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ABSTRACT 

Nitric oxide (NO) is a signalling molecule formed when L-arginine is 

converted to L-citrulline by the enzyme NO synthase (NOS). NOS exists as three 

isoforms, ecNOS is constitutively expressed in endothelial cells and nNOS in 

neuronal cells, while a third isoform (iNOS) is induced in response to 

inflammatory stimuli and is capable of sustained production of high levels of NO. 

NO produced in response to an inflammatory insult, has been shown by use of 

NOS inhibitors to be detrimental during inflammation by producing the potent 

oxidising agent peroxynitrite. However, iNOS knockout animals generally 

produce a similar inflammatory profile to wild type controls. Hence, there is a 

discrepancy between the effects of phamacological inhibition and gene deletion 

of iNOS in vivo. Therefore, the aim of this thesis is to use a number of 

approaches to modulate NO production in acute and chronic inflammatory 

models and to assess the effects on the NOS pathway and other markers of the 

inflammatory response. 

In this thesis, it was established that iNOS protein expression and nitrite 

formation was significantly elevated after injection of the inflammatory stimulus 

in the carrageenin-induced pleurisy (RCIP), bovine serum albumin (BSA)-induced 

pleurisy and methylated BSA-induced pleurisy in the rat, and a murine models 

of croton oil-induced chronic granulomatous tissue of the air pouch (MCGTAP). 

The majority of immunostaining was associated with migrating inflammatory cells. 

NO production was modulated in acute and chronic models of inflammation using 

NOS inhibitors and NSAIDs. Local injection of NOS inhibitors in the RCIP model 

caused an increase in pro-inflammatory mediators, including superoxide, 

histamine and PMN chemoattractants that resulted in an exacerbation of 

inflammation. This was a result of inhibition of both eNOS and NOS at the 

inflammatory site. In contrast, systemic inhibition of NOS reduced both 

inflammatory cell influx and exudation into the pleural cavity. A similar inhibitory 
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result was obtained after NOS inhibition in the MCGTAP model. This anti- 

inflammatory effect was supported by experiments in mice whose iNOS gene had 

been genetically deleted. Interestingly, oral aspirin administration significantly 

elevated nitrite formation in both the RCIP and MCGTAP with a concomitant 

decrease in inflammation. Further analysis demonstrated that aspirin was able 

to elevate NO production in lipopolysaccharide induced J774 macrophages and 

A23187 stimulated EA. hy926 endothelial cells, suggesting that both cell types 

may be involved in the pharmacological actions of aspirin. 

In conclusion, NO is a multi-functional free-radical which had 

advantageous effects in the acute resolving model and detrimental effects in 

chronic inflammation. Therefore, depending on the levels and micro-environment 

in which it is produced NO can be either good or bad. 
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CHAPTER 1. Introduction 

1.1 The Inflammatory reaction: a historical perspective (Reviewed by 

Spector and Willoughby, 1968; Florey, 1970). 

The word inflammation originates from the Latin verb inflammaro, meaning to 
burn and was first described nearly 2000 years ago by Celsus (30 BC - 38 AD) 

who outlined some of the characteristics of this reaction. In his classical text De 

Re Medicina he described four cardinal signs of inflammation; rubor (redness), 

calor(heat), tumor(swelling) and dolor(pain). A fifth cardinal sign, functio leasa 

(loss of function), was added over 1800 years later by Rudolf Virchow. (1858; 

Figure 1.1). The process of inflammation is dependent on the surrounding 

microvascular system which allows the movement of serum proteins and 

phagocytic cells from the blood into the affected extravascular tissue. 

Figure 1.1 Depiction of the cardinal signs of Inflammation. This was taken from 

`Inflammation and inflammatory desease" written and edited by Spector and Willoughby 1970. 

Early studies in inflammation centered around accurate observations of a wide 

variety of inflammatory lesions. The reactive nature of inflammations was first 

described by John Hunter (1794), who concluded "inflammation is itself not to 
be considered as a disease, but as a salutary operation consequent either to 

violence or some disease". The basis of the cardinal signs were not further 
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eluded to until the early 19' century, when Thomson (1813) working with frog 

transparent foot web, observed that no matter what the stimuli, acid, alkali or 

saturated salt solutions, there was an increase in blood circulation in capillaries 

which was normally accompanied by a reduced flow rate in vessels. This 

suggested that the primary process in inflammation was exudation from small 
blood vessels. An alternative hypothesis was composed by Virchow (1871) who 

believed that inflammation was induced by the metabolism of diseased or 

damaged cells. He suggested the primary changes occured in tissue cells, 

causing them to swell and divide to produce "pus cells" which later extruded into 

the surrounding tissue, with the vascular changes only being secondary. This 

theorem was heavily criticised by Cohnheim (1873) who advocated that the 

initial inflammatory events were bought about by adaption in the vessel wall. 
This theory of vascular permeability was added to later by Starling (1896) who 
demonstrated the importance of osmotic pressure. Our understanding of 
inflammation today was further added to by Elie Metchnikoff (1892), who was the 

first to observe and study cellular immunity. His experiments led him to believe 

that leukocytes were essential to the inflammatory response. The idea that 

proteins secreted by cell played an integral role in the inflammatory response 

was developed by Paul Ehrlich who championed the theory of humoral immunity 

(antibodies) for which he received the Nobel prize. Neuronal involvement in 

inflammation was shown by Thomas Lewis who found that severance of the 

autonomic nerve could eliminate the flare but not the wheal or redness caused 

by experimental inflammation. 

Therefore, by the start of the 20' century there was a sound theoretical basis for 

the inflammatory response, which required further analysis. The description of 

the inflammatory reaction described below is by no means comprehensive, but 

includes most of the basic principles involved. 

1.2 Cells involved in the inflammatory process 

Polymorphonuclear neutrophils (PMNs) are multi-nucleated granulocytes that 
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are the predominant cell in the early phase of an inflammatory reaction. They 

release numerous enzymes including collagenase and alkaline phosphatase 

which are packaged in specific granules. In addition, PMNs release other 

enzymes such as elastase, myloperoxidase and acid hydrolases from 

azurophilic granules. Both types of granules are able to release lysozymes 

(Boxer and Smolen, 1988). PMNs also produce and release the free radical 

nitric oxide (NO) from both constitutive and inducible forms of nitric oxide 

synthase (Wright et al., 1989; McCall et aL, 1989). This free radical has a 

number of roles, firstly to act as an anti pathogenic agent (Liew, 1993; Croen, 

1993) and secondly plus it may influence the programmed cell death in PMNs. 

Other free radicals are produced including superoxide that cause tissue 

destruction by contributing to the degradation of hyaluronic acid, proteoglycans 

and collagen (Greenwald, 1991). PMNs also release prostaglandins and 

leukotrienes. Leukotriene B4 acts as a potent chemoattractant for PMNs 

promoting the influx of new PMNs to the inflammatory site. 

Monocytes are recruited to the inflammatory site by chemotactic stimuli. Once 

they have migrated out of the circulation they differentiate into macrophages and 

accumulate at the inflammatory site (Musson et al., 1983; Ridley et aL, 1990). 

In the latter stages of inflammation the macrophage predominates, releasing 

acid hydrolases (Riches and Stanworth, 1982), collagenases (Wahl eta!., 1975) 

and elastase (Werb and Gordon, 1975). The macrophage is an important cell 
in the regulation of the inflammatory process releasing free radicals, eicosanoids 

and a wide range of pro- and anti-inflammatory cytokines (for review see 
Warrens and Lechler, 1992). 

Mast cells are large granulocytes which are widely distributed in most tissues 

and are particularly numerous adjacent to small blood vessels (Tucker of a/., 
1977). These cells are important in the initiation of the inflammatory response, 

rapidly releasing mediators from large basophilic cytoplasmic vesicles that 

promote vasodilatation and oedema formation at the inflammatory site. They 

release mediators such as histamine, 5-hydroxytryptamine (5-HT), platelet- 
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activating factor (PAF), free-radicals, cysteinyl leukotrienes and tumor necrosis 
factor a (TNF-a) by components of the complement cascade stimulated by IgE 

(Musch et aL, 1987; Jakschik and Lee, 1980: Amon et al., 1994). 

Basophil leukocytes constitute less than 1% of circulating leukocytes and bear 

a close resemblance to mast cells at the electron microscope level. Like. other 

leukocytes they can migrate from the blood to the tissue in response to 

chemotaxins (Shute, 1992). They can release similar products to mast cells and 

are particularly prevalent in tissues responding to an allergic stimuli e. g. lung 

tissue in asthma. - 

Eosinophils are associated with allergic inflammatory reactions such as asthma 
(Corrigan and Kay, 1996) where in the lung they are present in large numbers 
(Makino and Fukada, 1995). They migrate from the bone marrow into the blood 

stream and from the circulation into the affected tissue in response to an 
Interleukin-5 (IL-5) gradient (Fernvik et al., 2000). They exert their actions by the 

release of lipid mediators, cytokines and cytotoxic cationic granule proteins. Like 

most cells involved in the inflammatory reaction they are able to modulate the 

immune response by the type and concentration of cytokines released. 

T-Lymphocytes are a rich source of cytokines which have potent regulatory 

effects on the inflammatory reaction (O'Gara and Murphy, 1994, Fitch et al., 
1995). During maturation T lymphocytes migrate from the cortex to the medulla 

of the thymus, where they acquire different cell surface markers that distinguish 

their function once mature. Two different cell populations exist in the medulla, 
helper cells containing CD4 cell surface marker and suppressor/cytotoxic T cells 

with CD8 cell surface marker. Effector functions of lymphocytes include the 

secretion of pro-inflammatory cytokines and cytotoxic responses to cells 

containing non-self material or altered membrane antigens. Their regulatory 
functions include increasing or decreasing the immune response. In general, 
CD4+ cells secrete pro-inflammatory cytokines that include gamma interfron 

(yINF), whilst CD8+ cells secrete anti-inflammatory cytokines and perform 
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cytotoxic functions. 

B lymphocytes are important for the secretion of antibodies to invading 

pathogens and play a key role in antigen mediated immune reactions. B cells 

are initially stimulated in lymph nodes then migrate to inflammatory sites, where 
they differentiate terminally to immunoglobulin-producing plasma cells. Activated 

B cells and plasma cells secrete antibodies that give rise to immune complex 
formation and activation of the inflammatory cascade. 

1.3 Mechanisms of inflammation 

Inflammation is normally a localised protective reaction to irritants and trauma. 

Its function is to destroy and remove noxious and infectious stimuli and limit 

injury to the host tissue. Microscopically it involves a complex series of 

responses which include: dilation of arterioles and venules to increase vascular 

permeability and blood flow to the affected site, exudation of fluid which contains 

plasma factors and the migration of leukocytes into the inflammatory lesion. 

These events are controlled by an ever increasing list of inflammatory 

mediators. Inflammation can be divided into two main areas acute and chronic 

responses. 

1.3.1 Acute inflammation 

Acute Inflammation can be divided into two major categories an innate or 
immunologically non-specific reaction and an adaptive or specific immunological 

response. 

The innate reaction is associated with acute inflammation and can be divided 

into vascular and cellular changes. This process is dependent on the generation 

of vasoactive and chemotactic agents, which diffuse from the site of the 

inflammatory stimulus to the blood vessels (Sorkin et al., 1970; Ryan and 
Majino, 1977). The initial steps involved in inflammation are increased local 

vasodilatation which elevates regional blood flow to the affected area and an 
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increase in microvascular permeability in response to the release of locally 

formed mediators such as histamine (Movat, 1987). This results in an 

accumulation of fluid and plasma proteins into the inflamed tissue though large 

venular junction gaps (Grega et al., 1985). Chemotactic mediators such as IL-8 

and are produced by the affected area and stimulate the adherence of 

circulating granulocytes and mononuclear cells to the vascular endothelium. 
These cells then migrate under the influence of a chemotactic gradient to the 

inflammatory site (Lee, 1987). At the focal point of the stimulus, recruited cells 

accumulate and become activated. The principal cell types involved in this 

reaction are PMNs and monocytes/macrophages. These phagocytic cells ingest 

foreign material and cellular debris into an infolding of the cytoplasmic 

membrane called a phagosome by a process known as endocytosis. The 

phagosomes containing ingested particles fuse with lysosomes produced by the 

Golgi which release by endocytosis an extensive array of hydrolytic enzymes 
(e. g. nucleases, proteinases, lipases etc) capable of breaking down most 

classes of biological macromolecules (Chayen and Bitensky, 1971). This 

process is a method of limiting tissue damage, however paradoxically the 

release of lysosomal enzymes and reactive oxidants into the cellular 

environment may also contribute to cellular injury. 

The adaptive response is mediated by specific immune reactions to antigens 

which is superimposed over and potentiates the basic innate response. This 

results in a more prolonged and efficient reaction. The immune response to 

antigens can be divided into two components, humoral or antibody-mediated 

reaction and the cell-mediated response. Since the adaptive response does not 
form the major part of this thesis, it is described only briefly. In cell-mediated 
immunity, antigens are presented on major histocompatibility complex (MHC) to 

T helper (Th) lymphocytes in the lymph nodes by antigen presenting cells like 

macrophages and dendritic cells (Rosenthal and Shevach, 1973). Antigen 

presentation to ThO lymphocytes stimulates the release of IL-2, aT lymphocyte 

differentiation factor. This event results in the production of cytotoxic T 

lymphocytes (Tc) or natural killer lymphocytes (Tnk) and together with cytokines 
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released by Th cells elicit the effector system of cell mediated immunity (Young 

et al., 1990). Recent evidence suggests that Th and Tc cells can be separated 
into two distinct subtypes, classed on their cytokine production profiles. These 

are Th1 (or Tcl) type lymphocytes or Th2 (or Tc2) type lymphocytes. The 

derivation of these two subsets is not fully understood but seems to be reliant 

on antigen dose, route of administration, APC phenotype, co-receptors present 

on APC and biological mediators prevalent during antigen presentation (for 

review see Mosmann and Sad, 1996; Kane et aL, 2001). These subsets of T 

cells have been implicated in different pathologies. Th1 type reactions are 

associated with cell mediated immune responses and Th2 antibody mediated 

allergic immune responses. However it must be noted that although these 

reactions seem to be mutually exclusive, both -can occur within any one 

pathological reaction. Indeed it is the cytokines released by either Th 1 or Th 2 

lymphocytes that mediate the relevant immune response. Due to the specific 

nature of these responses it is believed that the immune reaction is polarised in 

various diseases and this then contributes to the ongoing pathology. The 

majority of the work on Th1 and Th2 subsets has been carried out in vitro with 

recently some new evidence coming from in vivo studies for subsets in 

inflammation (Dong and Flavell, 2001). 

1.3.2 Chronic inflammation 

Post acute injury, PMNs undergo a process known as apoptosis which facilitates 

their removal by macrophages in the inflammatory site. This 'subacute' 

inflammatory response represents the early stages of resolution leading to the 

formation of granulation tissue. 

In chronic inflammation both the innate and adaptive response contribute to the 

formation of the chronic lesion, which is synonymous with formation of 

granulomatous tissue. This type of inflammatory tissue is characterised by the 

proliferation of endothelial cells resulting in the formation of new capillaries 

(angiogenesis) within the granuloma leading to a restoration of the vascular 

supply (Risau, 1990; Diaz-Flores of al., 1994). In addition, proliferation of 
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fibroblasts restore the connective tissue matrix in the injured area by increasing 

the synthesis of glycosaminoglycans and collagen type I and type III (Ross, 

1975; Duncan and Berman, 1989a; Duncan and Berman, 1989b). Proliferation 

of endothelial cells and fibroblasts is orchestrated by specific mediators secreted 

by activated macrophages, T-lymphocytes (Lowry, 1993), plasma and platelet 

derived factors (Deuel et al., 1991). These processes result in increased 

connective tissue synthesis, deposition and perfusion of the granuloma. In 

circumstances where the inflammatory response is unable to eliminate the 

injurious agent or restore involved tissue to its normal physiological state, there 

is a progression of inflammation and of the chronic lesion. Acute and chronic 

inflammation represents a complex series of events which are frequently 

overlaid. However, our understanding of the involvement of specific mediators 

present in this complex reaction is still limited. Further investigation is still 

required to elucidate their role and potential as therapeutic targets. 

1.4 Nitric oxide (NO) synthase pathway, its products and function 

in inflammation 

NO is one of the most recently described mediators that has been implicated in 

the pathophysiological changes seen in acute and chronic inflammation. In fact, 

within the last 10 years considerable advances have been made in the 

understanding of NO as an inter- and intra- cellular messenger and its function 

within the inflammatory reaction. The involvement of NO in mammalian and 

rodent cell biology is enormous (for detailed reviews see Nathan, 1992; Bredt 

and Snyder, 1994), but since this thesis focuses on inflammation, the 

involvement of the NOS pathway will be discussed within this realm. 

1.4.1 Brief History 

The history of the discovery of the L-arginine-NO pathway is discussed only 

briefly, as excellent reviews are available (Hibbs et al., 1990; Moncada et al., 

1991; Nathan, 1992). The possibility that NO could have a biological role was 

first suggested by Murad and colleagues (1977), who demonstrated that 
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exogenous NO and NO releasing compounds could activate guanylate cyclase 
in various tissue preparations. However, it wasn't until the early 1980s, in 

studies inspired by analysis of carcinogenesis that mammalian cells were first 

demonstrated to synthesise inorganic oxides of nitrogen. In 1981 Green and 

colleagues (1981 a, b) reported that germ-free rats and humans were able to 

excrete more nitrate than they consumed, suggesting that mammals can 

synthesise nitrogen oxides endogenously. The excretion of nitrite was found to 

be further elevated during inflammatory episodes induced by inflammatory and 
infectious agents, and could in part be explained by the ability of influxing 

macrophages to excrete nitrite and nitrate (Stuehr and Marietta, 1985). These 

macrophages were able to metabolise L-arginine to form L-citrulline and a 

substance that causes nitrosation of amines. 

Independently, researchers working on the biochemistry of the 

cytostatic/cytocidal effects that activated macrophages have on tumour cells and 
fungi showed a degree of oxidative damage and iron loss associated with this 

phenomenon (Hibbs etaL, 1990). These same investigators demonstrated that 

substituting one or both of the terminal guanidino nitrogens of L-arginine 

inhibited this cytotoxic activity. This oxidising activity observed in macrophages 

could not be mimicked by the addition of exogenous nitrite or nitrate (Hibbs et 

a/., 1987) except at lower than physiological pH, where nitrite was reduced to 

nitrite and NO (Stuehr and Nathan, 1989). This suggested once again that the 

biologically active component was a highly reactive oxide of nitrogen which 

could be oxidised rapidly to nitrite and nitrate. 

A third line of investigation also centred upon a nitrogen oxide being a potent 

signalling molecule. Arnold and co-workers (1977) showed that a diverse range 

of compounds that release NO could activate soluble guanylate cyclase, and in 

some circumstances this occurred through S-nitrosothiol intermediates (Ignarro 

etaL, 1981). These compounds had profound physiological effects in vitrowhich 
included inhibition of platelet aggregation (Mellion eta!., 1981) and the induction 

of vasorelaxation (Gruetter eta!., 1979). In vivo data generated by Furchgott and 
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Zawadzki (1980) showed that compounds which did not release NO themselves 

were able to evoke vasorelaxation. They demonstrated that these substances 

exerted their actions by stimulating endothelial cells to release a short lived 

vasodilator mediator termed endothelium-derived relaxing factor (EDRF), whose 

properties were remarkably similar to that of NO. 

The identity of EDRF was confirmed by two independent groups (Ignarro et al., 
1987; Palmer et al., 1987) who showed that the vasodilator activity attributed to 

EDRF could be accounted for by NO. The verification that macrophages also 

released an EDRF-like substance indistinguishable from NO (Stuehr et al., 
1989) confirmed the importance of this free radical as a biological signalling 

molecule. Therefore, NO could account for two fundamental mechanisms 

observed in vivo, one being physiological (vasodilation) and the second 

pathophysiological (inhibition of pathogen metabolism). These discoveries 

opened the flood gates to thousands of investigations which implicated NO in 

neurotransmission, reproduction, host defence mechanisms and several 

pathological events (for review see Moncada et al., 1989). This led to NO being 

named as "molecule of the year" (Koshland, 1992), with to date numerous 

reviews available on all aspects of its biology and chemistry. 

The enzyme responsible for the production of NO was named nitric oxide 

synthase (NOS; EC 1.14.13.39). Although there is no argument about the fact 

that NO is the primary product released by NOS, it remains unclear which 

reactive oxides of nitrogen are responsible for individual nitrosation products 

and the eventual effects ascribed. Therefore, throughout this thesis effects that 

are assigned to NO are done so for simplicity. The real cellular protagonists 
formed by NOS producing cells are probably a combination of NO, NO2, NO3, 

N203, N02-, N03 , ONOO-, nitrosoamines, non-protein and low molecular weight 

protein S-nitrosothiols and S-nitrosylated proteins. 

1.4.2 NO in inflammation 

When considering the role played by NO in inflammation, the cells and 
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mediators present during various stages of the inflammatory response must be 

considered. In the acute phase of inflammation PMNs are dominant at the initial 

stage, which usually spans 4-6 h. Continued insult results in a chronic 
inflammatory response which is characterised by the activation of mononuclear 
cells and the expression of NOS in a wide variety of cells. 

Acute inflammation: Acute inflammation is a short-lived resolving event. 
Mechanical and thermal trauma or the invasion of pathogens results in the 

release of acute phase mediators, of these histamine, 5-hydroxytryptamine, 
bradykinin, platelet activating factor (PAF) and substance P, evoke release of 
endothelial NO, causing vasodilatation and vascular permeability, thus 
facilitating oedema formation and trafficking of inflammatory cells (Fujii et al., 
1994). In a series of experiments endothelial-derived NO was demonstrated to 
inhibit platelet aggregation and adhesion to the vessel wall and with PGI2 to 

regulate platelet-endothelial cell interactions (Radomski et a/., 1987a-d). 
Carrageenin-induced rat skin permeability and carrageenin and dextran-induced 

models of paw oedema show a dose-dependent inhibition of vascular 
permeability and oedema formation with L-arginine analogues, which inhibit 

NOS, suggesting that NO released at the inflammatory site was involved (lalenti 

et al., 1992). 

The majority of the literature available up to 1996, looking at the impact of NOS 

inhibition in acute models of inflammation, concluded that inhibition of NO at the 

inflammatory site was beneficial (luvone et aL, 1994; Salvemini et al., 1995, 

Tracey eta!., 1995; Medeiros eta!., 1995; Sautebin eta!., 1995; Salvemini eta!., 
1996). These studies performed in acute inflammatory models in the rat, 
demonstrated that systemic inhibition of NO with a number of different NOS 

inhibitors (ranging from non-specific NG-nitro-L-arginine methyl ester (L-NAME) 

to selective iNOS inhibitors L-NIL) significantly reduced the number of 
inflammatory cells and exudate present at the inflammatory site compared with 

vehicle treated animals. In the majority of these studies the anti-inflammatory 

effects were accompanied by an inhibition of iNOS protein and/or nitrite, with 
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some showing no effect on systemic arterial blood pressure. Therefore, the 

conclusion was drawn that inhibition of NO was beneficial in acute inflammation. 

However, the NOS inhibitors used were at best only 20% more selective for 

iNOS, and at worst had no selectivity between all three isoforms. Given their 

lack of selectivity, it is conceivable that systemic administration may also inhibit 

ecNOS remote from the inflammatory locus resulting in vasoconstriction, 

reduced blood delivery to the inflamed site and leucocyte margination: hence, 

a reduction in inflammation. Greenblatt and colleagues (1993) suggested that 

the control of leukocyte-endothelial cell interaction may be more complex and 
involve local regulation of the cardiovascular system, since there was a great 

variability in the magnitude of basal NO-dependent tone depending on the 

microvascular bed. Therefore, in summary it appears that in models of shock 

and inflammation, NO derived from iNOS may be responsible for most of the 

pathophysiological actions, whereas, eNOS has beneficial and protective roles 
by virtue of its ability to maintain vascular perfusion of the affected area and so 
its inhibition is not advantageous (for review see Kubes, 2000). Excessive 

inhibition of eNOS may mask the beneficial effects of inhibiting iNOS, therefore 

care must be taken in interpreting data obtained from pharmacological studies. 

Leukocyte endothelial interactions: The recruitment of leukocytes at the 

inflammatory site is one of the main host responses that occur in inflammation 

and is largely determined by events that take place in the specific region of the 

microvasculature (postcapillary venules). When the leukocytes move out from 

the capillaries, the hemodynamic forces in the venules favour the outward 

movement of these cells to the blood vessel wall. The sequential series of 

events that ensue result in the transmigration of PMNs into the perivenular 
interstitium and then to the inflammatory site under the influence of various 

chemotactic agents. NO has been shown to be involved in this process (Granger 

and Kubes, 1994). More specifically, inhibition of NO synthesis promotes P- 

selectin-dependent leukocyte rolling (Terada, 1996), suggesting that NO may 

be a hemostatic factor in the downregulation of PMN rolling under normal 

conditions. In support of this finding, the addition of exogenous NO decreases 
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PMN rolling under normal conditions (Gaboury et al., 1993; Gauthier et aL, 
1994). Under inflammatory conditions the same effects ascribed to NO were also 
demonstrated (Kubes et al., 1997; Hickey et al., 1997). 

NO has been proposed to be involved in adhesion since in a model of ischemic 

reperfusion, NO significantly reduces leukocyte adhesion to endothelium (Ma et 

a!., 1993) and its associated injury (Lefer et aL, 1993). The anti-adhesive 

properties of NO is suggested to be related to its ability to inactivate superoxide 
by a mutual scavenging pathway, therefore nullifying the effects of both free- 

radicals. Since -superoxide produced by the neutrophil is believed to be 

important in activating the endothelium, promoting firm adhesion of the PMN 

(Kubes et a!., 1994). The role of NO in migration has been demonstrated using 
NOS inhibitors, which elicit leukocyte migration, a phenomenon that was 

reversed by L-arginine (Kurose et al., 1994). In conclusion, NO seems to be an 
important regulatorof PMN function in both physiological and pathophysiological 

conditions and therefore would be of interest as therapeutic target in 

inflammation. However, there are many contradictory reports for the effect of 
NO in inflammatory process, therefore this area requires further investigation. 

Chronic inflammation: iNOS has also been shown to be present during chronic 
inflammatory tissue formation (Vane eta!., 1994) with iNOS activity associated 

with the peak of granulomatous tissue formation in mice. In another model of 

chronic granulomatous tissue formation in rats, L-NAME dose-dependently 

reduced the lesion size, cell infiltration and nitrite production (luvone et al., 
1994). In other studies in rodents, it was suggested that iNOS expression in the 

chronic state may be part of a maladaptive process, with NO production being 

associated with synovial tissue in a streptococcal wall-induced arthritis. NO was 
involved in the development of destructive inflammation, which could be 

inhibited using NOS inhibitors (McCartney-Francis et al., 1993). In MRL-Ipr/Ipr 

mice, animals that spontaneously develop a systemic autoimmune disorder, that 

the development of inflammatory nephritis and arthritis coincide with the 

appearance of nitrate and nitrite in the urine. The chronic inflammatory changes 
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that occurred in these mice were significantly reduced by the administration of 

a NOS inhibitor (Weinberg eta!., 1994). However, still little is known about NO's 

involvement in chronic inflammation, therefore further work is required. A 

summary of the role of NO in inflammation can be seen in Figure 1.2 

I Activation of the immune response 

'jr Induction of cytokines (IL-1, INFy, TNF-a. ) 

Induction of xanthine Induction of WO: S 
oxidase 

i 
Superoxide / Excessive production of NO 

Peroxynitritee I 

Lipid Activation/ Enhanced vascular 
peroxidation augmentation of permeability 

protease activity 

II 
Enhanced Suppression 

ADP of 
ribosylation respiration 

Figure 1.2 Summary of the role of NO in inflammation and immunity (modified from 

Maeda et al., 1994). 

1.4.3 NO in inflammatory diseases 

Rheumatoid arthritis: Rheumatoid arthritis (RA) is a chronic inflammatory 

autoimmune disease, characterised by proliferation of the synovial lining of the 

joint cavity forming an invasive inflammatory tissue termed pannus. RA is a 

relapsing and remitting disease with reoccurrences accompanied by PMN influx 

into the synovium. The evidence for NO's involvement in RA is accumulating. 

Elevated levels of nitrite have been reported in serum and synovial fluids taken 
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from patients with active rheumatoid arthritis (Farrel etaL, 1992). NO production 

and iNOS expression in RA patients was localised to the inflamed synovium and 

cartilage by immunohistochemisty and RT-PCR (Sakurai et al., 1995; McInnes 

et al., 1996). Stimulation of human articular chondrocytes with inflammatory 

cytokines and LPS in culture causes a sizable induction of nitrite levels 

accompanied by an inhibition of proteoglycan synthesis (Hauselmann et al., 
1994). Ueki and colleagues (1996) demonstrated a close correlation between 

serum nitrite and disease activity, which included joint swelling, C-reactive 

protein, TNF-a and IL-6 levels. Similar findings concerning the relationship of 
NO and severity of inflammation were also found in rodent models of the 

disease (lalenti et aL, 1992) with a suppression of the development of arthritis 

after the administration of NOS inhibitors (McCartney-Francis et al., 1993; 

Stefanovic-Racic eta!., 1995; Conner eta!., 1995). Thus, the involvement of NO 

in the pathogenesis of autoimmune and inflammatory arthritis is particularly 

strong. 

Gastrointestinal inflammation (G! ): Inflammation of the GI tract is characterised 
by inflammatory cell infiltration and often involves motility disorders associated 

with toxic dilatation. Ulcerative colitis and Crohn's disease are inflammatory 

disorders of the GI tract in man. The colonic mucosa of patients with ulcerative 

colitis has a considerable elevation of iNOS activity compared with non-inflamed 
tissue, with similar levels in the surrounding musculature. In contrast, iNOS 

activity in the mucosa of patients with Crohn's disease was no different from 

controls (Boughton-Smith eta!., 1993a). Modulation of NO production in animal 

models of GI tract inflammation have produced conflicting results. Exogenous 

administered NO appears to afford protection against tissue damage by 

inhibiting capillary leakage, PMN infiltration and to a greater or lesser extent 
depending on the model used and parameters measured (Hutcheson et al., 
1990; Boughton-Smith et al., 1992; Miller et al., 1993). In comparison, iNOS 

activity in the intestines of LPS-treated rats was accompanied by increased 

vascular permeability which could be inhibited by L-arginine analogue 
(Boughton-Smith eta!., 1993b). 
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1.4.4 Biochemistry of NO synthesis from L-arginine 

Molecular characterisation of the various isoforms of NOS has given rise to 

considerable information concerning its regulation, physiological and 

pathophysiological roles. The L-arginine-NO pathway has been identified in 

many species including fish, birds, plants and bacteria, but has been most 

extensively studied in mammals (Nathan, 1992; Knowles et al., 1994). The 

expanding family of NOS enzymes falls into two categories, the first are 

constitutive isoenzymes regulated by Ca2+ and calmodulin of which there are two 

distinct isoforms; neuronal NOS (nNOS) also described as Type I NOS or NOS- 

1 or bNOS and endothelial NOS (eNOS) also known as ecNOS Type III NOS or 
NOS-3. The second is a cytokine-inducible form that has calmodulin tightly 

bound within the dimer, therefore is permanently active and reasonably 

unaffected by post-transciptional control (for review see Marietta et al., 1994). 

The three NOS isoforms are encoded by distinct genes and consist of either 26 

exons (iNOS and eNOS) or 29 exons (nNOS; Nathan, 1992; Knowles et al., 
1994). The isoforms share 50-60% homology between species and isoforms and 

-90% between isoforms of a specific species (Figure 1.3), and display many 

similarities to the cytochrome Paso family of enzymes. eNOS and nNOS consist 

of an inactive dimer (subunits -130 kDa in size) held together with a heure 

prosthetic group. This dimer is activated by Ca 2+ and calmodulin. Both iNOS and 

nNOS are cytosolic, but eNOS is more then 90% particulate (Forstermann et al., 
1991) with myristylation at the N-terminal glycine as well as palmitylation which 

associates the enzyme with membrane caveolae (Pollock et al., 1991; Garcia- 

Gardena et al., 1997). 
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Figure 1.3 Structure of NOS isoforms. NH2 (N) and COOH (C) termini are indicated. Homology 

in amino acid sequence is depicted: open boxes, homologous regions; hatched boxes in nNOS 

and eNOS; solid boxes, isoform specific sequences. Regions involved in the binding of co-factors 

are indicated as well as the oxygenase and reductase domain and the direction of intramolecular 

electron flow. Arg, arginine; H4 biopterin, tetrahydrobiopterin; CaM, calmodulin; FMN, flavin 

mononucleotide; FAD, flavin adenine dinucleotide. 

The proposed biochemical scheme for the formation of NO was eluded to by a 

series of isotope studies (Kwon et aL, 1990; Leone et al., 1991). In summary, 
these experiments showed that L-arginine is hydroxylated at the terminal 

amidine nitrogen followed by the specific further oxidation of that nitrogen. This 

reaction requires a5 electron oxidation and ultimately leads to the formation of 

citrulline and NO (summarised in Figure 1.4), which decomposes to nitrite and 

nitrate. 
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Figure 1.4 Proposed reaction mechanism for NO synthesis. Molecular oxygen is 

incorporated into both NO and L-citrulline in at least two phases. The first step consist of the N- 

hydroxylation of L-arginine to the stable intermediate NG-hydroxy-L-arginine which requires 1 mol 

of the electron donor NADPH and the second its subsequent oxidation to L-citrulline and NO 

which needs 0.5 mol NADPH and is dependent on H4 biopterin. The flavin cofactors FAD and 

FMN, and the cytochrome P450 domain of NOS may mediate electron transfer from 1.5 mol 
NADPH to molecular oxygen in one or both phases. Terahydrobiopterin (H4 biopterin) may also 

be involved in electron transferand both flavins and H4 biopterin may then recycle in an NADPH- 

dependent manner (modified from Nathan, 1992; Marietta, 1993). 

The process involves two successive monooxygenation reactions, the first 

yielding NG -hydroxy-L-arginine as an intermediate (Stuehr et al., 1991 b). The 

second step involves an oxygenation reaction which forms the final products NO 

and L-citrulline (Stuehr and Griffiths, 1992), however the exact process remains 

unclear, but is predicted in Figure 1.4, based upon cytochrome P450 enzymology. 

