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Abstract 

The viscoelastic properties of soft lining materials are of enonnous interest and 

importance as they clearly govern the biomechanical function of these materials. 

Forced vibration (Non-resonant) dynamic mechanical analysis was used to characterise 

the viscoelastic properties of a wide range of commercial (8 brands) as well as 

experimental soft liners (7 fonnulations). Forced vibration DMA is the ideal way of 

studying these materials as it can closely and accurately mimic physiological 

temperatures and frequencies under which they operate. 

The materials were studied as processed, and subsequently after simulated ageing for 

time periods up to twelve months. The water absorption and the subsequent changes in 

the viscoelastic behaviour of these materials are important as they spend a large part of 

their working lifetime immersed in solution. 

The results, where possible, were compared with the work of other researchers, and any 

sources of discrepancy examined. It was noted that the materials whose glass to rubber 

transition (Tg) was near their operating temperature (i.e. the acrylics) were particularly 

prone to any changes in the time and temperature domain of the experiment. 

A large variation was observed in the properties of the commercial materials available. 

At 37°C and 1 Hz a seven fold range was seen in the real part of the modulus (2.79-19.7 

MPa), and a fifty fold range was observed in the loss tangent (0.029-1.52). Given this 

wide disparity it is surprising that a universally recommended range of properties does 

not exist, although there is some speCUlation in the literature. 

The study of the ageing behaviour of these materials in water showed that the traditional 

hardening of the acrylics has been overcome. A heat cured silicone material was seen to 

be virtually unaffected by time, while for a cold cured competitor the opposite was true. 

New and experimental materials showed a wide range of behaviour after immersion in 

water. 
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CHAPTER J 

1.1. Soft Lining Materials: Basic Definitions 

Soft lining materials were defined by Wright (1980a) as: 'Soft, elastic and resilient 

materials forming all or part of the fit or impression surface of a denture.' Their main 

aim being to protect or increase comfort for patients who can not tolerate a hard denture 

base. 

Softness can be defined by the elastic modulus (E) or compliance (D) where one is the 

reciprocal of the other (E = 1 / D). Modulus for a given material is in turn defined by 

the amount of stress needed to achieve a certain strain ( E = stress / strain). Elasticity 

implies that a material will return to its original shape after a given deformation. 

Resilience being related to the rate of recovery, a resilient material recovering quickly. 

The label 'Resilient' lining material is also in common usage (Storer, 1962a,b; Bascom, 

1966). Resilient is not a good name for these materials as it does not imply softness, 

steel for example being a very resilient material. 

1.1.1. A Brief History of Soft Lining Materials. 

- The first mention of soft lining materials was in 1869 by Twitchell. These early 

materials were made from natural rubber products. The exclusive use of natural rubber 

continued until the middle of this century when the first synthetic soft lining materials 

were developed. The move away from natural rubber was partially due to its high water 

absorption which led to dimensional instability and fouling over time. Another reason 

was the change over from vulcanite (a hard rubber based material) to poly­

methylmethacrylate (PMMA) as the main denture base material. Although recently new 

improved experimental natural rubber materials have been investigated (Wright 1981), 

they were again found to be unsatisfactory, due to high water absorption and toxicity. 

By far the biggest share of the research in this field is therefore directed towards 

synthetic materials. 
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CHAPTER 1 

Plasticised polyviny1chloride (PVC) was one of the first synthetic materials to be used 

towards the end of second World War (Matthews, 1945). The main problem with this 

material was that the plasticiser leached out, hence hardening the material. Problems 

with adhesion to the denture base were also found. PVC's use in one form or another 

was continued until the 1960's, but the problems associated with this material were 

never solved and its use has been discontinued. 

Other early contenders were the plasticised acrylic materials (Bates and Smith, 1965). 

This class of material shared the problem of hardening due to the loss ofplasticiser with 

the PVC materials, but had the advantage of good adhesion to the PMMA denture base, 

being of a similar chemical family. Several routes have been taken to relieve this 

hardening problem. One is by using a base material with a lower Tg such as a higher 

methacrylate (e.g. swapping ethyl for methyl). This relieves the need for large quantities 

of plasticiser. Two other philosophies include the use of an unleachable polymerisable 

plasticiser. The other, the use of elastomers mixed in with the methacrylate monomers. 

Both methods have achieved some success (parker, 1982). Acrylic materials are still 

widely used today forming part of the work carried out in this thesis and so will be dealt 

with in detail in a following section. 

Silicone soft lining materials based on dimethylsiloxane appeared at about the same 

time and like the acrylics have passed the test of time and are still used today. The early 

silicones suffered from requiring high processing temperatures and containing toxic lead 

catalysts (Lammie and Storer, 1958). This problem has been solved and, as will become 

apparent, materials today can be either heat or cold cured. The problems traditionally 

associated with the silicones have been poor adhesion with PMMA and poor tear 

strength. 

Of the materials that have come and gone through the years the hydrophilic acrylic 

materials are one of the more interesting ones and deserve a mention. These were acrylic 
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CHAPTER 1 

polymer with hydrophilic groups. They were supplied in gel fonn and become hard and 

brittle after polymerisation. On immersion in water, water readily migrates into these 

materials and softened them by acting as a plasticiser. Materials of this type suffer 

because of the volume change associated with their water absorption. One way around 

this would be to manufacture them in a solvent, which would later leach out and be 

replaced with water, volume for volume. In practice this has not been successful 

(Wright, 1976). 

Other developments in the field include a polyphosphazine based elastomer (Gettleman 

& Gerbert, 1987), a fluoroelastomer (Braden et aI, 1997) and light cured soft lining 

materials for chair-side convenience (See section 1.4). The polyphosphazine, and a light 

cured material will be discussed in more detail as they are two of the materials being 

investigated in this report. 

Liquid supported dentures have also been suggested as an alternative to soft lining 

materials (Davidson and Boere, 1990a,b). The basic concept is to make a denture whose 

base is covered with a pre-shaped flexible foil containing a high viscosity liquid. The 

idea being that the fit surface of the denture would continuously respond and adapt to 

the mucosa. While a good conceptual idea, clinical trials were not successful as the 

majority of the dentures were found to leak. 

1.1.2. Uses and Function of Soft Lining Materials. 

The uses of soft lining materials in medicine and dentistry (Wright, 1980a; Lammie & 

Storer, 1958) can be summarised as follows: 

• In lower and upper dentures when the patients masticatory mucosa is found 

deficient. 

• For developing retention by engaging undercut areas. 
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CHAPTER I 

• The manufacture of obturators for the aid of patients with clefts or defects of the 

palate. 

• Other uses: maxillofacial prosthesis, mouth guards, hearing aids. 

This first application of soft lining materials is the Inost widely spread as pointed out by 

Storer (1962a) ' ... the greatest number of cases in which resilient lining' are helpful are 

those showing senile or presenile atrophy of tissue. ' In old age the human body suffers 

from degradation and the oral tissues share in this phenomena. The mucosa shows a 

reduction in the number of cell layers, thickness, resilience and the effective area of the 

load bearing surface of dentures is reduced* (Lammie and Storer, 1958). The result of 

this increase in the effective stress is often bruising and pain as the nerve endings in the 

mucosa are compressed between the hard denture base and the underlying bone. 

Lammie and Storer state: "Even in severe cases, comfort may be obtamed by making a 

complete lower denture with a soft lining. ". 

Ks 

BONE 
BONE Km 

a) b) c) 

Figure 1.1.1. Representation of the role of soft liners. a) shows the case where a soft 
liners is not used, the mucosa is cOlnpressed between the denture base and bone. b) 
shows the case where a soft lining material is available and c) is a simple physical 
ITIodel representing the mucosa and the soft lining material. 

• The deficiency of the oral mucosa may, in addition to atrophy be due to injury, oral ur 'ery or trauma 

from ill fitting dentures 
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CHAPTER J 

Figure 1.1.1 b is a diagrammatic representation of the application of soft lining materials 

(SLM) in the denture mucosa interface as opposed to using a hard denture base ( 1.1.1 a). 

Although this is by no means the universal application. There have also been reports of 

using soft liners in the interface between the artificial teeth and the denture base 

(Bernhausen, 1971). In either case although the clinical success of soft lining materials 

has been demonstrated over the years (Storer, 1962b; Bates & Smith, 1965; Schmidt & 

Smith, 1983a,b) the exact mechanical function of soft lining materials is still open to 

debate (Braden et aI, 1995). Theoretically however three possible mechanisms can be 

found in the literature: 

One is by distributing the given biting load evenly, thus relieving the patient of 'sore 

spots' of high mechanical stress. A common misconception (Qudah et aI, 1990; McCabe 

1990) is that soft linings somehow reduce the total masticatory forces transmitted by the 

denture to the underlying tissues, this is not true (Braden et aI, 1995) by virtue of 

Newton's third law of motion. For example, lining a bathroom scale with a layer of soft 

lining material will not have an affect on the weight (i.e. force) registered by it. 

The second mechanism by which soft liners work is by reducing the impact stress 

carried to the underlying mucosa. That is to say they reduce the height and intensity of 

the peak at the moment of impact, by virtue of their time dependent nature (Kawano et 

aI, 1993). 

A third mechanism can be envisaged in terms of energy considerations using the 

following mechanical model. Consider the soft lining material and the mucosa as two 

simple springs in series, with stiffnesses Ks and Km respectively (figure 1.I.c). The 

deformation of each spring (X) as a result of a masticatory force F is obtained from 

Hooke's law. Thus: 
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p=x xK 
s s and F=X xK 

m m 

The fonnula linking the Force across a spring to its energy content (W) is 

p2 
W ----

2K 

This applied to our two springs in series yields 

W= F2[_1 +_1 1 
2 K K 

m s 

CHAPTER 1 

1.1.1. 

1.1.2. 

1.1.3. 

It can be seen from equation 1.1.3. that the layer of soft lining material stores some of 

the masticatory energy, and indeed if softer than the mucosa most of the energy (Braden 

et aI, 1995). This is of course a simplification, as the effect of the viscoelasticity of the 

soft lining material or the mucosa is not taken into account. The biomechanics and 

clinical implications of soft lining materials are discussed in greater detail in section 1.5. 

The second use of soft liners mentioned by Lammie and Storer (1958) was to increase 

retention of the denture where parts of the fit surface of the mouth are undercut. Fig 

1.1.2. aims to explain the problem. If a soft liner is unavailable then the usual procedure 

is to remove some of the hard acrylic from the fit surface of the denture. As can be seen 

on the left hand side of the diagram below, the dark grey area is removed. The problem 

being that an air pocket is left which reduces the retention of the denture. On the right 

hand side of the diagram, the procedure with soft lining materials is shown. The light 

grey area represents the soft liner. As this is inserted into the mouth the compliant 

flanges are displaced and if elastic will spring back as the denture is inserted into 

position. Thus the increase in the retentive force is two fold, that due to the elimination 

of the air pocket, and the elastic grip of the soft lining material. 
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The dark grey area represents the area cut 
away when soft lining materials are not 
available, leaving an air pocket. 

The light grey area, on the right represents 
the case where soft lining materials are 
used. 

Figure 1.1.2. Improved retention with soft lining materials 

Soft lining materials can also be used as obturators. The defects of the palate and their 

treatment is dealt in some detail by Watt (1957). The aims of the treatment being to 

eliminate feeding difficulties and restoring normal speech, this being achieved either by 

surgery or the obturation of the defect. The main problem with the prostheses of the 

cleft palate is one of retention, where the principles used in full dentures are 

implemented. Watts lists pre-vulcanised latex as his material of choice, although admits 

that it deteriorates after a few months. More recently Polyzois (1992), has used a light 

curing material as an obturator, and states the ease and rapidity of the technique as its 

main advantages. 

Soft lining materials are also used in the fabrication of maxillofacial prostheses. Murray 

(1979) showed the applicability of a soft liner to the treatment of various patients using 

maxillofacial prostheses. Protective mouth guards utilise a similar family of materials 

although different physical properties are looked for (Going et aI, 1974). Soft lining 

materials also have possible application as ear mould materials (Okpojo and Braden, 

1993). 

Tissue conditioners are a class of materials similar to, but distinct from soft lining 

materials, both in terms of physical and chemical properties. They are briefly discussed 

here for completeness. The literature abounds with cases where the two classes have 
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been confused (Duran et aI, 1979; Ellis et aI, 1980; Graham et aI, 1990). Tissue 

conditioners are designed for temporary usage only (Braden, 1971). This fact is 

sometimes not taken into account and the two classes of material are, unfairly, judged 

against each other. The tissue conditioners are then found to have weaker properties and 

subsequently dismissed as inferior materials. 

Tissue conditioners are supplied as powderlliquid system (usually: poly­

ethylmethacrylate powder and liquid compromising a phthalate plasticiser and ethanol). 

When mixed the ethanol swells the polymer beads and allows penetration by the 

plasticiser. A gel is formed by the entanglement of the polymer chains, it contains no 

permanent cross-links. This gel is viscoelastic in that it will flow under constant loads as 

a fluid, but will respond elastically to dynamic loading, as in mastication (Braden, 

1971). They are used primarily after tissue trauma, either from surgery or ill fitting 

dentures. 

1.1.3. Ideal Properties of Soft Lining Materials 

The fact that so many types of soft lining materials exist is proof that none of them have 

the ideal properties which the clinician and the patient look for. More than 40 

proprietary soft liners had been reported in the literature in 1980(a) by Wright, this 

number has certainly increased with time. The search for the perfect soft lining material 

requires an understanding of the ideal properties which are required. A short discussion 

of the ideal properties is therefore given below. 

Soft lining materials and their components need to be compatible with body tissues with 

which they come into contact. They have to be tasteless and odourless and most 

importantly non-toxic. Several liners have had to be withdrawn for fear of toxicity in 

one of their components, e.g. those containing 2-ethoxyethylmethacrylate (Aiken, 

1988). 
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They should not stain or otherwise be affected by food, tobacco, alcohol and denture 

cleaners. It was found in particular that the denture cleaner used can have a dramatic 

effect on the mechanical properties of soft liners (Bates and Smith 1965). 

The soft lining material must not support the growth of bacteria and micro-organisms, 

notably Candida Albicans (Wright, 1980b). In wearing hard dentures, the surface is 

smooth and good oral hygiene is sufficient to keep the oral environment in a healthy 

state. Conversely most soft lining materials show surface irregularities after a few 

months wear. This makes adequate hygiene difficult and so it is important that the 

material itself inhibits the growth of Candida Albicans. 

The material should be easily processed by conventional dental technology (Storer, 

1962a). Traditionally this has involved heat curing, under pressures available using a 

hand screw press and at temperatures not exceeding 100°C. Two types of curing 

systems exist for chair-side use. 'Cold curing' materials have been developed which do 

not require heat, but use an a-ctivctorto achieve polymerisation. Light curing materials are 

_ also available where light instead of heat initiates the reaction. Generally speaking light 

and cold curing materials are easier, quicker and more convenient to use, whereas the 

heat cured materials are often found to be more reliable. Microwaves have also been 

used as an alternative to heat curing (McKinstry, 1991). 

Ideally the material should be easy to work with (and if necessary repair) and 

inexpensive. Soft lining materials maybe used relatively infrequently in dental work 

shops and therefore need a good shelf life to be acceptable (Wright 1980a). 

A useful property for a soft liner, looked for by the clinician, is whether the material can 

be polished. Some materials whilst compliant at mouth temperatures become hard 

enough at lower temperatures to be conveniently trimmed and polished using standard 
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dental techniques. A smooth polished surface makes it harder for bacteria to live on the 

soft liner and therefore improves oral hygiene. 

They must be dimensionally stable during processing and use (Wright, 1981). This often 

implies low water absorption, as uptake invariably leads to swelling. There are two 

advantages of dimensional stability. Firstly the fit between the soft lining material and 

the mucosa does not deteriorate leading to loss of comfort or retention. Secondly any 

dimensional change would put a strain on the denture base/soft lining material interface 

thus increasing the likelihood of a crack. 

The material must adhere well to the rigid denture base (Storer, 1962a). This increases 

the life of the denture, provides better stability and reduces the likelihood of Candida 

Albicans growing at the soft lining/denture base interface. 

Good Viscoelastic properties are needed. The material should be soft and have a low 

modulus, although the degree of compliance is at present uncertain and a range of 

materials with different stiffnesses have been reported as successful (Bates & Smith, 

1965; Braden & Clarke, 1972; Braden et aI, 1997). The material should be reasonably 

elastic (not lose its shape), although problems with a 'rubber ball' or bounce effect have 

been mentioned (Bascom, 1966). The effective softness of the lining material can in part 

be altered by its thickness, a thick layer of material feeling softer (Wright, 1976). 

Although this is true the thicker the soft lining layer, the thinner the denture base has to 

be as there is only a limited amount of space in the mouth. A thin denture base means a 

flexible one which is prone to fracture. So in effect the thinner the layer of soft liner, the 

better. Soft lining materials should also retain their shape, as loss of shape has a 

detrimental effect on the fit of the denture which will lead to loss of comfort and 

retention. 
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The soft lining material should have a reasonable life span and in particular have 

permanency of compliance. Lammie and Storer (1958) noted that the function for which 

the material is being used for is an important consideration. In cases of tissue trauma a 

liner which hardens gradually was suggested as possibly being the best solution. Five 

years is normally considered to be an average age for a denture and PMMA has 

sufficient mechanical properties for this. (Wright 19808}Gonzales & Laney (1966) 

suggest 2 years to be an adequate life for a soft liner. There have been reports of soft 

lining materials lasting up to 8 years and even outlasting the acrylic teeth used in the 

denture (Wright, 1994). 

The frictional properties of soft lining materials have also been the subject of debate 

(Suchatlampong et aI, 1986). In general the coefficient of friction of soft lining materials 

is higher than that of poly(methylmethacrylate) denture base materials, which can lead 

to loss of comfort for some patients. Related to the frictional properties of a soft lining 

material are its wettability characteristics. Wettability is important for the comfort and 

retention of the denture (Wright, 1981), this is particularly important in a dry mouth. 

Poor wettability can lead to increased irritation. 

High abrasion resistance is another important property (Storer, 1962a). If abrasion 

resistance is low the surface quickly looses its original shape, which can lead to a loss of 

comfort as far as the patient is concerned. On a microscopic level it will also have 

detrimental effects on oral hygiene as noted above. 

Lastly the soft liners should be aesthetically pleasing, matching the colour of the denture 

base. 
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1.1.4. Aims and Objectives. 

Although all the above properties are important for a successful soft lining material; this 

contribution will focus specifically on their viscoelastic properties. This is important, as 

noted by Watts in 1994: 'An understanding of both moduli and viscoelasticity is 

valuable in the appraisal of clinical performance of biomaterials' . It is thought that an 

investigation of this kind would be particularly useful with respect to soft liners. This is 

because their biomechanical function is clearly dependent on their viscoelastic 

characteristics. 

The aim of this work, therefore is to study the viscoelasticity of soft lining materials at 

frequencies and temperatures encountered in the oral environment. The manner in which 

such viscoelastic properties change in the wet oral cavity, throughout the life of the 

material are also very relevant and thus the effect of ageing will also be investigated. 
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1.2. Viscoelastic Properties of Polymers. 

This section introduces the concept of viscoelasticity in polymers, together with some of 

the experimental techniques used to gauge it. 

1.2.1. The Origins of Viscoelasticity. 

Mechanical properties of all common materials have traditionally been expressed by one 

of two physical laws, first fonnulated by two great scientists and rivals of the 17th and 

18th centuries, Sir Isaac Newton l and Robert Hooke2 (Tschoegl, 1989). 

For solids, Hooke said that stress (0') is always proportional to the strain (E) and 

independent of the rate of strain. Any material obeying this law is referred to as a 

Hookian (linearly elastic) solid. Materials of this type store all their energy of 

defonnation and will spring back if given the opportunity. 

On the other hand Newton's law of liquids states that the stress is proportional to the rate 

of strain (dE/dt), but not to strain itself, and so any liquid exhibiting this phenomena is 

- tenned Newtonian. This class of material dissipates all the deformational energy put 

into it, as heat. These two ideas are often expressed in the following well known 

constitutive equations: 

O'=E8 

d8 
0'= 1]-

dt 

1.2.1. 

1.2.2. 

Where E and 11 are the constants of proportionality for the given material, in other words 

the material properties, elastic modulus and coefficient of viscosity respectively. 

1 Sir Isaac Newton, (1642-1727) English physical scientist and mathematician, one of the greatest figures 

in all of science. 
2 Robert Hooke (1635-1703) English experimental physicist, generally regarded as the founder of the 

theory of elasticity. 
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These two laws assume infinitely small strain and rate of strain respectively. As soon as 

the perturbations become large, springs will no longer be linear and will not spring back 

to their original shapes, and similarly liquids will not behave perfectly due to 

turbulence. 

Furthermore Newton's and Hooke's laws are idealisations of the real world. No material 

is perfectly elastic or viscous. Take as an example the creep of steel pipes; or in relation 

to dentistry, the flow of amalgam under constant stress. These physical properties are in 

practice time and temperature dependent. For example, all metals go from the extreme 

of being a liquid at above their melting point to being a solid. In short no material obeys 

either of the above laws exactly and in reality all materials display some viscoelastic 

behaviour. 

Although all materials are affected by temperature, polymers are unusual in that their 

material properties change rapidly from being a near perfect solid to a liquid over a 

relatively small temperature range (a few 100°C). The next section looks at the 

characteristics of polymers in their various physical states. Only amorphous materials 

are considered, as polymers used in dentistry are predominantly of this type. 

1.2.2. The Mechanical States of Polymers 

The classification of the thermo-mechanical properties of polymers based upon their 

stress-strain response was formally carried out by Meares in 1965 and reinforced in 

relation to dentistry by Clarke (1978). Four states of existence were distinguished, the 

first being at the low temperature (high frequency) end of the spectrum and the last 

being at the high temperature (low frequency) end: 
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• The Glassy state, or in other words low elastic region. 

• The Leathery state, or retarded elastic region. 

• The Rubbery state, or high elastic phase. 

• The Viscous state, or the liquid phase. 

Although these divisions are idealised they provide a good insight into the way the 

mechanical properties of polymers change with increasing temperature. More will be 

said of the molecular interpretation of the stress/strain response in the following section. 

In the present discussion the mechanical response of the different polymer phases is 

described by two transient methods of testing, retardation and relaxation testing, 

commonly called creep and stress relaxation, respectively. 

1.2.2a. Creep Testing 

What is meant by a creep test is that an instantaneous stress is applied to the sample and 

then held constant for a set time and then instantaneously released. This can also be 

termed a stress pulse (Figure 1.2.1). Meanwhile the strain behaviour caused by this 

perturbation is investigated: 

In the glassy state, that is to say the low temperature or high frequency end of the 

spectrum* , the application of the stress produces an instantaneous strain AB whose 

magnitude is maintained until the load is removed at G. The strain then drops to zero 

along DG. There is no need to complicate the situation by differentiating between 

cross-linked and uncross-linked polymers as cross-links between polymer chains play 

no role in the glassy region, Figure 1.2.1 a. represents the behaviour of any Hookian 

solid and glassy polymers can be considered as such for low strains. 

* The relationship between temperature and frequency will be dealt with in a later section. 
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Figure 1.2.1. Idealised creep curves for the four (Glassy, leathery, rubbery and viscous) 
states of a polymer. The dashed lines indicate an uncross-linked polymer. 
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In the leathery curve the given stress produces a small instantaneous strain AB followed 

more gradually by BCD, reaching an elastic limit at D. Removal of the stress is 

accompanied by an instantaneous drop in the strain DE followed more slowly by EF as 

the polymer slowly regains its original shape. The dashed lines represent the case for an 

uncross-linked polymer, the instantaneous response AB remains unchanged. The 

difference becomes apparent during BC'D' where no equilibrium is ever reached, the 

strain increasing indefinitely. The same type of behaviour is again seen on removal of 

the load, D'E' being instantaneous, followed by a slow recovery along E'F' which runs 

parallel to EF. This leaves a permanent deformation FF' in the material due to the plastic 

flow of the uncross-linked chains during AG. FF' is sometimes referred to as the 

permanent set of the material. 

In the rubbery state the whole deformation is almost instantaneous, with Be being 

nearly vertical. The strain then remains constant during AG and upon release the 

material springs back to its original shape with no permanent deformation. This is not so 

for an uncross-linked specimen where the strain slowly increases during CD'. On 

removal of the stress the recovery is almost instantaneous, but not completely FF' again 

being equal to the plastic deformation during the experiment which is equivalent to DD'. 

Although the shape of the curves for the glassy and cross-linked rubber phase look very 

similar the scales are not. The rubbery phase being more extensible by a factor of many 

hundred percent. 

The viscous phase occurs at the extremely high temperature end of the spectrum as the 

polymer melts into a viscous liquid. It can only exist for uncross-linked polymers and is 

briefly mentioned for completeness. Upon the application of the stress the material 

begins to freely flow, with no elastic response. Furthermore upon removal of the stress 

no appreciable recovery takes place. 
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1.2.2b. Stress Relaxation 

The stress relaxation experiment involves imposing a constant strain on the 

sample for a set duration of time and investigating the change in stress which often 

ensues. 

The behaviour of a glass is instantaneous as for an ideal Hookian solid. The relaxation 

behaviour for a cross linked polymer in the leathery region is shown in figure 1.2.2. For 

a cross-linked polymer the high stress initially produced relaxes to a small steady value 

D. Upon removal of the strain a similar, negative stress is produced which dies down to 

zero as can be seen. The uncross-linked specimen is characterised by the fact that the 

stress BC'D' will decrease indefinitely and given the chance will eventually reach zero. 

It can be seen that a cross-linked rubbery material shows no relaxation at all and as in 

the previous section differs from a glassy polymer only in magnitude rather than type of 

behaviour. The uncross-linked material behaves similarly to a leathery material in this 

test and eventually decays to zero stress on the application of the strain and its removal. 

The viscous case shows a constant zero stress because a true liquid, no matter how 

viscous can not maintain a stress. 

Strictly speaking the leathery region is the only one for which the term viscoelastic 

applies, but in reality all of the other phases can be modelled as viscoelastic providing 

that a suitable ratio of elastic to viscous components is chosen. 
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1.2.3. Dynamic Mechanical Analysis (DMA). 

The two static experiments just described are ideal for investigating the viscoelastic 

behaviour of materials for significant time scales: minutes, hours, days or even longer 

periods. It is not however practical to carry out these transient experiments, for short 

time scales. One second is the shortest time limit for which stress relaxation and creep 

tests can be conveniently carried out. If shorter time spans than this are of interest then 

dynamic mechanical analysis (DMA) is used. 

In forced vibration dynalnic testing, the salnple is put under a dynaInic load with 

frequency f (Hz)"'. For a material subjected to a sinusoidally varying displacement the 

strain E is given by 

8= 8 sinmt 1.2.3. 
max 

For a viscoelastic material the stress cr and the strain are found to be out of phase with 

each other by an angle 0, this is shown in figure 1.2.3. The stress is then given by 

()= () sin(mt + 8) 
max 

Stress 

Strain 

1.2.4. 

Stress in phase 

Stress out of phase 

Figure 1.2.3. The dynalnic stress-strain behaviour of a viscoelastic material. 

'" This is equivalent to an angular speed 0) (rads/sec) and the two quantities are linked by the following 

equation 0) = 21tf. A dynamic test at 0), is qualitatively equivalent to a transient test of time t = I/O) 
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A more instructive way of expressing this equation is by splitting it up into two parts by 

trigonometric identities. One section containing the part of the stress in phase with the 

strain and the other part which is 1t radians (or 90°) out of phase with the strain thus: 

a= a (cos8sinmt + sin8cosmt) 
max 

1.2.5. 

This has a direct physical significance as the part in phase represents an ideal Hookian 

solid and the part out of phase represents an ideal Newtonian liquid, The mathematics is 

further clarified by writing 

a= e (E'sinmt + E"cosmt) 
max 

1.2.6. 

where 

E'= (a Ie )cos8 
max max 

1.2.7. 

E" (a Ie )sin8 
max max 

1.2.8. 

Where E' is known as the storage modulus and represents the elastic component of the 

modulus of the material, and E" is known as the loss modulus and represents the viscous 

component of the modulus of the material. 

E"/ E'= tan 8 1.2.9. 

Tan () is a useful ratio denoting the relative viscous and elastic behaviour of the material. 

E', E" and tan () are functions of temperature and frequency for a given polymer. 

The above discussion is general in that no distinction arises between different modes of 

deformation and varying geometry's. Terminology relating to the dynamic mechanical 

method can be found in the literature (ASTM D 4092 - 90). In these standards E, G and 

K are used to denote tension/flexure, shear and compression respectively. This 
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nomenclature is not followed in this report, which is concerned mainly with 

compression, Here E is used to denote the modulus in compression. 

1.2.3a. Complex Notation 

CHAPTER 1 

An alternative way of expressing these ideas is to use complex notation. As will be 

shown in appendix A, complex notation can drastically simplify the mathematics of 

viscoelasticity. It has been seen that viscoelastic response is made up of two 

components out of phase with each other. This can be traced back to Hooke's and 

Newton's laws (equations 1.2.1. and 1.2.2.), which deal with strain and the rate of strain, 

respectively thereby introducing a 900 phase difference between the viscous and the 

elastic components. 

Imaginary, Viscous 

E" 

E' 
Real, Elastic 

Figure 1.2.4. Complex notation in dynamic mechanical analysis. 

In complex notation the strain and stress are : 

PAGEl3 



CHAPTER 1 

s= s expiOJ{ 
max 1.2.10 

CJ= CJ expl( OJ{ + b) 
max 1.2.11 

Figure 1.2.4 shows the use of complex notation. As before E' is the storage modulus and 

E" the loss modulus. The complex modulus E* is defined such that 

E*= E'+ iE" 1.2.12 
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1.3. Molecular Interpretation of Viscoelasticity in Polymers 

Although so far the discussion of viscoelasticity has been broadly directed at polymers, 

much of what has been said applies to other viscoelastic materials. It is now time to 

focus specifically on polymers and examine what it is about their molecular make-up 

which accounts for their viscoelastic behaviour. 

Figure 1.3.1 is a_ schematic diagram showing the change in the storage modulus and loss 

tangent of a typical amorphous polymer as a function of temperature and time. The 

segments marked on the diagram correspond to the four states of polymers discussed 

earlier. It can be seen that there are no clear dividing lines between the four states, only 

a gradual change of behaviour. The following two sections look at the molecular 

explanation for this behaviour in terms of temperature and then time. 

Modulus 

Loss 
Tangent 

Glassy region 

Frequency 

Glass Transition 
region 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

Rubbery 
region 

Viscous 
region 

- - -

Temperature 
Time 

Fig 1.3.1 The temperature dependence ofa typical amorphous polymer. 
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1.3.1. Temperature Dependence. 

At the lowest end of the temperature scale the material is said to be glassy, implying 

hardness, brittlness and a high modulus ( ~ GPa). The deformation energy loss in the 

material is negligible. In this region the thermal vibrational energy of the molecules is 

not large enough to overcome the energy barriers to facilitate movement of the segments 

of the polymer chain relative to each other. Hence the long polymer molecules are 

locked rigidly into fixed positions, or 'frozen' in. They vibrate around these fixed 

positions and only interact with their immediate neighbours in a similar way to common 

materials such as metals and ceramics. Because of this the matj· al is relatively 

insensitive to the presence of cross-links. 

Sometimes small peaks relating to secondary transitions can be seen, these are 

commonly of small magnitude, with minimal effect on the modulus. They are caused by 

the limited movement of side groups or the main chain. These include rotation of side 

groups such as methyl and 'Crankshaft' rotation of a small number of adjacent molecules 

in a chain (Boyer, 1963). 

As the temperature of the polymer rises the molecules vibrate with increasing 

amplitude. The temperature at which the molecular chains have sufficient thermal 

energy to start short range movements is called the glass transition temperature or Tg. 

This movement of polymer chains is accompanied by a spectacular drop in the modulus 

of the material (3 orders of magnitude). The loss tangent similarly increases to a peak 

due to the increasing molecular friction. This zone of polymer behaviour is known as 

the leathery region as the material changes from a glass to a rubber. 

