
Model Identification and Robust Nonlinear Model Predictive Control of a

Twin Rotor MIMO System
Rahideh, Akbar

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1885

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1885


Model Identification and Robust Nonlinear 
Model Predictive Control of a Twin Rotor 

MIMO System 

A thesis submitted by 

Akbar Rahideh 

in partial fulfilment of 
the requirements of the degree of 

Doctor of Philosophy 

in the 

School of Engineering and Materials Science 

Queen Mary, University of London 

Mile End Road 

London, El 4NS 
UK 

2009 

1 



School of Engineering and Materials Science 

Queen Mary, University of London 

PhD THESIS 

0 DECLARATION 

This thesis entitled 

Model Identification and Robust Nonlinear 
Model Predictive Control of a Twin Rotor 

MIMO System 

was composed by me and is based on my own work. Where the work of the 

others has been used, it is fully acknowledged in the text, captions, tables 

and illustrations. This thesis has not been submitted for any other 

qualification. 

Name AKBAR RAHIDEH 

Signed A" `" -ý 

Date I 
-/ pq /oI 



Abstract 

This thesis presents an investigation into a number of model predictive control 
(MPC) paradigms for a nonlinear aerodynamics test rig, a twin rotor multi-input 
multi-output system (TRMS). To this end, the nonlinear dynamic model of the 

system is developed using various modelling techniques. A comprehensive study is 

made to compare these models and to select the best one to be used for control 
design purpose. On the basis of the selected model, a state-feedback multistep 
Newton-type MPC is developed and its stability is addressed using a terminal 

equality constraint approach. Moreover, the state-feedback control approach is 

combined with a nonlinear state observer to form an output-feedback MPC. Finally, 

a robust MPC technique is employed to address the uncertainties of the system. 

In the modelling stage, analytical models are developed by extracting the physical 

equations of the system using the Newtonian and Lagrangian approaches. In the case 

of the black-box modelling, artificial neural networks (ANNs) are utilised to model 
the TRMS. Finally, the grey-box model is used to enhance the performance of the 

white-box model developed earlier through the optimisation of parameters using a 

genetic algorithm (GA) based approach. Stability analysis of the autonomous TRMS 

is carried out before designing any control paradigms for the system. 

In the control design stage, an MPC method is proposed for constrained nonlinear 
systems, which is the improvement of the multistep Newton-type control strategy. 
The stability of the proposed state-feedback MPC is guaranteed using terminal 
equality constraints. Moreover, the formerly proposed MPC algorithm is combined 
with an unscented Kalman filter (UKF) to formulate an output-feedback MPC. An 

extended Kalman filter (EKF) based on a state-dependent model is also introduced, 

whose performance is found to be better compared to that of the UKF. Finally, a 
robust MPC is introduced and implemented on the TRMS based on a polytopic 
uncertainty that is cast into linear matrix inequalities (LMI). 
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CHAPTER 1 

Introduction 

1.1 Background 
The twin rotor MIMO system (TRMS) is a laboratory platform designed for control 

experiments by Feedback Instruments Ltd [1]. There are some resemblances between 

a TRMS and a helicopter. For instance, like a helicopter it has a strong cross- 

coupling between the main and tail rotors. It is a highly nonlinear and complex 

system. Some of its states and outputs are inaccessible for measurements. Thus, from 

the control perspective, it can be perceived as a challenging problem. The control 

objective is to move the beam of the TRMS as quickly and accurately as possible to 

the desired attitudes in terms of both the pitch and azimuth angles. 

To develop a control paradigm on the basis of a model-based control approach, it is 

essential to have an accurate model of the plant. Depending on the background 
knowledge of a system, the identification methods can be categorised into three 
different classes. If the identification is based only on the input-output measured 
data, the identification process is called black-box or empirical modelling. On the 
other hand, white-box or analytical modelling refers to the model development 
techniques based on the physical characteristics of a process. A hybrid method 
comprising white- and black-box modelling is called a grey-box identification in 

which a system is roughly modelled according to its governing physical equations 
and subsequently improved using a black-box identification approach based on a set 
of input-output data [2]. Each of the aforementioned classes of modelling can be 

categorised as either linear or nonlinear. 

The analytical modelling of an aerodynamic system can be achieved using the 
Newtonian, Lagrangian or any other related approaches. The straightforward 
application of Newton's laws to model simple systems has been supplemented by a 
useful and powerful general 'approach for finding the equations of motion for most 
types of dynamical systems, introduced by the French mathematician Joseph Louis 
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Lagrange [3]. In this investigation, the TRMS is analytically modelled using both the 
Newtonian-and Lagrangian-based approaches. 

Among the black-box modelling approaches, ANNs look very promising. An ANN 

simulates a human brain in a really simple form and therefore, it can obtain some of 
the specific features of a brain such as learning, adaptation, association, 

generalisation, and in some cases, even forgetfulness. A neuron is the fundamental 

element of ANNs, and can be considered a processor. One of the most popular types 

of neuron receives weighted inputs, sums them up and then passes the result into a 
linear or nonlinear activation function to formulate the output. In some cases, the 

activation functions possess some specific characteristics such as monotonicity and 
differentiability. Model identification of nonlinear systems is one of the most 

efficient applications of ANNs. 

Receding horizon control (RHC) or MPC was introduced in the late seventies and 

early eighties [4]-[8] and has been developed considerably since then. It is a class of 

control approach that uses an explicit model of the plant and tries to evaluate the 

manipulated variables through an optimisation method. The optimisation procedure 
minimises an objective function, subject to a given set of constraints, to obtain the 

optimum values of manipulated variables that makes the controlled variables follow 

the reference trajectories as closely as possible with the minimum possible control 
effort. The first element of the calculated input signals is sent to the plant as input 

and others are rejected; this process is well-known as the receding horizon. 
Therefore, MPC is not a single control approach and it can be considered to be a 
class of control strategies with the following common features [9]: 

" All MPC methods need a plant-model to predict the process outputs during a 
specific time, called the prediction horizon. 

" They have an objective function that needs to be minimised in order to find a 
set of optimal manipulated variables during the control horizon. 

9 At each step, only the first set of manipulated variables is sent to the plant 
and others are discarded. 

Despite most of the practical processes being nonlinear, the majority of the MPC 
techniques implemented on the industrial processes are based on linear models. One 
of the rationales for this is that a linear model is easy and fast to develop, compared 
to a nonlinear one. Another reason refers to the stability and, more generally, 
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robustness problems' that are more complicated in nonlinear cases. Some of the 

nonlinear models and/or constraints lead to non-convex nonlinear optimisation 
problems that are relatively more complex to solve. Last but not least, in some cases, 
a linear model provides satisfactory performance. 

Stability of any control system is a minimum requirement. The Lyapunov theory of 

stability is a fundamental tool for stability of linear and nonlinear systems. Although 

the stability analysis of a linear system using the Lyapunov criteria is 

straightforward, in the case of nonlinear systems such as MPC approaches, even 
linear MPC, stability proof is a challenging issue. Therefore, further action should be 

taken into consideration to guarantee the stability of such systems. For instance, 

since the closed-loop stability of a general MPC with a finite horizon is not 

guaranteed, several schemes have so far been proposed to address the issue. Terminal 

state equality constraints, terminal cost, terminal inequality constraints (dual mode), 
terminal contractive constraints, infinite horizon control, quasi-infinite horizon 

control, and control Lyapunov function approaches are some of the most popular 
methods used to guarantee the closed-loop stability of model predictive controllers. 

Robust stability, i. e. stability in the face of model mismatch, is a more general form 

of stability. Stability analysis, in general, assumes the model is absolutely accurate 
and there is no uncertainty in the model. However, in practical situations it is almost 
impossible to model a plant without any approximation. Therefore, robust stability is 

vital when dealing with practical systems. Generally, providing the robust stability of 
a nonlinear system is much more challenging than providing its nominal stability. 

Due to the aforementioned issues related to nonlinear model predictive control 
(NMPC), the application of this method in practical situations is still very limited. 
But its potential is really great since nonlinear MPC is essential in those areas where 
a process is highly nonlinear and frequently requires change in operation regions [9]. 
These challenging issues should be seriously addressed for future applications of 
control engineering. In this investigation, a number of nonlinear MPC paradigms are 
designed and then implemented on the TRMS. 

1.2 Recent Developments 
Some investigations have been reported to address the modelling and control of a 
TRMS using various analytical and artificial intelligence (AI)-based approaches. For 
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instance, nonlinear modelling of a1 degree of freedom (1DOF) TRMS using radial 
basis function (RBF) networks has been addressed in [10], which presents nonlinear 
system identification method for modelling air vehicles of complex configuration. 
Dynamic modelling and optimal control of a TRMS in terms of its 1DOF dynamics 
has been presented in [11]. In that approach, the proposed model is employed in the 
design of a feedback linear quadratic Gaussian (LQG) compensator. Performance 

analysis of 4 types of conjugate gradient algorithms in the nonlinear dynamic 

modelling of a 1DOF TRMS using feedforward NNs has been reported in [12]. 
Dynamic modelling of a TRMS in hovering position using NN-based and parametric 
linear approaches has been presented in [13]. Mat Darus et al. [14] have proposed a 
parametric modelling of a TRMS using genetic algorithms (GAs); in that, the global 
search technique of GAs is used to identify the parameters of the TRMS based on 
one-step-ahead prediction. 

Modelling of unmanned aerial vehicles (UAVs) and helicopters has widely been 

reported in the literature. For instance, dynamic modelling and feedback control of a 
side-by-side rotor tandem helicopter has been proposed in [15]. The investigation 
deals with the development of a dynamic model and design of a feedback controller 
for reducing torque oscillations of a side-by-side rotor tandem helicopter, which is a 
MIMO system. Wu et al. [16] have presented a nonlinear flight controller design for 

a type of helicopter by a trajectory linearisation method. In this paper, the authors 
have presented the development of a nonlinear dynamic model of a 3DOF flight 

control experiment apparatus, which is a helicopter with three propellers driven by 
direct current (DC) motors. Exact linearisation and non-interacting control of a4 
rotors helicopter via dynamic feedback has been reported in [17]. The authors have 
designed a feedback control in order to transform the nonlinear system to a linear and 
controllable one that is known as the exact linearisation problem. They have reduced 
the system from an input-output point of view to an aggregate of independent single- 
input single-output (SISO) channels that is known as non-interacting control problem 
or input-output decoupling problem. Hover control via a Lyapunov-based approach 
for an autonomous model helicopter has been proposed by Mahony et al. [18]. In this 
article, a dynamic model based on physical insight has been presented for a reduced 
scale autonomous helicopter using Newton's equations. Real-time stabilisation and 
tracking of a four-rotor mini rotorcraft have been presented in [19]. The authors have 
developed a control approach and implemented it on a mini rotorcraft; they have 
obtained the dynamic model of the four-rotor rotorcraft via a Lagrange approach. 
Nonlinear dynamics and control of a wind-milling gyroplane rotor have been 
proposed by Somov et al. [20]. In this investigation, the mathematical models of 

l, 
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auto-rotation and flapping have been extracted and used for nonlinear dynamic 

modelling. The development of a nonlinear model and a nonlinear control strategy 
for a scale model helicopter has been presented in [21]. The nonlinear 3DOF model 

of the helicopter is based on the Lagrangian equations. Cerro et al. [22] have 

proposed the identification of a small unmanned helicopter model using GAs. In this 

article, a hybrid (analytical and empirical) model of the helicopter, its stability and 

parameter identification using GAs have been presented. Mathematical modelling of 

a UAV during take off with nose-wheel off the ground has been discussed in [23]. 

The mathematical model is formulated according to the Newton-Euler method. Jun et 

al. [24] have presented the state estimation of an autonomous helicopter using the 

Kalman filtering. 

In this research, the TRMS has analytically been modelled using both the Newtonian 

and Lagrangian approaches. Although both methods are supposed to produce exactly 
the same results, due to different assumptions in the case of each method, the results 

are slightly different. Moreover, the system has empirically been modelled using 
NN-based approaches. It is clear that empirical modelling is valid only in the range 

of input data used for identification. Also, black-box modelling techniques suffer 
from the loss of the process structure. One of the advantages of black-box modelling 
is easiness of finding an acceptable model in comparison with white-box modelling. 
It has resulted in less error compared to the analytical model adopted in the case of 

the TRMS. It is noted that in all previous works on the NN-based modelling of a 
TRMS [10], [12], [13] the authors have modelled the system in terms of 1DOF 
dynamics of the system. However, in the present research both 1DOF and 2DOF 
dynamics models have been developed. 

Applications of grey-box modelling have widely been reported in the literature. For 

example, a systematic improvement method of stochastic grey-box modelling has 
been proposed in [25]. The features of this approach allow to identify the model 
deficiencies and to reveal their structural origin based on interplay between 

stochastic differential equation modelling, statistical tests and non-parametric 
modelling. Non-measurable variable estimation using grey-box modelling has been 

presented in [26] which its novelty is to estimate unknown variables using 
experiments, a -priori information and physical insights of a given process. Tan et al. 
[27] have proposed an evolutionary grey-box modelling technique based on a hybrid 

approach of genetic evolution and Boltzmann learning. The technique uses a -priori 
knowledge of the white-box global structure of a physical system, whilst 
incorporating accurate black-box for non-measurable local nonlinearities. Grey-box 
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identification of three classes of block-oriented models, i. e. Hammerstein, Wiener 

models, and the feedback block-oriented models, has been introduced by Pearson et 
al. [28]. In this investigation, the approach is restricted to those processes with 
nonlinear steady state characteristics that are known a -priori and with no steady state 
multiplicity. A grey-box modelling mechanism based on NNs for chemical processes 
has been presented in [29]. Here, the process dynamics has initially been modelled 
using an analytically derived model and an NN has then been used to compensate for 
the model mismatch. Oussar et al. [30] have shown that dynamic semi-physical 
neural modelling can be a powerful strategy for the design of models in accordance 
with the legibility of knowledge-based models and the flexibility of training from 

experimental data. Hybrid grey-box modelling of a pickling process has been 

proposed in [31]. The modelling procedure follows a structured approach, which 
includes basic modelling, data acquisition, model calibration, hybrid expanded 
modelling, stochastic modelling and model assessment. An approach to model 
identification of the autoregressive integrated moving average (ARIMA) family 

using GAs can be found in [32], where a GA-based model identification has been 

proposed to overcome the problem of local optima; the method is suitable for any 
ARIMA model. Chang [33] has proposed system identification and control based on 
GAs for a class of nonlinear systems to identify the unknown parameters of a system 
with previously known structure. A flexible scheme for parameter estimation in 
stochastic grey-box models has been presented in [34]. The estimation scheme is 
based on the EKF and features maximum likelihood as well as maximum a- 
posteriori estimation on multiple independent data sets. Sohlberg [35] has proposed a 
rational modelling procedure of a pilot heating process using a grey-box modelling 
approach. A simplified nonlinear continuous model has been formed and its 
unknown parameters have been, estimated using measured data extracted from the 
process. Finally, the model has been utilised for designing a model predictive 
controller. 

MPC can be defined as a class of control algorithms that utilises an explicit process 
model to predict the future response of the plant [36]. In recent years MPC, as one of 
the modem computer optimisation control techniques, has achieved a significant 
level of acceptability and great development in control theory and applications. 
Linear MPC has become popular with the publication of some papers on model 
predictive heuristic control [4], [5] and dynamics matrix control (DMC) [6]-[8]. As 
evident from the literature, MPC has never been applied to a TRMS; however, some 
researchers have exploited MPC to solve some ' aerospace and robot control 
problems. Poignet and Gautier [37] have proposed nonlinear MPC for a robotic 
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manipulator and implemented it with a linearised and optimised dynamic model. 
Wroblewski [38] has applied MPC to control a 6DOF manipulator in an attempt to 

reduce the error at the end of the prediction horizon rather than to find the optimal 
solution in order to decrease the computational burden. A nonlinear MPC approach 
has also been reported to control multiple autonomous helicopters in a complex 
environment; the approach combines stabilisation of vehicle dynamics and 
decentralised trajectory generation by incorporating a potential function [39]. 
Modelling, control and decision making for flying robots have been discussed in 

[40], where the authors have designed a tracking control layer using nonlinear MPC 

and integrated it with a trajectory generation for logistical action planning. The 

application of an MPC paradigm for a parallel mechanism has been presented in 
[41]. In that investigation, a predictive function control strategy based on a simplified 
dynamic model has been implemented. Kawati et al. [42] have addressed a vision- 
based robot motion control via a nonlinear RHC approach. There, the authors have 

proposed a stabilising RHC scheme which is based on a control Lyapunov function 

and a corresponding feedback control law. Gu et al. [43] have used a receding 
horizon controller for regulating a non-holonomic mobile robot. In that study, the 

stability of RHC has been guaranteed by adding a terminal-state penalty to the cost 
function and a terminal-state region to the optimisation constraints. Localisation and 
navigation of a mobile robot using an NMPC technique has been reported in [44]. 
Vanek et al. [45] have proposed a practical approach for real-time trajectory tracking 
of UAV formation. In that case, an MPC outer loop controller specifies the command 

signals for the H. locally controlled dynamics. 

Note that in the case of a severe nonlinear system, a single linear model cannot 
provide acceptable results in all operating regions. In other words, a highly nonlinear 
system cannot be modelled linearly to be adequate in all operating regions, unless the 
process always works in the neighbourhood of the point of interest. In the case of the 
TRMS, a linear MPC is insufficient to obtain satisfactory performance in all 
operating regions. As mentioned before, depending on the degrees of nonlinearity of 
a system, it is sometimes possible to find a linear model to be valid in some specific 
operating points, but generally, for a highly nonlinear system such as the TRMS, it is 
difficult to find a linear model to be adequate in all operating regions. Note that a 
nonlinear plant can be modelled using multiple linear modelling [46]-[51] or 
adaptive linear modelling [52]-[55] or linear time-varying modelling [56] 
approaches. In the case of multiple-modelling, the operating region of a nonlinear 
system is divided into several sub-regions and for each of the sub-regions, a linear 
model is developed. Therefore, according to the current operating point of the 
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system, the appropriate linear model is used to predict the output of the process. For 
instance, Aufderheide et al. [46], [47] have proposed an MPC based on a multiple 
model strategy. In that research, a bank of first-order plus deadtime models has been 
designed according to the range of gains, dominant time constants and time delays. A 

multiple model adaptive control strategy for multivariable dynamic matrix control 
has been proposed in [48]. The proposed method combines the outputs of multiple 
linear DMC controllers, each with its own step response model. Wan et al. [49] have 

presented a scheduled stabilising output-feedback MPC for constrained nonlinear 

systems. They have designed a set of local output-feedback predictive controllers 

with their estimated regions of stability covering the desired operating region, and 
implemented them as a single scheduled MPC which switches online between the set 
of local controllers. A multiple model adaptive approach has been proposed in an 
MPC framework to account for variability and handle the constraints [50], [51]. Note 

that in relatively high order systems with multiple inputs, it is a cumbersome task to 
find these linear models to cover all operating regions. Also, multiple-model MPC 

uses a linear model during the prediction horizon that cannot be adequate in highly 

nonlinear systems with a large prediction horizon. 

An adaptive linear modelling method updates the linear model according to 

measurement data or linearisation of a nonlinear plant-model. For example, adaptive 
linear MPC has been presented to update linear model online based on measurement 
data to handle model uncertainties [52], [53]. Zhang et al. [54] have proposed a 
method that uses pseudo-partial derivative to dynamically linearise a nonlinear 
system at each step of predictive functional control in order to have the benefits of 
linear quadratic optimisation methods. In [55], a combination of parameter 
estimation and MPC algorithm has been used for max-plus linear discrete-event 

systems. Note that the proposed method covers only a specific small class of 
systems. Li and Biegler [57] have proposed multistep Newton-type control strategies 
for constrained nonlinear processes in which the nonlinear model is linearised around 
a nominal trajectory and a quadratic problem is solved over the horizon. The 

extension of the mentioned approach can be found in [58] that put the performance 
index into an augmented form and performed some modifications such as extending 
the output prediction horizon to infinity. O'Brien et al. [56] have used a state- 
dependent model to design a model predictive controller for a wastewater system. 
Based on the state-dependent state-space model, a linear time-varying model has 
been constructed using the future trajectory determined by the predictive controller. 
A Newton-type scheme for the approximate on-line solution of optimisation 
problems for optimal feedback control has been proposed in [59]. Fast reaction to 
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disturbances can be achieved by delivering approximations of the exact optimal 
feedback control. Diehl et al. [60] have investigated a Newton-type method for 

online optimisation in NMPC, the so-called real-time iteration scheme. In their 
investigation, only one Newton-type iteration has been performed per sampling time 
to have a fast online optimisation algorithm. 

Note that the closed-loop stability of a generic MPC with finite-horizon cost function 

cannot be guaranteed [61 ] and therefore, further investigation needs to be carried out, 
e. g. modifying the cost function and/or constraints. Terminal state equality 
constraints technique has widely been proposed to stabilise linear/nonlinear and 
discrete/continuous MPC systems [62]-[65]. By adding a terminal cost to the 

objective function, Bitmead et al. [61] have proposed a stable predictive control for 

unconstrained linear systems. Rawlings et al. [66] have proposed an infinite horizon 

controller to guarantee the stability of both stable and unstable linear plants. A quasi- 
infinite horizon scheme has been proposed to stabilise stable and unstable nonlinear 
model predictive controllers with input constraints [67]. Scokaert et al. [68] have 
investigated conditions under which suboptimal model predictive controllers are 
stabilised. Robustness properties of nonlinear receding horizon controllers with 
terminal equality constraints have been investigated with respect to gain and additive 
perturbations [69]. Michalska et al. [70] have proposed a robust dual mode receding 
horizon controller for a wide class of nonlinear systems with state and control 
constraints and model error. A complete survey on both linear and nonlinear MPC 
focusing on sufficient conditions to guarantee stability and robustness can be found 
in [71]. Comprehensive review on stability and robustness of nonlinear MPC has 
been addressed in [72]. Jadbabaie et al. [73] have proposed a stable nonlinear MPC 
using unconstrained finite horizon optimal control. The method approximates the tail 
of the infinite horizon cost-to-go using an appropriate control Lyapunov function. 

In this thesis, it is initially assumed that all state variables of the system are 
accessible, and therefore state-feedback MPC is taken into consideration. Moreover, 
an output-feedback nonlinear MPC is obtained using a combination of state-feedback 
nonlinear MPC and a state observer [74]-[77]. This will be discussed in Chapter 6. 
Stability, robustness and performance of output-feedback nonlinear MPC have been 
investigated in [74]; however, here the stability of state-feedback nonlinear MPC is 
taken into account. Kothare and Morari [77] have used an additional state constraint, 
called a contractive constraint, to prove strong nominal stability properties of MPC 
for constrained nonlinear systems. 
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So far, several paradigms have been developed in the field of robust control. 
Comprehensive surveys on robust MPC can be found in [71], [78] and [79]. An 

investigation on inherent robustness of MPC [71], in which the uncertainty is 

ignored, has been carried out by De Nicolao et al. [69] and Magni et al. [80] in the 

case of discrete and continuous-time frameworks respectively. Zero terminal state 

constraints have been used to study the robustness of nonlinear receding-horizon 

controllers with respect to gain and additive perturbations [69]. An inverse optimality 

result has been derived using nonlinear analogue of the fake Riccati equation for 

receding-horizon control scheme [80]. Open-loop min-max MPC was first 

introduced by Campo et al. [81] where the min-max strategy was originally proposed 
by Witsenhausen [82]. In this approach, the worst-case scenario over a set of 

uncertain plants is minimised to find the optimum sequence of manipulated 

variables. However, it has been demonstrated using a counterexample that robust 

stability cannot be guaranteed by the min-max paradigm alone [78], [83]. As iterated 

in the literature, the open-loop min-max is really conservative [78], [84], [85] and 
therefore a feedback version of MPC has been introduced in various forms [85]-[90]. 

Kothare et al. [85] have proposed an interesting technique in which, at each time 

step, a state-feedback control law minimises a worst-case infinite horizon objective 
function, subject to constraints. This approach has been improved by Cuzzola et al. 
[86] using several Lyapunov functions based on [91] each one corresponds to 
different vertex of uncertainty's polytope instead of a single Lyapunov function used 
in [85]. Mao [87] has pointed out and amended the mistake in [86]. A further 

improvement has been obtained based on two previous papers [85], [86] by adding N 
free control moves before the linear feedback law [88]. The concept of an 
asymptotically stable invariant ellipsoid has been used to develop a robust 
constrained MPC paradigm. The approach gives a sequence of explicit control laws 

corresponding to a sequence of asymptotically stable invariant ellipsoids constructed 
off-line, one within another in state-space [89]. Scokaert and Mayne [90] have 

outlined the details of min-max MPC formulation that introduce the notion of 
presenting feedback in the control implementation. Wang and Rawlings [92] have 

addressed a robust MPC method that guarantees stability and offset-free set point 
tracking in the presence of model uncertainty. The robust regulator uses a tree 
trajectory to forecast the time-varying model uncertainty. 

Robust output-feedback MPC has recently been reported in the literature [84], [93], 
[94]. Wan and Kothare [93] have developed an off-line robust output-feedback MPC; 
first, an off-line robust constrained state-feedback MPC and a state estimator are 
independently designed, and then the robust stabilisability of the combined controller 
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and estimator is analysed. If the robust stability criterion is not satisfied, the design 

of the controller and estimator are iteratively repeated by specifying new design 

parameters to achieve a satisfactory result. A robust output-feedback MPC of 
constrained, linear, discrete-time systems in the face of bounded state and output 
disturbances has been proposed by Mayne et al. [84]. The approach consists of a 
stable Luenberger state estimator, where its error is bounded by an invariant set, and 
a robustly stabilising, tube-based, MPC. Ding et al. [94] have presented a synthesis 
approach for output-feedback robust MPC for systems with polytopic description, 
bounded state disturbance and measurement noise. A sequence of output-feedback 
laws is calculated off-line based on state estimators by solving LMI optimisation 
problems. At each time step, a suitable output-feedback law is chosen on-line from 

this sequence. Note that most of these robust output-feedback MPC approaches have 
difficulties in real time situation. 

In this investigation, a nonlinear MPC is designed and implemented on the TRMS. 
The main challenging feature of this study is to find a nonlinear MPC method that 

can be implemented on the TRMS and also to provide the stability and more 
generally robustness of the closed-loop system. 

1.3 Motivation, Aims and Objectives 

Control of aerodynamic systems has been an area of interest ever since I was 
introduced to this subject. An additional motivation to carry out this investigation 

stems from the prospective use of Al-based techniques like GAs and ANNs for 

system modelling and control purposes. The control challenges of a highly nonlinear 
system like the TRMS, its resemblance to a helicopter and its cross-coupled 
dynamics have also inspired me. The practical nature of this research including 

prospective implementation of the MPC approaches for nonlinear systems in real 
time and addressing the issues of stability and robustness have also driven my 
enthusiasm for this research. 

Although the TRMS does not have the ability to fly, it possesses a striking similarity 
to a helicopter in terms of system nonlinearities and cross-coupled modes. The 
TRMS, therefore, can be perceived as an unconventional and complex air vehicle 
with a flexible main body. These system characteristics present formidable 
challenges in modelling, control design, control analysis and implementation. The 
main aim of this research is to design a model-based predictive control for the TRMS 
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which can be extended to other nonlinear aerodynamic systems. The specific aims 
and objectives of the investigation are depicted below: 

" Nonlinear dynamic modelling of the TRMS 

Accurate modelling is a prerequisite for the success of any model-based control 
technique. Therefore, various modelling approaches need to be investigated to 
figure out a suitable model for the TRMS. In this case, white-box, black-box and 
grey-box modelling approaches are employed. In the case of white-box 
modelling, the governing equations of the system are extracted using both the 
Newtonian and Lagrangian techniques and the parameters are identified 

according to physical knowledge of the system. NNs are then employed to 
develop the nonlinear black-box model of the system. Using the advantages of 
GAs, the parameters of the white-box model are retuned to achieve a grey-box 
model of the TRMS. The models are verified and compared using convincing 
tests such as overlapping, PSD and correlation techniques to select the most 
suitable one. 

" Stability of the plant 
Before going through the control design, the stability of the model needs to be 
investigated. In this case, the Lyapunov technique and the invariant set theorem 
are employed to investigate and analyse the global asymptotically stability of the 
system. 

" Control specifications 
Here a set of specifications is outlined for the control system design purpose: 

o Test the stability of the system in the face of the coupling effect between the 
two channels, disturbance and step change. 

o The ability to continuously follow a reference trajectory. 

o Zero steady state error response. 

o The ability to follow a step change in a short time (say, rise time less than 10 
seconds). 

" State-feedback MPC for nonlinear systems 
Assuming the accessibility of the state variables, a state-feedback MPC approach 
for nonlinear systems is developed. The idea originates from the multistep 
Newton-type MPC approach and the prospective use of a state-dependent model. 
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" Stability of the state-feedback MPC 

As has been emphasised previously, stability is the minimum requirement and 

must be guaranteed for any control system. Terminal equality constraints will be 

used to guarantee the stability of the control approach. 

0 State observers 
It is a well-known fact that full states are not accessible in the case of most 

practical systems and therefore, a state estimator such as the Luenberger observer 

or the Kalman filter needs to be used to estimate the state variables. Note that 

these observers can be utilised for linear systems and, in the case of nonlinear 

plants, EKF is one of the popularly used state estimators. However, when dealing 

with highly nonlinear systems, an EKF may, exhibit significant performance 
degradation and therefore, other types of nonlinear estimators such as a UKF are 

required. In this study, a UKF is employed to observe the state variables of the 
TRMS. Moreover, an EKF based on a state-dependent state-space model is 

developed. 

" Output-feedback MPC for nonlinear systems 

The state-feedback model-based predictive control paradigm is extended to an 
output-feedback MPC using the state observers. 

" Robust MPC 

It is noted that robustness analysis in nonlinear MPC is much more difficult than 

stability analysis due to the fact that robustness means stability in the presence of 
model error and uncertainty [9]. One of the aims of this research is to utilise 
robust MPC techniques for a highly nonlinear MIMO system, the TRMS. It is 

envisaged that the proposed techniques can be extended to other mechanical and 
aerospace engineering problems. 

1.4 Contributions 
In this research, three different modelling techniques are employed to dynamically 

model a nonlinear system. On the basis of the most adequate model, a nonlinear 
MPC is developed, addressing issues of stability and robustness. The main 
contributions of this investigation are as follows: 
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" Analytical dynamic models of the TRMS in terms of 1DOF and 2DOF are 
developed. It is noted that the crude models supplied by the manufacturer [1] 
have not taken all the necessary forces into consideration, and therefore do 

not represent the TRMS accurately. In order to improve the models, the 

motors of the system are modelled according to their governing equations, 
and the necessary parameters such as the motors moment of inertia and load 

torque coefficients are precisely identified. Moreover, the TRMS has a set of 
flat cables which connect the power supply to the motors and also send the 
feedback signals to the computer. That the force originates from the flat 

cables has been considered, and all the related effective parameters are 

optimally obtained. 

" Both 1DOF and 2DOF dynamic empirical models based on NNs are 
investigated with various learning approaches. Among the learning 

algorithms, the so-called Levenberg-Marquardt technique is found to be the 

most promising one. The obtained models are validated and compared with 

several convincing tests such as overlapping, PSD and correlation validation 
tests. . 

" Grey-box modelling of the system that merges the advantages of both white- 
and black-box modelling is investigated and applied for further improvement 

of the plant-model. The parameters of the developed analytical model are 
retuned by an evolutionary optimisation method, GAs, to find the optimum 
parameters. The performances of the white-box and grey-box approaches are 
compared to illustrate the model improvement achieved. 

"A stable MPC approach based on a discrete state-space model is applied to 
the nonlinear system. A state-dependent model is used to find the same 
number of linear models as the prediction horizon at each instant. The 

stability of the control system is guaranteed using the terminal equality 
constraints approach. It is noted that the proposed method has been able to 
achieve a very fast and precise response to various reference signals. 

" The proposed state-feedback RHC is extended to an output-feedback MPC. 
To this end, a UKF is utilised to observe the state variables. Moreover, an 
EKF based on a state-dependent state-space model is applied and the results 
achieved in this case are found to be as good as that of the UKF. 
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" On the basis of the analytic nonlinear model, a polytopic model is developed 

and used in designing a robust MPC. The robustness is achieved by the 
Lyapunov criterion. The overall optimisation problem is cast as a quadratic 
optimisation problem involving LMI. 

1.5 Outline of the Thesis 
A brief outline of the thesis is presented below. Chapters 2 to 4 deal with the 

modelling of the system, Chapter 5 presents the stability of the unforced TRMS and 
Chapters 6 to 8 address the MPC paradigms. 

" Chapter 2 presents the analytical model of the TRMS in terms of its vertical 
1DOF, horizontal 1DOF and 2DOF using the Newtonian as well as 
Lagrangian methods. The identification of the TRMS parameters has been 

explained in detail. The model response and the real TRMS response are 
compared with each other to validate the accuracy of the model. For further 

assessment of the model, the PSD of the real system and the developed model 
are compared. 

" Chapter 3 describes the NN-based empirical model of the TRMS in terms of 
its vertical 1DOF, horizontal 1DOF and 2DOF. Multilayer perceptron (MLP) 

networks have been used to model the plant. The NN-based model response 
and the real TRMS response are compared with each other to validate the 
accuracy of the model. A comparative study between analytical and empirical 
models is also presented in this chapter. 

" Chapter 4 discusses the grey-box nonlinear dynamic modelling approach of 
the TRMS. GAs have been used to optimally retune the parameters of the 
plant-model. In order to show the efficacy and validity of the approach, the 
response of the grey-box model has been compared with that of the white-box 
paradigm. 

" Chapter 5 presents the stability analysis of the TRMS. The equilibrium 
points of the nonlinear systems are calculated and the local stability of the 
2DOF system is proven using Lyapunov's linearisation method. The global 
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stability of the 1DOF TRMS is considered using the Lyapunov and invariant 

set theorem. 

" Chapter 6 discusses a stable MPC for nonlinear systems. The theoretical 
background of the proposed nonlinear MPC has been described. An approach 
based on multistep Newton-type MPC has been used to control the TRMS in 

terms of 2DOF dynamics of the system. The stability of the closed-loop 

system is provided using terminal equality constraints. 

" Chapter 7 is the extension of the proposed state-feedback MPC presented in 

Chapter 6 to an output-feedback MPC using a UKF. The UKF is believed to 

show better and more reliable results compared to its counterpart, EKF. In 

this chapter, an EKF is also employed which is based on a state-dependent 
state-space model rather than the Jacobian-based linearisation. 

" Chapter 8 presents the development of a polytopic model and the design of a 

robust model-based predictive control approach. In this chapter, the 

procedure of polytopic modelling is described and the robustness of the 

controller is provided on the basis of polytopic uncertainty. 

" Chapter 9 consists of conclusions, discussion and outline of future work. 
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CHAPTER 2 

Nonlinear White-box Modelling 

In this chapter, a TRMS is analytically modelled in terms of its 1DOF and 2DOF 

dynamics using both the Newtonian and Lagrangian methods. The adequacy of the 

model is discussed by comparing the response of the model and the real TRMS in the 

time and frequency domains. A detailed description of the TRMS is also provided in 

this chapter. 

2.1 Introduction 
Modelling is the fundamental stage of almost any modem control technique. 
Depending on the a -priori knowledge of a plant, it can be modelled using white-box 
or black-box modelling approaches. In some cases, the combination of white- and 
black-box approaches is employed to simultaneously achieve the advantages of both 
techniques; these techniques are well-known as grey-box modelling approaches. 
White-box modelling is a type of plant-model representation in which a detailed 

physical and/or chemical knowledge of the plant is needed. In other words, when full 

physical insight of a plant is available, one can analytically model the plant to 
estimate or predict its behaviour. In most cases, the final product of white-box 
models is a set of ordinary or partial differential equations. In the field of control 
engineering, the ordinary differential equations (ODEs) are usually expressed in a 
standard form of state-space equations regardless of their linear or nonlinear features. 
In the case of mechanical systems, the Newtonian or Lagrangian techniques are 
commonly utilised to find the system's governing equations [3]. Clearly, the models 
based on the Newtonian and Lagrangian approaches should reach the same set of 
equations if the assumptions behind them are similar. However, sometimes the 
assumptions are considered to be different due to the differing complexity of the 
approaches. Although the procedure to develop an analytical plant-model is almost 
systematic, the model parameters identification is a challenging and time-consuming 
process which is the main drawback of white-box modelling techniques. A plant- 
model is usually employed to design and pre-test a control paradigm where the 
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controller cannot be tested directly on the real plant. Also, a plant-model is needed in 

the case of model-based control approaches such as MPC. In this investigation, both 

of the aforementioned applications of modelling are utilised. Model validation tests 

are carried out to assess whether the model represents the plant adequately. In 
dealing with analytical models, both the time and frequency domains validation tests 

need to be employed to check the degree of adequacy of the plant-model. The so- 

called overlapping test is the most commonly used validation test in all types of 

modelling approaches; in this test, the model response is compared with that of the 

real plant in the time domain to visualise the discrepancy between them. The PSD 

test is a well-known test to check the adequacy of the model in the frequency 

domain. In this investigation, both the time and frequency domain tests are used to 

validate the analytical model of the TRMS. 

2.2 The TRMS 
The TRMS is a laboratory set-up designed by Feedback Instrument Ltd [1] and is a 

suitable test platform for assessment and implementation of advanced control 
techniques. The system is connected to a computer through a fast interface to transfer 

control signals to the actuators and to receive the corresponding feedback signals 
from the sensors. Moreover, the real-time workshop toolbox of MATLAB/Simulink 

provides an opportunity for the designer to facilitate the controller design procedure 
using advanced control toolboxes and other useful built-in functions. The system 
possesses two propellers perpendicular to each other, one for vertical movement and 
the other for horizontal motion. However, each one of them significantly affects the 
motion of the other. The propellers are driven by two high speed permanent magnet 
DC motor drives. The input voltage signals to the motors are restricted between -2.5 
and +2.5 Volts. However, the minimum and maximum terminal voltages of the 

motors are specified to be -18 and +18 Volts respectively. The difference between 
the input voltage and the terminal voltage stems from the fact that an input voltage 
signal from the processor, here the computer, is mainly a low-current voltage signal 
that needs to be transferred to a corresponding motor terminal voltage using interface 

circuits and power electronics devices. 

The two propellers are connected to each other using a free beam pivoted on the top 
of the tower of the TRMS. The beam can rotate in both the vertical and horizontal 
planes. In order to make the system stable in steady state positions, a counter weight 
beam, perpendicular to the free beam, is attached to the system and a weight is also 
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attached to the counter weight beam to model a load. It is noted that the position of 

the weight on the counter weight beam can be changed resulting a corresponding 

change in the dynamics of the system. The TRMS, shown in Figures 2.1 and 2.2, 

possesses two shaft encoders to accurately measure the angle of the beam in the 

horizontal and vertical planes. 
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-Tail shield 
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DC motor pivot 
and tacho 
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Main shield 
Main rotor 
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DC-motor 
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TRMS 33-220 

Figure 2.1 The TRMS 
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Figure 2.2 The TRMS 

In addition, a tacho-generator is attached to the shaft of each motor for sensing the 

motor rotational velocity. Basically, the TRMS is a system with 2DOF that can also 
be used as two I DOF systems if one of the attached screws is locked to physically 
restrict the motion in either the horizontal or the vertical plane. 
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The angle of attack of the blades in a typical helicopter is used to control the 

aerodynamic force; however, in the case of the TRMS there is no change in the angle 
of attack of the blades and the aerodynamic force is controlled by varying the 

rotational velocity of the motors. Therefore, the control input signals are the supply 

voltages of the DC motors. A change in the magnitude of the voltage results in a 

corresponding change of the rotational velocity of the propeller, which in turn forces 

the beam to move to a new position, i. e. the pitch and yaw angles change. Rotation of 
the propeller produces an angular momentum which (according to the law of 

conservation of angular momentum) must be compensated for by the remaining body 

of the TRMS; subsequently, it causes the interaction between two planes of motion. 
Moreover, the interaction directly influences the velocity of the beam in both the 
horizontal and vertical planes. The coupling effect between the two channels can be 

represented as shown in Figure 2.3. In Figure 2.3 the input signals, U, and Uh , 
represent the voltage inputs to the main and tail motors respectively. The outputs, av 

and ah , refer to the pitch and yaw angles respectively. Note that a similar coupling 

also exists in helicopters and almost any other MIMO system. The coupling between 

various channels or planes of motion makes the modelling and control problems 

challenging for such systems. In certain aspects, the behaviour of a TRMS resembles 
that of a helicopter. Nonetheless, a helicopter is different from a TRMS with respect 
to a number of fundamental aspects. Table 2.1 lists the main discrepancies between a 
helicopter and a TRMS. 

Input Nonlinear Output 
voltages models angles 

Uv 
Vertical 
Channel a, 

Horizontal k--4 
Cha nnel ah 

Uh 

Figure 2.3 Coupled MIMO model of the TRMS 
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Table 2.1 The main differences between a helicc 

TRMS 

Pivot point is located at: 
Midway between the two 
rotors 

Lift generation or vertical Speed control of the main 
control via: rotor 

pter and a TRMS 

Helicopter 

The main rotor head 

Collective pitch 
control* 

Yaw is controlled by Tail rotor speed 
Pitch angle of all the 

changing the: blades of the tail rotor 

Cyclical control": No 
Yes 
For directional control 

Ability to fly: No Yes 

* Pitch angles of all blades of the main rotor are changed but at constant rotor speed. 

** Cyclical control changes the alignment of the main rotor blades in order to change 

the direction of a helicopter. 

2.3 The Newtonian-based Modelling of the TRMS 

Modem methods of design and adaptation of real time controllers require high 

quality mathematical plant-models. For high order nonlinear cross-coupled systems, 

classical modelling methods based on Lagrange's equations are often employed; 
however, it is also possible to use a simpler approach, based on Newton's equations 

of motion. In this study, the TRMS, as shown in Figure 2.2, is modelled using both 

the Newtonian and Lagrangian approaches. The Newtonian-based model of the 

system is presented in this section. In order to model the TRMS, the system is 

divided into several subsystems to form a modular system. At the first stage of 

modelling, the interface circuits between the computer and the TRMS have been 

modelled based on measured data. The permanent magnet DC motors used to propel 
the system have been modelled at the second stage. Then, the relationship between 

the force applied to the beam and the rotational velocity of each motor has been 

obtained. Thereafter, the dynamic equations that associate the aerodynamic force of 
the propellers to the position of the beam (pitch and yaw angles) have been extracted. 
Finally, the parameters of the 1DOF vertical, 1DOF horizontal, and 2DOF systems 
have been identified respectively. 

2.3.1 Modelling of the Vertical Channel Interface Circuit 

As mentioned before, the input voltage signal of the main motor, Ui,, from the 
computer differs from the motor terminal voltage, V, and the relationship between 
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these two sets of values is slightly nonlinear. The low-current signal from the 

computer is unable to excite the electric motor and therefore, the signal has to be 

converted to a voltage to supply to the motor terminals. The model of the interface 

circuit is obtained by gradually changing the input signal in the MATLAB/Simulink 

environment from -2.5 to 2.5 with a step size of 0.1, and simultaneously measuring 
the relative motor terminal voltage values. Figure 2.4 shows the relationship between 

the input and the output of the vertical channel interface circuit. As it is evident from 
Figure 2.4, the relationship is not linear; however, it can linearly be approximated by 
V, = k2 Uv for simplicity, whenever necessary. Where, k2 is the approximate gain 
which models the vertical interface circuit and is obtained using the least squared 
error approach. The optimum value of k2 is found to be 8.5. 

It is noted that the interface circuit consists of several parts such as computer ports, a 
data acquisition board, electronic and power electronic devices/circuits, and filters 

which connect the computer to the electric motors. 

U( V) 

Figure 2.4 The graphical relationship between u, and vv 

2.3.2 Modelling of the Horizontal Channel Interface Circuit 
Like the main motor, the input voltage signals of the tail motor, Uh 

, 
in the computer 

are converted to the tail motor terminal voltages, Vh, using the interface circuit. 
Figure 2.5 shows their relationship. The corresponding data is presented in Table 
A1.2 in Appendix 1. A linear approximation can be obtained as Vh = kl Uh 9 where) 
the optimum value of k, is found to be 6.5. 
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Figure 2.5 The graphical relationship between U. and V. 

Note that the motor terminal voltages for the same input signal from the computer 

may differ depending on warm or cold conditions of the system. 

2.3.3 Modelling of the Main Motor 

As mentioned previously, two permanent magnet DC motors of the Maxon Company 

drive the main and tail propellers. The motors are identical with different mechanical 
loads; the discrepancy stems from the fact that the size and shape of the vertical and 
horizontal propellers are significantly different. Based on the principle theory of 

electromechanical systems, an electric motor needs two sets of windings to be able to 

work properly; one is so-called field winding, producing a magnetic field, and the 

other is entitled armature winding, which carries the armature current. Basically, the 

armature winding of a DC motor is located on the non-stationary part, i. e. the rotor, 
and its field winding is placed on the stationary part, the stator. In the case of a 
permanent magnet DC motor, a set of permanent magnets substitutes the field 

winding for generating a constant magnetic flux. The electric motors with especial 
applications to control drives are usually designed to have long length rotors with 
small cross secfional area, i. e. small radius, to be able to react very fast (accelerate 

rapidly) in response to reference signals. This allows the motors to have a higher 
torque to moment of inertia ratio. 

