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ABSTRACT 
Hydroxyapatite(HA) is a highly biocompatible calcium phosphate material which in porous form, 

promotes rapid bone ingrowth and revascularisation. As such it has potential for use as a 

synthetic bone graft substitute. However, due to poor mechanical strength, its use has been 

limited to non-major load bearing applications. In response, secondary phase additions such as 
calcium/phosphate-based glasses have been used to reinforce HA. However, the improved 

mechanical properties obtained by secondary-phase reinforcement are often associated with 
decomposition of the HA to tricalcium phosphate(TCP), which may be undesirable due to the 

increased solubility and controversial biocompatibility of the latter. The aim of this thesis was to 

produce a calcium/phosphate-based additive for reinforcing HA and to investigate the mechanical 

and chemical stability of this composite in a physiological environment. Furthermore, the 

possibility of transferring this technology to porous structures was investigated. 

Prior to investigating the effects of second phase addition on strength and phase stability, the HA 

used in this study was characterized as having a biaxial flexural strength (BFS) of 65+11MPa and 
being chemically stable up to sintering temperatures of 1350°C. Two calcium/phosphate-based 

additives were produced with Ca/P ratios of 0.5 (CAP I) and 0.8 (CAP2); CAP1 was found to be 

amorphous, whilst CAP2 was predominantly crystalline in nature where the crystalline phase was 

primarily Ca2P2O7. The maximal BFS value found for HA doped with 2.5 wt% CAP I 
(CAPIHA) was 27MPa with up to 73%TCP, whilst the CAP2-doped HA (with 2.5 wt% CAP2) 

achieved a maximal BFS of 102±21MPa with up to 13%TCP. Thus CAP2HA was judged to be a 

successful composite suitable for more comprehensive investigation. Studies were carried out to 

decipher the ideal wt% of CAP2 to promote mechanical reinforcement with a minimal presence 

of TCP, using 1,2.5 , 3.25 ,4 and 5 wt % CAP2. The results indicated that 2.5 wt% CAP2HA was 

optimal in terms of both the mechanical and chemical criteria. For investigating mechanical and 

chemical stability, the HA and CAP2HA samples were soaked in 50% strength Ringer's solution 
for periods of 1-30 days. HA retained 60% of its original strength, whilst CAP2HA retained 78% 

of its original strength. In view of the success in using CAP2 as a reinforcing additive, a 

preliminary investigation was carried out using HA and CAP2HA. This involved development of 

a technique for producing porous HA, using a reticulated foam template, with a highly 

interconnected structure and mean porosities and strengths of 66% and 2MPa. Porous samples of 
CAP2HA were also successfully produced however, only mean porosities and strengths of 75% 

and 0.6MPa were achieved. This was attributed to processing complications arising from the 

solubility of Ca2P2O7 in water leading to inhibited sintering, which may be overcome by the use 

of a different binder system. 
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INTRODUCTION 

The sintering characterisitics of hydroxyapatite (Ca1o(PO4)6(OH)2) have an important role in 

affecting its' physical and mechanical properties. The temperature at whichhydroxyapatite (HA) 

is sintered will affect the phase composition, which influences the solubility, and the degree of 
densification, which influences the strength. Extensive studies carried out on HA have revealed 

that it is a highly biocompatible material, which may stimulate boneingrowth in-vivo. However, 

the mechanical properties of HA, in dense and porous form, have been reported as relatively low. 

Therefore, in order for HA to display higher strength, so as to increase its potential for use in high 

load-bearing applications, it requires reinforcement in the form of a sintering aid. 
Calcium/phosphate-based glasses are ideal sintering aids because at high temperatures, they 

achieve viscosities low enough for enhancing densification by means of a liquid-assisted sintering 

process. However, glassy materials are calcium-deficient and will therefore affect the ionic 

behaviour of the composite during sintering. 

Phase decomposition, which may occur at high sintering temperatures, involves the loss of 
hydroxyl (OH") ions. Calcium-deficient materials tend to lose more OH' at high temperature and 
decompose to form a biphasic material containing tricalcium phosphate (TCP), a highly 

resorbable material. Reinforcing HA with a calcium-deficient additive will reduce the overall 
Ca/P ratio, and will therefore cause it to promote decomposition at elevated temperatures, as 

opposed to its' stoichiometric counterpart, which has a Ca/P ratio of 1.67 and does not experience 

decomposition at high temperature. Bone substitute materials that behave as scaffolds, into 

which bone must grow, must not resorb too quickly in-vivo. Therefore it is fundamental to add 

an appropriate amount of the additive to achieve a balance between the amount of liquid-assisted 

sintering and the decomposition to TCP. 

This thesis details a systematic study of the production and characterization HA, reinforced with 

glassy phases, in the hope of improving the strength, whilst minimising the decomposition to 

TCP. The chemical, mechanical and microscopical properties of the HA and its' reinforced 

composites were investigated in addition to the in-vitro assessment of biocompatibility. 

Following the identification of the composite with ideal physical and mechanical properties, an 

investigation into transferring this technology to porous structures was carried out. 
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CHAPTER 1 
STRUCTURE AND PROPERTIES OF BONE 

This thesis is concerned with the production and characterization of materials used to replace bone, and 
the purpose of this chapter is to provide insight into the constituents, structure, and function of the original 
tissue to be replaced. 

1.1 INTRODUCTION 

The skeleton is the structural and supportive framework of the body, which enables 

motion in vertebrates. The structure consists of bone, which is a hard, connective tissue 

that has a complex heirarchy of organised structures. Bone consists of cells embedded in 

mineralised tissue which, in turn, is composed of an organic matrix of collagen fibres 

reinforced by a mineral filler, hence bone is a composite. Furthermore, by delving deeper 

into the micro- and ultrastructural levels of bone, it can be shown that bone is a composite 

on many levels. 

The functions of bone are mechanical and metabolic in nature. The former refers to the 

protection of vital organs as well as the provision of structural support, whilst the latter 

refers to the fact that bone acts as a reservoir for the calcium and phosphate ions needed 

for metabolism. The different structures of bone are adapted to the variety of mechanical 

functions that bone fulfills, hence the existence of structure-function relationships, which 

will be discussed in this chapter. 
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1.2 CONSTITUENTS OF BONE 

The main constituents of bone are cells embedded in an extracellular matrix. There are 

two phases present in the extracellular matrix, namely an inorganic phase and an organic 

phase. The inorganic phase is composed of a calcium/phosphate mineral similar to 

hydroxyapatite. The organic phase is composed, primarily, of collagen (90-95%) 

(Vaughan, 1970) and the remainder is a homogeneous medium called ground substance, 

or cement (Pritchard, 1972), containing extracellular fluid and proteoglycans (Black et al, 
1998). This ground substance is considered to be the phase in which discrete fibrils and 

crystals are embedded amongst mucopolysaccharides, glycoproteins, lipids, carbonate, 

citrate, sodium, magnesium, and fluoride (Pritchard, 1972), resulting in a mixture of 

proteins and mineral salts. 

1.2.1 ORGANIC COMPONENT 

Collagen is a protein that occurs in calcifying as well as non-calcifying tissues, and is 

found in several varieties. The form of collagen found in bone is referred to as type 1 and 

is comprised of three polypeptide chains that make up the collagen molecule, which are 

arranged in a triple-helix formation. Each collagen molecule, termed tropocollagen, 

measures about 300 nm in length, and together they are organised in highly ordered 

fibrils, which are held together by inter- and intra-molecular cross-links. This tough 

organic matrix provides a framework upon which the mineral component is deposited 

within the bone. There is much argument as to the way in which the collagen fibrils are 

arranged. One model which seems to be the most commonly accepted is that proposed by 

Grant et al (1965) in which filaments 2800 nm (28000 A) in length are divided into five 

bonding zones and four non-bonding zones with respective approximate lengths of 26.5 

nm (265A) and 37.5 nm (375A) (Figure 1.1). The remaining 5% of the organic matrix 

consists of non-collagenous proteins, which are closely associated with bone collagen, in 

terms of promoting the initial deposition of apatite mineral and regulating the size, 

2 



CHAPTER 1 
STRUCTURE AND PROPERTIES OF BONE 

orientation and growth rate of bone mineral crystals. These non-collagenous proteins are 

phosphoproteins, glycoproteins, gamma carboxy-glutamic acid proteins, and 

proteoglycans. 
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Figure 1.1 Diagrammatic scheme proposed for the organization of tropocollagen molecules into fibrils 
(o = overlap zone; h ='hole' zone) (Grant et al, 1965) 

1.2.2 INORGANIC COMPONENT 

The mineral/inorganic phase of bone is incorporated into the organic matrix, and is 

principally composed of calcium phosphate crystals. The major crystalline salt present in 

bone is similar to hydroxyapatite ( Ca, o(PO4)6(OH)2 ). Fernandez-Moran (1957) found 

that deproteinated bone, when observed at high magnification using electron microscopy, 

exhibited myriads of tightly packed, minute crystals 3-5 nm wide and up to 60 nm long. 

Engstrom (1960) discovered that these crystals gave an X-ray diffraction pattern similar 
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to that of the above-mentioned hydroxyapatite, hence the inorganic component of bone is 

often referred to as hydroxyapatite. However, this is strictly incorrect as natural bone 

mineral is a calcium deficient carbonate substituted apatite additionally containing other 

ions such as Na+, Mgt+, F, and Cl'. The mixture of soft, organic collagen and hard, 

crystalline phases provide bone with elastic properties, whilst maintaining mechanical 

strength. Collagen provides ductility and bone mineral provides the mechanical integrity 

sufficient to sustain body weight and to enable motion. Together, collagen and mineral 

make a biological composite with unique properties that shall be discussed later in section 

1.6. 

1.3 STRUCTURE OF BONE 

1.3.1 MACROSTRUCTURE 

In the mature skeleton, two types of bone structure are seen macroscopically: 

" Compact, or cortical bone, is mostly situated in the long shafts of the long bones, eg. 

femur, tibia, humerus, and radius, where it surrounds the marrow cavities, and covers 

the ends of the shaft. 

" Spongy, trabecular, or cancellous bone, is found largely in the flat bones, in the 

vertebrae, and in the ends of long bones, and consists of a foam-like structure of pores 

and struts. Cancellous bone has been classed as a foam (Gibson and Ashby, 1988) 

with a mixture of open and closed porosity, whereby the open foams have 

interconnecting cells and the closed foams consist of cells, which are separate from 

their neighbouring cells. 

The following diagram illustrates the relative structural organization between 

cortical/compact bone, cancellous/spongy bone and the marrow cavities between both the 

trabeculae and within the cortical bone: 
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Figure 1.2 Structure of long bone shaft showing the location of the compact and spongy bone (Weston 
1985) 

Cortical bone may be regarded as the hard outer skin of the long bone, encapsulating the 

marrow cavity in the shaft and cancellous bone in the epiphyseal regions. The cellular 

encapsulating medium of long bone is the periosteum, which consists of two layers; an 

inner, cellular, osteogenic layer, and an outer, fibrous connective tissue layer conveying 

the blood vessels and nerves supplying the bone. A further layer of cells lines the inner 

layer of the central medullary canal, i. e. the endosteum. 
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1.3.2 MICROSTRUCTURE 

As mentioned in the previous section, bone is categorised as either cortical or cancellous, 

on a macrostructural scale. However, there are two chief microstructural types of bone; 

woven or coarse-fibre, and lamellar or fine-fibre bone respectively. Cortical bone arises 

from both woven and lamellar bone enclosing small vascular channels, while cancellous 

bone results from the permeation of woven and lamellar bone by many large vascular 

spaces. These spaces, or pores, may have an aggregate volume equal to or greater than 

that of the bone matrix. The following sections contain the principal features of woven 

and lamellar bone. 

1.3.2.1 Woven bone 

Woven bone, otherwise known as coarse-fibred bone, first appears in embryonic 

development as the bone is developing but is soon replaced on/after birth by another type 

of bone, known as mature lamellar bone, which has a higher mineral content. After two 

or three years, replacement is complete and the processes of resorption and replacement 

are initiated. The mature lamellar bone 'generally replaces the woven bone except at 

certain sites such as the tooth socket, at cranial sutures (Cowin et al 1986), and near 

tendon insertions and ligament attachments (Vaughan, 1970). Woven bone is also 

characteristic of early fracture callus at fracture sites due to its association with rapid 

formation and active growth. 

As stated previously, woven bone may enclose small channels or large spaces, but in its 

commonest form, it consists of an irregular array of spaces separated by walls of 

substance of varying thickness, much like a porous structure containing pores separated 

by struts. These strut-like walls are referred to as trabeculae, within which they contain 

coarse collagenous fiber bundles, which interweave in a random manner, thereby running 

in all spatial directions, unlike the characteristically ordered arrangement of lamellar 
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bone. These fibre bundles are commonly referred to as osteogenic fibres and between 

them and the calcified bone matrix lies "osteoid", a zone whereby the fibres are not yet 

calcified. Another characteristic of woven bone is the random distribution of osteocytes 

in the bone matrix (Figure 1.3), and the random orientation of osteocytes with respect to 

the vascular channels, as opposed to the relative order of such in lamellar bone. 

: 
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Figure 1.3 3-D representation of differences between (a) Woven bone and (b) Lamellar Bone (Hancox, 
1972) 

In terms of appearance, the particular plane of section of woven bone can affect its 

perceived structure. For example, in some sections the bony structure may resemble a 

mesh of wire whilst in other sections, the impression is given of a series of parallel 

trabeculae with few cross connections (Pritchard, 1972). However, the overall three- 

dimensional appearance reveals a honeycomb-like structure with the majority of the 

blood vessels running in a parallel fashion. 

7 



CHAPTER 1 
STRUCTURE AND PROPERTIES OF BONE 

1.3.2.2 Lamellar Bone 

Lamellar bone, otherwise known as mature bone, is a more slowly forming tissue which 

differs from woven bone mainly because it has fine, organised collagen fibres in the form 

of sheets, i. e. the lamellae, and an ordered, regular array of osteocytes (Figure 1.4). 

Numerous layers of lamellar bone may accumulate on the outer or periosteal surface of 

bone, forming a thick, cortical plate. However, only two or three layers of lamellar bone 

are present in the inner or endosteal surface of bone. 

Lamellar bone is present in three main forms. Firstly, the lamellae may just lie on top of 

each other, in stack-like extended parallel arrays of lamellae (often called circumferential 

lamellar bone). Secondly, concentric lamellae are present in the form of cylinders, 

whereby the lamellae are arranged in concentric circles around each other. Furthermore, 

the osteocyte lacunae are arranged concentrically, within each concentric lamella. 

Thirdly, interstitial lamellae consist of layers of lamellae interposed between osteons, 

often as a remainder from the normal turnover of bone resorption. 

With regards to the concentric lamellae, the above mentioned cylinders are referred to as 

osteons, which may fill spaces left as a result of the rapid growth of woven bone to form 

a mixed bone type called fibrolamellar bone (Weiner et al, 1999). This constitutes so- 

called highly elongated primary osteons. Osteons may alternatively be produced 

secondarily, following bone remodelling whereby earlier formed bone is removed. 

Secondary osteons are of cylindrical form and surround what is called a Haversian canal; 

this constitutes a Haversian system. 

The purpose of the Haversian canal is to act as a conduit for the blood vessels that 

nourish bone. As seen in Figure 1.4 (Vaughan, 1970), osteocytes surround each 

Haversian system and communicate to one another through their canaliculi, up until the 
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cement line, after which communication stops. The cement line contains each Haversian 

system, and is the characteristic end feature of an osteon. Another important feature of 

Figure 1.4 is the variably sized Haversian canals, whereby the larger canals are indicative 

of bone resorption and have an irregular edge. These types of canals are called resorption 

cavities where bone mineral and matrix may be removed whilst osteoid tissue is being 

laid down in another area of the cavity. The osteoid tissue becomes mineralized as it is 

laid down in the Haversian system. 
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Figure 1.4 Cross-section of adult cortical bone to show the arrangement of Haversian canals, resorption 
cavities, osteocytes with connecting canaliculi and cells lining the surfaces (Vaughan, 1970) 

According to Riqles et al (1991), only large animals have a tendency to produce mature 

bones almost entirely composed of osteons, whereas in smaller animals, the bone remains 

composed of initially deposited primary lamellar bone. In cases where there are 

concentrated areas of osteons in smaller animals, they are often associated with points of 

ligament or tendon attachment. 
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1.3.3 ULTRASTRUCTURE 

The ultrastructure of bone refers to the intimate arrangement of collagen fibers and bone 

mineral crystals. There are many hypotheses in the literature as to the bone mineral 

crystal shape, the mechanism and site of nucleation, and how collagen fibres and bone 

mineral crystallites are related to each other. However, there are significant difficulties 

associated with deciphering these parameters, which lead to variable results and general 

disagreement; as a result, currently the nature of the ultrastructure of bone is unresolved. 

However, there is general agreement that there are many complex processes involved in 

the mechanism of the mineralisation of the collagen, which mostly depend on enzymatic 

reactions that result from ion/matrix interactions. Unfortunately, it is very difficult to 

investigate the crystal organization of bone due to the difficulties in preparing thin 

specimens containing mineral for transmission electron microscopical examination 

without incorporating preparation artefacts. 

In 1966, Pautard proposed that ionic calcium/phosphate was originally bound to a non- 

collagenous component of the matrix; bone mineral crystals were then thought to nucleate 

on the collagen. In terms of orientation, White et al (1977) proposed that within the 

collagenous matrix, the bone mineral crystals evolve in a way such that the c-axis of its' 

crystal is always parallel to the fibre axis of the collagen. This is consistent with earlier 

findings determined with electron microscopy (Fitton-Jackson et al, 1956; Fernandez- 

Moran, 1957). Furthermore, the way in which the collagen fibrils are woven influences 

the calcifiability of bone collagen, thereby regulating mineralisation, and controlling the 

size of the mineral crystallites. This highlights the importance of collagen for bone 

formation and development. 
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Despite the various theories, it is safe to assume that the key to determining the 

ultrastructure of bone is to investigate the manner in which the crytals are arranged in the 

mineralized collagen fibril, the basic building block. More recently in 1986, Weiner et al 

showed that the crystals are arranged in parallel layers through the fibril, which is 

consistent with not only the authors mentioned in the previous paragraph, but also with 

the findings of Landis et al (1993) who confirmed his data with TEM tomographic 

studies and also with Erts et al (1994) who used atomic force microscopy to study 

mineral orientation. Rho et al (1998) also advocates the theory that the mineral crystals 

grow with a specific crystalline orientation, i. e. that the "c" axis of the crystals are 

roughly parallel to the long axis of the collagen fibrils. Furthermore, they reported that 

the plate-like apatite crystals of bone occur within the discrete spaces within collagen 
fibrils, as demonstrated in Figure 1.5 (Rho et al, 1998). 

The question of whether the layered arrangement of the crystals in one collagen fibril is 

alligned with neighbouring fibrils has yet to be established. 
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Figure 1.5 The organization of bone mineral crystals within each collagen fibre and between collagen 
fibrils (Rho et al, 1998) 

1.4 BONE CELLS AND THEIR FUNCTION 

There are three groups of bone cells, namely the osteoblasts, osteocytes, and the 

osteoclasts. The osteoblasts and osteoclasts are involved with the remodelling of bone, in 

the sense that the osteoblasts are responsible for bone deposition while the osteoclasts are 
involved in bone resorption, and the osteocytes are said to play an important role in 

mineral homeostasis and the maintenance of the bone matrix; the location of these cells is 

illustrated in Figure 1.6. 
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Figure 1.6 Location of cells associated with bone formation (periosteal surface) and bone resorption 
(endosteal surface) (Vaughan 1970) 

Osteogenic precursor cells, known as pre-osteoblasts or osteoprogenitor cells, are situated 

in the periosteum and give rise to osteoblast formation. The osteoblast is a differentiated 
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functional cell, which may further differentiate into an osteocyte. Previous theories stated 

that osteoblasts may also fuse with other cells to become part of an osteoclast, however it 

is now generally known that the fusion of separate monocyte cells results in the formation 

of an osteoclast. 
Osteoblasts in actively growing bone tend to be cuboidal in shape, with an irregular 

contour, particularly on the matrix surface where long processes called canaliculae 

penetrate the adjacent osteoid and mineralised matrix. The osteoblasts are involved in the 

mechanism of bone deposition/apposition, and are therefore required to balance out bone 

resorption by the osteoclasts. Initially, the osteoblasts secrete collagen monomers and 

ground substance (mainly proteoglycans). These collagen molecules polymerise rapidly 

to form collagen fibers, resulting in the production of osteoid (newly formed organic bone 

matrix prior to calcification). During the formation of the osteoid, osteoblasts may 
become trapped within the matrix, and then differentiate into osteocytes. Calcium salts 

start precipitating on the surface of these collagen fibers, several days after osteoid 
formation, which provide nucleation sites. During a period of 7-14 days, the growing 

precipitates mature into bone mineral (substituted apatite) crystals via crystallite growth 

and ageing. 

Within the skeleton, osteoblasts are continually depositing bone tissue, at the same time 

as bone is being resorbed where osteoclasts are active. During periods of large growth 

rates, such as childhood, more bone is being deposited than resorbed, resulting in 

increases in the total bone mass, due to a higher activity in the osteoblasts. When 

adulthood is reached and growth is finished, there is normally an equilibrium maintained 

between the activity of the osteoblasts and the osteoclasts. As a result of the hormone 

imbalance during the ageing process, the osteoclasts become more active, and more bone 

is resorbed than deposited, resulting in a reduction in the total mass of bone. Osteoclasts 

are large, phagocytic, multinucleated cells that are normally active on less than 1% of the 

bone surfaces, whose absorptive activities are controlled by the parathryoid hormone. 

Bone absorption occurs at the ruffled border of the osteoclasts, where they secrete 
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enzymes that digest/dissolve the bone matrix, and acids that cause dissolution of the bone 

salts. 

As mentioned earlier, osteoblasts differentiate into osteocytes when they become trapped 

within the surrounding osteoid during bone apposition. Osteocytes occupy cavities in 

bone tissue called lacunae, and they have cytoplasmic processes that extend into 

canaliculae with which they can make contact with other osteocytes. If there is a break in 

the canalicular network, osteocyte death may occur, which is often associated with bone 

death, where the area of bone in which osteocyte death has occurred becomes necrotic 

and is then removed by osteoclasts. The osteocytes are located in the inner, osteogenic 
layer of the periosteum, and in young woven bone they are present as closely but 

irregularly packed cells that are almost indistinguishable from the osteoblasts from which 
they were derived. The relationship between the osteocyte and the surrounding 

mineralized matrix is complex in that the osteocyte mediates the continuous exchange of 
both mineral and organic components between the blood and the matrix. 

1.5 BONE BIOMECHANICS 

1.5.1 RESPONSE OF BONE TO MECHANICAL LOADING 

The discipline of mechanics can be applied to bones, which are objects that obey the laws 

of mechanics. Mechanics is a physical science that deals with the effects of forces on 

objects, and Sir Isaac Newton in 1707 defined three laws of motion, which alongside the 

laws of Robert Hooke in elasticity, form the foundation of the mechanics of elastic 

objects such as bone. Newton's third law of motion, i. e. every action has an equal and 

opposite reaction, underlines the basis of bone remodelling. 

The way in which bone responds to a mechanical environment was described by Wolff in 

1892 and is known as Wolff's law (Wolff, 1892). Wolff desribed bone biomechanics as 
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an extrapolation of Newton's third law of motion in that when a stress is imposed on 
bone, more bone is laid down (the action being the stress, the equal and opposite reaction 
being the bone deposition), and when a stress is not imposed, the bone is resorbed. Bone 

shows a bioelectric response to mechanical stresses, which is reminiscent of 

piezoelectricity, yet studies by Pollack et al (1984) suggest that piezoelectric phenomena 

do not play a significant role in wet bone. Pollack et al (1984) suggested that streaming 

potentials generate the transmission from electric signals and mechanical stress to bone 

formation. Nevertheless, bone has different mechanical properties depending on location, 

i. e. strong in areas that undergo large stresses, which are discussed further in section 1.6. 