As the temperature is further increased there comes a point when nearly all the polymer 

chain segments have gained enough energy to move and are free to change their 

configurational arrangements, at this point the modulus again becomes insensitive to 

temperature and is constant ( ~ MPa magnitude). The loss factor diminishes after its 
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peak in the leathery region to a low value, although not as low as in the glassy region as 

there are frictional forces opposing the configurational changes. These features 

characterise the rubbery zone. The chain molecules are now free to take up many 

random arrangements. This leads on to the statistical theory of rubber-like elasticity 

which was postulated in the 1930's. The theory explains the large extensions which 

characterise polymers in this region and other thermal-mechanical effects peculiar to 

rubbers (Treloar, 1958). 

Upon further heating a dramatic difference becomes apparent between cross-linked and 

uncross-linked polymers, whereas before their behaviour had been very similar. Firstly, 

considering the uncross-linked polymer: as the temperature increases the molecular 

motions become larger and larger so that eventually it is possible for molecules to slip 

past each other in a wholesale manner as their energy becomes greater than that of the 

local entanglements which up to now had served as temporary cross-links. This will 

eventually lead to the polymer being a viscous fluid. Not surprisingly this zone of 

polymer behaviour is known as the viscous region. This viscous state does not exist for 

the cross-linked polymer, although the modulus will in practice decrease slightly with 

increasing temperature. The cross-links keep the polymer together up to temperatures at 

which chemical degradation occurs. 

1.3.2. Time and Frequency Dependence 

It was mentioned that the state in which a polymer exists depends on the temperature of 

the experiment. This is true, but is only half of the truth because time is an equally 

important variable. Even at constant temperature different time scales will produce all 

the four states previously discussed. An everyday example is common glass which to 

our day to day perception (relatively fast time scale) appears as the archetypal hard and 

brittle solid, but given sufficient time (100's of years) will flow under its own weight 

just like a liquid. Glass windows from historic houses are often appreciably thicker 
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towards the bottom. So the arguments presented in terms of temperature can be 

reiterated in terms of time and frequency. 

On the shortest of time scales the long polymer molecules have insufficient time to 

reorientate themselves substantially and react to stresses by distorting intermolecular 

distances. These small scale, high energy distortions have the effect of producing a high 

modulus, low loss material: a glass. If given sufficient time the molecules have the 

opportunity to change their configuration to relieve sites of particularly high stress, this 

opportunity to reconfigure the structure of the chain is the glass transition and is 

accompanied by a drop in modulus as well as an increase in the loss tangent of the 

material. At longer times the polymer molecules have time to reorganise themselves 

freely and can be considered as flexible chains. The effect of these motions are governed 

by the statistical theory of rubber elasticity. At still longer times the molecules have 

sufficient time to flow past each other and the material is in effect a viscous liquid. 

1.3.3. Glass Transition Temperature. 

From the preceding discussion the importance of the Tg or glass transition temperature 

is clear, as nearly all material properties change drastically at this point. Consider a soft 

lining material mounted on a rigid denture base. The glass transition of the lining 

material must be at or below mouth temperature if the material is to be considered soft, 

while the Tg of the denture base must be significantly higher than any temperature the 

material is likely to encounter in its lifetime or the denture is likely to soften and 

subsequently warp. 

As noted by Ferry (1980) the use of the word 'transition' can lead to confusion. As the 

'Glass transition temperature (Tg)' which is a single point (or very narrow region) on the 

temperature scale, is often muddled with the 'glass to rubber transition region' which is a 

larger temperature range pertaining to the leathery behaviour of the material. 
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1.3.4. Measurement of the Glass Transition 

At the onset it must be recognised that the Tg is not simply a universal constant for a 

given material. Different methods of measuring Tg will invariably give different results, 

so that the ' ... Tg is a property of an experiment as well as a material' (Gee, 1970). The 

mode and parameters of the experimental procedure can have a dramatic effect on the 

Tg. The most common experimental techniques where by the T g is determined are 

explained below. 

Dilatometry is the classic and in principle the simplest experimental method for the 

determination of the Tg. The linear (a) or volumetric (v) expansion of the material in 

question is observed as it is cooled through its transition, a plot of the following kind is 

then seen: 

Volume 

OR 

Length 

Tg Temperature 

Figure 1.3.2 Expansion versus temperature for a typical polymer at its transition. 

A discontinuity is seen in the expansion coefficient (either linear a or volumetric v.) 

which is taken as the Tg. The experimental value of the Tg thus obtained is still not a 

fixed quantity and is dependent on the rate of cooling (Gee, 1970). Generally the slower 

the experiment, the lower the value for the Tg. 
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Calorimetry can give similar results, although in this case the sample is heated through 

its Tg rather than cooled. In this case the heat capacity (Cp) is plotted against 

temperature where a discontinuity is seen at the Tg. Again the slower the experiment 

the lower the observed value of the transition temperature. 

2000 

~ 
~ 1000 

cr 

o 
100 150 

Tg 

200 250 300 

T(K) 

Figure 1.3.3. Heat capacity of amorphous polypropylene (Gee, 1970). 

The dynamic viscoelastic behaviour of a material can be used to determine the T g 

(ASTM. E 1640 - 94). Referring to the dynamic mechanical method used in this 

investigation, peaks in the loss modulus or the loss tangent can both be taken as indexes 

of the glass transition. The loss modulus peaks being at a lower temperature than the 

loss tangent. Again the results are affected by the rate of heating or cooling of the 

sample as before. In addition to which they are affected by the rate or frequency of the 

application of the loading. Dynamic methods invariably yield higher values ofTg than 

static methods such as calorimetry and dilatometry. 

Dielectric relaxation is another technique for the study of transitions in polymers. Its 

principles are as follows. If a polymer is SUbjected to an electric field, any molecule 

with an asymmetrical distribution of positive and negative charge (i.e. pole) will tend to 
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align with the field. The scale of this polarisation phenomenon is measured by the 

dielectric constant of the material which is a macroscopic property. Any molecular 

rearrangement of the type seen during the glass transition is hence observed (Aklonis & 

MacKnight, 1983). 

Other, more unusual, methods to determine Tg's can be derived from examining other 

material properties which also change at the Tg. These include optical properties, 

refractometry, craze relaxation, penetrometry, radiothermoluminescence, 

chromatography and buoyancy (Brandrup and Immergut, 1975). 

It is clear that the rate of the experimental procedure can influence the results. These 

'rate effects' fall into several categories. For example, fast heating or cooling rates may 

not allow time for temperature equilibrium within the sample, this is especially true for 

samples with large thermal inertia. 

Experimental Method Frequency (Hz) Measured Tg (C) 

Dielectrics method 1000 32 

Mechanical vibration 89 25 

Slow tensile 3 15 

Dilatometry 0.01 7 

Table 1.3.1 The dependence of the Tg of poly (3.3-blschloromethyloxacyclobutane) on 
the time scale of the experiment. (Sandiford, 1958) 

The rate of application of the electrical or mechanical stimulus has a profound influence 

on the value of Tg obtained, static or slow methods always giving lower values. An 

indication of the effect of frequency is given by the results obtained by Sandiford in 

1958, (table 1.3.1). 
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1.3.5. Theories of the Glass Transition 

The glass transition temperature has been the subject of scientific debate since its 

existence was recognised. Many theories have tried to account for its subtleties from 

different perspectives. The theories can be classified according to the approach taken by 

the theoretician. Iso-viscous, Thermodynamic, Free volume, Relaxational and Statistical 

theories have all been proposed (Gee, 1970; Arridge, 1975). Here two of the best known 

and widely accepted theories are examined. 

1.3.5a. Thermodynamic Theory. 

Some early theories of the glass transition were based upon a thennodynamics 

approach, where the Tg has been likened to thennodynamic changes of state such as 

melting and vaporisation. These transitions are characterised by the equality of the 

Gibbs free energy (G) for the two phases at the transition temperature (i.e. melting or 

boiling point): 

and 1.3.1. 

However the entropies (S) and volumes (V) of the phases are not equal and show a 

discontinuity: 

and 1.3.2. 

But entropy and volume are both first order derivatives of the Gibbs free energy so that: 

dG=-SdT+VdP 
1.3.3. 

and 
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So that melting and boiling can be referred to as 1 st order transitions. Conversely for a 

2nd order transition, the 2nd partial derivative of Gibbs free energy, such as the ones 

shown below show a discontinuity. 

Such that: 

and 

c 
J!... 
T 

=aV 

1.3.4. 

1.3.5. 

1.3.6. 

It is just this type of behaviour which is detected in dilatometric and calorometric 

experiments. So that the Tg can be argued as a second order thennodynamic transition 

(Aklonis & MacKnight, 1983). This is not an entirely satisfactory explanation. For 

example the rate dependence of the Tg is in no way accounted for. 

1.3.5b. Free Volume Theories. 

In a previous section the Tg has been described as the point on the temperature scale 

where the thennal expansion coefficient (a) of a polymer* undergoes a discontinuity. 

This phenomena can be described in tenns of the 'free volume' which is an ill defined 

but useful concept for the understanding of the glass to rubber transition (Ferry, 1980). 

The free volume can be loosely defined as the empty space in a sample of polymer, i.e. 

the space which is not occupied by polymer molecules. So that the total volume of a 

polymer (V) is the sum of the occupied (V 0) and free volumes (V f): 

* This phenomena does not belong exclusively to polymers, but occurs in any liquid which can be cooled, 
without crystallising, to a sufficiently low temperature. 
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1.3.7. 

Above the Tg the free volume is high enough for the polymer molecules to have room 

to move and make configurational adjustments. As the polymer is cooled there is a 

reduction in the free volume until the Tg, below which there is insufficient free volume 

and the molecules are cramped into immobility. 

>' '-" 

~ -o 
> 
C) 

t;:: ..... 
C) 
Q) 

~ 

~ V 

Vo 

Vr 
Vf* 

~------------~-----------------------

Tg Temperature 

Figure 1.3.4. Diagrammatic representation of the change in volume and temperature for 
a polymer sample. (Young & Lovell, 1995) 

In the above diagram the space between the two lines represents the free volume, being 

the difference between Vo and V. The free volume below Tg can to all intents and 

purposes be assumed to be a constant and is labelled in figure as V t. The infonnation 

about the free volume shown in figure 1.3.4. can be represented mathematically as a 

function of temperature by the following two expressions: 
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* vf=vf T<Tg 

V =v* +(T-T )(BV) 
f f g or 

1.3.8.a,b 
T>Tg 

The fractional free volume is the ratio of the free to the total volume and is found to be a 

more useful quantity in practice (f= V f / V). A similar constant fg exists which is the 

ratio of V r* to the total volume. Thus dividing through by V we have: 

f=f g 

f=fg +(T-Tg)af 

T<Tg 

1.3.9.a,b 
T>Tg 

Where a f (deg-1) is the cubical thennal expansion coefficient of the free volume which 

will be given by the difference between the expansion coefficient of the glass and the 

rubber: 

a =a -a f r g 
1.3.10 

Related to the free volume concept is the WLF* equation. Although this principle was 

first developed by empirical curve fitting, it is now possible to derive it from free 

volume considerations. The simplest derivation involves using simple viscoelastic 

models (Young & Lovell, 1995). These models will be dealt with in some detail in the 

next chapter. For now the discussion is limited to a Maxwell model, consisting of an 

elastic spring and a viscous dashpot linked in series. The elastic component is 

designated to be temperature independent, while the viscosity of the dashpot does vary 

with temperature. The model has a relaxation time 't = 11 / E which itself is therefore 

temperature dependent. We can write: 

• So called after its authors, Williams, Landel and Ferry (1955) 
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1.3.11 

Where a,. is defined in this case as the ratio of the two relaxation times, or as it turns out 

the ratio of any mechanical property such as modulus or viscosity. The relaxation times 

can be arbitrarilyhosen, although for this argument Tg is used as a reference 

temperature. As was earlier mentioned in passing the concept of free volume is not 

limited to polymers and can equally well be applied to liquids. Doolittle (1951) studied 

the dependence of the viscosity of liquids on free volume and employed the following 

equation linking the two: 

1.3.12. 

A and B being empirical constants. The free volume term in this equation is then 

substituted for the fractional free volume term introduced earlier: 

1.3.13. 

Which at Tg becomes: 

1 
In1](T )=lnA+B --1 

g fg 
1.3.14. 

Substituting our definitions offand fg (1.3.9) into the above two equations and 

subtraction gives us 
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In 1](T) -In 1](T ) = In 1](T) 
g 1](T ) 

g 

=B 
1 1 ---------

l+al(T-T) 1 g g g 
1.3.15. 

Which can be rearranged, by using a single denominator and changing logarithmic bases 

to give: 

-(B I 2.3031 )(T - T ) 
g g 

1 lal+(T-T) g g 
1.3.16 

This last expression is in the form of the WLF equation. Which is normally written as 

-C(T-T) 
1 g 

1.3.17 

When the WLF equation was originally introduced (Williams et aI, 1955) it was thought 

that C1 and C2 were universal constants, with numerical values of 17.4 and 51.6 

respectively (Williams et aI, 1955). These constants have since been shown to vary 

slightly from polymer to polymer and a listing of these constants for some of the more 

common polymers can be found in Ferry (1980). Relating back to 1.3.17 C1 and C2 can 

be written in terms of the more fundamental quantities B, fa and a.t" 
" 

C= B 
1 2.3031 

g 

1.3.18 
1 

C =~ 
2 a 

1 
1.3.19 

Similarly B, fg and a.fare found experimentally to be near 1,0.025 and 4.8 x l~ (K-l), 

again their magnitudes found experimentally for different polymer systems can be found 

in the literature (Ferry, 1980). 
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1.3.6 The Effects of Chemical Structure 

The effect and influence which the chemical structure and molecular architecture of a 

typical polymer chain can have on its Tg and other properties can be subdivided into 

three distinct factors (Boyer, 1963): 

• Intennolecular forces 

• Chain stiffness 

• Geometry 

Unfortunately the effect of the interaction of these factors on the mechanical properties 

of a polymer are not as yet an exact science, although the general trends involved are 

well understood. For a given system the effect produced by changing one of its 

structural variables on the physical properties are observed experimentally. Where 

possible empirical formulae are used to quantify the relationship, but these are usually 

approximate in nature and apply to a limited number of systems and conditions. The 

WLF equation being an atypical example in that its application is more widespread than 

most. Discussion on the effect of chemical structure and physical properties will then be 

qualitative rather than quantitative. 

The basic requirement for any polymer with a low Tg is a flexible backbone as the ease 

with which main chain bonds rotate obviously increases chain mobility. Polyethylene 

with its carbon-carbon backbone has a Tg of -130°C* ,the insertion of an oxygen atom 

into this arrangement raises polyoxyethylene's Tg by 60° to -70°C (Table 1.3.2). 

* The Tg of Polyethylene is a matter of some contention because of the highly crystalline nature of this 

material. 
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Name Tg COC) 

Polyethylene -130 

Polyoxyethylene -70 

Poly(p-xylylene) 80 

Table 1.3.2. The effect on Tg from constituents of the polymer backbone (Young & 
Lovell, 1995). 

The trend can be taken further by the addition of larger stiffer structures such as a p­

phenylene ring into the polyethylene chain which gives poly (p-xylylene) a much higher 

Tg, at 80°C. 

Side groups attached to the main chain backbone have an equally large influence 

associated with their bulkiness and affect on packing. Side groups generally tend to 

create more free volume by disrupting the packing of the main chain and thus lowering 

the Tg. Table 1.3.3. shows the Tg ofanumber ofn-alkyl methacrylates whose esters 

contain 1-4 ,6 , 8 and 10 carbon atoms. A clear trend is observed as the higher 

methacrylates have progressively lower Tg's. 

n-alkyl Methyl Ethyl Propyl Butyl Hexyl Octyl Decyl 

methacrylates 1C 2C 3C 4C 6C 8C 10 C 

Tg COC) 115 62 38* 27 -5 -20 -70* 

Table 1.3.3. RelatIonship between Tg and sIde groups In the methacrylate famIly (Ferry, 
1980; *Braden et al 1997) 

The effect of side groups is not always so clear cut, although they can create more free 

volume as just described; they can also make the back bone more cumbersome and less 

mobile if they are excessively bulky and inflexible. Such an affect can be seen in 

polystyrene, which has a Tg of 100°C incurred largely by having a phenylene ring as a 
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side group (See table 1.3.4.). Polar side groups also act to decrease the free volume by 

increasing the intermolecular forces and pulling the chains closer together. This effect 

can be demonstrated by examining two vinyl polymers: polyvinylchloride (PVC) and 

polypropylene. The only difference between the two are the side group; which are CI in 

the former and CR3 in the latter. This difference is enough to increase the Tg of 

polyvinyl chloride by 100°C to 81°C compared to polypropylene at -23°C. This effect is 

also demonstrated by other polar groups such as OR and CN . 

Side Group (X) Clli CI Phenylene ring 

Glass Transition eC) -23 81 100 
Table 1.3.4. The effect of polar or bulky SIde group on the Tg of vinyl polymers of the 
type: (Clli-CHX) where X is the side group in question (Young & Lovell, 1995). 

The glass transition is usually insensitive to the molecular weight of a polymer at high 

molecular weights, but at lower molecular weights it falls with decreasing molecular 

weight. This is attributed to the increase in free volume associated with the chain ends. 

A low molecular weight polymer will have a higher number of chain ends per volume. 

These chain ends can move more freely as they are less restricted than central parts of a 

polymer chain. An equation of the following type is associated with this phenomenon 

(Brydson, 1975): 

T = yOO _K[_l 1 
g g M 

n 

1.3.20. 

Where the Tg rises proportionally to the reciprocal of the molecular weight (Mn), 

towards a maximum value (TgOO) associated with infinite molecular weight. K being a 

positive constant for a given system. 
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Plasticisers or diluents are molecules of low molecular weight which are sometimes 

added to polymers to reduce the Tg. The effect of adding plasticisers is to reduce 

intimate contact between the polymer chains and hence increase free volume. The 

common analogy is to compare a plasticised and unplasticised polymer to spaghetti with 

or with out butter, the plasticiser (butter) helping to lubricate the polymer network 

(Brown, 1988). A mathematical approach can be taken using the free volume theory, 

providing the_ effect of the two components are linearly additive. Then equation 1.3.9b 

can be rewritten as to take into account a system having a volume fraction of diluent: 

1.3.21. 

Where the subscripts p and d refer to the polymer and diluent respectively, and afp and 

afd are the coefficients of thermal expansion of the free volume in the polymer and 

diluent respectively. Invoking the free volume assumption that at T = Tg, f = fg. The 

above equation can be rearranged to give the Tg of the whole material as a function of 

its polymer and plasticiser components (Akonis & MacKnight, 1983). 

1.3.22. 

Copolymerisation of two or more homopolymers can have a number of effects on the Tg 

of the final material. In the case of a random copolymer where the constituents are well 

mixed one broad Tg will be seen at an intermediate value between the Tg's of the 

homopolymers. Free volume considerations of the type used in the discussion of 

plasticisers can be used to predict the behaviour of these systems. The trend observed 

for random copolymers of butadiene styrene experimentally is shown in figure 1.3.5. 
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Figure 1.3.5. Glass transition of styrene-butadiene random copolymer. ~ is the volume 
fraction of butadiene (Wood, 1958) 

A block copolymer on the other hand will have two distinct Tg's close to the 

temperature of their respective homopolymer. This is because on the atomic level the 

monomers from the two systems have not mixed well and there are distinct areas 

dominated by one or the other. 

Cross-links have the effect of binding polymer chains together and hence reducing free 

volume. For lightly cross linked systems the Tg is raised slightly. For increasingly 

heavily cross linked systems the Tg continues to rise but its effects virtually disappears 

as the chains are no longer able to make configurational readjustments. An example of 

this is 'Vulcanite' which is heavily cross-linked rubber occasionally used in dentistry as 

a denture base material. An investigation on the effect of cross-linking on Tg was 

carried out by Loshaek (1955), where he looked at PMMA cross-linked with various 

amounts (0 - 100%) ofEGDM (Ethyleneglycoldimethacrylate). This had the effect of 

raising the Tg from 108°C to 132°C. Loshaek recognised that the change in Tg was a 

function of a copolymerisation effect between the two materials, as well as a function of 

the cross linking itself. Particularly with the higher ratios ofEGDM what is being 

measured is the Tg ofEGDM copolymerised with small amounts ofPMMA. 
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Fillers of many types, sizes and shapes can be used to modify and improve the 

properties of polymers. A filler being defined as a solid additive incorporated into the 

polymer (Brydson, 1975). There are however grey areas as the above definition can 

apply to plasticisers and copolymers for example. Hard inorganic reinforcing particulate 

fillers are popular in elastomers to improve tensile strength, modulus, abrasion and tear 

resistance. The particle size is an important factor, with large coarse particles having an 

adverse affect. The shape of the particle can also make an important contribution. 

Because of these many variations there is no universal relationships between fillers and 

the Tg. Any dependence of the Tg on fillers can be explained in terms of the mechanical 

properties of the filler, and its effect on chain mobility and free volume. Diametrically 

opposite to the above use of fillers, is the use of rubbery fillers in rigid materials to 

improve their toughness and impact strength·. 

Other effects such as that of crys1sllinity or stereoisomerism which do not playa role in 

dental polymers and soft lining materials, which are in general atactic and amorphous 

(McCabe & Wilson, 1974) have been left out of this discussion. They can however be 

similarly treated in terms of packing efficiency and free volume. 

• This type of 'filler' has been reported with high impact denture base materials (Clarke, 1988). 
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1.4. Materials Under Investigation 

Table 1.4. summarises the commercial materials investigated in this report, together 

with their respective type, method of curing and manufacturer, as well as the 

abbreviated codes used to identify them in this report. 

Material Code Type Curing Manufacturer 

Super-soft, New NS Plasticised Heat GC Laboratories Inc. 

Acrylic Chicago. USA. 

Super-soft, Old OS Plasticised Heat Coe Laboratories Inc. 

Acrylic Chicago. USA. 

Futurasoft III FS Acrylic Heat Schultz Dental GmbH. 

blend Germany. 

Molloplast B MP Heat cured Heat Karl Huber GmbH. 

Silicone Germany. 

Flexibase FB Cold cured Cold Flexico Developments. 

Silicone Herts. UK. 

Novus, Old ON Poly- Heat Hygenic Corp. 

phosphazine Ohio. USA. 

Novus, New NN Poly- Heat Hygenic Corp. 

phosphazine Ohio. USA. 

Triad resiline TR Light Cured Light Dentsply International Inc. 

USA. 

Table 1.4.1. Commercial materials under investigation. 

1.4.1. Acrylic Based Soft Lining Materials. 

Acrylic polymers form an important part of dental materials in general and soft lining 

materials in particular. Of all the acrylics poly(methylmethacrylate) or PMMA is the 

most widely used, having applications as denture bases, artificial teeth, orthodontic 

appliances and of course as a component of acrylic soft lining materials. Soft acrylic 

materials are often supplied as powder/liquid systems. The powder commonly being 

polymer, while the liquid being a mixture of monomer, plasticiser and cross-linking 

agent. Upon mixing the two a dough is formed which is pressed into shape and then 

cured according to the manufacturer's instruction. 
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Material Polymer Monomer 0/0 Plasticiser 

Super Soft PEMA MMA 31.2 

Palasiv 62 PEMA BMA 24.9 

Soft Nobilitone PMMA MMA 58.8 

Vimia PEMA MMA, Ethyl acetate 36.2 

Verno Soft PEMA EMA 39 
. .. . . 

Table 1.4.2. TypIcal plastlclsed acryhc soft hmng matenals. E : Ethyl, M : Methyl, B : 
n-Butyl, MA : methacrylate (Wright, 1981) 

Table 1.4.2. lists a number of soft lining materials based on acrylic chemistry. As can be 

seen above they mostly incorporate methyl and ethyl methacrylate which have Tg's of 

115°C and 62°C respectively (table 1.3.3). The implication being that at mouth 

temperature they are both stiff and show glassy characteristics and hence are not suitable 

as soft lining materials. This has prompted the need for plasticisers, of various types, the 

percentage of which are also shown in the above table. It can further be seen that there is 

a trend in the amount ofplasticiser used to the Tg of the main material constituents. 

With 'Soft Nobilitone' (containing methylmethacrylate exclusively) needing a massive 

58.8% plasticiser. While 'Palasiv 62' with its n-butyl methacrylate component, has the 

lowest amount ofplasticiser (24.9%). 

The viscoelasticity of three commercial acrylic systems was determined in this report. 

Two of them being different formulations of the same trade material 'Supersoft', these 

are labelled OS, referring to the older version (Wright, 1981) and the newer variety 

(NS). In these materials the powder component appears to be unchanged, being poly­

ethylmethacrylate. Infra red analysis suggests that in the new formulation the liquid 

component has changed from being methyl to ethyl methacrylate with an undisclosed 

amount of plasticiser (Braden, 1996). 

PAGE 45 



CHAPTER 1 

The third commercial acrylic material goes under the trade name of 'Futurasoft ill' 

(referred to as FS). The powder is 80/20 butyl/ethyl methacrylate and the liquid is 

reported to contain a mixture of methyl, nonyl and tri-decyl methacrylate in 

undisclosed proportions (Wright, 1996). It is claimed that no plasticiser is used in this 

formulation, which seems to be confirmed by infra-red analysis. The composition of 

these three commercial soft liners are summarised in table 1.4.3. 

-

Material Powder Liquid 

as Poly( ethyl methacrylate) methyl methacrylate, 31.2% Plasticiser: 

butyl phthalyl butyl glycollate 

NS Poly( ethyl methacrylate) ethyl methacrylate, plasticiser. 

FS Poly(80/20 butyl/ethyl methyl, nonyl and tri-decyl methacrylates. 

methacrylate) 

Table 1.4.3. Summary of composition for acrylic soft lining materials tested. 

The method of curing for the three materials was as follows. The powder and the liquid 

were measured in suitable proportions (4 ml of liquid to 5 grams of powder) and mixed 

well. Although care had to be taken not to introduce too many air bubbles into the 

mixture. This viscous mixture was then left to stand for a while so that a non-sticky, 

elastic paste was formed*. This paste was subsequently sandwiched between 2 flat metal 

plates, covered with acetate sheets to prevent paste adhesion (see figure 1.4.1). A 2mm 

thick aluminium 'spacer' was used in the shape of a window to produce samples of the 

required thickness. The mould and paste were slowly compressed under a hand operated 

press, till the excess material had flowed out, leaving a 2mm thick sample behind. This 

mould was subsequently removed from the press, placed into a standard dental flask and 

heat cured in water. The following heating regime was used as recommended by the 

* FS was found difficult to work with as the mixture quickly solidified (i.e. short 'working time'). 
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manufacturers: 30 minutes at 60-75°C, bring to boil over the next 30 minutes and 

continue boiling for a further 10 minutes. The flask was subsequently removed from the 

water and allowed to cool to room temperature. The flask and metal plates were 

removed and the acetate sheets gently peeled away, leaving the sample encased in the 

aluminum window. The sample (2 mm thick and approximately 40 by 60 rom in area) 

was cut out using a scalpel and subsequently used for the various tests which form the 

experimental section of this text. 

Figure 1.4.1. A diagrammatical representation of the 'sandwich' used to make soft 
lining samples. The aluminium window is enclosed between 2 steel plates, acetate 

sheets are used to prevent adhesion. 
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The biggest advantages associated with the soft acrylic materials is their mechanical 

strength, as well as their excellent adhesion to PMMA denture base, being of a similar 

chemical family. Their main short coming has traditionally been the loss of plasticiser, 

and associated hardening (Braden et aI, 1995). Newer materials have either reduced, or 

completely eliminated the need for its use, as in the case of the experimental materials to 

be presented here. 

There is another class of acrylic materials which are cured at room temperature, with the 

aid of a catalyst. The properties of the cold cure materials are generally inferior to those 

of the heat cured type, polymerisation often being less efficient with residual free 

monomer left over (Braden et aI, 1997). None of the materials studied in this report are 

of the cold curing variety. 

1.4.2. Silicone Soft Lining Materials 

The two silicone materials mentioned here are both amongst the early commercially 

successful materials and can be neatly divided into two types with Molloplast B being a 

heat polymerising system and Flexibase being a room temperature curing system. The 

main component of both materials is silicone rubber whose Tg is 160°C below mouth 

temperature (McCabe, 1976). 

Molloplast B is arguably the best soft lining material on the market (Wright, 1981; 

Collis, 1993). Its chemistry is very complex, with one of its components, RTVI08 being 

a patented commercial material in its own right (Braden et al, 1997). Other components 

include PMMA, which is believed to help with the adhesion, y­

methacryloxypropyltrimethoxysilane and titanium dioxide in minute quantities· . The 

main advantage of this material is its low water uptake, but problems include poor tear 

strength, poor wettability and poor adhesion to polymethylmethacrylate denture base, 

• There is to date some controversy over the exact composition of this material (Riggs, 1997). 
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although the adhesion is an improvement on other silicones available on the market 

(Braden et aI, 1995). 

This material (MP) is supplied as a one paste system which can be cured by heat or 

microwave. This paste was placed into the 2mm thick metal windows as described 

above and heat cured in water. The water was brought to boiling point from ambient 

temperature and left at 100°C for 2 hours. The composition of this paste is shown 

below. 

Material Quantity 

General Electric RTV 108 (Acetoxy-cure silicone 720 parts 

material) 

Poly(methyl methacrylate) 19.15 parts 

y-methacryloxypropyltrimethoxysilane 9.16 parts 

Titanium dioxide + washung red 0.075 parts 

Table 1.4.4. Composition of Molloplast B (Braden et aI, 1997). 

The other material, Flexibase, (FB) is also supplied as a paste, with the aid of a liquid 

catalyst (dibutyl tin dilaurate) this paste was cured (utilising a condensation reaction) at 

room temperature, and so is more convenient in that it has 'chair side' applicability. Its 

main component is a-(t)-dihydroxy ended blocked poly( dimethyl siloxane) which is 

cross-linked by triethoxy silanol. A quantity of inorganic filler was also present 

(34.5%). FB has been noted in the past for its extremely high water uptake of up to 65% 

and associated poor dimensional stability (Wright, 1976). It also suffers from poor 

adhesion, wettability and low tear strength. 

The curing of this material involved mixing together the polymer paste and catalyst in 

the recommended proportions. As was the case with FS, this material was found 
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difficult to work with due to the short working time, as the paste quickly solidified upon 

addition of the catalyst. The manufacturers recommend leaving the material overnight 

for complete curing. 

1.4.3. Polypbospbazine Soft Lining Materials 

This novel material sells under the name of'Novus' (Gettleman et aI, 1987). It is based 

on poly(fluoroalkoxy) phosphazine elastomer. The complete composition is listed in 

table 1.4.5. 

Material Role Quantity 

Polyphosphazine fluoroelastomer Elastomer. 100 Parts 

Trimethylopropane trimethacrylate Cross-linker 18 Parts 

Ethylene glycol dimethacrylate Cross-linker 2 Parts 

Poly(methyl methacrylate) Filler 10 Parts 

BaS04 Radiopaque filler 15 Parts 

Lauroyl peroxide Initiator 1 Parts 

CdSSe dark red Pigment 0.2 Parts 

Table 1.4.5. Composition ofNovus (ON) (Braden et aI, 1997). 

The earlier version of this material (ON) had a characteristic look, with a speckled 

appearance caused by white particles. The formulation was later changed (here denoted 

as NN), it is believed by changing the initiator from lauroyl to benzoyl peroxide and 

eliminating the use of the PMMA filler (Gettleman, 1994). Both versions of the material 

were examined. The presence of the methacrylate groups confers good adhesion to the 

denture base, but the water absorption of the material is rather high (Collis, 1993). 

Both materials were supplied as a one paste system which were heat cured in an 

identical fashion. This involved packing the material under pressure into a two 
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millimetre thick sheet (using the metal mould), and then heat curing it for two and a half 

hours at 74°C, followed by boiling for 30 minutes. 

1.4.4. Light Curing Material 

'Triad Resiline' (TR) is a light curing material, it is supplied as a one paste mixture. This 

is pressed into the required shape as before but then cured using light. This particular 

material was cured for 5 minutes on each side, while trapped between acetate sheets in a 

2mm thick metal window, using the Triad curing unit. Light curing materials have the 

advantage over other materials in that they can be part cured in the mouth using a hand 

held light gun. This makes the process quicker and easier. 

TR 
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Figure 1.4.2. Infra-red spectrum of Triad (TR). Note ether band at 1100, isocyanate at 

2400 (Braden, 1996). 