According to the circuit diagram of the main motor shown in Figure 2.6, equations 
(2.1) to (2.5) can be written. According to Kirchhoff's voltage law, the terminal 
voltage of the motor is equal to the algebraic sum of the voltage drop due to the 
armature resistance, voltage over the armature inductance and the electromotive 
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force. In general, electromotive force of an electric motor is proportional to the 

rotational velocity of the rotor multiplied by the magnetic field. Since in a permanent 

magnet motor the magnetic field is constant, therefore, its electromotive force can be 

changed only by changing the rotational velocity of its rotor. 

La, Rav 

+ 'a' 

uv 
Vv 

ýE 

0v 

Figure 2.6 The circuit diagram of the main DC motor with its propeller 

Newton's second law is used to derive equation (2.3), i. e. the sum of exerted torques 

to a rotational body is proportionate to the product of its moment of inertia and its 

rotational acceleration. In this study, three applied torques are considered: 

electromagnetic torque, load torque, and viscous friction torque. Electromagnetic 

torque of a permanent magnet electric motor depends directly on its armature current, 

and the equation of a load torque can vary depending on the type of the load. In the 

case of propeller loads, the load torque expression can be approximated by a 

parabolic function and considering the direction of rotation. All the parameters are 
listed in Table A1.3 of Appendix 1 and the file containing the parameters can be 
found in Appendix 5. 

Vv = E,, 
v + R,,, i,, 

v + Luv 
di,,, 

(2.1) 
dt 

Euv = kuvýPvwv (2.2) 

dwv 
Mey = ML 

v+ 
Jmr 

dt 
+ Bmr wv (2.3) 

Mev = kav(Pviav (2.4) 

k, 
v,, wv Iwv I 

MLv = 
if wv >0 

5) (2 klvnwv Jwv I if wv <0 . 

where, 

Vv Main DC motor terminal voltage (V) 

Eav : Electromotive force of the main motor (V) 
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Ra, : Armature resistance of the main motor (0) 

La, : Armature inductance of the main motor (H) 

ia, : Armature current of the main motor (A) 

k1,: Constant (Nm/AWb) 

co : Magnetic flux of the main motor (Wb) 

cwv : Rotational velocity of the main rotor (rad/s) 

Mev : Electromagnetic torque of the main motor (Nm) 

MLv : Load torque of the main motor (Nm) 

Jmr : Moment of inertia of the main DC motor (kg m2) 

Bm, : Viscous friction coefficient of the main DC motor (kg m2/s) 

k, 
vp, 

kn,,, : Constants (Nms2/rad2). 

The simulation of the main DC motor is illustrated in Figure 2.7. It is clear that the 

model is a second-order nonlinear system. The motor model is nonlinear due to the 

nonlinearities of the load torque. In the case of a linear load torque, the model has 
two time constants, one is electrical and the other is mechanical. Normally, the 
mechanical time constant is significantly greater than the electrical one and therefore, 
the mechanical one is typically considered to be the dominant time constant of the 
system. 

MLv vs Wv 

Figure 2.7 Simulation of the main DC motor 
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2.3.4 Modelling of the Tail Motor 

From the circuit diagram of the tail motor, as shown in Figure 2.8, equations (2.6) to 

(2.10) can be written. 

Lah Rah 

+ lah I+ 

Vh !v 

ýah)_p 

T 

Figure 2.8 The circuit diagram of the tail DC motor with its propeller 

From a physical point of view, once the permanent magnet DC motor is supplied 

with a voltage source, the armature winding initially draws high amount of current 
because electromotive force is primarily zero. Subsequently, in the presence of a 

magnetic field, the armature winding on the rotor is forced to rotate due to the 

generated electromagnetic torque and therefore, electromotive force increases 

gradually. Depending on the mechanical load torque and friction torque, the motor 

may accelerate and after a while rest at a steady state level in which the acceleration 
becomes zero. As a consequence, the electromagnetic torque just equals the sum of 
the load torque and the friction torque. 

Vh = Eah + Rahlah + Lah 
diah 

dt (2.6) 

Euh = kah(Ph0 h (2.7) 

_ 
Meh MLh + 

`Itr 
dwh 

dt 
+ Btrwh (2.8) 

Meh = kah(Ph'ah (2.9) 

M, 
h - 

kthe »h wh if »)h ?02.10 

krhfl 
hI'h 

if c0h <0 

() 

where, 

Vh : Tail DC motor terminal voltage (V) 

EQh : Electromotive force of the tail motor (V) 

Rah : Armature resistance of the tail motor (S2) 
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Lah : Armature inductance of the tail motor (H) 

fah Armature current of the tail motor (A) 

k1 : Constant (Nm/AWb) 

V,: Magnetic flux of the tail motor (Wb) 

a),, Rotational velocity of the tail rotor (rad/s) 

Meh : Electromagnetic torque of the tail motor (Nm) 

MLh : Load torque of the tail motor (Nm) 

J� : Moment of inertia of the tail DC motor (kg m2) 

B1, : Viscous friction coefficient of the tail DC motor (kg m2/s) 

k, hp, 
klh� : Constants (Nms2/rad). 

The simulation of the tail DC motor is illustrated in Figure 2.9. Analogous to the 

main motor, the model of the tail motor is a nonlinear, second-order system. 

Figure 2.9 Simulation of the tail DC motor 

2.3.5 Modelling of the Force due to Propellers Rotation 

After modelling the DC motors, the rotational velocities of the two propellers are 
converted to the applied horizontal and vertical forces to the beam. To this end, the 

rotational speed and the corresponding applied force. to the beam have been 

measured at several operating points and a suitable curve has been fitted on the 
gathered data. The data in the positive and negative rotational velocity regions are 
asymmetric, and therefore, two separate curves are fitted on two regions for more 
accuracy. Figures 2.10 and 2.11 depict the simulation of the vertical and horizontal 
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forces respectively. A visual comparison between the measured data and the fitted 

curve can be found in Figure A1.1 of Appendix 1. 

knp 0h Iah I if '°h ?0 
Fh (wh) = kjl. cohIcohI 

(2.11) 
if w� <0 

kfpwvIwI if co, _0 F(cov)_ 
k fv� wv Iwv I (2.12) 

if co, <0 

where, 

Fh : Nonlinear function of aerodynamic force due to the tail rotor (N) 

Fv : Nonlinear function of aerodynamic force due to the main rotor (N) 

kjhp , kj,,,, 9k fip ,k fi, � : Constants (Ns2/rad2). 

Figure 2.11 Simulation of the horizontal force 
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Figure 2.10 Simulation of the vertical force 

Negative Horizontal force 



2.3.6 Modelling of the 1 DOF Vertical TRMS 

To model the dynamical equations of the system, the TRMS user manual [1] has 

been used to some extent to improve the crude model provided by the manufacturer. 

2.3.6.1 Torques due to the gravity force 

Assume the TRMS is observed from its front view as shown in Figure 2.12, 

therefore, the applied gravity forces to the TRMS can be divided into six parts as in 

Figure 2.12. The first term, g(m� + m, ), is related to the mass of the tail rotor and its 

shield. The gravity force caused by the mass of the beam in the tail and main sides 
forms the second, m, g, and third, m�, g, components. The mass of the main shield 

and rotor exerts a gravitational force which is represented by the fourth part, 

g(m, �, + m, �, 
) . 

The fifth part, m, g, represents the gravity force due to the counter 

weight mass and finally the last part, mhg , 
is due to the mass of the counter weight 

beam. 

"---------------------------------- ------------------------------- 
a, 0 Vertical plane 

Tail rotor 

g(m, r mss F (ý ). ; 
mIg 

F, 
v 

lvh Main rotor , 

mmg jh -ich gmh 
g (m"" + mmj 

g cb 

TRMS 33-220 

Figure 2.12 Gravity forces and propulsive force in the vertical plane 

Therefore, the torque corresponding to the gravity forces is as follows, 

Mvº =g 2` +m, r +m,. s 
lI -2 

+mmr +mms lm cosa, 
2 

Ib +m,. 
bl, b 

sinav 

(2.13) 
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and can be expressed as, 

M1= g{(A-B)cosa, -Csinav} (2.14) 

where, 

A=(2 +mr. +mrý)jr 

(!! J!! 
-+m B= 

mr 
+mms)lm 

C=(2 Ib+mCb1") 

and, 

M,,: Torque corresponding to the gravity forces in the vertical plane (Nm) 

g: Gravitational acceleration (m/s2) 

m1 : Mass of the tail part of the beam (kg) 

m,, : Mass of the tail DC motor (kg) 

m,, : Mass of the tail shield (kg) 

m, � : Mass of the main part of the beam (kg) 

mm� : Mass of the main DC motor (kg) 

mms : Mass of the main shield (kg) 

mb : Mass of the counter-weight beam (kg) 

mcb : Mass of the counter-weight (kg) 

It : Length of the tail part of the beam (m) 

1m : Length of the main part of the beam (m) 

lb : Length of the counter-weight beam (m) 

1cb : Distance between the counter-weight and the joint (m) 

a.: Vertical position (pitch angle) of the TRMS beam (rad). 

2.3.6.2 Torque due to the propulsive force of the main rotor 

In order to consider the propulsive forces applied to the beam in the vertical plane, it 
is needed to refer to Figure 2.12. The moment of the propulsive force produced by 
the main rotor is calculated by the product of the propeller force of the main motor 
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and the distance between the main motor and the pivot point. Therefore, it can be 

written as, 

(2.15) 
Mv2 

-ImFv(cov) 

where Mv2 is the torque corresponding to the propulsive forces in the vertical plane 
(Nm). 

2.3.6.3 Friction torque 

While the free beam and the main rotor are moving in the vertical plane, the ambient 
air pressure causes an opposite force which prevents the body from further possible 
movement. This preventing force is deemed as a friction force. It is assumed that the 
friction force consists of viscous, Coulomb and static types, so the friction torque in 
the vertical plane can be expressed as, 

ksfv if R= 0+ 
MY 3= kv fv 52,, + kcv sign(R) + -kfv if 52,, = 0- (2.16) 

0 otherwise 

where the first term corresponds to the viscous friction torque, the second part 
represents the Coulomb friction torque and the last term denotes the static friction 
torque, and 

MO: Friction torque in the vertical plane (Nm) 

fIv : Angular velocity (pitch velocity) of the TRMS beam (rad/s) 

kvf, : Coefficient of the viscous friction torque in the vertical plane (Nms/rad) 

k, f, : Constant of the Coulomb friction torque in the vertical plane (Nm) 

ksfy : Constant of the static friction torque in the vertical plane (Nm). 

This form of friction torque representation, equation (2.16), suffers from a 
discontinuity at S2v =0 (see Figure 2.13a) and may render some problems during the 
controller design. Therefore, the friction shown in Figure 2.13b is used for 
modelling; since, this profile covers viscous, Coulomb and static frictions and the 
discontinuity has been removed using an acceptable approximation. 

Mv3 =M frlc, v (2.17) 
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Mfr, 
C, v 

n', 

) 

Figure 2.13 Friction torque profile of the vertical channel 

2.3.6.4 Total torques in the vertical plane 

SAY 

) 

According to Figure 2.12, one can determine and augment the components of the 
moment of inertia related to the vertical plane as, 

222 

Jv=m,,,, 1m+m, 
� 
3 

+mcblb+mb 
3 

+mir 12 +mý3 +( ý'r�+m,,,, lm)+(m, 
sr�+m, sl, 

) 

(2.18) 

In the above equation, the tail shield is considered like a hoop perpendicular to the 
horizontal plane. The same process can be applied to the main shield, but parallel 
with the horizontal plane. The tail motor and its propellers are deemed as a particle 
of mass mir , located at 1, far from the pivot point. The main motor accompanying 
by its propellers can be considered in the same manner. The counter-weight is 
assumed as a particle of mass mcb , located at the far end of the counter weight beam. 

From Newton's second law of motion, ýMv1 _, ý, 
dZav 
dt , the following equations 

can be written. 

dn' 
-1. 

F, (a, )-MI,,, 
y +g[(AB)cosav -Csina, ý 

Jv (2.19) dt 

da" 
dt 

where, 

rms : Radius of the main shield (m) 

rs : Radius of the tail shield (m) 

1v : Moment of inertia about the horizontal axis (kg m2). 

Mfr; 
c, v 

(2.20) 
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The complete block diagram of the vertical 1DOF TRMS model is shown in Figure 
2.14. In this figure, the first block from left is a look-up table which models the 
interface circuit. The main motor model is located inside the corresponding 
subsystem, the second block from left. The third block is the subsystem that receives 
the rotational velocity of the main motor and returns its propulsive force. The inside 

of these two mentioned subsystems have previously been depicted in Figures 2.7 and 
2.10. Figure 2.15 shows the inside of the 'nonlinear equations' block according to 

equations (2.19) and (2.20). It is clear that the 1DOF vertical model of the TRMS is a 
forth-order system. The control voltage Uv is the input signal to the main channel 

which is converted to the terminal voltage of the main motor, V, . The output of the 

model is the pitch angle and four state variables are the armature current of the main 
motor, the rotational velocity of the main propellers, the angular velocity of the 
beam, and the pitch angle. Note that by changing the initial values of the integrators, 

the response of the system with non-zero initial state variables can be modelled. 

iav 

Uv 

Vv 

Wv Wv Fv 
Interface I 

Circuit 
Main Motor 

iav 

Wv 

OMEGAV 
O 

OMEGAv 

Fv 

av H4 

Aerodynamic av 
Force 

Nonlinear 
Equations 

Figure 2.14 The complete block diagram of the vertical 1 DOF TRMS model 

Figure 2.15 The inside of the'nonlinear equations' block 
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2.3.7 Modelling of the 1 DOF Horizontal TRMS 

Assume that the main rotor is kept unexcited and just affects the system like a simple 
load. The only input to the system is the tail voltage signal and the output is the yaw 

angle. In this case, the TRMS is prevented from any vertical movement by locking 

the screw provided. 

2.3.7.1 Torque due to the propulsive force of the tail rotor 

Figure 2.16 shows the propulsive forces applied to the beam in the horizontal plane. 
According to this figure, the moment of the propulsive force produced by the tail 

rotor is written as, 

Mhº =1, Fh (wn) cos a, (2.21) 

Although in the case of the I DOF horizontal model the pitch angle is constant, the 

propulsive torque has been defined as a function of both the pitch angle and the tail 

rotor rotational velocity because this equation is intended to be used in the case of the 

2DOF dynamics. 

--------------------------------------------------------------------- 
' Tail rotor Horizontal plane ' 

Main rotor 
Fh(O)h -- ----- 

Horizontal axis 

--------------------------------------------------------------------- 

Figure 2.16 Propulsive force in the horizontal plane 

2.3.7.2 Friction torque 

Similar to the vertical channel, it is assumed that the friction force of the system in 
the horizontal plane consists of the viscous, Coulomb and static types. The moment 
of friction due to the angular velocity of the beam in the horizontal plane is 

represented as, 
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ksch if f1h = 0+ 
Mh2= kvj,, Qh +kcjhsign(c2 )+ -ksj,, if Oh = 0- (2.22) 

0 otherwise 

where, 

Mh2 : Friction torque in the horizontal plane (Nm) 

Oh Angular velocity (azimuth velocity) of the TRMS beam (rad/s) 

kvj, Coefficient of the viscous friction torque in the horizontal plane (Nms/rad) 

kcjh Constant of the Coulomb friction torque in the horizontal plane (Nm) 

ksch : Constant of the static friction torque in the horizontal plane (Nm). 

The improved version of the friction torque profile can be seen in Figure 2.17 where 
Mh2 Mfric, 

h 

M 
jnc, h 

Qh 

Figure 2.17 Friction torque profile of the horizontal channel 

2.3.7.3 Flat cable torque 

The TRMS possesses a set of flat cables that connect the power supply to the motors 
and also transmit the signals from measurement devices into the computer. For more 
accuracy of the dynamic system, the torque generated by the flat cables is considered 
like the torque of a spring as, 

kC"P a" if a" >_ 0 
Mh3 

kt,,, a" if ah <0 
(2.23) 
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where ah is the yaw angle of the beam (rad), kChP and kCh� are constants (Nm/rad) 

and Mh3 is the flat cable torque (Nm). It is of great importance to consider this 

torque despite of its small amplitude because it is the only resistive force in the 
horizontal channel which is independent of the beam speed. 

2.3.7.4 Total torques in the horizontal plane 

Considering Figure 2.16, the components of the moment of inertia about the vertical 

axis are determined as in equation (2.24). More details on moment of inertia can be 

found in Appendix 2. 

Jh = Dcos2 ay +Esin2 ay +F (2.24) 

where, 

D= (3 i- mmr + mms )1 m+(, + mfr + mis ) 1, 

E= 3 lb+mcb b 

F= mms rms+-i ts 

Again, based on Newton's second law of motion, Mhi = J,, 
Via" 

, the following 
fl 

equations can be written. 

dc2h 
_ 

1, Fh (wh) cos av-M fric, h - Mh3 
(2.25) 

dt D cos' a, +E sine av +F 

da,, 
_ndt " 

where, 

J,, : Moment of inertia about the vertical axis (kg m2). 

(2.26) 

The complete block diagram of the horizontal 1DOF TRMS model is shown in 
Figure 2.18. Figure 2.19 shows the inside of the nonlinear equations block based on 
equations (2.24) and (2.25). The control voltage Uh is converted to the input of the 
tail motor, V, , which drives the rotor. 
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Nonlinear 
Equations 

Figure 2.18 The complete block diagram of the horizontal 1DOF TRMS model 

Figure 2.19 The inside of the 'nonlinear equations' block 

2.3.8 Modelling of the 2DOF TRMS 

All the equations related to gravity, propulsive and friction forces in terms of the 
2DOF dynamics of the system are the same as that of the 1 DOF dynamics. In this 

section, the torques produced by the cross-coupling of both channels are presented. 

2.3.8.1 Centrifugal torque 

Due to the rotation of the beam in the horizontal plane, a centrifugal force affects the 
beam angle in the vertical plane. The moment of the centrifugal force can be 

expressed as equation (2.27). More explanation about this equation can be found in 
Appendix 2. 

2 Mv4 =-ý2 2ý -FlYlrr i-lYlra lt + 2-+mmr +m 
ms Ilm -( 2b 12 

b +1%1cy1 6 sin ay cos a, 

(2.27) 
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This can be rewritten as, 

SMv4 = -h Hsina, cos av (2.28) 

where, Mv4 is the centrifugal torque in the vertical plane (Nm) and, 

H =A It +B 1, 
� -2 1b -mcblý 

2.3.8.2 Gyroscopic torque 

Let us consider the rotating propeller of the main rotor as a spinning disc. Whilst the 

mentioned disc is rotating in the horizontal plane, and since the angular velocity of 
the beam in the horizontal plane is considerably lower than the main rotor rotational 
velocity, the gyroscopic effect can be expressed as the following simplified equation 
[96], 

Mvs = kg Fv (wv )nh cos av (2.29) 

where, 

kg : Gyroscopic constant (ms/rad) 

Mv5 : Gyroscopic torque (Nm). 

2.3.8.3 The effect of the tail motor rotation on the vertical angle 

This term represents the effect of the tail propeller speed on the vertical plane 
movement of the beam, and can be modelled as equation (2.30). It implies that a 
constant tail motor speed produces no force on the vertical plane, and only if the tail 
motor accelerates, the acceleration produces a force on the vertical plane. This effect 
has been observed experimentally. 

S2vh = klwh 

where, 

(2.30) 

SZRh : The effect of the tail propeller speed on the vertical plane movement of the 
beam (rad/s) 

kt : Constant. 
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2.3.8.4 Total torques in the vertical plane 

From Figure 2.12, the components of the moment of inertia about the horizontal axis 
have been obtained as in equation (2.18). 

According to Newton's second law of motion, it is clear that, MW = Jv 
dda" 

, and 

the following equations can be written, 

dSv F, (t)v)-Mf,; 
C, v +g[(A-B)cosav -Csinaj-0.5Q Hsin2av 

dt Jv. 

+kgFv(wv)nh 
Cosa, 

(2.31) 

Jv 

S2v = Sv +k (2.32) Jv 

day 
= 0v (2.33) 

dt 

where, 

Sv : Angular velocity of the TRMS beam in the vertical plane without the effect of 
the horizontal channel (rad/s). 

2.3.8.5 The effect of the main motor rotation on the horizontal angle 

This term denotes the effect of the main propeller speed on the horizontal plane 
movement of the beam, and can approximately be modelled as, 

nhv, = limco,, cos a,, 

where, 

(2.34) 

S2tiv : The effect of the main propeller speed on the horizontal plane movement of the 
beam (rad/s) 

km : Constant. 

2.3.8.6 Total torques in the horizontal plane 

Considering Figure 2.16, the components of the moment of inertia about the vertical 
axis can be expressed as in equation (2.24). 
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Again, from Newton's second law of motion, M"; = J" 
'a" 

, the following 
i_1 

equations can be written, 

dSh 
=l 

F"(w")cosa,, -Mfic, " -Mcable(a") 
dt Dcos2 a, +Esin2 a, +F 

(2.35) 

S2_ Sh co, cos a, (2) ""+D cost av +E sine av +F . 36 

da nh =0 h (2.37) 
dt 

where, 

Sh : Angular velocity of the TRMS beam in the horizontal plane without the effect 
of the vertical channel (rad/s). 

The complete block diagram of the 2DOF TRMS model is shown in Figure 2.20. 

Tail Tail Motor 
iah 

Interface Z 
Circuit iah Fh=f(Wh) Wh 

1ý vh 
Uh Wh Wh Fh Ph Sh 3 

Sh 

Wh ah 4 

wv av 5 

av 

wv wv Fv Fv Sv 6 

2 Vv Sv 
Four Degree 

Uv Fv=f(Wv) Nonlinear Equations Main 
Interface 

Main Motor circuit Wv 

8 
iav 

Figure 2.20 The complete block diagram of dynamic simulation of the TRMS 

Figure 2.21 shows the inside of the 'four-degree nonlinear equations' block according 
to equations (2.31) to (2.33) and also (2.35) to (2.37). The control voltages U,, and 
Uv are input signals that are proportional to the terminal voltages of the DC motors. 
Clearly, the overall model is a two-input, two-output system with 8 state variables. 
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Figure 2.21 Inside the'four-degree nonlinear equations' block 

2.4 Results of the Newtonian-based Modelling 
The position of the minimum energy of the TRMS (equilibrium point) is assumed to 
be the reference point of both the horizontal (yaw) and vertical (pitch) angles. At the 
equilibrium point, the angle between the tower and the counterweight beam in the 
vertical plane is -0.6048 radians (-34.67 degrees) therefore, this discrepancy should 
be considered. According to equation (2.31) the angle between the tower and the 
counterweight beam at the equilibrium point can be calculated as, 

(A -B)cos(a 0)-C sin(a 0) =0 

av0 =tan-'((A -B)IC) (2.38) 

Note that this angle may be varied by changing the position of the counter-weight 
along the counter-weight beam. Figures 2.22 and 2.23 show the sign of directions 
and the zero position of the pitch and yaw angles respectively. Figure 2.22 is the 
front view of the TRMS and Figure 2.23 shows its top view. 
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av = cc, o 
a, ' =0 

Ta 

.ý 

Figure 2.22 The front view of the TRMS and the pitch angle reference point 

Main rotor 

I- 

------ý---- ah =0 

Figure 2.23 The Top view of the TRMS and the yaw angle reference point 

The initial values of the two shaft encoders are set to the initial positions of the beam. 

For instance, if the initial position of the vertical angle is 30" 
, the zero of the vertical 

shaft encoder is adapted on this angle. It is also clear from the results that the 

response of the real TRMS always starts from zero for both the vertical and 
horizontal angles. Consequently, to obtain a consistent model of the real TRMS, one 

needs to substitute a, in all equations by a,, = a�' + av 0. 

Therefore, the outputs of the model will be a, ' and ah instead of a, and ah . 
Additionally, the yaw and pitch angles are mechanically restricted between their 
corresponding upper and lower limits. The minimum and maximum angles that the 
beam can reach are listed in Table 2.2 for both the channels. 
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Table 2.2 The constraints of the yaw and pitch angles 

Min (rad) Max (rad) 

Yaw angle (ah) -4.2 +1.5 

Pitch angle (a, ) -1.05 +1.05 

Pitch angle (a�) -0.45 +1.65 

2.4.1 Parameter Identification 

The TRMS model has a number of parameters that need to be identified during the 

modelling process. These parameters are classified into 4 categories: motor 

parameters, vertical dynamics parameters, horizontal dynamics parameters and the 

parameters related to the interaction between the two channels. 

The first phase of identification that needs to be carried out is associated with the 

parameters of two permanent magnet DC motors. Some of these parameters have 

been provided by the manufacturing company, the Maxon, such as: the armature 

resistance (Ra ), the armature inductance (La ), and the torque constant (k0cp) of the 

permanent magnet. However, other parameters like the moments of inertia of the 

main and tail motors with their propelling loads (J, 
�,, J�), the viscous friction 

coefficients of the motors rotation (Bmr , B,, ), and the coefficients of the motors load 

torque (kNp, kt,,,, k hp, kih�), that are different in negative and positive rotational 
velocity ranges due to the asymmetrical propellers need to be identified. It is noted 
that the rotational velocity of the motors can be measured using two tachb-generators 

attached to the shafts of the motors. The existence of the tacho-generators facilitates 

the motors parameters identification process. To this end, a step input voltage was 
applied to the main motor terminals and subsequently the rotational velocity of the 

motor started to increase and became constant after a while. It is clear from equations 
(2.1) to (2.5) that the moment of inertia (J.,, ) affects only the transient response and 
other parameters (B,,,, ktp and kt, �) have effect on both transient and steady state 
responses. First, a positive step voltage has been applied to the main motor and 
according to the steady state rotational velocity of the motor, two parameters, B, 

�, 
and khp, have been identified. Note that the coefficient kt, p has a dominant effect at 
high speed range and B. 

� shows more influence at low speed region. It stems from 
the fact that B, �, 

is the coefficient of the motor speed and ktp is the coefficient of the 
motor speed squared. The same procedure was followed for the negative region to 
obtain kW,,. As pointed out earlier, the moment of inertia (Jmr) influences the transient 
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response and it should definitely be greater than the moment of inertia of the motor 

alone, supplied by the manufacture. Therefore, Jm, can be defined by comparing the 

rise time of the real and model rotational velocities because, it is proportional to the 

rise time. The parameters of the tail motor have been achieved in the same manner. 
Note that it is not straightforward to theoretically calculate the moment of inertia 

related to the propeller and therefore it should be experimentally identified. 

The next step is to find the parameters that relate the rotational velocity of the motors 

and the aerodynamic forces, according to equations (2.11) and (2.12), i. e. kf p, kf,,,, 

kf p, kj,,,. For instance, in order to identify the coefficient of the aerodynamic force 

due to the main motor positive rotation, kf p, one can apply a positive voltage to the 

motor, and measure the resultant rotational velocity and also the resultant force 

applied to the beam (exactly at the point that the motor is located) in the vertical 

plane using a force sensor. However, in the case of the TRMS this force is low and 

an accurate and sensitive low range force sensor is required. It is recommended that 

the measurement is carried out with several rotational velocities for more accuracy as 
it has been done in this investigation. The same procedure has been adopted to 

measure other similar parameters, i. e. kf,,, kjhp, key,,,. 

The remaining parameters which required to be identified to complete the 1DOF 
horizontal model are the coefficients of the flat cable model (kChp, kCh�), and the 
friction parameters. As mentioned previously, the flat cable is modelled like a spring. 
To identify these parameters, one can manually change the position of the beam in 

the horizontal plane while the TRMS is unexcited, and measure the applied torque 
due to the flat cable (applied force multiply by the distance between the measurement 
point and the pivot point) and the corresponding angle of the beam. The coefficient 
can be calculated as the measured torque divided by the measured angle of the beam. 
This method is used for the negative angle region; however, again it is suggested to 

repeat the measurement for several positions of the beam and fit a linear or even 
nonlinear curve on the measured data. The measured values are listed in Table Al. 6 

of Appendix 1. To validate the flat cable coefficients, one can manually displace the 
TRMS beam to an arbitrary initial angle and release it without any external force, the 
beam will oscillate and eventually stop along the equilibrium point, i. e. the beam 

comes to rest at a position of the minimum energy. By comparing the results of the 
real TRMS and the plant-model, the accuracy of the coefficients can be verified and 
even improved. 
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In order to find the friction parameters, it is primitively assumed that the only 
effective friction on the system is viscous friction, which is proportional to the beam 

velocity. Increasing the viscous friction coefficient causes the overshoot of the beam 

angle to decrease. Comparing the model and the real responses, the parameters can 
be estimated. Then, the constant of Coulomb friction is obtained by further 

consideration of the model response. 

Note that the flat cables have no considerable effect on the 1DOF vertical model. The 

friction parameters of the 1DOF vertical model are identified using the same method 

as used in the case of the horizontal model. 

The parameters related to the interaction between the two channels (k,, km) and the 

gyroscopic constant, (kg) are the last parameters need to be obtained. For 
identification the parameter associated with the effect of the tail motor rotation on the 

vertical angle (k, ), only the tail motor is excited and because the main motor is left 

unexcited, the movement of the beam in the vertical plane is solely due to the tail 

motor rotation. Comparing the simulation and the real TRMS responses can help to 
find the parameter. It is clear that the gyroscopic force has no effect on the system in 

this situation as the propulsive force of the main motor is zero. The same technique is 

used for the identification of km . The gyroscopic constant is obtained by exciting 
both motors and changing the parameter to make the model response as close as 
possible to the real response. 

2.4.2 Results of the Vertical 1DOF TRMS Model 

The response of the developed vertical 1DOF model is presented in Figures 2.24 to 
2.32. In order to validate the models, they have been assessed with various input 

signals. The results here have been selected in order to illustrate the performance of 
the models in various operating regions without repeating the results with similar 
characteristics. The PSD test is used for further validation. The PSD can be 

considered to be an estimation of the Fourier transform technique. The overlapping 
test is carried out to validate the model performance in the time domain and the PSD 
is utilised to show the performance of the model in the frequency domain. The 
Welch's method has been employed to find the PSD of the signals. The 
corresponding function is available in MATLAB. 

Figure 2.24 shows the overlapping and PSD tests of the 1DOF vertical model where 
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the input signal is a sine wave with a frequency of 0.02 Hz and an amplitude of 1.5 

V. It is clear from the results that the model responses closely followed the real 
TRMS responses in the case of both the overlapping and PSD tests. Note that due to 

the system nonlinearity, the model has been evaluated using several input signals 

with various frequencies and amplitudes. Changing the frequency, amplitude and 

even the shape of the input signals shows that the model response intimately matches 

the real system response and therefore, the model adequately represents the TRMS in 

terms of its I DOF vertical dynamics. It is clear from the results that the system is 

nonlinear because with the variation of the frequency and/or the amplitude of the 

input signals, the shape of the output response completely changes (compare Figures 

2.29 and 2.31). Also, the nonlinearity of the system is evident from Figure 2.29 in 

which the positive and negative parts of the pitch angle response are different. 

The model has been tested in the range of frequencies less than 1 Hz because for 

input signals with frequencies greater than 1 Hz, the beam has no considerable 

movement. It is because the dominant time constant of the motor is considerably 

greater than I second and if the polarity of the input signal changes in less than I 

second (e. g. 0.5 seconds or less) the motor cannot rotate in any direction and only 

vibrates in its initial position. The PSD tests with respect to various input signals 

reveals that there are at least two dominant peaks in each figure, one is related to the 
frequency of the excitation signal and the other is the dominant natural frequency of 
the system. Therefore, the dominant natural frequency of the vertical channel occurs 

at about 0.4 Hz. 
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2.4.3 Results of the Horizontal 1DOF TRMS Model 

The responses of the developed horizontal IDOF model are presented in Figures 2.33 

to 2.41. Again, the PSD test is carried out for further validation in terms of the 
frequency domain. The results show the accuracy of the model in the time and 
frequency domains. One can see the nonlinearity of the system in terms of 1 DOF 

horizontal from the results because for instance, Figures 2.38 and 2.39 are radically 
different in terms of their shapes. Note that in each figure the model response (solid 
lines) closely matches the TRMS response (dashed lines) in the case of both the 

overlapping and PSD tests. Therefore, the model is adequate to accurately predict the 

output of the real system. Looking carefully at the PSD test results discloses that the 
dominant natural frequency of the horizontal channel seems to approximately occur 
at frequency of 0.05 Hz. 
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2.4.4 Results of the 2DOF TRMS Model (Newtonian-based) 

In order to validate the 2DOF Newtonian-based dynamic model of the TRMS, it has 

been examined with a number of input signals. Table 2.3 lists the characteristics of 
the inputs. The response of the developed 2DOF Newtonian-based model and the 

PSD test of the model response are presented in Figures 2.42 to 2.59. It is clear from 

the results that the model responses and the real TRMS responses are really close to 

each other. 

Table 2.3 The characteristics of the input signals 

Type Frequency (Hz) Amplitude (V) 

Main Sine 0.5 1.5 
Case 1 

Tail Sine 0.5 1 

Main Sine 1 2.5 
Case 2 

Tail Sine 1 2.5 

Main Sine 0.2 1 
Case 3 

Tail Sine 0 0 

Main Sine 0 0 
Case 4 

Tail Sine 0.5 1.5 

Case 5 
Main Square 0.2 1 

Tail Square 0.5 1.5 

Main Square 0 0 
Case 6 

Tail Square 0.5 1 

Main Square 0.2 1 
Case 7 

Tail Square 0 0 

Main Sine 0.5 1.5 
Case 8 

Tail Square 0.5 1.5 

Case 9 
Main Square 0.2 1 

Tail Sine 0.5 2 

For example in case 1, the main and tail motors of the system have been excited with 
two sine waves with the same frequency of 0.5 Hz and different amplitudes of 1.5 V 

and 1V respectively. The respective outputs (pitch and yaw angles) and their PSDs 

are shown in Figures 2.42 and 2.43. The strong interaction between the two channels 
is evident from the results. Figures 2.47 and 2.55 show the yaw angle of the system 
when the tail motor is left unexcited. In other words, these figures illustrate the effect 
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of the main rotor on the horizontal channel. In addition, the cross-coupling of the tail 

rotor on the pitch angle can be observed in Figures 2.48 and 2.52. 
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It is clear from the figures that the model is adequate to represent the behaviour of 

the real system at both high and low frequency ranges. As a matter of fact, the PSD 

results also prove the adequacy of the developed model at high frequency range that 

is vital for model-based control approaches. 
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2.5 The Euler-Lagrangian-based Modelling of the TRMS 
In this section, the TRMS is modelled using the Euler-Lagrangian-based approach in 

terms of its 2DOF dynamics. The position of a particle in space can be specified by 

three coordinates. These may be Cartesian, spherical, cylindrical or any other set of 
suitably chosen parameters. Generally, in a system with N particles 3N coordinates 
are essential to state the simultaneous positions of all the particles, i. e. the 

configuration of the system. However, in the presence of constraints the minimum 
number of coordinates needed to specify the configuration is less than 3N. For 
instance, in the case of a rigid body the position of a reference point of the body (for 

example, the centre of mass) and the orientation of the body in space are needed for 

specifying the configuration. Therefore, in the case of a single rigid body, only six 
coordinates are enough, three for the reference point and the other three (say the 
Eulerian angles) for the orientation [3]. 

In general, a certain minimum number n of coordinates is required to specify the 

configuration of a given system. If each coordinate can vary independent of the 

others, the system is said to be holonomic. The number of coordinates, n, in this case 
is also the number of degrees of freedom of the system. In a non-holonomic system 
the coordinates cannot all vary independently; that is the number of degrees of 
freedom is less than the minimum number of coordinates needed to specify the 

configuration [3]. It is interesting to note that the TRMS is a holonomic system and 
in the case of its 2DOF dynamics, two coordinates, the yaw and pitch angles, are 

enough to derive the governing equations of the system. 

Basically, in the Euler-Lagrangian-based modelling approach, it is required to find 
the position of each particle with respect to the generalised coordinates. Again, note 
that in the case of a rigid body, it is enough to find the positions of some specific 
particles. According to these positions, the velocities of the particles are easily 
obtained. Having determined the kinetic and potential energies and substituting these 
energies into Lagrange's equations leads to the dynamic model of the system. 

2.5.1 The TRMS Particles Definition 

In developing the Lagrangian-based model of the TRMS, the system configuration is 
divided into three subsystems (see Figure 2.60); the first one consists of the free 
beam (the beam connecting the main and tail rotors), the tail rotor, the main rotor, the 

81 



tail shield and the main shield; the second category comprises the counter balance 
beam and weight; and finally, the third division is the pivoted beam. 

2.5.1.1 Free Beam 

Assume [rx (R, ), ry (RI ), rz (R1)] denotes the coordinate of the point P on the free 
beam parameterised in the distance RI from 01 (that means P101 = Rt ). And also 
assume 001 =h in which 0 is the origin of the coordinates. It is noted that in order 
to simplify Figure 2.60 the x and y axes have been drawn from 02. 

According to Figures 2.60,2.61 and 2.62 the following set of equations can be 

obtained. Figures 2.60 and 2.62 have been used for rx (R1) and ry (R, ) , and Figure 
2.61 has been drawn to make the calculation of rZ (R, ) more convenient. 

r, (RI) = Rl sin ah cosav +hcosah 
ry(R, ) = R, cosah cosav -hsinah (2.39) 

rZ (Rl) = Rl sin ay 

The corresponding velocities are obtained by differentiating equations (2.39) with 
respect to time. 

vs (RI) = RI iah cos ah cos av - RI dv sin ah sin av -h ah sin ati 

v, (Rl) = -R, äh sin ah cos av - R, äv cos a,, sin a,, -hä,, cos ah (2.40) 
vZ (R, ) = Rl cry cos av 

The square magnitude of the velocity of Pl is given by the following expression, 

v2(R1) = vx(RI)+vy(RI)+V (R1) (2.41) 

After substitution and simplification, the following equation is achieved. 

v2 (RI) = Ri ä, 2, cost av + h2 äh +R ; äy + 2Rlh äh äy sin av (2.42) 

Note that a. has no effect on the rs (R)'s and for simplicity, it can be assumed to be 
zero, as shown in Figure 2.61. 
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Figure 2.62 Top view of the TRMS 

2.5.1.2 Counter Balance Beam 

Let [rx (R2 ), rl, (R2 ), r_ (R2 )] denote the coordinate of the point P2 on the counter 
balance beam parameterised in the distance R2 from O, (i. e. P201 = R2). Using 

Figure 2.60, the following equations can be derived: 

rX(RZ) = R2 sin a,, sin a, +hcosa,, 

ry, (R2) = R2 cos a,, sin a, -h sin ah (2.43) 

r_ (R2) = -R2 cosav 

Differentiating the above equations with respect to time, results the following 

expressions of velocity. 

v, (R2)= R2 cz, cos a,, sinav +R2 äv sin a,, cos a, -h äh sinah 

vy (R2)= -R2 dh sin ah sinav +R2 czv cos ah cosav -h irh cos ah (2.44) 

v, (R2)=R2 äv sin a, 

The square magnitude of the velocity of P2 is given as, 

v2(Ra)=v. x(R2)+vy(R2)+vý(R2) (2.45) 

Substitution and simplification yields the following equation, 

v2(R2) = RZ äh sin 2 av +hZ äti + RZ äv - 2R2hcr,, ä cosav (2.46) 

2.5.1.3 Pivoted Beam 

For more accuracy the point P3 has been considered with the coordinate 
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[r x (R3 ), ry (R3 ), r= (R3 )] on the pivoted beam where R3 is the distance between P3 

and 0. 

rx (R3) = R3 cos ah 

ry, (R3) = -R3 sin ah (2.47) 

r2(R3)=O 

The corresponding velocities and square magnitude of the velocity of P3 can be 

written as, 

vx (R3) = -R3 äh sin ah 

vy (R3) = -R3 äh cos a, (2.48) 

v2(R3)=0 

v2 (R3) = R3 ah (2.49) 

2.5.2 Energy Expression 

The kinetic and potential energies are shown in the following equations respectively. 

T=2 Jv2 (R) dm(R) (2.50) 

V=g fr.. (R) dm(R) (2.51) 

Where T is the kinetic energy, V is the potential energy, m is mass and g is the 
acceleration of gravity. 

2.5.2.1 Free Beam Energy 

The kinetic and potential energies of the free beam are obtained and presented in 

equations (2.52) and (2.53) respectively. 

Tl =2 
(äh cos' av + äv ýJ1 +2 h2ci mTl +h äh czym711T1 sin av (2.52) 

where, 
mm J, = JR; dm(R1) =3'+m, r + m, s 

)T2 
+3+ mm, +M lm + 2' rs+m, srr2 

mT1 =f dm(R, ) = m1 +m:, +m, +mm +mm, +mms 
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jR, dm(R, ) 
M. +M.,. +m- 

)Im ft 
-2 +m� +mrs Ir 

IT, =J= 
f dm(R1) mz1 

Vi =g mriI sin av (2.53) 

where, 

T: Kinetic energy of the free beam (J) 

Jl : Moment of inertia of the free beam (kg m2) 

mT1: Total mass of the free beam (kg) 

1T1: Centre of gravity of the free beam (m) 

V1 : Potential energy of the free beam (J) 

m1 : Mass of the tail part of the beam (kg) 

m1, : Mass of the tail DC motor (kg) 

m,, : Mass of the tail shield (kg) 

mm : Mass of the main part of the beam (kg) 

m, �, : Mass of the main DC motor (kg) 

mms : Mass of the main shield (kg) 

Length of the tail part of the beam (m) 

: Length of the main part of the beam (m) 

rms Radius of the main shield (m) 

rs Radius of the tail shield (m). 

2.5.2.2 Counter Balance Beam Energy 

The kinetic and potential energies of the counter balance beam are presented in 
equations (2.54) and (2.55) respectively. 

TZ =2 
(äy 

sing ay +äv 
)J2 

+2 h2äh mT2 -h äh C ̂21T2 cosav (2.54) 

where, 

J2, = fdm(R2)=l2 
3 +mcal 2 

mT2 = fdm(R2)=mb 
+ mcb 
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fR2dm(R2) 

_2 
Ib +mcbJcb 

'T2 _f dm(R2) mT2 

V2 = -gm T2'2 cos a,, (2.55) 

where, 

T2 : Kinetic energy of the counter balance beam (J) 

V2: Potential energy of the counter balance beam (J) 

J2: Moment of inertia of the counter balance beam (kg m2) 

mb : Mass of the counter-weight beam (kg) 

mT2 : Total mass of the counter balance beam (kg) 

mCb : Mass of the counter-weight (kg) 

1T2 : Centre of gravity of the counter balance beam (m) 

Ib : Length of the counter-weight beam (m) 

1cb : Distance between the counter-weight and the joint (m). 

2.5.2.3 Pivoted Beam Energy 

The kinetic and potential energies of the pivoted beam are respectively shown as, 

Ts =2 ay J3 (2.56) 

J3 = JR3 dm(R3) =3 h2 

Vg = (2.57) 

where, 

T3 : Kinetic energy of the pivoted beam (J) 

J3 : Moment of inertia of the pivoted beam (kg m2) 
V3 : Potential energy of the pivoted beam (J) 

mh : Mass of the pivoted beam (kg) 

h: Length of the pivoted beam (m). 
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2.5.3 Lagrange's Equations 

Lagrange's equation defines L as, 

33 

L=>T -> V, (2.58) 
i=1 i=1 

and the equations of motion are given by, 

d äL äL 
_EM; h (2.59) 

dt 8ah äah 

d OL äL 
(2.60) 

dt ad, öav 

Therefore, by substituting equations (2.52) to (2.57) into equations (2.58) to (2.60) 

and simplifying, the governing equations of the system are obtained as, 

lJ, cos2a, +J2sin2av +h2(mT, +mT2)+J, ]ä,, +h[m,., lrisinaa -mT2lT2cosav]aV (2.61) 
+h[mTllT, cosa, +mT2lT2sinavI äý +2ir,, ciy [JZ-J, lsinav cosav =ý, M,,, 

[J, +J2]äß +h [m,. 
il i sina, -mT21T2Iosaa ]ah, 

(2.62) 
+ä, ý, [Jl -J2]sinay cosav +g [mTI'T1 cost , +mT262 sinay ]= ýr M; 

v 

where, M; h is the sum of the applied torques in the horizontal movement, and 
M. is the sum of the applied torques in the vertical movement. Equations (2.61) 

and (2.62) can be expressed in a matrix form as, 

cost a, +J2 sin 2 a, +h2(mT1 +mT2)+J3 h(m,. il,. i sin a, -mr2lr2 cosav) äh 
h(mTI1T, sin a, - m,. 21,. 2 cos a, ) J1 + JZ ä, 

h (mT, IT, cosay +mT21TZ sinav )crv +26tha (JZ -J, )sinav cosav Mr 
ä2 (J, 

-J2)sina,, cos a, + 9 
(MT 

IT Icosa, +m,. 
21.2sina, 

M, 
v 

(2.63) 

Considering equation (2.61), the 1DOF horizontal TRMS model can be obtained 
under the conditions of constant av which implies c, = äy = 0. 