Recent studies have shed light on this one electron anomaly for the production 

of NO from NG -hydroxy-L-arginine. They suggest that nitroxyl (HNO), and not 

NO, is the preferred nitrogen product (Fukuto et al., 1992, Fukuto et al., 1993) 

and HNO is converted to NO by a variety of physiological oxidants including 

superoxide dismutase (SOD), oxygen and hemeproteins. This is supported by 

the fact that HNO has been shown to have biological activity indistinguishable 

from NO and that SOD enhances directly the formation of free NO from L- 
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arginine by NOS (Hobbs et al., 1994). The mechanism for this potentiation was 

independent of superoxide dismutation and NOS activation. Production of NO 

by NOS requires the presence of the co-substrates L-arginine, nicotinamide 

adenine dinulceotide phosphate (NADPH) and molecular oxygen (02). 

Sequence analysis of the NOS isoforms primary structure has distinguished 

important functional motifs. These manifest themselves as 4 prosthetic groups 

which are required for NO formation: flavin adenine dinucleotide (FAD; Stuehr 

eta!., 1991 a; Stuehr et al., 1995), flavin adenine mononucleotide (FMN; Stuehr 

et al., 1991a; Stuehr et al., 1995), iron protopophyrin IX (heme; White and 

Marietta, 1992), calmodulin and tetrahydrobiopterin (H4 biopterin; Tayeh and 

Marletta, 1989; Kwon eta!., 1989). FAD and FMN are involved in the transfer of 

electrons from NADPH to the catalytic centre (Bredt et aL, 1991), whereas heme 

functions as a redox-active co-factor in NOS catalysis (Klatt et al., 1992; 

McMillan et al., 1992). Finally, H4 biopterin is necessary for the 

monooxygenation steps performed by NOS (Stuehr and Griffiths, 1992). For a 

detailed review see Marietta (1994a). 

1.4.5 Promoter sequences and control of iNOS expression 

The 5'-flanking region of human iNOS has approximately 66% homology with its 

murine counterpart, and this 37kb, 26 exon gene is located on chromosome 17 

at position 17cen-gl1.2 (Chartrain et al., 1994). The control of expression of 

iNOS, which is complex, is for the most part at the transcriptional level. 

Cytokines upregulate human iNOS mRNA transcripts with different transcription 

initiation sites as well as both regularly spliced and alternatively spliced human 

iNOS mRNA in which various coding and/or non-coding regions are absent (Chu 

et al., 1995; Eissa et al., 1996). Mechanisms for the expression of human and 

murine genes are very different and reflect the tighter regulation that human 

iNOS is under (De Vera et al., 1996). All or most of the cis-regulatory elements 

that control the transcription of the murine iNOS gene are in a 1.6 kb 5'-flanking 

region (Xie and Nathan, 1993; Lowenstein et aL, 1993; Weisz eta!., 1996; Kim 

et al., 1997). In contrast, up to 3.7 kb of the 5'-flanking region of the human 

! NOS gene does not contain all the cis-regulatory elements required for the 

19 



CHAPTER 1. Introduction 

transcriptional induction by cytokines. In addition, the human NOS gene 

contains three human specific Alu regulatory sequences (dimeric sequences of 

approximately 300bp in length) which modulate processes that include 

recombination, transcription and translation (De Vera et al., 1996; Laubach et 

al., 1997). 

The region that contains many cis-regulatory elements for binding of 

transcription factors involved in the cytokine induction of iNOS, include sites for 

activator protein 1 (AP-1), nuclear factor-KB (NF-KB), y interferon (y-IRE), 

nuclear factor for IL-6 (NF-IL6), y-activated site (GAS), IFN regulatory factor 

element (IRF-E), IFN -stimulated response element (ISRE), TNF response 

element (TNF-RE) and an X box (Kaling et a!., 1991; Chu et al., 1998). The 

majority of work on the promoter sequence of iNOS has centred upon the 

transcription factors NF-KB and interferon response factor. The latter appears 

to function as an enhancer and is not able to initiate gene expression 

independently (Lowenstein et al., 1993). This is supported by the observation 

that yINF enhances the production of NO after stimulation with LPS in a murine 

macrophage cell line through the stabilisation of iNOS mRNA (Martin et a/., 

1994). 

NF-KB exists as an inactive heterodimer in the cytoplasm consisting of the DNA 

binding proteins p50 and p65 and an inhibitory protein termed IKB (Baeuerle, 

1991; Baeuerle and Baltimore, 1988). Once activated, IKB is phosphorylated 

and the active dinier translocates to the nucleus, where it can bind to its 

consensus sequence on the promoter regions of genes (Urban eta!., 1991). The 

murine iNOS promoter sequence is described as being exquisitively sensitive 

to regulation by NF-KB. Therefore, it is not surprising that agents which 

suppress NF-KB activity inhibit the induction of iNOS in cultured cells. These 

include many antioxidants such as pyrolidinedithiocarbamate and 
diethyldithiocarbamate (Sherman et al., 1993; Mulsch eta!., 1993). In addition, 

protease inhibitors such as Na-p-tosyl-L-phenylalanine, Na-p-tosyl-L-lysine- 

cholomethylketone, calpain and the proteosome inhibitors, Z-IE(O-t-Bu)A- 
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Leucinal, are able to inhibit iNOS induction through suppression of IKB 

degradation (Griscavage eta!., 1995; Griscavage etal., 1996). In fact, the iNOS 

inhibitory actions of the anti-inflammatory drugs dexamethasone and aspirin 
have been suggested to occur through interference with NF-KB activity (Auphan 

et al., 1995; Kopp and Gosh, 1994). 

1.4.6 Substrate and co-factor availability as regulators of iNOS activity 

Full iNOS and cNOS activity has been shown to be dependent on H4 biopterin 

synthesis, which is reliant on the rate-limiting enzyme GTP cyclohydrolase I 

(Gross and Levi, -1992). This enzyme converts GTP to dihydroneopterin and is 

co-induced with iNOS in many different cell types (Di-Silvo et al., 1993; Gross 

and Levy, 1993). Therefore inhibitors of GTP cyclohydrolase (2,4-diamino-6- 

hydroxypyrimidine, methothrexate and N-acetylseritonin) may be of therapeutic 

use for limiting iNOS overexpression in certain pathologies like septic shock. 

eNOS and nNOS are very sensitive to intracellular Ca2+ concentrations for 

activation and represents the main translational switch for NO production from 

these isofomis. Cytosolic Ca2+ is required for the binding of calmodulin to the 

NOS homodimer and it has been demonstrated that addition of the calcium 

chelator EGTA renders these isoforms inactive (Nathan and Xie, 1994). 

Substrate availability may also represent a mechanism by which NO production 

by iNOS may be governed. In various cell types, including macrophages and 

endothelial cells, L-arginine transport is up-regulated in response to inflammatory 

stimuli which induce the expression of iNOS (Bogle of al., 1992; Durante of al., 
1996). In macrophages this process is regulated by the cationic amino acid 

transporter MCAT-2B (Closs et al., 1993). It is worth noting that L-lysine and L- 

ornithine (product of the arginase pathway) are also substrates for this 

transporter and therefore would act as competitive inhibitors for L-arginine 

transport (Bogle et al., 1992). Since NO production by iNOS in immune cells is 

solely dependent on the transport of extracellular L-arginine, inhibition of this 

pathway would blunt NO production in these cells and inhibit NO-mediated 
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effects (Bianchi et aL, 1995). Interestingly, low levels of L-arginine in the 

presence of NADPH can lead to the production of superoxide and hydrogen 

peroxide by nNOS and eNOS, possibly leading to increased tissue damage 

(Mayer et al., 1990; Vasquez-Vivar et al., 1998). 

Phosphorylation is the acceptance of a phosphate group onto an amino. acid 

residue. Accessible serine and tyrosine residues present in the tertiary structures 

of the NOS enzymes are sensitive to phosphorylation and may provide another 
target for post-translational regulation. In fact, phosphorylation modulates the 

activity of all three NOS isoforms. Recently, in LPS induced RAW 246.7 

macrophages, iNOS protein was demonstrated to undergo tyrosine 

phosphorylation resulting in an abatement of protein production and NO 

formation. This inhibitory event was reversed by brief exposure of the cells to the 

tyrosine phosphatase inhibitor vanadate (Pan of al., 1996). In contrast, the 

protein tyrosine inhibitor, phenylarsine oxide, has been shown to activate eNOS 
in the presence or absence of extracellular Ca' and the calmodulin inhibitor 

calmidazolium. This suggests that tyrosine phosphorylation is essential for Ca2'- 

independent eNOS activation (Fleming et al., 1998). Serine phosphorylation of 

eNOS occurs rapidly when endothelial cells are exposed to sheer stress and 

calcium-mobilising agents (Michel of aL, 1993; Corson of al., 1996). 

Phosphorylation of threonine-495 and serine-1 177 of human eNOS by protein 
kinase A results in eNOS activation (Michell of al., 1999). However, inhibitory 

actions of serine phosphorylation have also been reported (Hirata of al., 1995). 

Similarly to eNOS, nNOS is also regulated by phosphorylation in a positive and 

negative manner (Watanabe et al., 1996; Hayashi et al., 1999). 

1.4.7 Cellular production and activity of NO at inflammatory sites 
The major cell types present at the site of both acute and chronic inflammation 

are PMNs and macrophages. PMNs have been shown to synthesise NO (Wright 

et al., 1989; McCall et al., 1989), with levels sufficient to cause vasodilation in 

vitro (Schmidt et aL, 1989) and inhibit thrombin induced platelet aggregation 
(Salvemini et al., 1989). It was hypothesised that PMN-derived NO produced in 
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the early stages of a wound model mediates vasodilatation, inhibition of platelet 

aggregation and acts as an antimicrobial effector molecule (Albina et al., 1990). 

In fact, cytoplasts produced from human PMNs have been demonstrated to kill 

staphylococcus bacteria (Malawista eta!., 1992). PMNs isolated from rat, human 

and mouse origins are all able to produce reactive nitrogen intermediates, 

however nitrite levels are lower than that obtained in rodent macrophages 

(Padgett and Pruett, 1995). Recently, human platelets have been shown to 

contain nNOS as well as iNOS protein (Wallerath et al., 1997). These same 
investigators showed that eosinophils also contain iNOS protein. However, 

although these levels of NO are sufficient for vasodilation and neurotransmission 
it still remains to be determined whether NO produced by PMNs has a role in 

non-specific host defence reactions, as an antimicrobial or tumour suppressor 

agent. 

Rodent macrophage cell lines can produce substantial levels of NO in response 

to bacterial cell wall products and pro-inflammatory cytokines, such as yINF, 

TNF-ac and IL-1 P. Macrophages secrete large amounts of IL-1 and TNF-a in both 

an autocrine and paracrine fashion. NOS activation in macrophages by these 

pro-inflammatory cytokines can be inhibited by the presence of TGF-ß 

(Tsunawaki et al., 1988; Ding et al., 1990), probably through destabilisation of 

iNOS mRNA (Vodovortz et aL, 1993). This is supported by data obtained from a 

model of chronic granulomatous tissue formation, in which iNOS activity declined 

as TGF-ß protein increased (Vane et aL, 1994). This negative regulatory role of 

TGF-ß was confirmed in a model of carrageenin-induced acute inflammation 

(lanaro et al., 1995). Many inflammatory models and diseases require the 

involvement of T helper lymphocytes, with a Th1 type response being associated 

with cell-mediated inflammation and Th2 with hypersensitivity reactions. Th2 

derived cytokines, in particular, IL-4 and IL-10 suppress macrophage production 

of NO which can lead to an inhibition of macrophage function. 

In addition to recruited inflammatory cells, it can be predicted that NO produced 

by host tissue may add to NO production at the site of inflammation. This is 
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supported by the fact that an ever increasing list of cells and tissues can produce 
NO upon stimulation, including keratinocytes, retinal cells, renal tubular 

epithelium, mysoepithelium, mesothelium, hepatocytes, vascular endothelium, 
fibroblast, chondrocytes, T lymphocytes, synoviocytes, osteoclasts and 

astrocytes (Moncada et al., 1991; Schmidt and Walter, 1994). 

The induction of NOS in monocytes or tissue macrophages in vivo has been 

demonstrated or suggested by indirect measurements in several animal models, 
including septic shock (Knowles et al., 1990), IgA immune-complex vasculitis of 
the lung (Mulligan et aL, 1992) and diabetes (Andrade et al., 1993). NOS 

inhibition increased leukocyte adhesion to endothelial cells with the up-regulation 

of CD11/CD18 intergrin on the neutrophil (Kubes et al., 1991). In contrast the 

same inhibitor attenuated neutrophil-dependent injury of the pulmonary 

vasculature (Mulligan et al., 1992). In the expanding literature on NO both pro- 

and anti-inflammatory effects have been ascribed to this free radical in 

inflammation. These discrepancies seem to depend on the model used, inhibitors 

chosen, concentrations and the route of administration of these drugs. In 

addition, most of the cellular effects attributed to NO have been demonstrated in 

vitro, again with conflicting results reported for individual processes. Therefore, 

further work is required to dissect out mechanisms for NO in models of 
inflammation and possible reasons for the contradictions that appear in the 
literature. 

1.4.8 Molecular and cellular targets for NO 

Analysis of the molecular targets of NO has increased our understanding of the 

mechanism of action of NO in homeostasis and host defence. The targets that 

NO has within biology are diverse and include low molecular weight species as 

well as macromolecules which it either activates or inhibits. However, when 

considering targets for NO it has to be taken into account how NO is transported 

out of the effector cell to its target without causing damage, since the NO 

produced by iNOS is cytosolic and can react with many intracellular species. 
There may be mechanisms that exist to prevent unintentional reactions. 
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Therefore, do special intracellular transport routes exist for NO itself or is there 

a carrier molecule complex formed? Although there is this distinct potential, none 
of the aforementioned have been proven. However, putative transport forms of 
NO have been documented and include, dinitrosyl-iron(III) complexes (Muisch 

et aL, 1991), NG-hydroxy-L-arginine-NO adduct (Hecker et aL, 1995) and 
glutathione-NO complex (Hogg eta!., 1996). The formation of these compounds 

would limit the toxicity of this free radical to the effector cell. 

Haem proteins: At low concentrations NO can reactwith Fe2+-haem proteins. The 

classical example of activation is guanyl cyclase (Ignarro etaL, 1982), with more 
recently, its reactions with cyclooxygense being of interest (Salvemini et al., 
1993). NO also has been shown to have inhibitory effects on a variety of 
heamproteins which include cytochrome Pao aromatase (Snyder et al., 1996), 
thromboxane synthase, catalase (Gross and Wolin, 1995), glutathione 
peroxidase (Asahi et aL, 1995). These enzymes are involved in the synthesis of 
biological mediators and redox based signalling events. Additionally the 
interaction of NO with haemoglobin and myoglobin decreases the bioavailability 

of the active molecule (Furchgott and Vanhoutte, 1989). 

Enzymes: Native NO is a potential inhibitor of mitochondrial respiration and 
energy metabolism (Stuehr and Nathan, 1989; Hibbs eta!., 1990). Moreover, the 

ability of NO to react with Fe-S clusters in complex I and II in mitochondrial 

respiration and aconitase in the citric acid cycle has been linked to the 

cytostatic/cytotoxic properties of NO (Drapier and Hibbs, 1988; Stadler et al., 
1991). Importantly NO can also inhibit the glycolytic enzyme glyceraldehyde-3- 
phosphate dehydrogenase, which results in the suppression of ATP generation 
(Molina y Vedia et aL, 1992). Inhibition of these two important cellular processes 
may be fatal to the affected cell. In fact NO has been shown to cause apoptosis 
in a number of cell types in vitro (Albina et al., 1993; Fehsel et al., 1995; Palluy 

and Rigaud, 1996). 

DNA: NO can inhibit DNA synthesis, in part by inhibiting the DNA biosynthesis 
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enzyme ribonucleotide reductase (Kwon et al., 1991; Lepoivre et al., 1991). 

Exogenous NO can also cause mutagenicity by deaminating DNA when present 

at high concentrations (Wink eta!., 1991). However, intracellular production has 

yet to be shown to facilitate this event. NO has also been shown to inhibit the 

zinc finger DNA repair enzyme Fpg (Wink and Laval, 1994), which may further 

increase mutagenic changes within the target cell. 

Thiols: The interaction of NO with sulphydryls has been extensively examined 

(Ignarro, 1990), with NO being able to react with free thiols under aerobic 

conditions to form S-nitrosothiol compounds (Myers et aL, 1990; Clancy and 

Abramson, 1992). As already mentioned these compounds may provide a means 
by which NO can be stored in a bioaccessible form for signal transduction 

processes (Stamler et al., 1992a). Molecules that can be regulated by thiol- 

nitrosation include receptor proteins (Lei et aL, 1992), ion channel proteins 

(Bolotina et al., 1994), G proteins (Lander et al., 1993), protein kinase C 

(Gopalakrishna et al., 1993), transcription activating factors (Peunova and 
Enikolopov, 1993) and proteases (Devi et al., 1994). 

Superoxide anion: The outcome of the reaction of NO with superoxide is 

hypothesised to be both advantageous, representing a detoxification pathway 
for both molecules (Gryglewski et al., 1986) or detrimental with the formation of 
the highly reactive and potent oxidising agent peroxynitrite (Beckman et al., 

1990). Therefore, depending on the circumstances in which it is produced, the 

interaction of NO with superoxide may be cytoprotective or cytotoxic (Darley- 

Usmar et al., 1995). 

1.4.9 Pharmacological inhibitors of NOS 

The are a number of classes of inhibitors of NOS which vary greatly in their 

specificity and selectivity between the three isoforms. As described earlier, 

several important differences exist among the isoforms suggesting, that at least 

in theory isoform selective inhibition is possible. Strategies include interaction 

at the L-arginine binding site, ligands directed towards the haem and interaction 
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with the H4 biopterin binding site. 

L-arginine analogues: All three NOS isoforms have shown narrow specificity at 
the L-arginine binding site with stereochemical rigidity associated with at the a- 

carbon. L-arginine analogues were first described by Hibbs and colleagues 
(1987a), who used NG-methyl-L-arginine (L-NMA) to inhibit NO formation in 

macrophage pathogenicity studies. The reported studies using this type of NOS 

inhibitor have been carried out with crude, partially purified NOS or cells in 

culture (Marietta, 1994b) and therefore must be interpreted with caution. 
Examples of L-arginine analogues are shown in Figure 1.5. 

H, N 
NH, H, N+ -CH1 KN -NO, H2N CH1 

HH +' H 

KN COC' HA COO KN COOCH, KN Coo. 

L-arglnlne Na-methyl-L-arginine N°-nitro-L-arginine N{iminoethyl)-L-0rnithine 
methyl ester 

Figure 1.5 The structures of L-arginine and the L-arginine based NOS inhibitors, N°- 

methyl-L-arginine, NG-nitro-L-arginine methyl ester and N-(iminoethyl)-L-omithine. 

All three isoforms can be inhibited to a variable degree with NG substituted L- 

arginine analogues. However, some do exhibit some isoform selectivity, mostly 
towards the constitutive isoforms. N°-cyclopropyl-L-arginine shows a preference 
for nNOS over iNOS in vitro (Lambert et al., 1992), whereas NG -nitro-L-arginine 
(L-NA) and L-NAME after hydrolysis. NG-methyl-L-arginine (L-NMA) and N°- 

amino-L-arginine show no marked preference for either isoform (Gross et al., 
1990; Lambert et al., 1991; Furfine et al., 1993). Most of this group of inhibitors 

are competitive inhibitors of NO and exclude the substrate L-arginine from 

entering the active site, with their effects being reversible by L-arginine. 

Compounds such as N-iminoethyl-L-ornithine (L-NIO), show inhibition that 

cannot be reversed by L-arginine or other factors (McCall et al., 1991). The non- 

specific properties of L-arginine analogues include the inhibition of the activity 

of iron-containing enzymes such as catalase (Rotzinger et al., 1995) and the 

reduction of cytochrome c (Peterson et aL, 1992). In addition to these non- 
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specific effects of these L-arginine based inhibitors in vitro, unexpected side 

effects have also been reported in vivo. High concentrations of NG-amino-L- 

arginine is reported to cause epileptic seizures in dogs (Cobb et aL, 1992), 

which may be related to its ability to block NO in the central nervous system or 

alternatively to a non-specific effect of the drug itself. 

Non amino acid based inhibitors of NOS: Non amino based inhibitors of NOS 

represent probes to determine the structure of the L-arginine binding site without 

constraints imposed by specific stereochemistry of the binding of the amino acid 

group. Hence, they may prove to be a useful tool in the design of isoform specific 

inhibitors. Despite a requirement for the conserved stereochemistry of L-arginine 

analogues, a variety of compounds that are not amino acid based are inhibitors 

of NOS. Examples include imidazoles (Wolff eta!., 1994), 7-nitroindazole (Moore 

et al., 1993), guanidines (Hasan et al., 1993), tannin (Chiesi et al., 1995), 

plencyclidine (Osawa et al., 1993) and methylene blue (Mayer et aL, 1993). 

Among this large and increasing list of inhibitors only a few groups of 

compounds show selectivity, namely, aminoguanidine, isothioureas and certain 

imidazoles. The guanidines (Figure 1.6) are structurally similar to L-arginine 

therefore were investigated as potential inhibitors of NOS. 

R"CH. R 
NH 

CC 
HN *NH1 HN'IH2 

Amidines Guanidines 

RýIs 

C 
HN *NH4 

Isot loureas Figure 1.6 General 

structures of the amidine derivatives 

Aminoguanidine is probable the most commonly used of all these drugs, since 
its recognition that it has selectivity towards iNOS (Corbett et al., 1992). In most 
in vitro systems aminoguanidine displays a similar potency to L-NMA in its ability 
to inhibit NO production by immunostimulated macrophages, with less of an 

effect then L-NMA on nNOS and eNOS (Szabo et al., 1994; Wu, 1995). 

However, it has to be noted that aminoguanidin's ability to inhibit NO production 
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varies depending on the length of incubation, with short incubation times 

resulting in a reduced inhibitor action (Wu, 1995; Joly et a!., 1994). Like some 

of the L-arginine analogues, aminoguanidine can have NO-independent effects 

like inhibition of histamine metabolism (Bieganski et aL, 1983), inhibition of 

polyamine catabolism (Seiler et A, 1985) and inhibition on catalase (Ou et a!., 

1993). Other guanidino inhibitors of iNOS include mercaptoalkyl-guanidine 

(Southan etaL, 1995), 1400W (Garvey etaL, 1997) and amino ethyl-isothiourea 

(Garvey et a!., 1994), which have beneficial effects in iNOS mediated 

pathologies (Thiemermann et aL, 1995), again these compound have NO- 

independent effects that include inhibition of membrane sodium/potassium 

ATPase (David eta!., 1992). However, taking this into consideration amino ethyl- 
isothiourea was used in this thesis as an iNOS selective inhibitor, due to its 

reported selectivity to this isoform in vivo. 

1.5 Arginase 

Arginine is a semi-essential amino acid that can be metabolised by two major 

enzyme pathways, NOS (substantially reviewed in Section 1.4) and arginase. As 

there is a possibility that during inflammation one enzyme system could effect 
the other, both NOS and arginase were investigated in the models used in this 

thesis. Arginase has two isoforms, hepatic arginase (A-I) and liver or extra- 
hepatic arginase (A-II), which are highly conserved proteins that appear to be 

present in most fungi and all higher organisms (Grody et al., 1987; Takiguchi et 

a/., 1989). A-I and A-II are binuclear manganese metalloenzymes that catalyse 
the hydrolysis of L-arginine to urea and ornithine (Jenkinson eta!., 1996; Kanyo 

et al., 1996). In rats, mice and humans the majority of arginase islolated from 

individual tissues seem to be either trimers or tetramers with molecular weights 

ranging from 94 to 127 kDa with subunits sizes estimated between 34 and 40 

KDa (For review see Jenkinson et aL, 1996). This great variation between tissue 

suggests that expression and regulation of arginase is highly tissue specific. In 

fact, cellular localisation of the two isoforms differs with A-I being localised to the 

cytoplasm whereas A-II is mainly mitochondrial and has a wider tissue 
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distribution (Grody eta!., 1987). All arginases are heat stable and are protected 

by the presence of divalent cations (eg Mn 2+), which are essential for enzyme 

activity. In the presence of Mn2+, little to no loss of activity was observed over 

several hours at 68-70°C, days at 4°C and freezing/thawing cycles (Grody et al., 

1987). 

Arginases A-I and A-II appear to be expressed constitutively in murine 

macrophages although more recently different stimuli may modulate the 

expression of these isoforms (Boucher et aL, 1999). A-I and A-II contribute to 

the immune system function since, L-ornithine is a key precursor for polyamines 

involved in cell replication. In fact ornithine/urea production markedly increased 

during tumour growth, with arginase activity being blunted during tumour 

rejection (Mills of al., 1992). Recently, it has become apparent that both 

isoenzymes can be involved in the regulation of the numerous 

cytostatic/cytotoxic action mediated by NO in macrophages. In these cases 

modulation of local L-arginine concentrations by arginases could regulate NO 

production by iNOS (Feldman et al., 1993; Kerwin et al., 1995; Hrabak et al., 

1994; Chang et aL, 1998). More detailed comparisons between NOS and 

arginase are made and discussed throughout this thesis where appropriate. 

1.6 Cyclooxygenase 

The COX and NOS pathways have been demonstrated in the literature to 

regulate each others protein expression and enzyme activity in vitro and in vivo 

(Di Rosa et al., 1996), but investigations have produced conflicting and 

controversial data. It has been demonstrated in rat Kuppfer cells that 

endogenously-formed prostaglandin E2 (PGE2) increases NO synthesis after 

stimulation with LPS (Gaillard eta!., 1992). However, in J774 macrophages both 

exogenous PG12 and PGE2 were able to inhibit NO production (Marotta et al., 

1992). However, individual effects seem to be cell and stimulus specific. 

Therefore, the results and hypotheses are further elucidated to within the results 

and general discussion sections of this thesis. 
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Two isoforms of cyclooxygenase (COX) have been identified, COX-1 and COX-2 

(for extensive reviews see Appleton et aL, 1997 and Gilroy et a!., 2000). The 

non-inducible or constitutive isoenzyme is known as COX-1, whilst the inducible 

isoenzyme was designated COX-2. The COX enzymes both metabolise 

membrane-bound, essential 20-carbon fatty acid known as arachidonic acid 
(5,8,11,14-eicosatetraenoic acid). Metabolites of the arachidonic acid cascade 
include products of COX, lipoxygenase and cytochrome Paso pathways. These 

metabolites are collectively known as eicosanoids. COX protein has a molecular 

weight of 72kDa and contains 600 to 602 amino acids produced from mRNA 
2.8kb in size. COX is made up of a dimeric complex of two polypeptides each of 
which requires one molecule of heme for maximal catalytic activity (for extensive 
reviews on COX gene and protein structures see Xie, 1992; Smith and Marnett, 
1991, respectively). The two isoforms of COX differ in their protein sequence, 

regulation and sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs). At 

the protein level, the major difference between the two isoenzymes is that COX-1 

contains a 17 amino acid sequence at its amino terminus that is absent in COX- 
2, whilst COX-2 has an additional 18 amino acid sequence at its carboxy 
terminus (Kurumbail etaL, 1996). This difference has enabled the generation of 
specific antibodies which are raised against the unique 18 amino acid terminus 
to distinguish COX-2 from COX-1 (Habib eta!., 1993). 

The COX enzymes are inhibited by a series of chemically unrelated compounds 

which share a common therapeutic action and are collectively known as NSAIDs. 

The best known of these are aspirin, ibuprofen, indomethacin and diclofenac. 
However, in relation to the NOS pathway aspirin is the most interesting since it 

has been reported to both inhibit and exacerbate NO production both in vitro and 
in vivo (Amin eta!., 1995; Kepka-Lenhart eta!., 1996; Lopez-Farre eta!., 1996). 
Aspirin is a class III NSAID and therefore is a competitive, irreversible inhibitor 

of COX activity. It covalently modifies COX protein by acetylating a single serine 

residue (Ser ° or Ser516) in the substrate binding channel that causes stearic 
inhibition of arachidonic acid entry into COX's catabolic site (for extensive 

31 



CHAPTER 1. Introduction 

reviews on aspirin see Moncada and Vane, 1979; Vane and Bolting., 1997). 

1.7 Heat shock proteins 
At the start of this thesis there were a few papers suggesting an interaction 

between the NO and the induction of heat shock proteins (HSP; Willis et al., 
1995) however little was known about their interactions. HSP can be induced by 

a number of stressful stimuli which include heat, inflammation, oxidative injury, 

transition heavy metals and damaged proteins (for review see Morimoto et al., 
1992). Although, the exact mechanism that induces this family of proteins is not 

well understood, the heat shock proteins with the exception of heme oxygenase 
(HO or HSP32) share a common function, which is that they act as protein 

chaperones ie are able to refold damaged proteins or prevent protein damage 

from occurring (Hightower et al., 1980). Since this thesis' main focus is 

inflammation, the roles that HSPs may play are discussed in this context. The 

majority of published work on HSP's in inflammation has been concentrated on 
two members of this family of proteins, HSP72 (inducible isoform of the HSP70 

family of isoenzymes) and HO-1 (inducible HO). 

1.7.1 HSP72 

Several in vitro studies have shown that HSPs are induced by mediators that are 

present in the inflammatory lesion, and that this induction affords these cells a 
degree of cytoprotection. Konig and colleagues (1992) demonstrated thatTNF-a 

and 12(R)-hydroxyeicosatetraenoicacid (12-HETE) induced HSP72 expression 
in neutrophils and protected these cells against lytic attack. In addition, IL-6 and 
LPS treatment are also able to upregulate HSP72 in PMNs (Koller et al., 1993). 

Similarly, in macrophages elevated expression of HSP72 affords protection 

against hydrogen peroxide induced cytotoxicity (Polla eta/., 1987) and apoptosis 
(Samali and Cotter, 1996). Conversely, inhibition of HSP72 in mouse J774A. 1 

macrophages increased their susceptibility to TNF-a induced cell death 

(Nishimura eta!., 1997). In vivo evidence also suggests an anti-inflammatory role 
for HSP72, with over expression in rat lungs protecting this tissue from sepsis- 
induced injury (Ribeiro et al., 1994). Finally, a number of recent studies have 
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demonstrated that HSP72 can be induced in a variety of cell types by NO, thus 

affording protection against further inflammation-induced injury (Belimann et al., 

1996; Kim eta!., 1997; Xu eta!., 1997; Calabrese eta!., 2000). These examples 

presented above support the view that HSP72 is in fact important for cell survival 

(for an extensive review on HSP70 see Kiang and Tsokos, 1998). 

1.7.2 Herne oxygenase (HO-1 or HSP32) 

The other major HSP that is associated with inflammation is HO-1 or inducible 

HSP32. Unlike the other HSPs this protein is an enzyme, that metabolises the 

conversion of free heure to the bile salts biliverdin and bilirubin and carbon 

monoxide (CO) (for an extensive review on HO-1 see Willis et al., 1999). HO-1 

is induced by a plethora of mediators involved in the inflammatory cascade that 

include LPS, IL-1, TNF-a, LPS, phorbol esters, cyclopentanone prostaglandins 

and a number of NO donors. Once again the exact mechanism by which HO-1 

protects cells from the adverse effects of inflammatory associated damage is not 

well understood, but seems to centre upon this enzymes ability to scavenge free 

radicals through the production of the anti-oxidant bile pigments. HO-1 

metabolises free heure which is a potent generator of reactive oxygen species 

(Balla et al., 1993). Bilirubin, a product of HO-1 catabolism, has been 

demonstrated in a number of circumstances to be a potent anti-oxidant (Stocker 

eta!., 1987; Neuzil eta!., 1993; Wu eta!., 1996). CO may also be cyto-protective 

by modulating other inflammatory enzyme cascades in a similar manner to NO. 

These effects include the prevention of platelet aggregation and increasing 

levels of the second messenger cyclic guanidine monophosphate (cGMP; 

Kharitonov et al., 1995). Finally, HO-1 gene deleted mice develop spontaneous 

chronic inflammatory disease thereby demonstrating an auto-regulatory effect 

on inflammation. 

It is clear from the evidence presented above that both HSP72 and HO-1 have 

important cyto-protective/anti-inflammatory mechanisms. It is also well 

documented that NO can induce both of these proteins and once up-regulated 

these HSPs are able to inhibit NO production from inducible NOS (iNOS). 
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Therefore it can be envisaged that NO may be an important mediator/inducer of 
the anti-inflammatory cascade via regulation of HSPs. 

1.8 Aims. 

The aim of this thesis are to examine the pro- or anti-inflammatory role of NO in 

acute and chronic inflammation. The individual aims are as follows: 

To examine the temporal and spatial expression of NOS in: (a) three 

models of' acute inflammation, carrageenin-induced pleurisy in the rat, 
bovine serum albumin-induced pleurisy in the rat and the methylated 
bovine serum albumin-induced pleurisy in the rat and (b) chronic croton 

oil-induced granulomatous tissue air pouch in the mouse. 

2. To assess the effects of NOS inhibition in the carrageenin-induced 
pleurisy in the rat using NOS inhibitors. 

3. To assess the effects of NOS inhibition in the chronic croton oil-induced 
granulomatous tissue air pouch in the mouse using NOS inhibitors. 

4. To assess the effect of iNOS gene deletion in the chronic croton oil- 
induced granulomatous tissue air pouch in the mouse . 