1.5.2 STRESS MEDIATION IN REMODELLING 

The continual remodelling of bone is extremely valuable because it allows bone to 

respond to changes in the stress patterns imposed on the bone. This feature enables bone 

to change its strength in response to the loads/strains to which it is exposed, such as 
thickening when subjected to heavy loads. Stress patterns determine the amount of 

remodelling and therefore the resulting shape of the bone as a function of osteoblastic 

activity, i. e. the amount of bone deposition, which increases with the amount of 

stress/strain that the bone experiences. For example, athletes tend to have heavier and 

larger bones than people who do little, regular exercise. Hoshi et al (1998) studied the 

effects of exercise training on the bone density of mice of various ages and discovered 

that exercise-training at every age suppresses age-associated loss of bone density, such as 

in osteoporosis. These results suggested that mechanical stimulation does affect 

osteoblastic activity and therefore, that osteoblastic deposition and calcification of bone 

may be stimulated by regular patterns of exercise, whether continual or oscilating. 

Bone's ability to remodel is also beneficial with respect to fracture healing, for example if 

a long bone is broken in its centre and heals at an angle, there is increased deposition in 

the `inside' under of compression, and bone absorption in the outside area of tension (see 
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Figure 1.7). So, bone mechanically responds to stress by means of an adaptive 

remodelling mechanism. In young children who experience rapid bone remodelling, this 

adaptive behaviour can eventually straighten out the leg. This sort of fracture healing is 

common amongst minor fractures; however, when a major fracture has occurred which 

neccessitates the use of fracture fixation devices, sometimes the adaptive healing process 
includes side effects. Cattermole et al (1997) investigated the degree of bone 

mineralization around fracture sites along the tibia held by fracture fixation devices, and 
discovered that the patients who were immobilised suffered from "dis-use osteoporosis", 

whereby there was a large decrease in proximal and distal bone density along the entire 

tibia. 
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Figure 1.7 Stage of bone remodelling with respect to fracture healing. (a) original bone with location 

of area to be fractured (b) bone after fracture (c) simultaneous deposition of bone in inside/resorption of 
bone on the outside (d) final product/straight bone. 
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1.5.3 STRESS THERAPY IN FRACTURE HEALING 

Another feature Cattermole et al (1997) found common to all tibial fracture sites was 

bone resorption in response to the actual fracture, termed post-traumatic osteoporosis. 

Cattermole et al (1997) discovered an accurate, precise and minimally invasive means of 

quantifying the extent of mineralization at the fracture site, i. e. dual energy x-ray 

absorptiometry, which could be useful in prediciting healing potentials. This sort of 

technique is very helpful for patients experiencing posttraumatic or disuse osteoporosis 

because it serves as an indication that perhaps subjecting the patients' leg to minor loads 

may speed up the healing process. Inman et al (1999) reinforced this idea in their studies 

with immobilized rats who were experiencing bone loss due to disuse. They found that 

subjecting the rats' tibias three times a week to variable loads prevented the decline in 

bone density seen in the control rats attenuated decreases in ultimate load and stiffness. 

Periosteal mineralization was stimulated by the loading regime, which helped to maintain 

the bone density. Of course, human patients may object to having their healing legs in 

plaster subjected to stresses on frequent basis but it may be benenficial in the long term. 

1.5.4 TISSUE DIFFERENTIATION IN RESPONSE TO MECHANICAL STIMULUS 

There is confusion in the literature concerning the influence of mechanical loading on 

tissue differentiation as a result of conflicting biological observations. Much of this 

confusion results from trying to identify and understand the associated physical 

environment as well as the full description of the mechanical stimuli applied to the tissue. 

Carter et al (1991) summarized the concepts of tissue differentiation in terms of 

distortional strains and hydrostatic stresses in Figure 1.8. This figure indicates that the 

complete loading history will determine tissue response. Extending these theories and 

applying them to bone implant materials, under typical conditions, the tissue at the bone- 
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implant interface is oxygenated enough to fall to the right of the "vascularity" line in the 

model, therefore preventing the differentiation to cartilage because of a low oxygen 

supply. 

Taking these theories further, one can postulate that in a porous bone replacement 

material, control of porosity becomes critical to the formation of bone tissue. In a highly 

porous material, tissue differentiation to bone will be ensured by the nature of the open 

structure promoting vascularization and oxygenation, while a low porosity, closed 

structure will favour the formation of cartilagenous tissue. 

Distortional 
Strain 

Hydrostatic 
º Stress 

History 

Distortional 
Strain 

/drostatic 18 Stress 
History 

Figure 1.8 The effect of mechanical stimulus on the tissue differentiation of bone (Carter et al, 1991) 

(-) compression E- 0 -*- tension (+) 
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1.6 MECHANICAL PROPERTIES OF BONE 

Many studies have been carried out to provide a broad under-study of the mechanical 

properties of bone as there are no set of definite properties due to the degree of structural 

variation from one location to the other. However, generally the properties under 
investigation, the test parameters, the bone types, and the species from which the bone 

was derived, are specific to each study, almost eliminating valid comparisons between 

investigations, which can be frustrating. However, the mechanical properties that will be 

regarded in this section are defined as follows (Callister, 1994): 

Ultimate Tensile Strength = The maximum engineering stress in tension that may be 

sustained without fracture 

Shear Strength = The maximum engineering stress in shear that may be sustained without 

fracture. 

Yield Strength = The stress required to produce a very slight yet specific amount of 

plastic strain. 

Shear Modulus = The ratio of shear stress to shear strain; otherwise an indication of 

rigidity. 

Ultimate Compressive Strength = The maximum engineering stress in compression that 

may be sustained without fracture. 
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Fracture Toughness = Critical value of the stress intensity factor for which crack 

extension occurs. 

Impact Energy =A measure of the energy absorbed during the fracture of a specimen of 

standard dimensions and geometry when subjected to rapid (impact) loading. 

Apparent Density = The mass divided by the total volume of bone matrix (i. e. total 

volume is indicative of open and closed pore spaces). 

1.6.1 CORTICAL BONE 

Much literature has been published regarding the mechanical properties of cortical bone, 

the general consensus being that the mechanical properties are dependent on the bone 

mineral content. The data gathered by various authors shall be organised as follows: 

Table 1.1- General comparison of mechanical properties 
Table 1.2 - Comparison of age effects on mechanical properties 

Table 1.3 - Effect of immobilisation on mechanical properties 

Table 1.4 - Effect of differing ion solutions on mechanical properties 

In cortical bone, there is a periodic array of segments within each collagen fibre, and bone 

mineral crystals lie adjacent to and are bound tightly to each segment. This close bonding 

prevents shear, in which the bone mineral crystals and collagen fibres move and slip out 

of place; this is important to the maintenance of bone strength. Furthermore, the 

segments of adjacent collagen fibers overlap each other, hence the bone mineral crystals 

overlap each other. The degree of bonding between the bone mineral and collagen fibers 

gives the bone tissue versatile properties; the collagen fibres have good tensile strength, 

while the bone mineral crystals have good compressive strength. 
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With reference to Table 1.1, cortical bone appears to be a stiff material with high 

compressive strength. The compressive strength of cortical bone is higher than the tensile 

strength, both of which are higher than the shear strength. Therefore, one can conclude 

that cortical bone is strongest in compression, and weakest in shear. The stresses 
involved in compression, tension, and shear are multidirectional, and therefore because 

the strength values differ according to the type of stress induced, it can be concluded that 

cortical bone is anisotropic, i. e. it has different physical properties in different directions. 

The general trend of the data inTable 1.2 demonstrates that cortical bone becomes weaker 

and stiffer with age, with regards to the ultimate tensile strength, the fracture toughness, 

and the yield stress. Gaynor-Evans (1975) attributed bone weakness in general to stress 
concentrations around the cement lines in the osteons; he found that older men had many 

more osteons per mm2 than the younger men (despite the fact that the osteons were much 

smaller), hence more likely sites for stress concentrations leading to loss of strength. 
Gaynor-Evans (1975) also noticed that the Haversian canals in older men were larger than 

that of younger men, which increases porosity and decreases density, all of which 

attribute to the marked lower mechanical properties; Ueshira had reported similar results 
in 1960. From this literature, it appears that despite the fact that Haversian canals do not 
have sharp corners, they may create areas of higher stress concentration at which 

microfractures may occur. 

As evident in Table 1.3, Kaneps et al (1997) found that immobilisation caused the 

ultimate tensile strength and the Young's Modulus of canine bone to decrease. This is 

consistent with section 1.5.2, which discusses the effect of stress on bone tissue, whereby 

bone grows in response to stress, and loses density when the stress is taken away, hence 

the lesser the ability to sustain loads. 
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As demonstrated in Table 1.4, Kotha et al (1998) found that placing bone tissue in an 

environment of fluoride ions decreased the mechanical properties of cortical bone in 

tension. It was hypothesised that the fluoride treatment decreased the Young's Modulus, 

the yield stress, and the ultimate tensile strength by converting small amounts of bone 

mineral to mostly calcium fluoride. This in turn decreased the amount of structurally 

effective bone mineral content and possibly effected the interface bonding between the 

organic matrix and the bone mineral. This data suggests that perhaps there are ways of 

substituting ions in bone mineral that may have an opposite effect and be advantageous 

with regards to the mechanical properties. 
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1.6.2 CANCELLOUS BONE 

Cancellous bone, structurally an open cell foam, is weaker than cortical bone. This is due 

to the reduction in apparent density resulting from a high degree of macroporosity, due to 

the increased size and frequency of the vascular channels, as opposed to the 

microporosity found in cortical bone. Lindahl (1976) and Galante (1970) reported a linear 

relationship between the compressive strength of cancellous bone and the apparent 

density, i. e. the lower the apparent density, the lower the strength. Currey (1998) 

similarly reported that the mechanical properties of cancellous bone are mainly a function 

of variation in apparent density in addition to the structure of the trabeculae, i. e. the 

texture and degree of macroporosity. Kang et al (1998) found that the apparent density 

and strength of canine cancellous bone correlate well, as seen in Table 1.5. A 

mathematical relationship was used by Rice et al (1988) to describe this relationship, in 

that the strength/elastic modulus of bone are proportional to the square of the apparent 
density. 

There is considerable data available describing the mechanical properties of cancellous 
bone in compression, where the anisotropy of cancellous tissue results in well-defined 

anatomical variations in strength. A recent study by Sugita et al (1999) highlighted the 

importance of mechanical anisotropy in osteoporotic bone in the proximal femur and 

observed a strong dependence of mechanical properties on the loading direction. It was 

concluded that the osteoporotic proximal femur was more prone to fracture when stress 

was applied in the longitudinal direction compared to when stress was applied in the 

transverse direction. 

The following tables list the mechanical properties of bone when subjected to 

compressive stresses in a longitudinal direction. The lack of data in the literature 

regarding other mechanical properties reflects the practical difficulties associated with 

specimen preparation and clamping when dealing with brittle porous materials. 
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Table 1.5 - Strength and density of canine cancellous femoral bone 

Table 1.6 - Mechanical properties of cancellous femoral bone 

Table 1.7- Mechanical properties of human cancellous vertebral bone 

Table 1.8 - Mechanical properties of human miscellaneous cancellous bone 

From the tables, it can be seen that cancellous bone is strong in the femoral regions and 

much weaker along the vertebrae. This is consistent with the theory that the strength of 

bone correlates with its' demands. The femur is subjected to much higher loads than the 

bone around the spine, due to walking, running, etc; therefore the difference in strength is 

inevitable and expected. It is often interesting to compare the mechanical properties of 

human cancellous bone to that of other species. For example, Kang et al (1998) 

discovered that the compressive strength of canine cancellous bone in the femoral head 

was 29±4 MPa. The strength difference compared to that of human bone highlights the 
fact that the strength of bone is also subject to its function in that bone grows and 

strengthens in response to stress; an average human leg only experiences short periods of 

running and walking, whereas canine bone suffers much more impact and fatigue, hence 

has stronger cancellous bone. 

Recently, Rho et al (1998) made several unsuccessful attempts at predicting the 

mechanical properties of bone by applying the composite rule of mixtures formulae. It 

was decided that an accurate model needed to include the molecular interactions or 

physical mechanisms involved in the transfer of load across the bone material subunits, 

which of course would be particularly challenging as the bonding mechanisms between 

the organic and inorganic components, on an ultrastructural level, have not as yet been 

clearly established. In 1997, Rho et al did construct a successful model for predicting the 

mechanical properties of bone whereby Broadband Ultrasound Attenuation and Fractal 

Analysis was used; a significant correlation was found between fractal dimension and 

density, which was promising because density plays an important role in determining the 

mechanical properties of trabecular bone. However, bone macrostructure was not 

considered in this study and in order for the mechanical properties of bone to be fully 
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understood, further investigations at the constituent and structural level of bone are 

required. Recently, Nicholson et al (1999) demonstrated that quantitative ultrasound 

could be applied clinically in the measurements of sound velocity and bone mineral 

density as good predictors of the elastic modulus in calcaneal cancellous bone. 

Table 1.5 Strength and density of canine cancellous femoral bone 
Bones Apparent Density (g. cm) Ultimate Compressive 

Strength (MPa) 

Femoral Head 1.17 ± 0.17 29 ±4 

Medial Femoral Condyle 0.89 ± 0.12 24 ±4 

Lateral Femoral Condyle 0.69 ± 0.13 14 ±4 

Medial Tibial Plateau 0.52 ± 0.11 10 ±3 

Anterior Tibial Plateau 0.41 ± 0.11 5±2 

Table 1.6 Mechanical properties of cancellous femoral hone 
Author Year/ Area Compressive Ultimate Apparent 

Type Modulus Compressive Density 
(MPa) Strength (g. cm-3) 

(MPa) 
Kang et al 1998 Femoral Head 428 t 237 29 ±4 1.17 ± 0.17 

canine 
Kang et al 1998 Femoral 317 t 98 19 ±5 0.89 ± 0.12 

canine Condyle 

Shoenfeld et al 1974 Femoral Head 344 t 28 

human 

McElhaney 1965 Femoral Head 1518 t 1172 

human 

Gaynor-Evans 1961 Femoral Head 581 ± 17 

et al human 

Gaynor-Evans 1961 Femoral Head 287 ±9 3.8 t 1.1 0.75 t 0.18 

et al human 
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Table 1.7 Mechanical Dronerties of human vertebral cancellous bone 
Author Year Area Young's Modulus (MPa) 

Zysset et al 1999 Neck 6.9 ± 4.3 

Nicholson et al 1997 Spine 43-165 

Knese 1988 Spine 57 

Table 1.8 Mechanical properties of miscellaneous human cancellous bone 
Author Year Area Ultimate Compressive Yield 

Compressiv Modulus Strength 
eStrength (MPa) (MPa) 

(MPa) 
Anglin et al 1999 Glenoid 10.3 99 

Li et al 1997 Femoral OA - 450 OA - 7.2 

Head Normal - 400 Normal - 6.8 

OP-350 OP-4.6 

Odgaard et al 1991 Proximal 689 

Tibia 

NB/ OA denotes those affected with osteoarthritis; OP denotes those affected with osteoporosis 

1.7 SUMMARY 

Bone is a highly complex biological composite in several senses as described by Martin 

(1999); it is a polymer-ceramic mixture, a lamellar material with a plywood structure-type 

(fibril-matrix mixture), and an intimate mixture of mineral crystals and collagen fibres. 

This reinforces the theory that bone is a composite of a composite of a composite. The 

composite structure of bone repairs any damage through the normal remodelling actions 

of its' cells, as well as growing in response to stress, all of which highlights its' continual 

adaptive modelling mechanism. Mechanically speaking, cancellous bone is weaker than 

cortical bone due to its' evident macroporosity. However, the areas where cancellous 
bone are present in large quantities are not as mechanically demanding as those 

composed of cortical bone, which is indicative of mechanical matching and the balancing 

of mechanical requirement with density. 
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CHAPTER 2 
BIOCERAMICS -TYPES AND APPLICATIONS 

This chapter aims to define bioceramics and to compare and contrast the d(erent ty pes used in 
orthopaedic applications. 

2.1 INTRODUCTION 

The skeleton first appeared in the evolutionary pattern of life in the Paleozoic era, 

approximately 500 million years ago (Hollinger et al, 1996). This evolutionary 
development was unique not only because of its advantages towards motion but also 

because of the ability of bone to repair itself. Bone regeneration is helpful in 

situations where the tissue has suffered slight damage or micro-fracture but in space- 

filling situations, or rather in large defects, an alternative is necessary. 

2.2 BIOCOMPATIBILITY IN BIOCERAMICS 

Materials used to replace bodily parts, otherwise known as biomaterials, ideally 

exploit the skeleton's ability to regenerate and repair. A bioceramic is a biomaterial 

used in the repair or reconstruction of parts of the musculoskeletal system. There has 

been increasing interest in the use of bioceramics because they can achieve stability 

and' achieve differing levels of biocompatibility, which puts them at an advantage 

against other biomaterials. The biocompatibility of a material indicates the degree to 

which a material is accepted by the host tissue as well as the interactions. Hench 

(1991) categorised materials/tissue interactions, as listed on the next page: 
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Type 1 The material is toxic and causes the surrounding tissue to die 

Type 2 The material is non-toxic and resorbable and is replaced by 

surrounding tissue 
Type 3 The material is non-toxic and inactive, resulting in the formation of a 

non-adherent fibrous capsule of variable thickness 
Type 4 The material is non-toxic and biologically active, resulting in the 

formation of an interfacial bond with surrounding tissues 

The three most important types of bioceramics are: 

" Resorbable (Type 2) 

" Inactive (Type 3) 

" Bioactive (Type 4) 

Resorbable bioceramics degrade over a period of time, during which they are replaced 
by the original tissue. Due to the constant turn over of new tissue, a very thin 

interfacial layer exists between the implant and the tissue. In order for the material to 

be efficient, it must maintain the stability and strength of the relatively small interface 

during the degradation/replacement period. Furthermore, the rate of resorption must 

match the rate of bone apposition. The resorption products must also be metabolically 

acceptable. 

Type 3 bioceramics, such as alumina and zirconia, are nearly inert biomaterials. 

Following the implantation of this type of bioceramic, a thin fibrous layer forms 

around the implant separating it from the surrounding tissue which may cause 

movement of the implant, resulting in failure. However, this problem can be 

overcome by press-fitting such an implant into the bone tissue, thereby achieving 

stability due to the limited amount of movement. 

Bioactive ceramics are biomaterials that attach themselves to bone by means of a 

chemical bond, otherwise known as an interfacial bond. Examples include bioactive 

glasses, glass-ceramics, and hydroxyapatite. Following implantation, the surfaces of 

these implants form a biologically active hydroxycarbonate apatite (HCA) layer, 

thereby providing the bonding interface with tissues. The interfacial layer is more 
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resistant to mechanical fracture than the surrounding bone or implant, and failure 

almost never occurs at the interface. Hench (1986) attached a strong philosophy to 

this bonding mechanism, in that "the knowledge that substances can be made by man 

that will bond chemically to living tissue has broad philosophical implications. " 

Hench believed that the fundamental principles of impant-tissue bonding were not 
discovered, but uncovered. Therefore, by defining these bonding mechanisms, the 

principles responsible for the creation of living matter from non-living matter may be 

uncovered. 

2.2.1 BIOCERAMICS-TISSUE ATTACHMENT 

The way in which a bioceramic attaches to a tissue is related to the type of response 
the implant elicits. When the bioceramics are non-toxic and dissolve (Type 2), they 

are termed resorbable ceramics which are designed to be slowly replaced by bone. 

Ideally the rate of bone re-growth should equate to the rate at which the material is 

resorbed; examples of these dense, nonporous materials are calcium sulphate and 

tricalcium phosphate. For dense, nonporous, nearly inert ceramics (Type 3), such as 

alumina (A1203), the interface between the implant and tissue is not biologically or 

chemically bonded, causing some movement which results in the formation of a non- 

adherent fibrous capsule. Bioceramics of this type are attached by means of 

cementing the device into tissues or press-fitting into a defect, otherwise known as 

morphological fixation. However, for porous polycrystalline A1203, bone ingrowth 

occurs after implantation, therefore achieving stability by means of a mechanical 

attachment between the implant and bone; this type of biological fixation is also 

experienced by hydroxyapatite-coated porous metals. When the biomaterial is non- 

toxic, dense, and surface-reactive (Type 4), a chemical reaction occurs between it and 

the bone, forming an interfacial bond; materials that experience this sort of bioactive 

fixation are bioactive glasses, bioactive glass-ceramics, and hydroxyapatite. Of 

course, if Type 4 bioceramics are porous, the attachment mechanism could possibly be 

a combination of morphological fixation and chemical bonding. 
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2.2.2 MICROMOTION VS BIOCOMPATIBILITY 

At this point, it is important to mention that the function of the bone-biomaterial 

interface is to provide safe and effective transfer of load from implant to bone. There 

are a number of variables that may affect the integrity of the interface. One 

biomechanical factor that affects interface biology is micromotion, which was 

described by Braunski et al (1991) as a dominant interfacial factor. Micromotion has 

never been precisely defined but generally refers to displacements of the implant 

relative to the bone at the interface, such as sliding, opening of gaps, and wobbling. 
Brunski described stages in bone healing after implantation in the Figure 2.1. 

Referring to Figure 2.1, if excessive micromotion occurs, the tissue scaffold upon 

which bone tissue is laid down is destroyed. This disrupts the events of normal bone 

healing and therefore bone repair is initiated as opposed to bone regeneration, 

resulting in the formation of fibrous scar tissue at the interface. Theoretically, a 

ceramic bone replacement material should not instigate the formation of scar tissue, 

but rather bone regeneration, seeing as the role of a bioactive ceramic is to act as a 

scaffold for bone tissue to grow into. 

IMPLANTATION INTO BONE 

SURGICAL TRAUMA 
(bleeding. clot. Inflammation, 

macrophages. osteoclasts, etc. ) 

REGENERATION 

(coarse-fibered bone 
lamellar compaction) 

REMODELING. MODELING 

MICROMOTION 

REPAIR 
(fibrocoilagenous scar) 

Figure 2.1 The diverse stages of bone healing after implantation (Brunski et al, 1991) 
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However, in porous implants, micromotion has been seen to have an advantageous 

effect. Pilliar et al (1991) produced a quantitative report on micromotion which 

suggested that relative shear displacement greater than 150 µm can result in fibrous 

tissue ingrowth into porous materials, leading to good impant fixation into bone. 

Despite this report, there is a general lack of quantitative information on the effect of 

micromotion on interface biology and until more information is available with 

perhaps the development of a model, one can only rely on speculative measures. 

Porous bioactive ceramics are advantageous due to the mechanical stability of their 
implant/tissue interface that develops following the ingrowth of bone tissue into the 

pores of the ceramic. However, porous ceramics have poor mechanical strength, due 

to the existence of macropores, which restricts their use to non major load-bearing 

applications, such as alveolar ridge augmentation and in maxillofacial surgery (Frame, 

1987), for the treatment of simple bone cysts (Inoue et al, 1991), and as a filling 

device for bone defects (Ylinen, 1994). After implantation, porous ceramics serve as 

a structural bridge for bone formation, as the bone grows into the pores. Pore size is 

important to the process of this mechanical interlocking, as the pore size must be a 

minimum of 100 pm for bone to grow within the interconnecting pore channels near 

the implant's surface (Hench, 1991), and at least 200 µm in order for osteoconduction 

to occur (Liu, 1996*). Despite the beneficial attributes of these macropores with 

respect to bone ingrowth, they do have detrimental effects on the strength of the 

material, i. e. the material's strength decreases rapidly as the porosity increases. 

Hollinger et al (1996) proposed in their review of bone substitutes that an ideal bone 

substitute material should promote bone regeneration. Bioceramic materials based on 

calcium phosphates seem ideal for this role. However, in order to understand the 

mechanical limitations of ceramics such as calcium phosphates, it is necessary to 

become familiarized with the dynamics of ceramic processing, which affect the 

microstructure, hence the mechanical properties of the biomaterial. 
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23 SINTERING AND MICROSTRUCTURE 

On a macro and micro scale, the shape of a bioceramic will determine the type of 

response that it elicits. The geometry of a porous or dense implant will determine the 

amount of bone that will grow into the implant, mechanically interlocking the two 

together (discussed in section 2.2.1). Furthermore, the ceramics processing involved 

in the preparation of the implant may affect the overall properties. 

