{\mathrm{xI}} \cong\left(R_{X J}\right)_{x I}$
(2) $R_{x I} \cong\left(R_{x I}\right)_{x J}$

Cor.1. If n is an integer and R, If are as in lemma 1.8 then $R_{x I} \cong\left(R_{x I}\right)_{n} \cong\left(R_{n}\right)_{x I}$ where $x=f, v f, c f, v b, c b$.

Proof

In lemma 1.8 take J to be a finite set with n elements.

Using vo Neman's method of 'vector set representation' in chap. 1 of part 2 of yon Neman (1) we prove the following theorem. Theorem 1e9. Let R be a ring and I a set. Then we have lattice isomorphisms
(1) $L\left({ }_{R}^{I} R\right) \cong L\left(R_{f I} R_{P I}\right)$
(2) $L\left({ }^{I} R_{R}\right) \cong L\left(R_{f I R_{f I}}\right)$
(3) $L\left(\left(_{R} R^{I}\right) \cong L\left(R_{c b I}{ }^{R} c b I\right)\right.$
(4) $L\left(R_{R}^{I}\right) \cong L\left(R_{r b I} R_{r b I}\right)$

Proof
Let Q be a submodule of ${ }_{R}^{I} R^{\prime}$. Define $F: L\left({ }_{R}^{I} R\right) \longrightarrow I\left(R_{R_{P I}} R_{P I}\right)$ by $Q^{F}=\left(x \in P_{f I}\right.$ the rows of $\left.x \in Q\right)$. It is easily verified that Q^{F} is a left ideal of R_{fI}.

Let A be a left ideal of $P_{f I}$. Define $G: L\left({ }_{P_{f I}} P_{f I}\right) \longrightarrow L\left({ }_{R} R\right)$ by $A^{G}=\left(y \in{ }_{R} \mathrm{R}^{\prime}: y\right.$ is the row of some $\left.x \in A\right)$. Given $1, j \in I$ define $e(1, j) \in R_{f I}$ to be the matrix with 1 in the $(i, j)^{\text {th }}$ place and zeros elsewhere. If $y \in A^{G}$ is the $j^{\text {th }}$ row of an element $x \in A$ then $e(i, j) x \in A$ and has y for its $i^{\text {th }}$ row and zero rows otherwise. Using this fact it is easily shown that A^{G} is a submodule of ${\underset{P}{p}}^{P_{\text {P }}}$.

For any left ideal A of $R_{f I}$ we have $A \subset A^{G F}$. Suppose $x \in A^{G F}$ then x has only a finite number of nonzero rows $\left(x_{i}\right)_{\mathcal{E}^{D}}$ and each
$x_{i} \in A^{G}$, i.e., x_{j} is the $j^{\text {th }}$ row of a matrix $b_{j} \in A$. Consider $e(i, j) b_{j}$. This has $i^{\text {th }}$ row x_{i} and zero rows elsewhere and so $x=\sum_{i \in D} e(i, j) b_{j}$. But $b_{j} c$ left ideal A and so $x \in A$ and $A=A^{G F}$.

It is worth noting that this proof would break down if we did not know that x had only a finite number of nonzero rows (otherwise we could not form the sum $\left.\sum e(i, j) b_{j}\right), \quad F$ and G could equally well be defined for $L\left(\frac{I_{R}}{R}\right)$ and $\left.L()_{R_{r f I}} R_{r f I}\right)$ but we would not get $A{ }^{G F}=A$ in this case. However as can easily be seen in both cases we do get $Q^{F G}=Q$ for $Q \in L\left(\frac{I}{R} R\right)$.

Thus F and G are order preserving maps such that $F G=1, G F=1$ and so are inverse lattice isomorphisms giving $L\left(\frac{I_{R}}{R}\right) \cong L\left({ }_{R_{P I}} R_{S I}\right)$.
(2). (3) and (4) are proved in an analogous manner. For the right R-modules $I_{R_{R}}$ and R_{R}^{I} we have to use a column representation and so get right ideals instead of left ideals. When we have the direct product R^{I} we have to allow vectors to be infinite and so the appropriate rings in these cases are $R_{c b I}$ and $R_{r b I}$.

Finally we note that if I is finite we get vo Newman's theorem.

CHAPTER 2

ENDOMORPHISM RINGS

In this chapter we prove our basic results. For a given module we study the relationship between its lattice of submodules and its endomorphism ring. In particular we show that if a module is a direct sum of more than three isomorphic submodules then its endomorphism ring is determined up to isomorphism by its lattice of submodules.

The methods used in this chapter are generalizations of those used in chap, 4 of part 2 of vo Newman (1) and are closely related to the results in chap. 3 of Beer (1) and chap. 7 of Skornyakov (1). Definition. Let R^{M} be a module and A, B, C, submodules. We say A is perspective to B with axis $C, A \sim B$, if $A \cap C=B \cap C=O$ and $\mathrm{A} \oplus \mathrm{C}=\mathrm{B} \oplus \mathrm{C}$.

Lemma 2, Let R_{R} be a module and $\left(M_{1}\right)_{1_{\varepsilon} I}$ an independent set of submodules of M. Suppose 1 , \mathcal{J} are distinct elements of I then define $\bar{M}_{1, j}=$ (all submodules $P \subset M: P \tilde{M}_{j} M_{i}$). For any a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ define $(\varepsilon) M_{1, j}=\left(m-m^{2}: m \varepsilon M_{i}\right)$ then
(1) the map a $\longrightarrow(a) M_{1, j}$ is a set isomorphism : $\operatorname{Hom}_{R}\left(M_{1}, M_{j}\right) \cong \bar{M}_{1, g}$.
(2) if a $\in \operatorname{Hom}_{R}\left(M_{1}, M_{g}\right)$ then $\operatorname{ker}(a)=M_{i} \cap(a) M_{1, j}$ and a is a monomorphism if and only if $M_{i} \cap(a) M_{1, j}=0$.
(3) if a $\varepsilon \operatorname{Hom}_{R}\left(M_{1}, M_{g}\right)$ then image (a) $=\left[M_{1}+(a) M_{i, g}\right] \cap M_{g}$ and a is an epimorphism if and only if $\left[M_{i}+(a) M_{i, j}\right] \cap M_{g}=M_{j}$.
(4) if a $\varepsilon \operatorname{Hom}_{R}\left(M_{1}, M_{f}\right)$ then a is an isomorphism if and only if (a) $M_{1, j} \in \bar{M}_{j, i}$ and in this case (a) $M_{1, j}=\left(a^{-1}\right) M_{j, 1}$.
(5) If $a, b \in \operatorname{Hom}_{R}\left(M_{1}, M_{j}\right)$ and $H_{i}^{a} \cap M_{1}^{b}=0$ then
$(a+b) M_{1, j}=\left[(a) M_{i, j}+M_{i}^{b}\right] \cap\left[(b) M_{1, j}+M_{1}^{a}\right]$
(6) if i, j, k are distinct elements of I and if a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and $b \in \operatorname{Hom}_{R}\left(M_{j}, M_{k}\right)$ then $(a b) M_{i, k}=\left[M_{i}+M_{k}\right] \cap\left[(a) Y_{i, j}+(b) M_{j, k}\right]$.

Proof

(1) For any $\varepsilon \operatorname{Hom}_{\Omega}\left(M_{1}, M_{j}\right)$ it is clear that (a) M_{1}, j is a submodule of M. Suppose $m \in M_{i}$ then $m=\left(m-m^{a}\right)+m^{a} \in(a) M_{i, j}+M_{j}$. Hence $M_{i} \subset(a) M_{i, j}+M_{j}$ and so $M_{i} \oplus M_{j}=(a) M_{i, j}+M_{j}$.

Now suppose $z \in(a) M_{i, j} \cap M_{j}$ then $z=m-m^{a}=n$ for some $m \in M_{y}$ and $n \varepsilon M_{j}$ 。 Since $M_{i} \cap M_{j}=0$ we have $m=0$ and so $m=0$ and $z=0$. Therefore (a) $M_{i, j} \cap M_{j}=0$ and (a) $M_{i, j} \in \bar{M}_{1, j}$. Hence the map $M_{i, j}$ sends $\operatorname{Hom}_{R}\left(M_{1}, M_{j}\right) \longrightarrow \bar{M}_{1, j}$.

Suppose $a, b \in \operatorname{Hom}_{R}\left(M_{1}, M_{j}\right)$ and (a) $M_{1, j}=(b) M_{i, j}$ Let $m \varepsilon M_{i}$; then there is a $n \varepsilon M_{i}$ with $m-m^{a}=n-n^{b}$. As $M_{i} \cap M_{j}=0$ we have $m=n$ and $m^{a}=n^{b}$. Hence for any $m \in M_{1} m^{a}=n^{b}=m^{b}$ and $80 a=b$ and $M_{i, j}$ is a set monomorphism.

Suppose $P_{\varepsilon} \bar{M}_{1, j}$ then $P \oplus M_{j}=M_{1} \Theta M_{j}=H$ say. Consider the natural homomorphism $: H \longrightarrow H / P$. Clearly $H / P \cong M_{j}$ and $M_{i} \subset H_{0} \quad$ So, via the isomorphism $H / P \cong M_{j}$, induces a homomorphism
$a: M_{i} \longrightarrow M_{j}$. If $m \in M_{i}$ then there is a unique $D \in P$ and $n \varepsilon M_{j}$ such that $m=n+p$. From the definition of a we have $n=m^{a}$ and so $\left(m-m^{a}\right)=p \varepsilon P$. Thus $(a) M_{i, j} \subset D_{0} \quad$ But $P=P \cap H=P \cap\left[(a) M_{1, j}+M_{j}\right]$ $=$ (applying modular law) (a) $M_{1, j}+P \cap M_{j}=(a) M_{1, j}$ since $P \cap M_{j}=0$. Hence $M_{i, j}$ is a set epimorphism and thus a set isomorphism.
(2) Suppose a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and that $z \varepsilon M_{i} \cap(a) M_{i, j}$. Then $z=m=n-n^{a}$ for some $m_{1} n \in M_{i}$. As $M_{i} \cap M_{j}=0$ we have $n^{a}=0$ and $m=n$ and so $z \varepsilon \operatorname{ker}(a)$. On the other hand if $m \varepsilon \operatorname{ker}(a)$ then $m^{a}=0$ and somm(m-ma) $\in M_{i} \cap(a) M_{i, j}$

Now a is a monomorphism if and only if $\operatorname{ker}(a)=0$ ie. if and only if $M_{i} \cap(a) M_{i, j}=0$.
(3) Suppose a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ then $M_{1}+(a) M_{i, j}=M_{i}+M_{i}^{a}$. For if
$2 \in M_{1}+M_{i}^{a}$ then $z=m+n^{2}$ for some $m_{0} n \in M_{1}$ and so
$z=(m+n)-\left(n-n^{a}\right) \varepsilon M_{i}+(a) M_{1, j}$. On the other hand if
$z \in M_{i}+(a) M_{1, j}$ then for some $m_{1} n \varepsilon M_{1} z=m+\left(n-n^{2}\right)=(m+n)-n^{a}$
$\varepsilon M_{1}+M_{1}{ }^{\text {a }}$.

$$
\text { Hence we have } \begin{aligned}
{\left[M_{1}+(a) M_{i, j}\right] \cap M_{j} } & =\left(M_{1}+M_{i}^{a}\right) \cap M_{j} \\
& =M_{1} \cap M_{j}+M_{1}^{A} \\
& =M_{1}^{a}=\text { image (a) }
\end{aligned}
$$

Now a is an epimorphism if and only if $M_{i}^{2}=M_{j}$ ie. if and only if

$$
\left[M_{i}+(a) M_{i, j}\right] \cap M_{j}=M_{j}
$$

(4) Combining (2) and (3) we see that a $\in \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ is an isomorphism if and only if $M_{i} \cap(a) M_{1, j}=0$ and $\left[M_{i}+(a) M_{i, j}\right] \cap M_{j}=M_{j}$. But the last condition holds if and only if $M_{j} \subset M_{1}+(a) M_{1, j}$ ice. if and only if $I_{1}+M_{j}=M_{1}+(a) M_{1, j}$. Hence is an isomorphism if and only if $M_{j} \widetilde{M}_{i}(a) M_{i, j}$ ie. if and only if (a) $M_{1, j} \in \bar{M}_{j, i}$.

If a is an isomorphism then $(a) M_{i, j}=\left[m-m^{2}: m \in M_{1}\right]=$ $\left[\left(-m^{a}\right)-\left(-m^{a}\right)^{-1}: m \varepsilon M_{i}\right]$. As m runs through $M_{i},(-m)^{2}$ runs through M_{j}. Hence $(a) M_{1, j}=\left[n-n^{a^{-1}}: n \in M_{j}\right]=\left(a^{-1}\right) M_{j, i}$.
(5) Suppose $a, b \in \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$. If $z \varepsilon(a) M_{i, j}+M_{i}^{b}$ then for some

$$
\begin{aligned}
m, n \in M_{1} z=\left(m-m^{a}\right)+n^{b} & =\left(m-m^{a}-m^{b}\right)+\left(n^{b}+m^{b}\right) \\
& =\left(m-m^{(a+b)}\right)+(m+n)^{b} \in(a+b) M_{1, j}+M_{1}^{b}
\end{aligned}
$$

On the other hand $1 f=\varepsilon(a+b) M_{1, j}+M_{1}^{b}$ then for some $m_{0} n \in M_{i}$

$$
\begin{aligned}
& 2=m-m^{(a+b)}+n^{b}=\left(m-m^{a}\right)+(n-m)^{b} \varepsilon(a) M_{1, j}+M_{i}^{b} \text {. Hence we } \\
& \text { have }(a) M_{1, j}+M_{i}^{b}=(a+b) M_{1, j}+M_{i}^{b} \text { and similarly (b) } M_{1, j}+M_{1}^{a}= \\
& (a+b) M_{1, j}+M_{i}^{2} \quad \text { Therefore } \\
& {\left[(a) M_{1, j}+M_{i}^{b}\right] \cap\left[(b) M_{1, j}+M_{i}^{a}\right]=\left[(a+b) M_{1, j}+M_{i}^{b}\right] \cap\left[(a+b) M_{1, j}+1 M_{1}^{a}\right]} \\
& =\left[(a+b) M_{i, j}\right]+M_{i}^{a} \cap\left[(a+b) M_{i, g}+M_{i}^{b}\right] .
\end{aligned}
$$

Now if $M_{i}^{a} \cap M_{i}^{b}=0$ then, since $(a+b) M_{i, j} \cap M_{j}=0$, we have that $\left[M_{i}{ }^{a}, M_{i}^{b},(a+b) M_{i, j}\right]$ is an independent set of submodules of $!$. Hence $M_{i}^{a} \cap\left[(a+b) M_{1, j}+M_{i}^{b}\right]=0$ and $s o(a+b) M_{1, j}=$ $\left[(a) M_{i, j}+M_{i}^{b}\right] \cap\left[(b) M_{i, j}+M_{i}^{a}\right]$.
(6) Suppose $1, j, k$ are distinct elements of I and a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and $b \in \operatorname{Hom}_{R}\left(M_{j}, M_{k}\right)$. If $z \varepsilon\left[M_{1}+M_{k}\right] \cap\left[(a) M_{1, j}+(b) M_{j, k}\right]$ then for some $m_{i}, n_{i} \varepsilon M_{i}, n_{j} \in M_{j}$ and $m_{k} \in M_{k}$ we have $z=m_{1}+0+m_{k}=$ $n_{i}+\left(-n_{i}^{a}+n_{j}\right)+\left(-n_{j}^{b}\right)$. As $\left(M_{i}, M_{j}, M_{k}\right)$ are independent we have $m_{i}=n_{i}, n_{j}=n_{i}^{a}, m_{k}=-n_{j}^{b}$ and so $n_{k}=-n_{j}^{b}=-n_{i}^{a b}$. Therefore $z=n_{i}-n_{i}^{a b} \varepsilon(a b) M_{i, k}$.

Conversely suppose $z \varepsilon(a b) M_{1, k}$; then for som em $m M_{1}$ $z=m-m^{a b}=\left(m-m^{a}\right)+\left[m^{a}-\left(m^{a}\right)^{b}\right] \varepsilon\left[M_{1}+M_{k}\right] \cap\left[(a) M_{1, j}+\right.$ (b) $\left.M_{j, k}\right]$ 。
(1) of lemma 2.1 is a key remark. It shows that if $M_{i} \cap M_{j}=0$ then $\operatorname{Hom}_{R}\left(M_{1}, M_{j}\right)$ can be represented by elements of $L\left(R^{M}\right)$. In the next lemma we show how, using (5) and (6) or lemma 2.1 we can get at the multiplicative and additive structure of $\operatorname{End}_{\mathrm{R}}(1!)$.

Lemma 2.2. Let R_{R} be module and $\left(M_{i}\right)_{1 \in I}$ an independent set of submodules of M. Suppose that S^{N} is a module with $\Sigma: L\left(R^{\prime \prime}\right) \equiv L\left(S_{N} N\right)$.

If $N_{i}=M_{i}^{I}$ and i, j, k are distinct elements of I then
(1) there is a set isomorphism $\ell_{i, j}: \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right) \cong H o m_{S}\left(H_{i}, N_{j}\right)$
(2) if a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ then $[\operatorname{ker}(a)]^{\Sigma}=\operatorname{ker}\left(a l_{i}, j\right)$ and
 and in this case $\left[(a)_{1_{j, j}}\right]^{-1}=\left(a^{-1}\right)_{\ell_{j, 1}}$.
(3) if a $\in \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and $b \in \operatorname{Hom}_{R}\left(M_{j}, M_{k}\right)$ then $(a b)_{l_{i, k}}=$ $(a) l_{i, j}(b) \ell_{j, k}$
(4) if $a, b \in \operatorname{Hom}_{R}\left(M_{i},!_{g}\right)$ and $M_{i} \cap M_{i}^{b}=0$ then $(a+b)_{l_{1, i}}=$ $(a) l_{i, j}+(b) \ell_{1, j}$
(5) if there is a monomorphism $: M_{i} \longrightarrow y_{k}$ then $l_{i, j}$ is a homomorphism.

Proof

(1) Define $\bar{M}_{1, j}$ and $\bar{N}_{1, j}$ as in lemma 2.1. Then \sum induces a set isomorphism $\bar{M}_{1, j} \cong \bar{N}_{1, j}$. But by (1) of lemma $2.1 M_{i, j}: \operatorname{Hom}_{\mathrm{R}}\left(\because_{1}, M_{j}\right)$ $\cong \bar{M}_{1, j}$ and $N_{i, j}: \operatorname{Hom}_{S}\left(N_{i}, N_{j}\right) \cong \bar{N}_{1, j}$ are set isomorphisms. Hence the map $\ell_{i, j} \not M_{i, j} \sum N_{i, j}^{-1}$ is a set isomorphism: $\operatorname{Hom}_{p}\left(\eta_{i,}, \mu_{j}\right) \cong$ $\operatorname{Hom}_{S}\left(N_{i}, N_{j}\right)$.
(2) Suppose a $\varepsilon \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$; then $\left[(a) M_{1, j}\right] \Sigma=(a) \ell_{1,1} N_{1, j}$. By (2) and (3) of lemma $2.1 \operatorname{kar}(a)=M_{1} \cap(a) M_{1, j}$ and image (a) a $\left[M_{i}+(a) M_{1, j}\right] \cap M_{j}$. Applying Σ we get $[\operatorname{ker}(a))^{\Sigma}=\eta_{1} \cap(a){ }_{1, j} N_{1, j}$
and $[\text { image }(a)]^{\sum}=\left[N_{1}+(a) l_{i, j} N_{i, j}\right] \cap N_{j} . \quad$ By (2) and (3) of lemma 2.1 applied to $\left(N_{i}\right)_{i \varepsilon I}$ we have $[\operatorname{ker}(a)]^{\Sigma}=\operatorname{ker}\left(a l_{i, j}\right)$ and $[\text { Image }(a)]^{\Sigma}=\operatorname{image}\left(a l_{i, j}\right)$.

If a is an isomorphism then by (4) of lemma 2.1 (a) $H_{1, j} \varepsilon$
$\bar{M}_{j, i}$. Therefore (a) $M_{i, j} \varepsilon \in \overline{\mathbb{N}}_{j, i}$. Hence (al $\left.l_{i, j}\right)_{i, j} \in \bar{N}_{j, i}$ and so applying (4) of lemma 2.1 again we have that $a_{1, j}$ is an isomorphism.

In this case by (4) of lemma $2.1(a) M_{1, j}=\left(a^{-1}\right)_{j, 1}$. Applying Σ this gives $(a)_{1, j} N_{i, j}=(a) M_{1, j^{2}}=\left(a^{-1}\right)_{j, 1} \Sigma=$ $\left(a^{-1}\right)_{\ell_{j, i}} N_{j, i}$. Applying (4) of lemma 2.1 once again we have $(a)_{1, j} N_{i, j}=\left(a^{-1}\right)_{\ell_{j, 1}} N_{j, 1}=\left[\left(a^{-1}\right)_{\ell_{, 1}}\right]^{-1} N_{1, j}$. Cancelling $N_{1, j}$ we get $\left(a^{-1}\right) l_{j, i}=\left[(a) l_{i, j}\right]^{-1}$.
(3) Suppose a $\in \operatorname{Hom}_{p}\left(M_{i}, M_{j}\right)$ and $b \in \operatorname{Hom}_{R}\left(M_{j}, M_{k}\right)$. By (6) of lemma $2.1(a b) M_{1, k}=\left[M_{i}+M_{k}\right] \cap\left[(a) M_{1, j}+(b) y_{j, k}\right]$. Applying E we get $(a b) l_{i, k} N_{1, k}=\left[N_{i}+N_{k}\right] \cap\left[(a) l_{1, i} N_{1, j}+(b) l_{j, k} N_{j, k}\right]=$ $\left[(a) l_{i, j}(b) l_{j, k}\right] N_{i, k}$ applying (6) of lemma 2.1 again. Hence cancelling $N_{1, k}(a b) l_{1, k}=(a) l_{1, j}(b) l_{j, k}$.
(4) Suppose $a, b \in \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and $M_{1}^{a} \cap H_{i}^{b}=0$; then by (5) or lemma $2.1(a+b) M_{i, j}=\left[(a) M_{i, j}+M_{i}^{b}\right] \cap\left[(b) M_{1, j}+M_{1}^{n}\right]$. Applying Σ
we get $(a+b) l_{1, j} M_{1, j}=(a+b) M_{1, j}{ }^{\Sigma}$

$$
\begin{aligned}
& =\left[(a) M_{1, ~} j^{\left.\Sigma+\left(M_{1}^{b}\right) \Sigma\right] \cap\left[(b) M_{1, ~}\right.}{ }^{\left.\Sigma+\left(M_{1}^{a}\right) \Sigma\right]}\right.
\end{aligned}
$$

 lemma. 2.1 $(a+b) l_{i, j} N_{i, j}=\left[(a) l_{i, j} N_{i, j}+N_{i}(b) l_{i, j}\right]$

$$
\begin{aligned}
& \cap\left[(b) l_{1, j} N_{i, j}+N_{1}(a) l_{i, j}\right] \\
= & {\left[(a) l_{1, j}+(b) l_{i, j}\right] N_{i, j} . }
\end{aligned}
$$

Cancelling $N_{1, j}$ we get $(a+b) l_{1, j}=(a) l_{1, j}+(b) \ell_{1, j}$.
(5) Consider the submodules M_{1} and $\left(M_{j}+M_{k}\right)$ then just as in (1) there is a map $H(1 ; j, k): \operatorname{Hom}_{R}\left(M_{1}, M_{j}+M_{k}\right) \longrightarrow \bar{M}(1 ; j, k)$ where $\bar{M}(i ; j, k)=\left(\right.$ all submodules $P: P\left(\sim_{j}+\frac{14}{k} M_{i}\right)$. Defining $N(1 ; j, k)$ and $\bar{N}(i ; j, k)$ in exactly the same way gives a set isomorphism $1(i ; j, k): \operatorname{Hom}_{R}\left(M_{i}, M_{j}+M_{k}\right) \cong \operatorname{Hom}_{S}\left(N_{1}, N_{j}+N_{k}\right) . \quad \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and $\operatorname{Hom}_{S}\left(N_{i}, N_{j}\right)$ are naturally embedded in $\operatorname{Hom}_{p}\left(H_{i}, M_{j}+Y_{k}\right)$ and $\operatorname{Hom}_{S}\left(N_{i}, N_{j}+N_{k}\right)$ respectively. If a $\varepsilon \operatorname{Hom}_{R}\left(V_{i}, y_{j}\right)$ then by (2) of lemma $2.2(a) l(i ; j, k) \varepsilon \operatorname{Hom}_{S}\left(N_{i}, N_{j}\right)$ and recalling the definitions of $M(i ; j, k)$ and $N\left(i ; j, k\right.$ we see that $I(i ; j, k)$ induces $I_{1, j}$

Suppose that $a, b \in \operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ and that there is a monomorphism s $\in \operatorname{Hom}_{R}\left(M_{i}, M_{k}\right)$. If $z \varepsilon M_{i}^{s+a} \cap M_{i}^{b}$ then for some $m, n \in M_{1} z=m^{s}+m^{a}=n^{b}$. Hence $m^{8}=n^{b}-m^{a}=0\left(M_{g} \cap M_{k}=0\right)$ and as s is a monomorphism $m=0$. Thus $M_{i}^{s+g} M_{i}^{b}=0$. But $M_{1}^{s} \cap M_{i}^{a+b}=0, M_{i}^{s} \cap M_{i}^{a}=0$ as well and so repeatedly applying (4)
we get, writing ℓ for $\ell(1 ; j, k),(s) \ell+(a+b) \ell=(s+a+b) \ell$

$$
\begin{aligned}
& =(s+a) \ell+(b) \ell \\
& =(s) \ell+(a) \ell+(b) \ell .
\end{aligned}
$$

Hence $(a+b) \ell=(a) \ell+(b) \ell$ and $s 0 \ell$ is a homomorphism for elements of $\operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$. But ℓ induces $\ell_{i, j}$ and so $\ell_{i, j}$ is a homomorphism.

Another way of proving (5) (based on the methods of vo Newman (see equation 17 on p. 111 of won Newman (1)) is to use the fact that If a, b and s are defined as in (5) then
$(a+b) M_{i, j}=\left\{\left[\left(a M_{1, j}+s M_{i, k}\right) h\left(M_{j}+M_{k}\right)\right]+\left[\left(b M_{1, j}+N_{k}\right) \cap\left(M_{j}+s M_{i, k}\right)\right]\right\} \cap\left[M_{1}+M_{j}\right]$.

Our method based on that of Beer (see p. 47 of Beer (1)) brings out clearly the partial additivity of $\ell_{1, j}$ for maps whose images have zero intersection and hows how the existence of the monomorphism s is sufficient to ensure full additivity.

Theorem 2.3. Let R^{M} be module which is the direct sum of an independent set of submodules $\left(M_{1}\right)_{1 \varepsilon I}$ where I is an index set containing at least three elements. Suppose that ${ }_{R} P$ is a module and that for each
i ε I there is a submodule $P_{i} \subset M_{i}$ with $P \cong P_{i}$ as R-modules. If S^{N} is a module such that $\Sigma: L\left({ }_{R} M\right) \cong L\left(S_{S} N\right)$ and if $Q_{1}=P_{1}{ }^{\Sigma}$ then
(1) there is an module S^{2} such that for each $i \in I Q \cong Q_{i}$ as S-modules
(2) there is a ring isomorphism $\ell: \operatorname{End}_{R}(P) \cong \operatorname{End}_{S}(Q)$
(3) there is an abelian group is amorphism $s: H_{R} m_{R}(P, M) \cong \operatorname{Hom}_{S}(Q, N)$
(4) considering $\operatorname{Hom}_{R}(P, M)$ as a left $\operatorname{End}_{R}(P)$-module and $H_{S}(2, N)$ as a left $\operatorname{End}_{S}(Q)$-module (ℓ, s) is a semi-linear isomorphisms : $\left(\operatorname{End}_{R}(P), \operatorname{Hom}_{R}(P, Y)\right) \cong\left(\operatorname{End}_{S}(Q), \operatorname{Hom}_{S}(Q, Y)\right)$.