Its exact chemistry is open to debate. It is believed to be a polyether-urethane 

dimethacrylate. Certainly the infra-red spectrum of this material (figure 1.4.2.) shows a 

major ether band, also the spectrum shows possible residual isocyanate groups (Braden, 

1996). This is alarming as there is concern over the toxicity of isocyanates (parker, 
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1982). A search of the literature did not reveal a reference to this material so its 

properties are largely unexplored. 

1.4.5. Experimental Soft Lining Materials 

In addition to the 8 commercial materials just described, 7 experimental materials 

developed at the Department of Biomaterials in Relation to Dentistry were also 

investigated. As has been mentioned previously the biggest problem with acrylic soft 

lining materials has always been instability in the mouth due to the leaching out of 

plasticisers. This has created the demand for a material with no plasticiser or one whose 

plasticiser does not leach out. The attempt to meet this need has resulted in two classes 

of experimental material (parker, 1982; Parker & Braden, 1982): that of elastomer­

methacrylate hybrids and acrylic based materials containing polymerisable plasticisers. 

1.4.5a. Elastomer I Methacrylate Hybrids 

The basic philosophy behind this type of material is to incorporate a polymer with a low 

glass transition (e.g. an elastomer) into a methacrylate system, thus creating a soft lining 

material with all the advantages of the current acrylic based materials without the need 

for plasticisation (parker and Braden, 1990; Parker et aI, 1996). The elastomers are 

either in pellet form, or in blocks which are cut into small pieces and then mixed with a 

methacrylate monomer prior to adding a cross-linking agent and an initiator. Initially 

butadiene styrene block copolymers were used, the range of elastomers used was later 

extended to include styrene-isoprene block copolymer and bromo-butyl rubber (Riggs, 

1997). The elastomeric materials upon which the formulations are based are listed in 

table 1.4.6. 
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Material Code Elastomer Suppliers 

BS Butadiene-styrene block copolymer Plascoats systems Ltd. 

SI Styrene-isoprene block copolymer Shell chemical Ltd. 

PB Bromo-butyl rubber Bayer AG. 

Table 1.4.6. Elastomeric content of the ElastomerlMethacrylate soft lining materials. 

In each case the elastomer was mixed in proportion with 2-ethylhexylmethacrylate 

monomer, lauryl peroxide initiator and ethyleneglycoldimethacrylate (EGDM) to act as 

a cross linker for the system (Supplied by Bonar Polymers Ltd). The ratio was 50 parts 

(by volume) monomer to 50 parts (by weight) elastomer with 1 part (volume) each of 

cross-linker and initiator*. This mixture was left to gel and subsequently cured by heat 

using conventional dental techniques. In this case the curing cycle involved bringing the 

dental flasks from ambient up to boiling point, and subsequently boiling for an hour. 

1.4.Sb. Polymerisable Plasticiser Acrylic Materials 

The motivation behind this material is similar to that of the elastomer based systems i.e. 

to overcome the problems traditionally associated with the acrylic soft lining materials. 

However the concept used is quite different. In this class of materials the plasticising 

agent is a polymer of low molecular weight, which can not easily leach out of the 

material. To be an effective plasticiser the molecular weight of the diluent must be as 

low as possible, but not so low that the molecule can freely migrate. A monomer of low 

reactivity has to be used so that suitable oligomers are formed (parker & Braden, 1982). 

Four materials of this type were examined. The first one (PP) was developed by Parker 

(1982) and subsequently used in clinical trials where it was found to be unsuitable due 

to mechanical failure (parker & Braden, 1989). The other 3 materials (e1, PE, PH), 

which are currently being developed are improvements on the previous generation of 

* 1 ml equating to 1 g 
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polymerisable plasticiser materials. The composition of the four materials, together with 

their codes are listed in table 1.4.7. 

Code Monomer Cross-linker Plasticiser 

PP 1-Tridecyl MA EGDM EHM 

65 5 30 

C1 1-Tridecyl MA EGDM EHM 

70 1 30 

PE 2-Ethylhexyl MA EGDM EHM 

70 1 30 

PH n-HexylMA EGDM EHM 

70 0.5 30 
. 

Table 1.4.7. LIqUId components and proportions (parts by volume) of the various 
polymerisable plasticiser systems (parker & Braden, 1989; IRC Annual Report, 
1996/97). 

All the four materials were packed and cured as the conventional acrylic materials, in 

this case they were cured overnight in a pressure cooker at 2 bars and 85°C . In each 

case this consisted of mixing together the powder and liquid in the correct proportions. 

The proportions for these materials being 1.75 millilitres liquid to 1 gram of powder. 

The powder component of each system remained unchanged as 80/20 n-butyl/ethyl­

methacrylate polymer (which contains approximately 1 % residual benzoyl peroxide 

initiator). The composition of the liquids is listed in table 1.4.7. As can be seen three 

varieties of methacrylate monomer are used, with the same cross linker and plasticiser: 

ethylene glycol dimethacrylate (EGDM), and di-ethylhexylmalete (EHM) in various 

proportions. 
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1.5. Soft Lining Materials, Mastication and the Oral Environment. 

Although soft lining materials are used extensively and have demonstrated clinical 

success, their exact mechanical function is not well understood. In particular, even 

though their function is clearly related to their viscoelasticity, it is unclear which range 

of these properties are clinically desirable (Braden et aI, 1995). In this, a laboratory 

based investigation of the viscoelastic properties of soft liners, it therefore seems 

pertinent to ask: what effects do soft lining materials have on patients? and what is the 

relevance of their viscoelastic properties on these effects? 

To attempt to answer these questions an overview of the clinical conditions and 

environment in which the materials operate is desirable. The following sections provide 

such an overview. In partiCUlar: 

• The cushioning role of the mucosa and soft lining materials are looked at. 

• The biomechanics of mastication in dentate patients and the subsequent effect on 

dentures and soft liners are examined. 

• Alveolar bone loss and possible links to soft lining materials are examined. 

1.5.1. Cushioning Effect of Oral Mucosa and Soft Liners. 

The Oral mucosa can be subdivided into three regions (Moss-Salentijn and Hendricks­

Klyvert, 1985) according to its function and properties. These regions are lining 

mucosa, masticatory mucosa and specialised mucosa. Specialised mucosa can be found 

covering the surface of the tongue only and its primary function is to taste. Lining 

mucosa covers the inside of the cheeks and the lips, the underside of the tongue as well 

as the floor of the mouth. It is characterised by its softness and mobility. which is 

attributed to the presence of a submucosa which attaches it to the underlying tissue 

(usually muscle). 

The main interest here is however limited to the masticatory mucosa as its function is 

closely related to that of soft lining materials. Masticatory mucosa covers the area 
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surrounding the teeth and the roof of the mouth. A layer of submucosa is usually absent 

and a direct connection exists with the underlying tissues, i.e. bone. Masticatory mucosa 

is by and large resistant to movement and if healthy is mechanically strong enough to 

withstand most masticatory loading. Any prosthetic device which rests on the mucosa 

must rest exclusively on masticatory mucosa as only this type of mucosa meets the 

requirement for a stable and relatively unmovable surface. 

The biological and mechanical properties of the mucosa were looked at by Kydd and 

Daly (1982). In particular they found that the mucosa showed evidence of time 

dependent, viscoelastic behaviour (Figure 1.5.1). Using a 10 minutes pressure pulse of 

10g/nun2 (in-vivo), an instantaneous elastic compression of 40% was seen. This was 

followed by a delayed elastic component of 10-20%. Upon release an instantaneous 

recovery is similarly followed by a delayed recovery which can last from 2 to 4 hours. 

Evidence of non-linearity was observed as doubling the magnitude of the load only 

served to produce an additional 5% change in the deformation. 
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Figure 1.5.1. Typical behaviour of mucosa under constant load. Loaded for 10 minutes, 
and allowed to recover. (Kydd & Daly, 1982). 
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Age was seen to have a dramatic effect. Using a similar experiment as outlined above, 

the dependence of compression and recovery of the mucosa on the age of subjects was 

observed. The recovery in particular was seen to be strongly dependent on the age of the 

subject. See table 1.5.1. 

Age 23 28 33 39 51 87 87 

Compression 68% 61% 58% 53% 57% 49% 450/0 

Recovery 95% 90% 87% 86% 80% 61% 56% 

Table 1.5.1. Effect of age on the deformation of the mucosa. The numbers represent 
the % of original thickness after compression for 2 minutes, and then the recovery after 
1 hour. (Kydd & Daly, 1982). 

The clinical significance of these results is that an elderly patient will take many hours 

to recover from moderate mechanical forces, whereas a young patient will only need a 

few minutes for the same amount of recovery. It is suggested by Kydd and Daly that in 

the case of an elderly patient wearing a denture over a period of several hours, a rest 

period of 2 days should be allowed before making impressions. In addition a low 

viscosity impression material should be used and it should be handled in such a way that 

the lowest possible force is transmitted to the mucosa. Several other authors (Tomlin et 

aI, 1968; Inoue et aI, 1985) have attempted to measure the viscoelastic properties of the 

oral mucosa. These will be dealt with in chapter 3 where a comprehensive survey of 

work carried out on the viscoelasticity of soft liners is undertaken. 

It has been suggested that soft lining materials are essentially artificial mucosa 

prostheses and must attempt to mimic the viscoelastic properties of the biological tissue 

to be successful (Haykawa et aI, 1994). In the authors own words: 'Soft lining materials 

are usually termed resilient liners. However, they should not have resiliency in the strict 

sense of the word. If the liner were truly resilient, the denture might tend to bounce 

away from the residual ridge with each application and release of masticatory force. 
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For the soft liner to function as a shock absorber to ease masticatory loads, it is 

essential that the liner have the same Viscoelasticity as the mucosa. A slow recovery 

following deformation under occlusal loading is more desirable than recovery that is 

instantaneously elastic. ' 

Other authors support this view point. Wagner et al (1995a): ' ... the ideal soft liner 

would have a low storage modulus and a high damping factor.' Although they warn that 

a high damping factor in a material might well lead to pennanent defonnation and 

therefore loss of fit. 

This interpretation of the ideal viscoelastic properties of a soft lining material is 

however in direct contrast to that of other workers. Holt et al (1991) for example, 

correlated the 'Rebound Index' (a measure of resilience) with improved clinical 

performance in a small group of patients, while Wright (1976) indicates that the ideal 

viscoelastic requirement for a soft lining material is similar to that of a silicone rubber 

(i.e. highly resilient). 

It seems clear that the ideal viscoelastic properties of the mucosa are open to debate, 

although what opinion there is seems to be divided into the two schools of thought 

outlined above. Unfortunately there has been little clinical, experimental or theoretical 

work carried out to elucidate which set of viscoelastic characteristics are ideal. A set of 

articles looking at the cushioning effect of soft lining materials are examined below. 

Although they do not provide a comparison between the different viscoelastic 

characteristics. 

The load transmission properties of different thicknesses of mucosa on the underlying 

alveolar bone was investigated in an experimental in-vitro study by Schwarz (1992). His 

method was as follows: he obtained and machined ox bone into 2 mm thick plano­

parallel sections. This was done as human post-mortem specimens were not available of 

PAGE 58 



CHAPTER 1 

regular and sufficient dimensions. The soft lining material Flexibase (PB) was used as a 

mucosa substitute, as its mechanical properties are allegedly similar to those of the oral 

mucosa (Tomlin et aI, 1968) He prepared the artificial mucosa in thicknesses ranging 

from 0.5 to 3 mm. Using spherical and cylindrical indentors the effect of the load 

bearing properties of the mucosa to the underlying bone was investigated. The author 

argues that the analytical benefits afforded by the use of this regular, and reproducible 

test regime, outweigh the advantages of a more realistic experiment of a similar nature. 

It was seen that as much as five times the load could be withstood by the bone before it 

was indented if the substitute mucosa was present. Not surprisingly the thicker the layer 

of artificial mucosa, the more energy was absorbed in its deformation. A layer 0.5 mm 

had only 20% of the effect of a 3 mm thick layer. 

An early Finite Element Analysis (PEA) based study was carried out by Aydinlik et al. 

in 1980 looking at the effect of soft lining materials on the underlying tissues using a 

model of a partial lower denture. Elastic elements with the following material properties 

were used in the model. 

Material Elastic Modulus (MPa) Poissons Ratio 

Bone 19600 0.3 

Acrylic Denture base 2350 0.29 

Silicone lining material 1.38 0.49 

Table 1.5.2. Material properties (Aydinlik et aI, 1980). 

The model did not include a mucosa and also did not take into account the effect of any 

viscoelasticity. A point load of25 kg was applied to two dentures one with and the other 

without a soft liner. It was seen that the stress distribution was more uniform when the 

soft liner was introduced. The vertical displacement of the alveolar ridge was also 

reduced. 
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A more realistic study entitled: 'Effect of soft denture liner on stress distribution in 

supporting structures under a denture' used time dependent linear viscoelastic finite 

elements in its investigation (Kawano et aI, 1993). Four 2-dimensional models were 

investigated; these included the standard case, where no soft lining was employed (A). 

Two models with the lining applied to the denture mucosa interface; in one case the 

lining extended to the periphery of the denture (B), in the other it did not (C). In the 

fourth model the lining was applied between the artificial teeth and the denture (D). 

Each model was deformed by a 50N vertical load set on the artificial teeth. Its time 

dependent response was observed in 0.1 second increments for a total of 3 seconds. The 

material properties assumed are listed in table 1.5.3. 

Material Mechanical Properties 

Denture Base (PMMA) Youngs Modulus, 1.96 GPa; Poissons Ratio, 0.3. 

Soft Lining Material Em' 1.2 MPa; Ev' 3.1 MPa; 11m' 5430 MPa.s; l1v' 9.8 MPa.s 

Mucosa Em' 1.1 MPa; Ev' 1.2 MPa; 11m, 250 MPa.s; l1v' 18 MPa.s 

Bone Youngs Modulus, 13.4 GPa; Poissons Ratio, 0.3. 

Table 1.5.3. Material properties used in FEA. The viscoelastic properties of the mucosa 
and the soft lining material relate to those of a 4 element Voigt model. The soft lining 
material considered was 'Kurepeet' (Kawano et aI, 1993). 

The following conclusions were reached: if no soft lining material was used the greatest 

stress concentration was on the lingual slope of the residual ridge. The displacement of 

the denture increased after the addition of a soft lining material, the amount and 

direction of this displacement was dependent on the design of the denture. As expected 

the addition of a soft liner reduced the stress intensity at the load bearing areas, again 

according to the denture design. Model D showed the most uniform stress distribution 

in the soft tissues. 
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1.5.2. Biomechanics of the Masticatory Cycle, and the Effect of Soft Liners. 

Mastication can be simply defined as the process of chewing food until it is reduced to 

small particles or 'pulp'. The large body of literature on the subject was reviewed in a set 

of three articles by Bates et al (1975a,b and 1976); looking in turn at the form, speed, 

rate, forces and efficiency of mastication. 

The form of the chewing cycle is 'teardrop' in shape for people with healthy dentition 

and is essentially a two phased motion. From the open position the mandible is raised in 

a straight 'crushing' phase, which is followed by a sideways 'grinding' phase. In the last 

part of the chewing motion the mandible goes back to its original open position, this is 

sometimes called the preparatory phase. 

Subjects tend to have a preference for one side of the mouth which they use for 

chewing. The choice of which side is associated with the state of the dentition, subjects 

choosing the side which gives them the best tooth contact. Where both sides are 

comparable they are used alternately, and the bolus of food is moved from side to side 

- by the tongue. The dimensions of the cycle are normally half the maximum vertical and 

lateral possible movement of the mouth, and become smaller as chewing continues, and 

the food particles are reduced in size. Good dentures allow the patient to function in 

much the same way as subjects with natural teeth, although denture wearers have to use 

the tongue, lips and cheeks to control, stabilise and retain the denture (Bates et aI, 

1975a). 

The speed of the mandible is not constant and varies in different parts of the chewing 

cycle. The mandible closes from an open position, in an upward direction and as contact 

is made the rate of closure dramatically decreases, and is usually accompanied by a 

pause during occlusion. The mandible then opens rapidly, usually at a faster rate than 

during the closing stroke, and gradually slows down as it nears the maximum opening 

position. Speed estimates range between 64 and 135 mmls (Bates et aI, 1975b). 
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Chewing rates exhibit a similarly large variation, ranging from 50 to 120 cycles per 

minute (0.8-2 Hz) have been reported, averaging at slightly over 1 cycle per second. 

There does not seem to be a noticeable change in the rate of chewing for people with 

and without dentures (Bates et aI, 1975b). 

The limiting factor which defines the forces developed during mastication is primarily 

the muscular power of the individual. Other factors include the pain threshold, and in 

denture wearers, the stability and retention of these devices. Forces developed in the 

mouth have been classified into two types: those developed due to a hard biting force in 

an empty mouth, termed the 'maximum biting force', the second group are those which 

occur during normal chewing of food. Again a large variation is seen clinically, with 

reported values of maximum biting forces· from 1 kg up to a massive 443 kg (Hagberg, 

1987) being reported. More conservative estimates rate the maximum bite force 

between the first molars to be from 0.9 to 89.9 kg. The force which can be obtained 

between the incisors is much less ranging between 0.45 to 37.7 kg. The forces used in 

- chewing are commonly much less than these maximum biting forces. Chewing forces 

between 0.3 to 7.2 kg are reported for people with their natural teeth (Bates et aI, 

1975b). Bite forces get progressively lower with short bounded saddle partial dentures, 

free end saddle dentures, and complete dentures. The exact amount of this reduction is 

again variable, but reductions of 5 or 6 times are reported (Zarb, 1982). Zarb also 

reported the mean denture bearing area to be 23 cm2 in the maxilla and 12 cm2 in the 

mandible for edentulous patients. 

The efficiency of mastication can be assessed using fractional sieving, i.e. by examining 

the particle size distribution of food when chewed for a given number of strokes (Bates 

et aI, 1976). Chewing gum is also occasionally used, the amount of sugar extracted over 

a time period or a number of strokes giving an indication of the effectiveness of 

• Strictly speaking the unit of force is the Newton (N). 
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mastication. Following a similar trend to bite force, the efficiency is seen to decrease in 

patients with dentures compared to those with natural teeth. A relationship between bite 

force and effectiveness has been reported (Heath, 1982). 

Such high variations in the biomechanical factors (frequency, force, etc.) of mastication 

are not surprising when one considers the many clinical, habitual and psychological 

factors which bear an influence, not to mention the widely differing testing 

methodologies which are employed in the literature. 

The fact that soft lining materials have not been mentioned in the preceding discussion 

is because very few studies have attempted to quantify their biomechanical effect, 

although their potential relevance in terms of biting force and masticatory effectiveness 

have been noted (Heath, 1982; Zarb, 1982). Wright (1984) being an exception to this, 

although his results were inconclusive (Table 1.5.4). He used a strain gauge 

'gnathometer' placed between the artificial first molar and premolar on each side to 

measure the maximum biting force. As can be seen the differences in maximum biting 

- force between test groups are small compared to the experimental differences. Using 

sugar extraction from chewing gum as his criteria he also looked at masticatory 

effectiveness and found a more profound difference (although not quite statistically 

significant). The trend being that soft liners improve masticatory effectiveness. 

Denture Type Biting Force (kg) Masticatory Effectiveness % 

Lined with Molloplast B 4.97 + 3.55 25.36 + 7.75 

Lined with other soft liner 4.58 + 3.48 20.25 + 7.85 

Conventional denture 4.76 + 3.75 19.14 + 6.71 

Table 1.5.4. Mean Maxlffium blte force and mastIcatory effectIveness for vanous 
denture configurations (Wright, 1984). 
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1.5.3. Alveolar Bone Loss and it's Relationship to Soft liners. 

The loss of alveolar bone from the edentulous patient is a common and serious problem. 

Although the exact mechanism is not fully understood, several factors including age, 

sex, hormonal imbalance and nutritional deficiency are associated with it. The factors 

affecting bone loss were grouped into three broad categories by Atwood (1971). 

Biological factors just mentioned. Anatomical factors include size, shape and bone 

density of the ridge. Mechanical factors which include the prosthesis design and its 

effect on bite forces, their direction and duration. 

MECHANICAL 

BIOLOGICAL ANATOMIC 

_ Figure 1.5.2. Co-factors affecting alveolar bone loss (Atwood, 1971). 

Relating to denture biomechanics and soft lining materials it is the mechanical aspects 

which are of interest. In particular two mechanisms are important; these are occlusal 

trauma and disuse atrophy, termed 'abuse' and 'disuse' by Storer (1962a). Two recent 

papers have reviewed alveolar ridge resorption (Devlin & Ferguson, 1991; Klemetti, 

1996). Their findings are discussed below. 

After their review of the literature Devlin and Ferguson (1991) could not find any direct 

evidence linking bone resorption with occlusal trauma despite the traditional link 

between the two. They surprisingly found that the amount of time worn or quality of the 

denture (occlusal balance) had no effect on the amount of bone loss. They did find that 

the rate of bone loss was higher in the mandible compared to that in the maxilla. This 
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they attributed to the smaller area and hence higher stresses in the mandible; although 

they again found no data correlating denture bearing area to rate of bone resorption. 

An increase in bone loss maybe analogous to disuse osteoporosis which can occur in 

any bone due to immobilisation or stress shielding (Devlin & Ferguson, 1991). Denture 

wearers have a well documented loss in biting force which can hence be linked with 

bone loss. This reduced force on the mandible may well result in the remodelling of the 

'excess' bone until only a mechanically minimal amount is left. Against this argument 

stands the fact that the loss in the mandible seems to be greater, which is inconsistent 

with its smaller surface area and hence higher stresses. Also an equilibrium is not 

always reached as one would expect from this argument and the bone resorption process 

can continue for thirty years or more. 

Devlin & Ferguson reached similar conclusions to that of Atwood (1971): that the 

mechanisms of bone loss are the superposition of various factors in particular local and 

systematic factors. Systematic factors can include age, sex and diet. Superimposed on 

- these are local factors such as occlusal trauma and disuse atrophy. 

More recently (1996) Klemetti reviewed the literature and in particular looked at the 

correlation between alveolar bone loss and osteoporosis. Based on this review it was 

concluded that masticatory forces were the dominant factor: 'occlusal forces must be 

considered to be the major cause of residual ridge resorption because these forces are 

able to cause rapid and thorough resorption without systemic bone loss, namely 

osteoporosis. ' 

Although clinical evidence is not consistant and quiet often contradictory it seems at the 

very least plausible that occlusal trauma and bone disuse due to a loss in biting force can 

have an important effect on alveolar bone loss. Considering soft lining materials once 

again; one would intuitively expect that the use of soft lining materials would have a 
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positive effect on both occlusal trauma (by distributing biting force more evenly) and 

disuse atrophy (by increasing comfort, reducing pain hence increasing overall biting 

force). Some clinical evidence does indeed exist linking the use of soft liners and 

reduced bone resorption. 

EICharkawi and ElMahdy (1988) used a radiographic technique to look at residual ridge 

reduction. The subjects were 17 edentulous men whose last extraction had been 6-12 

months previous to the trials. They all had a well developed residual ridge with firm 

healthy mucosa, no systemic diseases and no previous denture experience. These 

subjects were split into 3 groups. Group A given dentures lined at the mucosal interface. 

Group B given dentures lined between the acrylic teeth and the denture base and group 

C were used as controls with normal hard acrylic dentures. The lining material 

Molloplast B (MP) was used. Table 1.5.5 summarises their results: 

Man (A) Max (A) Man (B) Max (B) Man (C) Max (C) 

Average Ridge 0.1003 0.1446 0.088 0.1694 0.2553 0.2256 

Reduction (nun) 0.02262 0.0442 0.01907 0.0633 0.02333 0.03333 
. . 

- Table 1.5.5. Average ndge reductIon of the mandIble and the maxIlla after 6 months 
for various denture types (See text). Numbers in italic refer to the Standard deviation 
(EICharkawi & ElMahdy, 1988). 

As can be seen ridge reduction occurred in all three groups but was significantly lower 

for those patients wearing soft liners, although there was also no significant difference 

between the two methods of using the soft liner (A and B). It can also be noted that the 

use of a soft liner had a larger consequence for bone loss in the mandible which was 

seen to be significantly lower than in the maxilla. This is not consistent with other 

clinical studies looking at conventional denture types nor with the control group. 

The correlation between the use of soft lining materials and reduced bone loss were also 

noted by Badawy & EISherbiny (1992) although they were looking at different denture 
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types. Wright's (1994) observations also seem to agree with these findings over a longer 

time scale 'the mean mandibular residual ridge resorption over the 9-year period was 

very small.' . 
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CHAPTER 2 

2. Linear Viscoelastic Theory. 

In an earlier section Hooke's law, Newton's law and the concept of viscoelasticity were 

introduced together with 3 common experimental techniques used to gauge it. 

Viscoelasticity has been loosely defined as the property of a material exhibiting both 

elastic and viscous behaviour. This section attempts to take a more quantitative look at 

the subject. In order to make a mathematical approach practical, a number of 

assumption have to be made. These are called the assumptions of linear viscoelastic 

theory and have been previously used in the study of dental materials (Clarke, 1988). 

• Two types of deformation are involved. The total deformation is the summation of 

the viscous and elastic components considered separately. 

• Only small strains and rates of strain are considered and the relationship between 

these and the stress is considered to be linear. 

Newton's and Hooke's laws, as well as the other governing equations developed later in 

this chapter can be considered to be particular cases of the more general application of 

the linear viscoelastic equation of the following form: 

2 n 
d& d & d & 

BO&+B1dt +B2Z+···+Bn n 
dt dt 

2.1. 

Where the A's and B's are constants for a particular case. For example in the case of a 

Hookian spring AO equals one, BO is the modulus of the spring and the higher A's and 

B's equate to zero. 
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2.1. Viscoelastic Models 

Viscoelastic models are used to gain a greater insight into the behaviour of such 

systems. They can be broadly divided into two classes. The first type are called 

molecular models and as the name implies are concerned with the modelling of actual 

polymer molecules. The simplest of these look at the behaviour of isolated polymer 

molecules which can be treated as entropy springs, in a viscous environment of a 

solvent. Further complications arise when one considers the effect which polymer 

chains have on their neighbours, entanglements and cross-links (Aklonis & MacKnight, 

1983; Ferry, 1980). Molecular models are outside the scope to this chapter whose 

attention is directed to viscoelastic mechanical models. 

The second type of viscoelastic model are mechanical ones and are thus not strict 

representations of real microscopic processes in the polymer. They are however useful 

in that they provide an insight into the macroscopic behaviour of such systems. In 

addition to providing insight into viscoelastic behaviour these models have a number of 

theoretical and practical uses. As has been demonstrated they can be used in the 

derivation of theoretical concepts such as the WLF equation (Section 1.3.5). They are 

also often used to characterise viscoelastic materials for comparison or analysis, such as 

FEA (section 1.5.1). 

2.1.1. Maxwell and Voigt Models Under Static Conditions 

Two mechanical elements are commonly used to derive viscoelastic models. These are 

the weightless elastic spring representing an ideal Hookian solid and the viscous fluid in 

a piston or dashpot representing an ideal Newtonian fluid as discussed earlier. The 

simplest viscoelastic modes involve one spring and one dashpot. These two elements 

can either be linked in series or parallel and give rise to two models: the Maxwell and 

the Voigt models respectively. 
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Figure 2.1.1. The Maxwell and Voigt elements. 

CHAPTER 2 

The governing equations for these models together with their behaviour in creep and 

stress relaxation are derived in Appendix A and presented in table 2.1.1. Both the 

governing equations are 1 st order linear differential equations and again can be though 

of as particular cases of equation 2.1. 

Maxwell Voigt 

Governing Equation 
dE 1 dO" 0" E dE 
-=-x-+- 0"=-+ 17-
dt E dt 17 D dt 

Creep Compliance 
t -Yr 

D(t)=D+- DCt) = D( 1- e ') 
17 

Stress Relaxation 
E(t)=Ee 

-tl, E(t) = E 

Response 

Table 2.1.1. Maxwell and Voigt static behaviour. 

The ratio of 171 E is labelled 't and is known as the relaxation or retardation time of the 

model. 
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Figure 2.1.2. The time dependence of creep compliance of the Maxwell and Voigt 
elements. Note E and II are arbitrarily chosen to be unity for this representation. 
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Figure 2.1.3. The Maxwell and Voigt elements in stress relaxation. E and II are again 
chosen to be unity. 

Figure 2.1.2. shows the plot of the creep compliance ftmctions of both elements as a 

function of time. The spring and dashpot constants have been arbitrarily set to I for this 

representation so that the relaxation time of the models is also 1 second. The compliance 
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of the Maxwell model is directly proportional to time as for a liquid although its 

intercept is the spring constant. At infinite time the model will have an infinite 

compliance. The Voigt element on the other hand has an exponentially decaying 

compliance and at infinite time will behave as a spring. 

Figure 2.1.3. shows the behaviour of the Maxwell and Voigt models in stress relaxation. 

Just as the Maxwell element in creep was seen to behave as a Newtonian liquid, here we 

see the Voigt element in stress relaxation appearing as a Hookian spring, i.e. time 

independent. Again similarly the Maxwell model relaxes exponentially and has zero 

stiffuess at infinite time. 

Clearly the Maxwell model in creep, and the Voigt model in stress relaxation can be 

dismissed as representations of viscoelastic behaviour because they follow Newton's 

and Hooke's law respectively. The two models can approximate viscoelastic materials 

where their behaviour is exponential however (i.e. Maxwell in stress relaxation and 

Voigt in creep). In general however this does not provide a good representation for two 

reasons: firstly the behaviour of real materials can not be readily expressed in terms of a 

single exponential decay term. Secondly the creep compliance of a real system would 

not always decay to a fixed value such as that of the Voigt model, particularly if the 

material was uncross-linked. Similarly the relaxation modulus of a real material would 

not diminish to zero if the material was cross-linked as in the Maxwell model. 
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2.1.2. Maxwell and Voigt Models Under Dynamic Conditions. 

The dynamic behaviour of the Maxwell and Voigt models are summarised in table 

2.1.2.* 

Maxwell Model Voigt Model 

Complex Modulus (E*) 1:0£ E +i1]OJ 
. 

- 1:OJ -I 

Complex Compliance (D*) 
D- iD 1 

1:OJ E + i1]OJ 

Storage Compliance (D') D D 
1 + OJ2i 

Loss Compliance (D") 1 DOJ1: 
-

1] OJ 1 + OJ2i 

Storage Modulus (E') 
E,(2OJ2 E 

1 + ,(2OJ2 

Loss Modulus (E") E1:OJ 1]OJ 

1+ ,(20)2 

Loss Tangent (Tan 8) 1 OJ 1: 
-
OJ 1: 

Table 2.1.2. The Dynamic behaviour of the Maxwell and Voigt models. 

It is convenient to represent the Maxwell element by its dynamic modulus and the Voigt 

model by its dynamic compliance. Figures 2.1.4. and 2.1.5. are such representations. 

Showing the normalised forms of these functions. 

• Derived in appendix A. 
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Figure 2.1.4. Dynamic modulus of a Maxwell element. 
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Figure 2.1.5. Dynamic compliance of a Voigt element. 
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For the Maxwell element it can be seen that the storage modulus is highly time 

dependent near ID't = 1; at higher frequencies the modulus approaches the modulus of 

the spring in the model, while at lower frequencies the modulus approaches zero. The 

loss modulus of the model is zero at the high and low ranges of frequency but near ID't = 

1 is very frequency dependent and goes through a peak when the relaxation time of the 

model equals the reciprocal of the frequency. These functions are qualitatively good 

descriptions of real polymer systems, where the storage modulus falls abruptly at the 

glass transition to a frequency independently low value. Although in most polymers this 

is known as the rubbery plateau and the modulus is in the range ofMPa and not zero. 

Largely because of this the loss tangent of the model is a very poor approximation to 

real systems. Rising to infinity at low frequencies, being equal to 1 at ID't = 1, and 

shadowing the loss modulus function at high frequencies. This is clearly not realistic of 

a real polymer system. 

Figure 2.1.5. shows the dynamic behaviour of a Voigt element. The D'/D plot shows 

_ that the faster the sample is deformed the stiffer it appears. The model is again sensitive 

in the region where ID't is around 1, at smaller or larger frequencies the model is not so 

sensitive. The plot ofD"/D is identical to the E"IE plot for the Maxwell element and 

shows a maximum as the ID't term reaches 1. The loss tangent equals ID't, which is again 

not very realistic for a polymer. 