23.1 SINTERING 

The use of powder is fundamental to ceramics technology and plays an important role 
in the properties of the final product. The final microstructure of a ceramic refers to 

the size and shape of the individual ceramic powder particles. By controlling the 

morphology of the particles, the sintering characterisitics can be controlled, hence the 

porosity and the specific surface areas of the ceramic material. Sintering is a process 
involving the coalescence of powder particles at high temperature into a dense mass, 

so experiencing a reduction of porosity and an improvement in mechanical integrity 

(Figure 2.2). At first, the sintering mechanism involves the formation of necks along 

the contact regions between adjacent particles, and the formation of a grain boundary 

within each neck; the spaces between particles, the interstices, become pores. 
Eventually, the pores decrease in size and become more spherical in shape as the 

sintering process continues. 

The way in which powder particles are packed and the amount of contact that they 

experience within a green compact will affect the sintering characteristics. Powder 

contact is affected by the compaction pressure of the powders (in the production of a 

green compact) and the powder morphology. The compaction pressure will affect the 

particle contact and therefore will control the area available for sintering. As for the 

morphology, powder compacts that have a low surface area, and irregular particle 

sizes and shapes, have a lower packing density in the green state, and therefore do not 

sinter very well. Therefore, one can say that it would be advantageous to be able to 

control powder morphology in order to produce samples with good density, 

mechanical properties, and porosity. The reduction of porosity as a result of the 
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sintering process is fundamental to strengthening the ceramic, yet, must not be 

completely eliminated for achieving biological union with the surrounding tissue. 

(a) 

PI en L 

Pore 
Grain boundary 

(b) 

(c) 

Figure 2.2 Microstructural changes that occur during sintering (Callister, 1994) 

The overall driving force for sintering is a reduction in free-energy, i. e. the reduction 
in total particle surface area and lowering of surface free energy by elimination of 

solid-vapour interfaces. The local driving force is the free energy change and 

pressure differences across a curved surface that gives rise to material transfer. As the 

particle size decreases, i. e. the particle radius of curvature is small, the overall driving 

force for densification increases, hence the amount of sintering. 
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2.3.2 MICROSTRUCTURE 

The sintering process does result in the reduction of porosity, yet at the expense of the 

grain growth, which may be detrimental to the mechanical properties of the material. 
When the pores have shrunk and become spherical in shape, and no longer 

interconnecting, it becomes energetically favourable to reduce internal (solid: solid) 
interfaces as opposed to external (solid: gas) ones. This reduction in surface area 

results in grain growth. Therefore it is important to select a sintering temperature that 

allows the pores to shrink without causing too much grain growth. Too low a sintering 
temperature will result in insufficient energy to drive the densification process, and 

too high a temperature will cause the grain growth as well as decomposition of the 

ceramic (discussed later in section 3.1.4). 

The microstructure of a ceramic is related to the mechanical properties. Therefore the 

ability to control the microstructure by selecting the correct sintering regime is 

important. When subjected to mechanical stress, the grain boundaries in an as- 

sintered ceramic act as barriers to crack growth because more energy is required to 

propogate a crack through a grain boundary as opposed to through the grain itself. 

Therefore if the microstructure is fine (small grains), there will be more grain barriers 

present per length of given crack flaw than in a coarse microstructure (large grains). 
As a result, the stress required to propogate a crack through, for example, four sets of 

grain boundaries (fine microstructure) will be much larger than the stress required to 

propogate a crack through two sets of grain boundaries (coarse microstructure), given 

that the crack length is similar. Griffith flaw theory (1920) described this phenomena 
(eq. 2.3.2) in which the stress required to propogate a fracture across a grain boundary 

is inversely proportional to the square root of the length of fracture. 

Cr = ao+ Kd"1n (2.3.2) 

Where a= strength, ao = applied stress required to move dislocations along a glide plane, K= 

empirical constant and d= grain size 
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Therefore large grains result in structures that are mechanically weaker than fine 

microstructures, because less energy is required for cracks to propogate along the 

larger grains than fine grains. The ceramics processing technology that has been 

discussed in this section may also be applied to the production of bioceramic 

materials such as calcium phosphate-based bioceramics, whereby not only the 

mechanical properties must be controlled, but also the biocompatibility. 

2.4 BIOCERAMIC MATERIALS 

2.4.1 CALCIUM PHOSPHATE-BASED BIOCERAMICS 

Ever since the discovery that the mineral phase of bone and teeth contain calcium 

phosphate salts, a great deal of research has been put into the potential use of calcium 

phosphates as bioceramic bone replacement materials. The preparation of 
biomaterials from calcium phosphate powders started in the end of the 1960's (de 

Groot, 1983), using standard ceramics processing technology (i. e. pressing and 

sintering), which is still used today. As stated in chapter 1, the mineral found in bone 

is similar to calcium hydroxyapatite, a biological apatite. According to McConnell 

(1973) apatite is found in great abundance in nature, out of the phosphatic minerals, as 

well as in the hard tissue of humans. The similarity between calcium phosphate (Ca- 

P04) materials to the mineral found in bone is often used to justify its use today in 

orthopaedic applications. 

The calcium to phosphorus (Ca: P) ratio is an important issue in the field of Ca-P04 

bioceramics. This factor is believed to affect not only the physiochemical but also the 

mechanical properties, as well as the biocompatibility. The two Ca-P04 materials 

which receive the most attention for bioceramic applications are hydroxyapatite (HA) 

due to its' similarity to the mineral content of bone (discussed later in Chapter 3) and 

tricalcium phosphate (TCP), because it is resorbable. HA has a Ca/P ratio of 1.67 

(PDF card no. 9-432) whilst the more calcium-deficient TCP has a Ca/P ratio of 1.5 

(PDF card no. 9-438/9-169). There are two polymorphs of TCP (refer to Figure 2.3), 

known as a-TCP and ß-TCP, the latter being more stable at high sintering 
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temperatures (LeGeros et al, 1993). Both polymorphs are resorbable, but higher 

solubility is found in a-TCP than ß-TCP (Kuroyama et al, 1991). 
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Figure 2.3 CaO/PZOS-based phase diagram 

The phase diagram in Figure 2.3 demonstrates that the more Ca-deficient a species is 

(such as TCP), the greater the potential to be biphasic at high temperatures. 

2.4.1.1 Mechanical Properties 

Raynaud et al (1998) discovered that the highest mechanical properties were obtained 
for calcium phosphates having a Ca/P ratio close to 1.65 (Ca-deficient HA), whilst the 

stoichiometric HA with a Ca/P ratio of 1.67 had the lowest fracture strength and 

toughness. Both materials were prepared for mechanical testing as polished, 
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rectangular specimens. The fracture strength was determined by 3-point bending, and 

the fracture toughness by a Vicker's indentation technique. The strength and 

toughness values found in this study are in Table 2.1. Evidently, lowering the Ca/P 

ratio appeared to improve the mechanical properties. 

Table 2.1 The effect of differing Ca/P ratios on the strength and toughness of calcium phosphate 
materials (Ravnaud et aL 199R) 

Ca/P ratio Fracture Strength 

(MPa) 

Fracture Toughness 

(MPa. min) 
1.65 (Ca-deficient HA) 150 1.00 

1,67 (HA) 70 0.85 

Akao et al (1982) found that ß-TCP displayed relatively good mechanical properties 

at different temperatures which can be see in Table 2.2. The p-TCP was produced in 

the laboratory and was prepared for mechanical testing as flat square specimens. The 
Y4iwgs 

compressive strength/modulusAwere determined by compression tests and the bending 
v4Lg5 

strength/modulus^were determined by 3-point bending. 

Table 2.2 The mechanical nronerties of ß-TCP at different temperatures (Akao et al. 1982) 

Temperature 

(°C) 

Compressive 

Strength 

(MPa) 

Bending 

Strength 

(MPa) 

Compressive 

Modulus 

(GPa) 

Bending 

Modulus 

(GPa) 

Relative 

Density 

(%) 

1150 459±37 138± 11 82.6±4.6 89.2±5.3 98.6 

1200 436±35 119± 12 77.2 ± 3.6 72.7 ± 6.2 99.4 

1250 599 ± 57 153 ± 10 79.4 ± 4.2 84.6 ± 6.1 - 
1300 648±38 137± 10 77.5±4.4 83.5±5.9 - 

NB/ The density values were calculated by assuming a theoretical density of 3.07 g . cm"" 

The material at 1150°C had a finer grain size than that at 1200°C, which may explain 
in part the difference in strength. The greatest compressive strength at 1300°C (the 
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material was 93% ß-TCP, 7% HA) was probably due to the increased presence of a 

secondary phase. 

It is also interesting to compare the mechanical properties of HA and TCP to other 

apatites, in particular fluoride-substituted apatites. Sax et al (1999) characterised 

hydroxyapatite (HAP), fluorapatite (FAP) and tricalcium phosphate (TCP); the 

mechanical properties are shown in Table 2.3. The specimens were produced in the 

laboratory and were mechanically pressed into green compacts, sintered, and 

polished, yet the resulting shape of the specimens was not reported.. A Vicker's 

indentation technique was used for determining the mechanical properties. The 

Young's Modulus appears to be much higher in this investigation than the values 

reported in Table 2.2. However, the fact that the specimen shape was not reported in 

addition to the fact that the specimens were polished (which eliminates surface stress 

concentrations, hence improves strength during testing) renders the comparability of 

these results questionable. 

Table 2.3 The mechanical DroDerties of various calcium nhosnhate ceramics (Sax et al. 1999) 
Ceramic 

(sintered at 
1250°C) 

Relative 

Density 

(%) 

Poissons 

Ratio 

Young's 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

HA 98.1 0.15 106.06 46.17 

FAP 95.9 0.28 114.35 44.66 

TCP 99.3 0.45 103.97 35.94 

NB/ The results associated with a sintering temperature of 1250°C was chosen because it correlated 
with the highest densities, which were calculated with regards to the corresponding theoretical 
densities. 

It appears that the densification of fluorapatite seemed more difficult. Previously, it 

has been suggested that the lack of polar moment associated with Ca and F in 

fluorapatite may contribute to its crystallinity (Jha et al, 1997) and its chemical 

stability (Young et al, 1966) over hydroxyapatite, where such polar moments do 

occur. These advantages may explain the lower density in that the increased stability 
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and crystallinity indicate a larger amount of energy for sintering to occur, hence the 

poorer the densification at the temperature where HAP and TCP densify more. 

2.4.1.2 Biocompatability 

Calcium phosphate materials are mostly osseoconductive and bioresorbable materials 

with great potential in clinical applications (Hing et al, 1998). Oreffo et al (1998) and 

Passuti et al (1989) both carried out studies on calcium phosphates and found that 

osteoblastic activity, hence bioactivity, occurred on the surfaces of the materials, with 

no cytotoxicity recorded. In terms of bioresorbability, the actual application 
determines the type of bioceramic required. In non load-bearing applications, such as 

space-filling in maxillofacial surgery, the bioceramic in question may have a higher 

rate of resorption because it is a temporary material serving as a scaffold for bone 

remodelling. However, rapid biodegradation is undesirable for implants used in 

higher load-bearing applications, where the implant should retain some structural 
integrity during remodelling. 

A recent attempt was made (Denissen et al, 2000) to control the resorbability of dense 

calcium phosphate materials such as hydroxyapatite (discussed in the next chapter). 

The assumption was that adding an agent such as biphosphonate solution would 

inhibit resorption. However, the results indicated that after one year, dense 

hydroxyapatite implanted in the mandibles of goats with and without the 

bisphosphonate solution experienced the same degree of osteoconduction, 

biocompatibility and bone ingrowth. 

Whatever the application, it is important to find an ideal rate of resorption, which is 

determined by the calcium to phosphorus (Ca/P) ratio. LeGeros et al (1993) defined 

Ca-deficient materials such as TCP as more soluble than materials with a higher Ca/P 

ratio. Solubility in biological fluids is often a good indication of biodegradability as 

found by Knabe et al (1997), who discovered that the most rapidly resorbable calcium 

phosphates had lower Ca/P ratios, as indicated by their high phosphate ion releases in 

solution. So at this point it is safe to assume that the lower the Ca/P ratio, the more 

resorbable the material. De Groot (1987) found that ß-Tricalcium Phosphate (TCP) 
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(Ca/P ratio of -1.5) had a much higher rate of resorption than hydroxyapatite ( Ca/P 

ratio of -1.67). According to de Groot (1987), biodegradation of calcium phosphate 

ceramics is caused firstly by physicochemical dissolution and secondly by 

disintegration into small particles, whereby the disintegration is dependent on the 

solubility product of necks connecting the powder particles after sintering. Dc Groot 

(1987) discovered that hydroxyapatite ceramics hardly disintegrate while macro- and 

micro- porous ß-TCP disintegrate very rapidly into particles which may be found in 

neighbouring lymph nodes. 

Ducheyne et al (1991) and Kuroyama et al (1991) also found that the more Ca- 

deficient the material was, the more resorbable. The order of solubility of various 

calcium phosphates were found as follows: 

a -TCP > oxyhydroxyapatite >0 -TCP > hydroxyapatite 

Ducheyne et al's (1991) studies furthermore revealed that despite the fact that ß-TCP 

exhibits greater dissolution than HA, carbonated apatite does not precipitate on its' 

surface as readily as it does on that of HA. Given that the precipitation of carbonated 

apatite is important to the issue of bone ingrowth and deposition of bone in the 

interfacial area, it is questionable whether ß-TCP is a sufficiently stable substrate 

upon which cell activity may occur. 

2.4.2 INERT BIOCERAMICS 

2.4.2.1 Alumina 

Alumina is an inactive bioceramic and a nearly inert biomaterial, therefore it does not 

stimulate osteoblastic activity or form a bond with surrounding bone tissue. However, 

it is biologically compatible, i. e. does not instigate cytotoxic reactions, and has high 

mechanical strengths, both of which are favourable characteristics for use in 

fabricating prostheses of the knee (Oonshi et al, 1981), the ankle (Murasawa et al, 

1982), and of the elbow (Kurata et al, 1983). Alumina, in porous form, has also 
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proven to be a successful and "interesting" material for drug-delivery (Krajewski et 
al, 1998). 

Yamamuro et al (1991) investigated the effects of different surface characteristics on 
the bonding behaviour of various materials, one of which was bead-coated alumina, 

whereby the beads were bonded to the alumina substrate using an identical alumina 

ceramic binder. Pull out tests showed that after 24 weeks, the interface shear strength 

of the bead-coated alumina was - 0.047 MPa while that of uncoated and unbeaded 
alumina was - 0.015 MPa. So, perhaps using bead-coated alumina in. load bearing 

applications may prevent loosening of the prosthesis, which happens frequently when 

there is a lack of bone-implant fixation. The only disadavantage in this potential 

application that Yamamuro et al (1991) pointed out was that alumina ceramic has an 

extremely high elastic modulus in comparison to metallic materials, which prevents 
near-net shaping. 

Mechanically, alumina is strong and, as pointed out by Seidel et al (1997), the 

mechanical reliability of alumina is determined by the fracture strength as well as the 

Weibull modulus. Table 2.4 shows various mechanical properties of alumina 
ceramics. 

Table 2.4 Mechanical Dronerties of various alumina ceramics (authors stated in table) 
Material Fracture Strength 

(MPa) 

Weibull 

Modulus 

Bending 

Strength (MPa) 

As-sintered 460 (cold isostatic 8-12 

alumina (Seidel et pressing) 

al, 1997) 925 (cast slip) 8-12 

In-Ceram 530 

In-Ceram Spinell 283.1 
(Magne et al, 1997) 
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2.4.2.2 Zirconia 

Zirconia, like alumina, is a nearly inert biomaterial. There is interest in the 

orthopaedic community in using zirconia as ball heads for total hip replacements; the 
first paper concerning its use in this application was introduced by Christel et al 
(1988). Burger et al (1999) listed mechanical properties of different kinds of zirconia 
in Table 2.5. The main advantage that zirconia has over other biomaterials is the 

transformation toughening mechanisms operating in its' microstructure. Stabilising 

oxides such as CaO, MgO, and Y203 (yttria) may be added to pure zirconia to 

produce Partially Stabilised Zirconia (PSZ), and yttria combined with zirconia alone 

results in finely grained microstructures known as Tetragonal Zirconia Polycrystals 

(TZP) or Y-TZP. TZP stabilised with yttria is mechanically more favourable as 
described by Burger et al (1997) who discovered that Y-TZP materials show bending 

strengths of more than 1000 MPa, a Weibull Modulus of up to 20, and a fracture 

toughness of 9 MPa. m'ý2. This mechanical advantage of TZP over PSZ is also evident 
in Table 2.5. 

Table 2.5 Mechanical characteristics of different tvnes of zirconia (Burger et al_ 1997) 

Property Mg-PSZ TZP 

Density (g. cm) 5.74 -6 >6 

Bending Strength (MPa) 450 - 700 900 -1200 
Compressive Strength (MPa) 2000 2000 

Young's Modulus (GPa) 200 210 
Fracture Toughness (MPa. m) 7-15 7-10 

2.4.3 GLASSES 

2.4.3.1 Definition 

Glass is an archetypal brittle solid, of which several definitions have been proposed, 
the most widely accepted definition at present being that proposed by the ASTM: 

45 



CHAPTER 2 
BIOCERAMICS - TYPES AND APPLICATIONS 

"a glass is an inorganic product of fusion which has cooled to a rigid 
condition without crystallising" 

Zarzycki (1991) proposed a more general definition that does not neglect polymeric 

glasses as well as glasses produced via techniques such as sol-gel: 

66 a glass is a non-crystalline solid exhibiting the phenomenon of the glass- 
transition" 

The glass transition, Tg, occurs at a characteristic temperature (Figure 2.4), during 

which the elastic solid starts behaving as plastic material. Below the Tg, the material 
is considered to be a glass, above it is considered to be a supercooled liquid, and 
finally a liquid. These phase changes are related to the viscosity of the system. As 

the temperature increases above the Tg, there is continuous decrease in viscosity until 
the glass is a liquid. The melting point, Tm, corresponds to the temperature at which 
the viscosity is such that the glass is fluid enough to be considered a liquid. For non- 

crystalline material such as glass, there is continuous volume change upon cooling 
(Figure 2.4), unlike crystalline materials who undergo a characteristic discontinuous 

volume change. 
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Figure 2.4 Temperature-volume changes in crystalline non-crystalline materials (Callister, 1994) 
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2.4.3.2 Structure and Formation 

Several structural theories of glass formation have been developed since that of 
Goldschmidt's in 1926, who proposed that glasses are formed in systems where the 

ratio of a cation radius to that of an anion radius is between 0.225 and 0.414, with a 

tetrahedral coordination polyhedra (i. e. a coordination number of 4). Zachariasen 

(Callister, 1994) proposed the random network model whereby glasses are viewed as 
3-D networks or arrays, lacking symmetry and periodicity, i. e. no structure repeated at 

regular intervals. In the case of oxide glasses, these networks are composed of 02 

polyhedra. Figure 2.5 (Kingery, 1976) illustrates the difference between structures of 

crystalline form and glassy form. 

Adopting the hypothesis that a glass should have an energy content similar to that of 
the corresponding crystal, W. H. Zachiaresen (Callister, 1994) considered conditions 
for constructing a random network and proposed four rules for the formation of an 

oxide glass: 

" Each oxygen ion should be linked to not more than 2 cations 

" The coordination number of oxygen ions about the central cation must be small (4 

or less). 

" Oxygen share polyhedra corners, not edges or faces 

" At least 3 corners of each polyhedron should be shared 

In practice, glass-forming 02 polyhedra are planar triangular units; tetrahedra and 

cations forming such coordination polyhedra have been termed Network Formers. 

Network Modifiers break up the 3-D glassy network by the addition of monovalent 

anions; the anions occupy random positions distributed through the structure and 

provide local charge neutrality. Cations of higher valence and lower coordination 

number than network modifiers may contribute to the network structure and are called 

network intermediates; a 3-D glass network will form when an intermediate is added 
to a glass-forming oxide. 
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As for glass formation, the crystal nucleation and growth in glasses is an active area 

of investigation because there are many parameters that determine which melts form 

glasses upon cooling. Many solutions have appeared, based on viscosity-temperature 

relationships, diffusion rates, thermodynamic barriers, or structural requisites 
(Gustow, 1990). Glasses are deliberately fabricated such that bulk crystallisation is 

avoided. However, most glasses exhibit surface crystal nucleation. In order to 

promote internal nucleation within the volume of a glass, it is usually necessary to add 

a nucleating agent, which may for example consist of metallic particles or another 

oxide (James et al, 1997); this results in the production of a glass-ceramic, which will 
be discussed in the next section. An example of a nucleating agent is that described 

by Reaney et al (1996) who identified TiO2 and A1203 as volume-nucleating agents in 

calcium phosphate-based glasses. 

(a) (b) 

Figure 2.5 Schematic representation of (a) ordered crystalline form (b) random-network glassy form 
of the same composition (Kingery, 1976) 

2.4.3.3 Bioactivity 

The criterion that determines whether or not a glass is bioactive is such that a calcium 

phosphate surface layer must form on the surface of the glass when it is surrounded 
by body fluid. The implant therefore obtains a new surface, which may bind with 
bone through osteoblastic deposition and thereby protect the glass from further 
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dissolution. The solubility of phosphate glasses contribute to its potential as a 

material for bone substitution. Clement et al (1998) evaluated the influence of 

chemical composition on the solubility of a range of phosphate glasses in the P205- 

CaO-Na20 system. The solubility was dependent on the Na2O content, as indicated 

by the fact that mass loss per unit time increased as the mol % of sodium in the glass 
decreased. These findings contradict Salin et al (1998) who claimed that the 

solubility of calcium phosphate based glasses is related to that amount of CaO present 

whereby glasses containing less than 20 % are very soluble and those containing more 

are much less soluble. However, in the presentation of data in Salin et. al's paper, it 

appears that the solubility increases with increasing amounts of Na2O. The theory 

behind this is that both CaO and Na2O are both network modifiers, hence they reduce 

the stability of the glass and therefore both will result in increased solubility in 

solution; increased ionic mobility results in increased reactivity of the system. 
Nevertheless, Salin et al found that the phosphate based glasses that were prepared 

were not cytotoxic following in-vitro studies and therefore have potential in the use of 
bone repair systems. 

Silicate-based glasses, such as the commercially used Bioglass®, also display 

bioactive behaviour and have proven to be capable of bonding to bone and connective 

tissue (Hench, 1990) (Vogel et al, 1987). Furthermore, Bioglass® has been shown to 

be very easily manipulated (Wilson et al, 1992) when being packed into a defect in- 

vivo. 

2.4.4 GLASS CERAMICS 

2.4.4.1 Definitions 

A glass-ceramic is an inorganic product of fusion, which can be made to transform 
from a noncrystalline state to one that is crystalline by means of a process called 
devitrification. This process may not be desirable in many cases since devitrified 

polycrystalline glass may contain residual stresses as a result of the discontinuous 

volume changes that attend the transformation, which may yield a mechanically poor 
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material. For some glasses, however, the devitrification process can be controlled 

such that a fine-grained material is produced which is devoid of any in-built stresses. 
These materials, called glass-ceramics, can achieve relatively high mechanical 

strengths. A glass-ceramic that has been used in spine and hip surgery since 1983, as 

a bone filler and a major load-bearing material is apatite-wollastonite (A-W); the 

success of A-W glass ceramic is due to its excellent bioactivity and mechanical 

properties (Kokubo et al, 1985)(Nakamura et al, 1985). 

2.4.4.2 Formation and Properties 

The production of a glass-ceramic is a controlled crystallisation process, which 
involves the conversion of a glass to a crystalline material by the addition of 

nucleating agents and crystallisation heat treatment. Glasses are heat-treated to 

produce a glass-ceramic through two or more steps; firstly, a lower temperature step 
for promoting nucleation, and one or more higher temperature treatments to induce 

crystal growth and the desired microstructure (Zarzycki, 1991). This product of 

crystallisation typically consists of fine grains (<10µm) and contains approximately 2 

% residual glass at the grain boundaries (Hanson et al, 1993). 