Proof

(1) Let $a_{i}: P \cong P_{i}$ for $1 \in I$. Define $a_{1, j}=a_{i}^{-1} a_{j}: P_{i} \cong P_{j}$. The a_{1}, j 's satisfy $a_{1, j} a_{j, k}=a_{1, k} ; a_{i, 1}=1_{P_{1}} ; a_{i, j} a_{j, 1}=l_{p_{1}}$ for any $1, j, k \in I$.

If $1 \neq g$ then by (1) of lemma 2.2 applied to $\left(P_{i}\right)_{i \varepsilon I}$ there are set isomorphisms $l_{i, j}: \operatorname{Hom}_{P}\left(P_{i}, P_{j}\right) \cong$ Mom $\left(n_{i}, q_{j}\right)$. Define $b_{i, j}=a_{i, j} l_{i, j}$ if $i \neq j$ and $b_{i, j}=1_{Q_{1}}$ if $1=1$. Then by (2) of lemma $2.2 b_{i, j}$ is an isomorphism for any $i, j \in I$. let S^{2} be any module isomorphic to ε_{t} for some fixed $t \in I$ ie. let $b_{t}: 2 \underline{Q_{t}}$. Hence for any i \& I $b_{i}=b_{t}^{b} t_{i}$ is an isomorphism: $2 \underline{a_{1}}$.
(2) Suppose that $1, j, k$ are distinct elements or I then by (3) of lemma $2.2\left(a_{1, k}\right) l_{1, k}=\left(a_{1, j} a_{j, k}\right) l_{1, k}$

$$
=\left(a_{1, j}\right) \ell_{1, j}\left(a_{j, k}\right) l_{j, k} .
$$

Hence for distinct $1, j, k \in I \quad b_{1, k}=b_{1, j} b_{j, k}$. Now if $1, j$ are distinct elements $\varepsilon I_{j, 1}=\left(a_{1, j}\right)^{-1}$ and by (2) of lemma 2.2 $\left(a_{j, 1}\right) l_{j, 1}=\left(\left(a_{1, j}\right) \ell_{1, j}\right)^{-1}$ and so $b_{i, j} b_{j, 1}=b_{i, 1}$ for any $i \neq j \in I$. But as we defined $b_{i, 1}=l_{Q_{i}}$ we have that for any $1, j, k$ cI $b_{1, k}=b_{1, j} b_{j, k}$.

Let $f \varepsilon \operatorname{End}_{R}(P)$ then define $\ell: \operatorname{End}_{R}(P) \longrightarrow \operatorname{End}_{S}(Q)$ by $(f)^{l}=b_{1}\left(a_{1}^{-1} f a_{j}\right) l_{1,} j_{j}^{-1}=f(i, j)$ say, for any $1 \neq j \varepsilon I$. Firstly we must show that the definition of $\&$ is independent of the choice or 1 and J.

Suppose that $1 \neq k \in I$. If $k=j$ then $f(1, j)=f(1, k)$.
If $k \neq g$ then $f(1, k)=b_{1}\left(a_{1}{ }^{-1} f_{k}\right) l_{1, k} b_{k}{ }^{-1}$

$$
\begin{aligned}
& =b_{i}\left[\left(a_{1}^{-1} f a_{j}\right)\left(a_{j}-1 a_{k}\right)\right] l_{1, k} b_{k}^{-1} \\
& =b_{i}\left[\left(a_{1}^{-1} f a_{j}\right) l_{i, g}\left(a_{j}^{-1} a_{k}\right) l_{j, k}\right] b_{k}^{-1} b y(3) \\
& =\left[b_{1}\left(a_{1}^{-1} f a_{j}\right) l_{i, j} b_{j}^{-1}\right]\left[b_{j}\left(a_{j, k}\right) l_{j, k} b_{k}^{-1}\right]
\end{aligned}
$$

$$
=b_{1}\left[\left(a_{1}^{-1} f a_{j}\right) l_{i, j}\left(a_{j}-1 a_{k}\right) l_{j, k}\right] b_{k}^{-1} \text { by (3) of Lemma } 2.2
$$

$=f(i, j) b_{j} b_{j, k} b_{k}^{-1}$
$=f(i, j)$ since $b_{j} b_{j, k} b_{k}^{-1}=b_{t} b_{t, j} b_{j, k} b_{k, t} b_{t}^{-1}=1$
Thus if $i, j, k \in I$ and $i \neq j$ and $i \neq k$ then $f(i, j)=f(i, k) \ldots(A)$ and similarly with the same conditions on $1, j, k$ we can show that

$$
f(j, i)=f(k, i) \ldots(B) .
$$

Suppose that $1 \neq J \varepsilon I$. As I has more than three elements there is an element $k \in I$ distinct from 1 and j. Then

$$
\begin{aligned}
f(i, j) & =f(i, k) \text { by }(A) \\
& =f(j, k) \text { by }(B) \\
& =f(j, i) \text { by }(A)
\end{aligned}
$$

Hence if $1 \notin j \in I$ then $f(1, j)=f(j, 1) \ldots . .(c)$.
Now suppose $1, j_{1} 1^{\prime}, j^{\prime} \in I$ and $i \neq j, 1^{\prime} \neq j^{\prime}$. Then (a) if in $=1 f(i, j)=f(i, j)$
$=f\left(i^{\prime}, j^{\prime}\right)$ by (A)
(b) if $i^{\prime} \neq 1 f(1, j)=f\left(i, i^{\prime}\right)$ by (A)
$=P\left(1^{\prime}, 1\right)$ by (C)
$=f\left(1^{\prime}, j^{\prime}\right)$ by (A) .

Hence in every case $f(i, j)=f\left(f^{\prime}, j^{\prime}\right)$ and the definition of ℓ is independent of 1 and j.

It is clear that ℓ is a set isomorphism: $\operatorname{End}_{R}(P) \cong \operatorname{End}_{S}(Q)$ so we have only to show that ℓ preserves addition and multiplication.

Let $f_{1}, f_{2} \in$ End $R(P)$ and let i, j, k be distinct elements of I.

$$
\begin{aligned}
\operatorname{Then}\left(f_{1}+f_{2}\right)^{\ell} & =b_{i}\left(a_{i}^{-1}\left(f_{1}+f_{2}\right) a_{j}\right) l_{1, j} b_{j}^{-1} \\
& =b_{1}\left(a_{1}^{-1} f_{1} a_{j}+a_{1}{ }^{-1} f_{2} a_{j}\right) l_{i, j} b_{j}^{-1}
\end{aligned}
$$

But $a_{i, k}$ is a monomorphism\& $P_{1} \longrightarrow P_{k}$ and so by (5) of lemma 2.2 $\ell_{i, j}$ is a homomorphism. Therefore

$$
\begin{aligned}
&\left(f_{1}+f_{2}\right)^{l}=b_{1}\left(a_{i}^{-1} f_{1} a_{j}\right) l_{1, j} b_{j}^{-1}+b_{1}\left(a_{1}^{-1} f_{2} a_{j}\right) l_{1, j} b_{j}^{-1} \\
&=f_{1}^{l}+f_{2}^{l} . \quad \text { Hence } \ell \text { preserves addition. }
\end{aligned}
$$

Now $\left(f_{1} f_{2}\right)^{l}=b_{1}\left(a_{1}{ }^{-1} f_{1} f_{2} a_{k}\right) l_{1, k} b_{k}^{-1}$

$$
\begin{align*}
& =b_{i}\left[\left(a_{1}{ }^{-1} f_{1} a_{j}\right)\left(a_{j}^{-1} f_{2} a_{k}\right)\right] l_{1, k} b_{k}^{-1} \\
& =\left[b_{i}\left(a_{i}{ }^{-1} f_{1} a_{j}\right) \ell_{1, j} b_{j}^{-1}\right]\left[b_{j}\left(a_{j}{ }^{-1} f_{2} a_{k}\right) \ell_{j, k} b_{k}^{-1}\right] \text { by } \tag{3}
\end{align*}
$$

of lemma 2.2

$$
=\mathrm{r}_{1}^{\ell} f_{2}^{\ell}
$$

Hence $\&$ preserves multiplication and addition and so is a ring isomorphism.
(3) Firstly we assume that I is finite with $n \geq 3$ elements. Fix $j \in I$ and apply lemme 2.2 to the modules $P_{1}, \ldots, P_{j-1}, M_{j}, P_{j+1}, \ldots, P_{n}$.

This gives maps $h_{s, t}$ for $\not \nmid t \varepsilon$ I where
(1) $h_{s, j}: \operatorname{Hom}_{R}\left(P_{s}, H_{j}\right) \cong \operatorname{Hom}_{S}\left(Q_{s}, H_{j}\right)$ if te
(2) $h_{s, t}=l_{3, t}$ if $t \neq J, s \neq j$.

For $d \in \operatorname{Hom}_{R}\left(P_{i} M_{j}\right)$ define g_{j} by $d s_{g}=b_{i}\left(a_{i}^{-1} d h_{i, j}\right.$ where $1 \neq j$. We show firstly that the definition of s, is independent of the choice of i. Let $i^{\prime} \varepsilon I$ and $i^{\prime} \neq j, i^{\prime} \neq 1$. Then

$$
\begin{aligned}
& b_{i}\left(a_{i}^{-1}\right) h_{i, j}=b_{i}\left[\left(a_{i}^{-1} a_{i}\right)\left(a_{i}{ }^{-1} d\right)\right] h_{i, j} \\
& =b_{i}\left(a_{i}{ }^{-1} a_{i}, h_{i_{i, 1}},\left(a_{i^{\prime}}^{-1} d\right) h_{1^{\prime}, j} \text { by (3) of lemma } 2.2\right. \\
& \left.=b_{i} b_{i, 1}\left(a_{i},-1 d\right) n_{i}, j \text { as } \begin{array}{r}
1 \neq j) \\
1 \neq j
\end{array}\right) \text { implies } n_{i, 1}=l_{i, 1} \\
& =b_{1}^{\prime}\left(a_{1},{ }^{-1} d\right) h_{1}, 1 \text {. }
\end{aligned}
$$

Hence s_{j} is independent of the choice of i. Clearly s, is a set isomorphism: $\operatorname{Hom}_{R}\left(P, M_{g}\right) \cong \operatorname{Hom}_{S}\left(Q_{i} N_{j}\right)$.

Now $a_{i, k}: P_{i} \longrightarrow P_{k}$ is a monomorphism and so by (5) of lemma $2.2 h_{i, f}$ is a homomorphism. This implies that for

$$
\begin{aligned}
d_{1}: d_{2} \varepsilon \operatorname{Hom}_{R}\left(P, M_{j}\right)\left(d_{1}+d_{2}\right) s_{j} & =b_{1}\left(a_{1}^{-1}\left(d_{1}+d_{2}\right)\right) h_{i, j} \\
& =b_{1}\left[\left(a_{1}^{-1} d_{1}\right)+\left(a_{1}^{-1} d_{2}\right)\right] h_{1, j} \\
& =b_{1}\left(a_{1}^{-1} d_{1}\right) h_{1, j}+b_{1}\left(a_{i}^{-1} d_{2}\right) h_{1, j} \\
& =d_{1} s,+d_{2} s,
\end{aligned}
$$

Therefore s is also a homomorphism and thus an isomorphism.

$$
\operatorname{Hom}_{S}(Q, N) \cong \underset{i=1}{\underset{\sim}{n}} \operatorname{lom}_{S}\left(a_{Q}, N_{i}\right) \text { as abelian groups. }
$$

n
If $d \varepsilon \operatorname{Hom}_{R}(p, M)$ then $d=\sum_{i} d_{i}$ for unique $d_{i} \varepsilon \because \operatorname{lom}_{p}\left(n,!_{i}\right)$. Define the map $s: \operatorname{Hom}_{R}(P, I) \longrightarrow \operatorname{Hom}_{S}(Q, N)$ by $d s=\sum_{i}^{n} d_{i} s_{i}$. This oives the required isomorphism.

The case when I is infinite can be reduced to the finite case. For let $F=(1, \ldots, n)$ be any finite subset of I oith $n \geq 3$. Iet $I^{\prime}=(1, \ldots, n, n+1)$ and define $M_{i}=M_{i}$ for $1 \leq i \leq n$ and
 the previous arguments to $\left(M_{i},\right)_{1}, \varepsilon I \prime$

We note that the map $s(F)$ obtained from taking the finite set F is in fact independent of F. It is sufficient to show that if F, r, are finite subsets of I with $|F| \geq 3,|C| \geq 3$ and $F \in O$ then $s(F)=s(O)$.
 $s(F)=s(F \cup G)=s(G)$. By induction we can assume F has n elements and G has $n+1$. We get sets $\left(H_{1}, \ldots, M_{n}, \Theta_{j>n} N_{j}\right)$ and ($M_{1}, \ldots . M_{n+1}, \bigoplus_{j>n+1} "_{j}$) \&iving rise to maps $\left(s_{1}, \ldots, s_{n} j_{n+1}\right)$ and $\left(s_{1}, \ldots, s_{n+1}^{\prime}, s_{n+2}^{1}\right)$ where $\sum_{1}^{n+1} s_{i}=s(\overrightarrow{1})$ and $\sum_{i}^{n+2} s_{i}^{\prime}=s(G)$.

But it is clear that $s_{i}=s_{i}^{\prime}$ for $1 \leq i \leq n$. On the other hand by arguments similar to those used in (5) of lemma 2.2 we have that s_{n+1} induces s_{n+1}^{1} and s_{n+2}^{1} and so $s_{n+1}=s_{n+1}^{\prime}+s_{n+2}^{\prime}$. Hence $s(F)=\sum_{1}^{n+1} s_{i}=\sum_{1}^{n+2} s_{i}^{\prime}=s(G)$. Thus the definition of s is independent of the choice of F.
(4) Let $f \in \operatorname{End}_{R}(P)$ and $d \in \operatorname{Hom}_{R}(P, M)$ where $d=\sum_{i}^{n} d_{i}$ and $d_{i} \in \operatorname{Hom}_{R}\left(P, M_{i}\right)$ and where again we reduce the infinite case to the finite case as in (3).

$$
\text { Then } \begin{aligned}
(f d) s & \left.=\sum_{1}^{n} f d_{i}\right) s \\
& =\sum_{1}^{n}\left(f d_{i}\right) s \\
& =\sum_{1}^{n}\left(f d_{i}\right) s_{i}
\end{aligned}
$$

Fix $i \varepsilon I$ and choose (as we may) distinct $j, k \in I$ such that $i \neq j$ and $1 \neq k$. Then

$$
\begin{aligned}
f^{\ell}\left(d_{i}\right) s_{i} & =\left[b_{j}\left(a_{j}^{-1} f a_{k}\right) l_{j, k} b_{k}^{-1}\right]\left[b_{k}\left(a_{k}^{-1} d_{i}\right) h_{k, i}\right] \\
& =b_{j}\left(a_{j}-1 f a_{k}\right) h_{j, k}\left(a_{k}^{-1} d_{i}\right) h_{k, i} \\
& =b_{j}\left(a_{j}-1 f a_{k} a_{k}^{-1} a_{i}\right) h_{j, 1} \text { by (3) of lemma } 2.2 \\
& =b_{j}\left(a_{j}-1 f d_{i}\right) h_{j, 1}=\left(f a_{i}\right) s_{i} .
\end{aligned}
$$

Therefore $(f d)_{s}=\sum_{1}\left(f d_{i}\right) s_{i}$

$$
\begin{aligned}
& =\sum_{i}^{n} f^{\ell}\left(d_{1}\right) s_{i} \\
& =f^{\ell} \sum_{1}^{n}\left(d_{i}\right) s_{i}
\end{aligned}
$$

$$
=f^{\ell}(d) s . \quad \text { Hence }(\ell, s) \text { is a semi-linear }
$$

isomorphism: $\left(\operatorname{End}_{R}(P), \operatorname{Hom}_{P}(P, M)\right) \cong\left(\operatorname{End}_{S}(i), \operatorname{Hom}_{i j}(\hat{q}, N)\right)$.
Remark 1. A look at the proofs of lemmas 2.1 and 2.2 and theorem 2.3 will show that the results proved so far in this chapter remain true if the conditions, that all modules are unital and all rings have a 1 , are dropped. The reason why these conditions are not necessary is basically because the elements of ring ${ }^{\text {P }}$ which act trivially or a module R^{M} do not affect the endomorphism ring End $(:!)$. If we are hoping for stronger results say involving semi-linear isomorphisms we shall see in chap. 4 that it is not possible to drop these conditions. Remark 2. Suppose A is a submodule of \because and for some 1ε I $A \subset \bigoplus_{j \neq i} M_{j}$ then $\left[\operatorname{Hom}_{R}(P, A)\right] s=\operatorname{Hom}_{P}\left(Q_{1} A^{\Sigma}\right)$.

Proof

If I is infinite we can, without arfectir.f s, choose as in the last part of (3) the finite subset $F=I$ so that it contains i. Suppose a $\varepsilon \operatorname{Hom}_{R}(P, A)$ then $a s_{j}=b_{i}\left(a_{i}^{-1} a\right) h_{i, j}$ fence

$$
\begin{aligned}
\text { Qas }=Q b_{i}\left(a_{i}^{-1} a\right) h_{1, j} & =Q_{1}\left(a_{1}^{-1} a\right) h_{1, j} \\
& =\left[P_{i}\left(a_{1}^{-1} a\right)\right]^{\Sigma} \text { by }(2) \text { of lemma } 2.2 \\
& =(P a)^{\Sigma} A^{\Sigma} \Lambda^{\Sigma} .
\end{aligned}
$$

 Hence $\left[\operatorname{Hom}_{R}(P, A)\right] s \in \operatorname{Hom}_{S}\left(Q, A^{\Sigma}\right)$. A symmetrical argument gives $\left[\operatorname{Hom}_{S}\left(Q, A^{\Sigma}\right)\right] s^{-1} \subset \operatorname{Hom}_{P}(P, A)$. Thus $\operatorname{Hom}_{S}\left(Q, A^{\Sigma}\right) \in\left[\operatorname{Hom}_{R}(D, A)\right]^{s}$ and so we get $\operatorname{Hom}_{S}\left(Q, A^{\Sigma}\right)=\left[\operatorname{Hom}_{P}(P, A)\right] s$.

The condition that I has at least three elements in theorem 2.; is necessary as the following example shows.

Example 2.4. Let R and S be non-isomorphic division rings such that
 $\operatorname{End}_{R}(R) \neq \operatorname{End}_{S}(S)$ and $E n d_{R}\left(R^{2}\right) \neq \operatorname{End}_{S}\left(S^{2}\right)$.

Proof
For any division ring $R L\left(R_{R}\right)$ is of the form \int_{0}^{p} and $L\left(p_{p}^{2}\right)$ is of the form

Hence we have $L\left(R_{R}\right) \cong L\left(S_{S}\right)$ and $L\left(R_{R} R^{2}\right) \cong L\left(S^{2}\right)$. But Rif so $\operatorname{End}_{R}(R) \neq \operatorname{End}_{S}(S)$ and $\operatorname{End}_{R}\left(R^{2}\right) \neq \operatorname{End}_{S}\left(S^{2}\right)$ 。 For if p and \because are division
rings by the Artin-Wedderburn theorem (see eff. isomorphism theorem of chap. 3.5 of Jacobson (1)) $R_{2} \cong S_{2}$ implies $\mathrm{P} \cong$.

Cora. Let I be a set with at least three elements and $n^{r} \cdot S^{V}$ be modules. If $R_{M}^{M}=I_{R} P$ and $\Sigma: L\left(_{R^{M}} M \cong L\left({ }_{S} N\right)\right.$ then $\operatorname{End}_{R}(N) \cong \operatorname{End}_{S}(N)$.

Proof
Let $Q_{i}=\left(P_{i}\right)^{\Sigma}$ for $1 \in I$ and where $M=\bigoplus_{i \varepsilon I} P_{i}$. Putting $M_{i}=P_{i}$
$N_{1}=Q_{1}$ in theorem 2.3 we see that there is a module S^{Q} with $Q \cong Q_{1}$
 and $\operatorname{End}_{S}(N) \cong\left(\operatorname{End}_{S}(Q)\right)_{r f I}$. Hence the isomorphsim End $(P) \cong \operatorname{End}_{S}(i)$ induces $\operatorname{End}_{R}(M) \cong \operatorname{End}_{S}(N)$.

The converse is not true. For in example 1.6 we constructed

 this case $L\left({ }_{R} M\right) \nsubseteq L(N N)$.

Core. Let I be set with at least three elements and R^{N}. S^{i} be modules. If R^{M} is a free module of rank I and $L: L\left({ }_{M} M\right) \simeq L\left(S_{S} N\right.$ then $\operatorname{End}_{R}(M) \cong \operatorname{End}_{S}(N)$.

Proof
Put $P=R$ in coral.
Cor, 3. Let R and S be rings and n an integer ≥ 3. If

- $E: L\left(R_{n} R_{n}\right) \simeq L\left(S_{S}\right)$ then $R_{n} \cong S$.

Proof

Let $e_{i, i}$ be the matrix of R_{n} with 1 in the $(i, i)^{\text {th }}$ place and zeros elsewhere. Then $R_{n}=\bigoplus_{1}^{n} R_{n} e_{i i}$ and $R_{n} e_{i 1} \cong R_{n} e_{j j}$ for $1 \leq 1, j \leq n$ 。

Putting $P_{i}=R_{n} e_{i j}$ in cor.l we get that End $_{R_{n}}\left(r_{n}\right) \underline{\underline{1}} \operatorname{End}_{S}(S)$. But R_{n} and S are rings with a 1 and so are isomorphic to their own endomorphism rings, Hence $P_{n} \not \equiv S$.

Example 2.4 shows that the condition $n \geq 3$ is necessary. For there we saw that there are rings with $L\left(R_{R}\right) \cong L\left(S_{S} S\right)$ and $L\left(P_{P} P^{2}\right) \cong L\left(S_{S}{ }^{2}\right)$ but $R \notin S$ and $R_{2} \neq S_{2}$ 。 But by von Neumann's theorem $L\left(P_{2} R_{2}\right) \cong L\left({ }_{p} P^{2}\right)$ $L\left({ }_{S} S^{2}\right) \cong L\left(S_{2} S_{2}\right)$
The result in cor. 3 is due to von Neumann (see theorem 4.2 of chap. 4 of part 2 of von Neumann (1)). Although his theorem is stated for regular rings it goes through unchanged for rings with a 1. Jon ieumann nowever proves more. He shows that the isomorphism s: $p_{n} \cong$ induces the lattice isomorphism . The proof of this depends heavily on the fact that R is regular. Using remark 2 to theorem 2.3 we can show that If A is a left ideal of R_{n} such that for some $1 \leq 1 \leq n A \subset \bigoplus_{j \neq 1} \sum_{n} e_{j}:$ then $A^{s}=A^{\Sigma}$. We have been unable to show that this is true for any left ideal A. The difriculty is to know how to deal with proper principal left ideals which have non-zero intersection with principal baft
every other left ideal i.e. lafsalldeals in the terminology of chap. In the case when R is regular this case is excluded.

Cora. Let R and S be rings and I a set containing at least three elements. If
(1) $\quad \Sigma: L\left(_{R_{r f I}} R_{r f I}\right) \cong L\left(S_{S}\right)$ then $R_{r f I} \underline{\cong}$

Proof
If I is finite then the result follows from cor.3. If is infinite then by cor. 1 to lemma 2.8 for any integer $n r_{r f I} \cong\left(P_{r f I}\right)_{n}$ and $R_{c f I} \cong\left(R_{c P I}\right)_{n}$. Take $n \geq 3$ and, noting $P_{r f I}$ and $R_{c f I}$ both have identity element, apply aor.3. This gives $R_{r f I} \cong\left(R_{r f I}\right)_{n} \cong S$ and $R_{c P I} \cong\left(R_{c P I}\right)_{n} \cong \mathrm{~S}$.

Stated in another way we can say that the endomorphism ring of a free left (right) module of rank $\geq 31 \mathrm{~s}$ determined up to isomorphism by its lattice of left ideals.

CATEGORY ESUVALINCES

In this chapter we consider lattice isomorphisms which are induced by category equivalences. In particular we show that any lattice isomorphism between the lattices of sutmodules of a free module of infinite rank and a module containing at least one free element (see definition preceding lemma 3.3) is of this type. Using this result we give new conditions for rings $!f$ and E to be !rita equivalent in terms of infinite matrices over B and S and in terms of the lattices of submodules of infect sums and direct products of copies of R and S.

Firstly we recall some basic facts about categories. let \mathcal{A} be a category, Consider the equivalence classes of objects of \mathcal{A} under the equivalence relation of isomorphism. let \mathcal{A} be a set of representatives of these classes plus all the morphisms tetiveen them. Then \mathcal{A}_{0} is called a skeleton for \mathcal{A} and is a full subcaterry wnicir is equivalent to \mathcal{A}. it is easily seen that any two skeletons of \mathcal{A} are isomorphic and that any isomorphism between two such skeletons can be extended to a category auto-equivalence of \mathcal{A}. "ore fienerall: suppose that \mathcal{A} and B are two categories and \mathcal{A}_{0} and \mathcal{B}_{0} are skeletons for \mathcal{A} and B respectively, Then it is easy to show that any fonmoronism of A_{0} and \mathbb{R}_{0} a ar be extended to an equivalence of V^{1} and \mathbb{Q}. Conversely any equivalence between \mathcal{A} and $(P$, induces an 150 morphinism of A_{0} and ${ }_{0}$

Suppose that R is a ring and \mathcal{A}_{0} is a skeleton for ${ }_{R}{ }^{H}$ the category of all left R-modules. Let $p^{\prime \prime}$ be a module and consider the monomorphisms from objects in \mathcal{A}_{0} to M. We can pre-order these by defining $a \leq b$ if there is a map c such that $a=c b$ or diagrammatically

Consider the equivalence relation $a \sim b$ if $a \leq b$ and $b \leq a, i . e .$, $a=c b$ where c is an isomorphism. Then the equivalence classes form an ordered set, which is a lattice, lattice isomorphic to $L\left({ }_{k}!\right.$ " by the map $a \longrightarrow$ image (a).

Suppose that S is another ring and $F:_{r}{ }^{\mu} \longrightarrow G^{\mu}$ is a catecory equivalence. Clearly F mans \mathcal{A}, to a skeleton of S and F is an order preserving set isomorphism between the monomorphisms from \mathcal{A} to M and the monomorphisms from \mathcal{A}_{0}^{F} to n^{F}. This pives us a lattice isomoronism $L\left(X_{R}\right) \cong L\left({ }_{S}\left(I^{\prime}\right)^{F}\right)$ and we say that F induces this lattice isomorohism. We also note that this lattice isomorpism is independent of the choice of skeleton \mathcal{A}_{0}.

We now collect together as a theorem a number of "orita's results on category equivalences. These are all in lorita (i) in one form or another. We present them in the form given in 3ass (1).