To summarise then it can be seen that the Maxwell and Voigt elements are similar in 

character and have similar shortcomings, not surprising perhaps considering that both 

are governed by equations of a similar form. The Voigt element providing a relatively 

better approximation in creep and the Maxwell being more useful in stress relaxation. 

Under dynamic excitation both models mimic to some extent the behaviour of real 

systems although the approximation is not in any way accurate. 
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2.1.3. The Four Element Model in Creep. 

In hope of finding a better viscoelastic model additional elements can be added. Three 

element models can be built up by adding an extra spring or dashpot to a Maxwell or 

Voigt model. A common viscoelastic model is made up of a Maxwell and a Voigt 

model joint together in series (figure 2.1.6.) The behaviour of the four element model 

can be represented by the following second order differential equation·. 

"1 

Figure 2.1.6. The four element model. 

2 
d & 

1]22 
dt 

The creep compliance of which can be shown to be of the following form. 

• As before derivation in Appendix A. 

2.1.1. 

2.1.2. 
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There are three distinct components to this equation. The first term is time independent 

and represent the instantaneous elastic response. The second term is directly 

proportional to time and can be regarded as the purely viscous part of the response. The 

third term is an exponential and although dominant at the beginning eventually decays 

to zero. This equation can in practice provides a good approximation for the behaviour 

of real materials and an example of its application has already been mentioned: when it 

was used by Kawano et al (1993) in a finite element study. Taking figures already 

introduced in table 1.5.3. as the representations of a soft liner and the oral mucosa we 

can use the above creep equation to obtain a plot of their time dependent creep modulus 

over a 30 second time period. 
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Figure 2.1.7. Creep behaviour of 4 element model. (from data of Kawano et aI, 1993) 

2.1.4. The Four Element Model Under Dynamic Excitation. 

In dynamic conditions the following equations can be derived in terms of the 4 element 

model: 

The overall modulus of the model: 
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2.1.3. 

The storage modulus of the model: 

2.1.4. 

The loss modulus of the model: 

2.1.5. 

and hence the Loss tangent: 

2.1.6. 

Where A and B are model parameters as defined below: 

2.1.7. 

2.1.8. 
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and a., (3, y are in tum coefficients of the governing equation 2.1.1. such that: 

2.1.9. 

2.1.10. 

2.1.11. 

The approximation of real materials provided by these equations is frankly 

disappointing. B in particular can easily take negative values, which is clearly 

meaningless for a modulus. 

2.1.5. Spectral Models 

As can be seen from Appendix A the increased sophistication of the four element model 

compared to the 2 element models has severely increased the size and complexity of the 

algebra. It is not common practice to analyse models more complex than the one just 

described as the mathematics soon becomes intractable. In the search for better 

mathematical representations of viscoelastic materials generalised Maxwell and Voigt 

models are the next step. It is possible to construct models of infinite size by adding 

Voigt and Maxwell models in parallel and series as depicted in figure 2.1.8. 
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Generalised Voigt model 

Generalised Maxwell model 

Figure 2.1.8. Generalised Voigt and Maxwell models. 

For a series ofn Maxwell or Voigt elements, table 2.1.3. shows that summing the stress 

relaxation and creep expressions respectively from 1 to n gives: 

Generalised Maxwell Generalised Voigt 

Creep -

n ( -tl T J D(t) = I D. 1- e l 
. 1 1 l= 

Stress -n -t/ r. 
Relaxation E(t)= I E. e l 

i=1 
1 

Storage 

2 2 n D. 
Modulus/ n E. r. OJ D'= I l 

E'= I l l 
1 + r.2OJ2 1+ r.2OJ2 i=1 Compliance i=1 l l 

Loss 

Modulus/ 
n E.r.OJ n D. r.OJ 

E"= I l l D"= I l l 

1 + r.2OJ2 1 + r.2OJ2 Compliance i=l i=1 l l 

Table 2.1.3. The generalised Maxwell and Voigt models. 
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As n tends towards infinity continuous spectra are produced and the summation signs 

can be replaced by integration signs. Below the results for the static cases are shown , 
similar results can be expected using the dynamic variables. 

00 

E(t) = J -t/r E( r)e dr 2.1.12. 
o 

00 

D(t) = J 2.1.13. 
o 

where E('t) and D(t) are the continuous functions to replace the Ei's and the Di's in the 

previous equations. It is conventional to represent these functions in terms of a 

logarithmic scale such that. 

00 

E(t) = J 
o 

H(r) -t/r d --e r 
00 

J 2.1.14. 
-t/r H( r)e dIn r 

-00 

- Where H ( r) is the relaxation spectrum, and equals r E( r). Similarly for the 

compliance function: 

00 

D(t) = J 2.1.15. 
-00 

Where L( r) is the retardation spectrum. 

It is possible to obtain viscoelastic functions (i.e. creep compliance, storage modulus 

etc.) from the relaxation and retardation spectrums using the above equations. The 

reverse process is not so easy however as the observed parameters E', E" etc. can not 

normally be represented analytically to sufficient accuracy (Ferry, 1980). It is therefore 

common practice to represent experimental data in terms of measured quantities in 

graphical or tabular form. The observed experimental results in this report are thus 

PAGE 82 



CHAPTER 2 

depicted in tbis manner and no attempt is made to approximate them by mechanical 

models/mathematical functions. 
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LITERATURE SURVEY 



CHAPTER 3 

3.1 Methods of measuring Viscoelasticity 

This literature survey concerns methods of measuring the viscoelasticity of materials in 

general and soft lining materials in particular. The various methods used to investigate 

viscoelastic properties are often grouped together under their frequency range. This was 

carried out by Clarke in 1988, when he looked at the ways used to measure the 

viscoelastic properties of various materials related to dentistry. 

Transient measurements. 

Low frequency vibrations. 

Forced vibrations (Non-Resonance) 

Resonance of standing waves 

Wave propagation. 

3.1.1. Transient 

Approx. Frequency range 

" 

" 

" 

" 

Up to 1 Hz 

0.1 Hz to 50 Hz 

0.01 Hz to 100 Hz 

20 Hz to 105 Hz 

More than 105 Hz 

Creep and stress relaxation experiments have already been described. These test can be 

performed for a full range of deformation modes including, shear, torsion compression, 

elongation and flexure. The mode studied being primarily governed by what the 

experimental data is to be used for, but also depending on the sensitivity of the 

equipment and the properties of the material. Tensile testing is the preferred method 

when dealing with highly extendible materials, for example. 

Indentation tests, using indentors of various geometry's (cones, hemispheres, diamonds 

etc.) are sometimes used to give information about the time dependent mechanical 

behaviour of a material. The basic test consists of pressing the indentor against the test 

surface, the load is controlled and the size or depth of the indentation is measured. The 

main disadvantage of these techniques is that the area of contact between the indentor 

and the specimen does not remain constant, but is constantly changing. The basic 

viscoelastic properties can not be easily calculated using these techniques. As will be 
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seen transient tests form the bulk of viscoelastic research carried out on soft liners , 

mainly because of the ease and cost effectiveness of the technique. 

3.1.2. Low Frequency Free Vibration 

If a sample of material is displaced from its rest position, on its release free oscillation 

will ensue. The frequency of these oscillations and the rate at which they die is governed 

by viscoelastic theory. This is the idea behind the free vibration method. The main draw 

back with this group of methods is that the frequency of the vibration is not directly 

controlled by the user, but is related to the resonant frequency of the system. In 

particular the frequency is not held constant, and is subject to drift as the temperature 

and therefore the stiffness of the material is changed. 

In the frequency region from 0.01 to 50 Hz the torsion pendulum is the most popular 

instrument. It is not normally possible to investigate higher frequencies, as the natural 

frequency of the apparatus interferes with the measurements. The instrument consists of 

two inertia bars suspended by metal wire, which are connected in series with samples of 

the test material. Knowing the inertia of the bars and the mechanical properties of the 

wire, the effect of the viscoelasticity of the sample on the oscillation of the system can 

be isolated and hence its shear modulus and loss tangent worked out. The temperature of 

the sample is normally controlled, providing a spectrum of thermal material properties. 

Difficulties can arise in the transition region, as the extremely 'lossy' nature of the 

materials makes accurate measurements very difficult. 

Although by definition, not a free vibration technique, rebound resilience provides 

information on the viscoelasticity of a material. A round striker falls from a known 

height onto the sample which is maintained at a known temperature. The percentage of 

the rebound height gives information on the internal friction of the material. A wide 

temperature range can be easily scanned. 
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3.1.3. Forced Vibration 

The forced vibration experiments are of particular interest as this is the method which is 

used in this report. The main attraction of the non-resonance vibration technique is that 

the frequency is continuously and accurately controlled through out the experiment. 

Forced vibration techniques involve imposing a cyclic stress or strain on the sample and 

measuring the resulting strain or stress. It is the best method available for studying high 

loss materials as it has none of the inherent difficulties associated with the torsional 

pendulum and resonance methods. 

3.1.4. High Frequency Resonance Methods 

Resonance methods rely on standing waves of high frequency. The length of the 

standing waves decreases with increasing frequency until it is comparable with the 

dimensions of the sample. The sample is then a resonating system. The modes of 

vibration used are flexural, torsional and longitudinal, in order of increasing frequency. 

This method is characterised by the extremely low amplitudes of its vibration. 

- One manifestation of the resonance method is the vibrating reed, with a frequency range 

of 10 to 2000 Hz. This consists of a thin rectangular cross-section of the material, 

rigidly clamped at one end while the other end is excited over the frequency range. 

From the resonant curve of vibration versus frequency the modulus and loss factor of 

the material can be determined. 

3.1.5. Wave propagation 

The wave propagation method employs frequencies in the ultrasonic region, extending 

from 20 kHz upwards. In this range the wavelength of the stress wave is always smaller 

than the dimensions of the sample. 

A comprehensive account of the various dynamic measurement systems has been given 

in Murayama (1978), Ferry (1980) and Read and Dean (1978). Clarke (1988) also 
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carried out a comprehensive survey of viscoelastic measurements, with a particular 

focus on dental materials. 

3.2 Determination of the Viscoelasticity of Soft Liners 

The bulk of the previous work carried out on the viscoelastic properties of soft lining 

materials and oral mucosa is presented in table 3.2.1. 

Author Title Date Methods 

Storer Resilient denture base materials. Part I. 1962 Hardness test 

Introduction and laboratory Evaluation. 

Bates & Smith Evaluation of indirect resilient liners for 1965 Hardness test 

dentures: Laboratory and clinical tests. 

Tomlin The thickness and hardness of soft tissues. 1968 Handheld 

et al probe. 

Wilson & Soft lining materials: some relevant 1969 Creep 

Tomlin properties and their determination 

Braden & Viscoelastic properties of soft lining 1972 Torsional 

Clarke materials pendulum 

Going et al Mouth guard materials: Their physical and 1974 Hardness test 

mechanical properties. 

Suchatlampong Some physical properties of four resilient 1975 Stress 

lining materials relaxation 

Wright Soft lining materials: their status and 1976 Torsional 

prospects pendulum 

Manderson & A clinical and laboratory investigation of a 1978 Rebound 

Brown new denture cleaner resilience 

Duran et al Viscoelastic and dynamic properties of soft 1979 Creep & 

liners and tissue conditioners Dynamic 

Ellis et al Variations in the elastic modulus of a soft 1980 Transient 

lining material 

Clarke & Determination of viscoelastic properties of 1982 Mechanical 

Braden dental polymers by mechanical impedance Impedance 

measurements 

Robinson & Creep and stress relaxation of soft denture 1982 Creep / Stress 

McCabe liners relaxation 
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Parker & New soft lining materials 1982 Torsional 
Braden pendulum 

Schmidt & A six year retrospective study ofMolloplast 1983 Hardness test 
Smith (a & b) B lined dentures (part 1) (part II) 

Inoue et al Viscoelastic properties of oral soft tissue. 1. 1985 Handheld 

A method of determining elastic modulus of device 

oral soft tissue. 

Kazanji & Influence of thickness, boxing, and storage 1988 Hardness test 

Watkinson on the softness of resilient denture lining -

materials. 

Parker & Soft prosthesis materials based on powdered 1990 Torsional 

Braden elastomers. pendulum. 

Graham et al Clinical compliance of two resilient denture 1990 Indentation 

liners probe 

Quadah et al The effect of thermo cycling on the hardness 1991 Indentation 

of soft lining materials probe 

Holt et al Force versus time profiles of selected heat- 1991 Transient 

processed denture liners 

Dootz et al Comparison of the physical properties of 11 1992 Hardness test 

soft denture liners 

Dootz et al Physical property comparison of 11 soft 1993 Hardness test 

denture lining materials as a function of 

accelerated ageing 

Jepson et al Evaluation of the viscoelastic properties of 1993 Handheld 

denture soft lining materials. creep probe 

Jepson et al Age changes in the viscoelasticity of 1993 Hand held 

permanent soft lining materials creep probe 

Kawano et al Effect of soft denture liner on stress 1993 Finite 

distribution in supporting structures under a element 

denture. study. 

Collis Assessment of a recently introduced 1993 Hardness test 

fluoroelastomeric soft lining material 

Hayakawa et al The creep behaviour of denture supporting 1994 Creep 

tissues and soft lining materials. 

Kalachandra Characterisation of commercial soft liners by 1995 DMA 

et al dynamic mechanical analysis. 
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Jepson et al A new temporary soft lining material 1995 Handheld 

creep probe 

Wagner et al Dynamic viscoelastic properties of 1995 DMA 

processed soft dentures liners: Part I -

Initial properties 

Wagner et al Dynamic viscoelastic properties of 1995 DMA 

processed soft dentures liners: Part IT -

Effect of ageing 

Kalachandra et Dynamic mechanical analysis and water 1996 DMA 

al absorption of some experimental soft lining 

materials 

Waters et al Dynamic mechanical thermal analysis of 1996 DMA 

denture soft lining materials 

Table 3.2.1. The Work surveyed in this review. 

One of the first fonnal investigations of the properties of soft lining materials was 

carried out by Storer (1962a). He examined a range of materials (including Flexibase 

(FB)), using a variety of physical tests including: hardness, water absorption, abrasion 

resistance and bond strength. He used a British standard rubber hardness tester to 

measure the initial hardness of a materials as well as the effect of storage in water (at 37 

°C for up to 30 months) on these properties. A range of properties were observed for 

different materials. In the case of FB an 18% increase in the hardness was observed over 

this time period. This was accompanied by a small amount of water uptake. In the 

clinical leg of this work (1962b) they found that 77% out of the 219 patients obtained 

relief when a soft lining material was used. 

Bates and Smith (1965) also looked at the hardness and absorption (from various media 

including olive oil), as well as a range of other physical properties, for a number of soft 

lining materials (including FB and Molloplast (MP)) and tissue conditioners·. They used 

a spherical indentor to obtained hardness values although they used International rubber 

• They made no distiction between the two. Wilson & Tomlin, 1969. Duran et aI, 1979. Ellis et al, 1980. 

Graham et aI, 1990. and others have also failed to make this distinction. 
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hardness degrees (IRHD). They noted that the hardness of the acrylic materials was 

more temperature dependent than that of the silicones. In the clinical part of their 

investigation they noted that 60% of the patients were more comfortable and had less 

pain. Although they identified a broad range of elastic and 'plastic' behaviour they could 

not identify an ideal range for these properties, as both were acceptable to patients. 

In 1968 Tomlin et al made an in vivo study of the mechanical properties of soft oral 

tissues. The instrument used was a hand held force distance probe which was steadily 

pressed against the oral mucosa, until a maximum force of 5N was achieved, force and 

distance were recorded. Twenty five patients aged from 35 to 55 were selected, none of 

these patients had worn dentures and all had been edentulous for at least six months. 

The test consisted of pressing the probe in to the mucosa of the mandible at sites where 

the patients teeth had once been. The authors recognised, although did not take into 

account, the time dependent modulus of the mucosa. They concluded that although for 

some patients the thickness of the mucosa and its modulus were constant in all areas 

tested, in other patients considerable variations occurred in different areas of the same 

mouth. There was no correlation between thickness and the softness of the mucosa and 

both these factors could vary independently of each other. They did however find that 

82% of the soft tissue tested was between 1.5-2.0 mm's thick and that 52% had a 

modulus of2.0 MPa. The thickness values ranged from 1 mm to 3 mm while the 

modulus was found to be as low as 0.4 MPa. 

Wilson and Tomlin made a study of the viscoelastic properties of7 soft lining materials 

and tissue conditioner.s ;111969. They employed a creep test, with a stress pulse of 56 MPa 

for 1 minute and recorded the strain. Of the materials looked at FB and MP had the 

smallest resultant strain after one minute (4% & 5% respectively) and hence the lowest 

creep compliance's. They were also the only two materials to recover completely after 5 

minutes. The recovery of the acrylic materials was much slower with some materials not 

having recovered even after 5 minutes. 
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Braden and Clarke (1972) were the first authors to study the viscoelasticity of soft lining 

materials under dynamic conditions. They realised the relevance of sinusoidal loading to 

the conditions in the mouth and used a torsional pendulum apparatus (free vibration) to 

study the materials. They studied a range of materials including the acrylic, Supersoft 

and the silicones, FB and MP. The temperature range studied was 20-45°C but the 

frequency drifted from 0.1 to 0.5 Hz, although an average of 0.25 Hz was assumed. 

Another problem with the torsional pendulum is associated with very lossy polymers. 

The tan 8 graphs failing to show a peak relating to the transition of the materials. The 

material properties determined were the shear storage modulus (G'), which for a rubber 

like material is three times the Young's modulus (3G = E)* , the dissipative component 

of the modulus (Gil) and the loss tangent (tan 8). The authors concluded that a wide 

range of material properties existed in the soft liners; the shear storage modulus ranging 

from 0.2 to 1 MPa, and the loss tangent ranging from 1 to 0.012. The silicones were 

generally less lossy than their acrylic counterparts. Table 3.2. summarises the results 

obtained for Supersoft, FB and MP at 37°C. 

Material Shear Storage Modulus Loss Tangent 

(MPa) 

Supersoft 0.8 1 

Flexibase 0.9 0.1 

Molloplast 0.5 0.06 

Table 3.2.2. Viscoelastic parameters for of selected matenals at 37°C (Braden & Clarke 
1972). 

The physical and mechanical properties of mouth guard materials were the subject of a 

contribution by Going et al in 1974. Fifty seven mouth guard materials were 

investigated including natural rubber, PVC, soft acrylics and polyurethane based 

* This assumes that the poissons ratio of the material is 0.5 which is true for most rubbers, but not 
necessarily true for polymers going through their transitions. 
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materials. A range of physical tests were carried out including tensile strength, 

elongation and water absorption. In relation to viscoelasticity, hardness measurements 

and impact energy tests were also carried out. The hardness tester was a 'Rex A 

durometer'. Readings were taken initially and after 15 seconds of contact to gauge the 

creep response of each material. A range of 'Rex A' hardness values in the region of 66-

86 was seen with some materials being more time dependent than others. A rebound 

range of22% to 74% was seen. Without adverse clinical data the authors concluded that 

all the mouth guards under investigation provided adequate protection. 

Suchatlampong et al (1975) studied the compressive behaviour, as well as water uptake 

and solubility, of four soft lining materials, including the three just mentioned. The 

effect of sample thickness on compressibility was investigated, with the authors 

recommending a 2 mm thickness. The mechanical testing was transient in nature where 

the strain was specified and the stress examined. The viscoelastic nature of the materials 

was not considered however and stress relaxation during the loading cycle although 

recognised, was not taken into account. This had the effect of over testing the acrylic 

polymers which were more viscoelastic at test temperatures as they went through their 

Tg, as opposed to the silicones which were in the rubbery phase of their behaviour. 

In 1976 Wright measured the viscoelasticity of a number of additional soft lining 

materials to those investigated by Braden and Clarke (1972) as well as carrying out 

water absorption and solubility experiments. He also investigated the optimum 

thickness of soft liners bonded to PMMA and recommended a layer 2-3 mm thick. 

Above this level any increase in thickness yielded an insubstantial increase in the 

softness of the sample. 

The response of soft lining and other denture related polymers to various denture 

cleaners was investigated in 1978 (Manderson & Brown). They studied Supersoft and 

Molloplast B as well as other soft liners, tissue conditioners and denture base materials. 
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They looked at the rebound resilience of the materials using a simple pendulum which 

bounced off the samples. The percentage change of the resilience before and after 

immersion in cleaning fluids was measured. The fluids used were an acidic and an 

alkaline denture cleaner as well as water. It was seen that Supersoft's resilience 

increased the most (10.8-12.9%). Although the change was not particularly sensitive to 

the immersion fluid. Molloplast B also increased in resilience, but by a smaller margin, 

1.8% in water and 3.5-5.0% when immersed in the denture cleansers. In contrast the 

cold cured silicone and the tissue conditioner both became more lossy, with 5.3-9.7% 

and 5.8-18.5% losses in resilience, respectively. 

Duran et al (1979) made a study of three tissue conditioners and four soft liners 

including Supersoft. They used transient and dynamic methods of testing. The transient 

experiment took the form of a creep test. They derived a viscosity value by taking the 

value of the steady slope portion of the creep compliance versus time curve·. They also 

took their creep compliance value from the intercept of the same line on the y axis. Two 

different levels of loading were considered at 5.3 and 10.3 N, the larger load giving a 

lower value of compliance (i.e. stiffer). The compliance of Supersoft was seen to 

decrease over a 3 month period in water from 1.71 to 1.04 :MPa-1 for the larger load. 

This is a 40% increase. A smaller load was used for the tissue conditioners but they 

were still seen to be approximately 10 times less stiff than Supersoft. The dynamic test 

gave a modulus value of approximately 7.5 :MPa for Supersoft which was significantly 

higher than that obtained by the creep test. The dynamic test however failed to notice 

any hardening after 3 months storage in water. Unfortunately important parameters of 

the dynamic method such as the frequency and mode of deformation were not enclosed 

so it is difficult to reach any quantitative conclusions. 

In 1980 Ellis et al investigated the variations in elastic modulus of a tissue conditioner 

'Coe-Soft', which they wrongly identified as a soft-lining material. The samples were 

• Equivalent to the 111 value of the 4element model in the theory chapter. 
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immersed in water, brine (artificial saliva) and 30% glucose solutions and the water 

uptake and compressive modulus were continuously monitored. The modulus readings 

were carried out at 37°C and took the fonn of an increasing stress whose corresponding 

strain was measured, from which a modulus value was calculated. In all cases the 

samples in solution lost weight as ethanol leached out of the material. It was seen that 

the diffusion was more pronounced in water than in artificial saliva or glucose solution. 

This was mirro(ed by the variations in modulus, as the samples held in water lost their 

compliance to a larger extent. Parallel to these laboratory tests a set of in vivo 

experiments were also carried out. Discs of the material were mounted on sheets of 

PMMA and held in an appliance in the mouth of 9 male volunteers. The overall age of 

the samples, 4-8 days and the total amount of time worn in the mouth were recorded. 

When not wearing the appliance the subjects were told to store the samples in water. 

Modulus results in the range 0.56 - 1.99xl05 Pa were found, and it was concluded that 

the individual variations in saliva have a large influence on the ageing behaviour of the 

materials. 

In 1982 Clarke and Braden sought to determine the viscoelastic properties of dental 

polymers by mechanical impedance measurements (High frequency resonance). The 

materials under investigation included Supersoft, Flexibase and Molloplast B. as well as 

a selection of hard denture base materials. This method of testing suffered from needing 

very large samples, these were 200 mm long and 9 mm in diameter, which were difficult 

to manufacture, especially for the soft materials. These rods were cemented onto the 

impedance head of the apparatus and excited through the frequency range of 0.02-20 

kHz. The tests were all carried out at room temperature. From viscoelastic wave theory 

the modulus and loss tangents were calculated. The results were compared with 

torsional pendulum data (Braden and Clarke, 1972) and static test data. It was seen that 

the silicones were not as affected by this change in the time scale. Presumably because 

their Tg was far below the experimental temperature, but the acrylic whose Tg was close 

to room temperature had a large increase in modulus, indicating that at this frequency 
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the material was approaching the glassy state. For comparison the modulus of Perspex 

was also quoted. 

Material Torsional pendulum Mechanical Impedance 

Supersoft 0.0025 0.54 at 0.96 kHz 

Flexibase 0.0028 0.0025 at 1 kHz 

Molloplast B 0.0016 0.0094 at 1 kHz 

Perspex 3.33 5.77 at 2 kHz 
.. . 

3.2.3. Young's Modulus (GPa) ofvanous soft Immg matenals at room temperature 
(Clarke & Braden, 1982). 

These mechanical impedance measurements while interesting are of limited clinical 

relevance as the temperature and frequency of the experiment are not those which are 

likely to be experienced in the body. 

The creep and stress relaxation of three soft lining materials and a tissue conditioner 

were investigated by Robinson and McCabe in 1982. The materials (Molloplast B, 

Flexibase and Supersoft) were tested at room temperature; as processed and after a 3 

month immersion in water at 37°C. Mechanical testing at room temperature detracts 

from the usefulness of the results as the materials are used at mouth temperature. 

In the creep test, specimens were subjected to a 11.76 N stress pulse (98 kPa). Problems 

were encountered with the silicone materials. Due to imperfections with the sample 

geometry, a small pre-load (66 g) was applied for 30 seconds, the strain value zeroed 

and the full load subsequently applied. This was required for the silicones to bring them 

into uniform contact with the plates but not for the acrylic materials which flowed easily 

to give reasonable contact. The change of strain with time was noted after the 

application of this load and the creep compliance and hence the time dependent modulus 

was calculated. Some of their results are summarised in table 3.2.4. 
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Material 10 seconds 60 seconds 600 seconds 

Supersoft (Dry) 2.4 1.5 1.2 

Supersoft (Wet) 2.77 1.66 1.19 

Molloplast (Dry) 3.5 3.5 3.48 

Molloplast (Wet) 4.76 4.76 4.64 

Flexibase (Dry) 2.38 2.34 2.3 

Flexibase (Wet) 2.14 2.14 2.12 

Table 3.2.4. Creep Modulus (MPa) carned out at room temperature (Robinson & 
McCabe, 1982) 

The time dependent nature of the acrylic based material can be seen in contrast with the 

essentially elastic behaviour of the two silicone materials. For the stress relaxation 

experiment a constant strain value was not arbitrarily chosen, instead for each material 

the same value of strain observed at 10 seconds in the creep experiment above was 

selected. Supersoft relaxed by 80% in one minute, while Molloplast B and Flexibase 

relaxed by less than 10% and 20% respectively. 

In 1982 Parker and Braden developed and tested two fundamentally different types of 

soft lining materials. These are the acrylics incorporating polymerisable plasticisers and 

powdered elastomers as described in section 1.4.5. They were tested by a torsional 

pendulum apparatus as used by Braden and Clarke in 1972. For the plasticised acrylic it 

was seen that by controlling the level of the plasticiser a wide range of viscoelastic 

properties could be engineered at any given temperature. For the powdered elastomer 

the values of storage shear modulus (3.3 MPa) and tan 8 (0.36) were obtained and 

compared with that of existing materials. 

A double paper published by Schmidt and Smith (1983 a,b) concentrated on one soft 

lining material, Molloplast B, with liners being examined up to and after six years 

service. The first part was concerned with patient response with nearly all the patients 
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(93%) agreeing that the lining increased comfort. In the second part, which dealt with 

serviceability, the resilience of the liners was evaluated by a Shore durometer and 

compared with that of newly processed liners; in general the length of time in service 

did not have an appreciable effect on the hardness of the liner. The average reading from 

the Shore durometer was 55.8 and had a range from 36 to 72. The average thickness in 

the buccal shelf area was 2.8 mm and had a range from 1.5 to 5.8 mm. The dependency 

of hardness on thickness of liner was determined by making samples of various 

thicknesses. It was again seen that 2-3 mm was the ideal thickness for a soft liner as 

above this depth the softness was not very responsive to further increases in the 

thickness. 

In 1985 Inoue et al published a paper on the mechanical behaviour of the oral soft 

tissue. They used a hand held device which could measure the force applied and the 

subsequent deflection of the soft tissues. Measuring the modulus at various anatomical 

landmarks for two patients (a man 44 years old, and a woman of 51 years) they found a 

range of values from 0.66 to 4.36 MPa. They did not take into account the time 

dependence of the mucosa's modulus. 

Kazanji and Watkinson (1988a) studied the effect of thickness, storage and boxing in on 

the softness of 5 materials including Supersoft, Flexibase and Molloplast B. The testing 

equipment employed was a Shore durometer hardness tester. It was concluded that 

softness was a function of thickness and that a minimum thickness of 1.8 mm should be 

used in soft liners to provide adequate compressibility. Boxing in had a slight effect on 

the softness of the materials more so for Molloplast than Supersoft. After immersion in 

water for 6 months a familiar trend was observed as the acrylic became harder due to the 

leaching out of plasticiser, the silicone became softer. 

In 1990 Graham et al studied the clinical compliance of two materials, one of which was 

a tissue conditioner. They failed to take into account the time dependency of the 
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properties of these materials. The testing apparatus was an indentation probe. To 

measure compliance, the material was indented to half of its measured thickness and , 

the force required to do this was recorded. The stress and strain, and hence the 

compliance of the material was calculated. The observed trend was a reduction in 

compliance for the materials over time, this reduction being similar in magnitude for 

both materials. 

Also in 1990 Parker and Braden presented a further contribution to the work concerning 

soft liners based upon powdered elastomers and methacrylate monomers. The range of 

elastomers which these materials were based on included: natural rubber, butadiene 

styrene and butadiene acrylonitriles. These where mixed with a range of alkyl 

methacrylate (MA) monomers including 1-tridecyl MA, 2-ethylhexyl MA, 2-

ethoxyethyl MA. The latter has since been found to be biologically suspect (Braden et 

aI, 1995). The elastomers and the methacrylate monomers where mixed in various 

quantities to form doughs which were then cured by heat. A series of physical tests were 

then carried out including tensile, tear adhesion, water uptake and viscoelastic. For the 

latter they used a torsional pendulum as before to obtain values for G', Gil and tan 8. A 

representative example of their results is presented in tables 3.2.5. and 3.2.6. 

PowderlLiquid Shear Storage Modulus Tan 8 

(MPa) 

0.3 27.8 0.37 

0.4 15.4 0.39 

0.45 12.5 0.39 
. 

Table 3.2.5. Effect of powder to lIqUId ratIo on a natural rubber/2-ethoxylhexyl 
methacrylate system (parker & Braden 1990). 
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010 EGDM by Volume Shear Storage Modulus Tan 8 

(MPa) 

30 12.10 0.25 

20 6.66 0.31 

10 2.20 0.36 
Table 3.2.6. Effect of cross hnking on VIscoelastIc properties of a butadiene 
acrylonitrile/2-ethoxylhexyl methacrylate system (parker & Braden 1990). 

CHAPTER 3 

From Table 3.2.5. it can be seen that as the rubber content of the sample increases the 

material becomes more compliant, although its resilience is not particularly affected. 

From Table 3.2.6. it can be seen that increased cross linking has the effect of increasing 

the modulus but lowering the loss tangent of that particular system. Overall their 

experimental materials had a shear storage modulus ranging from 0.175-56.2 MPa and a 

loss tangent range of 0.13-0.42. 

In 1991 Quadah et al made a study into the effect of thermo cycling on the hardness of 

soft lining materials. The testing instrument was an indentor. Different loads were 

applied to different materials, due to the ranges of material stiffness, therefore it is not 

easy to compare the various materials to each other. It was concluded that 

thermo cycling has a deleterious effect on the properties of all the materials. The 

relevance of the method of thermo cycling is debatable. Control specimens were stored 

at 20°C while the trial specimens were taken from 18 to 53°C (average value of 35°C ). 

It is well known that the diffusion of water is strongly related to temperature, with the 

diffusion coefficient, being a function of temperature. The relevance of thermo cycling is 

therefore unclear, as the trial set of specimens are at a higher average temperature than 

the control ones. They would in any event be likely to interact with the water more 

quickly, with or without thermocycling. 
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In 1991 Holt et al published their research into the force versus time behaviour of 4 soft 

lining materials, two of which were silicone based (including Molloplast) and two of 

which were acrylic based (including Supersoft). Their research involved 9 patients who 

were not satisfied with the hard denture base due to 'soreness' and inability to chew a 

soft-solid diet. They each received a soft lined denture, lined with a 2 mm thick layer of 

silicone or acrylic based material. Each denture was tested before placement and re­

tested after 7,32 and 92 days of use. A mechanical indentor (3 mm diameter) was used _ 

at a test temperature of 37°C, to apply a perpendicular load to the lined surface of the 

denture. A pre-load of 0.09 kg was used for initial contact. At time to the loading was 

started with an indentation speed of 0.02 inlmin, this was over a duration of 2 minutes. 