One of the advantages of glass-ceramic materials is that their microstructure can be 

tailored to gain certain properties by controlling the heat treatments. The ability to 

control microstructure is very advantageous because microstructure directly affects 

the mechanical properties in all engineering materials. McDermott et al (1997) 

identified large differences in the microscopy of calcium phosphate glasses at range 

of temperatures; at high temperatures, the material appeared coarser which lowers the 

mechanical integrity of the system. Another advantage is that glass-ceramics are very 

easily machined. Boccacini et al (1997) identified a means of measuring how 

machinable a glass-ceramic is; a "brittleness index" (B) was suggested and it was 

found that this index should be lower than Bz4.3 µm 1t2. Other authors such as 
Hockin et al (1996) preferred to use the depth of penetration experienced during 

indentation as an indication of machinability. 
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2.4.4.3 Bioactivity 

Glass-ceramics of the CaO-P205-SiO2 system demonstrated biocompatibility at the in- 

vitro level as determined by the studies of Laczka-Osyczka et al (1998). AW glass- 

ceramic was shown by Ohgushi et al (1996) to indicate in-vitro biocompatibility; the 

data obtained in this study indicated that the surface of the glass ceramic promoted 

osteoblastic differentiation. Glass ceramics have also been shown to be bioactive at 

an in-vivo level. Gross et al (1985) found that in order for bone-bonding to occur, the 

glass-ceramic must not release substances such as polyphosphates, which may inhibit 

the mineralisation processes at the bone-implant interface. 

Vogel et al (1987) condoned the use of crystalline as opposed to non-crystalline 

material in biomedical applications, in that glass-ceramics are both bioactive and 
biocompatible. Glass-ceramics may be accepted by tissues of the human body and 

may further establish firm intergrowths with bone tissue. Andronescu et al (1995) 

carried out in-vitro and in-vivo tests on Na20-CaO-Si02-P205 glass ceramic systems 

to determine biocompatibility and bioactivity respectively and found that the glass- 

ceramics showed no cytotoxicity in-vitro and no bone necrosis of the surrounding 

tissue in-vivo. 

A commercially available bioactive glass-ceramic, which has been used widely to 

replace the iliac bone segment in the vertebral column, is known as Cerabone® (an 

AW glass-ceramic), and has been shown to shorten the recovery time for a patient in 

spinal and other reconstructive surgery. Cerabone® is a high strength glass-ceramic 

that, due to its additional biocompatibility and bioactivity, may be used in major load- 

bearing medical applications. More recently, Duskova et al (2000) launched an 
investigation into the potential of oxyfluorapatite and wollastonite glass-ceramics for 

use in facial augmentation surgery for post-traumatic and congenital disorders. The 

glass-ceramics were chosen on the basis of their low resorbability and performed 

successfully. Furthermore, it was concluded that bioactive glass-ceramics have better 

mechanical properties and more stable chemical features (i. e. lower resorbability) than 

hydroxyapatite, for example. 
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2.5 SUMMARY 

The bioceramics industry has shown great interest in using synthetic HA as a bone 

replacement material, as a result of its bioactivity in an osseous environment. Of 

course, there are a number of other bioceramics available in the prosthetics industry 

that are biocompatible but undergo different mechanisms of bioceramic-tissue 

attachment. The mechanism that a bioactive bioceramic or bioglass undergoes 

appears to be more beneficial to the long-term stability and mechanical integrity of 

the bone in question, especially if the implant is porous and allows significant bone 

ingrowth to compensate for the weaker mechanical properties of a porous structure. 
The material must be reactive enough to initiate a biological reaction, yet not too 

reactive that it resorbs too rapidly. HA is a highly biocompatible option, which is not 

as resorbable as TCP, but not as strong as glasses and glass-ceramics. The ideal bone 

replacement for high load-bearing applications must be strong and slightly resorbable, 

which may be achieved by perhaps reinforcing HA with a strong material that 

instigates some decomposition. The next chapter focuses on the calcium phosphate 

material, hydroxyapatite, for bone replacement, which is also the focus of the 

practical portion of this thesis. 
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CHAPTER 3 

IHYDROXYAPATITE CERAMICS FOR BONE 
REPLACEMENT 

This chapter aims to discuss hydroxyapatite, an osteoconductive calcium phosphate ceramic, and the 
concept of reinforcing hydroxyapatite as a means of improving the mechanical properties, followed by 
the effect of biological solution on hydroxyapatite-based composites. 

3.1 PROPERTIES OF HYDROXYAPATITE 

3.1.1 INTRODUCTION 

Hydroxyapatite (HA), a calcium phosphate ceramic, is similar to the mineral 

component of bone and has the following stoichiometric formula: 

Caio(PO4)6(OH)2 

Depending on the preparation routes, HA can have a dense or porous structure. The 

"dense" structure is likely to contain micropores, while the "porous" structure 

contains macropores as well as micropores and depending on the particular 

preparation route may have the physical characteristics of an open cell foam. 

This chapter contains information on both dense and porous HA. Despite the fact that 

this overall aim of the laboratory work is to produce porous reinforced HA, it is 

important to know basic information about dense HA because before a porous HA 

composite is produced, a dense HA composite must be produced, characterised, and 

optimised. 
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3.1.2 CRYSTAL STRUCTURE 

Calcium hydroxyapatite has a well-defined crystallographic structure, which was 

refined by Kay et al (1992), showing the exact atomic positions in the crystal. HA has 

a hexagonal structure and with a space group P63/m, which is characterised by a six- 
fold c-axis perpendicular to three equivalent a-axes (a,, a2, a3), all of which constitutes 

a three-dimensional network of calcium, hydroxyl, and polyhedral phosphate ions. 

The smallest building unit of the structure is the unit cell, which in this case consists 

of Ca, P04, and OH groups closely packed together. The ten calcium ions are present 
in either an octahedral site (Ca(I)), or a seven-co-ordinate site (Ca(II)); four occupy 

the Ca(I) positions, while six occupy the Ca(II) positions. The apatite structure is 

arranged such that substitutions of many other ions are allowed; when substitutions in 

the apatite structure for Cat+, PO43-, or OH' groups occur, changes in properties occur 

as a result of changes in unit cell dimensions to accommodate different sized ions. 
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Figure 3.1 Projection down c-axis of HA showing P(black circles), O(open circles), Ca(shaded 
circles) (Abrahams et al, 1994) 
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The unit cell, the smallest building unit of the apatite crystal, is shown in Figure 3.1 
(Abrahams et al, 1994) and demonstrates how the Ca (II) atoms are arranged such that 

they form channels running parallel to the c-axis; the hydroxy ions may be found 

within these channels. 

3.1.3 COMPOSITION 

LeGeros (1993) found that pure, stoichiometric HA, Caio(PO4)6(OH)2, has the 

following theoretical composition: 

Table 3.1 Composition of HA (LeGeros et al_ 1993 ) 
Element Wt % 

Ca 39.68 

P 18.45 

(Wt. Ratio of Ca/P = 2.151, Molar ratio of Calf = 1.667) 

Commercial or non-commercial dense HA materials may vary in their Ca/P ratio 

which will in turn affect the phase composition on sintering. If the Ca/P ratio is lower 

" than 1.67, it will partially decompose to ß-TCP and become a biphasic material; 

furthermore, ß-TCP may be transformed to a-TCP at temperatures above 1300°C. 

At Ca/P ratios higher than 1.67, CaO will occur. However, if the Ca-P ratio is 1.67, 

only HA will be present and the precise phase compositin can be detected using X-ray 

diffractometry (Figure 3.2). 

An X-ray diffraction pattern indicates the presence and percentage of phases within a 

material. The diffractometer apparatus (Figure 3.3) consists of an x-ray source which 
generates beams at point T towards the sample, and the intensities of diffracted beams 

are detected by a counter, labelled C in Figure 3.3. The counter moves at a constant 

angular velocity, during which the diffracted beam intensity is automatically plotted 
by a recorder, as a function of 20 ( the diffraction angle). As a result a trace or rather 

a diffraction pattern is obtained. 
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Figure 3.2 X-Ray Diffraction pattern of powdered dense HA showing only the presence of the HA 
phase (PDF Card no. 9-432) 
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Figure 3.3 Schematic diagram of an x-ray diffractometer (Callister, 1994) 
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At this point, it is very important to mention that HA is very sensitive to the sintering 
temperature used in densification. Different sintering regimes may result in the 

decomposition of HA to produce different phases, which will affect the mechanical 

and biological properties. Tampieri et al (1997) described this phenomenon very well 

where it was stated that at high temperatures (-. 1200°C), HA becomes unstable and 

tends to eliminate OH' groups and form decomposition products such as TCP, a 
highly resorbable material mentioned in the previous chapter. Their studies also 
demonstrated that a-TCP is more stable at high temperatures than ß-TCP. The 

following diagram indicates the stable phases found present at increasing 

temperatures: 

INCREASING SINTERING TEMPERATURE 

HA º decomposition -* a-TCP (-1350°C) 

(1200°C) ß-TCP 10 a-TCP 

3.2 PRODUCTION OF POROUS HA 

3.2.1 INTRODUCTION 

Bone replacement materials should be fundamentally similar in structure to the bone 

in question in order for the implant to initiate bone integration and hence the 

stabilisation of the implant. Cortical bone contains Haversian systems, or osteons, 

that average 190-230 pm in diameter and intercommunicate through Volkmann 

canals. Therefore an ideal cortical bone substitute would be structurally similar to 

osteon-evacuated cortical bone with interconnectivity of similar dimensions. 

Klawitter et al (1971) established a minimum pore size (100µm) for bone in-growth 

into ceramic structures such as dense HA. However, Chang et al (2000) recently 
discovered through their findings (Table 3.2) that it is not the optimum pore size that 
is fundamental for optimising osteoconduction in porous HA produced via bum-out 

(discussed later in section 3.2.3), but rather the size of the interconnections between 
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each pore. However, this conclusion is questionable because the study did not clearly 

state whether both variables were tested simulataneously or separately which 

ultimately effects the viability of the relationship between the interconnection size and 

the degree of osteoconduction. 

Table 3.2 Effect of sore and interconnection size on osseoconduction (Chane et al, 2000) 
Pore Size (µm) Interconnection Size (µm) Degree of Osteoconduction 

50 20 Basic 

300 250 Optimal 

Cancellous bone is trabecular and contains macropores and micropores (both of 

varying porosity) within its' struts unlike cortical bone which is restricted to 

microporosity. In the trabeculae, the osteons appear as planar lamellae whose 

thickness permits the nutrition of its osteocytes from blood vessels in the large 

macroporous trabecular spaces. Therefore an ideal cancellous bone substitute would 
be structurally similar to that of osteon-evacuated cancellous bone with a thin lattice 

interconnected by pores ranging between 500 and 600 µm in diameter (Figure 3.4). 

(a) 
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(b) 

Figure 3.4 (a) Microstructure of human cancellous bone (b) Idealized microstructure for cancellous 
bone regeneration (Shors et al, 1993) 

Simske et al (1997) paid a great deal of attention to the engineering considerations of 

material property matching, especially in terms of the macroporous structure of 

ceramic bone substitute materials. An ideal structure was suggested whereby a 

gradient of porosity should exist; the greatest porosity should exist at the bone/implant 

interface and continually decrease until the implant material becomes either of 

optimal porosity or solid. This favoured quick bone ingrowth at the surface whilst 

still maintaining a degree of mechanical integrity. Whilst this idea may be 

advantageous to bone ingrowth, it may be mechanically detrimental to not only the 

implant, but the surrounding bone. A gradient of strength indicates that stress 

shielding may occur where the ceramic is strongest (taking into consideration that the 

ceramics are stiffer than bone), causing the implant to move and possibly 

microfracture, and therefore become weaker (not to mention necrosis of the 

surrounding osteoid tissue due to dis-use). This would ultimately result in a structure 

that is highly porous at the surface (hence weak by default) and weak in the center due 

to the presence of cracks/flaws as a consequence of stress shielding. Nevertheless, 

there are a variety of ways of producing porous ceramic bone substitute materials, 

which will be discussed in the following sections. 
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3.2.2 REPLAMINEFORM PROCESS 

One of the early techniques for fabricating porous HA was developed by White et al 
(1972), called the replamineform process. This process involves using the skeletal 

structure of marine invertebrates, such as coral, as a template in the production of 

porous structures such as a porous HA. Coralline HA derives from the corals of the 

order Scleratinia, which includes a large group of marine invertebrates with skeletons 

of a porous nature (Weber et al, 1973; Wells, 1967). The coral is hydrothermally 

converted to porous HA by means of reacting the calcium carbonate skeleton with 
diammonium hydrogen phosphate, which involves a hydrothermal exchange of 

carbonate and phosphate, resulting in the formation of HA (Roy et al, 1974): 

1 OCaCO3 + 6(NH4)2HP04 + 2H20 Calo(PO4)6(OH)2 + 6(NH2)CO3 + 4H2CO3 

In a study to characterize coralline HA, Piecuch (1982) found that the macrostructure 

resulting from the replamineform method consists of good pore interconnectivity and 

pore sizes suitable for bone ingrowth. 

The great advantage of the replamineform process is that the raw materials, the coral 

organisms themselves, are easily accessible and the hydrothermal exchange is less 

time consuming than other conventional porous production methods (which will be 

discussed in the later sections of this chapter). The fact that these coral structures 

exist in nature give hope to dealing with the increasing demand for porous materials 
in medical applications. The disadvantage of producing porous coralline HA using 

this technique is the fact that porosity cannot be controlled by altering parameters in 

the process. In order to achieve an average pore diameter of 200µm, the correct 

species must be harvested with that specification such as the case with Interpore-200 

(Yoshikawa et al, 2000), and to achieve an average pore diameter of 500µm, a species 

with macrostructural similarities must be harvested as in the case with Interpore-500 

(White eta!, 1996). 

Coralline HA has also been proven to be biocompatible (Holmes, 1978) which 

reinforces its potential use as a bioceramic. Holmes et al (1987) carried out further 
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studies on the biocompatability of coral, in particular the colonial reef building coral 

of the family Poritae, which is known for the very interconnected porosity of its 

exoskeleton; it was reported that the implant demonstrated a great deal of bone 

ingrowth (51.2 %) over 4 years. Salyer et al (1977) carried out studies on the 

biocompatibility of replamineform porous HA and found uniformly grown mature 

bone through the pores of the HA at 4 months after implantation, which highlighted 

the potential of replamineform HA in medical applications. More recently, porous 

coralline HA was proven to not only experience complete bone ingrowth in the dorsal 

regions of rats, but also lamellar bone formed followed by osteoclastic resorption and 

then new bone formation after 52 weeks (Yoshikawa et al, 2000). The fact that bone 

remodelling occurred was very promising; the fact that bone marrow stromal cells 

were previously cultured on their surface enhanced the process. However, one year is 

a very long time to wait for significant remodelling. Liao et al (2000) took biological 

studies on marine invertebrates one step further by crushing Margaritifera shells into 

granules (2mm diameter) and implanting them into the muscles and femurs of rats, 

and found that they were biocompatible, biodegradable, and osteoconductive. The 

shell granules experienced a dynamic interaction with the surrounding tissue, in which 

the bonding between the natural argonite and bone seemed to occur via a phosphorus- 

rich intermediate layer as opposed to mechanical interlocking. 

Thermal treatment of materials has also recently been applied to human and bovine 

cortical bone (Catanese III et al, 1999) due to its success with coralline materials. It 

was discovered that cortical bone heat-treated at 350°C has excellent mechanical 

properties in compression, but very poor mechanical properties in tension, thereby 

limiting its applications. 

3.2.3 ADDITION OF MATERIALS THAT BURN OUT 

A widely used technique for creating porous structures is the addition of particles to 

HA that are volatile and burn out during the sintering process, leaving a porosity that 

consists of spherical voids separated by narrow struts. If the pores do not exceed a 

minimum size of 100 µm (Shors et al, 1993), bone ingrowth does not occur, leaving 

empty channels and discontinuities in the bone. Liu (1996) used a drip-casting process 
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for fabricating porous HA. This process involved adding sythesized HA powder to 
de-ionized water and extensive mixing; this slurry was further mixed with poly(vinyl 
butyral) powders (PVB) of the following sizes: 95 µm, 250 µm, 400 gm. The slurry 

was then cast into a plaster mould of semispherical geometry by dripping onto the 

mould's surface with a pipette device. The dried, spherical-shaped casts were of 

granular appearance and were then heated at 500°C to burn out the PVB material, and 
followed by sintering at 1200°C for two hours. The resulting porous HA granules had 

a porosity from 24 to 76 % and pore sizes ranging from -95 to -400 µm (no 

mechanical properties were reported), which according to Shors et al (1993) meant 
that bone ingrowth will occur. Liu used another fabrication method in 1997* that 

involved adding PVB particles to the HA powder, which were then die-pressed, 

followed by sintering at 1200 °C for two hours, resulting in macroporous structures of 

up to 55 % porosity (no mechanical properties reported). Huang et al (1995) adopted 

a similar method for fabricating porous alumina supports, whereby he added 

polyvinyl alcohol (PVA) binder to alumina in a slip-casting process; he discovered 

that the porosity of the resultant alumina support increased with PVA dosage (2-10%) 

from -33% to -40%. Shaw (1996) incorporated a different material altogether 
(graphite particles) into the green state, which were burnt out during sintering leaving 

voids and resulting in a porous structure. 

More recently, bum-out routes have been optimised such that the resulting pore 

morphology and porosity could be controlled to produce structures even more similar 

to cancellous bone. In 1998, Liu et al fabricated a porous HA bioceramic via a slip- 

casting route; ceramic slurry was prepared at a desired rheology and then mixed with 

polymeric powders of controlled quantity and particle size. Investigations into the 

mechanical properties of the final structure revealed that the flexural strength 
decreased with increased macropore size. Rodriguez-Lorenzo et al (1998) reported 

similar findings in their porous HA ceramics processed via starch consolidation. This 

new method is based on the ability of starch to gellate in water, and in the process the 

starch is used as a consolidator, a binder, and a pore former. The end porosities 

obtained ranged from 45-67%. However, the most macroscopically identical 

synthetic implant processed via bum-out to date was fabricated by Tancred et al 
(1998). The procedure, shown in Figure 3.5, involved burning out the organic matrix 
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from cancellous bone and immersing the resulting inorganic matrix in wax, followed 

by decalcifying, leaving a wax negative replica of the bone. The wax mould is then 

dipped in ceramic slurry, left to dry, and the wax is then burned off leaving a ceramic 

positive replica of the original bone. So far this process has been successfully 

completed using HA, ß-TCP, and HA/ ß-TCP. 
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Figure 3.5 Process flow chart for producing porous apatite ceramics (Tancred et al, 1998) 

3.2.4 PRE-TREATMENT WITH GAS 

A successful method (Peelen et al, 1980) (Shaw, 1996) has been used for creating a 

macroporous structure by adding H202 solution to a cast HA slip, allowing it to 

effervesce with the aid of a platinum catalyst, and leaving it to dry overnight. When 

the samples were removed from the mould, bubbles were trapped in the dried slip. 

Arita et al (1995) used a gas-forming agent, CaCO3, to react with dibasic calcium 

phosphates (CaHPO4) at a calcination temperature of 1000 ° C: 

6CaPO4 + 4CaCO3 Calo(P04)6(OH)2 + 2H20 + 4C02 

The evolution of gaseous CO2 and gaseous H2O during the reaction results in the 

creation of voids whose sizes are controlled by the particle size of the original CaCO3. 
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Unfortunately, Arita et al (1995) only mentioned porosity in a qualitative manner and 

referred to densities (50% theoretical achieved) as an indication of the degree of 

porosity. Yang et al (1998) similarly found that CaCO3 and CaHP04.2H20 serve as 

pore-forming agents due to the evolution of C02 and water during the reaction and 
further found that it was possible to achieve porosity (up to 42 %) control by mixing 

the two powders in various proportions; pore volume was not mentioned. The fact 

that the authors do not state all the facts in their studies, such as porosities and pore 

sizes achieved, makes it very difficult to compare and contrast the data in order to 

decipher the most efficient preparation conditions and properties. 

3.2.5 FOAM METHODS 

A foam may be defined as "a structure that consists of material domain separated by 

voids which may be filled with gases, " (Williams et al, 1989). Most commercially 

available, low-density organic polymer foams consist of the blown foam type with 

cell sizes typically ranging from 100 to 1000 pm where the cells are closed due to the 

use of gases in the production of the foam. Furthermore, scanning electron 

microscopy has shown that these commercial foams have relatively thick walls (> 10 

µm) in order to provide maximal mechanical properties at a given density, as well as 

well-defined cells. 

The ideas behind the methods for fabricating a variety of ceramic foams can be 

applied to the production of ceramic foam composites. HI-POR Ceramics, a division 

of Dytech Corporation Limited ( owned subsidiary of J&J Dyson plc) has been 

formed to manufacture a foamed ceramic product, the patent of which is owned by the 

Dytech Corporation Ltd. The route taken to produce a final foamed ceramic product 
is shown in Figure 3.6. In 1997, Binner characterised some of the foams patented as a 

result of joint collaboration between the University of Nottingham and Dytech 

Corporation and found that the foams could be manufactured in a variety of near-net 

shapes and sizes and they were easily machinable. Binner identified a very 
fundamental criterion in the manufacture of foamed ceramics, i. e. the ability to 

produce a stable ceramic suspension. 
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The process starts with the addition of organic binders and dispersing agents to 

ceramic powder, resulting in an aqueous dispersion to which a foaming agent is 

added. The organic binder must then undergo gelation to stabilise the foamed 

structure, forming a strong cross-linked polymer-water gel, thereby trapping the 

ceramic and water in the foamed structure. After drying, the gelled structure is heated 

to burn out the organic binder and then sintered to obtain the required foamed ceramic 

material. Recently, a system for manufacturing porous HA in this way has been 

developed by Dytech (Sambrook et al, 1993). 
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Figure 3.6 Simplified flow diagram of manufacturing process (Sambrook et at, 1993) 

In 1999, Engin et al manufactured macroporous HA in a similar manner, whereby HA 

powder was mixed vigorously with methyl cellulose binder, dried, cut, and then 

followed by sintering. The difference in this investigation was that the porous foam 

did not undergo "binder burn-out", according to the findings, but were slowly heated 

to the optimum sintering temperature. The sintered structure may be seen in Figure 

3.7 and appears to show good macrostructural integrity. However, it seems odd that 

such a good macroporous structure could result from a heating regime that omits a 

bum-out phase. Theoretically, the continual increase in temperature would cause the 

polymer to pyrolyse and expand, whilst the ceramic shrinks due to the sintering 

process, resulting in compression-induced cracks in the macrostructure. 
Unfortunately, there were no high magnification images included in this paper. 
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Figure 3.7 SEM micrograph of HA bioceramics of 60 % porosity (Englin et al, 1999) 

Twigg et al (1995) prepared a ceramic foam that had a sponge-like porous structure 
by pouring a ceramic slurry of ceramic particles onto an open-cell organic polymer 

foam (the organic precursor was polyurethane). The plastic foam was burnt off 

during heat treatments and the ceramic was then sintered to achieve either a positive 

or negative replica of the original polymer foam. The positive replica resulted from 

the removal of excess low-viscosity slurry by blowing air through the foam or 

compressing the foam. This was followed by drying, calcining, removing the organic 

precursor through vaporisation and combustion, and then sintering, resulting in a 

ceramic foam which was a positive image of the plastic foam skeleton with high 

porosity (up to 85 %), but low bulk density (0.75g. cm 3). The negative replica 

procedure involved pouring a slurry with increased viscosity onto the foam, which 

was then shaken or vibrated to remove any excess slurry; so ensuring that the organic 

pores remained filled with the ceramic slip. Removing the binder and organic foam 

upon calcination resulted in pores that corresponded to the original foam structure. 

The resulting ceramic foam had a lower porosity (up to 61%), but higher 

density(1.54g. cm'3) than that obtained by the positive replica method. In order to 

optimise the processing technique, it is necessary to create a slurry that has the correct 

ratio of binder: water: powder, hence an appropriate viscosity. 

A slightly different technique using bum-out is the mixing of ceramic powder and 

polymer pellets, as opposed to pouring a ceramic slurry on the pre-cursor. Williams 
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et al (1996) described an inexpensive route for manufacturing moulded porous 

ceramics by incorporating alumina powder into polystyrene by high shear mixing and 
immersing the pelletized product in pentane. This was followed by a single-stage 

steam treatment, resulting in low-density foam mouldings that retained their shape 
during pyrolysis of the polystyrene. The foams were then sintered, yielding a ceramic 

with -84 % porosity. This technique results in porosity adequate for bone ingrowth. 