Theorem 3.1

(A) Let P and S be rings and suppose $F:{ }_{P}{ }^{H} \longrightarrow S^{H}$ and $C: S_{S}{ }^{\mu} \longrightarrow{ }^{H}$ are inverse category equivalences. Then
(1) $(R)^{F}$ is a $E-R$ bimodule $S^{Q} Q_{n}$ and $(C)^{C}$ is a $Z-S$ bimodule $R^{p} S$
(2) P and Q are progenerators both as left and right modules
(3) $R \cong \operatorname{End}_{S}(Q)$ and $S \simeq \operatorname{End}_{R}(P)$
(4) P S \cong and $G \cong S$

(B) If S_{S} is a progenerator and $R \cong \operatorname{End}_{G}(Q)$ and ${ }_{Q}{ }^{?}=$ Hor (α, S) then $\operatorname{Hom}_{R}(P,-) \simeq \underset{R}{\otimes}-:_{R}^{\mu} \longrightarrow \therefore$ and $\operatorname{Hom}_{S}\left(x_{0}-\right) \simeq n:_{C^{\mu}}^{\mu} \longrightarrow P^{\mu}$ are inverse category equivalences.
(C) $R{\underset{M}{N}}^{s}$ if and only if there is a procenerator j such that $R \cong \operatorname{End}_{S}(Q):$

 isomorphism induced by (ℓ, s). Then there exists a category equivalence $F:_{R}{ }^{\mu} \longrightarrow S^{\mu}$ such that $M^{F}=N$ and F induces Σ.

Proof ,

Firstly suppose that $R^{n!}$ and R^{N} are modules such that $3: P_{0}^{\prime \prime} \cong_{R}$
 induced by s. Consider two skeletons for ${ }^{H}$ which are the same except
that in one we choose $R^{\prime \prime}$ as representative and in the other R^{N}. The isomorphism $s:{ }_{R} M \cong{ }_{R} N$ induces an isomorphism between these two skeletons which can be extended to a category equivalence $F:_{? ~}^{\mu} \longrightarrow P$. Clearly F induces E.

More generally suppose R^{M} and S^{N} are modules and (ℓ, s): $(R, M) \cong(S, N)$ is a semi-linear isomorphism. Now $\ell, R \cong$ induces a category isomorphism $F_{1}: R_{R}^{\mu} \longrightarrow S^{\mu}$ by $\left(R_{R}\right)^{F_{1}}=S^{D}$ where P is made
 is an S-isomorphism. For if $m \in M$ and $t \varepsilon S$ then $(t m)^{3}=\left(t^{\ell^{-1}} m\right) s=$ $t^{\ell^{-1} \ell_{m}}=t m^{s}$. By the first part we can find a category equivalence
 induced by s. Hence $F=F_{1} F_{2}$ is a category equivalence: ${ }_{P}^{\mu} \longrightarrow$, which induces the lattice isomorphism:L($\left.R^{\prime \prime}\right) \cong L(, i y)$ induced by ($\left.\ell, s\right)$. This lemma shows that any lattice isomorphism induced by a linear or semi-linear isomorphism can be induced $b y$ a category equivalence. Definition. Let R^{M} be a module and A a subset of M. Then the left annihilator of $A, \ell_{R}(A)$, is defined to be ($r \in$?:rA $=0$). Similarly if M is a right R-module we define the right anninilator of $A, r_{R}(A)$. When the ring R is obvious from the context we will omit the suffix P. We call M faithfut if $\ell(M)=0$ and an element $m \varepsilon K$ is called free if $\ell(m)=0$.

Lemma 3.3. Let R and S be rings and F_{1}, F_{2} category equivalences: $R^{\mu} \longrightarrow S^{\mu}$. Suppose R^{M} is a module such that $N_{1}=M_{2}=S^{N}$ then we have
(1) if $T: F_{1} \simeq F_{2}$ is a natural equivalence and $m("): N \longrightarrow N$ induces ${ }^{1} L_{S} N$) then F_{1} and F_{2} both induce the same lattice isomorphism: $L\left(R_{R}\right) \cong L\left(S_{N}^{N}\right)$.
(2) if M has at least one free element and F_{1} and F_{2} both induce the same lattice isomorphisms $\left(R^{M}\right) \cong L\left(S_{N} N\right)$ then there is a natural equivalence $T: F_{1} \simeq F_{2}$ such that $T(M)$ induces $I_{L}\left(C_{S} N\right.$).
Proof
(1) Let A, be a skeleton for $R{ }_{R}^{\mu}$ and f be a monomorphism:A \longrightarrow for some $A \in \mathcal{A}_{0}$. Then we have a commutative diagram

and $\operatorname{so} A^{F} 1 T(A)(f)^{F} 2=A^{F} L(f)^{F} 1 T(1)$. Now $A_{2}=M_{1}=\because$ and $T(!!)$ induces the identity lattice isomorphism on $L(N)$. Hence as $r(A)$ is an isomorphism and so certainly an epimorphism we get $(A)^{F_{2}}(f)^{F_{2}}=$
 F_{1} and F_{2} induce the same lattice isomorphism:i $(\because \because) \simeq 1(\ldots N)$.
(2) Let m be a free element $\in M$. Then there is a monomorphism $f: R \longrightarrow \mathrm{R}$ defined by $1 \longrightarrow \mathrm{~m}$. As F_{1} and F_{2} induce the same lattice
 is a monomorphism and hence so are $(f)^{F_{1}}$ and $(f)^{F}$. Thus we get an isomorphism $(R)^{F_{1}} \cong(R)^{F}$. Ie t $Q_{1}=(R)_{i}$ for $1=1$, 2. Then by (A) of theorem $3.1 \mathrm{~s}^{2}$ is a prozenerator and there is a natural equivalence $T_{i}: F_{1} \simeq Q_{i} \odot_{R}$. But as $S_{1} \widehat{S}_{S_{2}}$ there is a natural equivalence $U: Q_{1}{\underset{P}{P}}_{\otimes}^{\otimes} \simeq \partial_{2} \underset{R}{\otimes-\text {. }}$ Hence $T=T_{1} U T_{2}^{-1}: F_{1} \simeq F_{2}$ is a natural equivalence.

Let Q be a submodule of S^{i} and \mathbb{A}_{0} a skeleton for ${ }_{R}{ }^{4}$. Hence for some $A \in \mathcal{A}_{0}$ and monomorphism $f: A \longrightarrow!$ we get $Q=(A)^{F} l(f)^{F_{1}}=$ $(A)^{F} 2(f)^{F}$. Now we have the commutative diagram

and so as in the first part of the lemma we aet $(A)^{F} 1(f)^{F} 1 T(:!)=$ $(A)^{F} 2(f)^{F}$ i. $A, Q=G T(M)$ for any submodule Q of \because. Therefore $T(: \prime)$ induces $\mathrm{l}_{\mathrm{L}}\left(\mathrm{S}_{\mathrm{N}}\right)^{\circ}$

Theorem 3.4. Let P^{2} be a free module of infinite rank and S^{N} a module with $\varepsilon: L\left({ }_{R}^{M}\right) \cong L\left(S^{N}\right)$. Then, if $:$ contains at least one free element, Σ is induced by a category equivalence $F_{\mathrm{F}^{\prime}}{ }^{\mu} \longrightarrow \mathrm{S}^{\mu}$. Furthermore a category equivalence $G:{ }_{R}^{\mu} \longrightarrow S^{\mu}$ induces Σ if and only if there is a natural equivalence $T: F \simeq G$, such that $T(M)$ induces $1_{L}\left(S^{N}\right) \cdot$
Proof
Let $\left(e_{i}\right)_{i \in I}$ be a basis for $R^{1,1}$ and let $i_{i}=\left(R e_{i}\right)^{S}$. By
 a semi-linear isomorphism $(\ell, s):\left[\operatorname{End}_{R}(R), \operatorname{Hom}_{p}(P, l)\right] \cong$ $\left[\operatorname{End}_{S}(Q), \operatorname{Hom}_{S}(Q, N)\right]$ 1.e. $\left.(\ell, s): \mid R ; M\right] \cong\left[\operatorname{Lnd}(a), \operatorname{Hom}_{S}(Q, N)\right]$.

Let $y \in N$ be free. Now $N=\Theta_{i \varepsilon I} a_{i}$ and so there is a finite

As $R e_{i}$ is finitely generated, by cor. 1 to lemma 1.1 so is Q_{i},
say by m elements. Let H be any finite subset of I containing $m n$ elements such that $1 \notin H$. Then $H=\bigcup_{1}^{m} G_{j}$ of disjoint subsets G_{j} of H where each G_{j} contains n elements. We have $\alpha_{i} \cap \bigoplus_{k \in H} a_{k}=0$ and $\bigoplus_{k \in G_{j}} Q_{k}$ contains a free element $y_{G_{j}}$. Hence there is a free submodule U of rank m, namely $\underset{1}{\oplus} S y_{C_{j}}$, such that $U \cap Q_{i}=0$. As a_{i} is generated by m elements there is an epimorphism $f: U \longrightarrow \hat{\alpha}_{i}$. $B y(2)$ of lemma 2.2 there is an epimorphism $\sigma: U^{\Gamma^{-1}} \longrightarrow \mathcal{U}_{i}^{\Sigma^{-1}}=R e_{i}$. Jut $\mathrm{He}{ }_{i}$
is free and so projective. Hence $\mathrm{Fe}_{1} \cong$ a direct summand of $U^{\Sigma^{-1}}$. Hence by (2) of lemma 2.2 we get $\hat{a}_{1} \cong$ direct summand of U. But U is free and hence \hat{Q}_{i}, and therefore G, is projective.

Let $P=(S y)^{\Sigma^{-1}}$; then F is finitely generated. Exactly as
before there is a finite subset $D \subset I$ such that if $V=\bigoplus_{k \in D}$ Fe k then $\forall \cap P=U$ and there is an epimorphism $g: Y \longrightarrow r$. By (a) of lemma a. there is an epimorphism $f: V^{\Sigma} \longrightarrow$ ry. As before this means that S is isomorphic to a direct summand of $\forall^{\Sigma}=\bigoplus_{k \in:} a_{k}$. Thus a direct sum of copies of Q contains S as a direct summand and so is a generator. Therefore S^{i} is a progenerator. But $k \cong$ End (i) and so by (C) of theorem 3.1 q $\mathbb{M}^{\mathcal{L}}$ 。

Now the functor $\operatorname{Hom}_{C}(\alpha,-):^{\mu} \longrightarrow{ }^{\mu} \longrightarrow$ is a category equivalence by (B) of theorem 3.1, considering Q as a right -module via the isomorphism $\ell: P \cong \operatorname{End}_{S}(\lambda)$. Now saying that $(\varepsilon, \varepsilon$) is a semi-linear isomorphism: $[R, ~: 1] \cong\left[\right.$ End $\left._{C}(\alpha), \operatorname{lom}_{S}(\alpha, N)\right]$ is equivalent to saying that
 $G_{2}:_{R}{ }^{\mu} \longrightarrow{ }^{L}{ }^{L}$ be a category equivalence inducing the lat ice isomorph: ar induced by s^{-1}. Let $G=G_{1}{ }^{\prime}$, then G is a category equivalence: $S^{\mu} \longrightarrow R^{\mu \cdot}$

If A is a finitely generated submodule of " then for some finite subset $E C I$ we have $A \subset \underset{i \in E}{ } \operatorname{Re}_{i}$. Hence \because remark 2 to theorem. $2 \cdot 3$

such that there is a natural equivalence $\mathrm{m}_{\mathrm{i}} \mathrm{GF}_{1} \simeq 1$. Let F_{2} be a category equivalence: ${ }_{S}^{\mu} \longrightarrow S^{\mu}$ inducing the same lattice isomorphism: $L\left({ }_{S} N\right) \cong L\left({ }_{S} N\right)$ as the isomorphism $T(M): S_{S} \| \cong{ }_{S} N$. Define $F=F_{1} F_{2}$. Then F is a category equivalence: ${ }_{R}{ }^{\mu} \longrightarrow S^{\mu}$ such that the equivalence $G F$ induces $1_{L(G)} V$. Since $A \Sigma G=A$ for all finitely generated submodules A of $!$ we have that $A \Sigma=A F$ for $a l l$ finitely generated submodules A of M. Thus by lemma 1.3 F induces the lattice isomorphism Σ.

The last part of the theorem follows from lemma 3.3. Later (cor.l lemma 4.1) we will show that the isomorphism $T(1:)$ inducing the identity lattice isomorphism on $L\left({ }_{S}: 1\right)$ must in fact be left multiplication by some unit contained in the centre of s.

It is not clear whether the condition that N has at least one free element can be weakened. If however S^{N} is not faithful the theorem need not hold as the following example shows.

Example 3.5. There exist a free module $n^{!1}$ of infinite rank, a nonfaithful module S^{N} and a lattice isomorphism $\Sigma: L\left(R^{!!}\right) \cong L(G i)$ where $p \neq$ Proof

Let R be a Noetherian ring and let $S=$ the direct product of P with a non-Noetherian ring T. Then R is Noetherian while S is not and so $R \mathcal{K}_{M} S$. Let R_{M} be any free module of infinite rank. ie can consider M as a S-module by letting the component T of S act trivially on \because.

Denote this S-module by S^{N}. It is easily seen that S^{N} is unital and that $L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$ since every R-submodule of M is a S-subriodule of M and conversely:
Corn. Suppose R and S are rings and I is an infinite set. Then

$$
\text { (a) } L\left(\frac{I_{R}}{R}\right) \cong L\left(\frac{I_{S}}{S}\right) \text { implies } R \Pi_{M}
$$

(b) $L\left({ }_{R} R^{I}\right) \cong L\left({ }_{S} S^{I}\right)$ implies $R \tilde{M}^{S}$.

Proof

(a) This follows immediately from theorem 3.4 as I_{S} contains a free element.
(b) Let $R^{M}=R^{R^{I}}$ and $S^{N}=S^{I}$ and suppose $E: L\left(R_{R}^{I!}\right) \cong L\left(S_{S}\right)$. We have $R^{I} \triangleq R^{I} \oplus R^{I} \oplus R^{I} \oplus R^{I}$ 。 Hence there are submodules P_{1} and r_{2} of M such that $P_{1} \cong P_{2} \cong R^{I} \Theta R^{I} \simeq R^{I}$ and submodules D_{11}, P_{12}, P_{21} and P_{22} such that $P_{1}=P_{11} \oplus P_{12}$ and $P_{2}=P_{21} \oplus P_{22}$ where $P_{1} \underline{\underline{2}} P_{21} \underline{\underline{n}} P_{22} \underline{\underline{x}} P^{I}$ and $P_{2} \cong P_{11} \cong P_{12} \cong R^{I}$. Let $Q_{1 j}=P_{1 j}^{\Sigma}$ and $Q_{i}=P_{i}^{\Sigma}$ where $1 \leq 1, j \leq 2$. Then by (2) of lemma $2.2 Q_{21} \cong Q_{22} \simeq Q_{1}, Q_{11} \cong Q_{12} \simeq Q_{2}$ and $Q_{1} \cong Q_{2}$. Hence $Q_{1}=Q_{11} \oplus Q_{12} \cong Q_{2} \epsilon_{2} \underline{\underline{X}} Q_{1} \oplus Q_{2}=N$ and similarly $Q_{2} \underline{\cong}$. Now $P_{1} \underset{\sim}{ } R^{I}$ so P_{1} contains a free module of infinite rank. Let $\left(e_{i}\right)_{i \varepsilon I}$ be a basis for this free module. Then as $Q_{1}=P_{i}^{\sum}$ we have $P_{1}^{\Sigma} \cap Q_{2}=0$ and $Q_{2} \underline{\sim} S^{I}$ contains a free module of infinite rank. The arguments used in theorem 3.4 then show that $\left(R e_{i}\right)^{\Sigma}$ is a progenerator and $R \underset{N}{\sim}$ S.

Definition. A ring R is called subcommutative if every left ideal of R is a two sided ideal ide. for any given elements $a, x \in R$ there is an element $y \in R$ with $a x=y a$. The notation subcommutative has been used by Barbilian in another context.

Let R be a subcommatative $r i n g$ and $R x$ a cyclic left R-module on generator x. Then $h(x)$ is a two sided ideal of R and so for any element $r \in R \ell(x) r \subset \ell(x)$. Hence $\ell(x) r x \subset \ell(x) x=0$ i.e. $\ell(x) \subset \ell(R x)$. But $\ell(R x) \subset \ell(x)$ and so $\ell(x)=\ell(R x)$.

Exploiting this fact we show in our next corollary that the condition that S^{N} has a free element in theorem 3.4 can be dropped if S is subcommutative.

Cora. Let R be a ring and I an infinite set. Suppose that S is a subcomutative ring and S^{N} is a faithful module with $E: L\left(\frac{I_{R}}{R}\right) \cong L\left({ }_{S} N\right)$. Then $R \underset{M}{\sim}$.

Proof
Let $\left(e_{i}\right)_{i_{\varepsilon} I}$ be a basis for $I_{\text {P. }}$. Let 1 be a fixed element of I. Then by theorem 2.3 there are isomorphisms $s_{1}: Q_{1} \cong Q_{i}$ where $Q_{1}=\left(\text { Re }_{1}\right)^{\Sigma}$. Now Q_{1} is finitely generated by n elements x_{1}, \ldots, x_{n} say. As $Q_{1} \cong Q_{1} \ell\left(Q_{1}\right)=\ell\left(Q_{1}\right)$ and hence $\ell\left(Q_{1}\right)=\bigcap_{\ell \in I}\left(Q_{1}\right)=\ell(N)=0$, since S^{N} is faithful. But since S is subcommative we have that $\ell\left(x_{i}\right)=\ell\left(S x_{i}\right)$ and so $\bigcap_{i}^{n} \ell\left(x_{i}\right)=\bigcap_{1}^{n} \ell\left(S x_{i}\right)=\ell(Q)=0$.

Now consider the element $y \in N$ where $y=\sum_{i}^{n} x_{1} s_{i}$ and $x_{i} s_{i} \varepsilon Q_{i}$. As $\left(Q_{i}\right)_{i_{\varepsilon} I}$ is an independent set of submodulec of N, we have $\ell(y)=\bigcap_{1}^{n} \ell\left(x_{1} s_{i}\right)=\bigcap_{1}^{n} \ell\left(x_{i}\right)=0$ since the s_{i} 's are all isomorphisms. Hence N has a free element and the result follows from theorem 3.4. Cor.3. Let R, S be commutative rings and I an infinite set. Suppose \dot{S}^{N} is a faithful module with $\Sigma: L\left({ }_{R}{ }^{\mathrm{R}}\right) \underline{\underline{x}} \mathrm{~L}\left({ }_{\mathrm{S}} \mathrm{N}\right)$. Then $\mathrm{R} \underline{\underline{\sim}} \mathrm{S}$.

Proof
S is obviously subcommatative. Hence by cor. $2 \mathrm{R} \sim \mathrm{M}$. But this implies (see egg. (7) of Morita 1 of Bass (1)) that centre (R) \simeq centre (S) ie. $R \cong S$.
Theorem 3.6. Let R and S be rings and I an infinite set then the following are equivalent
(1) $R \tilde{M}^{s}$
(2) $R_{P I} \underline{\underline{0}} S_{P I}$
(3) $R_{r b I} \cong S_{r b I}$
(4) $\mathrm{R}_{\mathrm{cbI}} \cong \mathrm{S}_{\mathrm{cbI}}$
(5) $L\left({ }_{R}^{I_{R}}\right) \underline{\simeq} L\left({ }_{S}^{I} S\right)$
(6) $L\left({ }^{I_{R}}\right) \cong L\left({ }_{S_{S}}\right)$
(7) $L\left(R_{R} R^{I}\right) L\left(S^{I}\right)$
(8) $L\left(R_{R}^{I}\right) \cong L\left(S_{S}^{I}\right)$.

[^0]Further if any one of the equivalent conditions (1) to (3) hold then $R_{r P I} \cong S_{r f I}$ and $R_{C I I} \cong S_{c I I}$. the

Proof

Let S^{Q} be a progenerator. Then for some integers m and n there are modules S^{F} and S^{G} such that $Q^{n}=S \oplus F$ and $S^{m}=Q \oplus G$. Hence we get the following isomorphisms
$I_{Q} \oplus I_{G} \oplus_{Q} I_{Q} I_{Q} \oplus^{I_{G}} \cong I^{I}\left(S^{m}\right) \cong I_{S}$. Thus there is an isomorphism $s:^{I} Q \underline{I^{\prime}}$. Similarly noting that $(A \oplus B)^{I} \underline{\underline{y}} A^{I} \oplus B^{I}$ for S-modules A and B we can also prove $Q^{I} \cong S^{I}$.

Suppose that $R \tilde{N}^{S}$ then there is a category equivalence $F_{R}{ }^{\mu} \longrightarrow S^{\mu}$ and for some progenerator S^{Q} we have $R^{F}=$ Q. But F preserves direct sums and direct products and so $\left(I_{R}\right)^{F}=I_{Q} \simeq I_{S}$ and $\left(R^{I}\right)^{F} \cong Q^{I} \cong S^{I}$. Hence we get lattice isomorphisms $L\left({ }_{P}^{I} R\right) \cong L\left({ }_{S}^{I} S\right)$ and
 (1) implies (6) and (8).

By $(A)(3)$ of theorem 3.1 we have that $R \cong \operatorname{End}_{S}(Q)$. Now s: ${ }^{I} Q \cong I_{S}$ and so there is a ring. isomorphism $\ell: E_{n d}\left(I_{Q}\right) \cong \operatorname{End}_{S}\left({ }^{I} S\right)$ defined by $f^{l}=s^{-1} f s$ for $f \in E_{E_{S}}\left(I_{Q}\right)$. Hence by (1) of lemma 1.7 $\left(\text { End }_{S}(Q)\right)_{r f I} \cong S_{r f I}$ ie. $R_{r f I} \cong S_{r f I}$. By symmetry we also have $\mathrm{R}_{\mathrm{CfI}} \stackrel{\sim}{L} \mathrm{~S}_{\mathrm{CfI}}$.

Now suppose a $\varepsilon \operatorname{End}_{S}\left(I_{Q}\right)$ and image (a) is contained in a finitely generated submodule. Then it is clear that image (a^{l}) is also contained in a finitely generated submodule and conversely. By (2) of lerma 1.7 we see that ℓ induces $\left(\operatorname{End}_{S}(0)\right)_{r b I} \cong S_{r b I}$ i.e. $R_{r b I} \cong S_{r b I}$. By symmetry wo also have $\mathrm{R}_{c b I} \cong \mathrm{~S}_{\mathrm{cbI}}$.
 Let a $\in E n d_{S}\left(I_{Q}\right)$ then a careful look at the constituent parts of the isomorphism si $I_{Q} \cong I_{S}$ shows that if $Q_{1} a=0$ for almost all it then it follows that $S_{i} a=0$ for almost $a l l i$ and conversely. Hence by (3) of lemma 1.7 i induces $\left(\operatorname{End}_{S}(Q)\right)_{f I} \simeq S_{f I}$ i.e. $R_{f I} \underline{\sim} S_{f I}$.

Hence (1) implies (2) to (8) and $R_{C f I} \underset{\sim}{\sim} \mathcal{C f I}$ and $R_{r f I} \simeq S_{r f I}$. Since any ring isomorphism of two rings certainly induces a lattice isomorphism between their lattices of left (right) ideals we have by theorem 1.9 that
(2) implies (5) and (6)
(3) 1mplies (8)
(4) Implies (7)
and by cor. 1 of theorem 3.4
(5) implies (1) and by symmetry so does (6)
(7) implies (1) and by symmetry so does (8).

Hence the conditions (1) to (8) are equivalent. We comciude tho-proof with the following example.

Proof

R is Noetherian and S is not then $R-\frac{f_{0}}{M}$

Cor.1. Let R be a ring and I a set containing at least three elements. If $E: L\left(_{R_{x I}} R_{x I}\right) \cong L\left(S_{x I} S_{x I}\right)$ where $x=f, r f_{p} c f, r b, c b$ then $R_{x I} \cong S_{x I}$.

Proof
If I is finite this is cor. 3 of theorem 2.3.
If I is infinite and $x=r f$ or $c f$ this is cor. 4 of theorem 2.3.

- If I is infinite and $x=f, r b$ or ${ }^{\circ} \mathrm{cb}$ then by theorem 1.9 it follows that
(1) $L\left({ }_{R}^{I} R\right) \cong L\left({ }_{S}^{I} S\right)$ if $x=f$
(2) $L\left({ }_{R} R^{I}\right) \cong L\left({ }_{S} S^{I}\right)$ if $x=c b$
(3) $L\left(R_{R}^{I}\right) \neq L\left(S_{S}^{I}\right)$ if $x=r b$.

In any of the cases (1) to (3) it follows from theorem 3.6 that $\mathrm{R}_{\mathrm{XI}} \cong \mathrm{S}_{\mathrm{xI}}{ }^{\circ}$

SEMI-LINEAR ISOMORPHISMS

In this chapter we consider lattice isomorphisms which give rise to semi-linear isomorphisms. In the first part of the chapter we assume that our modules can be decomposed into a direct sum of more than 3 submodules each containing a free element. In the second part of the chapter we impose restrictions on our modules similar to (but more general than) those in Skornyakov (2). We also consider cyclic preserving lattice isomorphisms i.e. lattice isomorphisms under which the image and the inverse imape of a cyclic module is acain a cyclic module. In particular we show that if there is a cycife preservine lattice isomorphism between the lattices of submodules of a free module of rank ≥ 3 over an inverse symetric ring (a fairly mild ring condition) and a faithful module then there is a semi-linear isomorphism between them. A generalization along gimilar lines is fiven of a theorem of Skornyakov.

In remark 1 to theorem 2.3 we pointed out that a number of theorems in chapter 2 were true without imposing the restrictions that ail rings have a 1 and all modules are unital. We now give some very general examples to show that some sort of restrictions are necessary to get theorems on semi-linear isomorphisms.

Suppose that S is a ring without a 1 . We can adjoin a 1 by making the abelian group $S \oplus \mathbb{Z}$ into a ring with a 1 where we define multiplication by $(s, n)(t, m)=(s t+n t+m s, n m$ for any $n, m \in \mathbb{Z}$ and $s, t \varepsilon S$. Denote this ring by s^{l}. The map $s \longrightarrow(s, 0)$ is a ring monomorphism:S $\longrightarrow S^{l}$ i.e. S is embedced in S^{l} and S^{l} nas a 1 namely (0,1).

Suppose G^{N} is a module; then N can also be considered as a S^{1}-module by defining $(s, n) p=s p+n p$ for $s \varepsilon E, n \varepsilon \not \subset$ and $p \varepsilon$. . Cleariy every left S^{l}-submodule of N is also a left sosubmodule and conversely. Hence $L\left({ }_{S^{1}} N\right)=L\left(V^{N}\right)$.

Suppose that S^{N} is a module which is not necessarily faithful. Now $\ell(N)$ is a two-sided ideal of S and $s 0 S / \ell(I)$ is a ring. Denote it by \bar{S}. There is a natural ring epimorphism $p: \Omega \longrightarrow \bar{S}$ and we can consider N as a left \bar{B} module by defining for $t \in \bar{S}$ and $x \in N \quad t x=s x$ where $s^{D}=t$. It is easily shown that this definition does not depend on the choice of s and gives us a well defined $\overline{\mathrm{B}}$-module, which we note is faithful. Clearly every S-submodule of N is also a $\bar{i} m$ submodule and conversely, Hence $L\left(S_{N} N\right)=L\left(\frac{N}{S}\right)$.