5. To assess the effects of the a classical anti-inflammatory, the NSAID 

aspirin on the production of NO in (a) carrageenin-induced pleurisy in the 

rat and (b) chronic croton oil-induced granulomatous tissue air pouch in 
the mouse. 
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CHAPTER 2. Materials and Methods 

2.1 Chemicals and suppliers. 
2.1.1 Chemicals, biochemicals, antibodies and kits. 

All inorganic and general use chemicals were of AnalarT i grade and purchased 
from Merck Ltd. Gases and liquid nitrogen were supplied from BOC Ltd. All 

Laboratory plastics were obtained from L. I. P. and tissue cultureware was from 

Becton Dickinson. All biochemicals, antibodies, normal animal serum and 

detection kits were from Sigma Chemical Co. with the exception of the following: 

Chemicals and Biochemicals Source 

Polyclonal rabbitanti murine-iNOS Santa Cruz Biotechnology 

Polyclonal rabbit anti murine-COX 2 Santa Cruz Biotechnology 

Polyclonal rabbit anti murine-HO-1 StressGen Biotechnology 

Polyclonal rabbit anti murine-HSP 70 StressGen Biotechnology 

Polyclonal rabbit anti bovine-arginase I Biogenesis 

High range biotinylated molecular weight markers Santa Cruz Biotechnology 

Polyclonal biotinylated goat anti-rabbit IgG Santa Cruz Biotechnology 

Polyclonal HRP donkey anti-rabbit IgG Santa Cruz Biotechnology 

Tetrahydrobiopterin Alexis Corporation 

1400W Alexis Corporation 

2(Aminoethyl)-isothiourea Alexis Corporation 

NG-Monomethyl-L-arginine Alexis Corporation 

Radiolabelled L-arginine Amersham 

Radiolabelled PGE2 Amersham 

Radiolabelled PGF, a Amersham 

PGE2 quantification kit Amersham 

LTB4 quantification kit Amersham 

Rainbow m molecular weight markers Amersham 

HybondT""-C super, 0.45 Micron membrane Amersham 

ECL biotinylated molecular weight markers Amersham 

Western blot grade dry milk block Bio-Rad Laboratories Ltd 
Blotting paper Bio-Rad Laboratories Ltd 

Bradford reagent Bio-Rad Laboratories Ltd 
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Acrylamide/Bisacrylamide Bio-Rad Laboratories Ltd 

Dowexcolumns Bio-Rad Laboratories Ltd 

KC ELISA R&D systems 
IL-1a ELISA R&D systems 
LIP Freeze LIP Ltd 

20ml screw capped scintillation vials LIP Ltd 

Apoptag® In situ apoptosis detection kit Oncor Co. 

J774.2 macrophages ECACC 

EA. hy926 endothelial cells (Gift) 

Pico-Fluor 40 scintillation fluid Canberra Packard Co. 

Flat bottom 96 well plates Greiner Laboratechnik 

Slides, 4 spot PTFE (1cm diameter) C. A. Hendley (Essex) 
Ltd. 

Cryo-M-Bed Brights Ltd. 

Michel clips Harvard Apparatus Ltd. 

Carrageenin Marine Colloids Co. 
Mycobacterium turberculosis Ministry of Agriculture, 

(strains C, DT & PN; N° PPD298) Fisheries and Food 

Hypnorm Southern Veterinary 

Supplies 

Hypnovel Southern Veterinary 

Supplies 

2.2 Drug Preparation. 

2.2.1 For in vitro studies. 
Acetylsalicylic acid was prepared in dimethyl sulphoxide at a concentration of 
100mM, followed by dilution in culture medium to give the final concentrations 
stated in the individual experiments. In all the in vitro experiments where 
dimethyl sulphoxide was used, the final concentration of this solvent was never 
higher than 0.1% v/v. However, to ensure that any possible solvent effects were 

controlled for, dimethyl sulphoxide (0.1% v/v) was always added to the medium 
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in which control cells were incubated. 

2.2.2 For in vivo studies. 
The NOS inhibitors; S(2-aminoethyl)-isothiourea (AE-ITU), N-(3-(aminomethyl)- 

benzyl) acetamide (1400W), N°-monomethyl-L-arginine (L-NMMA), L-N5(1- 

iminoethyl)-ornithine (L-NIO) were dissolved at the desired concentrations in 

sterile saline. Similarly, the inactive enantiomer of L-NAME, D-NAME was also 

dissolved in sterile saline. The NO donor DPTA NoNoate was also dissolved in 

sterile saline for injection. The injection sites varied depending on the 

experiment performed, but included the pleural cavity, peritoneal cavity and pre- 

formed air pouch. The iNOS inhibitor aminoguanidine (hemisulphate 

preparation) was dissolved in the drinking water. The dose was computed by 

measuring water consumption of the mice over a period of 1 week, which was 

calculated as 5ml/mouse/day. 

The COX inhibitor aspirin was prepared by grinding to a fine powder using a 

mortar and pestle. Small aliquots were added to make into a paste followed by 
increasing amounts of vehicle to achieve the desired concentration. Aspirin at 

200mg/kg and above was sonicated for 30s using a Merck Sharp Equipment 

sonicator (serial N° 30363) at 1.5 amperes. All COX inhibitors were dosed orally. 

2.3 Animals and their Maintenance. 

For pharmacological studies outbred strains of mice and rats were used. Male 

Wistar rats and female Theiler's original (To) mice were purchased from Tuck 

and Sons, U. K. iNOS knockout transgenic mice were from B&K Universal Ltd. 

All rats (150-250g) and mice (25-30g) were housed in plastic cages (rats, 5 per 

cage; mice 10 per cage) lined with sawdust and maintained in a light, humidity 

and temperature-controlled environment. Food (RM1 E; Special Diet Sevices, 

U. K. ) and water were allowed ad libitum. 
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2.4 Acute inflammatory models. 
2.4.1 Carrageenin-induced pleurisy (complement-mediated reaction). 
Male Wistar rats were anaesthetised with halothane and 0.15ml carrageenin 

(1 % w/v in 0.9% w/v sterile NaCl) was injected into the pleural cavity between 

the 5th and 6"' intercostal space using a 1.0ml syringe fitted with a 21 gauge 

needle blunted to 5mm in length. The cut was closed using Michel clips and 

animals were allowed to recover from the anaesthetic. Rats were killed at 

several time points after carrageenin injection and inflammatory exudates 

collected after addition of a1 ml pleural lavage (50mM Tris buffered saline pH 

7.4,3.15% w/v trisodium citrate, 1mM phenylmethylsulphonylfluoride, 1.5mM 

pepstatin A and 0.2mM leupeptin). 

2.4.2 BSA induced pleurisy(Arthus, antigen/antibody complex-mediated, 

immediate type 111 hypersensitivity reaction). 
Male Wistar rats were sensitised at the base of the tail by intradermal injection 

of 0.1ml incomplete Freund's adjuvant and saline (ratio 1: 1) containing bovine 

serum albumin (BSA, 10mg/ml). Twelve days after sensitisation, the animals 

were challenged intrapleurally with 0.1ml saline containing 10mg/ml BSA 

(Section 2.4.1). Rats were killed at various time points after challenge and 

exudates were collected after addition of a1 ml pleural lavage. 

2.4.3 Methylated BSA-induced pleurisy (cell-mediated, type IV, delayed 

hypersensitivity reaction). 
Male Wistar rats were sensitised at the base of the tail by intradermal injection 

of 0.1ml incomplete Freund's adjuvant and saline (ratio 1: 1) containing 

methylated bovine serum albumin (methylated BSA, 10mg/ml). Twelve days after 

sensitisation, the animals were challenged intrapleurally with 0.1ml saline 

containing I0mg/ml methylated BSA (Section 2.4.1). Rats were killed at various 
time points after challenge and exudates were collected after addition of a 1ml 

pleural lavage. 
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2.4.4 Preparation of pleural inflammatory exudates. 
Inflammatory exudates were harvested on ice from the pleural cavity of animals 

terminated at various time points after injection of inflammatory irritants. 

Inflammatory exudates were measured by weight and inflammatory cells counted 

(Coulter electronics, Luton, U. K. ). A 5pl aliquot of the exudate was smeared onto 

4 spot glass slides coated with poly-L-lysine (0.01 % v/v in deionised H2O) and 

allowed to air dry over night. Slides were transferred to an air tight box for 

storage at room temperature until required. Inflammatory exudates were 

centrifuged (Beckman, U. S. A.; 800xg) for 10min at 4°C. Exudates and cells were 

separated by decanting and immediately snap frozen in liquid N2 and stored at 

-80°C for further analysis. Cell-free exudates were used for the measurement of 

nitrite (Section 2.6), a stable breakdown product of NO, quantification of 

eicosanoid (Sections 2.11,2.12), evaluation of histamine content (Section 2.15) 

and the assessment of chemokines (Section 2.16). 

Cell pellets were sonicated at 4°C using a micro-probe (Sonics and Materials 

Inc. U. S. A. ) in protease inhibitory buffer which contained pepstatin A (1.5mM), 

phenylmethylsulphonylfluoride (1mM) and leupeptin (0.2mM) in 50mM Tris 

buffer, pH 7.4. The lysate was centrifuged (800xg) for 10min at 4°C and the 

pellet discarded. The protein concentration of the supernatants was measured 
by the Bradford assay (Bradford et al., 1976; Section 2.8) then used for the 

determination of iNOS activity (Section 2.7), arginase activity (Section 2.10), 

COX activity (Section 2.11) and Western blotting (Section 2.9). 

2.5 Chronic inflammatory models. 

2.5.1 The croton oil-induced murine chronic granulomatous tissue air 
pouch. 

Z5.2 Induction of air pouch. 
Female To mice were injected with 3m1 of air into the dorsal subcutaneous 

tissue. 24h later, 0.5m1 of Freund's incomplete adjuvant containing 0.1%v/v 

croton oil and a 5mg/mI suspension of heat inactivated Mycobacterium 
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turberculosis was injected into the air pouch. 

Z5.3 Preparation of granulomatous tissue. 

The resultant granuloma was dissected in its entirety at various time points and 

dried at 56°C (3 days) for the determination of dry weight. Exudates were 

removed from the air pouch using a 16 gauge needle and then were centrifuged 

at 1000 xg and the aqueous phase removed and snap frozen. Granulomatous 

tissue was also prepared for biochemical and immunohistochemistry analysis. 

Granuloma from the ventral region of the pouch was removed and homogenised 

(Kinematic, Switzerland) at 4°C in protease inhibitory buffer in a ratio of 5: 1 

(vollwt). The homogenate was centrifuged at 10,000 xg for 20min at 4°C and the 

pellet discarded. The protein concentration of the supernatant was measured by 

the Bradford assay (Section 2.8) then used for the determination of iNOS activity 

(Section 2.7), arginase activity (Section 2.10), COX activity (Section 2.11) and 
Western blotting (Section 2.9). 

For immunohistochemical analysis, the dorsal region of the granulomatous 

tissue was immediately snap-frozen in n-hexane at -68°C, to preserve the 

epitopes of interest. Frozen tissue was mounted on brass chucks in O. C. T. 

compound and allowed to equilibrate to -30°C. 10pm sections were cut in a 

cryostat (Bright, UK) and allowed to air dry overnight. Sections were then fixed 

prior to immunolabelling in either acetone (10min, room temperature) or freshly 

made 4%w/v paraformaldehyde in 0.1 M phosphate buffered saline (PBS; pH 7.3; 

30min) and allowed to air dry. 

2.6 Measurement of nitrite by the Greiss reaction. 

The Greiss reaction detects nitrite by the formation of a coloured NO-formazan 

dye adduct in a linear manner between 1-100NM. In vivo nitrite is rapidly 

converted to its end oxidation product nitrate, thereby making it necessary to 

reduce nitrate to nitrite prior to its estimation with the Greiss reagents. Therefore, 

a modification of the Greiss reaction (Verdon et al., 1995), that converts nitrate 
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to nitrite was used to measure this product in cell-free inflammatory exudates. 

A nitrite standard curve was constructed (1,5 10,20,50,80,100pM) using 

sodium nitrite. Cell-free exudates were defrosted and 50pl of standards and 

samples were pipetted into a 96 well plate. Nitrate in the samples was converted 

to nitrite by the addition of 1 Opi of reduced ß-nicotinamide adenine dinucleotide 

phosphate (NADPH; 10pM), 10pl glucose-6-phosphate (5mM), glucose-6- 

phosphate dehydrogenase (0.16units), phosphate buffered saline (10mM) and 

10pl nitrate reductase (0.08units). The reaction was allowed to proceed for 

45min at room temperature. Nitrite in the samples and standards was visualised 

by the addition of 100pl sulfanilamide (1% w/v in 5% v/v phosphoric acid) and 

100pl N(1-naphthyl)ethylenediamine (0.1% w/v). After 10min nitrite 

concentrations were measured spectrophotometrically at Ami 570nm with a 

reference filter at 620nm. Nitrite concentrations were calculated from the 

standard curve and results expressed as pM nitrite. 

2.7 NOS activity. 

NOS activity was measured as the ability of inflammatory cell and tissue 

homogenates to catalytically convert [3H]-L-arginine to ['H]-l-citrul line in the 

presence of excess concentrations of co-factors. For each sample, total NOS, 

calcium-independent NOS and non-NOS-dependent arginine breakdown was 

measured in duplicate. The reaction buffer for total NOS activity consisted of. 
NADPH (1mM), tetrahydrobiopterin (5pM), calmodulin (300 units/ml), calcium 

chloride (2mM) and valine (1mM); for iNOS activity, NADPH (1mM), 

tetrahydrobiopterin (5pM), calmodulin (300 units/ml), EGTA (1mM) and valine 

(1mM); for NOS-independent activity conversion assay medium included 

tetrahydrobiopterin (5pM), calmodulin (300 units/ml), calcium chloride (2mM) and 

valine (1 mM). Samples were homogenised as described (Sections 2.4.4 and 
2.5.3) and 30pl added to each reaction tube and allowed to equilibrate in a water 
bath at 37°C for 10min. The reaction was started by the addition of 10pl of L- 

arginine/[3H]-L-arginine (10pM; ratio of 1000: 3 pmol of L-arginine: [3H]-L-arginine) 

and samples incubated for 30 min at 37°C. The reaction was terminated by the 
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addition of 1ml ice-cold stop buffer (2mM EGTA, 2mM EDTA in 20mM HEPES, 

pH 5.5). L-arginine/[3H]-L-arginine was removed from samples by eluting them 

through Dowex cationic exchange resin columns with Iml stop buffer. The 

amount of radioactive L-citrulline was determined in a liquid scintillation counter 

after the addition of 9ml Pico-Flour 40 scintillation fluid. The protein 

concentration of samples was measured by the Bradford assay and NOS activity 

expressed as pmol L-citrulline/mg protein/30min. 

2.8 Bradford protein assay. 
The binding of Coomassie brilliant blue (R250) to protein causes a shift in A, 

n. 
of the dye from 465 to 595nm and it is the increase in absorption at 595nm which 

is monitored. The reaction is rapid, usually complete within 2min and with good 

colour stability for 1 h. Bradford reagent was diluted 1: 4 with deionised H2O and 

filtered through Whatman N°1 filter paper before use. A standard curve ranging 

from 0.05-0.5 mg/ml BSA in Tris (50mM, pH 7.4) or phosphate buffered saline 

(PBS, 10mM, pH 7.4) was prepared. Samples were diluted in Tris or PBS to fall 

within the range of the standard curve. 10NL of sample or standard was placed 

into a 96-well microtitre plate followed by 200pl of diluted Bradford reagent. The 

plate was placed on a shaker for 10 min and read on a microtitre plate reader at 

Ami 595nm. 

2.9 Western Blotting. 

Lysates from cell pellets and tissue homogenates were further processed for 

Western blotting. The protein concentration of sonicated cell preparations or 

tissue homogenates was determined as described in Section 2.8. All samples 

were diluted to give a final concentration of 1mg/ml, then heated up to 95°C for 

5min with 2x gel loading buffer (50mM Tris, 10% w/v SDS, 10% v/v glycerol, 10% 

v/v 2-mecaptoethanol, 2mg/ml bromophenol blue) in a ratio of 1: 1 and 

centrifuged (10,000xg) for I0min. Samples were used immediately or stored at 
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-80°C. Equivalent protein concentrations were loaded on to an 8 or 10% SDS- 

polyacrylamide mini-gels (Table 3.1). 

Chemicals Resolving Gel Stacking gel 
8% 10% 3% 

29: 1 Acrylamide/Bis solution 2.65ml 3.35ml 1.6m! 

1.5M Tris pH 8.8 2.5ml 2.5ml 

1.5M Tris pH6.8 820pl 

20% w/v SDS 50pl 50NI 100NI 

Distilled water 4.3ml 3.6ml 7.48ml 

50% v/v glycerol 0.5ml 0.5ml 

TEMED 30pl 3Opl 10NI 

10% w/v ammonium 72pl 72pl 1 00NI 

persulphate 

Table 2.1 Constituents of SDS polyacrylamide gels used for Western blot analysis. 

Volumes represent sufficient reagents for two 1.5mm gels. 

Two types of molecular weight marker (MWM) were used depending on the 

method used for end detection, 5-bromo-4-chloro-3-indolyl phosphate/nitro blue 

tetrazolium precipitation (BCIP/NBT) or 3-aminophtha late elecro- 

chemiluminescence (ECL). For BCIP/NBT detection, high molecular weight 

rainbow markers were used and for ECL biotinylated protein molecular weight 

markers (MWM) were used. Gels were run at 100 volts using Biorad Mini 

Protean II gel electrophoresis system until the Coomassie blue dye front was at 

the bottom of the gel. Separated proteins were transferred electrophoretically (1 h 

at 100 volts) to a nitrocellulose membrane in transfer buffer. Post-transfer of the 

nitrocellulose membrane was blocked overnight in 50mM Tris buffered saline, 

pH 7.4 containing 0.1 % v/v Triton X100,5% w/v non-fat dried milk and 1 mg/ml 

essentially globulin free BSA). The nitrocellulose membrane was washed with 

Tris buffered saline (TBS) containing 0.1 % v/v Triton X100(TTBS) and incubated 

43 



CHAPTER 2. Materials and Methods 

overnight with primary antibody (polyclonal rabbit anti-mouse iNOS, 1: 5000; 

polyclonal rabbit anti-mouse COX 2,1: 3000; polyclonal rabbit anti-mouse HO-1, 

1: 2000; polyclonal rabbit anti mouse HSP70,1: 20,000). Blots were washed 3 

times with TTBS to remove any unbound antibody. 

When using the precipitation detection system, blots were incubated with a 
biotinylated goat anti-rabbit secondary antibody (TTBS containing 5% milk) at 

room temperature for 2h, after which the membrane was washed 3 times with 
TTBS. The final step prior to visualisation required incubating the blots with 

stepavidin linked alkaline phosphatase complex (TTBS, 1: 1000) for 2h. Blots 

were then washed 3 times in TTBS and 2 times in TBS. The protein bands were 
detected by developing the nitrocellulose with BCIP/NBT, which visualised the 

target antigens as purple bands. 

When using the electrochemiluminescence (ECL) system, blots were incubated 

with a HRP-linked donkey anti-rabbit secondary antibody (TTBS containing 2% 

v/v normal donkey serum, 1: 10,000) at room temperature for 2h, after which 

membranes were washed 3 times with TTBS. The bands were visualised using 
ECL detection reagents (Amersham Pharmacia Biotech, Buckinghamshire) onto 
Kodak X-OMAT film in X-ray cassettes for between 1 and 15 min depending on 
the time required to visualise the specific bands, then developed using an RGII 

X-ray film processor (Fuji). 

Some of the Western blots were quantified by densitometry (SeeScan Imaging 

Ltd. ) Band density was calibrated against a known concentration of antigen 

standard on the same membrane. As the exact ratio of antibody to antigen is not 
known results were expressed as a proportion of the antigen standards density. 

2.10 Arginase activity. 
Urea formation was determined colorimetrically by its reaction with 1,2- 

propanedione-2-oxime (IPSF; Schimke, 1970). The sensitivity of the assay 
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developed by Schimke was increased by reducing sample volume, reaction 

volume and the elimination of perchloric acid as reaction terminator (Corraliza 

et al., 1994). 

Arginase activity was measured as the ability of inflammatory cell and tissue 

homogenates to catalytically convert L-arginine to urea in the presence of 

excess MnCl2 and L-arginine. Samples were homogenised as described 

(Sections 2.4.4 and 2.5.3) and 250pl added to each reaction tube containing 

250pl 50mM Tris HCI and 20mM MnCI2. The reaction mixture was then vortexed 
for 5min at room temperature, followed by activation of the arginase enzyme by 

incubation of the reaction mixture at 55°C for 10 min. 25pl aliquots of the 

activated samples, in duplicate, were transferred to fresh reaction tubes and the 

hydrolysis reaction initiated by the addition of 25pl L-arginine (0.5M) in Delroy 

and King's carbonate-bicarbonate buffer (0.2M anhydrous sodium carbonate, 
0.2M sodium bicarbonate, pH 9.7) and incubated at 37°C for 60 min. The 

reaction was terminated by the addition of 400p1 acid mixture (1: 3: 7 v/v, 

concentrated sulfuric acid: concentrated orthophosphoric acid: deionised H20). 

A standard curve was constructed using urea to give concentrations of 300,100, 

75,37.5,18.75 and 9.38 pg/ml. 400pl of acid mixture was added to the 

standards to keep reaction conditions consistent. Urea content of the samples 

and standards were evaluated by the addition 25pl IPSF (9% w/v in ethanol) and 
incubated at 100°C for 60 min. After a further 30 min incubation in the dark, 

200pl of standards and samples were transferred to a 96 well plate and the 

resulting colour formation read at A,,,, x = 540nm. The results were expressed as 

specific activity, where 1mU = 1nM urea/mg protein/min, using the following 

calculation where X designates arginase activity of the sample (pg/ml) and Y is 

the protein concentration; 

X 
60 x 120 

Yx 1000 

All samples were measured at least in duplicate and expressed as specific 
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activity (mU/mg protein/min). 

2.11 COX activity. 
In this assay, inflammatory cell or granulomatous tissue COX activity is 

measured by the incubation of sample with excess arachidonic acid and 

cofactors. It is a measure of total COX activity and does not discriminate 

between COX I or COX 2 enzymic activity. Samples were homogenised as 

described (Sections 2.4.4 and 2.5.3) and 3Opl added to each reaction tube 

containing 5mM glutathione and 5mM adrenalin. COX activity was determined 

in each sample in the presence and absence of 30pM indomethacin. Samples 

were incubated with this mixture for 10 min. Enzymic catalysis was initiated by 

the addition of 30pM arachidonic acid to the reaction mixture and incubated at 

37°C for 30 min. The reaction was halted by boiling the samples for 5 min 

followed by centrifugation for 30 min at 10,000xg. The concentration of 

Prostaglandin E2 (PGE2) was determined by radioimmunoassay (Section 2.12) 

and the results expressed as ng PGE2/mg protein/30 min. 

2.12 Measurement of PGE2 and PG12 levels by radioimmunoassay. 

PGE2 and PG12 (measured as the stable breakdown product 6 keto-PGF, a) from 

cell-free inflammatory exudates were measured by radioimmunoassay. This is 

based on competition between PGE2 or PG12 in the sample and a known amount 

of 3H-labelled PGE2 or PGI2 added exogenously for a limited number of binding 

sites on an antibody raised against PGE2 or PGI2. After incubation, unbound 

prostaglandins were removed by activated charcoal and dextran, with the 

quantity of labelled eicosanoid remaining being inversely proportional to the 

concentration of unlabelled PGE2 or PG12 in the test sample. 

Antisera to PGE2 or PG12 were diluted in Tris-HCI (50mM, pH 7.5) containing 

0.1% w/v gelatin (mixed Tris buffer). 3H-labelled PGE2 or PGI2 was added to 
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mixed Tris buffer to give a reading of 3500 counts per minute in a total volume 

of 600pl. I OOpl of tracer and antibody was added to 5Opl of either standard or 

sample. The reaction mixture was incubated at4°C for24h. Unbound eicosanoid 

was removed by the addition of 200pl Tris buffer (50mM, pH 7.5) containing 4mg 

of activated charcoal and 800pg of dextran 70 and vortexed. Samples were 

placed on ice for 10 min, then centrifuged at 200xg. The supernatant (containing 

antigen-antibody complex) was removed and placed in scintillation tubes to 

which 5ml scintillant was added. Radioactive content of samples was measured 
by liquid scintillation (LS 3801, Beckman, USA) and unknown sample 

concentrations of PGE2 or PGI2 were calculated from a standard curve ranging 
from 70 pg/ml to 80 ng/ml. Results are expressed as ng of eicosanoid per cavity. 

2.13 Measurement of LTB4 and PGE2 using enzyme immunoassay. 

This enzyme immunoassay system for leukotriene B4 (LTB4) and PGEZ is based 

on the same principles as the radioimmunoassay for PGE2 and PGI2, relying on 
the competition between unlabelled LTB4 or PGE2 and a fixed quantity of HRP- 

labelled LTB4 or PGE2 for a fixed number of binding sites on a LTB4 or PGE2 

specific antibody. With fixed amounts of antibody and HRP-labelled eicosanoid, 

the quantity of HRP-labelled ligand bound to the antibody will be inversely 

proportional to the concentration of unlabelled ligand in the standard and 

samples. 

5Opl of standard or cell-free pleural exudate (Section 2.4.4) was pipetted into a 
96 well plate followed by the addition of 50pI of antiserum (rabbit anti-LTB4 or 
PGE2) into all wells with the exception of the blank and non-specific binding, 

followed by the addition of 50pl of LTB4 or PGE2-HRP linked conjugate. The 

plate was then incubated with shaking for Ih at room temperature. All wells were 

aspirated and washed 4 times with 300p1 of wash buffer (0.01 M phosphate buffer 

containing 0.05% v/v Tween-20). 150p1 of enzyme substrate, 

tetramethylbenzidine/hydrogen peroxide, was dispensed into all wells and 
incubated with shaking at room temperature for 30 min. The reaction was 
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terminated by the addition of 1M sulphuric acid and the resulting colour formed 

was read at A, r, = 450nm on a microtitre plate reader (Anthos, Labtec 

instruments). Unknown concentrations were read off a standard curve 

constructed for PGE2 or LTB4. Results are expressed as ng of eicosanoid per 

cavity. 

2.14 Air pouch vascularity. 
This technique gives an index of granuloma tissue vascularity in the murine air 

pouch (Section 2.5.1). Vascularity was determined as follows: animals were 
terminally anaesthetised with an i. p. injection of 0.5ml hypnorm/hynoval (1: 1: 2; 

hypnorm®, hypnoval®and deionised H20). Animals were maximally vasodilated 

at 40°C and Iml of carmine solution (10% w/v carmine red in 5% w/v gelatin 

solution) at 40°C was injected i. v into the tail vein of mice while they were still 

alive. The cadavers were refrigerated overnight to solidify the gelatin, thus 

forming a vascular cast. The air pouch was dissected and the granulomatous 
tissue dried in preweighed borosilicate glass tubes for 3 days at 56°C. After the 

dry weight of the tissue was determined, samples were digested in 9ml of 
digestion buffer (330mg [: 'N-acetyl cysteine, 12 units ml'' papain, 0.001 M EDTA 

in 0.05M phosphate buffer pH7.0) at 56°C for 3 days. The carmine red dye in the 

resulting solution was solubilised by the addition of 1ml of 5M NaOH. Iml 

aliquots of each sample were filtered through a 0.22pm Whatman disposable 

filter and centrifuged for 15 min 10,000xg. The amount of carmine present was 

assessed spectrophotometrically by the addition of 200pl of sample to a 96 well 

microtitre plate. A standard curve was constructed from 1-100Ng/ml carmine dye 

in 0.5M NaOH. Samples and standards were read at Amax = 490nm on a microtitre 

plate reader (Anthos, Labtec instruments; Figure 3.6). Results were expressed 

as both carmine content (pg) and as a vascular index (pg carmine per mg of 
tissue dry weight). 
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2.15 Histamine. 

The histamine radioimmunoassay procedure is also based on the competition 
between radioactive and non-radioactive ligands for a fixed number of specific 

antibody binding sites. The amount of 3H labelled histamine bound by the 

antibody is proportional to the concentration of unlabelled histamine in the 

samples and standards. The separation of the free from the bound ligand is 

achieved by using a precipitating second antibody. Measurement of histamine 

was used as a marker of mast cell activation in the carrageenin-induced pleurisy. 

200pl of standards, controls and cell-free pleural exudates (Section 2.4.4) were 
added to reaction tubes followed by the addition of histamine antisera. The 

reaction mixture was vortexed then incubated for 1h at room temperature. 1 OOpl 

of 3H labelled histamine antigen was added and incubated for a further Ih at 
room temperature. After this incubation, I OOpl of histamine secondary antibody 

was added, vortexed and incubated at 2-8°C for 30 min. Unbound antigen was 
removed by centrifugation (15min, 4,000xg, 4°C). The supernatant was 
completely removed and the pellet containing the antibody-antigen complex 

solubilised in 5Opl 0.5M NaOH. 2ml of scintillation fluid was added to all tubes 

and radioactive content of samples measured by liquid scintillation (LS 3801, 

Beckman, USA). 

2.16 CINC and IL-a. 

Commercially available enzyme linked immunosorbant assay (ELISA) kits were 

used for the quantitative determination of cytokine induced neurophil 

chemoattractant (CINC) and IL-la in cell-free pleural exudates (Section 2.4.4). 
This assay measures directly the amount of protein of interest in samples read 
off a standard curve. The capture antibodies are affinity purified polyclonal 
antibody specific for CINC or IL-la which are supplied pre-coated on a 96 well 
microtitre plate. 

50pl of assay diluent was added to each well followed by 5Opl of samples and 
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antigen, then incubated at room temperature for 2h. After washing the plate 5 

times with 300pl wash buffer (0.01M phosphate buffer containing 0.05% v/v 

Tween-20), 1001I of CINC or IL-la conjugated antisera was added and 

incubated for a further 2h at room temperature. The plate was washed 5 times 

with 300pl wash buffer and 100pl of substrate solution 

(tetramethylbenzidine/hydrogen peroxide) added to each well and incubated for 

30 min. The reaction was terminated by the addition of 1M sulphuric acid and the 

resulting colour formed was read at Amax = 450nm with a reference wavelength 

at A,,, = 570nm (Anthos, Labtec instruments). Unknown concentrations were 

read off a standard curve constructed for CINC or IL-la. 

2.17 Total antioxidant status. 
Total antioxidant status (TAOS) of exudates and cells were measured as 

previously described (Laight et aL, 1999). The principle of this assay is based 

on the suppression by antioxidants of 2,2'-azino-bis(3-ethylbenzthiazoline-6- 

sulfonic acid) radical cation (ABTS') formation catalysed by peroxidase. This 

assay gives an indirect measure of oxidant stress in vivo. Cell homogenates and 
inflammatory exudates were diluted to a degree where diluting the sample 1: 2 

caused a two-fold reduction in reaction rate, this dilution of the sample was used 
throughout the assay. The reaction mixture consisted of (final concentration): 

20pl 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS; 2mM), 1Opl 

horseradish peroxidase (30mU/ml), 2Opl H202 (0.1 mM) and 30-45pl phosphate 

buffered saline (pH 7.4) and 5-20pl sample to make a total volume of 100pl in 

a 96 well plate. The reaction was initiated by the addition of H202 and conducted 

at 37°C. The increase in absorbance at 405nm, a reflection of accumulation, was 

determined using an Anthos Labtech type plate reader. Experiments were 

carried out in triplicate on both cell-free inflammatory exudate as well as 
inflammatory cells. For the latter determinant, values were adjusted for protein 

concentration. 
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2.18 Superoxide scavenging activity. 
Superoxide scavenging activity (SSA) was measured in cell-free exudates and 
inflammatory cells as previously described (Laight et al., 1997). The principle of 

this assay is based upon the reduction of ferricytochrome c by the superoxide 

anion and the inhibition of this reaction by intracellular and extracellular 

antioxidants. The initial rate of reduction of ferricytochrome c by the xanthine 

oxidase/hypoxanthine system was linearly related to the concentration of 

xanthine oxidase and could be inhibited by superoxide dismutase 

Cell homogenates and inflammatory exudates were diluted to a degree where 
diluting the sample 1: 2 caused a two-fold reduction in reaction rate, this dilution 

of the sample was used throughout the assay. The reaction mixture consisted 

of (final concentration): 50pl ferricytochrome c (5OpM), 5-1 OpL xanthine oxidase 
(20mU/ml), 20pl hypoxanthine (100pM), 5-10pi sample with the volume being 

made up to 1001i1 with phosphate buffered saline (pH 7.4). The reaction was 
initiated by the addition of hypoxanthine and conducted at 37°C. The increase 

in optical density at 550nm was measured over a3 min period at 30s intervals 

using an Anthos Labtech type plate reader. All determinants of initial reaction 

rates were made with and without sample at least in triplicate. Rates of reaction 

in the inflammatory cells were corrected for protein concentration. Data was 

expressed as % inhibition of the initial rate of reaction, however statistics were 

performed on the raw data. 

2.19 In vitro culture of J774.2 macrophages and EA. hy926 endothelial 

cells. 
Murine J774.2 macrophages and EA. hy926 endothelial cells were stimulated 

with LPS and INFy and the calcium ionophore A23187 respectively, then 

incubated with acetylsalicylic acid. 

J774.2 murine macrophages were resuspended at 2x106 celIs/ml in Dulbecco's 

modified Eagle's medium supplemented with 10% v/v fetal calf serum (low 
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endotoxin) and gentamycin (1 OOpg/ml). Cells were stimulated by the addition of 
0.1pg/ml lipopolysaccharide (LPS; E coli 0111: B4) and 1000/ml murine yINF. 
This was further supplemented with acetylsalicylic acid as appropriate (Chapter 

5). Cells were incubated in an environment of 37°C in a humidified incubator (5% 

C02,95% air) for 24h prior to harvesting. Media taken from cells after treatment 

was snap frozen until required for nitrite quantitation (Section 2.6). J774.2 cells 

were resuspended using a cell scraper and pipette agitation for routine culture 

and passaging. 

EA. hy926 endothelial cells were resuspended at 2x106 cells/ml in Dulbecco's 

modified Eagle's medium supplemented with 10% v/v fetal calf serum (low 

endotoxin) and gentamycin (100pg/ml). Cell were stimulated by the addition of 
1-0.005pM A23187 (calcium ionophore) and further supplemented with 

acetylsalicylic acid as appropriate. Cells were incubated in an environment of 
37°C in a humidified incubator (5% CO2,95% air) for 24h prior to harvesting. 

