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SYNOPSIS 

The Department of Transport's bridge assessment programme has revealed that a 

significant number of bridges are not strong enough to carry the much heavier 

commercial axle loads that will soon be applied to UK bridges. 

To address this problem, this research investigates a technique of strengthening 

concrete bridges by bonding and encapsulating an extra layer of reinforcement using 

sprayed concrete to the soffit of the bridge to increase the flexural capacity. 
An experimental investigation on approximately one eighth scale reinforced 

concrete slabs strengthened by different amounts of reinforcement placed at varying 
depths below the soffit and encapsulated by professionally applied dry-mix sprayed 

concrete, have shown that increased flexural capacity of up to eight times the original 

capacity is possible with no sign of breakdown of the bond at the soffit interface. 

Separate interface shear tests both direct and indirect were carried out and showed high 

shear capacities were obtained in all specimens. The susceptibility to weathering 

causing a breakdown of the interface bond was investigated by freeze-thaw tests. 

Fatigue load tests have also shown that the strengthened slabs have a similar life 

span to that of normal reinforced concrete. An analytical study was carried out, 

complemented by the fatigue load test results, to assess the life span of two highway 

bridges when subjected to fluctuating traffic loading, taking into account the proposed 
increasing use of heavier axle loads. 

All the slabs tested to failure under both static and fatigue loading failed in 

flexure and extremely good bond between the sprayed concrete layer and its substrate 

concrete was maintained right up to failure, even without shear connectors. The 

potential use of this technique in practice was therefore well demonstrated. 
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CHAPTER I 

INTRODUCTION 

An extensive Department of Transport bridge assessment programme has revealed that 

there is a significant number of highway bridges that are deficient in their load carrying 

capacity to cope with the expected implementation of the EC directive in the UK which 

would result in much heavier commercial axle loads being applied to LTK bridges. It has 

been recognised by many bridge owning authorities that there is extreme urgency for 

their bridge stock to be strengthened to meet this requirement. Currently bridges can 

only be strengthened by gluing steel plates onto the soffit of the bridge in the critically 

deficient moment region to increase their moment capacities. At the Department of 

Civil Engineering of Queen Mary & Westfield college, an alternative technique has 

been researched which was developed from a previous research programme [1] which 

found that by simply casting a new section of concrete, encasing reinforcement onto the 

soffit of a plain concrete member produced the same flexural capacity as a 

homogeneously cast reinforcement concrete beam of the same overall dimensions. 

From the authors contacts with industry, it became apparent that the majority of slab 

bridges failing the Department of Transport bridge assessment programme do so due to 

the lack of flexural capacity, not shear capacity. It was, therefore considered that a 

feasible strengthening technique could be based on bonding and encapsulating an extra 

layer of reinforcement using sprayed concrete to the soffit of a slab bridge. 

In order to make the spraying procedure as practical as possible within the a 

university laboratory environment, it was proposed to simulate the technique by 

strengthening and testing approximately one eighth scale slabs of dimensions 2.4 x 1.0 x 

0.1 metres. 

A total of eighteen reinforced concrete slabs were cast to act as the base slabs 

and one of these was left unstrengthened as a control test slab. The remainder were all 

strengthened and from these, fourteen were tested under static loading and three were 

under fatigue, all to failure. The variables considered in both the static and fatigue 
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loading tests were the amount of mcsh reinforcement, the thickness of the sprayed 

concrete layer and the mix used for the sprayed concrete. 

The mechanical properties of the hardened sprayed concrete were measured and 

a petrographic examination was conducted together with measurement of chloride 

ingression. 

One of the most influential factors affecting of the success of this technique of 

strengthening is the horizontal shear capacity developed at the substrate/sprayed 

concrete interface and this is governed by the type of surface preparation of the substrate 

concrete. In this research grit blasting was used throughout although in three test slabs 

shear connectors were incorporated in addition to grit blasting. To investigate the shear 

capacity of the substrate/sprayed concrete interface, experiments were conducted as 

follows: 

1. Using slabs with and without shear connectors. 

2. Increasing the shear at the interface by enhancing the reinforcement in the sprayed 

concrete layer by up to four times the reinforcement in the base slab in test slabs 

without shear connectors. 

3. Conducting slant shear tests, double shear tests and direct shear tests. 

The fatigue work undertaken in this research showed that a conservative 

practical useful life span of 50 years can be achieved using this technique to strengthen 

a concrete bridge. The steps undertaken were: 

1. To establish a table of load range versus the number of cycles to failure. This was 

obtained by drawing a series of Goodman diagrams for different number of cycles to 

failure, which were abstracted from an assumed S-N curve obtained from the 

American Concrete Institute code ACI 215R-74(Revised 1986)[39] and a suitably 

modified version of the commercial vehicle axle load spectrum of BS 5400: Part 10: 

1980[38]. 

2. Using Miner's hypothesis to assess the total life span of a typical concrete highway 

bridge which is carrying the modified load spectrum and whose fatigue life is 

predicted by the assumed S-N and the modified Goodman diagrams. 

3. From the table discussed in (L) a load range was chosen which gave an expected life 

and which could be reasonably accommodated by the limited time scale of this 

research with which to fatigue test three slabs. These results were then used in 
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conjunction with the analytical S-N study to predict fatigue life span of typical 

bridges. 

A method of predicting the induced stresses due to the shrinkage of the sprayed concrete 

layer is recommended and its application on a typical highway concrete bridge is also 

presented. 
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CHAPTER 2 

LITERATURE REVIEWS 

2.1 SHOTCRETE ORIGINS 

There are many legends and stories about how and why the cement gun was developed. 

The only thing these stories have in common is that they attribute the invention of the 

cement gun to Carl E. Akeley, a well known explorer and naturalist who was associated 

for many years with the field museum of Natural History in Chicago[2]. 

Akeley made attempts at using sprayed plaster for his animal models. He 

experimented with a pressure tank in which water and plaster of Paris were mixed and 

then blown through a hose. These trials were unsuccessful because he could not 

overcome the problem of hose plugging. It appears this process which we in later years 

would call wet-mix sprayed concrete had been used by contemporaries of Akeley for 

various purposes. However, Akeley overcame the problem of plugging by adapting the 

pressure tank to handle dry plaster which was blown through a hose with water added at 

the nozzle end. This simple yet ingenious device became the precursor of the cement 

gun and gunite or dry -mix sprayed concrete in today 's terminology. Akeley then 

developed a working model which would spray a plastic mixture of sand, cement and 

water onto a surface. By 1908 Akeley had experimented sufficiently to apply for a 

patent of a device that could successfully spray plaster mortar. In 1920 the cement gun 

was introduced to the construction industry at the New York Cement show in Madison 

Square Garden. 

Akeley 's first successful practical work with the cement gun was the covering 

of the old Field museum with a coat of gypsum stucco. In February 1911 Akeley 

received a patent for the equipment, a single chamber gun with a vertical feedwheel; and 

the method, a process for producing and depositing plastic or adhesive mixtures. This 

device could be used only intermittently because it was a single chamber machine and 
had to be shutdown and re-loaded when empty. However, a second patent was issued in 

May 1911 for an apparatus that would mix and apply plastic adhesive materials. This 
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second patent was for equipment only, a variation of the original gun or device differing 

in two critical respects. First, a double chamber was substituted for the single chamber, 

which provided continuous flow allowing the lower chamber to operate while the upper 

was being loaded. Second, the vertical feedwheel was changed in design and moved 
into a horizontal position providing improved material flow and control. Today, this 

basic configuration with double chamber and horizontal feedwheel is essentially the 

same as in this second patent. 

It is a matter of interest that at around the same time when Akeley's device was 

patented, there existed a European patent for a similar gun which were owned by Joseph 

Von Vass. It appears then that the cement gun concept was not necessarily an American 

original. 
In 1916 Traylor Engineering & Manufacturing Co. of Allentown, PA, purchased 

the rights to the cement gun in the United States and began manufacturing and 

marketing the machine. 
Sprayed concrete 's early history was the history of the cement gun since it was 

the most dominant process in existence, at least in the united States, if not in Europe. 

Many publications were undertaken in those early days but the process did not take hold 

until the 1920's after considerable research and development had been undertaken by 

the Cement Gun Co. From then until the post World War 11 period, a strong technical 

foundation as being laid to prepare for the revolution that was to take place in the 

1950's. 

2.2 SPRAYED CONCRETE DEVELOPMENT 

In 1912 the word "Gunite", a trade name, was invented to describe the sand-cement 

product of the cement gun, focusing on its mortar like properties. This description of 

gunite seems to be the earliest definition of the material we call "fine aggregate dry- 

mix" shotcrete. Several other names, guncrete (1925) and pneucrete (1929) also 

appeared in the literatures to describe what is generally called "pneumatically placed 

mortaf"[2], "pneumatically applied mortar" or "sprayed mortar". With regard to the 

fine aggregate wet-mix shotcrete; apparently during the 1910's or 1920's, a pneumatic 

concrete device developed by C. Weber was being used by the shotcrete industry 
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although the name wet-mix was not known at the time, its existence was approximately 

at the same time as dry-mix shotcrete. 
In the early 1930's, the American Railway Engineering Association introduced 

the term " shotcrete " which they defined as pre-mixed dry portland cement and sand 

pneumatically ejected from a machine through a hose and a discharge nozzle where 

water is added, all under regulated pressure. This definition applied to all gunned 

applications with a mortar consisting of sand, cement and water using delivering 

equipment similar to the double chambered cement gun and it was enforced until the 

post World War II when the concrete technology and shotcrete underwent major 

changes and innovations. 

In 1951 the ACI Committee 805-51 on Pneumatically Placed Mortar (now ACI 

Committee 506) published a standard "Recommended Practice for the Application of 

Mortar by Pneumatic Pressure"[3]. The standard defined pneumatically placed mortar 

as mortar which is projected by an air jet directly onto a surface to which it is to be 

applied irrespective of the type and manufacture of the mixing and placing apparatus. 
However, the term shotcrete was used for convenience instead of " pneumatically placed 

mortar " in the standard " Recommended Practice for the Application of Mortar by 

Pneumatic Pressure ý". The ACI 805 's shotcrete definition was to be changed as it 

applied only to dry-mix process with fine aggregate, not coarse aggregate, even though 

a Swiss-made cement gun, the Aliva BS-12 had been used for gunning coarse aggregate 

dry-mix for almost ten years outside the United States. 

In 1966 the ACI Committee 506-66 on shotcrete superseded the ACI 805-51 and 

produced the ACI standard " Recommended Practice for Shotcreting ". This new 

standard accounted for the many changes that were occurring in shotcrete technology 

during the years after World War IL With this new standard, the definition of shotcrete 

was modified to: mortar or concrete conveyed through a hose and pneumatically 

projected at high velocity onto a surface. The inclusion of the word " concrete 

therefore recognised that coarse aggregate dry-mix shotcrete is a shotcrete process. 
This revised standard also described and made comparisons between wet-mix 

and dry-mix processes in detail as well as standardising both coarse and fine aggregates 

gradations for shotcrete. The term ' shotcrete ' now adequately describes and defines 

the technology as it existed in the middle of the 1960 's. 
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About ten years on, the shotcrete technology continued expanding and the 

expansion brought with it more imprecisions and ambivalence. In 1977 the ACI 506.2 

re-defined shotcrete, removing the part " conveyed through a hosd to become " mortar 

or concrete pneumatically projected at high velocity onto a surface and since then, this 

definition has been continued through many ACI 506 s' revisions to date. 

According to current practice in the USA, mortar or concrete projected onto a 

surface at high velocity is referred to as shotcrete. Here in the UK, the process is 

referred to as sprayed concrete and the author would like to clarify to readers that this 

term is used from this point throughout the thesis. However, if the maximum aggregate 

size is less than 10mm it is referred to as gunite and shotcrete as in the USA if the size is 

greater than l0mm. For a type of mortar or concrete to be referred to as shotcrete, 

gunite or sprayed concrete, it should at least be shot, gunned or sprayed: 
1. in a horizontal, vertical or overhead position without forms except in those cases 

where a single backing form is required. 
2. without sloughing on vertical surfaces or sagging on overhead surfaces. 
3. in any thickness especially in thin layers in the range of 4mm. to 1 00mm. 

4. in any shape or configuration, uniform or non-uniform thickness. 

5. using liquid or powder accelerator to provide, if required any initial set, from I to 3 

minutes. 

6. using any combination of aggregate, binder or liquid. 

2.2.1 Velocity of spraying concrete 

Perhaps it would be agreed by most practising sprayed concrete engineers that if 

concrete cannot be sprayed at high velocity, in order to satisfy the six aforementioned 

conditions then sprayed concrete would have to be considered as just another routine 

method for the placing of concrete. Therefore there is an important question of what is 

meant by 'high velocity' or how low can high velocity be and still make the definition 

of sprayed concrete valid ? Ordinary pumped concrete has a very low exit velocity; 

could it be classified as sprayed concrete ? Similarly, could a mortar with air added at 

the nozzle impart sufficient velocity to the material to be classified as sprayed concrete ? 

There are some sprayed concrete users who believe that the quality of in situ 

sprayed concrete, including durability is directly proportional to the exit velocity from 

the nozzle. Glassgold[2] indicated that in the case of dry-mix sprayed concrete, most of 
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the literature and experimental data available supports the principle that the higher the 

exit velocity, the better the sprayed concrete quality. In the case of the wet-mix process, 

it is generally agreed that the method of placement, except when using pneumatic feed 

equipment, does not improve the properties of the in situ sprayed concrete as it does in 

dry-mix. There have been unpublished reports, that if the exit velocity is increased in 

the we-mix process, there is an improvement in the properties of the sprayed concrete, 

however there are no published data to support this conclusion. 

In attempting to investigate the question of exit velocity, the findings from 

various researchers are being reported as follows: 

Stewart[4] conducted an experiment to measure the nozzle exit velocity of the sprayed 

concrete used in a reservoir re-lining job. The velocity at each nozzle used was read at 

the gun by means of a single manometer and a suitably calibrated scale. The results of 

the experiment indicated that sprayed concrete strength increases as exit velocity 

increases to an optimum level and that smaller diameter nozzles tend to achieve 

optimum strength at lower velocities. Figure 2.1 illustrates this results. 

45 
40 
35 
30 

Compressive 25 
Strength 

20 N/mmA2 
Is 
10 

5 
0 

103 107 114 122 130 137 145 152 160 168 

19 & 25.4nur nozzle 

2-mm nozzle 

Veloclty ( mis ) 

Figure 2.1 - Sprayed concrete velocity versus compressive strength for three sizes of 
nozzles, Stewart[4]. 

Clearly from Figure 2.1 the optimum sprayed concrete strength can be achieved with the 

smaller diameter nozzle at the operating velocity range from 122 to 145 m/s. 

Ward and Hills[5] also indicated a correlation between exit velocity and strength 

similar to that of Stewart, that is the higher the nozzle exit velocity the higher the 

strength and density of the in situ sprayed concrete. However, the measured mean 

velocity is considerably less than that of Stewart at 35m/s measured from high-speed 
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photography. It must be pointed out that the velocity data here was incomplete as there 

were indications that the sprayed concrete strength and density was still increasing, 

though at a decreasing rate when the measurements ceased. 
Parker[6] stated that measurement of the air stream using the stop-action 

photographic method indicated that particles were moving toward the wall at a rate of 
30 to 60m/s. Although this finding tends to confirm Ward and Hills findings, there 

were indications that the statement was inconclusive and conflicts to some degree with 
his results reported in Department of Transportation report USA[7]. 

Valencia[8] stated that the material velocity is approximately 135m/s, is similar 

to Stewart's measurements. The method of velocity measurement was not described 

however. 

Blumel, Lutsch and Stehno[9] stated that the nozzle velocity of the material is 

considered to be another crucial factor which influences the quality of sprayed concrete 

and the average nozzle velocity is in the range of 27 to 35m/s, the method of velocity 

mcasurement hcrc was also not c1carly describcd. 

Ryan[10] stated that high nozzle velocity results in sprayed concrete of 

exceptional compaction, while low velocity sprayed concrete is less compacted in 

comparison but nevertheless exhibits the typical features of sprayed concrete. He 

indicated 90 to 120m/s for high velocity but gave no values for low velocity or how the 

velocity was measured. 

There is obviously no unique answer to the question of nozzle exit velocity, 

although there is a general agreement that high nozzle velocity yields high quality in 

situ sprayed concrete. Perhaps in view of the variable opinions expressed in the 

literature reviews in-depth research into this particular subject using high-speed 

photography should be undertaken. 

2.3 SPRAYED CONCRETE PROPERTIES 

Sprayed concrete is a structurally sound and durable construction material. It exhibits 

very good bonding characteristics with concrete and many other construction materials. 
It also has many good physical properties which are comparable or superior to those of 

conventional concrete having the same composition. However, nearly all the good 

physical properties and performance of sprayed concrete are contingent on good 

PhD Thesis QMW [University of London] D. Pham-Thanh [November 19971 11 



specifications, materials, - proper surface preparation, mixing, competence and the 

experience of the application creW. 

2.3.1 Bond strength 
ACI 506R-90[l 1] contains recent data obtained from tests in which the load was applied 

parallel to the bond interface. Table 2.1 shows the data. 

Table 2.1 - Bond strength of dry-mix yed concrete on old concrete. 

Sample No. of sprayed concrete 
cores ( N/MM2 

Bond strength in shear 
(N/mm 2 

1 40.3 5.0 
2 49.2 4.1 
3 40.7 2.9 
4 37.3 3.6 
5 48.7 6.0 
6 31.9 2.8 
7 31.6 3.5 

Notes: 
1. All test specimens are 150mm diameter cores. 
2. All surface preparation are grit blasted. 
3. Bond strength was maintained by "guillotine" method where shear bond is 

applied parallel to the bonded interface. 

2.3.2 Water/cement ratio and drying shrinkage 

The cement content of the in situ sprayed concrete is usually higher than in the designed 

composition due to the rebound and this, coupled with the generally low water/cement 

ratio potentially increases the strength of the sprayed concrete, it can however cause 
increased drying shrinkage. The use of joint spacing, reinforcing bars or mesh 

reinforcement can minimise this problem is recommended. Table 2.2 illustrates some 

typical values extracted from ACI 506R-90 and Schrader and Kaden[12]. 

Table 2.2. - Typical w/c ratio and drying-shrinkage of sprayed concrete. 
Water/cement Cement content (kg/m') Shrinkage Source 

-4 - -. 1 ------ - I--, -_ 
0.37 504 9XIO concrete Schrader and 

Kaden 

0.48 341 5xlO' Conventional concrete 
Schrader and Kaden 

0.3 - 0.5 ( in situ - (6-10)xIO-4 Dry-mix sprayed 
concrete ACI 506R-90 
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2.3.3 Compressive strength and modulus of elasticity 
From Schrader and Kaden, for a typical portland cement dry-mix sprayed concrete, 

approximately: 

w/c = 0.37 

Compressive strength (N/mm 2 )=55 

Modulus of Elasticity (N/mm2 )= 34000 

and these properties are very similar to conventional concrete as in Table 2.3. 

Table 2.3 - Modulus of Elasticity versus strength BS 8110: Part 2: cl 
7.2[13]. 

Compressive Strength Typical range of 
(N/MM2) Modulus of Elasticity 

(N/ITIM2) 

40 22000 - 34000 
50 24000 - 36000 
60 26000 - 38000 

Clearly there is a similarity in the modulus of Elasticity between conventional and 

sprayed concrete. 

2.3.4 Coefficient of thermal expansion 

Although not given, ACI 506R-90 stated that generally the coefficient of thermal 

expansion of sprayed concrete approximates to that of reinforcing steel, thereby 

minimising internal stress development. 

2.3.5 Permeability 

Generally the values penneability of sprayed concrete are very low. Schrader and 
Kaden quoted the following typical figures: 

Strength range from 21 to 83 N/mm. 2 

Permeability range from 3xl 0-8 to 3xl 0" 1 cm/sec. 
By comparison, conventional concrete of the similar strength range may have very 

slightly higher permeability values. 

The low permeability of sprayed concrete is generally desirable (assuming that 

this is achieved without the detrimental effects of a mix that develops greater crack 

potential). However, one ought not to overlook the " side-effect " of having low 
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permeability sprayed concrete. Schrader and Kaden pointed out that when sprayed 

concrete is used in a moisturised zone such as to replace spalled concrete on the side or 

the bottom of a concrete pier cap, or the submerged surface of the wall for a water 

retaining structure, if moisture has been slowly migrating into and through the substrate 

concrete and if it continues to do so after application of the sprayed concrete, it will be 

restricted from escaping out of the sprayed concrete layer at the same rate that it 

previously did. Without an alternative escape route for the moisture, it may begin to 

build up pressure and/or trap contaminates such as chlorides behind the sprayed 

concrete. In some cases, this has no significant consequences. However, it is possible 
for serious damage to occur in the forms of debonding of the sprayed concrete from the 

substrate concrete or concealing the corrosion in the reinforcement in the substrate 

concrete. 
There are indications (Schrader and Kaden, ACI 506R-90) that certain latex 

formulations can be added to portland cement sprayed concrete, a product called 

polymer-modified sprayed concrete, to enhance its impermeability, flexural, tensile and 
bond strengths. However, Glassgold quoted "in his opinion, there are problems 

attendant to polymer sprayed concrete installation that include its inherent curing 

characteristic, incompatibility with portland cement concrete matrices, an absence of 

structural design criteria and a need for special equipment. These and overall lack of 

conformity with established shotcrete placement and finishing techniques made him 

question its suitability and viability as a sprayed concrete material". Also, Marusin[14] 

found that layering occurred in latex-modified dry-mix sprayed concrete. He found that, 

trapped in between these layers are the non-absorptive polymer rich films which are 

smooth and dense produced by Latex migration. These films prevent bonding between 

the applied sprayed concrete and the substrate concrete and resulted in delarnination as 

well as early shrinkage. 

2.4 SPRAYED CONCRETE MATERIALS 

Standard portland cement sprayed concrete using such basic material as cement, 

aggregate and water have provided in most cases, durable and effective sprayed 

concrete. However, new material developments can provide beneficial improvements. 
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2.4.1 Microsifica 

Microsilica or silica fume is supplied in either dry form or slurry form. It is a by- 

product of the reduction of high-purity quartz with coal in electric arc furnaces in the 

production of silicon metal. The use of microsilica in concrete was pioneered in 

Norway in the early 1950s, but not until 1980 was microsilica used in sprayed concrete 

applications, in several Scandinavian countries. In 1983 a Canadian consulting 

engineering firm Hardy Associates (1978) Ltd, in Vancouver, B. C., conducted extensive 

laboratory and field investigations into the incorporation of microsilica in dry-mix 

sprayed concrete, very positive results were found. Extreme fineness and a high glass 

content in microsilica results in a very efficient pozzolanic material i. e. it is able to react 

very efficiently with the products of hydration of portland cement to create secondary 

cementitious materials in hydrating concrete and sprayed concrete. This results in a 

product with very low permeability and absorption and enhanced resistance to 

deterioration in a variety of chemically aggressive environments (deterioration of the 

sprayed concrete matrix is caused by the breakdown of the calcium hydroxide 

component of hydrated portland cement). 

Glassgold's test results as shown in Table 2.4 on microsilica dry-mix sprayed 

concrete agree with the above and indicate that a nominal addition of microsilica to 

standard portland cement mixes has very beneficial effects on the durability properties 

of dry-mix sprayed concrete. 

Table 2.4. - Test results, microsilica sprayed concrete 
Compressive strength Freeze-Thaw Chloride permeability 

Cement Microsilica 7-Day 28-Day Cycles Weight Coulombs Rating Test /Sand % (N/mm) (N/mmý) achieved loss, % 
ratio from 300 

total 
4732@207 1 1: 4.5 0 19 28 188 6.9 High 

Mms. 
Very low 

2 1: 4.2 7.5 36 54 297 0.54 514 
Very low 3 1: 5.2 7.5 37 51 290 0.24 715 

Additionally, Glassgold pointed out that microsilica when added to sprayed concrete 

mixture does not have most of the drawbacks associated with polymer modified sprayed 

concrete. While certain minimal adjustments have to be made in application 
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procedures, they are well within the expertise of the average applicator and require little 

change in his skill. 

2.4.2 Fibre reinforcement 

In the form of steel or polypropylene (sometimes called synthetic) fibres can be 

integrally mixed with sprayed concrete. In 1968 polypropylene fibre reinforced sprayed 

concrete was first placed in Europe. Sprayed concrete experiments utilising steel fibres 

were first conducted in North America in 1971 and in the later years the technology was 

adopted in Europe (ACI 506. IR-84)[15]. 

The addition of polypropylene fibres to sprayed concrete tends to give good 

cohesive and plastic properties to the amalgam but does not improve the flexural 

strength of the matrix to any great extent. Steel fibres on the other hand, up to 2 percent 

by volume of the total mixture, would enhance flexural strength, ductility and 

toughness. It has been found that by incorporating steel fibres, the residual load 

carrying capacity of sprayed concrete after first cracking can be enhanced. 

2.4.3 Steel fibre and mesh reinforced sprayed concrete: a comparison 

Kirsten[16] in his attempt to address the answer to the question of the structural 

performance of steel fibre reinforced sprayed concrete compared to that of steel mesh 

reinforced sprayed concrete found that mesh reinforcement was more superior to fibre 

reinforcement for both uniformly distributed and point loading. This was due to the 

more effective location of the mesh within the section of the sprayed concrete with 

regard to bending and catenary action (catenary action is the mechanism in which the 

in-plane tensile forces generated at large deflections are resisted by a compression ring 

which develops around the tension zone). Kirsten also pointed out that generally when 

incorporating steel fibres into the sprayed concrete mixture, there are no modifications 

to the sprayed concrete pump, equipment or application procedures required. However, 

it appears that the sophisticated attributes of steel fibre reinforced sprayed concrete can 

only be effectively exploited in civil engineering applications in which quality assurance 
is subjected to explicit contractual control. 
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2.5 DURABILITY OF SPRAYED CONCRETE 

There is a general agreement that sprayed concrete placed using sound materials in the 

proper portions and applied by an experienced sprayed concrete crew, can provide a 
high strength durable concrete. 

The contents of this section is not intended to praise or to discredit the good 

performance of sprayed concrete it is to review the results of the research conducted by 

experienced sprayed concrete users with the hope that the information reinforces the 

general agreement above and because of the controversy encountered over the past 15 to 

20 years[2], these results tend to focus more on the lack of air entrainment and the 

frecze-thaw durability of dry-mix sprayed concrete than other properties. 
Glassgold revealed that from extensive investigations since the middle of 1950s, 

it appeared that if dry-mix sprayed concrete contained any air voids, they were resulted 
from entrapment rather than from being purposely entrained. 

Litvin and Shideler[17] in their report in ACI SP-14[18] stated: sprayed concrete 

could be durable and that the physical entrainnient of specified amounts of air was not 

absolutely necessary to ensure this durability. 

Reading[19] concluded that it is possible to produce both wet and dry sprayed 

concretes that will survive the highly aggressive natural freezing and thawing conditions 

typically 250 cycles of freezing and thawing every two years. 
Some sprayed concrete users had reported that the ASTM C666[46] rapid 

freezing and thawing standard appears to be more severe than some of the harshest 

freezing and thawing in nature, therefore one ought to be cautious in analysing data 

from tests conforming to this standard. 

Reading quoted " most sprayed concrete durability failure do not involve failure 

of the material itself. Generally there is a peeling off of the sound concrete because of 
bond failure ". Therefore one should be very careful to provide a good, clean bonding 

surface. The ACI 506R-90 contains a definition of the concrete surface preparation. 
However, in the experiments described in this thesis, grit blasted concrete surface 

preparation is perfectly adequate to maintain extremely good bond between the sprayed 

concrete layer and the substrate concrete surface. 
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Apparently most sprayed concrete that has performed well in freezing-thawing 

enviromnents was not saturated because it contains a satisfactory system of entrapped 

air voids in the case of dry-mix, and entrained air voids for the case of wet-mix. 

In this author 's opinion, if microsilca had been used in Schrader and Kaden 's 

experiment, perhaps the results would have been much improved. This can be 

illustrated by a pier project in Western Canada[20] which involved repair of corrosion 

deteriorated and construction damaged piles, pile caps, beams, slab soffits and sea wall. 

Many of these structural elements were in the inter-tidal zone. In this project, dry-mix 

microsilica sprayed concrete was used. The feedback revealed consistently higher 

compressive strengths and lower permeability in the in situ sprayed concrete as 

measured by the volume of permeable voids. Additionally, it was found that the 

incorporation of microsilica at 12% by weight of portland cement substantially 

enhanced initial set and therefore the use of an accelerator was not necessary. 

To sum up on the issue of durability of sprayed concrete, the author of this thesis 

would like to emphasise that there are significant studies indicating that certain dry-mix 

sprayed concrete (non-air-entrained) can be a durable, freeze-thaw resistance material 

and that sprayed concrete in general could replace existing conventional concrete 

subjected to its feasible economic evaluation. Berkovitch[21] reported on Humphries' 

paper[22] which presents information on the question of relative costs, see Figure 2.2, 

though this must be interpreted in terms of the date when considering the absolute 

levels, it indicates that cost per square metre of sprayed concrete equals that of normal 

placed concrete at about 150mm thickness and exceeds it at greater thicknesses. Also, 

the author would like to stress that the freeze-thaw phenomenon is not as great a threat 

in the LJK as elsewhere generally suffers winter which are relatively mild compared to 

those of some of its European neighbours and parts of North America. Therefore the 

durability of sprayed concrete under freeze-thaw conditions should not be the prime 

criterion in the decision making process for its use on a particular maintenance job in 

the UK. However, two important issues needed careful consideration to make this 

possible: 

1. Applicator workmanship has to improve providing new and consistent levels of 

sprayed concrete quality, especially now that the use of sprayed concrete is rapidly 

expanding. 
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2. Sprayed concrete engineers must learn and understand all aspects of the process 
from design through to construction. 

Sprayed concrete costs 

Normal placed 
concrete costs 

f per 
sq. m 

Formwork costs 

100 200 

Thickness (mm) 

Figure 2.2 - Relationship between costs of sprayed concrete and those for normal 
placed concrete and fonnwork, Berkovitch[21]. 
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CHAPTER 3 

THE TEST SLABS FOR FATIGUE AND STATIC LOAD 
TESTING 

3.0 GENERAL 

The proposed test slab bridge was modelled to the maximum size allowed by the 

laboratory working area and the simulation of the strengthening technique undertaken 

on the modelled slab bridge was made as realistic as far as possible in terms of. 
1. Spray concrete mix 

2. Spray concrete depth 

3. Spray concrete reinforcement 

4. Surface preparation 

5. Spraying process 

The modelled strengthened slab bridge was then tested under static loading to study its 

ultimate flexural capacity and under fatigue loading to evaluate the useful life span of 

the technique taking into account the current commercial axle load spectrurn in the UK. 

This chapter describes the stages leading to the production of the sprayed concrete 

strengthened R-C slabs. There were in total eighteen strengthened slabs (also referred to 

as test slabs) and these were tested as follows: 

1. One slab was left unstrengthened and used as a control base slab, this was 

subsequently tested statically. 

2. Fourteen of the strengthened slabs were tested statically. 
3. Three of the strengthened slabs were tested under fatigue loading. 