ýJ, cos2 av +J2 sine av +h2 (m11 +mT2)+J3]äh = Zj M, h (2.64) 

As it can be seen, the Lagrangian model of the 1DOF horizontal TRMS is very 
similar to the Newtonian one; however, the assumptions behind these two modelling 
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approaches are not exactly the same. This difference originates from the fact that the 
pivoted beam has been taken into consideration in the Lagrangian-based approach 
but it has been neglected in the Newtonian-based method; because in the case of the 
Newtonian-based model the consideration of the pivoted beam renders a complexity 
in modelling but, it is really easy to consider it in the Lagrangian approach. 

The 1DOF vertical TRMS model can be expressed as follow, by considering the 
conditions ah =0 ah = äh =0 in equation (2.62). 

[J1+J2]av +g[mT1lTlcosaa +mT2lT2sina, I =1, Miv (2.65) 

It is evident that the Lagrangian model of the 1DOF vertical TRMS is exactly the 
same as the Newtonian one; however, the assumptions behind the two methods are 
different. Therefore, for the sake of brevity, only the responses of the Lagrangian 

model in terms of the 2DOF TRMS have been presented here. The 1DOF 
Lagrangian-based dynamic models of the TRMS are the same as the Newtonian 
models in terms of both the horizontal and vertical channels. 

According to equation (2.63), the angle between the tower and the counterweight 
beam in the equilibrium point can be calculated as, 

[m 1 cos a+ m1 sin a I= 0a tan'' - mT11TI 
T1 T1 v0 T2 T2 v0 v0 = (2.66) 

mT2lT2 

2.5.4 Implementation of the Lagrange-based Model 

According to equation (2.63), it can be rewritten that, 

ä,, J, cos2av +J2sin2ati, +h2(mr, +mT2)+J3 h(mr1lr, sina. -mT2lrscosa. Mth 
av h (mr1l1.1 sins,, -mr2lT2 cosati, ) Jl +JZ l[Mi 

- 
h(mr, lr, cos av +m T2lT2sin av)czy + 26Cä Q2- J, )sin a, cos av (2.67) 

cz, 2 
, 
(J, 

-J2)sina, cos a, +g(mr, lr, cos a, +mr21r2 sin a, ) 

11 

where, M; h is the sum of the applied torques in the horizontal movement, and can 
be summarised as follows, 

Zi Mih =M prop h -M frio. h - Mcabie +k. 6 
v 

cos izv (2.68) 
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Mprop, 
h =l Fh (ah) Cosa, 

where, 

Mprop, h : Propulsive torque due to the tail propeller rotation (Nm) 

M fr; c, h : Friction torque of the horizontal movement (Nm) 

Mc ie : Flat cable torque (Nm) 

rvv : Acceleration of the main rotor (radls2). 

Again, in equation (2.67) 7ý M. is the sum of the applied torques in the vertical 

movement, and can be expressed in terms of the following equation, 

J: 
rM; v =Mpmpv -Mf�, +k, tv,, +Mg ro 

(2.69) 

M 
prop, v =1. , 

(cov ) 

Mgro = kg1(wv )Qh cosa, 

where, 

M 
prof v: 

Propulsive torque due to the main propeller rotation (Nm) 

Mf is v: 
Friction torque of the vertical movement (Nm) 

Mgyro : Gyroscopic torque (Nm) 

roh : Acceleration of the tail rotor (rad/s2). 

The governing equations of two DC motors and their propulsive forces are exactly 
the same as in the case of the Newtonian method. Figure 2.63 shows the complete 
block diagram of the Lagrangian-based TRMS model and Figure 2.64 depicts the 
inside of the nonlinear Lagrangian equations block. The overall Lagrangian-based 

model is a nonlinear system of the order of 8 since, each motor model contains two 
integrators and the nonlinear Lagrangian equations subsystem has four integrators. In 

order to model the effects of both the channels on each other, one needs to have 

access to the acceleration of tail and main rotors. It is clear from Figure 2.63 that 
these accelerations come from the motors blocks directly to prevent any derivative 

which may render instability of the model in the face of noisy signals. 
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Figure 2.63 The complete block diagram of the Lagrangian-based TRMS model 
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2.6 Results of the 2DOF TRMS Model (Lagrangian- 
based) 
The responses of the developed 2DOF Lagrangian-based model and their 

corresponding PSD tests, with the input signals presented in Table 2.3, are shown in 

Figures 2.65 to 2.82. Again, it can be perceived from the figures that the model 

responses closely match the real TRMS responses. In order to have a logical 

comparison between the Newtonian and Lagrangian approaches, the models have 

been evaluated using an identical set of input signals. Figures 2.65 and 2.66 

respectively show the pitch and yaw angles responses, when the main and tail motors 

are excited with two sine waves. The frequency and the amplitude of the main 

channel are 0.5 Hz and 1.5 V, and the tail channel has the same frequency but 

different amplitude of I V. Similarly, the PSD test is used to validate the model in 

the frequency domain besides the overlapping assessment utilised to show the 

performance of the model in the time domain. 
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2.7 Comparative Study 

Table 2.4 presents a comparative study of the Lagrangian and Newtonian-based 

models. The responses of both the Newtonian and Lagrangian models are really 

satisfactory and they follow the real TRMS response very closely. However, the 

response of the Lagrangian model is slightly better than that of the Newtonian model 
because, as mentioned before, the pivoted beam has been considered in the case of 
the Lagrangian-based model but not in the case of the Newtonian model. 
Consequently, the computational burden of the Lagrangian approach is higher 

compared to that of the Newtonian method. As presented in Table 2.4, the mean 

squared error (MSE) of the yaw angle in the case of the Lagrangian model is 0.0053 

as against 0.0089 in the case of the Newtonian model. Analogous performance is 

achieved in the case of the pitch angle. In this case, the MSE 0.0104 is obtained with 
the Lagrangian model as opposed to 0.0116 in the case of the Newtonian model. 

Table 2.4 Comparative study of the Lagrangian and Newtonian models 

Lagrange Newton 

MSE of the yaw angle 0.0053 0.0089 

MSE of the pitch angle 0.0104 0.0116 

2.8 Conclusions 
In this chapter, the models of the TRMS developed using the Newtonian and 
Lagrangian approaches have been presented. The pivoted beam has been considered 
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in the Lagrangian approach but neglected in the Newtonian based model for 

comparison purpose. Although the Lagrangian-based model is slightly more accurate 
compared to the Newtonian one, the complexity of the former model is higher than 
the latter one. From the control design point of view, it is not always desirable to 
increase the model complexity in order to achieve a more accurate model. Therefore, 

a compromise between the model accuracy and its complexity needs to be reached. 
Despite the higher accuracy of the Lagrangian-based model, the Newtonian model 
has been used to design the controller because of its relative simplicity and 
acceptable accuracy. 
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CHAPTER 3 

Nonlinear Black-box Modelling 

This chapter presents the NN-based empirical modelling of the TRMS in terms of its 

vertical 1 DOF, horizontal 1 DOF and 2DOF. The model response and the real TRMS 

response are compared with each other to validate the accuracy of the model. A 

study has also been carried out to compare the performance of the analytical and 
empirical models. 

3.1 Introduction 
ANNs are intended to mimic the behaviour of biological NNs. As a matter of fact, 
there are varieties of NNs and their applications are also different. As such, it is 
difficult to find a unique definition of NNs, but the majority of NNs can be covered 
by this definition: "A system of simple processing elements, neurons that are 
connected into a network by a set of (synaptic) weight" [2]. Other names such as 
parallel distributed processing (PDP) systems [97] are also used in the literature. 
Over the years, several models of ANNs and the learning algorithms that associate 
with networks have been developed. In terms of structure, there are non-recurrent 
[98] and recurrent networks [99]. On the basis of functionality of the networks, there 
are associative memory networks [100], feedforward NNs [98], self-organising NNs 
[101], adaptive resonance theory networks [102], [103], and optimisation networks 
[104]. These networks need to be trained using appropriate learning algorithms for a 
particular application. A learning algorithm is an optimisation procedure in which the 
synaptic weights between the neurons are found in order to obtain an optimal 
mapping between a set of inputs and the corresponding desired outputs. In this 
investigation, the MLP networks have been chosen for modelling with various 
training methods. Therefore, the MLP networks and the related learning algorithms 
have briefly been presented here. Note that although other types of NNs networks 
may sometimes show a better performance from the perspective of training results, 
an MLP network usually outperforms its rivals from test results viewpoint. 
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3.2 The Fundamentals of MLP Networks 
The function of a network is determined by the architecture of the network, its 

parameters (weights and biases) and the type of its processing elements. The 

architecture of a typical MLP network is defined by the number of layers and the 

number of neurons in each layer. Generally, the structure of an MLP network is 

designed based on an iterative process. It is needed to achieve a desirable 

performance with the lowest possible computational burden, i. e. the minimum 

number of layers and the least number of neurons in each layer. The synaptic weights' 

and biases of a network are calculated during the so-called learning process in order 
to minimise the network error. Some of the most common learning algorithms that 

can be used to train MLP networks include: Levenberg-Marquardt back-propagation, 

gradient descent back-propagation, quasi-Newton back-propagation, Bayesian 

regularisation back-propagation, conjugate gradient back-propagation, one step 
secant back-propagation, resilient back-propagation, and scaled conjugate gradient 
back-propagation. All of these are employed in this investigation to train the NN- 
based model of the TRMS. 

3.2.1 A Neuron 

A neuron is a processing element, the McCulloch-Pitts (MP) model [105], takes a 

number of inputs, weighs them, sums them up, and uses the resultant as the argument 

of a single variable function, an activation function. Figure 3.1 shows a neuron with a 
bias and R inputs. As shown in equation (3.1), the output of the neuron is the output 
of a single variable activation function that takes the sum of the bias and the 

weighted inputs as its input argument. 

ul 

U2 

UR 

b 

y 

Figure 3.1 A neuron with a bias and R inputs 

y= fRu; wj +b = f(uwT +b) (3.1) 
=1 
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Where u=[u1, u2, """, uR] is the input vector, w=[wl, w2, """, wR] is the weight 
vector, b is the bias, f is the activation function of the neuron, and y is the output 
of the neuron. The inputs to a neuron can be either the outputs of other neurons or 
external inputs. The activation function, f, can take any form; however, most often 
it is preferably a monotonic function. Figure 3.2 depicts some common activation 
functions. It is clear from Figure 3.2 that some of the functions such as (a), (b), (c) 

and (d) are monotonic; however, the others, i. e. (e), (f), and (g) are strictly 
monotonic. As pointed out before, differentiability of activation functions is one of 
the necessary conditions for most broadly used training algorithms. The first two 
functions in Figure 3.2 are not differentiable due to their discontinuity and moreover, 
the differentiations of the third and forth functions are undefined at some points. 
Overall, only the last three functions are smooth, i. e. they have continuous 
derivatives of any required order. 
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Figure 3.2 Some commonly used activation functions 
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3.2.2 The Multilayer Perceptron 

The combination of a number of neurons with the same input signals, but most 

probably with different weights and biases, constructs a layer of neurons. Connection 

of two or more such layers forms a multilayer network. The neurons can be 

combined into a network in numerous fashions. Figure 3.3 shows a typical 
feedforward MLP network with R inputs and three layers with a configuration of 
3x5x1, i. e. three neurons in the first layer, five neurons in the second layer and one 
in the final layer. The final layer is called the output layer referring to the fact that it 

produces the output of the network. The other layers are hidden layers, e. g. in Figure 

3.3 the network has two hidden layers. It is common to augment biases with weights 
by considering an extra input with the constant value of 1 for each layer, as shown in 

Figure 3.3 just for the first layer. Note that although each neuron has a bias, for the 

sake of simplicity, the biases of the second and final layers are not depicted in Figure 

3.3. 
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Figure 3.3 A typical MLP network with R inputs and three layers 

3.2.3 Designing the Excitation Signal 

Before an input signal is selected, it is important to identify the operating range of 
the system. Special care must be taken not to excite dynamics that one does not 
intend to incorporate in the model; however, in this investigation all the necessary 
frequencies have been considered at the training stage. In the case of identification of 
a linear system, it is customary to apply a signal consisting of a number of sinusoids 
of different amplitudes. Also the so-called pseudo random binary sequence (PRBS) 
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signals are popular. However, when working with nonlinear model structures, it is of 

great importance to represent all necessary amplitudes and frequencies [2]. 

In this study, the TRMS has been excited with various input signals of different 

shapes (e. g. sine and square waves), different possible amplitudes and different 

frequencies. The frequency of the training data ranges from 0.01 to 1 Hz and cover 

amplitude between -2.5 and 2.5 V, the minimum and maximum applicable voltages 
to the system respectively. According to the dynamics of the system the input signals 

with higher frequencies cause no considerable movement in the TRMS beam due to 

the fact that the approximate time constant of the system is significantly higher than 

the period of the signals with higher frequencies. So it is not necessary to excite the 

system with higher frequencies. However, in order to improve the model 

performance at high frequencies, which is important in control design, several PRBS 

and composite PRBS data sets have been utilised in addition to the data sets 

mentioned before. 

3.2.4 Model Structure Selection 

When widening the focus to black-box identification of nonlinear dynamic systems, 
the problem of selecting model structure becomes increasingly difficult. Some of the 

most common NN-based models include: neural network finite impulse response 
model structure (NNFIR), neural network autoregressive external input model 
structure (NNARX), neural network autoregressive moving average with external 
input model structure (NNARMAX), neural network output error model structure 
(NNOE), neural network state-space innovation form (NNSSIF) [2]. In this study, 
the NNARX approach has been selected in order to model the system, due to the fact 

that the input-output data set of the real system is available. As stated before, the 
TRMS possesses two shaft encoders to measure the outputs of the system, positions 
of the beam in both the horizontal and vertical planes. 

In an NNARX model structure, the inputs to the NN-based model are the past control 
inputs of the real system, [u(t 

- d), u(t -d -1), """, u(t -d- m)], and also the past 
observed outputs, [y(t 

-1), y(t - 2), " " ", y(t - n)], where d is some multiple of the 
sampling period and set to one here, and m and n are input and output lag spaces 
which are assumed to be two and three respectively. Figure 3.4 shows a SISO 
NNARX model structure. It is noted that the output of the SISO model, 

, 
y(t) 

, can be 

expressed as, 
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5(t) =. fNN(u(t-d), u(t-d -1),..., u(t-d -m), Y(t-1), Y(t-2),..., Y(t-n)) (3.2) 

u(t-d) 

u(t-d -1) 

u(t-d-m) 

At -1) 
y(t-2) 

y(t-n) 

Neural 
network 

ARX 
model 
UNN) 

RO 

Figure 3.4 The NNARX model structure of a SISO system 

3.2.5 Training algorithm 
Assume that a data set has been acquired and the model structure has been selected. 
The next step is then to apply the data set to achieve the best model among the 

candidates by tuning the network parameters, i. e. weights and biases. This stage is 

called training or learning and its aim is to find a suitable set of weights and biases. 

Although training process is computationally intensive, it is generally one of the 

easiest stages in the identification of a system. 

Some of the most common learning algorithms used in this study include: 

" Gradient (steepest) descent (GD) back-propagation [106], [107], 

" Gradient descent with momentum (GDM) back-propagation [107], 

" Gradient descent with adaptive learning rate (GDA) back-propagation [ 107], 

" Gradient descent with adaptive learning rate and momentum (GDX) back- 

propagation [107], 

" Resilient back-propagation (RB) [108], 

" Conjugate gradient back-propagation with Fletcher-Reeves (CGF) [109], 

" Conjugate gradient back-propagation with Polak-Ribiere updates (CGP) 
[106], 

" Conjugate gradient back-propagation with Powell-Beale restart (CGB) [110], 
[111], 

9 Scaled conjugate gradient (SCG) back-propagation [106], 
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" BFGS (Broyden Fletcher Goldfarb Shanno) quasi-Newton back-propagation 
[112]-[114], 

" One step secant (OSS) back-propagation [113], [114], 

" Levenberg-Marquardt (LM) back-propagation [115], 

" Bayesianregularisation (BR) back-propagation [116], [117]. 

All of these algorithms are based on the so-called MSE method. In MSE paradigms 
the objective is to determine the weights and the biases of an NN by minimising the 
following criterion, 

Q 
V" 

2Q>e9eq 

q=1 

where, 

(3.3) 

eq = tq -y9 q =1,2,..., Q (3.4) 

Q: Number of patterns or number of data set for training 

tq : Vector of target output (observed output) of pattern q 

Yq: Vector of network output (output prediction) of pattern q 

eq : Error of pattern q 

V: Mean squared error. 

3.3 Model Validation 
Model validation is a procedure in which a model is tested to clarify whether the 
model adequately represents the characteristics of the corresponding real system. 
Note that each model is tested in accordance with its future application. However, it 
is usual to test a model using some standard test methods such as: overlapping, PSD, 
and correlation tests. Overlapping represents, in the time domain, a process response 
and its model response in one figure and it focuses on the discrepancy between them. 
The PSD result illustrates the accuracy of a model in the frequency domain. Some 
other useful features of the model can be envisaged from the PSD. Clearly, the data 
used to test a model should be different from those used in the training stage of the 
model. Such a data set is called test or validation data set. Correlation test is 
described as follows. 
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If the residuals (prediction errors) of a model contain no or negligible information 

about the past residuals or about the dynamics of the system, it is likely that all 
information has been extracted from the training set, and conclusively the model 
approximates the system well. Hence, one needs, in principle, to check whether the 
residuals are uncorrelated with all the linear and nonlinear combinations of the past 
data. Such a test is of course completely unrealistic to be carried out in practice; thus, 
it is common to consider only a few wisely chosen auto-correlation and cross- 
correlation functions. Some of the correlation functions recommended by Billings et 
al. [118], [119] are listed below. Equation (3.5) is the auto-correlation of prediction 
errors, and the cross-correlation between the inputs and the residuals of a model is 

presented in equation (3.6). The cross-correlation of the squared inputs and the 
squared errors is mentioned in equation (3.7). Equation (3.8) presents the cross- 
correlation between the squared inputs and the residuals of the model and finally the 
cross-correlation between the residuals and the multiplication of the residuals and the 
inputs is expressed in equation (3.9). 

N-s 
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Where the bar over the symbols represents the average of a signal as, 

NN 
Xi (3.10) 

Nis the total number of data and, 

ý; = use; (3.11) 

It is common to check whether the functions for lags in the interval zE [-20,20] are 
zero within an asymptotical 95% confidence interval, i. e. if the following condition 
is held. Details can be found in Appendix 3. 

-1.96/-J <r <1.96/4N (3.12) 

The first two tests are commonly used to validate the identification of conventional 
systems, especially in the case of linear systems. It should be mentioned that all the 
tests apply equally well to MIMO systems. The correlation functions must then be 

calculated for each combination of the input and the output. 

3.4 Results 
In this section, the TRMS is empirically modelled in terms of its 1DOF horizontal, 
1DOF vertical and 2DOF dynamics. The three following sub-sections present the 
results of these NN-based models. As mentioned before, in this research, the models 
are developed using NN-based autoregressive external input approach. The 
MATLAB NN toolbox [120] is utilised to estimate the parameters, i. e. the weights 
and biases, of the networks. 

3.4.1 The 1DOF Horizontal Model 

In order to model the TRMS in terms of its 1DOF horizontal dynamics, an MLP 
neural network with a configuration of 6x3x1 has been used. In other words, the 
NN-based model has 6 inputs, 3 neurons in the hidden layer and 1 neuron in the 
output layer. The configuration is started with a simple single layer network and the 
number of neurons is, gradually, increased until the desired satisfactory performance 
is reached. Note that if increasing the number of neurons causes no satisfactory 
result, the number of hidden layers needs to be expanded. The network inputs are the 
tail rotor voltage at the previous sample time, Vi (t -1) , the tail rotor voltage at two 
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samples before, Vh (t - 2), the tail rotor voltage at three samples before, V. (t - 3), 
the yaw angle of the beam at the previous instant, ah (t -1) , the yaw angle of the 
beam at two samples before, ah (t - 2), and the yaw angle of the beam at three 

samples before, ah (t - 3). This configuration has been selected using the method 
mentioned before in order to have a satisfactorily result without any unnecessary 
computational burden, i. e. with a minimum network structure. Figure 3.5 shows the 

structure of the NN-based model in terms of the 1DOF horizontal dynamics. The 

activation functions used in the hidden and-output layers are logarithmic and pure 
linear respectively. The numbers of patterns for training and test processes used are 
8290 and 500 sets respectively. It is noted that the sample time is set to be 0.2 

seconds. 

['IIJ3x6 

V,, (t 

Vh(t -2) 

Vh(t -3) 

ah (t -1) , 
a. (t-2) 

a. (t-3) 
Input Layer 

LW21Jlx3 
71 f iý 

b z 

1" hidden Layer Output Layer 

h (t) 

Figure 3.5 The structure of the NN-based model in terms of the I DOF horizontal dynamics 

The NN has been trained with 13 different training algorithms. The trained NNs have 
been tested with a set of data not used in the training phase. The response of the 
neural models trained with various types of algorithm and the corresponding 
validation test results are depicted in Figures 3.6 to 3.31. 

Figure 3.6 shows the overlapping and the PSD test results of the NN trained with the 
gradient descent back-propagation algorithm. It is clear from the results that the 
model is not adequate to predict the output of the system accurately. Also, correlation 
tests, as shown in Figure 3.7, illustrate that the model is insufficient since, the 
correlation results are out of the confidence interval. Note that the gradient descent 
learning algorithm, the simplest form of back-propagation learning method, updates 
the weights and biases in the direction in which the objective function (see equation 
3.2) decreases most rapidly. This direction can be found using the negative of the 
gradient. 
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The gradient descent with momentum learning algorithm converges faster than the 

simple gradient descent. A momentum term uses the recent trends of network 
parameters (weights and biases) besides the gradient and prevents from getting stuck 
in a local minimum. The performance of this learning algorithm in modelling the 
TRMS in terms of its 1DOF horizontal dynamics is presented in Figures 3.8 and 3.9. 
Although the overlapping and the PSD tests show that the results are quite 
satisfactory, it is evident from the more convincing correlation tests that the model 
cannot represent the real TRMS adequately. 

Standard gradient descent techniques employ a fixed learning rate during the training 

process. Changing the learning rate improves the performance of the algorithm, as 
this parameter significantly affects the stability and the convergence time of the 

training algorithm. Figures 3.10 and 3.11 depict the test results of the trained network 

using the gradient descent with adaptive learning rate algorithm. The performance is 

comparable to that of the previous training method, and thus it needs to be improved. 

Sometimes employing the advantages of the momentum term and the adaptive 
learning rate simultaneously can improve the performance of neural models; 
however, in the case of the TRMS the results, Figures 3.12 and 3.13, show no 

considerable improvement. 

Sigmoid functions are the most popular types of transfer functions used in the hidden 
layers of multilayer networks. They are also called squashing functions, due to the 
fact that they squash an infinite input range into a finite output range. Sigmoid 
functions are characterised by the fact that their gradient must approach zero as the 
input becomes large. This fact renders a difficulty when the gradient descent learning 

algorithm is used to train a multilayer network with sigmoid functions. The gradient 
may take a very small magnitude when the modulus of the input is large and 
therefore, cause small changes in the weights and biases, even though the weights 
and biases are far from their optimal values. 

In, order to eliminate these harmful effects, the resilient back-propagation training 
algorithm can be used. In this case, the direction of the weight update is determined 

using the sign of the derivative, i. e. the magnitude of the derivative has no effect on 
the weight update. A separate update value is defined to determine the size of the 
weight change. Figures 3.14 and 3.15 show the model developed using resilient 
back-propagation learning approach. Compared to the aforementioned training 
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algorithms, this training approach performs better, although from the perspective of 
correlation tests, the performance is not good enough and needs further enhancement. 

As mentioned before, the standard back-propagation algorithm updates the network 
parameters in the steepest descent direction. The conjugate gradient algorithms 
search along conjugate directions, which lead to a faster convergence in comparison 
with the steepest descent directions. In this investigation, four types of conjugate 
gradient learning algorithms have been used to train the NN-based model. Amongst 
them, the scaled conjugate and the conjugate Powell-Beale learning algorithms 
outperform the other two in terms of the correlation tests and MSE. Figures 3.16 to 
3.23 illustrate the performance of the conjugate gradient learning approaches. 

The one step secant and the BFGS quasi-Newton learning algorithms are the 
simplified version of Newton's optimisation method in which an approximate 
Hessian matrix (second derivatives) is updated in each iteration. Therefore, these 
algorithms reduce the computational burden compared to Newton's method. Figures 
3.24 to 3.27 show the results obtained using these two learning algorithms. It is clear 
that the performance of the BFGS learning algorithm is satisfactory; however, the 
one step secant learning approach could not properly model the TRMS in terms of its 
1DOF horizontal dynamics. 

The Levenberg-Marquardt learning algorithm can be considered to be a modified 
version of the Gauss-Newton approach. It has been designed to approximate the 
second-order training speed without having to compute the Hessian matrix. Figures 
3.28 and 3.29 depict the overlapping, PSD and correlation tests of the network 
trained with the LM training algorithm. The LM learning algorithm has 
outperformed its rivals in terms of the correlation tests and MSE, and can be 
considered the best learning approach to model the 1DOF horizontal TRMS. 

The Bayesian regularisation method modifies the performance function by adding a 
term consisting of the mean squares of the network weights and biases and then uses 
one of the aforementioned learning algorithms (e. g. LM). The results of NN-based 
model trained with Bayesian regularisation are presented in Figures 2.30 and 2.31. 
The results are satisfactory in terms of all the performance criteria. 
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Figure 3.6 Model response with the gradient descent method 
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Figure 3.7 Correlation validation of the neural model with the GD training method 
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Figure 3.8 Model response with the GDM training method 
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Figure 3.9 Correlation validation of the model with the GDM training method 
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Figure 3.10 Model response with the GDA learning 
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Figure 3.11 Correlation validation of the model with the GDA training method 
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Figure 3.13 Correlation validation of the model with the GDX learning method 
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Figure 3.14 Model response with the resilient method 
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Figure 3.18 Model response with the CGP method 
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Figure 3.19 Correlation validation of the model with the CGP training method 
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Figure 3.20 Model response with the CGB method 
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Figure 3.21 Correlation validation of the model with the CGB training method 
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Figure 3.24 Model response with the BFGS quasi-Newton method 
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Figure 3.25 Correlation validation of the model with the BFGS learning method 
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Figure 3.26 Model response with the one step secant method 
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Figure 3.29 Correlation validation of the model with the LM training algorithm 
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Figure 3.30 Model response with the Bayesian regularisation method 

lag 

2 2.6 

(c) Cross-correlation of input 

squared and residuals 

u 

u 

u 

u 

s 

u 

u 
L 

L 

lag 

(b) Cross-correlation of input 

and residuals 

lag 

(e) Cross-correlation of residuals 
ana 

lag lag 

Figure 3.31 Correlation validation of the model with the BR training method 

The performance of all the training algorithms used is presented in Table 3.1. The 

performance is expressed in terms of MSE for both the training and test procedures. 
The maximum number of iterations (epochs) for all the methods is set to be 500. 

Casting a glance at the table reveals that the Levenberg-Marquardt shows the best 

performance and the gradient descent has the worst performance among these 

training methods. It is because the LM training method converges faster than the 

conventional gradient descent method, especially if the number of weights and biases 
is roughly less than a few hundred [115]. It is also evident from the table that the 
Bayesian regularisation training method shows the second best performance after the 
LM learning paradigm following by the BFGS quasi-Newton, the scaled conjugate 
gradient, and the conjugate gradient Powell-Beale training algorithms respectively. 
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Note that although the scaled conjugate gradient method slightly outperforms the 

conjugate gradient Powell-Beale training algorithm from the perspective of the 

training MSE, the latter approach seems to perform better than the former one in 

terms of the test MSE. 

Table 3.1 Comparison of the training algorithms 

Learning algorithm Training MSE Test MSE 

Gradient descent 1.13 x 10-2 1.74 x 10-2 

Gradient descent with momentum 5.32 x 10-3 5.35 x 10-3 

Gradient descent with adaptive learning 5.97 x 10-3 3.30 x 10-3 

Gradient descent with momentum and 
adaptive learning 2.07 x 10'3 1.65 x 10'3 

Resilient 4.45x104 1.89 x 10-4 

Conjugate gradient Fletcher-Reeves 6.16 x 10-5 6.75 x 10-5 

Conjugate gradient Polak-Ribiere 5.93 x 10-5 6.66 x 10-5 

Conjugate gradient Powell-Beale 3.12 x 10-5 2.00 x 10-5 

Scaled conjugate gradient 2.78 x 10-5 3.37 x 10-5 

BFGS quasi-Newton 2.09 x 10-5 1.71 x 10-5 

One step secant 1.47 x 10-4 7.27 x 10-' 

Levenberg-Marquardt 1.57 x 10-5 1.35 x 10-5 

Bayesian regularisation 1.94 x 10-5 1.62 x 10-5 

3.4.2 The 1DOF Vertical Model 

A feedforward MLP neural network with the same configuration as the horizontal 

model has been used to model the TRMS in terms of its 1 DOF vertical dynamics. 
Again, the configuration of the network has been found to prevent any superfluous 
computational burden. In other words,. a single-hidden-layer network has been found 
to be the best choice which consists of 6 inputs, 3 neurons in the hidden layer and 1 
neuron in the output layer. The inputs are the main rotor voltage at the previous 
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instant, Vv (t -1) , the main rotor voltage at two samples before, V, (t - 2), the main 
rotor voltage at three samples before, Vv (t - 3), the pitch angle of the beam at the 

previous time, a jt -1) , the pitch angle of the beam at two samples before, 

ay (t - 2) , and the pitch angle of the beam at three samples before, av (t - 3). Figure 
3.32 shows the structure of the network of the 1DOF vertical model. Similar to the 

previous case, the activation functions used in the hidden layer and the output layer 

are logarithmic sigmoid and pure linear respectively. The numbers of patterns used 
for. the training and test processes are 10700 and 500 sets respectively. 

Various training methods have been used to train the constructed network. The 

trained NNs have been tested with several sets of data that are not used in the 
training procedure. However, for the sake of brevity, only a single test result has 
been shown for each of the training approaches. Figures 3.33 to 3.58 show the results 
of the overlapping test, corresponding PSD, and correlation validation of the network 
with the training algorithms. 

It is clear from Figures 3.33 to 3.40 that none of the gradient descent learning 

algorithm has shown a satisfactory result and therefore cannot be considered to be an 
adequate model. According to Figures 3.41 and 3.42, the resilient back-propagation 
learning method provides a better performance compared to the gradient descent 

algorithms, but some of the correlation tests are out of the confidence interval. Four 

types of conjugate gradient learning algorithms have been used to model the TRMS 
in terms of its 1DOF vertical dynamics (see Figures 3.43 to 3.50); however, only two 
of them, the Fletcher-Reeves and the Powell-Beale, show acceptable results. 

Figures 3.51 to 3.54 depict the results related to the quasi-Newton learning 

algorithms. The BFGS learning algorithm can satisfactorily model the system; 
however, the performance of the one step secant learning approach to model the 
TRMS in terms of its 1DOF vertical dynamics is not acceptable. Figures 3.55 and 
3.56 show the overlapping, PSD and correlation tests of the network trained using the 
LM training algorithm. The LM learning algorithm outperforms its rivals in terms of 
both the MSE and the correlation tests and can be considered the best learning 
approach to model the 1 DOF vertical TRMS. The response of the network model 
trained by the Bayesian regularisation algorithm is found in Figures 2.57 and 2.58. 
The result, seems to be adequate in terms of all the criteria, i. e. overlapping, PSD and 
correlation tests. 
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Figure 3.33 Model response with the gradient descent method 
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Figure 3.34 Correlation validation of the model with the GD training method 
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Figure 3.35 Model response with the GDM method 
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Figure 3.36 Correlation validation of the model with the GDM training method 
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Figure 3.37 Model response with the GDA learning algorithm 
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Figure 3.38 Correlation validation of the model with the GDA training method 
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Figure 3.39 Model response with the GDX learning method 
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Figure 3.43 Model response with the CGF method 
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Figure 3.44 Correlation validation of the model with the CGF training method 
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Figure 3.46 Correlation validation of the model with the CGP training method 
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Figure 3.47 Model response with the CGB method 
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Figure 3.48 Correlation validation of the model with the CGB training method 
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Figure 3.49 Model response with the SCG method 
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Figure 3.50 Correlation validation of the model with the SCG training method 
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Figure 3.51 Model response with the BFGS quasi-Newton method 
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Figure 3.52 Correlation validation of the model with the BFGS learning method 
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Figure 3.53 Model response with the one step secant method 
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Figure 3.54 Correlation validation of the model with the OSS training method 
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Figure 3.55 Model response with the LM method 
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Figure 3.56 Correlation validation of the model with the LM training algorithm 
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Figure 3.57 Model response with the Bayesian regularisation method 
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A comparative study of these training methods in terms of MSE has been carried out 
for both the training and test processes as shown in Table 3.2. For comparison 

purpose, the maximum number of iterations (epochs) for all the methods is chosen to 
be 500. Overall, the predictive capabilities of the model trained with the Levenberg- 

Marquardt and the Bayesian regularisation are quite satisfactory and can be 

considered the best training algorithms in this case. Also, the gradient descent and 
the gradient descent with momentum present the worst performances among these 

training methods. The BFGS quasi-Newton has performed quite well and has ranked 
third after the Levenberg-Marquardt and the Bayesian regularisation algorithms. The 

scaled conjugate and other three types of conjugate training approaches have ranked 
from the forth to the seventh positions. 

3.4.3 The 2DOF Model 

Generally, there is a contradiction between model accuracy and model simplicity. 
Therefore, a compromise needs to be reached to have a model with reasonable 

precision and simplicity. In this respect, a feedforward MLP neural network with a 

configuration of 12 x3x5x2 has been formed to model the 2DOF TRMS. This 

means that the NN has 12 inputs, 3 neurons in the first hidden layer, 5 neurons in the 

second hidden layer and 2 neurons in the output layer. The inputs are the tail rotor 
voltage at the previous instant, V. (t -1), the tail rotor voltage at two samples before, 
Vh (t - 2), the tail rotor voltage at three samples before, Vh (t - 3), the yaw angle of 
the beam at the previous time, ah (t -1) , the yaw angle of the beam at two samples 
before, ah (t - 2), the yaw angle of the beam at three samples before, ah (t - 3), the 
main rotor voltage at the previous time, Vv (t -1) , the main rotor voltage at two 
instants before, Vv (t - 2), the main rotor voltage at three samples before, Vv (t - 3), 
the pitch angle of the beam at the previous time, a, (t -1) , the pitch angle of the 
beam at two samples before, a, (t - 2), and the pitch angle of the beam at three 

samples before, a, (t - 3). The outputs of the network are the yaw angle of the beam 

at the present time, ä,, (t) , and the pitch angle of the beam at the present time, 
a, (t). Figure 3.59 depicts the formation of the NN-based model. Note that the 
activation functions used in the hidden layers and the output layer are logarithmic 

and pure linear respectively. 

The numbers of patterns for training and test procedures are 11500 and 500 sets 
respectively. The Sample time of data is 0.2 seconds this means that the sampling 
frequency is 5 Hz which is obtained from the dynamics of the system and its 
dominant time constant. The NN has been trained with different training methods. 
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Table 3.2 Performance comparison of the training algorithms 

Learning algorithm Training MSE Test MSE 

Gradient descent 2.37 x 10-2 1.15 x 10"3 

Gradient descent with momentum 1.82 x 10-2 2.81 x 10-3 

Gradient descent with adaptive learning 1.73 x 10-3 6.07 x 10-4 

Gradient descent with momentum and adaptive 3 4 85 x 10- 4 45 x 10- 3 learning . . 

Resilient 4.29 x 10-4 4.73x105 

Conjugate gradient Fletcher-Reeves 2.81 x 10-5 9.79, x 10-' 

Conjugate gradient Polak-Ribiere 2.42 x 10-5 9.11 x 10-6 

Conjugate gradient Powell-Beale 2.79 x 10-5 1.01 x 10-5 

Scaled conjugate gradient 1.82 x 10-5 9.55 x 10-6 

BFGS quasi-Newton 1.76 x 10-5 9.41 x 10-6 

One step secant 9.73 x 10-5 1.18 x 10-5 

Levenberg-Marquardt 1.54 x 10-5 8.84 x 10-6 

Bayesian regularisation 1.47 x 10-5 8.88 x 10-6 
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For validation the NN-based model performance, the trained network has been tested 

with different types of input signals. Figures 3.60 to 3.80 show the output of the NN- 

based model with different training methods in the test procedure, their 

corresponding PSDs and their correlation tests [118], [119]. As pointed out earlier, 

all the tests apply equally well to MIMO systems. The correlation tests have been 

carried out for each combination of the input-output. 

Figures 3.60 to 3.65 show that the LM learning algorithm has a satisfactory result to 

model the TRMS in terms of its 2DOF dynamics. Figure 3.60 depicts the yaw angle 

overlapping and PSD test results. The results related to the vertical channel can be 

seen in Figure 3.61. The correlation tests related to each input-output pair are shown 
in Figures 3.62 to 3.65. The satisfactory test results regarding the BFGS learning 

technique are depicted in Figures 3.66 to 3.68. Note that for the sake of brevity only 

one set of correlation tests is presented for this learning algorithm. NN-based model 
trained using the Bayesian regularisation learning algorithm shows an acceptable 

performance as can be seen from Figures 3.69 to 3.71. 

Figures 3.72 to 3.74 depict the results of the conjugate gradient Powell-Beale 

learning algorithms. It is clear that this learning algorithm can satisfactorily model 
the system. Figures 3.75 to 3.77 show the overlapping, PSD and correlation tests of 
the network trained using the resilient back-propagation training algorithm. The 

results of the NN-based model trained using the scaled conjugate algorithm can be 

found in Figures 2.78 to 2.80. The performance is quite good with respect to all 
available tests. 
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Figure 3.61 Pitch angle response with the LM learning method 
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Figure 3.65 Correlation validation between V. and a,, of the LM method 

10' -T T PSO of NN-M 
NN'a»Md M0 PSD of Mal I 
Real TRMS 10° 

0.5 
10' 

0 

010 
C -0.6 

10ý c30 
ý 

cd _1 10. 

4.5 10, 

10, 
_20 p 

1ý0 0 1.5 2 

time (sec) Frequency (Hz) 

Figure 3.66 Yaw angle response with the BFGS learning method 
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Figure 3.67 Pitch angle response with the BFGS learning method 
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Figure 3.69 Yaw angle response with the BR learning method 
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Figure 3.70 Pitch angle response with the BR learning method 
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Figure 3.71 Correlation validation between V and a. of the BR method 
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Figure 3.72 Yaw angle response with the CGB learning method 
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(c) Cross-correlation of residuals 
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Figure 3.74 Correlation validation between V,, and a� of the CGB method 
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NN-band Model PSD of NN4xLNd r ý 

... Red TAMS 10 
P80 o ui TRN8 

10a ' 

ý 
10a 

cý10a 

10a 

p- --- ý0 60 6D 10p 
70 

0 0.5 1 1.6 2 

time (scc) Frequency (Hz) 
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The MSE of the train and test results for both the vertical and horizontal channels are 

presented in Table 3.3. The maximum number of epochs is selected to be 500 for all 

methods in order to be able to compare the results. 

Table 3.3 Performance comparison of the training algorithms 

Learning Method Yaw angle MSE Pitch angle MSE 

Train 1.21x10-' 4.66x10-5 
LM 

Test 1.35 x 10-4 1.08 x 10-4 

Train 1.81x10'4 8.9x10-' 
BFGS 

Test 3.1x10-4 1.88x10-4 

Train 1.05 x 10-4 3.99 x 10-s 
BR 

Test 1.51x10-4 1.17x10-4 

Train 2.08 x 10-4 2.81 x 10-4 
CGB 

Test 3.76 x 10-4 7.79 x 10-4 

Train 1.52 x 10-3 3.42 x 10-4 
RP 

Test 2.29x10-3 7.02x10-' 

Train 2.51 x 10-4 5.13 x 10-4 
SCG 

Test 7.69x10"` 1.56x10-3 

The network has been trained with all aforementioned training algorithms; however, 

the performances of some of them, e. g. gradient descent algorithm, are so poor that 
their results are not presented here. Clearly, Levenberg-Marquardt and Bayesian 

regularisation algorithms outperform their rivals on the basis of the decisive factors, 
i. e. MSE, PSD test and correlation validation tests. Resilient method shows 
acceptable parameter estimation capability when dealing with the MIMO system. 

3.5 Conclusions 

The NN-based black-box model of the TRMS has been presented and evaluated in 
this chapter. It can be observed from the results that the error of the empirical model 
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using efficient learning algorithms is less than that of the analytical model. Although 
the analytical model is less accurate, it is generally valid for any input signal with 
any frequency. The empirical model is only valid in the range of the training data 

provided. Also, in the case of black-box modelling, the structure of the process is lost 

and this is one of the drawbacks of empirical modelling. The significant advantage of 
NN-based modelling techniques is that the model is easy and fast to develop. 
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CHAPTER 4 

Nonlinear Grey-box Modelling 

This chapter presents a grey-box modelling approach for the TRMS using GAs. The 

dynamic equations of the system in terms of its 2DOF dynamics, developed using the 
Newtonian method in Chapter 2, are used here. In order to improve the accuracy of 
the white-box model, the estimated parameters are retuned using a GA-based 

optimisation approach. A set of data is extracted from the real TRMS, and the 

objective has been to minimise the error between the real and the model outputs. The 

estimated parameters of the system are utilised as the initial populations of the GA to 
lead to the convergence faster. The performances of the white-box and the grey-box 

models are compared with respect to each other to validate the improvement of the 

grey-box model. 

4.1 Introduction 
Most of the industrial systems are nonlinear, but they are often presented by a set of 
linear differential equations such as state-space equations for simplicity. Since 
differential equations are usually derived from the physical operational mechanism 
of a system, they should accommodate its nonlinear description to represent an 
accurate model. However, a practical system may contain unknown parameters that 

appear in modelling and should be identified as accurately as possible. It is thus often 
impossible to measure or calculate every parameter to build an accurate white-box 
model for a practical system. If a black-box model is attempted instead, structural 
information of the system is lost. 

The underlying dynamics of a practical engineering system and some of its physical 
parameters are usually known a -priori. However, some of the parameters cannot be 

precisely obtained with a white-box modelling approach, due to the system 
nonlinearity, complexity and constraints on the physical measurement. The system is, 
thus, a partially-known system and may be best modelled as a grey-box. Note that 
obtaining accurate differential equations that have ä focused dynamic structure is 

t 
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desired in many applications. Hence, a grey-box model should explicitly utilise prior 
knowledge the way it is used to derive white-box dynamic structure using physical 
laws. This forms the white part of the grey-box, and the unknown parameters can be 

obtained through an appropriate optimisation process. 

Such an identification problem is, in general, a nonlinear optimisation problem in a 
multi-dimensional and, usually, multi-modal space. The optimisation task is difficult 
to be performed by conventional optimisation techniques, since they require a 
smooth search space or a differentiable error objective function. In addition, these 

conventional gradient-based techniques may encounter difficulties due to noisy data 

or only offer local optima. These numerical difficulties can, however, be overcome 
by meta-heuristic optimisation algorithms such as GAs that intelligently explore a 
poorly understood solution space in parallel by evolutionary trials without the need 
for differentiating the index or for linearly separable parameters [33]. Such non- 
deterministic methods have been shown to be able to search for optimal parameters 
and structures simultaneously and to be very efficient and powerful in solving high 

order systems and control engineering problems. 