More recently in 1998, company by the name of Ultramet developed and patented a 

biocompatible, cellular, 80 % porous material called Hedrocel for bone substitution. 

The manufacturing process involved the pyrolysis of a polymer foam into a 

reticulated vitreous carbon (RVC) foam with up to 50% theoretical density. 

Following this was the chemical vapour deposition and chemical vapour infiltration 

processing, resulting in the fabrication of ceramic foams such as silicon carbide. This 

biocompatible material is currently being used in the fabrication of artificial hips, 

vertebral bodies, and spinal discs, and has also been used to develop cell growth 

systems. 

The three burn-out methods mentioned (i. e. foaming the slurry followed by heating, 

pouring the slurry onto a foam followed by heating, and then mixing the powder with 

polymer powder and heating) resulted in 60 -80 % porosity, which is adequate for 

bone ingrowth in-vivo. However, in terms of optimising the mechanical properties, 

perhaps the technique involving pouring the slurry over the foam is the most efficient, 

especially if an ideal burn-out temperature and bum-out time is used, hence avoiding 

compression cracks from polymeric expansion. 

A more promising area of foam technology is that of porous biodegradable composite 

scaffolds, whereby porous ceramic/polymer composites are used not as bone 

substitutes but more so as biological scaffolds for bone to grow into. In an ideal 

situation, the composite scaffold biodegrades at a similar rate to the ingrowth of bone. 

Zhang et al (1999) used a thermally induced phase-separation/sublimation of solvent 
technique to create a highly porous composite scaffold, i. e. a polymer/HA composite 

skeleton, and reported good mechanical properties (compressive modulus of -11 MPa 

and yield strength of up to -0.40MPa) as well as up to 95 % porosity and pore sizes of 

up to 100µm. Considering how high the porosity was, i. e. how low the density, the 
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mechanical properties obtained were very promising. Thomson et al (1998) similarly 

produced a biodegradable polymer/HA scaffold, the only difference being the use of 
HA short fibres as opposed to powder. The mechanical properties from Thomson et 

al's (1998) investigation revealed a compressive modulus of e-80MPa and a yield 

strength of -2.8MPa. Unfortunately, the porosities and pore volumes were 
determined using mercury porosimetry and therefore the values are incomparable 

those of Zhang et al (1999). This inconsistency of data therefore makes it difficult to 

state whether the strengths achieved were good in terms of the porosity. 

3.3 MECHANICAL PROPERTIES OF HYDROXYAPATITE 

3.3.1 DENSE HYDROXYAPATITE 

Hydroxyapatite is often chosen as a bone substitute material due to its similarity to the 

mineral naturally found in bone. The important contribution that this bone mineral 

makes towards the overall mechanical properties of bone was highlighted by Kotha et 

al (1998). Bovine bone was treated with fluoride ions and mechanical tests indicated 

a reduction in strength; the fluoride action reduced most of the structurally effective 
bone mineral content to calcium fluoride. Hence changing the amount of bone mineral 

present varies the mechanical properties of bone tissue. Due to the obvious role of the 

mineral content in maintaining the mechanical integrity of bone tissue, it is important 

to mechanically characterize a potential bone-replacement material which is very 

similar to bone mineral, i. e. commercial hydroxyapatite. 

Hydroxyapatite is structurally brittle, but strong in compression, behaviour which is 

typical of ceramics in general at room temperature. Fracture almost always occurs 
before any plastic deformation can occur in response to an applied tensile load. Like 

most brittle ceramics, the fracture process of HA consists of the formation and 

propogation of cracks through the cross-section of material in a direction 

perpendicular to the applied tensile load. In crystalline ceramics, crack growth occurs 
through the grains (transgranular) and along specific crystallographic (cleavage) 

planes (Callister, 1994). Fracture occurs due to the presence of very small and 

omnipresent flaws (microcracks, internal pores, grain boundaries) which serve as 
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stress-raisers, thereby increasing the magnitude of the applied stress. Fracture 

toughness (KIc) is used to measure a ceramic's ability to resist fracture when a crack 
is present. However, for compressive stresses, stress amplifications are not associated 

with any existent flaws, which explains why ceramics have much higher strengths in 

compression than in tension. When ceramics are subjected to both tensile and 

compressive stresses, i. e. in three or four-point bending, the stress at fracture 

corresponds to the bending/flexural strength. 

3.3.1.1 Mechanical Properties 

Table 3.3 lists some general mechanical properties of HA, with an inclusion of TCP 

for comparison. In this table, it can be seen that dense HA is not as strong as cortical 
bone in compression (comparing the values to those found in the literature in Table 

1.1. ), with lower fracture toughness than bone (refer to Table 1.1 and 1.2), and weaker 
in bending than in compression. However, dense HA displays good stiffness (similar 

Young's moduli to that of cortical bone, listed in Table 1.1 to 1.4). In comparison to 

HA, TCP is stronger, less stiff, and tougher according to Metsger et al's (1999) 

results. It was concluded that by increasing the sintering temperature of HA, hence 

increasing the amount of TCP present from the decomposition of the HA, the overall 

mechanical integrity of HA increases. Aoki (1991) found a strong relationship 
between the sintering temperature of HA and its respective compressive and flexural 

strengths, as shown in Table 3.4. The compressive strengths were much higher than 

values found for bone. This may be due to the absolute accuracy of the cutting of the 

rectangular specimens used in his study, not to mention the likelihood of polishing, 

which is traditionally never mentioned; these factors will eliminate _ surface 
imperfections and increase flexural strength due to elimination of stress 

concentrations. 
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Takle 3.3 General mechanical eronerties of hvdroxvanatite (authors stated in table) 

Material Density Flexural Vicker's Compressive Young's Fracture 

(g. cm4) Strength Hardness Strength Modulus Toughness 

(MPa) (MPa) (MPa) (GPa) (MPa. m 1") 

HA 70 9.2 0.36 

(Metsger et 

al, 1999) 

TCP 315 21 2.34 

(Metsger et 

al, 1999) 

HA 3.12 110 820 

(Lu et 

al, 1998) 

HA 130 

(Tampieri 
et 

al, 1997) 
HA 3.16 < 100 100 - 200 100 <1 

(Willman 
1996) 

HA 115 112 1.0 

(De With et 

al, 1981) 

Tnhle 3.4 The effect of sinterine temperature on the mechanical orooerties of HA (Aoki 1991) 

Temperature (°C) Compressive Strength (MPa) Flexural Strength (MPa) 

1150 308 ± 46 61 t8 

1200 415±46 104± 11 

1250 465±58 106± 10 

1300 509 ± 57 113 f 12 
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3.3.1.2 Effect of Granule Size on the Mechanical Properties of HA 

Granules are useful for the filling of irregular-shaped defects. Furthermore, the use of 

granules increases the surface area of the material which may favour the transfer of 
load from bone to implant. Reducing the HA granule size is also advantageous for 

improving its' mechanical properties. When the granule size is decreased, the specific 

surface area increases, which increases the bonding capacity between implant and 
bone. Furthermore, a decreased granule size results in more contacting surface areas, 
hence greater frictional forces, all of which improves the mechanical properties of a 

packed column, as well as the uniform pore distribution. Figure 3.8. (Luo et al, 1996) 

demonstrates the effect of the smaller spheres in comparison to the traditional and 

conventional spheres. Reduced particle size results in closer packing, i. e. increased 

surface area for biological reactions (greater biocompatibility) and better load 

distribution. 

Traditional Conventional Advanced 
FFF 

Irregular Big spheres Small spheres 

Figure 3.8 Comparison of conventional and advanced HA columns (Luo et al, 1996) 

Shareef et al (1993) studied the effect of decreasing individual granule size on the 

mechanical properties of HA, the results of which are shown in Table 3.5. The 

granules in this investigation were sieved to produce "pressbodies", from which ring- 

shaped test pieces were produced by double-ended uniaxial compression in a steel die 
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at 45MPa. The tensile strengths were determined using the Stanford ring bursting 

test, in which the test piece was pressurized internally to generate a tensile hoop stress 

in the ring. 

Table 3.5 The effect of granule size on the strength and toughness of HA (Shareef et al, 1993) 

Maximum Granule Size (µm) 

Property 710 500 250 100 

Tensile (MPa) 20 - 24.2 23.5-29.3 29.2-33.3 31.8-37.1 

Fracture 0.48-0.55 0.51-0.62 0.61-0.68 0.69-0.73 

Tougness 
(MPa. mlrz) 

These results are consistent with Luo et al's opinion in that the smaller the granule 

size, the better the mechanical properties. Biologically speaking, the high surface 

area created by using granules may be exploited in order to achieve rapid biological 

fixation. Burstein et al (1997) used porous granular HA in secondary orbitocranial 

reconstruction and found that the facial contour corrections induced by the 

implantation were long lasting, without evidence of granular resorption. 

3.3.2 POROUS HYDROXYAPATITE 

3.3.2.1 General Properties 

Porous HA bioceramics display lower strengths than dense bioceramics due to a 

combination of the existence of larger pores, hence more stress concentrations (i. e. 

macropores, as opposed to just micropores) combined with the thin lattice of struts. 
Table 3.6 contains the mechanical properties of various porous HA bioceramics 

before bone ingrowth. Unfortunately, different authors carry out different mechanical 

tests on their materials so there isn't a consistent means of comparing data, yet it is 

still informative. Furthermore, the test parameters such as sample size, cross-head 

velocity (on the testing apparatus), and test apparatus . vary considerabely. 
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Table 3.6 Mechanical nronerties of various commercial porous HA bioceramics (authors in table) 
Author Year Material Mechanical Value 

Property 
White et al 1986 Interpore-200® Compressive 9.25 MPa 

(Commercial porous HA) strength 

(50 - 75 % porosity) 
Holmes et at 1984 Coralline HA (Goniopora) Ultimate 2.3-5 MPa 

(-66 % porosity) compressive 

strength 
Fabbri et at 1995 Commercial HA Flexural strength 1- 2 MPa 

(70 - 80 % porosity) 
Morgan et at 1997 Carbonated Apatite- Flexural Strength -0.468 MPa 

Cancellous Bone Cement 

Haddock et at 1999 Coralline HA Ultimate Stress 5.87 MPa 

Engin et al 1999 HA (60-90 % porosity) Fracture Strength 5-10 MPa 

Sepulveda et at 1999 HA (80.2-80.7 % porosity) Compressive 4.4-4.7 MPa 

HA (76.7 % porosity) Strength 7.4 MPa 

Metsger et al 1999 HA Compressive 9.3 MPa/1.2 GPa 

TCP Strength + Young's 13 MPa/1.6 GPa 

Modulus 

3.3.2.2 Relationships between Strength and Porosity, Pore Size and Pore 
Geometry 

Liu (1997) demonstrated that the compressive strength of porous HA decreases 

(from-37-1MPa) with increasing porosity (from -47-77%) in an exponential manner 

(Figure 3.9); this is related to the decrease in the quantity of solid material present in 

each specimen (i. e. real density). Liu (1996*) previously reported that the compressive 
strength behaves linearly with macropore size; the larger the macropore, the lower 

the compressive strength (Figure 3.10). Liu (1996*) also reported a relationship 
between pore geometry and compressive strength; porous HA containing 

spheroidal/ellipsoid pores showed higher strength than that containing oblate pores 
(Figure 3.11). LeHuec et al (1995) found similar trends with porous HA ceramics, and 
concluded that even though it would be desirable to minimise porosity and pore size 
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for optimum mechanical properties, there would be limited integration by surrounding 
tissue, hence the necessity of a compromise between pore size and cellular 
integration. Therefore it is important to be able to control the porosity of the final 

structure; Arita et al(1995) managed to achieve and control intermediate porosities of 
HA (reported using density as an indication; 12-22% theoretical density) by mixing 

uncalcined and precalcined powders. The CaCO3 used in that study served as a gas- 
forming agent, which led to the development of porous structures of up to 62% (this 

was the only porosity value mentioned in the investigation). 

40 
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h 
20 

u 
.M 
r 
u 
v 
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40 so 60 7o so 

Porosity Fraction (volt. ) 

Figure 3.9 The compressive strength of porous HA decreases linearly with increasing macropore 
size for a given total porosity (Liu, 1997) 
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Figure 3.10 The porosity-compressive strength behaviour of the porous HA ceramics in terms of 
different sizes of starting PVB particles (Liu, 1996*) 
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Figure 3.11 The compressive strength-porosity behaviour of porous HA ceramic with different pore 
geometries (Liu, 1996*) 

Liu et al (1998) discovered that the flexural strength of porous HA decreased with 
increased pore size (Figure 3.12), yet the pore size was roughly equal to the starting 

size of the polymer burnt out to produce the pore. This suggested the feasability of 

obtaining porous structures with optimal mechanical properties by controlling the 

quantity and particle size distribution of the polymer used in the bum-out. 

so 
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40- 

0.420 mm 19 
0 
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20 
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Figure 3.12 The effect of porosity and macropore size on the flexural strength of porous HA (Liu, 
1998) 
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A linear relationship between porosity and mechanical properties were also uncovered 

by Ono et al (1998), who reported a decrease in load value at fracture during a "crush 

test"with an increase in porosity (Figure 3.13); it was also reported. expectedly, that 

the load value increased with increased specimen dimensions (as inclicatc(l 1 the 

legend in Figure 3.13). Rodriguez-Lorenzo et al (1998) reported a similar trend in 

which the flexural bending strength of porous I IA decreased with increasing porosity 

(Figure 3.14), with resulting spherical pores of--. 80µm. 

Load at Fracture 

kg 70 
3 mm 

0 "i mm 

I  >rnm 60 ýbmm 

mm 
50 1 U8mm 

40 I 
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10 
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Figure 3.13 The effect of varying porosity and specimen thickness on the load fracture of' porous 
HA (Ono et al, 1998) 
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Figure 3.14 The influence of porosity on flexural strength (Rodriguez-Lorenzo et al, 1998) 
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3.4 BIOACTIVITY OF HYDROXYAPATITE AND BONE INGROWTII 

In some bioactive ceramics following implantation, the surfaces form a biologically 

active carbonate-substituted apatite layer, which provides a bonding interface with 

tissues. Surfaces such as these may further facilitate osteoblastic growth (Knabe et al, 

1997) (Zyman et al, 1998). Dense bioceramics that contain only micropores should 

theoretically undergo this process; however, unlike the biological response elicited by 

dense HA, porous HA is inherently better for biological fixation because of the 

opportunity for bone ingrowth. Gauthier et al (1998) recently identified an optimum 

pore diameter (565 µm) and degree of macroporosity (40 %) for homogeneous and 

abundant bone ingrowth, which is in direct contradiction to Klawitter et al (1971) and 

Hench (1991) who reported the pore sizes necessary for bone ingrowth as 100µm. 

Gauthier et al's (1998) proposed optimum pore diameter seems toolarge and would 

probably result in a very poor mechanical properties (which were conveniently not 

reported in their investigation). 

However, the disadvantage (if the application is relatively high load-bearing) of a 

porous structure as opposed to a dense structure is the larger surface area, hence an 

increased potential for the material to degrade in-vivo. A recent study (Benhayoune 

et al, 2000) into the in-vivo behaviour of dense vs porous HA ceramics indicated that 

once the dense and porous cylinders were implanted into cortical sheep femurs, the 

dense HA experienced little to no degradation due to resorption, unlike its porous 

counterpart. According to Behayoune et al (2000), the explanation lies in the lack of 

immature bone present in at the dense implant/tissue interface. When the resorption 

cavities of immature bone are in contact with a dense ceramic surface, resorption on 

this surface occurs. Therefore, it was assumed that when the resorption cavities of 

immature bone are in contact with a dense ceramic surface, resorption occurs, but 

only in the early periods of bone development before woven bone is converted to 

lamellar bone ( period in which the remodelling rate is high). However an alternative 

explanation may lie in differences in surface area. This cellular mechanism of calcium 

phosphate ceramic degradation was previously suggested by Heymann et al (1999), in 

which it was suggested that osteoclasts resorb calcium phosphate ceramics similarly 

to natural bone and hence possess a phagocytic capability. This is quite believable 
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because HA is similar to the mineral found in bone, therefore it is reasonable to 

assume that the osteoclasts would resorb HA in a similar manner. 

Nevertheless, regardless of the mechanism, the deposition and integration of bone 

should enhance the strength of the implant by bonding with the host bone tissue (Hing 

et al, 1997). The key factors determining the amount and type of ingrowth are 

porosity and interconnectivity. Radin et al (1994) compared the in-vitro reaction 
kinetics of porous and dense bioactive ceramics and discovered that dense HA and 

calcium deficient HA led to immediate precipitation and direct apatite formation 

whereas the porous ceramics showed a lag time that depended on their structure and 

composition. It was also concluded that the composition, crystal structures and 

ultrastructure of ceramics with identical porosity were the key factors in controlling 

the reaction kinetics. 

In comparing the bioactivity of HA to other calcium-phoshate based materials, 
Fujishiro et al (1997) carried out an investigation into the quantitative rates of in-vivo 

bone generation for Bioglass® and HA particles, and discovered that the bone growth 

rate constants of Bioglass® at the periphery and centre of the implant site were 

approximately twice that of the HA particles. Wilson et al(1992) similarly found that 

Bioglass® materials were more osteoconductive than two HA-based materials when 

implanted in the alveolar bone of patus monkeys. This leaves room for thought on 

combining HA with a bioactive glass for improving the overall bioactivity. However, 

if that were the case, the amount of bioactive glass added would have to be strictly 

controlled because bioactive glasses have lower Ca: P ratios than HA and therefore 

resorb at a higher rate (as discussed previously in section 3.1.4), which may be 

undesirable for high load-bearing applications in which the scaffold material must 

remain intact for as long as possible until adequate bone ingrowth has occurred. 

Various attempts have been made to improve the bioactivity of HA, some successful 

and others providing no overall benefit. Radin et al (1996) found that placing serum 

proteins into simulated physiological solution did not significantly affect the 

solution/precipitation reactions on the surface of the HA. Yoshikawa et at (1996) 

found that osteogenic HA (containing pre-inserted stem cells) showed immediate 
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bone forming capability in-vitro; the results highlighted the inherent osteogenic ability 

of marrow stromal stem cells from rat femur in the pore regions of the HA, therefore 

proving that in an in-vivo situation, HA can promote rapid osteoblastic activity. 
Gundle et al (1997) similarly combined porous calcium phosphate ceramics with 

cultured marrow stromal cells in-vivo from human cancellous bone, and found the 

composite to have good osteogenic and osteoconductive properties. In 1999, Oreffo 

et al indentified the potential for using osteogenic stem cells in bioceramic technology 

as huge. Anselme et al's (1999) work further reinforced this idea as the advantages of 

culturing pre-implantation were demonstrated by the ability of the cultured stromal 

cells to differentiate on the implant surface. Furthermore, studies have been made 
(Flautre et al, 1999) into how to control cell culture medium in order to affect the 

depth of bone penetration within the implant in-vivo. 

In fabricating a bioactive ceramic like HA as a scaffold for bone ingrowth, it is 

important to focus on not only pore size/pore geometry/porosity, but also balancing 

the rate of bone ingrowth and any possible biodegradation. Increased porosity 
indicates increased surface area, i. e. a larger area for resporption to occur. Tricalcium 

phosphate displays high rates of resorption therefore it would be advantageous to limit 

the amount of tricalcium phosphate present in an as-sintered material, given the 

application, especially if it is high-load bearing. It is fundamental to minimise the 

amount of TCP present in a porous HA ceramic in order to avoid this type of 

situation. 

3.5 REINFORCED HYDROXYAPATITE 

Section 3.3 revealed that the mechanical properties of both dense and porous 
hydroxyapatite are much lower than the strength values of cortical and cancellous 
bone as described in section 1.6, yet bioactivity is displayed by hydroxyapatite. 

Biologically, hydroxyapatite is efficient in terms of being accepted into the body and 

stimulating bone ingrowth, yet its, mechanical properties need improvement. 

Reinforcing the HA with a material that is strong and biocompatible would solve this 

problem. Bioceramic materials may be used to reinforce each other, to form a 
bioceramic composite, in order to maximise the use of particular properties from each 
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respective material. This section desribes various dense reinforced hydroxyapatite 

composites. 

3.5.1 HYDROXYAPATITE/HA-WIIISKER-FIBRE COMPOSITES 

Fibres and whiskers are reinforcement materials whose reinforcement mechanism is 

based on crack-stopping. If the toughening mechanism occurs in the crack-wake, it 

requires more energy for the crack to propogate through the material, thereby 

increasing the mechanical integrity of the system. Suchanek et al (1996) described the 

use of pure HA whiskers, which were single fine crystals. These were mixed with 
HA powder and then sintered or hot-pressed to produce the composites. The 

mechanical characterization results of HA/HA-Whisker composites carried out by 

Suchanek et al (1996,1997) are shown in Table 3.10. 

Table 3.10 The mechanical nronerties of HA/HA-Whisker Comnosites (authors stated in table) 

Author Density (% Theoretical) Fracture Toughness 
Year 

(MPa. min) 

Suchanek et al 1996 90-9.7 1.4 

Suchanek et al 1997 . 97.0-99.5 1.4-2.0 

The fracture toughness in both cases was relatively poor in comparison to bone, and 

only a slight improvement over dense hydroxyapatite (51). This attempt at 

reinforcing HA, in the hope of improving the mechanical properties, was 

unsuccessful. Despite the mechanical disadvantages of this composite, there are 

biological advantages due to its' bioactivity and biocompatibility from solely 

containing HA (the biocompatibility and bioactivity of which has been discussed in 

section 3.4). 

When hydroxyapatite is reinforced with short fibres such as alumina, 316-L stainless 
steel, or titanium, the significant factor affecting the success of the composite is the 

processing technique (Knepper et al, 1997,1998). Knepper et al (1997,1998) found 

that sintering in air, and hot-isostatic pressing caused the HA matrix of the composites 
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to decompose to undesired TCP, which apparently mechanically weakened the 

material by decreasing the density (values were not reported). The decomposition 

was suggested to derive from chemical interactions between the matrix phase and the 

fibre-reinforcement phase, resulting in a reaction zone. In 1997, Knepper et al found 

no reaction zone around the alumina fibres which was accounted for by hot isostatic 

pressing during the sintering process, which apparently suppressed the decomposition 

of the HA matrix in the composites at elevated temperatures. This technique is 

indicative of producing reinforced HA with better mechanical viability than by 

reinforcing with HA whiskers; however, alumina was desribed in section 2.4.2.1 as an 
inert bioceramic, which means that it may not display as good a biocompatibility as 

the whisker-reinforced HA. 

3.5.2 CALCIUM PHOSPHATE/POLYMER COMPOSITES 

As mentioned previously in Chapter 1, the major phases of bone are an organic phase 
(collagen) and an inorganic phase (mineral similar to hydroxapatite). Therefore, a 

bone analogue material composed of calcium phosphate and a polymer such as 

collagen would be a very suitable composite for bone replacement, due to its 

appropriate biological and mechanical compatibility. Bonfield et al (1988) pioneered 

a composite bone replacement material of this description, which has subsequently 

been given the trade name HAPEXTm; this composite material consists of 

hydroxyapatite and high density polyethylene. In 1994, Ladizesky et al discovered 

that powderizing, recompacting, and then hydrostatically extruding HA/chopped high 

modulus polyethylene (HMPE) fibre composites creates materials with the highest 

stiffness and strength as of yet with HA/PE composites. In 1998, Lawson et al 

produced a polymer/ceramic composite whereby calcium phosphates were 

precipitated onto collagen; the mechanical properties of their material are shown in 

Table 3.11. 
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Table 3.11 Mechanical properties of collagen and collagen-calcium phosphate composites with 
varvinQ mineral contents (Lawson et al. 1998) 

Mineral (wt %) 0 29 32 34 39 

Failure Stress (MPa) 34 49 53 53 49 

Elastic Modulus (GPa) 0.44 1.25 1.58 2.48 2.82 

These types of composites have similar strength to cortical bone and therefore appear 
to have potential for bone substitution in high load bearing areas in the skeleton; yet 
the modulus is much lower than that of cortical bone and slightly lower than values 

recorded for hydroxyapatite. Marra et al (1999) recently produced a porous 

composite consisting of polycaprolactone (PCL)/poly (D, L-lactic-co-glycolic acid) 
(PCGA) in a ratio of 10: 90 with 10 % HA, with lower moduli than Lawson et al's 
(1998) composite, as shown in Table 3.12. 