3.1 BASE SLAB DETAILS 

3.1.1 General details 

Eighteen base slabs 2.4 x 1.0 x 0.1 m were cast in the laboratory, using a designed C35 

concrete supplied by Ready Mixed Concrete Limited. This concrete had a slump of 
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125nim and it maximum a .... re-ate size of 10mm. To reinl'orcc the base slabs, A193 g _, -- 
mesh relill'orcement with dcl'ormcd hars was used 

A I'tcr the concrete \\as placed, curing, was carricd out by spraying a ilicnibranc of' 

Colicure Clear 90 Compound over the placed concrete surlace and the slabs were left to 

CLII-C undcr laboratory conditions. 

3.1.2 Soffit preparation 

Al'ter CLII-1110 1`6t- 28 days, the chlitcen base slabs were then de-moulded and placed side 

by side on scal'Folding at a height of' two metres to simulate as near as possible the 

conditions under which it bridge sof'l-it would be sprayed, see Figure 3.1. This also 

shows the partition boards, which served to guide the nozzlenian to spray the required 

thickness and also to prevent adjacent slabs bondim, together as the sprayed concrete 

layer set. 

Figure 3.1 a- Basc slab positioned on scaffolding, plastic sheeting required to contain 
dust. 
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Figure 3.1h - The precast R-C base slabs positioned on scal'I61ding at two metre height 
II (lookino Irom below soffit level, inside the plastic sheeting). 

Figure 3.1 - Pi-cparim, the precast R-C base slabs for the spraying operation. 

Onc basc slab Nýas kept aside as an Linstrengthencd, control slab and flic soffits of the 

remaining seventeen basc slabs were prepared by grit blasting, see Figure 1.2. 

Figure 3.2a - Basc slab sofl-it, I'ormwork finislicd (the contractor decided to fix the mesh 
rcinforcenicnt hcI'Ore spraying the concrctc lor this slab). I 
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Figure 3.2b -A sprayed conucte crcxk, member grit blasting tile soffit. 
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Figure 3.2c -I lic -rit hkist pi-cparcki soll-it (lookiii,,, I'roni I)cl(i\% sollit). 

Figure 3.2 - Thc gnt blasting process. 

As can be seen fi-orn Figure 3.2c, the extent of grit blasting was 'List sufficient to remove 

the concrete laitance so that the aggregate was exposed. [111ti metal han(Yers (type 

HASLI) were then fixed to the underside of the slabs and the niesh reinforcement 

rigidly secured to thern. Tinibcr spacer blocks of the correct size were used to set the 

nicsh reinl'orcenient at the pre-determined depth relative to the over all pre-determined 

thickness of the strengthened slab. The seventeen slabs were then sprayed with concrete 

so as to encapsulate the niesh reinforcement on their soffits, see Figure 3.3. The entire 

strengthening process was performed by Tarmac Structural Repairs Limited, the next 

section describes the sprayed concrete procedures 
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Figure 3.3a - Mesh reini'Orcciiient and spacer blocks being sccurcd to the skib sofflit. 

Figure 3.3b - Spraycd conacte cjjcý,,, Rllating flic mesh rcinf'orccnicilt. 
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Figure 3.3c - Thc strengtlicning, proccss completed. 

100nim SUBSTRATE 
CONCRETE 

SPRAYED 
CONCRETF 

A98 IN SLAB A7 ONLY 

STRUCTURAL MESH 

A 193 

RE-ENTRANT 
CORNER 

H 

Figure 3.3d - Typical test slab reinforcement details, note that the re-entrant comers 
(75111111) are created by the supporting timber beam. 
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Figure 3.3e -A typical test slah being lifted off the scaffolding onto tile loadino fi-anic 
1,01- Static"I"ItIgue load tcStIllg* 

Figure 3.3 - Strengtheillm, ofthe precast R-C base slab. ID 

3.1.3 Sprayed concrete practice 

The author wouid recommend that tile reader should refer to ACI 506R-90, guide to 

shotcrete for full details on sprayed concrete practice. There are also two other similar 

references but are 111LICII more general and are still in their final draft versions. They are 

Specification Im Sprayed concrete, EFNARC (European Federation of National 

Associations of' Specialist Contractors and Material Suppliers to the Consti-1.101011 

Industry)[23] and Specification for sprayed concrete, The Concrete Society, UK[24]. 

It is normal practice that tile nozzlernan carries out the spraying operation strictly 

in accordance with the recommended guide lines detailed in the code such as the ACI 

506R-90 an(] that his competence should be assessed from the certification code ACI 

506.3R-82 (Guide to Certification of Concrete Nozzlenian)[25]. The nozzlernan used in 

tWis research was axAdL was appointed by Tarrnac Structural 
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Repairs' Opcratioii Manager, thercilore flic competence of the no/zlenian was 

gUaranteed. 

'Flic 1,01lowilig, arc questions Which the author addressed to the nozzleman during 

the Spraying concrete operation, being reported licre in an atterript to describe the 

spraycd concrete practice relevant to this research. 

1. QLICStIOIl - What is the approximate water-cement ratio of tile dry mix sprayed 

Concrete ., 
Answcr - BecaLISC this is the dry-nlix process, the mixin., water is controlled by dic 

nozzlernan at the nozzle (see Fi(, 'Lire 3.4) and this depends on his 

observation ofthe rebOLInd (rebOUnd is sprayed C011CFetC material which 

has rcbOLInded off the receiving surface and falls to the (Yround). In this 

work tile w/c ratio was 0.3 approximately. 

ACI 506R-90 states: 

The water-cenlent ratio flor dry-mix shotcrete in-place non-rially falls 

within a range of'O. 3-0.5 by weight. 

Figure 3.4 -Thc nozzle tiscd in this work (being replaced), to the left of photo is nozzle 
tip and to thc right is material hose, water control tap is the top attachment. 
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2. Q. - Velocity of spraying the concrete, is this to be stated in the specification ? 

A. - The average velocity is about 30m/s and this is the approximate figure for this 

work. Velocity of spraying concrete is judged by the nozzleman and for the 

dry-mix process, the variation can be made by adjusting the air pressure. 

3. Q. - Is there a minimum and optimum velocity for spraying the concrete ? 

A. - No. However this is adjusted by adjusting the air pressure depending on the 

visual judgement of the nozzleman. 

4. Q. - How important is the velocity of the spraying the concrete with respect to its 

ultimate properties ? 

A. - If velocity is low then compaction is low, if velocity is high then rebound is 

high. Therefore velocity of spraying should be just sufficient for concrete to 

adhere with a minimum rebound and this depends on the mix being used and 
largely on the judgement of the nozzleman. 

ACI 506R-90 states: 

The velocity of the material at impact is an important factor in determining the 

ultimate properties of the shotcrete. Consideration must also be given to the 

fact that increasing velocity means increasing rebound. 
In dry-mix shotcrete with given delivery equipment, the factors that 

determine material velocity at the nozzle are volume and pressure of available 

air, hose diameter and length, size of nozzle tip, type of material and the rate it 

is being gunned. These factors allow for great flexibility and versatility in that 

large, intermediate, or small volumes of material can be gunned at low, 

medium and high velocities according to the immediate needs of the 

application. Small or large variations in flow, water content and velocity can 
be made on order from the nozzleman. 

5. Q. - What precautions can be taken to prevent 'void-pockets' forming behind the 

reinforcement. 
A. - For 10mm diameter bars (maximum bar size in this research) void-pockets 

forming is extremely low - spray at an angle to get behind the bars. 

ACI 506R-90 states: 
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When shooting through and encasing reinforcing bars the nozzle should be held closer 
than normal (normally 0.6 to 1.8m) and at a slight upward angle to provide better 

encasement of horizontal steel (or slightly sideward angle for vertical steel) and 

minimise the accumulation of rebound. 

6. Q. - What is the nozzle size used in this work ? 
A. - Standard nozzle size is used in this work and this is 38mm inside 

diameter/58mm outside diameter, see Figure 3.4. 

ACI 506R-90 states: 
Although the standard nozzle size is not stated, a useful guide line is: discharge nozzles 

consisting of a nozzle body and nozzle tip are attached to the end of the material 
delivery hose to inject water or air into the moving stream of materials, to premix water 

and solids, and to provide uniform distribution of the mixture. Ideally, the nozzles 

should pattern the discharge as a uniform inner core consisting primarily of solids and 

some water spray surrounded by a thin outer core which is mainly water spray. The 

nozzle tip size should not exceed the diameter of the hose and often is smaller. 

3.2 THE SPRAYED CONCRETE LAYER DETAILS 

The sprayed concrete variable parameters considered in investigating the performance 

of this strengthening technique are: 

1. The size of the mesh reinforcement 
2. The amount of mesh reinforcement 
3. The thickness of the sprayed concrete layer 

4. The concrete mix in the sprayed concrete layer 

5. Shear connectors. 
The following sections describes these parameters. 

3.2.1 Reinforcement in the sprayed concrete layer 

The quantity of reinforcement to be encapsulated in the sprayed concrete layer is 

governed by the required strengthening factor and this varies vastly as several 

considerations need to be fulfilled prior to its deten-nination and on a real bridge, it has 

been generally found that from the bridge assessment programme that the maximum 
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strength increase required is 30%. This therefore should be easily achieved by adding a 

single layer of reinforcement just below the existing soffit and encasing this with a layer 

of sprayed concrete of suitable thickness for weathering protection. However, in order 

to fully test the shear capacity of the interface and to establish the effects of the 

variables listed, significant extra reinforcement was added in some test slabs and 

significant changes to the lever arm of the added steel was also incorporated in other test 

slabs to cause a large increase in flexural capacity. 

Table 3.1 tabulates the sprayed concrete variable parameters of all the seventeen test 

slabs. 
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3.2.2 Shear comiectors 

III order to scC \\IICtl1CI- horizontal slicar capacity at the substratc/sprayed concrete 

intcrfacc of the strengthened slabs would be enhanced, mechanical slicar connectors 

Were Incorporated III the till-cc test slabs listed in Table 3.1.171,111.1re 3.5 show's the details 

of these shcar comicctors. 

The IILIIIIIIC[- 0 l' slicar colillectors was deterniiiied in accordance witli BS 8 110: 

Part I: cl 5.4.7.31201 which statcs that the nominal links (shear comicctors) is 0.15'1, ) of' 

the Contact area, tills olVes., I 
Slicai-Connectors = 0.0015 x 1000 x 1000 min 

Slicat- Coilnectors = 1500 111111211112 

Slicar Connectors = 20 TI 0 barshn' 0 57 1 nini , /111 2) 

Shear Connectors -- T 10 bars (a) 200 centres. 

in this research slicar connectors were provided throughout the soA-it of' the test slab, 

although the I-CLjLIII-CI11CIIt IS Orcater at both ends of the slab as hi these areas the 

horizontal slicar is high and these are tile initiation points for the 'pcclin-ofl' of' the 

sprayed concrete layer, i I'tllc horizontal shear capacity of the interface is exceeded i. e. If 

composite action broke down and debonding occurred. 

A 

Figure 3.5a - Slicar connectors fixed before the concrcte spraying process. 
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11,11OXY 

Figure 3.5b - Shear connector details. 

Figure 3.5 - Shear comicctors. 

'4NECTOR 

100nim SUBSTRATE 
CONCRETE 

50 - 100mm SPRAYED 
CONCRETE 

-25mm COVER MINIMUM 

3.2.3 Concrete mix in the sprayed concrete layer 

Slabs A] to A8 inclusive were sprayed with the following concrete mix which is 

referred to as the Normal Mix: 

" Cernent to sand ratio 1: 3, both cement and sand were supplied pre-packed. Tile pre- 

packed sand contained angular aggregates ranging up to 5 mrn in diameter. 

" Microsilica in slurry form was added to tile water at 7 %dosage by weight of water. 

In spraying slabs A] to A8, Elkem Materials Limited, who supplied the microsifica 

supplied their mixing, machine which re ulated the supply of water and rincrosilica to 19 
the spraying nozzle, thereby ensuring the 7 %) dosage of m1crosilica. 

Slabs BI to B9 inclusive were sprayed with the following three proprietary concrete 

mixes, as well as the nornial mix, tabulated in Table 3.2. The mix proportions and the 

7'/(, microsifica dosage were the sarne as In the case of the nornial inix and they were 

also supplied in pi-c-packed form. 
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Table 3.2 - Concrete mixes of slab 131 - B9 inclusive 
Slab Sprayed Concrete Mix 
131 Normal 
B2 Normal 

B3 Normal 

B4 Normal 

B5 Normal 
B6 Normal 
B7 Sikacem 133 
B8 Polypropylene Pozament Fiber 
B9 Steel Pozament Fiber 

Purely for the reason of economy and because of the experience of the sprayed concrete 

crew, the dosing of microsilica at 7% added at the nozzle was achieved by manually 

setting the appropriate pressure of a mobile pump and therefore the special Elkem 

mixing machine was not necessary. 

3.3 PRE-CONSTRUCTION TEST 

For the purpose of material testing and, to provide an indication of the quality to be 

expected in the test slabs, a total of twelve pre-construction test panels measuring 600 x 
600 x 50 - 100 mm were sprayed using, the same concrete mixes as those used in the 

test slabs, the same equipment and the same crew. The method of curing was also the 

same as that used in the test slabs i. e. sprayed membrane curing. The details of the 

twelve pre-construction test panels are as shown in Table 3.3 below. 
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Table 3.3 - details of the twelve pre-construction test panels 
Pre-Construction 

Panel 
Concrete Mix 

Sprayed 
Thickness 

Direction Sprayed 

I Normal 50 ----Vertical 
2 Normal 75 Vertical 
3 Normal 100 Horizontar- 

- - - - 4 Normal 
-- 

100 Ho-riz o rt al 
5 Normal 

- - - -- 
100 Horizontal 

6 No r m aT too Horizontal 
7 Normal 100 Vertical 
8 Normal 

........................... .. 
100 Vertical 

9 . 0 ormal 
- - 

100 rizontal 
10 - -Tt eel Fiber 100 rizontal. 

- 11 Sikaceni 133 100 Horizontal 

12 Polypropylene Fiber 100 Horizontal 

From the pre-construction test panels listed in Table 3.3 and some statically load tested 

slabs, cores and prismatic specimens were extracted for the following tests: 

1. Mechanical testing 

2. Material analysis 

3. Petrographic examination 
4. Chloride ingression. 

3.3.1 Mechanical test results 
All mechanical tests concluded on cores and prisms extracted from the pre-construction 

test panels are as shown in Table 3.4 (although the pull-off and slant shear tests are 
being reported here, the tests were actually done from a statistically load tested slab, the 

I ý slant shear test shall be presented again in more details in the Horizontal Shear Study, 

'chapter 7. 
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Table 3.4 - Mechanical test results continued. 

Compressive Tensile Splitting 

Concrete Mix 
Specimen 
Size (mm) 

Age 
(days) 

Overhead 
Sprayed 

Horizontally 
Sprayed 

Overhead 
Sprayed 

Horizontally 
Sprayed 

Normal 750 47 26.5 26.1 3.7 3.5 
Sikacem 133 750 47 - 35.4 - 4.7 
Steel Fiber 750 47 40.6 47.6 7.7 7.3 
Poly Fiber 750 47 - 33.1 4.2 

Modulus of Elasticity (kNIMM) 
Overhead 
Sprayed 

Horizontally 
Sprayed 

Normal 32 x 32 - 21 24.1 
Sikacem. 133 32 x 32 - - 22.5 
Steel Fiber 32x32 - 26.8 22 
Poly Fiber 32 x 32 - 19.9 

All mechanical tests were conducted in accordance with the following British Standards 

except the pull-off test and measurement of the coefficient of Linear Thermal Expansion 

for which details are given below: 

1. Compressive Strength BS 1881: Part 120: 1983 [27] 

2. Tensile Splitting BS 1881: Part 117: 1983 [28] 

3. Static Modulus of Elasticity: Part 121: 1983 [29] 

4. Slant Shear BS 6319: Part 4: 1984 [30]. 

The pull-off test 

The test was conducted according to CIRA Technical Note No. 139[31] and the 

apparatus used is shown in Figure 3.6. 
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wjý 

Figure 3.6 - The pull-off test appat-atus. 

The test procedures: 

'U1 

-I 

1. The tested slab was placed on level surface (the laboratory floor). 

2.50nini diameter coring, slots were made through the sprayed concrete thickness and I 
I Ornin into tile SUbstrate concrete. 

3. A steel cylinder (size to Suit) was made and hand slotted into the core (tile internal 

wall of the steel cylinder was greased). This cylinder served to ensure that the axis of 

the core is in alignment with the axis of the steel dolly. 
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4. A film of Sika Dur 31 (a two parts adhesive compound recommended by Tarmac 

Structural Repairs for bonding concrete) is applied to the surface of the core enclosed 

by the steel cylinder, following which the steel dolly was positioned over the Sika 

Dur 31 film and the preparation was left for 24 hours for curing of the adhesive. 

5. After 24 hours curing, the pull-off apparatus was set up, with the steel dolly 

connected to the pulling rod of the apparatus (note that the four legs of the pull-off 

apparatus rest on a steel plate which has four levelling bolts). 

6. The pull-off apparatus was levelled relative to the steel plate and the pulling force 

applied. 

The pull-off test was perfon-ned on a total of six cores, giving the average bond strength 
2 

of 1.1 N/mm . The following observations were made after the test. 

a) In all cores, the dolly remained bonded. 

b) All cores broke in the sprayed concrete portion, indicating lower strength in the 

sprayed concrete compared with the substrate concrete. 

C) The set up was reasonably accurate as seen from the alignment of the dolly axis 

relative to the axis of the core. This alignment was achieved by the use of the steel 

cylinder insert and the perpendicularity of this cylinder relative to the steel plate. 

Test to measure the coefficient of Linear Thermal Expansion 

This test was carried out in accordance with the American Corporations of Engineers 

Standard CRS - C39[32] for the normal mix sprayed concrete (for other three 

proprietary mixes, supplied in pre-packed form, the coefficients can be obtained from 

the manufacturers). There were four specimens each of dimensions 40 x 40 x 160 mm. 

Demec points were placed on the surface of the specimens at 100 min centres. 

The specimens were first placed in water at 20'C for four hours and initial 

readings were taken, the specimens were then placed in a water bath at 50'C for four 

hours before another set of readings were taken, the difference representing the 

expansion of the specimens. 

The specimens were then moved back to the 20'C water bath and left there for 

four hours before another set of readings were taken and the difference between the 

50'C and the 20'C readings were taken as the contraction of the specimens. The same 

procedures were repeated to give results for four cycles. 
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Each specimen has four sets of readings. Therefore the mean of sixteen 

measurements was calculated to give the coefficient of Linear Thermal Expansion of 

1.26 x 10-5/*C . This marginally exceeded the range expected by Tarmac Structure 

Repair 's Ltd of 0.8 to 1x 10-5PC for this material to satisfy a durability specification 

but is very similar to the value for normal concrete. 

3.3.2 Material analysis 

Material analysis, petrographic examination (section 3.3.3) and chloride ingression 

testing (section 3.3.4) were carried out by a specialist company. The purpose of these 

tests were: 

1. To study the constituents of the hardened sprayed concrete. 

2. To assess the quality of the sprayed concrete at microscopic level. 

3. To examine the effectiveness of the sprayed concrete in encapsulating the 

reinforcement when sprayed in the overhead position. 

For material analysis six 50mm diameter cores from the pre-construction test panels 

were extracted and air void content and air void parameter were determined in 

accordance with ASTM C457-82[33] as shown in Table 3.5. Full details of the test 

procedures can be found in Appendix A. 

Table 3.5 - Air void content and parameter 
Sample 1 2 3 4 5 6 

Aggregates 57.2 57.2 54.7 54.6 54.4 57.4 
Paste 38.9 38.5 41.3 4o. 9 42.3 39.6 

Total air void content 3.9 4.3 4 4.4 3.3 3 
Number of Voids per 

mm (per inch) 
0.23 (5.8) 0.27 (6.9) 0.21 (5.3) 

I 
0.16 (4.1) 0.19 (4.8) 0.17 (4.3) 

Average chord intercept 0.17 0.16 0.19 0.27 0.18 0.17 

Specific surface in nun 
to -1 

23.3 24.7 
1 

21.5 14.8 22.6 22.9 
11 

Spacing factor (nun) 0.34 0.27 0.34 1 0.51 0.33 0.34 
Entrained air to 

paste/ratio 
0.1 0.11 0.1 0.11 

I 
0.08 0.08 

Table 3.5 shows that dry mix sprayed concrete does contain air voids and the author 

stresses that no air entraimnent was perfonned (air entraining is not applicable for 

dry-mix sprayed concrete) the most probable explanation to the reported air content is 

due to air entrapment resulted from the 'bombardment' of concrete sprayed at 
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approximately 30m/s (velocity approximated by an experienced nozzleman). This 

results is a favourable finding of the sprayed concrete in this research as SP-14[18] 

reports that although dry-mix sprayed concrete cannot be purposely air-entrained, it 

does contain the air voids similar in size and spacing to those in air-entrained concrete 

and that, this is one of the durability characteristics of dry-mix sprayed concrete. 

So, how are the results of the air void content and parameter of Table 3.5 

compared to those in properly air-entrained concrete ? From the Design and Control of 

Concrete Mixtures, 13th Edition, PCA[34], the four generally accepted criteria for 

properly air-entrained concrete are: 

1. (Table 3.5) - Average spacing factor = 0.36, range 0.27 to 0.51. 

(PCA) - Spacing factor less than 0.20mm. 

2. (Table 3.5) - Average specific surface = 21.6, range 14.8 to 24.7 

(PCA) - Specific surface greater than 23.6MM2/mm 3. 

3. Recommended number of voids per linear inch equals 1.5 or 2.0 times (say 1.5) 

greater than the numerical value of air void content: 

(Table 3.5 ) Average air void content = 3.8% 

1.5 x Average air void content = 5.7% per linear inch 

(Table 3.5) Average air void content per inch = 5.2%, range 4.1 % to 6.8% 

4. (Table 3.5) -Average air content = 3.8%, range 3.0% to 4.4% 

(PCA) - An air content ranging from 4.5% to 7.5% for severe exposure. 

The comparison shows that the sprayed concrete in this research is marginally less 

favourable than the properly air-entrained concrete. However, Seegebrecht, Litvin and 
Gebler[35], in their investigation into the durability of dry-mix sprayed concrete 

reported similar air void content and parameter to those in Table 3.5 and that the 

sprayed concrete in their investigation was durable in the ASTM 's severe freeze-thaw 

testing as shown in TableM. In their investigation three pre-construction test panels 

were sprayed from which specimens were extracted and tested. The findings after 300 

cycles of freezing and thawing in accordance with ASTM C666 - 84[46] were: 
After 300 cycles of freezing and thawing tests conducted in fresh water 
indicated excellent relative dynamic moduli of elasticity with minimal 

expansions and relatively low weight losses (3-7% maximum) and the air 

void content and parameter are in Table 3.6. 
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Table 3.6 - Air-void characteristics of hardened dry-mix shotcrete[35] 
Specific surface, 

Panel 
Air Spacing factor, inch 

inch2/inch3 Voids per linear 
content, % (mm) 

(MI112/mm) 
inch (min) 

A 3.6 0.011 (0.28) 482(19) 4.4(0.17) 
B 3 0.008 (0.20) 687(27) 5.1 (0.2) 
C 3.8 0.008(0.20) 683(27) 6.6(0.26) 

3.3.3 Petrographic examination 

A single composite prismatic sample was extracted from one of the statically load tested 

slabs and the following samples were prepared: 

1. The polished surface - examined by a binocular microscope, 

2. The thin section - examined with a Zeiss petrological photomicroscope, 

3. The remainder of the sample was examined as hand specimens with a binocular 

microscope. 

An in depth report including photograph from petrographic examination can be seen in 

Appendix A. only the important findings are discussed here: 

1. A layer of approximately 5mm was seen (can also be seen from observing the 

broken face of a load tested slab with an unaided eye). This layer was reported as a 
dark layer, indicating a high concentration of microsilica and contains no coarser 

size ranges of the aggregate but has a normal component of fines, it also has much 

more unhydrated cement than the remainder of the sprayed concrete. 

This layer was formed within approximately 5mm from the prepared soffit of the 

substrate concrete and its formation can be explained from reviewing the process 

spraying: during the initial phase of building up the thickness, the coarser size 

ranges material tend to loose cohesion from the body of the spray concrete as 

thickness is still low and as a result rebound from the surface being sprayed and 

therefore leaving the fines material adhering to the surface, microsilica is the finest 

component in the entire range of constituents of the sprayed concrete and therefore 

is the first to be deposited closest to the receiving surface i. e. the soffit of the base 

slab, as the spraying process continues more and more material is deposited, 
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increasing the thickness of sprayed concrete and therefore microsilica becomes more 

evenly distributed into the mass of the sprayed concrete. Therefore, within the short 
initial period of spraying, when the thickness is still low, the coarser material 

rebounded off the surface, leaving the finest material intact - the 5mm dark layer 

containing largely microsilica. 

2. Although strongly bonded to the substrate concrete, the sprayed concrete shows very 

slight variation in colour and appearance, this is an indication of layering over the 

depth of the sprayed concrete, resulted from the normal practice of intermittently 

spraying for overhead work. In this work, layering of 35mm. and 60mm was 

reported and is perfectly acceptable, as ACI 506 states: 
Overhead work is gunned in layers just thick enough to prevent sagging 

or dropouts, usually 25 to 50mm at a time. 

3. Quoting from the report incorporated in Appendix A: 

The level of microcracking within the sample of sprayed concrete is 

exceptionally low. The majority of the sprayed concrete is compact and 

contains voids which range up to 12mm in diameter, but which are 

mostly less than O. Snun in diameter. The void content is of the order of 

4% by volume. However, there are areas of sprayed concrete, 

particularly behind the reinforcement bars, where the material contains 

voids and cavities. 

To sum up, petrographic examination has revealed that quality dry-mix sprayed concrete 

can be achieved and has been achieved despite the finding of cavities behind the 

reinforcement which is covered by site tolerance. 

3.3.4 Chloride Ingression 

Five 75mm diameter cores were extracted from the pre-construction test panels and 

were tested for chloride ingression and the effective diffusion coefficient was calculated. 
Appendix B gives full details of the test procedures and data analysis, in this section the 

results of the test are quoted: 

The diffusion coefficient is 1.02 x 10-12M/S compared to Tarmac Structural Repairs 

Ltd 's expected value of 0.7 x 10-12M/S . The diffusion coefficient tends to increase 

slightly with depth into the concrete and to decrease slightly with time. 
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* On comparison, the profile of chloride concentration versus depth is almost identical 

to that expected for high quality nonnal concrete. 

3.3.5 Results from Pre-construction testing 

The majority of tests listed in section 3.3 were performed on specimens taken from the 

pre-construction test panels and the results are reported in sections 3.3.1 to 3.3.4. The 

results show that in almost every area of testing, the dry-mix sprayed concrete in this 

research performed very well in comparison with either any good quality normal 

concrete or any other good quality dry-mix sprayed concrete. 
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CHAPTER 4 

THE PERFORMANCE OF THE TECHNIQUE UNDER 
STATIC LOADING 

4.0 GENERAL 

After a minimum of 28 days of curing, each test slab in turn was lifted off the scaffold 

supporting frame onto a fabricated steel loading frame for load testing. 

The details of the fourteen test slabs and the control slab tested under static 
loading are shown in Table 4.1. The slabs are denoted as A-type (Al to A8) and B-type 

(Bl, B3, B4, B7, B8 and B9) where, B-type are test slabs with the higher levels of 

reinforcement in the sprayed concrete and A-type define all other with and without shear 

connectors. 

Test slabs B 1, B3 and B4 were used to provide the ultimate static failure load for 

identical slabs B2, B5 and B6 which were subjected to fatigue loading. 
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Table 4.1 - Test slabs for static load testing 

Slab 
Sprayed 

Concrete Mix 
Shear 

Connectors 
Sprayed Concrete 
Thickness (nun) 

Reinforcement 
Encapsulated in 

Sprayed Concrete 
(total steel as % of 

total concrete) 
Control 

-- 
- 

Al N-ormal 
---- -- 

75 A193 (0.22) 
A2 No rrml 75 A193 (0.22) 

- A3 Normal -w/ 75 A193 (0722-ý 
A4 Normal 

--- -- 
75 

A5 No rmal V1, 75 -A393 (0.33) 
- A6 Normal 50 A193 (0-26Y 

A7 Normal 100 A193 & A98 (0.19) 
A8 Normal 

--- - 
I-Go A193 (0.19) 

BI ! To rmal 75 B785 (0.56ý 
B3 Normal 

- 
75 B503 (0.4) 

B4 Mo mial 75 A393 (0.33) 
B7 Sikacem 133 75 -93(0.33) A3 
B8 Po-ly-Fiber 75 A393 (0.33) 
B9 Steel iber 75 A393 (0.33) 

4.1 EXPERIMENTAL PROCEDURES 

The experimental set up and instrumentation was relatively simple and this comprised: 

9A fabricated steel loading frame, 

eA servo controlled hydraulic loading jack, 

* An electronic control unit which operates the hydrostatic loading jack, 

o Three dial gauges, 

eA data acquisition system 

The slabs were positioned on the loading frame over a span of 1956 mm. with the 

support bearings placed underneath the sprayed concrete layer as shown in Figure 4.1. 
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3 No. DIAL GAUGES ACROSS 
-- SLAB AT MID-SPAN 

1956mm 

TYPICAL 653mm 650mm 

TESTSLAB 

653mm 
STEEL ROD 

WEDGEDIN 
POSITION 

SPREADER BEAM HYDRAULIC JACK 

Figure 4.1 - Set up lor static load testing. 

The set up was such that the Jack which was clamped down to the heavy rails built into 

the strong floor of the laboratory could exert a pullirig force from underneath the slab. 

For tile control slab and A-type test slabs, data logging was carried out manually, 

taking readings from a set of three dial gauges positioned securely across tile slab width 

at mid-spail to nimitor tile average inid-span deflection versus the applied load read 

from the electronic control unit. For all B-type test slabs, data logging was aUtornated 

with the use of a data acquisitiori system, this was necessary for safety reasons as tile 

load intensity applied to these test slabs was much higher thall those of tile A-type. In all 

cases the load was applied ni 5 kN increments up to failure. 

4.2 EXPERIMENTAL RESULTS -STATIC 

4.2.1 Deflection behaviour 

The load versus average mid-span deflection curves of' individual test slabs 

(strengthened) compared with tile base slab (unstrengthened) are shown in Figures 4.2 

to 4.14. In order to compare the dcnection behaviour of' tile different test slabs, all the 

individual curves are SLIPCII in posed as shown in Figure 4.15. 

In studying the load-dctlection curves, the following points can be deduced: 

PhD Thesis QMW II/niversiti, ollondon] D. Pham-Thanh [November 1997] 48 



* The curves of load versus average mid-span deflection show that all test slabs 

behave similar to a normal reinforced concrete slab, therefore the behaviour can be 

assessed using standard design codes such as BS 8110. 