4.2 Analytical Equations of the TRMS 
For the sake of simplicity, the developed nonlinear state-space equations of the 
system in the previous chapters are represented here. 

di1, 
__ 

Rah 
iah _ 

kancoh 
wn +. Uh (4.1) dt La, La, Lah 

d wh 
= 

km, (Ph, B« fý ýwh 
O)h dt �d �ll �fr (4.2) 

dSn 
_ 

1,12 (wn )cosa, -kvg 0h f3 (an 
dt D cost av +E sine av +F 

(4.3) 

da, 
_skm 

wv cos a 
dt h +D 

cos' av +E sine av +F 
(4.4) 

q, 2 dt Lý "i" 
kL 

wY +-Uv (4.5) La1 

dg 
_k. ýPý 1 _BmrW _ra(wv) (4.6) dt 

. 
lmr 

'Jmr `1mr 
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dSv 
-lmf5(0v)+kgQjf5(0v)cos%-kvfrR dt ill (4.7) 

+g 
[(A - B) cos a, -C sin a,, ]_0.502 H sin 2aa 

Jv 

drv = sv + 
k' 

wh (4.8) 
v 

where, 

= f 
1 

CCÜh 
i kthpco if >0 _ oh 

-kJhn COh if a )h <0 

= f2 wh 
knpwh if 0-)h >- 0 

-kahn wh if oh <0 

f3 (ah) 
= 

khpah if ah 2ý 0 

kCh�ah if ah <0 

fa 
ktypai 1 if Co, >0 

-kNnaý if Q! 
v 

<0 

f sý 
J= w kfvp 

2 
if wv >_0 

_k1, � w if o< 0 
l6mü)v cos a, 

S2" s" +D 
cost av +E sine av +F 

Qv = . 
Sv + 

kh 

iv 

M A= (2 +m� +m13)1, 

B= (2 + m, �. + m,,,. s 
)1, 

� 

mb C= (2 lb +mcb 1Cb) 

D=(3 +mmr+mms)lm+( 3` +m�+mu)j2 

E= 3b 
lb' 2 +mcbl b 

m F=mmsrms+ ,si 
2 
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H =A 1, +B 1m -2 Ib -mcbl b2 

Note that it is assumed that the interface circuits between the computer and the 
TRMS for the two channels are linear and their gains are k, and k2 for the 
horizontal and the vertical channels respectively. For their nonlinear relationships, 

see Chapter 2. Also, the viscous friction torques of the beam in the horizontal and 
the vertical planes have been considered, and the Coulomb and static frictions have 

been neglected in this study. 

4.3 GA-based Parameters Identification 

The grey-box approach to be employed to model the system combines the merits of 
both the white- and black-box modelling approaches. The approach outperforms each 

of the white-box and the black-box modelling approach used separately. In doing so, 
the nonlinear state-space equations of the system have been extracted considering all 
the effective forces. The measurable parameters have then been measured as 

precisely as possible and the unknown parameters have been estimated off-line using 
a powerful biologically inspired optimisation method, a GA. Note that before 

executing the optimisation program it is necessary to initialise a reasonable range, 
upper and lower limits, for each of the unknown parameters. A set of data has been 

extracted from the real TRMS and the objective is to minimise the weighted sum 
squared error between the real and the model outputs. The unknown parameters have 
been estimated by physical description of the system to be used as the initial values 
of the optimisation methods to speed up the convergence procedure. Figure 4.1 

shows the block diagram of the iterative identification procedure. 

From an operational perspective, a GA comprises two basic elements: a set of 
individuals, i. e. potential solutions (the population) and a set of biologically inspired 

operators active over the population. A new set of solutions is created at each 
generation, by the process of selecting individuals according to their level of fitness 
in the problem domain and breeding them together using the operators. This process 
leads to the evolution of populations of individuals that are better suited to their 
environment than the individuals that they were created from, just as in natural 
adaptation [121]. The flowchart of a simple GA is shown in Figure 4.2. 
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Figure 4.1 The block diagram of the iterative identification procedure 
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Figure 4.2 The control and data flow of a GA 
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The process is briefly described here. Consider an objective function as, 

J =fob; (x 
1, x 2,..., x�) (4.9) 

which depends on the chromosomes, x1, x2,.... x,,. Analogous to any optimisation 

problem, the aim is to minimise the objective function, J, by finding optimum 

values of the chromosomes that can be binary, grey or real codes. A vector of 

chromosomes is called an individual, x=[x1, x2,..., xn], and a number of individuals 

form a population. At each generation a new set of individuals is created to have 

probably higher fitness values compared to the previous generation. The first stage of 

a GA optimisation is generating an initial population. Using the elitism operator, the 

best individuals are found to be directly sent to the next generation. Selection 

operator receives the population pool at each generation and forms the mating pool. 
Some widespread types of selection methods are roulette wheel, tournament, uniform 

and stochastic uniform. After selecting the parents, the offspring pool is created by 

applying the crossover and mutation operators. Some common crossover functions 

include single point, two points, and scattered methods. At this point, the new 

generation is ready to be assessed, and termination criteria need to be checked. If the 

termination criteria are met, the optimisation program terminates and the best 

individual of the latest generation is chosen as the optimum result, otherwise the new 

generation is relocated to the population pool and the procedure repeats. For more 
information on fundamental of GAs one can see [ 121 ]. 

The steps of the identification problem are summarised as follows, 

" Extract the nonlinear equations of the system using analytical approaches, 
" Measure the measurable parameters, 

" Estimate the unknown parameters, 

" Provide a set of data from the real system, 

" Run the GA optimisation to optimally find the unknown parameters. 

4.4 Results 

As mentioned before, all parameters of a plant-model may not be found in a 
straightforward manner and some tools such as GAs can be used to facilitate the 
parameter identification of the model; the so-called parameter identification is the 
most challenging stage of any modelling problem. 
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In this investigation, the unknown parameters, chromosomes, are assumed to be kjhp 
, 

kihn I 
kfvp , 

kfvn , 
k/hp , 

kihn 
, 

krvp 
1 

kivn 
, 

kchp 
, 

kchn 
, 

k, 1h , 
kvfv 

, 
k, 

' 
km 

, kg , 
Jtr 

I 
Jmr 

Btr , 
Bmr I 

Jv. Although some of these parameters can be calculated using physical 

approaches, in order to obtain a more accurate model, these parameters have also 
been considered to be optimally obtained. A vector containing a set of values for 

these 20 chromosomes forms an individual. In this work, the number of population at 

each generation is set to be 25 individuals, and the maximum number of generations 
is chosen to be 200. Note that the type of population, selection function, crossover 
function, and mutation function are real double vector code, roulette wheel, scattered, 

and uniform respectively. Number of elites, crossover probability, and mutation 

probability are set to be 2,0.8, and 0.01 respectively. The MATLAB toolbox on GAs 

[ 122] is used to carry out the optimisation. 

In order to validate the grey-box model, it has been tested with various input signals. 
The response of the developed grey-box and white-box models in terms of the 2DOF 

dynamics of the system are presented in Figures 4.3 to 4.24. In some cases, both 

white-box and grey-box models demonstrate perfect responses; therefore, only the 

results with observable differences are shown here. For instance, according to 
Figures 4.3 and 4.4, the grey-box approach outperforms white-box method; however, 

no significant improvement can be observed in the case of Figures 4.11 and 4.12. It 
is clearly demonstrated that the grey-box model has, overall, shown better 

performance compared to the white-box one. Note that all the figures have been 

zoomed in to make the improvement clearer. 
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A GA-based grey-box model has been presented for the TRMS in order to improve 

the performance of the previously developed white-box model. Table 4.1 presents a 

comparative study between the grey-box and the white-box models. It is clear that 

the grey-box model outperforms the white-box model in terms of the MSE. As 

presented in Table 4.1, the MSE of the yaw angle in the case of the grey-box model 
is 0.0024 as against 0.0089 in the case of the white-box model. Similar performance 
is achieved in the case of the pitch angle. In this case, the MSE 0.0068 is obtained 

with the grey-box model as opposed to 0.0116 in the case of the white-box model. 

Table 4.1 Comparative study of the white- and grey-box models 

Grey-box White-box (Newton) 

MSE of the yaw angle 0.0024 0.0089 

MSE of the pitch angle 0.0068 0.0116 
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CHAPTER 5 

Stability Analysis of the TRMS 

In this chapter, the stability of the TRMS is analysed in terms of its IDOF and 2DOF 

dynamics. First, the equilibrium points of the system are calculated and then using 
Lyapunov's linearisation method, the local stability of the system in terms of the 

2DOF is proven. The global stability of the system in terms of its IDOF dynamics is 

analysed using the Lyapunov and invariant set theorem. The visual method of 

stability, phase plane, is employed to show the stability of the system in terms of the 

1 DOF dynamics. 

5.1 Introduction 

Nonlinear systems may have some special properties, which cannot occur in the case 
of linear systems [123]. For instance, in an unforced linear time-invariant system of 
the form of x= Ax, the system has only one equilibrium point if the matrix A is a 
non-singular matrix. However, in the case of nonlinear systems, it is frequently 

possible to encounter with multiple equilibrium points. Therefore, it is of great 
importance to find all the possible equilibrium points of a nonlinear system before 

controller design and synthesis. A nonlinear system may exhibit fixed amplitude and 
fixed frequency oscillation without any external excitation, called limit cycles. Note 

that the amplitude of a limit cycle is independent of the initial state values. Similar to 
linear systems, if the parameters of a nonlinear system are changed, the stability of 
the equilibrium point may vary. However, in the case of nonlinear systems the 

number of equilibrium points may also alter as a result of parameter variations. The 

values of these parameters at which this phenomenon happens are well-known as 
bifurcation values. Chaotic behaviour is another property that some nonlinear 
systems display. If the behaviour of a nonlinear system is extraordinarily sensitive to 
its initial state values, the system is considered to be a chaotic system and the 
phenomenon is called chaos. 
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5.2 Equilibrium Points 
Equilibrium points of an autonomous nonlinear system of the form i=f (x) can be 
found by solving the nonlinear simultaneous equations f(Xeq )=0. In the case of the 
TRMS, the following equations need to be solved to obtain the equilibrium points, 

-Ra, 'ah -kt, PPhCoh =0 (5.1) 

kahphi -Btr(Oh �1(0h0 
(5.2) 

1112(coh)coS(av +av0) f3(ah)=0 (5.3) 

kmo cos(a' +av0) 
Sh +D 

cost (av + av o) +E sine (av + a, o) +F0 
(5.4) 

-R,,, i,,, - ka,, Vv co, =0 (5.5) 

k,,, cOViw -Bmrco, -f4(a )=0 (5.6) 

Im f5 (wv)+g [(A 
-B) cos (a' +avo) -C sin(av +a, o)]=0 (5.7) 

SV + 
Jt 

wh =0 (5.8) 
J, 

where, 

CÜ = ftCh 
kthl cow if COh Z0 

-k, hn wh if Wh <0 

f2(Coh)= 
kjhpC if COh >_0 

-kjh,, w,, if wh <0 

13(ah 
k`hpa. if ah z0 
kChnah if a. <0 

fa ýý= knp 2 if cq, z0 
kWn 2 if wO <0 

A(wv)= 
kfPO2 if co z0 

-k f, n 
2 if co <0 

It is evident that the system has multiple equilibrium points as, 

Xeq = 
[O 000000 aT (5.9) 

where, 
x=[ice,, Wh Sh an iay a sy a]' 
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a=±n, r for n=0,1,... 

However, due to a mechanical restriction on the system only one equilibrium point is 

feasible that is the origin. 

5.3 Local Stability 
According to Lyapunov's linearisation stability, if a linearised system around its 

equilibrium point is strictly stable, then the equilibrium is locally asymptotically 
stable for the nonlinear system. The linearised equations, x= Ax, of the TRMS 

around the equilibrium is as follows, 

lah - 
Rah 

- 
kahcoh 

0 00 0 00 
-'ah 

Lah Lah 

Wh 
kahcPh Blr 0 00 0 00 wh 

J 
Ir `1Ir 

sh 00- 
kk 

- 
kk° 

0 - 
k"k 

cos a"o 00 Sh 

d a. 001 00 
Lc 

os a"o 00a. 

dt 000 0 
R°" ka" ýV" 00 iav L L iar 

W, 

Si, 

-u -av 
0000 

kov(Pv 
- 

-mr 
00 

', ml. ',. r 

0 
k°f'k` 

0000- 
k-f, gkr 

Jv Jv iv 
k 

i co, 
I sv 

La, JI0 Jv 000010 j[av] 
L 

(5.10) 

where k= Dcos2 av0 +Esin2 aYo +F and k' _ (B-A)sinavo -CcosaY0. The 

eigenvalues of the matrix A are strictly in the left-half complex plane and therefore, 
the equilibrium point is locally asymptotically stable for the nonlinear system. 

5.4 Phase Plane Analysis 

As mentioned before, the TRMS is a system of the order of 8 in the case of its 2DOF 
dynamics. However, when dealing with the 1DOF dynamics, the system is divided 
into two forth-order subsystems. One of the powerful methods to graphically analyse 
the stability of second-order systems is the so-called phase plane analysis. Although 
the approach can be extended to third-order systems, it is restricted for higher order 
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systems such as the TRMS even in its 1DOF dynamics. Nevertheless, in the case of 
the 1DOF TRMS the second-order equations of the electric motor can be analysed 

separately from the other parts of the system in the case of both channels due to the 

cascade nature of the system. Figure 5.1 shows the block diagram of the 2DOF 

TRMS. Its decoupled systems which can be considered two separate systems, the 

I DOF horizontal and the 1 DOF vertical, are depicted in Figure 5.2. 

Therefore, four systems of the order of two (i. e. the main motor, the tail motor, the 

vertical dynamics and the horizontal dynamics) need to be analysed. Note that based 

on the stability of separate parts of a system one cannot conclude the stability of the 

overall system; however, when the subsystems are connected to each other in 

cascade, some results on the overall stability can be concluded. 

Uv 

Uh 

J 2°a order 
main motor 
equations 

2nd order 
tail motor 
equations 

------------------------ 
0), ., 

' 2nd order 
vertical 

dynamics 

wh 

2°a order 
horizontal ' 
dynamics 

----------------------- Nonlinear dynamics 

Figure 5.1 The block diagram of the 2DOF TRMS 

2°a order 2nd order 
UV main motor vertical a v 

equations dynamics 

av 

ah 

2nd order w 2nd order 
Uh tail motor " horizontal a" 

equations dynamics 

Figure 5.2 The block diagram of the decoupled TRMS 
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Since the equations of the main motor are independent of other parts of the TRMS, 

therefore its stability can be analysed using its phase portrait. Let recall the second- 

order unforced autonomous equations of the main motor as follows, 

dia, 
__ 

Rte, 
l 

k,,, gyp,, 
dt Lam, Lam, CoY (5.11) 

d wv 
_ 

kav Vv .- 
Bmr 

w -f4 
(wv) 

(5.12) l' v a dt 
7mr 

', mr '1 mr 

where, 

fa (wY k�ae if co, >_0 
k�, 

nwy 
if wv <0 

Solving the above nonlinear differential equations according to various initial 

conditions and plotting on one graph leads to the phase portrait of the system. One 

can easily obtain the phase portrait of the main motor as shown in Figure 5.3. In 

order to obtain a more sensible graph, the phase portrait of the main motor has been 

redrawn for a higher value of armature inductance, La,, , as shown in Figure 5.4. 

The same approach is repeated for the tail motor as shown in Figures 5.5 and 5.6 

according to the following unforced autonomous equations, 

di 
=_R te, ka, (ph 

dt La,, 1 ah Lah wh (5.13) 

d wh 
_ 

kah (Ph 
1-ah _ 

Bi, 
Co _A 

(wti) 
(5.14) dt Jr, J, 

r itr 

where, 

fl (wh)= khpwh if Coh Z0 

-kthnch if wh <0 

As it is evident from the figures, the equilibrium point is a stable node for both 
motors, as all the phase planes converge to the origin, the equilibrium point, 
regardless of initial conditions. 

Now, consider the unexcited autonomous vertical dynamics of the system by the 
following equations, 

d(),, 
-g 

[(A -B)cos(a +ao)-C sin(a, +a o)]-k,, Ck 
(5.15) dt 
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r dd 
= S2, (5.16) 

The phase portrait of the second-order vertical dynamics of the system is depicted in 

Figure 5.7. Clearly, the equilibrium point of the system is stable as all the trajectories 

converge to the origin. The governing equations of the horizontal dynamics can be 

expressed as, 

d 2h 

= 
-kvftch -f3 

(ah 

dt D+F 

d ah 
= nh (5.18) 

dt 

where, 

f, (ah }= kchpah if ah >_ 0 
k, h�ah if ah <0 

The phase portrait of the horizontal dynamics can be found in Figure 5.8. In order to 

show the stability of the TRMS in terms of its 1DOF horizontal and vertical, two 
forth-order systems are presented and analysed. The equations of the 1 DOF 
horizontal dynamics of the TRMS can be expressed as, 

dý fanlah 
_kýcohwn (5.19) 

ý, ah 
dah 

=ka, 
(VhlaBr. 

Cohfi(wn (5.20) 
dt it, it, JI, 

doh 
_1rf2(wh)-kvfhK)h 

f3(ah) 
(5.21) 

dt D +F 

dal, 
_ `' (5.22) 

dt 

The above system is a forth-order system. As mentioned before, due to the fact that 
the governing equations of the tail motor is independent of the last two state 
variables, Oh and ah , 

its stability can be considered using a 2D phase portrait as 
shown in Figure 5.5. Also, the stability of the overall 1 DOF horizontal system can be 

represented by a 3D phase portrait. In this context, the nonlinear differential 

equations (5.19)-(5.22) are solved with various initial conditions. Then, only the last 
three state variables of the system are considered in the 3D phase portrait because the 
first state, i., , has direct effect on the second state variable and their stability has 

already been proven by another 2D phase portrait. The 3D phase portrait of the 
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overall horizontal dynamics is depicted in Figure 5.9 that shows the system is 

asymptotically stable. Similarly, the overall forth-order vertical dynamics is stable as 

shown its 3D phase portrait in Figure 5.10. The governing equations of the 1DOF 

vertical TRMS are as follows, 

di, 
__R,,, i 

ay _ 
kL (o, 

0)" (5.23) 
av 

dwv 
_ 

k1, Po . 
Bmr 

011 
ý(5.24) 

dt Jmr J. 
' mr 

dR 
=lJ5(a, 

)+g[(A-B)cos(a, ' +a, 0)-Csin(a,; +a,, )]-kVf, Q, (5.25) 
dt Jv 

dav_ý 
dt 

(5.26) 

U 
0 

. ý. U 

iav (A) 

Figure 5.4 The phase portrait of the main motor with a higher inductance 
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Figure 5.5 The phase portrait of the tail motor 
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Figure 5.9 The 3D phase portrait of the horizontal dynamics 

Figure 5.10 The 3D phase portrait of the vertical dynamics 
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5.5 Limit Cycles 
As it is clear from the phase portraits, there is no limit cycle in each case. However, 

using Bendixson's criterion it can mathematically be proven. Bendixson's criterion 

says for a second-order nonlinear system of the form of 

X' =f'(X''x2) (5.27) 
X2 =f2(xi, x2) 

there is no limit cycle in a specified region of the phase plane if of 1 
/ax, + of 2 

/Ox 
2 is 

non-zero and does not change sign. The following expressions show this test for the 

main motor, the tail motor, the vertical dynamics and the horizontal dynamics 

respectively. 

afl l ax, +af2 
/ax 

2- Lý 
- 

ýmr 

-2 
Jfp/n 

fo l<O (5.28) 

w mr mr 

L9f 1IÖX1+af2/ 2=-L°'' 
Btr -2 

tpln Iwhl<o (5.29) 
ah tr tr 

afl/aX1+af2/ax2 ý° <o (5.30) 
v 

af1 lax1+af2lax2 =-D F <0 (5.31) 

where 

_ 
ktyp/n k1vp J if Co, z0 

kjvn if co <0 

k`hpln 
k, hp if wh z0 
kthn if i Co, <0 

Unfortunately, the Bendixson's criterion cannot be utilised for higher order systems; 
however, accörding to the phase portraits, there is no limit cycle for both the 1 DOF 

vertical and horizontal systems. 

5.6 Stability in the Sense of Lyapunov 
In order to illustrate the global stability of a system, Lyapunov's linearisation 

stability method cannot be utilised anymore. In this section, the global stability of the 
TRMS is considered. 
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5.6.1 The 1DOF Horizontal 

Consider the dynamic equations of the TRMS in terms of its 1 DOF horizontal, 

equations (5.19)-(5.22). Since the tail motor dynamics is decoupled from the rest of 
the dynamics, if one can guarantee the exponential stability of the tail motor, the first 

two equations, then the asymptotic stability of the total system can be guaranteed by 

the exponential stability of the second part, horizontal dynamics and if the horizontal 

dynamics is Lipschitz in its state variables [125]. Generally, the phase portrait shown 
in Figure 5.5 cannot provide the opportunity to distinguish between global 

asymptotic stability and global exponential stability. Therefore, one needs to find a 

radially unbounded Lyapunov function V (x) (i. e. V (x) -+ oo as I, xll -> co) to satisfy 
V (x) < -aV (x) for a strictly positive value of a. To this effect, the Lyapunov 

function of the form of V (x) = xT Px is chosen where, 

X-ýlah cohf 

and 
ký cPh 0 

P= 
J" 

0 
k. ý coh 
Lt, 

The tail motor is exponentially stable for any positive value of a which satisfies, 

2Ra, 2B� 
a<min La, 51 J1, 

Since the tail motor system is globally exponentially stable, the state variables i4, 

and wh in equations (5.21) and (5.22) can be substituted by i,, and 15.. The 
equations can be rewritten as, 

i d a" ko ký a" 
+ 

0( 
(5.32) dt chp/n 

_vIf 
\ý 

. 

[ah 1+ ['t 

2" " D+F D+F h 

where 

kchp if ah z0 kcipýn 
- 

ll6chn if ah <O 

which is a globally exponentially stable system as it is a linear system in the standard 
controllable form with all negative coefficients in the last row of related matrix A. 
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The horizontal dynamics is globally Lipschitz in a,, and 52,, , and also Lipschitz in 

co, from the practical point of view because co,, has upper and lower limits. 

Therefore, the forth-order 1 DOF horizontal system is globally exponentially stable. 

5.6.2 The 1DOF Vertical 

Similar to the, tail motor, the main motor is globally exponentially stable. Therefore, 

it is enough to show the global exponential stability of the system dynamics 

presented by equations (5.25) and (5.26) where w, is substituted by w,, . The 

equations can be rewritten as follows, 

d9l" 
_ -a1 , -a2 sin ay +a3I 15, (5.33) 

dt 

dc 
dt -ý'' (5.34) 

where, at , a2 and a3 are positive constants. The candidate Lyapunov function can 
be obtained from the augmentation of the kinetic and potential energies as follow, 

V=Z Qv - a2 cos a,,, + a2 (5.35) 

Unfortunately, the differentiation of the Lyapunov function is not negative definite 

and, in fact, it is negative semi-definite, 

V=-a, 0' 50 (5.36) 

Fortunately, in such a situation it is still possible to provide the asymptotic stability 
of the system with the aid of LaSalle's invariance principle [124]. Consider an 
autonomous dynamic system as z= f(x) . Assume a compact (closed and bounded) 

positively invariant set il - and a Lyapunov function V on fl exist for the mentioned 
dynamic system. Define the set 

N={xER" (V(x)=0} (5.37) 

This means N is the set of all points within SZ where V(x) = 0. Now let N' be the 
largest positively invariant set in N. Then every solution of the dynamic system on 
St approaches N' as t -). +oo. This theorem is well-known as LaSalle's invariance 

principle [124]. 

With regard to the dynamic system represented by equations (5.33) and (5.34), the 
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sets SZ and N can be defined as, 

SL = 
{(S2v, 

aY) E RZ } (5.38) 

N= {(0, av) a, ' E RI (5.39) 

and consequently, the largest positively invariant set in N is found as, 

N* = {(0, kir) IkE Z} (5.40) 

However, due to the mechanical restriction, the set fl and N are modified as, 

SZ= 
ý(Q, 

a, )ERZý-2-a, o<a', <2a, (5.41) 
01 

N= (O, a') l-2-a 
.o <a. < -a, (5.42) 

2 01 

and the plausible invariant set is, 

N* = (0,0) (5.43) 

Therefore, every solution originating from the fl tends to N' as t -> +00 and 
subsequently, the system is uniformly (almost) globally asymptotically stable. The 
Lyapunov function and the sets N (blue line) and N' (red dot) have been shown in 
Figure 5.11. 

12, 
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8 

6- 

4, 

2 

0 
2 

N 0 

SZV (rad/sec) 0 
-2 -1 Ný 

2 

a, (rad) 

Figure 5.11 The Lyapunov function and the sets N and N* 
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Unfortunately we could not show the exponential stability of the vertical dynamics 

and only the asymptotic stability has been guaranteed. Therefore, the stability of the 

vertical dynamics is guaranteed when the effect of the main motor is neglected. 

5.6.3' The 2DOF TRMS 

In order to show the stability of the 2DOF TRMS, consider the global exponential 

stability of the tail and main motors as shown before. The forth-order equations of 
the rest of the dynamics can be expressed as, 

dSh 
= 

lIf2 (Foh ) cos a" -k". mQh -. f3 (ah) 
(5.44) 

dt D cost a" +E sin 2 a" +F 

dah 
=S + 

k, 
� 
w" cos a" (5.45) 

dt h Dcosta"+E sine a, +F 

dS" 
_. 

f5 (, )(1m +kg 52,, cosa")-k"f"SZ� 
dt �" (5.46) 

+g 
[(A -B )cosa" -C sin a" ]-0.5S2hH sin 2a" 

J" 

dd 
" =S" +"1@,, (5.47) 

where, Ph = Üh and 52,, = czv An order to prove the stability of the TRMS in terms 

of its 2DOF dynamics, the centrifugal and gyroscopic torques are neglected (i. e. 
H= kg = 0) and therefore, the vertical channel is independent of the horizontal 

channel and its stability is the same as done for the 1DOF vertical channel. The 

equations of the horizontal channel can be written as follows, 

dSh 

- 
-kv hSh -kchp/nah 

(5) 
dt D cost av +E sine av +F . 48 

dd h =sh (5.49) 

Before any attempt to prove the stability of the 2DOF TRMS, the following lemma 
needs to be considered, 

Lemma 5.1 [125], [126] Consider a Hurwitz matrix AE R", ", matrices Be R"x', 
CE R'x" and some number y>0. Denote A; :=A- yBC and A, :=A+ yBC. The 
following conditions are equivalent: 
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(i) There exists P= PT >0 such that 

PAy + (AY )T P<0, PAy + (A7 )T P<0 (5.50) 

(ii) The matrix A is Hurwitz and I C(f wI - A)-'B j< y for all C OE R 

Let rewrite equations (5.48) and (5.49) as follows, 

q, =q2 (5.51) 

qz =f- (t) 
(-a1 ql -a2 q2) (5.52) 

where D=aS 
f1 SQ= 

D+F+cs 
1 

-D>S; n2 . 
Note that av a` is assumed to be 0.7 rad. 

Let 8= 2216 and y= a-a and define the nominal matrix of A and matrices B and 
C as, 

01 
A= (5.53) nom 

_öaa -Sa2 

B=01 (5.54) 

C= [al a2l (5.55) 

Now A; and AY can easily be found as 

Ay = Anom - YBC 
0 

= 
-ß t -ß 

(5.56) 
a1 aZ 

.-01 Ar = Anom +'YBC = 
-aal -a a2 

(5.57) 

According to lemma 5.1 if I C(i wI - A)-' B j< r for all co eR then there exists a 

positive definite matrix P such that PA7 + (Ay )T P<0 and PA' + (AY )T P<0 

satisfy. Then the Lyapunov function is V=2 [q, q2 ]P[q, q2 ]T . To this end, the 
following condition needs to be held, 

a4 +[aßai -(ß+a)al]w2 +a pal >0 (5.58) 

It will be satisfied if its discriminant is negative, viz, 

A=[ala2-(, O+a)a1]2-4aßa, <0 (5.59) 

The above condition holds as long as the pitch angle remains in the interval of [-0.7, 
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0.7] rad. Therefore, the TRMS in terms of its 2DOF dynamics is asymptotically 

stable as long as the pitch angle stays inside the aforementioned interval. 

Here, we are trying to use another approach to prove the stability of the TRMS using 

generalised Krasovskii theorem. 

Theorem 5.1 (Generalised Krasovskii Theorem) [123] Consider an autonomous 

system i= f(x) with the equilibrium point of interest being the origin, and let A(x) 

denote the Jacobian matrix of the system. Then a sufficient condition for the origin to 
be asymptotically stable is that there exists a symmetric positive definite matrix P, 

such that Vx #0, the matrix 

F(x) =ATP + PA (5.60) 

is negative definite in some neighbourhood of the origin. The function V (x) = fT Pf 
is then a Lyapunov function for the system. 

According to equations (5.51) and (5.52), the Jacobian matrix can be defined as, 

01 
A a, a2 (5.61) 

f(r) f (t) 
where again a:: 9 fSß. Assume that the symmetric positive definite matrix P is 
defined as, 

P= p11 P12 
(5.62) 

Pu P22 

Therefore, the matrix F(x) can be formed while the entries of P are unknown and 
should be found in such a way the matrices -F(x) and P become positive definite. 
To this end, the principal minors of -F(x) and P must be positive. The following 

matrix satisfies the conditions, 

3.3 1 
1 20 

5.7 Conclusions 
The TRMS is a nonlinear system with multiple equilibrium points; however, due to 
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the mechanical restrictors only one equilibrium point is feasible, which is the origin. 
On the basis of Lyapunov's linearisation method, the equilibrium point is locally 

asymptotically stable. The dynamics of the TRMS in terms of 1 DOF horizontal and 
1DOF vertical are globally asymptotically stable using Lyapunov and invariant set 
theorems. The TRMS in terms of its 2DOF dynamics is asymptotically stable as long 

as the pitch angle lies in the interval of [-0.7,0.7] rad. 
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CHAPTER 6 

Nonlinear Model Predictive Control and 
Stability 

This chapter investigates the development of a full state feedback NMPC approach 
for the TRMS. The method is well-known as multistep Newton-type control strategy; 
however, the formulation here differs from the original one and has some advantages 

over it. A state-dependent model is used to find the linear models at each instant. The 

stability of the nonlinear MPC control system is provided using terminal equality 

constraints. 

6.1 Introduction 

Nowadays, there is no doubt that MPC is one of the popularly used multivariable 
control algorithms in industrial processes and indeed in other areas [9]. Note that 
MPC displays its main strength when applied to problems with some characteristics 
as follows, 

" Large number of manipulated and controlled variables 
" Constraints imposed on both the manipulated and controlled variables 
" Changing control objectives and equipment failure 

" Presence of time delays 

The concept of all the controllers belonging to the MPC family is characterised by 

the following steps, 

1. A plant-model predicts the future outputs for a pre-determined horizon, called 
the prediction horizon NP, at each instant k. These predicted outputs 
y(k +iIk), i =1,2,..., N, depend on the past inputs and outputs, and also 
the future control signals u(k +i I k) for i=0,1,..., N 

p -1 
(u(k +i I k) = u(k +Nc I k) for i> Nc 

, where Nc is the control horizon). 
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2. According to specific criteria a set of future control signals is optimally 

calculated to have the process output as close as possible to the reference 
trajectory (which is either the setpoint itself or an approximation of it). The 

augmented criterion, objective function, usually takes the form of a quadratic 
function of the errors between the predicted output signal and the predicted 

reference trajectory. The control effort is included in the objective function in 

most cases. 

3. Based on the receding horizon concept, the first part of the control signal, 

u(k I k), is sent to the process, whilst the remaining parts of the control 

signal are rejected [9]. 

The various MPC algorithms may differ from the perspective of the model used to 

represent the process, the noise, the constraints and the cost function to be 

minimised. The block diagram of a generic MPC is depicted in Figure 6.1. 

--- 
Optimisation 

--, 4mancey "' , Y'"ef- Objective 
function, and Plant 
Constraints 

Internal Model 
Model 

---------------------- 

Figure 6.1 The block diagram of a generic MPC 

When the internal plant-model and the constraints are linear, one is dealing with a 
linear MPC system and the mature linear MPC algorithms can be utilised. However, 

as stated previously, in the case of strict nonlinear systems, a linear internal model 
causes considerable performance degradation due to the fact that the performance of 
a model predictive controller severely depends on the model accuracy. Therefore, the 

necessity of nonlinear MPC approaches is obvious from a practical point of view. 

In this chapter, a stable multistep Newton-type MPC is used to control a constrained 
nonlinear MIMO system, the TRMS. The proposed approach is envisaged to be used 
for any other nonlinear system when an accurate nonlinear plant-model is available. 
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As mentioned before, the idea has been originated from the work of Li and Biegler 

[57]. The present research differs from the original one in terms of the way of 
formulation. In the original one, the objective function variables are the difference 

between the current and the nominal input trajectories; however, here the variables 

are input changes during the control horizon. Also, in this study, a state-dependent 

model is used to create a set of linear models at each instant based on the previous 

operating point; however, Li et al. [57] have used a Jacobian-based linearisation. 

6.2 Newton-type MPC Method 
A conventional linear time-varying MPC is an MPC method that uses a nonlinear 
model to update the linear model only at each sample time, k. This method has no 
satisfactory performance for a severe nonlinear system, since the method uses only a 
single linear model at each iteration and then updates it in the new step according to 

the current operating point. Specially, if the prediction horizon is assumed to be 

large, the error between the linearised model and the nonlinear model gradually 
increases as approaches to the end of the prediction horizon. In this research, the 
linear model is updated during the prediction horizon as well. The main problem for 

updating the linear model during the prediction horizon is that the operating points 
during the prediction horizon are unknown and the linearisation can be carried out 
only on the basis of known operating points. In this situation, one approach is using 
all the control effort from the previous iteration of the optimisation to linearise the 
nonlinear model during the prediction horizon. Instead of linearisation based on 
Taylor-expansion, a state-dependent state-space model is used to form a linear model 
by substituting the previous operating point into the state-dependent matrices. The 

state-dependent linearisation method is believed to perform significantly better 

compared to the Taylor-expansion-based linearisation, from the viewpoint of its 

application in multistep Newton-type MPC. 

6.2.1 Methodology 

Consider a nonlinear system with nu inputs, ny outputs and nx states described as 
discrete state-space equations as follows, 

Jx(k +1) =f (x(k ), u(k )) 
y(k) =h (x(k )) (6.1) 

where x(k) is the state vector, u(k) is the input vector, and y(k) is the output 
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vector, all at instant k. It can adaptively be linearised at each real' sample time, k, 

as the following discrete state-space equations, 

Jx(k +1) = A(k) x(k) + B(k) u(k) (6.2) 
y(k) = C(k) x(k ) 

or can be presented by a set of state-dependent state-space equations as, 

Jx(k +1) =A (x(k )) x(k) +B (x(k )) u(k) (6.3) 
1y(k)=C(x(k)) x(k) 

Note that the state variables and inputs related to the previous instant are used as 
initial conditions to linearise the nonlinear system at each time. Now one needs to 
linearise the nonlinear system Np times at each sampling instant according to the 
Np operating points from the previous instant of the optimisation results. 

Ji(k +i +Ilk)= A(x(k +i lk))1(k +i lk)+B(x(k +i lk)) ü(k +i lk) 

y(k +1 Ik)=C(x(k +i lk)) i(k +i lk) 

i=0,1,..., Np -1 (6.4) 

It is noted that for the simplicity of representation of the equations, the state- 
dependent matrix A (x(k +i I k)) is shown as A (k +i I k) and similarly for the 

other state-dependent matrices. 

To find the linear models, one can easily use the known values of x(k +iIk -1) 
instead of unknown x(k +i I k) where, i=0,1,..., N1, -1. In order to solve the 
optimisation problem of an MPC, one needs to obtain the relationship between the 
internal model outputs during the prediction horizon interval, 1SiS Np , and the 
internal model inputs during the control horizon interval, 0Si: 5 Nc - 1, where Np 

and Nc are the prediction and control horizons respectively, see Figure 6.2. If this 

relationship is linear and the constraints are also linear then the optimisation problem 
can be a linear quadratic problem. 

1 In model predictive control, two sample instants are considered and should be clarified to prevent 
any misunderstanding. One is real sample time, and the other is internal sample time. In term 
u(k + ijk) 

,k 
is the real sample time and k+i is the internal sample time. 

173 



Past Future 
" Internal model 

Reference output 
signal 

N 

time 

Internal 
model input 

-; ++++ 

Figure 6.2 The MPC approach of a SISO plant at time k 

Assume that all the state variables of the system are available (i. e. they can be 

measured or observed). The model state variables in the prediction horizon interval 

with respect to the current state variables and the future inputs can be expressed as, 

i(k + Ilk) = A(klk)x(k) + B(kjk)ü(kl k) (6.5) 

i(k + 21k) = A(k + ll k)i(k + Ilk) + B(k + Il k)ü(k + Ilk) 
(6.6) 

= A(k + ll k)A(kl k)x(k) + A(k + Il k)B(kl k)ü(kl k) + B(k + ll k)ü(k + ilk) 

i(k + 31k) = A(k + 21k)i(k + 21k) + B(k + 21k)ü(k + 21k) 

= A(k + 21k)A(k + ll k)A(k k)x(k) + A(k + 21 k)A(k + il k)B(kl k)6(k k) (6.7) 

+ A(k + 21k)B(k + Il k)6(k + ilk) + B(k + 21 k)ü(k + 21k) 

i(k+N,, Ik)= A(k+N1, -Ilk)i(k+N,, - Ilk) + B(k + N1, -Ilk)ü(k+N,, - Ilk) 

= A(k + N,, -1 k) """ A(k +1 k)A(kl k)x(k) 

+ A(k + N,, -1 k) """ A(k +I k)B(klk)ü(k k) 

+A(k+N,, -Ilk) """A(k+21k)B(k+llk)ü(k+Ilk) (6.8) 

+ A(k + N1, -llk)B(k+N1, -2Ik)ü(k+N1, -2k) 
+ B(k + N1, -lk)ü(k+N,, - Ilk) 

It is common to use the change of the input, Aü(k + ilk), instead of the input itself, 
ü(k + il k) 

, where eü(k + il k) = ü(k + il k) - ü(k +i- ll k) [1271. The inputs only 
change during the control horizon interval and remain constant after that, i. e. 
ü(k +i k) = ü(k + N, -1 k) or Dü(k + ilk) =0 for N. <i< N1, -1. The relationship 
between the inputs and the changes of the inputs are as follows, 
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ü(k k) = Aü(k k) + u(k -1) (6.9) 

ü(k+Ilk) =Aü(k+Ilk) +A6(kk)+u(k-1) (6.10) 

ü(k+N(. -1k)=Aü(k+N(. -Ilk) +"""+A6(klk)+u(k-1) (6.11) 

By substituting equations (6.9) to (6.11) into equations (6.5) to (6.8) the following 

equation can be written, 

z(k + Ilk) 

z(k+2k) 

i(k + N(. k) 
i(k+N(. +llk) 

i(k+N,, Ik) 

n'Npxl 

A(kl k) 7 

A(k + ll k)A(kl k) 

h 
A(k + N(. -ilk) 

N, +1 
fl A(k + N(. +l -ilk) 

NI, 

f A(k+N,, -ilk) 

n, Nxn, 

M�(k) 

M21(k) 

x(k)+ MN, , (k) u(k-l)+ 
MN, 

+1 
(k) 

MN,,. i(k) 
n, Npxtl� 

M�(k) 00 

M21(k) M2 2(k) """ 0 
Dü(klk) 

A (k+l k) 
MN,, I(k) MN(, 2(k) MN.. N,. (k) 

MN,. 
+1,1(k) 

MN,. 
+1.2(k) ... (k) 

nfi(k+N(. - Ilk) 

M 
Nv. 1 

(k) M 
N,,, 2 

(k) 
... 

M 
N,,. N,. 

(k) n, N, "xl 

n, Npxn�N,, 

where, 

M, , (k) = B(k k) 

M2,1 (k) = A(k +1 k)B(k k) + B(k + Ilk) 

M2, Z(k)=B(k+1k) 

N(. -2 N<, -I-j 

MN , (k) _ 
[flA(k+N. 

-ilk) B(k+ jlk)+B(k+N(. -Ilk) 

N(--2 N("-1-1 

MN2 (k) _ A(k + N(. -ilk) B(k + j1 k) + B(k + N(. - Ilk) 

(6.12) 
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M, v ,N 
(k) = B(k + N(. -1 k) 

N"-I N"-/ 

1VI v . +11(k) 
fl A(k + N(. +I -ilk) B(k + jl k) + B(k + N(. k) 

., 
ý 

, 1=0 1ý1 

. 
V(. -I V,. -/ 

MN 12(k)= 
flA(k+N,. +1-ik) B(k+jlk)+B(k+N(. jk) 

MN+, N (k) = A(k + N(. k)B(k + N(. -1 k) + B(k + N(. l k) 

N�-2 N,, -l-l 

MN, (k) = 1] f A(k + N,, -i k) B(k + jl k) + B(k + N,, -Ilk) 

NJ, -2 Np-1-I 

MN, 2 (k) =Yf A(k + N,. -i k) B(k + jl k) + B(k + N,, - Ilk) 
J=1 1-1 

N,. -2 N1, -1-/ 

MN N (k)_ flA(k+N,, - ilk) JB(k + ilk)+ B(k + N1, -Ilk) 
J=N( -1 =1 

Note that in equation (6.12), the first two terms are related to the past variables that 

are known and the last term is associated with the future signals that should be 

optimally calculated using an optimisation technique. The output predictions can be 

obtained as, 

Y(k+Ilk) C(k+Ilk) 0 """ 0 i(k + Ilk) 1(k+Ilk) 

y(k+21k) 
_0 

C(k+2lk) """ 0 i(k+2lk) 
+ 

d(k+21k) 

(k+N,, k) 00 """ C(k+N,, lk) z(k+N1, lk) d(k+N,, Ik) 
n, Npx1 n,, Npxn, Nr n, Npxl n, N,. x1 

(6.13) 

where d(k + ilk) is the disturbance that can be considered either a constant value for 

all i or can be estimated as the difference between the real and estimated outputs. 
Substituting (6.12) into (6.13) leads to the following equation, 

Y(k) = Mc(k)MA(k)x(k) + Mc (k)M B (k)u(k -1) + M(. (k)M 1, (k)AU(k) +Md (k) 
(6.14) 

where, 
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'(k + Ilk) 

Y(k) 
y(k + 21k) 

y(k+N1, k) 
nýNj. xl 

C(k + Ilk) 0 ... 0 

0 C(k+21k) """ 0 
Mc(k)= 

00 """ C(k+N,, Ik) 
ný Np xnýNr. 

A(kl k) 
A(k + ll k)A(kl k) 

MA(k) = 
N1. 

ýA(k+N,, 
-ilk) 

1_ý n, Np xn, 

M�(k) 
M2, (k) 

MB(k) _ 

M 
,v., i 

(k) jfln 
, �« 

M�(k) 0 

M 2.1 (k) M 2,2(k) Mu(k) _ 

MN,.. I(k) M, v,. "z(k) 

0 
0 

M NP. N,. 
(k) 

Dü(kl k) 
Dü(k + Ilk) 

DU(k) 

Dü(k+N. -1k) ý 
n. N, 

-xl 

d(k + Ilk) 
d(k + 21k) 

Md(k) _ 

d(k + N,, lk) 
nyN, d 

6.2.2 Objective Function 

Assume that the following objective function should be minimised according to the 
constraints (6.16) to (6.18), 

177 



J(k) = 
[r(k + i) - y(k +i kj S(i)[r(k + i) - y(k + il k)]+ 

N, 
[eü(k +i -1 kj A(i)[Aü(k +i- i'k)] (6.15) 

i-, 
Ymin ! ýY(k+ilk)<-ymax i=1,2,..., N,, (6.16) 

u,,, i� <- ü(k +i -1 k) <_ umax i =1,2,..., N(. (6.17) 

Aumin <Aü(k+i-llk)<Aum. i=1,2,..., N(. (6.18) 

where, 

r: Reference trajectory with dimension (n 
ti. x 1) 

S: Weighting matrix of tracking error with dimension (nv x nv ) 

k: Weighting matrix of control effort with dimension (nu x n� ) 

The indices min and max highlight the lower and upper bounds respectively. 

The objective function can be rewritten as, 

J(k) = [Mr (k) - Y(k)]` Q [M 
, 
(k) - Y(k)]+ AU' (k) R AU(k) (6.19) 

where, 

r(k + 1) 

r(k + 2) 
Mr _ 

r(k + NY ) 

g(1) 00 

0 S(2) ... 0 

00 "". S(N,. ) 

k(1) 0"""0 

R0 
k(2) ... 0 

= 

00... l�(Ný. ) 
nyN. xn N(. 

By substituting equation (6.14) into (6.19) the following linear quadratic function is 

obtained, 
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J(k) =2 AU' (k)H(k)AU(k) + AU" (k)G(k) + c(k) 

where, 
H(k) = 2(M "j (k)Mc' (k)QM c (k)M u (k) + R) 

G(k) = -2M ý, (k)M " (k)QE(k) 

c(k) = ET (k)QE(k) 

E(k) = M, (k) -Mc (k)M A (k)x(k) -Mc (k)M B (k)u(k -1) -Md (k) 

(6.20) 

6.2.3 Constraints 

All the constraints should be transferred to the standard form of A(k)AU(k) <_ b(k). 

Equation (6.18) can be expressed as, 

Aü(k+i - llk)<- Au.,. and 

-Aü(k+i-Ilk) <--Aumin i=1,2,..., N(. 

The vector-matrix form of these inequality equations can be written as, 

I O "" 0 

-I 0 0 

0 t "" 0 
0 -I 0 

0 0 "" I 
0 0 -I 

2 n� N(. > n� N(. 