The indentor was then held at this position for 1 minute, over which time the relaxation 

of the material was observed. After this, the material was unloaded at the same rate until 

the force reached zero. The parameters investigated were the loading time t\ (constant at 

2 minutes), unloading time tul, F max recorded at the end of the loading time and F min 

recorded at the end of the relaxation time. From these quantities a 'Rebound index' was 

defined as the ratio of the forces F min IF max' multiplied by the ratio of the times tul /t\ 

multiplied by 100%. This is not a common viscoelastic quantity, but was here used to 

distinguish the time dependant behaviour of the materials. The silicone based materials 

were found to have a higher rebound index. Interviews with the patients seems to 

indicate a preference for the silicone based materials, both in terms of increased comfort 

and masticatory effectiveness. The authors, whilst appreciating that no single parameter 

can judge the success of a soft liner, never the less correlated the rebound index with 

improved clinical performance. The results at 7, 32 and 92 days were inconclusive. 

Dootz et al (1992, 1993) made two studies of the physical properties of soft lining 

materials, the latter as a function of ageing. They looked at tensile strength, elongation, 

tear resistance and hardness of 11 materials including Supersoft, Molloplast and Novus. 

Hardness was determined using a Shore A hardness instrument on specimens 10 mm 

thick. Hardness values from 25 to 95 Shore A units were observed with an average of 
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58. Molloplast, Novus and Supersoft had a a hardness of approximately 43, 50 and 80 

respectively (Supersoft being the hardest material). A Similarly large range of other 

physical properties were also observed. In the second part of this study the samples were 

subjected to an accelerated ageing chamber. This involved 900 hours of exposure to an 

ultraviolet/visible light source at 43°C and 90% relative humidity. A programmed cycle 

of 18 minutes of distilled water spray was used during each 2 hour period. This had the 

effect of hardening Supersoft to 90 Shore A units. Novus was unaffected at 50 whereas 

Molloplast became softer at 35. 

Jepson et aI, (1993a) made an in depth evaluation of the viscoelastic properties of three 

materials, including Coe-soft (which they identified as a temporary material), 

Molloplast-B and Palasiv 62 (a heat cured acrylic). The viscoelastic properties of these 

materials were measured both clinically and in the laboratory using a hand held 

force/distance probe. This was similar to the type used by Tomlin et aI, 1968. The test 

took the fonn of a rapid application of the load, which was then held constant. The 

penetration was noted as a function of this constant stress. This is synonymous with a 

- creep test. It was noted that the rate of the application of the stress was an important 

parameter, but the probe did not lend itself to the easy control of this parameter. In any 

case the application of the load was achieved within 1 second in all cases and this was 

assumed rapid enough to eliminate the variability of the strain rate. A load of 4N 

(corresponding to a stress of 2.17 MPa) was used and it was held constant for at least 10 

seconds. For each set of data the immediate defonnation and the defonnation after 10 

seconds were noted. On the clinical side of the study 71 patients were given soft lined 

dentures. Three widely spaced sites were tested with the probe at 37°C. For Molloplast­

B there was very little separation between the initial compliance (0.169IPa) and the 

delayed (10 seconds) compliance (0.180 lPa) indicating the largely elastic nature of this 

material. For the acrylic material this was not the case with the initial compliance (0.211 

lPa ) being a lot smaller than the delayed one (0.327 lPa ). A reasonable value for the 

thickness was concluded to be 2 mm as above this value there was not an appreciable 
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increase in compliance. For the laboratory based experiments, sample thicknesses from 

1 to 5 mm were used. These basically confirm the results obtained on the clinical side, 

with the silicone proving to be more elastic than the acrylic material. 

In the follow up from the previous study Jepson et al (1993b) related the effect of age on 

the viscoelasticity of the two pennanent soft lining materials examined previously. The 

same methodology and equipment were used to test the viscoelasticity of these 

materials. On the clinical side of the study forty four patients were given dentures lined 

with either of the two materials. The thickness and compliance (both initial and delayed) 

of these materials was recorded over 18 months, although past 60 weeks the results were 

not reliable as the patient numbers had dropped to too Iowa value, because of soft lining 

failure. In fact at all times after the first set of data points were gathered (at time zero) a 

smaller population of data points were examined. If the results are compared at various 

times it must be assumed that these smaller data sets are a random sample of the first 

set. This is not necessarily a valid assumption as the failure of the materials can be 

clearly linked to their viscoelasticity. In the laboratory three batches of 1,2,3 and 4 mm 

thick samples of each material were stored in distilled water at 37°C. These were tested 

at a similar time scale to that used in the clinical study. It was concluded that the 

viscoelasticity ofMolloplast B was virtually unchanged over time, whereas Palasiv 62 

showed a marked reduction in initial and delayed compliance, both in the laboratory and 

clinical situation. The ageing was more rapid in the mouth as opposed to the laboratory. 

Collis (1993) compared two of the materials examined in this report, namely Novus and 

Molloplast. He looked at both distilled water absoption at 37°C and hardness using an 

indentor. The hardness of both materials was initially identical, at 2.25 mm thick for 

example both materials were 60 IRHD. After 4 months in water it was seen that 

Molloplast was unaffected whereas Novus had a 5% water uptake and softened slightly 

(58 IRHD). Novus was also more affected by various denture cleaners. 
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The creep behaviour of denture-supporting tissues as well as a range of experimental 

soft liners was the subject of a contribution by Hayakawa et al in 1994. Their aims were 

to investigate the creep behaviour of the mucosa and to ascertain whether the character 

of the mucosa can be emulated by a soft lining material. A hand held loading and 

measuring device was used for the creep tests. The apparatus relied on air pressure, to 

apply the given load. A low pressure load was used to delicately bring the loading rod 

into contact with the material and then a high pressure creep load was applied through a 

2 mm diameter piston. A valve was fitted to release the load instantaneously. To fix the 

device in place a resin plate was manufactured to sit on the hard palate of each patient. 

This plate had holes drilled into it at sites where the measuring device could be inserted 

and was manually held in place by the operator. A load of 0.1 kg was applied for 30 

seconds, two minutes of recovery time were allowed after load removal, with the tests 

being repeated 10 times with at least 24 hours between tests. Displacements were 

measured as the instantaneous (S 1), delayed elastic (S2), and viscous (S3) 

displacement"'. Similarly the material behaviour upon recovery was divided into three 

parts, SI', S2' and S3'. The subjects investigated were 8 men with a mean age of27 

- years. Young individuals were chosen so that the properties of healthy mucosa could be 

studied. The results were analysed using the creep curves and a four element model. 

Experimental materials consisted of a monofunctional monomer with a light 

polymerising initiator, while various amounts of cross linking agent and inorganic filler 

were used to control the properties. These materials were made into 2 mm thick samples 

and stored in air at 25°C for 24 hours before measurement using the apparatus 

previously described. The authors concluded that by controlling the degree of cross­

linking and the amount of filler in the material its viscoelastic properties could be made 

to emmulate those of the mucosa. 

In 1995 Kalachandra et al characterised the dynamic viscoelastic properties of four 

commercial soft liners using a forced vibration, dynamic mechanical analyser of the 

'" See four element model in Chapter 2. 
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same type used in this investigation. Molloplast B, Novus and Supersoft were 

investigated. The tests were carried out on dry materials and after storage in water for up 

to 100 days. Each measurement was only carried out once. The samples were only 1.5 

mm thick, less than the recommended thickness of 2 mm. They were cyclically 

compressed at 1 Hertz with a dynamic stress of5 kPa amplitude using a 3 mm diameter 

flat tip probe. Superimposed on this was a static stress of 50 kPa to keep the samples in 

contact with the loading plates at all times. Each test run consisted of measurements 

whilst the specimens were taken from 5 to 95°C at the rate of2.5°C per minute, from 

which plots of the storage modulus and tan 8 were obtained for all the materials in the 

wet and dry states. Their results at 37°C are summarised in table 3.2.7. 

Material E' (dry) E' (wet) Tan 8 (dry) Tan 8 (wet) 0/0 Uptake 

Molloplast 4.8 5.1 0.005 0.005 0.5 

Novus 6.2 3.5 0.12 0.1 34.0 

Supersoft 10.0 8.0 1.25 1.25 5.0 

Table 3.2.7. DMA properties of commercial soft liners (Kalachandra et aI, 1995) 

It was concluded that DMA was a useful tool for studying soft liners and that large 

differences in the physical properties were seen in the materials tested. 

A new light cured temporary material (LiteLine) was investigated in vitro by Jepson et 

al in 1995 using similar equipment and methods as in their 1993 articles. It was seen 

that this material was harder than its competitors and that its compliance was little 

affected by the sample thickness. Furthermore, immersion in water had no significant 

effect on the compliance and elasticity of the material. 

Wagner et al studied 12 commercial soft liners in 1995(a) using a custom made 

'Visco elastometer'. Samples of material (1.4 x 3 x 40 mm) were extended sinusoidally at 
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two temperatures (23 and 37°C) and three frequencies (1, 5 & 10 Hz), further more 

each test was repeated 5 times and the results averaged. E', Etl and tan 8 were calculated 

for these conditions. The results relating to Supersoft, Novus and Molloplast are 

summarised in three tables below·. 

Frequency (Hz) E' at 23°C E' at 37°C Tan 8 at 23°C Tan 8 at 37°C 

1 16.65 2.59 1.12 1.25 

5 34.9 7.24 0.77 1.47 

10 46.01 11.97 0.7 1.4 

Table 3.2.8. Viscoelastic properties of Supersoft (Wagner et aI, 1995a). 

Frequency (Hz) E' at 23°C E' at 37°C Tan 8 at 23°C Tan 8 at 37°C 

1 2.30 2.20 0.13 0.12 

5 2.63 2.48 0.18 0.14 

10 2.86 2.65 0.24 0.18 

Table 3.2.9. Viscoelastic properties ofNovus (Wagner et aI, 1995a) 

Frequency (Hz) E' at 23°C E' at 37°C Tan 8 at 23°C Tan 8 at 37°C 

1 1.45 1.5 0.02 0.02 

5 1.51 1.53 0.03 0.03 

10 1.54 1.55 0.04 0.03 

Table 3.2.10. Viscoelastic properties ofMolloplast (Wagner et aI, 1995a) 

As would be expected the higher frequencies increased the stiffness of all three 

materials. The loss tangents of the latter two materials increased with frequency as they 

were shifted towards their glass transitions in the frequency domain. The opposite was 

true for Supersoft at 23°C as it was moved away from its Tg. At 37°C an inflection is 

• The Storage modulus results are assumed to be in MPa although this is not specified in the article. 
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seen for the loss tangent of Supersoft indicating that at this temperature its Tg is 

between 1 and 10Hz on the frequency domain. Relating to other materials investigated 

(i.e. apart from the above), at 1 Hz and 37°C a familiar large variation was seen in their 

properties, the E' for example ranged from 0.73 to 41.61. 

The second part of this study (Wagner et aI, 1995b) used a similar ageing technique to 

that ofDootz etal (1993), involving 900 hours of visible and ultraviolet light and 

distilled water sprays. Samples were tested at 1 Hz and 37°C. The following results 

were obtained. As can be seen Novus and Molloplast were comparatively unaffected, 

whereas Supersoft increased its stiffness by nearly 8 fold compared to that obtained in 

Wagner et al (1995a). 

Material E' (MPa) Tan 8 

Supersoft 20.1 0.93 

Novus 2.6 0.13 

Molloplast 1.2 0.05 
Table 3.2.11. DMA properties of 3 commercial soft liners after accelerated ageing 
(Wagner et aI, 1995b). 

Kalachandra et al (1996) examined 5 experimental acrylic materials based on a 

butadiene styrene copolymer. Two different monomers, different levels of cross-linking 

agent (EGDM) and different initiators were used. Both DMA and water absorption 

properties were looked at, using similar techniques as before (Kalachandra et al, 1995). 

In the dry state the materials had a storage modulus ranging from 14 to 20.9 MPa, which 

after immersion in water had reduced for all the materials to 11.6 - 16.0 MPa, probably 

due to plasticisation effect of the water. This was confirmed by the glass transition of 

the five materials which also decreased in all cases from 20 - 9 when dry to 17 - 5°C 

after immersion. The loss tangent of the 5 materials mirrored this trend, decreasing from 

0.21 - 0.37 in the dry state to 0.16 - 0.32 in the wet state. Of the five materials one had 
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the same composition as the BS material studied here and its properties at 37°C are 

listed in Table 3.2.12. 

BS Material Dry Wet 

E' (MPa) 20.9 16.0 

Tan 0 0.37 0.29 

Tg caC) 20 17 

Table 3.2.12. DMA and water absorption ofBS material (Kalachandra et aI, 1996). 

Waters et al made a study of the dynamic viscoelastic properties of 6 permanent soft 

lining materials in 1996a. The specimens were cut into IOmm diameter, 3mm thick 

samples and subjected to sinusoidal shear deformation at 1 Hz, each reading was 

repeated 5 times. Measurements ofG', Gil and tan 0 were made at 30,37,50 and 70°C. 

The results obtained for Supersoft, Flexibase, Novus and Molloplast at 37°C are 

presented here. 

Material G' (MPa) Tan 0 

Supersoft 0.311 1.078 

Molloplast 0.439 0.066 

Flexibase 0.509 0.158 

Novus 0.355 0.117 

Table 3.2.13. Shear storage modulus and the loss tangent of selected soft liners (Waters 
et aI, 1996). 

The results show that the acrylics have the highest loss tangent by far as would be 

expected. The relatively small difference in the modulus figures for the 4 materials is 

surprising and not consistent with some of the earlier work on this subject. 
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CHAPTER 4 

4.1. Introduction to the Apparatus 

The bulk of the experimental work carried out in this thesis involves the measurement 

of dynamic viscoelastic parameters of various soft lining materials. The materials 

investigated in this report have already been outlined in section 1.4. While the principles 

behind dynamic viscoelastic measurements were dealt with in section 1.2.3. This 

chapter therefore focuses upon the instrumentation; this was the Perkin Elmer DMA-7* 

dynamic mechanical analyser. A summary of the important features of the instrument 

are presented here. 

4.1.1a. The Hardware. 

The DMA 7 instrument consists of four main components. 

• Linear force motor. The force applied by the motor being proportional to the current 

supplied to the force coil. The current can take the form of DC (constant force), AC 

(sinusoidal force) or a combination of the two. 

_ • Linear variable differential transducer (LVDT). The position transducer produces a 

voltage proportional to its deflection from a central null datum. The output of the 

LVDT can them be compared to the input of the force motor. The amplitude being 

related to the storage modulus E' and the phase lag to the loss modulus E". 

• Core rod and measuring system assembly. The measuring systems allow loading of 

samples in various deformational modes and configurations, thus extending the 

application range of the instrument. A range of measuring systems are available and 

will be discussed in section 4.1.3. 

* 
DMA 7, Serial No 138656 
Perkin Elmer 
Post Office Lane B 
Beaconsfield, Buckinghamshire 
England HP9 1 QA 
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• Heating/Cooling system. Low inertia, fast response furnace, enclosed in a cooling 

(liquid nitrogen) system. 

A schematic diagram of the internal arrangements of the instrument is represented in 

figure 4.1.1. Figure 4.1.2. consists of a photograph of the instrUlnent while Figure 4. 1.3. 

is a close up of a representative measuring system. 

Force Motor 

LVDT 

Core Rod 

Interchangeab le 
Measuring System 

Furnace 

Heat Sink! 
Cooling System 

~ 
.... , 

,,' ~ •• :r; 

Figure 4. 1.1. Schematic cross-section of the apparatus. 
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Figure 4.1.2. The instrumental set up consisting ofDMA 7 connected via the TAC 7IDX 
Thermal Analysis Instrument Controller to Computer. 

Figure 4.1.3. Close up of the 10 mm diameter Parallel Plate measuring system. 

PAGE 112 



CHAPTER 4 

The instrumentation requirements include: 10 Amp, 240 Volt, high quality (low noise) 

electrical supply. Stable, vibration free, flat mounting surface. High purity, dry purge 

gas (Helium or Nitrogen) at constant pressure. Clean, relatively temperature stable and 

low humidity environment and an appropriate coolant, depending on the cooling system 

In use. 

4.1.1 b. The Measuring Systems 

While the force motor and the L VDT are integral parts of the instrument a variety of 

interchangeable measuring systems are available to enable investigation of a range of 

materials with differing physical properties using a variety of deformational modes. 

These deformational modes include: three-point bending, extension, parallel plate, 

single and dual cantilever. One of the considerations for which choice of measuring 

system is used is that the forces provided by the instrument should convert into 

displacements of an appropriate magnitude which can be accurately measured· . For 

example, a steel rod under tension will not deform as much as it would in a three-point 

bend, if the same forces are used in both cases. An extension test therefore might not be 

satisfactory. Conversely it would not be appropriate to examine a rubber 'rod' under 

bending conditions as it would be too compliant (for example deform under its own 

weight), so that extension could be a better choice. 

The 3-point bending system, such as incorporated in the instrument used by Clarke 

(1988) can be used to study materials with high modulus, including thermoplastics, 

composites, resins and polymers below their Tg's. The mode of deformation is flexure, 

the basic sample geometry can be a beam, including rods and tubes as well as sheet 

stock. Single and dual cantilever arrangements are available to study the behaviour of 

materials with a mid range of moduli. An extension analysis system is available to study 

materials of various modulus in tension, including fibres, hairs and standard tensile 

samples. Parallel plates are the measuring system of choice for viscous liquids and soft 

• This topic is discussed at length in section 4.1.3. 
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solids. A range of plates is available from 1 to 20 mm in diameter. The measuring 

systems available are summarised below (table 4.1.1). 

Measuring System Deformation Type Stiffness Range 

Three-point bending Flexural High 

Cantilever Flexural Mid-range 

Extension Tensile Mid-range 

Parallel Plate Compressive Low 

Table 4.1.1. DMA Measuring Systems. 

4.1.2. The Software: Modes of Operation. 

The instrument is computer controlled and can be operated in a number of different 

modes. A mode of operation is defined by the software which runs it. In each mode a 

selected variable or variables are programmed while the other variables are held 

constant. The modes of operation include: 

- Temperature Scan Mode. In this mode the temperature is programmed over a specified 

range while the frequency and stress are held constant. The viscoelastic parameters of 

the specimen can thus be studied as a function of temperature. Transition temperatures 

such as the Tg can readily be identified. Temperature scan is the mode used in this 

work. 

Time Scan Mode. In the time scan mode, temperature, frequency and stress are held 

constant, and the material properties are investigated over a period of time. This mode is 

useful for the study of curing behaviour in polymers. 

Frequency Scan Mode. The frequency of the deformation is programmed over a given 

range while the temperature is held constant. This mode can be used to obtain 
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transitions in the frequency domain, as well as to obtain information on the molecular 

behaviour of a material. 

Stress Scan Mode. In this mode the temperature and frequency are held constant while 

the stresses are linearly programmed. This mode can be used to obtain information on 

the linear viscoelastic region. 

Creep-Recovery Mode. Several experiments are possible under this heading. In the 

creep test a load is applied instantaneously and held constant while in the recovery test a 

load is suddenly removed and the recovery response observed. Instead of applying an 

instantaneous load a facility exists for the introduction of a creep ramp, where the rate 

of the introduction of the load can be controlled. 

Constant Force Mode. Only static forces are applied in this mode of operation. The 

temperature can be programmed over a range or held constant. Temperature or time 

dependent behaviour is characterised by the change in sample dimensions. This mode is 

used to look at softening points and expansion coefficients. 

4.1.3. Fundamentals of DMA: Displacement Force, Frequency and Temperature. 

The forces and displacements that the sample under investigation experiences have to be 

kept within certain limits. The displacement amplitude is the most vital output signal, 

generated by the L VDT. The full amplitude range is 1-650 microns although amplitudes 

in the range 5-500J.lm give the best results. The phase angle is also important, the 

amplitude and the phase angle interact in the following way: the limits for the accurate 

detection of amplitude and phase angle are IJlm, and 0.5° respectively. Ifboth the 

amplitude and the phase angle are below these limits then it is very difficult to obtain 

decent measurements. If only one is below the limit then good results can be obtained, 

but for best results they should both be above IJl and 0.5°, respectively (table 4.1.2.). 
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Measured Quantity Amplitude < 1 Jlm Amplitude> IJlm 

Phase lag < 0.5° Poor Good 

Phase lag> 0.5° Good Excellent 

Table 4.1.2. The dependence of data quality on the measured parameters. 

To increase the displacement amplitude the dynamic stress has to be increased 

appropriately. The phase angle (loss) of a material can not be changed so readily. For a 

viscoelastic material, altering the frequency can change the phase angle. 

Paradoxically the lower the phase angle the better the quality of the experiment. This is 

because the apparent phase angle during an experiment can be increased by poor sample 

mounting, loose probes, probe misalignment, etc. All of which lead to friction and 

damping losses measured by the instrument and hence an increase in the phase angle. 

Thus the apparent phase angle can be reduced by eliminating experimental error. 

Figure 4.1.4. shows the results of a temperature run on the MB material. As can be seen 

the results of the storage modulus curve at less than -60°C is little more than noise, 

corresponding to a virtually undetectable amplitude. As the material softens slightly 

from -60 to -50°C, the amplitude increases slightly so that the storage modulus can be 

estimated, although excessive noise persists and the results are not ideal. From -50°C 

onwards there is a dramatic transition of the material, the amplitude rises rapidly and 

good results are obtained. 
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Figure 4.1.4. The effect of amplitude on the quality of the results. 

The dynamic force must really be sufficient to produce an amplitude of at least 1 

micron, but not greater than 650 microns as this is the maximum detection limit for the 

instrument. Also, to prevent the probe losing contact with the material and bouncing, a 

static force is superimposed on top of the dynamic force (see figure 4.1.5). The static 

force should be as low as possible, whilst still maintaining contact. An excessively large 

static force can lead to errors in the phase angle. 
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Static Force 

Plus the 

Dynamic Force 

Equals the 

Total Force 

_ The total force, i.e. the sum of the static and dynamic component available from the 

force motor is 2500 mN in compression and 1300 mN in extension. This, in conjunction 

with the various measuring systems already discussed, is theoretically sufficient to 

investigate materials in the modulus range of 103 to 1012 Pa. Difficulties arise when in 

the course of a single run the material properties change dramatically as in the case of 

polymers where the modulus changes spectacularly across a relatively small temperature 

spectrum. To accommodate this several force motor facilities are available: 

Force Control. The force control is the default on the DMA 7. Both static and dynamic 

forces are maintained at fixed values throughout the experiment 

Dynamic Control: Amplitude, Strain and Stress. In dynamic control the analyser keeps 

the amplitude, the strain or the stress at a constant level, depending on the respective 
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mode. This is accomplished by varying the dynamic force output of the motor. The 

application range of the instrument is thus extended. 

Static Control: Position and Tension. A static force component is needed to keep the 

probe in contact with the sample at all times. Constant position and tension controls 

provide alternatives to static force control. In position control the static stress is varied 

during the course of a run to keep the position of the sample constant. For example if a 

fibre shrinks during the course of a run, the static force is increased to keep the fibre at 

its original length. The tension control applies a static force as a percentage of the 

dynamic force, enough to keep the sample and probe in contact. 

The DMA has a frequency range from 0.01 to 51 Hz encompassing 258 delectable 

frequencies. If a specific frequency is not specified then frequency should be chosen to 

provide a reasonable phase angle. Problems can be encountered with the lower 

frequencies as the time between successive cycles becomes too large. At 0.01 Hz for 

example 100 seconds will elapse between each peak in the amplitude. Problems can also 

occur at the higher end of the frequency spectrum due to resonance. The resonant 

frequency of the instrument with no sample is 75 Hz which is well above the 51 Hz 

limit. The sample will modify this resonant frequency however. If the resonant 

frequency of operation is close to the operating frequency of the instrument then either 

the operating frequency or the sample dimensions have to be changed. 

The sample and measuring system are held in a furnace enclosed in a liquid nitrogen/ice 

case as represented in figure 4.1.1. The temperature range of the instrument is thus -170 

to 500°C. This can be extended by using different furnace and cooling systems. The rate 

of temperature change can be from 0.1 to 40°C per minute. The temperature rate should 

take into account the thermal inertia of the sample. The temperature of the sample will 

lag behind the temperature of the furnace, as it takes time for the sample to warm up. 
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4.2. Experimental Methodology 

Initial work carried out was concerned with finalising the measuring system which was 

to be used. The dual cantilever measuring system was assessed for its suitability in 

studying soft lining materials. It was found not to be ideal as some of the materials 

being investigated were too soft at room temperature. Difficulty was experienced in 

mounting and clamping these compliant samples. Parallel plates were the measuring 

system actually used in this report. Using this geometry samples took the shape of flat 

disks which were held between two circular parallel plates and deformed in 

compression. Several sizes of plates were available ranging from 1 mm to 20 mm in 

diameter and again experimental work was carried out to evaluate an optimum size. The 

edges of the probes supplied with the instrument were machined so as to be rounded. 

This means that the actual area of contact was less than the nominal area of contact for 

small deformations. This ratio of actual area to apparent area is inversely proportional to 

the size of the probe. With the larger probes the difference between the two was 

negligible, while for the smaller probes it increased in magnitude. For larger 

deformations the smaller probes (l and 3 mm probes in particular) were found to dig 

into the sample. Theoretically therefore the larger probes provided more accuracy. In 

practice however, the instrument could not always provide enough force and hence 

deformation to run the largest of the probes. So a compromise had to be reached. All the 

probes were tested, the 5 mm probes were found to give the most satisfactory results and 

so these were used. 

Samples were cut out of 2mm sheets, whose manufacture was outlined in section 1.4.1 

A cork borer of approximately 7mm internal diameter was utilised to cut the circular 

samples. The slight over lap (i.e. d,Oameter of these samples was approximately 2mm 

larger than that of the probe) was required so that a 5 mm radius of material under 

compression could be guaranteed. 
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Work was then carried out to select suitable force controls. The force controls were 

initially used at the levels recommended by Kalachandra et al. (199S). This was not 

found to be ideal for the more temperature dependent materials however as the 

displacement amplitude was too small at lower temperatures (producing noisy results) 

and excessive at high temperatures (resulting in large amounts of strain). After extensive 

trial and error it was decided to opt for tension static control and dynamic strain control. 

That is to say the dynamic stress was designated to be kept at such a level to provide 

O.S% strain in the sample. The static force was likewise kept at 10S% of the dynamic 

force to prevent the loss of contact between the probe and the sample. The reasons for 

the selection of this method of force control were as follows: as will subsequently be 

apparent some of the materials investigated in this report have a 3 decade range in 

properties within the region of experimental interest. The best way of analysing these 

materials was found to be by keeping a constant level of strain through out. This means 

that at the high modulus range high stresses are imposed, these stresses fall 

proportionately as the material softens. A small level of dynamic strain was chosen for 

two reasons: one was to keep the materials in the linear viscoelastic region. The other 

reason was simply due to the maximum force limitations of the instrument. The static 

control was also chosen at a low value for similar reasons. Using the stress scan mode of 

the instrument it was verified that all the materials were in the linear viscoelastic region 

of their behaviour at 37°C and 1 Hz at up to O.S% strain levels. 

In the experiments the frequency of 1 Hz was used as a constant value. This was chosen 

as it approximates the frequency of mastication. The temperature range was similarly 

chosen to encompass those temperatures which are likely to be met in clinical 

applications (10°C to 70°C). A heating rate of SoC per minute was found to be 

satisfactory . 
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For the sake of comparability all the materials in this investigation were subjected to the 

same test regime. A typical screen display from the DMA computer is presented in 

figure 4.2.l. 

PMA7 TEMP/TIME Set..N METHOof 
~amp 1 e Parameters1t----.------------­
~ample ID Flexibase 
~omment 5mm. O.5strain. 5%tension. 

!~emperature Progra~ I 
Temp Time Rate 

C min C/min 
~--~----~--~ Operator 10 K. SABERSHEIKH 

rile Name fb287951 4 I ~ 10.0 0.0 5.0 I 
Measuring System Parallel Plate 2 70 0 I 
~ample Geometry Disc r-Pr--MA-7-P-r-og-r-a-;rr .• I-------.-- 3 - . = = . I i 
~ample Height 2. 136mm 4 - I - - ! 
Samp Ie Diameter 5. OOOmm 5 - - - I 

~ample Zero -2.452mm 
PMA7 Parametersf-------i 
~tatic Force 
Dynamic Force 
I=reQuency 

100.0mN 
O.OmN 

1. OOHz 
Static Control 
Static Setpoint 
Dynamic Control 
Dynamic Setpoint 

Tension 
105% 

~L= = I = i 
8 ~-_l_J 

End Condition 
Go To Initial 

Strain Static On 
0.500% Dynamic On 

_ Figure 4.2.1. Print out of a typical DMA method screen. 

Each DMA run consisted of an initialisation process whereby the sample was carefully 

mounted'" between the parallel plates and the sample chamber cooled down to its initial 

temperature of 10°C. Static and dynamic controls were then applied to the sample, ruf1 

parameters were allowed to equilibrate. The run was subsequently started and the 

materials heated at 5°C per minute through the temperature range. A minimum of 3 

repetitions were made for each material to get an idea of the reproducibility and 

accuracy of the experimental technique. The important parameters of the DMA test are 

summarised in table 4.2.1 . 

... Mounting of the sample is crucial as errors can easily occur due to poor mounting. 
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Experimental mode: Temperature Scan. 

Mode of deformation: Compression between Smm diameter parallel plates. 

Sample geometry Cylinder, 2mm nominal thickness. 

Repetitions: Minimum of 3. 

Dynamic control A dynamic strain of O.S%. 

Static control A static force of 10S% of the dynamic force. 

Frequency - 1 cycle per second (Hz). 

Temperature range 10 -70°C. 

Heating Rate SoC per minute. 

Table 4.2.1. Summary of experimental parameters. 
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5. Introduction. 

The results obtained during the current investigation are presented and discussed in this 

chapter·. These results are subdivided in the following two sections: work pertaining to 

materials in their initial state i.e. as processed, is found in section 5.1, and the effect of 

water absorption and ageing characteristics of these materials are subsequently dealt 

with in section 5.2. 

5.1. Initial Viscoelastic Characteristics. 

5.1.1. Acrylic Based Materials. 

Futurasoft III (FS) 

Figures 5.1.1. and 5.1.2. show the graphs of the storage modulus and loss tangent of the 

FS material as detennined in this study using the DMA method just outlined. The 

graphs are typical of a polymer going through its glass transition. The modulus curve 

shows a dramatic drop (350 to 3 MPa) in stiffness across the 45°C temperature range 

shown here. The tan 8 curve has a peak at 36.8°C which can be used as a measure of the 

Tg·*. This material was the stiffest of the commercial heat cured acrylics as might be 

expected with regards to the absence of plasticisers in the system. 

FS E' (MPa) S.D. Tan 8 S.D. 

37°C 19.7 .} .. 1.63 . 1.47 0.01 

22°C 209 9.06 0.779 0.04 

Table 5.1.1. The viscoelastic properties ofFS at mouth and room temperature. 

• With the exception of some work concerning the frequency dependent characteristics of soft lining 
materials which is presented seperately in the form of a minipaper in appendix B. This article was 
published in 1996, in the Polymers In Medicine and Surgery (PIMS) meeting abstract book (pp 301-308) . 

•• In this report the peak in the loss tangent curve is used as the measure of the Tg following the trend 
made by other workers in the dental field (Clarke, 1988). The peak of the loss modulus (E") and the 
extrapolated onset of the storage modulus drop can also be used (AS1M 1640 - 94). Although the Tg 
values obtained will not be consistant. The following order is generaly observed: 
Tg (E') < Tg (E") < Tg (Tano). 
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Figure 5.1.1. Storage modulus· of Futurasoft (FS). 
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Figure 5.l.2. Loss Tangent ofFuturasoft (FS). 