Let R^{N}. be a module and supnose that we want to prove a theorem of the form: if S^{N} is any module with $:: I\left(_{P} M\right) \cong L\left(S^{I I}\right)$ then there is a semi-linear isomorphism: $(R, M) \npreceq(S, N)$. If \therefore does not have a 1 we
know $L\left({ }_{S} N\right) \cong L\left(S_{S}{ }^{N}\right)$ and so there are semi-linear isomorphisms $(P,!) \cong$ (S, N) and $(R, N) \cong\left(S^{l}, N\right)$. Hence there is a semi-linear isomorphism: $(S, N) \cong\left(S^{1}, N\right)$. This is impossible as S^{1} has a 1 while S does not. Similarly if $S^{V I}$ is not faithful then we know that $L\left(S^{\prime}: 1\right) \cong L(-i v)$ and so there is a semi-inear isomorphism: $(S, N) \cong(\bar{S}, N)$. Dut this is impossible as S^{M} is not faithful while \vec{S}^{N} is. These examples show that to get theorems about semi-linear isomorphisms we must assume that all rings have a 1 and that all modules are faithful. Definition. Let R^{M} be module and c a unit εR. let $l: P \cong$. \cong be the ring isomorphism defined by $r \longrightarrow \mathrm{crc}^{-1}$ and $\mathrm{s}:(!,+) \cong\left(M_{0}+\right)$ be the abelian group isomorphism defined by $m \longrightarrow c m$. It is easily seen that $(\ell, s):(R, M) \cong(R, M)$ is a semi-linear isomorphism, we say that (ℓ, s) is the unit semi-linear isomorphism defined by c. Any unit semi-linear isomorphism induces the lattice isomorphism $1_{i(i p i l}$ (i) and our next lemma shows that the converse is also true for free modules of rank ≥ 2. The proof follows that of prop. 3 of chapter 3.1 of Baer (1). Lemma 4.1. Let R_{R}^{M} be a free module of rank ≥ 2. A semi-linear isomorphism ($\ell, s):(R, M) \cong(R, M)$ induces the lattice isomorohism $1 \ldots$ if and only if (ℓ, s) is anit semi-linear isomorphism.

Proof

 $\mathrm{cRm}=\mathrm{Rm}$. Hence if F is a submodule or I then $\mathrm{P}=\sum_{p \varepsilon}^{\sum} \mathrm{Rp}$ and so

$$
P^{s}=\sum_{p \in P}(R p)^{s}=\sum_{p \in P} \sum_{p}=P \cdot \quad \text { Thus }(\ell, s) \text { induces } 1_{L}\left({ }_{R} M\right)^{0}
$$

Suppose conversely that (l, s) induces $l_{L}\left({ }_{R}\right)^{\prime}$. Let x be a free element εM. Then $\left(R_{x}\right)^{5}=(R x)_{L}\left(_{R} M\right)=R x$ and so $R x^{s}=R x$. Hence there are $a, b \in R$ with $x=b x^{3}$ and $x^{5}=a x$. Since x is free so is x^{3} and we get $a b=b a=1$. Hence for any free element $x \in$ i! there is a unit $f(x) \varepsilon R$ such that $x^{s}=f(x) x$.

Let $\left(e_{i}\right)_{1 \varepsilon I}$ be a basis for $: ~ C o n s i d e r$ a fixed basis element e_{1} and any other distinct basis element e_{i}. Then $e_{1}{ }^{s}=f\left(e_{1}\right) e_{1}$ and $e_{i}^{s}=f\left(e_{1}\right) e_{i}$. Now $\left(e_{1}+e_{i}\right)$ is a free element and so $f\left(e_{1}\right) e_{1}+f\left(e_{i}\right) e_{i}=e_{1}^{s}+e_{i}^{s}=\left(e_{1}+e_{i}\right)^{s}=f\left(e_{1}+e_{i}\right)\left(e_{1}+e_{i}\right)=$ $f\left(e_{1}+e_{i}\right) e_{1}+f\left(e_{1}+e_{i}\right) e_{i}$. Thus $f\left(e_{1}\right)=f\left(e_{1}+e_{i}\right)=f\left(e_{i}\right)$. Hence for any i ε I $f\left(e_{1}\right)=f\left(e_{i}\right)=c$ where c is a unit. let $I \neq i \varepsilon I$ and $r \in P$ then $e_{1}+r e_{i}$ is free. Thus $c e_{1}+\left(r e_{i}\right)^{s}=f\left(e_{1}\right) e_{1}+\left(r e_{i}\right)^{s}=$ $e_{1}^{s}+\left(r e_{i}\right)^{s}=\left(e_{1}+r e_{1}\right)^{s}=f\left(e_{1}+r e_{i}\right)\left(e_{1}+r e_{1}\right)=f\left(e_{1}+r e_{i}\right) e_{1}+$ $r\left(e_{1}+r e_{i}\right) r e_{i}$. Hence $c=f\left(e_{1}+r e_{i}\right)$ and so $\left(r e_{i}\right)^{s}=f\left(e_{1}+r e_{i}\right) r e_{i}=$ ore $_{i}$. Similarly since rank of $M \geq 2$ we can show that $\left(r e_{1}\right)^{s}=\mathrm{cre}_{1}$. Now for any element $x=\Sigma r_{i} e_{i} \in M$ we have $x^{s}=\left(\Sigma r_{i} e_{i}\right)^{s}=\Sigma\left(r_{1} e_{i}\right)^{s}=$ $\sum c r_{i} e_{i}=c \sum r_{i} e_{i}=c x$. Hence s is left multiplication by the unit c. Suppose $r \in R$ then $r^{l} e_{1}^{s}=\left(r e_{1}\right)^{s}=c r e_{1}=c r c^{-1} c e_{1}=c c^{-1} e_{1}^{s}$. but e_{1}^{s} is free and so $r^{l}=\operatorname{crc}^{-1}$ and (ℓ, s) is the unit semi-linear isomorphism defined by c.

Cor.1. If R_{R} is a free module of rank ≥ 2 then a linear isomorphism s: $R_{R} \cong{ }_{R} M$ induces $I_{L}\left(_{R} M\right)$ if and only if s is left multiplication by a unit $\subset \in$ centre of R.

Proof
Left multiplication by a unit c centre of R is clearly a

 where 1 is the identity ring isomorphism $r \longrightarrow r$. Hence by lemma 4.1 ($1, s$) is a unit semi-linear isomorphism for some unit $c \in R$ and so for any $r \in R r=r^{1}=c c^{-1}$ i.e. $c \in c e n t r e$ of P. Trhus s is left multiplication by a unit $c \varepsilon$ centre of R. Tinis proves the remark made at the end of theorem 3.4.

It is easy to see that the condition rank $M \geq 2$ cannot be weakened. Let D be any division ring with a ring automormism s:D \simeq which is not inner (e.g. the complex numbers where s is conjugation). Consider D as a left D module then $(s, s):(D, D) \cong(D, D)$ is a semiInear isomorphism inducing $1_{L}\left(_{D}\right)^{\prime}$. As s is not an inner automorphism. (s, s) is not a unit semi-inear isomorphism.

Theorem 4.2. Let $R^{1!}$ be a module which is the direct sum of an independent set of submodules $\left(P_{i}\right)_{i \varepsilon I}$, where I is an index set containing at least three elements and where for each i ε I there is a free eleqent $e_{i} \in P_{i}$. Suppose S^{N} is a module with $E: L\left(P_{N}^{N}\right) \cong I\left(S_{i}\right)$ and such that. for some $i \in I$ and free element $f_{i} \in N\left(R e_{i}\right)^{\Sigma}=\Sigma f_{i}$. Then
(1) there is a semi-linear isomorphism ($\ell, \operatorname{s}):(\mathrm{R}, \mathrm{M}) \cong(\mathrm{S}, \mathrm{i})$
(2) defining $P_{i}^{*}=\sum_{j \neq i} P_{j}$ and $Q_{i}^{*}=P_{i}^{*}$ then (ℓ, s) induces $\sum: L_{R}\left(P_{i}^{*}\right) \underline{\underline{x}}$ $L\left(S_{1}^{Q}\right)$
(3) (ℓ, s) is unique to within unit semi-linear isomorphism with respect to property (2)
(4) if I is infinite then (ℓ, s) induces $\Sigma: L\left(R^{M}\right) \cong L\left(G_{M}^{M}\right)$.

Proof

(1) Putting $P=R, Q=S$ in (4) of theorem 2.; we get a semi-linear isomorphism $(\ell, s):\left[\operatorname{End}_{R}(R), \operatorname{Hom}_{R}(R, M)\right] \cong\left[\operatorname{Hnd}_{S}(S)\right.$, $\left.\operatorname{Hom}_{S}(N, N)\right]$ ie. $(\ell, s):(R, M) \cong(S, N)$.
(2) By remark 2 to theorem $2.3(\ell, s)$ induces $E: L\left({ }_{R}^{P}{ }_{i}^{*}\right) \cong L\left(i_{i}^{*}\right)$.
(3) Suppose ($\ell^{\prime}, s^{\prime}$) is another lattice isomorphism inducing

a free module of rank ≥ 2 we have by lemma it .l
that (ℓ, s) and ($\left.\ell^{\prime}, s^{\prime}\right)$ differ by a unit semi-linear isomorphism. (4) If I is infinite then any finitely generated submodule A of M is contained in P_{1}^{*} for some $1 \in I$. Thus we see that (ℓ, s) induces $\sum: F\left({ }_{R} M\right) \cong F\left({ }_{S} N\right)$. Hence by lemma $1.3(\ell, s)$ induces $\sum: L\left(F^{M}\right) \cong L(N)$. Cor.1. Let R^{M} be a free module of rank ≥ 3 on free generators ($\left.e_{i}\right)_{i e_{i}}$. Suppose ${ }_{S} N$ is a module with $\Sigma: L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$ where, for some i i i and free element $f_{1} \in N,\left(V e_{1}\right)^{\Sigma}=S f_{1}$. Then there is a semi-linear isomorphism $(\ell, s):(R, V) \cong(S, N)$ which for $\because M y \in$ i induces

Proof
This follows immediately from theorem 4.2 putting $P_{i}=R e_{i}$. We have already noted in example 2.4 that this corollary fails if the rank of $\because<3$. Dur next theorem shows that even if the rank of $M=2$ the rings R and S are ciosely related.

Theorem 4. 3. Let R^{M} be a free module of rank 2 on free generators e_{1} and e_{2}. Suppose S^{N} is a module with $E: L\left(R^{N}\right) \cong L\left(S^{N}\right)$ such that, for some free element $f_{1} \in N,\left(R e_{1}\right)^{\Sigma}=S f_{1}$. Then
(1) there is a set isomorphism $t: R \longrightarrow 3$ with $1^{t}=1$
(2) if a ε R then $(k a)^{t}=S a^{t}$ and $\left(\ell_{p}(a)\right)^{t}=\ell_{E}\left(a^{t}\right)$
 $\Sigma_{i}: L\left({ }_{R} R e_{i}\right) \cong L\left({ }_{S} S f_{i}\right)$ for $i=1,2$.
(4) if $U(R), U(S)$ are the groups of units of P and S respectively then $U(R)^{t}=U(S)$
(5) if $a, b \in R$ and $\operatorname{Ra} \cap R b=0 \operatorname{tin} n(a+b)^{t}=a^{t}+b^{t}$. Proof

These results are basically translations of the results of lema 2.2 to our particular case.

By (1) of lemma 2.2 there is a set isomorphism $l_{1, ?}$: $\operatorname{Hom}_{R}\left(\mathrm{Pe}_{1}, \mathrm{Re} e_{2}\right) \longrightarrow \operatorname{Hom}_{C}\left(S f_{1},\left(\mathrm{Pe}_{2}\right)^{\Sigma}\right)$. Now tidere is an isomorphism $R e_{1} \cong R e_{2}$ defined by $e_{1} \longrightarrow e_{2}$ and so by (Ω) of lemma 2.2 there is an
 $\ell\left(f_{2}\right)=\ell\left(f_{1}\right)=0$.

There is a set isomorphism $x: R \longrightarrow \operatorname{Hom}_{R}\left(\mathrm{Re}_{1}, \mathrm{Re}_{2}\right)$ defined by $r \longrightarrow\left(e_{1} \longrightarrow r e_{2}\right)$. Similarly there is a set isomorphism $y:$ $S \longrightarrow \operatorname{Hom}_{S}\left(S f_{1}, S f_{2}\right)$. Thus we have a set isomorphism $t=x \ell_{1} \cdot 2^{y^{-1}}$: $R \longrightarrow S$ with $I^{t}=1$ 。

Since we have that f_{1} and f_{2} are free we get lattice isomorphisms $\Sigma_{i}: L\left({ }_{R} R\right) \cong L\left({ }_{S} S\right)$ induced by $\Sigma_{i}: L\left({ }_{R} R e_{i}\right) \cong L\left({ }_{S} S f_{i}\right)$ for $1=1$, 2. If A is a left ideal of R then $A e_{1}+A\left(e_{1}+e_{2}\right)=A e_{1}+A e_{2}=A e_{2}+A\left(e_{1}+e_{2}\right)$. Applying Σ we get $A^{\Sigma_{1} f_{1}}+B\left(f_{1}+f_{2}\right)=A^{\Sigma_{1}} f_{1}+A^{\Sigma_{2}} \rho_{2}=A^{\Sigma_{2}} f_{2}+B\left(f_{1}+f_{2}\right)$ where B is a left ideal of S and $A\left(e_{1}+e_{2}\right)^{\Sigma}=B\left(f_{1}+f_{2}\right)$. If $t \varepsilon A^{\Sigma_{1}}$ then $t f_{1}=s f_{2}+b\left(f_{1}+f_{2}\right)$ where $b \in B$. Thus $t=t$ and $A^{\Sigma_{1}} \subset B$. Similarly $A{ }^{\Sigma} \mathcal{E}^{2} B$. If on the other hand $b \varepsilon B$ then $b\left(f_{1}+f_{2}\right)=$
 and so $B \subset A^{\Sigma_{1}} \cap A^{\Sigma_{2}}$. Therefore $A^{\Sigma_{1}}=B=A^{\Sigma_{2}}$. Thus $\Sigma_{1}=\Sigma_{2}=\Delta$ say.

For any a ε P. there is a $f \varepsilon \operatorname{Hom}_{R}\left(R e_{1}, R e_{2}\right)$ defined by $e_{1} \longrightarrow$
a e_{2}. By (2) of lemma 2.2 we have (A) image $(f)^{\Sigma}=$ image $\left(f_{1,2}\right)$ (B) $\operatorname{ker}(f)^{\Sigma}=\operatorname{ker}\left(f_{l, 2}\right)$.

From (A) we deduce that $\left(R a e_{2}\right)^{\Sigma}=S a^{t} e_{2}$ ie. (Ra) ${ }^{\Delta}=S a^{t}$. If b ε Ra and $g \varepsilon \operatorname{Hom}_{R}\left(\mathrm{Re}_{1}, \mathrm{Re}_{2}\right.$) is defined by $e_{1} \longrightarrow$ be ${ }_{2}$ then image (f) \mathcal{C} image (f). Hence $S b^{t} \subset S a^{t}$ for any $b \in R a$ and so (Ra) ${ }^{t} \subset S a^{t}$. Symmetrically $\left(S a^{t}\right)^{t^{-1}} C \quad R a$ and thus $S a^{t} C(R a)^{t}$ and $(R a)^{t}=S a^{t}=(\mathrm{Fa})^{\Delta}$. If A is a left ideal of R then clearly $A^{t} \subset A^{\Lambda}$ and by symmetry $\left(A^{\Delta}\right)^{t^{-1}} \subset\left(A^{\Delta}\right)^{-1}=A$. Hence $A^{\Delta} \subset A^{t}$ and $A^{t}=A^{\Delta}$. Thus t induces A and $(P a)^{t}=S A^{t}$.

From (B) we deduce that $\left(\ell_{R}(a) e_{1}\right)^{\Gamma}=\ell_{S}\left(a^{t}\right) r_{1}$ i.e. $\ell_{p}(a)^{\Delta}=$ $\ell_{S}\left(a^{t}\right)$. Therefore $\ell_{R}(a)^{t}=\ell_{R}(a)^{\Delta}=\ell_{S}\left(a^{t}\right)$. Now $U(R)=$ ($a \in R: R_{R}(a)=0$ and $R a=R$). Hence $U(R)^{t}=U(S)$. If $a, b \in R$ and $\mathrm{Ra} \cap \mathrm{Rb}=0$ then it is clear from (4) of lemma 2.2 that $(a+b)^{t}=$ $a^{t}+b^{t}$ 。

We now show how we can drop the assumption that f_{i} is free in theorem 4.2 by imposing suitable restrictions on R, S and E. Lemma 4. 4. Let R^{M} be a module and X, Y submodules such that $X \cap Y=0$. Suppose $S^{\text {N }}$ is a module where $\Sigma: L\left(P_{P}^{M}\right) \cong I\left(S^{H}\right)$ and for some $x^{\prime}, y^{\prime} \varepsilon \mathbb{N}$ $x \in X, y^{\prime} \in Y \quad X^{\Sigma}=S x^{\prime}, Y^{\Sigma}=$ SH and $R(x+y)=\left(E\left(x^{\prime}+y^{\prime}\right)\right)^{\Sigma^{-1}}$. $X=$ Rx and $Y=R y$.

Proof

$$
\text { We have } S \dot{x}^{\prime}+S y^{\prime}=S\left(x^{\prime}+y^{\prime}\right)+S x^{\prime}=S\left(x^{\prime}+y^{\prime}\right)+S y^{\prime} \text {. }
$$ Applying ε^{-1} we get $X+Y=R(x+y)+X=P(x+y)+Y$. Hence

$$
\begin{aligned}
X+Y & =R(x+y)+Y \\
& =R(x+y)+R y+Y \\
& =R x+R y+Y \\
& =R x+Y .
\end{aligned}
$$

Intersecting X with both sides we get $X=F x$. Similarly $Y=P y$. This lemma is prop .9.1 of Beer (2).

Definition. Let R be a ring such that any elements x, y e p satisfying $x y=1$ also satisfy $y x=1$, Then R is called an inverse symmetric ring.

A ring R is not inverse symmetric if and only if it contains a copy of itself as a proper direct summand. In fact it is not difficult to see that, for any module ${ }_{K} M$, $\operatorname{End}_{R}(M)$ is inverse symmetric if and only if 11 does not contain a copy of itself as a proper direct summand.

If R is not inverse symmetric then R contains an infinite direct sum of isomorphic left ideals generated by idempotent (see Jacobson (2)), Hence any sort of minimum or maximum condition on principal left (right) ideals or on left (right) annihilator ideals is sufficient to ensure a ring is inverse symmetric. Other obvious examples of such rings are commutative rings and integral domains. We shall see in chapter 6 that this condition also arises naturally in the study of regular rings. Lemma 4.5. Let R^{M} be a module and $x, y \in M$ with $R x \cap R y=0$. Suppose S^{N} is a module with $\Sigma: L\left(R_{R} M^{M} \cong L\left(S^{N}\right)\right.$ where for some $x^{\prime}, y^{\prime} \varepsilon N$ $(R x)^{\Sigma}=S x^{\prime}$ and $(R y)^{\Sigma}=S y^{\prime} \cdot$. Then if either (1) $\left(S\left(x^{\prime}+y^{\prime}\right)\right)^{\Sigma^{-1}}$ is cycle, $\ell(x)=0$ and R is inverse symmetric or (2) $\ell(x) \subset \ell(y)$ and S is subcommatative then $\ell\left(x^{\prime}\right) \subset \ell\left(y^{\prime}\right)$.

Proof
(1) Suppose $\left(S\left(x^{\prime}+y^{\prime}\right)\right)^{\Sigma^{-1}}$ is cyclic and $=R\left(x_{1}+y_{1}\right)$ for some $x_{1} \in R x$ and $y_{1} \in$ Ry. By lems 4.4 $R x=R x_{1}$ and $R=R y_{1}$ and so there are $a_{1} k \in A$ with $x_{1}=a x$ and $x=b x_{1}$. Hence $x=b a x$ and if $l(x)=0$ we get $b a=1$. If R is inverse symmetric then $a b=1$ and $s o a$ is a unit and $x_{1}=a x$ is a free element.

Since x_{1} is free there is a homomorphism $f_{1 R x_{1}}^{\longrightarrow}$ Ry $_{1}$ defined by $x_{1} \longrightarrow-y_{1}$. We can "represent" f as in lemma 2.1 by ($m-m^{f}$: $\left.m \in R X_{1}\right)=R\left(x_{1}+y_{1}\right)$. By (1) of lemma 2.2 there is a homomorphism $g^{:}\left(R x_{1}\right)^{\Sigma} \longrightarrow\left(R y_{1}\right)^{\Sigma}$ which is "represented" by $\left(R\left(x_{1}+y_{1}\right)\right)^{\Sigma}=S\left(x^{\prime}+v^{\prime}\right)$ i.e. $x^{\prime B}=-y^{\prime}$. Hence $\ell\left(x^{\prime}\right) \subset \ell\left(-y^{\prime}\right)=\ell\left(y^{\prime}\right)$.
(2) Suppose that $\ell(x) \subset \ell(y)$. Then there is an epimorphism $\mathrm{f}: \mathrm{Rx} \longrightarrow \mathrm{Ry}$ defined by $\mathrm{x} \longrightarrow \mathrm{y}$. Hence by (2) of lemma 2.2 there $1 ;$ an epimorphism gaS' \longrightarrow Dy' defined by $x^{\prime} \longrightarrow$ ty' for some $t \in S$ such that $S t y^{\prime}=S y^{\prime}$. We have then that $\ell\left(x^{\prime}\right) \in \ell\left(t y^{\prime}\right)$. If S is subcommutative then $\ell\left(y^{\prime}\right)=\ell\left(S y^{\prime}\right)=\ell\left(t y^{\prime}\right)$. Hence $\ell\left(x^{\prime}\right) \subset \ell\left(y^{\prime}\right)$. Definition. Let R^{M} and S^{N} be modules such that $\Sigma i L\left(R_{R}^{M}\right) \cong L\left(C^{N}\right)$. Define the following conditions on Σ. $\left(C_{1}\right)$ For any $x \in M$ there is a y εN with $(R x)^{\Sigma}=S y$. $\left(C_{2}\right)$ For any $y \in N$ there is a $x \in N$ with $(S y)^{\Sigma^{-1}}=R x$. If Σ satisfies C_{1} and C_{2} we call Σ a cyclic preserving lattice isomorphism and we write $L\left(R^{?!}\right) \cong L(N i)$.
Theorem 4.6. Let R^{M} be a module which is the direct sum of an independent set of submodules $\left(\eta_{i}\right)_{i \in I}$, where I is an index set containing at least three elements and where for each i ε I there is a free element $e_{i} \in P_{i}$. Suppose that S_{i}^{N} is faithful module with $\Sigma: L\left(R_{R}^{M}\right) \stackrel{c}{\underline{\varrho}} L\left(S^{i}\right)$. If
either (1) R is inverse symmetric
or (2) S is subcommutative
then there is a semi-linear isomorphism: $(R, M) \cong(S, N)$.
Proof
Let e_{i} be a fixed element of $\left(e_{i}\right)_{i_{\varepsilon} I}$. As Σ is cyclic preserving $\left(\operatorname{Re}_{1}\right)^{\Sigma}=S f_{1}$ for some $f_{1} \varepsilon \mathbb{R}$. By theorem 4.2 we need only show that f_{1} is a free element.

By theorem $2.3 \mathrm{Sf}_{1} \cong\left(\mathrm{Re}_{i}\right)^{\Sigma}$ for each $1 \varepsilon I$ and so $\left(\mathrm{Re}_{i}\right)^{\Sigma}$. Sf for some $f_{i} \in N$ with $\ell\left(f_{i}\right)=\ell\left(f_{1}\right)$. Let $Q_{i}=P_{i}{ }^{\Sigma}, P_{1}^{*}=\sum_{j \neq 1} P_{j}$ and $Q_{i}^{*}=P_{i}^{{ }^{\Sigma}}$. If $q \varepsilon Q_{i}^{*}$ then since Σ is cyclic preserving there is a $p \in P_{i}^{*}$ with $\left(R_{p}\right)^{\Sigma}=S q$.

Now $R e_{i} \cap P P_{i}=0\left(R e_{i}\right)^{\Sigma}=S r_{i},(R p)^{\Sigma}=S q$ and $0=\ell\left(e_{i}\right) \subset \ell(p)$. Furthermore $\left(S\left(f_{1}+q\right)\right)^{-1}$ is cyclic since Σ is cyclic preserving. Hence if either (1) or (2) hold it follows from lemma 4.5 that $\ell\left(f_{i}\right) \subset \ell(q)$. But q was any element εQ_{i}^{*} and so $\ell\left(f_{1}\right)=\ell\left(f_{i}\right) \subset \ell\left(Q_{i}\right)$. Therefore $\ell\left(f_{1}\right) \subset \bigcap_{i \in I} \ell\left(Q_{i}^{*}\right)=\bigcap_{i \in I} \ell\left(Q_{i}\right)=\ell(N)=0$ as $S^{\text {II }}$ is faithful. Thus r_{1} is free and the result follows.

Cor.1. Let R^{M} be a free module of rank ≥ 3 and S^{N} a faithful module such that $\sum: L\left(R^{M}\right) \xlongequal{c} L\left(S_{N}^{N}\right)$. If R is inverse symmetric then there is a sent-inear isomorphism:(R, M) $\cong(S, N)$.

Proof
Put $P_{i}=R_{i}$ in theorem 4.6 where $\left(e_{i}\right)_{i \varepsilon I}$ are a basis for $R^{1!}$.

Cor.2. Let $f^{l!}$ be a free module of rank ≥ 3 and g^{N} a faithful module with $\Sigma: L\left({ }_{R} M\right) \approx L\left(S_{S}^{N}\right)$. If E satisfies condition C_{1} and S is subcommutative then there is a semi-linear isomorphism: $(\mathrm{P}, \mathrm{M}) \cong(\therefore, N)$. Proof

Let $\left(e_{i}\right)_{1_{\varepsilon}}$ be a basis for M and $\left(M e_{i}\right)^{\Sigma}=S f_{i}$ for elements $\left(f_{i}\right)_{i \varepsilon I}$ of N with $\ell\left(f_{i}\right)=\ell\left(f_{j}\right)$ for all $1, j \varepsilon I$. By theorem 4.C we need only show that $\ell\left(f_{i}\right) \subset \ell(q)$ for any $q \in \sum_{j \neq i} S f_{j}$. Suppose $q=\sum_{j \neq i} s_{j} f_{j}$ for some $\left(s_{j}\right)_{j \in I} \varepsilon S_{\text {. }}$ Then $\ell\left(q_{i}\right)=\bigcap_{j \neq i} \ell\left(s_{j} f_{j}\right)$. But
 since S is subcommative. Hence $\ell\left(f_{i}\right) \in \bigcap_{j \neq 1} \ell\left(s_{j} f_{i}\right)=\ell(q)$ and the result follows.

The following example shows that the conditions on $:$ in corr and cor. 2 cannot be dropped. Example 4.1. There exist free modules $R^{\prime \prime}$. \because of rank ≥ 3 such that $\Sigma: L\left({ }_{R} M\right) \underline{N}\left({ }_{S} N\right)$ where (1) E satisfies C_{2} (2) P. is inverse symmetric
(3) Sis commutative
(4) R车 \therefore

Proof
Let S by a commutative field and n an integer ≥ 3. Then since $\left(S_{3}\right)_{n} \cong(S)_{3 n}$ we have by vo Neman's theorem a lattice isomorphism $E: L\left(S_{3} S^{n}\right) \cong L\left(S_{S} S^{3 n}\right)$. If we put $R=S_{3}$ then $I \neq S$ and is inverse symmetric (it is Noetherian for example) and $R^{\prime \prime}={ }^{\prime} 3^{S} 3^{n}$ is a free module of rank ≥ 3. S is commutative and $S^{N}=S^{-3 n}$ is a free module of rank \geq.

But any cyclic module over a field S must be \cong and so/simple. Hence any lattice isomorphic image of a cyclic module over $:$ is again simple and so cyclic. Fence i satisfies C_{p} (but not C_{1} !).
 show that cor. need not hold if i does not satisfy one of the conditions C_{1} or C_{2}. The lattice isomorphism $L: L\left(R^{\prime \prime}\right) \cong L\left(X^{\prime}\right)$ shows that cor.? need not hold $i: ?$ does not satisfy C_{1}, even $i f$ it satisfies C_{2}.

Co far we have assumed a rather explicit form for our modules viz. that the: can be split into a direct sum of more than three submodules. We now impose rather different restrictions allowing us to study modules which are not necessarily of this tine. The conditions we consider are slightly weaker versions of the unloving conditions, winch appear in ckornyakov (2).