Table 3.12 Mechanical Dronerties of porous scaffolds (Marra et al_ 1999) 

Material Tensile Strength (MPa) Young's Modulus (MPa) 

Trabecular Bone 1.2 100-900 

PCL 1.1 ±0.1 11.8±4.0 

PLGA 0.45 ± 0.08 2.4 ± 0.7 

10/90 0.4±0.1 2.5±0.7 

10/90+10%HA 0.51±0.08 12.5±3.2 

3.5.3 GLASS-REINFORCED HYDROXYAPATITE 

Glass is incorporated into the HA structure by a liquid-assisted sintering process 
(discussed later). The pressure-less sintering of ceramic composites requires the 

presence of a liquid phase to obtain a desired degree of chemical homogenisation. 

The addition of glass to HA is advantageous due to its bioactive nature which has 

been previously discussed. Conversely, glass on its own has one main drawback, i. e. 
its poor mechanical properties due to its very brittle nature (Andersson et al, 1988), 

whereas glass-ceramics have better mechanical properties and are more machinable, 
therefore would appear to be more appropriate for reinforcement. However, in small 

quantities, glass can improve the sinterability of HA through liquid-assisted sintering 
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and hence the overall mechanical integrity of the system. Glass-ceramics too can 

undergo liquid assisted sintering. Reinforcing materials such as glass or glass- 

ceramics may be added in an attempt to enhance the mechanical properties and 
bioactivity of the HA. This chapter will focus on the literature regarding glass- 

reinforced HA only, seeing as there is currently no literature published on glass- 

ceramic reinforced HA. 

3.5.3.1 Mechanism of Reinforcement 

Liquid assisted sintering is a process whereby a material is sintered in the presence of 

a reactive liquid. The liquid is in fact a sintering aid as it improves the sinterability of 

the starting material. The systems which undergo liquid phase sintering contain a 

solid phase that shows limited solubility in the liquid at sintering temperature. The 

essential part of this process is the solution of the starting material in the liquid phase, 
followed by the reprecipitation of solids to give changes in grain size and density. 

In order for liquid phase sintering to take place, there are three requirements that the 

system must have (Kingery et al, 1976): 

9 An appreciable amount of liquid phase 

9 An appreciable solubility of the solid in the liquid 

" Wetting of the solid by the liquid 

In this case, the capillary pressure of the liquid phase located between the fine solid 

particles is the driving force for densification, as shown in Figure 3.15(Kingery et al, 
1976). The liquid phase wets the particles, and in doing so, attracts the particles 

closer together due to the capillary created in this interparticle space. Hence the 

increased potential for atomic and vacancy movement between two particles during 

sintering. 
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(a) (b) 

Figure 3.15 (a) Contact between solid and liquid (b) Particle attraction due to capillary action 
(Kingery et al, 1976) 

There are four stages involved in the densification experienced during liquid-assisted 

sintering: 

1. Particles rearrange themselves on formation of the liquid phase to allow better and 

more effective packing 

2. In the bridges between the particles at the contact points, high local stresses 

develop, leading to plastic deformation and creep, thereby rearranging the 

particles further. 

3. The smaller particles go into solution in the liquid phase and reprecipitate into 

larger particles by material transfer through the liquid phase. 
4. In the situations where the liquid penetrates between particles forming a capillary, 

the increased capillary pressure at contact points results in an increased solubility 

which enhances stage 3. This further causes the material to transfer in a direction 
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away from contact areas, therefore particle centres approach, and shrinkage 

results. 

This liquid assisted sintering process increases strength because it creates greater 

particle contact prior to the sintering temperature. The reinforcing glass reaches the 

viscosity of a liquid (Tm) at a low temperature and results in greater particle contact 

as shown in Figure 3.15, which is maintained during the sintering process at higher 

temperature. Increased contact results in a greater amount of atomic diffusion across 

the grain boundaries, which ultimately enhances the densification process, hence 

strength is improved. 

3.5.3.2 Phase Composition 

During the sintering process for a glass-reinforced hydroxyapatite composite, the 

glass has a low viscosity and is highly reactive in its liquid phase, which occurs 

roughly between 1200-1350°C (Knowles et al, 1993). In this form, the glass pulls 

ions out of the HA, namely OH- ions, which causes an imbalance and results in phase 

changes. Knowles et al (1993) further found that by increasing the glass wt % in the 

composites, an increase in the phase change from HA to TCP would occur. 

Reinforcing HA results in the production of a biphasic material because glass 

enhances ionic mobility, hence the reactivity of the material, and therefore OH" ions 

are more readily released during sintering, resulting in the presence of TCP. 

In 1994, Knowles et al indentified the temperatures at which different forms of TCP 

would be present: 

" Between 1200-1350°C, HA would decompose to ß-TCP. 

" Above 1350°C, ß-TCP would transform further to a-TCP resulting in - 40 % a- 

TCP in the composite, 

Therefore it was deduced that an increase in temperature above 1300°C was 

associated with a decrease in the amount of ß-TCP and an increase in the amount of 

a-TCP. Lopes et al (1998) were in full agreement with this and further added that the 
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higher the glass additions, the more likely ß-TCP is to contain more residual ions 

from glass and be unstable, hence the ease at which a-TCP is formed. Knowles ct al 

(1994) also discovered that the transformation from ß-TCP to a-TCP involved a 

larger volume change than the transformation from HA to ß-TCP, therefore disrupting 

the overall structure of the material; therefore the presence of a-TCP is often 

associated with a decrease in mechanical strength. 

In 1996, Knowles et al's studies showed that the phase changes that occur may not 

only be detrimental to the mechanical integrity of the composite system (in terms of 

the volume change associated with the ß-TCP to (x-TCP transformation) but may also 

be advantageous. The phase change from HA to ß-TCP was described as a 

reinforcing mechanism by Knowles et al (1996), comparable to the transformation 

toughening mechanism of Partially Stabilized Zirconia. The HA to ß-TCP 

transformation was reported to cause a decrease in volume, therefore eliminating 

porosity and increasing strength. But, of course, after 1350°C when the ß-TCP to a- 

TCP transformation occurs, the associated increase in volume relates to a decrease in 

strength, which contradicts Knowles et al's results. Santos et al (1996) justified their 

results by describing the same mechanism as above and further adding that the highest 

bending strength of their glass-reinforced composite samples was associated with 

significant amounts of ß-TCP present. 

The general concensus from these findings are that the presence of ß"TCP is related to 

an increase in mechanical strength in these composites. Of course, this is very useful 

if the presence of TCP is a desirable requirement for the particular application. 
However, TCP has been described previously in Chapter 2 as a highly resorbable 

material with high rates of biodegradation. In high load-bearing applications where 

the bioceramic behaves as a scaffold for allowing bone ingrowth at the same time as 

maintaining strength, a highly resorbable component such as TCP is undesirable. 
Therefore, it is necessary in these applications to produce a composite, which has an 

even balance of resorption rate and strength. 

86 



CHAPTER 3 
HYDROXYAPATITE CERAMICS FOR BONE REPLACEMENT 

3.5.3.3 Mechanical Properties 

Table 3.13 summarises the findings of several authors concerning the highest biaxial 

flexure strengths of G-R-HA composites, according to glass type, wt % of glass, and 

sintering temperatures. The flexural strengths from all findings appear to4generally 

similar if not lower than the flexural strengths of unreinforced hydroxyapatite, whose 

strengths lie between 100-130 MPa as found in Tables 3.3 and 3.4. The authors all 
found that the liquid phase of the glass at high temperature inhibited grain growth 

which resulted in increased densification and better mechanical properties. 
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CHAPTER 3 
CALCIUM PHOSPHATE CERAMICS FOR BONE REPLACEMENT 

3.5.4 MECHANICAL DEGRADATION OF REINFORCED IIYDROXYAPATITE 

HA has excellent biocompatibility and can directly bond to bone by forming a 

biologically active bone-like apatite layer on its surfaces. . 
Therefore, composite 

materials that contain HA combined with another bioactive component should 

theoretically also experience a degree of biocompatibility. Not only is the ability to 

form an apatite layer important towards the behaviour in-vivo/-vitro, but also the 

ability to maintain structural hence mechanical integrity. However, the material must 

not be too strong and stiff and incapable of resorption; a balance must be reached in 

order to optimise bone ingrowth and strength maintenance. 

There is very little in the literature regarding the in-vivo/-vitro mechanical 
degradation of bioceramic materials. Furthermore, the authors mentioned in this 

section did not all immerse their materials in the same biological mediums for the 

same length of time, therefore solid comparisons were difficult to achieve. 

Nevertheless, the following information reports on investigations into the in-vivo/- 

vitro degradation of various composites. 

In 1997, Huang et al immersed HAPEXTM in simulated biological fluid (SBF) for 3 

months, a solution which closely resembles the inorganic ion concentrations in blood 

plasma, and found that the mechanical properties were not really affected by contact 

with physiological solution (Figure 3.16). HAPEXT also appeared to to provide a 

favourable environment for cell attachment, cell proliferation, and cell 

differentiation. Later in 1998, Huang et al found again that there was little to no 

decrease in the tensile strength, Young's Modulus, and fracture strain of HAPERT"", as 

opposed to polyethylene reinforced with Bioglass®, whose strength decrease was 

correlated to the reactivity of the Bioglass® in SBF. The reactivity of a component 

within a composite may be advantageous for low-load bearing applications but 

disadvantageous for high-load bearing applications, where a degree of structural 

integrity must be maintained in order for the composites to act as a scaffold. 

Xiaodong et al (1998) immersed poly-DL-lactide/HA composites in a degradation 

medium (pH 7.4 phosphate buffer) and found that the PDDLA experienced less 
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degradation when HA was incorporated into its, structure (Figure 3.17). It was 

suggested that this may be due to a thick layer of apatite crystals acting as a 

hydrolysis barrier and therefore delaying the penetration of water, hence preventing 

the release of particles. Furakawa et al (2000) similarly discovered this trend, 

whereby the resorption of TCP within a composite scaffold correlates with the 

remaining material becoming more crystalline; it was found that the HA/PLLA 

composite rods implanted in-vivo were stronger the less crystalline they were, which 

also indicates that the presence of TCP enhances strength. Figure 3.18 and 3.19 show 

the differences in strength and crystallinity of calcined and uncalcined HA/PLLA 

composites, in which the less crystalline composite appeared to be stronger in-vivo. 

Wang et al (1998) found that most of the a-TCP within a a-TCP/ HA composite 
(70%/30%, respectively) disappeared after a month in-vivo, according to XRD 

analysis, which may limit this composites' applications due to its high resorbability 

from containing a large amount of a-TCP. 
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Time 

(week) 
Bending strength (MPa) 

HA/PDLLA PDLLA 
Shear strength (MPa ) 

Ha/PDLLA PDLLa 

0 120.3 109.7 84.5 78.1 
2 82.5 68.7 69.2 60.3 
4 73.5 56.5 58.4 46.7 
6 66.8 47.9 50.2 30.9 
8 57.4 36.7 42.4 19.8 
10 42.9 20.1 36.3 12.4 
12 34.0 11.3 30.2 7.5 

Figure 3.17 Strength of HA/PDLLA Composite and Unfilled PDLLA (Xiaodong et at, 1998) 
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Figure 3.18 Changes of the bending strength of HA/PLLA composite rods with time in vivo. (0) 

uncalcined HA/PLLA (0) calcined HA/PLLA (Furakawa et at, 2000) 
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Figure 3.19 Changes in the crystallinity of HA/PLLA compsite rods. (I) uncalcined HA/PLLA 
(0) calcined HA/PLLA (Furakawa et al, 2000) 
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The resorbability of filler glasses such as CaO-SiO2-P205-CaF2 have also been shown 

to affect the strength of resin-based composite cements in SBF due to their high 

reactivity, in comparison to resins without filler as shown in Figure 3.20 (Miyata et 

al, 1999). 
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Figure 3.20 Bending strengths of resin-based composite cements as a function of soaking time in 
SBF at 50°C: (a) resin without filler (b) resin filled with CaO-based glass (c) resin filled with AW glass 
(d) resin filled with silica glass (Miyata et al, 1999) 

3.6 SUMMARY 

HA is a brittle ceramic, which has been used extensively in the medical industry as a 

synthetic bone replacement material. Dense HA has poor mechanical properties on an 

absolute scale but good mechanical properties relative to porous HA. However, it 

lacks the level of bioactivity achieved by porous HA whose porous structure allows 
bone ingrowth, thus stabilising the implant; yet, porous HA lacks the level of 

mechanical integrity shown by dense HA. Therefore in order to construct a porous 
bioceramic that displays the bioactivity shown by porous HA and the mechanical 

strength of dense HA, it is necessary to construct a composite material, such as porous 

glass-reinforced-hydroxyapatite, whereby the glass strengthens the porous HA 
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structure. It is important to maintain the porous structure and interconnectivity ( for 

maintaining vascular support between pores) so it may function as a scaffold for bone 

regeneration, whilst controlling the rate of degradation in-vivo, so as not to 

compromise the biocompatibility or in-vivo mechanical integrity. 

Composites are useful for increasing the mechanical properties of a bone-substitute 

material in high load-bearing applications. Hydroxyapatite has shown improved 

strength when combined with calcium-phosphate based glassy materials, at the 

expense of the phase decomposition which is undesirable for high . load-bearing 

applications. 

The practical investigation in this report focuses on comparing the effect of different 

Ca-P04 materials on the sintering behaviour of hydroxyapatite, followed by an 

analysis of their mechanical degradation in-vitro. 
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CHAPTER 4 

METHODS AND MATERIALS 

4.1 MATERIALS 

" Commercial hydroxyapatite powder (P201) (Plasma Biotal Ltd., U. K. ) 

" Glass pre-cursors: CaCO3 
P205 
Na2CO3 
K2C03 
MgCO3 

(BDH Company, Merck Ltd., U. K. ) 

" Polyvinyl alcohol powder (mol wt. = 115,000) (BDH Company, Merck Ltd., U. K. ) 

" BU Foam (Foam Engineers Ltd., U. K. ) 

" YU Foam (IRC in Biomedical Materials, U. K. ) 

" Ringer's solution tablets (quarter strength) (BDH Company, Merck Ltd., U. K. ) 

4.2 AIMS AND OBJECTIVES 

The aim of this thesis is firstly to investigate the reinforcement of HA by the addition 

of a low melting point 2 °d phase, which, as a composite, will not lose strength on 
immersion in physiological solution. Once this is established, the ultimate aim is the 

production of porous ceramic structures with enhanced mechanical properties. The 

characterization process involves investigations of particle size and distribution, phase 

composition, mechanical properties, and microstructure. 

The experimental work was set out in three stages: 

Stage 1 Development of a reinforced hydroxyapatite composite 

9 Characterise the commercial HA(P201) used in the composite 

" To synthesize reinforcing phases with varying Ca: P ratios 
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" To reinforce dense P201 HA with the secondary phases and compare and contrast 
the results of their characterisations with that of pure P201 HA 

" To select the best wt %2 °d phase addition for mechanical reinforcement and 

minimized phase decomposition 

Stage 2 Investigation into the mechanical degradation of reinforced 
hydroxyapatite in physiological solution 

" To carry out an in-vitro study of the composites in Ringers' solution in order to 
determine the effect of a biological environment on the mechanical and 

crystallographic properties of the composite. 

Stage 3 Production of reinforced porous hydroxyapatite 

9 To develop a protocol for a foam bum-out technique using P201 hydroxyapatite. 

9 To reinforce porous P201 with a secondary phase, based on the consitituents of 
the dense composite that displayed optimum mechanical and physical properties. 

This chapter firstly describes the ways in which the materials were produced and 

prepared for characterisation, followed by the actual characterisation techniques used 
for each study. 

4.3 PRODUCTION AND PREPARATION OF TEST MATERIALS 

4.3.1 PREPARATION OF DENSE P201 HA DISCS FOR CHARACTERISATION 

The P201 powder (100 g) was milled for 24 hours in a ceramic ball mill (Pascall 

Eng. Co. Ltd, Sussex) that had a pot volume of 1 litre; -milling media (containing 18 

alumina 25 mm diameter balls weighing -25 g each, and 20 alumina 20 mm diameter 

balls each weighing - 13 g) were used to mill the powder which was then 

mechanically sieved through a 75 µm mesh. The powder was then pressed uniaxially 
in a steel die (30 mm diameter), to 85 MPa (6 Tonnes), using 5 grams of powder for 
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each specimen. This pressure was selected on the basis that it was the optimum 

pressure for achieving maximal compaction of powder in a 30 mm die without 

capping, cracking, or delamination of the powder compacts. At lower pressures, one 

could not ensure adequate packing for maximising densification during sintering. The 

discs were then sintered at temperatures of between 1000°C and 1350°C under the 

following regime: 

Ramp 1 + 5°C. min 1 

Level 1 Sintering temperature (1000°C -1350°C) 

Dwell 1 2 hours 

Ramp 2 -10°C. min' 

Level 2 20°C 

Dwell 2 End 

4.3.2 MELT PROCESSING OF CAP1 AND CAP2 ADDITIVES 

Two secondary reinforcing calcium-phosphate (Ca/P) based additives were produced 

via melt processing of the precursors. CAP 1, whose composition in mol % and wt % 

is shown in Table 4.1 and 4.2 respectively, had a Ca: P ratio of 0.5 and, when 

quenched from a melt at 1100°C, yielded a glass. CAP2, whose composition in mol % 

and wt % is shown in Table 4.3 and 4.4 respectively, had a Ca: P ratio of 0.835 and, 

when quenched from a melt at 1300°C, yielded a material with a predominantly 

crystalline content. The CAP2 material could not be classed as a classic glass ceramic 

as the crystallization did not occur via a pre-determined crystallization step, but rather 

via spontaneous crystallization upon cooling during quenching. 

The raw materials were mixed in a pestle and mortar for approximately five minutes; 

safety precautions were taken due to the volatile nature of one of the precursor 

powders, P205. The mixed powder (-117 g for CAP1 and -115 g for CAP2) was then 

placed in a platinum-rhodium crucible and placed in the pre-heated glass furnace for 

-1-2 hours at a temperature high enough to ensure melting of the precursors (1100°C 

for CAP! and 1300°C for CAP2). The crucible was removed from the furnace and 

the melt poured onto a steel plate, upon which a cold iron was immediately used to 
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quench the melt. Once cool, the additives were crushed in a pestle and mortar until a 

particle size of - lmm was achieved. 

Table 4.1 Composition of CAP1 in mol % 
Oxide Mol % 

CaO 35 
P205 35 

Na2O 5 

K20 12.5 

MgO 12.5 

Table 4.2 Composition of CAPI in wt % 
Chemical Mass (g) Wt % 

CaCO3 35.0315 29.73 

P205 49.679 42.16 

Na2CO3 5.298 4.49 

K2C03 17.276 14.66 

MgCO3 10.538 8.94 

Table 4.3 Composition of CAP2 in mol % 
Oxide Mol % 

CaO 58.45 

P205 35 

Na2O 2.18 

K20 2.18 
MgO 2.18 
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Table 4.4 Comvosition in CAP2 in wt % 
Chemical Mass (g) wt % 

CaC03 58.50 50.72 

P205 49.68 43.07 
Na2C03 2.31 2.00 

K2C03 3.01 2.61 

MgC03 1.83 1.58 

4.3.3 PRODUCTION OF COMPOSITE POWDER AND DENSE COMPACTS 

Composite powders (CAP1-HA and CAP2-HA) were prepared by wet-milling 

commercial HA (P201) with the reinforcing additive in 300 ml of methanol for 24 

hours in a ceramic ball mill containing ceramic milling media (as described in section 
4.3.1). Powders containing 1,2.5,3.25,4, and 5 wt % of additive were prepared (for 

CAP2-HA only): 

1 wt %1g of additive + 99 g of P201 HA 

2.5 wt % 2.5 g of additive + 97.5 g of P201 HA 

3.25 wt % 3.25 g of additive + 96.75 g of P201 HA 

etc. 

The mixed powders were then dried and mechanically sieved through a 75 µm mesh. 
The resulting composites were uniaxially pressed at 85 MPa in a steel die using 5g of 

powder to produce 30 mm diameter discs. The discs were placed in a furnace on an 

alumina tile and then fired using the same protocol as that of P201 HA. 

4.3.4 POROUS P201 PRODUCTION USING FOAM BURN-OUT 

Two grades of polyurethane foam were used in this study: 
YU (IRC in Biomedical Materials) 

9 BU (Foam Engineers Ltd. ) 

99 



CHAPTER 4 
METHODS AND MATERIALS 

The foams were cut into rectangular shapes with the following dimensions; - 4.5 cm 

x -1.5 cm x -1.5 cm. A ceramic slurry was prepared for pre-soaking the foams and 

consisted of the following: 

" 20 ml 5 wt% Polyvinyl alcohol(PVA) solution (prepared by adding 5g of 
PVA to 95 ml of distilled water at 35°C under conditions of continuous 

stirring until dissolution was complete) 

" 80 ml Distilled Water 

" 25 g Powder (P201 HA or Composite powder with 2.5 wt % additive) 

The binder, water and powder were placed in a large plastic bowl and stirred 

thoroughly yet slowly, to avoid the creation of a slurry foam. The slurry mixture 

contained 20 wt % powder and 1% concentration of PVA. The YU and BU foams 

were then dipped into the ceramic slurry and manipulated, squeezed to encourage the 

slurry to wet all of the surfaces of the foam (soaking time ranged from 1-2 minutes). 

After soaking, the samples were hung by metal hooks in a drying cabinet overnight at 

a temperature of 70°C ± 10°C. 

The dried foams were then placed in the furnace and heat-treated under a regime that 

would allow the PVA to burn out, followed by sintering: 

Ramp 1 +1 °C. min" 

Level l. 500°C 

Dwell 1 3-4 hours 

Ramp 2 + 5°C. min"' 

Level 2 Temperatures ranging between 1200°C and 1400°C 

Dwell 2 2 hours 

Ramp 3 - 5°C. min'' 

Level 3 20°C 

Dwell 3 End 

The result was a positive replica of the porous foam structure (Figure 4.1). 
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4.4 CHARACTERISATION TECHNIQUES 

4.4.1 PARTICLE SIZE ANALYSIS 

The Malvern Mastersizer (Malvern Instruments) was used for particle size analysis. A 

100µm lens was used which analysed particles within the 0.2 - 180µm size 

distribution. Approximately 1g of powder, obtained after milling, was used for each 

analysis, for which it was necessary to disperse the powder in distilled water. The 

sample presentation unit was cleaned with distilled water before and after each 

reading to ensure accuracy. The powder was added under constant conditions of 

mixing to ensure uniform powder dispersion, after which the data was retrieved. At 

least two repeats were carried out for each sample to ensure representative results 

were obtained. The data was displayed in the form of a histogram of particle size 

distribution and values of median particle size (D0.5), Do.,, and Do 
.9 were also 

calculated 
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4.4.2 X-RAY FLUORESCENCE (XRF) 

XRF was used to determine the Ca: P ratio of all dense specimens used in this thesis. 

Sample preparation involved making fused glass disks out of specimens in powder 
form, using a glass fluxer (Fluxy Model 30, Claisse, Canada). The preparation 

process consisted of fusing 1g of sample with 6g of flux (lithium tetraborate) to form 

a homogeneous melt (controlled heating/agitation cycle up to 1000°C). The melt was 

spun in the fluxer to provide good mixing and then automatically poured into a mould 
(Pt/Au 5 %) and cooled (using fans) to form a glass disk. The disks were then placed 
in the sample holding unit, and were irradiated with an unfiltered X-ray beam, which 

in turn caused each element to emit a characteristic fluorescence pattern. The raw 

data was analysed using the program CAPFLUX, from which percentages of Ca and P 

were obtained, hence the Ca: P ratios. 