* It can be seen from Figure 4.15 that the early stage load-deflection curves for the 

three proprietary sprayed concrete B7, B8 & B9 are very similar to each other but 

that these exhibit larger deflections up to a load of 50 kN than the normal sprayed 

concrete slabs A4 & A5. This difference indicates a lower modulus of elasticity for 

the proprietary concretes which has been found from the mechanical testing. 

e During load testing the mounting frame which secured the three deflection dial 

gauges was accidentally disturbed and therefore the abnormal load-deflection curve 

of slab A8 was recorded and this is therefore misleading. However load readings are 

unaffected as in Figure 4.9. 

* Up to first yielding, of the steel in the sprayed concrete, there appears to be two 

types of behaviour, that of the A-type slabs and that of the B-type slabs, in which the 

initial loading in the A-type is more linearly elastic up to first yield point, which is 

therefore a distinct point between elastic and plastic behaviour compared with the 

B-type which shows a more gradual change over the entire range. 

* Beyond first yield of the steel and up to failure, all test slabs behave in a similar 

way. 

The superimposed curves diagram also shows that for similar test slabs the B-type 

test slabs displayed larger deflections at the ultimate state compared to the A-type 

test slabs. 

Figure 4.2 - Test stab Al and base slab. 

Figure 4.3 - Test slab A2 and base slab. 

Figure 4.4 - Test slab A3 and base slab. 

Figure 4.5 - Test slab A4 and base slab. 

Figure 4.6 - Test slab A5 and base slab. 

Figure 4.7 - Test slab A6 and base slab. 

Figure 4.8 - Test slab A7 and base slab. 

Figure 4.9 - Test slab AS and base slab. 
Figure 4.10 - Test slab BI and base slab. 

Figure 4.11 - Test slab B3 and base slab. 
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Test slab B4 and base slab. Data was lost due to damaged disk. 

Figure 4.12 - Test slab B7 and base slab. 

Figure 4.13 - Test slab B8 and base slab. 

Figure 4.14 - Test slab B9 and base slab. 

Figure 4.15 - All test slabs superimposed for comparison. 
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4.2.2 Ultimate strength of test slabs - static 

All statically load tested slabs have their experimental failure loads recorded in Table 

4.2 and these values are compared with the predicted values in accordance with simple 
R-C slab design theory as defined in BS 8110: Part 1: 1985 [26]. The following points 

are applicable to Table 4.2, 

,u and 1.15 for fy are not included in calculating the theoretical 1. Factors y,,, of 1.5 for fc 

values. 
2. A98 in slab A7 assisted structurally in carrying load and was considered in the 

calculation. 
3. All theoretical values are determined based on the actual effective depths of 

reinforcement layers as measured manually from the broken faces of the tested slabs. 

4. A5 failed in a ductile manner and the slab remained intact therefore the actual 

effective depth could not be determined, but it was assumed to be similar to slab A4. 

5. The design ultimate strength of all reinforcement was used in the moment capacity 
2 

calculations and this is 460 N/mm 

6. The design cube strength in the base slab was used for all test slabs and this is 

35 N/mm 2. 

The predicted or theoretical flexural Mc were determined assuming that the 
. ap 

reinforcement in both the sprayed concrete layer and the base concrete (or substrate 

concrete) had yielded and that the bond at the substrate/sprayed concrete interface is 

fully maintained. Appendix C shows the details of the typical design calculation 

leading to the theoretical failure loads of the strengthened slabs in accordance with BS 

8110: Part 1: 1985. 

From the results tabulated in Table 4.2, the following points can be deduced: 

a The load deflection curves of all test slabs show that the strengthening process had 

resulted in the slab being significantly stronger in flexure - up to nearly eight times 

stronger, (comparing B 1, M= 212.8 kNrn and control, M= 27 kNm) 

* Comparison of similar slabs with and without shear connections in Table 4.2 (Al, 

A2 & A3 and A4, A5 & B4) shows that the inclusion of shear connectors does not 

cause any increase in strength. Comparison of A7 & A8 is more difficult since it 

was thought necessary to include a subsidiary mesh near the interface due to the 
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thickness of the sprayed concrete layer, when shear connectors were not present and 
this extra reinforcement is the main reason for the increase in strength. 

* All test slabs failed at loads greater than predicted from BS 8110 with the ratio of 
MexpýM8110 ranging from 1.07 to 1.53. The design calculations were carried out in 

accordance with BS 8110 except that partial material load factors were taken as one. 
A reinforcement design strength of 460 N/mm2 (actual strength measured in air was 
654 N/mrn 2) was taken since this material was high tensile. The design cube 

strength was taken as 35 N/mm2, the specified strength for a C35 concrete. The 

actual depth of the reinforcement (marginally greater than the designed depth) was 

used. The possible explanations for the disagreement between Mexpt and M8110 are: 
1. Actual strength of the base slab concrete at the time of testing was significantly 

greater than the value used in the calculations and this averaged 46 NIMM 2 for 

all test slabs. 
2. The ratio of actual steel breaking strength to the design strength is 1.42, but take 

into account the fact that, though not recorded, the rate of load testing the test 

slabs was comparatively greater than the rate of tensile testing the reinforcement 
in air and Park and Paulay[36] state that: 

The effect of a fast rate of loading is to increase the yield strength of the 

steel, for example, it has been reported by ACI 439[37] that for a strain 

rate of 0.0 1 /sec the lower yield strength may be increased by up to 14%. 

Therefore making the ratio 1.62. Clearly, from Table 4.2 the ratio lies within 

this range, from 1.07 to 1.53 but much more distinctly from 1.20 to 1.53. The 

ratio 1.07 indicates relative weakness of this test slab compared with the others 

and is most likely due to the following reasons: 

9 Weakness in the mesh reinforcement perhaps caused by spot welding 

occurring at the critical section. 

o Greater effect from torsion caused by the test slab not sitting uniformly flat 

on the loading frame causing possible overstressing of reinforcement in 

parts of the slab, leading to premature failure. 

* Possible difference in bond between the mesh reinforcement and sprayed 

concrete caused by local variations in density of sprayed concrete around the 

bars, see section 3.3.3. 
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4.2.3 Cracking and modes of failure 

All test slabs displayed flexural crack patterns, see Figure 4.16. 

All test slabs failed when one of the cracks widened under load and propagated 

across the substrate/sprayed concrete interface into the substrate concrete and then to 

failure. The propagation of the flexural crack crossing the substrate/sprayed 

concrete interface can be seen from one of the slabs which remained intact, see 
Figure 4.17 and upon examination of the two halves of a broken slab, see Figure 

4.18, which shows a 'a clear' (flexural) failure without any sign of vertical 

separation at the interface. 

The finding that at failure, a flexural crack crossed the substrate/sprayed interface 

with no initiation of the crack horizontally at the interface shows that grit blasting 

even without shear connectors was sufficient for the sprayed concrete layer to be 

fully bonded to the substrate concrete, thereby maintaining composite action 

throughout loading until failure. 

All test slabs exhibited a tension failure mode, only one slab (A5) failed in a ductile 

manner and remained intact, the remaining slabs failed in a brittle manner, with the 

slabs broken into two halves. Although the majority of test slabs exhibited this 

brittle failure manner, they were all under-reinforced with the maximum total steel 

content of 0.56%. The probable reason for the brittle failure was because all the 

reinforcement in the slabs was high tensile and therefore exhibited little yield, 

therefore near the ultimate condition, the bottom reinforcement (in the sprayed 

concrete) was close to fracturing, the upper reinforcement (in the base slab concrete) 

was close to yield and as soon as the bottom reinforcement reached its breaking 

value and broke, the upper reinforcement was unable to sustain much further stress 

and this therefore also broke apparently instantaneously. 

The following photographs describe the above points: 
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Figure 4.16a - I. Icxm-al ci-ack pattern in conti-ol slab. 

Figure 4.16b - Flcxural Iailtirc in control slab. 
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Figure 4.16c - I, lexural 1111 ILI I-C III ýl t\ I) I Cýl I tCSt S1,11). 

Figure 4.16 - Mode of I-ailtirc in the control and a tvpical test slab. 

PhD Thesis QAVV1 I Iniversiti, of London] D. Phant-Thanh [Novcmbcr 19971 70 

Figure 4.17 - Ductile I'MILIN Ol'tCSt slab A-). 



-... 

- .� -' I 
-. -I 

I- 'a 
t : --- 

� 
" 

___ 

Figure 4.18 - Examining the 'broken' faces of the test slab. 
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CHAPTER 5 

FATIGUE LOADING - AN ANALYTICAL STUDY 

ý. O GENERAL 

Nowadays, the methods of analysis for structures are becoming more exact and as a 

result, there is a need for more fundamental information on the behaviour of concrete 

structures under loads other than simple static loads. Highway engineers have been 

aware of the need to understand the fatigue of concrete in roads and bridges for many 

years. 

In 1961 in the UK, the committee on bridges of the former Road Research Board 

formed a panel to look into the performance of highway bridges under fatigue loading 

and a conclusion drawn from the investigation was that for concrete bridges fatigue 

problems were unlikely to occur with the existing methods of design outlined in BS 

5400: Part 10: 1980[38], either for reinforced or prestressed construction, although the 

experience in prestressed structures was relatively limited. However, subsequent 
investigations indicated that fatigue life might not be sufficiently long for the problem 

to be ignored. The work being reported in this chapter attempts to address fatigue life of 

a concrete bridge strengthened using reinforced sprayed concrete. 

5.1 SCOPE OF FATIGUE CONSIDERATION 

This chapter describes how the load range to be applied to the test slabs was determined. 

This load range is intended to be equivalent, to that imposed on a typical trunk road 
bridge during its 120 years life span. In order to fulfil this intention, the current suitably 

modified and updated load spectrum tabulated in BS 5400[38] is used in conjunction 

with a simplified S-N curve obtained from the American Concrete Institute code ACI 

215R-74 [39] and the series of Goodman diagram obtained from this S-N curve. It is 

pointed out that although the original diagrams were produced for plain concrete, it will 
be shown in chapter 6 that their use in this research is conservative. 
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The structure of this chapter follows the following sequence* 

1. Using the commercially avallable structural analysis prograrn QSE to calculate the 

ultimate design moment capacity of the typical trunk road bridge. 

2. Using simple statics to calculate the dead load and live load moments on the bridge. 

The live load moment is based on the updated commercial vehicle wheel load 

spectrum of BS 5400: Part 10. 

3. Nominal load range was derived, from which the test slabs were fatigue load tested 

for one million cycles. 
4. Analytical study undertaken to show how the analytical table of load range versus the 

number of cycles to failure was obtained, based on the simplified S-N diagram and 

the range of Goodman diagrams. 

5. The expected total number of cycles (N) to failure for a particular load range is 

obtained from Table 5.8 and the number of vehicles passes (n) for the appropriate 

vehicle grouping associated with this range are obtained from Table 5.12 which is in 

turn obtained from Table 5.11 and Table 10 of BS 5400: Part 10. Using Miner's 

summation hypothesis of total (n/N) :51 shows that the 15 m bridge example is the 

most critical and for this bridge, the greatest contribution to this summation is given 

by the 18GT-H commercial vehicle type. The final fatigue load range was therefore 

based on the range corresponding to this commercial vehicle type, but had to be 

reduced to 40 - 70% due to oil flow limitations. 

5.2 HIGHWAY BRIDGE LOADING 

Fatigue loading consists of a sequence of load repetitions that may cause a fatigue 

failure in about 100 or more cycles and on highway bridges this sequence of load 

repetitions is from moving traffic. 

Basically, for design purposes the fatigue load range can be represented by the 

minimum load being the bridge dead load and the maximum load being the summation 

of the dead and live loads. 

From the literature reviews, it appears that BS 5400 has not so far been 

superseded, however in using this standard, the author has accounted for the 

increasingly common commercial vehicle type 6A-M with a projected 44 tons total 

wheel load (see Appendix D) and this standard is used in conjunction with Department 
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of Transport Standard BD 37/88[40] to configure the fatigue load to the following two 

types of highway bridges: 

It) 

, ---0 7- kvq y 

14 
u 

Figure 5.1 -A 15m span two lane single carriageway slab bridge. 

A 15m span two lane single carriageway slab bridge shown in 

Figure 5.1 

II. A 20m span two lane dual carriageway slab bridge shown in 

Figure 5.2 

/5-/?? 

4A AIIE- 

Nil 
Z 

11 dViý9' 

/: 70 07-WA'l 

E 
tO 

0 

PhD Thesis QMW [University of London] D. Pham-Thanh [November 1997] 74 



A 7m 

Ni 

tq 

0, ' 

(0 
E li 

I') 

7- WA 

-4 Mýý -------- 

/- qw£ 

A mie- 

NIE 

FQ 0 7-WA 

zo m 

Figure 5.2. -A 20m span two lane dual carriageway slab bridge. 

5.2.1 The Ultimate bridge loading 

The ultimate bridge loading being used here is described in the Department of 
Transport's document BD 37/88 which states the application of type HA loading in 

combination with type HB loading as follows: 

Where the HB vehicle lies wholly within the notional lane or where the 1113 

vehicle lies partially within a notional lane and the remaining width of the lane, 

measured from the side of the HB vehicle to the edge of the notional lane, is less than 

2.5 metres, type HB loading is assumed to displace part of the HA loading in the lane or 

straddled lanes it occupies. No other live loading shall be considered for 25 metres in 

front of the loading- axle to 25 metres behind the rear axle of the HB vehicle. The 
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remainder of the loaded length of the lane or lanes thus occupied by the HB vehicle 

shall be loaded with HA udl load only; HA KEL shall be omitted. 

The ultimate load configuration is applied to two different bridges as shown in 

Figures 5.1 and 5.2 and then analysed using QSE Structural Analysis computer 

program. In the analysis, the bridges were modelled as shown in Figures 5.3 and 5.4 for 

the 15 m single carriageway and the 20 m dual carriageway respectively. 

Appendices E and F give the details of the load configurations and the derivation 

of the longitudinal ultimate bending moments for the two bridges. 
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The 15m span single carriageway. 
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Figure 5.3 - Applying HA and HB on the modelling of the 15m span single carriageway 
slab bridge. 
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From'the computer analysis, the longitudinal ultimate bending across mid-span of the 

bridge deck are given in Table 5.1: 

Table 5.1 - Ultimate moment of the 15 m span single carriageway slab bridge 

Member across Mid-Span 
M4 M15 M30 M45 M60 

Nodal Ultimate Bending 
Moment from QSE 1872 1946 1985 1987 2136 

(kNm) 
Udl Input per Member 

57.6 86.1 66 45.9 46.7 
(kN/m) 

Moment due to Udl on 25.3 37.8 29.0 20.2 20.5 
each member (L=1.875m) 

Ultimate Moment at 
center of member 1897 1984 2014 2007 2157 

corrected for Udl (kNm) 
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The 20m span dual carriageway. 
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Figure 5.4 - Applying HA & HB on the modelling of the 20m span dual carriageway 
slab bridge. 
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Similarly, Table 5.2 is obtained for the case of the 20 m span dual carriageway slab 
bridge. 

Table 5.2 - Ultimate moment of the 20 m span dual carriageway slab bridge 

Member across Mid-Span 
M4 M15 M30 M45 M60 M75 M90 

Nodal Ultimate Bending 
Moment from QSE 4130 4466 4882 5309 5605 5757 6013 

(kNm) 
Udl Input per Member 

(kN/m) 79.7 124.8 124.8 106.8 144 106.3 79.9 

Moment due to Udl on 
each member (L=2.5m) 62.3 97.5 97.5 83.4 112.5 83.0 62.4 

Ultimate Moment at 
center of member 4192 4564 4980 5392 5718 5840 6075 

corrected for Udl (kNm) 

5.2.2 Load cases to obtain the design ultimate moment capacity of the bridge 

Case I 

The corrected ultimate moments obtained from the longitudinal members in Tables 5.1 

and 5.2 are from the ultimate loads of BD 37/88, with the HB vehicle on the lane. Since 

the HB vehicle could equally be travelling in the other direction then load case I 

assumes that for a lower bound, the longitudinal beams are to have ultimate bending 

capacities, arranged symmetrically, thus accounting for the situation where the HB 

vehicle may be positioned on either side of the bridge deck, Table 5.3 shows this 

affangement. 

Table 5.3 - Symmetrical moment capacity arrangement 
Member across mid-span 

M4 M15 M30 M45 M60 M75 M90 
Ultimate Moment 15m 

2157 2007 2014 2007 2157 - - Span (kN) 
Ultimate Moment 15m 

6075 5840 5718 5392 5718 5840 6075 
L_ Span (kM I II I II I I 
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Case II 

For an upper bound it is assumed that all the longitudinal beams carry the maximum 

ultimate moment. An assumption which most practising engineers would adopt on the 

grounds that, it is reasonable to calculate the maximum ultimate moment and then 

design all the beams for this moment, Table 5.4 shows this arrangement. 

Table 5.4 - Maximum moment capacity arrangement 
Member across mid-span 

Total 
M4 M15 M30 M45 M60 M75 M90 

moment 
Ultimate Moment 15m 

2157 2157 2014 2157 2157 - - 10642 
Span (kN) 

Ultimate Moment 20m 
6075 6075 6075 5392 6075 6075 6075 41842 

Span (kN) I I I I I I I- J 

5.2.3 The bridge live loading 

This load is based on the typical traffic loading detailed in Table 11 of BS 5400: Part 

10: 1980, see appendix D, this table gives the axle loads and axle spacing of typical 

commercial vehicle groups in the UK, from which the maximum moments due to a 

single commercial vehicle in each group imposed on the two types of bridges, have been 

calculated and tabulated in Table 5.5. 

Table 5.5 - Maximum moment due to commercial vehicle groups 
Maximum moment due to a single comm rcial ve cle 

from each group 
Traffic Type 15m span single 

carriageway 
20m span dual 
carriageway 

18GT-- H 3780 5820 
18GT -M 1275 2090 
9TT -TI- 3308 5093 
9TT -M 1260 2075 
7GT --H- 1950 2900 
7GT --Nf- 1150 1775 
7A-H 1560 2210 
6A-M 845 1335 
4R-H- 768 1125 
3R-H 713 1010 
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5.2.4 Load range for experimental fatigue loading 

Based on Table 11 of BS 5400: Part 10, a range of loads can be established, from which 

experimental fatigue loading can be conducted on three reinforced sprayed concrete 

strengthened slabs. 
It is intended that the peak loads that these test slabs received from the fatigue 

load test are representatives of the peak loads that a typical highway bridge on trunk 

roads in the UK are receiving from the traffic that it carries. 

i The load range is calculated based on the following equations and the results are 

tabulated in Table 5.6. 

Min% - 
Dead Load Moment 

Ultimate Design Load Moment 

Dead Load Moment + Live Load M 
Max, % 

Ultimate Design Load Moment 

Dead Load Moment + Live LoadM2 
MaX2%= 

Ultimate Design Load Moment 

Where: 

Dead Load Moment Moment due to the self weight of the slab + 

Highway surfacing, unfactored, calculated from 

Appendices E&F. 

Ultimate Design Load Moment = Moment due to HA + HB loadings as specified in BD 

37/88 calculated from QSE grillage analysis, the 

values are given in Table 5.4. 

Live Loads M, & M2 Moment due to the situation where one and two Nos. 

respectively of the most frequently seen commercial 

vehicles on UK roads. The likely introduction of the 

44 tons HGV is classified here as the 6A-M vehicle 

type. 
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A further explanation of Live Loads M, 49-'M29 

From the author's observation and judgements, it appears that the commercial vehicle 
type 6A-M with six axles giving a total of 40 tons of wheel load is most frequently seen 

on the road and it is this combination increased to 44 tons which is the minimum 

required highway bridge assessment loading criterion imposed by the UK's Department 

of Transport. In this research, for the purpose of examining the severity of the upper 
loading level of the experimental fatigue load test, it is proposed that M, is the moment 
due to a single commercial vehicle of type 6A-M alone imposed on the two types of 

slab bridges under consideration and similarly M2 is the moment due to two commercial 

vehicles of the type 6A-M. 

Table 5.6 - Stress range for experimental fatigue load test 
Ultimate 

Slab Bridge Type Dead Load Live Load Design Min % Max, % Max2 % 
Moment Moment Moment 

15m Span Single 
Carriageway 4270 845 10642 40.1 48.1 56.0 

ýOrn Span Dual 
Carriageway 15600 1335 41842 37.3 40.5 43.7 

From Table 5.6, the author exercised engineering judgement and proposed that the 

appropriate load range to be used should be as follows: 

Load Range = 40-50% of the designed failure load of the test 

slab for Ix 10 6 cycles of fatigue load. 

It is pointed out that the one million cycles imposed as above is taken from a conclusion 
drawn by Hanson[54] in his accounts on the Design for Fatigue, that: 

There is a limiting stress range which may be considered to be a fatigue 

limit. At stress ranges above this limit, a reinforcing bar will have a finite 

life. Below this limit, the bar will have a long life and may be able to 

sustain a virtually unlimited number of cycles . The transition from the 

finite life to long life region occurred in the range of one or two million 

cycles. 
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Although the above load range will yield useful experimental results, it appears to be at 

a nominal level and certainly the effect of abnormal loadings has not been considered, a 

phenomenon which would be detrimental if not considered at the design stage. One of 

the causes of abnormal loadings on highway bridges is from the probable lateral 

co-incidence of heavily loaded (overloaded even) traversing commercial vehicles in the 

adjacent lanes and in time the resulting damage accumulates, leading to the reduction in 

fatigue life. In view of this issue, it was thought necessary that the experimental fatigue 

testing and the associated analytical study should address the useful life span of a 

typical highway bridge with consideration for this abnormal loading effect. 

It is therefore proposed that the test slabs are to be fatigue tested first at the 

nominal load range of 40 - 50% of the design failure load (DFL) for one million cycles 

and then at the higher load range, the results are then associated with an analytical 

fatigue study which would have accounted for the effect of the abnormal loading. 

The method of determining the higher load range for further fatigue testing is 

being described in later sections of this chapter. 

5.2.5 Fatigue load in concrete in general 

In this sub-section, the ultimate aim is to derive at the analytical relationship between 

the load range versus the number of cycles to failure so that further fatigue testing can 

be performed, but first the study into the influential factor of load range on the fatigue 

strength is being presented, based on which the ultimate aim was fulfilled. 

5.2.5.1 The S-N curves or W61iler curves 

The S-N curves or W6hler curves are defined as a set of curves representing the linear 

relationship between the relative upper load level (i. e. stress level) versus the logarithm 

of the number of cycles to failure. These S-N curves characterise the fatigue behaviour 

of concrete (other materials as well) in that, the number of load cycles N that the 

concrete member can withstand before failure occurs increases for a decreasing upper 

load level. Figure 5.5 shows this typical linear relationship. 
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Figure 5.5 - Fatigue strength of plain concrete beams (ACI 215R - 74[39]). 
Sn, i,, = Minimum stress, S,,,, = Maximum stress and f, = Static strength 

A definition of fatigue strength can now be introduced, this is defined as a fraction of 

the static strength that can be supported repeatedly for a given number of load cycles, 

this can be taken from the S-N curve. 
Generally, the number of cycles to failure in the fatigue load results are very 

variable, this is largely due -to the variations in the static strength. As opposed to steel, 

concrete has no fatigue limit, although fatigue strength in compression for two million 

cycles and zero lower load level ranges from 57 to 67% of the static strength. 

5.2-5.2 The Goodman diagram 

As well as other influential factors such as rate of loading, eccentricity of loading, load 

history, material properties and environmental conditions, the range of load is 

significantly important in evaluating the fatigue strength of a concrete member. This 

can be represented by Comelissen's work[41]: 
Cornelissen arrived at the following graphical results from his work in fatigue behaviour 

of concrete. 

0.75 3 

P*80% 
PX50%(Gvg. )J 

smin 

ax Fm- x 0.15 
nox P'5% 

Probability 
of Failure 
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Figure 5.6a - Relationship between relative upper stress level and number of cycles to 

failure. 
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Figure 5.6b - The influence of stress levels. 

Figure 5.6 - Cornelissen 's work on fatigue behaviour of concrete[4 I]. 
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It can be seen from Figure 5.6a that for one million cycles and a zero lower stress level, 

the fatigue strength is equal to 60% of the static strength, while for a small lower stress 
level, this value can reduce to about 40% -of the static strength. As can be seen in Figure 

5.6b, a decreasing lower stress level results in a decreasing number of cycles to failure. 

The influence of upper and lower stress (or load) levels is usually presented on 

the Goodman diagram or the Smith diagram as shown in Figure 5.7 (ACI 215) i. e. for a 

zero nummurn stress level, the maximum stress level the concrete can support for one 

million cycles without failure is taken conservatively as 50% of the static strength and 

as the minimum stress level is increased, the stress range that the concrete can support 

decreases. 
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Figure 5.7 - Fatigue strength of plain concrete in flexure. 

100 

80 

60 au 

40 

*Z 20 

0 

PhD, Thesis QMW[University of London] D. Pham-Thanh [November 19971 87 



5.2.5.3 The modifled Goodman diagram 

In the"w'ork being presented here, the Goodman diagram in Figure 5.7 is used and a 

single S-N curve is produced from it dn the assumption that the* line intercepts the 

vertical axis at the maximum load = 100% of static failure load. 
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Figure 5.8 - The assumed S-N curve. 
An important feature of Figure 5.8 in comparison with the established ACI 215 's S-N 

curves is that for the number of cycles to failure N less than 10 6, Figure 5.8 would 

provide an upper bound load range and from this, it was attempted to produce a 

modified Goodman diagram for different number of cycles to failure and the procedures 

are detailed as follows: 
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Figure 5.8 represents the case of zero lower load level and a linear relationship between 

the upper load level and the number of cycles to failure N i. e. 

Upper load =- 
50 

logN + 100 
6 

Lower load = Zero 

From equation (5.1), a series of co-ordinates can be plotted on the Goodman diagram of 
Figure 5.7 For example, 

5 At N= 10 , Lower load = 0% and Upper load = (175/3)% 

AtN= 104 , Lower load = 0% and Upper load = (150/3)% 

This process is continued to produce a Modified Goodman diagram for a range of N 

values as shown in Figure 5.10. 
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Having established the Modified Goodman diagram as shown in Figure 5.10, it is 

possible now to use the information from this diagram to produce an S-N diagram 

containing a set of curves that can be used to derive a comprehensive load range table 

corresponding to the expected fatigue strength i. e. N. Again it is stressed that the 

assumption of all S-N curves passing through the Upper load level at 100% still holds 

good. 

From equation (5.1), 

50 
Upper load =6 logN + 100 

Lower load = Zero 

and from Figure 5.10, it can be seen that within the envelope bounded by, 

Upper load = 0% 

and Lower load = 50%, 
6 N is equal to 10 . 

However if still within this envelope, 
The lower load = 10% 

This gives the upper load = 55% 

Lower Load 
Therefore the ratio of Upper Load -= 0.18 

and N= 106 

Similarly if still within this envelope, 
The lower load = 20% 

This gives the upper load = 60% 

Lower Load 
Therefore the ratio of Upper Load ý- 0.33 

and N= 10 6 

The process is continued for various load ranges and the data obtained is presented 

graphically in the form of the S-N curves as shown in Figure 5.11. 
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Figure 5.11 - S-N curves. 

It is useful, that the above data can also be presented in tabular form as shown in Table 
k, ý :''- 5.7, 

Table 5.7 - Load ranges at N= 10' 

Equation of the S-N curves N=1 06 

Load ratio (max load) Min% Max% 

(Mhi/Max)=O aoý=100-(50/6)LogN 0 50 

(MhMax)=0.18 aO. j8=l00-(45/6)LogN 0 55 

It is equally useful to be able to established the load range corresponding to various N 

values. This can be obtained simply by calculating the co-ordinates of the points that 

intersect the verticaf line drawn at the corresponding N value, see Figure 5.11. As an 
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example, the vertical lines at N= 105 and N= 10 7 are drawn in Figure S. II and the co- 

ordinates are calculated as follows: 

AtN= 105, 

On the load ratio line of zero, 

The upper load 100 - 
O)Iog 

10' 58.3% 
N 

Therefore giving, 
The lower load =0x 58.3 0% 

Consider another point on the vertical line, 

AtN= 10 

On the load ratio line of 0.18, 

05 The upper load = 10 _(45 loglO' 62.5% 
6) 

Therefore giving, 
The lower load = 0.18 x 62.5 = 11.3% 

Similarly, 

At N 10 7 

On the load ratio line of zero, 

The upper load = 100 - 
0) 

log 107 41.7% 
N 

Therefore giving, 
The lower load =0x 41.7 = 0% 

Consider another point on the vertical line, 

At N= 10 7 

On the load ratio line of 0.18, 

logl07 47.5% The upper lok 
(45 

I= 100 
65) 

Therefore giving, 
The lower load = 0.18 x 47.5 = 8.6% 

In tabular form, the above calculations are presented in Table 5.8. 
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5.3, HIGHER LOAD RANGE FOR FATIGUE LOAD TESTING -A STUDY 

With reference to Table 5.8 derived from the analytical study of the assumed S-N and 

the Modified Goodman diagrams, it is proposed that using this Table in conjunction 

with Tables I and 10 of BS 5400: Part 10, an assessment of the actual commercial 

traffic distribution is presented and from which a higher load range can be determined to 

perform the fatigue load test on the test slabs. 

5.3.1 Fatigue loading on existing bridges 

On existing bridges here in the UK, there are occasions when passing commercial 

vehicles are 'abnormally' heavily loaded and with the forecast of traffic being on an 

increasing trend, these occasional heavy commercial vehicle loads can be expected to 

increase and can at some points substantially exceed the design load capacity and it 

appears that, if it was possible to design a highway bridge on the basis that fatigue 

failure would not occur after random loadings i. e. due to the occasional heavy 

,, 
commercial vehicle loadings of the entire load spectrum that are possible and probable 

during the life expectancy of the bridge, with the varying intensities and frequencies, 

then the factor of safety to a static failure loading is not necessary. 

To investigate this phenomena, it is attempted in this work to present an 

analytical study which relates the cumulative effect of fatigue loading on the test slabs 

tested under laboratory conditions to that on a typical highway bridge. In this analytical 

study, Table 5.8 is used in conjunction with BS 5400: Part 10: 1980. 

The concept of occasional heavy load on existing bridges is influenced by several 

factors, including the following: 

* Vehicle headway and queuing and, 

Vehicle coincidence. 

The significance of these two factors on fatigue loading of existing highway bridges can 

be an extensive area for investigation and the time scale is limited in this research 

therefore only the second factor is considered. 

The fatigue loading on existing bridges outlined above can be evaluated by using 

the Pahngren-Miner hypothesis, this is an empirical approach which utilises the S-N 

curves and is described in the following section. 

PhD Thesis QMW [University of London] D. Pham-Thanh [November 1997] 94 



5.3.2 , Palmgren-Miner hypothesis 

Fatigue loadings on a real structure vary greatly, in magnitude, number and sequence, 

generally very random and so in order to study the effect of fatigue loading, it is 

necessary to study the cumulative effect of its variation in the entire load spectrum. 
The failure criterion due to fatigue loading is: 

ni < 
Ni 

Where: ni = The number of cycles at the load range i. 

Ni = The number of cycles to failure at load range i. 

The ratio effectively means that the same fatigue resistance can be obtained for reduced 

number of cycles over greater loading ranges, provided that the sum of the proportions 

of applied cycles to the number of cycles that the structural member can withstand never 

exceeds unity. 