Definition. A module $p^{\prime!}$ is called admissible i: the following properties nola.
($: I_{1}$) For any $x, \because z,:!$ there is a free element w with $R w \cap(P x+!y+!z)=0$
 and $!x \cap$ id \neq; then there is a free element w e \because with Pw $\cap!x=$ $\lambda w \cap B y=B W \cap D_{t}=D_{w} \cap R u=0$.

Definition. Vet \therefore and \because be modules and $K(n)$ and $\because(\therefore)$ sublattices

Suppose further $F\left(R^{M}\right) \subset K\left(R^{M}\right)$ and $F\left(S_{S}{ }^{H}\right) \subset K\left(S_{S}{ }^{N}\right)$. A lattice isomorphism $\Sigma: K\left({ }_{R} M\right) \cong K\left({ }_{S} N\right)$ is called a projective mapping if (1) Σ is cyclic preserving
(2) there are free elements $u \in M, u^{\prime} \cdot \varepsilon$ If with $(R u)^{\Sigma}=S u{ }^{\prime}$. Theorem (Skornyakov). Let R be an inverse symetric ring and R^{M} an admissible module. Suppose S^{N} is a module and $\Sigma: K\left({ }_{R}{ }^{11}\right) \cong K\left(S^{N}\right)$ is a projective mapping. Then there is a semi-linear isomorphism: $(R, M) \cong(S, K)$ inducing Σ.

Remarks

(1) Cor.1 to lemma 1.3 shows that no generality is gained by assuming

(2) From condition M_{1} for admissibility there is a free element W_{1} such that Ro $\cap \mathrm{Rw}_{1}=0$, a free element w_{2} such that $R w_{2} \cap R w_{2}=0$, a free element w_{3} such that $\left(\mathrm{Rw}_{1} \oplus \mathrm{Rw}_{2}\right) \cap \mathrm{R} \boldsymbol{H}_{3}=0$ and a free element w_{4} such that $\left(\mathrm{Rw}_{1} \oplus \mathrm{Rw}_{2} \oplus \mathrm{Rw}_{3}\right) \cap \mathrm{Rw}_{4}=0$. Hence condition H_{1} implies that M has a free submodule of rank 4. So far we have seen that the existence of a free module of rank 3 is usually all that is needed to get theorems on semi-linear isomorphisms. For example a vector space of dimension 3 does not satisfy M_{2} and so is not admissible. Skormakov's theorem thus fails to generalize the first fundamental theorem of projective geometry (see chap. 3.1 of Baer (1)) for dimension 3.

In our theorem we replace conditions $\mathrm{H}_{2}, \mathrm{M}_{2}$ by weaker conditions S_{1}, S_{2}. We will show in chap. 7 that any left module of rank ≥ 3 over a left Ore domain satisfies S_{1} and S_{2}. Hence our theorem gives a true generalization of the first fundamental theorem of projective geometry. (3) We show (c.f. theorem 4.6) that if R is inverse symetric, E cyclic preserving and ${ }_{S} N$ faithful then Σ is a projective mapping. Alternatively if we only assume that there are free elements $u \in M_{0} u^{\prime} \varepsilon N$ with $(\mathrm{Ru})^{\Sigma}=S u^{\prime}$ i,e, drop the conditions that R is inverse symmetric and Σ is cycilc preserving then the conclusions of 3kornyakov's theorem still hold (c.1. theorem 4.2).
(4) Finally we note that in this case the lattice isomorphism is is induced by the semi-1inear isomorphism. Definition. Let R^{M} be a module then we define the following conditions on M.
$\left(S_{1}\right)$ For any $x, y, z \varepsilon$ il with $R x \cap$ Ry $=0$ there $1 s$ a free element w such that $(R x+R y) \cap R w=(R y+R z) \cap R w=(R z+R x) \cap R w=0$. $\left(S_{2}\right)$ If $t \in M$ and u, x, y are free elements $\in M$ with ($\left.R u+R t\right) \cap R x=$ $(R u+R t) \cap R y=0$ and $R x \cap R y \neq 0$, Ru $\cap R t \neq 0$ then there is a free clement $w \in M$ such that $R u n R w=R t \cap R w=R x \cap R w=R y \cap R w=0$. We note that condition M_{1} implies S_{1} for $1=1.2$. Theorem 4.8. Let R^{M} be a module satisfyinf conditions S_{1} and S_{2} and S^{N} a module with $E: L\left(R_{R} M\right) \cong L\left(S^{N}\right)$. If there are free elements u a \because. $u^{\prime} \in \mathbb{N}$ such that $(P u)^{\Sigma}=S u^{\prime}$ then there is n semi-inear isomorphism: $(R, M)=(S, N)$ inducing E.

Proof.
We follow Skornyakov's proof making the necessary modifications. (1) Suppose that x is a free element with $(R x)^{\Sigma}=S x^{\prime}$ for some $x^{\prime} \varepsilon \|$ and that P is a submodule with $R x \cap P=0$. Putting $P_{1}=R x \quad P_{2}=P$ we have by (1) of lemma 2.2 a set isomorphism $\ell_{1,2}: \operatorname{Hom}_{R}(R x, P) \cong \operatorname{Hom}_{S}\left(S x^{\prime}, P^{\Sigma}\right)$. As x is free this gives rise to a map $h\left(x, x^{\prime}\right): P \longrightarrow p^{\Sigma}$ defined as follows. If $p \in P$ and $f \in \operatorname{Hom}_{R}(R x, P)$ is defined by $x \rightarrow p$ then we define $p h\left(x, x^{\prime}\right)$ to be $x^{\prime} f_{1}, 2^{\prime}=p^{\prime}$ say. By (2) of lemma 2.2 we note that

$(\mathrm{Fp})^{\Sigma}=1$ mage $(f)^{\Sigma}=1$ mage $\left(f l_{1,2}\right)=S p^{\prime}$.
If y is a free element εP then the map $f: R x \longrightarrow$ Ry defined by $x \longrightarrow y$ is an isomorphism. Hence by (2) of lemma $2.2(f) l_{1,2}$ is an isomorphism. If y^{\prime} a $y\left(x, x^{\prime}\right)$ then we have $\ell\left(x^{\prime}\right)=\ell\left(y^{\prime}\right)$ and since by (2) of lemma $2.2\left(f l_{1,2}\right)^{-1}=\left(f^{-1}\right) l_{2,1}$ we get $x h\left(y, y^{\prime}\right)=x^{\prime}$.

Suppose $p \in P$ and $P Y \cap R p=0$. Then we have two maps $h\left(x, x^{1}\right)$ and $h\left(y, y^{\prime}\right)$ mapping $R p \longrightarrow(R p)^{\Sigma}$. Put $P_{1}=R x, P_{2}=R y, P_{3}=R p$ in lemma 2.2. Let $f: R x \longrightarrow P y$ and $g: R y \longrightarrow P p$ be defined by $x \longrightarrow y$ and $y \longrightarrow p$ respectively.

By (3) of leman $2.2\left(f_{f}\right) l_{1,3}=(f) l_{1,2}$ $(g)_{2,3^{\circ}}$ Now $x f R=p$ and so $x^{\prime}(f q)_{1,3}=$ $p h\left(x, x^{\prime}\right)$. By definition of $y^{\prime}, x^{\prime}(f) l_{1,2}=$ y^{\prime} and so $x^{\prime}(f) l_{1,2}(g) l_{2,3}=y^{\prime}(g) l_{2,3}=$ $\mathrm{ph}\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$. Hence $\mathrm{ph}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\mathrm{ph}\left(\mathrm{y}, \mathrm{y}^{\prime}\right)$.
(2) Let $a, b, c \in M$ and $a ' \in N$. Suppose a, b are free and that $(\mathrm{Ra})^{\Sigma}=\mathrm{Sa}^{\prime}$ and $\mathrm{Ra} \cap \mathrm{Rb}=\mathrm{Rb} \cap \mathrm{Rc}=\mathrm{Rc} \cap \mathrm{Ra}=0$. If $\mathrm{b}^{\prime}=\mathrm{bh}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)$ then $\operatorname{ch}\left(a, a^{\prime}\right)=\operatorname{ch}\left(b, b^{\prime}\right)$.

Proof
By S_{1} there is a free element $d \in M$ such that
(A) $\quad(\mathrm{Ra} \oplus \mathrm{Rb}) \cap \mathrm{Rd}=0$
(B) $(\mathrm{Rb} \oplus \mathrm{Rc}) \cap \mathrm{Rd}=0$
(C) $\quad(\operatorname{Rc} \oplus R a) \cap R d=0$.

Let $d^{\prime}=d h\left(a, a^{\prime}\right)$. Applying (1) we get from
(A) that $b^{\prime}=b h\left(a, a^{\prime}\right)=b h\left(d, d^{\prime}\right)$
(B) that $\mathrm{ch}\left(\mathrm{d}, \mathrm{d} \cdot \mathrm{)}=\mathrm{ch}\left(\mathrm{b}, \mathrm{b}^{\prime}\right)\right.$
(C) that $\operatorname{ch}\left(d, d^{\prime}\right)=c h\left(a, n^{\prime}\right)$.

Hence $\operatorname{ch}\left(a, a^{\prime}\right)=c h\left(b, b^{\prime}\right)$.
From now on we assume that u c $M, u^{\prime} \in N$ are free elements with $(R u)^{\Sigma}=S u^{\prime}$ 。
(3) Suppose $x, y \in 11$ are free elements and (Ru + Pt) $\cap \mathrm{Rx}=$ $(R u+R t) \cap$ By $=0$ for some $t \in M_{0}$. If $\dot{x}^{\prime}=x h\left(u, u^{\prime}\right)$ and $y^{\prime}=y h\left(u, u^{\prime}\right)$ then $\operatorname{th}\left(x, x^{\prime}\right)=\operatorname{th}\left(y, y^{\prime}\right)$.

Proof
(a) Suppose $R x \cap B y=0$. Putting $a=u a^{\prime}=u^{\prime} b=x=y \ln (2)$ we get $y^{\prime}=y h\left(u, u^{\prime}\right)=y h\left(x, x^{\prime}\right)$.

Putting $a=x, a^{\prime}=x^{\prime}, b=y, c=t$ in (2) we get $\operatorname{th}\left(x, x^{\prime}\right)=$ th $\left(y, y^{\prime}\right)$.
(b) Suppose Ru \cap Rt $=0$. Putting $a=u, a^{\prime}=u^{\prime}, b=x, c=t$ in (2) we get $\operatorname{th}\left(u, u^{\prime}\right)=\operatorname{th}\left(x, x^{\prime}\right)$. Similarly $\operatorname{th}\left(u, u^{\prime}\right)=\operatorname{th}\left(y, y^{\prime}\right)$ and so $\operatorname{th}\left(x, x^{\prime}\right)=\operatorname{th}\left(y, y^{\prime}\right)$.
(c) Suppose $R x \cap B y \neq 0, R u \cap R t \neq 0$. Since (Ru + Rt) $\cap R x=$ ($R u+R t) \cap$ Ry $=0$ we have by S_{2} (precisely where this condition is needed)
 Let $w^{\prime}=w h\left(u, u^{\prime}\right)$.

Putting $a=u, a^{\prime}=u^{\prime}, b=w, c=x$ in (2) we get $x h\left(u, u^{\prime}\right)=$ $x h\left(w, w^{\prime}\right)=x^{\prime}$.

Putting $a=W, a^{\prime}=w^{\prime}, b=x, c=t \ln (2)$ we get $t h\left(w, w^{\prime}\right)=$ $\operatorname{th}\left(x, x^{\prime}\right)$. Similarly $\operatorname{th}\left(w, w^{\prime}\right)=\operatorname{th}\left(y, y^{\prime}\right)$ and so $\operatorname{th}\left(x, x^{\prime}\right)=\operatorname{th}\left(y, y^{\prime}\right)$. (4) We now define a map $\operatorname{siM} \longrightarrow N$ as follows. Let $t \in M$. By S_{1} there is a free element $x . E M$ with $(R u+R t) \cap R x=0$. Let $x^{\prime}=$ $x h\left(u, u^{\prime}\right)$ and define $t^{s}=\operatorname{th}\left(x, x^{\prime}\right)$. If y is another free element with $(R u+R t) \cap R y=0$ then by (3) th $\left(y, y^{\prime}\right)=\operatorname{th}\left(x, x^{\prime}\right)$ and so sis well defined.

We note that if Run $N=0$ for some free element $w \in N$ then $u^{s}=u h\left(w, w^{\prime}\right)$ where $w^{\prime}=w h\left(u, u^{\prime}\right)$. Hencę by (1) $u^{5}=u^{\prime}$. Suppose $t \in M$ and $R u n R t=0$. If w is a free element with (Ra $\in R t) \cap$ Rw $=0$ then by (1) we get $\operatorname{th}\left(u, u^{\circ}\right)=\operatorname{th}\left(w, w^{\prime}\right)=t^{3}$.

We note that if $t \in M$ and w is a free element with ($R(M+R . t) \cap R w=0$ then $t^{s}=t h\left(w, w^{\prime}\right)$ and so by (1) $S t^{s}=(\text { P.t })^{\Sigma}$. Hence Σ satisfies C_{1}.
(5) We now show s is a homomorphism. Suppose $t c M$ and w is a free element $\varepsilon \|$ with $R \|$ Rw $=$ R.t \cap Rw $=0$. Then there is a free element $w_{1} \varepsilon M$ with $(R u+R t) \cap R w_{1}=(R u \oplus R v) \cap R w_{1}=(R t \oplus R w) \cap R v_{1}=0$. Suppose $w^{\prime}=w^{s}=w h\left(u, u^{\prime}\right)$ and $w_{1}^{\prime}=w_{1}^{s}=w_{1} h\left(u, u^{\prime}\right)$. Then by (1) $w_{1}^{\prime}=w_{1} h\left(u, u^{\prime}\right)=w_{2} h\left(w, w^{\prime}\right)$ and $\operatorname{th}\left(w, w^{\prime}\right)=\operatorname{th}\left(w_{1}, w_{1}^{\prime}\right)=t^{s}$. Thus we have shown that if $\mathrm{Ru} \cap \mathrm{Rw}=\mathrm{Rt} \cap \mathrm{Rw}=0$ then $\mathrm{t}^{\mathrm{s}}=\operatorname{th}\left(\mathrm{w}, \mathrm{w}^{\mathbf{s}}\right)$. Now suppose $a, b \in M$ and $R a \cap R b=0$. By S_{1} there is a free element w such that $(\mathrm{Ra} \oplus \mathrm{Rb}) \cap \mathrm{Rw}=(\mathrm{Ru}+\mathrm{Ra}) \cap \mathrm{Rw}=(\mathrm{Ru}+\mathrm{Pb}) \cap \mathrm{Rw}=0$. Thus $(a+b)^{s}=(a+b) h\left(w, w^{s}\right), a^{s}=a h\left(w, w^{s}\right)$ and $b^{s}=b h\left(w, w^{s}\right)$.

Put $P_{1}=R W, P_{2}=R a \oplus R b$ in (4) of 1emma 2.2. Let $\ell_{a}: R w \longrightarrow \mathrm{Ra}$ and $\ell_{b}: \mathrm{Rw} \longrightarrow \mathrm{Rb}$ be defined by $\mathrm{w} \longrightarrow \mathrm{A}$ and $\mathrm{w} \longrightarrow \mathrm{b}$ respectively. Then $\left(l_{a}+l_{b}\right) l_{1,2}=\left(l_{a}\right) l_{1,2}+\left(l_{0}\right) l_{1,2}$. Hence $(a+b)^{s}=(a+b) h\left(w, w^{s}\right)=w^{5}\left[\left(l_{a}+l_{b}\right) l_{1,2}\right]=w^{5}\left[\left(l_{a}\right) l_{1,2}+\right.$ $\left.\left(l_{b}\right) l_{1,2}\right]=a h\left(w, w^{s}\right)+b h\left(w, w^{s}\right)=a^{s}+b^{s}$.

Now suppose $\mathrm{Ra} \cap \mathrm{Rb} \neq 0$. Then by S_{1} there is a free element $w \in M$ with $(R a+R b) \cap R w=0$. We note then that $R(a+b) \cap R w=$ $\operatorname{Ra\cap } R(b+w)=\operatorname{Rb} \cap R w=0$, Hence $(a+b)^{8}+w^{8}=(a+b+w)^{8}=$ $a^{8}+(b+w)^{8}=a^{5}+b^{8}+w^{8}$. Therefore $(a+b)^{8}=a^{8}+b^{8}$ and s is a homomorphism.
(6) We now show that s is an isomorphism: $\left(M_{0}+\right) \cong\left(N_{0}+\right)$. So far we have not used the fact that u^{\prime} is free. This fact will be essential in proving that s is an epimorphism.

$$
\text { If } t^{s}=0 \text { for some } t \varepsilon M \text { then }(R t)^{\Sigma}=s t^{s}=0 \text { and } s 0 t=0 \text {. }
$$

Hence S is a monomorphism.

Let $q \in N$ then by cor.l of lemma $1.1(S q)^{\Sigma^{-1}}$ is finitely generated $=R p_{1}+\ldots+R p_{n}$, say. Than $S q=\sum_{i}^{n}\left(R p_{i}\right)^{\Sigma}=\sum_{i}^{n} S p_{i} s$ and so $q=\sum_{1}^{n} t_{i} p_{1}^{s}$ for some $\left(t_{1}\right)_{1}^{n} \varepsilon$ S.

By S_{1} there is a free element $w_{1} \in M$ with $\left(P p_{i}+R u\right) \cap R w_{1}=0$. Now by (1) $\ell\left(w_{i}^{s}\right)=\ell\left(u^{s}\right)=\ell\left(u^{\prime}\right)=0$ as u^{\prime} is frec. Hence $S w_{1}{ }^{5} \cap \mathrm{Sp}_{1}{ }^{\mathrm{s}}=0$ and $\mathrm{W}_{1}{ }^{\mathrm{s}}$ is free. Put $\mathrm{P}_{1}=\mathrm{Rw}_{1}$ and $\mathrm{P}_{2}=\mathrm{RP}_{1}$. Then by (1) of lemma 2.2 there is a map $f: R w_{i} \longrightarrow R p_{i}$ such that $\mathrm{rl}_{1,2}=\mathrm{g}$ where g is defined by $w_{1}{ }^{s} \longrightarrow t_{1} p_{1}{ }^{s}$. If $p_{1}{ }^{\prime}=w_{1} f$ then $p_{1}{ }^{\prime} h\left(w_{1}, w_{1}{ }^{s}\right)=$ $t_{i} p_{i}^{s}$, i.e., $\left(p_{i}\right)^{s}=t_{i} p_{i}^{s}$. Hence $q=\sum_{1}^{n} t_{i} p_{i}^{s}=\left(\sum_{1}^{n} p_{i}\right)^{s}$ as s is a homomorphism. s is thus an epimorphism and so an isomorphism. (7) Let $r \in R$ then (Rru) $=S(r u)^{s} \subset S u '$. Hence (ru) ${ }^{5}=t u$ ' for some unique $t=r^{l} \in S$. Then as in Skornjakov's proof or as in (14) on p. 49 of Baer (1) it follows that l is in fact a ring isomorphism:R $\cong S$ and that (l, s) is a semi-linear isomorphism: $(R, M) \cong(S, H)$.

If P is a submodule of M then P^{S} is a submodule of N. Hence $P^{s}=(\Sigma R p)^{s}=\Sigma S p^{s}=\Sigma(R p)^{\Sigma}=(\Sigma R p)^{\Sigma}=P$. Hence (l, s)
induces Σ. We note that condition S_{1} ensures that for any $p \in M$ there is a free element $w \in M$ with $R \mathcal{R} \cap W=0,1, e .$, cyclic modules are not large in M_{0}

Since M contains a free module of rank ≥ 2 we have by lemma 4.1 that (ℓ, s) is unique up to unit semi-iinear isomorphism. The ambiguity
can be thought of as arising because of the ambiguity in the choice of u^{\prime} which is only determined to within unit by the equation (Ru) ${ }^{\Sigma}=S u^{\prime}$. we remarked in the proof that the fact that u ' was free was used only once in the proof. The theorem however is not true in general if we do not make this hypothesis as the lattice isomorphism $\sum^{-1}: L\left({ }_{G} N\right)$ $L\left(R^{M}\right)$ of example 4.7 shows. Theorem 4.2. Let $P_{1} M$ be module satisfying conditions S_{1} and S_{2} and S^{N} a faithful module with $\Sigma: L\left({ }_{R} M\right) \stackrel{C}{\approx} L\left(S_{S} N\right.$. If either (1) P is inverse symmetric or (2) S is subcomutative then there is a semi-linear isomorphism: $(R, N) \simeq(S, N)$ inducing Σ.

Proof
Let u be a free element $\varepsilon \because$ and $u^{\prime} \varepsilon N$ be such that ($\left.\mathrm{P} u\right)^{\Sigma}=$ Su'. Suppose $q \varepsilon: A$ and $p \in M$ with $P p=(S q)^{\Sigma^{-1}}$, By S_{1} there is a free element $w \in$ ' 1 such that $(R u+R p) \cap R w=0$ and where $S w '=(R w)^{\Sigma}$ for some w^{\prime} cil.

$$
\begin{aligned}
\text { Now } 0 & =\ell(w) \subset \ell(p) \text { and } R w \cap R p \\
0 & =0 \quad \text { and } \\
0(w) & =\ell(u) \text { and } R w \cap P u=0 .
\end{aligned}
$$

$3 y$ lemma $4.5 \ell\left(w^{\prime}\right) \subset \ell(q)$ and $\ell\left(w^{\prime}\right)=\ell\left(u^{\prime}\right)$. Therefore $\ell\left(u^{\prime}\right) \subset \ell(q)$. 3ut q was any element εN and so $\ell\left(u^{\prime}\right) \subset \ell(N)=$ as $: i$ is faithful. Thus ${ }^{\prime}$ ' is ree and the result follows from theorem 4.8.

In this chapter we consider lattice isomorphisms between the lattices of submodules of free modules of the same rank. This is shown to be equivalent (if rank $n \geq 3$) to the problem of considering when a ring isomorphism $R_{n} \cong S_{n}$ implies a ring isomorphism $R \cong S$. A ring R with this property for all rings S and integers n is called a unique co-ordinatization ring. We study these and associated rings giving their elementary properties as well as a number of examples.

Theorem 5.1. Let R and S be rings and n an integer ≥ 3. Then $L\left(R^{R^{n}}\right) \cong L\left(S_{S} S^{n}\right)$ if and only if $R_{n} \cong S_{n}$.

Proof
By cor.1 of theorem $2.3 L\left(R_{R} P^{n}\right) \geq L\left(S_{S} S^{n}\right)$ implies that Find $_{R}\left(P^{n}\right)$ $\operatorname{End}_{S}\left(S^{n}\right)$ i.e. $\ln _{n} \cdots S_{n}$.

By cor. 2 to theorem 1.4 if $R_{n} \cong S_{n}$ then $L\left(P_{R} R^{n}\right) \cong L\left(S^{n}\right)$.
Definition. A ring R is called a unioue co-ordinatization ring (u.c. ring)
if for any ring S and integer $n R_{n} \cong S_{n}$ always implies $n \therefore$.
In analogy with the co-ordinatlzation theorems for projective geometry and more generally for complemented modular lattices we say that a lattice L is co-ordinatized by a rine? if $L \cong I\left(R^{P^{n}}\right)$ for some integer n. Theorem 5.1 shows that for fixed $n \geq 3$ any co-ordinatization by a u.c. ring is unique up to ring isomorphism - hence the terminology.

Let R^{M} and S^{N} be free modules of rank n with bases $\left(e_{i}\right)_{1}^{n}$ and $\left(f_{i}\right)_{l}^{n}$ respectively. Suppose $\ell: R \underline{X}$ is a ring isomorphism. Then $\sin _{1}^{n} r_{i} e_{i} \longrightarrow \sum_{i}^{n} r_{i}^{\ell} f_{i}$ is an abelian group isomorphism: $(\mu, t) \cong(N,+)$ and (ℓ, S) $:[R,!? \ldots[S, N]$ is a semi-linear isomorphism. This Gives us the following corollary.

Cor, 1. Let R be a u.c. ring, S a ring and n an integer ≥ 3. If $L\left(R_{R} R^{n}\right) \cong L\left(S^{S^{n}}\right)$ then there is a semi-linear isomorphism: $\left(R, R^{n}\right) \cong\left(0, r^{n}\right)$. Proof

By theorem 5.1 $R_{n} \cong S_{n}$ and as R is a wc. ring this implies that $R \subseteq S$. The result then follows from the remarks above.

We now note the following criterion for a ring to be a direct
product of rings.
A ring R is the direct product of a set of rings $\left(P_{i}\right)_{i c I}$ if and
only if there is a set of central idempotent ($\left.e_{i}\right)_{i \in I}$ of $口$ such that
(1) $R_{i} \cong e_{i} R e_{i}$ for all i εI
(2) if $r \in R$ and $r e_{i}=0$ for all i \& I then $r=0$
(3) given a set of elements (a_{i}) $1 \in I$ of P then there is an element

$\frac{\text { Lemma 5.2. }}{\text { family }}$ Let l be a ring and n an integer. Tin $R_{n} \simeq \Gamma_{1 \in I} r_{1}$ for family some of rings $\left(T_{i}\right)_{i \in I}$ if and only if $I \cong \prod_{i \in I} \eta_{i}$ for rings $\left(R_{i}\right)_{i \varepsilon I}$ with ${\underset{i}{i}}^{\simeq}\left(P_{i}\right)_{n}$.

Proof

If $R_{n} \cong \prod_{1} \simeq T_{i}$ then there are central idempotent $\left(f_{i}\right)_{1 \varepsilon I} \in R_{n}$ with $T_{i} \cong f_{i} R_{n} f_{i}$, For e εR write diag (e) for the matrix
The central idempotent of R_{n} are then precisely the $\left[\begin{array}{l}0 \\ e^{e} \\ \ddots\end{array}\right]$ e elements diag (e) where e is a central idempotent $E R$.

Let $f_{i}=$ diag $\left(e_{i}\right)$ where $e_{i} \in P$ is a central idempotent and define $R_{i}=e_{i} R e_{i}$. It is easily seen that since $\left(f_{i}\right)_{i \varepsilon I}$ satisfy conditions (2) and (3) for direct products so do $\left(e_{i}\right)_{\text {LEI }}$ and so $R \cong \prod_{i \in I} R_{i}$. But $\left(R_{i}\right)_{n}=\left(e_{i} R e_{i}\right)_{n}=f_{i} R_{n} f_{i} \simeq T_{i}$.

Conversely suppose $R \cong \prod_{i \in I} R_{i}$ and $\left(e_{i}\right)_{i \in I}$ are the associated central idempotent. Defining $f_{i}=\operatorname{diag}\left(e_{i}\right)$ it is easily seen that $R_{n} \simeq \prod_{i \varepsilon I} f_{i} R_{n} f_{i}=\prod_{i \in I}\left(e_{i} R e_{i}\right)_{n} \cong \prod_{i \in I}\left(R_{i}\right)_{n}$.

Lemma 5.3. The class of all u.c. rings is closed under direct products.
Proof
Let $\left(R_{1}\right)_{i \varepsilon I}$ be emily of u.c. rings and suppose $R \cong \prod_{1 \varepsilon I} R_{i}$. Suppose further that for some ring S and integer $n R_{n} \cong S_{n}$, By

 R is a wc. ring.

Definition. A ring n is called a strong in ague co-ordinatization ring (s.u.c. ring) if for any p-module p^{p} and integer $n \quad p^{p^{n}} \underline{\underline{f}}^{n}$ always implies $R^{P} \cong R^{R}$.

We will show later that any s.u.c. ring is a u.c. ring.
A useful way of describing s.u.c.rings is in terms of the semigroup of the isomorphism types of finitely generated projective modules.