Media taken from cells after treatment was snap frozen until required for nitrite 

quantitation (Section 2.6). The metabolic condition of the cells was measured by 

the MTT assay (Section 2.21). EA. hy926 cells were resuspended using 

trypsin/EDTA (0.25% w/v trypsin supplemented with 0.1% w/v EDTA in 

Dulbecco's phosphate buffer modification A) followed by centrifugation at 
1000xg and resuspension by pipette aggitation in Dulbecco's modified Eagle's 

medium supplemented with 10% v/v fetal calf serum for routine culture and 

passaging. 

2.20 Cell viability assay. 
Cell viability prior to the experiment was assessed as follows. Equal volumes 

(50pl) of either J774.2 or EA. hy926 cell suspension and 0.4% w/v trypan blue in 

Hanks buffered saline solution were mixed gently for 5 min. I Opl of this mixture 

was introduced into the counting chamber of a haemocytometer (BDH, UK). The 

number and viability of cells was assessed by determining the ratio of trypan 

blue-stained (dead) cells to unstained (viable) cells, a viability of 98% being the 
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lowest acceptable. 

2.21 MTT assay 
Cell viability of either J774.2, EA. hy926 or inflammatory cells from a 6h 

carrageenin-induced pleurisy was assessed after termination of the experiment 
by measuring their dehydrogenase activity. This is quantified as the 

dehydrogenation of MTT to its formazan dye product. 50pl of MTT (0.5mg/ml) 

was added to each well and incubated until the control lanes were developed (20 

min). The cells were then washed twice in Dulbecco's PBS A, the formazan 

product was dissolved by adding 100pl DMSO to each well and the plates were 
read at 570nm. All samples were measured in duplicate. 

2.22 Immunohistochemistry 

2.22.1 Fixation procedure 
Air dried cell smears (Section 2.4.4) and tissue sections (Section 2.5.3) were 
fixed in either 4% w/v paraformaldehyde (in 0.2M phoshate buffer, pH 7.6) or 
acetone before staining or immunohistochemical labelling. Cell smears and 
tissue sections were air dried and stored in an air tight container until required 
for histological staining and immunohistochemical labelling (Section 2.24.2). 

2.22.2 lmmunohistochemical labelling 

Initially for each antigen under investigation different fixation procedures were 

used; acetone and paraformaldehyde, to determine the best fixative for antigen 

preservation and epitope presentation for each antibody. A range of antibody 
dilutions and incubation times were assessed for optimum labelling. Table 2.2 

shows dilutions used for optimum conditions. 
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Antibody Dilution Control Preabsorption 

Rabbit ant-rat/murine iNOS 1: 1000 NRS Recombinant murine 
iNOS 

Rabbit anti-rat/murine COX 2 1: 400 NRS No recombinant protein 

available at the time 

Rat anti-murine PECAM (CD 1: 1000 NRS No recombinant protein 

31) available at the time 

Rabbit anti-rattmouse HO-1 1: 200 NRS Recombinant rat HO-1 

Rabbit anti-bovine arginase I 1: 500 NRS No recombinant protein 

available at the time 

Table 22 Antibody dilutions, serum controls and preabsotption controls used for 

Immunohistochemical analysis of cell smears and tissue sections. 

Following fixation (Section 2.24.1) slides were rehydrated for 5 min in 0.01M 

PBS (pH 7.2). Endogenous peroxidases were quenched with 0.3% v/v hydrogen 

peroxide in methanol (15 min), then washed in 0.01M PBS (pH 7.2; 15 min) 

containing 0.1% v/v TritonX-100 (PBST). Non-specific binding of IgGs was 

blocked using 2% v/v of the appropriate normal serum in PBS containing 0.1 % 

w/v essentially globulin free BSA for 30 min. The normal serum used was the 

same as the host species used to raise the secondary antibody. 

Slides were incubated overnight at 4°C with the primary antibody (in PBS 

containing 0.01% w/v BSA, 0.1% w/v NaN2 and 0.1% v/v Triton-X100). For 

negative controls the primary antibody was replaced with normal serum IgG's 

from the appropriate species. After incubation slides were washed three times 

(5 min) in 0.01M PBS, pH 7.2, containing 0.1% v/vTritonX-100 (PBST). Slides 

were incubated for 30 min with the relevant biotinylated secondary antibody 
(50pl in 10ml PBS containing the appropriate normal serum). After the incubation 

slides were washed three times in PBST, followed by one wash in PBS (15 min) 

The Vectastainlm avidin-biotinylated HRP complex was made up 30 min before 

use in PBS containing 0.5M NaCl. This complex was then incubated with the 
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sections for 30 min. 

Afer incubation with the ABC complex, slides were washed 3 times in PBS, then 

for 15 min in 0.05M Tris buffer, pH 7.6. Sections were visualised with 

diaminobezidine tetrahydrochloride (DAB) for 1 to 10 min in the dark. The 

reaction was halted by washing the sections in distilled water for 5 min. Sections 

were counterstained and mounted. The nuclei of the cells was stained with 

Harris's haematoxylin for 1 min, excess stain was removed under tap water (30 

seconds) and the haematoxylin differentiated in acid alcohol (70% v/v industrial 

methylated spirits and 1% v/v concentrated HCI) for 2 min. Sections were blued 

under tap water, therefore the nuclei of all cells from smears and tissue sections 

appeared blue and immunopositive cells for the antigen in question were 

stained brown. 

2.22.3 Morphometric analysis of PECAM (CD 31) staining 

The effect of drug administration on the vascular component of the 

granulomatous tissue was assessed by morphometeric analysis after PECAM 

staining of endothelial cell and compared to the carmine method (Section 2.14). 

10pm sections were cut randomly through n=5 granulomas per treatment and 

per time point. Sections were fixed in acetone and immunolabelled with rat anti- 

murine PECAM (1: 1000). Micrographs were randomly taken from each section 

cut and analysed using aI cm2 transparent grid that was randomly 

superimposed upon them. The intersections falling on endothelial cells and 

blood vessel lumens were counted and calculated as a percentage of total tissue 

area. 

2.22.4 Haematoxylin and eosin staining 

Inflammatory cell smears and 10pm tissue sections were fixed in 4% w/v 

paraformaldehyde solution (Section 2.22.1), rehydrated and stained with 
haematoxylin and eosin for histological assessment. The nuclei of cells were 

stained with Harris's haematoxylin fort min and washed with tap water. Excess 

stain was removed by differentiation in acid alcohol (70% v/v industrial 
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methylated spirits and 1% v/v HCI) for 2 min, then blued under tap water. The 

cytoplasm of the cells was stained with a 1% w/v eosin Y solution (in distilled 

H2O) for 10 seconds, followed by 5 min wash in running tap water. Sections were 

then dehydrated in alcohol, cleared in xylene and mounted with glass cover slips 

using DPX. Cell phenotypes were identified by nuclear morphology. Cell smears 

from the acute inflammatory models were differentially counted using the 

principles described by Gundersen and Osterby (1980) and expressed as 

percentages of total cell counts. 

2.22.5 Toludine blue staining for mast cells 
Fixed cell smears and tissue sections (Section 2.22.1) were rehydrated and 

stained with toludine for histological and mast cell assessment. Slides were 

stained with a filtered toludine blue solution (50mg toludine blue, 25ml ethanol, 
2.5ml formaldehyde (30% w/v), 0.5ml acetic acid and 12ml deionised H2O) for 

2 min and rinsed in tap water until the desired intensity of staining was achieved. 
Slides were mounted in immersion lens oil for analysis and photography, nuclei 

stained blue and granules of mast cell had a dichromatic appearance. 

2.22.6 Van Gieson staining for collagen and fibrin 

Fixed cell smears and tissue sections (Section 2.22.1) were rehydrated and 

stained with Celestine blue (0.5% w/v Celestine blue in 5% w/v ferric ammonium 

sulphate and glycerol) for 2 min. Sections were then stained with Mayers 

haematoxylin for 2 min and blued under tap water for 5 min. Sections were 

rinsed in distilled water and stained in Van Geison solution (100ml saturated 

picric acid containing 1 Oml of 1% v/v acid fuchsin in distilled H20) for 5 min, 

then dehydrated using bottled alcohol, cleared in xylene and mounted in DPX 

. Nuclei were brown/black to black, collagen deep red and muscle, cytoplasm, 

red blood cells and fibrin were stained yellow. 

2.22.7 NADPH diaphorase staining for iNOS activity 
NADPH diaphorase staining was used to detect NOS activity in tissue sections, 

since NOS is able to catalyse the reaction shown in (Figure 2.1). Nitro-blue 
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tetrazolium was used as the final substrate which reacts with hydrogen to form 

a water soluble product. Reactions was carried out on unfixed cryostat sections, 

using liver as a positive control. 

SH NADP" 

. Yy %H 
' 

1 

NADPH SH 

H+ Tetrazolium = 

Tetrazolium -º Formazan 

Formazan 

Figure 2.1 SH is substrate and s is oxidised substrate, the H released by the substrate 

reacts with tetrazolium to form a soluble formazan dye. 

Unfixed sections were covered with incubating solution for 1h at 37°C. The 

NADPH diaphorase incubating medium consisted of 0.9ml of 0.11 % w/v nitro- 

blue tetrazolium solution (in 0.055M phosphate buffer containing 0.006 MgCl2). 

After the incubation sections were fixed in formol saline for 10-15 min, rinsed in 

distilled water and counterstained in 1% w/v Neutral red for 20s and washed 

rapidly in tap waterto remove excess stain. Sections were dehydrated in alcohol, 

cleared in xylene and mounted in DPX. 

2.23 Terminal deoxynucleotide transfer-mediated dUTP-biotin nick- 

end labelling (TUNEL) immunochemical assay for the 

quantification of apoptosis. 

The Apoptag® detection kit was used to label apoptotic cells smears in situ by 

direct immunoperoxide detection of digoxigenin (DIG) labeled DNA. During 

apoptosis the DNA fragments and these residues of DIG are catalytically added 

by terminal deoxynucleotidyl transferase (TdT). The incorporated nucleotides 

from a random heteropolymer of DIG-11-dUTP and dATP, which is recognised 

by a polyclonal HRP-Iinked anti-DIG antibody. 
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Cell smears from the carrageenin-induced pleurisy (Section 2.4.4 ) were fixed 

in neutral-buffered formalin (10% v/v) for 10min, then washed twice in PBS 

(5min). Sections were allowed to air dry for 24h, then rehydrated in PBS and 

post-fixed in pre-cooled ethanol: acetic acid (2: 1 v/v) at -20°C (5 min) to 

permeabilise the cell membranes. After 3 washes in PBS containig 0.1% v/v 
Tween-20TM (PBST), endogenous peroxidases were quenched with 2% v/v 

hydrogen peroxide in PBS for 5 min at room temperature. Slides were washed 

twice in PBST and then incubated with 13pl/cm2 Equilibration buffer for 30 min 

at room temperature, followed by incubation with 11 pl/cm2 of working strength 
TdT enzyme (specific activity 0.3U/pl; 1 h, 37°C). Distilled water was substituted 
for TdT enzyme and used as a negative control. The reaction was halted by 

applying pre warmed stop/wash buffer for 10 min at room temperature. After 2 

PBS washes, I3pl/cm2 of anti-DIG-peroxidase antibody was applied to the slides 
(30 min, room temperature). Finally, slides were rinsed twice in PBS, then in 

0.05M Tris buffer (pH 7.6) and the immunolocalisation was visualised with DAB 

and counterstained with Harris' haematoxylin, differentiated, dehydrated, cleared 

and mounted. Positive cells were manually counted within a 100pm2 area using 

a high power objective (x 40 magnification: 10 x 10pm graticule) and stained 

cells were expressed as a percentage of total cells. At least 10 fields of view 

were counted per slide. 

2.24 Data and statistics 
For in vitro experiments, data is reported as mean t standard error of the mean 
(sem) of n experiments performed at least in duplicate. Statistical differences 

were analysed by analysis of variance (ANOVA) for multiple comparisons, using 
the software package GraphPad InstatTm. If the ANOVA analysis predicted a 

significant difference between groups (F value), post-hoc comparison tests were 

made using the Bonferroni test for p values. When two groups were compared, 

statistical differences were measured using a two tailed Student t test. In all 

cases a threshold value of ps0.05 was sufficient to reject the null hypothesis and 
differences were considered significant. 
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For in vivo experiments, data is reported as mean ± standard error of the mean 
(sem) of individual observations (animals). Statistical differences were analysed 
by nonparametric Kruskal-Wallis trend test for multiple comparisons, using the 

software package GraphPad InstatT'. The Kruskal-Wallis test is a nonparametric 
testthat compares three or more unpaired groups. To perform the Kruskal-Wallis 

test, first all the values are ranked from low to high, disregarding which group 

each value belongs. If two values are the same, then they both get the average 

of the two ranks for which they tie. The smallest number gets a rank of 1. The 

largest number gets a rank of N, where N is the total number of values in all the 

groups. The rank in each group is summed. If the sums of the ranks are very 
different, the P value will be small. The discrepancies among the rank sums are 

combined to create a single value called the Kruskal-Wallis statistic (referred to 

as H). A larger Kruskal-Wallis statistic corresponds to a larger discrepancy 

among rank sums. The P value answers this question: if the null hypothesis is 

true then what is the chance of obtaining a Kruskal-Wallis statistic as high (or 

higher) as observed in this experiment? If the Kruskal-Wallis test predicted a 

significant difference between groups (H value), pos-thoc comparison tests were 

made using the nonparametric Mann-Whitney U test, that does not assume 
Gaussian distribution, for p values. When two groups were compared, statistical 
differences were measured using a two tailed student t test. In all cases a 
threshold value of ps0.05 was sufficient to reject the null hypothesis and 
differences were considered significant. 
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CHAPTER 3. Temporal and spatial expression of NO pathways in acute and 
chronic inflammation. 

3.1 Introduction 

The aim of the work presented in this chapter is to map the temporal and spatial 

expression of NO pathways compared with arginase in three acute and one 

chronic inflammatory model. Each model has a different initial stimulus, 
inflammatory mechanism and cellular profile, representing different types of 

reactions that can occur in man. 

Initially, the NOS pathway was investigated in a complement-mediated acute 
inflammatory model, carrageenin-induced pleurisy in the rat (Section 2.4.1). 

Inflammatory cell counts, differential cell counts and exudate volume were 

performed to profile the inflammatory response to carrageenin. The temporal 

and spatial expression of iNOS was determined from the beginning to the 

resolution of the reaction by Western blotting (Section 2.9) and 
immunohistochemistry (Section 2.22). Nitrite (Section 2.6) the stable breakdown 

product of NO was quantified in cell-free inflammatory exudates, while iNOS 

activity (Section 2.7) was determined in inflammatory cell pellets. These 

investigations of iNOS expression and enzyme activity were correlated with 

exudate volume and inflammatory cell influx. The products of both the arginase 

and COX pathways are postulated to play an important role in inflammation, 

however, controversy surrounds the interactions between NO and the arginase 

and COX pathways. Therefore, the profile of arginase activity and COX activity 

and its major products PGE2 and PGI2 were examined over a time course to 

investigate the possibility of interactions between these pathways in the rat 

carrageenin-induced pleurisy. 

Similar to the carrageenin-induced pleurisy the NOS pathway was investigated 

in two other acute pleural inflammatory models, BSA-induced pleurisy (type III 

hypersensitivity reaction) and metBSA-induced pleurisy (type IV hypersensitivity 

reaction or delayed hypersensitivity reaction). Again, in these two models the 

profile of the NOS pathway was compared with both arginase and COX enzyme 
activity. Increasing evidence indicates that NO may also contribute to chronic 
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inflammation (Farrel eta!., 1992, Middleton eta!., 1993, Corbett et a!., 1993 and 
Maeda et al., 1994). Therefore, The NOS pathway was investigated in the 

murine chronic granulomatous tissue air pouch (MCGAP) as above. 

3.2 Carrageenin-induced pleurisy 
3.2.1 Exudate volume and inflammatory cell counts 
Injection of carrageenin into the pleural cavity of rats resulted in a complement 

mediated reaction characterised by extravasation and influx of inflammatory cell 

leucocytes into the pleural cavity, peaking at 18-24h post initiation (Figure 3.1). 

At 2 h, the pleural cavity contained 0.19 ± 0.04 ml of exudate and 15 ±6 x106 

inflammatory cell, both cells and exudate were elevated at 6 and 12h, being 

maximal at 24h with 1.18 ± 0.35 ml of exudate and 101 ± 19 x106 cells removed 

from the pleural cavity. By 48h the inflammation had waned to 0.16 ± 0.07 ml of 

exudate and 26 ±3 x106 cells. 
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3.1 Time course of Inflammation In the carrageenin-induced pleurisy In wistar rats. 
Exudate volume is represented by Nand inflammatory cell influx by 0. Data is expressed as 

mean t standard error of the mean (n= 10 per time point). 

Differential cell counts of inflammatory cell smears stained with hematoxylin and 
eosin revealed a predominance of PMNs at 2h (86%) with MN cells being the 

major cell type at 48 h (70%), specific percentages of cells in this model are 
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presented in Table 3.1. The cells under the category of "other" contained mast 

cells, lymphocytes and mesothelial cells. 

Time after carrageenin injection (h) 

2 6 12 24 48 

PMNs 86% 92% 99% 61% 28% 

MNs 11% 7% 1% 38% 70% 

Other 3% 1% s1% 1% 1% 

Table 3.1 Differential counts of Inflammatory cell smears taken from the pleural cavity of 

rats, Injected with carrageenin after staining with haematoxylin and eosin. n=6 at each 

time point. 

3.2.2 1NOS protein expression in inflammatory cells 
iNOS protein was expressed in inflammatory cell throughout the time course of 
the carrageenin pleurisy as assessed by Western blotting and quantified by 

densitometric analysis and expressed as arbitrary units (Section 2.9 as seen in 

Figure 3.2). iNOS protein was detectable in inflammatory cell pellets at 2h, 

although the density of the band at this time point was low (154 t 26). iNOS 

protein peaked at 6h with a density of 12685 t 356 , after which levels 

decreased to baseline by 24h. At 48h there was an increase in density of NOS 

protein to 4735t 773, however no enzyme activity was measurable at this time 

point (see Section 3.2.4). cNOS activity was below detection limits in 

inflammatory cell pellets throughout the time course of this model (data not 

shown). 
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Figure 3.2 Time course of iNOS expression in cell pellets taken from Wistar rats with a 

carrageenin-induced pleurisy. Western blot analysis for iNOS protein was performed followed 

by densitometry. The top panel is a representative Western blot of n=8. 

3.2.3 Levels of nitrite in cell-free inflammatory exudates 
Pleural lavage of control animals that did not receive carrageenin contained 

relatively high levels of nitrite (8.9 ± 0.1 NM), with control plasma levels being 

low (2.1 ± 0.1 NM). Thirty minutes after carrageenin injection nitrite levels 

reached a peak of 15.9 ± 1.4 pM, then waned at 1h and 2h (Figure 3.3). iNOS 

protein was not detectable in inflammatory cells at 0.5h, 1h or in control animals, 

suggesting that NO at this time point was probably from a cNOS source. A 

second peak of nitrite was observed at 6h (8.9 ± 1.6 NM), this correlated with 

a time at which iNOS protein expression (Figure 3.2) and activity (Figure 3.4) 

were maximal, hence NO produced at this time point was probably from iNOS. 

Nitrite levels were very low at 12 and 24h, however, there was a slight increase 

at 48h (2.4 ± 1.2 pM), which correlated in profile to iNOS protein expression 
(Figure 3.2). 
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Figure 3.3 Time course of nitrite accumulation In the carrageenin-induced pleurisy. Nitrite 

levels in cell-free pleural exudates were measured by the Greiss reaction. Data is expressed as 

mean t standard error of the mean (n= 10 per time point). 

3.2.4 NOS enzyme activity in inflammatory cell pellets 
Pleural lavage of control animals that did not receive carrageenin contained 
iNOS (21 t2 pmol citrulline/mg protein/30 min; Figure 3.4). 30 minutes and 1h 

post-carrageenin, iNOS activity within inflammatory cells was on the detection 

limit of the assay (17: t 10 pmol and 20 t9 pmol citrulline/mg protein/30 min 

respectively). Levels of iNOS activity detected at 2h were 151 t 21 pmol 

citrulline/mg protein/30 min, which reached a peak at 6hrs (820 t 202 pmol 

citrulline/mg protein/30 min), with decreased levels of iNOS activity at 12h, 24h 

and 48h. cNOS activity was virtually undetectable at all points measured (2h, 

12h, 24h and 48h) except at 6h (124 ± 84 pmol citrulline/mg protein/30 min). 
Furthermore, depletion of calcium from the enzyme reaction by the addition of 
the calcium chelator EGTA reduced cNOS enzyme activity to baseline values, 

whereas iNOS activity was unaffected throughout the time course of this acute 
inflammatory model. 
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Figure 14 Time course of NOS activity in the carrageenin-induced pleurisy. iNOS activity 
is represented by wand cNOS activity by0. Data is expressed as mean t standard error of the 

mean (n=6 per time point). 

3.2.5 Spatial expression of iNOS protein in inflammatory cells 
Acetone fixed sections of inflammatory cell smears from the pleural cavity were 

analysed by immunocytochemistry (Section 2.22) for NOS protein expression 
(Figure 3.5, panels b-f). The iNOS antibody was deemed specific since pre- 

absorbed controls showed a considerable reduction in the intensity of staining 

and a control smear, which received normal rabbit serum had no 
immunostaining (Figure 3.5 panel a). At 2h nearly all PMNs were negative for 

NOS protein, with the occasional positively stained MNs (the percentage of 

positively stained cells are presented in Table 3.2). By 6h the majority of MNs 

and PMNs stained for iNOS protein. Post 6h MNs and the diminishing population 

of PMNs showed some immunoreactivity for iNOS, however this was greatly 

reduced when compared to 6h. 
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Figure 3.5 Time course of iNOS protein expression within inflammatory cell from the 

carrageenin-induced pleurisy. (a) Primary 1NOS antiserum was replaced with normal goat 

serum to act as a negative control and showed no staining for iNOS. Immunolabelling for iNOS 

protein was observed in both PMNs and MNs in inflammatory cell smears at different time points; 
(b) 2h, (c) 6h, (d) 12h, (e) 24h and (f) 48h. (A), (D), (F) are at magnification x63 and (B), (C), (E) 

are at magnification x32, arrows indicate cells positive stained for iNOS. 
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Time Cell type Percentage +ve for iNOS protein 
2h PMNs 0 

MNs 10 

6h PMNs 75 

MNs 92 

12h PMNs 36 

MNs 55 

24h PMNs 0 

MNs 15 

48h PMNs 30 

MNs 41 

Table 12 lmmunocytochemical analysis of INOS staining in inflammatory cell smears 
taken from the pleural cavity ofrats injected with carrageenin. Values represent percentage 

of PMNs and mononuclear cells positive for iNOS protein. Data is expressed as mean of n=5 

animals per time point 

3.2.6 Arginase enzyme activity in inflammatory cell pellets 
Arginase and nitric oxide synthase share a common substrate L-arginine, which 
in the case of arginase is metabolised to ornithine and urea. Further, both PMNs 

and MNs are reported to contain the two isoforms, arginase I and II, upon 

activation with an inflammatory stimuli. Levels of arginase activity, in the 

carrageenin-induced pleurisy, were very low at the time points measured. At 2h 

inflammatory cells produced 0.23 ± 0.09 mU urea/mg protein/min (Figure 3.6), 

which rose to a peak at 6h (1.05 ± 0.40 mU urea/mg protein/min), then declined 

thereafter. 
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Figure 3.6 Time course of arginase activity in the carrageenin-induced pleurisy. Data is 

expressed as mean ± standard error of the mean (n=8 per time point). 

3.2.7 Prostaglandin E2 and '2 levels in cell-free inflammatory exudates 
PGE2 levels were not detectable in pleural lavages from animals that did not 

receive carrageenin. Post carrageenin injection, total exudate PGE2 levels were 

maximal at 2h (1028 ± 193 pg) and declined thereafter (Figure 3.7), with levels 

at 24h and 48h being below the detection limit of the assay. 

6-keto PGFI a was measured as a stable breakdown product of PGI2. PGI2 levels 

in exudate peaked at 6h (1631 t 363 pg) and declined thereafter (Figure 3.7), 

with levels at 24h and 48h being below the detection limit of the assay. 
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Figure 3.7 Time course of PGE2 and 6-keto PGF1a levels in the carrageenin-induced 

pleurisy. PGE2 levels are represented by M and 6-keto PGFIa levels by o. Data is expressed 

as mean t standard error of the mean (n=6 per time point). 

3.2.8 COX activity in inflammatory cell pellets 

COX activity in cell pellet extracts followed a similar profile to PGE2 in cell-free 

exudates and was measured as the quantity of PGE2 produced in the presence 

of excess substrate and co-factors. At 2h, COX activity was maximal (7.5 ± 2.7 

ng/mg protein/30 min, Figure 3.8) after which it declined to baseline from 6h 
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Figure 3.8 Time course of COX activity in Inflammatory cell pellets In the carrageenin- 
Induced pleurisy. Data is expressed as mean ± standard errorof the mean (n=5 per time point). 
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3.3 Rat BSA-induced pleurisy 
3.3.1 Exudate volume and inflammatory cell counts 
Challenge with BSA in the pleural cavity of rats pre-treated with BSA resulted in 

an antibody/antigen reaction which caused the influx of inflammatory cells and 

exudate into the pleural cavity, both peaked at 6h (Figure 3.9). At 2h, the pleural 

cavity of rats contained 0.76 ± 0.17ml of exudate and 11.2 ± 1.5 x106 
inflammatory cells. By 6h, both parameters peaked with 1.01 ± 0.1 9ml of exudate 

and 15.9 ± 2.1 x106 cells being recovered. Exudate volume and inflammatory 

cell number waned thereafter, with 0.30 ± 0.05ml of exudate and 8.6 ± 0.8 cells 

at 12h and 0.11 ± 0.02ml of exudate and 7.2 ± 0.8 x106 at 24h. 
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Figure 3.9 Time course of Inflammation In the BSA-Induced pleurisy. Exudate volume is 

represented by land inflammatory cell influx by o in Wistar rats challenged with BSA into the 

pleural cavity, 12 days after sensitisation with BSA into the tail. Data is expressed as mean t 

standard error of the mean (n=6 per time point). 

Differential counts of inflammatory cell smears stained with Harris' hematoxylin 

and eosin resulted in a predominance of PMNs throughout the inflammatory time 

course (2-24h). Percentages of cells in this model are presented in Table 3.3. 
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Time after intrapleural BSA challenge (h) 

26 12 24 

PMNs 81% 95% 75% 57% 

MNs 19% 5% 25% 43% 

Table 3.3 Differential counts of inflammatory cell smears in the BSA-induced pleurisy. 

Rats were sensitised with BSA into the tail, then challenged with BSA in the pleural cavity 12 

days later. Cell smears were stained with heamatoxylin and eosin. n=4 per time point. 

3.3.2 iNOS protein expression in inflammatory cells 

iNOS protein was expressed throughout the time course of rats challenged 
intrapleurally with BSA (Figure 3.10). NOS protein expression was maximal at 

2h, after which it declined at 6h and 12h, being almost undetectable at 24h. 

26 12 24h 

iNOS protein 
130 kDa 

Figure 3.10 iNOS protein expression in the BSA-induced pleurisy. 1NOS expression was 

determined by Western blotting of cells form inflammatory exudates from rats sensitised into the 

tail with BSA and challenged 12 days later with BSA intrapleurally. A typical blot. 

3.3.3 Levels of nitrite in cell-free inflammatory exudates 

Two hours after intrapleural challenge with BSA nitrite levels were maximal (7.9 

± 0.3pM, Figure 3.11), this correlated with the peak in iNOS protein expression 

(Figure 3.10) and activity (Figure 3.12). At 6h nitrite levels declined (5.4 t 

0.4NM), being almost undetectable at 12h and 24h. 
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Figure 3.91 Time course of nitrite accumulation In the BSA-induced pleurisy. Rats were 

sensitised with BSA into the tail, then challenged with BSA in the pleural cavity 12 days later. 

Data is expressed as mean t standard error of the mean (n=6 per time point). 

3.3.4 iNOS enzyme activity in inflammatory cell pellets 
Two hours after intrapleural challenge with BSA NOS activity was maximal (259 

±45 pMol citrulline/mg protein/30 min, Figure 3.12). At 6h and 12h iNOS activity 
declined, being much reduced at 24h (62 ± 23 pMol citrulline/mg protein/30 min). 

cNOS activity was below the detection limit of this assay at all time points 

measured. 
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Figure 3.12 Time course of INOS activity In inflammatory cells in the BSA-induced 

pleurisy Rats were sensitised with BSA into the tail, then challenged with BSA in the pleural 

cavity 12 days later. Data is expressed as mean i standard error of the mean (n=6 per time 

point). 
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3.3.5 Arginase enzyme activity in inflammatory cell pellets 
In the rat BSA-challenged pleurisy, arginase levels were detectable throughout 

the time course (Figure 3.13). Arginase activity at 2h was 1.179 t 0.491 mU/mg 

protein/min, increasing to a peak at 12h (3.099 ± 0.554 mU/mg protein/min), 
before dropping at 24h to 0.698 ± 0.112 mU/mg protein/min. 
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Figure 3.13 Time course of arginase activity in inflammatory cells in the BSA-induced 

pleurisy. Rats were sensitised with BSA into the tail, then challenged with BSA in the pleural 

cavity 12 days later. Data is expressed as mean t standard error of the mean (n=6 per time 

point). 

3.3.6 COX activity in inflammatory cell pellets 
In this type III, immediate hypersensitivity reaction, COX activity was maximal at 
24h (631 ± 146 ng PGEýmg protein/30min, Figure 3.14). COX activity prior to 

this point was 276 ± 65,399 ± 120, and 500± 88 ng PGE2/mg protein/30min at 
2h, 6h and 12h, respectively. 
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Figure 3.14 Time course of COX activityin inflammatorycells In the BSA-Induced pleurisy 
Rats were sensitised with BSA into the tail, then challenged with BSA in the pleural cavity 12 

days later. Data is expressed as mean t standard error of the mean (n=6 per time point). 

3.4 Rat methylated BSA-induced pleurisy 
3.4.1 Exudate volume and inflammatory cell counts 
Challenge with methylated BSA in the pleural cavity of rats resulted in a cell 

mediated inflammatory reaction that caused influx of inflammatory cells and 

exudate into the pleural cavity, which peaked at 24h (Figure 3.15). At 2h, the 

pleural cavity of rats contained 0.5 ± 0.07ml of exudate and 4.8 ± 0.8 x106 
inflammatory cells, both parameters increased at 6h and 12h and peaked at 24h 

with 3.5 ± 0.8ml of exudate and 59.1 ± 8.4 x106 inflammatory cells being 

removed from the pleural cavity. After 24h this cell mediated reaction waned with 
both parameters being reduced by 48h (0.6 ± 0.76ml and 43.3 ±10.1 x108 cells). 
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Figure 3.15 Time course of inflammation in the methylated BSA-induced pleurisy. Exudate 

volume is represented by Nand inflammatory cell influx by o in Wistar rats challenged with 

methylated BSA into the pleural cavity, 12 days after sensitisation with methylated BSA into the 

tail. Data is expressed as mean ± standard error of the mean (n= 15 per time point). 

Differential counts of inflammatory cell smears stained with Harris' hematoxylin 

and eosin showed a PMN dominant reaction up to 12hrs, with MN cells being 

the predominant cell type at the peak of inflammation (from 24h onwards), Table 

3.4. 

Time after intrapleural methylated BSA challenge (h) 

26 12 24 48 

PMNs 77% 71% 83% 46% 4% 

MNs 23% 29% 17% 54% 96% 

Table 3 .4 Differential counts of Inflammatory cell smears in the methylated BSA-induced 

pleurisy. Rats were sensitised with methylated BSA into the tail, then challenged with methylated 
BSA in the pleural cavity 12 days later. Cell smears were stained with haematoxylin and eosin. 

n=4 per time point. 
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3.4.2 iNOS protein expression in inflammatory cells 

NOS protein was expressed throughout the time course of rats challenged 

intrapleurally with methylated BSA (Figure 3.16). iNOS protein expression 

increased up to 12h, where it was maximal, then waned thereafter. 
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Figure 3.16 iNOS protein expression in the methylated BSA-induced pleurisy. iNOS 

expression was determined by Western blotting of cells form inflammatory exudates from rats 

sensitised into the tail with methylated BSA and challenged 12 days later with methylated BSA 

intrapleurally. A typical blot 

3.4.3 Levels of nitrite in cell-free inflammatory exudates 

Twelve hours after intrapleural challenge with BSA, nitrite levels in cell free 

exudates were maximal (19.7 ± 1.8pM, Figure 3.17), correlating with the peak 

in NOS protein expression (Figure 3.16) and activity (Figure 3.18). At 2h, 6h, 

24h and 48h nitrite levels were 0.4 ± 0.4,4.8± 0.5,1.3 ±0.2 and 0.1 ± 0.1 NM, 

respectively. 
25 

20 

z 15 

Z 10 

5 

0 

Figure 3.17 Time course of nitrite accumulation in the methylated BSA-induced pleurisy. 
Rats were sensitised with methylated BSA into the tail, then challenged with methylated BSA in 

the pleural cavity 12 days later. Data is expressed as mean ± standard error of the mean (n=6 

per time point). 
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3.4.4 iNOS enzyme activity in inflammatory cell pellets 
Twelve hours after intrapleural challenge with methylated BSA iNOS activity was 

maximal (1139 ± 63 pMol citrulline/mg protein/30 min, Figure 3.18). The 2h and 
6h levels were 54 ± 26 and 119 ± 68 pMol citrulline/mg protein/30 min. After 12h, 

iNOS activity declined rapidly to baseline at 48h (10 ±6 pMol citrulline/mg 

protein/30 min). cNOS activity was not detectable in this model at the time points 

measured. 
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Figure 3.18 Time course of INOS activity in the methylated BSA-induced pleurisy. Rats 

were sensitised with methylated BSA into the tail, then challenged with methylated BSA in the 

pleural cavity 12 days later. Data is expressed as mean t standard error of the mean (n=6 per 

time point). 