5.3.3 Load range due to traffic loading 

From Tables 5.3 and 5.4, the load ranges due to traffic loading are calculated and these 

are tabulated in Table 5.9, according to the following equations: 
Case I- When a single commercial vehicle is on the bridge. 

Min% 
MDL 

MULT 

Max% 
MDL + MCV 

MULT 

Case 11 - When two commercial vehicles coincide on the bridge simultaneously 
(Note, it is very conservatively assumed that the maximum moment 
caused by the commercial vehicle Mcv occurs when the vehicle is fully 
on the bridge). 

Min% 
MDL 

MULT 

MaX% 
MDL+ [2 x Mcv]_ 

MULT 
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Where: 

MDL = Moment due to the unfactored dead load calculated in Appendices E for the 

15m span and F for the 20m span bridges. 

MCv = Moment due to the commercial vehicle in each group as detailed in Table 11 of 
BS 5400 and tabulated in Table 5.5. 

MULT = Ultimate moment calculated from grillage analysis as tabulated in Table 5.4. 

1. Also given in Table 5.9 are the load ranges extracted from Table 5.8 which are 

obtained from the modified Goodman diagram, that are the nearest equivalent to the 

load ranges calculated from cases I& II s' equations. Also given in square brackets 

are the corresponding expected number of cycles to failure - the intention here is to 

co-relate the load ranges from the actual commercial vehicle spectrum to the 

analytical load ranges given in Table 5.8 (which was derived from assumed S-N 

curves and the modified Goodman diagram) so that the higher load range for fatigue 

load testing can be obtained. 
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Table 5.9 - Load range due to traffic loading 
Load Range 

15m Span 20m Span 
Equivalent Equivalent 

Load Range Range From Load Range Range From 
Traffic Type From Cases I Goodman From Cases I Goodman 

and 11 Diagram and II Diagram 
(Table 5.8) (Table 5.8) 

40.2-75.7 39.8-78.0 37.3-51.2 37.1-65.0 
18GT -H [10 4] 37.3-65.1 [107] 

40.2-52.6 40.1-66.8 37.3-42.3 37.1-55.1 
18GT -M 40.2-65.0 [101] 37.3-47.3 [10,11 

40.2-71.3 40.0-70.0 37.3-49.5 37.2-62.0 
9TT -H [10 6] 37.3-61.6 [108] 

40.2-52.0 40.3-64.0 37.3-42.2 37.1-55.1 
9TT -M 40.2-63.9 [10 8] 37.3-47.2 [10,1 1 

40.2-58.5 40.8-60.0 37.3-44.2 37.1-55.1 
7GT -H 40.2-76.8 [10 10 1 37.3-51.1 [10,1 1 

40.2-52.5 40.3-64.0 37.3-41.5 37.1-55.1 
7GT -M 40.2-63.6 [101] 37.3-45.8 [10,1 1 

40.2-54.8 40.5-57.8 37.3-42.6 37.1-55.1 
7A-H 

40.2-69.5 [10111 37.3-47.8 [10,1 1 
40.2-48.0 40.5-57.8 37.3-40.5 37.1-55.1 

6A-M 
40.2-56.1 [10,1] 37.3-43.7 [10 11 1 
40.2-47.4 40.5-57.8 37.3-40.0 37.1-55.1 

4R-H 
40.2-54.6 110 11 1 3 7.3 - 42.7 

--- 
[10,1 1 

40.2-49.7 40.8-60.0 37.3-39.7 37.1-55.1 
3R-H 

40.2-59.2 [10,01 37.3-42.1 [loll] 

5.3.4 Traffic distribution 

Using Tables I and 10 of BS 5400: Part 10, see appendix D, the number of occurrences 

of each type of commercial vehicle over a design life span of 120 years can be evaluated 
for the two types of bridges being considered i. e. the 15m span single carriageway 
bridge and the 20m span dual carriageway bridge. 

Assumptions made: 
1. The 15 span bridge is an all purpose two lane single carriageway. Therefore from 

Table I of BS 5400, there are: 
1XIO 6 commercial vehicles in each direction per year. 
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2. - The 20m span bridge is on a motorway dual carriageway with two lanes per 

carriageway. Therefore from Table 1 of BS 5400, there are: 
(1.5 + 1.0) x 106 = 2.6 x 106 commercial vehicles in each 
direction per year. 

3. The vehicle types with the corresponding axle loads and number of occurrence 
detailed in Table II of BS 5400 are re-grouped as in the following Table 5.10. Only 

vehicle types lighter than the 7GT-M are re-grouped. 
The evaluation of the number of occurrences of commercial vehicles n is based on the 

following formula, n is tabulated in Table 5.10. 

LS x Nvpm X Vd 

n=-IX 106 

Where: 

LS = Life span of the bridge. 

Nvpm = Number of commercial vehicles in each group per million commercial 

vehicles. 
Vd Commercial vehicles distribution as defined in assumptions 1. and 2. 

T able 5.10 - Occurance number of commercial vehicles over a 120 year design life 

Vehicle 
Group 

Flow of Commercial Vehicle 

over a 120 Year Design Life 
[Vd x 120] 

Total Number in 

each Group per 
Million 

Commercial 
Vehicles 

No. of Occurances of 
Commercial Vehicles Over 

a 120 Year Design Life [n] 

15m Span 20m Span- 15m Span 20m Span 

18GT -H 120 x 10' 300 x 106 10 1200 3000 

18GT -M 120 x 106 300 x 106 30 3600 9000 
9TT -H 120 x 106 300 x 106 20 2400 6000 
9TT -M 120 x 106 300 x 106 40 4800 12000 
7GT -H 120 x 106 300 x 106 30 3600 9000 
7GT -M 120 x 106 300 x 106 70 8400 21000 
7A-H 120 x 106 300 x 106 300 36000 90000 
6A-M 120 x 106 300 x 106 299500 35.9 x 106 89.9 x 106 

4R-H 120 x 106 300 x 106 135000 16.2 x 106 40.5 x 106 

3R -H 120 x 10 1 300 x 106 565000 67.8 x 106 1 169.5 x 106 
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5.3.5 Cumulative effect of traffic loading 

From Table 5.10 there are ten types/groups of commercial vehicle that are imposing 

axle loads on UK bridges and it is a reasonable proposition that co-existence of any 

combination (of these groups of commercial vehicle) is possible, depending upon its 

weight restriction and its width. This possible coexistence, therefore, subjects the 

bridges to different values of maximum loads i. e. random fatigue loading. 

The effect of this random fatigue loading can be evaluated, although not always 

conservatively, using Miner's hypothesis, from section 5.3.2: 

[ni 
(5.2) 

NI_ 
Where: 

n, Number of cycles of a definite load range applied for which the structure can 

withstand Ni cycles before fatigue failure. 

Equation (5.2) effectively means that the same fatigue resistance can be obtained for a 

reduced number of cycles with greater loading ranges, provided that the sum of the 

proportions of applied cycles to the total number of cycles that the structure can sustain 

for each separate load range does not exceed unity. 

Using Miner 's hypothesis to evaluate the cumulative effect of the load cycles 

due to each types/groups of commercial vehicle tabulated in Table 5.10 versus the 

corresponding expected number of cycles over the design life of 120 years in Table 5.9 

gives the figures in Table 5.11. 
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Table 5.11 --Values of n and N for different types of traffic. 
Traffic 15m Span Single Carriageway 20m Span Dual Carriageway 
Group n, From 

Table 5.10 
N, From 
Table 5.9 n/N 

n, From 
Table 5.10 

N, From 
Table 5.9 n/N 

18GT -H 1200 104 0.12 3000 107 3x 101 
18GT -M 3600 107 3.6 x 10-4 9000 oil 9x 10-1 
9TT -H 2400 106 2.4 x 10-1 6000 101 6x 10-5 

9TT -M 4800 108 4.8 x 10-1 12000 loll 12 x 10-8 
3600 1010 3.6 x 10-7 9000 1011 9x 10-1 

7GT -M 8400 108 8.4 x 10-5 21000 loll 21 x 10-1 
7A-H 36000 loll 3.6 x 10-7 90000 loll 90 x 10-1 
6A-M 35.9 x 106 loll 3.6 x 101 89.9 x 106 1011 89.9 x 10-1 
4R-H 16.2 x 106 loll 1.6 x 10-4 40.5 x 106 10 11 40.5 x 10-5 

I 3R -H 1 67.8 x 101 1010 1 6.8 x 10' 1 168.5 x 106 1 101, 1 16.9 x 
10-4 1 

Table 5.11 is now reduced further to arrive at different sets of combinations of 

commercial vehicles. These combinations are based on the same N values and they 

would also represent the typical cases of random loading on highway bridges. Miner 's 

hypothesis to evaluate the cumulative effect is illustrated in Table 5.12 as follows: 

Table 5.12 - Miner's Hypothesis 
Group Traffic Load Sum of [n/N] 

Group Range 15m Span 20m Span 
U) 18GT -H 39.8-78.0 0.12 3.0 x 10-4 

(II) 9TT -H 40.0-70.0 2.4 x 10-3 6.0 x 10-5 

(III) 18GT -M 40.1-66.8 3.6 x 10 -4 9.0 X 10-8 

4.8 x 10-5 12 x 10-8 
(IV) 

9TT -M 40.3-64.0 
8.4 x 10 -5 21 x 108 

7GT -M 40.3-64.0 
1.3 x 10 -4 33 x 10-8 

16.9 x 10-4 

M 
3R-H 40.8-60.0 

6.8 x 10 -3 9X 108 
7GT -H 40.8-60.0 

16.9 x 10 4 

3.6 x 10-7 go x 10-11 
7A-H 40.5-57.8 3.6 x 10 -4 89.9 x 10-5 

(VI) 6A-M 40.5-57.8 
-4 5 

4R-H 40.5-57.8 1.6 x 10 40.5 x 10 

5.2 x 10 130.5 x 10 
Z [n/Nj = [n/Nj = 0.13 4 33.6 x 10 
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5.3.6 Higher load range fatigue loading 

Using Table 5.12, it is proposed that the higher load range to be used for further fatigue 

loading on the slabs would be: 

39.8 - 78 percent of the static failure load. 

The reasons for the above proposal are: 
1. Miner hypothesis indicates that the load range from the 18GT-H vehicle type is most 

severe. 
2. The limiting fatigue load cycles of 10 4 can be accommodated in the testing program, 

within the limited time scale of this research. 
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CHAPTER 6 

THE PERFORMANCE OF THE TECHNIQUE UNDER 
FATIGUE LOADING 

6.0 GENERAL 

This chapter intends to show that : 

Given the commercial axle load spectrum of BS 5400: Part 10 to establish that the 

number of passes (n) from BS 5400 divided by the number of cycles to failure for 

the same loading (N) summed for all loads is less than one. 

',, To verify that the behaviour of this strengthening technique under fatigue loading 

follows the assumed S-N curves and the modified Goodman diagrams. This is done 

by mapping the fatigue test results onto the assumed S-N diagram, if the mapping 

shows close agreement then when the technique is used to strengthen the typical 

highway bridge, which is expected to be subjected to the current load spectrum (of 

1BS 5400: Part 10) then its life span can be predicted. 

The above is also the sequence which the structure of this chapter follows 

6.1 LIFE SPAN OF A TYPICAL HIGHWAY BRIDGE UNDER THE CURRENT 
"-'LOAD SPECTRUM -A PREDICTION 

In order to improve the accuracy of the study in this area, it was proposed that, in 

addition to the current commercial load spectrum of BS 5400: Part 10, commercial 

vehicle coincidence in the adjacent lanes be accounted for and in this study, a single 

carriageway two lane bridge (one lane in each direction) is considered, therefore the 

coincident commercial vehicles in this case would be from the opposite direction of the 

traffic lanes. Without an actual traffic survey on the bridge and detailed statistical 

a. nalysis on a typical single carriageway two lane bridge, the percentage of commercial 

vehicles in coincidence is taken as 15% as given in by the Transport and Road Research 

Laboratory LR 252[42]. However, it is realised that during the useful life span of the 

bridge, any combinations of classes of commercial vehicle in coincidence are possible 
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and therefore an attempt to account for as many combinations as practical is also 

presented. 

6.2 FATIGUE TESTING THE STRENGTHENED SLABS 

This section, describes the fatigue load tests performed on the strengthened test slabs. 
The load range for these tests was detennined in sections 5.2.4 and 5.3.6 which was 
derived the assumed S-N curves and the modified Goodman diagrams. 

Additionally, one of the test slabs due for fatigue load testing had its 

reinforcement in the sprayed concrete layer curtailed see Figure 6.1. This was then 

tested statically prior to fatigue testing to address the concern over the higher 

longitudinal shear stress concentration that might be caused by the re-entrant comer at 

each end of the sprayed concrete layer which might cause peeling-off of this layer at the 

ends. The following section will describe this pre-fatigue test in more details. 

It is emphasised. that under the higher level of fatigue loading on the slabs in Table 

6.1, the fatigue load ranges were determined based on the static failure loads (SFL) of 

the companion slabs of Table 6.2 and for the lower level of fatigue load testing, the 

design failure loads (DFL) were used. 
I Fatigue load testing of the slabs was conducted consecutively at the age of eight 

months after the strengthening process. 

Table 6.1 - Test slabs for fatigue load testing 

Sprayed Spayed Reinforcement Lower fatigue Higher fatigue 
Slab concrete concrete encapsulated in load range load range 

type thickness 
(mm) sprayed concrete level level 

B2 Normal 75 B785 mesh 
27% - 33% of 23% - 63% of 

SFL (note) SFL 

B5 Normal 75 B503 mesh 
27% - 33% of 30% - 70% of 

SFL (note) SFL 

B6 Normal 75 A393 mesh 
30% - 70% of 

I I I I I SF 
I(note) - These are equivalent to 40% - 50% of DFL 

Note: DFL = Design failure load of the test slab. 
SFL = Static failure load from a companion slab. 
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Table 6.2 - Companion slabs tested under static loading 

Slab for fatigue Companion slab tested under static loading 
load testing Slab SFL (KN) DFL (KN) 

B2 131 236.4 169.1 
B5 B3 178.7 118.5 
B6 A4 160 97.4 

6.2.1 Pre-fatigue test on curtailed reinforced sprayed concrete layer 

It was realised during the course of the research that when this technique of 

strengthening is used on existing concrete bridges that the reinforced sprayed concrete 
layer could only extend to near the points of support and not beyond them. The original 
bridge bearings would still be used and the critical vertical shear capacity at the supports 

would not be improved. This was not considered to cause a major problem as the 

author's understanding is that the majority of slab bridges failing the Department of 

Transport bridge assessment programme do so due to lack of flexural capacity not shear 

capacity. 

However some concern existed over the higher longitudinal shear stress 

concentration that might be caused by the re-entrant comer at each end of the sprayed 

concrete layer which might cause peeling off of this layer at the ends. 

In order to investigate this problem, test slab B5 with a large amount of 

reinforcement in the sprayed concrete layer and therefore a high shear stress at the 

interface was prepared to simulate the above end conditions by vertically cutting 

through the new sprayed concrete layer to the depth of the base concrete at the span side 

of the support, see Figures 6.1 for details. This slab was then subjected to static loading 

up to 15% beyond its design failure load prior to being tested under fatigue loading. 
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Figure 6.1a - Reml'orced spi-aved concrete CUrtailment - side view. 

Figure 6.1 b- Remi'mccd spi-aycd concrctc CUrtailment - underside view. 
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100 - 12ýnini 

70mni 

Figure 6.1c - Dimensions ol'cuilallilicilt. 

Figure 6.1d - Curtailed slah in position for loading 

Figure 6.1 - ReliltIM-ced spraycd concrete curtailment (similar detail at opposite end). 
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6.2.1.1 Test procedures on curtailed test slab. 

The test slab under consideration was test slab B5. Prior to the static loading of this 

slab, an assessment was made to ensure that this static load test limit was less than the 

SFL. 

i. e. DFL +( 15% of DFL) must be < SFL 

From Table 6.2: 

DFL = 118.5 kN 

SFL = 178.7 kN 

DFL +( 15% of DFL) = 136.3 kN------5-Sa 

In the static load test, the load increments of 5 kN was imposed up to 60 kN and 

then, the increments were reduced to I kN up to 136.3 kN. This was considered 

necessary so that any distress in the slab under increasing load could be monitored, 

particularly at the re-entrant comers. 

6.2 2 Instrumentation 

As in the static load test, the set up here was also simple, comprising: 

"A heavy fabricated steel loading frame. 

"A hydraulic jack. 

" An electronic control unit which operates the hydraulic jack. 

"A data acquisition system. 

"A frequency signal generator (to control the fatigue load). 

6.2.3 Experimental procedures 
The slabs were tested in the same loading frame used for the static tests. The data 

acquisition system was programmed to record the load range applied to the test slab and 

the corresponding deflection against time and this recorded continuously until failure of 

the slab. 

6.2.3.1 Fatigue Load frequency 

ACI 215 points out that: 

Several investigations indicate that variations of the frequency of loading 

between 70 and 900 cycles per minute (i. e. 1.2 and 15 cycles per second 

respectively) have little effect on the fatigUe strength provided that the 
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maximum load level is less then 75 % of the static strength. For higher load 

II levels, a significant influence of rate of loading has been observed. 

Due to the limited time scale available, the load frequency used in all fatigue load 

testing in this work was maintained at one cycle per second, which was the maximum 

available from the hydraulic pump which oscillated the loading jack 

6.3 EXPERIMENTAL RESULTS & DISCUSSION - FATIGUE 

The fatigue load test results are given in table form in Table 6.3. 

Table 6.3 - Sui ,i, ry of fatigue load test results 

Sab 
Lawer 

fatigue load No. of cycles 
Hgher 

fatigue load Failed at Test Failure mode 
range level tested 

rangelevel cycle N duration 

B2 27%-33% 
1xicp 

23%-630/o 0 817xlCP 21 days Flexural failure 
of SFL C) of SFL . I No debonding 

B5 27%-330/o 
0 6x1CP 

30%-700/o 457xICP 0 12 days Flexural failure 
of SFL . of SFL . No debonding 

B6 300/6-70% 
0 141xl(f 12 days Flexural failure 

of SFL . Nb debonding 
T iis is equivalent to tF970% - 50% of DFL range 

The graphs of deflection versus number of cycles are given in Figures 6.3 - 6.5. 

All slabs failed in flexure and no debonding was observed. In particular, slab B5 

with the curtailed reinforcement, no cracks were seen initiating at the points of 

curtailment. A typical mode of failure is shown in Figure 6.2. 

'PhD Thesis QMW [University of London] D. Pham-7hanh [November 1997] 108 



Figure 6.2a - Tcst S1111) Under fatigue loading. 

Figure 6.2b - Stable hair fine fleXUral cracks developed. 
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Figure 6.2c - I'atigue fallm-c. 

Figure 6.2 - Typical fatigue failure mode - flexural ftlilUrc slab (shown test slab 135). 

The deflection versus tile number of cycles of all test slabs exhibit the cyclic creep 

curve, consisting of thi-cc portions: 

1. The initial convcx portion (initiation of cracking) 

2. The straight portion (propagation of cracks) 

3. The Final coilcavc portion (fracture). 

The initial convex portion 

B5 (Figure 6.4) & 

B2 (Figure 6.5) During the First 200,000 to 250,000 CYCICS Under the 27%-33% of SFL 

range, the test slabs displayed stable fleXUral cracks. These cracks 

opened and closed under the action of fatigue loading. 

B6 (FIgUre 6.3) DLII-Ing approximately tile first 25,000 cycles at the higher load range, 

the slab displayed hair line cracks, these were flexural cracks and were 
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due to the initial pre-setting of the hydraulic jack at the upper load 

level of 70% of SFL (i. e. pre-setting the amplitude of oscillation of the 

hydraulic jack). These cracks continued to open and close under the 

action of fatigue loading. 

The straight and final concave portions 

B5 (Figure 6.4) & 

B2 (Figure 6.5) Between 250,000 to 600,000 cycles (B5) and 250,000 to 1,000,000 

cycles (B2) at the lower load range of 27% - 33% of SFL, the test 

slabs displayed very little distress apart from the flexural cracks which 

were stable. It appears that at under this load range, the slab would 
have continued to sustain a very large number of cycles. This is 

indicated by the large number of cycles within the st raight portion of 

the diagram before an abrupt change in deflection in response to the 

increased load range over which steel fracture developed, leading to 

the slab failure within a relatively small number of cycles (457,000) 

after the increase, for B5. For B2, from the point of abrupt change of 

deflection to slab failure the number of cycles was relatively 

high - 817,000 cycles, during which there was a small decrease in the 

rate of increasing deflection against the increasing number of cycles. 

B6 (Figure 6.3) Between about 25,000 and 100,000 cycles the stress intensity at the 

crack front reached a critical value and after a further 40,000 cycles 

the steel fractured and the slab failed. 

The following points are also important: 

* Between 250,000 to 1,000,000 cycles the slab B2 displayed strength gain (indicated 

by the decrease in deflection with increasing number of cycles) at around 400,000 

cycles under the lower load range. The possible explanation for this strength gain is 

due to the 24 hours rest period whilst one of the clamp bolts of the apparatus was 

replaced. A similar report of strength gain was reported by Holmen[43]: 

In fatigue testing, at the upper stress level of 60%, after twelve million 

cycles no fatigue occurred, the test was stopped and the specimens were 
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statically load tested to failure, when comparing the results of these 

specimens with similar specimens which had not undergone fatigue 

loading, an increase in strength of about 7% was observed. 

An important observation made from the curtailed steel was that when the 

reinforcement within the sprayed concrete failed at mid-span, leaving just the 

reinforcement in the base slab resisting the applying fatigue loading there was no 

sign of delamination at the substrate/sprayed concrete interface either at mid-span or 

the curtailed ends. This is further evidence showing the good bond between the 

sprayed concrete and its substrate. 
Although it was found from examining the broken faces of the fatigue tested slabs 

that almost every main reinforcement bar failed in between the welded intersections. 

It is recognised that there may be a concern that the fatigue strength of the steel 

mesh reinforcement may be influenced by the significant stress concentration caused 
by welded intersections. This point may therefore be worth further study and 

account should be taken of ACI 215 which states: 

Several recent investigations have examined the fatigue characteristics of 

welded mesh reinforcement and found that the disturbance due to the 

welded intersection is dominated only if the stress concentration caused by 

the intersection was greater than the concentration caused by the 

deformation. The available evidence does not indicate that these effects are 

additive. 
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6.3.1 Analytical study of commercial vehicle wheel load on highway bridges 

As already stated in section 6.1 the report LR 252 estimates that there is the 15% 

probability of commercial vehicle coincidence and the currently unsuperseded BS 5400: 

Part 10 which tabulates the commercial vehicle wheel load spectrum are being used in 

this analytical study and is based on the following theory: 

Considering a single lane dual carriageway, if there is a given class of 

commercial vehicle traversing the bridge, imposing a maximum moment of ( M1 ) and 

this has a total number of occurrences on this bridge of (X), it is taken that there is a 
15% chance that this class is in coincident with another class of commercial vehicle 

which imposes a maximum moment ( M2) and whose total number of occurrences on 

this bridge is (Y), traversing in the opposite direction. 

From this theory, the followings are deduced: 

I. At 15% chance of coincident, the moment imposed on the bridge under 

consideration is (M1 +M2 ). 

II. Given two classes of commercial vehicle, the number of occurrences at 15% (n) is 

therefore: 

a. -n=( 15% 1x{ The smaller value of X or Y)x 12 (for both directions) 

b. -n is effectively the number of wheel load of the load range due to the two 

classes of commercial vehicle that are coincident on the bridge. 

111. Given the two classes of commercial vehicle in coincident at 15% on the bridge, 

they would impose a range of loading which for N cycles would cause failure of the 

bridge and N is determined from Table 5.8 of chapter 5 which is in fact the results of 

the assumed S-N curves Figure 5.11 and the Modified Goodman diagram study 
Figure 5.10, both of chapter 5 as well. 

An explanation of to the determination of N is : 
The use of Table 5.8 is required and the first step prior to using Table 5.8 would be that 

the maximum & minimum loads due to the combinations (of CV that are in coincident) 

as a percentage of the ultimate load of the bridge, be determined first, as an example 

consider the CV type 18GT-H (which a lone imposes a maximum moment of 3780 kNni 

on the l5m span two lane single carriageway) in coincident with the 6A-M type CV 

(which alone imposes a maximum moment of 845 kNm on the same bridge), 
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DL 4275 
Max%=-=-xlOO%=40.2% 

Ult 10642 

Mix % 
DL + (combined moment) 

X 100 % 
Ult 

4275 +( 845 + 3780) 
- 10642 x 100% = 83.6 % 

With the max % and the min % and the aid of Table 5.8, N can be established. 

IV. Table 11 of BS 5400: Part 10 has tabulated the number of different classes of 

commercial vehicle that are expected to be traversing the UK road network. From 

this table, various possible combinations of commercial vehicle are determined, 

with the assumption that commercial vehicles of the trailer & tractor type required 

police supervision of their movement and therefore when traversing certain bridges 

this will not allow room for passage of a different type of commercial vehicle in the 

opposite direction and therefore coincident of such types are not considered. 

From the points (I) - (IV) deduced above, Table 6.4 is set up for the case of the 15m 

span two lane single carriageway bridge. 

It is obvious that any combinations of commercial vehicle from the list of Table 

11 of BS 5400: Part 10 may occur on the bridge and that the resulting load effects are 

accumulated to contribute to the failure of the bridge by the end its useful design life 

span and this is a phenomenon of random loading on the bridge. 

Based on Miner's hypothesis, this phenomenon is expressed into a mathematical 
form to establish an indication of life span of existing UK bridges under the current BS 

5400 commercial vehicle wheel load spectrum. The purpose of this life span is that 

from its comparison to that obtained from the three slabs tested under fatigue loading in 

the laboratory, an engineering judgement can be made on the efficiency of the 

strengthening technique. 

With reference to Table 5.8 the interpretation of the above phenomenon is: 

If (ni) means that n cycles of a definite load range are applied (i. e. the load range 

resulted from a given combination or non-combination of commercial vehicle) of which 

the bridge can withstand (Ni) cycles (i. e. the N cycles to failure due to the combination 

or non-combination under consideration, obtained from Table 5.8) then from Miner 's 

hypothesis: 
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-2-i < 1.0 Ni 

Meaning that the same fatigue life can be obtained for reduced number of cycles over 

greater load ranges i. e. from the lower (n) of the heavier combinations of commercial 

vehicle to the larger (n) of the lighter combinations of commercial vehicle, provided 

that the sum of the proportions of applied cycle n to the number of cycles that the bridge 

can withstand (N) becomes 1.0 

From this, the life span is: 

LS xI 
ni 

=1 Ni 

LS 
ni 
Ni 

Tables 6.5 to 6.9 tabulate the possible co-existence of commercial vehicle classes on the 

single lane dual carriageway at 15% probability on the annual basis. 

5.847 x 10-' 

4.490 x 10-' 
(=n=1.128 x 1()-6 

1.418 x 10-7 N 

4.789 x 10-7 

For the type of bridge being considered and at the 15% probability of coincident, the co- 

existence of the heavier classes in this Table are not considered, taking into account 

such factors as, requiring police escort and overall width restriction of the bridge. 

-, N 
From Table 5.12 of Section 5.3.5, Chapter 5. the 

[1: n] 
ratio for non-coincident CV 

over the design life span of 120 years is now being combined with that from the 

co-incident CV. 

n 0.13 
N 120 
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The indication of life span of UK bridges under the current loading spectrum as given in 

BS 5400: Part 10 is: 

10-6+ 0.13] 
LS[I. 128x 

120 

LS = 922 years. 

Table 5.12, Section 5.3.5, Chapter 5- Miner's Hypothesis 
Group Traffic Load Sum of [n/N] 

Group Range 15m Span 20m Span 
(I) 18GT -H 39.8 - 78.0 0.12 3.0 x 10 -4 

(II) 9T`T -H1 40.0 - 70.0 2.4 x 10-3 6.0 x 10,5 

(III) 18GT -M 40.1 - 66.8 3.6 x 104 9.0 x 10-8 

4.8 x 10-5 12 x 10-8 

(IV) 
9TT -M 40.3-64.0 

8.4 x 10-5 x -8 
7GT -M 40.3-64.0 

1.3 x 10 -4 33 x 10-8 

16.9 x 10-4 

M 
3R-H 40.8-60.0 

6.8 x 10,3 9X 108 
7GT -H 40.8-60.0 

16.9 x 10 -4 

3.6 x1V go x 10-1 

7A-H 40.5-57.8 3.6 x 10 -4 89.9 x 10,5 

(VI) 6A-M 40.5-57.8 
-4 -5 

4R-H 40.5-57.8 1.6 x 10 40.5 x 10 

5.2 x 10 -4 130.5 x 10-5 

E [n/N] = [n/Nj = 0.13 
10 4 6 x 33. 
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Table 6.5 - Distribution of the re-grouped CV classes (sect 5.3.4 chapter 5) 

From Table 1, BS 5400: Part 10, for the two lane single carriageway there are 0.5 x 106 
Commercial Vehicles in each direction per year 

Assuming 15% co-incidence 
106 106 Total no. of co-incident passes of all CV = 0.15 x 0.5 x=0.075 x 

Total no. of passes of CV over bridge = (2 x 0.5 x 106) =1X 106 

Number of single passes of CV over bridge per year = (1 x 10") - (0.075 x 10") = 0.925 
X 106 

Distribution of CV groups 
No. in each Total No. pcr ycar 

CV group per 
Class 106 CV Co-incident with another CV Self-Existance 

Class 

7A-H 300 6 106 (300/10 )x0.075 x 22.5 06) X6 (300/1 0.925 x 10 277.5 

(2.995 x 10 5/106 )x0.075 x 10 6 (2.995 x 10 5/106 )x0.925 x 10 6 

6A-M 5 2.995 x 10 
= 2.246 x 104 = 2.770 x 10 5 

(1.35 x 10 5 /10 6)x0.075 
x 10" (1.35 x 105/106) x 0.925 x 106 

4R-H 1.35 x 105 
1.013 x 104 1.249 x 105 

(5.65 x 105/106) X 0.075 x 106 (5.65 x 105/106) x 0.925 x 106 

, 3R-H 5.65 x 10 
= 4.238 x 104 

5 
5.226 x 10 

Table 6.6 - n/N ratio of 7A-H co-incident with other classes in the load spectrum 

7A-11 with other 
(p), No. of 
coincident 

n per year N 
n/N 

classes (2 x p) (Table 6.4) 
passes/year 

7A-H with 7A-11 
6 22.5 x 300/10 0.014 113+06 1.35E-08 

6.75 x 10-3 

7A-H with 6A-M 
22.5 x 2.995 x 13.478 1E+09 1.3478E-08 
105/106 = 6.739 

7A-H with 4R-H 
22.5 x 1.35 x 6.076 113+09 6.076E-09 

105/106 = 3.038 

7A-H with 3R-H 
22.5 x 5.65 x 25.420 IE+09 2.542E-08 

105/106 = 12.710 

Summation 5.847E-08 
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Table 6.7-n/N ratio of 6A-M co-incident with other classes in the load spectrum 
(p), No. of 6A-M with other coincident 

n per year N 
n/N 

classes (2 x p) (Table 6.4) 
passes/year 

2.246 x 10 4x2.995 
6A-M with 6A-M 13454 lE+ll 1.3454E-07 

X 101/106 = 6727 

6A-M with 4R-H 
2.246 x 104 X 1.35 

6064 1E+11 6.064E-08 
X 105/106 = 3032 

2.246 x 104 x 5.65 
6A-M with 3R-H 

05/106 = 12690 
25380 lE+l 1 2.538E-07 

X1 

Summation 4.490E-07 

Table 6.8-n/N ratio of 411-11 co-incident with other c lasses in the load spectrum 

(p), No. of 4R-H with other coincident 
n per year N 

n/N 
classes (2 x p) (Table 6.4) 

passes/year 

4R-H with 4R-H 
1.013 x 10 4x1.35 

2736 113+11 2.73613-08 
X 105/106 = 1368 

4R-H with 311-11 
1.013 x 104 X 5.65 

11446 113+11 1.14513-07 
X 105/106 = 5723 

Summation 1.418E-07 

Table 6.9-n/N ratio of 3R-H co-incident with other c lasses in the load spectrum 

3R-H with other 
(p), No. of 
coincident 

n per year N 
n/N 

classes (2 x p) (Table 6.4) 
passes/year 

3R-11 with 3R-11 
4.238 x 104 x 5.65 

47890 1E+11 4.78913-07 
X 105/106 = 23945 

Summation 4.789E-07 

PhD Thesis QMW [University of London] D. Pham-Thanh [November 19971 122 



This life span results reinforces the validity of the commercial vehicle wheel load 

spectrum tabulated in Table II of BS 5400: Part 10: 1980 (with the addition of the 44 

tons commercial vehicle type 6A-M). 