For a ring R the set \mathcal{S}_{R} of isomorphism types $\langle P\rangle$ of finitely generated projective modules ${ }_{R} P$ is an additive semieroup under the operation $\langle P\rangle+\langle Q\rangle=\langle p Q Q$. We call an element a or an additive semi-group torsion free if for any integer n and element b na $=n b$ implies $a=b$. In this teratology we sec that k is an s.u.c. ring if and only if $\langle R\rangle$ is a torsion ere element in \mathcal{S}_{P}.

Lemma 5.4
The class of s.u.c. rings is closed under direct products.
Proof
Smith
Suppose $\left(P_{i}\right)_{i \varepsilon I}$ is a of s.u.c. rings and $P \underset{I}{\mathbb{L}} \prod_{i \in I} R_{i}$ where $\left(e_{i}\right)_{i \varepsilon I}$ are the associated central idempotent. Suppose p is a module and n an integer with $R^{n} \cong P^{n}$.

For each $1 \in 1 e_{1} R^{n} \cong e_{i} p^{n}$ as $R-m o d u l e s$ and we have therefore
 s.u.c. ring we have that $e_{1} R e_{1} \cong e_{1} P$ as $e_{1} R e_{1}$-modules and hence as R-modules.

Since $P \subset P^{n}$ every element of P can be written no n vector $\left(r_{1}, \ldots r_{n}\right)$ The map $p \longrightarrow\left(e_{1} p\right)_{1 \in I}$ of $D \longrightarrow \prod_{1 \in I} e_{i}^{n}$ is therefore
 Homodules, Hence p is an s.u.c. ring.

Lemma 5.5. Let R be a ring then the following are equivalent
(1) R is an s.u.c. ring
(2) For any integer n and left ideals A, B of $R_{n} A^{n}=B^{n}=R_{n}$ implies $A \cong B$.

Proof
For any integer n there are inverse category equivalences $F:_{R}{ }^{\mu} \longrightarrow R_{n}^{\mu}$ and $G_{i_{n}}^{\mu} \longrightarrow R_{n}^{\mu}$ where $\left(R^{n}\right)^{F}=R_{n}$ and $\left(R_{n}\right)^{G}=R^{n}$.

Suppose R satisfies condition (2) and $\mathrm{P}^{\mathrm{n}} \cong \mathrm{R}^{\mathrm{n}}$ for some module R^{P}. Applying F we get $\left(P^{F}\right)^{n} \cong\left(R^{F}\right)^{n}=R_{n}$. Hence by condition (2) $P^{F} \cong R^{F}$. Applying the inverse equivalence G we get $P \cong R$. Hence P is an s.u.c. ring.

Suppose P is an s.u.c. ring and $A^{n}=B^{n}=P_{n}$ for left ideals A, B of R_{n}. Applying G we get $\left(A^{G}\right)^{n}=\left(B^{C_{1}}\right)^{n}=R^{n}$. As is is an s.li.c. ring we get $A^{G} \cong R \cong B^{G}$. Applying F we have then $A \cong 3$ and so R satisfies condition (2).

Core. Any s.u.c. ring is a u.c. ring.
Proof
Let R be an s.u.c. ring and suppose n is an integer and S a ring with $l: r_{n} \cong S_{n}$. Let $e_{i, 1}$ and $f_{i, 1}$ be the matrices of i_{n} and S_{n} respectively with 1 in the $(1,1)^{\text {th }}$ place and zeros elsewhere. Then $R_{n}=\stackrel{n}{\oplus_{1}} R_{n} e_{i, 1}$ and for any $1 \leq 1, j \leq n \quad n_{n} e_{1,1} \cong \eta_{n} e_{j, 1}$ Similarly $S_{n}=\underset{1}{\mathbb{E}} S_{n} f_{1,1}$ and $S_{n} f_{1,1} \simeq S_{n} f_{1,1}$

Applying \& we have $R_{n}=\stackrel{n}{\oplus} R_{1} e_{1,1}=\stackrel{n}{\oplus} R_{n}\left(f_{1,1}\right)^{2}$. By condition (2) of lemma $5.5 R_{n} e_{i, i} \simeq R_{n}\left(f_{i, i}\right)^{l}$. Taking endomorphism rings we have $R \cong e_{i, 1} R_{n} e_{1,1} \cong f_{1,1}^{\ell} P_{n} r_{1,1}^{\ell} \cong\left(f_{1,1}{ }^{n} n_{1,1}\right)^{\ell} \cong$ $f_{i, i}{ }^{S} n^{f} f_{i} \cong$. Therefore R is a wee. ring.

The converse to cor. 1 does not hold i.e, there are u.c. rings which are not s.u.c. rings. This will be proved later - see corf of theorem 5.9.

Lemma 5.6. Let R be a ring and $J(P)$ its Jacobson radical. If $\mathrm{M} / \mathrm{d}(\mathrm{R})$ is an sou.c. ring then P is an s.u.c. ring.

Proof

We recall the following lemma which is prop. 1 on p. 53 of Jacobson (1). If e_{1}, e_{2} are non-zoro 1dempotents and \bar{e}_{1}, \bar{e}_{2} are their images under the natural ring homomorphism $!\longrightarrow!!J(!)=\bar{\square}$ then $\mathrm{Re}_{1} \cong \mathrm{Re}_{2}$ as left ideals if and only if $\overline{\mathrm{R}} \overline{\mathrm{e}}_{1} \cong \overline{\mathrm{P}}_{\mathrm{e}} \overline{\mathrm{e}}_{2}$ are isomorphic as left ideals.

Suppose \bar{R} is an s.u.c. ring and that for sore integer n and independent sets of isomorphic left ideals $\left(A_{1}\right)_{1}^{n},\left(B_{i}\right)_{1}^{n}$ of n_{n} we have $\stackrel{n}{\oplus} A_{1}=\stackrel{n}{\oplus} B_{1}=R_{n} . \quad$ As $\left(A_{1}\right)_{1}^{n},\left(B_{1}\right)_{1}^{n}$ are direct sumennde of n_{n} they are generated by idempotent $\left(e_{1}\right)_{1}^{n}\left(f_{1}\right)_{1}^{n}$ respectively. Furthermore since $\left(A_{1}\right)_{1}^{n}$ and $\left(B_{1}\right)_{1}^{n}$ are independent we can take the idempotent s $\left(e_{1}\right)_{1}^{n}$ and $\left(f_{i}\right)_{1}^{n}$ tolorthomonal ie. $e_{1} e_{j}=f_{1} f_{j}=0$ if 1.
:Now consider the natural ring homomorphism $R_{n} \longrightarrow R_{n} / J\left(R_{n}\right)=\bar{R}_{n}$ where $J\left(R_{n}\right)$ is the Jacobson radical of $n_{n} \quad$ Let $\left(\bar{A}_{1}\right)_{1}^{n} \cdot\left(\bar{B}_{1}\right)_{1}^{n}$ 。 $\left(\bar{e}_{i}\right)_{1}^{n},\left(\bar{f}_{i}\right)_{1}^{n}$ be the images of $\left(A_{i}\right)_{1}^{n},\left(B_{i}\right)_{1}^{n},\left(e_{i}\right)_{1}^{n},\left(I_{i}\right)_{1}^{n}$ respectively. Since $\left(\bar{e}_{i}\right)_{1}^{n}$ and $\left(\bar{f}_{i}\right)_{1}^{n}$ are orthogonal sets of idempotent and $\bar{R}_{n} \bar{e}_{i}=\bar{A}_{1}$ and $\bar{R}_{n} \bar{P}_{1}=\bar{B}_{1}$ we see that $\left(\bar{A}_{1}\right)_{n}^{n}$ and $\left(\bar{B}_{1}\right)_{1}^{n}$ are independent
 In Jacobson (1) they are sets of mutually isomorphic left ideals. But $J\left(R_{n}\right)=[J(R)]_{n}$ and so $\bar{\Gamma}_{n}=R_{n} / J\left(R_{n}\right)=r_{n} /[J(P)]_{n} \cong$ $[R / J(R)]_{n}=(\bar{R})_{n}$. By hypothesis $\bar{?}$ is an s.u.c. ring. Hence by leman $5.5 \bar{A}_{1} \cong \overline{3}_{1}$. Therefore by the lems in Jacobson (1) $A_{1} \cong B_{2}$ and so R is an s.u.c. ring.

We now prove a result which subsumes the known results on s.u.c. rings.

Definition. A ring R is called p-trivial if there is a finitely generated projective module R^{F} such that every other finitely generated projective R-module is of the form $?^{k}$ for some unique integer k. inch rings have been studied in conn (?).

Definition. A ring $?$ is said to have invariant basis number (ig.p.N.) If any two bases for a free left B-module always nave the same number of elements.

Definition. A ring, $:$ is called a (local) U.F, ring (prolective-irec) if every (finitely generated) projective left -module ls rice.

Suppose R is p-trivial and p is the associated finitely generated projective module. Then for some unique integer $k \quad R=p^{k}$ and so $R \cong S_{k}$ where $S=\operatorname{End}_{R}(P)$. Fut P is a progenerator and thus $R \tilde{M}_{\mathrm{M}} \mathrm{S}$. By the p-triviality of ? it is clear that S is a local P.F. ring with I.B.N. It is now easy to see that p-trivial rings are precisely the class of all matrix rings over local P.F.rings with I.B.N.

We can give another characterization of p-trivial rings, viz., a ring R is p-trivial if and only if the additive semi-froup ξ_{R} of isomorphism types of finitely generated projectives is isomorphic to the additive semigroup of non-negative integers. If $口$ is p-trivial it is clear that every element or \mathcal{S}_{R} is torsion free and so in particular $\langle R\rangle$ is torsion free. By the remarks following the definition or a.u.c. rings we have the following theorem.

Theorem 5.7. Every p-trivinal ring is an s.u.c. ring.
Definition. A ring P is called semi-primary if $R / i(R)$ is an Artinian ring (see chap. 3.9 of Jacobson (1)).

Cor.1. A semi-primary ring is an s.u.c. ring.

Proof

A division ring is certainly a local P.F. ring and so any simple Artiman ring is patrivial and hence an s.u.c. ring. by lema 5.4 a direct product of simple Artinian rings 18 an s.u.c. ring and $s 0$ in particular a semi-simple Artinian rinf is an s.u.c. rinf.

But if $R / i(R)$ is Artinian it is certainly also semi-simple and so by lemma 5.6 p is ag s.u.c. ring. We have in fact proved more than we needed. We have shown that if $R / J(R)$ is the direct product of simple Artinian rings then R is an sou.c. ring.

The following rings were already well known to be s.u.c. rings. Our corollary includes all these as special cases.
(1) Division rings - the first fundamental theorem of projective geometry (see theorem 1 of chap. 5.4 of Baer (1)).
(2) Semi-simple Artinian rings - the uniqueness part of the ArtinWedderburn theorem (see e.g. theorem 2 of chap. 3.4 and the isomorphism theorem of chap. 3.5 of Jacobson (1)).
(3) Artinian rings - Krull-Schmidt theorem.
(4) 'latrix rings over local rings (see e.f. theorem 3 of chap. 3.10 of Jacobson (1)). This result also follows directly from tine well-inonn result that a local ring is a P.F. ring with I. $3 . N$. (ece Kaplansky (1)). Definition. A ring P is called a seri irce ideal ring (semi-fir) if (1) R has I.B.N. (2) every finitely generated left ideal of ? is free. It can be shown that a semb-fir mat in fact bo an integral domain and that it is in fact a P.F. ring with I. B.N. and so potrivial (see Cohn (2) and Cohn (3)).

Cor.E. A semi-fir is an s.u.c. rine.

Clearly a principal left ideal domain is a semi-fir. Wolfson has shown that if R and S are principal left ideal domains and $R_{n} \cong S_{n}$ for some integer n then $R \cong E$ (see Wolfson (1)). Our corollary includes this as a special case. The full generalization of Nolfson's results in the infinite case are given in chap. 7 .

We cannot drop the condition that a semi-fir has I.B.ll. in
cor.2 as the following example due to P.l!. Cohn shows.
Example 5.8. There is an integral domain P all of whose left ideals are free and a ring S such that $R_{3} \cong S_{3}$ but $P \neq$ S. Proof

Leavitt has considered integral domains which to not have I.B.N. In particular in Leavitt (1) an example of an interral domain if is piven such that $R^{2} \cong R^{3}$. Thus $R^{3} \cong R^{4} \cong R^{5} \cong P^{6}$ and takinf endomorphism rings we get $R_{3} \cong P_{6} \cong\left(R_{2}\right)_{3}$.

Put $S=P_{2}$ Then $R_{3} \underline{\underline{E}} S_{3}$ but $P \underset{F}{ } S$ since R beinf an interral domain cannot have any proper direct summands. Furthermere theorem 3.1 of Skornjakov (3) shows that every left ideal of $!$ is iree. Our next theorem is an unpublished result due to Kaplansky. Theorem 5.9 (Kaplansky). Every cormutative ring is a u.c. rinf. Proor

Let R be commative and suppose for some intorer n and ring : that $R_{n} \cong \sigma_{n}$

For any integer t define $S_{t}\left(x_{1}, \ldots, x_{t}\right)$ to be the polynomial (in non-commating indeterminates), $\left[(-1)^{s} x_{s_{1}} x_{s_{2}} \ldots x_{s_{t}}\right.$ where s runs over all permutations of $(1,2, \ldots, t)$ and $(-1)^{3}=+1$ or -1 according as s is an even or an odd permutation.

Now it is shown in Amitsur and Levitaki (1) that the elements of R_{n} satisfy the identity $\delta_{2 n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=0$ and hence so do the elements of S_{n}.

Let $e_{i, j}$ be the matrix of S_{n} with 1 in the $(i, j)^{\text {th }}$ place and zeros elsewhere. If $t \in S$ then by te i_{i}, j we mean the matrix with t in the $(1, j)^{\text {th }}$ place and zeros elsewhere.

Let $a, b \varepsilon S$ and consider the $2 n$ elements $\left(a e_{1,1}\right.$. Le $\mathcal{L}_{1,1}, e_{1,2}$ $\left.e_{2,2} e_{2,3} \cdots e_{n-2, n-1} \cdot e_{n-1, n-1} \cdot e_{n-1, n} \cdot e_{n, 1}\right)$. These satis ${ }^{n}$ $S_{2 n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=0$. Substituting we see that the only non-zero terma arise from cycilc permutations and interchancing ae, and be 1,1 . vultiplying on the left and rieht by $e_{n, n}$ (and notine $e_{i, j} e_{l, m}=0$) if $f \neq\left\{\right.$ we get $(a b-b a) e_{n, n}=0$ 1.e. $a b-b a=0$. Therefore S is commative. Sut $R \cong$ centre $R \cong$ centre $P_{n} \cong$ centre $S_{n} \cong$ centre $\{\underline{\cong}$. Hence R is a u.c. ring.

Cor.1. There are u.c. rings which are not s.w.c. rings.
Iroor
Let I be a Jederind domain and suppose I_{i}. I, are ldeals of $\%$

Suppose P has an ideal A which is not principal but such that $A \cdot A$ is principal. Then $\Theta A \cong P \in A, A \cong R \in P$. But A is not principal and so A girn. Therefore R is not an s.u.c. ring but since it is commatave it is a u.c. ring.

An example of such a ring is $\mathbb{Z}[x] /\left(x^{2}+5\right)=r$ where $A=(2,1+x)$. It is not difficult to show that A is not orincipal and that $A . A=$ P. 2 . It can also be shown that R is the intefral closure of \mathbb{Z} in the quotient field K of R. But K is a finite algebraic extension of \mathbb{Q} the quotient field of $\dot{\mathbb{Z}}$. Since \mathbb{Z} is a Dedekind domain we have by a well known theorem (see e.f. theorem 19 of chap. 5 of Zariski and Samuel (1)) that R is a Dedekind doman.

RECUIAR RINGS

Von Neumann showed (theorem 14.1 of von Heumann (1)) that any complemented moduln lattice L of order $n \geq 4$ is lattice isomorphic to $F\left(R^{p^{n}}\right)$ for some regular ring R. Further implicit in his proof is the fact that if L is upper and lower continuous then the co-ordinatizing ring k is unique up to isomorphism (see e.g. chap. 7 of Skornyakov (1)). In this chapter we consider the uniqueness of the co-ordinatizing rine $?$ if the continuity conditions on L are weakened. In particular we show that any two co-ordinatizing rings for L have isomorphic ingective hulls and so in some sense the co-ordinatization of is unique up to 'quotient ring'. Ne also show that the following classes of regular rings are s.u.c. rings:
(1) direct products of matrix rings over strongly reguiar rings (ㅇ) upper continuous regular rings. The co-ordinatization of 1 , by such rings is therefore unique. An interesting corollary to (n) is that every left self-injective ring is an ou.c. ring.

Definition. A ring R is called reqular if for every a p there in an element x e P such that $a=$ axa.

We shall assume a number of well-known facts about rofular ring. The proois of these may be found in von Neumanr. (1) or ikornvakov (1).

Let R be a regular ring then the following results hold.
(Al) Every ifnitely generated left (right) ideal of R can be generated by an idempotent. Further $F\left({ }_{R} R\right)$ and $F\left(R_{R}\right)$ are complemented modular lattices with respect to the usual operations + and \cap.
$(A 2)$ The maps $A \longrightarrow l(A), B \longrightarrow(B)$ are inverse lattice antiisomorphisms $F\left(R_{P}\right) \longrightarrow F\left({ }_{R} R\right)$ and $F\left(R_{R}\right) \longrightarrow F\left(R_{R}\right)$ respectively. In particular if a εR then $\ell(a) \in F\left({ }_{R} R\right)$ and $r(a) \in F\left(R_{R}\right)$. Let n be an integer.
(A3) A ring R is regular if and only if R_{n} is regular. (A4) If R is a regular ring then $F\left(R^{n}\right)$ is a complemented modular lattice and for any $x \in R^{n} \ell(x) \in F\left(R_{R}\right)$.
(A5) An projective left R-module over a regiar ring is a direct sum of elements of $F\left({ }_{R} R\right.$) (see Kaplansky (1)).

Definition. A regular ring R is called (countably) corplete if the lattice $F\left({ }_{R} R\right.$) is (countably) complete, i.e., every (countable) subset $A \subset F\left({ }_{R} R\right)$ has a least upper bound (1.u.b. (A)) and a greatest lower bound (g.l.b.(A)). As completeness is a selfodual concept for lattices, it is a left-right concept for regular rings.

Definition. A ring R is called a Baer ring if, for every subset $B C R$, $\ell(B)$ is a principal left ideal generated by an idempotent. This definition is left-right symetric since $r(B)=r l(B)=$ (l-e) R where e is an idempotent such that $l(r(B))=$ Re. These rings have been studied in Kaplansky (3).

Lemma 6.1. A regular ring R is complete if and only if it is a Beer ring. In this case if $\left(A_{i}\right)_{i \in I}$ is a' subset $\subset F\left({ }_{R} R\right)$ then g.l.b. $\left(A_{1}\right)_{1 \varepsilon I}=$ $\bigcap_{i_{\varepsilon I}} A_{i}$ and 2.u.b. $\left(A_{1}\right)_{i_{\varepsilon I}}=\operatorname{lr}\left(\sum_{i \in I} A_{i}\right)$.

Proof

Suppose R is a complete regular ing and $\left(A_{1}\right)_{f_{c} I}$ is a subset C $F\left({ }_{R} R\right)$. If $A=\operatorname{gol}, b \cdot\left(A_{1}\right)_{1_{\varepsilon} I}$ then $A \subset \bigcap_{1 \in I} A_{1}$. If however $x \in \bigcap_{1_{\varepsilon} I} A_{1}$ then $R x \in F(R)$ and so $R x \subset$ g.l.b. $\left(A_{1}\right)_{i_{\varepsilon} I}=A$. Hence $\bigcap_{i_{1} I} \subset A$ and so gol.b. $\left(A_{i}\right)_{i_{E} I}=A=\bigcap_{i \in I} A_{i}$. Suppose B is a subset of R then $\ell(B)=\bigcap_{b \in B} \ell(b) \in F\left({ }_{R} R\right)$ since $\ell(b) \in F\left(R_{R}\right)$ for all b $\in B$. Thus R is a Beer ring.

Conversely let R be a regular Beer ring and $\left(A_{1}\right)_{i \varepsilon I} \subset F_{R}(R)$. Then for some idempotent $\in \in R, r\left(\sum_{i \in I} A_{i}\right)=(1-e) R$ and so $\sum_{i \in I} A_{1} \subset \ell r\left(\sum_{i \in I} A_{i}\right)=\ell((1-e) R)=\operatorname{Re\varepsilon } E\left({ }_{R} R\right)$. Hence $\ell r\left(\sum_{i \in I} A_{1}\right)$ is an upper bound for $\left(A_{1}\right)_{1_{\varepsilon} I}$. Suppose Rf (f an idempotent) is another upper bound for $\left(A_{1}\right)_{i \varepsilon I}$ Then $A_{1} \subset R f$ for all $1 \in I$ and so(1-f)RCr($\left.\sum_{i \in I} A_{1}\right)$. Hence $\operatorname{lr}\left(\sum_{i \in I} A_{1}\right) \subset R S$ and therefore $\operatorname{lr}\left(\sum_{i \in I} A_{i}\right)=1 . u \cdot b \cdot\left(A_{i}\right)_{i \in I}$. $A s$ is wellaknown the existence of lob's in a lattice implies the lattice is complete. Thus R is complete and g.I.b. $\left(A_{1}\right)_{i \in I}=\bigcap_{i \in I} A_{i}$ and lou.b. $\left(A_{i}\right)_{\mathcal{L} \in I}=\operatorname{er}\left(\sum_{i \in I} A_{i}\right)$.

Let R be a regular ring.
(A6) The set of elements of $F\left({ }_{P} R\right)$ which are two -sided ideals are precisely those generated by central idempotent. This subset of $F\left(R_{R}{ }^{K}\right)$
is denoted by $C\left({ }_{R} R\right) . \quad C\left({ }_{R} R\right)$ is a complemented distributive lattice. The elements of $C\left(R_{R}\right)$ can also be characterized as those elements of $F\left({ }_{R}{ }^{R}\right)$ having unique complements. An element of $C\left({ }_{R} R\right)$ is generated by a unique central idempotent. (AT) Suppose R is a complete regular ring. Then $C\left({ }_{R} R\right)$ is a complete lattice and g.l.b's and lou.b's calculated in $C\left({ }_{R} P\right)$ are the same as if they were calculated in $F\left({ }_{R} R\right)$. If $A \in F\left({ }_{R} R\right)$ then there is a least element $C(A)$ of $C\left({ }_{R} R\right)$ containing A i.e. $C(A)=\bigcap\left(B \in C\left(R_{R}\right): B \supset A\right)$. $C(A)$ is called the central envelope of A.

Lemma 6.2. If R is a complete regular ring and $A \in F\left({ }_{R} R\right)$ then $C(A)=r \ell(A)$.

Proof

As A is a left ideal $\ell(A)$ is a two-sided ideal. Since R is complete $\ell(A) \in F\left(R_{R}\right)$ and hence $\in C\left(R_{R}\right)$. Thus $r \ell(A) \in C\left(R_{R}\right)$ and $A \subset r_{\ell}(A)$. Therefore $C(A) \subset r_{l}(A)$.

Suppose $C(A)=$ Re where e is a central idempotent. Then $(1-e) A=0$ and $R(1-e) \subset \ell(A)$. Hence $r(A) \subset r(R(1-0))=\operatorname{Re}=C(A)$. Therefore $C(A)=r l(A)$.

Definition. Let L be a lattice with least element 0 . Suppose a, b, ce L. Then we say that a is in perspective with b with $a x i s c$, $a \sim b$, if $a \cap c=b \wedge c=0$ and $a \vee c=b \vee c(c . f . c h s p, 2)$.

Definition. Let L be a complete lattice and (a_{i}) i_{ε} a set of elements of L. If $J \in I$ define $a_{J}=V_{i \varepsilon J} a_{i} . \quad\left(a_{i}\right)_{i \varepsilon I}$ is called independent if $a_{F} \wedge a_{G}=0$ for all finite subsets $F, G C I$ with $F \cap G=\phi$. $\left(a_{i}\right)_{i c I}$ is called strongly independent if $\Lambda a_{j}=0$ for an n_{j} subsets $J_{i} \in I$ with $\cap_{j}=\varnothing$.
Definition. Let L be a lattice'with least element 0 . An element \mathcal{L} is called finite if it contains no infinite sequence of independent pairwise perspective elements. Otherwise it is called infinite. Amemiyn and Halperin have studied finiteness in complete complemented modular lattices. We collect together a number of their results which we shall need later on.

Lemma 6.3. Let L be a complete complemented modular lat ice then (1) if $\left(a_{i}\right)_{1}^{\infty}$ is an independent sequence of pairwise perspective elements of L then there is a strongly independent sequence $\left(b_{1}\right)_{1}$ of nairwise perspective elements of L such that $\bigvee_{1}^{\infty} b_{i} \leq \bigvee_{1}^{\infty} a_{i}$ and $a_{1}=b_{1}$. (2) if $\left(a_{i}\right)_{i \varepsilon I}$ and $\left(b_{i}\right)_{i \varepsilon I}$ are two strongly independent families of L such that $a_{i} \sim b_{i}$ for all $i \in I$ and $\left(V_{i \varepsilon I} a_{i}\right) \wedge\left(V_{i \in I} b_{i}\right)=0$ then $\bigvee_{i \in I} a_{i} \sim V_{i \in I} b_{i}$.
(3) if $\left(a_{i}\right)_{1}^{n}$ is a finite set of elements of L such that for each i a_{1} is finite then $V_{1}^{n} a_{i}$ is finite.

Proof

(1) is $\because .6 .1$
(2) is cor .l of theorem 3.4 of Amemiya and Halperin (1).
(3) is cor. 2 of theorem 6.3

Definition. A regular ring R is called finite if $F\left({ }_{R} R\right)$ is finite (as a lattice) and infinite otherwise. R is called properly infinite non-36ry
if every element of $C\left({ }_{R} R\right)$ (considered as an element of $F\left({ }_{P} R\right)$) is infinite. Lemma 6.4. A countably complete regular ring R is finite if and only if it is inverse symmetric.

Proof

As we remarked in chap. 4 the results of Jacobson (2) show that if R is not inverse symmetric then there is an infinite direct sum of isomorphic left ideals generated by idempotents.. But if $A, B \in F\left(P_{R}\right)$ and $A \cap B=0$ then by (4) of lemma $2.1 R^{A} \cong R^{B}$ implies $A \sim B$. Hence if R is finite R mast be inverse symmetric.

Conversely suppose (if possible) that a countably complete regular ring R is both inverse symmetric and infinite. By (l) of lemma 6.3 there is a strongly independent sequence $\left(A_{i}\right)_{1}$ of paimise perspective elements of $F\left({ }_{R} R\right)$. The sets $\left(A_{21}\right)_{1}^{\infty} \cdot\left(A_{21-1}\right)_{1}^{\infty},\left(A_{21+1}\right)_{1}^{\infty}$ are all strongly independent and $\left(\bigvee_{1}^{\infty} A_{2 i}\right) \wedge\left(\bigvee_{1}^{\infty} A_{2 i-1}\right)=\left(\bigvee_{1}^{\infty} A_{2 i}\right) \wedge$ $\left({\underset{1}{V}}_{\infty}^{\infty} A_{2 i+1}\right)=0, \quad$ But $A_{21} \sim A_{21-1}$ and $A_{2 i} \sim A_{21+1}$ for $1=1,2,3 \ldots \quad$.
 Thus if $A=\bigvee_{1}^{\infty} A_{2 i-1}$ and $B=\bigvee_{1}^{\infty} A_{2 i+1}$ then $A \cong B$ and $A \neq B$. But $B \in F\left(R_{R}\right)$ and is a direct summand of P and so of A. Hence we have $C, D \in F\left(R_{R}\right)$ with $B \oplus C=A$ and $A \oplus D=R$. Therefore $R=B \oplus C \oplus D$ and, since $A \cong B, B \oplus D \cong R$ and $C \neq 0$. R then has a copy of itself as a proper direct summand and so cannot be inverse symetric. This is a contradiction.