4.4.3 DIFFERENTIAL THERMAL ANALYSIS (DTA) 

DTA was used to characterize any thermal events exhibited by the CAP 1 and CAP2 

additives on heating/cooling, i. e. exotherms and endotherms that occur due to the 

release or take-up of latent heat during structural changes such as crystallization, glass 

transition, and melting. The analysis was performed using a Setaram Labsys 

DSC/DTA with a 1600°C sensor rod, at a ramp rate of 10°C. min 1 under a nitrogen 

atmosophere where the furnace was flushed with nitrogen for 25 minutes prior to the 

test. The analysis was carried out on - 80 mg of sample in powder form with a 

particle size < 75 µm. The samples were placed in platinum crucibles for heating and 

reached temperatures of 1200°C, during which time thermal events such as the glass 

transition point were recorded. 

4.4.4 X-RAY DIFFRACTION 

X-Ray diffractometry (XRD) was performed to determine the crystalline phase 

composition of all dense and porous specimens used in the investigations described in 

this thesis. The dense specimens were analysed as sintered compacts whereas the 
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porous specimens were crushed to a fine consistency and analysed in powder form. 

The measurements were made using a Siemens D-5000Tm X-ray diffractometer. Data 

was collected from 25 to 40° 20 with a step size of 0.02° and step time of 2.5 seconds. 

Intensity data was collected using a scintillation counter, and the results were 

compared with PDF Ca-P standards to determine the crystalline phase composition, 

such as HA, a-TCP, and ß-TCP. The amounts of a-TCP and ß-TCP were semi- 

quantified as relative percentages between the 100% intensity peak for HA and the 

100% intensity peak for either a- or ß-TCP as follows: 

Relative Intensity a- TCP, orß - TCP = 
I°` ax 100 (4ý, ) 
IH, 

where: I& = Intensity of alß-TCP 

IHA = Intensity of HA 

4.4.5 DENSITY MEASUREMENTS 

The density of the dense specimens was calculated by dividing the mass of the 

specimen (measured on an electronic balance to 4 decimal places) by the volume, 

Density =V (4.2) 

The volume was calculated by assuming the specimen was a perfect cylinder: 
Volume = mit (4.3) 

where t= specimen thickness 

r= specimen radius 

All dimensional measurements (diameter, thickness, width) for the dense and porous 

specimens were taken as an average of three measurements for each dimension. The 

apparent and real densities of the porous specimens were obtained using Archimedes 

principle. The apparent density, as defined when applied to cancellous bone, 

describes the open and closed porosity of a structure, i. e. the value obtained when 

including the volume of the pores as well as the struts. Apparent density was given 

by: 
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Wd`'' 
pH2O (4.4) Apparent density = 

(Mat 

- Wsb)) 

where pH2O = Density of deionised water. 

Archimedes' principle was also used to determine the real density of specimens, i. e. 

the density of the individual struts, as an indication of the extent of closed porosity 

present in a structure, (assuming the theoretical density of HA to be 3.156 g. cm 3). 

Real density =W 
WdY 

pH2O (4.5) 
dry 

wsub 

Closed porosity =1- real density 
(4.6) 

3.156 

4.4.6 BIAXIAL FLEXURAL STRENGTH TESTING 

4.4.6.1 Testing Procedure 

The dense sintered discs were mechanically tested in biaxial flexure(in their as- 

sintered, unpolished state), using a concentric ring jig (Figure 4.2) with a load ring 

diameter of 4 mm and an outer support ring diameter of 17 mm. Specimens were 
tested to failure on an Instron Desk Standing testing machine (Instron 4464) at a 

crosshead speed of lmm. min 1 using a2 kN load cell. The flexural strengths (in MPa) 

were calculated using the peak load at failure and the following relationship: 
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z2 
BFS (MPa) = a8 =22"1.251n 

dS 
" 0.75 

d 

2d 2 
(4.7) 

r 

where o= biaxial flexural strength (BFS) in MPa 

P= load at failure in N 

d5, d,, d and t= support ring diameter, the loading ring diameter, the 

specimen diameter and the specimen thickness respectively, in mm. 

For the mechanical degradation study, the discs were tested in an improvised 

environmental chamber, as shown in Figure 4.3. The chamber contained the half- 

strength Ringers' solution, which allowed the test to be performed under solution. 

The immersed discs were transferred from the metal-free polyethylene containers with 

tweezers to the biaxial flexure jig within the chamber. 

Figure 4.2 Biaxial Flexure Strength Testing Jig 
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Figure 4.3 Biaxial Flexure Strength Testing Jig within an Environmental Chamber 

4.4.6.2 Calculation of Weibull Modulus 

The data obtained from the biaxial flexural strength measurements were statistically 

analysed by calculation of the Weibull modulus, a common empirical approach to 

describing the strength distribution of a brittle material. The Weibull modulus is an 

indication of the reliability of a brittle material in failure. A high Weibull modulus 

suggests that failure of the material is predictable and reproducible whilst a low 

moduli suggests large variations in the failure strength. 
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Weibull modulus is determined as follows: - 

The probability of survival of a sample in a given set of data is given by: 

m 

S= exp- 
X 
X0 

where X= value of the variable (BFS) 

Xo = value of the variable for which S=1=0.37 
e 

m= Weibull Modulus 

(4.9) 

Therefore the specimens are ranked in the order in which they failed, 1,2,3,..... j, j+1, 

..... n, where the probability of survival of the jth specimen was given by: 

SJ =1- 
( 

ýý 
04ý J 

where j= rank number 

n= number of specimens 

The straight line version of the Weibull distribution declares: 

(4.10) 

xI (4.11) LnLnl Ti =mLn(To 
J 

By plotting LnLn 
Sý1 against Ln 

(TX, 
,m can be obtained by calculating the 

gradient of the graph. 
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4.4.7 COMPRESSION TESTING 

4.4.7.1 Preparation for Testing 

In order for the porous ceramics to be tested under compression, it was necessary to 

ensure the surfaces in contact with the upper and lower platens of the testing machine 

were plane parallel to one another, otherwise surface inconsistencies (asperities) 

would lead to pressure gradients and premature fracture. The assembly for 

compression testing is shown in Figure 4.4. 

Initially, silicon carbide paper was used to flatten the surfaces; however this proved to 

be unsuccessful and inefficient. Instead, the samples were wax-mounted onto a flat 

sample holder and a diamond AccutomTM blade was used to slice off sections from the 

ends of each sample to obtain two flat surfaces. The advantages of smoothing the 

surfaces as opposed to leaving the asperities prior to mechanical testing were 

noticable during pre-load, as both the upper and lower platens were in contact with 

the specimens' surfaces. 

4.4.7.2 Testing Procedure 

Mechanical testing of the porous ceramic materials was performed in compression on 

an Instron 4464 screw driven test machine, fitted with a2 kN load. Specimens were 

placed, unconstrained, on the lower platen of the mechanical test equipment and a 

pre-load of 5N applied with the upper platen, at a cross-head velocity of 0.1 mm. min: 
Testing was performed under computer control using a test template created on 

Series IX Automated Testing System v 1.21. The load was applied axially to the 

specimens with a crosshead velocity of O. lmm. min' until catastrophic brittle failure 

occurred. The test data (load and displacement) was digitally recorded at a sample 

rate of 0.5 point. s''. 

The compressive stresses applied to the sample throughout the test were calculated 
using equation 4.4.7: 
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Applied Load 
ýc __ Width x Thickness 

(4 12) 

The ultimate compressive stress (UCS), defined as the maximum value of stress 

supported by the specimen before significant loss of structural integrity or structural 

densification, was determined for each specimen from this data. 

Figure 4.4 Compression jig holding a porous ceramic sample 

4.4.8 INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICPMS) 

Inductively coupled plasma mass spectometry (ICPMS) was used to analyse the 

calcium and phosphorus content of Ringer's solution collected after having 

HA/CAP2-HA discs soaked in it. The Spectromass 2000""' machine measured the 

content of the liquid by transporting it via a nebulizer through a spray chamber to a 

plasma torch containing inductively coupled plasma (ICP), which acts as an efficient 

ion source. The combination of the ICP and a mass analyser as a spectrometer enabled 

multi-element analysis. 
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Before the analysis, the Ringer's solution samples were prepared by dilution with 
high-purity de-ionised water followed by the addition of nitric acid to ensure ionic 

dispersion. From each polyethlene container, 1 ml of solution was taken and added to 

97 ml of high-purity de-ionised water and 2 ml of nitric acid (69 % strength), all of 

which were placed in high-purity 100 ml polyethylene volumetric flasks. Before and 

after each analysis, the analysis chamber was cleaned out with an acid blank 

containing roughly 4% nitric acid. 

4.4.9 ELECTRON MICROSCOPY 

Electron microscopy was carried out using JEOL 6300TM series scanning electron 

microscopes. An accelerating voltage of 10 KeV was used and specimens were 

studied at a range of magnifications. All specimens were analysed after sintering and 

mechanical testing. 

The specimen preparation was as follows: 

" Embedding- Specimens were placed in 25 mm diameter StruersTm embedding 

moulds. 

"A mixture of Epofix resin (Struers) and hardner in a ratio of 25 parts (volume) of 

resin to 3 parts (volume) of hardner was then introduced into the moulds. This 

was then left to harden for 24 hours. For porous specimens, the resin/hardener 

mixture was introduced into the structure by vacuum embedding, using the Stuers 

EpovacTM vacuum embedding machine. 

" Polishing- After the hardened specimens were removed from the moulds, they 

were polished using the Struers AbraminTM. A 75 µm diamond wheel was first 

used to level off the surface, and then 63,30, and 10 µm diamond wheels were 

used to remove any scratches. Duration of grinding for each grit wheel depended 

on the sample and was repeated as necessary. 
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" Etching- An orthophosphoric acid solution (0.1 - 2.5 % strength) was used for 

etching specimens (when necessary) for approximately 10 seconds. 

" Gold Coating of Embedded Specimens- Specimens were cleaned in methanol, 

mounted on clean SEM stubs with a conductive element and gold coated using a 
Balzers High VacuumTm sputter coater. 
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CHAPTER 5 

INVESTIGATION INTO THE SINTERING 
BEHAVIOUR OF P201 HA 

The P201 HA was uniaxially pressed and the green compacts were sintered at 1000°C, 

1100°C, 1200°C, 1250°C, and 1300°C, and the following chapter reports the results from 

analysing the P201 HA in this range. Two batches of 10 specimens were made for each 

temperature category. 

5.1 PARTICLE SIZE ANALYSIS 

All the batches in the HA study came from the same source, i. e. P201 from Plasma 

Biotal. Prior to the preparation of powder compacts, the P201 was milled for 24 hours 

(as stated in section 4.3.1). Particle size analysis was performed on milled and unmilled 

powder. The results from this analysis are shown in Table 5.1. 

Tnh1P S_1 RPe�1tc frnm narticle size analvcis on milled/unmilled P201 HA 

Sample do. 1(µm) do. 5 (µm) do. 9 (µm) mode (µm) 

Milled P201 4.14 37.44 63.02 43.73 
Run I 

Milled P201 3.58 37.11 62.63 43.40 
Run 2 

Unmilled P201 3.78 37.95 65.80 43.77 
Run 1 

Unmilled P201 3.59 37.57 65.81 43.52 
Runt 
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The histograms in figure 5.1 and 5.2 display the particle size distribution Ibr 

milled/unmilled P201 HA respectively. Both are clearly bimodal distributions with 

modes at -3µm and -43µm. As for particle size reduction, milling appeared to have little 

effect by comparing the unmilled/milled particle sizes. 

1c 

0 
Particle Diameter (pm. ) 

Figure 5.1 Particle Size Distribution for milled P201 HA 

1 

Particle Diameter (pm) 

Figure 5.2 Particle Size Distribution for unmilled P201 HA 

0 

0 
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5.2 X-RAY FLUORESCENCE (XRF) 

XRF was performed on as-sintered P201 HA, after having been crushed with a pestle and 

mortar in order to return to powder form for the specimen preparation. The results from 

this analysis can be seen in Table 5.2. 

Table 5.2 Ca: P ratio for P201 HA sintered over a range of temperatures 
Sintering Temperature (°C) % CaO %P205 Ca/P Ratio 

1000 55.21 41.37 1.69 

1100 56.07 41.17 1.72 

1200 56.03 41.19 1.72 

1250 56.56 42.58 1.68 

1300 55.93 40.85 1.73 

The Ca/P ratio for the P201 did not appear to vary with increasing temperature, but rather 
fluctuated between 1.68 and 1.73. The theoretical Ca/P ratio for stoichiometric HA is 

1.67 (PDF card no. 9-432). The mean value of the Ca/P ratio for the P201 (-1.71±0.02) 

was found to be significantly greater, such that one would expect -5wt% CaO phase 

impurity to exist, assuming both phases to be stoichiometric. 

5.3 X-RAY DIFFRACTION 

X-Ray diffraction was carried out on one specimen from each batch of HA sintered at 

each temperature. The most important feature on the traces relevant to the load bearing 

applications of the HA would have been tricalcium phosphate(TCP), a resorbable Ca-P04 

material discussed previously in Chapter 2. From each trace, the highest intensity of 

TCP was recorded as a percentage of the total composition and noted as either a-TCP or 
ß-TCP. The results from this analysis showed that none of the P201 HA batches 

decomposed to TCP, even at high temperature, however some CaO was noted at most 

temperatures. 
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Examples of XRD traces of P201 HA are displayed in Figure 5.3. 
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Figure 5.3 XRD patterns for P201 HA at varying temperatures 

5.4 MECHANICAL TESTING 

The results of the density measurements, mechanical testing, and Weibull Modulus 

calculations are shown in Table 5.3. 

Tsihle 5.3 Mean values for the mechanical nrnnerties nfP201 HA sintered at different temperatures 

Sintering 

Temperature CO 

Mean Density 

(g. cm 3) 

Mean Biaxial 

Flexural Strength 

(MPa) 

Weibull Modulus 

(on 20 specimens) 

1000 1.64±0.01 22.14±6.78 0.94 

1100 2.11 ± 0.09 28.04 ± 7.65 3.78 

1200 2.88 ± 0.11 60.01 ± 14.70 3.86 

1250 3.02 ± 0.05 20.53 ± 10.63 3.07 

1300 3.04±0.03 11.42±2.36 6.16 
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Figures 5.4,5.5, and 5.6 demonstrate the relationships between temperature and density, 

mechanical properties, and Weibull Modulus, respectively: 

3.1 

v 2.7 
e 

C 2.3 
0 
Co 1.9 

1.5 
900 1000 1100 1200 1300 1400 

Sintering Temperature (°C) 

Figure 5.4 Graph of Density vs Temperature for P201 HA 

Referring back to Table 5.3, which shows the mean values for the densities at different 

temperatures, the following table shows the densities as a percentage of the theoretical 

density of HA (3.156 g. cm 3) at the various temperatures. 

Table 5.4 Percentage of the theoretical density of P201 HA sintered at different temperatures 
Sintering Temperature (°C) Percentage of theoretical density 

1000 51.9 

1100 66.7 

1200 91.2 

1250 95.7 

1300 96.2 
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Figure 5.5 Graph of Biaxial Flexural Strength vs Temperature for P201 HA 
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Figure 5.6 Graph of Weibull Modulus vs Temperature for P201 HA 

In Figure 5.4, the density of the HA increased steadily from 1000°C until around 1200°C, 

where it appeared to plateau. This was dissimilar to the mechanical behaviour of the HA, 
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in which the biaxial flexural strength (BFS) appeared to increase from 1000°C till 

1200°C (Figure 5.5), yet decrease rapidly between 1200°C and 1250°C. The Weibull 

modulus of the HA did not appear to follow any trend with respect to the sintering 

temperature, as seen in Figure 5.6. Therefore it is difficult to state whether an increase in 

sintering temperature results in an increase in the reliability of the specimens. 

Thus, it appears that the P201 reached the highest density at temperatures at and above 

1200°C. However, compacts sintered at 1250°C and 1300°C also corresponded to the 

lowest recorded mechanical strengths (Table 5.3). 

5.5 SCANNING ELECTRON MICROSCOPY 

Scanning electron micrographs were taken of the HA sintered at all temperatures, in order 

to determine the sintering behaviour of the ceramic and decipher the structures that 

resulted in high or low mechanical properties. In order to determine the grain structures, 

some of the specimens were etched (as described in section 4.4.9). The images are on the 

following pages: 
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P201 HA sintered at 1000°C: 

(a) 

(c) 

(b) 

(d) 

Figure 5.7 P201 HA sintered at 1000°C. (a) + (b) Unetched HA, (c) + (d) Etched HA 

Both the unetched and etched images indicate that at such a low temperature, little 

sintering has occurred. The particles have not coalesced, and there is a large amount of 

porosity. The particle sizes appear small, < 1µm, which contradicts the results from the 

particle size analysis, suggesting the existence of agglomerates as an explanation for the 

large sizes reported. 
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P201 HA sintered at 1100°C: 

nt 

rý 

t ýr 
r ý» 

(c) 

(h) 

(d) 

Figure 5.8 P201 HA sintered at x 1100°C (a) + (b) Unetched HA, (c) + (d) Etched HA 

Images (a) and (b) reveal porosity in the microstructure, represented by the white 

speckles, at low and high magnification. Images (c) and (d) show that the top surface of 

the polished specimen was very soluble in the etchant. A grain structure is barely visible 

underneath this layer. There is slightly less porosity than in the specimens sintered at 
(F. j.. S. ý) 

10000Cý, and the early signs of sintering are indicated by some particle coalescence 

underneath the top layer, seen in (d). 
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P201 HA sintered at 1200°C: 
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(a) 

(C) 

(h) 

(d) 

Figure 5.9 P201 HA sintered at x 1200°C (a)+(b) Unetched HA, (c)+(d) Etched HA 

Image (a) revealed a smaller number of white speckles than the specimen sintered at 

1100°C, which at high magnification (b), appeared to be pores; however the individual 

pores at 1200°C are larger than those at 1 100°C. Image (c) showed surface porosity and 

at high magnification (b), a grain structure was almost visible. A greater amount of 

sintering appeared to occur at this temperature. The grain sizes appeared to be <I µm. 
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P201 HA sintered at 1250°C: 

(i ) 

(c) 

(N 

(d) 

Figure 5.10 P201 HA sintered at x 1250°C (a) + (b) Unetched HA, (c) + (d) Etched HA 

At low magnification(a), the unetched HA showed a marginally smaller amount of 

porosity, i. e. less porosity than the specimen sintered at 1200°C, yet the individual pores 

appear to be slightly larger. The etched images (c)(d) indicate that the HA has reached a 

further stage of sintering than at 1200°C, i. e. the particles have not only coalesced but 

also experienced growth (the grain sizes appear to range between 0.5µm-1.5µm. 
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P201 HA sintered at 1300°C: 

(a) 

(c) 

(b) 

(d) 

Figure 5.11. P201 HA sintered at 1300°C (a)+(b) Uetched HA, (c)+(d) Etched HA 

"y . 

The unetched HA appeared to show more porosity at low magnification (a) than the 

specimen sintered at 1250°C combined with a further increase in individual pore size. 

Examination of the etched HA demonstrated a significant increase in grain sizes, which 

indicated grain growth in between 1250°C and 1300°C, in addition to the continued 

coalescence of porosity . 
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5.6 DISCUSSION 

Commercial P201 HA (Plasma Biotal Ltd. ) was quoted by the manufacturer to have a 

median (do. 5) particle size of 4µm. The median particle sizes of the unmilled/milled 

powders (37µm) were much larger than this value. The detection of particles in excess 

of 10µm would seem to demonstrate the presence of powder agglomerates, which are not 

representative of the actual particle size. The histograms in Figure 5.1 and 5.2 therefore 

show bimodal distributions due to the detection of the particle size (-4µm) and the 

agglomerate size (-43µm). One must expect that due to the use of different machinery 

and general laboratory conditions, such an analysis cannot be repeated in another 

environment to produce identical results. However, a discrepancy of 33µm was too large 

to be justified by these conditions. Furthermore, there was very little difference between 

the unmilled and milled particle sizes (refer to Table 5.1). Therefore, the large particle 

sizes of both sets of powder combined with the large discrepancy in comparison to the 

commercial data indicated the presence of agglomerates in the HA analysed in the 

investigation. 

The Ca/P ratios of the HA were calculated after sintering at 1000°C, 1100°C, 1200°C, 

1250°C, and 1300°C. The XRF analysis revealed that there was no relationship between 

the sintering temperature and the Ca/P ratio of the HA. However, the mean value was 

significantly higher than the theoretical Ca/P ratio of stoichiometric HA (1.67(PDF card 

no. 9-432)). This indicated that there was more Ca in the commercial P201 HA, relative 

to stoichiometric HA, which was corroborated by the presence of CaO in the XRD 

patterns (Figure 5.3). 

This was in agreement with the literature where LeGeros (1993) stated that HA with Ca/P 

ratios of 1.67 and above in HA partially decompose to CaO on sintering, with no TCP. 

Similarly, ratios lower than 1.67 result in the decomposition of HA to TCP, a highly 

resorbable material described in Chapter 2. Therefore due to the high Ca/P ratios, it woul 

be expected that the P201 would not decompose to TCP, but perhaps other phases such as 
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CaO may exist after sintering at high temperature. Indeed the XRD analysis revealed that 

none of the HA batches decomposed to TCP, even atl300°C. 

The results of the mechanical testing (Table 5.3) showed that the HA increased in biaxial 

flexural strength (BFS) from 1000°C up to 1200°C (where it peaked in strength), 
followed by a sharp decrease in strength up to 1300°C. The Weibull moduli (WM) did 

not increase/decrease as a function of sintering temperature, but rather fluctuate between 

3.78 and 3.07 until 1250°C, followed by a sharp increase to 6.16 at 1300°C. The weakest 

specimen (1300°C) displayed the highest WM, which was twice that of the strongest 

specimen (1200°C)(refer to Table 5.3), which implies that the mechanical data retrieved 
from the weakest batch of HA was more statistically reliable than that of the strongest 
batch. 

Despite the initial increase in strength up to 1200°C, followed by a decrease, the densities 

appeared to increase continuously from 1000°C to 1300°C. The weakest specimen was 

the most dense. When density is nearly maximised due to sintering, grain growth occurs 

as it becomes energetically more favourable for grain boundary reduction, as opposed to 

pore boundary reduction, to occur. As a result, the grains become larger, and the 

microstructure coarsens, therefore the density may be similar, but strength will decrease. 

According to Griffith's flaw theory (1920), described in section 2.3.2, coarse grain 

structures (large grains) are poorer in strength than fine microstructures (small grains), 

which explained why the HA with coarser microstructures (sintered at 1250°C-1300°C) 

displayed lower BFS's in comparison to those sintered at and below 1200°C. 

Furthermore, the coalescence of microporosity will have contributed to the loss in 

strength above 1200°C, where micropore size begins to approach grain size. 

The SEM micrographs (Figures 5.7-5.11) verified the grain growth occurring between 

1200°C, and 1300°C, in which the grain sizes appeared to increase from <lµm at 1200°C 

to ? 1µm at 1300°C. (These results also verified the possibility of powder agglomeration 
in the particle size analysis, because the Malvern Mastersizer reported an average do., of 

4µm, which is still much larger than the grains appeared in the micrographs. ) At 
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temperatures below 1200°C, a definite grain structure was not present as the particles 

were just beginning to coalesce at 1000°C and 1100°C. The majority of the densification 

appeared to take place between 1100°C and 1200°C, as indicated by the SEM and the 

sharp increase in BFS (28.04±7.65 to 60.01±14.70 MPa) and density (2.11±0.09 to 

2.88±0.11 g. cm 3). 