6.3.2 
_Plotting 

the fatigue test results on the assumed S-N diagram 

The fatigue test results of slab B2, B5 and B6 are now superimposed onto the analytical 
S-N diagram for analysis, see Figure 6.7. The tabulated results are re-presented as 
follows: 

Results extracted from Table 6.3 
Slab Failed at total number of pydes Higher fatigue load range level 

B2 0.81MCP 23% - 63% of SFL 

B5 0.457xl(P 30% - 70% of SFL 

B6 0.141x1OI 30% - 70% of SFL 
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Figure 6.7 - Superimposition of the experimental and analytical S-N curves. 
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Deductions from Figure 6.7 

A best fit straight line through the three experimental results points has a tendency to 

intersect the axis of armx as a percentage of crult at 100%, this result therefore appears to 

reflect the agreement between the assumed analytical S-N curves and the experimental 
S-N curves. 

The analytical prediction of the number of cycles to failure in Table 5.8 is clearly 

seen to be on the conservative side as shown in the following comparison 

Slab B2, 

Slab B5, 

Tested: 23%- 63% of SFL 

Failed: 0.817 x 106 cycles 

Table 5.8 predicted: 0.1 x 10 6 cycles 

Tested: 30% - 70% of SFL 
6 10-C Failed: 0.457 x 10 cycle. 

Table 5.8 predicted: 0.1 x 10 6 cycles 

Slab B6, 

Tested: 30% - 70% of SFL 

Failed: 0.141 X 106 cycles 

Table 5.8 predicted: 0.1 X 106 cycles 

The behaviour of the strengthened test slabs appear to follow the assumed S-N diagram 

and the modified Goodman diagram and therefore the implication is that, if the bridge is 

strengthened (i. e. strengthening factor >1) then under the current commercial vehicles 

and load spectrum of BS 5400: Part 10, the total expected life should at least be 

restored. The experimental results also show very similar fatigue behaviour to normal 

concrete, indicating very strongly that the strengthening technique has no detrimental 

effect in fatigue behaviour. 
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''I" i. CHAPTER 7 

HORIZONTAL SHEAR STUDY 

7.0 GENERAL 

One'of the most important factors required for this technique of strengthening to be 
I 

effective is that the composite action is maintained right up to failure. How well 

composite action is maintained depends on how well the additional sprayed concrete 
layer is bonded to the existing concrete member being strengthened i. e. the required 
horizontal shear capacity at the interface. 

The following sections present three experimental investigations which reveal 

the effectiveness of this strengthening technique as far as horizontal shear capacity is 

concerned under the loading conditions imposed. 

7.1 SLANT SHEAR TEST 

This test aims to assess the bond strength between two types of concrete by subjecting 

the bond interface to a combination of shear and compressive stresses. 

When a reinforced concrete member is sustaining a load, the high tensile 

strength of the reinforcement is mobilised by way of shear stresses in the concrete and 

shear stresses are also generated as a result of the elastic response of the concrete in the 

compressive zone. This regime of combined shear and compressive loading is very 

common in concrete structures. Therefore the shear properties of the bond strength 

would be representative of the bond strength assessment. 

7'. 1.1 Test preparation 
The specimens for this test were extracted from one of the load tested slabs without 

shear connectors and this was done by first cutting a large but manageable composite 
block from the test slab, the block was then accurately cut down to dimensions of 55 x 
55 x 150 min such that the substrate/sprayed concrete interface was at 30* to the 

longitudinal axis of the specimen and that no cracks or reinforcement were present. 
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Two test specimens and four control specimens (monolithic, base slab concrete) were 

prepared and tested in accordance with BS 6319: Part 4: 1985. Due to the high labour 

intensity required, it was only possible to extract two composite test specimens. 

7.1.2 Slant shear test results 
The specimens were tested and the results are tabulated in Table 7.1. 

Table 7.1 - Slant shear test results. 
Slant Shear Bond Strength (quoted as compressive strength) 

Composite Specimen Monolithic Specimen 

Specimen extracted from a tested slab Specimen extracted From a tested Slab 

Normal Mix Sprayed Concrete All Substrate Concrete 

Dimensions 55 x 55 x 150mm. Dimensions 55 x 55 x 150mm 

1 No. Specimen at 84 day age, failed at 
37.6 N/mM2 in compression 

4 Nos. Specimens at 19 month age 47.1 
N/mM2 average compression failure 

I No. Specimen at 21 month age, failed at 
2- 43.7 N/mm in compression 

The slant shear test results are quoted as the compressive strength - in accordance with 

BS 6319. 'The intention of recording the failure of the specimens in terms of 

compressive strength to assess the bond strength at the interface can be explained from 

the following principle of the code: 

Failure of the joint (at the substrate/sprayed concrete interface) at a stress of 

say, x N/mm2 before concrete failure occurs could be taken as an indication 

that the joining composition and procedure employed would only give 

monolithic failure of a composite prism if the hydraulic cement concrete 

was of compressive strength x N/mm. 2. 

In this work, monolithic failure of the composite prism was achieved as explained in 

section 7.1.3 (Mode of failure) and the compressive strength of the composite prism is 

25 percent less than the monolithic prism at the age of 84 days and 8 percent at 21 

months. 
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7.1.3 Mode offailure 

FigUres 7.1 and 7.2 show the test specimens before and after undergoing the slant shear 

test. It was found that oil i'allure oftlic test specimen the fracture lines were distributed 

uniformly and symmetrically rclative to the longitudinal axis of tile specimen and with 

fracture lines crossing the slanted interface in tile direction of the longitudinal axis of the 

specimen, a niodc of failure that WOUld be expected if a similar test specimen was 

fabricated monolidlically. Figure 7.2 also shows the fracture lines crossing the slanted 

interface in tile direction of' the longitudinal axis of the specimen. It therefore appears 

from the results ol'tliis tcst t1lat grit blasting as a nleans of surface preparation was more 

than adequate, as exti-cincly good bond was maintained at the SUbstrate/sprayed concrete 

interface. 

0 

Figure 7.1 - Slant shear test specimen before testing. 
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'A 
Figure 7.2 - Slant slicar Icst specimen at , ter testing. 

7.2 DOUBLESHEAR TEST 

This test aims to SHIIUIatC tile Shearing action between the sprayed concrete lager and the 

base concrete slab Under load. Although this test was not conducted in accordance with 

a specific code of practice, it is a test method adopted by a proprietary concrete 

Supplier - Master Builders TechnologIcs[44] to test the bond between tile substrate and a 

proprietary concrete for tile purpose of repair. 

In this test, a specimen (reI`errcd to as 'block') consists of three parts, a central 

part being sandwiched in between two Outer parts, where the central sandwiched part 

was cast with the sarne concrete as that in casting the base slab i. e. tile C35 Designed 

Ready Mixed concrete and the two outer parts were sprayed with tile nornial and the 

three proprietary sprayed concrete mixes which were used in the test slab i. e. 

Normal Mix 

Sikaccnil33 Mix 

Polypropylene Fibre Mix 

Steel Fibre Mix 
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Figure 7.3 shows the detail of it double shear test block. When tested, a load is applied 

to the central part ofthe specimen and the polystyrene on its underside will be squashed 

as the shearing actioji takes place and the central part moves down relative to the two 

outer sprayed concrete parts. 

100nim SPRA)'Fl) 

I 00mm BASE SLAB CONCRETE 

CONCRE'll 0., 1 00mm SPRAYED CONCRETE 

- 450mm 

350nini 

50min 

Figure 7.3 - Details ofa doLible shear test block (500mm overall length). 

This shearing action is similar to that taken place in the test slab and thus enabled a 
direct measure of the slicar pcrforniance at the substrate/sprayed concrete interface. 

Tile polystyreric piece in Figure 7.3 served to create the 50mm vertical travel for 

the central concrete part during spraying of the two outer parts and was of the soft grade 

polystyrene so that it (lid not resist load when the central part concrete was loaded. 

7.2.1 Test preparation 

Special timber shuttering was made and with the polystyrene in position as shown in 

Figure 7.4a, the ccntral precast concrete part (100 x 450 x 500mm) was then slotted into 

the shuttering (a typical central precast concrete outside the shuttering is also shown ill 
Figure 7.4a). 

With the precast concrete part in position in the shuttering, identical surface 
finishes were prepared oil both sides of the precast concrete - there were five different 

surface finishes: 
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Grit blasted 

As cast 
Scabbeled 

As cast with shear connectors 
Grit blasted with shear connectors. 

The number of shear connectors were exactly the same as in the test slabs i. e. TIO @ 

200c/c and in this case, four, over the surface area of the precast concrete (450 x 500 

mm) 

The set-up was then ready to be sprayed on both sides of the precast concrete. 
The spraying was done immediately following the spraying of the test slabs, to maintain 

the consistency in the spraying operation in the double shear test specimens as in the test 

slabs, a total of ten double shear blocks were produced. Figure 7.4b shows the concrete 

spraying of these blocks. After the concrete spraying, the curing was carried out in the 

same way as in the test slabs i. e. sprayed membrane of concure clear 90, see Figure 7.4c. 

Due to the large size of the test specimens and the required enclosure to contain the dust 

generated from the spraying operation, ten specimens were the maximum amount the 

lab could accommodate. 
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p 

re 7.4a - SIMUCI-111,11 I'm the sprayed concretc parts of the double shear block. 

PhD Thesis QAIIVII inin-rvitv ol Londonl 1). Phain-Thanh [November 19971 131 



1! 

1 

Figure 7.4c - CLintip , the sprayed concrete parts with a COIICUrc clear 90 mcnibrane. 

Figure 7.4 - Fabrication ofthe double shear test blocks. 

7.2.2 Double shear test results 

Of the ten specimens, one was discarded when the precast concrete part was darnaged t) I 

during liffing into the shuttering, the remaining nine were tested and the results are in 

Table 7.2 
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Table 7.2 - Double shear test results 

Type of Surface Preparation 

Grit Blasted Scabbled 
As cast with 

Shear 
Connectors 

As cast 
Grit Blastid- 
with Shear 
Connectors 

Bond Area (MM2 ) 300 x 500 300 x 500 300 x 500 300 x 500 300 x 500 

Age (days) 100 100 100 100 100 

Shear Stress at Failure (N/mm 
Normal 2.14(2) 1.69(2) 2.00 0.77 2.5 

Sikacern 133 5.93 - - - 
Steel Fiber 

- 
- 

Pohy Fiber 3.37 - - - - 
BS 8110: Prt 1: Cl 

5.4.7.2 
0.8 0.75 2 0.65 2.5 

Note: (2) indicates two identical specimens were test - average results quoted 

Table 7.2 shows that the perforinance of the normal mix sprayed concrete in bonding to 

the substrate concrete with different surface finishes is equivalent or exceeds the design 

ultimate horizontal shear stresses at the interface required by BS 8110: Part 1: 1985: cl 

5.4.7.2. 

7.2.3 Mode of failure 

Figure 7.5 shows the failure mode of the double shear block. Although as already 

mentioned that the entire test was not in accordance with a specific code of practice, the 

rate of loading applied to the specimens was taken from BS 1881: Part 120: 1983 

(Method of determination of the compression strength of concrete cores) and was 0.3 

N/(MM2 s)[27]. 

On examination of the concrete faces of the grit blast prepared specimens, it was 

seen that marginally more sprayed concrete was deposited on the substrate concrete and 

that the depth of concrete removed from either the substrate or the sprayed part was 5 to 

l0mm, indicating that by grit blasting the surface of the substrate concrete extremely 

good bond can be achieved. 
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Figure 7.5a -. 1ust al'ta failm-e. 

Figure 7.5 - Mode oftailure ol'a double shear test block. 
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7.3 HORIZONTAL SHEAR STUDY - DIRECT SHEAR TEST 

The American Society for testing and Materials standard D 905-89 states, "Standard 

Test Method for Strength Properties of Adhesive Bonds in Shear by Compression 

Loading" [45] can be used for the determination of the comparative shear strengths of 

adhesive bonds used for bonding wood and other similar materials, when tested on a 

standard specimen under specified conditions of preparation, conditioning and loading 

in compression. 

Although it is stated in this standard that this method of testing is intended 

primarily as an evaluation of adhesives for wood, it has also stated the suitability of the 

method for monitoring bonding generally. In view of this suitability and the simplicity 

in the experimental set up, the author has adopted the principle of this test method to 

evaluate the shear strength of the bond between the sprayed concrete and its substrate. 

The test being presented here is intended to a economical but effective means of 

evaluating the horizontal shear capacity at the substrate/sprayed concrete interface. It is 

simple to carry out and requires minimum labour from the initial stage of conng test 

specimens to finally shear testing them. Therefore it offers a useful and rapid field 

verification test. 

In this test, the composite concrete specimen with its sprayed portion (or its 

substrate portion) would be held rigidly in position in a clamp which is readily available 

in any mechanical testing laboratory. The positioning of the specimen is such that the 

plane of the substrate/sprayed concrete interface coincides with the plane of the shearing 

force. 

7.3.1 Test preparation 

From the load tested slabs, 75mm diameter cores were extracted by through drilling 

perpendicular to the horizontal plane of the slab, each core therefore has the 

substrate/sprayed concrete interface at mid-length. Figure 7.6 shows the extracted cores 
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Figure 7.6a - I'lirmitwh Drillin- to extract cores. 
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The cores were extracted fi-om the load tested slabs of the four concrete mixes used i. e. 

Nonnal Mix 

Slkacem 133 Mix 

Steel Fibre Mix 

Polypropylene Fibre Mix 

Monolithic core specimens from an all base slab concrete were also extracted for 

comparison. The cores were then trimmed down to prismatic shaped specimens for 

clamping into the shear loading device. 

The prepared cores are identical to those shown in FIgUre 7.7 but with reduced 

length Le. 25nim sprayed concrete and 50nini base slab concrete - The cores shown are 

those being used for 1'rcczc-tliaw testing. 
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Figure 7.7 - Pi-cpai-ed (firect slicar specimens. 
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After preparatioii , the spccimen wcrc then loaded III shear as shown III Flunlre 7.8. 

Figure 7.8 -A dii-cct slicar specimen being tested. 
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7.3.2 Direct shear results and mode of failure 

All cores failed at the interface as intended and the shear stresses at failure are tabulated 

as in Table 7.3 

Table 7.3 - Direct shear test results. 
Concrete Mix 

Sikacem Monolithic 
Nonnal Steel Fiber Poly Fiber 

133 Specimen 
No. of Specimens 3 4 3 4 4 

Age (months) 19 19 19 19 19 

Average failure 
2 shear stress (N/mm: ) 

2.44 3.59 2.84 2.77 3.98 

As % of Monolithic 
, 61.3 90.2 71.4 69.6 100.0 

Specimen I I I II 
-j 

All composite core specimens displayed very good bond with thcI failure shear stresses 

at the interface ranging from 90.2% of monolithic for the Sikacern 133 mix to 61.3% of 

monolithic for the normal mix (all cores have grit blast prepared interfaces - because 

they were extracted from the load tested slabs). The only results that could be compared 

are the normal mix core results of 2.44 N/mM2 which compare very well with the 

similar double shear test block results of 2.14 NIMM 2 (i. e. with normal mix and grit 
blasted preparation). 

The results from the direct shear test again shows that good bond between the 

sprayed concrete and its substrate was achieved with just grit blast surface preparation. 

It is not possible to compare the direct shear results with the slant shear results, 

which really are only useful for comparing different surface preparations and those are 

not much use to a designer who wishes to know what actual shear stress a particular 

type of interface will support which can be offered by the direct shear test 
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CHAPTER 8 

FREEZE - THAW DURABILITY 

8.0 GENERAL 

This chapter reports on the experimental investigation into the performance of the bond 

between the sprayed concrete layer and the precast concrete base slab when subjected to 

rapidly repeated cycles of freezing and thawing. 

The experimental investigation was conducted in accordance with ASTM C666- 

84, Procedure A: Rapid Freezing and Thawing in water[46]. However, it is pointed out 
that this standard is primarily for the determination of the resistance of monolithic 

concrete specimens to rapidly repeated cycles of freezing and thawing in the laboratory. 

For the purpose of this research work, only the test procedures of the standard were used 

and applied to composite core specimens extracted from the load tested slabs and the 

resistance of the cores to the rapidly repeated cycles of freezing and thawing was 

assessed in terms of the direct shear test results and the measured velocity of ultrasonic 

pulses (BS 8110: Part 203: 1987 [47]). 

The intention of measuring the velocity of ultrasonic pulses in the freezing and 
thawing cycles tested core was to enable the following items to be addressed: 
1. The detection of the presence and approximate extent of cracks, voids and other 

defects. 

2. The correlation of pulse velocity and strength as a measure of concrete quality. 

8.1 EXPERIMENTAL PREPARATION 

The test specimens to be used for this test were core specimens extracted from the load 

tested slabs at the same time as those core specimens for the direct shear test (Chapter 7, 

section 7.3.1) using the same approach i. e. drilling perpendicularly through the 
horizontal plan of the slab and trim the cores to prismatic dimension of 50 x 50 x 
100mm. (with the substrate/sprayed concrete interface at mid-length). 
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The Icngth of dic spccimcns was such that all composite specimens from tile 

fOUr mixcs can bc accommodated in tile freeze-thaw chamber i. e. 

Normal Mix (6 cores) 

Sikacem 133 Mix (6 cores) 

Sted Fibre Mix (5 cores) 

Polypropylene Fibre Mix (3 cores) 

Figure S. I show's the composite core specimens prepared for frcczc-tliaw cycle testing. 

Figure 8.1 - Speciniciis Im- Crcczc-thawing tcsting. 

The experimental procedures were carried out In accordance with ASTM C 666[46] test 

procedure A which states that, the number of cycles required in tills standard was 300 

cycles and the temperature limits required versus those achieved in the test are as shown 

in Figure 8.2. The Velocity of Ultrasonic Pulses[47] and length change in the test 

specimens were measured throughout the test duration. Oil completion of the freeze- 

thaw test, all specimens were subjected to the direct shear test (see chapter 7 for details 

of this test). 
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Figure 8.2 - Temperature profile for freeze-thaw testing. 
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8.2 EXIII]RINIENTAI. RFSULTS 

After 32 cycles of fi-ce/im, and thawing, all composite core specimens displayed 

initiation of concrctc disimcgration in the substrate lialf only, the sprayed concretes and 

interfaces wcrC UlliliTCOC(l. 

After a furtlicr 14 cycles, the entire test was terminated as severe disintegration 

of the substratc concretc occurred, see Figure 8.3. In the sprayed concrete, only the 

Normal nlix disintegrated badly as shown in Figure 8.4. 
1 

Figure 8.3 - Disintegration of' the substrate concrcte, progressing fi-oill tile end face 
(after 46 cycles) 

PhD Thesis OA, 111'fl lnivcrsiýl, qflondon] D. Phant-Atinh [November 1997] 144 



L 

Figure 8.4 - Normal mix spi-ayed conci-ctc tcsted (Icft) Lintestcd (right) 

4 

Due to the poor resistance of the base specimen particularly under freeze-thaw action, 

full assessment from the limited velocity of ultrasonic pulses data obtained, cannot be 

analysed. However, direct shear testing after the test ten-nination are surriniarised in 

Table S. 1. The test procedures are already described in section 7.3 of chapter 7. 

Where a freeze-thaw tested specimen had severe concrete disintegration, capping 

was carried out to niakc Lip Ior the lost concrete so that the specimen can be secured into 

the clamp of the direct shear test apparatus. 

Test specimen identification: 

Non-nal Mix: NOFT Ito NOFT6 

Slkacem 133 Mix: SKFTI to SKFT6 

Polypropylene Fibre Mix: POFT I to POFT3 

Steel Fibre Mix: STFTI to STFT5. 
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Table 8.1 - Direct shear test results. 
Specimens NOT tested for freeze-thaw (reproduced from Table 7.3) 

Nonnal 
Sikacem 

Steel Fibre Poly Fibre Monolithic 
133 Specimen 

No. of Specimens 3 4 3 4 4 
Age (months) 19 19 19 19 19 

Average failure 
2 

shear stress (N/rrun ) 
2.44 3.59 2.84 2.77 3.98 

As % of Monolithic 
61.3 90.2 71.4 69.6 100.0 Specimen I I I I L 

Specimens after 46 cycles of freezing and thawing 
No. of Specimens 6 6 5 3 - 

Age (months) 19 19 19 19 

Average failure 
2 

shear stress (N/mm 
1.47 1.6 1 1.08 

_j 

The rapidly repeated cycles of freezing and thawing of ASTM C666-84 have caused: 

1. Early deterioration of the base concrete and the Normal mix sprayed concrete. 

2. Sikacem 133, Polypropylene and Steel Fibre mixes displayed only slight surface 

deterioration. 

3. In all composite specimens, the disintegration progressed from the substrate concrete 

ends (see Figure 8.3), although the specimens were partially submerged in 3mm of 

water. 
4. Cracks were observed in most specimens but were at random as shown in Figure 8.4 

5. The stiffness of the normal concrete and the substrate concrete were almost lost as 

the body of the concrete can be chipped away by hand. 

6. Significant loss of the bond strength is as shown in the direct shear test result 

comparisons in Table 8.1, this was due to the cycles of freezing and thawing causing 

relative thermal deformation between the sprayed concrete and the substrate concrete. 

However, the normal and sikacern mixes retained their bond strength quite well, this 

is attributed to them having similar mechanical properties to those of the substrate 

concrete, see Table 8.2. 
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Table 8.2 - Some mechanical properties of Sikacern 133 and Normal mixes 

Concrete 
Coefficient of linear Static modulus of 
thermal expansion elasticity 

Normal mix 
12.6 x 10-6 /OC 

24.1 N/mM2 (Table 3.4) 

Sikacemm 133 mix 
8x 10-6 /OC 22.5 N/mM2 

(from supplier) (Table 3.4) 

Substrate concrete (C35) 12 x 10-6 /OC 27 N/mM2 
standard concrete (Neville[48]) (Kong & Evans[49]) 

The reported observations clearly show that the composite specimens cannot withstand 

the cycles of freezing and thawing of ASTM C666. However, the failure was largely 

due to early deterioration in the substrate concrete portion (which was of the standard 

ready mixed concrete C35) and therefore the results in this freeze-thaw testing should 

not penalise the long term durability assessment of the sprayed concrete. 

In a study reported by Reading[19] in which sprayed concrete specimens were exposed 

to cycles of freezing and thawing on site by placing them in the intertidal range of the 

river, where the typical exposure was about 250 cycles of freezing and thawing in every 

two years (reportedly a highly aggressive natural freezing and thawing conditions). The 

analysis of the test results from this site exposure showed that all sprayed concrete 

specimens performed considerably better than those equivalent specimens tested to 

ASTM C666, Procedure A- from which Reading concluded that: 

It is possible to produce both dry and wet mix sprayed concrete that will 

survive the highly aggressive natural freezing and thawing conditions on 

site. The ASTM S666 Procedure A, rapid freezing and thawing to 300 

cycles test, appears to be even more severe than some of the harshest 

freezing and thawing conditions existing in nature. 
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CHAPTER 9 

THE TIME DEPENDENT PROPERTIES 

9.0 GENERAL 

This chapter attempts to look into the time dependent properties of the strengthened slab 
by calculating the stresses in the composite section of the slab caused by the shrinkage 

and creep as a result of the strengthening sprayed concrete layer. 

First, an analytical approach is presented, which is then compared with the experimental 

results and finally a calculation is performed to indicate the practicality of this technique 

of strengthening and its potential use in view of the time dependent behaviour. 

9.1 ANALYTICAL STUDY OF THE TIME DEPENDENT PROPERTIES 

The related analytical studies already published by L. Yam[50] and D. W. Hobbs[51] 

are referred to and from these a deduction is made on an approach which best represents 

the behaviour of the strengthened slab under investigation in this research. 

9.1.1 Slab dimensioning 

Figure 9.1 below shows the cross-section of a metre strip of test slab B6 which was 

strengthened and was selected for the study being presented in this chapter. This test 

slab is also referred to as the composite slab. 

CoMC-TE � (A S4ß) 
- ______ 

0 ---O----O----0---O- -- _______ 

- 

CA, ce-E . (. sAe4ysi c, cETC) 

c: r 
-0-0--p 00 0-0-----0- - -_______ 

Figure 9.1 - Cross-section of the test slab. 
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D, 100 mm 
D2 75 mm 

d, 100 --15 - 3.5 = 81.5 mm 

d2=75 -25 -5 =45 mm 

205/30 6.83 (modular ratio) E, /Ec 

y2 = Ec2/E, 1 = 25/30 0.83 (modular ratio) 

A� = 193 mm2/m 

As2 = 393 mm2/m 

9.1.2 Section properties 
The cross-section of the composite slab is transformed into the equivalent cross-section 

shown in Figure 9.2, 

1>, 

l:: ' 

- 

Figure 9.2 - The equivalent transformed cross-section. 

Centroid of the composite section (y 

From Figure 9.2, 

y [0000 x 100) + (6.83 -1)193 + 0.83(1000 x. 75) + (6.83 -1)393] = (1000 x 100)(50) + 

(6.83 - 1)(193)(81.5) + (0.83)(1000)(75)(100 + 
75 

+ (6.83 - 1)(3 93)(100 + 45) 
L 
2) 

Y[1.657 x 10'] = 1.398 x 10' 

y= 84.41 mm, 
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Transformed equivalent areas 

52 A, = 1000 x 100= 1x 10 mm 
A2 = 0.83 [ 1000 x 75 ]= 62250 mný 

yj -I )A,, =(6.83 - 1)193 = 1125.19 mný 

yj -I )As2 =(6.83 - 1)393 = 2291.19 MM2 

Centroids of the individual concrete sections about the interface 

yj [[(1000 x 100) + (6.83 - 1)193]] = (1000 x 100 x 50) + (6.83 - 1)(15 + 3.5)193 

49.65 mm 

Y2 [[(1000 x 75)0.83 + (6.83 -1)393]] = (1000 x 75 x 0.83 x 37.5) + (6.83 -1)(45)393 

Y2 = 37.77 mm 

de ý- y1+ Y2 = 49.65 + 37.77 = 87.42 mm 

Second moment of areas about the centroidal axis 

From Figure 9.2, 

ic, -, ý 
(looox 1001) 

+ (6.83 - 1)(193)(49.65 - 183)' + (1000 x 100)(50 - 49.65) 
12 

7 1c2 = 8.44 x 10 = 

Ic2 -ý 

(1000 x 75') 
+ (6.83 - 1)(193)(45 - 37.77)' + (1000 x 75)(37.77 - 37 . 5)2 

12 
74 

Ic, -�,: 3.53 x 10 mm 

Young Is modulii 
E, 1 = 30,000 N/mm2 

E, 2 = 25,000 N/nim2 

Es = 205,000 N/mm 2 
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9.1.3 Yam's Theory 

In Yam's theory, the concept of free strain is considered for the strain at a point in the 

material which is free from stresses under the actions of 

1. Shrinkage 

2. Creep 

3. Temperature effect 

The composite section is assumed to be unstressed in the initial state and to have 

developed the following strains after a period of time 

ef = e,, + e. + e, 

where ef = free strain corresponding to zero stress 

e. = strain due to shrinkage 

ec = compressive strain due to creep 

et = strain due to decrease in temperature 

As time increases, deformation becomes more pronounced (relative deformation of base 

concrete and sprayed concrete) and provided the horizontal shear stress capacity at the 

interface is not exceeded, i. e. no slippage at the interface, the composite section is 

constrained against deformation and consequently the initial unstressed state has now 

become stressed due to this constraint. 

Therefore, if the composite section is free to deform, planes will remain plane, 

the deformation can be defined by an imposed uniform strain (due to axial compression) 

together with an imposed curvature due to pure bending about the neutral axis, provided 

there is no interface slippage: 

For equilibrium, the deformations are: 

eA uniform axial en at the neutral axis 

Cf = e,, (E., A, + Ac Ec 

Compression due to the free strain = Compression due to imposed axial strain 

oA curvature K 

Mf =K (I + a) (E, I, + E,; Ic 

Moment due to free strain = Imposed moment, hence curvature 
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where: 

cc composite stiffness factor 

e,, axial strain at neutral axis 
Es Young's Modulus of steel reinforcement 
Ec = Young's Modulus of concrete 
1, = Second moment of area of steel reinforcement 
Ic = Second moment of area of concrete. 

9.1.3.1 Stress parameters 

The composite factor (a) 

()c =[(Ec 
A c2 ,l 

Acl)(Ec2 c2)]x[ dý 
- Ecl Acl + Ec2Ac2 Ecl Ic, + Ec2 42 

1 

From Yam 's theory, a depends only on the section properties and shows the extent of 

the composite action and was derived from the assumption that full composite action is 

maintained between the two concretes. 

A� =bD, +(yl- 1 )Aý, 1 =( 1000)( 100)+(6.83-1)193 = 101125 mm 
Ac2 = bD2+ ( 71- 1 A2 =( 1000 )( 75 )+(6.83 -1 )393 = 7729 IMM2 

dc = 87.42 mm 

I,, = 8.44 x 10 7 
mm 

4 

74 lc2 = 3.53 x 10 mm 

Giving a, 

3 0000 x 10 1125 x 20000 x 77291 x 87.42 2 
(X = [(25000x 77291) +(30000x 101125)1 x [(30000x 8.44x 1()7) + (25000 x 3.53 x 107)] 

a=2.642 

Direct forces in the concrete (C) due to shrinkage of the sprayed layer 

The induced compressive force in the base slab due to the shrinkage of the sprayed 

concretes can be evaluated from Yam 's theory: 
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From longitudinal equilibrium, the tension in the shrinking concrete must be equal and 

opposite to this compression as, 

(E,,, Aj (E, 
2A. 2) e, 

(E, 
l Ac, + Ec2Ac2) (1 + CC) 

Where el = Free shrinkage strain, taken from L. J. Parrott[52]. 

el = 100 x 10 -6 

30000x 101 125x 25000x 77291 x 100 X 10-6 

[(30000x 101125) + (25000x 77291)] x [1+2.641 

C=- 32429 N 

9.1.3.2 Curvature due to shrinkage (K) 

Due to the shrinkage of the sprayed concrete layer, the composite slab will develop an 

upward curvature of, 

K= ae, 2.64 x 100 x 10-6 

(I +a) d, - (1 + 2.64) (87A2) 

K=0.83 x 10-6 

Elastic section modulii ( Z) 

The Z values are determined for the composite slab shown in Figure 9.3. 