3.4.5 Arginase enzyme activity in inflammatory cell pellets 
In the methylated BSA-challenged pleurisy, arginase levels were detectable 

throughout the time course (Figure 3.19). Arginase activity at 2h was 1.833 

±0.191 mU/mg protein/min, increasing at 6h, 12h and 24h to a peak at 48h 

(5.676 ± 0.651 mU/mg protein/min). 
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Figure 3.19 Time course of arginase activityin the methylated BSA-induced pleurisy. Rats 

were sensitised with methylated BSA into the tail, then challenged with methylated BSA in the 

pleural cavity 12 days later. Data is expressed as mean ± standard error of the mean (n=6 per 

time point). 

3.4.6 COX activity in inflammatory cell pellets 
In this type IV, cell mediated delayed hypersensitivity reaction, COX activity 
increased from 2h (16 ± 4) to a maximum at 48h (53 ±8 ng PGE2/mg 

protein/30min, Figure 3.20).. 
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Figure 3.20 Time course of COX activity in the methylated BSA-induced pleurisy. Rats 

were sensitised with methylated BSA into the tail, then challenged with methylated BSA in the 

pleural cavity 12 days later. Data is expressed as mean ± standard error of the mean (n=6 per 

time point). 
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3.5 Murine chronic granulomatous tissue air pouch 
3.5.1 Granulomatous tissue basic histology, dry weight, carmine content, 

and vascularity 
The resulting inflammation after M. tb and croton oil injection has three phases 

acute, chronic and a resolving stage. Granuloma dry weight was 48.9 ± 4.2 mg 

at day 3 (Figure 3.21 a), which increased at day 5 (69.0 ± 3.5 mg) and peaked 

at day 7 (82.8 ± 3.0 mg). After day 7 granuloma dry weight deceased to 38.4 t 

1.8 mg at 28 days. 

The vascular component of the granulomatous tissue, as measured by carmine 

content, was 438 ± 27 pg at day 3 (Figure 3.21 a), this rose to a peak at day 5 

(688 ± 57 pg), then decreased steadily over the ensuing 23 days, being 463 ± 

41 pg at day 28. 

Vascular index was measured as a parameter of angiogenesis and expressed 

as pg carmine per mg granuloma dry weight (Figure 3.21 a). The vascular index 

was 6.42: t 0.26 pg carmine/mg tissue at day 3, this peaked at day 5 (9.76 ± 0.67 

pg carmine/mg tissue), then deceased to a plateau over the rest of the time 

course, being 7.51 ± 0.73 pg carmine/mg tissue at 28 days. 

Histology examination of the air pouch demonstrated PMNs were the dominant 

cell type at day 3, with smaller numbers of macrophages and lymphocytes and 

the occasional fibroblast with capillaries surrounded by extracellular matrix. By 

day 7 the granuloma was highly vascularised with numerous PMNs and 

macrophages present in the loose connective tissue of the dermis and the 

occasional intact and degranulated mast cell was observed (Figure 3.21b). A 

region of active fibrogenesis was observed above the skeletal muscle and below 

the skin with a high collagen content (red coloration, Figure 3.21c). By 28 days 

the granulomatous tissue was highly organised consisting of fibroblasts and the 

occasional inflammatory cell. 
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Figure 3.21 Inflammation, angiogenesis and histological examination of the murine 

chronic granulomatous tissue air pouch. Panel A is a time course of grauloma dry weight (I), 

carmine content (4, vascular index (o) and cell type influx into the mouse croton oil-induced 

chronic granulomatous tissue air pouch. Data is expressed as mean ± standard error of the 

mean (n=8 per time point). Panel B shows a7 day air pouch stained with toluidine blue and Panel 

C Van Gieson. Panel B and C magnification x 100. 
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CHAPTER 3. Temporal and spatial expression of NO pathways in acute and 
chronic inflammation. 

3.5.2 1NOS protein expression 

iNOS protein expression was detected in homogenates of granuloma tissue 

throughout the time course of this chronic inflammatory model as determined by 

Western blot analysis (Figure 3.22). During the early stages of the air pouch (up 

to 3 days) it is extremely difficult to separate the air pouch from the overlying 

dermis and the material obtained was not sufficient for Western blot analysis. As 

can be seen from Figure 3.22, iNOS protein expression was most intense at day 

7, a time where macrophage influx into the air pouch lining was maximal. This 

was reduced at subsequent time points (14,21 and 28 days), although iNOS 

protein expression was still detectable. 

7 14 21 28d 

NOS protein 
`f ýý ýý _ _ý. 130 k Da 

Figure 3.22 NOS protein expression of the murine chronic granulomatous tissue air 

pouch. As determined by Western blotting at days 7,14,21 and 28. 

3.5.3 Levels of nitrite in cell-free inflammatory exudates 

Nitrite accumulation in cell-free exudate extracted from the air pouch cavity was 

measured at 6,12 and 24h, 3,5 and 7days (Figure 3.23). It was impossible to 

measure nitrite levels at 14,21 and 28 days due to limitations in extracting 

exudate from the air pouch at these time points. Nitrite production first became 

detectable at 12h (0.4 ± 0.3 pM), however most of the samples investigated at 

this time point were below the level of detection of the assay. Levels of nitrite 

rose consistently from 24h (5.0 ± 3.7 NM) reaching a peak at 7 days of 80.4 ± 6.6 

NM. 
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chronic inflammation. 
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Figure 3.23 Time course of nitrite accumulation in exudates taken from the murine chronic 

granulomatous tissue air pouch. Data is expressed as mean t standard error of the mean 
(n=5-8 per time point). 

3.5.4 NOS enzyme activity 
NOS enzyme activity was measured in homogenates of granulomatous tissue 

(Figure 3.24), iNOS activity in skin and air pouches without the injection of 
FCA/croton oil mixture below the detection limit of the assay. Levels of iNOS 

activity were low during the acute phase of this chronic inflammatory model, 

being 173 ± 89 pMol citrulline/mg protein/30 min at 3 days. At day 5 iNOS 

activity increased to 260 ± 60 pMol citrulline/mg protein/30 min and peaked at 
day 7 (805 ±268 pMol citrulline/mg protein/30 min), after which activity returned 

to basal levels (80 ± 23 pMol citrulline/mg protein/30 min at 28 days). 

cNOS activity of skin and air pouches without the injection of FCA/croton oil 

mixture was 52 ± 17 pMol citrulline/mg protein/30 min and probably reflected the 

vascular component contained within the overlying skin rather than the very thin 

air pouch membrane. cNOS activity (Figure 3.24) was detectable at 6 and 12h 

(72 ± 13 and 47 ± 18 pMol citrulline/mg protein/30 min, respectively), rising to a 

peak at 24h (153 ± 34 pMol citrulline/mg protein/30 min). cNOS activity was 

reduced at 3 days (38 ± 14 pMol citrulline/mg protein/30 min), then elevated at 
day 5 (146 ± 34 pMol citrulline/mg protein/30 min), reaching a second peak at 
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CHAPTER 3. Temporal and spatial expression of NO pathways in acute and 
chronic inflammation. 

day 7 (175 ± 56 pMol citrulline/mg protein/30 min), after which levels returned 
to baseline, being 29 ±8 pMol citrulline/mg protein/30 min at 28 days. 

1200 
E 
0 

goo 
e a E 600 
i 
c 

300 

0 

CL 0 
6 12 24h 357 14 21 28d 

Figure 3.24 Time course of INOS and cNOS activity in tissue homogenates taken from the 

mouse croton oil-induced chronic granulomatous tissue air pouch. iNOS activity is 

represented by N and cNOS activity by 0. Data is expressed as mean t standard error of the 

mean (n=8 per time point). 

3.5.5 Temporal and spatial expression of iNOS protein 
Up to 14 days iNOS protein staining was selectively associated with 

monocyte/macrophages in blood vessels and in loose connective tissue of the 

subdermis. Occasionally positive stained monocytes were observed in the lumen 

of vessels in this area. As the granuloma developed iNOS positively stained 

macrophages were associated with the fibrotic region of tissue. Endothelial cells 

of blood vessels in the subdermal region were lightly stained , with arterioles 

staining most intensely. Neutrophils present in the lower border of the 

granulomatous tissue (nearest the cavity) were also lightly stained for iNOS 

(Figure 3.25). 
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chronic inflammation. 
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Figure 3.25 Immunohistochemical analysis of iNOS protein in a7 day air pouch. Panel A 

is a7 day granulomatous tissue air pouch stained with a specific rabbit anti-murine iNOS 

antibody and in Panel B iNOS antibody was replaced with normal rabbit lgG and acted as a 

negative control. 

3.5.6 Arginase enzyme activity 

Arginase activity was measured in homogenates of chronic granulomatous tissue 

(Figure 3.26) and was detected at 6,12,24h and 3 days (26.4 ± 9.8 mU/mg 

protein/min). Arginase activity then peaked at day 5 (97.2 ± 9.7 mU/mg 

protein/min) then waned thereafter, being 41.3 ± 6.4 mU/mg protein/min at 28 

days. 
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Figure 3.26 Time course of arginase activity in tissue homogenates taken from the mouse 
croton oil-induced chronic granulomatous tissue air pouch. Data is expressed as mean t 
standard error of the mean (n=8 per time point). 
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CHAPTER 3. Temporal and spatial expression of NO pathways in acute and 
chronic inflammation. 

3.5.7 COX activity 
Cyclooxygenase activity was detected throughout the time course of this chronic 

model (Figure 3.27), being highest at 3 and 5 days (66 ±5 and 76 t8 ng 
PGE2/mg protein/30min, respectively), then diminishing thereafter to 34 t7 ng 
PGE2/mg protein/30min at 28 days. 
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Figure 3.27 Time course of cyclooxygenase activityin tissue homogenates taken from the 

mouse croton oil-induced chronic granulomatous tissue air pouch. Data is expressed as 
mean ± standard error of the mean (n=6 per time point). 
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chronic inflammation. 

3.6 Summary of findings 

(1) In the carrageenin pleurisy model, inflammatory exudate and cell numbers 

peaked at 24h and waned by 48h. iNOS protein expression was detectable in 

this inflammatory model between 2 and 48h, with the major peak being at 6h. 

This correlated with maximal levels of iNOS activity. Two peaks in nitrite were 

observed, the first at 0.5h and the second at 6h. Immunocytochemical analysis 

of cell smears revealed that both MNs and PMNs stained positively for NOS 

protein, with the most intense staining associated with MNs at 6 and 48h. 

Arginase activity. in this model was very low, however a peak in activity was 

measurable at 6h. In contrast, PGE2 was maximal at 2h with predominant levels 

of 6 keto PGF, p being detected at 6h. 

(2) In the BSA-induced immediate hypersensitivity reaction, iNOS protein 

expression, iNOS activity, nitrite, cell numbers and exudate volume all peaked 

at the early time points and declined to baseline by 48h. In contrast, arginase 

and COX activity peaked during the resolution stages of this model. 

(3) In the methylated BSA-induced DTH reaction, inflammatory parameters 

were maximal at 24h with exudate volume being negligible by 48h, however 

there was still a considerable number of inflammatory cells in the pleural 

washouts. iNOS activity, iNOS protein expression and nitrite were all maximal 

at 12h. Arginase and COX activity were maximal during the resolution stage of 
inflammation. 

(4) In the murine chronic granulomatous tissue air pouch, iNOS protein 

expression was maximal at 7days, but was also detectable at the other time 

points measured. iNOS activity, nitrite, arginase activity and COX activity were 

also maximal between 5 and 7 days. All these different enzymic pathways 

peaked at a time where granuloma dry weight was maximal. Interestingly, cNOS 

activity peaked at 24h this was prior to the peak in vascularity. The majority of 

86 



CHAPTER 3. Temporal and spatial expression of NO pathways in acute and 
chronic inflammation. 

the staining for iNOS in the granuloma was associated with influxing 

inflammatory cells. 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.1 Introduction 

In Chapter 3, the expression of iNOS protein and NOS enzyme activity were 
demonstrated in immune and non-immune models of acute inflammation and in 

a model of chronic inflammation. These parameters were mapped in conjunction 

wth the expression of COX and arginase activity. In this chapter, the effects of 
NO inhibition using a number of NOS inhibitors was investigated in a non- 
immune model of acute inflammation, the carrageenin-induced pleurisy. 

Non L-arginine analogue based NOS inhibitors, including aminoguanidine 
(Griffiths eta!., 1993), S(2-aminoethyl)-isothiourea (AE-ITU; Garvey eta!., 1994; 

Southan et al., 1995) and N-(3-(aminomethyl)-benzyl) acetamide (1400W; 

Garvey et al., 1997) will be used in the carrageenin-induced pleurisy model to 

inhibit NO production from iNOS. These compounds are reported to have a 

greater selectivity and higher potency for iNOS than ecNOS in vitro and in vivo 

compared to most L-arginine analogues. Therefore, these more selective iNOS 

inhibitors will be used and compared to a standard L-arginine analogue, N°- 

monomethyl-L-arginine (L-NMMA), in the carrageenin-induced pleurisy. 
Previously published studies have demonstrated an anti-inflammatory effect of 
NOS inhibitors when administered away from the inflammatory site in models of 

acute inflammation (lalenti et al., 1992; Tracey et al., 1995; Salvemini et al., 
1996), but in some cases these anti-inflammatory actions were reversed by 

vasodilators (Najafipour et al., 1993; Ridger et al., 1997). Therefore, one 

possible mechanism of action of these systemically administered NOS inhibitors 

may be to inhibit ecNOS resulting in vasoconstriction followed by a reduction in 

blood delivery to the inflamed site. This sequence of events may ultimately lead 

to reduced cellular diapedesis and exudation and thus be interpreted as anti- 
inflammatory. In this present chapter a comparison was made between the 

administration of both selective and non-selective inhibitors into and away from 

the inflammatory site. The effect of NOS inhibition was also assessed on 

possible interactions with the COX, arginase and HSP in the carrageenin- 
induced acute inflammation. 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.2 NOS inhibition in the carrageenin-induced pleurisy. 

4.2.1 Effect of intrapleural injection of NOS inhibitors at 1h. 

The initial peak of nitrite in inflammatory exudate was detectable at 1h (Section 

3.2.4), this would suggest that the principle source of NO at this time was from 

the post capillary endothelial cells lining the pleural cavity and not from an 
inducible source. Initially, the contribution of NO to the developing inflammatory 

response was determined by administration of NOS inhibitors directly into the 

pleural cavity immediately prior to carrageenin injection. 

AE-ITU at 3 and 10mg/kg significantly increased exudate volume (0.25: t 0.02ml, 

0.24: t 0.02ml, respectively) and inflammatory cell influx (5.4: t 0.5 x106,5.4: h 0.7 

x106 cells, respectively) when compared to untreated controls (0.13 f 0.02ml, 

2.9 t 0.5 x106 for exudate and cells respectively; Figure 4.1A, B). 1400W at 

10mg/kg also significantly elevated exudate volume (0.23: t 0.04ml) compared 

to saline controls (0.07 t 0.03ml) but was without effect on inflammatory cell 

numbers (Figure 4.1A, B). Figure 4.1C demonstrates that both AE-ITU and 

1400W reduced nitrite levels significantly at 10mg/kg (11.3 t 1.1,13.3: 0.8^ 

respectively) when compared to control values (16.6 t 1.1,20.6 t 1.4pM, 

respectively). Given their lack of specificity, it is likely that AE-ITU and 1400W 

also inhibited ecNOS at the dosing levels used. Finally, L-NIO (10mg/kg) 

increased exudate volume (0.34 t 0.05ml, compared to controls 0.10 t 0.03ml) 

whereas inflammatory cell numbers were unchanged (Figure 4.1A, B). At this 

time point the ecNOS inhibitor L-NIO (1,10mg/kg) was more potent than the two 

iNOS inhibitors at reducing nitrite levels at 1h (13.4 t 0.8,11.22 t 0.6pM, 

respectively) compared to saline treated animals (16.1 t 0.6pM; Figure 4.1 C). 
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Figure 4.1 Effects of NOS inhibitors injected locally on a rat carrageenin-induced pleurisy 

at Ih. AE-ITU, 1400W or L-NIO were injected directly into the pleural cavity of rats immediately 

before carrageenin injection. Thereafter, their effects on (A) exudate volume, (B) cell number 

and (C) nitrite in pleural exudates was determined 1h after carrageenin injection. Data is 

expressed as mean ± standard error of the mean (n=6-8 per group) from separate experiments 
for each NOS inhibitor used. *p <0.05 in comparison to saline controls. 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.2.2 Effects of intrapleural injection of NOS inhibitors at 6h. 
From the above studies it appears that the initial peak of NO generation at 1h 
is anti-inflammatory. Therefore, the second peak of NO generation, apparently 
from iNOS (Section 3.2.4), at 6h was investigated to elucidate whether this had 

a similarly protective role. To this end, the effects of intrapleural injection of AE- 

ITU, 1400W and L-NIO, immediately prior to the establishment of a carrageenin 

pleurisy, were determined. 

Injection of AE-ITU (3,10mg/kg) into the pleural cavity of rats worsened 
inflammation by significantly increasing pleural exudate formation (1.47 ± 0.09, 

1.46 ± 0.12ml respectively; ps0.05) and inflammatory cell influx (109 ±7 x106, 
99 ±8 x106 cells respectively, ps0.05) compared to controls values (1.00 ± 
0.06ml, 75 ±4 x106 cells respectively, Figure 4.2A, B). Both these doses of AE- 

ITU reduced nitrite levels in cell-free inflammatory exudate to below the 

detection limit of the Greiss reaction (Figure 4.2C). Identical findings were 

observed using the other iNOS inhibitor 1400W (1,10mg/kg), which caused an 

exacerbation of exudate volume (1.18 ± 0.10,1.16 ± 0.08ml respectively 

compared to controls 0.65 ± 0.05ml; Figure 4.2A) and leucocyte migration (103 

±8 x106,113 ±5 x106 cells respectively compared to saline treated animals 79 

±2 x106 cells; Figure 4.2B) into the pleural cavity at doses that significantly 
inhibited nitrite production (10.0 ± 0.2,10.6 ± 0.8pM respectively compared to 

control values 16.2±0.9pM; Figure 4.2C). In contrast, although the highest dose 

of L-NIO (10mg/kg) increased exudate volume (1.45 ± 0.07ml compared to 

controls 1.01 ± 0.09ml; Figure 4.2A) and cellular influx (112 ±7 x106 cells 

compared to saline treated animals 75 ±5 x106 cells; Figure 4.2B) into the 

pleural cavity and significantly reduced nitrite levels (7.8 ± 0.4pM compared to 

control values 14.5 ± 0.5pM, ps0.05; Figure 4.2C), L-NIO was not as potent at 
6h compared to that observed at 1 h. 
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Figure 4.2 Effects of NOS inhibitors injected locally on a rat carrageenin-induced pleurisy 

at 6h. AE-ITU, 1400W or L-N10 were injected directly into the pleural cavity of rats immediately 

before carrageenin injection. Thereafter, their effects on (A) exudate volume, (B) cell numberand 

(C) nitrite levels in the pleural exudates was determined 6h after carrageenin injection. Data is 

expressed as mean ± standard error of the mean (n=8 per group) from separate experiments for 

each NOS inhibitor used. * ps0.05 in comparison to saline controls. 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.2.3 Effect of intrapleural injection of L-NMMA at 6h 

Local injection of L-NMMA resulted in a similar profile of effect as AE-ITU, 

1400W and L-NIO at 6h, with an exacerbation of inflammation concominantwith 

a reduction in nitrite formation (Figure 4.3A-C) 
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Figure 4.3 Effects of L-NMMA injected locally on a rat carrageenin-Induced pleurisyat 6h. 

L-NMMA was injected directly into the pleural cavity of rats immediately before carrageenin 

injection. Thereafter, their effects on (A) exudate volume, (B) cell number and (C) nitrite levels 

in the pleural exudates was determined 6h after carrageenin injection. Data is expressed as 

mean ± standard error of the mean (n=6 per group). * psO. 05 in comparison to saline controls. 

4.2.4 Effect of intrapleural injection of DPTA NoNoate at 6h 

Since inhibition of NO caused an increased carrageenin-induced inflammation, 

it was postulated that further increasing local levels of this free radical may be 

of therapeutic benefit and would help confirm a direct anti-inflammatory action 

for NO. Therefore in a parallel experiment the NO donor, DPTA NoNoate (6h % 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

life), was administered locally. This compound was used because of its slow 

profile of release. Most donors like sodium nitroprusside release NO rapidly, 

therefore there effects would be immediate and may be detrimental through a 

sizable rapid release of NO. Injection of DPTA NoNoate (0.1,1mg/kg) into the 

pleural cavity of rats resulted in a significant reduction (ps0.05) in both exudate 

volume (0.79 ± 0.27,0.59 ± 0.59ml respectively compared to control values 0.97 

± 0.24ml) and leucocyte influx (57 ± 19 x106,52 ±7 x106 cells respectively 

compared to saline treated animals 129 ±8 x106 cells) into the pleural cavity of 

rats with carrageenin-induced inflammation (Figure 4.4A, B) 
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Figure 4.4 Effects on pleural Inflammation at 6h after the administration of an NO donor 

locally. DPTA NoNoate was injected directly into the pleural cavity of rats immediately prior to 

carrageenin. 6h after carrageenin injection the effects of this slow releasing NO donor was 

examined on (A) exudate volume and (B) cell number in pleural exudates. Data is expressed as 

meant standard error of the mean (n=8 per group). * ps0.05 in comparison to saline controls. 

4.2.5 Effect of early intrapleural injection of NOS inhibitors on the 

resolution of inflammation 

As demonstrated above NOS inhibition exacerbated inflammation at 1 and 6h. 

Therefore, was this elevated inflammatory response a consequence of a 

transient increase in inflammation at this early phase that results in a knock on 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

effect that results in a delay in inflammatory resolution? To discern this, AE-ITU 

was administered into the pleural cavity immediately prior to carrageenin 
injection (as above) and its effects on inflammation was determined at 36h, a 
time point where the inflammation is resolving, and at 72h, a time point at which 
this model is usually resolved. 

Injection of AE-ITU or L-NMMA (3,30mg/kg) into the pleural cavity of rats again 

resulted in an aggravation of both exudate volume (40-50%; ps0.05) and 
inflammatory cell influx (30-40%; ps0.05) at 36h, Figure 4.5A, B. Nitrite was 

measured at this time point however, all values were below the detection limit 

of the assay.. 

At 72h local injection of AE-ITU (3,10mg/kg) into the pleural cavity of rats still 

resulted in an elevated exudate volume, being significant at the higher dose 

(0.39 ± 0.17ml compared to control values 0.03 ± 0.02ml) and inflammatory cell 
influx (57 ±9 x106 cells compared to saline treated animals 13 ±4 x106 cells), 
Figure 4.6A, B. Nitrite was measured at this time point however, all values were 
below the detection limit of the assay. 

Thus, from these experiments it appears that early production of NO plays a 

critical role in determining the outcome of this inflammatory response. 
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Figure 4.5 Effects of early NOS Inhibition on Inflammatory resolution (36h) In the rat 

canageenin-induced pleurisy. AE-ITU was injected directly into the pleural cavity of rats 
immediately prior to carrageenin injection. 36h later, at the start of the resolving stage, the 

consequence of early NOS inhibition was examined on (A) exudate volume and (B) cell number. 
Data is expressed as mean t standard ermr of the mean (n=6-8 per group). * psO. 05 in 

comparison to saline controls. 
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Figure 4.6 Effects of early NOS Inhibition on Inflammatory resolution (72h) In the rat 

carrageenin -induced pleurisy. AE-ITU was injected directly into the pleural cavity of rats 
immediately prior to carrageenin injection. 72h later, at resolution, the consequence of early NOS 

inhibition was examined on (A) exudate volume and (B) cell number. Data is expressed as mean 

± standard error of the mean (n=6 per group). * psO. 05 in comparison to saline controls. 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.2.6 Effects of the systemic injection of NOS inhibitors 

A fundamental question still needs to be addressed, whether there is a 
differential effect on inflammation by administering NOS inhibitors locally versus 

systemically. In order to determine this, the effect on inflammation at 6 and 36h 

of AE-ITU and L-NMMA when injected into the peritoneal cavity at the time of 

carrageenin injection was examined. 

AE-ITU had no effect on exudate formation at 3 or 30mg/kg but significantly 
(ps0.05) reduced cellular influx (78 ±9 x106,67 ±7 x106 cells respectively 

compared to saline treated animals 104 ±6 x106 cells) at 6h, while reducing 

nitrite levels to 4.2 ± 0.4,3.2 ± 0.3pM, respectively, compared to control values 
9.8 ± 0.1 pM (Figure 4.7A-C). 

Similar results were obtained with L-NMMA on exudate formation at 3 or 
30mg/kg. However, at the highest dose (300mg/kg) L-NMMA significantly 
(ps0.05) reduced exudate volume (0.50 ± 0.06ml compared to saline controls 
1.32 ± 0.08ml). Once again leucocyte influx was inhibited at all doses tested (3, 

30,300mg/kg), 78 ± 13 x106,74 ±4 x106,48 ±6 x106 cells respectively 

compared to saline treated animals 104 ±6 x106cells at 6h. Nitrite formation was 

significantly inhibited at all doses tested (p-A. 05, Figure 4.7A-C). 
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Figure 4.7 Effects of NOS Inhibitors injected systemically on a rat carrageenin-induced 

pleurisy at 6h. Either AE-ITU or L-NMMA was injected into the peritoneal cavity just prior to 

intrapleural carrageenin injection. 6h later the effects of these NOS inhibitors was determined on 

(A) exudate volume, (B) cell number and (C) nitrite in pleural exudates. Data is expressed as 

mean ± standard error of the mean (n=8 per group). * ps0.05 in comparison to saline controls. 

The systemic administration of the NOS inhibitors, AE-ITU and L-NMMA at 36h 

resulted in a significant (ps0.05) suppression of both exudate volume (11-50%) 

and inflammatory cell influx (30-76%) into the pleural cavity of rats, Figure 4.8A, 

B. 
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Figure 4.8 Effects of NOS inhibitors injected systemically on a rat carrageenin-induced 

pleurisy at 36h. Either AE ITU or L-NMMA was injected into the peritoneal cavity just prior to 

intrapleural carrageenin injection. 36h later the effects of these NOS inhibitors was determined 

on (A) exudate volume, (B) cell number and (C) nitrite in pleural exudates. Data is expressed as 

mean ± standard error of the mean (n=8 per group). * ps0.05 in comparison to saline controls. 

Therefore, at 6 and 36h systemic (i. p. ) administration of NOS inhibitors caused 

an inhibition of inflammation. conversely, local injection of NOS inhibitors into 

the pleural cavity immediately prior to carrageenin injection, increased exudate 

volume and inflammatory cell number at 6h and 36h. These findings present 
highly conflicting outcomes on inflammation depending on whether NOS 

inhibitors are administered either locally or systemically. 
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4.2.7 Effect of NOS inhibitors in the pleural cavity in the absence of 

carrageenin 
To show that AE-ITU (3mg/kg) and 1400W (10mg/kg) did not exacerbate 
inflammation simply as a result of direct irritation we injected these drugs, as 

well as saline, into the pleural cavity in the absence of carrageenin. Neither drug 

caused measurable exudate formation or an increase in cellular influx (Table 

4.1) 

Time after carrageenin-injection (h) 

16 

NOS Dose Exudate Cells (106) Exudate (ml) Cells (106) 

inhibitor (mg/kg) (MI) 

Saline - 0.11 ± 0.05 2.4 ± 0.7 0.04 ± 0.04 2.1 ±1.7 

AE-ITU 3 0.10 ± 0.07 2.511.5 0.03 2.011.4 

1400W 10 0.11 ± 0.04 2.2 ± 0.5 0.04 ± 0.04 1.8 ± 1.3 

Table 4.1 A determination of the non-specific, Irritant effects of INOS selective Inhibitors 

on the non-inflamed pleural cavity at I and 6h. Data is expressed as mean ± standard error 

of the mean (n=6 per group per time point). 

Moreover, cationic compounds, including NOS inhibitors, may cause non- 

specific mast cell degranulation due to their strongly charged nature. Therefore, 

NG-nitro-D-arginine methyl ester (D-NAME) the inactive enantiomer of the non- 

specific cationic NOS inhibitor L-NAME, was injected intrapleurally at the same 

molarity as AE-ITU (3,10mg/kg; 1.9,6.3pM respectively) and caused no 
increase in inflammatory parameters at 1 or 6h (Figure 4.9). As a final control 

experiment, using the MTT assay for the assessment of cell viability, we found 

that neither AE-ITU nor L-NMMA, when injected intrapleurally, caused toxicity 

to influxing inflammatory cells in the pleural cavity at 6h (Table 4.2). 
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Figure 4.9 A determination of the non-specific, irritant effects of NOS Inhibitors during 

inflammation. D-NAME was injected directly into the pleural cavity of rats immediately prior to 

carrageenin. I and 6h after carrageenin injection the effects of this inactive enantomer of the 

NOS inhibitor L-NAME was assessed in (A) exudate volume and (B) cell number in pleural 

exudates. Data is expressed as meant standard error of the mean (n=8/6per group). 

NOS inhibitor Dose Change in MTT content of cells as 
(mg/kg) expressed as a percentage of saline control 

AE-ITU 3 104 ± 12 

10 101 ±4 

L-NMMA 3 98 ±6 

10 105 15 

Table 4.2 Effect of the NOS Inhibitors AE-ITU and L-NMMA on cell viability. Viability was 

assessed by the MTT assay, 6h post-carrageenin injection. Data is expressed as a percentage 
of control (n=5 per group). 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

4.2.8 Effect of intrapleural injection of NOS inhibitors at 2h post 
carrageenin 

In attempt to specifically inhibit iNOS enzyme activity, AE-ITU was injected into 

the pleural cavity 2h after carrageenin injection, a time point at which iNOS 

protein expression is first evident (refer to Figure 3.2). Inflammatory exudates 
were collected at 6h, the peak in iNOS related NO production. In line with 

previous data in this chapter, where NOS inhibitors were injected locally, nitrite 

was significantly reduced (2.9 ± 0.4pM compared to controls 11.9 ± 3.3pM) but 

exudate volume (2.65 ± 0.1 ml compared to controls 1.84 ± 0.29ml) and 
inflammatory cell numbers (163 ±4 x106cells compared to controls 133 ±5 x106 
cells) were significantly increased (Figure 4.10). 
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Figure 4.10 Therapeutic effects of NOS inhibition In the carrageenin-Induced pleurisy at 
6h. AE-ITU was injected into the pleural cavity 2h after carrageenin injection. 6h after 
carrageenin injection its effects on (A) exudate volume, (B) cell number and (C) nitri te 

accumulation was determined Data is expressed as mean ± standard errorof the mean(n=6 per 

group). " ps0.05 in comparison to saline controls. 
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4.2.9 Histamine involvement in the increase in inflammatory parameters 
at 1h 

In an attempt to elucidate the mechanisms by which inhibition of NO synthesis 
worsens inflammation, levels of the most likely pro-inflammatory mediators were 
measured after treatment with AE-ITU. As shown in Figure 4.11 and by others 
(Capasso eta!., 1975), mast cell-derived histamine (Section 3.15) peaked in this 

model between 0.5-1 h after carrageenin injection. 

75 

CD 
E. 50 
d 
C 

N 25 
2 

0 

Figure 4.11 Time course of histamine levels In cell-free Inflammatory exudates from rats 
with a carrageenin-induced pleurisy. Data is expressed as meant standard errorof the mean 
(n=8 per time point). 

In addition, histamine mediates oedema formation (Capasso et al., 1975) and 
NO stabilises mast cells, thereby preventing histamine release (Salvemini eta!., 
1991, Brooks et al., 1999) therefore, levels of this acute inflammatory mediator 

were measured after NOS inhibition in cell-free inflammatory exudates. AE-ITU 

(10mg/kg) significantly increased (pp0.05) histamine release into cell-free 
inflammatory exudates at 1 h, 65.2 ± 7.3ng compared with saline controls (43.8 

± 1.5ng; Figure 4.12). 
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Figure 4.12 Effects of local NOS inhibition on histamine levels in the rat carrageenin- 

induced pleurisy. AE-ITU was injected into the pleural cavity immediately prior to carrageenin 

injection. Ih later histamine levels was determined in cell-free exudates. Data is expressed as 

mean t standard error of the mean (n=8 per group). * p-<0.05 in comparison to saline controls. 

This increase in histamine after AE-ITU treatment was accompanied by a 
decrease in mast cell numbers (the cellular source of histamine) as counted 

after toluidine blue staining (2.24.5), presumably as a consequence of 
increased cellular degranulation (Table 4.3; Figure 4.13 A, B). 

Treatment Mean percentage % change compared 

of Total cells with controls 

control 0.92 - 
AE-ITU (3mg/kg) 0.30 67 

AE-ITU (10mg/kg) 0.26 72 

Table 4.3 Effect of AE-ITU treatment on mast cell numbers recovered from the pleural 

cavity. Data is also expressed as the percentage change compared to control in a Ih 

carrageenin-induced pleurisy after AE-ITU treatment. Data is expressed as both mean 

percentage of mast cells per total cells and as a percentage change compared to control values 
(n=6 cell smears from 6 rats). 
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Figure 4.13 Effect of AE-ITU on mast cell degranulation in a Ih carrageenin-induced 

pleurisy. Panel A shows a Ih cell smear stained with toludine blue from rats treated with 

carrageenin and saline and Panel B shows a Ih cell smear stained with toludine blue from rats 

treated with carrageenin and AE-ITU (10mg/kg). Panel A and B magnification x20. 

To confirm the involvement of mast cell derived histamine at 1h in the 

carrageenin-induced pleurisy animals were depleted of histamine using CMP 

48/80. Two published methods were compared for their effectiveness in 

depleting histamine levels prior to and after carrageenin injection. In the first 

method (Diaz et al., 1996) mast cells were degranulated locally at the site of 

inflammation by injection of 12pg CMP 48/80 into the pleural cavity. Animals 

were sacrificed 3 days later prior to and 1h after carrageenin-injection. In the 

second method (Di Rosa et al., 1971) mast cells were depleted systemically by 

i. p injection of CMP 48/80 (3 days of 0.6mg /kg twice daily and 1 day 1.2mg/kg 

twice daily) after treatment animals were left for 2 days before histamine levels 

were analysed prior to and 1h after carrageenin injection (Table 4.3). 
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Depletion method Carrageenin Histamine levels (ng) 

-+4.38±1.5 
Local - 71.7±7.2 

+ 107±15.7 

Systemic -s1 

+ s1 

Table 4.4 Effect of local and systemic depletion of mast cells before and Ih after 
lntrapleural carrageenin challenge on histamine levels in cell-free Inflammatory exudates. 