• The DMA storage modulus graphs in this section are presented on a logritbmic scale for clarity and 
convinience. 
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As was discussed in section 1.4.1. this material is a mixture of methyl, ethyl, butyl, 

nonyl and tri-decyl methacrylates, the exact proportions of which are not known for 

certain. It was noted in table 1.3.3. that the first two constituents have Tg's above mouth 

temperature while the higher methacrylates have proportionately lower Tg's. The overall 

Tg of the material however is extremely close to its operating temperature (37°C). It is 

unclear whether this is by chance or design. 

As far as the literature survey revealed the viscoelastic properties of this (FS) material 

have never been investigated before so that no comparisons with previous studies can be 

made. 

Supersoft, new and old (NS & OS) 

The viscoelastic properties of both materials are represented in figures 5.1.3. to 5.1.6. 

From these results alone it seems clear that the formulation of Supersoft has changed 

over the years. This is inspite of the fact that both the NS and OS materials were typical 

of the soft acrylics and had similarly shaped E' and loss tangent curves, indicative of 

polymers going through their glass transitions. The distinguishing difference between 

the two was the value of the glass transition. The new formulation of the material had its 

Tg at 37.8°C, a 7.7°C shift from the older version which had a Tg at 30.1 °C. This glass 

transition shift corresponds to a three times increase in the stiffness for the new material 

from 5.87 to 16.8 MPa at mouth temperatures. 

Infra red spectroscopy seems to suggest that there has been a change from methyl 

methacrylate to ethyl methacrylate in the liquid component of this material (Braden, 

1996). Ethyl methacrylate has a lower Tg and is thus softer. If this was the only 

variation between the two materials one would expect NS to be softer than OS. In fact 

the opposite is true, it can be postulated however that the new version of the material 

has a reduced amount of plasticiser which has been facilitated by the change in the 
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monomer. There is indeed strong evidence of this reduction in the amount ofplasticiser 

used; provided by the water absorption data presented in section 5.2. 
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Figure 5.1.3. Storage modulus of Supersoft (NS). 
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Figure 5.1.5. Storage modulus of Supersoft (OS). 
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Figure 5.1.6. Loss Tangent of Supersoft (OS). 
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NS E' (MPa) S.D. Tan 8 S.D. 

37°C 16.8 1.7() . 1.52 0.01 

22°C 176 9.4$. 0.685 0.02 
;,,-~ .... ~ 

oS E' (MPa) S.D. Tan 8 S.D. 
" . 

~,-

37,°0,'" 5.87 )~.f; .;~ "'iP;~2 . 1.27 0.03 
-~ JJ.<:>:';> ,ow."'~ 'Y.: 

- ...... ,., ,. 

'1: . 'fi; , 

. ,; 

22°& ' 56.3 ,. ~~:~5 1.23 0.05 
Table 5.1.2. The vIscoelastIc propertIes ofNS and OS at room and mouth temperature. 

The results for the two versions of the Supersoft material were compared with those 

obtained by other workers. It is uncertain which version of the commercial material each 

author is referring to, although the date of the publication and the ageing properties of 

the material provide some clues. Furthermore it is possible, and even probable, that the 

material formulation has changed more than once over the past 25 years since it was 

first tested by Braden and Clarke (1972). 

In the investigation carried out by Waters et al (1996) Supersoft was measured as having 

a shear storage modulus of 0.311 MPa and a loss tangent of 1.078. Assuming the 

Youngs modulus is 3 times the shear modulus· the material is still considerably softer 

than either NS or OS as observed in the present study. As will become apparent Waters 

and co-workers obtained comparatively lower modulus values for all the materials 

tested, and hence this systematic discrepancy must be attributed to the differences in the 

two instruments used. 

• The assumption for arriving at E = 3G is that the Poissons ratio is 0.5 (i.e. the material is 
incompressible). This is based on a more fundimental equation from the theory of elasticity, i.e. E=2G(1 + 
f.!), (Tschoegl, 1989). The assumption of incompressibility although true for most polymers past their 
transition region (i.e. rubbers) is extremely doubtful for Supersoft, which is undergoing a transition in this 

temperature range. 
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Kalachandra et al (1995) obtained a figure of 10 MPa for the storage modulus and 1.25 

for tan () for Supersoft· at 37°C and 1 Hz. This modulus figure is higher, and the loss 

tangent similar to the experimental data found in this investigation. One possible source 

of discrepancy is the difference in the motor controls used in the two investigations. 

Whereas the sample is kept under a constant strain in this study, Kalachandra et al used 

two, seemingly arbitrary, values for the static and dynamic stress at 50 kPa and 5 kPa 

with the result that the strain imposed on the sample is constantly increasing during the _ 

temperature run. Because of this, and other reasons (outlined shortly), it is hard to make 

a direct comparison. Problems mentioned in chapter 4 concerning the use of a 

reasonable force to obtain an adequate amplitude are well exemplified by Kalachandra's 

results, as the modulus and tan () traces show substantial noise in the high modulus 

region where the analyser (the L VDT to be precise) is struggling to read the minimal 

amplitude. 

Using a custom made analyser Wagner et al (1995a) observed a E' of2.59 MPa and tan 

() = 1.25 at 37°C and 1 Hz; and values of 16.65MPa and 1.12 measured at 23°C and 1 

Hz. These, and other values obtained in their study are again lower than the values 

obtained here, so this must again be due to a systematic difference between the two 

techniques. A likely cause of this is the deformational mode and geometry which in this 

case is the extension of a 1.4 x 3 x 40 mm strip. 

Braden and Clarke (1982) tested Supersoft dynamically, but on a very different time 

scale. At room temperature and 0.96 kHz they found Supersoft to be much stiffer, 540 

MPa. This compares to 56.3 and 176 MPa obtained in this investigation for OS and NS 

at similar temperatures but at a much slower time scale. 

• It is believed that the author is refering to OS. This view is based on the fact that all the other materials 
tested by the author also have a higher modulus than was found in this report. There is however contrary 
evidence to this assumption (i.e. NS is being tested) provided by the ageing characteristics in section 5.2. 
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Also in 1982 Robinson and McCabe did some compressive creep tests on Supersoft. 

These were carried out at room temperature, so that these results are of limited clinical 

relevance. Their results clearly show the time dependent character of Supersoft with the 

creep modulus halving in magnitude as the time scale is changed from ten seconds to 

ten minutes. The 10 second value of the creep modulus was 2.4 MPa compared with the 

higher value of 56.3 MPa obtained in this report at 1 Hz. An increase in the modulus 

following a reduction in the time frame of the experiment is to be expected as this 

relates to the time dependent nature of this material. 

Duran et al (1979) obtained a value of7.5 MPa for the modulus of Supersoft using a 

dynamic method of undisclosed nature. They found this to be larger in magnitude than 

the creep compliance figure of 1.71/MPa which they also measured. 

Braden and Clarke used a torsional pendulum to study the viscoelasticity of Supersoft in 

1972. They obtained a value of 0.8 MPa for the shear dynamic modulus of Supersoft, 

which implies a compressive modulus of2.4 MPa. For the loss tangent a value of 1 was 

arrived at. Apart from the 'E = 3G' assumption; other sources of discrepancy between 

these results and the results in table 5.1.2. could be due to the lower frequency range 

(0.1 - 0.5 Hz) which would certainly have the effect of measuring an apparently lower 

modulus value. Additionally as was earlier noted the torsional pendulum is not an ideal 

instrument for studying lossy polymers going through their transition. 

5.1.2. Silicone Based Materials. 

Molloplast B (MP) 

The DMA traces obtained for Molloplast B (Figures 5.1.7 and 5.1.8) are indicative of a 

rubber well beyond its glass transition. In this temperature range MP can therefore be 

considered as a temperature independent silicone based rubber. As would be expected of 

a rubber, the properties are marked by a low average modulus and loss tangent of3.9 
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MPa and 0.027, respectively. The loss tangent was by far the lowest of any material 

analysed. 
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Figure 5.1.7. Storage modulus ofMolloplast B (MP). 
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Figure 5.1.8. Loss tangent of Molloplast B (MP). 
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MP E' (MPa) S.D. Tan 8 S.D. 
:';Y 

: ,; ~ 

37°C 3.87 0.16 0.029 0.007 

22°C 3.91 0.15 0.036 0.007 
-. 

Table 5.1.3. The viscoelastic properties ofMP at room and mouth temperature. 

Waters et al (1996) obtained a value of 0.439 MPa for the shear storage modulus of this 

material at 37°C and 1 Hz. Using the 'E = 3G' assumption, which is more applicable 

because ofMP's rubber like nature, a value of 1.32 MPa can be obtained for the 

modulus. This is roughly 3 times lower than the value obtained here. The loss tangent 

value obtained by these authors is 0.066 which is conversely approximately 3 times 

higher than the value obtained here. 

Wagner et al (1995a) obtained a value of 1.5 MPa for the modulus of this material and a 

loss tangent value of 0.02. The modulus is approximately two times lower than was 

found here while the loss tangent figure is approximately the same. 

Kalachandra et al (1995) obtained a value of 4.8 MPa for the storage modulus and a 

value of 0.05 for the loss tangent (at 37°C and 1 Hz). These are similar in magnitude 

although larger than the values obtained here. Problems noted earlier with the constant 

force method used do not occur here mainly because the material is more compliant and 

not very temperature dependant as was the case with Supersoft. 

Jepson et al (1993a) looked at the properties of Molloplast B using their force/distance 

probe. They found little difference between the initial and delayed compliance of 

Molloplast as would be expected. The actual values of modulus were 5.26 MPa and 5 

MPa respectively. These are again somewhat higher than the values obtained here. 
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Braden and Clarke (1982) found a modulus of 9.4 MPa for Molloplast although at much 

higher frequencies. This increase in the modulus was relatively small compared with the 

one observed with Supersoft at these higher frequencies. This can be attributed to the 

fact that Supersoft is going through its transition. 

Robinson and McCabe (1982) studied Molloplast B in creep conditions. Although this 

was not carried out at mouth temperature, the results are applicable in this case because 

of the temperature independence of the material. This reason coupled with the fact that 

the time difference, (i.e. the difference between 10 seconds and 1 Hz) has less of an 

influence on the 'low loss' silicones means that these results compare much better with 

the results given here. From the creep curves it can be seen that Molloplast B exhibits 

minimal time dependence after 10 seconds. Molloplast had a modulus of3.5 MPa. 

Using a torsional pendulum in 1972, Braden and Clarke obtained a 'compressive' 

storage modulus (using E = 3G) of 1.65 MPa for Molloplast B, and a loss tangent value 

of 0.06. 

Flexibase (FB) 

Similarly to Molloplast B, Flexibase is also in the rubbery zone of its behaviour. Unlike 

MP some activity of low magnitude can be seen in Figure 5.1.10. This was not generally 

reproducible however and because of its low magnitude no conclusions can be drawn. 

The modulus and the loss tangent have low values of3.4 MPa and 0.11, respectively. 

Comparison with Molloplast B shows that this cold cured material has a lower modulus 

and a higher loss tangent than its rival. 
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Figure 5.1.9. Storage modulus ofFlexibase (FB). 
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Figure 5.1.10. Loss tangent of Flexibase (FB). 
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FB E' (MPa) S.D. Tan 8 S.D. 

37°C 3.52 0.3~ 0.111 0.017 

e22°C 4.01 0.35 0.110 0.018 
-p . ,'\. 

Table 5.1.4. The viscoelastic properties ofFB at room and mouth temperature. 

Waters et al (1996) obtained a value for G' of 0.509 MPa, and a loss tangent ofO.l58 at 

mouth temperature and the same frequency as used here. This translates into a 

compressive modulus of 1.53 MPa, indeed FB was found by the authors to be the 

stiffest of the materials tested. As was the case with Molloplast B the modulus value is 

less than the one found here (less than half). The loss tangent value on the other hand 

was slightly larger than the one found here. 

Braden and Clarke (1982) found Flexibase to have a modulus of2.5 MPa using a high 

frequency method. This is lower than the value found here and significantly lower than 

the value found for MB in the same paper. 

In the study mentioned earlier by Robinson and McCabe (1982) Flexibase was studied 

in creep conditions. Again although the tests were not carried out at mouth temperature, 

the results should be valid for this temperature independent material. Again Flexibase 

had a lower modulus (2.8 MPa) than was found for Molloplast B. 

U sing a torsional pendulum in 1972, Braden and Clarke obtained a compressive storage 

modulus (again using 'E = 3G') of 2.7 MPa for Flexibase, and a loss tangent value of 

0.4. 
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5.1.3. Miscellaneous Commercial Materials. 

Novus (NN, ON) 

The two formulations of polyphosphazine based material 'Novus' were investigated and 

compared. The two materials ON (old) and NN (new) were very similar in their 

viscoelastic characteristics, the only tangible difference being a slightly higher loss 

tangent in the older version of the material. 

ON and NN were found to be viscoelasticaly similar to the silicone materials 

investigated in that they were all well above their glass to rubber transition, showing 

rubber like behaviour. They were more compliant than the silicones with the lowest 

modulus of any material tested here. The modulus was 3.02 and 2.79 :MFa for new and 

old Novus, respectively at 37°C. The loss tangent was also on the low side with the 

range of 0.103-0.125 for the new and old. 
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Figure 5.1.11. Storage modulus ofNovus (NN). 
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Figure 5.1.12. Loss Tangent ofNovus (NN). 
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Figure 5.1.13. Storage modulus ofNovus (ON). 
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Figure 5.l.14. Loss tangent ofNovus (ON). 

NN , .,< E' (MPa) S.D. Tan 8 S.D. 

37°C · 3.02 0.30 0.103 0.004 
, 

22°C 3.33 0.31 0.133 0.004 

ON E' (MPa) S.D. Tan 8 S.D. 

37°C 2.79 0.35 0.125 0.005 

22°C 3.14 0~45 0.157 0.005 
Table 5.1.5. The vIscoelastic properties ofNN and ON at room and mouth temperature. 

The results obtained by Waters et al (1996) follow a familiar trend in that the modulus 

value is smaller than the value obtained here (G' = 0.355 MPa, tan 8 = 0.117 at 37°C 

and 1 Hz). It will be noted that all the modulus figures obtained by Waters et al (Table 

3.2.13) are of a comparable magnitude. As noted earlier this is not consistent with the 

work of earlier researchers who have found a large spread of stiffness in these materials 

(e.g. Braden & Clarke, 1972). 
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Kalachandra et al (1995) observed (at 37°C and 1 Hz) a figure of6.2 MPa for the 

modulus, which is approximately two times higher than the value obtained here. The 

0.12 value obtained for the loss tangent is very close to that obtained for the older 

version of the material. It can be noted that in the case of all three materials analysed by 

Kalachandra et al (1995), the modulus obtained was higher than is observed here, even 

though the same technique and instrument were being used. A contributing factor for 

this systematic difference is certainly due to the fact that the samples tested by 

Kalachandra et al were only 1.5mm in thickness compared to the 2mm thick samples 

used here. Another possible explanation could be due to the smaller probe (3mm 

diameter) used. When applying a compressive stress on the sample an area around the 

sample is also deformed and contributes to the apparent modulus of the sample. This 

contribution would be relatively larger, for a smaller probe. This being the case, an 

apparently stiffer material would be expected to be observed by using the smaller 

probes. 

The value of storage modulus observed by Wagner et al (1995a) is 2.20 MPa at 1 Hz 

and 37°C. This is again lower than the value observed here. 

Triad Resiline (TR) 

As stated before the chemistry of this material is not known for certain. Its viscoelastic 

characteristics are shown in Figure 5.1.15 and 5.1.16. Triad had its transition at sub zero 

temperatures (as might be expected from a polyether based material) and showed no 

transitions in the region studied. At mouth temperatures its behaviour is largely 

temperature independent. The value of the modulus was rather high for a soft lining 

material at 16.0 MPa. The loss tangent of the material was in contrast fairly low at 

0.133. 
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Figure 5.1.15. Storage modulus of Triad (TR). 
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Figure 5.1.16. Loss tangent of Triad (TR). 
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TR E' (MPa) S.D. Tan 8 S.D. 

37°C 16.0 1.56 0.133 0.01 
" 

22°C 19.9 2.49 0.184 0.01 

Table 5.1.6. The viscoelastic properties ofTR at room and mouth temperature. 

This material has not been previously studied and no comparisons can therefore be 

made. 
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5.1.4. Experimental Materials. 

Elastomer / Methacrylate Hybrids (BS) (S1) (PBJ 

The viscoelastic properties of the elastomeric based experimental materials (see 1.4.5a 

for composition) are presented in figures 5.1.17. to 5.1.22. The storage modulus and the 

loss tangents of these materials at room and mouth temperature are summarised in table 

5.1.7. The viscoelastic properties of all three materials are dominated by a broad, 

shallow peak of small magnitude in their loss tangent curve near mouth temperature. 

This is due to the methacrylate (i.e. 2-ethylhexylmethacrylate) phase of these materials·. 

It can be deduced from this peak that the methacrylate and elastomeric phases of these 

materials form distinct areas dominated by one or the other. i.e. elastomericaly rich 

areas with a low Tg and methacrylate rich areas with Tg's in the temperature range of 

interest. 
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Figure 5.1.17. Storage modulus of experimental BS material. 

• The Tg of 2-ethylhexyl methacrylate is actually quoted at a lower temperature of -10°C (Braden et aI, 

1997). 
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Figure 5.1.18. Loss tangent of experimental BS material. 
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Figure 5.1.19. Storage modulus of experimental SI material. 

PAGE 1./5 



CHAPTER 5 

0.6 o First <> Second t;. Third • Mean 

0.5 

0.4 -s:: 0 
OJ) 
s:: 

0.3 CIS 
f-; 
en 
en 
0 
~ 0.2 

0.1 

0 

15 20 25 30 35 40 45 50 55 60 

Temperature COC) 

Figure 5.1.20. Loss tangent of experimental SI material. 
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Figure 5.1.21. Storage modulus of experimental PB material. 
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Figure 5.1.22. Loss tangent of experimental PB material. 

BS E' (MPa) S.D . . Tan 8 S.D. 

. 37°C 
",,' 

15.0 2.25 0.445 0.019 
ii' 

22°C 34.7 6.12 0.411 0.023 

SI E' (MPa) S.D. Tan 8 S.D. 
,.; ~ .. 

31°C 7.54 0.75 0.514 0.008 

22°C 21.9 1.44 0.478 0.008 

PB E' (MPa) S.D. Tan 8 S.D. 

37°C 4.15 0.24 0.429 0.004 

22°C 8.25 0.42 0.368 0.003 

Table 5.1.7. The VIscoelastic propertIes ofBS, SI and PB at room and mouth 
temperature. 

60 
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As can be seen the loss tangents of all three materials are very similar (at 37°C). The 

modulus on the other hand encompasses a relatively wide range, with the PB material 

being the softest (4.15 MPa), the BS material being the stiffest (15.0 MPa) while the SI 

material has an intermediate value (7.54 MPa). The glass transitions of these soft lining 

materials are surprisingly in the reverse order which would be predicted from these 

stiffuess values (32.7, 34.9 and 36.5°C respectively for BS, SI and PB). The stiffness of 

these soft liners must therefore be related to the inherent stiffness of the elastomeric 

phase of each material. 

The viscoelasticity of the BS material has been studied before by Kalachandra et al 

(1996) using a similar technique to that used in 1995 by the same author. Its viscoelastic 

properties were measured as follows: E' = 20.9 MPa, tan 8 = 0.37 at physiological 

temperatures. The storage modulus in this case was higher than the value measured here 

as is consistent with Kalachandra's method i.e. thinner samples and smaller probe. 

Polymerisable plasticiser based materials (PP) (CJ) (PE) (PH) 

The exact composition of these polymerisable plasticiser based materials was given in 

table 1.4.7. The DMA traces for this class of experimental materials are similar in nature 

and show typical plots for an acrylic soft lining material; with the maximum in the loss 

tangent curve peaking near mouth temperature. The peaks though are universally shorter 

and slightly broader than those obtained for the other plasticised acrylics. This can be 

attributed to a distribution of sizes of the plasticising oligomers, with the smaller ones 

contributing to the early part of the transition and the larger ones coming into effect at 

some higher temperature. 

The plots of these polymerisable plasticiser based materials are shown in figures 5.1.23 

to 5.1.30 with table 5.1.8 summarising the results at room and mouth temperatures. 
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Figure 5.1.23. Storage modulus of experimental PP material. 
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Figure 5.1.24. Loss tangent of experimental PP material. 
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Figure 5.1.25. Storage modulus of experimental C 1 material. 
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Figure 5.1.26. Loss tangent of experimental C1 material. 
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Figure 5.1.27. Storage modulus of experimental PE material. 
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Figure 5.1.28. Loss tangent of experimental PE material. 
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Figure 5.1.29. Storage modulus of experimental PH material. 
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Figure 5.1.30. Loss tangent of experimental PH material. 
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PP E' (MPa) S.D. Tan 8 S.D. 

7 
37°C 

", 
16.6 0.69 1.23 0.02 

22°C 136 11.58 0.851 0.06 
,-

Cl E' (MPa) 
~ 

S.D. Tan 8 S.D. 
'rill ' ;;.; 

37°c" 23.6 ~:' 1.79 1.38 0.02 
,,~ .. ~ , " '" ~ " , 

I " 
'," 

, 

22°C ' 
. < 

% • . ., 
191 ~ 1't..16 0.487 0.01 

. 
PE : " E' (MPa) S.1>.. Tan 8 . -.:'@ S.D • 

~- :-

" 
, 37QC -" ,.'". .;;, 

24.6 4.20 1.38 0.05 
- ~ 

F 

22°C 210 22.16 0.516 0.09 

PH E' (MPa) S.D. Tan 0 S.D. 

37Pfl, ; 33.1 2.17 1.27 0.04 
'C 

,,, 22°C 251 7.l9 0.348 0.07 
"., 'i'" . 

Table 5.1.8. The vIscoelastic propertIes ofPP, C1, PE and PH at room and mouth 
temperature. 

In these four polymerisable plasticiser materials the stiffness corresponds to the Tg* . 

PH for example has the highest glass transition and the highest modulus, PE being next 

in line with stiffness and T g, etc. In fact overall C 1, PE and PH are the stiffest of all the 

materials tested in their natural state. This increase in stiffness of C 1, PE and PH 

relative to the PP material is possibly due to the relative decrease in the amount of 

plasticiser used in these three materials. 

It is not possible to predict the Tg's of these materials with any degree of accuracy 

(based upon their compositions) although the trends observed can largely be accounted 

for. One would expect a material containing 2-ethylhexyl methacrylate to have a lower 

glass transition compared to one containing hexyl methacrylate, due to the increased 

* The Tg's of these materials are as follows: PP : 34.0°C, C1 : 39.8°C, PE : 40.1 °C, PH : 42.0°C. These 
and all the other Tg's for all the materials tested are summarised in table 5.3.1 . 
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bulkiness of the fonner; this is observed by comparing PE and PH. Similarly one would 

expect Cl to have a lower Tg for similar reasons. 

By virtue of the fact that these are experimental materials, there has been no previous 

work carried out on their viscoelastic characteristics. It is therefore not possible to 

compare these results with the work of others. 
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5.2. Ageing Characteristics. 

In this section the effect of ageing on the viscoelastic characteristics of the soft liners 

were investigated. A variety of methods are described in the literature to study the 

durability of soft lining materials. These include dedicated ageing machines (Dootz et 

aI, 1993); storage in water, and other media, e.g. denture cleaners (Bates & Smith, 1965; 

Manderson & Brown, 1978; Kalachandra et aI, 1995); thennal cycling (Quadah, 1991); 

as well as clinically based experiments (Jepson et aI, 1993b). Of the laboratory 

techniques, storage in water at 37°C is one of the most common, probably because of 

the ease, and reproducibility of the technique. 

This is precisely the method used in this thesis. Samples of material were prepared as 

before in the shape of2mm thick discs approximately 7 mm in diameter. These were 

weighed (± 0.0002 g) initially and inserted into capped glass specimen containers filled 

with distilled water. These glass tubes were kept in an oven thennally controlled at 37°C 

(± 1°C). After a nominated period of such storage (reported here up to a year) a set of 3 

samples for each material were removed, re-weighed and subsequently tested using the 

DMA technique outlined previously. The changes in the storage modulus and loss 

tangent at 37°C as well as the Tg of the material at each time interval are reported here. 

The change of sample weight after each storage period is also given; with weight gain 

and loss being reported as positive and negative as might be expected. 

In addition to this investigation of 'wet' samples, a set of samples were removed after a 

years immersion in distilled water. These were subsequently dried in an oven at 37°C, 

weighed and dynamically tested as before. This was done to investigate the solubility of 

the materials after a year and by comparison with the 1 year old 'wet' samples to 

elucidate the effect which the presence of water was having on the materials. Note that a 

positive weight change here indicates a weight loss whereas a negative weight change 

indicates a weight gain. 
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The effect of storage in an aqueous environment on soft lining materials has been 

extensively investigated in the past (Braden & Wright, 1983; Kazanji & Watkinson, 

1988(b); Parker & Braden, 1989). The situation is often complicated as a number of 

contributing cofactors are occurring simultaneously, as noted by Braden and Wright 

(1983): "Soft lining materials undergo two processes when immersed in water. 

Plasticiser and other soluble materials are leached out into the water, and water is 

absorbed by the polymer. The balance between these two processes affects both 

compliance and dimensional stability of the materials. " 

This report will not concern itself with the mechanisms and theories of water 

absorption, particularly as the subject has very recently been the focus of an extensive 

study in this department (Riggs, 1997). The main mechanisms for the uptake of water in 

soft lining materials, as is pertinent to their viscoelastic properties, are briefly re-iterated 

here. For a more involved and mathematical treatment of the subject the above text 

should be consulted. 

- Water uptake is primarily governed by a diffusion process similar to the classic laws 

which govern heat conduction in solids. Fick's first law describes the rate of diffusion (F 

or flux) as being proportional to the concentration (i.e. c) gradient, D being the diffusion 

coefficient. Analogously the rate of heat flow into a material (Q) is proportional to the 

temperature (T) gradient, where k is the thermal conductivity. 

F=_D tX 
ex 
or 

Q=-k-ex 

Diffusion of water. 5.2.1. 

Conduction of heat. 5.2.2. 

This relatively simple relationship rarely applies to soft lining materials however due to 

complications introduced by the presence of water soluble impurities in the polymer 

matrix. When these impurities are reached by the diffusing water they dissolve and fonn 
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droplets of solution. By a process of osmosis these droplets grow in size as the diffusing 

water is absorbed by them. This process of growth is opposed however by the elastic 

forces of the polymer matrix restraining the droplet size. 

The magnitude of these elastic restraining forces are obviously connected to the 

mechanical properties of the material. In a strong material the size of the droplets and 

therefore the total uptake will be small as the droplets will be constrained in size; 

conversely, in a weaker material the droplets can grow indefinitely, possibly leading to 

the fonnation of cracks within the material. 

Furthennore it should be noted here that for our purposes the water content of a polymer 

sample can be regarded as existing in two states· : bound water and free water. Bound 

water is closely bonded to the polymer chains; an example of this would be water 

attracted to hydrophilic parts of a polymer chain such as an OR group. Free water, as the 

tenninology implies, is relatively free in that it is not actually bound to the polymer, an 

example of this can be water contained within a growing droplet or free volume within 

the polymer. 

• This is a matter of some debate (Riggs, 1997) 
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5.2.1. Acrylic Based Materials. 

Futurasoft III (FS) 
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Figure 5.2.1. Variations in the storage modulus (at 37°C, 1Hz) ofFS against time 
together with variations of sample weight. 
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E' S.D. Tand S.D. Tg S.D. Weight S.D. 

(MPa) ee) (%) 

Dry 19.7 t.63 1.47 0.01 , 36.8 0.70 0.0 -
1 week 16.0 1.53 1.53 0.01 36.4 0.71 0.54 0.23 

,if; 
.-

" 

, %'" 

i ",ee~s 19.7 'Y2"~42 1.54 ' 0.01' 37.5 0.81 0.74 0.04 
" 

w 
,,; . ~,.. , 

1 J!1onth 18.0 1,30 1.53 0.04 37.2 0.13 0.77 0.06 ~·./t~~ . 
<'S " ",r 

::: ;.;:.'" 

3 months 18.4 -- 5.:3~ 1.53 0.03 36.6 1.83 1.39 0.06 
:' i,' 

", 

6mollths 15.2 3:10 1.44 0.04 37.0 1.43 2.12 0.46 
or!') -, 

?'~ ~ ~: , .¢:.79 
-:) 

l :~~ar 18.6 1.41 0.01 ' 38.3 1.94 2.89 0.02 
r .,..... 

"') 

1 yeilrD 31.4 lQ59 1.35 0.08 41.2 1.81 0.76 0.18 
t:i1' " , ... 

Table 5.2.1. Agemg data for FS mcluding storage modulus, loss tangent, Tg and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

It will be seen that this material had the lowest water uptake of all the acrylic materials 

tested here, gaining 2.89% weight over a year. Also after a year 0.76% of the initial 

weight of this material was lost due to leaching out of extractable (low molecular weight 

or soluble) material. This indicates that after a year the actual amount of water in the 

sample is in fact 3.65% of its initial weight. The effect of this water uptake on the 

viscoelastic properties of this material is discussed below. 

As can be seen from figure 5.2.1. and table 5.2.1. the change in storage modulus of this 

material is somewhat erratic. Hence with the relatively high standard deviations 

associated with the E', a clear trend is not apparent. 

The loss tangent data (figure 5.2.2.) shows an initial rise after a week in storage to 1.53. 

This level of tan 8 is maintained for time periods up to 3 months, but the latter two 

readings i.e. 6 and 12 months, show a gradual decrease. As will be seen shortly this type 
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of behaviour is mirrored by all* of the acrylic based materials including NS and PP. A 

possible explanation is given here assuming that the presence of water or soluble 

impurities has the affect of raising the loss tangent of the material. This explanation also 

relies on the dual processes of water uptake and loss of leachable material. The water 

uptake is likely to be dominant initially as the intake of water has to precede the 

leaching out of plasticiser. This can be translated into the initial increase in the loss 

tangent (up to 1 week). Then follows a period of time when the two processes of uptake 

and leaching approximately cancel each other out, leading to a stable loss tangent (up to 

3 months). Finally a (6 and 12 months) period ensues in which the latter process of 

leaching is in the ascendance. 

As for the storage modulus, not much information can be gleaned from the Tg of the 

material because of the small overall change and relatively large standard deviations. 

The one year old, dried material was seen to be, stiffer, with a higher Tg and lower loss 

tangent than any of the preceding results. This is no doubt due to the loss of water and 

- leachable material (plasticisation). 

* OS being an exception, due to its highly plasticised nature. 
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Supersoft, new and old (NS & OS) 

NS 
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Figure 5.2.3. Variations in the storage modulus (at 37°C, 1Hz) for NS, plotted against 
time. Together with variation of sample weight %. 
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Figure 5.2.4. Variations in the loss tangent (at 37°C, 1Hz) for NS after storage. 
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E' S.D. Tand S.D. Tg S.D. Weight S.D. 

(MPa) ee) (0/0) 

Dry 16.8 1.76 1.52 0.01 37.9 0.45 0.0 -
,. 

1 week 10.9 1.17 1.62 0.05 35.9 0.66 1.86 0.22 
;;; 

2 weeks 11.0 0.75 1.63 0.05 35.7 0.36 2.56 0.31 -,..' -
i i';j 

1 month 10.9 O~94: ' 1.67 '" O.Q~~ 36.8 0.10 3.40 0.26 
"0 

3 months 12.7 1.06 1.59 0.O2~ 36.8 0.63 5.32 0.12 
-

6 months 13.7 0.95 1.50 0.04 38.2 0.38 8.00 0.56 
" 

:1 ~3' 

:l:,;ye,at:' 15.3 1.-S2 t . 1.45 O~O5 " 39.9 0.14 12.50 0.41 
J:.~~ ~.;, -
';" x.: 

lyearD 47.0 0.94 1.14 0.05' 44.7 0.02 2.00 0.04 
Table 5.2.2. AgeIng data for NS Includmg storage modulus, loss tangent, Tg and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

Samples of this material had increased their weight by 12.5% after a year's immersion in 

water, taking into account the 2.0% loss of leachable material this translates into a 

14.5% percent water gain. 