Remark. Kaplansky calls a Baer ring finite if it is inverse symmetric (see Kaplansky (3)). Cur lemma shows that for complete reaular rings the two definitions of finiteness coincide. Definition. A regular ring is called strongly regular if every idempotent of R is central i.e. $F\left({ }_{R} R\right)=C\left(p_{p}\right)$. Using (A6) it is easy to see that a regular ring is strongly realar if and only if it is subcommatative.

Examples

(1) Direct products of division rings
(2) Boolean rings

Theorem 6.5. Let R and S be Boolean rings (not necessarily containine identity elements). If $E: L\left(_{R} F\right) \cong L(S S)$ then there is a ring isomorphism: $R \cong S$ inducing E.

Proof
Every fintely generated left ideal of a Zoolean ring is generated by a unique element of the rinf. (even if the rinf does not inve
a 1). Suppose that a $\varepsilon ?$ then $(R a)^{\Sigma}$ is a finitely generated left ideal of S and so $=$ Sa t for some uniquely defined $a^{t} \varepsilon S$.

Further we have that $\operatorname{Ra} \cap_{\ell}(a)=0$ and $\operatorname{Ra} \boldsymbol{\oplus}_{\ell}(a)=$ 只 and $\ell(a)$ is the unique left ideal with this property. But applying Σ we aet $(R a)^{\Sigma} \cap \ell(a)^{\Sigma}=0$ and $(R a)^{\Sigma} \oplus \ell(a)^{\Sigma}=S$ and 30 as $(R a)^{\Sigma}=$ Sa ${ }^{t}$ we have $\ell(a)^{\Sigma}=\ell\left(a^{t}\right)$.

Suppose a, b er.
(1) $R a b=R a \cap R b$ and $s o(R a b)^{\Sigma}=(R a)^{\Sigma} \cap(D b)^{\Sigma}=S a^{t} \cap S b^{t}=S a^{t} b^{t}$. Hence $(a b)^{t}=a^{t} b^{t}$.
(2) $R(a+b)=R(a-a b)+R(b-a b)$ (using the fact that $x+x=0$ for any $x \in f$)
$=[P a \cap \ell(b)]+[R b \cap \ell(a)]$. Therefore applying Σ we get
$R(a+b)^{\Sigma}=\left[(R a)^{\Sigma} \cap \ell(b)^{\Sigma}\right]+\left[(R b)^{\Sigma} \cap \ell(a)^{\Sigma}\right]$
$=\left[S a^{t} \cap \ell\left(b^{t}\right)\right]+\left[S b^{t} \cap \ell\left(a^{t}\right)\right]$
$=S\left(a^{t}+b^{t}\right)$.
Hence $(a+b)^{t}=a^{t}+b^{t}$ and so t is a ring homomorphism.
If $a^{t}=0$ for some a $\in R$ then $(R a)^{\Sigma}=S a^{t}=0$. Thus $\mathrm{Pa}=0$ and so $a=a^{2}=0$.

If $c \varepsilon S$ then $(S C)^{\Sigma^{-1}}$ is a finitely generated left ideal of ? and $s o=$ Ra for some $a \in P$. Therefore $S c=\left(P_{a}\right)^{\Sigma}=\rho_{a^{t}}$ and sn $c=A^{t}$. Thus t is a ring isomorphism. Since for any $a \in ?\left(P_{a}\right)^{5}=\left(P_{a}\right)^{t}$ t induces ε.

This theorem is not true for strongly regular rings in general egg. take R and $:$ to be non isomorphic division rings. This is because
we have no way of getting at the structures of the groups of units of R and S (the only possible unit for a Boolean ring is the identity element). The following remark shows that for arbitrary rings we can however still get at the structure of the central idempotents.

Remark.
If for any ring R (containing a 1 now) we denote the set of central idempotents by $C(R)$ then $C(R)$ is a Boolean ring with respect to
 for $e, f \in C(R)$. A similar proof to that of theorem 6.5 shows that if $L\left(n_{n} R\right) y\left(S_{S}\right)$ for any rings R and S then there is a ring isomorphism: $C(R) \cong C(S)$.

Lemma 6.6. Let R be a strongly regular ring.
(1) If A and B are left ideals and $R \cong_{P^{3}}$ then $A=$ t
(2) For any integer $n R_{n}$ is a finite regular rinf.

Proof
(1) Let $\sin _{R} A \underline{\sim} R^{E}$ and let $b \varepsilon B$. Then for some $a \varepsilon A b=a^{s}$ and $R a=R e$, where e is a central idempotent $E P$. Thus $R b=R a^{s}=(r a)^{s}=$ $(\text { Re })^{s}=(\text { Re.e })^{s}=\operatorname{Re} \cdot e^{s}=\left(R e^{s}\right) e \subset$ Re $\subset A$. Hence $b \varepsilon A$ and so $B \subset A$. Similarly $A \subset B$ and thus $A=B$.
(2) In a stronely regular ring every left ideal is a twoosided ideal. Hence the maximal left ideals of P are exactly the maximal twosided ideals of $[$. But the Jacobson radical of a refilar rinf is zero and
hence \cap (all maximal two-sided ideals of R) $=0$. Therefore \cap (all maximal twousided ideals of $\left.R_{n}\right)=0$.

Suppose if possible that R_{n} is infinite for some integer n. Then there is an infinite direct sum of isomorphic left ideals $\left(R_{n} e_{i}\right)_{l}^{\infty}$ generated by idempotents $\left(e_{i}\right)_{l}^{\infty}$. Since $e_{1} \neq 0$ there is a maximal twomsided ideal of R_{n} not containing e_{1}. This must be of the form ($M)_{n}$ where M is a maximal two-sided ideal of R.

Now $R_{n} e_{1} \cong R_{n} e_{i}$ for $1=1,2,3 \ldots$ and so there are elements $p_{i} \in R_{n} e_{i} \quad q_{i} \in R_{n} e_{1}$ with $e_{1}=p_{i} q_{i}$ and $e_{i}=q_{i} p_{i}$. If $e_{i} \varepsilon \varkappa_{n}$ then $p_{1} \in M_{n}$ and so $e_{1} \in M_{n}$ - a contradiction. Hence $e_{1} \notin M_{n}$. As $\left(R_{n} e_{i}\right)_{1}^{\infty}$ form a direct sum we can choose without loss of generality the first $(n+1) e_{i}$'s to be orthogonal. Now consider the natural ring homomorphisma: $R_{n} \longrightarrow R_{n} / M_{n} \underline{\underline{Y}}(R / M)_{n}$. Then as $e_{i} \& M_{n}$ $e_{i}^{a} \neq 0$.

Now M is not only a maximal two-sided ideal but also a maximal left ideal. Hence R / M is a division ring and so (R / M) $n_{\text {than }}$ does not contain any direct sum of non-zero left ideals with more/n members. But $\left(e_{i}^{a}\right)_{1}^{n+1}$ are $(n+1)$ non-zero orthogonal idempotents of $\left.(R / i)\right)_{n}$ and so $\left[(i / i M)_{n} e_{i}^{a}\right]_{1}^{n+1}$ is a direct sum of ($n+1$) non-zero left ideals -a contradiction, Hence R_{n} is finite.

As finiteness always implies inverse symmetry we have the following corollary.

Cor.1. If R is a strongly regular $r i n g R_{n}$ is inverse symmetric for any integer n.

Cor.2. A strongly regular ring has I. B.N.
Proof
Suppose R is strongly regular and $R^{m} \simeq R^{n}$ for integers m, n with $m \geq n$. Then if $m>n R^{n}$ has a copy of itself as a proper direct sumand. Thus R_{n} cannot be inverse symmetric contradictink cor.l. Hence $m=n$ and R has I.B.N.

Theorem 6.7. A direct product of matrix rings over strongly regular rings is an s.u.c. ring.

Proof
Let R be a strongly regular ring and $T=R_{m}$ for some integer m. Suppose T^{P} is a module with $\mathrm{P}^{\mathrm{n}} \underline{\underline{\text { a }}} \mathrm{T}^{\mathrm{n}}$, where n is an integer. Now there is a category equivalence $F: T_{T}^{\mu} \longrightarrow{ }_{R}^{\mu}$ such that $T^{F}=R^{m}$. If $R^{Q}=P^{F}$ then $Q^{n} \simeq R^{m n}$.

Q is a finitely generated projective and so by (A5) is a finite t
direct sum of cyciic submodules, say $Q=\bigoplus_{i=1} R x_{i}$, Now R is strongly regular and so subcomutative. Therefore if $y_{1}=\sum x_{i}$ then $\ell\left(y_{1}\right)=$ $\bigcap_{1}^{t} \ell\left(x_{1}\right)=\bigcap_{1}^{t} \ell\left(R x_{i}\right)=\ell(Q)=\ell\left(Q^{n}\right)=\ell\left(R^{m n}\right)=0$. Thus $Q=Q_{1} \oplus \mathrm{Ky}_{1}$ where y_{1} is free.

Therefore $Q_{1}{ }^{n} \oplus R^{n} \cong R^{m n}$. Suppose $\ell\left(\alpha_{1}\right) \neq 0$ then there is a
central idempotent e εR such that $e Q_{1}=U$ and so $(e R e)^{n} \underline{\underline{x}}(e R e)^{m n}$.

But eRe is strongly regular and so by cor. 2 of lema 6.6 it has I. B.i. . Hence either $m=1$ or $\ell\left(Q_{1}\right)=0$. If $m \neq 1$ we can repeat the process until we get $G=\hat{b}_{m} \oplus R^{m}$. Then $Q_{m}^{n} \oplus R^{m n} \approx R^{m n}$. But by cor. 1 of lemma $6.6 \mathrm{R}_{\mathrm{mn}}$ is inverse symmetric and so P^{mn} does not contain a copy of itself as a prover direct sumand. Hence $G_{m}=0$ and $Q=R^{m}$.

Applying the inverse category equivalence to F we get $P \cong T$. Therefore T is an s.u.c. ring and the theorem follows by lemma 5.4. Definition. Let L be a complete complemented modular lattice. Then L is called upper continuous if for every directed set I and suoset $\left(A_{i}\right)_{i \in I} \subset L$ such that $1_{1} \leq 1_{2}$ implies $A_{i_{1}} \subseteq A_{1_{2}}$ and for any $B \varepsilon$ then $E \wedge$ l.u.b. $\left(A_{i}\right)_{i \varepsilon I}=1 . u . b .\left(B \wedge A_{i}\right)_{i \in I}$. Lis called lower continuous if the dual condition holds. If L is both upper and lower continuous L is called continuous. We note that in an upper continuous lattice the notions of strong independence and independence coincide (see e.f. prop. 75 of Skornyakov (1)).

Definition. A regular ring R is called upper continuous, lower continuous or continuous according as $F\left({ }_{R} R\right)$ is upper continuous, lower continuous or continuous.

Upper continuous repular rings are closely related to left selfinjective regular rings as the following results of Utumi show. Lemma 6. 3
(1) Any left self-injective regular ring, is upper continuous
(2) Any upper continuous regular ring is the direct product of a strongly regular ring R_{1} and a left self-injective regular ring R_{2}. Proof
(1) See cor.l of theorem of Utumi (1).
(2) See cor. 1 of theorem 4 of Utumi (2).

Not every upper continuous regular ring is left seli-injective. Utumi has remarked (p. 604 of Utumi (2)) that the example Eiven on p. 526 of Kaplansky (4) is such a ring, viz., the ring of all sequences of complex numbers for which all but a finite number of entries are real. Definition. Let R^{M} be a module and P a submodule. If for every non-zero submodule $Q \subset M P \cap Q \neq 0$ then P is called large in M and M is said to be an essential extension of P. We denote this by writing $P \subset 1!$

Definition. An element r of a ring P is called singular if $f(r) \in \mathcal{C}^{\prime} R$. The set of all singular elements of R form a two-sided ideal $S(H)$ called the singular ideal of R. We quote a number of facts about such rings all of which may be found in Johnson (1) or Lambek (1).

If R is a ring with $S(R)=0$ and A a left ideal of R then there is a unique maximal left ideal $E(A)$ of R such that $A \mathcal{C}^{\prime} E(A)$. The operator E has the following properties
(1) $E(0)=0$
(2) $E(E(A))=E(A)$
(3) $E(A \cap B)=E(A) \cap E(B)$ where B is another left ideal.

A left ideal of R is called closed if $F(A)=A$. The set of all closed left ideals is denoted by $F\left(R^{R}\right)$ and is an upper continuous complemented modular lattice with respect to the operations $A \wedge B=$ $A \cap B$ and $A \vee B=E(A+B)$.

For any module $R^{1 /,} a 3$ is well known, there is a unique minimal injective module $\mathrm{P}_{\mathrm{I}} \mathrm{I}(\because)$ containing $\mathrm{M} . \quad \mathrm{I}(1)$ is called the injective hull of $M . I(M)$ can also be characterized as the unique maximal essential extension of $!1$ so we always have $:^{\prime \prime} C^{\prime}(M)$ (see Eckmann and Schopf (1) for details).

Supoose R is a ring with $S(R)=0$ and that $\psi=I(P)$, the injective hull of R. In this case Q can be given a ring structure (compatible with the structure of ?) and is then a left self-injective regular ring. Further $E\left(R_{R}\right) \cong F\left(Q_{Q}\right)$ (using (1) of lemma 6.8 this shows incidentally that $E\left(P^{i}\right)$ is an upner continuous complemented modular lattice). Q can also be regarded as the raximal ring of quotients of ? in the sense of Utumi (see e.g. lambek (i)).

Fxamples of rines with zero sinaular ideal are
(1) simple rings
(i) integral domains
(3) regular rinfs (by (A2)).

Lemmat. A regular ring P is upper continuous if and only if $F(F)=$ $F\left(R_{R}\right)$. In this case for any left ideal $A \quad I(A)=\ln (A)$.

Proof

Noting that a direct summand of P is alwavs closed the lemma follows immediately from theorem 2 of Utumi (3).

Cor.1. If R is an upper continuous regular ring and A, 3 are left ideals then $E(A+B)=E(A)+E(B)$.

Proof
Hy lemma $6.9 E(A), E(B) \varepsilon F\left({ }_{R}^{R}\right)$ and so $E(A)+E(3) \varepsilon F\left(P_{R}\right)=$ $E\left({ }_{R}{ }^{K}\right)$. Hence $E(A)+E(B)$ is a closed left ideal containing $A+j$ and so $E(A+B) \subset E(A)+E(B)$. But $A \subset A+B$ and $B \subset A+B$ and we have $B(A) \subset E(A+B)$ and $E(B) \subset E(A+B)$. Therefore $E(A+B)=E(A)+E(B)$. Lemma E.10. Suppose R is an upper continuous regular ring and A, B are left ideals of R with $1: A \underline{\underline{X}} B$. Then there is an isomorphism $E: E(A) \cong E(B)$ and if $A \cap B=0$ then g can be chosen so that $E \mid A=f$. Proof

By (2) of lemma 6.8 there are central idempotents e_{1}. e_{2} such that $e_{1}+e_{2}=1$ and $R_{1}=e_{1} R e_{1}$ is a strongly refular ring and $\Gamma_{2}=$ $e_{2}{ }_{2} e_{2}$ is a left self-injective regular ring.

The isomorphism fiA $\cong B$ splits into two isomorphisms $f_{1}: A e_{1} \cong B e_{1}$ and $f_{2}: A e_{2} \cong B e_{2}$. By (1) of lemma $6.6 A e_{1}=B e_{1}$ and so $E\left(A e_{1}\right)=E\left(B e_{1}\right)$ and we can take g_{1} as the identity map: $E\left(A e_{1}\right) \cong E\left(B e_{1}\right)$.

Now R_{2} is a left self-injective regular ring and so $E\left(A e_{2}\right)$ and $E\left(\mathrm{Be}_{2}\right)$ are the injective hulls of Ae_{2} and Be_{2} respectively. Hence the isomorphism $\mathrm{f}_{2}: \mathrm{Ae}_{2} \cong \mathrm{Be}_{2}$ can be extended to $\mathrm{g}_{2}: \mathrm{F}\left(\mathrm{Ce} \mathrm{e}_{2}\right) \cong \mathrm{E}\left(\mathrm{Be} \mathrm{K}_{2}\right)$ i.e. $\boldsymbol{g}_{2} \mid A e_{2}=\mathbf{f}_{2}$.

By cor. 1 of lemma $6.9 \mathrm{E}(\mathrm{A})=\mathrm{E}\left(\mathrm{Ae}_{1}\right) \oplus E\left(\mathrm{Ae}_{2}\right)$ and $\mathrm{E}(\mathrm{B})=$ $E\left(B e_{1}\right) \oplus E\left(B e_{2}\right)$. Combining g_{1} and g_{2} we get g:E(A) $\underline{\underline{L}} \mathrm{E}(B)$. If $\mathrm{A} \cap \bar{B}$ $=0$ then $A e_{1}=B e_{1} \subset A \cap B=0$. Hence $f=f_{2}$ and $g=a_{2}$ and so $\mathcal{E} \mid A=1$. Lemma 6.11. Let R be a complete regular ring and $A, B \in F\left(\mathcal{R}^{R}\right)$. Then $C(A) \cap C(B)=0($ see $(A T))$ if and only if there are no non-zero A_{1}, $B_{1} \in F\left({ }_{R} R\right)$ with $A_{1} \subset A$ and $B_{1} \subset B$ such that $A_{1} \sim B_{1}$.

Proof

Let $C(A)=$ Re and $C(B)=$ Rf where e and f are central idempotents. Suppose $A_{1}, B_{1} \varepsilon F\left(R^{R}\right)$ with $A_{1} \subset A$ and $B_{1} \subset B$ and that $s: A_{1} \cong B_{1}$. Then $A_{1}=A_{1} e$ and $s 0 B_{1}=A_{1}^{s}=\left(A_{1} e\right)^{s}=\left(e A_{1}\right)^{3}=e A_{1}^{s}=A_{1}^{s} e C C(A)$. Hence $B_{1} \subset C(A) \cap C(B)=0$ and $A_{1}=B_{1}=0$.

Suppose there are no $A_{1}, B_{1} \in F\left({ }_{R} R\right)$ with $0 \neq A_{1} C A, O \neq B_{1} C$ B and $A_{1} \cong B_{1}$ Let $a \in A$ and $b \in B$ and let t be the R-homomoronism: $\mathrm{Ra} \longrightarrow$ Rab defined by ripht multiplication by v. Vou ker $(t)=R a \cap$ $\ell(b) \in F\left(R_{R}\right)$ and so is a direct summand of la i.e. ker(t) $\oplus C=A$ for some $C \in F\left(R_{R}^{R}\right)$.

But $C \subset A$ and $C \underline{x} \operatorname{Rab} \subset B$ and so by hypnthesis ab $=0$. Hence $A B=0$ and so $A \subset \ell(B)$ giving by lemra 6.2 $C(3) \subset r(A)$. Thus $A C(B)=0$ and so $C(B) A=0$ and $C(B) \subset \ell(A)$. We pet therefore that $C(A)=\ell(C(B))$ and so $C(A) C(B)=0$. Cince $C(A)$ and $C(B)$ are qenerated by central idempotents we have then $C(A) \cap C(B)=0$.

This is a ring version of a well known lattice result (see e.c. prop. 66 of Skorayakov (1)).

Lemma 6.12. Let R be an upper continuous regular ring and $A, B \in F\left({ }_{R}\right)^{\prime}$. Then there are elements $A_{1}, A_{2}, B_{1}, B_{2} \in F\left({ }_{R} R\right)$ such that (1) $A=A_{1} \oplus A_{2}$
(2) $B=B_{2} \oplus \mathrm{~B}_{2}$
(3) $A_{1} \cong B_{1}$
(4) $C\left(A_{2}\right) \cap C\left(B_{2}\right)=0$.

Proof
Without loss of generality we can assume $A \cap B=0$. By Zorn's lemma we can pick left ideals $A_{1} \subseteq A \quad B_{1} \subseteq B$ such that $f: \dot{A}_{1} \cong B_{1}$ and if there are left ideals A_{2}, B_{2} with $A_{1} \subset A_{2} \subset A, B_{1} \subset B_{2} \subset B$ and gi $A_{2} \cong B_{2}$ and $g \mid A_{1}=f$ then $A_{1}=A_{2}$ and $B_{1}=B_{2}$.

By lemma 6.10 since $A \cap B=0$ we have $A_{1}=E\left(A_{1}\right)$ and $B_{1}=E\left(B_{1}\right)$ fee. A_{1} and B_{1} are closed left ideals. By lemma 6.9 we get $A_{1}, B_{2} \in F\left({ }_{R} R\right)$.

Let $A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$ where $A_{2}, B_{2} \varepsilon F\left({ }_{2} R\right)$. Now there are no nonzero $A_{3}, B_{3} \in F\left({ }_{R} R\right)$ with $A_{3} C A_{2}$ and $B_{3} C B_{2}$ with $A_{3} \cong B_{3}$. Otherwise we could extend $f: A_{1} \cong B_{1}$. Hence by lemma 6.11 $C\left(A_{2}\right) \cap c\left(B_{2}\right)=0$.

This is the ring form of a well known lattice result (see e. R. gatz 1.1 of chap. 4 of Maeda (1)).

Cor.1. Let R be an upper continuous regular ring and e, i idempotent εR. Then there are central idempotent h_{1}, h_{2} with $h_{1}+h_{2}=1$ and
 Proof

By leman 6.12 there are idempotent $e_{1}, e_{2}, f_{1}, f_{2} \in R$ such that
(1) $R e=R e_{1} \oplus R e_{2}$
(2) $R f=P f_{1} \oplus \mathrm{Rf}_{2}$
(3) $R e_{1} \cong \mathrm{Rf}_{1}$
(4) $C\left(R e_{2}\right) \cap C\left(R f_{2}\right)=0$.
: Let $C\left(R f_{2}\right)=R h_{1}$ where h_{1} is a central idempotent and let $h_{2}=1-h_{1}$. Then $C\left(R e_{2}\right) \subset \ell\left(C\left(R f_{2}\right)\right)=R h_{2}$ and $80 R e_{2} h_{1}=0$. Similarly $\mathrm{Rf}_{2} \mathrm{~h}_{2}=0$.

Therefore $R h_{1}=R e_{1} h_{1} \oplus R e_{2} h_{1}=R e_{1} h_{1} \simeq R f_{1} h_{1}$ which is a direct summand of $R \mathrm{RH}_{1}$. Similarly $R \mathrm{fh}_{2} \underline{\underline{x}}$ direct summand of Reh_{2}.

This result is leman 3.4 of Kaplansiky (5).
Theorem 6.13. Let R be a finite upper continuous regular ring and $A, B \in F\left(R_{R}\right)$. If n is an integer and $A^{n} \cong B^{n} \cong R$ then' $A \cong B$.

Proof

By leman 6.12 there are $A_{1}, A_{2}, B_{1}, B_{2} \in F\left({ }_{R} P\right)$ with
(1) $A=A_{1} \oplus A_{2}$
(2) $5=B_{1} \oplus B_{2}$
(3) $A_{1} \simeq B_{1}$
(4) $C\left(A_{2}\right) \cap C\left(B_{2}\right)=0$. Let $C\left(B_{2}\right)=R h$ where h is a central idempotent. If $A^{n} \cong R^{n} \cong R$ then multiplying by h and noting $A_{2} h=0$ and $B_{2}=r_{2} h$ we get $\left(A_{1} h\right)^{n} \cong\left(B_{1} h\right)^{n}{ }^{n} B_{2}^{n}$ $\cong(h R h)$. But $A_{1} h \nsubseteq B_{1} h$ and $(h R h)$ is a finite regular ring. But hRh cannot contain a copy of itself as a proper direct summand fence $B_{2}=0$. Similarly $A_{2}=0$ and we get $A=A_{1} \underline{3_{1}}=B$. The corresponding theorem for complemented modular lattices is usually stated with the assumption of upper and lower continuity (see eng. prop. 51 of Skornyakov (1)). However, a careful loo: at the
proof shows that the assumption of lower continuity can be replaced by the assumption of finiteness. Our theorem is the corresponding ring version of this modified theorem.

Lemma 6.14. A ring R is left self-injective if and only if for some integer $n R_{n}$ is left self-injective.

Proof
A ring S is left self-injective if and only if there is an injective progenerator for S^{μ}. Hence any ring Morita equivalent to S is also left self-injective. In particular since for any integer n $R \mathbb{M}_{n} \quad R$ is left self-injective if and only if R_{n} is left self-injective.

I am indebted to P.M.Cohn for this elegant proof which shortens earlier proofs in the ifterature (see e.g. theorem 8.3 of Utumi (4)). Theorem 6.15. A finite left self-injective regular ring is an s.u.c. ring.

Proof
If R is a left self-injective regular ring then by $(A 3)$ and leman 6.14 for any integer $n R_{n}$ is also a left self-injective reguiar ring. Hence by (1) of lema $6.8 \quad P_{n}$ is upper continuous and in particular is complete.

Now $F\left({ }_{R} R^{n}\right) \cong F\left({ }_{R_{n}} R_{n}\right)$ is complete and by (3) of lemma 6.3 (since P is inite) we have $F\left(R_{R} R^{n}\right)$ is finite. Hence $F\left(R_{n} R_{n}\right)$ is finite and $80 R_{n}$ is an upper continuous finite realar ring. If A, B are left
ideals with $A^{n} \cong B^{n} \underline{\simeq} R_{n}$ then by theorem $6.13 A \cong B$ and r is an s.u.c. ring.

Yemark. If R is an upper continuous regular ring then !n need not be upper continuous. Indeed if R is an upper continuous regular ring which is not left self-injective then R_{n} cannot be complete if $n>1$. For if it were then by theorem 4.3 of Amemiya and Halperin (1) R_{n} would be upper continuous. Then by corollary of theorem 3.3 of Utumi (4) R_{n} is left self-injective and so R is left self-injective, which is not so. Hence we cannot use the methods of theorem 6.15 to prove directly that a finite upper contimous regular ring is an s.u.c. ring. This however is true as the following corollary shows. Cor.1. A finite upper continuous regular ring is an s.u.c. ring. Proof

Let R be a finite upper continuous regular ring. Then by (a) of lemma 6.8 R is the direct product of a strongly refular rink R_{1} and a left self-injective regular ring R_{2} 。

By theorem $6.7 R_{1}$ is an s.u.c. ring and by theorem 6.15 so is R_{2}. Hence by lemma $5.4 R$ is an s.u.c. rinf. Theorem 6.16. A properly infinite upper continuous regular ring P is an s.u.c. ring.

Proof
Since R is properly infinite there is an infinite independent pairwise
set $\left(A_{i}\right)_{i \varepsilon I}$ of pairwise isomorphic left ideals $\varepsilon F\left(F_{F}\right)$. By Zorn's lemma
we can take this to be maximal among such sets. Let (e_{i}) ${ }_{i \varepsilon I}$ and e be idempotent with $A_{1}=R e_{i}$ and $R e=1 \cdot u \cdot b_{0}\left(A_{i}\right)_{i \varepsilon I}$ and let Re i be a fixed member of $\left(A_{1}\right)_{1 \varepsilon I}$.

By cor. 1 of lemma 6.12 there is a central idempotent h with
(1) Re $(1-h) \underline{1}$ direct summand of $\operatorname{Re}(1-e)(1-h)$
(2) $\mathrm{F}(1-\mathrm{e}) \mathrm{h} \cong$ direct summand of $R e_{1} h$.

Now $h \neq 0$ for if $h=0$ then $R_{1} \cong$ direct summand of $P(1-e)$ and we could pairwise extend the set ($\left.\mathrm{Re}_{\mathrm{i}}\right)_{\mathcal{I}_{\varepsilon} I}$ of isomorphic independent elements of $F\left(R_{R}\right)$ thus contradicting the maximality of $\left(\operatorname{Re}_{i}\right)_{i \varepsilon I}$.