Aü(kl k) 

Dü(k + Ilk) 

LAi(k+N(. -lk) 

AU 
max 

- 
AU 

min 

Au. 
�� 

- 
Au 

min 

ýU 
max 

- 
Au 

min 
Y 

2n�N( xl 

(6.21) 

(6.22) 

where I is a proper size (nu x nu) identity matrix. Similarly, equation (6.17) can be 

rearranged as, 

ü(k+i-llk)<_u.. and 

- ü(k+i - 1k) =1,2,..., N, 
(6.23) 

Also, it is clear that, 

-1 

ü(k +i- Ilk) = u(k -1) + Aü(k + ilk) (6.24) 
I =o 
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Using (6.23) and (6.24) one can write the inputs inequality equations as, 

I O """ 0 

-I 0 0 

I I """ 0 

-I -I 0 

I I .. I 

-I -I -I 
2 n� N,. xn, N(. 

Aü(k k) 
Aü(k+Ilk) 

4ü(k+N(. -llk) 
n, N(. x1 

Umax -u(k-1) 

-Umin +u(k-1) 

Umax -u(k-1) 

- Umin + u(k -1) <I 

umax - u(k - 
1) 

Umin+u(k-l) 

2n�N( xI 

The output constraints can be expressed as follows, 

y (k +i k) < y..,, and 

-y(k+ilk) <-ymin i =1,2,..., N,, 

(6.25) 

(6.26) 

Using equation (6.14) these inequality constraints can be written in the standard form 

as, 

Dü(kl k) 

Mc(k)Mu(k) Aü(k+llk) 

- Mc(k)Mu(k)] 

C 

2nvNp. n, N,. /\ü(k + N(. - Ilk) 

n.. N. xl 

YTax -M((k)MA(k)x(k)-M(. (k)MB(k)u(k-1)-Md(k) 
"min + M, (k)M,, (k)x(k) + Mc(k)MB(k)u(k -1)+ M,, (k)] 

2n,, N, -I 

(6.27) 

where Y,,,. = [I I""" Ifs ymax and = [I I""" I1/ ymin . Consequently, all 

these three sets of inequality constraints, (6.22), (6.25) and (6.27), can easily be used 

to construct the equation A(k)AU(k) <_ b(k). 

6.3 Stability 
The terminal equality constraints method is a way to provide stability [621. The aim 
is to add a set of terminal state constraints to force the state variables to take 

particular equilibrium values at the end of the prediction horizon. The stability can be 

proved using the Lyapunov approach even in a general case [62]. 

As the proposed nonlinear MPC is based on a discrete model, a continuous model as 
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dx 
dt - fý (x(t), u(t)) (6.28) 

can approximately be transferred into a discrete counterpart using, 

x(k + 1) = x(k) + Tf, (x(k), u(k)) =f (x(k), u(k)) (6.29) 

where T, is the sampling time, and f, and f are the right hand sides of the 

continuous and the discrete nonlinear state-space equations respectively. Note that in 

an equilibrium point (x,,,, ue, ) the following expressions can be written in the case 

of a continuous model and a discrete model respectively, 

l, 
ý 

(Xey 
uj _0 (6.30) 

(6.31) f(Xeq, Ueq)= Xeq 

As pointed out earlier, the following terminal equality constraints are added to the 
inequality constrained objective function to guarantee the stability, 

i(k + N,, l k) = x, (k) (6.32) 

where xey is an equilibrium point that satisfies the reference signals as well. The 

equality state constraints, (6.32), can be transferred to the equality control signals 
using (6.12) as, 

Aey (k)AU(k) = Bey (k) 

where, 

Aeq(k) = 
[MNp, 

i(k) MN,,, 
2(k) (k)] 

B«I (k) = x, (k) - rl A(k + N,, - ilk) x(k) +M1,, (k)u(k -1) 

6.4 The TRMS 

(6.33) 

(6.34) 

(6.35) 

The proposed multistep Newton-type MPC based on state-dependent is implemented 

on the TRMS, shown in Figure 6.3. The control objective is to control the yaw and 
the pitch angles as accurately as possible. 
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rotor ýr 

Counter 
balance 
beam 

I, 

-a , 

Figure 6.3 The TRMS 

Let recall the state variables, inputs and outputs of the TRMS from Chapter 2 as 
follows: 

x(k) = [i� (k) (o, (k) Sh(k) ah(k) i, (k) w, (k) S, (k) a,, (k)]T (6.36) 

u(k) = [Uh(k) U, (k)]" 

Y(k) = [ah (k) a, (k)]" 

(6.37) 

(6.38) 

where, 

iah : Armature current of the tail motor (A) 

w,, Rotational velocity of the tail rotor (rad/s) 

Sh Angular velocity of the TRMS beam in the horizontal plane without the effect 
of the main rotor (rad/s) 

ah : Horizontal position (yaw angle) of the TRMS beam (rad) 

i�v : Armature current of the main motor (A) 

wv Rotational velocity of the main rotor (rad/s) 

S, Angular velocity of the TRMS beam in the vertical plane without the effect of 
the tail rotor (rad/s) 

a, : Vertical position (pitch angle) of the TRMS beam (rad) 

Uh : Input voltage signal of the tail motor (V) 

Uv : Input voltage signal of the main motor (V). 
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The nonlinear continuous state-space equations of the TRMS are developed in 

Chapter 2 and can be summarised as, 

lah 

O)h 

Sh 

d ah 

dt 

co, 

Sv 

av 

Rah 
. 

kahcoh 1rl 
- lah - Ojh +- f6 

(Uh) 
Lah Lah Lah 

kah lPh 
l 
ah - 

B, 

COh 
�I 

(Wh ) 

Ir A(wh)cosa 
Jfr 

A (cih) 
-f 

(ah) 

Dcos2 a,, + Esin2 aq +F 
km(ov Cosa, Sh +D 

cos 2 a, +E sin 2 a, +F 
R., 

i_ 
kLýP 

v ýý +L fs ýUv 
av 

av av av kaV(O,. B., 

JJJ 
fs (w, Xlm +kgc2h cos av)- f9 (S2,, )+ g[(A - B) cos a, -C sin aj -0.5f)2 ,H sin 2av 

J, 
k, 

Wh 
Jy 

(6.39) 

where Ran, L,, h, kancoh, J,., Bt., I, 3, D, E, F, kn, Rov, L,,,, ky9v, J, Bmr' Im I 
kg ,g, A, B, C, H, Jv , and k, are positive constant values, and 52 h and S2, are 
defined as, 

O_S 
k. co� cosav (6.40) hh+ Dcos2 a, +Esin2 av +F 

k n'=S, +i" (6.41) 
v 

also f, , to f9 are nonlinear functions as presented in Chapter 2. Since La,, « Ran and 

L11 «RQv, without loss of accuracy, the order of the system can be reduced to six, 

x(k) =[a , 
(k) Sh(k) ah(k) (k) Sv(k) av(k)]T , as, 

d 
dt 

(kah(Ph)2 Bn 

_ 

fl (h) 
+ 

kahiph 
f6(Uh ) 

G% J&Rah 
C4 hh h& J& Rah 

11 f2(Coh)CSay-fi(Ph) Ma. ) 

Sh D cos' a, +Esin' av +F 
Sh 

kmwy cos a, 
a" hD av+Esin2 av+F 

(kav(Pv)2 

wv 

`i 

-B1mº CA 

1, ((Ov)+ k7vo, 
f1(Uv) 

Jm. R 
mr 

Jmr J., R., 

S fs(w, }(Im +kgcZ� cosa)- f9(S2vý+g[(A-B)cosay -csinav]-O. SS2,2, Hsin2a, 
Jv 

a" Sv +, wh 
v 

(6.42) 
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Although this model order reduction has no significant effect on the accuracy of the 

model, it has a considerable effect on the computational burden which reduces the 
load of the processor and increases the speed of the optimisation problem. The 

above nonlinear state-space equation can approximately be expressed as the 
following state-dependent state-space equation, 

x= A(x)x+Bu 

where, 

(6.43) 

-(kýjph)2 B, 
r 

krhpln 
IO)h I 0 0 0 0 0 

JfRah ''n J, 
l, k., hp, �Iwhl cosa, -k, ýh -khp, n -k, mcosa,, 0 0 

fo(av) Jo(av) fo(a, 
ý) Vio(av)1 

0 1 0 
km cosaa, 0 0 

A(X) 

0 0 0 

Jlo(av) 

_(k am, 
)2 

mrr -k-TInlwI v 0 0 

-k, (, 
k, kor, 

vI 
(l, 

ý+k»h osav) -kf, 
x Jv 

0 0 
Jv Jv 

f (aý) 

k` 
Jv 

0 0 0 1 0 

klk, o0,0 
JfR., 

00 

B= 
00 

0 kzký(pv 
J., R, 

00 
00 

f, o(av)=Dcostav +E sineav -F-F 

g [(A -B)cosav -C sinav if a, *0 fll (a, ) = a, 

0 if a, =0 

In the case of the TRMS, the steady state values of the state variables, xeq (k) 
, are 

defined as, 

Xeq (k) = CO e9 Sheq Q' eq lAe9 S e9 e9 
hhyy (6.44) 

where each element is found according to the current reference signals, ah1, f(k) and 
aV1ef (k), and equations (6.30) and (6.42), 

184 



ahq = ah ref 
(k) (6.45) 

avq = aY1ef (k) (6.46) 

Qe9 f3 
h for ayq %0 

kjhpl, cos avq 
weg - (6.47) h 

a, e9 

_ 

f3 
h for a? 'o kjhnvq h 

seq - 
km CVvq COsavq ) 

h Dcost avq +Esine aeq +F 
(6.48 

eq F° for Fv q >_ 0 
kfp 

p 
wvq = (6.49) 

Ukff 
for F, eq <0 

where, 

F, ' q g[(A - B) cos aY9 -C sin av° 
} 

im 

k weq Seq =-th 
vJ6.50) 

v 

6.5 Results 
Based on the nonlinear model, Np linear models are developed to model the 

nonlinear system during the prediction horizon at each instant, k. The objective 
function and constraints are formed based on these linear models to have a 
constrained linear quadratic optimisation problem. A set of terminal equality state 
constraints is formed to force the state to an equilibrium point at the end of the 

prediction horizon in order to guarantee the stability of the closed-loop system. At 

each iteration, the first set of the optimum input vector, eü(k l k) , 
is added to the 

control signal at previous time, u(k -1) , and the result is sent to the plant and also the 
linear model at kIk instant. The others optimum values are kept for the next sample 
time, k+1, calculation. 
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The block diagram of the Newton-type MPC is shown in Figure 6.4. Note that the 

nonlinear model and linearisation operator have not been shown in Figure 6.4. Figure 

6.5 shows the flowchart of the proposed method. Although it is assumed that all the 

state variables are measurable in this chapter, a state observer can be used in the case 

of output-feedback MPC methods. The source codes of the corresponding 

programme can be found in Appendix 5. 

MPC 
-------------------------------------------------- 

Y , (k) 0 

I. / ý. _. u(k) 

4 
OBJECTIVE 

ý 
FUNCTION AND OPTIMISATION 

x(k+I+iIk)=A(k+'Ik)x(k+iIk)+B(k+1 k)u(k+ilk 
L-ty, (k +i l k) = C(k +i I k)x(k +i I k) 

= 0, I,..., Ne -I 

INTERNAL MODELS 

-------------------------------------------------- 

I )isturbancc 

y(k) 

x(k 

PLANT 

x(k+I)=A(k)x(k)+B(k)u(k) Y (k) + 

y, (k) = C(k)x(k) 

VARYING MODGI. 

Figure 6.4 Block diagram of the proposed Newton-type MPC approach 

As mentioned before, the plant has 2 inputs, 2 outputs and 6 states. The inputs are the 
DC voltages of the tail and main rotors, U� and U 

,,, and outputs are the yaw, a ,,, 
and pitch, a ,,, angles of the beam. The state variables are the rotational velocity of 
the tail rotor, wh , the rotational velocity of the main rotor, co,, , the angular velocity 
of the TRMS beam in the horizontal plane without the effect of the main rotor, S,,, 
the angular velocity of the TRMS beam in the vertical plane without the effect of the 
tail rotor, S,,, the horizontal position of the TRMS beam, a,,, and the vertical 
position of the TRMS beam, a, The parameters of the applied multistep Newton- 

type MPC are listed in Table 6.1. Note that the sampling time of the model predictive 
controller is set to be 0.2 seconds and the optimisation approach is chosen to be an 
active set method available in MATLAB Toolbox for linear quadratic problems. The 

computational time for a period of 100 seconds simulation with parameters listed in 
Table 6.1 is 5.6 seconds, this means the proposed method can be implemented in real 
time. 
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Initialisation and 
set k=0- 

Update data: y, 1(k) , 
i(k), y(k), y, (k) ,I 

Dü(k+i-Ilk-1) i=0,..., Nr-1 

i=0, note that i(k I k) = i(k) and Dü(i -11-1) =0 

Find linear models using iü(k +i -1 Ik -1), z(k +iI k) : 
i. e. A(k+i I k), B(k+i l k) and C(k+i I k) 

i=i+1 

Find x(k +iI k) using No iz NP 

nonlinear model 1) i 
jYes 

Form the objective function and constraints using N. linear models as: 
J(k) = ZDUT (k)H(k)AU(k) +DUT (k)G(k) and A(k)DU(k) S b(k) 

i. e. find H, G, A and b 

Stability based terminal equality constraints. 
i. e. form Aeq (k)DU(k) = Beq (k) 

Solve the optimisation problem. 
i. e. find Dü(k+i I k) i=0,..., Nc -1 

Calculate the optimum manipulated variables 
u(k) = Aü(kjk)+u(k-1) 

PLANT II Linear model at (k I k) 

Aü(k+i I k) z(k+l) y, (k+l) 

Ik=k+11 

L N0ý z kf 

Yes 
Stop 

Figure 6.5 Flowchart of the proposed Newton-type MPC approach 

The nonlinear MPC developed for the TRMS has been assessed with a variety of 
reference signals and the results obtained demonstrate that the controller has a high 

performance and reliability in various operating regions. The controller has been 

proven to be reliable under disturbances and various reference signals used. Figures 
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6.6 and 6.7 show the results of the horizontal (yaw) and the vertical (pitch) angles of 
the beam with square references. It is clear from Figures 6.6 and 6.7 that the two 

channels have significant effect on each other. For instance, at the 25th second, the 

yaw angle reference signal has been changed from 0.6 to -0.6 rad and subsequently, 
the yaw angle has followed the reference signal. The pitch angle, due to the 

mentioned coupling, has been affected by the yaw angle; however, the controller has 

regained the control and forced the pitch angle to follow the reference trajectory. The 

overshoot at the 50th second of the yaw angle response has been caused by the step 

change of the pitch angle reference signal at that instant. This reference signal is one 

of the challenging trajectories in the case of the TRMS and it has been selected 
deliberately to validate the performance of the proposed control method. The control 

signals of case 1 for the two channels are depicted in Figures 6.8 and 6.9. 

The results of the horizontal and the vertical angles of the beam with sine wave 

references are shown in Figures 6.10 and 6.11 that show the ability of the proposed 

control system in following a continuously variable reference trajectory. Figures 6.12 

and 6.13 shows the manipulated signals of the tail and main motors related to the 

second case respectively. Figures 6.14 to 6.25 illustrate the responses of the 

controller according to some other reference signals and with initial positions of the 
beam. In order to substantiate the efficacy of the proposed method, the control 
system is tested with sawtooth reference signals as shown in Figures 6.26 and 6.27. 
The input signals to the TRMS related to the sawtooth references can be seen in 
Figures 6.28 and 6.29. 

Figure 6.30 shows two successive results of the internal model output of the 
horizontal channel. This figure illustrates that at the end of each prediction horizon 

the controlled variables exactly take the reference values and also this operating 
point is an equilibrium point due to the terminal equality constraints. Therefore, as 
discussed earlier, the closed-loop system is stable as long as the optimisation 
problem is feasible. As usual in stability proofs, assume that the model is perfect and 
there is no disturbance. As the final points at each iteration is an equilibrium point, 
the finite horizon control can be considered to be an infinite horizon control and the 
stability of the system can be verified. Note that in Figure 6.30 the two successive 
results have been shown without any overlap to be clearer; however, for example, 
instants k+ 21 k and k+ 21 k+1 can be drawn at the same time. The optimum 
values of the objective function at each iteration has been depicted in Figure 6.31. 
This figure shows the values around the 75th second in the case related to Figures 6.6 
and 6.7 where the yaw angle reference has been changed. 
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Table 6.1 The parameters of the proposed MPC 

Parameter Value Parameter Value 

Np 20 DUn a' 2.0 V 

N(. 15 AUmin -2.0 
V 

U`min -2.5 
V AU max 2.0 V 

U max 
h 2.5 V ah min -4.2 rad 

U min -2.5 
V ah max 1.5 rad 

U max 2.5 V a min -0.45 rad 

Dur '° -2.0 Va mom` 1.65 rad 

0.1 0 0.05 0 
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6.6 Conclusions 

A full state-feedback NMPC has been developed for the TRMS and its stability has 

been guaranteed using the terminal equality constraint technique. To avoid the 

difficulties regarding nonlinear optimisation problems such as non-convexity, the 

nonlinear model of the system has been linearised along a trajectory at each sample 

time. Therefore, the optimisation problem has been simplified to a linear quadratic 

problem. The state-dependent state space model has been used to overcome the 

problems related to the Jacobian-based linearisation method. 
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CHAPTER 7 

Output-Feedback Model Predictive 
Control 

An output feedback MPC approach for constrained nonlinear systems is presented in 

this chapter. The state variables are observed using a UKF that offers some 

advantages over an EKF. An EKF based on a state-dependent model is utilised in the 

experimental part of the study which shows a satisfactory performance. The Newton- 

type MPC proposed in the previous chapter is consolidated with this state observer 

to construct an output feedback MPC for nonlinear systems. 

7.1 Introduction 

Generally, most advanced control techniques, such as MPC, need the state vector of 
the plant-model to be available. However, due to cost efficiency or other difficulties, 

full state variables are not measurable in practical systems. In such situations, state 
observers can be used to estimate or retrieve the state vector. Hence, before 

proceeding to a discussion on output-feedback MPC, it will be necessary to survey 
briefly on state observers. The elegant approach of state estimation, the Kalman filter 
[128], has widely been used for linear systems, over almost half a century. In the 

case of nonlinear systems its counterpart, EKF, has been introduced but, for highly 

nonlinear systems, it shows a poor performance. Julier et al. [129] have proposed a 
generalised version of the EKF known as UKF. The UKF shows more accurate state 
estimation in comparison with the EKF and also it can be implemented easily 
compared to the EKF [129]-[131]. However, in this study, an EKF is introduced to 
find the linearisation of the plant-model using a state-dependent state-space model. 
An output-feedback nonlinear MPC can be designed by consolidating a state- 
feedback nonlinear MPC and a state observer [74]-[77]; however, its stability cannot 
be held without further action, even if both the state-feedback controller and the 
observer are separately stable. Imsland et al. [74] have investigated the stability, 
robustness and performance of output-feedback nonlinear MPC methods. 
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7.2 Observer-based MPC Strategy 
From a practical point of view, the state variables are inaccessible for measurements 
in the case of the TRMS. Therefore, a state observer needs to be used to reconstruct 
the state variables at each iteration of the control algorithm. To observe the state 
variables of the TRMS both the UKF and the state-dependent state-space EKF are 

employed. In the case of the UKF approach, a deterministic, sampling technique, 

unscented transform, is used to select a minimal set of sample points, called sigma 

points, around the mean. The covariance of the estimate can be recovered using the 

propagation of these sigma points through the nonlinear function. Note that in the 

case of the UKF the calculation of Jacobian matrix is removed. In this part of 

research, an augmented type of UKF techniques is considered to estimate the states 
of the TRMS. 

7.2.1 Methodology 

In this section, the Newton-type MPC formulation is represented in a shortened form. 

For the time being, assume all state variables of the system are available. In the 
following section a UKF is utilised to observe all the state variables. The model state 
variables in the prediction horizon interval with respect to the current state variables 

and the future inputs can be expressed as, 

i(k+i+Ilk) =A(k+ilk)z(k+i Ik)+B(k+ilk)ü(k+ilk) i =0,..., Np-1 
(7.1) 

that can be rewritten as, 

1(k+i+llk)= fA(k+i-jlk) x(k)+i 
['ý'A(k 

+1 -f ! k) B(k+nik)ü(k+nlk) 
J=O R=o J=o 

i =0,..., Np -1 
(7.2) 

where x(k) = z(k I k). The relationship between the inputs and the changes of the 
inputs is, 

I 

ü(k +j lk)=u(k -1)+±Aü(k +i lk) j =0,1,..., Nc -1 (7.3) 
i=o 

By substituting equations (7.3) into equations (7.2) the following equations can be 

written, 
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I1 I-n-1 

1(k+i+llk)= fA(k+i-ilk) x(k)+E f A(k+i-jlk) B(k+nik) Mü(k-1) 
J=O n=o J=O 

mm(I , Nc -1) 1I -n-1 

+EZ IIA(k+i-ilk) B(k+nik) Mü(k+mlk) i =0,..., Np-1 
m =0 n -M J=O 

(7.4) 

Note that in equation (7.4) the first two terms are related to the past variables that are 
known and the last term is associated with the future signals that should be optimally 

calculated using an optimisation technique. The output predictions can be obtained 

as, 

y(k +11k) =C(k +i lk)ü(k +i lk)+cl(k +i lk) i =1,..., Np (7.5) 

where d(k + il k) is the disturbance. Substitution (7.4) into (7.5) leads to the 
following equation, 

Y(k) =Mc (k)MA (k)x(k) + Mc(k)MB (k)u (k -1) + Mc(k)Mu (k)DU(k) +Md (k) 
(7.6) 

that has been obtained in the previous chapter. 

7.2.2 The UKF 

As pointed out earlier, in the case of highly nonlinear systems the EKF illustrates 

unacceptable performance of observation mostly due to its use of linearisation [130]. 
The so-called UKF provides a more precise result using unscented transformation. 
The flowchart of the unscented Kalman state observer is depicted in Figure 7.1. 

7.2.3 The State-Dependent EKF 

The EKF uses Jacobian-based linearisation approach to update the linear model at 
each stage which is the main cause of its poor performance for highly nonlinear 
systems. The so-called state-dependent EKF employs a state-dependent state-space 
model to find the linear models by substituting the most recent estimated or 
measured state variables into the state-dependent model. Assume a nonlinear state- 
space plant-model, 

x(k + 1) =f (x(k), u(k)) + w(k) 
y(k) =h (x(k )) + v(k) 

(7'7) 
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Initialise state, i(-1 I -1), and 
covariance, P(-1), and set k=0 

Augment estimated state, z(k -1 k -1), an 
covariance, P(k -1 Ik -1), with the mean an 

covariance of the process noise respectively 

Form sigma points, x, (k -1 k -1) 
i =0,..., 2L 

(L is the dimension of augmented state) 

Propagate sigma points through the 
state function to find x, (k Ik -1) 

Calculate predicted state, z(k Ik -1) , and 
covariance, P(k Ik -1), using the weighted 

sigma points 

Augment predicted state and covariance 
with the mean and covariance of the 

measurement noise respectively 

Form sigma points again 
(The sigma points can themselves be 

augmented, alternatively) 

I Propagate sigma points through the 
output function 

Construct the predicted measurement and 
its covariance using weighted sigma points 

Find the covariance between I 
state and measurement 

Calculate the unscented Kalman gain 

Lk= 
+1 

Update state and covariance: 
z(k l k) and P(k Ik) 

; nd state, 1(k I k); 
to the controller 

Figure 7.1 Flowchart of the unscented Kalman observer procedure 
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where w(k) and v(k) are white noise with covariance matrices Q(k) and R(k) 

respectively. The nonlinear state-space equation can be approximated by the 

following state-dependent state-space equation, 

x(k + 1) =A (x(k)) x(k) +B (x(k)) u(k) + w(k) 

y(k) =C (x(k )) x(k) + v(k) 
(ý g) 

Optimum state variables estimation can be obtained using the following equations 
iteratively, 

Prediction stage 
1(kI k-1)=f(x(k-11 k-1), u(k)) (7.9) 

M(k) = A(i(k Ik- 1))P(k -1)AT (i(k Ik -1))+ Q(k) (7.10) 

where, i(k Ik -1) is the predicted state and M(k) is the predicted error covariance. 

Correction or update stage 

L'(k) = M(k) CT (i(k Ik -1))[C(i(k k -1))M(k) CT (i(k Ik -1))+ R(k)]-' (7.11) 

i(k I k) = i(k Ik -1) + L'(k) [y(k) 
- h(i(k Ik -1))] (7.12) 

P(k) = (I - L'(k)C(i(k Ik- 1)))M(k) (7.13) 

where, L'(k) is the Kalman gain, i(k I k) is the updated state estimate, and P(k) is 

the update error covariance. The source codes of the developed filters can be seen in 
Appendix 5. 

7.3 Simulation Results 
Based on the nonlinear model, N, linear models are developed to model the 

nonlinear system during the prediction horizon at each instant, k. The objective 
function and constraints are formed based on these linear models to have a 
constrained linear quadratic optimisation problem. The UKF is implemented to 
estimate the state variables at each instant. At each iteration, the first set of the 
optimum input vector, Dü(k I k), is added to the previous control signal, u(k -1) , and 
the result is sent to the plant and also to the linear model at kIk instant. The others 
optimum values are kept for the next sample time, k+1, calculation. The block 
diagram of the output-feedback Newton-type MPC is shown in Figure 7.2. Note that 
the nonlinear model and linearisation operator have not been shown in Figure 7.2. 
Figure 7.3 shows the flowchart of the proposed method. 
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MPC 
--------- ----------------------------------- 

y, (k} 

u(k) 

OBJECTIVE? FUNCTION AND OPTIMISATION 

9x(k +1+11k)= A(k +: I k)x(k +iI k) + B(k +i1 k)u(k +1 1k 

y, (k+ilk)=C(k+iIk)x(k+iIk) 

i=0, I...., N, -I 

INTERNAL MODELS 

--------------------------------------------------- 

Unscented Kalman Filter 

I )isturbance 

y(k) 

PLANT 

ýx(k+I)=A(k)x(k)+B(k)u(k) Y, (K) 

y, (k) = C(k)x(k ) 

VARYING MODI I. 

Figure 7.2 Block diagram of the output-feedback Newton-type MPC approach 

The parameters of state-feedback MPC presented in the previous chapter are 

considered for the applied output-feedback nonlinear MPC, see Table 6.1. Again, the 

sampling time of the model predictive controller is set to be 0.2 seconds and the 

optimisation approach is chosen to be an active set method. The computational time 
for a period of 100 seconds simulation with parameters listed in Table 6.1 is 7.3 

seconds that means the proposed method can be implemented in real time. 

The output-feedback Newton-type MPC developed for the TRMS has been evaluated 

with a variety of reference signals and the results obtained demonstrate that the 

controller has a high performance and reliability in the various operating regions. 
Responses with some of the reference signals used are presented here and the results 
with similar characteristics are not repeated. The controller has been proven to be 

reliable under disturbances and various reference signals used. Figures 7.4 and 7.5 

show the results of the horizontal (yaw) and the vertical (pitch) angles of the beam 

with square references. 

It is clear from Figures 7.4 and 7.5 that the two channels have significant effect on 

each other. For instance, at the instant of the 25th second, the yaw angle reference 
signal has been changed from -1 to I radian and subsequently, the yaw angle has 
followed the reference signal. Here, the pitch angle, due to the mentioned coupling, 
has been affected by the yaw angle; however, the controller has regained the control 
and forced the pitch angle to follow the reference trajectory. 
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The overshoots at the instants 50 and 150 seconds of the yaw angle response have 
been rendered by the step change of the pitch angle reference signal at those instants. 
As pointed out earlier, this set of reference signals is one of the challenging 
trajectories in the case of the TRMS and it has been selected deliberately to confirm 
the performance of the proposed control method. The manipulated signals of the tail' 
and main motors are shown in Figures 7.6 and 7.7 respectively. 
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The results with square wave references but with swapping the frequencies of both 

the channels are shown in Figures 7.8 and 7.9 respectively that show the significant 

effect of the vertical channel on the horizontal one. Again, the controller has regained 

the control despite the considerable deviation of the horizontal angle. The control 

signals of the two channels related to this case can be found in Figures 7.10 and 7.11. 

Figures 7.12 to 7.15 illustrate the responses of the controller according to square 

reference signals, but with a non-zero initial position of the beam, and their 

corresponding manipulated signals. The performance of the controller with sine 

reference signals has been depicted in Figures 7.16 to 7.17 with a non-zero initial 

position of the beam which shows the ability of the proposed control system in 

following a continuously variable reference trajectory. Again, the input signals to the 
TRMS which force the yaw and pitch angles to follow the reference signals are 
depicted in Figures 7.18 and 7.19. The results of another case of sine wave reference 

signals are illustrated in Figures 7.20 to 7.23. Figures 7.24 and 7.25 illustrate the 

controller performance with respect to sawtooth reference signals. This case is a 

combination of step change and reference trajectory and clearly the control system is 

able to track this type of reference signal as well. Input signals to the TRMS in terms 

of case 6 are presented in Figures 7.26 and 7.27. In order to illustrate the 

performance of the UKF, a couple of estimated states have been compared with the 

corresponding actual states. Figure 7.28 depicts the comparison between the actual 
and estimated S, . The same comparison in the case of S,, is shown in Figure 7.29. 
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7.4 Experimental Procedure 
In order to control an actual plant, normally, three components are needed to close 
the control loop, which are measurement devices, processors and interface circuits. 
Generally, in any closed-loop control system it is necessary to have some measuring 
devices to measure the output of the plant. In the case of the TRMS, two shaft 

encoders are used to measure the yaw and pitch angles of the beam. Normally, one or 

more processors need to be utilised for developing the mathematical calculation of 

any control approach. In this case, a personal computer is used to serve the purpose. 
The calculated control signals from the processor should be applied to the plant. It is 

of great importance to note that the signals from the measurement devices are not 

normally compatible with the processor and also the control signals from the 

processor are not in an appropriate level to be directly sent to the plant. Therefore, an 
interface circuit is necessary to perform these signal adaptations. The real TRMS is 

connected to a computer by a fast interface circuit board, PCL-812PG. The PCL- 
812PG can be considered a high performance, high speed, multi-function data 

acquisition card for IBM PC/XT/AT and compatible computers from Advantech Co. 
In this investigation, MATLAB/Simulink has been used to implement the desired 

control approaches. This software offers two very important features; first, it 

possesses a number of toolboxes which facilitate the control implementation and 
second, using Real-Time Workshop [132] it is convenient to communicate with the 

real plant through an appropriate interface circuit. Despite these powerful features, 

there are some limitations when dealing with complicated control approaches. For 
instance, Real-Time Workshop cannot handle a Simulink file containing MATLAB- 
Fcn block. Instead of this block, the S-Function or Embedded-MATLAB-Function 
tools can be employed which have their own drawbacks. 

In this study, the accuracy of the measurement devices, i. e. the tacho-generators and 
the shaft encoders, have been verified using a number of external measurement 
devices. To this end, an accurate external tachometer has been employed and the 
result of the TRMS's tacho-generator has been compared with the result of the 
external tachometer in various rotation velocities. The results have shown the tacho- 
generator is accurate. The same test has been carried out in the case of the shaft 
encoders and the accuracy of the devices was verified. In order to be able to rely on 
the experimental results, each test has been repeated four times. There was no 
significant difference observed between the repetitions. The sampling time of the 
control system is set to be 0.2 seconds. 
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In the following sections the experimental results of the UKF and the state-dependent 
EKF are presented and compared, and then the experimental results of the output- 
feedback MPC are presented. 

7.4.1 State Estimator 

State variables of the TRMS are estimated using the UKF and the state-dependent 
EKF. To this end, the open loop system is exited with various input signals and the 

state variables are estimated and compared with those states which can be measured. 
Using the measurement devices, one can only measure the yaw and pitch angles and 
the rotational speed of both the motors; the other two states cannot be measured and 
therefore cannot be verified. Note that the rotational speed of the motors cannot be 
measured simultaneously due to the limited number of available ports in the case of 
the TRMS system and therefore, cannot be used in the control system. 

The overall block diagram of the Kalman filters test is depicted in Figure 7.30. The 
state-dependent EKF has been implemented using Simulink toolbox, and its block 
diagram can be found in Figure 7.31. 'Predict states' and 'State dependent 
linearisation' blocks in Figure 7.31 can be formed using the nonlinear and state- 
dependent models of the TRMS respectively and for the sake of brevity, they are not 
shown here. 

Figure 7.30 The overall block diagram of the UKF and the EKF test 
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The UKF has been implemented using S -Function and its corresponding Embedded- 
MATLAB-Function can be seen in Appendix 5. Note that it is also possible to 
implement the state-dependent EKF using Embedded-MATLAB-Function but due to 
its comparatively less complexity it is more convenient to use Simulink toolbox. The 

parameters of the filters are listed in Appendix 1. The results of the filters are 
illustrated in Figures 7.32 to 7.51 for two cases. In Figures 7.32 and 7.33, the 

measured yaw angle has been compared with the results of the state-dependent EKF 

and the UKF respectively. In the case of the pitch angle, one can see the results of the 
EKF and the UKF estimators in Figures 7.34 and 7.35. The comparative results of 
the measured rotational speed of the main and the tail rotors with their corresponding 

estimated values using the EKF and the UKF can be found in Figures 7.36 to 7.39. 
The other two states cannot be measured and therefore, the results of the estimators 
are compared with each other in terms of these two inaccessible states. Figures 7.40 

and 7.41 show the results of the estimators for the inaccessible states. It is evident 
from the results that the estimators could estimate the state variables very 
satisfactorily. However, the estimation of the EKF based on the state-dependent 
state-space model is slightly better in comparison with that of the UKF. 

Q 

Figure 7.31. Inside the'EKF' block 
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7.4.2 Output-Feedback Nonlinear MPC 

In this section, the experimental results of the proposed output-feedback nonlinear 

MPC are presented. Note that the TRMS parameters used to develop the control 

system are based on the grey-box model identification discussed in Chapter 4. Both 

the observers, the state-dependent EKF and the UKF, are tested on the real TRMS; 

however, because the EKF based on the state-dependent model slightly outperforms 

the UKF, the former is employed as the state observer in the experimental control 

system. The control system is tested under several reference signals and disturbances 

and it is demonstrated that the control system performs very well in tracking and 
disturbance rejection. Figures 7.52 and 7.53 show the response of the control system 

with respect to a set of sawtooth reference signals. The control signals of the 

horizontal and vertical channels are illustrated in Figures 7.54 and 7.55 respectively. 
The results clearly demonstrate the high performance of the control system. The 

response of the controller according to two sets of sine wave reference signals and 

their related control signals can be found in Figures 7.56 to 7.63. In I- igures 7.64 and 
7.65, the control system is tested with square wave reference signals. The effect of 

the horizontal channel on the vertical one is clear in Figure 7.65 which at the 

beginning of the test, the horizontal movement has driven the pitch angle in the 

opposite direction of the desired angle; however, the control system has been able to 

compensate this effect and track the reference signal. The corresponding control 

signals for case 4 are depicted in Figures 7.66 and 7.67. The results of the control 

paradigm in response to a most challenging set of reference signals can be seen in 

Figures 7.68 to 7.71. In those figures the significant effect of the horizontal channel 

on the vertical channel can be observed at the instants 25 and 75 seconds in which 
the yaw angle has been forced to change from -0.5 to 0.5 rad and from 0.5 to -0.5 
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respectively. Consequently, the pitch angle has deviated from its reference signal; 
however, the control system has clearly been able to regain the control rapidly. 
Figures 7.72 to 7.75 show the step response of the control system. The significant 

effects of the horizontal channel on the vertical channel can again be observed during 

the first few seconds of the test. A question can be arisen from those results that is: 

why does the horizontal channel affect the vertical channel at the beginning of the 

test not vice versa? The reason is originated from the fact that the (approximate) time 

constant of the horizontal channel is comparatively smaller than that of the vertical 

channel. Subsequently, the tail motor accelerates faster than that the main motor and 

causes a deviation of the pitch angle at the beginning of the test, regardless of its 

reference signal. Figures 7.76 to 7.79 show the step response of the control problem 

with an external force applied manually to the system in order to test it in the face of 

a significant disturbance. In this test, an external force has applied to the TRMS and 

as it is evident the yaw and pitch angles deviate from their desired positions. 
However, the control system has regained the control and forced the beam to return 
to its desired angles. 
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7.5 Conclusions 

In order to be able to use the NMPC technique developed in Chapter 6 on the real 
TRMS, a nonlinear state observer needs to be employed to estimate the inaccessible 

state variables. In this chapter, both the UKF and EKF based on state-dependent 
model have been used to observe the state vector of the system. The output-feedback 
NMPC approach is able to control the system according to the predefined criteria. 
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CHAPTER 8 

Robust Model Predictive Control 

This chapter investigates a robust MPC approach for the TRMS. The nonlinear 
dynamic model of the system has been used to design the robust controller. On the 

basis of the nonlinear model, a polytopic model has been developed considering the 

nonlinearities and uncertainties of the plant. To this end, a subset ofpolytopic model 
is extracted to cover the necessary dynamics of the system in order to make the 

optimisation problem more feasible. In other words, the subset of polytopic model 

mitigates the stringent conditions imposed due to robustness. However, some 

additional conditions on inputs, outputs and states may need to be imposed in order 
to prevent any violation from the polytope. When the optimisation problem is 

infeasible, the polytope is redesigned and a new optimisation problem is formulated 

accordingly. Note that, the robust MPC approach based on LMI has been used as a 

regulator in this study. 

8.1 Introduction 

Since any plant-model is an approximation of its corresponding real system, model 
uncertainty, also known as model mismatch, exists more or less in any case. Also, in 

stability analysis, a plant-model is assumed to be perfect and so this analysis is not 
valid anymore in the face of model mismatch. Therefore, robustness of any control 
system, i. e. satisfying some properties such as stability, constraints fulfilment and 
performance in the presence of uncertainty, needs to be considered to obtain realistic 
results. Note that, the discrepancy between robustness analysis and robustness 
synthesis needs to be clarified. Robustness analysis means checking the robustness of 
a pre-designed ' control system; however, robustness synthesis implies designing a 
control system to be robust. As mentioned in [78], the robustness analysis of a 
model-based predictive control is more complicated than its robustness synthesis. 
Here, we focus on robust MPC synthesis, i. e. an MPC is designed in such a way to be 

robust in terms of stability, performance and constraints fulfilment in the face of 
uncertainty. Robustness of MPC techniques is a challenging issue because firstly, 
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current versions of MPC are inherently unable to deal explicitly with model 

uncertainties, secondly, most investigations on robustness are related to 

unconstrained systems, and finally, the complexity originated from constraints causes 
the control system to have high computational burden and therefore, cannot be 

implementable in real time. 

The first stage of robustness synthesis is to define the type of uncertainty according 
to the a -priori knowledge of the system. Although the uncertainty is vague, any 

specification and characteristic of uncertainty, e. g. being structured and bounded, can 
be helpful in order to achieve less conservative results. After defining the model 

uncertainty, one needs to establish the requirements of robust control. In most cases 

robust stability is the minimum requirement, and other requirements such as robust 
performance and robust constraints fulfilment may also be necessary to satisfy as in 

constrained robust MPC algorithms. State availability is the other matter that should 
be taken into consideration before designing a robust controller. In other words, one 
has to realise whether a state observer is required (output-feedback paradigm) or 
state variables are accessible (state-feedback paradigm). It is clear that the 

combination of separately designed robust controller and robust state observer 
cannot, in general, guarantee the robustness of the resultant closed-loop system [84], 
[93]. Therefore, the complexity of an output-feedback robust control design 

significantly increases compared to a state-feedback robust control. 

This work is based on the approach proposed in [85] to robustly control a nonlinear 
system using MPC. Here, an approach is introduced to find a subset of polytopic 
model (sub-polytope) in order to form the optimisation problem to be more feasible. 
This causes to alleviate the severe conditions originated from the robustness criteria; 
however, some additional conditions may need to be imposed on the optimisation 
problem. 

8.2 Polytopic Model 
Consider a nonlinear discrete state-space plant-model, 

x(k +1)=f (x(k ), u(k )) 

Y(k) =h (x(k )) (8.1) 
In general, this nonlinear system can approximately be represented as a linear time- 
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varying system or more generally as a state-dependent model. A polytopic model can 
be obtained from the linear time-varying system. Assume a discrete state-space linear 

time-varying system as, 

x(k + 1) = A(k )x(k )+ B(k )u(k ) 

y(k) = C(k)x(k ) 

[A(k) I B(k) I C(k)] ES2 (8.2) 

where n is a convex hull and can be defined using its vertices, 

SZ = Co{[Ai I Bi I C1], [A2 1 Bz 1 CZ1,.... [A,, I Bi. I CL 11 (8.3) 

where L is the number of vertices, and [A, I B, I C, ] is the i-th vertex. It is clear that 

any system belongs to il can be found according to the vertex systems. Figure 8.1 

shows the graphical representation of a polytopic uncertainty. 

[Ala 

[Ai. IBr. ICLI 

a2 1 C2 

[A, IB, ICC, ] 

9 

Figure 8.1 The graphical representation of a polytopic uncertainty [85] 

Consider the nonlinear state-space system as shown in (8.1), the aim is to find a set 
of L linear systems as the vertices of the polytope n in such a way that all other 
possible linear systems lie inside this polytope. As pointed out earlier, it is clear that 

any possible linear model of the nonlinear system can be calculated according to a 
linear combination of the vertex systems as, 

[AIBICl- I] A, [A, IB, ICS] (8.4) 

where, 

=1 and A, > o for i =1,2, ... ,L 

Therefore, it is reasonable to consider the nonlinear system as a polytopic system 
with known vertices. Any analysis and synthesis on this polytopic system can be 
valid for the original nonlinear system [85]. 
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The nonlinear system in (8.1) can be linearised around a finite number, N, of 

operating points in order to cover almost every operation region, 

[x(k+1)=A1x(k)+Ü1u(k) 
(8.5) 

y(k) = C, x(k ) 

Note that it is also possible to create more linear model due to uncertainties of the 

plant-model beside those obtained due to nonlinearity of the system. Again, assume 

all sets of matrices 
[Ä, I B, I c, Ii =1, """, N lie in a set, Q. In order to define this 

polytopic set one needs to find its vertices and introduce the polytope as a convex 
hull with known vertices as in (8.3). Any [A, I B, I C1 ] can be found using a linear 

combination of the vertices [A1 I Bj I c, ] as follows, 

[A, IB, Iý, ]=t1, [A, IB1 icy] 

subject to, 

(8.6) 

L 

Z, %% =1 and #% z0j =1,..., L 

For the time being, several 
[Äý i Bý I cý ]J =1, "" ". N are available and the aim is to find 

[A, I B, I C, ]i =1...., L where N»L (L is unknown at this stage). At the first stage 
of the problem, all 

[A, I B, I c, ]' =1,..., N are considered to be vertices and check 
whether there is a set of non-negative parameters ý summing to one to satisfy the 
following equation, 

(8.7) 
*J,, eo 

where, 0 is the set of all omitted systems so far. If the problem is feasible for any 
j then, P 

-j Bj I e1 I must be purged from the set, otherwise it needs to be kept. This 

procedure should be repeated for all in order to keep only the vertices of 
SL. 

8.3 Problem Formulation 

To formulate the problem assume each [A, 1 B, 14b, ] has q entries therefore, we can 
form N vectors, V. E RI each one corresponding to one [A, i $, I c, ], 
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vit 

v2, (8.8) 

vqi 

At the first iteration the following constrained simultaneous linear equations are 

considered to check whether they have at least one set of feasible solution, 

N 

v, v, subject to A; =1 and A >_0 i =2,..., N . 
i=z +=z 

This system can be rewritten as the following matrix form, 

V12 V13 VIN V11 

V22 V23 V2N V21 

Vq2 Vq3 ... VqN 
A 

N 
Vqi 

11 """ 1 1 

subject to 2, >_0 i =2,..., N 

(8.9) 

(8.10) 

As stated before, if the system is feasible, then the vector v, is not a vertex of the 

polytope and has to be removed from the set of vertices. This procedure is repeated 
for all other v, . 

Note that the developed polytopic model has some degrees of conservativeness. The 

number of primarily linear models, N, should be as large as possible to reduce the 
conservativeness of the polytopic model. 