The loss tangent values (figure 5.2.4.) follow a similar pattern to those outlined for FS 

and the same explanation of their occurrence holds. Unlike the storage modulus values 

obtained for FS, the results obtained for NS (figure 5.2.3.) show a clear trend which is 

again explained by considering the dual processes of water uptake and extraction of low 

molecular weight components. To re-iterate in terms of modulus, the drop in the 

modulus at 1 week can be explained by the initial intake of water. The period of 

constant modulus can be explained by a balance of water uptake against the leaching out 

of plasticiser. While from 3 months onwards the leaching out of plasticiser dominates 

over the intake of water and hence the material gradually hardens. 
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Tests on the samples of dried material after 1 year show the extent of the role played by 

the plasticisers (including water) on the material. 
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Figure 5.2.5. Variations in the storage modulus (at 37°C, 1Hz) for OS, plotted against 
time. Together with variation of sample weight %. 
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Figure 5.2.6. Variations in the loss tangent (at 37°C, 1Hz) for OS, plotted against time. 
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E' S.D. Tand S.D. Tg S.D. Weight S.D. 

(MPa) ;-£ (OC) (%) 
',' iT 

~ry 5.87 9·Z1' 1.27 9·0? .: 30.1 0.53 0.0 
" 

~ ," • ry""'W ". 

MU-'" ,k 
" ,,'1 week ;.$ 9.04 o.~r " 1.07 0;02 30.9 0.22 -1.76 0.27 ...... ,~" 

i 
:ie' 

i, 2 ... weeks~" 11.6 o " 1.16 Q~0:t ' 35.2 0.71 -2.68 0.11 .. 
,"i' ,vi " 

I" 
1% 

1 month 13.5 I' 1. , , '''' 1.35 0~O4 37.3 036 -3.11 0.33 
~,>:.':;7;', 

l'i, 'r~ 

' '3~inonm ':;'' 24.2 I VY31~? 1.26 ' '(IrQ 40.2 0.73 -4.76 0.04 '~ ",C, ' ~1'~~? 
" ,; """., , 

,/"%~ ,i,' ' "~,' ',,10 
,. yv' 

,i: 

§mont~J;' 46.4 Ii' 0.51' 
"to, 

0.850 Jr02 47.0 0.19 -6.03 0.19 ", . ;::::;.. .' "n 11;:* ~,·,~~st I ' ,~ " '1'/ ' 8" 
,< "1 yea 72.3 ~ 7..:47 0.480 0.06 52.8 0~73 -4.39 0.39 

.1. :~~t:'; )?' ': " ';{ ·,~:."i , it\'iil' :Ii' I;; X 
il<, y~~ .. n' 93.7 50;~O: ' 0.227 ' 0.04 -, 64.0 ~O.?~ " 13.58 0.38 

7, 'h;'" .jf.?~-; . ' -.;; . . · ,l/y- "_ 

Table 5.2.3. Ageing data for OS including storage modulus, loss tangent, T g and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

The water uptake of this material is very different to that of the previous two materials 

examined, in that at each time scale the material is losing weight. This is attributed to 

the large amounts of plasticiser in this material: 31.2%, (Wright, 1981). So that at each 

weighing the amount of plasticiser lost is greater than the water intake of the material. 

At one year for example the material has lost 4.39% of its weight. When dried it can be 

seen that the material has actually lost 13.58% of its weight, most of which is likely to 

be the plasticiser. It is interesting to note that the water absorption figures for 6 and 12 

months, showing a relative weight gain. This is an indication that the rate of loss of 

plasticiser is decreasing compared to the water uptake of the material. 

The dramatic rise in modulus (from 5.86 to 72.3 MPa) is a reflection of this loss of 

plasticiser (figure 5.2.5.). The general shape of the loss tangent graph (figure 5.2.6.) can 

be explained by the overall shift of the Tg of the material from 30.1 to 52. 8°C, such that 

as the peak of the loss tangent approaches 37°C (towards 1 month) an increase is seen, 
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followed by a decrease as the Tg travels beyond mouth temperature with the continuing 

loss of plasticiser. 

Wagner et al (1995b) used a 'Weather-Ometer' instrument to age their samples. This 

involved 900 hours of exposure to visible and ultraviolet light as well as periodic 

spraying with distilled water. The clinical significance of this unusual ageing regime is 

open to debate._However the effect of the ageing was certainly pronounced as Supersoft 

increased its storage modulus from 2.6 to 20.1 MPa, an approximately eight fold rise. 

The loss tangent was also affected falling from 1.25 to 0.93. 

Kalachandra et al (1995) investigated Supersoft after a hundred days immersion in 

distilled water at 37°C and found its water absorption to be 5.0%, this is consistent with 

the new formulation of the material (NS) as tested in the present study"'. This is contrary 

to the assumption taken in 5 .1.1. concerning this paper i.e. that the material tested by 

Kalachandra et al is OS. This latter assumption was made based upon the test geometry 

favoured by Kalachandra et aI, which had the effect of overestimating the stiffness of 

samples compared with the method used in this report. Based on this contrary evidence 

it is plausable that the result presently discussed is erroneous, and that OS is infact being 

studied. Two points are in favour of this assumption: a) Kalachandra et al do not repeat 

their work. b) the water uptake results of Kalachandra et al come under suspician in 

section 5.2.3 where the material NN is being considered. 

Robinson & McCabe (1982) studied Supersoft after immersion in water for 3 months. 

The soft liner was seen to harden slightly in this time period, with its 10 second creep 

modulus increasing (2.4 to 2.77 MPa). This slight increase is smaller than the trend 

observed here. 

... Although the water uptake data of Kalachandra et al (1995) have been known to be inconsistant 
(Gettleman, 1994) and the authors did not do repeats, to check the validity of their work. 
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The water uptake of Supersoft was looked at by Wright (1976) by immersion in distilled 

water, although over a longer period of time (up to approximately 2 years). Very similar 

characteristics were observed by Wright (i.e. a maximum weight loss of ~ -5%). In 

particular the weight gain trend observed here between 6 months and 12 is also shown, 

and is seen to continue. 

5.2.2. Silicone Based Materials. 

Molloplast B (MP) 

MP 
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Figure 5.2.7. Variations in the storage modulus (at 37°C, 1Hz) for MP, plotted against 
time. Together with variation of sample weight %. 
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Figure 5.2.8. Variations in the loss tallsent (at 37°C, 1Hz) for:rill>, plotted against 
time. 

E' 
", , 

"S Dt : • <: ... 

. ,. ::c • • Tand 

'" 

, 

3.86 '0.000 
. '. 

2 weei{s , 3.26 '~b.8:8 ,; 0.045 "0.015 

1 month 3.240.24 0.056 0.023 

3 months 3.59 0'.14 0.044 0.022 

6 months 3.26 0.26 0.052 0.020 

1 year 4.17 0.14 0.031 0.006 

Tg 

eC) 

,,0 

, S.D. " : Weight S.D • 

',. :' (0/0) 

0.0 

-0.17 0.25 
~ 

-0.21 0.21 

-0.20 0.00 

-0.42 0.11 

-0.55 0.17 

-0.65 0.09 

1 year D 3.25 0.74 0.053 0.023 0.91 0.07 
Table 5.2.4. Ageing data for:rill> including storage modulus, loss tangent and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 
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This material was seen to loose a small amount of weight throughout the period of water 

storage. This was however of low magnitude and MP had the lowest water uptake of 

any of the materials presently investigated (Table 5.2.4). 

It is very hard to reach any kind of conclusion on the basis of the activity seen in the 

modulus and the loss tangent data presented here in figures 5.2.7-8. Firstly a strong 

trend does not exist on which to base a hypothesis. Secondly any (weak) trends which 

might be taking place are masked by the relatively large standard deviations associated 

with the data. It is fair then to say that this material had very stable viscoelastic 

properties during these water absorption experiments. 

Wagner et al (1995b) using their 'Weather-Ometer' instrument to age their samples 

found MP to be relatively stable. The storage modulus changing from 1.5 to 1.2 MPa, 

and the loss tangent increasing from 0.02 to 0.05 after the ageing process. 

Using a similar ageing technique as used here, Kalachandra et al (1995) examined the 

viscoelastic properties ofMP. They found a slight rise in E' (4.8 to 5.1 MPa), but found 

the loss tangent to be unaffected. 

Jepson et al (1993b) looked at the change in the viscoelasticity ofMP, in both clinical 

and laboratory based experiments. They found the properties of the material to be 

independent of immersion in distilled water or clinical use. 

Of the soft liners examined by Robinson & McCabe (1982) the largest effect was 

observed in Molloplast B (after 3 months immersion in water). The modulus of the 

material increased from 3.5 to 4.76 MPa. This is not consistent with the results obtained 

here. 
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Wright (1976) looked at the water uptake of:MP. He found it to have a very low water 

uptake, as was the case here. This figure was positive however. 

Flexibase (FB) 
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Figure 5.2.9. Variations in the storage modulus (at 37°C, 1Hz) for FB, plotted against 
time. Together with variation of sample weight %. 
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Figure 5.2.10. Variations in the loss tangent (at 37°C, 1Hz) for FB, plotted against time . 

E' . SID. Tand S.D. Tg S.D. Weight S.D • 
'i 

. ~ 
•• oJ; 

(MPa) " 

'{'1,: ¥ ' E! ee) (%) 
-:-!:- :, 

Dry 3.52 0.31" 0.111 0.017 - - 0.0 -
1 week 2.59 0.27 0.056 0.009 - - 1.14 0.12 

2 weeks 1.91 0.40 0.049 0.002 - - 1.18 0.08 

1 month 3.07 0:46 0.075 0.016 - - 1.58 0.34 

3 months 3.22 0.26 0.091 0.011 - - 5.78 0.22 

6 months 0.338 0.07 0.114 0.013 - - 20.54 0.50 

1 year 0.242 0.10 0.126 0.030 - - 48.57 3.11 

1 yearD 0.257 0.10 0.105 0.031 - - -4.52 0.25 

Table 5.2.5. Agemg data for FB mcludmg storage modulus, loss tangent and weIght 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 
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In direct contrast to MP, this silicone based material had a huge water uptake of nearly 

50% after a years storage in water (table 5.2.5). After the same period the material also 

lost 4.52% of its weight due to the leaching out of soluble impurities and low molecular 

weight material. This high water uptake has been observed before (Braden & Wright, 

1983), and is possibly linked to the ethanol fonned during the condensation reaction by 

which the material polymerises; and also the inherent weakness of this cold cured 

material. Despite the high water uptake from 6 months onwards, it is interesting to note 

that the initial uptake (especially up to 1 month) is relatively low, in comparison with 

other materials. 

The result of this huge amount of water in the polymer after 6 and 12 months was a 

dramatic fall in the modulus to 0.24 MPa, less than 1I10th of the original (figure 5.2.9). 

This is almost certainly due to the internal damage done to the polymer by the growth of 

water droplets. Some of these droplets were in fact large enough to be visible on the 

surface of the material. The presence of such large amounts of water in the polymer has 

also had the affect of raising the loss tangent to 0.126 (figure 5.2.10). 

It is interesting to note that water, as a material in its own right, would have an infinite 

loss tangent, because as a liquid it has a negligible ability to store defonnational energy. 

Yet even though after a year the sample contains nearly 50% water, its loss tangent is 

only slightly higher (14%) than in its initial condition. This indicates that the water is by 

and large not free to move around in the sample, as any movement would lead to 

frictional losses and hence an increase in loss tangent. 

The earlier stages of the storage modulus and loss tangent behaviour are more difficult 

to explain. The early drop (1-2 weeks) in the modulus can be due to the loss of 

extractable matter. This is backed up by the fall in the loss tangent in the same time 

period. At 1 and 2 months, the rise in the modulus of the material can be explained by a 

similar reinforcement argument as will shortly be described for the NN material. The 
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final catastrophic drop in the modulus is due to the irreversible breakdown of the 

polymer matrix and the fonnation of cracks by the continual growth of the droplets. 

Subsequent drying of the material after a year in water did not have a large effect on its 

storage modulus, indicating that the damage to the polymer matrix is pennanent. 

Robinson & McCabe examined the viscoelastic properties ofFB in 1982. They found a 

slight decrease in its 10 second creep modulus (2.38 to 2.14 MPa) after 3 months 

storage in water. 

The huge water uptake (maximum::::: 65%) of this material was also observed by Wright 

(1976). 

Storer (1962a) observed an increase in hardness after a period of 30 months in water, 

indicating that the fonnulation has changed over the last 35 years. 
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5.2.3. Miscellaneous Commercial Materials. 
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Figure 5.2.11. Variations in the storage modulus (at 37°C, 1 Hz) for NN, plotted against 
time. Together with sample weight %. 
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Table 5.2.6. Ageing data for NN including storage modulus, loss tangent and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

The water uptake of this material is relatively high at 12.2% after a years storage in 

water. The loss of weight after desorption on the other hand is fairly low at 0.13% (table 

5.2.6). 

The storage modulus of the material (figure 5.2.11) is seen to experience an overall 

increase, despite the large standard deviations (particularly at 1 year). This can be 

attributed to water droplets acting as 'fillers' in the material by stressing the surrounding 

polymer matrix and therefore stiffening the polymer as a whole. 

The loss tangent of the material (figure 5.2.12) also experiences an overall increase, 

although in this case the trend is even weaker and the standard deviations are larger 

(particularly at 1 month). Again the increase in the loss tangent does not corrolate with 
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the volwne of water present in the material, for the same reasons previously mentioned 

in relation to FB. 

Wagner et al (1995b) again using their 'Weather-Ometer' instrument found Novus to be 

fairly stable, with the storage modulus increasing from 2.2 to 2.6 MPa after ageing. The 

loss tangent was relatively unaffected however (0.12 to 0.13). This increase in modulus 

is similar to that seen here, although in this investigation the loss tangent shows a more 

pronounced increase. 

Kalachandra et al (1995) investigated this material, using a similar technique to that 

used here. They however report the water uptake of this material to be 34% after a 

hundred days. This does not compare well with the 7% value found here after 3 months, 

or the 6-12% uptake mentioned by Gettleman (1994), or the 5% measured by Collis 

(1993), although slightly different methods were used. The change in the viscoelastic 

properties does not compare well either, with a reported reduction in E' from 6.2 to 3.5 

MPa after one hundred days. 
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Triad Resiline (TR) 

TR 
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Figure 5.2.13. Variations in the storage modulus (at 37°C, 1Hz) for TR, plotted against 
time. Together with sample weight %. 
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E' S.D. Tand S.D. Tg S.D. Weight S.D. 
-

(MPa) (OC) (0/0) 

Dry 16.0 1.56- 0.133 0.01 - - 0.0 -
,',4 

'" 1 week 6.11 2.66 0.116 0~01 - - 1.17 0.11 
,:::jI' ~'f -~ , ' "Jf" ';' .~. -

2]VoolFs it" ';;".~ " 
5.80 ~ O.~Q ~ 0.112 0.00 - - 1.20 0.01 
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v"t./ -
-j '" 

~ :monthS 11.0 2:07 0.103 0.01 , - - 1.11 0.09 ",. -+ .:,:..; - 4{( 
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~ months 6.25 I , 1.,23 0.110 0.00 - - 0.96 0.01 
- /, " } J' 

lyeat ' 5.26 1;' 0.6u " 0.146 "0.01 ' - .. 0.35 0.23 
" 

, "'" 
~:~;!+ 

lyearD 6.54 0.$1 0.207 0.02 - - 1.32 0.35 
. 

Table 5.2.7. AgeIng data for TR Inc1udmg storage modulus, loss tangent and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

The water uptake characteristic of this material (as seen in table 5.2.7.) appeared very 

complicated, rising to a maximum figure of 1.20% over the first 2 weeks and then 

gradually falling over the year. This can be explained using the dual intake/leaching out 

argument, so that water intake is dominant up to 2 weeks after which the leaching out of 

low molecular weight material takes over. This is consistent with the relatively large 

material loss after a year which is in fact bigger than the maximum weight gain value at 

1.32%. This is a cause for some concern as the toxicity of one of the components of this 

material (isocyanate) is open to debate, Parker (1982), Braden (1996)*. 

The change in the viscoelastic properties of this material over the year can not be easily 

explained. The loss tangent of the material is seen to gradually fall in the first 3 months, 

but subsequently rise again at 6 and 12 months (figure 5.2.14). The storage modulus of 

the material (figure 5.2.13) falls dramatically after the initial immersion (1st and 2nd 

* A copy of a letter from Professor M.Braden, voicing concern was sent to the MDA (Medical Devices 
Agency), this is enclosed in Appendix C. 
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week); is then seen to rise (1 and 3 months) and finally fall again (6 and 12 months). 

This erratic behaviour is obviously connected to the intake of water and large amount of 

leaching (probably due to inefficient light polymerisation). It is however impossible to 

reach firm conclusions on the exact nature of the phenomenon based up on the strength 

of the immediate evidence. 

5.2.4. Experimental Materials. 

Elastomer / Methacrylate Hybrid (BS) 
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Figure 5.2.15. Variations in the storage modulus (at 37°C, 1Hz) for BS, plotted against 

time. Together with sample weight %. 
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BS 
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Figure 5.2.16. Variations in the loss tangent (at 37°C, 1Hz) for BS. 

m ~ 

E' S.D. Tand S.D. Tg S.D. ' Weight S.D. 
f< . '~;::i.;' 

."": 

" (MPa) " . (OC) (%) . 

Dry 15.0 2.25 0.445 0.02 32.7 0.79 0.0 -

1 week 17.5 2.51 0.526 ; 0.02 33.9 1.12 0.51 0.11 
,';>: 

2 weeks 17.9 1.58 0.534 c 0.02 32.8 0.75 0.72 0.19 

1 month 17.6 422 0.553 0.04 33.9 0.66 1.19 0.08 

3 months 18.3 2.17 0.511 0.04 33.8 0.71 3.26 1.90 

6 months 15.0 3.84 0.478 0.04 33.2 0.76 4.71 1.06 

1 year 14.8 2.09 0.466 0.05 32.1 0.26 9.78 2.04 

1 yearD 11.6 5.22 0.415 0.07 35.3 2.51 -0.49 0.59 

Table 5.2.8. Agemg data for BS Including storage modulus, loss tangent, Tg and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 
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The water uptake of the BS material reaches a maximum of 9.78% after a years 

immersion in water (table 5.2.8). It is interesting to note from the 1 year old dried 

specimens that the material samples have gaining weight, this was believed to be due to 

oxidation which is a known problem with this material (Riggs, 1997). 

Despite the oxidation of this material and the accompanying discolouration, and surface­

hardening*, the storage modulus and loss tangent (figures 5.2.15 and 5.2.16) of the 

material are relatively constant over the year of water storage, both of which show a 

very small peak at 2 weeks, 1 and 3 months. This unexpected stability of the viscoelastic 

characteristics is believed to be related to the fact that oxidation after the time period of 

interest is still primarily a surface phenomenon. The bulk of the material remains 

unaffected after 1 year's storage. 

* The samples felt 'embrittled' by hand. 
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Polymerisable plasticiser (PP) 
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Figure 5.2.17. Variations in the storage modulus (at 37°C, 1Hz) for PP, plotted against 
time. Together with sample weight %. 
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E' S.D. Tand S.D. Tg S.D. Weight S.D. 

" 
(MPa) 

" 
ee) (0/0) 
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Dry 16.6 0:6,9 1.23 0.02 34.0 0.64 0.0 -
i-
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~c~ , 
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·"'.:>;t4 l'~ 
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.~ " 

'/- ~,~ 

:.{:"" ;~ . 

~ months 15.6 0.23. , 1.29 0.02 34.5 0.89 1.62 0.06 
, " . 

6moJiths 16.5 0:27 1.20 0.03 35.8 0.13 2.04 0.35 
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, f ;year 16.9 0~58 1.18 0.00 35.8 0.69 3.37 0.48 

~"J0r~ -, '. 
e ,1'6F"'* ,OJ 

t, .~~~ <" .. d, ~R':. 

J :Y~~f'b 25.7 ,''(1.'35 1.17 0.02 38.3 0.46 0.58 0.19 
''' ~,; ",,,, 

Table 5.2.9. AgeIng data for PP mcludIng storage modulus, loss tangent, Tg and weight 
change together with the associated standard deviation. Last row of the table is 
concerned with a dried sample of the material. 

The uptake of this material (as seen in table 5.2.9.) follows a qualitatively familiar trend 

to that ofNS and FS, although in magnitude it is approximately 3 times smaller than NS 

and a fraction greater than FS at each time span. The weight gain after a year is 3.3 70/0 

- compared to 2.89% and 12.50% for FS and NS respectively. It had the lowest weight 

loss (0.58%) upon desorption of the three materials however, compared to 0.76% and 

2.0% for FS and NS, indicating the non-leachability of the polymerisable plasticiser. 

Again qualitatively the viscoelastic behaviour of this material is very similar to that of 

NS. The storage modulus (figure 5.2.17) is seen to fall slightly initially after immersion 

and then subsequently rise slightly. The loss tangent (figure 5.2.18) also follows a 

familiar pattern of a slight increase followed by a period of consistency and finally a 

reduction in magnitude. The same explanations as given earlier apply here also. 
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5.3. General Discussion and Clinical Implications. 

The values of storage modulus and loss tangent at 37°C as well as the glass transition of 

the materials investigated in this report are summarised in table 5.3.1. As can be seen a 

huge range exists in the viscoelastic properties of these materials. The storage modulus 

of the commercial materials has a range from 2.79 to 19.7 MPa representing a seven 

fold difference. The loss tangent similarly ranges from 0.029 to 1.52 a fifty fold range. 

Similarly large ranges have been reported by other authors who have attempted a 

comparison (Braden & Clarke, 1972). 

I I",:'''' :~, 
<-

>A <. 

E' S.D. Tan 8 S.D. Tg S.D. 

(MPa) eC) 
,. 

.. FS 19.7 1.63 1.47 0.01 36.8 0.701 
. ; " .r"~ , -

, NS 16.8 1.76 1.52 0.01 37.9 0.449 
,~ , 

OS 5.87 , 0.22 1.27 0.03 30.1 0.532 
: " 

MP 3.87 0.16 0.029 0.007 - -

FB 3.52 0.31 0.111 0.017 - -

NN , 3.02 ' 0.30 0.103 0.004 ~-31 * -
@ -~ 

ON 2.79 ' 0.35 0.125 0.005 - -
" 

TR 16.0 1.56 0.133 0.01 ~-52* -

BS 15.0 2.25 0.445 0.019 32.7 0.790 

SI 7.54 0.75 0.514 0.008 34.9 1.081 

PB 4.15 0.24 0.429 0.004 36.5 0.446 

PP 16.6 0.69 1.23 0.02 34.0 0.640 

Cl 23.6 1.79 1.38 0.02 39.8 0.605 

PE 24.6 4.20 1.38 0.05 40.1 0.827 

PH 33.1 2.17 1.27 0.04 42.0 0.579 

Table 5.3.1. Summary of results at physiological conditions. 

* From Appendix B. 
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The experimental materials were found to have a modulus range from 4.15 to 33.14 

MPa and a loss tangent range of 0.429 to 1.38. The modulus range of most of the 

polymerisable plasticiser based materials was found to be higher than the commercial 

materials, while the properties of the elastomer based materials were in the mid range of 

the commercial materials. 

Overall the materials investigated can be split into three groups according to their 

viscoelastic properties: leathery, rubbery and miscellaneous. 

Acrylic based materials including FS, NS, OS, PP, Cl, PE and PH are dominated by the 

fact that their glass transitions lie at or near mouth temperature. This has several 

implications: at their operating temperature materials are at their most 'dead' and 

leathery, thus dissipating most of their deformational energy as heat (loss tangent range 

1.23 - 1.52). On the whole these materials are the stiffest soft liners, and with the 

exception of the heavily plasticised OS (5.87 MPa), have a higher modulus range than 

- the other materials tested (16.8 - 33.1 MPa). They are also very temperature dependent 

and a relatively small change in temperature (and therefore frequency) will make a 

noticeable difference in their stiffness. 

The MP, FB, NN, ON are characterised by the fact that their Tg is well below O°C. At 

mouth temperatures they are rubbery, characterised by low values of modulus (2.79 -

3.87 MPa) and loss tangent (0.029 - 0.125). Their properties are independent of 

temperature and they will retain their viscoelastic properties over most of the 

temperatures which they are likely to encounter in the mouth. 

The BS, SI, PB and TR materials don't easily fit into either of the above 

characterisations. The elastomeric/acrylic (BS, SI, PB) materials have properties in the 

mid range of the two above groups with E' in the range of 4.15 - 15.0 MPa and loss 
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tangents in the range 0.429 - 0.514. This average range of values is not surprising when 

one considers that they are hybrids containing the two material groups just discussed i.e. 

elastomers, with sub-zero Tg's and acrylics with ambient Tg's. The TR material has 

unusual viscoelastic characteristics compared to the other materials tested here. 

Although it is temperature independent, with a low loss tangent (0.133) and low Tg (-52 

°C), it demonstrates a relatively high stiffness (16.0 MPa). 

Given such a large spread, both in the stiffness and resilience of the available soft liners, 

it is surprising that there is no overall preference by patients or clinicians for a given set 

of viscoelastic characteristics (Braden et aI, 1995). A major cause of this apparent 

indifference is likely be linked to the similarly large variations which are observed in the 

mechanical properties of mucosa (Tomlin et al (1968), Kydd & Daly (1982), Inoue et al 

(1985)). Another probable reason is that the viscoelastic properties, whilst the most 

important as far as the biomechanical function of the material is concerned (primarily to 

protect the mucosa), are only one out of many criteria from which the materials must be 

judged. Other parameters including the cost, tear strength, wear resistance, etc.(see 

section 1.1.3.) must also be taken into consideration. 

As far as the question of the ideal viscoelastic properties of a soft lining material, what 

consensus there is in the literature can approximately be divided in two opposing 

schools of thought. While some authors (Holt et aI, 1991) express a preference for a 

compliant, low loss material (typical of the silicones); others advocate a material which 

emulates the viscoelastic properties of the mucosa (Haykawa et aI, 1994) and has a low 

modulus and low resilience, (Wagner et aI, 1995a). Virtually no work has attempted to 

quantify the effect which the presence of a soft liner has on the biomechanics of 

mastication. What work there is on this topic (Wright, 1984) has largely concentrated on 

one material, and has not attempted to compare different soft lining materials on 

grounds of their respective viscoelastic properties. In conclusion it is not possible at the 

present time to recommend a set of viscoelastic characteristics as ideal. Although this is 
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an area which begs further investigation particularly as there is strong evidence of a link 

between the cushioning effect of soft lining materials and a reduction in alveolar bone 

loss (EICharkawi & ElMahdy, 1988). 

From a purely conceptual and therefore speculative stand point the following 

observations can be made, although even this approach is hindered by the fact that the 

exact mechanism by which soft lining materials operate is open to debate (Braden et aI, 

1995): 

The loss tangent of a material is linked to its energy dissipating quality and hence the 

'leathery' acrylics will offer the most protection in this respect. However, they are on the 

whole stiffer than the mucosa (0.66-4.36 MPa; Inoue et aI, 1985) which may be 

considered as a negative point. From the point of view of manufacture and handling 

their temperature dependence can be viewed as an advantage because the clinician can 

manipulate their properties. At lower temperatures for example these materials are likely 

to be hard enough to be easily trimmed and polished. 

The second set of viscoelastic characteristics discussed above (i.e. rubbery) are the most 

compliant of the materials tested and in fact have a stiffness range comparable to that 

reported for the mucosa (see above). They have very high resilience, which might prove 

to be a disadvantage in terms of their energy dissipative quality as well as a 'bounce' 

effect. Although in some application such as that of retention (see figure 1.1.2.) high 

resilience could prove to be an asset. 

The experimental elastomeric/acrylic based materials showed great promise in that they 

combined to some extent the best features offered by the above materials in that they 

were relatively soft (particularly PB) with a high rate of energy dissipation. The reverse 

was true of the TR material which exhibited a low level of energy loss and a high 

modulus. 
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Ageing behaviour of soft lining materials 

The water absorption properties of 7 commercial materials and 2 experimental materials 

have been discussed and their viscoelastic characteristics as well as their weight 

gain/loss and solubility are summarised in table 5.3.2. 

. I ,~ i~¥X ;1J~ y. ''-: 

E' S~D. Tan 8 S.D. %Wt S.D. 0/0 Sib S.D. " 
w-~ 

(MPa) 
.;. 

M' 

FS 18.6 4~79 .; 
' .. , 

1.41 O!O\ 2.89 0.02 0.76 0.18 
- .. 

-,f 

NS 15.3 rJ*:,2ff' 1.45 O.O~ 12.50 0.41 2.00 0~04 
Ny' ~}r ~!&'i:t~l a 

oS ' 72.3 'rf.47 . 0.480 0.06 -4.39 0.39 13.58 0.38 
, '" '"~;lljic: 

MP 4.17 {).l4 0.031 0.006 -0.65 0.09 0.91 0.07 

FB 0.242 0.10 0.126 0.030 48.57 3.11 4.52 0.25 
,-.. 

;-:,. 

'NN 3.76 r~.30 0.132 , 0.012 12.20 0.25 0.13 0.10 
'c; "".;' . 

:.; i' ~ 

TR 5.26 0;;66 0.146 0.01 0.35 0.23 1.32 0.35 

BS 14.8 2.09 0.466 0.05 9.78 2.04 -0.49 0.59 

PP 16.9 0.58 1.18 0.00 3.37 0.48 0.58 0.19 
. 

Table 5.3.2. The vIscoelastIc propertIes of some soft hmng matenals after a years 
storage in water (values at 37°C, 1Hz). %Wt refers to weight gain/loss, %Slb refers to 
solubility. 

It is unclear whether a given change in the viscoelastic properties of soft liners will have 

an adverse or beneficial effect on the patient. Of the materials tested above only two 

showed a change in viscoelasticity which was larger than the spread already existing in 

the commercial materials. This includes OS which hardened substantially (5.87 to 72.3 

:MPa) due to the extraction of plasticiser, and FB whose modulus reduced dramatically 

(3.52 to 0.242 :MFa) due to excessive water uptake (48.57%). The change induced in the 

loss tangent of the materials was not so dramatic, even in materials with a massive water 

uptake (FB). This was initially surprising, when one considers that water as a liquid 

would have an infinite loss tangent. It can be deduced however that the water inside 
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these materials is essentialy immobile, as any movement would lead to frictional losses 

and hence a high loss tanget. 

The new generation of the acrylics has overcome the need for high levels of 

plasticisation. NS proved to be much more stable in water due to a reduction in the 

amounts of plasticiser used. FS appears to have eliminated the need of plasticiser 

altogether, while new experimental materials PP utilise a polymerisable plasticiser. The 

heat cured silicone (MP) was the most stable in water in contrast with its cold cured 

counterpart. The polyphosphazine material (NN) had a fairly high water uptake but this 

did not have a large or adverse effect on its viscoelastic properties. The TR material was 

found to lose 1.32% of its weight in water after a year, this is of concern as the material 

is believed to contain isocyanates. The experimental BS material was seen to oxidise in 

water, although this did not affect its viscoelastic properties. It was concluded that the 

oxidisation was primarily occuring on the surface and the bulk of the material was not 

affected in the time period of the study. 
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5.4. Sources of Error, Reproducibility and Limitations. 

Having presented and discussed the experimental work carried out for this thesis, it 

seems pertinent to finish the discussion by addressing some of the problems, sources of 

experimental error and limitations of the study. 

Using the DMA method outlined in chapter four, reproducible results were obtained for 

all materials under the majority of test conditions. Each experiment was repeated at least 

3 times and the mean and standard deviation calculated. One of the largest sources of 

error in these experiments was found to be due to poor sample mounting. A 

manifestation of this inferior mounting was regions in the sample-plate interface which 

were not in intimate contact. This could either be due to parallel plate misalignment i.e. 

the plates not being quite parallel or similarly the two surfaces of the sample not being 

parallel; secondly imperfections on the surface of the samples could produce the same 

type of error. In either case the apparent surface area at the interface would be less than 

the nominal area (5mm diameter). The effect of this reduced area of contact is a sample 

which is apparently not as stiff. Therefore a lower modulus is reported for the material. 

Two points are worth mentioning: firstly imperfections such as these can only ever have 

the effect of under-estimating the modulus of the materials; secondly this problem is 

likely to be more pronounced for stiffer andlor less viscous materials which would have 

less ability to flow at the interface and hence achieve a more intimate contact area. 