As demonstrated in Table 4.3, the best method for depleting mast cell amines 
from the pleural cavity was to use the systemic depletion method, therefore was 

used in all subsequent experiments. The increase in exudate volume observed 

at 1h with AE-ITU (3,10mg/kg) was partially attenuated by histamine depletion 

at dosing levels that significantly reduced exudate nitrate formation (14.1 t 
1.1,8.2 ± 1. ONM, respectively, compared to saline 14.6 ± 1.3pM and saline + 
CMP 48/80 16.6 ± 1.3pM; contrast Figures 4.1 and 4.14). Although there was 

an expected reduction in exudate formation in animals treated with CMP 48/80 

alone (Figure 4.15 A), there was no change in cell numbers (Figure 4.14 B). This 

observation is consistent with the fact that histamine mediates oedema formation 

and not cell migration. AE-ITU (3,10mg/kg) injection still caused a significant 
increase in inflammatory cell influx into the pleural cavity (5.1 ± 0.5,6.2 ± 0.6 

x106 cells respectively compared to both saline 4.1 ± 0.8 x106 cells and saline + 
CMP 48/80 4.2 ± 0.2 x106 cells; Figure 4.14 B). 
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Figure 4.14 The effects of mast cell depletion on the exacerbation of Inflammation after 
lntrap/eural Injection of AE-ITU. Panel (A) exudate volume (B) cell number and (C) nitrite 

production was ascertained in the pleural cavity Ih after depletion of mast cells using CMP 

48/80. Data is expressed as mean t standard error of the mean (n=8 per group). * psO. 05 in 

comparison to saline controls. 

4.2.10 CINC involvement in the increase in inflammatory parameters 

at 1h 

Another candidate for investigation was CINC, a potent neutrophil 

chemoattractant (Watanabe et al., 1991). CINC levels in the pleural cavity 

peaked at 1h (1656 ± 304pg) in cell-free inflammatory exudate and delined over 

the time course of the pleurisy (Figure 4.15A). 
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Intrapleural injection of AE-ITU (3,10 mg/kg) caused a significant increase in 
CINC in cell-free pleural exudates (2444 ± 84,2332 ± 131 pg respectively 
compared with control values 1830 ± 28pg; Figure 4.15 B). It is worth noting that 

mast cell depletion with CMP 48/80 had no effect on AE-ITU's increases in CINC 

or on the overall levels of CINC measured (data not shown). 
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Figure 4.15 Effects of local NOS Inhibition on levels of CINC In the rat carrageenin. 
Induced pleurisy. The profile of CINC was determined in the cell-free inflammatory exudate by 
ELISA (a). Thereafter, the effects of AE-ITU, injected into the pleural cavity immediately prior to 

carrageenin injection, was examined on C/NC levels 1h after carrageenin injection (b). Data is 

expressed as mean ± standard error of the mean (n=6-8 per group). " ps0.05 in comparison to 

saline controls. 

4.211 Eicosanoid involvement in the increase in Inflammatory 

parameters at 6h 

An additional explanation for exacerbated inflammation after NOS inhibition 

could be enhanced eicosanoid synthesis, particularly as NO has been 

suggested to modulate COX activity, as covered in the introduction and 
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CHAPTER 4. NO inhibition in the carrageenin-induced pleurisy 

dicussion. Thus, given the pro-inflammatory properties of some eicosanoids and 

their abundance in the carrageenin-induced pleurisy up to 6h (Tomlinson et aL, 
1994), we examined the effects of NOS inhibition on inflammatory cell COX 

activity as well as cell-free exudate levels of PGE2,6-keto PGF, a (Table 4.4) and 

the neutrophil chemoattractant, LTB4. Surprisingly, AE-ITU (3mg/kg) had no 

effect on either COX activity in inflammatory cell pellets or on levels of PGE2 and 

6-keto PGF, a. Interestingly, however, exudate levels of LTB4 were significantly 

increased in comparison to controls (Table 4.4). 

Saline AE-ITU (3mg/kg) 

COX activity (ng mg protein-' 30min-') 4.4 t 1.4 5.8 t1 

PGE2 (pg) 637 ± 87 852 ± 77 

6-Keto PGF, o (pg) 1631 t 364 1483 t 328 

LTB4 (pg) 64 ±7 91 ± 10* 

Table 4.5 Effects of local NOS Inhibition on eicosanold production In the rat carrageenln- 

Induced pleurisyat 6h. AE-ITU (3mg/kg) was injected into the pleural cavity of rats immediately 

prior to carrageenin injection. 6h later levels of eicosanoids was determined in the cell-free 

inflammatory exudate. Data is expressed as mean t standard error of the mean (n=6-8 per 

group). * PA. 05 in comparison to saline controls. 

4,2,12 Effects of NOS inhibition on TAOS and SSA in inflammatory 

cells and cell-free exudates 

In a series of final experiments TAOS and SSA activity were measured as an 

indirect indication of superoxide and other oxidant species formation. Changes 

in these two parameters provide an alternative mechanism for the hypothesis 

that during inflammation NO may indeed have a protective role. Administered 

immediately prior to the induction of inflammation, AE-ITU (3,10mg/kg) 

significantly reduced both TAOS (Table 4.5) and SSA (Table 4.6) in cells and 

cell-free exudates at 1h and 6h in comparison to saline controls. 
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Cells (NM L-ascorbate Exudate (NM L-ascorbate 

equivalent antioxidant equivalent antioxidant 

capacity/mg proteinl capacity/mg proteins 

1h 6h 1h 6h 

Control 1997: t 366 466 ± 57 89.8 ± 5.2 100.1 ± 2.0 

AE-ITU (3mglkg) 288. t 73 * 73± 12 * 64.4 ± 2.2 * 65.3 t 1.7 * 

AE-ITU (10mg/kg) 578 ± 86 * 169 ± 32 * 56.2 ± 2.1 * 76.1 t 2.2 * 

Table 4.6 Effect of NOS Inhibition on TAOS of Inflammatory cells and cell-free exudates 

in the carrageenin-induced pleurisyat 1h and 6h. AE-ITU was injected into the pleural cavity 

of rats immediately prior to carrageenin injection. I and 6h later total antioxidant status was 

determined in both inflammatory cells and cell-free inflammatory exudate. Data is expressed as 

mean ± standard ennrof the mean (n=8-10 pergroup). * ps0.05 in comparison to saline controls. 

Cells (change in rate/mg Exudate (change in rate) 

protein) 
1h 6h 1h 6h 

Control 0.42 ± 0.07 0.16 ± 0.02 0.011 ± 0.001 0.010 ± 0.001 

AE-ITU (3mg/kg) 0.18 ± 0.02 * 0.03 ± 0.02 * 0.005 ± 0.001 * 0.003 t 0.001 * 

AE-ITU (10mg/kg) 0.21 ± 0.02 * 0.08 t 0.01 * 0.003 ± 0.001 * 0.005 ± 0.001 * 

Table 4.7 Effect of NOS Inhibition on SSA of Inflammatory cells and cell-free exudates in 

the carrageenin-induced pleurisy at 1h and 6h. AE-ITU was injected into the pleural cavity 

of rats immediately prior to carrageenin injection. I and 6h later, superoxide scavenging ability 

was determined in both inflammatory cells and cell-free inflammatory exudate. Data is expressed 

as mean t standard error of the mean (n=8-10 per group). * psaO5 in comparison to saline 

controls. 
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4.2.13 Effect of NOS inhibition on inflammatory cell profile and 

apoptosis at 6h 

Since there was a significant increase in the PMN chemoattractants CINC and 
LTB4 at 1 and 6h respectively, differential counts were performed to assess 

whether this resulted in a change in the composition of inflammatory cells 

obtained at 6h. As can be seen in Table 4.7 the percentage of PMNs in the 

inflammatory exudate was elevated after treatment with AE-ITU (3,10mg/kg). 

Treatment 

Cell type Saline AE-ITU (3mg/kg) AE-TU (10mg/kg) 

PMN 88.4% 89.5% 91.3% 

Macrophage 9.7% 8.9% 7.2% 

Other 1.9% 1.6% 1.5% 

Table 4.8 Effect of AE-ITU on Inflammatory cell profile In a 6h carrageenin-Induced 

pleurisy. Where, other represents mast cell, eosinophils, lymphocytes and mesothelial cells. 
Data is expressed as percentages of total inflammatory cell number of n=4 rats per group. 

In addition, NO has been widely reported to induce accelerated PMN apoptosis 

in a number of different animal species (Uchida et al., 1997, Fortenberry et al., 

1998, Blaylock et al., 1998, Ward et al, 2000, Misso et at., 2000). Since in this 

series of experiments NO inhibitors increased inflammatory cell numbers it was 
hypothesised that inhibition of NO may retard the rate of apoptosis thereby 

increasing the cells present in the inflammatory exudates. Apoptosis was 

measured in cell smears taken from animals 6h after AE-ITU (3,10mg/kg) or 

saline and carrageenin injection. The TUNEL method (Section 2.24) was used 

to determine apoptosis in these samples. AE-ITU at both 3 and 10mg/kg had no 

effect on the percentage of apoptotic cells present in the cell smears compared 

to vehicle and carrageenin (5% of total cells; n=6 per treatment). An example of 

an apoptotic body at 6h is presented in Figure 4.16. 
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Figure 4.16 Apoptosis in the carrageenin-induced pleurisy at 6h. Panel showing apoptotic 

bodies from a 6h cell smear taken from rats treated with saline and carrageenin. Magnification 

x 100. 

4.2.14 Effect of NOS inhibition on HSP 72 and HO-1 levels in 

inflammatory cells at 72h 

At 72h, an increase in inflammation was still observed after AE-ITU inhibition of 

NO. Therefore, markers of oxidative and cellular stress, HSP 72 and HO-1, were 

investigated in inflammatory cells taken from the pleural cavity at 72h. 

Western blot analysis of HSP 72 in inflammatory cells taken from the pleural 

cavity at 72h resulted in a significant increase in HSP 72 protein after AE-ITU 

(3,10mg/kg) treatment as assessed by densitometry (29.5 ± 4.3,37.6 ± 8.7 

arbitrary units compared to saline controls 11.7 ± 2.8 arbitrary units; Figure 4.17 

A, B) 

Although HSP 72 protein expression was significantly increased no effect on 

HO-1 protein levels were detected at this time point (Figure 4.17 C, D) 
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Figure 4.17 Expression of HSP 72 and HO-1 protein in inflammatory cells taken from the 

pleural cavity of male wistar rats at 72h. Panel (A) is a representative Western blot of HSP 

72, (B) densitometrical analysis of HSP 72 Western blots expressed as arbitrary units, (C) is a 

representative Western blot of HO-1, (B) densitometrical analysis of HO-1 Western blots 

expressed as arbitrary units. In panels B and D, data is expressed as mean ± standard error of 
the mean (n=6 per group). *ps0.05 in comparison to saline controls. 
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4.3 Summary of findings 

(1) In the carrageenin-induced pleurisy injection of NOS inhibitors, regardless 
of selectivity between isoforms, resulted in an increase in exudate volume and 
inflammatory cell number in the pleural cavity of treated animals at 1,6 and 36h. 
Furthermore, this observed increase in inflammation during the normal time 

course of this inflammatory model resulted in a prolonged pathology as seen at 
72h. 

(2) In contrast, administering NOS inhibitors systemically ameliorated the 

severity of inflammation throughout the reaction and is in keeping with data 

presented in the literature where NOS inhibitors were given away from the site 

of inflammation. 

(3) Local inhibition of NO synthesis in the pleural cavity of rats resulted in an 

augmentation of the pro-inflammatory mediators CINC and LTB4 which would in 

part explain the elevated proportion of PMNs observed in the pleural cavity at 
6h after carrageenin injection. In addition, local administration of NOS inhibitors 

in this model resulted in a decrease in intact mast cells and an increase in 

histamine levels, which may be partly responsible for the increase in exudate 

volume after NOS inhibition since, prior depletion of mast cells ameliorated this 

effect. 

(4) Local inhibition of NO also resulted in a significant reduction in 

antioxidant levels in cells and cell-free exudate at both 1 and 6h taken from the 

pleural cavity. This may be reflective of an increase in oxidative stress in this 

cavity after NOS inhibition. In addition, an increase in HSP 72 immunoreactivity, 

a marker of cellular stress, was observed at 72h 
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CHAPTER 5. NO inhibition in the murine chronic granulomatous tissue air pouch 

5.1 Introduction 

In the rat carrageenin-induced pleurisy local inhibition of NO production 

exacerbated inflammation and prolonged resolution. This led to the conclusion 

that NO was protective in this model. Therefore these studies were extended to 

a model of chronic inflammation to establish whether or not a similar protective 

role for NO could be assigned to the development of a chronic inflammatory 

lesion. The tools used for this study included NOS inhibitors and genetic 

deletion of the iNOS gene. The effects of NOS inhibition was evaluated on 

granuloma dry weight, vascularity, NOS pathway and arginase activity and 

prostaglandin production. 

In Chapter 3, it was demonstrated that iNOS protein expression, iNOS activity, 

nitrite, arginase activity and COX activity were maximal between 5 and 7 days. 

Maximal expression of these different pathways were at a time where granuloma 

formation was at a peak. cNOS activity was highest at 24h, a time prior to 

maximal vascularity. The majority of iNOS staining was immunolocalised to 

influxing inflammatory cells in the granuloma, with the majority of NO production 

being formed from the iNOS isoform. Therefore, the effects of NOS inhibition 

in this croton oil -induced chronic granulomatous tissue air pouch model were 

assessed at various time points up to 28 days. 

5.2 Effect of NOS inhibition in the murine croton oil-induced 

chronic granulomatous tissue air pouch 

5.2.1 Effect of oral administration of aminoguanidine on the nitric oxide 

pathway 
Measurement of nitrite levels was only possible at up to 7 days, therefore the 

effect of aminoguanidine on nitrite levels was assessed at 0.25,0.5,1,5 and 7 

days. Nitrite levels were below the detection limit of the assay prior to the day 

I time point. However, at 1,5 and 7 days aminoguanidine (150mg/kg) 

significantly decreased nitrite levels in cell free exudate by 100,53 and 35% 

(Figure 5.1). 
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Figure 5.1 Effect of the relativelyselective iNOS inhibitoraminoguanidine on nitrite levels 

In cell-free exudates from the murine croton oil-induced chronic granulomatous tissue 

airpouch. Aminoguanidine was dissolved in tap water and given to mice every day (0-28 days). 

Data is expressed as meant standard error of the mean (n=5 per treatment group and per time 

point). *psQ 05 in comparison to control values. 

Aminoguanidine (150mg/kg) was assessed on NOS enzyme activity in the 

granuloma. Aminoguanidine (150mg/kg) had no effect on iNOS enzyme activity 
in granulomatous tissue of treated mice at 0.25,0.5,1,5,7,14,21 and 28 days, 

compared to saline controls; 0* 0,0 t 0,41 ± 31,190 ± 74,501 ± 105,241 t 

68,165 ± 78,174 ± 90 pmol citruline/mg protein/30min (Figure 5.2A). 

Similarly to iNOS, cNOS activity was unaffected by aminoguanidine treatment 

throughout the time course compared with tap water controls 24 t 7,47 t 17, 

153 t 34,67 t 24,159 t 36,68 t 14,44 t 8,58 t 19 pmol citruline/mg 

protein/30min; Figure 5.2B). 
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Figure 5.2 Effect of the selective INOS inhibitor aminoguanidine on INOS and cNOS 

enzyme activity in granulomatous tissue. Where panel (A) is 1NOS activity and (B) cNOS 

activity. Aminoguanidine was dissolved in tap water and given to mice every day (0-28 days). 

Data is expressed as mean ± standard error of the mean (n=5 per treatment group and per time 

point). 

Supporting the findings on iNOS activity in the granuloma, aminoguanidine at 

5,7 and 14 days had no effect on the expression of iNOS protein (Figure 5.3) 

117 

157 14 21 28d 



CHAPTER 5. NO inhibition in the murine chronic granulomatous tissue air pouch 

5 days 7 days 14 days 

CACACA 

iNOS protein 
130kDa 

Figure 5.3 Effect of the selective 1NOS inhibitor aminoguanidine on NOS protein 

expression in granulomatous tissue. iNOS protein expression was assessed at 5,7 and 14 

days post initiation. C represents control samples (tap water) and A aminoguanidine (150mg/kg) 

treated animals. 

5.2.2 Effect of oral administration of aminoguanidine on the arginase 

activity 
Regulatory effects of the NOS inhibition on arginase activity were evaluated in 

this chronic model. 

Similar to the effects on the iNOS, arginase activity was not affected by inhibition 

of NO production by aminoguanidine, with levels in the tap water controls being; 

7.0 ± 0.9,4.5 ± 0.4,13.5 ± 3.8,113.8 ± 31.4,71.5 ± 16.5,49.6 ± 5.2,24.5 ± 3.8, 

22.4 ± 5.1 mU urea/mg protein/min (Figure 5.4). 
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Figure 5.4 Effect of the selective INOS Inhibitor aminoguanidine on arginase activity in 

the murine croton oil-induced chronic granulomatous tissue air pouch. Aminoguanidine 

was dissolved in tap water and given to mice every day (0-28 days). Data is expressed as 

mean ± standard error of the mean (n=5 per treatment group and per time point). 

5.2.3 Effect of oral administration of aminoguanidine on granulomatous 
tissue dry weight, carmine content and vascularity 

Effect of aminoguanidine (150mg/kg) was assessed on granulomatous tissue dry 

weight, carmine content and vascularity at 7 and 14 days. 7 days of 

aminoguanidine treatment significantly reduced (ps0.05) granulomatous tissue 

dry weight (83.8 ± 4.8 mg) compared to tap water controls (111.4 ± 8.5 mg; 
Figure 5.5A). By 14 days granuloma dry weights in treated (66.6 ± 6.8 mg) and 

control animals (68.0 ± 5.6 mg) were similar. The vascular component of this 

granulomatous tissue as measured by carmine content was also significantly 

reduced by aminoguanidine treatment to 435 ± 40 pg carmine compared to 

control values, 822 ± 99 pg carmine (Figure 5.5B). As with the dry weight 

measurements the reduction observed at 7 days was no longer evident by 14 

days, with control values being 286 ± 21 pg carmine and aminoguanidine 
treated animals containing 368* 52 pg carmine. Angiogenesis in the chronic 

air pouch was measured as a ratio between camine content and granuloma dry 
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weight and referred to as the vascular index. Control tissues had a vascular 
index of 7.51 ± 0.77 pg carmine/mg tissue (Figure 5.5C), this was significantly 

reduced by aminoguanidine treatment to 5.19 ± 0.41 pg at 7 days. By 14 days 

of aminoguanidine treatment, the vascular index of controls (0.24 ± 0.02 pg 

carmine/mg tissue) and aminoguanidine treated (0.20 ±0.03 pg carmine/mg 
tissue) rats were again similar. 
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Figure 5.5 Effectofthe selective INOS inhibitoraminoguanidine on granulomatous tissue 

formation and angiogenesis In the mudne croton oil-induced chronic granulomatous 

tissue airpouch. Where, granuloma dry weight (A), carmine content (B) and vascularindex (C). 

Aminoguanidine was dissolved in tap water and given to mice every day (0-14 days). Data is 

expressed as meant standard error of the mean (n=12 per treatment group and per time point). 

so. o5 in comparison to control values. 
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The decrease in the vascular content of the granuloma was confirmed by 

morphometric analysis of PECAM (CD 31) staining of endothelial cells within the 

granuloma, where aminoguanidine treatment reduced the number of 

immunopositive cells by 19%. Again like with carmine analysis, the reduction 

observed was only transient, with no differences in vascular volume at 14 days 

between aminoguanidine treated animals and controls (data not shown). 

5.2.4 Effect of local injection of AE-ITU on nitrite, granuloma dry weight, 

carmine content and vascularity 
In the acute model (Chapter 4), NOS inhibition had a differential effect on 

inflammation depending on the route of administration. Systemic inhibition 

caused a significant decrease in inflammatory parameters, whereas local 

injection of NOS inhibitors increased inflammation. Therefore, the effect of local 

injection of the iNOS selective inhibitor AE-ITU (3,30mg/kg) was assessed on 

nitrite and lesion formation in the chronic granulomatous tissue air pouch at 7 

days. AE-ITU was dissolved in sterile saline and injected intrapouch from day 

0-7. 

Intrapouch injection of AE-ITU significantly (ps0.05) reduced nitrite levels in cell- 

free inflammatory exudates at 30mg/kg (8.4 ±1.5pM), whereas at 3mg/kg AE-ITU 

it was without effect compared to saline controls (18.0 t 2.7pM; Figure 5.6A). 

In addition, intrapouch injection of AE-ITU significantly reduced the dry mass 

of the granuloma, again with AE-ITU being significant at 30mg/kg (52 ±6 mg), 

whereas at 3mg/kg there was no effect compared to saline treated animals (75 

t8 mg; Figure 5.6B). 

Intrapouch injection of AE-ITU had no effect on the vascular content of the air 

pouch (Figure 5.6C). However, this resulted in a significant increase in the 

vascular index of the granulomatous tissue only at the 30mg/kg dose (13.11 ± 

2.17 pg carmine/mg tissue) compared to saline controls (7.59 ± 1.22 pg 

carmine/mg tissue; Figure 5.60). 
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Figure 5 .6 Effect of the selective INOS Inhibitor AE-ITU on granulomatous tissue 

formation, angiogenesis and nitrite formation in the murine croton oil-induced chronic 

granulomatous tissue air pouch. Where, (A)is nitrite accumulation, (B) granuloma dry weight, 
(C) carmine content and (D) vascular index. AE-ITU was dissolved in saline and injected 

intrapouch every day (0-7 days). Data is expressed as mean i standard error of the mean (n=5-8 

per treatment group). *ps0.05 in comparison to control values. 
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CHAPTER 5. NO inhibition in the murine chronic granulomatous tissue airpouch 

5.3 Effect of iNOS gene deletion in the murine croton oil-induced 

chronic granulomatous tissue air pouch 
Pharmacological inhibition of iNOS revealed an inhibitory effect on the formation 

of granulomatous tissue at 7days, when administered both systemically and 
locally. A differential effect on vascular index was observed when iNOS 
inhibitors were given orally or intrapouch. Systemic inhibition of NO resulted in 

a decrease in vascular index, whereas local inhibition caused a significant 
increase although the NOS inhibitors used were different. As with the 

carrageenin-induced pleurisy in the rat (Chapter 4), these contrary effects may 
have resulted from a degree of inhibition of ecNOS both systemically and within 
the granuloma or by virtue of the different NOS inhibitors and concentrations of 
these compounds used. Therefore, in an attempt to resolve this complex issue, 

iNOS deficient mice were employed as a tool to differentiate between inhibition 

of iNOS and ecNOS. 

5.3.1 Effect on granulomatous tissue dry weight, carmine content and 

vascularity in the granuloma 
Initially, SV129 mice (wild type controls for iNOS knockout mice) were examined 
for their response to croton oil and Freunds complete adjuvant mixture (5,7 and 
14 days). This was carried out to establish whether these in bred mice reacted 

similarly to the outbred Swiss albino mice (To mice), the normal species used in 

this model. 

SV129 mice had a granuloma dry weight of 44.0: 0.5,70.0t 9.7 and 37.3: t5.5 

mg at 5,7 and 14 days respectively (Figure 5.7A). The vascular component of 
this granulomatous tissue as measured by carmine content was 260: k 33,555 

t 68 and 173 t 31 pg carmine at 5,7 and 14 days respectively (Figure 5.7B). 

This resulted in a vascular index of 6.01 t 0.95,8.15: t 1.13 and 4.58: t 0.22 pg 
carmine/mg tissue at 5,7 and 14 days respectively (Figure 5.7C). 

123 



CHAPTER S. NO inhibition in the murine chronic granulomatous tissue airpouch 

cm 100 
E 

. Co 

50 

E 
0 

0 

B 750- 

500- 

250- 

0- 

10 

Ky 

-0 w 
CC» 
,E 

NE 

0 

Figure 5.7 The profile ofgranulomatous tissue formation and angiogenesls In the murlne 

croton oil-Induced chronic granulomatous tissue air pouch in wild type mice (sv129). 

Granuloma dry weight (A), carmine content (B) and vascular index (C) in sv129 mice at 5,7 and 

14 days. Data is expressed as mean t standard error of the mean (n=3 per time point). 

Since, the profile of inflammation was similar in sv129 and To mice the effect of 
iNOS deletion was assessed in this chronic inflammatory model at 7 days, the 

peak in the inflammatory response. 
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iNOS gene deletion significantly (ps0.05) reduced the dry mass of the 

granuloma to (86.1 t 5.5 mg), with control values being 118.8 ± 10.4 mg (Figure 

5.8A). whereas NOS knockout mice had the same vascular content as wild type 

control (Figure 5.8B). 

However, this resulted in a significant increase in the vascular index of the 

granulomatous tissue in NOS knockout animals (10.56 ± 0.58 pg carmine/mg 

tissue) compared with sv129 mice (7.04 ± 0.41 pg carmine/mg tissue; Figure 

5.8C). 
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Figure 5.8 Effect of INOS gene deletion on granulomatous tissue formation and 

angiogenesis in the murine croton oll-Induced chronic granulomatous tissue air pouch. 
Where, (A)is granuloma dry weight, (B) carmine content and (C) vascular index. Data is 

expressed as mean t standard error of the mean (n=8 per group). "psO. 05 in comparison to 

control values. 
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Morphometric analysis of PECAM (CD 31) staining showed that there was an 
increase (16%) in the number vessels as a percentage of total granuloma area, 

when compared to wild type controls. Representative pictures of the section 

analysed are depicted in Figure 5.9. With (A) representing sv129 control 

animals and (B) being iNOS deficient mice. In general CD 31 staining can be 

seen in larger vessels in the skin and in capillaries that are present in the 

granulomatous tissue during its formation. 
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Figure 5.9 Spacial expression of PECAM (CD 31) staining in the granuloma taken from 

iNOS knockout and wild type mice. Where, (A) is sv129 mice and (B)1NOS knockout mice 
7 days afterinduction ofgranuloma formation with 0.1 % croton oil in Freund's complete adjuvant. 

For the morphometric analysis n=6 animals were used. The magnification of the major panels 
is x63, with the insert in (A) showing a high power picture of a vessel and its endothelial cells 

(magnification x200). 

5.3.2 Effect on the nitric oxide pathway 

The effect of NOS gene deletion was assessed on NOS activity, nitrite, NOS 

protein expression and iNOS cellular localisation in the granuloma. iNOS gene 

deletion reduced nitrite levels close to baseline values (4.6 ± 1.3pM), compared 

to wild type controls (35.2 ± 3.6pM). 

Similarly, iNOS activity was reduced to the detection limit of the assay in iNOS 

knockout mice (996 ± 289 pmol citrulline/mg protein/30 min) when compared to 

sv129 mice (185 ± 54 pmol citrulline/mg protein/30 min). 

Interestingly, cNOS (ecNOS and nNOS) levels were unaffected, this was 
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surprising since some compensation from ecNOS and nNOS was expected, with 

iNOS knockout mice producing 119 ± 33 pmol citrulline/mg protein/30 min and 

control animals 93 ± 25 pmol citrulline/mg protein/30 min (Figure 5.10). 

Western blot analysis of NOS knockout mice and sv129 showed that both types 

of mice produced similar levels of iNOS protein (Figure 5.1 IA). The antibody 

used for the detection of iNOS was purchased from Santa Cruz, it was raised to 

amino acids 1126-1144 at the carboxy terminus of iNOS. A blast search was 

performed and it was found that this amino acid sequence is not present on 

either eNOS or nNOS. In addition, Chandrasekar and colleagues (1998) showed 

that this antibody was specific to iNOS, showing no cross-reactivity with either 

ecNOS or nNOS. Therefore, it was concluded that the iNOS protein detected in 

the iNOS knockout animals was non-functional since little product or enzyme 

activity was detected (Figure 5.10). 

Spatial analysis of iNOS protein expression in the wild type (Figure 5.11 B) and 

iNOS gene deleted animals (Figure 5.11C) at 7 days revealed a similar 

distribution of both the functional and non-functional protein within the skin and 

regions of the granuloma. The most intense staining of iNOS was associated 

with infuxing inflammatory cells in vessels in the skin and at the lower regions 

of the granuloma furthestfromthe skin. NADPH diaphorase staining (old method 

for detection of iNOS) revealed a slight reduction in staining in iNOS knockout 

mice (5.11 E) compared with wild type controls (Figure 5.11 D). However the 

number of stained cells per section was too low for morphometric analysis to be 

meanigful. 
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FIgure 5.10 Effect of INOS gene deletion on the NOS pathway In the murine croton oll. 
Induced chronic granulomatous tissue air pouch. V1/here, (A) is nitrite in cell-free exudate, 
(B) iNOS activity and (C) cNOS activity in the granuloma. Data is expressed as meant standard 

error of the mean (n=8 per group). "ps0.05 in comparison to control values. 
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Figure 5.11 Quantitative and spacial analysis of NOS protein expression in sv129 and 

NOS knockout mice. (A) is a representative Western blot (1 of 2) for iNOS protein in sV129 

and iNOS knockout animal 7 days post injection of croton-oil in Freund's complete adjuvant. 

Where (B) is immunohistochemical analysis of iNOS protein expression in a7 day air pouch of 

sv129 mice and (C) is immunohistochemical analysis of iNOS protein expression in a7 day air 

pouch of iNOS gene deleted animals. (D) is NADPH diaphorase staining in a7 day air pouch 

of sv129 mice, where the arrows indicate positively labeled cells for NADPH diaphorase activity 

and (E) is NADPH diaphorase staining in a7 day air pouch of iNOS knockout mice. In (A) n=3 
different animals were used, whereas panels B and C, D and E are Magnification x234. All 

immunohistochemistry pictures are representative of n=3 mice. 
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5.3.3 Effect on the arginase 

At 7 days arginase protein expression was slightly increased in iNOS knockout 

animals compared to controls (Figure 5.12A). This was also reflected in a 

significant increase (p>_0.05; Figure 5.12B) in arginase activity at this time point 
in NOS gene deleted animals with an activity level of 179 ± 15 mU urea/mg 

protein/min compared to sv129 control mice (105 ±9 mU urea/mg protein/min). 
The distribution of arginase staining in the granulomatous tissue was similar to 

NOS, being associated with macrophages within the granuloma closest to the 

inflammatory stimulus and furthest from the skin (data not shown) 
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Figure 5.12 The effects ofiNOS gene deletion on the expression of arginase in the murine 

croton oil-induced chronic granulomatous tissue air pouch. Where, (A) is arginase I protein 

expression and (B) arginase activity in iNOS knockout mice compared to sv129 controls at 7 

days. Data is expressed as mean ± standard error of the mean (n=8 per group). *p, 0.05 in 

comparison to control values. 

5.3.4 Effect on the general histological appearance of the air pouch 
The general histological appearance of the air pouches from iNOS knockout and 

sv129 mice were very similar at 7 days. The granuloma was highly vascularised 
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with numerous PMNs and macrophages present in the loose connective tissue 

of the dermis and the occasional intact and degranulated mast cell was 

observed (Figure 5.13A, B). A region of active was observed above the skeletal 

muscle and below the skin and a high collagen content (vivid red coloration, 

Figure 5.13C, D) 
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Figure 5.13 Effect of NOS gene deletion on the histological appearance of the granuloma 

in the murine croton oil-induced chronic granulomatous tissue air pouch Panel A (sv129 

mice) and Panel B (iNOS knockout mice) shows a7 day air pouch stained with toludine blue and 
Panel C (sv129 mice) and panel D (iNOS knockout mice) are Van Gieson stains. Panels A, B, 

C and D magnification x63. 

5.3.5 Effect on HSP protein expression 

The effect of iNOS gene deletion was investigated on the expression of the heat 

shock proteins 70 and 32 (HO-1), since again it has been suggested that NO 

can modulate protein expression of these cellular chaperones (results section 
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Chapter 4 and Willis et al., 1995). Densitometrical analysis of Western blots of 

of HSP 72 in both sv129 and iNOS knockout mice demonstrated no significant 
differences between the intensity of HSP 72 protein staining between the two 

groups of animals (Figure 5.14). 
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HSP 72 protein 
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Figure 5.14 Effect of NOS gene deletion on HSP 72 protein expression in the murine 

croton oil-induced chronic granulomatous tissue air pouch. at 7 days after induction of 

granuloma formation with 0.1 % croton oil in Freund's complete adjuvant. Protein expression in 

n=6 animal per group. 

Western blot analysis of HO-1 was not sensitive enough to pick up protein 

expression in homogenates of granulomatous tissue. Therefore, 

immunohistochemical analysis was used to compare the expression of HO-1 in 

iNOS knockout and sv129 mice. Immunolocalisation of HO-1 expression in these 

animals revealed that the majority of staining was associated with macrophage 

like cells (Figure 5.15) in the granuloma adjacent to the muscle layer that 

separates the granuloma spatially from the skin. Once again similar staining was 

observed in both iNOS and sv129 mice. 
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Figure 5.15 Spacial expression of HO-1 staining in sv129 and iNOS knockout mice. Where, 

(A)represents sv129 mice and (B) iNOS knockout mice 7 days after induction of granuloma 
formation with 0.1% croton oil in Freund's complete adjuvant. The magnification of the major 

panels is x63, with the insert in (A) showing a high power picture of a macrophage 

immunostained for HO-1 (magnification x200). 

5.3.6 Effect on COX-2 expression 

The expression of COX-2 was analysed in NOS knockout mice and sv129 

controls. Densitometrical analysis revealed that iNOS gene deletion reduced the 

expression of COX-2 protein in this model, although this reduction didn't quite 

reach significance (Figure 5.16). 
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Figure 5.16 Effect of NOS gene deletion on COX-2 protein expression in the murine 

chronic granulomatous tissue air pouch. Western blot analysis was performed on 

granulomatous tissue, 7 days after induction of granuloma formation with 0.1 % croton oil in 

Freund's complete adjuvant. Protein expression in n=3 animal per group. 
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5.4 Summary of findings 

(1) Oral administration of aminoguanidine significantly decreased nitrite 

levels between 1-7 days. However no effect on iNOS, cNOS and arginase 

enzyme activity or iNOS protein expression was observed. However at 5 days 

hemeoxygenase activity was significantly increased. Systemic inhibition of NO 

production resulted in a significant decrease in granuloma dry weight, carmine 

content and vascular index of granulomas dissected from aminoguanidine 

treated mice. Similarly, local injection of AE-ITU (30mg/kg) significantly reduced 

nitrite and granulomatous tissue dry weight. However, carmine content was 

unaffected, leading to a significant increase in the vascular index. 