-6 A SC S 4.4,8 co Arce4Z-7-- 

d .4 

CON ceE-IýE 
INly 

Figure 9.3 -Z value determination for the composite slab. 
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Top of the base concrete, 

Underside of the base concrete, 

Top of the sprayed concrete, 

Top of the sprayed concrete, 

icl 8.44 x 107 
106 1=3 zc, 

-= --=1.676 x 
a, 100-49.65 

ZC2 ý 

Icl 

- 
8.44 x 107 

a2 49.65 = 1.700 x 106 r=3 

ZC3 -'ý 

IC2 

- 
3.53 x 107 

a3 37.77 = 0.935 x 106 r=3 

-' 
IC2 3.53 x 107 

106 MM3 ZC4 
': 

a4 -75-37.77 - v. -., -ru X 

Stresses in the composite section - from L. Yam Is theory 

This calculation combines the direct stresses with the flexural stresses caused by the 

curvature. 

-C K Ec, Ic, 
(71 =-- 

Top of the base concrete, 
Acl ZCl 

X 10-7 107 

Cr 
32429 

- 
8.3 (8.44 x )30000 

= -0.93 N/ MM2 
101125 1.676 x 106 

-C K Ecl Ic, 
U2 =-+- 

Underside of the base concrete, 
Ael Zc2 

107 32429 8.3 x 10-7(8A4 x )30000 
2 

a2 = 10 1125 +' 1.700 x 106 =136N/mm 

K Ec2 IC2 

Top of the sprayed concrete, 

CT3 ""ý 
Ac2 - ZC3 

107 

a3 -'ý - 
32429 

- 
8.3 x 10-7 (353 x 

106 

)25000 

--1.2 N/ MM2 
77291 0.935 x 

Underside of the sprayed concrete, 
CK Ec2 ic2 

CF4 «2 -+ 
Ac2 Zc4 

32429 8.3 x 10-7 (3.5 3x 107 )25000 
n=2 CY4 ý- 

77291 + 0.948 x 106 -=0.36 N/ 
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In a later section of this chapter, the calculated stresses shall be superimposed on a stress 
diagram with those calculated from Hobbs' theory from which the significance of the 

stress values will be assessed and a recommended theory shall be presented. 

9.1.4 D. W. Hobbs'Theory 

9.1.4.1 Induced moment due to the shrinkage of the sprayed concrete 
Consider Figure 9.4, the sprayed concrete is first assumed to be free to shrink and this is 

only possible if the reinforcement and the substrate concrete are compressed by the 

fictitious forces are as follow: 

F, =cc A,. Ec 
,, -Fictitious 

force acting on the substrate concrete 

F2 -'ý Ccs . A,, . E. 
--Fictitious 

force acting on the upper level steel 
F3 -ý Ccs . As2 . E,, 

--Fictitious 
force acting on the lower level steel 

It is pointed out that these three forces are restraining the sprayed concrete from free 

shrinkage. Therefore the hypothetical fictitious forces are introduced to allow for the 

shrinkage of the sprayed concrete. 

When the three fictitious are released, the effect is equivalent to eccentric tensile 

forces: 

A,. E, 1 
F2 -": Ccs - Asl . E, 

F3 ý F-es . 
As2 

. 
Es 

being applied to the entire transformed area of the composite concrete section, at the 

steel levels and the substrate concrete's centroid, as shown below in Figure 9.4. 
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Figure 9.4 - D. W. Hobbs' Theory. 

The eccentric forces produce a bending moment and consequently a curvature of the 

composite concrete section. The bending moment produced by the shrinkage is: 

M=F, 
Iy-2 ]+F2[y-. 

dj - F3[DI +d2 -]Y 

Making the above substitution, 

M=ccs EcIA Y 
! I]+ scs Es Asj[y-djj -E;. Es As2[DI +d 2 11 - 

ý2 

P. hD Thesis QMW [University of London] D. Pham-Thanh [November 1997] 156 

ullvlýCORI-f P, ý5 rOAl-f A 7-10AI 
04'04HA 770A/ -71 (jC-7 7-0 



9.1.4.2 Curvature due shrinkage (K) 

K= 
[I + yj Mcs 

E02 lu 

Where y= The creep coefficient 

Making the substitution for M above 

[I+ylc,, AlEc, As, E, (-y 
-d 1) - E, A., 2(D, -d2 

K= Ec2lu 

Transforming all E(s) to E,, by applying the following modular ratios, 

E, 
and Y2 = 

Ec2 

Ec, Ec, 
E, yEc, EC2 = YA, 

Giving, 

Alry- 
R) 

+ (yj 
- I)AsI(y- dl) - 

(71 
- 1)A 2 , 2(DI +d 2 

X2 lu 

ecs = 100 X 10-6 assumed from Parrott 

y=2 from Paffott[52], assuming UK exposure and 80% relative 
humidity 

A, 1000 x 100 mm2 

A� 193 mm2 
A, 

2 = 393 mm 
2 

lu calculated as follows ( The uncracked. section assumed 

yj 6.83 

y2 0.83 

y= 84.41 mm. 
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d, = 81.5 mm 

d2 = 45 mm 

D, = 100 mm 

The second moment of area of the transformed uncracked section about the 
centroidal axis ( 1,, ) 

From Figure 9.4, 

looo x lool 
+(IOOxIOOO)(84.41-50)2 + (6.83 -1) 193 (84.41- 8 1.5)2 

12 

(6.83 - 1) 3 93 (145 - 84A 1)2 +0.83 
1000 x 75 3+ 

(0.83 x 1000 x 75) 
(100 

+ 
75 

- 84A 12 
12 2 

4 Iu = 4.15 x 108 rM 

Therefore giving K: 

K 
(1 + 2)100 x 1()-6 [l x 105(84A1 - 50) + 5.83 x 193(84A1 - 81.5) - 5.83 x 393(100 + 45 - 84A)' 

0.83(4.15 x 10') 

K= (I + 2) 0.96 x 10-6 

K=2.88 x 10-6 

Stresses in the composite section - From Hobbs' theory 

Note that in the following stress equations, the physical parameters based from Yam 's 

theory and the critical curvature K is from Hobbs': 

-C KEc, Ic 
CY I =-- 

Top of the base concrete, 
Ac, ZC1 

32429 2.88 x 10-6 (8.44 x 10 7 )30000 
al = ---t. 03N/mm 2 

101125 1.676 x 106 

-C K Ecl Ic, 

Underside of the base concrete, 
a2 Acl 

+ 
Zc2 

10-6 107 32429 2.88 x (8A4 x )30000 
rnM2 CF2 

101125 ' 1.700 x 106 -4.61 N 
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CK Ec2 IC2 

CF3 =-- 

Top of the sprayed concrete, 
Ac zC 

10-6 107 
-32429 2.88 x (3.53 x )25000 

3.14 N/ n=2 (73 = 
77291 - 0.935 x 106 

Underside of the sprayed concrete, 
CK Ec2 Ic2 

(74 -+- 
Ac2 Zc4 

-32429 2.88 x 10-6 (3.53 x 107 )25000 
CT4 

77291 + 0.948 x 106 -2 . 26 N/ rnM2 

9.1.5 Shrinkage stresses using Yam Is theory with effective E value 

An immediate comparison can be made between K=0.83 x 10-6 from Yam 's theory 

(section 9.1.3.2) and K=2.88 x 10-6 from Hobbs' (section 9.1.4.2) which contains the 

creep coefficient y=2, clearly the K value from Hobbs' is sensitive to Y. Returning to 

Yam's theory and using the effective (or long term) E value of the base concrete, the 

value of which is a recommendation of BS 8110: Part 2: cl 3.6 [13] as, 

Eeff -= 
Econcrete 

I+y 

Assuming y=I so that E, ff = 0.5 x Econacte and this is the accepted practice in design 

offices. With this effective E value, the following parameters were re-calculated 

E, l = 15000 N/mm2 
E, 2 = 25000 N/MM2 

C= -21529 N 
2 

A� = 102445 MM 
Aý2 = 79979 mm2 
K=0.8 xIO -6 

I, 1 = 8.57 x 10 7 rrln, 4 

42 = 3.53 x 107 nM4 
Z, 63 

,l=1.689 x 10 mm 

Ze2 = 1.74 x 10 6 mm 3 

Zc3 = 0.934 x 10 6 
mm 

3 

Zc4 = 0.949 x 10 6 
rm 

3 

K Ec, Ic, 
Crl =-- 

Top of the base concrete, 
Ac, ZCl 

10-7 107)15000 
Cr = 

21529 
- 

8.6 x (857 x 
r=2 1 102445 1.689 x 106 0.44 N 
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CK Ec2 ic2 
+ 4 Ac2 Zc4 

Cr4 «ý -« 
21529 

+ 
8.6 x 10-7 (3.53 x 107 )25000 

= 033 N/ n=2 79979 0.949 x 106 

9.1.6 The recommended theory in predicting shrinkaae stresses 

Underside of the base concrete, 

-C K Ec, Ic, 
a2 

Ac, 
+ 

Zc2 

21529 8.6 x 10-7 (857 x 107)15000 

MM2 a2 
102445 +' 1.74 x 106 -=0.85 N 

K Ec2 lc2 

a3 ý-- 
Ac2 ZO 

Top of the sprayed concrete, 
21529 8.6 x 10-7 (3.53 x 107 )25000 

8N/ n=2 Cr3 ý- -- -' "I 
79979 0.934 x 106 

1-0 

Underside of the sprayed concrete, 

First, the stresses in the composite concrete slab due to shrinkage of the sprayed 

concrete layer, predicted from Yam, Hobbs and Yam 's with effective E values are 

superimposed as shown in Figure 9.5. The following table summarises the calculated 

stresses. 

Table 9.1 - Three thoeretical calculations of shrinkage stresses 

Theory 
Cri 

(N/=Tý) 
CF2 

(N/MM2) 

a3 

(N/MM2) 

G4 

(N/nmý) 

L. Yam -0.93 1.56 -1.2 0.36 

Hobbs, Y=0 -1.12 1.75 -1.33 0.47 

Hobbs, Y=1 -2.57 3.18 -2.24 1.36 

Hobbs, Y=2 -4.02 4.61 -3.14 2.26 

L. Yam (with effective E value) -0.44 0.85 -1.08 0.53 

It can be seen from Table 9.1 that the use of y in Hobbs' equation seems to cause too 

large a change in the curvature K. However, using Yam 's theory with the effective E 

value only causes a small change in the K value. Therefore Yam 's theory appears 

suitable to be used for calculation of stresses in the composite section due to the 

shrinkage of the sprayed concrete layer. 
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9.2 EXPERIMENTAL INTERFACE STRESSES 

This section presents the stresses7 calculdted at the interface between the base concrete 

and the sprayed concrete of the test slab, using the strain measured experimentally. 

9.2.1 Experimental set up for strain measurement 
As time did not permit an elaborate set up of this experiment, it was kept relatively 

simple. Test slab B6 was selected for the strain gauge attachment and this was made 

after the R-C base concrete slab was removed from its casting mould. 

A total of six Mortar/Concrete Embedded type strain gauges were attached to the 

I base concrete slab; three on the top face and three on the underside, this is shown in 

Figure 9.6. 

Recesses were made in the slab to accommodate the strain gauges and they were 

then properly sealed into position by applying a cover to the gauges of grout. This grout 

also served to protect the gauges from the abrasive action of the grit blasting process. 

Figure 9.7 shows a strain gauge purposely exposed for observation from the underside 

of the base slab just before the concrete spraying process ( note the grit-blasted finish of 

the base concrete 's underside and the attachment of the reinforcement for the sprayed 

concrete layer ) 

111,12> - S; DA IV 

17- 
.3 

71- 7- 

13A ZZ- -S 4 A-23 
CoNCR, 

--- 
Te 

1,5,8,1 Bu 
SP, e, 4 %/ £: 
c-c: lw CA4-'--7-Z 

" EQu4LL, p4cz 

Figure 9.6 - Positions of the strain gauges on the base concrete slab. 
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Figure 9.7 -A prepared stram gauge attachment, 'List before the concrete spraying 
proccss (lookin- Irom below soffit). 

All the strain gauges were connected to a strain gaUge monitor and the readings were 1- 1) ID 
taken immediately after the reqUired sprayed concrete thickness was achieved. 

Readings were subseqUently taken at 24-hour intervals over a period of two and a half 

months. 

Table 9.2 shows the effective strain readings over this period at different points 

of attachment, bascd on the following conversion fOMILIla (from the strain gauge 

manu factUrcr), 

Where: 

4x Výw 
VxK 

e= Strain in nucrostrain 

V(), It = Output voltage in microVolts 

V Excitation voltage or bridge voltage 

K Gauge factor 
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Table 9.2 - Effective strain in the strengthened test slab 
Gauge 
Position 

Vout (mV ) Gauge Factor 
Excitation 

Voltage (V 
Effective strain 
at 2.5 months 

T, 0.92 1.8 5 4.09 x 104 

B, 0.88 1.8 5 3.91 x 10 -4 

T2 1-09 1.8 5 4.84 x 10 -4 

B2 0.78 1.8 5 3.47 x 104 

T3 0.86 1.8 5 3.82 x 10-4 

B3 0.76 1 1.8 15 1 3.38 x 10 -4 1 

9.2.2 Interface stress calculation from experimental strain 

Using the simple relationship, 

cr E=- 
c 

Where: 

E= The effective E value 

c= The maximum strain at the interface from Table 9.2. 

a=Exe 
Cyinterface = 15000 x (3.91 x 10-4) 

2 
Crinterface = 5.9 N/MM 

Clearly, there is a large difference in comparing this figure and those calculated 

analytically in Table 9.1 and as a result the author decided not to pursue this discussion 

further. However, an explanation for this difference is now presented: 

Although the gauges used were of the correct type and were properly 

attached to the test slabs, the apparatus used and the setting up to record the 

strains were inadequate and perhaps incompatible. 

The tight preparation schedule leading up to the arrival of the outside 

contractor (Structural Repairs Limited) for the major spraying concrete 

operation in the laboratory did not allow sufficient time to arrange for a 

compatible data acquisition system for strain gauge measurement. 
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9.3 PRACTICAL APPLICATION OF THE RECOMMENDED THEORY 

This section intends to show the application of the recommended theory in calculating 
the flexural stresses developed in a structural concrete member due to shrinkage, after 

strengthening using the technique being researched here and thereby indicates the 

practicality of this technique of strengthening. 

The calculation is based on the strengthened two lane single carriageway bridge 

modelled in chapter 5. 

In order to perform the calculation, a practical layer of reinforced sprayed 

concrete shall be used and that the composite action that it provides will result in the 

30% strengthening factor in the strengthened bridge which was assumed originally to be 

30% short of the capacity to carry the new EC load requirement on highway bridges of 

40 tons. 

It is pointed out that the figure 30% is in fact the general upper bound 

strengthening factor to which bridges in the UK that were found to have failed the 40 

tons load capacity criterion and were subsequently strengthened. It is stressed however, 

that the 30% figure is by no means the strengthening factor to which bridges in the UK 

are being strengthened to, but it is the general figure according to practising consulting 

engineers. 

9.3.1 Additional moment capacity required 

From QSE grillage analysis of the two-lane single carriageway, in Appendix E, the total 

maximum design at ULS is: 

M= 
2157 

KNm /m width of the bridge 
2.06 

M= 1047 KNm /m width of the bridge 

Assuming that the bridge being modelled is 30% under-strength so that its existing 

strength is: 

M= 
1047 

KNm /m width of the bridge 
1.3 

M= 805 KNm /m width of the bridge 
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The additional moment capacity required is: 

Madd -ý 1048 - 805 kNm/m 

Madd = 242 kNm/m 

The designed reinforced sprayed concrete layer is to resist this additional moment and 

therefore the resulting composite action in the strengthened bridge shall replace the 

30 % under-strength. 

9.3.2 Designing the reinforced sprayed concrete layer 

The following calculation is based on BS 8110: Part 1: 1985: Cl 3.4.4.4, 

The existing moment capacity of the bridge is 805 kNm/m width. 

Assuming 32 mm 0 bars and 50 mm cover to main bars. 

32 
d=750- 50- - =684 mm 2 

f= 30 N/mm2 cu 
m 

--805x 
106 

- K= 2f 2 bd 
cu 

1000 x 684 x 30 

K=0.057 < KI = 0.156 

Therefore singly reinforcement provision is OK. 

z=d0.5 + 
FO. 

25 - TK*' 
1 

.9 

z= 684 0.5 + 0.25 - 
0.057 1 

0.9 

z= 637 mm not greater than 0.95d = 0.95 x 684 = 650 mm 
z= 637 mm 

m 
A 

0.87fz 

A 
805 x 106 

0.87x46Ox637 
As 3162 rnnlý /m 
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m 
Total tension force =- 

z 
805 

0.93 x 0.684 

= 1265.5 kN/m 

Total tension force = Total compression force 

Depth of stress block = 
1265.5 

OA5x 30x 1000 

Depth of stress block = 93.7 mm, as shown in Figure 9.8 

The stress block, 

This is based on the yield conditions of the base concrete and its tension reinforcement, 

assumed 32 mm. 0 bars., 

0 
Ln 

Figure 9.8 - Stress block being used. 

Reinforcement in the sprayed concrete layer, 

0.4 s-, 6Aý- i 

The moment to be resisted by this layer is 242 kNm/rn width. 

Assuming, 

10 mm 0 tension bars 

85 mm sprayed concrete layer thickness. 

d=750+85-50-10=775m . 
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Assuming, 

10 mm 0 tension bars 

85 mm sprayed concrete layer thickness. 

d= 750 + 85 - 50 - 10 = 775m 

Increase the stress block to say, 120 mm 

z, = 684 - 60 = 624-Reinf t in the existing bridge slab 

Z2 = 775 - 60 = 715--------Reinf t in the sprayed concrete 

strengthening layer. 

Mt,, t,,, = 1048 kNni/m 

Mt,, w, = 1265.5 z, + T2 z2 

1048 = 1265.5 (0.624) + T2 (0.715) 

T2 361.3 KN/m 

T2 0.87 fy A. 

A 
3613 x 1000 

- 0.87 x 460 
As 903 MM2 /M 

Provide in the sprayed concrete strengthening layer B1131 structural mesh 

reinforcement. 

9.3.3 Designing the reinforcement in the modelled bridge 

The reinforcement was designed in accordance with BS 8110. The calculations were 

similar to those presented in Appendix C. I 

/a )VO. ýOoa ely 9ý- vo., z: >m 

ii HH 
/ 0, .3 Co /y" 

C sp. 1, v ý. z 15 4f 
000 /Yly) 

Figure 9.9 - Cross section of the two. lane single carriageway. 
From figure 9.9, 

Tension Reinforcement = 68 T32 @ 150c/c 

PhD Thesis QMW[University ofLondon] D. Pham-Thanh [November 19971 168 



V0- ftV 7-AlE 

1, , 

Figure 9.10 -A metre width of the bridge in cross section. 

9.3.4 Predicting the shrinkage stresses on the strengthened modelled bridge 

From section 9.3.3, the modelled single lane single carriageway is strengthened as 

shown in Figure 9.11, 

N 

57/3/ /1E'H RE/, vpo&cE, 1fe, v7 
NC4PJ4TEZ /A/ c5Pt1 

I 

Of SP4JE2, CONCE7 

f4' . r3P/1N - 

Figure 9.11 - Strengthening of the single lane single carriageway. 

The shrinkage stresses are being predicted and presented as follows using the 

recommended theory as investigated in section 9.1.6 - Yam's theory. 
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Known parameters 

Figure 9.12 - Cross section per metre width. 

From Figure 9.12, 

COA1C, ez, r, 2---l" 'f 

0a 

! ction per metre width. 

D, = 750 mm 
D2 = 85 mm 

d, = 750 - 50 - 16 - 16 = 668 mm 

d, =85 -50-6=29 mm 

y, = Eý/E, 1 = 205/(25*0.5) = 16.4 

y2 = Ec2/Ecl = 25/(25*0.5) =2 

A� = 5630 mm 2/m 

As2 = 1131 mm 2/M 

Ec 2 12500 N/mm 
2 Ec2 25Q00 N/mm 

Es = 205000 NIMM 2 

Centroid of the transformed section (y 

SIIPIQ A VIED C CWCR Em 

0 

d 

Figure 9.13 - Centroidal position. 
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From Figure 9.13, 

y[(100x 750) -(7rx200') +(16.4- 1) x5630+ (lOOOx85x2) + (16.4-1) x 1131] 

=[(lOOOx75O)-(7rx2oo2)lx375+[(16A-I)x563Ox668]+ 2xlOOOx85x(750+ 
85)] 1 L2 

[(16.4-1) x 1131x(750+29)] 

y(898456) = 4.403 x 10' 

y= 490 mm 

Transformed equivalent areas 
A, = (1000 x 750) - (7t x 200 2)=6.243 x 105MM2 

A2 =2 (1000 x 85) = 1.7 x 105 nun2 
(y, - 1)A, l = (16.4 - 1) (5630) = 8.67 x 10 4 rnm 2 

(y, - I)AS2 = (16.4 - 1) (113 1) = 1.74 x 104 mm2 

Individual centroids of the transformed areas about the base/sprayed concrete 

interface, 

50) 
y[(1000 x 750) -(n x 200') +(16.4-1)5630] =[(1000 x 750) -(n x 200' i )5 l(22 

+(16.4-1) (5630x82) 

y, = 339 mm 

y[(lOOOx85x2)+(16.4-1)11311= lOOOx85x2x 
85) 

+ (16.4 - 1) (1131 x 56) 
L2 

y2 ": 43.75 mm 

de = 339 + 44 = 383 nim 

Second moment of areas about the centroidal axes of individual concretes 

ict " 
(1000 x 75 03) 

64 + (I 6A - 1)(5630)(339 - 
82)2 + (1000 x 750)(375 - 33 9)2 

12 

= 4.044 x 10'0 nim 

lei ý-- 

(1000 X 853) 
- 

(1000 x 85) (43.75 
- 42 

. 
5)2+ (16.4 

- 1) (1131) (43.75 
- 56)2 

12 

= 5.392 x 107 mm4 
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Force in the shrinking concrete (C) 

Similar to section 9.1.3.1, first calculate the composite factor (a), 

E, j = 12500 Nlnmý (effective E value) 
Ec2 = 25000 N/mm2 

1,1 = 4.044 x 10 10 mm 4 

Ic2 = 5.392 x 10 7 nln, 4 

Ac 2+ (yl-l)Al = [(1000 x 750)-7c(200)2] +(16.4- ,, = [bD, - 7c(200) 
1)(5630) = 7.11 x 10 5 

mm 
2 

Ac2 = bD2 + (y, -I)A, 2 = (1000 x 85) + (16.4-1)(1131) = 1.024 x 105 

mm 2 

d,: = 383 mm 

Cc 
E,, A,, E, 

2A. 2 
dC2 

E,, A, l A 
cl cl +E +E4r2 

c2 E1 c21c2 

(x =[ 
(12500)(7.11 x IOS) (2500)(1.024 x 105) 383 2X 

107) (12500)(7.11 x 105) + (2500)(1.024 x 105 ý11 (12500)(4.04 x 10'0) + (25000)(5.392 

1 

0.575 

Substituting for a, C is as follows, 

(Ec, Acl Ec2AC2) ei 
(Ec, Acl + Ec2Ac2) (1 + a) 

(12500)(7.11 x lO') (25000)(1.024 x 105)100 X 10-6 

[(12500)(7.11 x 10') + (25000)(1.024 x 10')] (1 + 0.575) 

C=- 126191 N 

Curvature due to shrinkage 
Due to the shrinkage of the sprayed concrete layer, the composite slab will develop an 
upward curvature of, (assuming the shrinkage strain e, = 100 x 10-6 ) 
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cc e, 0575x 100x 10-6 
(1 + oc)d, - (I + 0.575) (383) 

K=0.0953 x 10-6 * 

Elastic section modulii (Z 

y, = 339 mm 
y2 43.75 m 

al 750 - 339 = 411 mm 

a2 = 339 mm 

a3 = 43.75 mm 

a4 = 85 - 43.75 = 41.25 mm 

Top of the base concrete, 

Underside of the base concrete, 

Top of the sprayed concrete, 

Underside of the sprayed concrete, 

zei ý 
L, ,-4.044 x 1()7 

107 nun3 

a, 411 

1', 4.044 x 10 ZC2 ý-=1.193 x 10' mm' a2 339 

Zc3 -"ý 

IC2 

- 
5.392 x 107 

- 1232 x 106 MM3 
a3 43.75 

Ze4 2- 

IC2 

- 
5.392 x 107 

- 1.30 7x 106 mm3 
a4 41.25 

Stresses due to shrinkage in the composite section 
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From Figure 9.14 



Top of the base concrete, 

-C K Ec, Ic, 
Ac, Zcl 

126191 9332 x 10-8(4.04 x 10'0)12500 

. 11 x lcý . 11 x lcý 9.84 x 107 -- 03 1N/ MM2 

Underside of the base concrete, 

Cr2 = -C +K 
Ec, Ic, 

Ac, Zc2 

126191 9.532 x 10-8(4.04 x 1010)12500 
r=2 CF2 -ý T-11 

X 1-05 
+ 

1.19 x 108 - 058 N 

Top of the sprayed concrete, 
CK Ec2 lc2 

Cr3 ý-- -- 
Ac2 ZO 

a3 -126191 9332 x 10-'(5.39 x 107)25000 
1.34 N/ r=2 "ý T. 024 xTO - 123 x 106 

Underside of the sprayed concrete, 

U4 =C+K 

Ec2 lc2 

Ac2 Zc4 

-126191 9532 x 10-8(5.39 x 107 )25000 
1.13 N/ mm2 CF4 =T. 02xIO' + 1.31 x 106 

On comparison with the allowed tensile stresses for pre-stressed concrete detailed in 

Table 5.4 of BS 8110: Part 1: 1985, cl 5.4.6.2.1, the above calculated figures are 

perfectly acceptable and should not cause cracking anywhere in the sprayed concrete 
layer or at the top of the base slab. The use of L. Yam 's theory to predict the induced 

stresses due to the shrinkage of the strengthening layer of reinforced sprayed concrete is 

therefore recommended. 
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CHAPTER10 

DISCUSSIONS, CONCLUSIONS AND 
RECOMMENDATIONS 

10.1 DISCUSSIONS 

10.1.1 Static load tests 

The load deflection behaviour of all test slabs was found to be very similar to the 

normally reinforced concrete base slab, see Figure 4.15, indicating that the use of a 

standard design code such as BS 8110 is acceptable. The differences indicated up to 

first yield between the normal mix and the proprietary mix test slabs where the former 

exhibited a steeper initial elastic part with a distinct yield point, compared with a more 

gradual transition for the latter, are perhaps explained by the lower E values for the 

proprietary mixes compared to the normal mix, see Table 3.4. However, after first yield 

all test slabs behave in a similar way. 

Strength increase as a result of the strengthening process has been clearly demonstrated 

with all test slabs maintaining full composite action right up to failure. This significant 
improvement can be seen in Table 4.2 where the strengthened slab B1 of 212.8 kN is 

nearly eight times stronger than the unstrengthened slab of 27 kN 

It was found that the use of shear connectors has not caused any strength enhancement 

and this is reflected in the comparison of similar test slabs in Table 4.2 i. e. A2 & A3 and 
A4, A5 & B4. Also, the use of shear connectors is not necessary in maintaining the full 

composite action as perfect bond was maintained between the sprayed concrete layer 

and its base slab even when the interface was subjected to much higher horizontal shear 
by significantly increasing the reinforcement in the sprayed concrete layer. As seen in 

slabs B3 and BI with the reinforcement in the sprayed concrete layer up to nearly three 

times and four times that in the base slab respectively. 
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Table 4.2 shows that all test slabs failed at greater flexural strength than theoretically 

predicted from a standard code, in this case BS 8110 with the ratio of the experimental 
to theoretical ranging from 1.20 to 1.53. This is attributed to several factors already 
discussed in section 4.2.2 and these are; a breaking strength of the reinforcement being 

1.42 times the design strength used in the calculations; a greater rate of loading of the 

reinforcement in the slab testing compared with the reinforcement testing in air and to a 

small extent, the higher cube strength of the base concrete compared with the design 

value. However, the ratio of experimental to theoretical flexural strength of 1.07 found 

for slab A4 is possibly due to weakness caused by the spot welding of the mesh 

reinforcement, torsion induced due to non-planeness of the slab at the support ends and 

possible variation in density of the sprayed concrete around the reinforcement bars. 

A significant increase in flexural strength above that of the base slab can be seen for all 

test slabs in Table 4.2. 

All test slabs displayed multiple flexural cracks and a flexural failure mode occurred 

when one of these widened under the increasing load and then propagated across the 

substrate/sprayed concrete interface into the base slab. 

Although, the test slabs were under-reinforced with the total area of steel ranging from 

0.19 to 0.56, the flexural failure was explosive with the test slabs broken into two halves 

when the tension steel failed except for slab A5 which failed in a ductile manner and 

remained intact. On examination of all test slabs which broke into two halves, 

particularly the B- type slabs which had no shear connectors and had high 

reinforcement in the sprayed concrete layer (to subject the interface to high horizontal 

shear), it was found that there was a 'clear' failure without any sign of debonding at the 

interface. On examination of slab A5 which remained intact, again showed no sign of 
debonding at the interface as the flexural crack which led to the failure of the slab 

crossed it. 

It appears from the static tests, that grit blasting without the use of shear connectors was 

a sufficient means of surface preparation to the substrate concrete, to enable full 

composite action to be maintained right up to failure. Also, proprietary concrete mixes 
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did not perform better than nonnal concrete mix in terms of load carrying capacity. 
However, the mechanical properties from Table 3.4 and freeze-thaw durability are 

relatively better for the proprietary mixes than normal mix. Therefore, the performance 

of this technique of strengthening is not dependent on of the type of sprayed concrete 

mix if exposure to severe weathering is not anticipated. 

10.1.2 Fatigue load test 

All fatigue tested slabs failed in flexure and broke into two halves due to failure of the 

reinforcement. No sign of debonding at the interface was observed. 

The behaviour of the composite slabs was found to be very similar to a normal 

reinforced concrete member as indicated by the deflection versus number of load cycle 

curves of Figures 6.3 to 6.5 and that in a normal concrete bridge, fatigue is not a major 

problem. 

The analytical Table 5.8 tabulates the load range versus the expected number of cycles 

to failure which was established from the assumed S-N diagram and the modified 

Goodman diagram. Section 6.3.2 reports the fatigue load test data comparison and this 

indicates that Table 5.8 is conservative. 