Since R is upper continuous
$\operatorname{Reh}=\operatorname{Rh} \cap R e=R h \cap 1 . u_{0} b \cdot\left(R e_{i}\right)_{i \varepsilon I}$
$=$ l.u.b. $\left(R h \cap R e_{i}\right)_{i \varepsilon I}$
$=1 \cdot u \cdot b \cdot\left(R e_{1} h\right)_{1 \in I}$

Therefore $0 \neq \operatorname{Rh}=\operatorname{Reh} \oplus \mathrm{R}(1-\mathrm{e})_{\mathrm{h}}$

$$
=1 . u \cdot b \cdot\left[\left(k e_{i} h\right)_{i \varepsilon I}, R(1-e) h\right] .
$$

Let $d_{0}=(1-e) h$ then $R d_{0} \cong$ direct summand of Pe h. Hence we can write for each $1 \in I \quad R e_{1} h=R f_{i} \oplus R d_{i}$ where $R d_{0} \mathcal{V d}_{i}$ and $\left(f_{i}\right)_{i \varepsilon I}$ and

 where $\left(B_{i}\right)_{i_{\varepsilon}}$ is an infinite independent set of Pairwise isomorphic elements of $F\left({ }_{R} R\right)$.

Since I is infinite it can be written as the disjoint union $\bigcup_{n=1}^{\infty} I_{n}$ of a countable number of sets $\left(I_{n}\right)_{l}^{\infty}$ each with the same cardinal as I. Define $B_{I_{n}}=1 . u \cdot b \cdot\left(B_{i}\right)_{i E I_{n}}$ then $R n=2 \cdot u \cdot b \cdot\left(B_{I_{n}}\right)_{1}^{\infty}$. But $\sum_{i \varepsilon I_{n}} B_{i} \cong \sum_{i \varepsilon I_{1}} B_{i}$ and so by lemma $6.10 E\left(\sum_{i \in I_{n}} B_{i}\right) \cong E\left(\sum_{i \varepsilon I_{1}} B_{1}\right)$. Thus by lemma 6.1 and lemma $6.93_{I_{n}} \cong B_{I^{\prime}}$. Hence we have that $\left(B_{I_{n}}\right)_{1}^{\infty}$ is an independent countable set of isomorphic elements of $P\left({ }_{R} R\right)$.

Since R is properly infinite we may repeat the argument on $R(1-h)$. By transfinite induction we get that $R=$ l.u.b. of a countable pairwise

For and integer $n \quad J$ can be written as the disjoint union
 Now since J and J_{k} are both countable we have $\sum_{j \varepsilon J} C_{j} \cong \sum_{j \varepsilon J_{k}^{\top}} C_{j}$ and so arguing as before l.u.b. $\left(C_{j}\right)_{g_{f}} \cong 1 . u_{0} b .\left(C_{j}\right)_{j \varepsilon J_{k}}$ fine. $C_{J_{k}} \cong$ P. But $R=1 . u \cdot b \cdot\left(c_{j}\right)_{j \varepsilon J}=1 \cdot$ u.b. $\left(c_{J_{k}}\right)_{1}^{n}=\underset{k=1}{n} c_{J_{k}}^{\cong} R^{n}$.

Now suppose H^{P} is a module with $P^{n} \cong p^{n} \cong R$. Let $S=\operatorname{Find}_{p}(p)$ and taking endomorphism rings we get $S_{n} \cong R$. Since R is upper continuous and regular then so is S_{n}. By (A3) S is regular and the lattice isomorphism $F\left(S_{n} S_{n}\right) \cong F\left(S_{S} S^{n}\right)$ shows that S is upper continuous.

Suppose f is a central idempotent of B then there is a central idempotent e of $口$ such that $e \mathrm{E}=(\mathrm{OSf})_{n}$. As P is properly infinite eire
is infinite and hence so is $(f S f)_{n}$. But $F\left(f f_{f S} f^{n}\right)$ is a complete lattice and infinite. Hence by (3) of lemma 6.3 fSf must be infinite. Otherwise $F\left(\operatorname{fSf}_{f} f^{n}\right)$ would be finite. Therefore S is properly infinite.

Now S is also upper continuous and so by the first part $S \cong S^{n}$. But ${ }_{R}{ }^{P}$ is a progenerator for ${ }_{R}{ }^{\mu}$ and so by (B) of theorem 3.1 there is a category equivalence $F: S^{\mu} \longrightarrow R^{\mu}$ such that $(S)^{F}=P$. But $S^{n} \cong S$ and so $\left(S^{n}\right)^{F} \cong S^{F}$ i.e. $P^{n} \cong P$. Therefore $P \cong P^{n} \cong R^{n} \cong R$ and so R is an s.u.c. ring.

The first part of this proof is closely modelled on lemmas 3.5 and 4.5 of Kaplansky (5).

Remark. In the proof we showed that for any integer $R_{R} \simeq P_{R} R^{n}$. In fact it can be shown that $R_{R} \underset{R}{ } R_{R}^{I}$ where I is a countable set. Theorem 6.17. An upper continuous regular ring is an s.u.c. ring. Proof

Any complete regular ring R is the direct product of a finite regular ring R_{F} and a properly infinite regular ring R_{I} (see e.g. prop. 2 on p. 9 of Kaplansky (3)).

If R is upper continuous then so are R_{F} and R_{I}. By cor. 1 of theorem 6.15 and theorem $6.16 R_{F}$ and R_{I} are s.u.c. rings. Hence by lemma 5.4 R is an s.u.c. ring.

Cor.1. Any left selfoinjective ring R is an s.u.c. ring.

Proof
By theorem 4.3 of Utumi (4) if R is left self-injective then so is $R / J(R)$. But lemma 8 of Utumi (1) shows that $R / J(R)$ is regular and so $R / i(R)$ is an s.u.c. ring. Therefore by lemma 5.6 R is an s.u.c. rine.

Utumi has made the following definitions (see Utumi (4)). Definition. A ring P is called left continuous if (1) for every left ideal A of R there is an idempotent $e \varepsilon R$ with $A \subset \prime$ Re
(2) if B is a left ideal and f an idempotent $E R$ and $B \cong R f$ then B is generated by an idempotent.

Theorem 4.6 of Utumi (4) shows that if R is a left continuous ring then $R / J(P)$ is an upper continuous regular ring and so $R / J(R)$ is an s.u.c. ring. This gives us the following corollary. Cor.2. A left continuous ring is an s.u.c. ring. Theorem 6.18. Let R and S be rings with zero singular ideal and with injective hulls $I(P)$ and $I(S)$. If $R_{n} \underline{\underline{\leq}} S_{n}$ for some integer n then $I(R) \geq I(S)$.

Proof
Let F be the category equivalence: ${ }_{R}^{\mu} \longrightarrow P_{n}^{\mu}$ with $\left(R^{n}\right)^{F}=R_{n}$. Then $\left[I\left(R^{n}\right)\right]^{F}=I\left(\left(R^{n}\right)^{F}\right)=I\left(R_{n}\right)$. Now $I\left(R^{n}\right)=I(R)^{n}$ and so taking endomorphism rings and noting $\operatorname{End}_{R}(I(R)) \cong I(R)$ as rings we have that $(I(R))_{n} \simeq \operatorname{End}_{R_{n}}\left(I\left(R_{n}\right)\right)$.

But $(I(R))_{n}$ is a regular ring and hence semi-simple (in the sense of Jacobson). So'it follows (see e.g. sections 5 and 9 of Lambek (1)) that R_{n} has zero singular ideal. Hence $I\left(R_{n}\right)$ is a left self-injective regular ring and $I\left(R_{n}\right) \cong \operatorname{End}_{R_{n}}\left(I\left(R_{n}\right)\right) \cong(I(R))_{n}$. Similarly $I\left(S_{n}\right) \simeq(I(S))_{n}$.

If $R_{n} \cong S_{n}$ then $I\left(R_{n}\right) \underset{\sim}{ } I\left(S_{n}\right)$ and so $(I(R))_{n} \cong(I(S))_{n}$.
But $I(R)$ and $I(S)$ are left self-injective regular rings and so by theorem 6.17 $I(R) \simeq I(S)$.

Cor.1. Let R and S be regular rings such that $R_{n} \approx S_{n}$ for some integer n. Then $I(R) \cong I(S)$.

Proof

Both R and S have zero singular ideal and so the result follows from theorem 6.18.

This corollary shows that any comordinatization by a regular ring of a complemented modular lattice order ≥ 3 is unique up to injective hull or left quotient ring. The problem as to whether the co-ordinatization/in general unique seems difficult. Our results give some indication that it might be possible to prove this if the lattice is complete.

what:

```
de r.ac.inje ay zomivirar cur res.lts to the particular case of
```

bategral lomains.

Definition. An integral domain is called a left Ore domain if for any non-zero elements $a, b \in R \quad K a \cap R O \neq 0$. Otherwise R is called a non-Ore domain.

If R is a non-Ore domain then there are non-zero elements
 infinite indeoendent set of principal left ideals of p. m (nus p contains a free module of infinite rank.

As is well known a left ore domain k can be embedded in a division rina a such that every element of $\underset{x}{ }$ can be written in the form $a^{-1} b$ for some $a, b \varepsilon i$. \quad is called the quotient ring of: If $\left(a_{i}^{-1} b_{i}\right)_{1}^{n}$ are any finite set of elements of winere $\left(n_{i}\right)_{1}^{n},\left(r_{i}\right)_{1}^{n}$ c k then they "can be put over a common denominator" i.e. there are elements $\left(c_{i}\right)_{1}^{n}$ a ε ? such that $a_{i}^{-1} b_{i}=a^{-1} c_{i}$ for $i=1, \ldots, r$. Jefinition. Let R be a leit cre domair witi, uotient rinf i. suppore \therefore is a module. Then the rank of \therefore is defined to be the dimension of $\therefore \frac{Q}{?}$. as a vector space over a The set $\eta_{2}(\because)=\{m: x(m) \neq 0\}$ is a submodule $0: \therefore$ cailed the torsion submodute. $\quad \therefore$ can easily ne sinowr

Lema 7.1. Let R be a left Ore domain and R^{M} a module of rank ≥ 3. Then R satisfies conditions S_{1} and S_{2} of theorem 4.8. Proof

Let Q be the quotient ring of R. Any element $u \in Q Q$ is of the form $\sum_{i=1}^{n}\left(r_{i}^{-1} t_{i} \otimes m_{i}\right)$ for some integer n and elements $r_{i}, t_{i} \in R$ and $m_{i} \in M_{0}$. Now for some $r, c_{i} \in R \quad r_{i}^{-1} t_{i}=r^{-1} c_{i}$ and so $u=\sum_{i=1}^{n} r^{-1} c_{i} \otimes r_{i}=r^{-1}(18 m)$ where $m=\sum_{i=1}^{n} c_{i} m_{1}$.

Suppose $x, y, z \varepsilon M$ and $N=R x+R y+R z$. Then $Q \underset{R}{Q} N=$ $Q(1 \otimes x)+Q(1 \otimes y)+Q(1 \otimes z)$. Now suppose either (1) one of $x, y, z \in T(M)$ or (2) x, y, z are free elements but ($R x, R y, R z$) is not an independent set of submodules.

In case (1) one of $10 x, 10 y, 1 \otimes z$ is zero and so $\operatorname{dim}(Q \otimes N) \leq 2$.

In case (2) there are elements $a, b, c \in R$ two of which at least are non-zero such that $a x+b y+c z=0$. Then if $a \neq 0(1 \otimes x)=$ $a^{-1}(a \otimes x)=a^{-1}(1 \otimes a x)$

$$
=a^{-1}[10-(b y+c z)]=-a^{-1} b(1 \otimes y)+-a^{-1} c(1 \otimes z) .
$$

Hence $Q(1 \otimes x) \subset Q(1 \otimes y)+Q(1 \otimes z)$ and sodim(Q $8 N) \leq 2$.
But $\operatorname{dim}(2 \otimes M) \geq 3$ so in either case (1) or (2) there is a free element $w \in M$ with $Q(1 \otimes w) \cap[Q \otimes(R x+P y+R z)]=0$. Hence $R w \cap[R x+R y+R z]=0$.

Suppose neither case (1) or (2) holds then x, y, z are free elements and ($R x, R y, R z$) is an independent set of submodules. If $w=x+y+z$ then w is free and $R w(R x+R y)=R w \cap(R y+R z)=$ $R w \cap(R z+R x)=0$.

Hence M satisfies condition S_{1}. As in lemma 2 of Skornyakor (2) in this case S_{2} is a consequence of S_{1}. Theorem 7.2. Let R be a left Ore domain and R^{M} a module of rank ≥ 3. If S^{N} is a faithful module such that $\cdot \Sigma: L\left({ }_{R} M\right) \cong L\left({ }_{S} N\right)$ then there is a semi-linear isomorphism inducing Σ.

Proof

By lemma 7.1 M satisfies S_{1} and S_{2}. Further R is an integral domain and so is inverse symmetric. The result then follows from theorem 4.9.

We note in this case the semi-linear isomorphism induces the lattice isomorphism. This is also true for our results on free modules if therings considered are integral domains. First we need a lemma. Lemma 7.3. Let R^{M} be a module and $a, b, c \in M$ such that $\ell(a) \subset \ell(b)$ and (Ra, Rb, Rc) are independent. Then $R(a+b+c)=[R(a+b) \oplus \operatorname{Fc}] \cap$ $[\mathrm{R}(\mathrm{a}+\mathrm{c}) \oplus \mathrm{Pb}]$.

Proof

$$
\begin{aligned}
& R(a+b)+R c=R(a+b+c)+R c \\
& R(a+c)+R b=R(a+b+c)+P b
\end{aligned}
$$

Hence $[R(a+b) \oplus R c] \cap[R(a+c) \oplus R b]=[R(a+b+c)+R c] \cap[R(a+b+c)+R b]$

$$
\begin{aligned}
& =R(a+b+c)+[R(a+b+c)+R c] \cap R b \text { (applying the modular law) } \\
& =R(a+b+c)+[R(a+b) \oplus R c] \cap R b \\
& =R(a+b+c)+R(a+b) \cap R b \text { (since (Ra, } R b, R c) \text { are independent) } \\
& =R(a+b+c)+\ell(a) b \\
& =R(a+b+c) \quad \text { (since } \ell(a) C \ell(b)) .
\end{aligned}
$$

Theorem 7.4. Let P be an integral domain and R^{M} a free module of rank 2 3. If S^{N} is a faithful module with $\Sigma: L\left({ }_{R} M\right) \stackrel{C}{\approx} I\left({ }_{S} N\right)$ then there is a semi-linear isomorphism: $(R, M) \cong(S, N)$ inducing Σ. Proof

Let $\left(a_{i}\right)_{i \varepsilon I}$ be a basis for M. Define $P_{i}=\sum_{j \neq 1} R e_{j}$ and $Q_{1}^{*}=\left(P_{1}^{*}\right)^{\Sigma}$. By theorem 4.6 there is a semi-innear isomorphism ($\left.\ell, \mathrm{s}\right)$: $(R, M) \cong(S, N)$ which for each $i \in I$ induces $\Sigma: L\left({ }_{R} P_{i}\right) \cong L\left(S_{i}\right)_{1}$.

Let $m=\sum r_{i} e_{i} \in M_{1}$ If $r_{i}=0$ for some $1 \in I$ then $m \in P_{1}$ and so $(\mathrm{Rm})^{\Sigma}=\mathrm{Sm}^{\mathrm{I}}$. Assume $r_{i} \neq 0$ for any 1 c I.

Since I has at least three elements we can write m in the form
 and ($R x, R y, R z$) are independent and so by lemma 7.3 we get $R m m$ $R(x+y+z)=[R y \oplus R(x+z)] \cap[R z \oplus R(x+y)]$. Now $R x, R(x+z) \subset$ P_{2}^{μ} and $R y, R(y+z) \subset P_{1}^{*}$ and so $(R x)^{\Sigma}=S x^{3}, R(x+z)^{\Sigma}=S\left(x^{s}+z^{s}\right)$, $(R y)^{\Sigma}=S y^{3}, R(y+z)^{\Sigma}=S\left(y^{3}+z^{8}\right)$.

$$
=S\left(x^{5}+y^{8}+z^{5}\right) \text { since } \ell\left(x^{5}\right)=0 \text { and }\left(S x^{5}, S y^{5}, S z^{5}\right)
$$

are independent. Hence $(\mathrm{Rm})^{\Sigma}=\mathrm{Sm}^{s}=(\mathrm{Rm})^{s}$ and it is now clear that (ℓ, s) induces ε.

We now prove a generalization of a result in Wolfson (1). Wolfson shows that if R and S are both principal left ideal domains and I is a non-empty set then $R_{r f I} \underline{\underline{n}} S_{r f I}$ implies $R \cong S$. Definition. A ring R is called indecomposable if R contains no 1dempotents other than 0 or 1 i.e. R has no proper left ideals as direct summands.

Theorem 7.5. Let R be an indecomposable ring and S a ring. Suppose I and J are non-empty sets and that $R_{r r I} \cong S_{r f J}$

If either (1) S is a local P.F.ring and I and J are finite
or (2) S is a P.F. ring
then $R \cong S$.

Proof

(2) Suppose I and J are finite with n and melements respectively. We have then $R_{n} \cong S_{m}$ and without loss of generality can assume n, mare both ≥ 3. By von Neumann's theorem we have a lattice isomorphism $\Sigma: L\left(R^{R}\right) \cong L\left(S^{m}\right)$.

Let $\left(e_{i}\right)_{1}^{n}$ be a basis for P^{n} and $Q=\left(R e_{1}\right)^{\Sigma}$. Now Q is finitely generated projective. If S is a local F.F. ring then Q is free.

But Re_{1} has no proper direct summands and hence neither does 2 . Hence Q must be free on one generator i.e. $Q \underline{\underline{N}} \mathrm{~S}$. Therefore by cor.1 of theorem $4.2 R \cong$ S.
(2) Suppose $\ell: R_{r f I} \cong S_{r f J}$. Let $R^{M}={ }_{R}^{I}$ and $S^{N}=S_{S}^{S}$. By lerma 1.7 $R_{r f I}=\operatorname{End}_{R}(M)$ and $S_{r f J}=\operatorname{End}_{S}(N)$. Let e be the 1dempotent of $R_{r f I}$ with 1 in the $(1,1)^{\text {th }}$ place and zeros elsewhere. If $f=e^{l}$ then
 no idempotents other than oorl. But f $S_{r f J} f \cong \operatorname{End}_{S}($ Mf $)$ where Nf is the image of 5 . Hence $N f$ has no proper direct summands.

Now $N=N f \oplus N(1-f)$ and so $N f$ is prajective. If S is a P.F. ring then Nf is free. Therefore as Nf has no proper direct summands $N f$ is free on one generator and soR \mathbb{E} End $_{S}(N f) \cong$. Cor.1. Let R be an integral domain and S a ring. Suppose I and J are non-empty sets. If either (1) S is a local P.F. ring and I and J are finite or (2) S is a P.F. ring then $R_{r f I} \cong S_{r f J}$ implies $R \cong S$. Proof

Since R is an integral domain it is indecomposable. The result then follows from theorem 7.5.

As a principal loft ideal domain is a P.F. ring cor. 1 includes the results of Wolfson as a special case.

Theorem 7.6. Let R and S be non-Ore domains with $\Sigma: L\left(R_{R}\right) \cong L(S)$. Then
(1) if \sum satisfies C_{1} or C_{2} then $R \cong S$
(2) $R{\underset{M}{S}}^{S}$
(3) if S is a local P.F. ring $R \cong S$
(4) $I(R) \cong I(S)$

Proof

Since R is a non -Ore domain it contains a free module of infinite rank. Let $\left(e_{i}\right)_{1}^{\infty}$ be a basis for it.
(1) Suppose \sum satisfies C_{1}. Then $\left(R e_{i}\right)^{\Sigma}=S f_{i}$ for some $f_{i} \varepsilon$. . Now \sum induces $L\left({ }_{R} \bigoplus_{i=1}^{\infty} R e_{i}\right) \cong L\left({\underset{S}{i=1}}_{\infty}^{\infty} S f_{i}\right)$. As S is an integral domain f_{i} is a free element and so by corr to theorem $4.2 R \cong S$. by symmetry the result holds if Σ satisfies C_{2}.
(2) Let $R^{M}=\bigoplus_{i=1}^{\infty} R e_{i}$ and $S^{N}=\Omega^{\Sigma}$. Then E^{N} contains free elements and so $L\left(\left(_{R} M\right) \cong L\left({ }_{S} N\right)\right.$ implies by theorem 3.4 that $R \cong S$.
(3) From (2) R $\cong \operatorname{End}_{S}(Q)$ where S^{2} is a progenerator. If S is a local P.F. ring then Q is free. Since R is indecomposable Q has no proper direct summand and so is free on one generator. Therefore $R \underline{\underline{L}}$. (4) R and S both have zero singular ideal and so $I(P)$ and $I(S)$ are left

Now $A \in E\left(R_{R}^{P}\right)$ if and only if for any left ideal $B, A C^{\prime} B$ implies $A=B$. Hence it is clear that $E: L\left({ }_{R} R\right) \cong L(G S)$ induces $E\left({ }_{P} R\right) \cong E\left({ }_{S} S\right)$ and so $F\left({ }_{I(R)} I(R)\right) \cong F\left(I(S)^{I(S))}\right.$.

Suppose A.is a left ideal of $I(R)$. . Then A is a R-submodule of $R^{I}(R)$ and so $A \cap R \notin 0$. Let $0 \notin \varepsilon A \cap R$ and suppose there is an element $q \in I(R)$ with $q \varepsilon=0$. If $q \neq 0$ then are non-zero elements $r, s \in R$ such that $r q=s$. But sa $=r a=0$ and this is impossible since $s \neq 0$ and $a \neq 0$. Hence $q=0$ and $\ell_{I(R)}(a)=0$.

We have shown that every left ideal A of $I(R)$ contains a free element i.e. contains a copy of $I(R)$ as a direct summand. clearly $I(R)$ is properly infinite and upper continuous so by theorem 6.16 $I(R) \cong I(R)_{n}$ for any integer n.

Take $n \geq 3$ then by cor. 3 of theorem 2.3 and lemma 1.3 $I(R) \cong I(R)_{n} \cong I(S)$.

Remark 1. In (4) we could have taken S to be ans ring with zero singular ideal.

Remark 2. The results of this theorem would seem to indicate that for any non-Ore domains P and $S E: L\left({ }_{R} R\right) \cong L\left({ }_{S} S\right)$ implies $R \cong S$. we have been unable to prove this.

Finally we note that the injective hull of a non-Ore domain has some rather remarkable properties.

Example 7.6. Let R be a non-0re domain and Q its (left) injective hull. Then
(1) Q is left self-injective but not right self-injective
(2) Q is upper continuous but not lower continuous
(3) 2 is simple
(4) for any countable set $I Q \cong Q^{I}$ right Q-modules
(5) for any integer $n \quad Q \cong Q_{n}$
(6) every finitely generated left ideal of Q is free on one generator
(7) Q is a left and right P.F. ring.

Proof
(1) Q is left self injective and so upper continuous. If Q were also right self injective then Q would be lower continuous and hence continuous. But Q is infinite and as is well known a continuous regular ring is finite (see e.g. prop. 80 of Skornakov (1)). Hence Q cannot be right self injective.
(2) The arguments above show that Q cannot be lower continuous.
(3) Any non-zero left ideal A of Q contains an element a with $\ell_{Q}(a)=0$ (see proof of (4) of theorem 7.5). But a $Q=e Q$ for some idempotent $e \varepsilon Q$ and so $(1-e) a=0$. Therefore $=1$ and $a Q=Q$. Thus $A Q=Q$ for all non-zero left ideals A and $s 0 ~ Q ~ i s ~ s i m p l e . ~$
(4) and (5) follow from theorem 6.16 since Q is properiy infinite and upper continuous
(6) Let Q be any ring and Q and Q^{B} injective modules. Suppose there are Q monomorphisms $A \longrightarrow B$ and $B \longrightarrow A$. Then Bumby has shown (see Bumby (1)) that $A \cong B$.

Now if $A \in F(Q)$ then A is a direct sumand of Q and so is Q-injective, But A contains Q as a direct summand (see proof of.(4) of theorem 7.5). Hence by Bumby's result $A \underline{\underline{Q}} \mathbf{Q}$ i.e. every finitely generated left ideal of Q is free on one generator. (7) By a result of Bass (corollary of theorem 3 of Bass (2)) Q is a right P.F. ring. But by Kaplansky (1) every projective left Q-module over a.regular ring Q is a direct sum of finitely generated left ideals of Q. Hence by (6) Q is also a left P.F. ring.

Amemiya I., Halperin I.
(1) Complemented modular lattices. Canad.J.Math., 11 (1959), 481-520. Amitsur A.S., Levitzki J.
(1) Minimal identities for algebras. Proc.Amer.Math.Soc., l (1950), 449-463. Baer R.
(1) Linear alǵebra and projective geometry. Academic Press, New York, 1952.
(2) The significance of the system of subgroups for the structure of the group. Amer.J.Math., 61 (1939), 1-44.
(3) A unified theory of projective spaces and finite abelian groups. Trans.Amer.itath.Soc., 52 (1942), 283-343.

Bass H.
(1) The Morita theorems. Lecture notes, University of Oregon, 1962.
(2) Projective modules over free groups are free. J.Algebra, (1964). 367-373.

Birkhoff G.. Frink O. Jr.
(1) Representations of lattices bv sets. Trans.Amer. Math. Soc., 64 (1948). 299-316.

Bumby R.T.
(1) Modules which are isomorphic to submodules of each other. Arch.Math., 16 (1965). 184-185.

Cartan H., Eilenberg S.
(1) Homological algebra. Princeton University Press, 1956.

Cohn P.M.
(1) Universal alaebra. Harper and Kow, New York and London, 136\%.
(2) A remark on matrix rings over free ideal rings. Proc.Cambridge Pinilos.Soc., 62 (1966), 1-4.
(3) Free ideal rings. J.Algebragl (1964), 47-69.

Eckmann B., Schopf A.
(1) Über injektive Moduln. Arch.Math., 4 (1953), 75-78.

Jacobson N.
(1) Structure of rings. Amer.Math.Soc.Colloq. Publ,Vol. 37, 1956.
(2) Some remarks on one-sided inverses. Proc.Amer.Math. Soc. .1(1950), 352-355.

Johnson R.E.
(1) Quotient rings of rings with zero singular ideal. Pacific J.Math., 11 (1961), 1385-1392.

Kaplansky I.
(1) Projective modules. Ann.of Math., (2) 68 (1958), 372-377.
(2) Modules over Dedekind rings and valuation rings. Trans.Amer.Math. Soc., 72 (1952), 327-340.
(3) Rings of operators. Lecture notes, University of Chicago, 1955.
(4) Any orthocomplemented complete modular lattice is a continuous geometry. Ann.of Math., (2) 61 (1955), 524-541.
(5) Projections in Banach algebras. Ann. of Math.g(2) 53 (1951). 235-249.

Lambek J.
(1) On Utumi's ring of quotients. Canad.J.Math., 15 (1963), 363-370.

Leavitt W.G.
(1) Modules over rings of words. Proc.Amer.Math.Soc., 7 (1956), 188-193.

Mreda F.
(1) Kontinuierliche Geometrien, Springer-Verlag, Berlin, 1958.

Morita K.
(1) Duality for modules and its applications to the theory of rings with minimum condition. Sci.Rep.Tokyo Kyoiku Daigaku, Sect.A, 6 (1958), 83-142.

[^0]: *Part of this theorem was communicated to the author as a conjecture due to Lawvere in the form $R \underset{M}{\mathcal{S}}$ if and only if "the infinite matrices over R and 3 are isomorphic".