(2) iNOS gene deletion had similar effects on inflammation to local 

administration of the selective iNOS inhibitorAE-ITU. Granuloma dryweightwas 

significantly reduced without effect on carmine content of the granuloma. This 

resulted in a significant increase in the vascular index, which was confirmed by 

a 16% increase in CD31 immunostaining compared to wild type controls. Not 

surprisingly, nitrite and iNOS enzyme activity was reduced to the detection limits 

of the assays used. In addition, the general histological appearance of the air 

pouch in iNOS knockout and sv129 mice was similar with little to no effect on the 

spatial distribution of HO-1 and protein expression of COX-2. Arginase I protein 

expression and total arginase activity were significantly increased by iNOS gene 

deletion suggesting a possible regulatory effect of NO on arginase activity. 
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CHAPTER 6. Effect of aspirin on the NOS pathway in inflammation 

6.1 Introduction 

Numerous investigations have shown in vitro and in vivo that products from the 
COX and NOS pathways can directly affect the activity of their respective 

enzymes (Swierkosz eta!., 1995; Curtis eta!., 1996; Lin., eta/ 1999). Moreover, 

some NSAIDs including aspirin (Amin et al., 1995; Aeberhard et al., 1995; 

Colville-Nash et al., 1996) have been shown in vitro to inhibit iNOS mRNA, 

protein and NO production. Therefore, the inhibition of NO by aspirin may be an 

additional mechanism accounting for its anti-inflammatory actions and may 

explain the differences observed in NSAIDs capacity to inhibit neutrophil 
function (Abramson et al., 1985), COX activity (Mitchell et al., 1993) NF-KB 

activation (Kopp and Ghosh, 1994) and neurogenic inflammation (Abramson, 

1992). Therefore, the effect of COX inhibition on the nitric oxide pathway was 
investigated using aspirin in vivo, using the complement mediated carrageenin- 
induced pleurisy and the murine croton-oil-induced chronic granulomatous 
tissue air pouch. In addition, the effect of COX inhibition was further investigated 

in vitro using two immortalised cell lines, murine derived J774.2 macrophages 

and hybrid endothelial cells derived from human umbilical veins, EA. hy926, to 
further assess actions of aspirin on the generation of nitric oxide. 

6.2 Effects of aspirin on iNOS and NO production in the 

carrageenin-induced pleurisy 
6.2.1 Inflammatory parameters at 6h. 

Aspirin dose-dependently reduced exudate volume by 15,33,27,36,41 and 
67% at 10,20,50,100,200 and 500mg/kg respectively compared with control 

values (1.25 ± 0.10ml). A significant reduction (ps0.05) was seen at 20,100, 

200 and 500mg/kg (Figure 6. IA). 

Similar effects were observed on inflammatory cell number by 13,40,50,39,42 

and 46% at 20,50,100,200 and 500mg/kg compared to control values (120 ± 
5 x106 cells; Figure 6.1 B). A significant reduction (ps0.05) was seen at 20,50, 

100,200 and 500mg/kg. 
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Figure 6.1 Effect of oral administration of aspirin on Inflammatory parameters in the 

carrageenin-induced pleurisy. Where (A) is Exudate volume and (B) inflammatory cells 

recovered from the pleural cavity. Data is expressed as mean ± standard error of the mean (n=6 

per group). *ps0.05 in comparison to saline controls. 

6.2.2 PGE2 levels at 6h 

Since the principle mechanism by which aspirin exerts its anti inflammatory 

effect is by the inhibition of PGE2 production, levels of this prostanoid were 
determined in cell-free inflammatory exudates at 6h. Aspirin dose-dependently 

reduced exudate PGE2 levels by 30,67,67,77,91 and 95% at 10,20,50,100, 

200 and 500mg/kg respectively compared with control values (166 ± 40 pg). A 
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significant reduction (ps0.05) was seen at 20,50,100,200 and 500mg/kg 

(Figure 6.2). 
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Figure 6.2 Effect of oral administration of aspirin on PGE, levels in the carrageenin- 
Induced pleurisy at 6h. Data is expressed as mean t standard error of the mean (n=6 per 
group). "p-<0.05 in comparison to saline controls. 

6.2.3 Nitric oxide pathway at 6h 

Oral administration of aspirin resulted in a dose-dependent increase in nitrite, 
iNOS protein and iNOS activity at 6h. Nitrite levels were significantly increased 

(ps0.05) at 100,200 and 500mg/kg by 178,270 and 280%, respectively 

compared with controls (12.9 ± 1.4pM; Figure 6.3A). 

Similarly, iNOS protein expression was elevated significantly (ps0.05) at 100, 
200 and 500mg/kg by 313,285 and 257%, respectively compared with control 

values (19.2 ± 10.9 arbitrary units; Figure 6.3B) 

Again iNOS activity was increased significantly (ps0.05) by aspirin treatment a 
100,200 and 500mg/kg by120,126 and 118% compared with control values 
(448 ± 80 pmol citrulline/mg protein/30 min; Figure 6.3C). 
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Figure 6.3 Effect of oral administration of aspirin on the nitric oxide pathway in the 

carrageenin-induced pleurisy at 6h. More (A) is nitrite, (B) densitometry of iNOS protein 

expression and (C) iNOS activity. Data is expressed as meant standard error of the mean (n=6 

per group). *ps0.05 in comparison to saline controls. 

6.2.4 Effect of oral administration of aspirin and intrapleural Infection of 
AE-ITU at 6h 

Oral administration of aspirin significantly reduced exudate volume and 
inflammatory cell number whilst elevating levels of NO. In addition to this data, 
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intrapleural injection of NOS inhibitors significantly increased inflammatory 

parameters whilst significantly reducing nitrite levels. Therefore it was suggested 

that NO might be anti-inflammatory in the carrageenin-induced pleural model. 

Hence, to determine if aspirin exerted it's anti-inflammatory effect, at least in part 
by elevating NO, both aspirin and AE-ITU were given prior to carrageenin 

injection and the effect on inflammation and NO production was measured at 6h. 

Animals that were dosed orally with gum tragacanth and injected intrapleurally 

with saline had an exudate level of 1.32 ± 0.06ml. Exudate levels were 

significantly reduced (ps0.05) in rats treated with aspirin (200mg/kg) orally and 

saline intrapleurally (0.85 ± 0.13ml). The reduction in exudate volume observed 

with aspirin was reversed by intrapleural injection of AE-ITU (3,10mg/kg), being 

1.30 ± 0.11,1.48 ± 0.14ml respectively (Figure 6.4A). 

Animals that were dosed orally with gum tragacanth and injected intrapleurally 

with saline had 104 ±7 x106 cells transmigrate into the pleural cavity. 
Inflammatory cell number was significantly reduced (p: 5 0.05) in rats treated with 

aspirin (200mg/kg) orally and saline intrapleurally (53 ±9 x106 cells). The 

reduction in cellular influx observed with aspirin was reversed by intrapleural 

injection of AE-ITU (3,10mg/kg), being 92 ±6 and 107 ±8 x10° cells 

respectively (Figure 6.4B). 

Animals that were dosed orally with gum tragacanth (t= -1h) and injected 

intrapleurally with saline produced 17.3 t 0.3pM nitrite in cell free exudates. 

Nitrite levels were significantly increased (ps0.05) in rats treated with aspirin 

(200mg/kg) orally and saline intrapleurally (58.7 ± 1.3pMl). The increase In 

nitrite levels observed with aspirin was ameliorated by intrapleural injection of 

AE-ITU (3,10mg/kg), being 17.3 ± 3.9 and 10.2 ± 0.7pm respectively (Figure 

6.4C). 
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Figure 6.4 Effects of aspirin dosed orally and AE-ITU injected locally on inflammation in 

the carrageenin-induced pleurisy at 6h. Either AE-ITU or saline was injected directly into the 

pleural cavity of rats immediately before carrageenin injection. Aspirin or gum tragacanth was 
dosed orally 1h before carrageenin injection. Thereafter, their effects on (A) exudate volume, 
(B) cell number and (C) nitrite in pleural exudates was determined 6h after carrageenin injection. 

Data is expressed as mean ± standard error of the mean (n=6 per group). *p . 0.05 in 

comparison to saline controls, #p 5-0.05 in comparison to aspirin (200mg/kg, p. o. ) and saline (i p) 
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6.2.5 Effect of intrapleural injection of AE-ITU immediately prior to 

carrageenin and oral administration of aspirin 4h after carrageenin 

injection in an 8h pleurisy 

Although the aspirin dependent inhibition of inflammation and increase in NO 

levels were ameliorated by the NOS inhibitor AE-ITU, aspirin's main action is to 

irreversibly inhibit COX activity and prostanoid production. Therefore, to confirm 

the effects of aspirin on NO production and eliminate as far as possible the 

effects on COX activity, aspirin was administered at4h after carrageenin, a time 

where PGE2 production and COX-2 protein expression were decreasing 

(Tomlinson et aL, 1994; Gilroy et al., 1999) and levels of iNOS protein were on 

the increase. The effect on inflammatory parameters and NO were assessed at 

8h. 

Animals that were dosed orally with gum tragacanth (t= +4h) and injected 

intrapleurally with saline had an exudate level of 1.58: t 0.05ml. Exudate levels 

were significantly reduced (ps0.05) in rats treated with aspirin (200mg/kg) orally 

and saline intrapleurally (1.02 t 0.07ml). The reduction in exudate volume 

observed with aspirin was reversed by intrapleural injection of AE-ITU 

(10mg/kg), being 1.45 t 0.12 (Figure 6.5A). 

Animals that were dosed orally with gum tragacanth (t= +4h) and injected 

intrapleurally with saline had 54 ±3 x106 cells transmigrate into the pleural 

cavity. Inflammatory cell numbers were significantly reduced (ps0.05) in rats 

treated with aspirin (200mg/kg) orally and saline intrapleurally (36 ±2 x108cells). 

The reduction in inflammatory cell influx observed with aspirin was reversed by 

intrapleural injection of AE-ITU (10mg/kg), being 49 ±5 x108cells(Figure 6.5B). 

Animals that were dosed orally with gum tragacanth (t= +4h) and injected 

intrapleurally with saline produced 15.0 t 0.6pM nitrite in cell free exudates. 

Nitrite levels were significantly increased (ps0.05) in rats treated with aspirin 
(200mg/kg) orally and saline intrapleurally (54.7 ± 2.3pMl). The increase in 
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nitrite levels observed with aspirin were ameliorated by intrapleural injection of 

AE-ITU (10mg/kg), being 12.8 ± 0.9pm (Figure 6.5C). 
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Figure 6.5 Effects of aspirin dosed orally and AE-ITU injected locally on inflammation at 

8h in the carrageenin-induced pleurisy. Either AE-ITU or saline were injected directly into the 

pleural cavity of rats immediately before carrageenin injection. Aspirin or gum tragacanth was 

dosed orally 4h after carrageenin injection. Thereafter, their effects on (A) exudate volume, (B) 

cell number and (C) nitrite in pleural exudates was determined 8h after carrageenin injection. 

Data is expressed as mean ± standard error of the mean (n=6 per group). ' p. 0.05 in 

comparison to saline controls, #p s0.05 in comparison to aspirin (200mg/kg, p. o. ) and saline (i. p. ) 
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6.3 Effects of aspirin on LPS stimulated J774.2 macrophages and 
A23187 stimulated EA. hy926 endothelial cells 

6.3.1 Effect of aspirin on LPS stimulated J774.2 macrophages 
The effects of aspirin on NO production in inflammatory cells was further 

investigated in J774.2 macophage cell line. Aspirin has been reported to have 

both stimulatory and inhibitory effects in macrophage cell lines on NO 

production (Kepka-Lenhart et al., 1996; Amin et aL, 1995). Therefore, J774.2 

macrophages were stimulated with LPS (1 pg/ml) and treated with aspirin (3,10, 

30,100pg/ml) and the effects on nitrite production were measured 24h post- 

stimulation (Section 2.2.1). 

Initially, a dose-response to LPS was constructed to establish the optimum 

concentration required for nitrite production. LPS (0.001,0.01,0.1,1pg/ml) 

caused a dose dependent increase in nitrite production to 3.9: t 0.6,3.9 ± 0.4, 

8.6 ± 1.8 and 16.1 ± 1.6pM, respectively, compared to cells treated with medium 

alone (6.8 ± 0.6pM; Figure 6.6). 
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Z 

Figure 6.6 Effects of LPS stimulation on nitrite production In J774.2 macrophages after 

24h. Data is expressed as mean t s. e. m. (n=8 per dose). "ps0.05 in comparison to LPS- 

stimulated controls. 
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CHAPTER 6. Effect of aspirin on the NOS pathway in inflammation 

Unstimulated J774.2 macrophages produced very little nitrite (0.6±0.3pM); this 

was significantly elevated by LPS (1 pg/ml) stimulation to 5.9 ± 0.1 pM. Aspirin 

treatment at 30 and 1 OOpg/ml significantly elevated nitrite levels in these cell by 

10 and 22%, respectively, compared to LPS stimulated cells (Figure 6.7). 
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Figure 6.7 Effects of concomitant administration of aspirin and LPS in J774.2.2 

macrophages at 24h on nitrite production. Data is expressed as mean ± s. e. m. (n=10 per 

dose). *ps0.05 in comparison to LPS-stimulated controls. 

6.3.2 Effects of A23187 stimulation on EA. hy926 endothelial cells 

Other cells that maybe a target for aspirin and its potential induction of NO are 

endothelial cells. For these experiments the immortalised endothelial cell line 

EA. hy926 was used. 

The effect of the calcium ionophore A23187 was assessed on cellular viability 

and nitrite production to obtain a profile of effect for this particular stimulus on 

EA. hy926 endothelial cells and to optimise the concentrations required for nitrite 

production. After 24h stimulation cells were assessed for the above parameters. 

EA. hy926 cells were stimulated with different concentrations of the calcium 

ionophore A23187 (0.005,0.01,0.05,0.1,0.5,1,2.5,5pM), this caused a 
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significant increase in nitrite levels in the cell-free supernatant at 0.1,0.5 and 
1 pM by 67,231 and 67%, respectively, when compared to vehicle control 

groups (5.9: t 0.3pM), medium control values were 7.4: t 0.5pM (Figure 6.8A). 

Cell viability was assessed using the MTT method (Section 2.21) in the same 

experiments. At A23817 concentrations 2.5 and 5pM, cell viability was 

significantly reduced being 60 and 50% of control values respectively. Vehicle 

control values were 91 t3% of the normal medium control (Figure 6.8B) 
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Figure 6.8 Effects of A23187 stimulation on nitrite production and cell viability In 

EA. hy926 endothelial cells after 24h. Data is expressed as meant s. e. m. (combination of two 

experiments with n=8 per dose). 'ps0.05 in comparison to control + DMSO. 

A time course of A23187 stimulation was carried out to assess whether 24h was 
the optimal time point for the measurement of nitrite formation. A concentration 
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of 0.5pM A23187 was used in this and all subsequent experiments because this 

concentration caused maximal nitrite production with little effect on cell viability. 

The effect of A23187 (0.5pg/ml) stimulation was assessed at 15 min, 1,2,6,12, 

24h. This resulted in a time dependent increase in nitrite levels being maximally 

elevated at 24h (25.3 ± 1.6pM) compared to vehicle control (11.6 ± 3. OpM; 

Figure 6.9). 

30- 

20- 
v i 

"C / 

10. 

0 
0.1 I 10 30h 

Figure 6.9 Effects of A23187 stimulation on nitrite production In EA. hy926 endothelial 

cells between 10min and 24h. Data is expressed as mean t s. e. m. (n=6 per time point). 

*ps0.05 in comparison to vehicle controls. 

In subsequent studies a 24h time point was used, since it was the peak in nitrite 

concentrations out of the time points measured. 

6.3.3 Effects of aspirin on A23187 stimulated EA. hy926 endothelial cells 
The effect of concomitant administration of aspirin (0.03-3pM) and A23187 

(0.5pg/ml) was assessed in endothelial cells on iNOS protein expression, nitrite, 
iNOS and cNOS activity and cell viability. Unlike the response seen in 

inflammatory pellets from the carrageenin-induced pleurisy, ! NOS protein 

expression from EA. hy926 endothelial cells didn't change (Figure 6.10A). 
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However nitrite levels were significantly elevated (ps0.05) by aspirin treatment 

at 0.3pg/ml with the level being 23.9 ± 1.8pM compared to both A23187 (0.5NM; 

7.9 ± 2.9pM nitrite) alone and vehicle treated control cells (0.7 ± 0.1 pM nitrite; 
Figure 6.1 OB). 

Similarly iNOS activity was significantly elevated (ps0.05) by aspirin treatment 

at 0.3pg/ml, being 174 ± 24 pMol citrulline/mg protein/30 min compared to both 

A23187 (0.5pM; 91 ± 10 pMol citrulline/mg protein/30 min) alone and vehicle 

treated control cells (33 ± 10 pMol citrulline/mg protein/30 min; Figure 6.10C). 

Stimulation of EA. hy926 cells with A23187 (0.5NM) caused an inhibition of 

ecNOS; however some activity was detected at an aspirin dose of 0.3pg/mI (33 

± 28 pMol citrulline/mg protein/30 min) which was similar to vehicle treated 

control values (44 ± 14 pMol citrulline/mg protein/30 min; Figure 6.10D). 

Aspirin (0.03,0.1,0.3,1,3pg/ml) had no effect on cell viability of EA. hy926 

endothelial cells after A23817 stimulation (Figure 5.28E). 
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Figure 6.10 Effect of concomitant administration of aspirin and A23187 on the nitric oxide 

pathway and cell viability in EA. hy926 endothelial cells. Where (A) is densitometry of iNOS 

protein expression (inserted panel is a representitive Western blot), (B) nitrite, (C) iNOS activity, 

(D) cNOS activity and (E) cell viability after 24h of stimulation. Data is expressed as mean ± 

standard error of the mean (2 experiments, n=8 per group each experiment for nitrite, iNOS and 

cNOS activity: cell viability I experiment, n=8 per gorup: iNOS Western blots 1 experiment n=4 

per gorup). *ps0.05 in comparison to A23187 stimulated cells. 
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6.4 Effect of aspirin in the murine croton oil-induced 

granulomatous tissue air pouch 
6.4.1 iNOS enzyme activity and granulomatous tissue dry weight in a7 

day chronic air pouch 
The NSAID aspirin (10,200mg/kg), was dosed orally from 3 days after the 

induction of inflammation. Its effects were assessed on granuloma dry weight 

and nitric oxide production at 7 days in this model of chronic inflammation. 

Oral administration of aspirin had no effect on granulomatous tissue dry weight 

at 7 days, however, at a dose of 10mg/kg significantly increased iNOS activity 

at 7 days (Table 6.1). 

NSAID dose n Granuloma dry NOS activity (pmol 

weight (mg) citrulline/mg protein/30 min) 

control - 22 74 ±8 297 t 68 

aspirin 10 22 73 ±6 814 t 371 * 

200 22 67 ±7 435 ± 141 

Table 6.1 Effects of oral administration of aspirin in the murine crvton oil-induced 

chronic granulomatous tissue air pouch. The effects of aspirin were assessed on granuloma 
dry weight and 1NOS activity at 7 days . Data is expressed as mean t s. e. m. of n animals per 

group. * psO. 05 in comparison to control mice. 

6.4.2 A further examination of the effects of aspirin on the iNOS protein 

expression and activity at 7 days. 

The effects of aspirin (10,100,200mg/kg) were further investigated at 7 days in 

this model, with iNOS protein expression and activity being determined in the 

same samples. As previously described iNOS activitywas significantly increased 

with aspirin (10mg/kg; Figure 6.11 B). Values were 133 ± 19,111 ±7 and 103 ± 
20 pmol citrulline/mg protein/30min at 10,100 and 200 mg/kg of aspirin, 

respectively, compared with gum tragacanth treated controls (90 ± 10 pmol 

citrulline/mg protein/30min). However, there was no effect on iNOS protein 
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expression (Figure 6.11A), suggesting that in the murine croton oil-induced 

chronic granulomatous tissue air pouch aspirin increased NOS enzyme activity 

without affecting protein expression. However, Western blot analysis may not 

have been sensitive enough to detect changes in iNOS protein expression in 

this tissue, since only a subpopulation of influxing macrophages in the 

granuloma are immunopossitive for iNOS at this time point. 
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Figure 6.11 Effects of oral administration of aspirin In the murine Croton oil-induced 

chronic granulomatous tissue air pouch at 7 days on the NOS pathway. Where, (a) is iNOS 

protein levels measured by densitometry from Western blots and (b) iNOS activity. Data is 

expressed as mean t standard error of the mean (n=8 per group). "ps0.05 in comparison to 

control values. 
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In summary, aspirin significantly increased iNOS enzyme activity in the 

granuloma at 7 days. Although aspirin had no effect on inflammation at 7 days, 

a significant reduction in granuloma dry weight was observed at 14 days. 

Aspirin (200mg/kg) significantly (pz0.05) reduce COX activity as measured by 

the production of PGE2 in granulomatous tissue at this time point (Table 6.2). 

dose n COX activity 
(mg/kg) (ng PGE2/mg protein/30 min) 

control - 22 51 ±7 

aspirin 10 22 25 ± 6* 

200 22 8t5* 
Table 6.2 Effects of oral administration of aspirin In the murine croton oil-induced chronic 

granulomatous tissue air pouch at 7 days on COX activity. Data is expressed as mean t 

s. e. m. of n animals per group. * psO. 05 in comparison to control mice. 
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6.5 Summary of findings 

(1) Oral administration of aspirin dose-dependently decreased exudate 

volume, cell number and PGE2 levels in the pleural cavity of rats 6h after 

carrageenin injection. Surprisingly, this resulted in a significant dose-dependent 

elevation of iNOS enzyme activity and immunoreactivity in recovered 
inflammatory cells and an increase in nitrite formation in cell-free exudate. The 

inhibitory effects on inflammation and stimulatory effects on nitrite production of 

oral administration of aspirin were reversed by local intrapleural injection of the 

NOS inhibitor AE-ITU. 

(2) Stimulation of J774.2 macrophages with LPS caused a significant increase 

in NO release from these cells and similarly to the carrageenin-induced pleurisy, 

concomitant administration of aspirin had a stimulatory effects on nitrite release 
from J774.2 cells into the culture medium. 

(3) Stimulation of EA. hy926 endothelial cells with the calcium ionophore 

A23817 caused a significant time-dependent increase in NO released from these 

cells, being maximal at 24h. Concomitant administration of aspirin (0.3pg/ml) 

significantly increased iNOS activity and cNOS activity in the cells and nitrite 

release into the medium, however no effect was observed on iNOS protein 

expression. Treatment of these cells with the combination of aspirin and A23817 

had no effect on cellular viability. 

(4) Oral administration of aspirin (10mg/kg) significantly increased iNOS 

enzyme activity in conjunction with significantly reducing COX activity. However, 

aspirin had no effect on granuloma size of iNOS protein expression. 

152 



CHAPTER 7 
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7.1 Discussion 

As already discussed at the beginning of this thesis both iNOS protein 

expression and NO are present in nearly all inflammatory diseases and models 

of inflammation investigated to date. However, the contribution of NO to the 

inflammatory environment remains unclear. This investigation aimed to assess 

the function of NO within a number of different inflammatory processes. Further 

it was the aim of this thesis to correlate NO production with the expression of 

other inflammatory mediators such as arginase and cyclooxygenase which may 

regulate its production or alternatively be regulated by NO. These studies were 
therfore performed to afford an insight into whether iNOS would be a good 
therapeutic target for the development of an anti-inflammatory therapy. 

7.1.1 NO in the carrageenin-induced pleurisy 
Carrageenin is a seaweed extract that causes an acute inflammation through the 

alternative complement pathway, and has been used for many years in the 
identification of anti-inflammatory targets and the development of therapeutic 

agents. In this thesis iNOS protein expression, activity and nitrite formation were 

mapped throughoutthe time course of the carrageenin-induced pleurisy followed 

by modulation using NOS inhibitors. NO, as measured indirectly by nitrite 

accumulation was generated in the pleural cavity in a time dependent manner 

with a double peak suggesting that there may be two different sources of NO 

production in this model. The first peak at 30 min is probably a result of NO 

production from endothelial cells since the nitrite produced at this early time 

point was insensitive to dexamethasone inhibition. This was supported by the 

finding that iNOS protein expression was undetectable in inflammatory cells 
taken from the pleural cavity at this time point. NO accumulation at 30 min is at 

a time when other inflammatory mediators such as thromboxane B2 (Tissot et al., 
1984), histamine (Sin et al., 1986) and bradykinin (Tissot et al., 1985) are 
present. Therefore, it is highly possible that these early mediators, acting via 

receptor occupancy, could have induced the release of NO from endothelial cells 
(Fujii et al., 1994). It was found that the injection of NOS inhibitors directly into 

the site of this acute inflammatory lesion immediately before carrageenin 
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exacerbated inflammation at 1 h, a time prior to the induction of ! NOS in influxing 

inflammatory cells. This was true for all the inhibitors regardless of selectivity 
between isoforms. However at this time point where NO was probably produced 

by eNOS, the eNOS partially selective inhibitor L-NIO was more potent at 

reducing nitrite levels. Possible functions for this early release of NO may be to 

inhibit platelet aggregation and increase vasodilation in vessels close to the 

inflammatory site and possibly prevent PMN and monocyte chemotaxis (Kubes 

et al., 1991; De Caterina et al., 1995). 

The second peak in nitrite at 6h coincided with peaks in iNOS protein expression 

and activity and was most likely from this inducible isoform. The major cell type 

present in pleural washouts at this time point are PMNs, with monocytes making 

up the majority of the remainder. Immunolabeling of inflammatory smears at 6h 

showed that both monocytes and PMNs stained positively for iNOS, with the 

most intense staining being associated with monocytes. Both cell types have 

been previously described to produce NO from iNOS (Nathan, 1992; McCall of 

a/., 1989). Interestingly, cNOS was also maximal at this time point, but the total 

activity detected was far lower than that seen for iNOS. There are two possible 

explanations of this increase in cNOS activity at this point. PMNs have been 

documented to contain not only iNOS but also cNOS (Wright of a!., 1989; McCall 

et al., 1989) and therefore a likely source of this activity since no endothelial 

cells were present in the pleural washouts. This is in agreement with work 

published by Padgett and Pruett (1995) showing that both rodent and human 

PMNs were capable of generating nitrite although at considerable lower levels 

than that produced by rodent macrophages. Inhibition of NO at 6h had the same 

effects as seen at 1 h, with an increase in exudate formation and cellular influx, 

while nitrite levels were significantly reduced. In additional experiments, AE-ITU 

was administered into the pleural cavity 2h after carrageenin injection, to 

investigate the effects of NO inhibition on the second peak of NO formation in 

the pleural cavity seen at 6h. Again, it was found that while nitrite was 

significantly reduced, exudate volume and inflammatory cell numbers were 
significantly increased. Additionally, I have demonstrated that NO inhibition at 
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both 1 and 6h resulted an increase in inflammatory parameters during the 

resolution stage (36h) and prolonged the resolution (72h). 

In order to elucidate the mechanism by which inhibition of NO generation 

exacerbates inflammation the levels of a number of candidate pro-inflammatory 

mediators was measured. As shown by Capasso and colleagues (1975), mast 

cell-derived histamine peaked in this model between 0.5-1h after carrageenin 

injection. Given that histamine contributes to oedema formation (Capasso et al., 

1975; Giraldelo et al., 1994) and that NO stabilises mast cells, thereby 

preventing histamine release (Salvemini eta!., 1991; Brooks eta!., 1999), levels 

of this acute inflammatory mediator were measured after NOS inhibition. NOS 

inhibition increased histamine release and correspondingly decreased mast cell 

numbers in pleural exudates. Further experiments showed that systemic 

depletion of mast cells with CMP 48/80 (Paton, 1951; Feldberg and Talesnik 

1953) attenuated the increased plasma exudation observed with NOS inhibitors 

without altering the increase in inflammatory cells, although both exudate and 

cell numbers were significantly lower after mast cell degranulation. In support of 

this observation others have shown that inhibition of NO in mesenteric post 

capillary venules increased inflammatory cell emigration, plasma extravasation, 

free radical-mediated tissue damage, mast cell degranulation and histamine 

release (Gaboury et al., 1996). As well as histamine, levels of the potent rat 

neutrophil chemoattractant CINC were also determined. CINC, which is induced 

through a nuclear factor xB (NF-KB) pathway in response to inflammatory 

stimulation (Blackwell et a/., 1994), mediates PMN chemotaxis in the rat 

(Watanabe et al., 1991) by upregulating PMN CD11/18 expression thus 

facilitating PMN diapedesis (Frevert etaL, 1995). NOS inhibition also increased 

levels of CINC in cell free exudates, in addition to histamine. This may be a 

further a contributing factor to the increased inflammatory cell numbers recorded 

after NOS inhibition. 

Since most NOS inhibitors contain a number of highly reactive groups (Peterson 

et al., 1992) it was essential to check for possible non-specific actions of these 
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inhibitors on inflammation. Therefore D-NAME, the inactive enantiomer of L- 

NAME, was injected into the pleural cavity of rats 1h before carrrageenin and the 

inflammatory response assessed at 1 and 6h. At both doses used (the same 

molarity as AE-ITU at 3 and 10mg/kg), no effect on inflammation was observed. 

Therefore, it could be concluded that the effects on inflammation and mediator 

levels at these time points were a direct result of the inhibition of NO. 

Levels of lipid-derived mediators were also measured particularly as inhibition 

of NO synthesis increases endothelial PGI2 release (Doni et aL, 1988) and that 

PGE2, PGI2 and LTB4 facilitate oedema formation and inflammatory cell influx. 

Treatment with NOS inhibitors locally at a time when iNOS protein expression 

and enzyme activity is maximal had no effect on either PGE2 or PGI2 but 

significantly increased LTB4. Previous experiments have also shown that NO 

donors dose-dependently reduce LTB4 production from activated PMNs 

(Moilanen eta!., 1993). Interestingly, differential cell counts revealed that AE-ITU 

at 6h caused an increase in the proportion of PMNs, possibly as a result of an 

increase in CINC and LTB4. Collectively, these mechanistic studies demonstrate 

that NO generated at the inflammatory site critically regulates the severity of the 

inflammatory response by keeping in check levels of pro-inflammatory mediators 

such as histamine, CINC and LTB4. 

As another mechanism to explain the increase in inflammation after NOS 

inhibition, cellular and exudate levels of antioxidants were measured by the 

TAOS and SSA assays. NOS inhibition caused a increase in TAOS and SSA, 

which suggested that there was an increase in the levels of superoxide and other 

oxidant species in the absence of NO. Superoxide anion is produced by PMNs 

and monocytes from the enzyme activity of NADPH oxidase and xanthine 

oxidase at inflammatory sites. Both enzymes systems contain a heure prosthetic 

group, which NO can react with to inhibit 02 release (Fukahori et al., 1994; 

Wang et al., 1995). Therefore, inhibiting NO removes an inhibitory effect on 

superoxide production. In support of this notion, others have shown that NO 

generation reduces superoxide levels while its inhibition increases superoxide 
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production both in vitro and in vivo (Gaboury et a/., 1993; Guidot at al., 1995; 

Rodenas et aL, 1998). As superoxide has been associated with tissue damage 

and loss of function during inflammatory episodes (Vega et al., 1998) it is 

conceivable that yet another contributor to an enhanced inflammatory response, 

consequent to NOS inhibition, is superoxide generation. Indeed, elevated levels 

of superoxide increases histamine release from mast cells (Mannaioni et al., 

1991), as well as LTB4 and PMN accumulation in a model of pancreatitis through 

a PAF-dependent mechanism (Hotter et al., 1997). Finally, NO can decreases 

NF-kB activation through inhibition of IkB- phosphorylation and degradation 

(Katsuyama at al., 1998) and can also inhibit directly NF-kB binding to DNA 

(Park et al., 1997). Therefore, a disturbance in the balance between NO and 

superoxide production, whereby NO production is inhibited, may lead to an 
increase in pro-inflammatory mediators and provides a possible mechanism for 

the exacerbation of inflammation observed in this study. 

The increase in superoxide levels seen may underly the three-fold induction of 
inducible HSP 72 in inflammatory cells at 72h after NOS inhibition. HSP 72 is 

induced by oxidative and other stresses and helps to refold proteins that have 

undergone oxidative damage (Ryan and Hightower, 1996). This is further 

evidence that suggests that NO inhibition may exacerbate oxidative stress 

pathways in this model and prolong pathology. 

Finally, NO has been well documented to accelerate the rate of apoptosis both 

in vitro and in vivo (Fortenberry eta!., 1998; Blaylock of a!., 1998; Barthlen of al., 
2000). Therefore, it is hypothesised here that inhibition of NO could be 

increasing the number of inflammatory cells at the site of inflammation by 

suppressing apoptosis. However, immunohistochemical analysis of DNA 

fragmentation, using the TUNEL assay, within pleural exudates of rats treated 

with NOS inhibitors showed no change in the number of positively labelled 

apoptotic bodies when compared to saline treated animals at 6h. This is not 

surprising since apoptosis is an active process requiring time for cellular 

changes to occur. Therefore, a later time point should have been measured. 
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With hindsight the TUNEL assay also has a number of problems associated with 

measurement of apoptotic cells. In my experience, there were a large number of 
false positives making it difficult to assess apoptosis in this model. However at 
the time these experiments were performed, this was believed to be the best 

method for measurement of apoptosis. Subsequently, data has shown that 

neutrophils contain relatively high levels of the enzyme terminal deoxynucleotidyl 

transferase used for adding DIG to fragmented DNA. Methods that are more 

appropriate for the determination of apoptosis in this carrageenin-indued pleurisy 
include caspase measurements, annexin five binding to phosphotidylserine and 

an acridine orange staining technique. In conclusion, although apoptosis was not 

affected at 6h one cannot discount the possibility that inhibition of NO may have 

delayed apoptosis and attributed to the elevation of inflammatory parameters at 
the later time points. 