8.4 Robust MPC 
Again, consider a plant-model described by polytopic uncertainty. Similar to the 
robust control of linear systems, one can use min-max method of optimisation to 
develop a robust MPC paradigm [81]. 

min max J� (k ) 
u(k+1lk) [A(k+1AB(k+1)! C(k+1)]efl 

1 o, 1_.., NC I io 

where N, is the control horizon and, 

J�(k)=E[x(k +i I k)T Q, x(k +i (k)+u(k +i I k)T Ru(k +i (k)] 
i-o 

(8.11) 
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In the above optimisation problem, the worst-case scenario is found over all the 

possible model realisations, the set fl, using maximisation and then a set of Nc 

manipulated variables is obtained to minimise the worse-case scenario. As mentioned 
by Kothare et al. [85], this min-max problem is not tractable despite of convexity. 
Also as mentioned before, Zheng [83] has shown using a counterexample that the 

min-max problem alone cannot guarantee robust stability. A remedy has been 

proposed to derive an upper bound on the robust performance objective and 

minimise it using a constant state-feedback control law at each sample time [85], 

u(k +i I k)=F(k)x(k +i (k) i zo (8.12) 

Assume a quadratic function V (x) = xT Px with P>0 and V (0) = 0. At each time 

step one needs to find P in such a way that the following inequality is satisfied for 

all x(k +i1 k), u(k +11 k) with i >_ 0 and for any [A(k +1) I B(k +1) 1 C(k +1)] e 11 

with i >_ 0: 

V (x(k +i +I I k))-V (x(k+i I k))S 
(8.13) 

-[x(k+i Ik)TQ, x(k+i I k)+u(k +i I k)TRu(k +i I k)] 

In order to have finite robust performance objective function, it is necessary to have 

x(c I k) =0 which implies V (x(oo I k)) = 0. Adding up (8.13) from i=0 to i= o0 
results to, 

-V (x(k ßk )): g J�(k ) (8.14) 

and thus the upper bound of the robust performance objective can be expressed as, 

max J,,, (k) 5V (x(k 1k)) (8.15) 
[A(k+! )IB(i +1)IC(k+i ))efl 

As a summary, the single Lyapunov function, V (x(k I k)) = x(k Ik )T Px(k I k), should 
be minimised at each time step, k, to obtain optimum P>0 and state-feedback gain 
F(k) in (8.12), subject to (8.13) and other input, output and state constraints. All the 
mentioned equations can be represented in the form of LMI [133], for more details 

see [85]. 

Although the proposed method by Kothare et al. [85] is an interesting approach for 

robust MPC, the condition mentioned in (8.13) is difficult to be satisfied for highly 

nonlinear practical systems in the case of polytopic uncertainty. In order to overcome 
this problem, one can form an adaptive polytopic model that is a subset of the main 
polytopic model and force the system by imposing additional constraints to prevent 
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any violation from the aforementioned subset. However, finding the optimal subset is 

not a straightforward task and it severely depends on the control system and also 

needs deep knowledge about the process. In order to clarify the problem, see Figure 

8.2. Assume the regulator is supposed to drive the plant output from an initial 

position, E, to the origin, 0. 

V1 

v, Vz 

V3 

0 

Figure 8.2 The sub-polytopic uncertainty 

In Figure 8.2 the main polytopic model is depicted by a hexagon where its vertices 

are v, i =1,..., L and its subset is shown by a pentagon where v, i =1,..., L 

represent its vertices. Although the trend is not known as an a-priori path, it is 

possible to estimate the subset of polytopic model with some security margin and by 
imposing additional input, output and/or state constraints force the trend to stay 
inside the sub-polytope forever. Note that, in the worst case, the subset can be the 

same as the main polytope. 

8.5 Results 

The aim of this chapter is to design an infinite horizon, state-feedback robust MI'C 

regulator controller based on polytopic model to be feasible for practical nonlinear 
systems. The first step of the procedure is to develop a nonlinear model of the plant 
as accurate as possible. Based on the nonlinear model and the initial values of states 
and inputs, a large number of linear models are developed to cover any possible 
region of the future operation points of the system, or in other words path of the 
inputs, states and outputs, before settling at the origin. According to these linear 

models, the vertices of the polytopic model are found, as formulated before. Now, 
the proposed robust MPC approach in [85] that cast into a set of LMI, is used to find 
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the optimum manipulating signals to satisfy the criteria. Moreover, some additional 

constraints need to be defined and imposed to the robust MPC approach to prevent 

any violation from the polytopic model. 

Again, the plant has 2 inputs, 2 outputs and 6 states. The sampling time of the 

controller is set to be 0.2 seconds and the optimisation problem has been solved 

using LMI toolbox available in MATLAB software [1341. In this case, around 10000 

initial linear models have been developed and among them around 140 vertices have 

been found for the sub-polytopic model. According to the defined operating regions a 

set of input, output and state constraints have been augmented to the previous 

constraints. 

The proposed robust MPC has been tested with several initial values to validate the 

effectiveness and efficacy of the approach. For instance, Figure 8.3 shows the yaw 
angle trajectory from the initial position of 1.2 radians to the origin. At the same 
time, the pitch angle has been forced to have a fast and robust movement from the 
initial position of 0.65 radians to the origin as shown in Figure 8.4. The related 
control signals of both the horizontal and vertical channels have been depicted in 
Figures 8.5 and 8.6 respectively. The responses of the regulator control with another 
set of initial values have been shown in Figures 8.7 to 8.10. The initial values of the 

yaw and pitch angles related to this case are -0.65 and -0.35 respectively. Two other 
cases with different initial positions are also presented in Figures 8.11 to 8.18 to 
illustrate various aspects of the regulator controller. In all these cases, the robustness 
is provided as long as the trajectory lies inside the predefined polytope. If the 
optimisation problem is not feasible for the defined polytope, the controller needs to 
find another polytope with some appropriate extension and solve the new 
optimisation problem. However, if one considers a sufficient security margin when 
defining the polytope, the optimisation problem is feasible with a high probability. 

In the case of the TRMS the optimisation problem is not feasible when the main 
polytopic model is considered; however, when a proper subset of the main polytopic 
is used, the optimisation problem has a comparatively higher chance to be feasible. 

227 



, -. b 

äý 

I 

--0 6 10 16 20 25 av as w05 10 16 20 25 30 36 40 

time (sec) time (sec) 

Figure 8.3 Yaw angle response with initial value Figure 8.4 Pitch angle with initial value of 0.65 
of 1.2 rad (case 1) rad (case 1) 

E 
N 
on 
zi 
ö 

IF 

5 10 15 

time (sec) 

Figure 8.5 Tail rotor applied voltage(case 1) 

o. 

E 

ö 
4 

0 
N 

irr ". y 

141 

r' 

rL 

time (sec) 
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Figure 8.17 Tail rotor applied voltage (case 4) Figure 8.18 Main rotor applied voltage (case 4) 

8.6 Conclusions 
In this chapter, a robust MPC approach based on a polytopic model has been 

presented for the nonlinear system. The polytopic model has been developed based 

on the linearisation of the nonlinear model and finding the vertices of the convex 
hull. By using a subset of the polytopic model, a method has been proposed to 
improve the feasibility of the robust MPC method. 
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CHAPTER 9 

Conclusions and Future Work 

9.1 Conclusions 
The TRMS is an agile, MIMO, nonlinear and cross-coupled system and it is 

perceived as a challenging system in the field of control engineering from the 

perspective of modelling and control design. It can be used as a test-bed to design 

and implement state-of-the-art control approaches for real aerodynamic systems such 

as UAVs. 

Modelling is the first and most important part of any model-based control design 

such as MPC, and the model accuracy is vital for having an accurate control system. 
White-box modelling approaches need full knowledge of the plant and can be 

achieved by energy and mass equations in the case of aerodynamic systems. The 

most difficult and time-consuming stage of analytical modelling is parameter 
identification. Overall, physical modelling of a system necessitates a -priori 
information about the process and it is also time-consuming. In this research, the 
TRMS has been accurately modelled by the Newton and Euler-Lagrange-based 

approaches in terms of its 1 DOF and 2DOF dynamics. The models have been 

evaluated using both the overlapping and PSD tests and found to be adequate in 

terms of MSE and frequency response. The comparison between the two analytical 
modelling approaches has been presented in Table 2.4 which shows that the 
Lagrange-based approach is more accurate than the Newton one. Although the 
Lagrangian model is more precise, it is also more complex which is undesirable from 

the control design viewpoint. 

Contrary to that of white-box modelling, the so-called black-box modelling 
paradigms do not require a -priori insight into the plant; however, it requires an 
ample amount of mined input-output data to entirely represent the dynamics of the 
system. The most cumbersome and time-consuming stage of the empirical modelling 
approaches is data mining, especially in the case of MIMO systems. NNs are deemed 
to be one of the most promising tools in the case of nonlinear black-box modelling. 
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In this investigation, a sufficient amount of data is extracted from the real TRMS to 

empirically model the system in terms of its 1DOF and 2DOF dynamics using 
feedforward MLP networks. Various training algorithms have been employed to train 

the networks, and it is experimentally observed that the Levenberg-Marquardt 

outperforms its rivals from the training and test points of view. The performance 

comparison of the training algorithms in terms of 2DOF dynamics can be found in 

Table 3.3. Having the input-output data available, the black-box model is easy and 
fast to develop. Although the black-box models with efficient learning techniques are 

more accurate compared to the analytical models, they suffers from some 
disadvantages such as being valid merely in the range of training data and loss of the 

process structure. 

As pointed out earlier, each of the aforementioned approaches has its own 

advantages and disadvantages. Nonetheless, the combination of white- and black-box 

modelling paradigms leads to a hybrid scheme well-known as grey-box modelling. In 

fact, any model identification technique which simultaneously involves both white- 

and black-box modelling approaches can be put in the grey-box modelling category. 
Therefore, grey-box modelling is not a unique method and the concept covers a 
broad scope of modelling approaches. For instance, it is convenient to derive the 

analytical equations of the plant by white-box theory and subsequently the black-box 

notion is utilised to identify the parameters of the plant-model. To this end, the 

parameters of the analytical Newton-based model have been retuned using an 
evolutionary optimisation technique, the GA, since the generic gradient-based 
optimisation approaches are not able to handle such problems. A GA seems to be a 
consistent candidate in order to find the optimum parameters. The improvement of 
the grey-box model has been validated by overlapping tests. Table 4.1 presents the 

comparison between the grey-box and Newtonian white-box models in terms of their 
MSE. 

Although significant attempts have been made on the control of nonlinear systems, 
there is still considerable demand for research on nonlinear control, stability and 
robustness. Amongst diverse types of nonlinear control approaches such as nonlinear 
quadratic regulator [135], nonlinear quadratic Gaussian [136], and exact linearisation 

control [17], [137]-[139] MPC has received a great deal of attention. This is due to 
several rationales: first, the MPC can be tailored for almost any nonlinear 
multivariable constrained system; second, it can be combined with other powerful 
techniques [140], [141] to obtain more positive features. Finally, its stability and 
more generally its robustness can be guaranteed through the use of some well-known 
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methods [71]. In this investigation, a nonlinear model predictive controller has been 

developed and implemented on the TRMS. The proposed method is based on the so- 

called multistep Newton-type MPC; however, the present method possesses several 

advantages over the original method. Instead of the Taylor-expansion-based 

linearisation, a state-dependent technique has been utilised to develop the linear 

models at each sample time. Moreover, the formulation is able to use the control 

signal changes instead of the control signal itself. The desired performance 

specifications, mentioned in the aims and objectives, have been met by the developed 

control approach. For instance, the steady state error of the closed-loop system is 

almost zero, the rise time of the control system is within the desired limits and the 

system is able to continuously follow a reference trajectory. 

Generally, stability analysis of nonlinear systems is a non-trivial problem. In other 

words, checking the stability of a designed nonlinear control system (note that even a 

constrained linear MPC for a linear plant is a nonlinear control system) using 

available tools, such as the Lyapunov and invariant set criteria, cannot normally be 

guaranteed. However, during the controller design, it is usually feasible to force the 

overall control system to be stable by some additional consideration. It can be 

concluded that stability synthesis is more convenient than stability analysis. In the 

case of MPC algorithms, terminal state equality constraints, terminal cost approach, 
terminal inequality constraints (dual mode), terminal contractive constraints, control 
Lyapunov function, infinite horizon method, and quasi-infinite horizon [71], [72] are 
the most common techniques for providing the stability of an MPC system. In this 
investigation, the terminal state equality constraints technique has been employed to 
guarantee the stability of the proposed nonlinear system. Nevertheless, the stability 
of the control system has also been checked with various challenging reference 
signals and disturbances. 

Dealing with advanced control paradigms such as an MPC necessitates the 

accessibility of the full state variables. However, from a practical point of view, full 

state variables are not generally available for measurement in the case of most of the 
industrial processes due to cost limitations, physical restrictions and so on. The most 
interesting technique of state estimation for linear systems was introduced by 
Kalman [128] and was called the Kalman filtering. The expansion of the paradigm to 
nonlinear systems is referred to as EKF; however, it does not exhibit as convincing 
performance as its linear counterpart, especially when dealing with a highly 
nonlinear system. A UKF is believed to outperform an EKF owing to the fact that the 
linearisation step in the latter approach is omitted in the former [129]. An EKF based 
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on state-dependent state-space equations is also introduced which exhibits a 

reasonable performance as UKF. Both the UKF and the state-dependent EKF have 

been utilised in this study to efficiently observe the full state variables of the TRMS. 

The consolidation of the state estimator with the proposed nonlinear state-feedback 
MPC leads to a nonlinear output-feedback MPC. The control approach has 

successfully been implemented on the TRMS. The state observers employed are able 

to estimate the state vector despite the highly nonlinear nature of the system. The 

results of the output-feedback control system show that the system is stable in the 

face of the coupling effect between the two channels, external disturbance force and 

step change. Also the control system is able to accurately follow any reference 
trajectory. However, the guaranteed stability of the state-feedback MPC provided by 

the terminal equality constraints technique cannot be utilised in the case of the 

output-feedback MPC since, the prerequisite condition for stability, i. e. the plant- 

model perfection, is not held anymore. 

Nominal performance and stability refer to the performance and stability of a system 

when the plant-model is perfect and free of any type of uncertainty. However, from 

the perspective of practical systems, model mismatch exists in almost every case. 
Therefore, in addition to nominal performance and stability, robust performance and 
stability need to be considered when dealing with a practical system. In other words, 
the control system has to be stable and needs to exhibit reasonable performance, 
while any unpredictably small deviation from pre-designed parts occurs, as well as 
exhibiting stability and good performance in the absence of uncertainty. Basically, 

any information and knowledge about uncertainty, such as its structure (e. g. which 
parameters may deviate from its nominal value) and its boundedness (the maximum 
deviation may possibly occur), can lead to less conservative results of the control 
system. In robust synthesis the wider bound of uncertainty implies the high 

probability of infeasibility. In this study, a polytopic uncertainty has been developed 
for the TRMS on the basis of the nonlinear Newtonian model. Generally, a polytopic 
model of a nonlinear system can be represented by a number of linear models. 
Instead of considering all these linear models, one can form a convex hull which 
covers all the linear models. The convex hull is mathematically characterised by the 
linear models located on it vertices. Having developed the polytopic uncertainty, one 
needs to synthesise a robust model predictive controller. At each instant, a state- 
feedback control law has been designed to minimise a worst-case scenario of an 
infinite horizon objective function subject to input and output constraints. Based on 
an unknown quadratic Lyapunov function, the min-max optimisation problem has 
been reduced to a convex optimisation problem engaging LMI; the unknown 
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parameter of the Lyapunov function is optimally found as a part of the consolidated 

optimisation problem. The technique here is the improved version of the robust MPC 

proposed in [85]. The Lyapunov inequality used for finding the upper bound of the 

worst-case scenario is stringent for practical system and cannot be satisfied. 
Therefore, to relieve the optimisation problem, a subset of the main polytope is found 

which depends on the initial values of the system. Moreover, by imposing extra 

constraints, the system trajectory is forced to stay inside the subset forever. It renders 

the optimisation problem more feasible. The robust state-feedback MPC approach 
has been implemented on the TRMS to validate the efficacy of the regulator. The 

results show that the regulator is robust in terms of performance and stability. 

9.2 Suggestions for Future Work 

In this investigation, the TRMS has been modelled analytically using both the 
Newtonian and Lagrangian methods. The TRMS can also be modelled using other 

methodologies for deriving the equation of motion, such as Kane's equations of 
motion [142]. Kane's method implements the concept of generalised speeds (quasi- 

velocity coordinates) to represent motion. This implementation allows focusing on 
the motion aspects of dynamic systems rather than just on the configuration. It is 

especially suitable for dealing with non-holonomic constraints. 

Further work can be carried out on the empirical modelling of the TRMS in terms of 
its 2DOF dynamics using other type of NNs such as wavelet-based NNs [143]. 
Wavelet-based NNs topologies are similar to that of RBF networks and have only 
one hidden layer; however, they are different in terms of the type of activation 
functions and learning algorithms. The type of activation functions, scaling and 
wavelet functions, should be selected according to the system to be modelled. 
Among various types of wavelet functions such as, Meyer, Morlet, Mexican Hat, and 
Daubechies, the one that is most suited to the application needs to be chosen. The 
location of the basis functions should be found in such a way to be consistent with 
the multi-resolution analysis. Wavelet-based NNs support multi-resolution 
construction and can guarantee convergence [143]. Figure 9.1 depicts a wavelet- 
based NN construction with p inputs and a single output. 

235 



: Scaling functions 

Figure 9.1 A wavelet-based network with p inputs and a single output 

Following the success of biologically inspired approaches to optimisation, 

championed by GAs, a number of promising meta-heuristic search and optimisation 

algorithms have recently been reported in the literature. These include ant colony, 

particle swarm, simulated annealing and harmony search. All these techniques can be 

used in the grey-box modelling approach of the TRMS. In the real world, ants can 
find the shortest path from a source of food to their nest. The ant colony system is 
based on these ants' natural foraging behaviour. Dorigo et al. [1441 have proposed 
this optimisation method and utilised it in some optimisation problem such as the 

travelling salesman problem [145]. The particle swarm optimisation is a stochastic 
optimisation approach, modelling the biological behaviour of members in a swarm of 
insects or a school of fish that allows them to determine a desirable path [146], [147]. 
Simulated annealing is a generic probabilistic optimisation method invented by 
Kirkpatrick et al. [148]. The method is inspired by the annealing process in 

metallurgy. Another meta-heuristic algorithm, mimicking the improvisation process 
of music players, has recently been developed and named as harmony search (1IS) 
[149]-[151]. It has been successful in a wide variety of optimisation problems [152], 
[153], offering several advantages with respect to traditional optimisation techniques. 
The HS algorithm imposes fewer mathematical requirements and does not require 
initial value settings of the decision variables. As the HS algorithm uses stochastic 
random searches, derivative information is also unnecessary. The I IS algorithm 
generates new vectors, after considering all of the existing vectors, whereas the GA 

only considers the two parent vectors. These features increase the flexibility of the 
HS algorithm to produce better solutions. 

It is suggested that the stability of the output-feedback Newton-type MPC is 
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guaranteed. In this respect, one can use a nonlinear high-gain observer [154] as 

explained in [74]. Other nonlinear observers, such as those mentioned in [155]-[158], 

can also be utilised to estimate the state variables of the TRMS. 

The development of an output-feedback robust MPC for the TRMS is recommended. 
With this aim, one can refer to [84], [93], [94] in which a consolidated observer and 

state-feedback MPC has been suggested to provide the robust stability and 

performance of the control system. 

Exact linearisation MPC [140], [141] is an interesting subject that may be 

implemented on the TRMS. Roughly speaking, exact linearisation [137] tries to 

cancel the nonlinearities in a nonlinear system in such a way that the closed-loop 
dynamics appears in a linear form. It is a transformation for mapping a nonlinear 

system into a linear one without any approximation which occurs, for instance, in the 
Taylor-expansion-based linearisation approach. 

Other types of stability paradigms which are applicable to MPC algorithms can be 

employed to guarantee the stability of the proposed MPC approach. For example, 
dual model stability criterion [70] is suggested for use in guaranteeing the stability of 
the proposed system as an alternative method to terminal equality constraints. 

The proposed MPC method is perceived, to be applicable to other practical 
aerodynamic systems, such as UAVs. Due to the fast response of aerodynamic 
systems, the multistep Newton-type MPC method is deemed to be implementable; 
however, an accurate plant-model is a prerequisite for the control approach. 

NN-based MPC methods [2] are considered as nonlinear MPC paradigms, which use 
the NN-based empirical model of a system, and solve a nonlinear optimisation 
problem due to the nonlinearities stemming from the nonlinear activation functions 

and multi-layer networks. Therefore, the development of an NN-based MPC is 

recommended for the TRMS based on the developed NNARX model. 

As mentioned earlier, the TRMS has a pair of restrictors for each channel, and if the 
beam of the TRMS hits one of these restrictors, a torque exerts to the beam and 
forces it to move in the opposite direction. In order to model this phenomenon, the 
so-called hybrid dynamics theory can be involved. Hybrid dynamics are a 
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combination of continuous-time dynamical systems and discrete-time dynamical 

systems [159], [160]. The impact phenomenon is one of the examples which can be 

modelled using hybrid dynamics concepts. Continuous-time equations of motion are 
employed to describe the behaviour of a hybrid system in between the impacts. 
During the impacts a set of discrete-time equations can be used. The control of 
hybrid systems needs the requirements according to their nature [159], [160]. 
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Appendix 1 The TRMS Parameters 

Tables A1.1 and Al. 2 present the measured data of the vertical and horizontal 

interface circuits respectively. 

Table A1.1: The relationship between Uy and Vy 

No. Uy Vv No. Uv Vv No. U. Vv 

1 -2.5 -20.44 18 -0.8 -7.62 35 0.9 8.80 

2 -2.4 -20.02 19 -0.7 -6.82 36 1.0 9.59 

3 -2.3 -19.32 20 -0.6 -6.02 37 1.1 10.35 

4 -2.2 -18.52 21 -0.5 -5.20 38 1.2 11.16 

5 -2.1 -17.74 22 -0.4 -4.35 39 1.3 11.93 

6 -2.0 -16.98 23 -0.3 -3.46 40 1.4 12.71 

7 -1.9 -16.20 24 -0.2 -2.46 41 1.5 13.49 

8 -1.8 -15.43 25 -0.1 -1.13 42 1.6 14.27 

9 -1.7 -14.65 26 0 0.35 43 1.7 15.06 

10 -1.6 -13.87 27 0.1 1.80 44 1.8 15.87 

11 -1.5 -13.09 28 0.2 3.00 45 1.9 16.69 

12 -1.4 -12.33 29 0.3 3.80 46 2.0 17.50 

13 -1.3 -11.55 30 0.4 4.80 47 2.1 18.32 

14 -1.2 -10.78 31 0.5 5.62 48 2.2 19.06 

15 -1.1 -10.00 32 0.6 6.42 49 2.3 19.69 

16 -1.0 -9.20 33 0.7 7.22 50 2.4 19.90 

17 -0.9 -8.42 34 0.8 8.01 51 2.5 20.13 
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Table A1.2: The relationship between Uh and V. 

No. U. Vh No. Uh Vh No. Uh V,, 

1 -2.5 -15.38 18 -0.8 -5.90 35 0.9 6.69 

2 -2.4 -14.84 19 -0.7 -5.31 36 1.0 7.26 

3 -2.3 -14.29 20 -0.6 -4.71 37 1.1 7.83 

4 -2.2 -13.74 21 -0.5 -4.09 38 1.2 8.40 

5 -2.1 -13.19 22 -0.4 -3.44 39 1.3 8.96 

6 -2.0 -12.65 23 -0.3 -2.72 40 1.4 9.52 

7 -1.9 -12.10 24 -0.2 -1.85 41 1.5 10.08 

8 -1.8 -11.54 25 -0.1 -0.79 42 1.6 10.63 

9 -1.7 -10.98 26 0 0 43 1.7 11.18 

10 -1.6 -10.43 27 0.1 1.27 44 1.8 11.74 

11 -1.5 -9.87 28 0.2 2.24 45 1.9 12.29 

12 -1.4 -9.32 29 0.3 3.02 46 2.0 12.84 

13 -1.3 -8.75 30 0.4 3.69 47 2.1 13.39 

14 -1.2 -8.19 31 0.5 4.33 48 2.2 13.94 

15 -1.1 -7.62 32 0.6 4.93 49 2.3 14.49 

16 -1.0 -7.05 33 0.7 5.53 50 2.4 15.04 

17 -0.9 -6.48 34 0.8 6.11 51 2.5 15.59 

The parameters of the TRMS are listed in Table A1.3. 

Figure Al.! shows the measured horizontal aerodynamic force against the rotational 
velocity of the tail motor and the corresponding model. Although the maximum 
rotational speed of the tail motor is 837 rad/sec at no load condition, the motor with 
propeller can rotate at the maximum rate of 400 rad/sec due to the electrical current 
limitation. The measured data of the horizontal channel is listed in Table A1.4. 
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Table A1.3: The parameters of the TRMS 

Parameter Value Parameter Value 

(m) 0.282 Ra (Q) 8.00 

1m (m) 0.246 L1, (H) 8.60 x 10 

1h (m) 0.290 k� 
. (p (Nm/A) 2.02 x 10 -2 

ich (m) 0.276 �mr (kg m2) 2.16 x 10 

r, �s 
(m) 0.155 �, 

r 
(kg m2) 3.14 x 10 s 

r,,. (m) 0.100 B, 
r 

(kg m2/s) 2.30 x 10 

M, (kg) 0.221 BM, (kg m2/s) 4.50 x 10-s 

M., (kg) 0.236 k, hp (Nms2/rad2) 5.00 x 10 

me.,, (kg) 0.068 k, n� (Nms2/rad2) 4.20 x 10 

m, (kg) 0.015 k,,, 
p 

(Nms2/rad2) 5.60 x 10-7 

M. (kg) 0.014 k,,.,, (Nms2/rad2) 5.10 x 10 

mh (kg) 0.022 kß,, 
1., 

(Ns2/rad2) 1.84 x 10 6 

m, c 
(kg) 0.119 kl,,,, (Ns2/rad2) 2.20 x 10 ' 

M., (kg) 0.219 k/tip (Ns2/rad2) 1.57x10 

kg (ms/rad) 2.00 x 10-' kjv,, (Ns2/rad2) 8.30 x 10 

k, 2.60x10-5 km 2.00x10 

0.4 -- r-T r-ý -r 

0.3 

0.2 

0.1 

0 

-0.2 

-0.3 ModN j 
MA Ur. m 

-0. 
-M -200 -100 0 100 200 300 40p 

(Oh (rad/sec) 

Figure A1.1: The aerodynamic force due to the tail rotor versus its rotational velocity 
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Table A1.4: The aerodynamic force of the tail rotor against its velocity 

w,, (rad/s) -400 -300 -250 -200 -150 150 200 250 300 400 

Fh (N) -0.38 -0.22 -0.14 -0.09 -0.04 0.03 0.07 0.11 0.18 0.33 

Similar results for the vertical channel are presented in Figure Al .2 where the 

maximum rotational speed of the main rotor with propeller is 250 rad/sec. As 

mentioned before, the figures are not symmetric. The measured data of the vertical 

channel is listed in Table Al. 5. 

, -. 

Figure A1.2: The aerodynamic force due to the main rotor versus the rotational 

velocity of the main rotor 

Table A1.5: The aerodynamic force of the main rotor against its velocity 

a (rad/s) -250 -200 -150 -100 -50 50 100 150 200 250 

Fv (N) -0.57 -0.35 -0.19 -0.08 -0.02 0.03 0.15 0.35 0.64 1.05 

The measured data for modelling of the flat cable can be found in Table A 1.6. 

Table A1.6: The flat cable torque against the yaw angle 

a,, (rad) -4.2 -1 0 1.5 

Mh, (Nm) 0.0299 0.00854 0 0.0128 
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The look-up table of the friction torque against the beam speed in the vertical plane is 

shown in Table Al. 7. 

Table Al. 7: The look-up table of the friction torque against the beam speed in the 

vertical plane 

Q, (rad/s) -2 -7x10' -5x10f 0 5x10-4 7x104 2 

M f,. IC, v (Nm) -2.77x10-3 --1.509x10 -1.51x104 0 1.51x10 1.509x1074 2.77x1013 

The look-up table of the friction torque against the beam speed in the horizontal 

plane is found in Table A1.8. 

Table A1.8: The look-up table of the friction torque against the beam speed in the 
horizontal plane 

Oh (rad/s) -I -1x104 -5x105 0 5x10r5 1x10`4 I 

Mfric, h (Nm) -4.74x10-' -4xlO -4.02x104 0 4.02x10-S 4x1CF3 4.74x1or' 

The parameters of the EKF based on a state-dependent state-space model are as 
follows, 

R=o. ol o 
0 0.01 ' 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0.01 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 0.01 

The parameters of the UKF are, 

1 0.4 00000 
0.1 0 0.4 0000 

E [W(k)] _ 
0.032 

,E 
[v(k)] = 

0.032 000.4 000 
1 

[0.032]' 
0000.4 00 

0.1 00000.4 0 
0.032 L000000.4 
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0.4 0 
R= , P(-I) =I6x6, a=0.001, Q=2, K=0, 

0 0.4 

Table Al. 9 lists the optimum parameters from the GA-based grey-box identification 

approach. For convenient, the parameters of the white-box approach are also listed 

for comparison. 

Table A1.9: The optimum parameters from the GA-based grey-box identification 

Parameter White-box Grey-box 
"mr (kgm2) 2.16x10-4 2.01x10-4 

Jgr (kgm2) 3.14x10-5 3.14x10'5 

Bi, (kg m2/s) 2.30 x 10-5 2.30 x 10-5 

Bm, (kgm2/s) 4.50x10'5 2.97x10-5 

klhp (Nms2/rad2) 5.00 x 10"$ 5.00 x io- 

k, h� (Nms2/rad2) 4.20 x 10'8 4.41 x 10-8 
knp (Nms2/rad2) 5.60 x 10-7 5.60 x 10'' 

k�, (Nms2/rad2) 5.10 x 10'' 5.10x 10'7 

k. ffiP (Ns2/rad2) 1.84 x 10'6 2.14 x 10-6 

kft� (Ns2/rad2) 2.20 x 10-6 1.91 x 10-6 

kfr (Ns2/rad2) 1.57 x 10-5 1.95 x 10'5 
kf�� (Ns2/rad2) 8.30 x 10'6 1.10 x 10-5 
km (-) 2.00 x 10'4 2.30 x 10'4 

kr (-) 2.60 x 10'5 2.60 x 10-5 

kg (ms/rad) 2.00 x 10'' 1.84 x 10'' 

iv (kgm2) 6.49x10-2 5.26x10-2 

kvfi, (Nms/rad) 1.31 x 10'3 5.48 x 10'3 
kvjh (Nms/rad) 4.70 x 10-3 4.91x10-' 

kchp (Nm/rad) 8.54 x 10'3 5.60 x 10-3 

kCh� (Nm/rad) 8.54 x 10-3 5.60x10-' 

258 



Appendix 2 Equation Derive 

A2.1 Centrifugal Force 

Assume a particle with mass m connected to a light beam of length ! is rotating 

about the z-axis with the angular velocity of 0, and suppose the angle of the beam 

with the horizontal plane is a, as shown in Figure A2.1. The centrifugal force 

according to the shown direction can be calculated as follows. 

F =ma (A2.1) 

a=-S2zr=_ _02 lco(A2.2) 

F= -mQ2 lcosa (A2.3) 

Note that a is the centrifugal acceleration. Therefore, the centrifugal force and the 

centrifugal torque with specific direction are respectively expressed as, 

F. =F sin a= -m12 cos a sin a (A2.4) 

M, = F. 1 = -mlz QZ Cosa sina (A2.5) 

Z 

------------------- 

2---- 

------------------- 

lcosa 

Y 

X 

Figure A2.1: Centrifugal force of a particle 

where, 
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r: Radius of rotation (m) 

a: Acceleration (m/s2) 

FF : Centrifugal force (N) 

M.: Centrifugal torque (Nm). 

A2.2 Moment of inertia 

Assume the shield of the main rotor as a hoop with radius rm, which its centre is 

connected to a point on the z-axis by the main beam of the TRMS with the length 

im 
. 

Suppose the angle between the beam and the x-y plane is a,. The moment of 
inertia of the main shield about the z-axis can be found as, 

IZ = 
fr 'dm (A2.6) 

where, in the case of the main shield r2 = (rm, sin 0)2 +Q1. -r�� cos 0)2 cos' a, and 

dm = 
2- dO. Substituting into (A2.6) results in, 

z= 
2ýc 

Zf [(rms, 
sin O)2 + (Im - r., cos 6)2 cost a, 

]d 
O= mm, r, + mm3lm cost a, 

(A2.7) 

01 

Similarly, the shield of the tail rotor can be assumed as a hoop with radius res as 
shown in Figure A2.2. 

The moment of inertia about the z-axis can be expressed as, 

2r 
'2r =ý 

J[(1, 
-rrcosO)cosas -r, sinOsina,, ]2 d0 =S r� +m�1; cos2 ay (A2.8) 2 

20 

Note that it is more convenient to find the mentioned moment of inertia using the so- 
called parallel axis theorem. The other parts of the moment of inertia about the z-axis 
are straightforward and they are not presented for the sake of brevity. 
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r, s 

x 

Figure A2.2: The partial representation of the system 
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Appendix 3 Statistical Characteristics of Signals 

All signals can be divided into two distinct categories: discrete or continuous. If a 

signal consists of a finite number of values it is discrete, otherwise it is considered a 

continuous signal. Some of the most important parameters of a signal are: mean, 

variance, and standard deviation. If the exact density of each value of a signal is 

known then the accurate numerical value of each parameter can be calculated. For a 

comprehensive study on statistics one can refer to [161]. 

All Mean 

For a set of data with N members, X= [x1 , x2, """, xN ], mean or average value can be 
defined as, 

E(X)=1 
N , _, 

where, 

E: Expectation operator 

z: mean value 

N: Number of data 

x,: i-th member of data set. 

(A3.1) 

It is noted that the more general form of the expectation for a signal in which 
members have different probabilities can be expressed as, 

E(X) = j: (valueof x) (probability of x) (A3.2) 
all x 

For a signal that its members have the same probability, the probability of each 
member is 1/N and equation (A3.2) leads to (A3.1). 

A3.2 Variance 

For a set of data with N members, X= [x1 
, x1, """, xN ], variance can be calculated 

using, 
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1t(x. 
_z)2 

nL=1" 
a2 = E(X -x)2 = 

1 ý(xý 
_z)2 

A3.3 Standard deviation 

for entire population (n = N) 

(A3.3) 

for a sample of population (n < N) 

Standard deviation is the square root of variance and can be found as, 

1n2 

n i_1 

6= E(X _y)2 = 
1 ý(xý 

_z)2 
n-1 , =, 

A3.4 Covariance 

if n=N 

(A3.4) 

if n<N 

For a set of data with N members, X= [x, , x2 ,""", xN] the covariance with lag r can 
be defined as, 

N-s 

(x1 - z)(xi+, - 
Rx (r) _ '_' 

N 
(A3.5) 

The covariance between two sets of data with the same length, X= [x,, x2, """, xN ] 

and Y= [yl, y2, "" "9 YN ] can be defined as, 

N-t 
1(x, -x)(Y, +r -v) 

R (z) =f ý' 
N (A3.6) 

A3.5 Auto-correlation and cross-correlation 

For a set of data with N members, X =[Xj, x2, """, XNI the auto-correlation can be 
defined as, 
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N-r 

(x, - x)(xr+r -x) 
r (z) _ '_' 

N 
(A3.7) 

1(xi 
-z)2 

t=l 

The auto-correlation of lag zero r=0 is always equal to one. The cross-correlation 
between two sets of data with the same length, X= [x1, x2 ,""", XN ] and 
Y= [Yi'Y2YN], is equal to the covariance of two sets over the product of their 

standard deviations and can be defined as, 

X-r 
(Xi 

- X)(. Yi+s y) 

i=1 

N 

(x; -x)2ý(y -Y)2 

rxy (r) _ 
Y (x, - x)(v�r - Y) 
l=1-r 

NN 

-x)21 (y -Y)2 

A3.6 Probability density function 

z=0,1,..., N-1 

z=-N+1, -N+2,..., -1 

(A3.8) 

The general form of a probability density function, f (x), for a signal with average 
u änd standard deviation o can be defined as the following Gaussian function (see 
Figure A3.1), 

x-N 

(X) =a 
12ýr 

ez (A3.9) 

The standard normal distribution that is a normal distribution with mean zero and 
standard deviation one is found by substitution Z= (X - p)/Q in (A3.9) as, 

1 -' =2 Az) = 2z e2 (A3.10) 

The probability of having x between the interval [a, b] can be expressed as, 

P(aSxsb)= jf(x)dx (A3.11) 

That is equal to the probability of having z between the interval [(a-u)la, (b-u)la] 
as follows, 
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P(a-, u ýz<b-, u)- ýf(z)dz 1J 
e dz (A3.12) 

66 2ii 

where ä=a ,u and 
b-, u. As the integral 

I $h ez2 dz cannot be solved 
60 

=r b 

analytically, therefore numerical solution and forming a table is an ordinary way to 

overcome this problem. 

1 

Q IT 

f (x) 

p-3a u-2a p-aNp+a p+2a p+3a 

x 
Figure A3.1: A probability density function 

A3.7 Confidence interval on the mean 

Assume aI -a confidence interval for p is desired. In other words, there is an 
interval like [a, b] in which, 

P(a! 5pSb)=1-a (A3.13) 

In order to construct a confidence interval for 
4u according to the measured value of 

mean, x, one can write, 

P( 66 
x-ýza12 <_ý<<_x+ýZa/2)=1-a (A3.14) 

where N is the number of measured values and za /2 can be defined as, 

P(Z 
-Zai2) =a (A3.15) 

As pointed out before, za 12 is found using the numerical solution of integral (A3.12) 
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as listed in "Cable A3.1. Therefore, the 95% confidence interval refers to the tact that, 

1-a=0.95 =a=0.05 = a/2=0.025 

According to 'T'able A3.1, the value of Z, '2 = z0 02S is equal to 1.96, and the 95% 

confidence interval for a signal with zero mean and standard deviation of one, based 

on (A3.14), is found as, 

0-1.96 
1<0+1.96 1 1.96 

<<N-1.96 TN - 

Table A3. l: Numerical solution of P(Z >_ a) 

a00.01 0.02 0.03 0.04 

=1Je' 2rr 

0.05 0.06 

dz with respect to a 

(1.07 0.08 0,09 

0 0.5000 0.4960 0,4920 0.4880 0,4840 0.4801 0.4761 0.4721 0.4681 0 4641 

0.1 0.4602 0.4562 0.4522 04483 0.4443 0.4404 0.4164 0.4325 0.4286 0.4247 

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 03859 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 01520 0.3483 

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 03264 0.3228 0.3192 0.3156 01121 

0.5 0.3085 0.3050 0.3015 0.2981 0 2946 0.2912 0.2877 0.2843 0.2810 0.2776 

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2481 0 2451 

((. 7 01420 0.2389 0.2358 0.2327 0.2297 0.2266 0 2236 0.2207 0 2177 0.2148 

0.8 0.2119 0.2090 0.2061 01033 0.2005 0.1977 0.1949 01922 0189.1 0.1867 

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 01685 0.1660 (11635 0.1611 

1.0 0.1587 0.1562 01529 0.1515 0.1492 0.1469 0.1,146 0.1423 () 1101 01379 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 01230 0.1210 01190 01170 

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 01057 0.1038 0.1020 0 1003 00985 

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 00853 00839 0.0823 

1.4 0.0808 00793 0.0778 00764 0.0749 0.0735 0.0721 0.0708 00694 00081 

1.5 0.0668 0.0655 0.0643 0.0630 00619 0.0606 0.0594 00582 (( 0571 ((0559 

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0 0485 00475 00,165 0.0455 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 1)1) 0(1 00184 01(375 11.0367 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 00121 n1) (I1 0 0(07 () 07(11 00294 

1.9 0.0287 0.0281 00274 0.0268 0.0262 0025(, 0.0250 (102-14 0.0219 0.0233 

2.0 0.0227 0.0222 0,0217 0.0212 0.0207 0.0202 00197 011192 00M 00183 
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.015.1 0.0150 0.01.16 00143 

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 O 01 19 0.01 16 00113 O 01 10 

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 00097 00184 

2.4 0.0082 0,0080 0,0078 0.0075 0.0073 0 0071 00069 0.0068 00066 00064 

2.5 0.0062 0.0060 0.0059 0.0057 00055 0.0054 00052 00051 0 00.19 000.18 
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0,0038 0.0037 0.0036 
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 00030 0.0029 0.0028 00027 00020 

2.8 0.0026 0.0025 0.0024 00023 0.0023 0.0022 00021 00021 00020 () 0019 
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 00016 0.0015 00015 000111 0.0014 
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0 001 1 0.001 1 0 0011 000(0 () 001() 
3.1 00010 00009 00009 0.0009 0.0008 00008 00008 00008 0.0007 00007 

3.2 00007 0.0007 0.0006 0.0006 0.0006 0.0006 00006 00005 00005 00005 

3.3 1) 0005 0.0005 0.0005 0.0004 00004 00004 0.0004 0.0004 0.0004 11.0003 

3.4 00003 00003 0.0003 0.0003 00003 0.0003 0.0003 00003 0.0003 00002 
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 00002 0.0002 0.0002 0 0002 00002 
3.6 00002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 00001 0.0001 00001 

3.7 00001 0.0001 0,0001 0.0001 0.0001 0.0001 00001 00001 00001 00001 
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 00001 0.0001 00001 
3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00000 0.0000 00000 
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Appendix 4 Kalman Filter 

A4.1 EKF 
The conventional Kalman filter is widely used for linear systems; however, most real 

processes are nonlinear. Therefore, EKF has been introduced to observe state 

variables of nonlinear systems. Assume a nonlinear state-space plant-model 

x(k +1)=f(x(k), u(k))+w(k) 

y(k)=h(x(k))+v(k) 
(A4.1) 

where w(k) and v(k) are white noise with covariance matrices Q(k) and R(k) 

respectively. Optimum state variables estimation can be obtained using the following 

equations iteratively, 

Prediction stage 
x(k Ik -1) =f (i(k 

-1 Ik -1), u(k)) (A4.2) 

M(k) = A(k)P(k -1)AT (k) + Q(k) (A4.3) 

where, X^ (k Ik -1) is the predicted state and M(k) is the predicted error covariance. 
Also matrix A(k) is defined using the following Jacobian, 

A(k) = 
of 

aX i(k-llk-1), 
ýýý) 

(A4.4) 

Note that instead of the Jacobian-based linearisation, it is also possible to use a state- 
dependent system, and based on the previous sample time data, update the linear 

model. 

Correction or update stage 

L'(k) = M(k) CT (k)[C(k) M(k) CT (k) + R(k)r' (A4.5) 

ü(k I k) = ix(k (k -1) + L'(k) [y(k) 
- h(i(k Ik -1))1 (A4.6) 

P(k) = (I - L'(k)C(k))M(k) (A4.7) 

where, L(k) is the Kalman gain, X(k I k) is the updated state estimate, and P(k) is 
the update error covariance [162]. Matrix C(k) is defined as follows, 
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C(k) =R (A4.8) 
i(klk-1) 

The flowchart of the extended Kalman state observer procedure is depicted in Figure 

A4.1. 

Initialise state, 
and P(-1), and set k=0 

Take current input and 
output vectors of plant: 

u(k), and y(k) 

Prediction 
Predict state and error covariance: 
1(k I k-1) = f(x(k-1, k- 1), u(k)) 

A(k) _ 
of 
aX 

i(k-IIk-1), u(k) 

M(k) = A(k)P(k -1)AT (k) + Q(k) 

Correction 

C(k) = 
ah l 

I i(ktk-1) 
Compute Kalman gain: 

k=k +1 L(k) = M(k)CT CT(k)IC(k) M(k) CT (k) + R(k)r' 
Update state estimation: 

i(k I k) = i(k Ik -1) + L'(k) [y(k) 
- h(i(k Ik -1))] 

Update error covariance: 
P(k) _ (I -L'(k)C(k))M(k) 

-nd state, i(k I k); 
to the controller , 

Figure A4.1: Flowchart of the extended Kalman observer procedure 

A4.2 UKF 
Prediction stage 

The first step of a UKF is to augment the estimated state and covariance with the 

mean and covariance of the process noise, w(k) respectively. 
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x(k- II k-1) x (k-II k-1) 
xQ(k-1I k-1) _ --- __ 4ý ------ (A4.9) 

E[w(k)] J Lxa2 (k -1 lk -1) 

Pa (k -I I k-1) =P 
(k -0k -1) 

Q (k0 ) 
(A4.10) 

According to these augmented state and covariance, a set of 2L +1 sigma points is 

found as follows where L is the dimension of the augmented state, 

oi(k -lýk -1) 
Xo(k- II k-1)=xQ(k-II k-1) =X -o- -------- x02(k-lýk-1) 

x, (k-1I k-1) = xa(k-1 I k-1)+((L+A)Pa(k-1( k-1))1 

(A4.11) 

x;, (k -lIk -1) (A4.12) 

x; 2(k-I I k-1) 
i =1,..., L 

x; (k-l1 k-1)=xQ(k-1I k-1)-(V(L+i%)Pa(k-lok-1)), 
_L 

(A4.13) 

x, z (k -1 Ik -1) 
i=L+1,..., 2L 

where % is a scaling parameter and 
((L 

+' )Pa (k -1 Ik -1)), is the i-th column of 
the related matrix. 

The sigma points should be propagated through the state functions, 

x, (kIk-1)=f(x�(k-Ilk-1), u(k))+x12(k-i k-1) i=0,..., 2L (A4.14) 

The weighted sigma points are used to construct the predicted state and covariance, 

2L 
i(kI k-1)=EW, x, (kI k-1) 

i=o 
(A4.15) 

ZL 

P (k I k-1) =ZW, ` [x, (k Ik -1) - z(k Ik -1)][x, (k I k-1)- z(k Ik -1)]T (A4.16) 
1=o 

where the weights can be found as, 

JA 
L+A 

+(1-a2 +ß) W° 
L+A 
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sc1 

i 2(L + A) 

and the scaling parameter can be calculated as %=a2 (L + x) - L. Typical values of 

o t, ß and K are 0.001,2 and 0 respectively [130]. 