A fatigue load study carried out for a typical two lane single carriageway highway 

bridge using Miner's summation hypothesis to verify that the summation of the ratios of 

n to N is less than one, in which (n) is the number of load passes and was obtained from 

the updated current commercial axle load spectrum of BS 5400: Part 10 together with 

LR 252 to account for overloadings from the 15% commercial vehicle coincidence and 

(N) is the number of load repetitions causing failure and was obtained from Table 5.8, 

showed that Miner's summation is less than one, implying that under the current 

commercial axle spectrum, the typical highway bridge under consideration is still 

adequate in its load'carrying capacity and that its total life expectancy is 922 years. 

More significant to this research is that as shown in section 6.3.2 the S-N curve of the 

experimental fatigue data closely follows the analytical curves and together with the 

finding of similarity in behaviour to a normally reinforced concrete member, it is 
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reasonably confident to forecast that if this technique is used, the strengthened bridge 

would have its original design life of 120 years restored with adequate capacity to carry 

to the current commercial axle load spectrum. 

Possible concern that the high longitudinal shear stress concentrations at the re-entrant 

comer at each end of the sprayed concrete layer, might cause peeling off of this layer at 

the ends has been shown to be unfounded. 

10.1.3 Horizontal shear study 

The slant shear test 

This test appears to be suitable as a means of comparison in which the slant shear bond 

strength of the composite specimen is expressed in terms of the compressive strength 

and compared with the compressive strength of the identical monolithic specimen. 

Although the slant shear bond strengths obtained from Table 7.1 can be multiplied by 

f(cos 30*)x(sin 300)), giving 16.3 N/mm2 at 84 days and 18.9 N/mm2 at 21 months. 

These are the component stresses acting along the 300 slanted interface, but these are 

not the true shear stresses that occur at the substrate/sprayed concrete interface and 

therefore cannot be compared with the results of the double shear and direct shear tests, 

described in later sections of this chapter. 

However, the author would stress that the slant shear test is a useful comparative test 

and should be undertaken to assess the bond strength of the sprayed concrete layer to its 

substrate. In this research, the assessment has shown that monolithic compression 

failure of the composite specimens were observed as shown in Figures 7.1 and 7.2. 

suggesting that there was extremely good bond between the sprayed concrete and its 

substrate when the interface was grit blast prepared. The slant shear bond strength of 

the composite specimen was 25 % less than the monolithic specimen at 84 days and 8% 

less at 21 months. This difference is due to the lower strength in the sprayed concrete 

compared with the substrate concrete, see section 3.3.1 for the results of the pull-off test. 
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The double shear test 

This shear test is believed to be the best simulation of the shearing action in the test 

slabs and from the results shown in Table 7.2, it can be seen that the bond of the normal 

mix sprayed concrete to its grit blast prepared substrate was extremely good, comparing 

well with the values given in BS 8110: Part 1: cl 5.4.7.2. However, it could be argued 

that this result may not be truly representative of the actual horizontal shear capacity 
developed in the test slabs, because of the horizontal spraying direction of the shear 

blocks as opposed to the overhead spraying direction in the test slabs. However, the 

results given in Table 3.4 for compressive strength and tensile splitting strength showed 

that there is no difference in the quality of the sprayed concrete whether, sprayed 

overhead or horizontally. 

The author would stress that this should be a compulsory test to measure the shear 

capacity at the substrate/sprayed concrete interface. 

Direct shear test 

This is another test that closely simulated the shearing action in the test slabs. The 

results from Table 7.3 show that extremely good bond had been achieved at the 

substrate/sprayed concrete interface with the shear capacity of the normal mix sprayed 

concrete specimen 61% that of the monolithic specimen and much higher than that from 

BS 8110 reproduced in Table 7.2. The possible factors contributing to this difference 

are: 
1. Relatively lower base concrete quality at the soffit level compared to that at the 

middle level of the base slab where the shear plane of the monolithic specimen was 

taken. 

2. Some pre-stress was set up in the base concrete near the interface due to the 

shrinkage of the sprayed concrete layer. 

From the extremely good bond of the sprayed concrete layer to its substrate concrete, as 
demonstrated from the results of the discussed three shear tests, it can now be concluded 

that the formation of the 5mm 'dark' layer near the interface as reported from the 

petrographic examination, section 3.3.3 , has no detrimental effect to the strengthening 

reinforced sprayed concrete and that this was a part of the spraying process. 

PhD Thesis QMW[University ofLondon] D. Pham-Thanh [November 19971 179 



10.1.4 Freeze-thaw durability 

As reported in Chapter 8 that very limited data from this test was obtained and this was 
due to the early deterioration of the base concrete and the normal mix sprayed concrete. 
The early deterioration was largely due to the very severe testing conditions of the 
ASTM C666 used, as also found by Morgan[53). 

From the results of this test, it was observed that if in addition to the load carrying 

capacity requirement, there is a likelihood of severe freeze-thaw weathering, then the 

use of proprietary concrete mix is recommended otherwise, normal mix concrete is 

adequate. If the use of proprietary mix is necessary, it is recommended that mechanical 

properties such as the coefficient of linear thermal expansion and the static modulus of 

elasticity should be similar to those in the substrate concrete in order to minimise the 

relative deformation which may reduce the bond at the interface as reported in section 
8.2 

10.1.5 Time dependent study 

In the laboratory, when the base concrete slab of 100mm thickness was strengthened 

with a layer of reinforced sprayed concrete of maximum thickness of 100mm, the 

shrinkage of the sprayed concrete layer was relieved by the curvature of the composite 

section. However, on a typical highway bridge, it is expected that the maximum 

thickness of the reinforced sprayed concrete layer will be relatively thin compared with 
the existing depth of the bridge which will resist the curvature due to the shrinkage of 
the sprayed concrete. Therefore, if the recommended theory of induced stress 

calculations was appropriate, then the calculated induced stresses from the test slab 

should be less than those calculated from the typical bridge. The following comparison 

supports the recommended theory. 

Section 9.1.6 (test slab): 

cr, = -0.44 N/mm 2 Tens 

a2 = 0.85 N/mm2 Comp 

CF3 = -1.08 NIMM 2 
-., 

= 

a4 = 0.53 NIMM 2_ COM12 

Section 9.3.4 (typical bridge): 

PhD Thesis QMW[University ofLondon] D. Pham-Thanh [November 19971 180 



a, = -0.31 N/mm2 Tens 

cr2 = 0.5 8 NIMM 2__CQ= 
.a 

CF3 = -1.34 N/mm 2 Tens 

a4 = -1.13 
N/MM2 Tens 

Unfortunately, the theoretical values were not in agreement with the experimentally 

obtained shrinkage stresses, but the latter appeared unrealistically high since no distress 

in the forms of shrinkage cracks or debonding was observed on the test slab. 

It appears therefore that the use of Yam's theory to predict the induced stresses due to 

the shrinkage of the strengthening layer of reinforced sprayed concrete is appropriate. 

10.2 CONCLUSIONS 

1. Tests from the pre-construction panels revealed that good quality dry mix sprayed 

concrete was achieved. 
2. From petrographic examination, voids behind the reinforcement bars were found but 

their formation was usually within site tolerance and generally did not significantly 

affect the bond of the sprayed concrete and the encapsulated reinforcement. 

3. Under static loading, the reinforced sprayed concrete layer had successfully 

strengthened a normally reinforced concrete slab by up to eight times. 

4. At the stress levels imposed in this research it was found that the bond between the 

sprayed concrete layer and the base slab was extremely good from just grit blasting 

and that shear connectors were not necessary to maintain this bond. 

5. Proprietary sprayed concrete mixes did not perform better than the normal concrete 

mix in either the load carrying capacity or in maintaining the composite action and 

therefore it can be concluded that unless the exposure conditions were very severe, 

their use is not necessary. 
6. The strengthened slabs behaved almost as a monolithic slab, as full composite action 

was maintained right up to failure. 

7. When this strengthening technique is applied on a real bridge, re-entrant comers at 
the bearing ends will be created and this was simulated in the laboratory by 

curtailing the reinforced sprayed concrete layerjust before the points of support. No 
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sign of debonding or 'peeling-off of the sprayed concrete layer was observed at the 

point of curtailment under either fatigue or static loading. 

8. The analytical table of the number of cycles to failure was found conservative and 
its use in conjunction with BS 5400's current commercial axle load spectrum and 
LR 252 gave a total life expectancy of 922 years. The analytical table of the number 

of cycles to failure was derived from the assumed S-N diagram and its accuracy was 

successfully verified by the experimental fatigue data. Therefore it can be 

concluded that the use of this technique of strengthening will at least restore the 

original design life of a typical highway bridge of 120 years. 

9. The double and direct shear tests should be the compulsory tests to measure the 

horizontal shear capacity at the substrate/sprayed concrete interface. However, the 

slant shear test should also be undertaken to compare the bond at the interface to a 

monolithic specimen. 

10. The freeze-thaw test of ASTM C666 was very severe and caused early deterioration 

of the standard C35 designed ready mix substrate concrete as well as the standard 

pre-packed supplied normal mix sprayed concrete. Bond at the interface was also 

affected and this effect can be minimised if the mechanical properties such as the 

coefficient of linear thermal expansion and the static modulus of elasticity were 

similar to those in the substrate concrete. 

11. When using this technique to strengthen a bridge it is recommended that the stresses 

induced by the shrinkage of the reinforced sprayed concrete layer be calculated from 

the method outlined in this research, originated from L. Yam. 

10.3 RECOMMENDATIONS 

The following recommendations for further research are specific to this technique of 

strengthening concrete bridges. 

1. Strengthening an aged base concrete slab whilst it is sustaining static and fatigue 

loading. This is to simulate the actual site conditions in which the strengthening 

process is being undertaken whilst the bridge is still open to traffic. 

2. Conducting extensive measurement of long term and short term strains induced by 

the shrinkage of the reinforced sprayed concrete layer. 
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3. Simulating the actual UK freeze-thaw conditions for experimental testing on the 

composite specimens. 
4. Investigating a means of measuring the degree of roughness from grit blasting the 

substrate concrete, so that an equation of the horizontal shear capacity or the bond 

strength as a function of the degree of roughness of the substrate concrete can be 

established. 
5. Strengthening an existing concrete bridge so that a comprehensive cost evaluation 

between this technique and the alternative plate bonding technique can be fully 

established. 
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APPENDIX A 

MATERIAL ANALYSIS AND PETROGRAPHIC 
EXAMINATION 

This appendix contains the report on the material analysis of the sprayed concrete 

core specimens and petrographic examination on a prismatic composite specimen 

extracted from a load tested slab. 
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TARNIAC . 5,, TRUCTURAL REPAIRS 
REPORT ON THE ANALYSIS OF SPRAYED CONCRETE 

iefereii'ce 
- 3186 

21st April, 1994 

INTRODUCTION 
4 

Samples: 

Twelve samples of sprayed concrete were received on 28th February 1994. 
Six of the samples were 50 mm diameter cores, five were 70 mm. diameter 
cores and a further lump sample was supplied. Further details of the 
samples as received are as follows. 

Laboratory Sample 
reference number Dimensions 

3186/1 VAI 50 mm in diameter x 70 mm in length 
3186/2 VA2 50 mm in diameter x 70 mm in length 
3186/3 VA3 50 mm in diameter x 70 mm in length 
3186/4 OA1 50 mm in diameter x 80 mm in length 
3186/5 OA2 50 mm in diameter x 80 mm in length 
3186/6, OA3 50 mrn in diameter x 80 mm in length 
3186/7 220 mm x 160 mm x 45 to 70 mm 
3186/8' - 70 mm in diameter x 75 mm in length 
3186/9 - 70 mm in diameter x 75 mm in length 
3186/10 - 70 mm in diameter x 75 mm in length 
3186/11 - 70 mm in diameter x 75 mm in length 
3186/12 - 70 mm in diameter x 75 mm in length 

Each of the 11 core samples consists of 
,a 

fine sprayed concrete and has 
one flat surface containing the impression of formwork and one flat but 
rough surface. Sample 3186/7 contains an outer layer of some 105 to 110 
min of the fine sprayed concrete adjacent to 110 min thickness of concrete 
containing both coarse and fine aggregate. The external surface of the 
sprayed material is flat but very rough. 
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1.2 Ohjectives: 

It was requested that chloride ingression trials be carried out on Samples 
3186/8 to 12, and the air. void parameters be calculated for Samples 3186/1 
to 6. In addition it was requested that Sample 3186/7 be examined 
petrographically. 

1.3 Procedures: 

Samples 3186/1 to 6 were sawn in half and the two flat surfaces 
polished. The polished surfaces were examined with a Zeiss 
binocular microscope and the air void cOntqnt and parameters of 
each sample were calculated according to the ASTM. C-457-71 

specification. 

A polished plate and thin section were prepared from Sample 
', 3186/7. The-polished surface was examined with a binocular 
microscope and the thin section was examined with a Zeiss 
petrological photomieroscope. In addition, the remainder of the 
sample was ex; Ymined in hand specimen with the aid of a binocular 

microscope. Photographs illustrating the sample are given in the 
Appendix to this report. I 

Chloride ingression tests were carried out on Samples 318618,. io 
1.2. Ilie ingression tests were carried out at 400C with the Sample 
being analy§ed after 28, ý6 and 84 days immersion in 5 molar 
todium chloride solution,,, and 

, 
one control sample tested after 28 

days in saturated calcium hydroxide solution. A further control 
was tested for chloride content after 28 days in saturated calcium 
hydroxide sL 

, 
Aution followed by 28 days in 5 molar sodium 

chloride solution. 

1.4 Reportstructure: 

Týhis report relates to petrogEaphy and determination of air void mirameters 
within the §. nrdved cqncrete. Results of the chloride ingress trials must be 

calculaM arter the 84-d4 test point and will be reported separately, but 
interim reports will be pro'duced. 
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2. DESCRIPTION OF THE SAMPLES 

2.1 Generalfeatures: 
3rl8.; I-q 

(i) Introduction and structure: 

The sprayed coticrete which formi Samples 3186/1 to. 6 and 8 to 12, and 
half of Samýzle 318W-Iý of very similar structure and appearance and 
contdiffig a fine siliceous aggý5g%e within a medium, RreUortland cement 
paste containing microsilica. The inner concrete is based on a flint gravel 
and sili FA. 

Sections ? 2,2.2,2.3,2.5, and 3 of this report relate directly to 
observations made upon Sýamvle_3186/7, in particular with the aid of a thin 
section. The outer sprayed concrete is strongly bonded to an inner 
concrete containing a partially crushed flint gravel ranging up to 10 mm in 
diameter, with a siliceous sand in a dense mid-grey portland cement paste 
of low porosity. The sprayed concrete shows some variation in its 
appearance and numerous layers can be made out in the hand specimen, 
and on the polished surface, and also with the aid of the thin section. The 
sprayed concrete is approximately 107 min in thickness, and has a d-ark 
grey layer of approximately 6 rnrn adjacent to the inner cLýncrete. This 
layer is coated with a layer of sprayed concrete of some 10 min thickness, 
of very similar appearance to the remainder of the sprayed material. A 
third layer or group of layers makes up some 60 min thickness, and a final 
layer or layers of approximately 35 min thickness leads to the external 
surface. Reinforcement rods occur within the outer sprayed concrete at a 
depth of approximately 30 min from the external surface and a single rod 
occurs at approximately 72 min from the external surface. 7he majority of 
the sprayed concrete is strong and robust an_dssiattins a moderate void 
content, and appears compact. However, there are patchy zones and layers 
of the concrete which contain a very high porosity and appear weak and 
friable. Such patches., pceur at depths of between 50 and 90 min from the 
external surface and extend laterally for up to 70 min: the width of the 
sample. 

(ii) External surface: 

The external surface of Sample 3186/7 is flat but rough with a variation in 
relief on the surface of up to 5 mm. The external surface is medium to 
light grey and has a rough nodular or-granular texture, and appears to be 
coated with a thin layer (less than 0.5 mm) of cement laitance. 

Cracking: 

'Fliere are no macrocracks or other fine crack-s within the sample as 
received. However, during preparation of the polished surface of the 
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sample the outer sprayed (x)ncrct(--bmkc at thejurujtjon between the first 
and sccond layer. between the first dark layer and the outer layers which 
arc of more homognovs npf=rancc. 

Aggregate t)pe: 

The aggrcgatc is an angular sand with particles ranging up to some 5 mm 
In diamctcr. 

Paste OPC. - 

7bc paste is u mWiuaf grey portland cement containing micro-silica. 

(vi) vailb. 

The voids occur In two main forms. The majority of the sprayed concrete 
is compact and contains voids which range up to 2 nim in diameter, but 

which are mostly less than 0.5 mm in diameter. The void content is of the 
ordcr of 4'No by volume. 7be void content and parameters for Samples 

. 118611 to 6 are reported in Section 2.4 Composition. Within Sample 
3186/7 there are also patches and zones of the sprayed concrete which 
contain abundant voids or large continuous cavities. - These voids range up 
to 12 mni in depth and range to in excess of 20 mm, laterally. There are 
also arcjs associated with these cavities which contain numerous tiny 

voids und which urc friable and dusty. Ile void-rich zones occur within 
slxciric layers of the concrete and within the present sample occur in a 
layer of concrete approximately 10 it) 30 mm below the outer series or 
rcinforcument rods. 

Carbonation: 

Carlwation has penetrated for up to a millimetre from tile external surrace 
of tile sprayed concrete. but is mostly restricted to less than 0.5 mm from 

thu uxtcrnal surfacc. I 

(viii) Rvinforcement 

Sample 3186/7 contains three reinforcement rods at a depth of 

approximately 32 mm from the external surface. T'liese rods are of 

approximately 8 mm diameter. The external sprayed concrete also 
Luntaim a5 mm rcinfurcement rod at a depth of approximateýy 7 mm from 

the external surface. 7be internal concrete contains three 8 mm diameter 

reinforcement rods at a depth of approximately 125 mm from the external 
surface. - In the external sprayed concrete there are voids and cavities 

within the material which occur in a zone between 0 and 30 mm below the 
first level of reinforcement rods. Patches of highly porous, almost 
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huncycumbcd cuncrcic extend up to the margins of some of the 
rcinfurccmcnt rods. 

2.2 Aggregate: 

(i) Size range and shape: 

The aggrcgatc ranges in size from approximately 0.02 to up to 5 mm in 
diamcicr. 7bc majority of the particles are rounded to sub-rounded or 
lrrcgular In shape, although there are numerous angular particles some or 
which arc clongatc. Mic majority or the particles have aspect ratios or less 
than 2: 1. although there arc occasional elongate pieces with aspect ratios in 
excess of4: 1. 

(H) Rock opespresent: 

The majority of the particles larger than 2 mm In diameter are of flint with 
lesser amounts of veiri'quartz and occasional particles of ironstone. There 

are also truces of recrystallized sandstone and metaquartzite granules. The 

majority of the particles of less than 2 mm are of quartz with lesier 

amounts of chert, recrystallized sandstone, vein quartz, metaquartzite, and 
shell and limestone with traces of glaucunitic material, hornfels and altered 
and weathered ignet)us material. 

Properties of die lithologies: 

The quartz grains and vein quartz particles show little or no strain. Tbe 

particles of mctaquartzile show varying degrees of strain including pieces 
which arc strongly recrystallized with intersutured grain boundaries and 
lindulose 

extinction. Tbc pieces of chert are microcrystalline lithologies 
with occasional patches or chalecdonic quartz, and some contain fine 

grained fcrruglnous material. The pieces of sandstone include 

recrystallized lithulogics with intersuturcd grain boundaries, and most are 
dominated by grains of quartz with little or no matrix. 71cre arc 
occasional particles of recrystallized chalecdonic sandstone. There are rare 
particles of dark brown Ironstone which are slightly translucent in thin 
section. and some particles which contain silt and sand sized quartz grains 
which may be described us ferruginuus sandstone and siltstones. Tbe 

pieces of limestone are mostly fine to medium graincd recrystallized 
micritic lithologics: somd are coarser grained and have a sparry matrix. 
Thcre ure occasional fossiliferous fragments including pieces of shell. The 
Slauconitle particles are green and finely granular and mostly of 1= than 
0.1 mm -in diameter. 7bc pieces of hornfels are dominated by strongly 
Intcrsuturcd quartz crystals showing low degrees of strain, with crystals of 
amphibolc. The altered igneous particles contain lath-shaped crystals of 
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plagioclase within a fine-grained alterLd and/or weathered matrix which 
appears dark and (x)nt; jias iron oxides. 

Surfaccs of the tkqSregalefragments: 

7a, c majOrity or the aggrcgate particles make very sound contact wit the 
curric itp. is, 1g. 7berc are commonly small numbers of tiny crystals of 
rx)rtlanditc at the margins or aggregate particles. and occasionally there are 
very thin discontinuous pellicles of portlandite around margins of some or 
Oic aggregate pieces. 7be crystals arc commonly less than 0.01 mm in 
diameter. and the pcllicILs of portlandite are almost always less than 0.005' 
mm In thickness. 'T'here are occasional voids which occur around the 
margins of the aggregate pieces, and there is some tendency for voids to 
cluster around the margins or individual aggregate particles, particularly 
within certain void-rich areas of paste. Around the margins of some 
particles the voids have coalesced to form discontinuous cavities, and such 
cavities arc commonly of the order of 0.05 mm in width. The cavities may 
be continuous and crack-likc, orientated parallel to the junction with the 
Inner concrete and the external surfacl_- 

(V) Evidence ofprocessm of deterioration 

No evidence hxi been found for deterioration of the aggregate within the 
Sample. 

2.3 I'a. %te: 

Gencralstructura and appearance: 

Mic paste int hand sj? ceimen is a medium-gLqy and appears dense and 
strong. In thin scction the majority of the paste is very dark in colour, 
contains abundant residual clinker grains, and has a very low level of 
porosity and contains very rew mierocracks. Mic paste varies very slightly 
i Lu! ýJwLand-appeacanceyi Ih different layers of ft sprayed Loncrete: the. 

, 
jLp, te ic ntaining. the most abundanal clinker occurs in the thin 

darkest UW LtVjacent to the internal concrete. The paste at depths oý 
betwcen 55 and 95 mm from the external surface contain zones which 
contain numerous voids. 7be paste within these zones is friableand dusty. 

(ii) Portlantlite: %,. * 

POrtlandite occurs as fine crystals within the paste and as slightly coarser 
crystals airound the numerous particles or residual unhydrated clinker and 
around some of the flue aggregate particles as both fine crystals and LS thin 
disLontinuous pellicles. 71cre is vqyjiftle Vnrtlandite in the dark paste 
immediatC! Y aAaccrit to the inner Loncrete. 
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(M) Unisydrated cement grahis: 

I'lic samplc contains un'undant residual unhydratcd cement clinker, and 
numerous particles of partially hydrated ccmcnt clinker. 

Hydrated ceinen I: 

The hydraics have a slightly patchy culuur which varies from layer to layer 
of the sprayed concrete. However, the vast majority or the material has a 
vcry low porosity and contains very few micrucracks. 

(V) Alicrocrack-ing: 

7bc level of microcracking within the sample is exceptionally low, with 
less than 2 microcracks cna)untcrcd upon each 40 mm traverse of the thin 
section. However. there arc occasional clusters of voids which occur 
around aggregate margins and some clusters of voids which form elongate 
cavities. which arc orientated parallel to the external and internal surfaces 
and which are discontinuous and continuous over several millimetres. 
71csc civitics commonly run through the paste and around margins of 
aggregate pieces. 

(vi) Void.: 

The paste contains numerous voids. %yhich are mostLy very tiny. The voids 

- : Luplyund commonly cluster around the margins or particles ol tile pig t, 
aggregate, as previously reported. Further details related to the voids are 
given in the following section. 

Dark Iii)wr: 

The dark layer at the interface with the substrate concrete has virtually 
none of the coarser size ranges of the aggregate but has a normal 
component of fines. The paste has much more residual uahydoted cement 
thin the remainder of the repair concrete and its structure is in keeping 
with a lower watcr/cemcni ratio. 

2.4 Composition: 

(i) Vuhimeproportions. - 

The volume pEoAmlons have been determined by point counting on the 
rZirts-tictl surfaces or sa, m2ics . 1186/1 W 6. In addition the void size 
dirbfr"M-ution and parameters have been calculated from examination of 
these polished surfaces. 7be results are as follows. 
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Sampte 313611 318612 318613 318614 318615 318616 

Aggregate 57.2 57.2 54.7 54.6 54.4 57.4 

Paste 18.9 . 18.5 41.3 40.9 42.3 39.6 

Total air void 
content 3.9 4.3 (4L. 9 qX 01-6 &d 

Numbcr, of 
voids per mm 0.2 

,3 
0.27 0.21 0.16 0.19 0.17 

Average chord 
intercept 0.17 0.16 0.19 0.27 0.18 0.17 

specific Surface 
In mm to .1 2.1.3 24.7 21.5 14.8 22.6 22.9 

Spacing factor 
(mm) 0.34 0.27 0.34 0.51 0.33 0.34 

Entraincd air to 
pastc/rutio 0.10 0.11 0.10 0.11 0.03 0.08 

111csc results show a standard deviation for the pastc content ar-1,4fo by 
volume. Mic effective water/ccment ratio is estimated to be 0.40 and this 
points to a total cementitious wntent of about 500 kg/m-1 and total 
aggrcgatc of about 1450 kg/m3. 

3. DISCUSSION 

3.1 Aggrcgatc: 

1ýc aggrcgute within the sample is a siliccous sand containing various 
lithologics which Include the chert, metaquartzitc, recrystallized sandstone 
and chalecdonic sandstone, Ironstone and hornfels. No evidence of 
docrioration of the uggregate hus. been found. 

3.2 Pa4c: 

The paste is largely strung and coherent and has a very low level of 
porosity and cuntaids very. Iew micrucracks. However, there are arcas of 
I fir-tnri cd Loncretc- narticularly below the rcinrurccment rods, where the 
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matcrial contains abundant voids, cavities, and dusty and friable areas of 
paste, Miese zones appear to result from scregahig-afibe inner concrete 
by the rcý'M-Mrc-c-m-cnt rods, p od ging room _; Ljocal patch of lower quality 
concr-c--tc bcldw---Lhc rods. Mitre are also numcrous; voids within the paste 
ý; hlch arc vcry small. Tbcsc void show some I ndency to cluster around 
kc-m-arg-ins--o7ag, g, rc, ate-earliclcs, rSgjtcjnZ the bond strength between the 

nastc. In addition, further weakening or , MLduthi pa ice erial 
aC res7 rL U 1C II mm ay 

- 
ha vcrLsutý 

ZU 
m where the voids have coalesced to form laýgycr 

cavides, particularly elongate cavities which nass through the paste and 
along the surfaces of stggrcgate particles. 

3.3 Deterioration: 

IMc occurrence of clustered voids around particles of the fine aggregate, 
and the tendency for cavities to occur in zones parallel to the external and 
Internal surfaces, running through the paste and around the margins of 
aggregate pieces is potentially deleterious to the strength and long-term 
durability of the material.. 
Mic sprayed concrete contains zones beneath the reinforcement rods which 
arc friable and dusty. and which contain abundant voids and some cavities 
which may be many millimetres in diameter. These areas of concrete are 
much weaker and much less robust than the majority of the concrete and 
may bc the result of Interference or the reinforcement rods with the 
sEraylný_Eru Miese zone are deleterious in terms of hoth strength and 
dumbility of the matcrial. in particular because they occur near to or are in 
contact with steel reinforcement rods. 7be more porous concrete would 
also be susceptible to carbonation and rcerys tall ization. 

4. CONCLUSIONS 

4.1 ne twclvc samples are or a sprayed concrete repair material containing a 
siliecous aggregate ranging up to 5 mm in diameter, in a medium grey 
portland cement containing microsilica. 

.1 

4.2 The majority of the paste has very low porosity and Lontains very few 
microcracks. 

4.3 Mic paste contains numerous voids, the abundance and distribution of 
which are summari7cd in in Section 2.4.71r, voids show some tendency 
to cluster pround-1he margins or fine aggregate picceiDýýaýorm 
disLontintious and continuous cavities which are prientatcd parallel to the 
lntcrn; tl and cmernal surfaces. 

0 
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4.4 Mic mijority or the material is strong and robust, but there are patches of 
weak and friable, and highly. porous concrete below the reinforcement 
rods. 7jis pourer quality material is considered to be the result of 
Interference from the rods with the spraying of the concrete. . 

0 
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S. 1 Ph idographs ilimilrating the samples: 

I. 
I 

6 

4 
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Figure 1: 

Sample 318617 

Scale: 7be ruler Is ungraved in millimetres and Lentimetres. 

'Ibis view 3huws part of the outer sprayed- material adjoining the inner concrete 
towards the base of the photograph. A layer of dark grey sprayý: d material occurs 
adja=t to the conacte, und robust layers of sprayed concrete with low levels of 
porosity occur around 13 and B3. The layers of sprayed material around F-I are 
friable and weak and contain a high void content. 
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Figure 2: 

Sample 318617 

Scale: 7be rulcr Is engraved in millimares and centimetres. 

Ms view shows part of the sprayed external concrete with the external surface at 
the base of the view. A rcinforccmcrit rod occurs in F2 to F4, and the material 
directly below the reinforcement rod, centrcd around D2, contains cavities and 
numerous voids. 
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Figure 3: 

Sample 3186/7 

Scale: The width of the photograph represents 10 mm. 

This is a detail of the weak, friable sprayed concrete showing numerous voids and 
cavities at A2, FI, F3, E4, etc. 
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Figure 4: 

Sample 3186/7 

Scale: The width of the photograph represents 10 mm. 

Ibis view is of a sawn surface of the sam-ple and show the junction between the 
internal concrete in the lower half of the view and the first iayer of dark grey 
sprayed concrete, in the upper half of the view. The junction appears very sound 
and no cavities or cracks occur at the j unction. 
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Figure 5: 

Sample 3186/7 

Scale: The ruler is engraved in millimetres and centimetres. 

Polishedplate. This view shows the polished surface of the specimen with the 
junction with the internal concrete at-the base of the view. Layers are visible 
within the sprayed material running parallel to the internal and external surfaces, 
for example in A2, D2,12 and J2. The polished plate has broken towards the 
junction with the internal concrete, where the dark first layer of sprayed material 
meets the remaining lighter coloured sprayed layers. 
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Figure 6: 

Sample 3186/7 

Scale: The width of the photograph represents 1 mm. 

Thin section, transmiaed light. 71is 'is a view of the sprayed material at 
approximately 10 mm from the junction with the concrete. The material to the lert 

of the'view is towards the junction with the internal concrete and the material on 
the right of the view is towards the external surface. A microcrack passes through 
the paste and around particles of aggregate from A2 to B. 
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Figure 7., 

Sample 3186/7 4. 

Scale: The width of the photograph represents 0.5 min. 

Thbi section, transmitted light. This view is of the paste within the dark layer of 
sprayed material adjacent to the concrete. The paste is very dense and contains 
numerous residual unhydrated cement clinker particles. Ile paste is of very low 
porosity and contains very rew microcracks. 
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Figure 8: 

Sample 3186/7 

Scale: The width of the photograph represents 0.5 mm. 