One of the assumptions of the stress analysis associated with the DMA is that the stress 

field within the sample is uniform. This is an idealisation of the real situation, however 

as dispersions of the stress patterns are bound to occur with finite strains. For example, 

compression of a rubber disc whose loaded sides are rigidly bonded* will produce a 

combination of compressive and shear strains. The shear strains being at their greatest at 

the edges and leading to a bulging or barrelling effect. 

* This is an extreme case of frictional contact, i.e. infInite friction. 
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For the case where a rubber cylindrical disc is rigidly bonded, Gent and Lindley (1959) 

derived the following equation linking the apparent modulus Ea to the real modulus E 

via the shape factor S. 

5.4.1. 

Where the shape factor is the ratio of one loaded surface to that of the free surface. This 

simple equation can not be applied here because the soft lining materials are not bonded 

to the parallel plates but are free to move within the bounds of their frictional 

characteristics. Also the above equation refers to rubbers which can be thought of as 

being essentially incompressible (poissons ratio ~ 0.5) which again does not necessarily 

apply to soft lining materials. The non-unifonnity of the strain field while appreciated is 

here neglected and is assumed to be negligible at low strains (0.5%). 

Other possible sources of errors include differences in the thickness of individual 

specimens. Although all the specimens were nominally 2mm thick, processing 

variations are to be expected. The softness of a layer of soft lining material is known to 

be dependent on its thickness and so variations in thickness are bound to give variations 

in results. Similarly, any inhomogeneity in the samples will be a source of error. This 

could include factors such as polymer rich phases in pOWder/liquid systems or elastomer 

rich areas in the experimental elastomeric materials. Inconsistencies in the heating rate 

and the associated feedback control were occasionally observed and would have a dele­

-terious effect on results. The stress history of the sample could also make a difference. 

To minimise this effect the samples were always handled in the same manner and care 

was taken not to over stress them. 

Comparison with other recent work on soft lining materials using the forced vibration 

dynamic mechanical technique (i.e. Kalachandra et al (1995), Wagner et al (l995a), 

Waters et al (1996)) has indicated that the use ofDMA in this application should be 
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regarded as being comparitive rather than absolute in nature. In particular, even when 

important test parameters such as time and frequency (37°C, 1 Hz in these cases) are 

kept constant, different instruments using different testing methodolcgies will obtain 

different results. Sources of discrepencies include the deformational mode and geometry 

of the sample, although other factors such as the stress/strain levels, heating/cooling 

rates and inherent design variations in the instruments are also liable to make an 

important contribution. This conclusion, i.e. that DMA is a comparitive rather than 

absolute technique has also been reached in other DMA based work looking at widely 

different biomaterial systems (Nazhat, 1997). 
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CHAPTER 6 

6.1. Conclusions 

The forced vibration dynamic mechanical method has been successfully used to fulfil 

the aims and objectives of this study. Namely to investigate and characterise the 

viscoelastic properties of commercial and experimental dental soft liners at masticatory 

temperatures and frequencies. However DMA is best considered as a comparative rather 

than absolute technique as there are many possible sources of output variability, based 

upon the experimental methodology and instrumentation. 

The principle advantages of the forced, non resonance vibration method over other 

methods of measuring viscoelasticity is that the frequency and temperature of the 

experiment can be accurately and easily controlled, and hence can be chosen to be 

physiologically relevant. In particular some of the earlier workers in this field have 

studied these materials under different time and temperature conditions and assumed 

their results to be clinically relevant. This, whilst partially valid for the temperature 

independent polymers can lead to misleading results for materials which are going 

through a transition in the time/temperature domain of interest. 

The commercial materials studied covered a 7 fold modulus range, from 2.79 to 19.7 

MPa and a 50 fold range in the loss tangent going from 0.029 to 1.52. The materials 

were divided into three types according to their viscoelastic nature. The first group 

covers the acrylic based polymers, which were characterised by having their glass 

transition near mouth temperature. They were therefore stiff, lossy and temperature 

dependent. The second group included the silicone based soft lining materials as well as 

recently introduced polyphosphazine systems. These materials had their Tg's at much 

lower temperatures. They were characterised by having a low modulus and high 

resilience, as is typical of rubbers. Furthermore their viscoelastic properties were 

relatively constant at and near mouth temperatures. The third group contained materials 

which did not conform to either of the above. These included a range of experimental 

materials, based upon an acrylic/elastomeric system, which were characterised by 
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having a small transition corresponding to the methacrylate phase near mouth 

temperature. The modulus and loss tangent of these materials were in the mid range of 

the materials studied. One light curing polyether based material was characterised by its 

temperature independence, low loss and high stiffness. 

The storage of soft liners in distilled water for up to a year and its effect on their 

viscoelastic properties was also examined. Many types of behaviour were observed, 

although only two materials exhibited a change in their viscoelastic characteristics 

which was greater than the overall spread already described. So that the stiffness range 

of the materials after a year in water was 0.242-72.3 MPa, a 300 fold range. The loss 

tangent was not affected to such an extent; surprising as water has an infinite loss 

tangent when considered as a material in its own right. 

Based on the literature however it is impossible at the present time to say which of these 

materials has ideal viscoelastic properties. This is probably based on the fact that 

viscoelasticity is one of many competing requirements for a soft liner; but is also due to 

- the large variations which are seen in the mechanical condition of patients mucosa's. 
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6.2 Future Work 

An investigation of this kind cannot hope to address all the issues and problems 

presented by its subject matter. In particular a number of relevant and important points 

have been left unanswered by the current investigation. Some of these are discussed 

below. 

Although the viscoelasticity of a range of experimental and commercial materials has 

been characterised into several distinct groups, important questions such as: the ideal 

range of properties which are acceptable/desirable; the effect of these properties on the 

biomechanics of mastication; and the exact mechanism by which soft lining materials 

work are not clearly understood. The answer to these questions are likely to be found in 

a clinically based investigation looking at the effect of different kinds of soft lining 

material on patient acceptability, the biomechanical parameters of mastication and 

alveolar bone loss. Considering the amount of research which has gone into the 

viscoelasticity of soft liners and the biomechanics of mastication; it is surprising that 

very few authors have attempted to tie the two together. This is particularly important as 

there is strong evidence of a link between the resorption of alveolar bone and the use of 

soft lining materials. 

Water uptake studies were undertaken over a one year period. Extension of this time 

span to 5 years would be informative as the expected life of the hard denture base is of 

this order. Furthermore water uptake although relevant, can never simulate the oral 

environment where saliva maintains functional lubrication. However artificial saliva 

could be used to provide a more realistic alternative to distilled water. 

There is much scope for further work to tie in the chemical composition and viscoelastic 

properties of commercial and experimental materials discussed in this report. In 

particular this study has largely concentrated on physiological temperatures and 

frequencies. Whereas at lower temperatures the Tg's, and secondary transitions of all the 
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materials could be elucidated. In particular there is room for the investigation of the 

viscoelastic properties of individual constituents of the experimental materials, (i.e. 

elastomers or methacrylates) and their effect on the main material, with the aim of 

tailoring viscoelastic properties to a specific range. Different methods of measuring the 

Tg (e.g. DSC and dielectrics) could also be used and compared. 
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APPENDIX A 

DERIVATIONS 



The Maxwell Model 

The Maxwell model consists of one spring and one dashpot connected together in series. 

In this arrangement the force across the spring is equal to the force across the dashpot 

and the total force on the system. The total displacement on the other hand is equal to 

the sum of the displacements on the spring and dashpot respectively, so that: 

a=a =a 
s d 

Differentiating equation 2. gives: 

_dE = _dE_s + _d---=E d~ 
dt dt dt 

Stating Hooke's law across the spring and then differentiating yields: 

da dE 
__ s_ E_s 
dt dt 

So that the total stress across the system can be written 

da 

dt 

dE 
E~ 

dt 

Applying Newton's law across the dashpot gives: 

a = 
d 

1. 

2. 

3. 

4. 

5. 

6. 

Combining equations 3,5 and 6 gives the governing equation for the Maxwell element: 

dE 1 da a 
-=-x-+-
dt E dt 1] 

7. 



The ratio of 17/ E is the definition of't and is known as the relaxation time of the model. 

Maxwell Model in a Creep Experiment 

In a creep experiment the stress in constant and so equation 7. immediately simplifies 

to: 

dB aO 
dt 1] 

8. 

This reduced form is an expression of Newton's law for liquids. Continuing the analysis 

we integrate from time zero to time t 

s(t) aO 
t 

f dB X f dt 9. 

s(0) 1] 0 

gIves: 

ta 
s(t)=B +~ 10. o 17 

Dividing through by the stress (which is constant) leads to an expression in terms of 

compliance's, where D is the compliance of the spring and D(t) is the compliance of the 

model. 

t 
D(t) = D+-

17 

Maxwell Model in a Stress Relaxation Experiment 

11. 

In this case the rate of strain is zero so that the governing equation becomes 



Substituting in the relaxation time and then integrating from 0 to t gives: 

This can be written as 

t 
Ino(t) = In 0"0 - T 

Exponentiation of this function gives 

-tiT o(t) = (7 e o 

12. 

13. 

14. 

15. 

This expression can be made in terms of modulus by dividing by the constant strain. 

-tl T 
E(t) = E e 16. 

Where E is the modulus of the spring and E(t) the modulus of the Maxwell element. 

Maxwell Model Under Dynamic Loading 

Now consider the Maxwell model and a sinusoidal strain. 

de 1 dO" 0" 
-=-x-+- 7. 
dt E dt 1] 

17. 

by differentiation of equation 17 and SUbstituting into 7 we have: 



1 da 1 
e OJcosoJt = ---+ - a o E dt 17 18. 

This is an equation of the form y' + p(x)y = r (x) where y = 0', X = t, p(x) = E / 11, and 

r(x) = EroED cos rot and for which we can quote the general result for a first order 

differential equation (Kreizig, 1985): 

-h[ h ] y( x) = e J e rdx + c , h = J p( x )dx 

h can easily be calculated 

E 
h= J-dt 

17 
h= Et 

17 

using the integration factor we have: 

The term in the brackets has to be integrated by parts as follows: 

19. 

20. 

21. 

EYr EYr 1 EYr 
J e r cosoJt = e r x sinoJt x OJ - - ~J e r sinoJt dt 22. 

17 OJ 

Calling the left hand side I and integrating the right hand side again we have 



Etl 
/1: . -1 E 

I=e SlntaX(j)--
EYe -1 E EYe 

-e costa x (j) + -J e costa dt 1](j) 

Now I appears on both sides of the equation and we can write: 

11+ 
2 

E 
2 2 

1](j) 

Etl Etl 
1 IT. E IT 

= -(e SIn ax + -e costa) 
(j) 1](j) 

All that remains now is to simplify this: 

2 
1](j) 

2 2 2 
1] (j) +E 

2 Etl 
1] (j) I 1]( . E J 1= 2 2 2 x e SIn ax + 7](j) COS ax 

1] (j) +E 

1](j) 

23. 

24. 

25. 

26. 

We can now back track to equation 21 and substitute our integration into it: 

a= 27. 

This represents the in and out of phase components of the Maxwell model. So that 

substituting for the relaxation time (1') = E"C) in the sine terms gives the storage modulus: 



E' 
2 2 

E1] m 
2 2 2 

1] m +E 

2 2 
Er m 

2 2 
l+rm 

Similarly for the cosine term, we get the loss modulus. 

2 2 
E" 

E1] m E 
----=---- x -

2 2 2 1]m 
1] m +E 

Erm 
2 2 

1 + r m 

and by our definition (equation 1.2.9.) tan 0 can be written down 

1 
tan8=­

mr 

28. 

29. 

30. 

Going back to equation 27 and taking a different route a useful equation can be derived 

in terms of 0 the phase difference. 

Taking the sine and the cosine terms 

as the respective sides of a right 

angled triangle and using 

pythagoreses theorem we can get the 

following diagram. From this we can 

read off sino and coso 

1 

E/roll 

31. 

Using the standard trigonometric identity: sin(A+B) = sin(A)cos(B) + sin (B)cos(A) 

where A = rot and B = 0 



2 2 

(j= 
E&017 (i) ~ 2/ 2 2 
2 2 2 x l+E 1] OJ x 

1] OJ +E 

32. 

33. 

The dynamic modulus is then given by 

E(t)=~= ~ E x sin(ux +0) 
& 2/ 2 2 o E 1] OJ +1 

34. 

Maxwell Model Under Dynamic Loading Using Complex Notation 

Although the complex notation has already been introduced, its use has not yet been 

demonstrated. Starting again with the governing equation and a statement of the 

sinusoidal loading in complex notation, we differentiate to get. 

d& 1 d(j (j 
-=-x-+-
dt E dt 1] 

7. 
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a= a e ~ o 

substituting the above, the governing equation becomes. 

-=ae -+-de iOX( 1 iOJ) 
dt 0 1] E 

and hence 

The integration gives 

e= a (_1 + _iOJ_) x _e
l

_·

OX
_ 

o 1] E iOJ 

Taking the stress term to the LHS gives the dynamic compliance 

D- iD 
TOJ 

35. 

36. 

37. 

38. 

39. 

The convergence of this viscoelastic compliance to a modulus can be easily done. 

1 
E*=----

D-iD/ TOJ 

TmE 

TOJ- i 

using complex conjugates E* can be split into its real and imaginary parts. 

* TmE TOJ + i ---.x--
TOJ - l TOJ + i E 

2 2 
T OJ E + iTmE 

222 
r OJ -i 

40. 

41. 



* E 
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Er OJ irwE 
2 2 + 2 2 42. 

l+r OJ l+r OJ 

The storage modulus being the real, and the loss modulus being the imaginary 

components, as in equations 28 and 29. Comparison of the algebra when using complex 

notation (in the frequency domain) with the involved mathmatics used when dealing in 

the time domain shows the elegance of the complex notation. 

The Voigt Model 

As depicted in figure 2.1.1. the Voigt element again consists of a Hookian spring and a 

Newtonian dashpot, but this time arranged in parallel. This arrangement leads us to the 

two following observations as the displacement of both elements is equal and the force 

across them is additive 

43. 

45. 

The stress on each element is known, so that the governing equation can easily be 

written out: 

& d& 
(J"=-+ 1]-

D dt 
46. 

Voigt Model in a Creep Experiment 

For the case when stress in constant, the integration factor (equation 19) has to be used 

again. The first step is to isolate the rate of strain term in the governing equation. 

d& & -+­
dt r 

47. 



then as before use the integrating factor, this time h is tit 

-Yr rI t Yr 
e=e ~xfe dt 

17 0 

integration and s!lbstitution of the limits gives 

-~ fir rIOT ". ". 
e=--e "e "-1 

17 
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(TO 17 17 

So that the creep compliance works out to be. 

-Yr 
D(t) = D(l- e ) 

Voigt Model in Stress Relaxation. 

As the rate of strain is zero the governing equation simplifies to 

e 
(T=-

D 

Voigt Model Under Dynamic Excitation. 

48. 

49. 

50. 

51. 

52. 

This time opting for the complex notation initially we write down the governing 

equation and the sinusoidal loading. 

de 
(T= eE + 17-

dt 
53. 
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8= 8 e => o 54. 

Substituting in the strain and the rate of strain we have 

55. 

Dividing through by the strain we arrive at the viscoelastic modulus of the material from 

which its storage and loss modulus as well as the loss tangent can be found. 

E*= E +iTJOJ 

E'= E = TJ 
T 

E"= TJOJ = ETOJ 

56. 

57. 

58. 

The dynamic viscoelastic properties of a Voigt element are normally expressed in terms 

of the compliance's rather than modulus, the transformation is simply achieved: 

1 1 
D*=-=---

E * E +iTJOJ 

Using the complex conjugate we can further simplify to get 

D* = 1 x E - i TJOJ = E - i TJOJ 
E + iTJOJ E - iTJOJ E2 + r1 OJ2 

from this the storage and loss compliance's can also be written down. 

D"- DOJT 
- 1 + OJ2? 

59. 

60. 

61. 

62. 

63. 



and similarly the loss tangent can be stated. 

Tan8= {j)7: 

The Four Element Model. 

64. 

The four element model consists of a Maxwell and a Voigt element joint together in 

senes. 

111 

~i 1-----1 

In this arrangement the total displacement of the system is equal to that of the Maxwell 

Spring (£1), Maxwell dashpot (£2) and the Voigt element (£3). 

dE dEl dE2 dE3 
-=-+--+--
dt dt dt dt 

For the Voigt model we can write 

And similarly for the Maxwell element 

65. 

66. 

67. 

68. 



dC1 dC2 1 dO' a 
-+--=-x-+-
dt dt E1 dt 171 

Using equation 65 this can be rewritten: 

dC3 dc [1 dO' a 1 ---- -x-+-
dt dt E1 dt 171 

Differentiating equation 69 will result in 

69. 

70. 

71. 

Equations 69 and 70 can be substituted into 67 to give: 

2 
d c 
--

2 
dt 

2 
1 dO'l dO' 
-x +---
El dt2 171 dt 

72. 

This can be rearranged to a more convinient fonn: 

2 
172 d a 
El 2 

dt 

Or: 

2 
E2 172 dO' E d c dc 

+ 1+-+- - + ~O' = 172 - 2 + E2 dt 73. 
El 171 dt 171 dt 
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d a ada 

a 2 + jJ dt + yO' = 
dt 

Where 

17 
a=~ 

E' 
1 

2.1 The 4 Element Model in Creep. 

74. 

75, 76, 77. 

Although the governing equation for the four element model can be solved (under creep 

conditions: rate of stress equals zero) it is easier by far to derive it by considering the 

creep behaviour of the different components of the system. For the Maxwell model this 

was earlier worked out to be: 

78. 

and similarly for the Voigt model 

79. 

The two strains are linearly additive so that the creep response of the four element 

model can be expressed as: 

80. 



2.1 The Four Element Model Under Dynamic Excitation. 

2 
d 0" dO" 

a +/3-+yO"= 
2 dt 

dt 

2 
d & 

1]22 
dt 

As before for a sinusoidal excitation: 

2 
d & 2 . 
-- = -& OJ Slnox 

2 0 
dt 

So that equation 74 becomes: 

74. 

81. 

82. 

83. 

84. 

For a second order differential equation of the above configuration a solution of the 

following type can be assumed: 

(j= A cos OJ! + B sin OJ! 

So that: 

~~ = w(-Asinat + Bcosat) 

2 
d 0" 2( ) 2 = OJ -Acosox - Bsinox 
dt 

85. 

86. 

87. 



Substituting these three equations into 84: 

all? ( -A cos ax - B sin ax ) + Poi.. -A sin ax + B cos ax ) + r( A cos ax + B sin ax ) 
2 

= 80E2OJcosox - 8
0 

1]2 OJ sinox 

88. 

And then collecting the Cosine and Sine terms we get the two following expressions: 

2 
-am A + pmB + yA = E

2
8
0

m 89. 

2 2 
-am B-pmA+yB=-1]280OJ 90. 

This can be rearranged to give 

91. 

92. 

Equation 91 can be written so as to isolate B and similarly from equation 92 A can be 

derived: 

E2cOw- A(r- aw
2 J 

B= pm 93. 

1]2cO
W2 

+B(r- aw
2 J 

A= pm 94. 



Putting equation 93 into 94 gives A. 

172&00) + PO) y-aO) 
A = --------:-----~--~ 

PO) 95. 

97. 

98. 

99. 

And similarly B can be worked out: 



2 
B{3m = E 8 m {3-2 0 100. 

101. 

102. 

103. 

To summarise then the sinusoidal stress and strain of the 4 element model can be 

expressed as: 

8= 8
0 

sin at 81 

0"= Acosat + B sin at 85 

dividing equation 85 by EO gives the overall modulus of the whole model so that: 



E(t) = ~cosat + ~sinat 
8
0 

8
0 

So that the dynamic viscoelastic parameters of the four element model are: 

E"= A 
80 

A 
tan8= B 

The Boltzmann Superposition Principle 

104. 

105. 

106. 

107. 

Boltzmann's principle of superposition is a powerful tool in viscoelasticity theory. 

Consider for now a creep compliance. 

108. 

Where the stress 0'0 is applied instantaneously and then kept constant and D is the 

compliance. Imagine a similar experiment where the instantaneous stress 0'1 is applied, 

not at time 0 but at some arbitrary time u l . Then a similar equation can be written 

109. 

Boltzmann's superposition principle states that if the two stresses 0'0 and 0'1 are applied 

at times t = 0 and t = u l respectively, then the two stresses act independently and the 

two strains add linearly, such that 

110. 

or for a general case involving n strains at different times. 



n 
e(t) = I (Y. D(t - u.) 

. 1 I I 1= 
111. 

replacing the summation with an integration as n tends towards infinity we get: 

t oo(u) 
e(t) = f D(t - u)du 

-00 at 
112. 

It is important to note that t has become the fixed time of the observation of the 

experiment. The variable u is used as an account of the stress history. Similarly a stress 

relaxation experiment can be dealt with using the Boltzmann superposition principle. 

This results in an equation of the form: 

o(t)= J o~) E(t-u)du 
-00 

113. 

The implicit assumption of Boltzmanns principle being that of linearity. 
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THE VISCOELASTIC FREQUENCY RESPONSE OF SOFT 
PROSTHESIS MATERIALS. 
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ABSTRACT 

In dentistry soft lining materials are used primarily to provide a cushion 
between the hard denture base and the soft tissue of the mouth, where their primary 
aim is to distribute the given masticatory load evenly. Their viscoelastic properties are 
of obvious interest. 

This paper investigates the frequency dependence of the loss tangent of a 
number of commercial soft lining materials as well as P?vflv1A in the frequency range 
0.1-30 Hz, using the dynamic mechanical method. The peak in the loss tangent is used 
as an index of the Tg for these materials. Using an Arrhenius relationship the activation 
energies are calculated. 

For the soft lining materials glass transitions ranged from -50 to +40 °C and the 
activation energies ranged between 100-200 kJ/mol. For PMMA the Tg was found to 
be 125°C but a low value of activation energy at 346 kJ/mol was found. 

1~ INTRODUCTION 

Soft lining materials have an important role in dentistry when treating patients 
suffering from trauma or loss of the mucosal tissue due to age, Lammie & Storer(I). In 
these cases treatment is provided by lining the fit surface of the hard denture base with 
a soft polymer. The soft lining material has a dual role in that it absorbs some of the 
masticatory energy which might otherwise damage the mucosa, it also distributes the 
masticatory load evenly. The viscoelastic nature of these materials governs these 
functions and hence has been the subject of study over the years, Braden & Clarke(2), 
Clarke & Braden(3), using various techniques. 

Dynamic mechanical analysis (DMA) is the ideal way of studying soft lining 
materials because it mimics the deformations encountered in the mouth (chewing 
forces). When a viscoelastic material is put under sinusoidal excitation part of the 
stress is found to be in phase with the strain leading to E' the storage modulus, and 
part is found to be out of phase leading to E" the loss modulus. E"IE' is the loss tangent 
Tan o. The peak in the loss tangent can be used as a measure of the glass transition 
temperature. 

• IRe in biomedical materials, QMW, Mile end campus, London E1 4NS. 
Department of biomaterials in relation to dentistry, LHMC, Turner St, London, 

£12AD. 



This paper sets out to investigate the dynamic mechanical properties of several 
commercial soft liners, with the specific aim of investigating the frequency dependence 
of transitions, mainly the glass transition, and hence obtaining activation energies using 
an Arrhenius relationship. 

2. MATERIALS AND METHODS 

2.1. Materials 
In all four materials where tested. These include 3 commercial soft lining 

materials, Braden et al(4), and Poly(methylmethacrylate), PM:MA. A denture base 
material 'Trevalon' (Dentsply, UK) was used, which comprises of cross linked P~ 
and some ethyl methacrylate. The reason for studying P1'v1MA was that, unlike the soft 
lining materials, the dynamic viscoelastic properties ofP1'v1MA have been extensively 
studied over the years, Clarke (5), Clarke (6). Hence the results obtained by the 
present experimental technique and the instrumentation could be compared with 
previous work. 

The soft lining materials tested here include 'Super-soft' (GC America Inc, 
USA). This is a traditional material based on plasticised acrylic. The other two 
materials represent recent developments in this field: 'Novus' (Hygenic Corporation, 
USA) is based on polyphosphazine elastomer mixed with a methacrylate monomer, 
Braden et al (4). 'Triad Resiline' (Dentsply, UK) is a light cured material, having the 
advantage of convinience over its competitors in that it can be partially cured in the 
mouth. It is believed to be similar in chemistry to the light cured impression elastomer 
'Genesis'. This material is based on a polyether reacted with a di-isocyanate. 

All four materials where manufactured into flat 2mm thick sheets using the 
standard dental procedures. This entailed packing and following the specific heating 
cycle for the heat cured materials. Triad was cured according to the manufacturers 
instructions using a light curing unit. 

2.2. Instrument 
This work has been carried out on a Perkin Elmer DMA 7 instrument. This is a 

forced vibration dynamic mechanical analyser, which has the advantage of keeping the 
frequency constant while the temperature of the material sample is being altered. 

The instrument has a frequency range of 0.01 to 51 Hz. The lowest frequencies 
where not used however as the time between successive cycles and hence data points is 
very long (100 seconds for the lowest frequency) and hence not practical. Problems 
can also occur at the high end of the frequency spectrum as the resonant frequency of 
the instrument is approached. 

The parallel plates measuring system was used where by the material under 
investigation is sinusoidally deformed in compression between two circular parallel 
plates. This closely mimics mastication. 

2 



2.3. Experimental procedure 
To obtain information on the transitions the materials were tested on a wide 

temperature range from -150°C to 200°C. At the lower end of the temperature range 
all the soft lining materials were hard and glassy with moduli in the GPa range. Hence 
the 1 mm diameter probe was used to provide a measurable deformation. 

A range of discrete frequencies where studied from 0.1 to 30 Hz. For each 
frequency the results-where repeated 3 times. An average value for the peak of the loss 
tangent curve was taken, this was used as a measure of the Tg. These results are 
summarised in Table 1. Figures 1,3,4,5 show the dependence of Tan 0 on frequency 
for each material. 

A relationship exists linking frequency to the transition temperature, Clarke 
(6), Boyer (7) . 

. f = Ae-E1RT In.f = In A - E / RT 

Where fis the frequency, A is a constant, E is the activation energy, R is the universal 
gas constant (R = 8.314 J/molOK) and T is the absolute temperature. Using this 
relationship activation energies of the transitions where calculated. In Figures 2 and 6 
I1Tg is plotted against the frequency on a logarithmic scale. 

3. RESULTS 

Frequency PMMA Prv1MA Super-soft Novus Triad Resiline 
(Hz) (Clarke, 1989) 
0.1 125.0 + 3 120.0 + 3 - - -
0.3 129.0 + 0.5 123.0 + 3 - - -
1 132.0 + 0.5 126.0 + 0.5 29.0 + 1 -31.0 + 0.5 -52.0 + 2 
3 136.0 + 1 129.0 + 0.5 36.0 + 1 -27.0 + 0.5 -48.0 + 0.5 
10 142.0 + 0.5 133.0 + 0.5 37.0 + 2 -21.0 ± 1 -43.0 + 2 
30 148.0 + 0.5 137.0 + 0.5 42.0 + 4 -15.0 ± 1 -39.0 + 0.5 

Table 1 Glass transitions, Tg eC) 

3 



-~ 
~ 
C ...., 
III 

= "3 
"0 
0 

~ 

Figure 1 Variation of Tan 0 with frequency for P1111A, and modulus curve at 30 Hz. 
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Figure 2 Activation energy plot for PM:MA, comparison with previous study 
(Clarke, 1989). 
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Figure 3 Variation of Tan 0 with frequency for Super-soft. 
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4. DISCUSSION 

The results obtained for Trevalon compared favourably with previous work 
carried out by Clarke in 1989(5), (Table 1). The Tg values were 5-10 °C higher than 
those found by Clarke. The difference in Tg between the two studies can in part be 
explained by the heating rate, which was 5°C/min in this study and 4°C/min in the 
previous study. 

The lower frequency results suffered from excessive noise (Figure 1). This is 
partly due to the long time interval between data points. This meant that the lowest 
two frequencies were not used for the soft lining materials. 

The rate of change ofTg with frequency was also higher than that found by 
Clarke, manifesting itself in a shallower gradient in Figure 2. This was reflected in an 
activation energy of345.7 kJ/mol (regression coefficient 0.994). This was compared 
with an activation energy of 442 kJ/mol obtained by Clarke. The differences in the two 
techniques must account for this discrepancy, where Clarke used 3 point bending as 
opposed to a compression test. Further work is needed to elucidate the problem. 

Table 1 shows that the glass transition of all the soft materials. Not 
surprisingly, these are lower or similar to temperatures at which the materials are used 
(mouth temperatures). The glass transition of Super-soft in particular occurs 
approximately at mouth temperature which accounts for the 'leathery' or 'lossy' nature 
of this material. The other two materials are well past their transitions and hence are 
rubbery. 

Figure 3 shows the frequency dependence of Tan 8, and Figure 6 shows the 
activation energy plot for Super-soft. The linear dependence of l/Tg and In fwas the 
poorest for this material (regression coefficient 0.972) An activation energy of205 
kl/mol was calculated. 

Figure 4 shows the behaviour ofNovus, the main glass transition peak being at 
-31 C. It has a shoulder which represents the p transition approximately 20C lower. At 
the higher frequencies this becomes less distinct, so that no exact values for it could be 
calculated and hence no activation energies. The main transition however has an 
activation energy of 110.4 kJ/mol (regression coefficient 0.999). 

Figure 5 depicts Triad resiline which also seems to have a secondary transition 
masked by the Tg. In this case it appears after the glass transition and hence can not be 
a p transition. The second transition appears to move away form the Tg with 
increasing frequency. It was again difficult to closely study this transition because it 
was very close to the Tg. For the main transition a value of 109 kJ/mol (regression 
coefficient 0.999) was calculated for the activation energy. 

The activation energies found for the soft lining materials fit the data compiled 
by Boyer (7) pp 13 69. Where a plot of activation energy against glass transition 
temperature for a wide range of different polymers systems seem to lie on a common 

curve. 
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Out of the two activation energies found for Trevalon, Clarke's result 
corresponds more closely to this curve. 

5. CONCLUSION 

The Dynamic mechanical method has been successfully used to study the glass 
to rubber transitions of a number of soft denture lining materials. 

A large discrepancy was seen for the activation energy of Trevalon compared 
with a previous study. The possible sources of this discrepancy deserve further 

. investigation. 
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APPENDIXC 

LETTER TO THE 
MEDICAL DEVICES AGENCY 



Mr Jeremy Tinkler, 
Medical Devices Agency, 

Implants and Materials Section, 
Department of Health, 

Hannibal House, 
Elephant and Castle, 

London SE 1 6 TQ 
Dear Jeremy, 

14th July 1996 

Re: TRIAD RESLINE - DENTSPLY LTD 
I am sorry to trouble you again, on a matter quite unrelated to earlier 

correspondence.( Incidentally, I am most grateful for all the help that we are getting on 
our new materials from you and your coJleagues.) 

TRIAD RESLTh.rr: is a photo­
polym_erising soft-lining material, presumably an adjunct to TRIAD photo-polymerising 
denture base material. One of our Phd students is working on soft lining materials, and 
has been studying TRIAD RESLINt. Amongst other things, he got its Infra-red 
spectrum, a copy of which I enclose., and I would draw your attention to the band 
at-2400cm- 1 . This is fairly unambiguously the isocyanate group. 
I suspect that this material is like their photo-polymerising impression material 
GE:t\TESIS,(not available in the UK as far as I know.) This is, to quote" a polyether 
urethane methacrylate. " 

The enclosed IR spectrum \vould support this, and one can 
make a fair guess of how they make it, by coupling the terminal OH groups of a 
polyether to hydroxyethylmethacrylate via a di-isocyanate. 
Unfortunately, they have not got rid of all their isocyanate. Clearly in time this will 
hydrolyse to a primary amine, but that itself could be a worry. 
My first action was to contact Dentsply, and I enclose the correspondence; I have 
heard nothing since the letter from ~'1orton Jar,.:is. 
It could be that I am worrying needlessly, but it would seem irresponsible to ignore the 
finding, in the light of episodes like that of BO\cLOC and Silicone Breast 
Implants,so I am formally reporting it to. the Department. 

Kind regards, 
Yours sincerely 

\-:-~ /' 
: _ • -'-<~ -..i--. _____ 
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