Update 

Again, the predicted state and covariance are augmented but with the mean and 

covariance of the measurement noise, v(k). 

z(k (k -1) = 
FL, (k (k -1) 

xQ (k I k-1) = E[v(k)] xa2(k 
Ik 

-1 
(A4.17) ) 

Pa(kI k-1). 
P(kI k-1) 0 

(A4.18) 
0 R(k) 

Similarly, the new set of the sigma points is calculated as follows, 

xo (k k -1) = x4 (k Ik -1) (A4.19) 
x02(kI k -i) 

x1 (k k-1)=xa(kI k-1)+((L+6)PP(k(k-1)), 

x; l (k lk -1) (A4.20) 
ill (k) k-1) 1=1,..., L 

x, (k(k-1)=xa(kI k-1)-((L+#%)Pa(kl k-1))t_L 

A4.21) 
=i=L+1,..., 2L 

x12(k I k-1) 

The sigma points are sent through the output functions 

Yr(k)=h( 11(kI k-1))+x, 2(kI k-1) i =0,..., 2L (A4.22) 

The weighted sigma points are used to construct the predicted measurement and its 
covariance. 

2L 

Y(k) = ZWjf yi(k) (A4.23) 
r=o 

2L 

P. (k) _ W, LYE (k) -$ (k)Ii, (k) - Y(k)]T (A4.24) 
=o 

The covariance between the state and measurement is as follows, 
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2L 

PXZ (k) W. " k, (k lk -1) - x(k lk -1)TY; (k) -Y(k)]T (A4.25) 
=o 

Now, the unscented Kalman gain can be obtained, 

L(k) = PxZ (k)P; ' (k) (A4.26) 

The state and covariance are updated using the following expressions, 

X(k I k) = X(k Ik -1) + L(k) [y(k) 
- 9(k)] (A4.27) 

P(k I k) = P(k Ik -1) - L(k)P. (k)LT (k) (A4.28) 
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Appendix 5 Source Code of the Programmes 

The source codes of all the programmes developed in this research are presented in 

this part. First, the programmes related to simulations are presented followed by the 

programmes used for practical implementation. 

A5.1 Simulation Programmes 

The following function, TRMSpara. m, contains the TRMS parameters and other 
initial values. These data are used for the Newtonian models and for controller 
design. The data for the Lagrangian model can be found using the following data; for 

the sake of brevity, the related m-file is not presented here. 

function [ lt, lm, Jv, g, A, B, C, E, D, F, H, Jtr, Rah, Lah, kthp, kthn, Btr, Jmr, ... 
Rav, Lav, ktvp, ktvn, Bmr, av0, kfhp, kfhn, kfvp, kfvn, koh, kov, kchp, 

... 
kchn, km, kt, kg, kl, k2, Ts, Nc, Np, TC, kcfh, FRhi, FRho, kcfv, FRvi, FRvo, ... 
CFi, CFo, ICThi, ICTho, ICTvi, ICTvo]=TRMSpara; 

% TRMS parameters 
lt = 0.282; % Length of tail beam part (m) 
lm = 0.246; % Length of main beam part (m) 
lb = 0.29; % Length of counterweigth beam (m) 
lcb = 0.276; Distance between counterweigth and joint (m) 
rms = 0.155; % Radius of main shield (m) 
its = 0.10; Radius of tail shield (m) 

mtr = 0.2213; % Mass of tail DC motor (kg) 
mmr = 0.2357; % Mass of main DC motor (kg) 
mcb = 0.0688; % Mass of counterweigth (kg) 
mt = 0.0155; % Mass of tail beam (kg) 

mm = 0.0145; % Mass of main beam (kg) 
mb = 0.022; % Mass of counterweigth beam (kg) 
mts = 0.1193; % Mass of tail shield (kg) 
mms = 0.2187; % Mass of main shield (kg) 

_--------- __°_--= Moment of inertia in vertical plane (kg. m^2) 
Jv1 = mtr*lt^2; 
Jv2 = mcb*lcb^2; 
Jv3 = mmr*lm^2; 
Jv4 = (mt*lt^2)/3; 
Jv5 = (mm*lm^2) /3; 
Jv6 = (mb*lb^2)/3; 
Jv7 = mms/2*rms^2+mms*lm^2; 
Jv8 = mts*rts^2+mts*lt^2; 
iv = Jvl+Jv2+Jv3+Jv4+Jv5+Jv6+Jv7+Jv8; 

Jh=D*(cos(av))^2+E*(sin(av))^2+F 
D= (mm/3+mmr+mms)*lm^2+(mt/3+mtr+mts)*lt^2; 
E= mb/3*lb^2+mcb*lcb^2; 
F= mms*rms^2+mts/2*rts^2; 

Mvl=g((A-B)*cos(av)-C*sin(av)) 
g=9.81; 
A= (mt/2+mtr+mts)*lt; 
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3= (mm/2+mmr+mms) *lm; 

2= mb/2*lb+mcb*lcb; 
$ Mv3=-OMEGAh^2*H*sin(av)*cos(av) 

H= A*lt+B*lm-mb/2*lb^2-mcb*lcb^2; 
Tail rotor parameters 

Jtr = 3.1432e-5; % Moment of inertia of tail motor/load (kg. m^2) 
Rah = 8; % Armature resistance (ohm) 
Lah = 0.86e-3; Armature inductance (H) 

kthp = 0.5e-7; % TLh=kthp*sign(wh)*wh^2 

kthn = 0.42e-7; % TLh=kthn*sign(wh)*wh^2 

Btr = 2.3e-5; %> Viscous friction coefficient of tail rotor 
Main rotor parameters 

Jmr = 2.1624e-4; % Moment of inertia of main motor/load (Kg. m^2) 
Rav = 8; % Armature resistance (ohm) 
Lav = 0.86e-3; % Armature inductance (H) 

ktvp = 5.6e-7; % TLv=ktvp*sign(wv)*wv^2 

ktvn = 5. le-7; TLv=ktvn*sign(wv)*wv^2 

Bmr = 4.5e-5; % Viscous friction coefficient of main rotor 
=---------------= Propelling force coefficients =___________ 

kfhp = 1.8377e-6; % Fh(wh)=kfhp*sign(wh)*wh^2 
kfhn = 2.2040e-6; % Fh(wh)=kfhn*sign(wh)*wh^2 
kfvp = 1.5691e-5; % Fv(wv)=kfvp*sign(wv)*wv^2 
kfvn = 0.82682e-5; % Fv(wv)=kfvn*sign(wv)*wv^2 

Friction coefficients 
kvfh = 0.0047; % Horizontal viscous friction coefficient 
kcfh = 3.96e-5; % Horizontal Coulomb friction coefficient 
FRhi = [-1 -0.0001 -0.00005 0 0.00005 0.0001 11; 
FRho = [-kvfh-kcfh -0.0001*kvfh-kcfh -0.00012*kvfh-kcfh 0 ... 

0.00012*kvfh+kcfh 0.0001*kvfh+kcfh kvfh+kcfh]; 
kvfv = 0.00131; % Vertical viscous friction coefficient 
kcfv = 1.5e-4; % Vertical Coulomb friction coefficient 
FRvi = [-2 -0.0007 -0.0005 0 0.0005 0.0007 21; 
FRvo = [-2*kvfv-kcfv -0.0007*kvfv-kcfv -0.0008*kvfv-kcfv 0 .. 

0.0008*kvfv+kcfv 0.0007*kvfv+kcfv 2*kvfv+kcfv]; 

--- Coefficients of the horizontal cable force - 
kchp = 0.00854; 
kchn = 0.00854; 
CFi = [-4.2 -1 0 1.5]; 
CFo = [-3.5*kchn -kchn 0 1.5*kchp]; 
$ Mutual effect coefficients 
km = 0.0002; % Effect of main rotor on the horizontal angle 
kt = 0.000026; % Effect of tail rotor on the vertical angle 
kg = 0.2; % Gyroscopic force coefficient 
TC = 0.0202; % Torque constant (kav*phiv or kah*phih) 
avO = atan2((A-B), C); % Initial vertical angle 
$ Interface circuit tables 
% Horizontal 
ICThi = [-2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 ... 

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 ... 
-0.2 -0.1 -0.08 0 0.03 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ... 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5]; 

ICTho = [-15.381 -14.844 -14.291 -13.744 -13.194 -12.648 -12.098 ... 
-11.544 -10.986 -10.429 -9.871 -9.318 -8.754 -8.188 -7.616 ... 
-7.055 -6.482 -5.9 -5.309 -4.706 -4.086 -3.443 -2.722 -1.848 .. 
-0.789 0001.271 2.24 3.021 3.695 4.331 4.935 5.531 6.115 ... 6.695 7.266 7.835 8.398 8.962 9.521 10.08 10.628 11.184 ... 11.737 12.287 12.84 13.396 13.944 14.493 15.041 15.595]; 

% Vertical 

ICTvi = [-2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 
-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 ... -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 ... 
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1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5]; 
ICTvo = [-20.44 -20.02 -19.316 -18.525 -17.742 -16.977 -16.197 

-15.427 -14.656 -13.873 -13.093 -12.33 -11.554 -10.776 ... 
-9.998 -9.205 -8.416 -7.625 -6.825 -6.019 -5.198 -4.35 
-3.46 -2.46 -1.13 0.35 1.8 3 3.8 4.8 5.621 6.425 7.222 
8.013 8.801 9.594 10.355 11.162 11.932 12.707 13.491 ... 
14.275 15.064 15.874 16.689 17.5 18.324 19.064 19.69 ... 
19.9 20.13]; 

kl = 8.5; Linearised vertical interface gain 
k2 = 6.5; Linearised horizontal interface gain 

Controller parameters 
Ts = 0.2; % Sample time 
Np = 20; Prediction horizon 
Nc = 15; % Control horizon 

PSD is calculated by the following m-file, PSD. m, using the MATLAB command 

pwelch. Note that before running the following m-file one needs to have access to the 

real and modelled data of the yaw and pitch angles in the MATLAB Command 

Window. The m-file assumes the number of data for the yaw and pitch angles in the 

case of the real TRMS are the same; also the number of data of both the angles of the 

model should be the same. 

% PSD. m is used to calculate the Power Spectral Density (PSD) 
% of the real and simulated TRMS using the so-called Welch's 
% method. It receives the extracted data from the real TRMS 
% and the developed model (ahm, ahr, avm and avr) and returns 
% their PSD. 
% Written By A. Rahideh on 08/05/2006 at QMUL. 
Ts = 0.2; % Sample time 
Fs = 1/Ts; ' Sampling frequency 
Tss = 0.001; Data sampling rate 
L= min(length(ahm), length(ahr)); '� Number of data 

ahm = ahm(l: Ts/Tss: L); Yaw angle of model 
ahr = ahr(l: Ts/Tss: L); Yaw angle of real TRMS 
[X1, F1] = pwelch(ahm, [], [], [], Fs); % PSD of model 
[X2, F2] = pwelch(ahr, [], [], [], Fs); PSD of real TRMS 
avm = avm(1: Ts/Tss: L); Pitch angle of model 
avr = avr(l: Ts/Tss: L); 6 Pitch angle of real TRMS 
[X3, F3] = pwelch (avm, [], [], [], Fs) ;, PSD of model 
[X4, F4 ]= pwelch (avr, [], [], [], Fs) ;% PSD of real TRMS 
figure(1) 
semilogy(F2, X2, 'k: ', 'linewidth', 1); 
hold on 
semilogy(F1, X1, 'b', 'li_newi. drh', 1); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude'); 
legend( 'PSD of real 
figure(2) 
semilogy(F4, X4, 'k: ', 'linewi(ith', 1); 
hold on 
semilogy(F3, X3, 'b', 'linewidth', l); 
xlabel('Frequency (Hz)'); 
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ylabel('Magnitude'); 
legend('PSD of real TRMS', 'PSD of the model') 
MSEh = sum((ahr-ahm). ^2)/L; % Mean squared error of ah 
MSEv = sum((avr-avm). ^2)/L; % Mean squared error of av 

The codes related to the NN modelling are written in two separate files; the first one 
is a function, NNDATA2D, which forms and prepares the data for the training and 

test stages from several separate experimental data files, and the second file, 

NN2D. m deals with the training methods. Note that in order to be able to run these 

files one needs to have 25 mat files named DATAI. mat to DATA25. mat. The first 

file is recalled from the second file which means to run the programme the second 
file only needs to be run. For the sake of brevity, only the codes for the 2DOF NN- 

based modelling is presented and for the case of the 1 DOF vertical and horizontal the 

following programme needs to be slightly modified. 

function [I, T, IT, TT]=NNDATA2D 

This function forms the data for training and test stages of a 
neural network from 25 sets of mat data, i. e. DATA1 to DATA25. 
Each set of data (e. g. DATA1) contains a matrix 'Yout' with 500 
rows and 5 columns which are pitch angle, yaw angle, time, 

s main motor voltage and tail motor voltage respectively. 
öI: input matrix for training the NN 
%T: target output matrix for training the NN 
% IT: input matrix for test the NN 
% TT: target output matrix for test the NN 
% Written by A. Rahideh on 25-07-2006 at QMUL. 
OI=2; `;, Order (lag space) of input for NN 
00=3; % Order (lag space) of output for NN 
Ts=0.2; % Sample time of the network 
Tss=0.001; % Sample time of real TRMS 
NDS=22; Number of data sets for training 
NDST=3; Number of data sets for test 
$ Form the Train Data 
clear IT 
L=O; 
for j=l: NDS 

load(['DATA' int2str(j)]); 

N=length(Yout); 
AV=Yout(l: Ts/Tss: N, l); % AlphaV: Pitch angle 
AH=Yout(l: Ts/Tss: N, 2); % AlphaH: Yaw angle 
VV=Yout(l: Ts/Tss: N, 4); % Vertical rotor voltage 
VH=Yout(l: Ts/Tss: N, 5); % Horizontal rotor voltage 

==== Constructing the inputs of NN for training stage --__ 
n=length(VV); 
I(L+1: L+n, 1)=[zeros(l, l); VV(l: n-1)]; 
for i=l: 0I 

I(L+1: L+n, i+l)=[zeros(i+1,1); VV(l: n-i-l)]; 
end 
for i=1: 00 

I(L+1: L+n, i+OI+1)=[zeros(i, l); AV(1: n-i)] 
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end 
I(L+1: L+n, 0I+00+2)=[zeros(1,1); VH(l: n-1)]; 
for i=1: 0I 

I(L+1: L+n, i+0I+00+2)=[zeros(i+1,1); VH(l: n-i-1)]; 
end 
for i=1: 00 

I(L+1: L+n, i+2*OI+00+2)=[zeros(i, l); AH(l: n-i)]; 
end 
% ==== Constructing the outputs of NN for training stage 
T(L+1: L+n, l)=AV; 
T(L+1: L+n, 2)=AH; 
L=length(T); 

end 
% Form the test Data 

clear IT TT 

L=O; 
for j=NDS+1: NDS+NDST 

load(['DATA' int2str(j)]); 

N=length(Yout); 
AV=Yout(1: Ts/Tss: N, 1); % AlphaV: Pitch angle 
AH=Yout(1: Ts/Tss: N, 2); % Alpha H: Yaw angle 
VV=Yout(l: Ts/Tss: N, 4); % Vertical rotor voltage 
VH=Yout(1: Ts/Tss: N, S); % Horizontal rotor voltage 

% ==== Constructing the inputs of NN for test stage 
n=length(VV); 
IT(L+1: L+n, 1)=[zeros(1,1); VV(l: n-1)]; 
for i=l: 0I 

IT(L+1: L+n, i+l)=[zeros(i+1,1); VV(l: n-i-1)]; 
end 
for i=1: 00 

IT(L+l: L+n, i+0I+1)=[zeros(i, 1); AV(l: n-i)]; 
end 
IT(L+1: L+n, OI+00+2)=[zeros(1,1); VH(l: n-1)]; 
for i=1: OI 

IT(L+1: L+n, i+OI+00+2)=[zeros(i+1,1); VH(l: n-i-1)]; 
end 
for i=1: O0 

IT(L+1: L+n, i+2*OI+00+2)=[zeros(i, l); AH(l: n-i)]; 
end 
% ==_= Constructing the outputs of NN for test stage 
TT (L+1 : L+n, 1) =AV; 
TT(L+1: L+n, 2)=AH; 
L=length(TT); 

end 

As mentioned earlier the above function is recalled in the following m-file to train 
the NN-based on the selected training approach. 

% This programme models the TRMS in terms of its 2DOF using 
% an MLP neural network and 13 training methods 
% Written by A. Rahideh on 2-08-2006 at QMUL. 
disp(' The List of Training Methods') 

disp('- 1 Levenberg-Marquardt 

276 



disp('= 2 Gradient descent with momentum and adaptive rate 
disp('= 3 BFGS quasi-Newton 
disp('= 4 Bayesian regularisation 
disp('= 5 Conjugate gradient with Powell-Beale restarts 
disp('= 6 Conjugate gradient with Fletcher-Reeves 
disp('= 7 Conjugate gradient with Polak-Ribiere updates 
disp('= 8 Gradient descent 
disp('= 9 Gradient descent with adaptive learning rate 
disp('= 10 Gradient descent with momentum 
disp('-- 11 One step secant 
disp('= 12 Resilient 

disp('= 13 Scaled conjugate gradient 
--------------- - 

tota=input('Choose a training algorithms by its code (1 to 13): '); 
Load data of the TRMS =__-------_____ 

[IN, TARGET, INT, TARGETT]=NNDATA2D; 
minlN=min(IN)'; 
maxlN=max(IN)'; 
AF={'logsig' 'logsiq' 'purelin'}; 
ö _------ _______ Type of Training Algorithm Selection 

switch tota 

case 1 
disp('Levenberg-Marquardt selected') 
net = newf f ([minlN maxlN], [352], AF, ''r-i i ri l m') ; 
net. trainParam. epochs = 500; 

net. trainParam. goal = 0; 

net. trainParam. show = 100; 

net. trainParam. mingrad = le-12; 

net. trainParam. maxfail=5; 
net. trainParam. memreduc=l; 
net. trainParam. mu=0.0001; 
net. trainParam. mudec=0.3; 
net. trainParam. muinc=3; 
net. trainParam. mumax=le+10; 
net. trainParam. time=Inf; 

case 2 
disp( 'Gradient descent with momcýrit um c, (i r, i p. rnrt 
net = newff ([minlN maxIN], [3 5 
net. trainParam. epochs = 500; 

net. trainParam. goal = 0; 

net. trainParam. lr = . 001; 

net. trainParam. lrdec = 0.7; 

net. trainParam. lrinc = 1.1; 

net. trainParam. maxfail = 5; 

net. trainParam. max_perf inc = 1.04; 

net. trainParam. mc = 0.9; 

net. trainParam. min_grad = 1.0e-6; 

net. trainParam. show = 100; 

net. trainParam. time = inf; 

case 3 
disp('BFGS quasi-Newton selected') 
net = newff([minlN maxlN], [3 5 2), AF, 'rrainbfq'); 
net. trainParam. epochs = 500; 
net. trainParam. show = 100; 
net. trainParam. goal = 0; 
net. trainParam. time=Inf; 
net. trainParam. min_grad = le-12 
net. trainParam. max_fail=5; 
net. trainParam. searchFcn='srchbac'; 
net. trainParam. scaletol=20; 
net. trainParam. alpha=0.001; 
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net. trainParam. beta=0.1; 
net. trainParam. delta=0.01; 
net. trainParam. gama=0.1; 
net. trainParam. lowlim=0.1; 
net. trainParam. uplim=0.5; 
net. trainParam. maxstep=100; 
net. trainParam. minstep= 1.0000e-006; 
net. trainParam. bmax=26; 
net. trainParam. memreduc=l; 
net. trainParam. mu=0.0001; 
net. trainParam. mu dec=0.3; 

net. trainParam. muinc=3; 
net. trainParam. mumax=le+10; 

case 

case 

case 

disp('Bayesian regularisation selec, t_ed') 

net = newff([minIN maxlN], [3 5 2], AF, 'trainbr'); 

net. trainParam. epochs = 500; 

net. trainParam. show = 100; 

net. trainParam. goal = 0; 

net. trainParam. time=Inf; 

net. trainParam. mingrad = le-12; 

net. trainParam. maxfail=5; 
net. trainParam. mem_reduc=l; 
net. trainParam. mu=0.0001; 
net. trainParam. mudec=0.3; 
net. trainParam. muinc=3; 
net. trainParam. mumax=le+10; 

disp('Conjugate gradient with Powel L-Beale rc: stir t_:, 
net = newff([minlN maxlN], [3 5 2], AF, 'traincyh'); 

net. trainParam. epochs = 500; 

net. trainParam. show = 100; 
net. trainParam. goal = 0; 
net. trainParam. time=Inf; 
net. trainParam. mingrad = le-12; 
net. trainParam. maxfail=5; 
net. trainPa ram. search Fcn='st (-I i(, I,,, 
net. trainParam. scaletol=20; 
net. trainParam. alpha=0.001; 
net. trainParam. beta=0.1; 

net. trainParam. delta=0.01; 

net. trainParam. gama=0.1; 
net. trainParam. lowlim=0.1; 

net. trainParam. uplim=0.5; 
net. trainParam. maxstep=100; 

net. trainParam. minstep=le-6; 
net. trainParam. bmax=26; 
net. trainParam. memreduc=l; 
net. trainParam. mu=0.0001; 
net. trainParam. mudec=0.3; 
net. trainParam. muinc=3; 
net. trainParam. mu max=le+10; 

disp('Conjugat_e gradient with F'Ietýýher ti( I((I 
net = newff([minlN maxlN], [3 5 2], AF, 'trýin 
net. trainParam. epochs = 500; 

net. trainParam. show = 100; 
net. trainParam. goal = 0; 
net. trainParam. time=Inf; 
net. trainParam. min_grad = le-12 
net. trainParam. max fail=5; 
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net. trainParam. searchFcn='-r, 
net. trainParam. scaletol=20; 
net. trainParam. alpha=0.001; 
net. trainParam. beta=0.1; 

net. trainParam. delta=0.01; 

net. trainParam. gama=0.1; 
net. trainParam. lowlim=0.1; 

net. trainParam. uplim=0.5; 
net. trainParam. maxstep=100; 
net. trainParam. minstep=le-6; 
net. trainParam. bmax=26; 

case 

case 

disp('Conjugate gradient with Polak-K 

net = newff([minlN maxlN], [3 5 2], AF, 

net. trainParam. epochs = 500; 

net. trainParam. show = 100; 

net. trainParam. goal = 0; 

net. trainParam. time=Inf; 

net. trainParam. mingrad = le-12; 

net. trainParam. maxfail=5; 
net. trainParam. searchFcn=' s 
net. trainParam. scaletol=20; 
net. trainParam. alpha=0.001; 
net. trainParam. beta=0.1; 

net. trainParam. delta=0.01; 

net. trainParam. gama=0.1; 
net. trainParam. lowlim=0.1; 

net. trainParam. uplim=0.5; 
net. trainParam. maxstep=100; 
net. trainParam. minstep=le-6; 
net. trainParam. bmax=26; 
8 
disp('Cradient descent set t(d') 
net = newff([minIN maxlN], [3 5 2], AF, 
net. trainParam. epochs = 500; 

net. trainParam. show = 100; 

net. trainParam. goal = 0; 

net. trainParam. lr = 0.1; 

net. trainParam. maxfail = 5; 

net. trainParam. min_grad = le-15; 

net. trainParam. time=Inf; 

'i ri i rl(pi' ); 

case 9 
disp ('Gradient descent wi th adapt_ iv(? r, atýý ýýý Iet(, d' 
net = newff([minlN maxlN], [3 5 2], AF, 'tr, 3inyd, 3' 
net. trainParam. epochs = 500; 

net. trainParam. goal = 0; 
net. trainParam. lr = 0.001; 
net. trainParam. lrdec = 0.7; 
net. trainParam. lrinc = 1.1; 
net. trainParam. maxfail = 5; 
net. trainParam. max_perf_inc = 1.04; 
net. trainParam. min_grad = le-6; 
net. trainParam. show = 100; 
net. trainParam. time = inf; 

case 10 
disp('Gradient descent with moment: iim :; (e 1 acted' ) 
net = newff([minlN maxlN], [3 5 2], AF, 'tr, 3ingdm'); 
net. trainParam. epochs = 500; 
net. trainParam. show = 100; 
net. trainParam. goal = 0; 
net. trainParam. lr = 0.4; 

Polak-Kibierýý update:, scl,: c!, (i') 
5 21, AF, 't_riin(--gp'); 
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net. trainParam. mu=0.0001; 
net. trainParam. maxfail = 5; 

net. trainParam. mingrad = le-12; 

net. trainParam. time=Inf; 

case 11 
disp('One step secant select-cd') 
net = newff ([minlN maxlN], [3 5 2] , AF, 'tr, 3inoýss') ; 
net. trainParam. epochs = 500; 
net. trainParam. show = 100; 

net. trainParam. qoal = 0; 

net. trainParam. time=Inf; 

net. trainParam. mingrad = le-12; 

net. trainParam. maxfail=5; 
net. trainParam. searchFcn='srchbac' 
net. trainParam. scaletol=20; 
net. trainParam. alpha=0.001; 
net. trainParam. beta=0.1; 

net. trainParam. delta=0.01; 

net. trainParam. gama=0.1; 
net. trainParam. lowlim=0.1; 

net. trainParam. uplim=0.5; 
net. trainParam. maxstep=100; 
net. trainParam. minstep= le-6; 

net. trainParam. bmax=26; 

case 12 
disp('Resilient selected') 
net = newff([minlN maxlN], [3 5 
net. trainParam. epochs = 500; 
net. trainParam. show = 100; 
net. trainParam. goal = 0; 
net. trainParam. time=Inf; 
net. trainParam. mingrad=le-6; 
net. trainParam. maxfail=5; 
net. trainParam. deltinc=1.2; 
net. trainParam. deltdec=0.5; 
net. trainParam. delta0=0.07; 
net. trainParam. deltamax=50; 

case 13 
disp('Scaled conjugate 
net = newff([minlN maxlN], [3 5 2], AF, 't 
net. trainParam. epochs = 500; 

net. trainParam. show = 100; 

net. trainParam. goal = 0; 

net. trainParam. time=Inf; 

net. trainParam. min_grad=le-6; 

net. trainParam. maxfail=5; 
net. trainParam. sigma=5e-5; 
net. trainParam. lambda=5e-7; 

otherwise 
disp('Levenberg-Mar_quardt') 

net = newf f ([minlN maxlN], [352], AF, 'tr, ý in1 rn') ; 
net. trainParam. epochs = 500; 

net. trainParam. goal = 0; 
net. trainParam. show = 100; 
net. trainParam. min_grad = le-12; 
net. trainParam. maxfail=5; 
net. trainParam. memreduc=l; 
net. trainParam. mu=0.0001; 
net. trainParam. mudec=0.3; 
net. trainParam. muinc=3; 
net. trainParam. mu max=1e+10; 
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net. trainParam. time=Inf; 

end 
=____-======== Train the Network 

net = train(net, IN', TARGET'); 
Plot the training results =___________ 

OUTNN = sim(net, IN')'; 
figure(1) 

plot(OUTNN(:, l), 'b') 
hold on 
plot(TARGET(:, l), 'k: ') 

title('Training') 

ylabel('Pitch angle (rad)') 

xlabel('sample') 
legend('NN-based Model', 'Real TRMS') 
figure(2) 

plot(OUTNN(:, 2), 'b') 
hold on 
plot(TARGET(:, 2), 'k: ') 

title('Training') 
ylabel('Yaw angle (rad)') 

xlabel('sample') 
legend('NN-based Model', 'Real TRMS') 

-------====== Plot the test result 
OUTNNT = sim(net, INT')'; 

t=linspace(0, length(OUTNNT)*0.2, length(OUTNNT)); 
figure(3) 
plot(t, OUTNNT(:, l), 'b', 'linewidth', 1) 
hold on 
plot(t, TARGETT(:, 1), 'k: ', 'linewi(ith', 1) 
title('Test') 

ylabel('Pitch angle (rad)') 

xlabel('time (s)') 
legend('NN-based Model', 'Real TRMS') 
figure(4) 

plot (t, OUTNNT(:, 2), 'b', 'Iinewidih', 1) 
hold on 
plot(t, TARGETT(:, 2), 'k: ', ' I inewi(it_h', l) 
title('Test') 
ylabel('Yaw angle (rad)') 

xlabel('time (s)') 
legend('NN-based Model', 'Real TRMS') 
Wll=net. IW{1,1}; % Weight matrix between input and 1st hidden layer 
W21=net. LW{2,1}; % Weight matrix between 1st and 2nd hidden layers 
W32=net. LW{3,2}; % Weight matrix between 2nd hidden layer and output 
bl=net. b{l}; ö Bias vector of Ist hidden layer 
b2=net. b{2}; % Bias vector of 2nd hidden layer 
b3=net. b{3}; % Bias vector of output layer 
MSEL=(sum((TARGET(:, 1)-OUTNN(:, 1)). ^2))/length(TARGET); 
fprintf('The pitch mean squared error of training is: \n', MSEL) 
MSET=(sum((TARGETT(:, l)-OUTNNT(:, 1)). ^2))/length(TARGETT); 
fprintf('The pitch mean squared error of test is: e\n', MSET) 
MSEL=(sum((TARGET(:, 2)-OUTNN(:, 2)). ^2))/length(TARGET); 
fprintf('The yaw mean squared error of training is: (,, \ri', MSEL) 
MSET=(sum((TARGETT(:, 2)-OUTNNT(:, 2)). ^2))/length(TARGETT); 
fprintf('The yaw mean squared error of test is: e\n', MSET) 
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The model predictive controller consists of three functions; the first one is the main 
body of the programme, Main. m, in which two other functions, TRMSIin. m and 
MyMPC. m are recalled. 

function [UX]=Main(IN) 
[ lt, lm, Jv, g, A, B, C, E, D, F, H, Jtr, Rah, Lah, kthp, kthn, Btr, Jmr, ... 

Rav, Lav, ktvp, ktvn, Bmr, av0, kfhp, kfhn, kfvp, kfvn, kvfh, ... 
kvfv, kchp, kchn, km, kt, kg, kl, k2, Ts, Nc, Np, TC, kcfh, FRhi, ... 
FRho, kcfv, FRvi, FRvo, CFi, CFo, ICThi, ICTho, ICTvi, ICTvo]=TRMSpara; 

nx-6; 
nu=2; 
ny=2; 
Q=[. 05 0; 0 1]; Weight factor for error 
R=[0.0125 0; 0 0.0125]; `o Weight factor for control effort 
Cu=[-2.5 2.5; -2.5 2.5]; % Input plant constraints 
Cdu=[-2 2; -2 2]; % Input change constraints 
Cy=[-1.5 1.5; -1.5 1.5]; `o Output plant constraints 
al=[O 0; 0 0]; % Coefficients of reference trajectories 
ref=IN(1: 2); Reference signals: [ahref; avref] 
Up=IN(3: 4); I Input signals: [Uh; Uv] 
Xp=IN(5: 10); s State variables: [wh, Sh, ah, wv, Sv, av] 
Ym=IN(11: 12); `o Model outputs: [ahm, avm] 
d=(Xp([3 6])-Ym); I Output disturbance model 
dx=zeros(6,1); I State disturbance 
dUO=[IN(13: 13+2*Nc-3); 0; 0]; ° Previous input change 
tsim=IN(11+2*Nc); 

==== Discrete linearise state-space model parameters 
AA=zeros(nx*Np, nx); 
BB=zeros(nx*Np, nu); 
CC=zeros(ny*Np, nx); 
Upf=Up; 
Xpf=Xp; 
for i=1: Np 

[Ad, Bd, Cd, Dd]=TRMSlin(Xp, Up); 
AA(nx*(i-1)+l: nx*i,: )=Ad; 
BB(nx*(i-1)+l: nx*i,: )=Bd; 
CC(ny*(i-1)+1: ny*i,: )=Cd; 
Uhp=Up(1); 
Uvp=Up(2); 

==== Update the state variables at each stage 
whp=Xp(1); 
Shp=Xp(2); 

ahp=Xp(3); 
wvp=Xp(4); 
Svp=Xp(5); 

avp=Xp(6); 
if whp>=0 

whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp-kthp*whp^2)/Jtr; 
else 

whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp+kthn*whp^2)/Jtr; 
end 
if wvp>=0 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp-ktvp*wvp^2)/Jmr; 
else 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp+ktvn*wvp^2)/Jmr; 
end 
if whp>=0 
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Shn=Shp+Ts*(lt*kfhp*whp^2*cos(avp+avO)-kvfh*Shp-... 
kchp*ahp)/(D*(cos(avp+av0))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+E*... 
(sin(avp+avO))^2+F)^2; 

else 
Shn=Shp+Ts*(-lt*kfhn*whp^2*cos(avp+avO)-kvfh*Shp-... 

kchp*ahp)/(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+E*... 
(sin(avp+avO))^2+F)^2; 

end 
if wvp>=O 

Svn=Svp+Ts*(lm*kfvp*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 
g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 

else 
Svn=Svp+Ts*(-lm*kfvn*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 

g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 
end 
ahn=ahp+Ts*Shp+Ts*km*wvp*cos(avp+avO)/... 

(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F); 
avn=avp+Ts*Svp+Ts*kt*whp/Jv; 
Xp=[whn; Shn; ahn; wvn; Svn; avn]; 
s =__= Update the inputs at each stage -------------- 
if i<=Nc 

Up=Up+dUO((i-1)*nu+l: i*nu, 1); 

end 
end 
Cz=Cd(1: 2,: ); 

=== In the case of TRMS Rd and Cd are constant_ 
[U, X, dUp]=MyMPC(AA, BB, Cz, Dd, Np, Nc, Q, R, ref, Cu,... 

Cdu, Cy, Xpf, Upf, d, al, dx, dUO, tsim); 
UX=[U; X; dUp]; 

The TRMSIin. m is the function for adaptive linearisation of the nonlinear model, 

function [As, Bs, Cs, Ds]=TRMSlin(Xp, Up) 
whp=Xp(1); 
Shp=Xp(2); 
ahp=Xp(3); 
wvp=Xp(4); 
Svp=Xp(5); 
avp=Xp(6); 
Uhp=Up(1); 
Uvp=Up(2); 
[lt, lm, Jv, g, A, B, C, E, D, F, H, Jtr, Rah, Lah, kthp, kthn, Btr, Jmr, ... Rav, Lav, ktvp, ktvn, Bmr, avO, kfhp, kfhn, kfvp, kfvn, kvfh, ... kvfv, kchp, kchn, km, kt, kg, kl, k2, Ts, Nc, Np, TC, kcfh, FRhi, ... FRho, kcfv, FRvi, FRvo, CFi, CFo, ICThi, ICTho, ICTvi, ICTvo]=TRMSpara; 
% 

$I wh(k+l) II all a12 a13 a14 a15 a16 II wh(k) I bil b12 I 
$I Sh(k+l) I a21 a22 a23 a24 a25 a26 II Sh(k) I b21 b22 I 
$I ah(k+l) II a31 a32 a33 a34 a35 a36 II ah(k) I b31 b32 II Uh I 
%I wv(k+l) I=I a41 a42 a43 a44 a45 a46 II wv(k) I+I b41 b42 II Uv I 
$I Sv(k+l) II a51 a52 a53 a54 a55 a56 II Sv(k) I b51 b52 I-- 
$1 av(k+l) II a61 a62 a63 a64 a65 a66 II av(k) II b61 b62 I 
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%I wh(k) I 
%I Sh(k) I 
%I ah (k) I 
%I ah(k+l) I=1 c11 c12 c13 c14 c15 c16 II wv(k) I+I dll d12 II Uh I 
% av(k+l) II c21 c22 c23 c24 c25 c26 II Sv(k) II d21 d22 II Uv I 
%----I av(k) I---- 

------------------------------------------------------ --------- ------- 
As=zeros (6,6) ; 
Bs=zeros (6,2) ; 
Cs=zeros (2,6); 
Ds=zeros(2,2); 
dx=zeros(6,1); 
DEN=D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F; 
if whp>=O 

As(1,1)=l-Ts*(Btr+kthp*whp+TC^2/Rah)/Jtr; 
As(2,1)=Ts*lt*kfhp*whp*cos(avp+avO)/DEN; 

else 
As(l, l)=1-Ts*(Btr-kthn*whp+TC^2/Rah)/Jtr; 
As(2,1)=-Ts*lt*kfhn*whp*cos(avp+avO)/DEN; 

end 
As(2,2)=1-Ts*kvfh/DEN; 
As(2,3)=-Ts*kchp/DEN; 
As(2,4)=-Ts*kvfh*km*cos(avp+avO)/DEN^2; 
As(3,2)=Ts; 
As(3,3)=1; 
As(3,4)=Ts*km*cos(avp+avO)/DEN; 
if wvp>=O 

As(4,4)=1-Ts*(Bmr+ktvp*wvp+TC^2/Rav)/Jmr; 
As(5,4)=Ts*lm*kfvp*wvp/Jv; 

else 
As(4,4)=1-Ts*(Bmr-ktvn*wvp+TC^2/Rav)/Jmr; 
As(5,4)=-Ts*lm*kfvn*wvp/Jv; 

end 
As(5,1)=-Ts*kvfv*kt/(Jv^2); 
As(5,5)=1-Ts*kvfv/Jv; 
if avp==O 

As(5,6)=Ts*g*((B-A)*sin(avp+avO)-C*cos(avp+av0))/Jv; 

else 
As(5,6)=Ts*g*((A-B)*cos(avpýavO)-C*sin(avp+avO))/(Jv*avp); 

end 
As(6,1)=Ts*kt/Jv; 
As (6,5)=Ts; 
As (6,6) =1; 
Bs(1,1)=Ts*TC*k2/(Jtr*Rah); 
Bs(4,2)=Ts*TC*kl/(Jmr*Rav); 
Cs (1,3) =1; 
Cs (2,6)=1; 

The formulation and optimisation of the MPC is carried out in a separate function 
entitled MyMPC. m. Note in the following function the MATLAB function 

quadprog. m is employed to solve the quadratic optimisation problem. 
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function [U, X, dUp]=MyMPC(AA, BB, C, D, Np, Nc, Q, R, ref, Cu,... 

Cdu, Cy, Xp, Up, d, al, dx, dUO, tsim) 
% MyMPC solve a linear model predictive control according 
% to a state-space model. 
% [U, X, dUp]=MyMPC(AA, BB, C, D, Np, Nc, Q, R, ref, Cu,... 

% Cdu, Cy, Xp, Up, d, al, dx, dUO, tsim) 

% Inputs: 
% AA, BB, C, D: The state-space model parameters: 
% X(k+l) = AA X(k) + BB U(k) 

% Y(k) =C X(k) +D U(k) 
% Np : Prediction horizon 
% Nc : Control horizon 
%Q: Output weight matrix with dim. (ny, ny) & diagonal 

%R: Input weight matrix with dim. (nu, nu) & diagonal 

r: Setpoint signal with dimension of (ny, l) 

% Cu : Input range constraint: 
% [mini maxi ; min2 max2 ; ... ; min nu max-nu] 
% Cdu : Change input range constraint: 
% [mini maxi ; mint max2 ; ... ; min nu max nu] 

Cy : Output range constraint: 
% [mini maxi ; mint max2 ; ... ; min_ny max_ny] 
% Xp : Previous state variables X(k) 
% Up : Previous inputs U(k-1) 

%d. Disturbances 

% al : vector of reference trajectories coefficients 
% w(k+ilk)=al*w(k+i-llk)+(1-al)*r w(klk)=y(k) 
% Outputs: 
%U: Optimum input signal that enters to the process 
%X: Current state variables 

dUp : optimal change inputs during the control horizon 

Written By A. Rahideh on 5/09/2007 at QMUL 

nx=size(AA, 2); % Number of state variables 

nu=size(BB, 2); % Number of inputs 

ny=size(C, 1); Number of outputs 
Ma=zeros(Np*nx, nx); 
Mb=zeros(Np*nx, nu); 
Mu=zeros(Np*nx, Nc*nu); 
Mc=zeros(Np*ny, Np*nx); 
Mref=zeros(Np*ny, 1); 

MQ=zeros(Np*ny, Np*ny); 

MR=zeros(Nc*nu, Nc*nu); 

Md=zeros(Np*ny, l); 

Mdx=zeros(Np*nx, 1); 

Ymax=zeros(Np*ny, 1); 

Ymin=zeros(Np*ny, l); 

Adu=zeros(2*Nc*nu, Nc*nu); 
bdu=zeros(2*Nc*nu, 1); 

Au=zeros(2*Nc*nu, Nc*nu); 
bu=zeros(2*Nc*nu, l); 
for i=l: Np 

if i==1 
Ma(nx*(i-1)+l: nx*i , l: nx)=AA(nx*(i-1)+l: nx*i 
Mb(nx*(i-l)+l: nx*i , l: nu)=BB(nx*(i-l)+l: nx*i : ); 
Mu(nx*(i-1)+l: nx*i , 1: nu)=BB(nx*(i-l)+l: nx*i 
Mref(ny*(i-l)+l: ny*i , 1)=Xp([3 6])*0+(eye(ny)-al)*ref; 

else 
Ma(nx*(i-1)+l: nx*i , l: nx)=AA(nx*(i-1)+l: nx*i : )*... 

Ma(nx*(i-2)+l: nx*(i-1) , l: nx); 
% === Forming Mba for the ith row of matrix Mb =__ 
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clear Mba 
Mba=zeros(nx*(i-1), nx); 
for j=l: i-1 

if j==1 
Mba(nx*(j-1)+l: nx*j, l: nx)=AA(nx*(i-j)+l: nx*... 

else 
Mba(nx*(j-l)+l: nx*j, l: nx)=Mba(nx*(j-2)+l: nx*... 

(j-1), l: nx)*AA(nx*(i-j)+l: nx*(i-j+l) 

end 

end 
clear Mbi 
Mbi(l: nx, l: nu)=BB(nx*(i-l)+l: nx*i, . ); 
for j=1: i-1 

Mbi(nx*j+l: nx*(j+l), l: nu)=Mbi(nx*(j-l)+l: nx*j, l: nu)+... 
Mba(nx*(j-l)+l: nx*j, l: nx)*BB(nx*(i-j-1)+l: nx*... 
(i-j) 

end 
__= Forming the elements of. Mb - 

Mb(nx*(i-l)+l: nx*i , l: nu)=Mbi(nx*(i-l)+l: nx*i, l: nu); 

=== Forming the elements of Mu 
if i<=Nc 

for k=l: i 
Mu(nx*(i-l)+l: nx*i , nu*(k-l)+l: nu*k)=... 

Mbi(nx*(i-k)+l: nx*(i-k+l), l: nu); 
end 

else 
for k=1: Nc 

Mu(nx*(i-l)+l: nx*i , nu*(k-1)+l: nu*k)=... 
Mbi(nx*(i-k)+l: nx*(i-k+l), l: nu); 

end 
end 
Mref(ny*(i-1)+l: ny*i , 1)=al*... 

Mref(ny*(i-2)+l: ny*(i-1) , 1)+(eye(ny)-al)*ref; 

end 
Mc(ny*(i-1)+l: ny*i , nx*(i-1)+l: nx*i)=C; 
MQ(ny*(i-1)+l: ny*i , ny*(i-1)+l: ny*i)=Q; 
Md(ny*(i-1)+l: ny*i , 1)=d; 
Mdx(nx*(i-1)+l: nx*i , 1)=dx; 
Ymax(ny*(i-l)+l: ny*i , 1)=Cy(:, 2); 
Ymin(ny*(i-1)+l: ny*i , 1)=Cy(:, 1); 

end 
for i=1: Nc 

MR(nu*(i-1)+l: nu*i , nu*(i-1)+l: nu*i)=R; 
Adu(nu*(2*i-2)+l: nu*(2*i-1) , nu*(i-1)+l: nu*i)=eye(nu, nu); 
Adu(nu*(2*i-1)+l: nu*(2*i) , nu*(i-1)+l: nu*i)=-eye(nu, nu); 
bdu(nu*(2*i-2)+l: nu*(2*i-1) , 1)=Cdu(:, 2); 
bdu(nu*(2*i-1)+l: nu*(2*i) , 1)=-Cdu(:, l); 
for j=1: i 

Au(nu*(2*i-2)+l: nu*(2*i-1) , nu*(j-1)+l: nu*j)=eye(nu, nu); 
Au(nu*(2*i-1)+l: nu*(2*i) , nu*(j-1)+l: nu*j)=-eye(nu, nu); 

end 
bu(nu*(2*i-2)+l: nu*(2*i-1) , 1)=Cu(:, 2)-Up; 
bu(nu*(2*i-1)+l: nu*(2*i) , 1)=-Cu(:, 1)+Up; 

end 
% Calculating the parameters of Quadratic Programming (H, G, c) 

min U'*H*U/2 + U'*G +c 
% subject to At*U <= b& Aeq*U=beq 
E=Mc*(Ma*Xp+Mb*Up+Mdx)+Md-Mref; 
Mdu=Mc*Mu; 
c=E'*MQ*E; 
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G=2*Mdu'*MQ*E; 
H=2*(Mdu'*MQ*Mdu+MR); 

Arranging the constraint parameters (At, b) 
Ay=[Mdu; -Mdu]; 
by=[Ymax-Mc*(Ma*Xp+Mb*Up); -Ymin+Mc*(Ma*Xp+Mb*Up)]; 
At=[Adu; Au; Ay]; 
b=[bdu; bu; byl; 
% Equality constraints for stability 
[1t, lm, Jv, gi, Ai, Bi, Ci, Ei, Di, Fi, Hi, Jtr, Rah, Lah, kthp, kthn, Btr, Jmr,... 