Thbi section, transmitted light. This vi'ew is of paste. at approximately 10 mm 
from the junction with the internal concrete and shows slightly less dense paste 
than -that illustrated in Figure 7. This paste contains abundant residual clinker 
particles and has very low porosity. 
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Figure 9: 

Sample 3186/7 

Scale: The width of the photograph represents I mm. 

Thbi section, fluoreýycent light. 'This view illustrates the junction between the 
internal concrete on the. left of the view and the first layer or sprayed concrete on 
the right of- the view. The concrete on the left has a paste which appears 
grey/green and is of low porosity, but contains microcracks running through the 
paste and around aggregate margins, for example from J2 to G2. The paste in the 
sprayed concrete is very dense and o. f exceptionally low porosity and contains no 
microcracks. 12345 
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Figure 10: 

Sample 3186/7 

Scale: The width of the photograph represents I mm. 

Thiii section, fluarescent light. This view is of sprayed concrete approximately 5 
mm from the junction with the internal concrete and shows a paste which is very 
dark and of very low porosity but contains a microcrack passing through the paste 
and around an aggregate margin from A3 to J4. A void is centred around B2/3. 
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Figure 11: 

Sample 3186/7 

Scale: The width of the photograph represents I mm. 

Thbi section, fluorescent light. This view is-of paste approximat 
, 
ely 20 mm from 

th6junction with the concrete and shows numerous voids centred around a particle 
of aggregate at F3. These voids have coalesced to form a cavity which is linked to 
a crack or series of cracks passing from Al and A3 to J2 and A 
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FivUre 12: 
U 

Sample 3186/7 

Scale: The width of the photograph represents I mm. 

Thin section, fluorescent light. This vidw is of paste within the friable porous 
layers of sprayed concrete, and shows a highly porous and microcracked structure. 
Microcracks are visible within the paste passing from J2 and J4 to B3. 
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APPENDIX B 

CHLORIDE INGRESSION TESTING 

This appendix contains the report on Chloride Ingression testing on the sprayed 

concrete core specimens extracted from the prc-construction test panels. 
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TARNIAC STRUCTURAL REPAIRS 
REPORT ON CHLORIDE INGRESSION 

INTO SAIMPLES OF SPRAYED CONCRETE 

Reterence 3186A 

18th July, 1994 

1. MMODUCTION 

1.1 Samples: 

Five core samples of sprayed concrete measuring 100 mm. in length by 75 
mm diameter were provided on 28th February 1994. 

1.2 Objectives: 

It was requested that the samples be studied by the method of chloride 
ingression and that the effective diffusion coefficient be calculated. 

1.3 Procedures: 

A thin layer of grease was placed on the curved surfaces of the cores 
and they were sealed into cans so that only the external surface was 
exposed 

All the samples were conditioned by placing them in saturated 
Ca(OH)2 solution for 24 hours. 

(iii) Two samples were left in the Ca(OH)2 solution for 28 days. 

(iv) Ile other three samples were placed in a saturated Ca(OH)2 

ý solution containing NaCl at a concentration of 5 Molar. 

(v) One of the samples was removed from this NaCl solution after 28 
days and both samples were removed from the Ca(OH)2 saturated 
solution after 28 days. One of the latter was placed in the NaCl 
solution; the other was used as a control to establish background 
chloride level. 

(vi) The two samples taken from the two solutions at 28 days were dried 
,, by towelling. They were then cut and ground dry to produce a flat 
-surface measuring over 30 mm wide and 25 mm deep and cut at 
right angles to the external surface and axially through the samples. 
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(vii) These two flat surfaces were analysed using the electron microprobe 
in zones parallel to ! he outir surface and with each zone being 4 mm 
wide. This showed that the traverse in the outermost 4 mm of the 
sample taken from the NaCl solution was the only traverse to have 
more than background chloride. 

(viii) The plate exposed to chloride was therefore analysed again in zones 
I mm wide and parallel to the outer surface. 

(ix) After 56 days two further samples were removed from the chloride 
solution. One of these was that preconditioned for 28 days in the 
Ca(OH)2 solution while the second had been in the -NaCl solution 
for 56 days. 

(X) Tliese two samples were analysed in zones I mm wide to a depth of 
5 mm- 

()d) After 84 days the final sample was removed from the NaCl solution 
and analysed in the same way as the 56 day sample. 

1.4 Calculation: 

Ilere are various factors that influence the chloride ingression including: 

simple diffusion 
diffusion with reaction 
imbibition 
temperature 

The temperature of all these experiments was 380C. Ideally the diffusion 
coefficient can be calculated from the Arrhenius equation if the tests liave 
been carried out under two or more temperatures. For the present 
measurements only derivations from Fick's law can be applied. Two 
approaches have been used, one assuming pure diffusion, the other 
assuming reaction taking in chloride. It must be assumed that no 
carbonation or other alteration has occurred, since this win enhance chloride 
penetration. The calculations have been summarized in BCA (C & CA) 
Technical Report 544 by C. D. Lawrence. For simple diflusion the formula 
is 

C/Co = erfc[X/(2(Dt)0.5)]. 

where CO is the concentration in the solution outside the specimen, C the 
concentration inside the specimen, X the distance from the surface, D the 
diffusion coeflicient, and t the time in seconds. 

For diffusion with reaction the formula is 
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Y is obtained from gY = (I - Cx/Cl)/(Cx/C I) and 2W = X/(Dt)0.5 

where CI is the concentration of Ihe ion in the outermost layer and Cx is 
the amount of the ion taken into combination by reaction and gY is a 
derivative of erfY. 

For the present purpose Cx has been taken to be half of the concentration in 
the outermost layer (i. e. Cx/Cl = 0.5). D is expressed in m2/sec. 

2. RESULTS 

2.1 Analytical data: 

The chloride concentrations found are given in Tables I to 4. The 
background chloride is low at 0.02% by weight of dry concrete. Though 
the background is low it is included in calculations, since it will contribute 
to the total chloride concentration affecting the infiltration and diffusion. 
The observations made show that the penetration of chloride is very low 
with penetration at significant levels occurring at less than 5 mm from the 
surface. The analytical data are measured as the percentage of the dry 
weight of the concrete. For the calculations this has been corrected by 
assdming that there is 7% of water by weight of concrete. 

2.2 Simple diffusion: 

Applying the simple diffusion equation is unreliable when the penetration is 
very low because the outermost layers could be affected by carbonation, 
bleeding and laitance segregation.. 

The results of this calculation are given in Tables I to 4. Typical values of 
D range from. I. IE-12 to 2. IE-12 m/sec. Tlie overall mean is 1.56E-12 
m2/sec. 

2.3 Diffusion with reaction: 

The diffusion coefficients for this calculation are listed in Tables I to 4. The 
results centre around D=I. OE-12 m2/sec. This assumes that the chloride 
taken through reaction is half of that in the sufface layer. 'Me overall mean 
result is 1.02E- 12 m2/sec. 

3. DISCUSSION 

The diffusion coefficient found is similar to but less than that normally 
encountered in concrete which is about 5x 10-12 milsec. The profile is very 
steep and the surface concentration is considered to be less than might be 
expected from an ambient chloride concentration of 5M and at a 
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temperature of 380C. Ile diffusion coefficient tends to increase slightly 
with depth into the concrete and to decrease slightly with time. Comparison 
is made with a typical gradient expected for high quality concrete in Figure 
1. In this the dark points* represýnt the expected gradient While the open 
squares are the 84 day results for the present samples. Considering the 
mean of all three times of analysis shows that this concrete gives a result 
almost identical with that expected for. high quality concrete. The variation 
found in the outer 3 mm reflects variation in aggregate proportion which is 
more erratic than that of the bulk of the material. Ile inner data are more 
systematic and suggest a steady rate of penetration of the chloride front 
(producing 0.1% chloride 0.08% above background) of less than about 0.02 
mm/day. This results in very close to that expected for high quality 
concrete. 
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Figure 1: 

Chloride concentration i4 the cpncrete sample tested at ý4 days (open 
squares) and that expected for high quality concrete'(picked squares). 
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4 

APPENDIX C 

MOMENT CAPACITY OF A TYPICAL TEST SLAB 

This appendix contains the calculations of the moment capacity of a typical test 

slab, A4, in accordance with BS 8110. 

Test slab A4 is under-reinforced and assuming that all the reinforcement has 

yielded, the strain diagram and the BS 8110 simplified stress block are taken as 

shown in Figure C I, 

____ 

--r7- 

-- 

A, 
2_ 

C- 

TI 

T. 2- 

Figure C1 - Strain diagram and BS 8110 simplified stress block. 

The stress diagram of the yielded steel is as shown in Figure C2. 

/? = 
ý6 

a. 00 4 S'7)eA lov 

Figure C2 - Yielded steel. 
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Test slab data: 

D= 175 mm (actual) 

d, = 100 - 15 - (0.5x7) = 81.5 mm 
d2 =175 - 25 - (0.5x10) = 145 mm 
b= 1000 mm 

A� = 192.4 mm 
2 /m 

As2 = 392.7 mm 
2 /m 

fcu = 35 N/mm 2 

fy = 460 N/MM2 

Position of the centroid at x: 

C=Tl +T2 

(0.45) . 
fu .b. 

(0.9x) . 
(1.5) = (0.87) . 

fy 
. 

1392.7 + 192.4} . (1.15) 

(0.45). 35 . 
b. (0.9x). (1.5) = (0.87). 460.1392.7 + 192.4) . 

(1.15) 

12.72 mm 

Lever arms: 

d, - 10.5 . (0.9x)1 = 81.5 - j(0.5) . (0.9) . (12.72)1 = 75.78 mm 

Z2 = d2 - {O. 5. (0.9x)1 = 145 - {(0.5). (0.9). (12.72)1 = 139.28 mm 

Taking moment about the centre of the stress block C: 

The moment capacity MBS81 10 
'S) 

MBS8110 = (TI . zl) + (T2 - Z2) 

MBS8110 = (0.87). 460. {(192.4). (75.78) + (392.7). (139.28) ) . (1.15) 
MBS81 

10 = 32 kNm 
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APPENDIX D 

EXTRACTS FROM BS 5400: PART 10: 1980 

This appendix contains the original copy of Table I and the modified and updated 

Table II extracted from BS 5400: Part 10: 1980. 
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BS 5400: Part 10: 1980 

Table 1. Annual flow of commercial vehicles (n, X 106) 

Category of road 4 Number of millions of 
vehicles per lane. 
per year (n. ) 

Type Carriageway Numberof Each Each 
layout lanes per slow adjacent 

carriageway lane lane 

Motorway Dual 3 2.0 1.5 

Motorway Dual 2 
AlIpurpose Dual 3 1.5 1.0 
All purpose Dual 2 
Slip road Sin, gle 2 

AlIpurpose Single 3 
All purpose -Single (10 m 2 1.0 Not 
Slip road Single 1 applicable 
AlIpurpose Single (7.3 M*) 2 0.5 Not.. 

I I applicable 

*The number of vehicles in each lane of a single carriageway between 7.3 m and 10 rn 
wide should be obtained by linear interpolation. 

7.2.3.5 Methodof loading. Only one vehicle should be 
assumed to be on the structure at any one time and each 
lane should be traversed separately. The effects of 
combinations of vehicles are allowed for in clau e8. 
7.2.4Allowance for impact. Where a discontinuity 
occurs in the road surface, e. g. at an expansion joint, the 
static stress at every point affected by a wheel, at or within 
5m of the discontinuity, should be increased by 
magnifying the relevant influence line, as shown in figure 7. 

7.2.5 Centrifugal forces. The effects of any centrifugal 
force associated with the fatigue loading defined in 7.2.2 
need only be considered for substructures; the force should 
be taken as acting at and parallel to the road surface. The 
magnitude of the force should be calculated at the 
appropriate design speed of the particular road, for the 
individual vehicles of the standard load spectrum shown in 
table 11 as follows: 

Wv2 

the centrifugal force per axle j-ý-7 (kN) 1 27r, 

where 
Wis the axle load of the vehicle (kN) 
v is the design speed of the road (km/h) 
r is the radius of curvature at the particular lane on which 
the vehicles are assumed to travel (m) 

0 

The force assumed for any vehi 
30000 

M 
r+ 150 

7.3 Railway loading 
7.3.1 General. The loads to b( 
appropriate combination of the 
lurching and centrifugal force, 
British Standard. 
In welded members the dead Ic 
considered. In unwelded meml 
have to be considered in deterr 
range when compression stres 
7.3.2 Application of loadinl 
applied to the appropriate leng 
influence lines of not more thai 
the algebraic maximum and mi 
detail under consideration. 

I 
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APPENDIX E 

THE 15M SPAN TWO LANE SINGLE CARRIAGEWAY 
SLAB BRIDGE 

BRIDGE UNDER CONSIDERATION 

A 15 m two lane single carriageway slab bridge. 

BRIDGE CONSTRUCTION 

As shown in Figure El using: 

Span 
- 20 and Depth 

In 

L4 
u 

Ný) 

L. 

I') 
4- 

Figure El -A 15 m two lane single carriageway slab bridge. 

E 
iO 

C 

Depth = 750 mm 

15-1-n 

Span = 15 m 
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BRIDGE LOADING 

This is to be considered in accordance with BD 37/88: Loading for highway structures: 

The bridge deck is to be designed'to resist the most severe effect of either, 

1. Design HA loading. 

2. Design HA loading combined with design HB loading. 

Case 2. is being adopted here. 

Application of load case 2. in accordance with BD 37/88 

Where the HB vehicle lies wholly within the notional lane, as shown in Figure E2, type 

HB loading is assumed to displace part of HA loading in the lane. No other live loading 

shall be considered for 25 metres in front of the leading axle to 25m. behind the rear axle 

of the HB vehicle. The remainder of the loaded length of the lane or lanes thus 

occupied by the HB vehicle shall be loaded with HA udl only; HA KEL to be omitted 

___ 

-- 

ox, 11A 

/6- 

Figure E2 - Bridge loading for the 15 m two lane single carriageway slab bridge. 
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LOADFACTOR 

HA Lane factor, from Table 14 of BD 37/88 = cc,. 

cc, = 0.274 x( notional lane width in m). 

0.274 x 3.65. 

I (to be applied to HA udl and KEL).. 

P3 0.6 

yfl = 1.3 for both HA and HB when applied together. 

yf, = 1.15 for concrete ( unit weight = 24 kN/m 3 ). 

yfl = 1.5 for footway (5 kN/m2 ) and HA applied alone. 

= 1.75 for road surfacing (2 kN/m2 

Note: HA comprises HA udl + KEL. 

CHARACTERISTIC LOAD VALUE 

Live load 

(OHA 33 
0.67 

kN/m of notional lane. 
15) 

KEL 120 kN/ notional lane. 

Abnormal load 

HB = 45 Units (I HB unit = 10 kN/axle ). 

HB = 450 kN/axle ( each axle comprises 4 wheels 

Deadload 
Ofootpath 1.5 x2x5= 15 kN/m of notional lane. 

0),,,, faci,, g 7.3 x2= 14.6 kN/m. 

COconcretc =( 24 x 10.3 x 0.75 24 x 16 x 7c x 0.2 2) Min of 
notional lane. 

Moment due to characteristic dead load 

Mdeadload -ý R 14.6 )+( 24 x 10.3 x 0.75 24 x 16 xnx0.2 
2 )] 15 2/8. 

Mdeadload = 4.27 x 10 3 kNm. 

FACTORED LOAD VALUE 

Live load 
0.67 

co , A= 1.3 x 33 
(115) 

= 71.17 kN/m. 
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KEL = 120 x 1.3 = 156 kN/m. 

Abnormal load 

Deadload 

wf.,, tpýth = 15 x 1.5 = 22.5 kN/m. 

HB = 450 x 1.3 585 kN/axle. 

(Ostirfacing -= 14.6 x 1.75 = 25.55 kN/m. 

(Oconcrete =( 24 x 10.3 x 0.75 x 1.15 )-( 24 x 16 x 7t x 0.2 2X1.15 

COconcrete -'ý 157.72 kN/m. 

FACTORED MOMENT DUE TO FACTORED LOAD 

Deadload 

Live load 

Mdeadload -"ý ( 157.72 + 25.55 )x 15 2 /8 = 5154 kNm. 

MHA = 71.17 x 15 2 /8 for single notional lanes of HA. Z) 

MHA = 2002 kNm. 

MKEL 7.5 x 156/2. 
MKEL 585 kNm. 
Mfootpath = 22.5 x 15 2 /8 = 632.81 kNm. 

Abnormal load 

MHB = 5967 kNm from normal static with HB vehicle in the most severe position on the 

bridge ). 

TOTAL FACTORED MOMENT 

Mfactored = 2002 + 585 + 633 + 5967 + 5154. 

Mfactored = 1.43 x 10 4 kNm. 

GRILLAGE ANALYSIS FOR TH E ULTIMATE BENDING MOMENT ON THE 
BRIDGE BEING MODELLED 

Grillage analysis was carried out using the computer package QSE Structural Analysis. 

In using this computer package, the bridge deck was modelled as shown in Figure E3 
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with the main feature comprising 5 No. longitudinal grids @ 2060 mm, c/c by 8 No. 

transverse grids @ 1875 mm. c/c. 

Load value 
Using the factored udl value, 

PIHA =1x 71.17 = 71.17 kN/m of notional lane. 

cof,, ýtpath = 22.5/2 kN/m for each side of pedestrian footpath. 

o)f,,. tp,, th = 11.25 kN/m. 

O)surfacing = 25.55 kN/m. 

COconcrete = 157.72/5 kN/m for each hypothetical beam in the 

grillage. 
COconcrete -= 31.54 kN/m. 
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Figure E3 - Computer modelling of the 15m span bridge deck. 
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Abnormal factored load 

A section is taken across the bridge at mid-span of Figure E3, with the HB vehicle in the 

position on the left lane. HB load beingy, 585 Maxle, the load distribution of this axle 
load on the hypothetical grillage is as follows: 

585 kN 

Mid-span 146.3 kN 146.3 klý 146.3 kN 146.3 kN 

Mid -span 

235 
2060 2060 

!4 bid o'! 

Grid'17/24 Grid ý5/32 

HB 25/32 = 585 x 235/2060 = 66.74 kN. 

HB 17/24 -= 585 x 1825/2060:; = 518.26 kN. 

KEL factored load 

KEL point load is to be positioned at mid-span on each lane as shown in Figure E2. The 

position of each KEL point load relative to the hypothetical grid of Figure E3 and its 

load distribution is calculated as below, KEL = 156 kN/notional lane. Note that factors 

PI OLý-' P3 are being applied if KEL falls into such zone, 

1st notional lane from HB vehicle, 

= 156 kN 

235 0 

PIKEL 17/24 =IX 156 x 235/2060 = 17.8 kN. 

PIKEL 9/16 =1X 156 x 1825/2060 = 138.2 kN. 
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15000 

Y GL 

bXGL 
Z GL 

LONGITUDINAL 
ELEMENT 

TRANSVERSE ELEMENT 

-T- 
1875 

x Loc 

y Loc 
z Loc 16 Nos. 400 0@ 596 c/c 

Figure E4 - Orientation of axes for bridge. 

Longitudinal element 

y Loe 

120 
ý 

lg 400 
N [*. 120 

-r ............ . .. . .......... 

x Loc 

z Loc 

IYY 
bd' 

- 
10300 x 750' 

= 3.62 x IOIIMM4 gross cross section. 
12 12 

Iyy 3.62 x 1011 -( 16 x 7c x 4004/64) = 3.42 x 1011 mm 4 Net cross section. 

Iyy 3.42 x 101115 = 6.84 x 1010 mm4 for each longitudinal element. 

Jxx 
bd 3 1875 x 7503 

- 
1875 x 4003 

= 5.59 x 1010MM4 net cross section. 12 12 12 

750 x 103003 

- 6.83 x 1013 rnM4 gross cross section. 12 
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1013/5 = 1013 mM4 IZ 1.37 x for each element. ýz = 6.83 x 

J= 
! 

bh 3- 7c 
r4 

32 

10300 x 750' 7c x 16 o' 400)41 

ne' Cross section of each element. 5[ 3-2(II 

J=2.82 x 1011 mmý. 

Transverse element 

Iyy = 
1875 

7503 _ 
18754003 

= 5.59 x IO'l MM4 Net cross section. 12 12 

1[ 10300 x 7503 16 x 7c x 4004 
4 lxx =5 12 64 

6.84 x 10'0 mm 

2x 175 x 1875 3=1.92 

x 101IMM4 

12 

-(1875 x 175' 
J bh' 

3 
6.7 x 109 =4. 

LOAD DATA FOR COMPUTING 

Table E details the computing data. 

Table E- Computing data. 
Grid UDL (kN/m) KEL (kN) HB load (kN) 
line, 
refer to 
Fig E3 
1/8 560 (712 + 25.6) + 11.3 + 31.5 = 57.6 - 

3650 
9/16 2060 (71.2 + 25.6) + 31.5 = 86.138.2 - 

3650 
17/24 1030 (71.2)+ 2060 (25.6) + 31.5 66.0 

17.8 66.74 @ four 
positions alon 3650 3650 g 
span direction 

25/32 2060 (25.6) + 31.5 = 45.9 - 
3650 

518.26 @ four 
positions along 
span direction 

33/40 560 (25.6) + 31.5 + 11.3 46.7 
3650 
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APPENDIX F 

THE 20M SPAN TWO LANE DUA-L CARRIAGEWAY 
SLAB BRIDGE 

BRIDGE UNDER CONSIDERATION 

A 20m span two lane dual carriageway slab bridge. 

BRIDGE CONSTRUCTION 

As shown in Figure FI using: 

Span 
- 20 and Span = 20m 

Depth 

Depth= 1 000mm 
A 7m 

'I) 

0 

, X'o ar 

,4A 
//,:! F 0- 

CIE /V r"R104 /- A 770 Al 

4A 14/le- 

7-WA 

L, I... 
.- 20 A7 

.7 

ýj 

Figure F1 -A 20m span two lane dual carriageway slab bridge. 
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BRIDGE LOADING 

This is to be considered in accordance with BD 37/88: Loading for highway structures: 
The bridge deck is to be designed*to resist the most severe effect of either, 

1. Design HA loading. 

2. Design HA loading combined with design HB loading. 

Case 2. is being adopted here. 

Application of load case 2. in accordance with BD 37/88 

Where the HB vehicle lies wholly within the notional lane, as shown in Figure F2, type 

HB loading is assumed to displace part of HA loading in the lane. No other live loading 

shall be considered for 25 metres in front of the leading axle to 25m. behind the rear axle 

of the HB vehicle. The remainder of the loaded length of the lane or lanes thus 

occupied by the HB vehicle shall be loaded with HA udl only; HA KEL to be omitted 

_LM 

tO 

H- 

-X-X 

-XX 
;x -- )(- 

" /.. 0 X R, 4 

IIA 

1. 

Figure F2 - Bridge loading for the 20m span dual carriageway slab bridge. 

I 

PhD Thesis QMJV [University of London] D. Pham-Thanh [November 1997] 242 



LOAD FACTOR 

HA Lane factor, from Table 14 of BD 37/88 = a,. 

cc I=ý. 274 x'( notional lane width in rn 

0.274 x 3.65. 

1 (to be applied to HA udl and KEL). 

P3 0.6 

yfl = 1.3 for both HA and HB when applied together. 

yf, = 1.15 for concrete (unit weight = 24 kN/M3 

yf, = 1.5 for footway (5 kN/m2 ) and HA applied alone. 

yfl = 1.75 for road surfacing (2 kNhný 

Note: HA comprises HA udl + KEL. 

CHARACTERISTIC LOAD VALUE 

Live load 

10,67 
coHA=33 - kN/m of notional lane. 

KEL = 120 kN/ notional lane. 

Abnormal load 

HB = 45 Units (1 HB unit = 10 kN/axle ). 

HB 45 0 kN/axle ( each axle comprises 4 wheels). 

Deadload 

cof,, ýtp., h = 3.4 x5= 17 kN/m of notional lane. 

O)surfacing ý 17.6 x2= 35.2 kN/m. 

Oconcrete =( 24 x 21 x1 24 x 21 x 7c x 0.38 2) kN/m of 
notional lane. 

Moment due to characteristic dead load 

Mdeadload [( 35.2 )+( 24 x'21 x1 24 x 21 x 7c x 0.3 82 )] 202 /8. 

Mdeadload 1.56 x 10 4 kNm. 

FACTORED LOAD VALUE 

Live load 
0.67 

cDIIA= 1.3 x 33 58.7 kN/m. 
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Abnormal load 

Deadload 

KEL = 120 x 1.3 = 156 kN/m. 

cop,,, tpýth = 3.4 x5x1.5 = 25.5 kN/m. 

HB = 450 x 1.3 585 Maxle. 

(Osurfacing 17.6 x2x1.75 = 61.6 kN/m. 

(Oconcrete ( 24 x 21 x1x1.15 )-( 24 x 21 x 7c x 0.38 2X1., 5 

(Oconcrete -: - 317 kN/m. 

FACTORED MOMENT DUE TO FACTORED LOAD 

Deadload 

Live load 

Mdeadload =( 317 + 61.6 )x 20 2 /8 = 18930 kNm. 

MHA =3x 58.7 x 20 2 /8 for three notional lanes of HA. 
MHA = 8805 kNrfi. 
MKEL 10 x3x 156/2. 
MKEL 2340 kNm. 
Mf,,,, 

tp,, th = 25.5 x 20 2 /8 = 1275 kNm. 

Abnormal load 
I MHI3 = 8897 kNm from normal static with HB vehicle in the most severe position on the 

bridge ). 

TOTAL FACTORED MOMENT 

Mfactored 19830 + 1275 + 8805 + 2340 + 8897. 
Mfactored 4.025 x 10 4 kNm. 

GRILLAGE ANALYSIS FOR THE ULTIMATE BENDING MOMENT ON THE 
BRIDGE BEING MODELLED 

Grillage analysis was carried out using the computer package QSE Structural Analysis. 

In using this computer package, the bridge deck was modelled as shown in Figure F3 

with the main feature comprising 7 No. longitudinal grids @ 3000 mm. c/c by 8 No. 

transverse grids @ 2500 mm. c/c. 
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Figure F3 - Computer modelling of the 20m span bridge deck. 
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Load value 

Using the factored udl value, 

pI HA =I -x 5 8.7 =58.7 kN/m of notional lane. 

P3HA = 0.6 x 58.7 = 35.2 kN/m of notional lane. 

wf,,, tpýth = 25.5/2 kN/m for each side of pedestrian footpath. 

03flaotpath -"ý 12.75 kN/m. 

(Osurfacing = 61.6 kN/m. 

COconcrete = 317/7 kN/m for each hypothetical beam in the grillage. 

O)concrete = 45.3 kN/m. 

Abnormal factored load 

A section is taken across the bridge at mid-span of Figure F3, with the HB vehicle in the 

position on the left lane. BB load being 585 Maxle, the load distribution of this axle 

load on the hypothetical grillage is as follows: 

585 kN 

Mid-span 146.3 kN 146.3 kN 146.3 kN 146.3 kN 

poil 
Mid-span ý 

ul! 

975 

3000 3000 

Grid 41/48 Grid ý9/5 6 

IIB 41/48 -= 585 x 2025/3000 = 395 kN. 

IM 49/56 -= 585 x 975/3000 = 190 kN. 

KEL factored load 

KEL point load is to be positioned at mid-span on each lane as shown in Figure F2. The 

position of each KEL point load relative to the hypothetical grid of Figure F3 and its 

load distribution is calculated as below, KEL = 156 kN/notional lane. Note that factors 

0,8r- P3 are being applied if KEL falls into such zone. 
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1st notional lane from 1119 vehicle, 
KýL 156 kN 

2675 
325 

Central reservation 

Grid 33/40 Grid : 41/48 

PIKEL 33/40 =Ix 156 x 2675/3000 = 139.1 kN. 

PIKEL 41/48 =Ix 156 x 325/3000 = 16.9 kN. 

2nd notional lane from the HB vehicle, 

UL = 156 
2675 1 

325 

0 
Central reservation 

Grid 9/16 Grid'17/24 

P3KEL 17/24 = 0.6 x 156 x 2675/3000 = 83.46 kN. 

P3KEL 9/16 = 0.6 x 156 x325/3000 = 10.14 kN. 

3rd notional lane from the HB vehicle, 

KEL = 156 
2025 1 

4 975 

10 
Central reservation 

Grid 1/8 Grid9/16 

P3KEL 1/8 0.6 x 156 x 975/3000 = 30.42 kN. 

P3KEL 9/16 0.6 x 156 x 2025/3000 = 63.18 kN. 
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SECTION PROPERTIES OF THE BRIDGE BEING CONSIDERED 

With reference to Figure F3 and the following Figure F4, 

Y GL 

20000 
Z GL 

LONGITUDINAL 
ELEMENT 

GL 

y Loc 
760 

TRANSVERSE ELEMENT 120 120 

................................. 

2500 
x Loc 

......... .... ........ :............ 
z Loc 

x Loc 

tij Li P. y Loc 
z Loc 21 Nos. 760 0@ 3000 c/c 

Figure F4. - Orientation of axes for bridge. 
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Iý 

Longitudinal element 

bd' 21000 x 1000' 
75x 1012 MM4 gross cross section. 12 12. 

Iyy = 1.75 x 10 12 
- (21 x 7c x 760 4 /64 1.41 X 1012 mmý Net cross section. 

Iyy = 1.41 x 1012 /7 = 2.014 x 1011 mm4 for each longitudinal element. 

bd' 25 00 x 1000' 2500 x 760' 
IM =-= -=1.17 x 1011MM4 net cross section. 12 12 12 

1000 x 21000' 
IZZ =- 12 = 7.72 x 1014 rnM4 gross cross section. 

Izz = 7.72 x 101 4 /7 = 1.102 x 10 14 mmý for each element. 

1 
bh' 

7c 

32 

1[21000 x 1000' 7c x 21 60 4] 
i=- 

(76 
net cross section of each element. 

732 

(L2 

J=9.02 x 10 11 mm 
4. 

Transverse element 

2500 2500 3 IYY = _10003 --760 =1-17xlO" MM4 Net cross section. 12 12 

lxx = 1.41 X 1012 /7 = 2.014 x 1011 mm4 net cross section. 

2x 120 x 2500' 
In = 12 = 3.13 x 1011MM4. 

j=I bh' =2 
2500 x 120' 

2.88 x 109 Mln4. 
33 
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LOAD DATA FOR COMPUTING 

Table F details the computing data. 

Table F- Computing data. 
Grid UDL (kN/m) KEL (klý) HB load kN 
line, 
refer to 
Fig F3 
1/8 1300 (35.2 + 61.6) + 12.75 + 45.3 92.53 

30.42 
3650 

9/16 3000 (35.2 + 61.6) + 45.3 = 124.86 
63.18 + 10.1.4 
= 73 32 3650 . 

17/24 3000 (35.2 + 61.6) + 45.3 = 124.86 
83.46 

3650 
25/32 3000 (61.6) + 45.3 = 95.9 

3650 
- 

33/40 3000 (58.7 + 61.6) + 45.3 = 144.18 
139.1 

3650 
41/48 650 3000 

3= 106 4 6) + 45 7) +- (61 (5 8 - 
16.9 395 @ four 

. . . 75 0 . 6 3650 positions along 
span direction 

49/56 1300 
3650 

(61.6) + 12.75 + 45.3 = 80.00 - 190 @ four 
positions along 
span direction 
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