The vast majority of reports have shown that NOS inhibitors are considered anti- 
inflammatory in models of both acute and chronic inflammation (Salvemini of 
a/., 1996; Weinberg of aL, 1994). For instance, in a model of trinitrobenzene 

suiphonic acid-induced colitis in rats, the non-selective NOS inhibitor L-NAME 

reduced neutrophil and macrophage influx (Hogaboam of x/., 1995), while in a 

carrageenin-induced pleurisy, L-NMMA also significantly reduced exudate 
formation and cellular influx (Tracey of al., 1995). In these studies, however, 

NOS inhibitors were administered at high doses away from the site of 
inflammation i. e. orally or intraperitoneally. Given their lack of selectivity, it is 

conceivable that systemic administration may also inhibit ecNOS remote from the 
inflammatory locus resulting in vasoconstriction, reduced blood delivery to the 
inflamed site and therefore leucocyte margination, hence a reduction in 

inflammation. Indeed, it was shown that the anti-inflammatory effects of L- 

arginine analogues given systemically could be reversed by vasodilators 
(Antunes of al., 1990; Najafipour and Ferrell, 1993; Ridger of al., 1997). In 

agreement with these studies it was also found that when NOS inhibitors were 
injected intraperitoneally, immediately prior to intrapleural injection of 
carrageenin, pleural exudates were significantly reduced. Therefore, in order to 
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try and avoid the systemic effects of NOS inhibitors, AE-ITU, 1400W and L-NIO 

were administered locally and found to exert a pro-inflammatory effect, without 

altering inflammatory cell viability. In support of these findings, others have also 

reported a protective role for NO. For instance, concomitant administration of 
NOS inhibitors with Iipopolysaccaride (LPS) increased organ damage and 

mortality following endotoxic shock in rats (Harbrecht et al., 1992; Park et al., 

1996). It was suggested that protection was via maintenance of vascular 

perfusion reducing ischemic damage. In addition, in genetically modified mice, 

acetic acid-induced colitis in iNOS-deficient mice resulted in increased PMN- 

associated tissue damage in comparison to wild type animals (McCafferty et al., 
1997). A similar inflammatory cell accumulation in hepatic microvasculature was 

also observed in LPS-treated iNOS knockout mice (Hickey etal., 1997). Finally, 

this work demonstrated that injection of the slow releasing NOS donor DPTA 

NoNoate directly into the pleural cavity immediately prior to carrageenin reduced 
inflammation at 6h, thus reinforcing the hypothesis that these observations were 
due to NO and that NO was protective in this model. In support of this data 

lalenti and colleagues (2000) showed that administration of the NO donor NOC- 

18 reduced neutrophil accumulation in the rat carrageenin-induced pleurisy. 
They concluded that the main role of NO produced at the site of inflammation 

was to reduce inflammatory cell influx. However, from data presented in this 

thesis it may be concluded that even though at the time these experiments were 

performed AE-ITU and 1400W were considered to be selective inhibitors for 

iNOS, there was no difference in their effect compared to the non-selective 
inhibitor L-NMMA. This leds to the conclusion that the injection of these 

inhibitors locally at the doses chosen probably inhibited both iNOS and ecNOS, 

suggesting that NO produced by both sources are important in the control of 
inflammation in this complement-mediated model, the carrageenin-induced 

pleurisy. Thus, from studies presented in this thesis and elsewhere using both 

pharmacological agents and iNOS knockout mice, a protective role for NO may 
be ascribed regardless of source. 

In conclusion, in the rat carrageenin-induced pleurisy, inhibition of NO at the 
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inflammatory site exacerbates inflammation and prolongs the pathology, 

suggesting a protective role for NO in this model. 

7.1.2 NO in the BSA-induced pleurisy 

Injection of BSA into the pleural cavity of rats 12 days after sensitisation results 

in an immediate type III hypersensitivity reaction (Capasso et al., 1975a). The 

resulting inflammation is mediated by antigen-antibody interactions and 

complement fixation. It is worth noting that the sensitisation period of 12 days is 

required to allow antibody production against the BSA antigen, prior to 

challenge. The reaction was dominated by PMNs throughout, with a peak in 

oedema and inflammatory cell influx at 6h, with both parameters being greatly 

reduced by 24h. Injection of BSA alone into the pleural cavity of unsensitised 

animal resulted in no recoverable exudate and a considerably lower cell number 

at 6h than sensitised animals thereby excluding a major contribution to the 

inflammatory reaction of direct pleural irritation by BSA. 

iNOS activity and immunoreactivity were measured in inflammatory cells and 

nitrite in cell-free exudates obtained from the pleural cavity of challenged 

animals. iNOS activity was maximal at the earliest time point measured, 2h, and 

was still high at 6h, but declined after this time point reaching baseline by 48h. 

This profile was mirrored by iNOS immunoreactivity in the inflammatory cells 

suggesting that iNOS was the primary source of NO in this model. Nitrite levels 

were also high at 2 and 6h, but unlike iNOS expression the activity reached 
baseline at 12h, possible reasons for this discrepancy may be due to the peak 

expression of arginase at this time point. In this type III immediate 

hypersensitivity reaction, the activity of arginase was greater than in the 

carrageenin-induced pleurisy with activity being detected during the resolution 

stage of this model. This suggests that there might be a competition for L- 

arginine in the inflammatory cells resulting in a reduction of nitrite levels at 12h. 

In addition, products from ornithine metabolism, spermine and agmatine 

aldehyde, are capable of inhibiting NOS activity (Szabo et al., 1994a; Blanz of 

al., 2000). Therefore, it can be envisaged that during antibody and cell mediated 
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acute inflammation, arginase could directly modulate NO production by limiting 

the availability of L-arginine for iNOS and subsequent production of NO. In 

support of the findings in this thesis it has been shown recently that inhibition of 

arginase with L-norvaline in LPS stimulated J774.1 macrophages significantly 

elevated NO production without affecting iNOS enzyme activity (Chang et al., 

1998). Additionally, elevation of NO was inversely related to the levels of 

extracellular L-arginine. A proposed pathway for NOS arginase interactions is 

shown in Figure 7.1 

- urea + ornithine putresine ............ 

arginine '- Induction 

V Polyamine ARGINASE (derivatives) º' 

4 ... ".... ". ". Thl cytokines .... ..... 

ý"""""""""""" Th2cytokines .... ..... º 

V 
induction NOS 

** 

................ r 
. N°-Hydroxy 

.... .. "---. .............. L-arginine 

.......................... NO= I NO + citrulline 

Figure 7.1 Possible regulatoryeffect In arginine metabolism In monocytes. Metabolicmutes 

are represented by continuous arrows, regulatory routes by dashed arrows. + and - denote 

activation and inhibition, respectively. Adapted from Hrabak et al., 1996. 

No immunocytochemistry was performed for iNOS on the inflammatory cells 

recovered from the pleural cavity, therefore the cellular source of NO can only 

be supposed. Since this reaction is PMN dominated, this cell type is the most 

likely source. A possible role for NO may be to down-regulate IL-6 production 
from macrophages (Deakin et al., 1995). This would reduce the number of 

antibody-secreting cells, since IL-6 plays a predominant role in promoting 
differentiation of B-lymphocytes into antibody-secreting cells (Lotz, 1993). 
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Therefore, IL-6 inhibition by NO would be protective in this, by limiting the 

humoral response to antigen presentation in this immediate hypersensitivity 

reaction to BSA. 

In this Arthus reaction, PGE2 levels and COX activity peaked at the resolution 

stage of this model and the iNOS pathway was maximal at the initial phases of 
inflammation. Therefore, both pathways were maximal at different times, 

suggesting that either products from the COX and NOS pathways may modulate 

the activity of their respective enzymes or there is alternate regulation of these 

two pathways independent from direct interactions. Cross talk between the NOS 

and COX enzyme systems has been extensively documented and subject to a 

number of lengthy reviews (Di Rosa et al., 1996), but investigations have 

produced conflicting results. A stimulatory role for NO on prostaglandin 

production can only be proposed in the BSA model due to the temporal 

expression of these mediators. This is supported by evidence from RAW 264.7 

macrophages with a non-functional L-arginine/NO pathway, the nitric oxide 
donor sodium nitroprusside enhanced PGE2 production in response to 

arachidonic acid (Di Rosa eta!., 1996). Similarly, sodium nitroprusside increased 

arachidonic acid-stimulated PGE2 production by murine recombinant COX-1 and 
COX-2 (Di Rosa etaL, 1996), suggesting that NO stimulates PGE2 biosynthesis 

by direct interactions with the COX enzymes, although, direct coupling to the 
heme group is unlikely (Tsai et al., 1994). It can be hypothesised that the 
increase in COX expression and prostaglandin synthesis in this model may be 

a cellular response to further suppress the immune system. Since PGE2 

concentrations similar to those found in inflammatory sites supress lymphocyte 

function in vitro such as responsiveness to mitogens (Goodwin of aL, 1978) and 
cell mediated cytotoxicity (Meerpohl and Bauknecht, 1986). By virtue of the early 

expression of NO in this model, it can be envisaged that NO plays a regulatory 
role on PMN trafficking into the inflammatory site by limiting the response to 

antigen challenge. 

162 



CHAPTER 7. General discussion 

7.1.3 NO in the metBSA-induced pleurisy 

Injection of methylated BSA into the pleural cavity of rats 12 days after 

sensitisation results in a DTH-reaction (Lewis eta/., 1981). This reaction, unlike 

that induced by BSA, is cell-mediated, since the reaction in the rat could be 

passively transferred to naive animals with lymphocytes (Hambleton and Miller 

1988). The resulting inflammatory reaction after challenge was characterised 

by a biphasic response. Six hours after challenge there was an appreciable 

increase in exudate volume and inflammatory cell influx which was PMN 

dominated, this being atypical of a DTH reaction. The reaction observed at this 

time point was via a direct irritant effect, as methylated BSA injected into the 

pleural cavity of unsensitised animal resulted in an mild inflammatory reaction 

with PMNs being the predominant cell type (Moore and Brown, 1996). Post 12h, 

the reaction developed the characteristics of a typical DTH type inflammation, 

with mononuclear cells being the major cell type. The inflammation peaked at 

24h and then declined thereafter. 

iNOS activity and immunoreactivity were measured in inflammatory cells and 

nitrite in cell-free exudates obtained from the pleural cavity of challenged 

animals. Both parameters were maximal at 12h and reached baseline by 24h. 

This profile was mirrored by nitrite levels suggesting that NOS was the primary 

source of NO in this model. It seems likely that NO from iNOS may again have 

a protective role in this model, since the peak of its production was immediately 

prior to the peak in the inflammatory response. Although anti-inflammatory 

effects have been observed by administration of NOS inhibitors In cell mediated 
diseases such as arthritis in MRL-Ipr/lpr mice (Weinberg of al., 1994). It is 

interesting tonote that in this paper NOS inhibitors were given systemically. 

There is a more feasible role for NO in this T -cell mediated model. Firstly by the 

early time of this mediator's expression and secondly from the potent 
immunoregulatory effects NO exerts. Recent detailed studies have shown that 

NO can specifically impairT helper I (Th1) cells, while Th2 cell function appears 
largely unaffected (Taylor-Robinson et al., 1994). Therefore, NO can effect 

163 



CHAPTER 7. General discussion 

Th1/Th2 balance by favouring Th2 responses such as the up-regulation of IL-4 

production (Kalimann et al., 1999). Therefore, there is overwhelming evidence 
to suggest that NO may possibly have an immunosuppressive effect on Th1 

cytokines in this model, favoring the production of anti-inflammatory Th2 derived 

cytokines. 

This work shows that like the BSA-induced pleurisy, arginase activity and PGE2 

production were maximal during the resolution stages of this model. The profiles 

of arginase enzyme activity and PGE2 production revealed that exponential 

elevation of these parameters were greater post the peak of iNOS expression 

suggeting the arguments for the interaction presented for the BSA-induced 

pleurisy may also be true in this model. 

7.1.4 NO in the croton oil-induced murine chronic granulomatous tissue 

air pouch 
In the murine croton oil-induced chronic granulomatous tissue air pouch model, 

carmine content was maximal at 5 days and granuloma dry weight peaked at 7 

days, with both parameters declining thereafter. iNOS activity and nitrite levels 

were maximal at day 7, with NOS protein also maximal at this time point. 

Maximal induction of iNOS protein and nitrite levels coincided with the influx of 

monocytes which are the dominant cell type at this phase of the lesion. It was 

previously shown by immunohistochemistry that IL-1, TNF-a and bFGF 

immunoreactivity were present at the earliertime points of granulornatous tissue 

development (Appleton eta!., 1993). iNOS protein expression and nitrite release 
have been demonstrated to be induced by ILA P, TNFa, INFy and bFGF 

(Suschek et aL, 1995; Lorsbach et al., 1993; Kunz et al., 1997). These have all 
been shown to work in synergy to enhance iNOS induction. PMNs, fibroblasts 

and endothelial cells are also present in this model at 7 days and all are capable 

of producing nitric oxide (Nathan, 1992). Therefore, this increase in iNOS 

protein, activity and nitrite production in the murine air pouch between 5 and 7 
days may be a result of the effects of pro-inflammatory cytokines on the cell 
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types present. 

iNOS protein and activity were significantly reduced by 14 days. In this model it 

was previously shown, by immunohistochemical staining, that TGF-ß levels 

gradually increased between day 7 and 10 to reach a maximum from day 14 

onwards (Appleton eta!., 1993). As TGF-(3 can down regulate iNOS expression 

and activity (Vodovortz et al., 1993), this may explain why iNOS activity was 

significantly reduced at this time point. 

This thesis shows that systemic administration of the selective iNOS inhibitor 

aminoguanidine significantly reduced nitrite levels in cell-free exudates from day 

1-7, without an effect on iNOS protein expression or activity. This was expected 

since aminoguanidine is a competitive enzyme inhibitor (Misko eta!., 1993) and 
has been reported to have no effects on iNOS mRNA (Willis et al., 1994), and 
hence was unlikely to effect de novo protein synthesis. Similarly, the activity 

assay for iNOS provides excess co-factors and substrate (L-arginine) therefore 

any inhibitory effects on activity would be nullified by addition of surplus L- 

arginine. However, cNOS activity was significantly reduced at 5,7,14 and 21 

days suggesting that aminoguanidine had an inhibitory effect on cNOS enzyme 

activity. This is supported by findings from Laszlo and colleagues (1995) who 

showed that aminoguanidine (50mg/kg, s. c) was able to elevate arterial blood 

pressure over a1 hr period. In the literature it is not clear how aminoguanidine 

can affect cNOS enzyme activity, however it is possible that aminoguanidine 

may act as a time dependent irreversible inhibitor of cNOS. 

Two other methods for directly inhibiting NO formation by iNOS within the 
inflammatory site were used. Firstly AE-ITU was injected locally into the air 

pouch and secondly iNOS gene deleted animals (Wei eta!., 1995) were used In 

this model. Although a protein product was detected using the Santa Cruz anti- 
iNOS antibody and showed a similar temporal and spacial distribution to the 

native iNOS protein, this protein was non-functional, since enzyme activity and 
product (nitrite) were at the lower detection limits of the assays used. It was 
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essential to check whether or not the sv129 wild type controls reacted in a 

similar manner to To mice. sv129 mice produced a similar profile of inflammation 

compared with the outbred T0's, with peaks in granulomatous tissue dry weight 

and carmine content being beween 5-7 days. Therefore, sv129 mice were 

deemed suitable for use in this model. 

Unlike the carrageenin-induced pleurisy, inhibition of NO with aminoguanidine 

systemically or by local injection of the iNOS selective inhibitor AE-ITU or iNOS 

gene deletion resulted in a significant inhibition in granuloma formation in this 

chronic model when compared to control animals. This was also evident in the 

general histological appearance of the air pouches, where a reduction in the 

thickness of the granulomatous tissue was observed. Similar results have been 

achieved with NOS inhibition in a number of chronic inflammatory models which 

include, carrageenin-induced granuloma formation (luvone eta!., 1994), adjuvant 

arthritis in rats (Oyanagui, 1994) and a wound healing model in rats (Thornton 

et a/., 1998). Therefore, it is highly conceivable that inhibiting NO may have 

reduced collagen synthesis thereby limiting the size of the resultant granuloma. 

It has been shown quite clearly that NO can affect collagen deposition, since NO 

derived from iNOS stimulates collagen deposition in a model of wound healing 

(Thornton et al., 1998). Additionally, NO donors have been shown to stimulate 

collagen production in normal dermal fibroblasts (Witte at al., 1996), whilst 
inhibition of NO by the NOS inhibitor S-methyl-isothiouronium severely impairs 

collagen deposition in the mouse (Schaffer etaL, 1996). Additional mechanisms 

may be involved, since an increased nitric oxide production in smooth muscle 

aortic cells inhibited the production of the matrix metalloproteinases 2 and 9, 

which are essential in the breakdown of basement membrane and extracellular 

matrix and NO increased the activity of the tissue inhibitor of matrix 

metalloproteinases 2 (Gurjar et al., 1999). Therefore, inhibition of NO would 

result in an increase in matrix metalloproteinase activity and a decrease in the 

tissue resident inhibitors of these enzymes resulting in a more rapid breakdown 

of extracellular matrix, possibly leading to a reduction in granuloma size. Finally, 

up-regulation of iNOS in rat fibroblasts increased the onset and progression of 
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fibrosis in an airways disease model (Romanska et aL, 2000). Again an inhibition 

would likely reduce fibrosis associated with the granuloma and thus its size. 

Therefore, NO maybe pro-inflammatory in this model by virtue of its ability to 

increase collagen deposition and inhibit endogenous MMPs. In which case, the 

reduction of NO in this chronic graulomatous model maybe desirable. 

Maximal iNOS expression and nitrite levels coincided with the peak in vascularity 

and may therefore play a part in the angiogenic response in this model. 

However, little is known about the involvement of NO in inflammation-driven 

angiogenesis, but its effects appear to be sensitive to the assay and the 

concentrations of NO used, with both inhibitory and stimulatory effects ascribed 

(Seed eta!., 1999). All three methods of iNOS inhibition on granulomatous tissue 

dry weight were similar, however the effects on the vascular component of this 

model were different. Systemic administration of aminoguanidine caused a 

significant decreased in neo-vascularisation of the granuloma that was 

proportional to a decrease in the size of this tissue, whereas local injection of 

AE-ITU or iNOS gene deletion resulted in an increase in the vascular index (a 

ratio of vascular volume to granuloma size). The reduction seen with 

aminoguanidine is probably due to this inhibitors effects on eNOS as well as 

iNOS, since NO has been shown to promote endothelial cell proliferation and 

migration both in vitro and in vivo, whilst NOS inhibition suppresses these events 

(Ziche eta!., 1997a; Morbidelli eta!., 1996). In addition, elaboration of urokinase 

type plasminogen activator, a key protease in the initiation of the angiogenic 

process, by endothelial cells is also enhanced by incubation with the NO donor 

sodium nitroprusside (Ziche et al., 1997b). Therefore, inhibiting NO from eNOS 

would have had an inhibitory effect on the angiogenic response. This in 

conjunction with a decrease in granuloma dry weight resulted in a net reduction 

in the vascular index. Local injection of AE-ITU and iNOS gene deletion where 

used as a more selective way of inhibiting iNOS in this model. iNOS inhibition 

by these two methods resulted in no change in the vascular content of the 

granuloma. However, an increase in the vascular index was observed because 

there was a greater net reduction in the size of the granuloma formed with either 
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local injection of AE-ITU or iNOS gene deletion. Therefore, in summary NO 

derived from iNOS did not effect angiogenesis in this model, however, when 

accompanied by a reduction in eNOS there was an inhibitory effect observed on 

the angiogenic response. 

Arginase activity in the murine croton-oil induced chronic granulomatous tissue 

air pouch was between 50 and 100 times greater than in the acute models of 

inflammation. Therefore another functional role for arginase may be predicted 

in this model. Arginase may participate in the fibrogenic processes via the 

synthesis of ornithine-derived proline, an essential precursor for the production 

of collagen. NOS inhibition by oral administration of aminoguanidine was without 

effect on this enzyme within the granuloma. This is surprising since there have 

been a number of reports suggesting that inhibition of NO increases arginase 

activity (Hrabäk et al., 1997; Corraliza et al., 1995). However, in contrast 

abrogation of iNOS activity by gene deletion significantly increased arginase 

activity within the granuloma, although arginase I expression was only slightly 
increased. Arginase activity measurements involves both isoforms of arginase 
(I and II). However, at the time these experiments were conducted, no 

commercially available antibody for arginase II was available. Although arginase 
I protein expression was not significantly altered, it is conceivable that the 

increase in arginase activity may have resulted from increased arginase II 

expression. Therefore, this increase in arginase activity after iNOS inhibition 

supports the proposed hypothesis that arginase acts as a rate limiting enzyme 
in the availability of L-arginine for NO production. This is feasible since the 

maximal enzyme activity of arginase and iNOS occurs at the same time point. 
Similar findings have been demonstrated previously, where nitrate was shown 
to inhibit arginase activity (Hrabak et al., 1996) and conversely, NO inhibition 

increased arginase formation (Cook et al., 1994). 

Inhibition of NO by gene deletion had no significant effect on COX-2 activity in 

the granuloma, however, like the carrageenin-induced pleurisy there was a trend 

to an increase. However, this work suggests that inhibition of iNOS derived NO 
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does not alter COX-2 expression in this chronic model. Although iNOS gene 
deletion does not affect COX-2 protein, it can't be discounted that inhibition of 
NO may alter the profile of prostaglandins produced within the granuloma, by a 

putative effect on down-stream synthases. Therefore this area requires further 

work. 

Surprisingly, iNOS gene deletion did not alter the distribution and expression of 

HSP 70 and HO-1, since NO inhibition has been shown to modulate both HSP 

70 in an acute inflammatory model and HO-1 expression in this chronic model. 
One possible explanation is that levels of these HSP's in this model are low, 

therefore any small changes in levels of these proteins in influxing inflammatory 

cells would be difficult to measure using Western blotting and 
immunohistochemistry. However, overall it cannot be discounted that specific 
inhibition of iNOS has no effect on these proteins in this model at the time points 

measured. However, using an HO-1 activity assay it could be demonstrated that 

in aminoguanidine treated animals there was an increase in HO-1 activity in the 

granuloma at 5 days (data not included). This is in line with previously published 
data from our department that showed in brain homogenates an increase in HO- 

1 activity after administration of L-NAME. Conversely, the NO donor sodium 

nitroprusside dose dependently inhibited HO-1 activity in the same tissue (Willis 

et aL, 1995). Although, the exact function of this up-regulation of HO-1 by NO is 

not clear, it can be postulated that once induced, HO-1 affords protection against 

oxidative damage by two possible pathways. Firstly, in endothelial cells it was 

shown that HO-1 is a cGMP sensitive protein and since one of the classical 

effects of NO is to induce cGMP formation through the activation of guanylate 

cyclase (Polte eta!., 2000), it can be envisaged that NO protects these cells from 

damage by itself through the same mechanism it uses for its biological action. 
Although this mechanism seems probable in endothelial cells, it can not be 

discounted that other cells may utilise different signaling pathways to achieve the 

same result. In experiments conducted in HeLa cells the stable cGMP analogue 
8-bromo-cGMP was unable to produce the same effects seen in endothelial 

cells. Instead it was concluded that NO activated HO-1 in these cells by the up 
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regulation of mitogen activated protein kinase ERK and p38 (Chen and Maines, 

2000). Regardless of the mechanism by which NO induces HO-1 expression in 

a variety of cells, there is a consensus within the field that up regulation of this 

HSP gives cells protection in an inflammatory environment against the massive 
increase in oxidative stress. 

In summary, NO production by iNOS in this model appears to be detrimental to 

the inflammatory process, since it appears to drive granuloma formation in this 

model. 

7.1.5 Effect of aspirin on iNOS and NO in acute and chronic inflammation 

In the rat carrageenin-induced pleurisy oral administration of aspirin dose- 

dependently reduced both exudate formation and influx of inflammatory cells into 

the pleural cavity of treated rats. Not surprisingly aspirin caused a significant 

reduction in PGE2 levels in cell-free inflammatory exudates. The decrease in 

inflammation and PGE2 levels was accompanied by a dose dependent increase 

in nitrite in cell-free exudates, iNOS protein expression and iNOS enzyme 

activity in inflammatory cells recovered from the pleural cavity. 

In light of the data obtained with NOS inhibitors, a second set of experiments 

were devised to further dissect the role of this increase in NO after oral 

administration of aspirin. Injection of AE-ITU into the pleural cavity of rats 
immediately prior to carrageenin and oral gavage of aspirin attenuated the 

increase in nitrite and reversed the inhibition of inflammation observed with 

aspirin alone at 6h. However, the reduction in inflammation at 6h may not be a 

consequence of an increase in protective NO, but rather a reduction In PGE2. 

therfore aspirin was dosed at 4h, a time where levels of PGE2 are subsiding. 
This resulted again in a significant suppression of inflammation and an increase 

in nitrite production in the pleural cavity at 8h. The decrease in inflammation was 

reversed by prior treatment with AE-ITU, which suggests that aspirin, as well as 
inhibiting prostaglandin production, also increases iNOS expression in this 

complement-dependent model of inflammation, and may be an added 
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mechanism by which aspirin exerts its anti-inflammatory effects. Evidence 

obtained from the NOS inhibitor studies suggests that both inflammatory cells 

and endothelial cells participate in the establishment of inflammation induced by 

carrageenin. Therefore, the stimulatory effects of aspirin on the NOS pathway 

was investigated in J774 macrophages and Ea. hy926 endothelial cells. 

To establish that aspirin can further increase iNOS expression in stimulated 

cells, a sub-optimal stimulation was used (LPS alone). As was observed in vivo, 

aspirin significantly elevated nitrite production from J774 macrophages. Asimilar 

result was obtained from endothelial cells and the murine chronic granulomatous 

air pouch, where aspirin administration significantly elevated nitrite, iNOS activity 

and cNOS activity. However, unlike the inflammatory cells removed from the 

pleural cavity, NOS protein expression in the endothelial cells and the chronic 

air pouch model remained unchanged. Therefore, in the chronic model of 

inflammation the induction of NOS activity after aspirin treatment may be a 

consequence of a stimulatory effect of aspirin on endothelial cells, since this cell 

type is predominant throughout the granuloma. 

In hindsight, the increase in NO production by aspirin is not surprising since 

aspirin has been used for may years as an antiaggregatory compound, a 

phenomenon that is associated with not only a reduction in thromboxane B2 but 

also an increase in NO production (Azuma eta!., 1986; Radomski et aL, 1987b). 

Several other reports indicate that aspirin might increase NO levels as presented 
in this thesis. For example, aspirin was able to antagonise the vasoconstriction 

induced by the non-selective NOS inhibitor L-NMMA (Rosenblum et al., 1992) 

and was able to attenuate hypoxia induced contractions in monkey coronary 

artery strips (Toda eta!., 1992). However, little is know about this mechanism of 

aspirin. There is the potential that aspirin can induce NO production and a 

number of papers have shown this to be true in the vasculature (Lopez-Farre et 

al., 1995; Lopez-Farre et al., 1996). The data presented in Chapter 6 indicates 

that this could also be true under inflammatory conditions. 
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The data presented on the effects of aspirin are purely pharmacological 

observation, with no mechanisms dissected. However, the literature provides at 
leasttwo possible explanations for aspirin's induction of NO. The first centres on 

the ability of PGE2 to raise cAMP in a number of cell types. In rat Kupffer cells 

CAMP has been shown to increase the formation of NO (Gaillard et al., 1991) 

and in rat aorta smooth muscle cells an elevation of CAMP positively regulates 

NO production at the level of iNOS mRNA expression (Koide et al, 1993). In 

addition, elevated PGE2 levels in murine macrophages enhanced cAMP 

formation and nitrite release, this resulted in an increase in the parasite killing 

ability of these cells (Mauel eta!., 1995). Contrary to the above literature, cAMP 

elevation was also suggested as the mechanism by which PGE2 could down 

regulate NO production in murine peritoneal macrophages (Raddassi et al., 
1993: Milano et al., 1995). However, the real effect of CAMP on NO production 

may be related to the period of cAMP elevation, since it was demonstrated in 

LPS stimulated J774 macrophages that prolonged elevation of intracellular 

cAMP by PGE2 inhibited iNOS expression (Bulut et al., 1993). In summary, the 

mechanism by which intracellular cAMP upregulates iNOS is still unclear, but it 

has been proposed to increase the stability of iNOS mRNA and/or its 

transcriptional activation (Koide eta!., 1993; Imai eta!., 1994; Muhl eta!., 1994). 

cGMP could be involved in the mechanisms by which aspirin elevates NO 

production, since aspirin treated neutrophils increased cGMP and interfered with 
the (Ca2'); signalling pathway in platelets by an L-NMMA-inhibitable mechanism 
(Lopez-Farre et al, 1995). A similar cAMP/cGMP mechanism on calcium flux 

was demonstrated in endothelial cells (Bolz and Pohl, 1997). It is also known 

that cGMP is a potent blocker of calcium-related activation in numerous cellular 
types including platelets (Kroll and Schafer, 1989). This suggests that aspirin 

could increase NO formation through effects on the secondary messengers 

CAMP and cGMP. 

The second possible mechanism for the induction of iNOS by aspirin was 
suggested by preliminary observations made by Lopez-Farre's group (1995), 

who showed that non-cyclooxygenase arachidonic acid metabolites or 
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arachodonic acid itself may be responsible for the activation of NO by aspirin. 
Arachidonic acid fulfils several criteria to be considered as a possible mediator, 

since it can activate NO release from endothelial cells (Furchgott, 1983) and has 

been proposed as a direct modulator of neutrophil function (Winkler eta!., 1993). 

Indeed, it was suggested that aspirin inhibition of COX caused a shunting of 

arahidonic acid down the 12-LO pathway, leading to the production of 12- 

hydroxy-(5Z, 8Z, 10E, 14Z) eicosatetraenoic acid (12-HETE) in vascular smooth 

muscle cells, since the non-selective LO inhibitor NDGA attenuated salicylate 

induced NO production, whereas the selective 5-LO inhibitor caffeic acid was 

without effect. Furthermore, nitrite production in ILA P stimulated vascular 

smooth muscle cells was enhanced by 12-HETE, but not 15-HETE (Shimpo of 

a/., 2000). A direct relationship between NO and 12-lipoxygenase products have 

also been shown in other cell types that include pancreatic islets (Hotter et al., 
1996; Ma et aL, 1996) and rabbit platelets (Fujimoto of al., 1998). 

Elevation of NO in these cells and inflammatory models may decrease the 

number of leucocytes that would traffic into the inflammatory site, therefore 

adding to the already described anti-inflammatory effects of aspirin. The 

hypothesis presented here for the mechanisms of aspirin in inflammation are 

plausible, however, they remain unproven. Therefore further work is required to 

substantiate these mechanisms in vivo. 

7.1.6 Concluding remarks 
Data presented in this thesis supports the conclusion that NO is an important 

mediator in the processes involved in both the acute and chronic inflammation. 

However, the effect that NOS inhibition has on the inflammatory process differs 

depending on the type of inflammation examined. Therefore, both advantageous 

and deleterious effects can be attributed to NO production. Local NOS inhibition 

in the acute model of inflammation resulted in a significant elevation In 

chemotactic mediators for leucocytes, elevated mast cell reactivity and an 
increase in oxidative stress resulting in a prolonging of this acute pathology. This 

suggest a protective role for NO in this model, by keeping the inflammatory 
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response in check. This is not surprising since NO is extensively documented 

to inhibit neutrophil trafficking in acute inflammatory models. In addition, the 

likelihood of extensive NO mediated damage is limited by the fact that high 

levels of this mediator, in the carrageenin-induced pleurisy, are restricted to 

quite a short time period (-6h). Therefore, it can be envisaged that in acute 
inflammation the beneficial effects of NO probably out-weigh its destructive 

potential. In contrast, NOS inhibition in a chronic inflammation resulted in a 

significant reduction in granulomatous tissue size. This probably reflects the 

complex nature of this inflammatory process, with the model being more reliant 

on additional processes that include tissue formation and remodelling. 
Therefore, simply inhibiting a degree of neutrophil trafficking by increasing NO 

has a minimal effect on granuloma size compared to the stimulatory effects NO 

has on collagen formation. This is supported by the findings in a number of 

chronic pathologies where inhibition of NO by either gene deletion or 

pharmacological interventions in the main has beneficial effects by reducing the 

severity of the ensuing pathology. In conclusion, although NO may down 

regulate the immune system and inhibit neutrophil chemotaxis, the damage 

caused to the DNA and energy metabolism of host cells by high levels of NO 

over a number of weeks outbalances its benefits. 

The interactions that NO has with the heat shock family of proteins in 

inflammation is also reflective of the type of model used. HSP 72 expression was 

significantly increased after NOS inhibition in the carrageenin-induced pleurisy 

with no effect of HO-1 protein expression. However, in the chronic model the 

opposite was true after NO inhibition with aminoguanidine. Similarly, with 

arginase activity, no interaction was observed in the acute non-immunological 

model whereas in chronic inflammation suppression of NO resulted in increased 

arginase activity. Therefore the interaction of these pathways may require 

concomitant expression of their products in close proximity to each other. 

Aspirin increased NO production in all the models and cell lines tested. This 

suggests that either COX products have inhibitory effects on NO production 
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and/or that the effects of aspirin on NO were independent of its inhibitory effect 

on COX. However, regardless of either a direct or indirect effect of aspirin on NO 

formation, this increase in NO production may contribute to aspirins potent anti- 
inflammatory profile. 

lt may be concluded from work presented in this thesis that inhibition of NO as 

a short term therapy during flares in chronic pathologies such as rheumatoid 

arthritis may be of benefit, by limiting the degree of the inflammatory response. 
However, in chronic lesions where excessive granuloma formation occurs it may 
be advantageous to inhibit NO derived from iNOS thereby limiting excessive 

matrix deposition. Therefore, the benefits of NO as a therapeutic target in 

inflammation may be reliant on the type of inflammation, the time and length of 
treatment and the development of non-toxic specific inhibitors. 
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