Rav, Lav, ktvp, ktvn, Bmr, avO, kfhp, kfhn, kfvp, kfvn, kvfh, ... 
kvfv, kchp, kchn, km, kt, kg, kl, k2, Ts, Nc, Np, TC, kcfh, FRhi, ... 
FRho, kcfv, FRvi, FRvo, CFi, CFo, ICThi, ICTho, ICTvi, ICTvo]=TRMSpara; 

if ref (1)>=0 
FhNp=kchp*ref(l)/(lt*cos(ref(2)+avO)); 
whNp=sgrt(abs(FhNp/kfhp)); 

else 
FhNp=kchn*ref(1)/(lt*cos(ref(2)+avO)); 

whNp=-sqrt(abs(FhNp/kfhn)); 
end 
SvNp=-kt*whNp/Jv; 
FvNp=-gi*((Ai-Bi)*cos(ref(2)+avO)-Ci*sin(ref(2)+av0))/1m; 
if FvNp>=O 

wvNp=sqrt(abs(FvNp/kfvp)); 
else 

wvNp=-sqrt(abs(FvNp/kfvn)); 
end 
ShNp=-km*wvNp*cos(ref(2)+avO)/(Ei*(sin(ref(2)+avO))^2+... 

Di*(cos(ref(2)+avO))^2+Fi); 

xNp=[whNp; ShNp; ref(1); wvNp; SvNp; ref(2)]; 
Aeq=Mu(nx*(Np-1)+l: nx*Np,: ); 
beq=xNp-Ma(nx*(Np-1)+l: nx*Np,: )*Xp-Mb(nx*(Np-1)+l: nx*Np,: )*Up; 

options = optimset('LargeScale', 'off'); 
[dU, FVAL, EXITFLAG] = quadprog(H, G, At, b, Aeq, beq, [], [], dUO, options); 
Uint(l: nu, l)=Up; 
Xint(l: nx, 1)=Xp; 
for i=1: Np 

if i<=Nc 
Uint(nu*i+l: nu*(i+l), l)=Uint(nu*(i-1)+l: nu*i, l)+... 

dU(nu*(i-1)+l: nu*i, l); 

else 
Uint(nu*i+l: nu*(i+l), 1)=Uint(nu*(i-1)+l: nu*i, l); 

end 
Xint(nx*i+l: nx*(i+l), 1)=AA(nx*(i-1)+l: nx*i, l: nx)*... 

Xint(nx*(i-1)+l: nx*i, l)+BB(nx*(i-1)+1: nx*i, l: nu)*... 
Uint(nu*i+l: nu*(i+l), 1); 

ahint(i)=Xint(nx*i+3,1); 
avint(i)=Xint(nx*i+6,1); 

end 
U=dU(1: nu)+Up; 
dUp=dU(nu+l: nu*Nc); 
X=AA(l: nx,: )*Xp+BB(l: nx,: )*U; 

The EKF based on the state-dependent state-space model is developed according to 
the following function. 
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function [OUT]=MyKalman(IN) 
Uhp =IN(l); % Plant input (Manipulated variable) 
Uvp =IN(2); % Plant input (Manipulated variable) 

ahp =IN(3); `o Plant output (controlled variable) 
avp=IN(4); % Plant output (controlled variable) 
whp =lN(5); % previous estimated state 
Shp =IN(6); % previous estimated state 
wvp =IN(8); % previous estimated state 
Svp=IN(9); % previous estimated state 

nx= 6; % Number of state variables 
nu= 2; % Number of inputs 

ny=2; Number of outputs 
Pkpv=IN(11: 10+nx*nx); Vector form of P(k-lIk-1) 

o =_= Change the vector form to the matrix form =_- 
for i=1: nx 

Pkp(:, i)=Pkpv([l: nx]+(i-1)*nx, 1); 

end 
Q=eye(nx, nx)*0.01; % Matrix covariance of process noise 
R=eye(ny, ny)*0.01; Matrix covariance of measurement noise 
[ lt, lm, Jv, g, A, B, C, E, D, F, H, Jtr, Rah, Lah, kthp, kthn, Btr, Jmr, ... 

Rav, Lav, ktvp, ktvn, Bmr, avO, kfhp, kfhn, kfvp, kfvn, kvfh, 
... 

kvfv, kchp, kchn, km, kt, kg, kl, k2, Ts, Nc, Np, TC, kcfh, FRhi, ... 
FRho, kcfv, FRvi, FRvo, CFi, CFo, ICThi, ICTho, ICTvi, ICTvo]=TRMSpara; 

% ==== Nonlinear discrete state-space equations of the TRMS 
if whp>=O 

whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp-kthp*whp^2)/Jtr; 
Shn=Shp+Ts*(lt*kfhp*whp^2*cos(avp+avO)-kvfh*Shp-kchp*... 

ahp)/(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+... 
E*(sin(avp+av0))^2+F)^2; 

else 
whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp+kthn*whp^2)/Jtr; 
Shn=Shp+Ts*(-lt*kfhn*whp^2*cos(avp+avO)-kvfh*Shp-kchp*... 

ahp)/(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+av0))^2+... 
E*(sin(avp+avO))^2+F)^2; 

end 
if wvp>=O 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp-ktvp*wvp^2)/Jmr; 
Svn=Svp+Ts*(lm*kfvp*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+.., 

g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 
else 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp+ktvn*wvp^2)/Jmr; 
Svn=Svp+Ts*(-lm*kfvn*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 

g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 
end 
ahn=ahp+Ts*Shp+Ts*km*wvp*cos(avp+avO)/... 

(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F); 
avn=avp+Ts*Svp+Ts*kt*whp/Jv; 

-_--------- Linearise state-space equations 
As=zeros(nx, nx); 
Bs=zeros(nx, nu); 
Cs=zeros(ny, nx); 
DEN=D*(cos(avp+avO))^2+E*(sin(avp+av0))^2+F; 
if whp>=O 

As(1,1)=1-Ts*(Btr+kthp*whp+TC^2/Rah)/Jtr; 
As(2,1)=Ts*lt*kfhp*whp*cos(avp+av0)/DEN; 

else 
As(1,1)=l-Ts*(Btr-kthn*whp+TC^2/Rah)/Jtr; 
As(2,1)=-Ts*lt*kfhn*whp*cos(avp+av0)/DEN; 
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end 
As(2,2)=l-Ts*kvfh/DEN; 
As(2,3)=-Ts*kchp/DEN; 
As(2,4)=-Ts*kvfh*km*cos(avp+avO)/DEN^2; 
As (3,2) =Ts; 
As(3,3)=1; 
As(3,4)=Ts*km*cos(avp+avO)/DEN; 
if wvp>=O 

As(4,4)=l-Ts*(Bmr+ktvp*wvp+TC^2/Rav)/Jmr; 
As(5,4)=Ts*lm*kfvp*wvp/Jv; 

else 
As(4,4)=1-Ts*(Bmr-ktvn*wvp+TC^2/Rav)/Jmr; 
As(5,4)=-Ts*lm*kfvn*wvp/Jv; 

end 
As(5,1)=-Ts*kvfv*kt/(Jv^2); 
As(5,5)=l-Ts*kvfv/Jv; 
if avp==0 

As(5,6)=Ts*g*((B-A)*sin(avp+avO)-C*cos(avp+avO))/Jv; 

else 
As(5,6)=Ts*g*((A-B)*cos(avp+avO)-C*sin(avp+avO))/(Jv*avp); 

end 
As(6,1)=Ts*kt/Jv; 
As(6,5)=Ts; 
As(6,6)=1; 
Bs(1,1)=Ts*TC*k2/(Jtr*Rah); 
Bs(4,2)=Ts*TC*kl/(Jmr*Rav); 
Cs (1,3)=1; 

Cs (2,6) =1; 
% _------------- === Predict stage of extended Kalman filter 
Xk=[whn; Shn; ahn; wvn; Svn; avn]; 
Pk=As*Pkp*As'+Q; 

Update stage of EKF 
Lk=Pk*Cs'*inv(Cs*Pk*Cs'+R); 
Xkn=Xk+Lk*([ahp; avp]-Cs*Xk); 
Pkn=(eye(nx, nx)-Lk*Cs)*Pk; 

=== Change the matrix Pkn into a vector form (Pknv) 
Pknv=zeros(nx*nx, 1); 

for i=1: nx 
Pknv([l: nx]+(i-1)*nx, l)=Pkn(:, i); 

end 
OUT=[Xkn; Pknv]; 

The robust MPC source codes are as follows. As mentioned earlier the LMI-based 

optimisation problem has been solved using the LMI toolbox of MATLAB. 

function [OUT]=RMPC(xk) 

This m-file takes the current state vector and finds 
% the optimum plant input on the basis of robust model 
% predictive control using linear matrix inequalities. 
% By: A. Rahideh 10-12-2007 
% xk=[wh; Sh; ah; wv; Sv; av] 
[V, AA, B, C, ymax]=LinearModels(xk); 
[Vo, A]=vertices(V, AA); 
umax=[2.5 0; 0 2.5]; 
L=size (A, 3) ; 
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Q1=eye (6,6) *0.00004; 
Q1(3,3)=30; 
Q1 (6,6) =60; 
Qls=sgrt(Q1); 
R=[1 0; 0 1]*0.0005; 
Rs=sqrt(R); 
% Initialise LMIs 

setlmis([]); 
% LMI variables 
[Gamma, nG, sG]=lmivar(1, [1 0]); 
[Q, nQ, sQ]=lmivar(l, [6 1]); 
[Y, nY, sY]=lmivar(2, [2 6]); 
[X, nX, sX]=lmivar(1, [2 1]); 

76 Z=lmivar(l, [2 1]); 
[Xd, nXd, sXd]=lmivar(3, [sX(l, 1) 0; 0 sX(2,2)1); 

ist LMI 
lmiterm([-1 11 0], 1); 
lmiterm([-1 21 0], xk); 
lmiterm([-1 22 Q], 1,1); 
% 2nd to (L+1)-th LMIs 
for i=2: L+1 

lmiterm([-i 11 Q], 1,1); 
lmiterm([-i 21 Q], A(:,:, i-1), l); 
lmiterm([-i 21 Y], B, 1); 
lmiterm([-i 31 Q], Qls, l); 
lmiterm([-i 41 Y] , Rs, l) ; 
lmiterm([-i 22 Q], 1,1); 
lmiterm([-i 33 Gamma], l, eye(6)); 
lmiterm([-i 44 Gamma], l, eye(2)); 

end 
lmiterm([-(L+2) 11 Q], 1,1); 
% input Constraints LMIs 
lmiterm([-(L+3) 11 X], 1,1); 
lmiterm([-(L+3) 12 Y], 1,1); 
lmiterm([-(L+3) 22 Q], 1,1); 
lmiterm([(L+4) 11 Xd], 1,1); 
lmiterm([(L+4) 11 0], -(umax. ^2)); 

output Constraints LMIs 
for i=L+5: 2*L+4 

CA=C*A(:,:, i-(L+4)); 
CB=C*B; 
lmiterm([-i 11 Q] , 1,1) ; 
lmiterm([-i 21 Q], CA, 1); 
lmiterm([-i 21 Y], C*B, 1); 
lmiterm([-i 22 0], ymax. ^2); 

end 

LMIsys=getlmis; 
n=decnbr(LMIsys); 
c=zeros (n, l); 
C(1,1)=l; 
options=[le-4,0,0,0,1]; 
[copt, xopt]=mincx(LMIsys, c, options); 
if isempty(xopt)==l 

OUT=[0; 0] 
else 

Gopt=dec2mat(LMIsys, xopt, 1) 
Qopt=dec2mat(LMIsys, xopt, 2); 
Yopt=dec2mat(LMIsys, xopt, 3); 
F=Yopt/Qopt; 
OUT=F*xk; 

290 



end 
OUT=[OUT; Gopt]; 

function [Vvertix, AAvertix]=vertices(V, AA) 

warning off 
% This program receives several linear models and finds 
% the vertices of the corresponding polytope. 

V is a Q*N matrix in which each column contains the 

variable entries of matix A relating to a single 
linear model. Q is the number of variable entries 

% of matrix A and N is the number of linear models. 
Vvertix is the selected linear models relating to 

vertices only. 
By: A. Rahideh 28-11-2007 

[Q, N]=size(V); 
NO=N; 
i0=1; 
for i=1: N 

if i0==1 
A=[V(:, [iO+l: NO]); ones(1, NO-1)]; 

else 
A=[V(:, [1: iO-1, iO+1: NO]); ones(1, NO-1)]; 

end 
b=[V(:, iO); l]; 

X=lsgnonneg(A, b); 

e=A*X-b; 
tol=le-4; 
if sum(abs(X))<l+tol 

N0=N0-l; 
V(:, i0)=[]; 
AA(:, :, i0)=[] ; 

else 
i0=i0+1; 

end 
end 
Vvertix=V; 
AAvertix=AA; 

& sum(abs(X))>1-tol & sum(abs(e))<tol 

A5.2 Experimental Programmes 
As mentioned before, the experimental programmes have been written using 
Embedded-MA TLA B-Functions and then converted to S-Functions to make us able to 
use them in Real-Time Workshop of MATLAB version 6. The following files are the 
UKF and MPC programmes respectively. 

function OUTU 
Uhp=INU(1); 
Uvp=INU(2); 

ah=INU(3); 
av=INU(4); 
ahp=INU(5); 

=UKF(INU) 
Plant input (Manipulated variable) 

`o Plant input (Manipulated variable) 
Plant output (controlled variable) 
Plant output (controlled variable) 

% Previous Plant output 
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avp=INU(6); PL(2viouo L'1-ant- 001p111 

whp=INU(7); 'P previous estimated state 
Shp=INU(8); previous estimated state 
wvp=INU(10); 'o previous estimated state 

Svp=INU(11); `o previous estimated state 
nx=6; % Number of state variables 
nu=2; % Number of inputs 

ny=2; % Number of outputs 
Pkpv=INU(13: 12+nx*nx); ö Vector form of P(k-lIk-1) 
Pkp=zeros(nx, nx); % Matrix form of P(k-l(k-l) 

for i=l: nx 
Pkp(:, i)=Pkpv([l: nx]+(i-1)*nx, 1); 

end 
% TRMS parameters 
its=2.82e-1; ° Length of tail beam part 
im=2.46e-1; ö Length of main beam part 
iv=5.26e-2; ö Moment of inertia about horizontal axis 
D=5.52877e-2; 
E=5.85764e-3; 
F=5.85077e-3; 
g=9.81; % Gravitational acceleration 
A=9.82347e-2; 
B=1.135659e-1; 
C=2.21788e-2; 
H=4.94734e-2; 
Jtr=3.1432e-5; % Moment of inertia for tail motor/load 
Rah=8; % Armature resistance 
Lah=8.6e-4; % Armature inductance 
kthp=5e-8; % Th=kthp*sign(wh)*(wh)^2 
kthn=4.41e-8; % Th=kthn*sign(wh)*(wh)^2 
Btr=2.3e-5; % Viscous friction coefficient of tail rotor 
Jmr=2.0098e-4; % Moment of inertia for main motor/load 
Rav=8; % Armature resistance 
Lav=8.6e-4; % Armature inductance 
ktvp=5.6e-7; % Th=ktvp*sign(wv)*(wv)^2 
ktvn=5. le-7; % Th=ktvn*sign(wv)*(wv)^2 
Bmr=2.97e-5; % Viscous friction coefficient of main rotor 
av0=-6.048e-1; % Initial pitch angle 
kfhp=2.1377e-6; % Fh(wh)=kfhp*sign(wh)*(wh)^2 
kfhn=1.9056e-6; % Fh(wh)=kfhn*sign(wh)*(wh)^2 
kfvp=1.9506e-5; % Fv(wv)=kfvp*sign(wv)*(wv)^2 
kfvn=1.1012e-5; % Fv(wv)=kfvn*sign(wv)*(wv)^2 
kvfh=4.91e-3; % Horizontal viscous friction 
kvfv=5.48e-3; % Vertical viscous friction 
kchp=5.60e-3; % Cable force coefficient 
km=0.00023; % Effect of main rotor on horizontal angle 
kt=0.000026; % Effect of tail rotor on vertical angle 
TC=0.0202; % Torque constant 
kl=8.5; % Interface vertical gain 
k2=6.5; % Interface horizontal gain 
Ts=0.2; % Sample time 
% Mean and covariance 
Ew=[1 0.1 0.032 1 0.1 0.032]'; % Vector mean of Process noise 
Ev=ones(ny, l)*0.032; Vector mean of measurement noise 
Q=eye(nx, nx)*0.4; Matrix Covariance of Process noise 
R=eye(ny, ny)*0.4; ö Matrix Covariance of measurement noise 

UKF parameters -- ------------------ 
al=0.001; % Alpha parameter of UKF 
bet=2; % Beta parameter of UKF 
kai=0; % Kai parameter of UKF 
lam=a l^2*(2*nx+kai)-2*nx; ö Lambda parameter of UKF 
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---------- =- Augmented state 
Xkp=[whp; Shp; ahp; wvp; Svp; avp]; 
Xkpa=zeros(2*nx, 1); 

Xkpa(1: nx, 1)=Xkp; 
Xkpa(nx+1: 2*nx)=Ew; 
Pkpa=zeros(2*nx, 2*nx); 
Pkpa(1: nx, 1: nx)=Pkp; 
Pkpa(l+nx: 2*nx, l+nx: 2*nx)=Q; 

Form the 4*nxýl 

Ksip=zeros(2*nx, 4*nx+l); 
Ksip(:, 1)=Xkpa; 

anti COVar L rice 
% x(k-llk-1) 

xa(k-Ilk-1) 

Pa(k-Ilk-1) 

sigma points 
% Xi(k-lIk-1) 

Find the square roots of the matrix Pkpa by 
diagonalisation using eigenvalues and eigenvectors 

VPkp=zeros(nx, nx); 
DPkp=zeros(nx, nx); 
[VPkp, DPkp]=myeig(Pkp); 
DPkpsqrt=sqrt(abs(DPkp)); 
YPkp=VPkp*DPkpsgrt*inv(VPkp); 
YPkpa=[YPkp zeros(nx, nx); zeros(nx, nx) sqrt(Q)]; 

Pkpasqr=sgrt(2*nx+lam)*YPkpa; 
for i=1: 2*nx 

Ksip(:, i+1)=Xkpa+Pkpasqr(:, i); 
Ksip(:, i+2*nx+1)=Xkpa-Pkpasqr(:, i); 

end 
Sigma points Propagation through nonlinear 
discrete state-space equations of the TRMS 

Ksi=zeros(nx, 4*nx+l); 
for i=1: 4*nx+l 

whp=Ksip(l, i); 
Shp=Ks ip (2, i) ; 
ahp=Ksip(3, i); 

wvp=Ks ip (4, i) ; 
Svp=Ksip(5, i); 

avp=Ksip(6, i); 
if whp>=O 

whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp-kthp*whp^2)/Jtr; 
Shn=Shp+Ts*(lts*kfhp*whp^2*cos(avp+avO)-kvfh*Shp-kchp*... 

ahp)/(D*(cos(avp+av0))^2+E*(sin(avp+av0))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+av0)/(D*(cos(avp+avO))^2+... 
E*(sin(avp+avO))^2+F)^2; 

else 
whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp+kthn*whp^2)/Jtr; 
Shn=Shp+Ts*(-1ts*kfhn*whp^2*cos(avp+avO)-kvfh*Shp-kchp*... 

ahp)/(D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+.. 
E*(sin(avp+av0))^2+F)^2; 

end 
if wvp>=O 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp-ktvp*wvp^2)/Jmr; 
Svn=Svp+Ts*(lm*kfvp*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 

g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 
else 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp+ktvn*wvp^2)/Jmr; 
Svn=Svp+Ts*(-lm*kfvn*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 

g*((A-B)*cos(avp+av0)-C*sin(avp+avO)))/Jv; 
end 
ahn=ahp+Ts*Shp+Ts*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+ .. 

E*(sin(avp+av0))^2+F); 
avn=avp+Ts*Svp+Ts*kt*whp/Jv; 
Ksi(:, i)=[whn; Shn; ahn; wvn; Svn; avn]+Ksip(nx+1: 2*nx, i); `6 Xi(klk-1) 
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end 
The weighted sigma points are used to construct 
the predicted state and covariance 

WsO=lam/(2*nx+lam); % Weight of predicted state 
WcO=lam/(2*nx+lam)+(1-al^2+bet); % Weight of predicted covariance 
Wi=1/(2*(2*nx+lam)); % Weights of both 
Xk=WsO*Ksi(:, 1)+Wi*sum(Ksi(:, 2: 4*nx+l), 2); x(klk-1) 
Pk=zeros(nx, nx); 
for i=1: 4*nx 

Pk=Pk+Wi*((Ksi(:, i+l)-Xk)*(Ksi(:, i+l)-Xk)'); 

end 
Pk=Pk+WcO*(Ksi(:, 1)-Xk)*(Ksi(:, 1)-Xk)'; 
% Update stage of EKF ____---- __ 
lam=al^2*(nx+ny+kai)-nx-ny; % Lambda parameter of UKF 

_--------- _= Augmented state and covariance 
Xka=zeros(nx+ny, l); `o xa(klk-1) 
Xka (1: nx, 1) =Xk; 
Xka(nx+l: nx+ny)=Ev; 
Pka=zeros(nx+ny, nx+ny); ä Pa(klk-1) 
Pka(l: nx, l: nx)=Pk; 
Pka(l+nx: nx+ny, l+nx: nx+ny)=R; 
=, ---------- == Form the 4*nx+1 sigma points =________________- 
Ksiy=zeros(nx+ny, 2*(nx+ny)+1); Xi(klk-1) 
Ksiy(:, 1)=Xka; 

----- Find the square roots of the matrix Pka by 
% diagonalisation using eigenvalues and eigenvectors 
VPk=zeros(nx, nx); 
DPk=zeros(nx, nx); 
[VPk, DPk] =myeig (Pk) ; 
DPksqrt=sqrt(abs(DPk)); 
YPk=VPk*DPksqrt*inv(VPk); 
YPka=[YPk zeros(nx, ny); zeros(ny, nx) sqrt(R)]; 
° ----- 
Pkasqr=sgrt(nx+ny+lam)*YPka; 
for i=1: (nx+ny) 

Ksiy(:, i+l)=Xka+Pkasgr(:, i); 
Ksiy(:, i+nx+ny+l)=Xka-Pkasgr(:, i); 

end 
Cs=[O 01000; 0 0000 11; 

gam=zeros(ny, 2*(nx+ny)+1); f Gama(k) 
for i=1: 2*(nx+ny)+1 

gam(:, i)-Cs*Ksiy(l: nx, i)+Ksiy(nx+l: nx+ny, i); 
end 
% === The weighted sigma points are used to construct 
% =--_==== the predicted state and covariance 
WsO=lam/(nx+ny+lam); % Weight of predicted state 
WcO=lam/(nx+ny+lam)+(1-alA2+bet); ° Weight of predicted covariance 
Wi=1/(2*(nx+ny+lam)); Weights of both 
yh=WsO*gam(:, 1)+Wi*sum(gam(:, 2: 2*(nx+ny)+1), 2); % yhat(k) 
Pzz=zeros(ny, ny); 
Pxz=zeros(nx, ny); 
for i=1: 2*(nx+ny) 

Pzz=Pzz+Wi*(gam(:, i+l)-yh)*(gam(:, i+l)-yh)'; 
Pxz=Pxz+Wi*(Ksiy(l: nx, i+1)-Xk)*(gam(:, i+1)-yh)'; 

end 
Pzz=Pzz+WcO*(gam(:, 1)-yh)*(gam(:, 1)-yh)'; 
Pxz=Pxz+WcO*(Ksiy(1: nx, 1)-Xk)*(gam(:, 1)-yh)'; 
Lk=Pxz*inv(Pzz); 
Xkn=Xk+Lk*([ah; av]-yh); 
Pkn=Pk-Lk*Pzz*Lk'; 
% == Change the diagonal matrix Pkn into a vector form (Pknv) - 
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Pknv=zeros(nx*nx, 1); 
for i=1: nx 

Pknv([l: nx]+(i-1)*nx, l)=Pkn(:, i); 

end 
OUTU=[Xkn; Pknv]; 

function [V, D]=myeig(A) 
L=length(A); 
Q=zeros (L, L) 
V=eye(L, L); 
for i=1: L^3 

[Q, R] =QRdec (A) ; 
A=R*Q; 
V=V*Q; 

end 
D=zeros (L, L) 
for i=1: L 

D(i, i)=A(i, i); 

end 

function [Q, RI =QRdec (A) 

L=length(A); 
U=zeros (L, L) 
Q=zeros(L, L); 
if mynorm(A(:, 1))-=0 

Q(:, 1)=A(:, 1)/mynorm(A(:, 1)); 

end 
for i=1: L 

for j=1: i-1 
if mynorm(Q(:, j))-=0 

U(:, i)=U(:, i)-Q(:, j)'*A(:, i) /(Q(:, j)'*Q(:, j))*Q(:, J); 
end 

end 
U(:, i)=U(:, i)+A(:, i); 
if mynorm(U(:, i))-=O 

Q(:, i)=U(:, i)/mynorm(U(:, i)); 

end 
end 
R=Q'*A; 

function [YJ=mynorm(X) 
Y=sgrt(sum(X. ^2)); 

The total source codes of the MPC programme are as follows. As pointed out earlier, 
the TRMS parameters obtained from the grey-box model have been used in the 

experimental part of the work. Since, MATLAB functions cannot be recalled inside 
Embedded-MATLAB-Functions, the quadratic optimisation problem solver of 
MATLAB has been modified to solve the quadratic optimisation problem of the 
proposed MPC algorithm. 

function UX =Main(IN) 
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% TRMS parameters =_____________------------- 
lts=2.82e-1; % Length of tail beam part 
lm=2.46e-1; % Length of main beam part 
iv=5.26e-2; % Moment of inertia about horizontal axis 
D=5.52877e-2; 
E=5.85764e-3; 
F=5.85077e-3; 
g=9.81; % Gravitational acceleration 
A=9.82347e-2; 
B=1.135659e-1; 
C=2.21788e-2; 
H=4.94734e-2; 
Jtr=3.1432e-5; % Moment of inertia for tail motor/load 
Rah=8; Armature resistance 
Lah=8.6e-4; Armature inductance 
kthp=5e-8; Th=kthp*sign(wh)*(wh)^2 
kthn=4.41e-8; Th=kthn*sign(wh)*(wh)^2 
Btr=2.3e-5; Viscous friction coefficient of tail rotor 
Jmr=2.0098e-4; Moment of inertia for main motor/load 
Rav=8; `o Armature resistance 
Lav=8.6e-4; I Armature inductance 
ktvp=5.6e-7; I Th=ktvp*sign(wv)*(wv)^2 
ktvn=5. le-7; % Th=ktvn*sign(wv)*(wv)^2 
Bmr=2.97e-5; % Viscous friction coefficient of main rotor 

av0=-6.048e-1; % Initial pitch angle 
kfhp=2.1377e-6; ö Fh(wh)=kfhp*sign(wh)*(wh)^2 
kfhn=1.9056e-6; % Fh(wh)=kfhn*sign(wh)*(wh)^2 
kfvp=1.9506e-5; % Fv(wv)=kfvp*sign(wv)*(wv)^2 
kfvn=1.1012e-5; % Fv(wv)=kfvn*sign(wv)*(wv)^2 
kvfh=4.91e-3; % Horizontal viscous friction 
kvfv=5.47e-3; % Vertical viscous friction 
kchp=5.60e-3; <Cable force coefficient 
kchn=5.60e-3; <Cable force coefficient 
km=0.00023; % Effect of main rotor on horizontal angle 
kt=0.000026; % Effect of tail rotor on vertical angle 
TC=0.0202; % Torque constant 
k1=8.5; % Interface vertical gain 
k2=6.5; % Interface horizontal gain 
Ts=0.2; % Sample time 
Np=20; "I Prediction horizon 
Nc=15; Control horizon 

nx=6; 
nu=2; 
ny=2; 
Q=[l 0; 0 31; Weight factor for error 
R=[0.2 0; 0 0.21; `1ý Weight factor for control effort 
Cu=[-2.5 2.5; -2.5 2.5]; ý1 Input plant constraints 
Cdu=[-2.5 2.5; -2.5 2 . 5]; % Input change constraints 
Cy=[-1.5 l. 5; -1.5 1.5]; % Output plant constraints 
al=[0 0; 0 0]; % Coefficients of reference trajectories 
ref=IN(1: 2); reference signals : [ahref; avref] 
Up=IN(3: 4); I Input signals : [Uh; Uv] 
Xp=IN(5: 10); State variables : [wh, Sh, ah, wv, Sv, av] 
Ym=IN(11: 12); `o Model outputs : [ahm, avm] 
d=(Ym-Xp([3 6])); % Output disturbance model 
dx=zeros(6,1); I State disturbance 
dUO=[IN(13: 13+2*Nc-3 ); 0; 0]; 
Cs=[0 01000; 0 0 000 1]; 
ä ======== Discrete linearise state-space model parameters 
AA=zeros(nx*Np, nx); 
BB=zeros(nx*Np, nu); 
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Upf=Up; 
Xpf=Xp; 
for i=1: Np 

TRMSlin Function =====- -- 
whp=Xp(1); 
Shp=Xp(2); 
ahp=Xp(3); 
wvp=Xp(4); 
Svp=Xp(5); 
avp=Xp(6); 
Uhp=Up(1); 
Uvp=Up(2); 
As=zeros (6,6) ; 
Bs=zeros (6,2) 
Ds=zeros(2,2); 
dx=zeros(6,1); 
DEN=D*(cos(avp+avO))^2+E*(sin(avp+avO))^2+F; 
if whp>=O 

As(1,1)=1-Ts*(Btr+kthp*whp+TC^2/Rah)/Jtr; 
As(2,1)=Ts*lts*kfhp*whp*cos(avp+avO)/DEN; 

else 
As(1,1)=1-Ts*(Btr-kthn*whp+TC^2/Rah)/Jtr; 
As(2,1)=-Ts*lts*kfhn*whp*cos(avp+avO)/DEN; 

end 
As(2,2)=1-Ts*kvfh/DEN; 
if ahp>=O 

As(2,3)=-Ts*kchp/DEN; 
else 

As(2,3)=-Ts*kchn/DEN; 

end 
As(2,4)=-Ts*kvfh*km*cos(avp+avO)/DEN^2; 
As (3,2)=Ts; 
As(3,3)=1; 
As(3,4)=Ts*km*cos(avp+avO)/DEN; 
if wvp>=O 

As(4,4)=1-Ts*(Bmr+ktvp*wvp+TC^2/Rav)/Jmr; 
As(5,4)=Ts*(lm*kfvp*wvp)/Jv; 

else 
As(4,4)=1-Ts*(Bmr-ktvn*wvp+T(-'^2/Rav)/Jmr; 
As(5,4)=Ts*(-lm*kfvn*wvp)/Jv; 

end 
As(5,1)=-Ts*kvfv*kt/(Jv^2); 
As(5,5)=1-Ts*kvfv/Jv; 
if avp==O 

As(5,6)=Ts*g*((B-A)*sin(avp+avO)-C*cos(avp+avO))/Jv; 
else 

As(5,6)=Ts*g*((A-B)*cos(avp+avO)-C*sin(avp+avO))/(Jv*avp); 
end 
As(6,1)=Ts*kt/Jv; 
As (6,5) =Ts; 
As (6,6) =1; 
Bs(1,1)=Ts*TC*k2/(Jtr*Rah); 
Bs(4,2)=Ts*TC*kl/(Jmr*Rav); 
AA(nx*i+(1-nx: 0),: )=As; 
BB(nx*i+(1-nx: 0),: )=Bs; 
Uhp=Up(l); 

Uvp=Up(2); 
Update the state variables at each stage 

whp=Xp(l); 
Shp=Xp(2); 
ahp=Xp(3); 
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wvp=Xp(4); 
Svp=Xp(5); 
avp=Xp(6); 
if whp>=O 

whn=whp+Ts* (TC* (k2*Uhp-TC*whp) /Rah-Btr*whp-kthp*whp^2) /Jtr; 

else 
whn=whp+Ts*(TC*(k2*Uhp-TC*whp)/Rah-Btr*whp+kthn*whp^2)/Jtr; 

end 
if wvp>=O 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp-ktvp*wvp^2)/Jmr; 
else 

wvn=wvp+Ts*(TC*(kl*Uvp-TC*wvp)/Rav-Bmr*wvp+ktvn*wvp^2)/Jmr; 
end 
if whp>=O 

Shn=Shp+Ts*(lts*kfhp*whp^2*cos(avp+avO)-kvfh*Shp-... 
kchp*ahp)/(D*(cos(avp+avO))^2+E*(sin(avp+av0))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+... 
E*(sin(avp+av0))^2+F)^2; 

else 
Shn=Shp+Ts*(-lts*kfhn*whp^2*cos(avp+avO)-kvfh*Shp-... 

kchp*ahp)/(D*(cos(avp+av0))^2+E*(sin(avp+avO))^2+F)-... 
Ts*kvfh*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+... 
E*(sin(avp+avO))^2+F)^2; 

end 
if wvp>=0 

Svn=Svp+Ts*(lm*kfvp*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 
g*((A-B)*cos(avp+avO)-C*sin(avp+avO)))/Jv; 

else 
Svn=Svp+Ts*(-lm*kfvn*wvp^2-kvfv*Svp-kvfv*kt*whp/Jv+... 

g*((A-B)*cos(avp+av0)-C*sin(avp+av0)))/Jv; 
end 
ahn=ahp+Ts*Shp+Ts*km*wvp*cos(avp+avO)/(D*(cos(avp+avO))^2+. 

E*(sin(avp+avO))^2+F); 

avn=avp+Ts*Svp+Ts*kt*whp/Jv; 
Xp=[whn; Shn; ahn; wvn; Svn; avn]; 
o =_____= Update the inputs at each stage 
if i<=Nc 

Up=Up+dUO(i*nu+(1-nu: 0), 1); 
end 

end 
4 MyMPC1 Function = 
Up=Upf; 
Xp=Xpf; 
Ma=zeros(Np*nx, nx); 
Mb=zeros(Np*nx, nu); 
Mu=zeros(Np*nx, Nc*nu); 
Mc=zeros(Np*ny, Np*nx); 
Mref=zeros(Np*ny, 1); 
MQ=zeros(Np*ny, Np*ny); 
MR=zeros(Nc*nu, Nc*nu); 
Md=zeros (Np*ny, 1) ; 
Mdx=zeros(Np*nx, 1); 
Ymax=zeros(Np*ny, 1); 
Ymin=zeros(Np*ny, 1); 
Adu=zeros(2*Nc*nu, Nc*nu); 
bdu=zeros(2*Nc*nu, 1); 
Au=zeros(2*Nc*nu, Nc*nu); 
bu=zeros(2*Nc*nu, 1); 
for i=1: Np 

if i==1 

Ma(nx*i+(1-nx: 0) , 1: nx)=AA(nx*i+(1-nx: 0) , : ); 
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Mb(nx*i+(1-nx: 0) , 1: nu)=BB(nx*i+(1-nx: 0) , : ); 
Mu(nx*i+(1-nx: 0) , l: nu)=BB(nx*i+(1-nx: 0) , : ); 
Mref(ny*i+(1-ny: 0) , 1)=Xp([3 6])*O+(eye(ny)-al)*ref; 

else 
Ma(nx*i+(1-nx: 0) , l: nx)=AA(nx*i+(1-nx: 0) , : )*... 

Ma(nx*(i-l)+(1-nx: 0) , l: nx); 

==== Forming Mba for the i-th row of matrix Mb 
Mba=zeros(nx*(Np-l), nx); 
for j=1: i-1 

if j==l 
Mba(nx*j+(l-nx: 0), l: nx)=AA(nx*(i-j)+(l: nx) 

else 
Mba(nx*j+(l-nx: 0), l: nx)=Mba(nx*(j-1)+... 

(1-nx: 0), l: nx)*AA(nx*(i-j)+(l: nx) , : ); 

end 
end 
Mbi=zeros(nx*Np, nu); 
Mbi(l: nx, l: nu)=BB(nx*i+(1-nx: 0), 
for j=1: i-1 

Mbi(nx*j+(l: nx), l: nu)=Mbi(nx*j+(l-nx: 0), l: nu)+... 
Mba(nx*j+(1-nx: 0), l: nx)*BB(nx*(i-j)+(1-nx: 0) 

end 
ö =_= Forming the elements of Mb =___ 
Mb(nx*i+(1-nx: 0) , l: nu)=Mbi(nx*i+(1-nx: 0), l: nu); 

=== Forming the elements of Mu 

if i<=Nc 
for k=1: i 

Mu(nx*i+(1-nx: 0) , nu*k+(1-nu: 0))=... 
Mbi(nx*(i-k)+(l: nx), l: nu); 

end 
else 

for k=1: Nc 
Mu(nx*i+(1-nx: 0) , nu*k+(1-nu: 0))=... 

Mbi(nx*(i-k)+(1: nx), 1: nu); 
end 

end 
Mref(ny*i+(1-ny: 0) , 1)=a1*Mref(ny*(i-1)+(1-ny: 0) , 1)+... 

(eye(ny)-al)*ref; 
end 
Mc(ny*i+(1-ny: 0) , nx*i+(1-nx: 0)) Cs; 
MQ(ny*i+(1-ny: 0) , ny*i+(1-ny: 0))=Q; 
Md(ny*i+(1-ny: 0) , 1)=d; 

Mdx(nx*i+(1-nx: 0) 
, 1)=dx; 

Ymax(ny*i+(1-ny: 0) 1)=Cy(:, 2); 
Ymin(ny*i+(1-ny: 0) 1)=Cy(:, 1); 

end 
for i=1: Nc 

MR(nu*i+(1-nu: 0) , nu*i+(1-nu: 0))=R; 
Adu(nu*(2*i-1)+(1-nu: 0) , nu*i+(1-nu: 0))=eye(nu, nu); 
Adu(nu*(2*i)+(1-nu: 0) , nu*i+(1-nu: 0))=-eye(nu, nu); 
bdu(nu*(2*i-1)+(1-nu: 0) , 1)=Cdu(:, 2); 
bdu(nu*(2*i)+(1-nu: 0) , 1)=-Cdu(:, 1); 
for j=1: i 

Au(nu*(2*i-1)+(1-nu: 0) , nu*j+(1-nu: 0))=eye(nu, nu); 
Au(nu*(2*i)+(1-nu: 0) , nu*j+(1-nu: 0))=-eye(nu, nu); 

end 
bu(nu*(2*i-1)+(1-nu: 0) 

, 1)=Cu(:, 2)-Up; 
bu(nu*(2*i)+(1-nu: 0) 

, 1)=-Cu(:, 1)+Up; 
end 
% Calculating the parameters of Quadratic Programming (H, G, c) 
% min U'*H*U/2 + U'*G +c 
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subject to At*U <= b& Aeq*U=beq 
Eo=Mc*(Ma*Xp+Mb*Up+Mdx)+Md-Mref; 
Mdu=Mc*Mu; 

c=Eo'*MQ*Eo; 
G=2*Mdu'*MQ*Eo; 
Ho=2*(Mdu'*MQ*Mdu+MR); 

=_== Arranging the constraint parameters (At, b) ------ 
Ay=[Mdu; -Mdu]; 
by=[Ymax-Mc*(Ma*Xp+Mb*Up); -Ymin+Mc*(Ma*Xp+Mb*Up)]; 
At=[Adu; Au; Ay]; 

b=[bdu; bu; by]; 
Equality constraints ------------------ ------- 

if ref(l)>=O 
FhNp=kchp*ref(1)/(lts*cos(ref(2)+avO)); 
whNp=sqrt(abs(FhNp/kfhp)); 

else 
FhNp=kchn*ref(l)/(lts*cos(ref(2)+avO)); 
whNp=-sqrt(abs(FhNp/kfhn)); 

end 
SvNp=-kt*whNp/Jv; 
FvNp=-g*((A-B)*cos(ref(2)+avO)-C*sin(ref(2)+avO))/lm; 
if FvNp>=O 

wvNp=sqrt(abs(FvNp/kfvp)); 
else 

wvNp=-sqrt(abs(FvNp/kfvn)); 
end 
ShNp=-km*wvNp*cos(ref(2)+avO)/(E*(sin(ref(2)+avO))^2+... 

D*(cos(ref(2)+avO))^2+F); 

xNp=[whNp; ShNp; ref(1); wvNp; SvNp; ref(2)]; 
Aeq=Mu(nx*(Np-1)+l: nx*Np,: ); 
beq=xNp-Ma(nx*(Np-1)+l: nx*Np,: )*Xp-Mb(nx*(Np-i)+1: nx*Np,: )*Up; 

% =__= Solve the Quadratic Program using active set method 
[dU] = MyQP(Ho, G, At, b); 

U=dU(i: nu)+Up; 
dUp=dU(nu+l: nu*Nc); 
X=AA(1: nx,: )*Xp+BB(1: nx,: )*U; 

UX=[U; X; dUp]; 

function [xopt] = MyQP(H, f, A, b) 
xmin=-2*ones(size(f)); 
mnu=length(f); 
nc=length(b); 
H=inv(H); 
TAB=[-H H*A'; A*H -A*H*A']; 
bas=[-xmin-H*f; b+A*H*f]; 
ibi=-[l: mnu+nc]'; 
ili=-ibi; 
basis=zeros(mnu+nc, l); 
ib=zeros(mnu+nc, 1); 
il=zeros(mnu+nc, 1); 
maxiter=750; 
[basis, ib, il, iter]=Mydantzgmp(TAB, bas, ibi, ili, maxiter); 
xopt=zeros(mnu, 1); 
for j=l: mnu 

if il(j) <= 0 
xopt(j)=xmin(j); 

else 

end 
end 
return 

xopt(j)=basis(i1(j)) +xmin(j); 
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function [bas, ib, il, iter, tab]=Mydantzgmp(a, bv, ibo, ilo, maxiter); 
tab=a; bas=bv; ib=ibo; il=ilo; 
[m, n]=size(tab); 
istand=O; 
i=0, 
ichk=O; 
ichki=O; 
iout=O; 
for iter=l: maxiter 

ibgz=zeros(1, m); 
itnz=zeros(l, m); 
irgez=zeros(1, m); 
test=zeros(1, m); 
btest=zeros(1, m); 
rat=zeros (1, m) 
if istand == 0 

basmin=0; 
for j=1: m 

if il(j)>0 && bas(il(j))<basmin 
basmin=bas(il(j)); 
i=j; 

end 
end 
if basmin >= 0 

return 
end 
iad=i 
ichk=il(i) 
ichki=i+n 
ic=-ib(iad) 

else 
iad=istand; 
ic=-il(istand-n); 

end 
for j=l: m 

if ib(j)>O 
ibgz(j)=j; 
test(j)=tab(ib(j), ic); 
btest(j)=bas(ib(j)); 
if test(j)-=0 

rat(j)=btest(j)/test(j); 
end 

end 
end 
rmin=-1; 
it=0; 
k=0; 
for j=1: m 

if rat(j)>O II (rat(j)==O && test(j)>O) 
k=k+1; 
if k==1 

rmin=rat(j); 
i=j; 

elseif rat(j)<rmin 
rmin=rat (j) ; 
i=j; 

end 
ir=ib(i); 
iout=i; 

end 
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end 
if tab(ichk, ic). -0 

ratl=bas(ichk)/tab(ichk, ic); 
if ratl >= 0 && (ir == 0 11 ratl <= rmin) 

ir=ichk; 
iout=ichki; 

end 
end 
if jr == 0 

iter=-fiter; 
return 

end 
if iout <= n 

ib(iout)=-ic; 
else 

il(iout-n)=-ic; 
end, 
if iad >n 

il(iad-n)=ir; 

else 
ib(iad)=ir; 

end 
, ___= Start of procedure that switches basis variables 
ipiv=l/tab(ir, ic); 

tab(ir,: )=tab(ir,: )*ipiv; 
temp=bas(ir)*ipiv; 
bas=bas-temp*tab(:, ic); 
bas(ir)=temp; 
tab(ir, ic)=0; 
tab=tab-tab(:, ic)*tab(ir,: ); 
tab(:, ic)=-ipiv*tab(:, ic), 
tab(ir, ic)=ipiv; 

=__= end of switching procedure 
istand=O; 
for j=1: m 

if ib(j)>O && il(j)>O 
istand=iout+n; 

end 
end 

end 
return 
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