The highest strength reported for the P201 HA, 60.01±14.70 MPa, was very low in 

comparison to the values found in the literature. Lu et al (1998), Tampieri et al (1997), 

Willman (1996), and Aoki (1991) reported flexural strength values for HA of up to 

11OMPa, 13OMPa, 100MPa, and 113MPa, respectively. The authors also reported much 

higher densities than the P201 in this investigation, which would explain the strength 

differences. At best, the densities of the P201 achieved 96.2% of the theoretical. These 

low densities may have been due to presence of the large agglomerates (-37mm) found, 

which would cause problems in achieving full packing density during the uniaxial 

pressing of the powder to produce a green compact. Additionally, these authors may 

have polished their specimens, which eliminates surface asperities (hence stress 

concentrations), and ultimately improves strength in testing situations. Furthermore, they 

may have performed 4 point bending tests, which generally yield higher flexural 

strengths than ring-on-ring biaxial flexure tests. 

to 

In this investigation, the decision was made not'tpolish specimens prior to mechanical 

testing, just for the sake of reporting high strengths, because HA implants are not 

generally placed in-vivo after polishing. Such low surface areas would not be condusive 

to instigating biological reactions and ultimately bone ingrowth. Therefore it was 
decided to test materials with the type of surface that would be implanted in-vivo. In 

addition, it was decided to consider the HA as a control that would be compared to the 

reinforced HA in the subsequent investigation. Therefore the mechanical properties of the 

HA in this investigation were considered to be relative values, as opposed to absolute 

values. 
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This investigation revealed that between the temperatures of 1000°C and 1300°C, P201 

HA diplayed poor mechanical properties, with no decomposition to TCP. However it 

contained some CaO, which is also resorbable, an undesirable characteristic for an 

implant whose goal is to avoid rapid resorption. Furthermore, the presence of CaO has 

been reported to have an adverse effect on biological response (Hing, 2000). The poor 

mechanical properties were attributed to the low packing densities (due to the presence of 

large, hard agglomerates), which resulted in low as-sintered densities. Furthermore, at 

high sintering temperatures, the microstructure of the P201 coarsened, which resulted in 

decreased mechanical strength at and above 1250°C. 

These results indicated that P201 HA from Plasma Biotal Ltd. contained agglomerates, 

which inhibited sufficient pressing, resulting in low densities and poor strength. Thus 

this material would appear to be an ideal candidate for testing the hypothesis of 

reinforcement via a second phase addition to promote liquid-phase-assisted sintering. 
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CHAPTER 6 

PRODUCTION AND CHARACTERIZATION OF 
MATERIALS FOR REINFORCING HA AND THEIR 

ASSOCIATED COMPOSITES 

6.1 PRODUCTION AND CHARACTERIZATION OF MATERIALS FOR 
REINFORCING HA 

Two Ca/P-based glass additives for reinforcing P201 HA were produced as described in 

section 4.3.2. The additives with pre-calculated Ca/P ratios of 0.5 and 0.835 were 

termed CAP 1 and CAP2 respectively. The as-produced additives were hand-ground into 

powder form. 

6.1.1 PARTICLE SIZE. ANALYSIS 

The results of the particle size analysis are displayed in Table 6.1: 

Table 6.1 Results from particle size analysis on CAPI and CAP2 

Sample d0.1 (pm) do. 5 (µm) do. 9 (µm) mode (µm) 

CAP1/ Run 1 1.17 10.36 62.94 11.46 

CAP 1/ Run 2 1.53 9.97 60.55 8.40 

CAP2/ Run 1 9.04 115.70 171.05 46.65 

CAP2/ Run 2 8.95 112.79 170.68 47.58 

The particle size analysis revealed that CAPl was much smaller than CAP2. Figures 6.1 

and 6.2 display the particle size distribution for CAP 1 and CAP2 respectively. The 
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histogram in Figure 6.2 revealed a bimodal distribution ('or CAP2, with niodcs at 47inn 

and -1 10µm. 
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Figure 6.1 Particle size distribution for CAPI 
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Figure 6.2 Particle size distribution for CAP2 
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6.1.2 X-RAY FLUORESCENCE (XRF) 

The results from the XRF analysis are shown in Table 6.2: 

Table 6.2 XRF results for CAP1 and CAP2 
Sample wt% CaO wt% P205 Ca/P Ratio 

CAP I 20.26 53.89 0.47 

CAP2 36.7 55.2 0.84 

The Ca/P ratios calculated from the XRF data were very close to the' ratios calculated 

from the pre-cursors; 0.5 and 0.835 for CAP1 and CAP2 respectively. 

6.1.3 DIFFERENTIAL THERMAL ANALYSIS (DTA) AND X-RAY DIFFRACTION (XRD) 

The main physical difference between CAP1 and CAP2 on processing was that CAP1 

remained glassy when quenched, in contrast to CAP2, which crystallised spontaneously 

upon cooling. DTA of the two materials is shown in Figure 6.3. Regions of interest are 

identified as A, B, C, and D. Point A, at 467°C, shows the onset of the glass transition in 

CAP 1. Point B, at 557.4°C shows the subsequent peak crystallisation temperature. This 

is followed by the melting of the crystalline phase, the onset of which is marked by C at 

97.1 °C, as expected for a glass. XRD of CAP 1 as prepared, shown in Figure 6.4, reveals a 

lack of any significant crystalline organisation. In CAP2, the crystalline material shows a 

melting endotherm whose onset is marked by D at 1197°C; XRD of CAP2 as prepared, 

shown in Figure 6.5, demonstrated the majority of the crystalline phase to be Ca2P2O7 

(the Ca2P2O7 peaks are marked with 0), with a Ca/P ratio of 1.0. The starting 

composition of CAP2 (Ca/P ratio of 0.835) would suggest the presence of some residual 

phosphate-based glass within CAP2, which is corroborated by the inflection point at E, 

followed by the crystallization at point F. 
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Figure 6.3 DTA traces for CAP1 and CAP2 
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Figure 6.4 XRD pattern for CAPI 

131 

-----CAPI 
CAP2 

_.. _ 

30 35 40 



CHAPTER 6 
INVESTIGATION INTO THE PRODUCTION OF CALCIUM PHOSPHATE MATERIALS FOR REINFORCING P201 IIA 

N 

Co 

f0 

N 

20(degrees) 

Figure 6.5 XRD pattern for CAP2 

6.2 PRODUCTION AND CHARACTERIZATION OF HA REINFORCED WITH 
CAP1 

The objective of this investigation was to identify the optimal temperature for sintering 

HA containing 2.5 wt% additive. Following DTA, temperatures from 1000°C to 1300°C 

in increments of 50°C were investigated. Optimal sintering was considered in terms of 

optimising/maximizing the mechanical properties whilst maintaining minimal 

decomposition to TCP. The P201 reinforced with CAP 1 was termed CAP 1-HA. In order 

to maximise time efficiency, each batch contained only two pressed and sintered samples. 

6.2.1 PARTICLE SIZE ANALYSIS 

The CAP 1-HA batches were prepared by wet milling (as described in section 4.3.3). The 

specimens sintered from 1000°C to 1150°C were made from Batch 1, and the specimens 
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sintered from 1200°C to 1300° were made from Batch 2. The results fror>> the particle 

size analysis are shown in Table 6.3. 

Table 6.3 Particle size analysis of C'AP1-HA 

Batch d0.1 (µm) d0.5 (µm) d0.9 (µm) mode (µm) 

1 11.49 39.71 152.68 36.44 

2 1.27 21.39 82.26 42.59 

Batch 2 appeared to have a smaller particle size distribution than Batch 1, yet it displayed 

a slightly larger mode. The particle size distributions for Batch I and Batch 2 are 

illustrated in Figure 6.6 and Figure 6.7, respectively. Both histograms show the 

distributions to be bimodal, and Figure 6.6 shows the CAP I -HA to be almost tri-modal 

due to the detection of a few large agglomerates. In Figure 6.7, the bimodal nature of the 

CAP1-HA was due to the presence of HA agglomerates (displaying the higher mode of 

---42µm) and the smaller CAP 1-HA/HA particles (displaying a smaller mode of -4}ßm). 
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Figure 6.6 Particle size distribution of CAP1-HA (Batch One) 
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Figure 6.7 Particle size distribution of CAP 1-HA (Batch Two) 

6.2.2 X-RAY FLUORESCENCE (XRF) 

XRF analysis was performed on as-sintered specimens; the results are shown in Table 

5.9. 

Takle 6.4 XRF results for CAP 1-HA sintered at a range of temperatures 

Sintering Temperature (°C) wt% CaO wt% P205 Ca/P Ratio 

1000 50.55 38.53 1.66 

1050 49.90 38.04 1.66 

1100 50.55 38.54 1.65 

1150 49.93 38.09 1.65 

1200 50.30 38.33 1.66 

1250 50.79 38.60 1.66 

1300 51.25 38.93 1.66 
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The Ca/P ratio of the CAP 1-HA did not vary with temperature, instead it randomly varied 

from 1.65 to 1.66, which is close to the theoretical Ca/P ratio of stoichiometric HA. 

However, relative to the Ca/P ratios of commercial P201 HA, which averaged at 

1.71±0.02, the CAP 1-HA was calcium deficient. 

6.2.3 X-RAY DIFFRACTION (XRD) 

X-Ray diffraction was carried out on one specimen from each batch,, except for those 

sintered at 1050°C and 1150°C in order to maximise time efficiency. From each trace, 

the highest intensity of TCP was recorded and the intensity of TCP relative to HA (RI- 

TCP) was calculated as described in section 4.4.4. The results of the phase composition 

analysis are shown in Table 6.5, Figure 6.8 (ß-TCP is marked by ®; a-TCP is marked by 

E)), and Figure 6.9. 

Table 6.5 % of TCP in CAP 1-HA at different temperatures 
Sintering Temperature (°C) RI-TCP (%) 

1000 14(p) 

1100 44 (ß) 

1200 63 (ß) 

1250 69(0) 

1300 60 (ß) / 13 (a) 
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Figure 6.8 XRD Traces for CAP-1HA at different temperatures 
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A graph of RI-TCP versus temperature can be seen in Figure 6.9. (The sum of (x-TCP and 

ß-TCP was used as the total amount of TCP for the specimens sintered at 1300°C) 
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Figure 6.9 Graph of RI-TCP vs sintering temperature for CAP 1-HA 
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The RI-TCP appeared to increase steeply until 1200°C, where it continued to increase at 

a more gradual rate until 1300°C. 

6.2.4 MECHANICAL PROPERTIES 

The density and strength values for the CAP1-HA materials are shown in Table 6.6. Due 

to the small sample number (2) in each batch, average values were calculated for the 

density and strength, but no Weibull moduli were calculated. 

Table 6.6 Mechanical properties of CAP 1-HA composites sintered at different temperatures 
Sintering 

Temperature 

(°C) 

Number of 

Samples 

Average Biaxial 

Flexural 

Strength (MPa) 

Average Density 

(g. cm 3) 

1000 2 12.58 1.45 

1050 2 12.83 1.48 

1100 2 11.33 1.52 

1150 2 11.96 1.56 

1200 2 12.43 1.68 

1250 2 14.75 1.84 

1300 2 26.59 2.18 

Figures 6.10 and 6.11 demonstrate the trend between sintering temperature and biaxial 

flexural strength (BFS)/density respectively. 
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-Figure 6.11 Average density vs sintering temperature for CAP1-HA 

The steepest increase in the BFS of CAP1-HA was observed between 1250°C and 

1300°C. This also corresponds to the most significant increase in density, which 

occurred in the same temperature range; furthermore, the maximum values of density and 

strength both occurred at 1300°C. These maximum values differ from that of pure HA, 

whose greatest strength occurred at 1200°C, and greatest density at 1300°C. 
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With regards to the density, because CAP 1-HA is a composite and contains a Ca/P-bascd 

glass additive with HA, it should be compared to a theoretical density for the actual 

composite. Nevertheless, due to the very small amount (2.5 wt %) of the reinforcing 

glass, it is acceptable to compare the composite's density to the theoretical value of HA's 

density (3.16 g. cm 3). Referring back to Table 6.6, which shows the averages for the 

densities at different temperatures, the following table shows the percentage of the 

theoretical density of CAP1-HA at the various temperatures: 

Table 6.7 Percentage of the theoretical density of CAP! -HA sintered at different 
temneratures 

Sintering Temperature (°C) Percentage of theoretical density 

1000 45.8 

1050 46.8 

1100 48.1 

1150 49.4 

1200 53.2 

1250 58.2 

1300 68.9 

The density of CAP 1-HA is far from that of its theoretical value even at high 

temperatures. This may well indicate that even higher temperatures are needed to 

achieve theoretical density, yet at the expense of the phase composition. 

6.2.5 SCANNING ELECTRON MICROSCOPY 

Scanning electron micrographs were taken of CAP 1-HA at the given sintering 

temperatures: 
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CAPI-HA sintered at 1000°C: 
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Figure 6.12 CAP]-HA sintered at 1000°C (a)+(b)Unetched CAPI-HA, (c) i (d) Etched ('AP1-11A 

The unetched images (a)(b) at high and low magnification are similar to that of I'? M I I: \ 
F'J. &fC 5.7) 

sintered at 1000°C', in that the particles are just beginning to coalesce in the early stages 

of sintering. The etched images (c)(d) display a great deal of porosity, which may he due 

to not only the insufficient sintering, but also the fact that there is a highly resorhahie 

constituent which dissolved in the etching process. 

14() 



('I[All IIR(. 
INVESTIGATION INTO THE PRODUCTION OF CALCIUM I'IIOSPIIATF MA I I'RIAI S F(I< KI'INF')R('IN(; I"ul IIA 

CAP 1-HA sintered at 1 100°C: 
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Figure 6.13 CAP]-HA sintered at x1 100°C (a)-+-(b) Unetched CAPI-ILA, (c)+(d) Etched ('BAI' I -f IA 

The unetched images show that sintering has progressed frone the specimens sintered at 

1000°C, in that the particles have experienced slightly more coalescence, however, the 

specimen is still very porous. The etched images (c)(d) revealed more of the rain 

structure and reinforce the fact that there was an increase in coalescence that occurred 

between 1000°C and 1100°C. 
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CAP 1-HA sintered at 1200°C: 
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Figure 6.14 CAP1-HA sintered at 1200°C (a)+(b) Linetched CAPI-HA, (c), (d) Etched C'AP1-Ii: 1 

The unetched images (a)(b) reveal that this specimen has undergone more sintering, thin 

that at 1100°C, due to the early signs of porosity elimination. A portion of the 

microstructure appears to have dissolved in the etching process, referring to images (c) 

and (d), leaving a highly porous surface; this may be due to the presence of' it highly 

soluble secondary phase, i. e. TCP. 

T It ýýýT'< 

fo. A 

, 110, 

142 



('IIAI'II IZ ( 
INVESTIGATION INTO THE PRODUCTION OF CALCIUM PHOSPHATE MATERIALS H )R RI"INI ORCIN(i I"nl I IA 

CAP 1-HA sintered at 1250°C: 
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(a) 

1'ý rt 

(c) ((1) 

Figure 6.15 CAP1-HA sintered at 1250°C (a)+(b) Unetched CAPI-HA, (c)+(d) Etched CAP 1 -HA 

Image (a) reveals a highly microporous surface, as indicated by the lighter, concave 

regions. However, at higher magnification (b), the areas in between the pores are smooth 

and indicate that the specimen has undergone far more sintering than its counterpart at 

1200°C. Image (c) shows that the etchant removed a great deal of the stirfýace, in which 

the larger concave areas match with the larger light regions in image (a). These etched 

images indicate the presence of a highly resorbable secondary phase, which corroborate 

with the XRD analysis, in which the batch contained a RI-TCP of 69 %. 
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CAPI-HA sintered at 1300°C: 

(a) 

(c) 

(})) 

(ii) 

Figure 6.16 CAPI-HA sintered at 1300°C (a)+(b) Unetched CAPI-HA, (c)+(d) Etched CAP 1-HA 

Image (a) revealed a decrease in the size and number of micropores in comparison to that 

of 1250°C; furthermore, the individual speckles were also smaller. The etching process 

revealed a definite grain structure in (c) and (d), with an average grain size of <_ l µm. The 

concave area in (c) may be a result of over-etching in a region consisting of soluble 

material, i. e. TCP. 
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6.3 PRODUCTION AND CHARACTERIZATION OF P201 IL % REINFOI«'FI) 
WITH CAP2 

As a result of the decomposition to TCP, experienced by the 1IA whence hciºin reinfi)rced 

with CAP1, the objective of this investigation was to firstly produce a ('AL'P-based glass 

additive with a Ca: P ratio of 0.835 (CAP2), the process of which was described in 

section 4.3.2. Then, 1/2.5/3.25/4/5 wt % of CAP2 was added to the P-201 11; 1 (as 

described in section 4.3.2), and the composites were named CAI12-I-IA. All samples %N, crc 

sintered at 1300°C on the basis that the DTA trace (Fiturc 6.3) showed the CAP2 to have 

a melting endotherm at 1197°C (therefore by 1300°C, the viscosity would he adequate 

enough for liquid-assisted sintering). Below 1300°C, the effect of reinforcing, with ('AP 

was assumed to be negligible. As for the unfortunate amount of TCP present in ('All I- 

HA at 1300°C, the CAP2 was not as Ca-deficient as CAP1, and it was assumed that 

therefore it would not initiate decomposition of the HA in the composite to TCP to such a 

degree. 

6.3.1 PARTICLE SIZE ANALYSIS 

Particle size analysis was carried out on the 2.5/4/5 wt % composites on the basis that 

they were the most widely investigated weight percents in the glass-reinforced hA 

literature. The results of the particle size analysis are shown in Table 6.8. 

Table 6.8 Particle size analysis on CAP? -HA with different %vt °,, 's 

Sample do., (pm) d0.5 (µm) do. q (pm) 1 mode (pill) 

2.5 wt %/Run 1 1.84 32.49 134.86 14.5 2 

2.5 wt %/Run 2 1.87 33.23 133.52 83.92 

4 wt %/Run 1 

4 wt %/ Run2 

1.74 

1.75 

18.89 

19.99 

122.29 

128.87 

2.59 

2.58 

5 wt %/Run 1 1.84 40.36 147.31 2.56 

5 wt %/ Run 2 1.91 43.83 148.90 2.57 
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There did not appear to be a trend between wt % of CAP2 and particle size. fhc S wt ".. 

CAP2-HA appeared to have the largest particle size, then 2.5 wt °%%, CAP2-IIA came 

second, with 4 wt % CAP2-HA in last. The modes of the 4 and 5 wt "%%% CAP2-I IA were 

small due to the biomodal nature of their distributions, causing the node to be calculated 

as the first peak in the histogram (--2µm), as opposed to the second peak in the case of the 

2.5 wt% CAP2-HA (-80-90µm). The histograms representing the particle size 

distributions of Run 1 from each weight percent category are shown in Figures 6.17,6.1 IS, 

and 6.19. 
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Figure 6.17 Particle size distribution of 2.5 wt % CAP2-HA 
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Figure 6.18 Particle size distribution of 4 wt % CAP? -HA 
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Figure 6.19 Particle size distribution of 5 wt °o CAP? -HA 
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6.3.2 X-RAY FLOURESCENCE (XRF) 

XRF was performed on as-sintered specimens; the results are shown in Table 6.9: 

Table 6.9 XRF results for CAP2-HA with different wt% additive 
Wt% CAP2 wt% CaO wt% P205 Ca/P ratio 

1 49.14 36.78 1.69 

2.5 55.20 41.15 1.69 

3.25 52.97 41.28 1.62 

4 55.02 41.56 1.68 

5 54.84 41.68 1.67 

The ratios were much closer to the Ca/P ratios of the P201 HA (1.68-1.73) than the 

CAP1-HA (1.65-1.66). The Ca/P ratios of the CAP2-HA appeared to decrease with 
increasing wt% CAP2, disregarding the presumed anomalous result of the 3.25 wt% 

CAP2-HA. This was expected as, theoretically, increasing the amount of CAP2 (which 

has a Ca/P ratio of 0.835) which is added to the HA, from 1-5 wt%, should bring down 

the overall Ca/P ratio of the CAP2-HA composite. 

6.3.3 X-RAY DIFFRACTION (XRD) 

The XRD analysis revealed that only a-TCP was present in the as-sintered composites, 

with no ß-TCP, as shown in Figure 6.20 (the TCP peaks are marked with an X). The 

results of the XRD analysis, i. e. RI-TCP found, on CAP2-HA of all batches in each wt % 

are displayed in Table A. 2.1 in Appendix A. 2. The average values of TCP for each wt 

category are shown in Table 6.10. The amount of a-TCP increased with increasing wt % 

CAP2 additive within the composites, with the steepest rise in TCP from 2.5-4 wt% 

CAP2; the trend is shown in Figure 6.21. 
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Figure 6.20 XRD Pattern for CAP2-HA at all wt%'s 
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Table 6.10 Mean RI-TCP in CAP2=HA with different wt % additive 
Wt % Mean R-I-TCP (%) 

1 5.3±1.3 

2.5 9.9±2.0 

3.25 13.4±1.3 

4 18.2±5.2 

5 19.8±4.5 
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Figure 6.21 RI-TCP vs wt % CAP2 

6.3.4 MECHANICAL PROPERTIES 

The biaxial flexural strength (BFS), density, and Weibull moduli were calculated for each 

of the batches within the wt % categories of the CAP2-HA and the mean values are 

shown in Tables 6.11(strength)/6.12 (density)/6.14 (Weibull modulus of the BFS's). 

Table 6.11 Mean values for the BFS of CAP2-HA materials with 
varvine amounts of CAP2 

Wt % Mean BFS (MPa) 

1 74.34 f 8.59 

2.5 91.77 t 17.29 

3.25 92.68 f 13.72 

4 105.26 t 19.74 

5 89.73 f 11.73 
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The following graph, Figure 6.22, demonstrates the relationship between wt % of CAP2 

and mean biaxial flexural strength (BFS): 
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Figure 6.22 Graph of BFS vs wt % CAP2 for CAP2-HA 

The BFS of the CAP2-HA appeared to increase with increasing wt % of CAP2 and peak 

at 4 wt %, but then decreased steeply at 5 wt %. This may indicate that CAP2 is a 

sintering aid, therefore as the wt % increases, the degree of sintering increases (hence 

grain shrinkage), but at 5 wt %, perhaps there is excessive grain growth, which lowers the 

mechanical properties. The results of the density (D) measurements may be seen in 

Table 6.12. 

Table 6.12 Mean density of CAP2-HA materials with varying 
amounts of CAP2 

Wt % Mean Density (g. cm ) 

1 2.83 ±0.12 

2.5 3.08 ± 0.03 

3.25 2.96 ± 0.04 

4 2.96±0.03 

5 3.03±0.17 
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The following graph, Figure 6.23, demonstrates the relationship between wt % of CAP2 

and density: 
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Figure 6.23 Graph of density vs wt % CAP2 for CAP2-HA 

The density appeared to increase between 1 and 2.5 wt % CAP2. Between 2.5 wt % and 

4 wt % CAP2, the density settled, followed by another increase up to 5 wt % CAP2. The 

densities of the 1 and 5 wt % CAP2-HA both varied widely, as indicated by their large 

standard deviations. 

The percentages of theoretical density achieved are stated below in Table 6.13: 

To hip 6 
_11 Percent es of the theoretical density of CAP2-HA with varvina amounts of CAP2 

Wt % of CAP2 Percentage of theoretical density 

1 89.6 

2.5 93.4 

3.25 93.7 

4 93.7 

5 95.9 
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The results from this table are confusing because the 5 wt % samples have a larger 

median (do. 5) particle size then the 4 wt % samples, yet they are closer to reaching 

theoretical density. 

The Weibull moduli of all specimens from each wt % category are shown in Table 6.14: 

Table 6.14 Weibull moduli of all CAP-2HA 
Wt % CAP2 WM (for all samples in each wt 

% category) 
1 9.8 

2.5 6.2 

3.25 7.8 

4 6.9 

5 8.7 
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Figure 6.24 Weibull moduli of all CAP2-HA 

From Figure 6.24, there does not appear to be any particular trend between the wt % of 

CAP2 and the Weibull modulus of the batch; the values vary considerably. However, the 

Weibull moduli of the 1 wt % batches appeared to be the highest 
, and that of 2.5 wt % 

appeared to be the lowest. 
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6.3.4 SCANNING ELECTRON MICROSCOPY 

Scanning electron micrographs were taken of 1/2.5/3.25/4/5 wt '!, i) CAP -2-I IA and arc a 

follows: 

1 wt % CAP2-HA: 

(a) 

(c) 

Figure 6.25 1 wt % CAP2-HA (a)+(b) Unetched, (c)+(d) Etched 

(h) 

(d) 

,J 
. i. 

Image (a) revealed white speckles on the polished surface, which at higher ma`2rni f icatio11 

in image (b), appeared to be concave areas/pores, similar to those found in CAP I -I IA at 
ý�1J. Ir. ss) 

(F-q 

1250°C`and 1300'& From image (c), it appeared that the etchant dissolved these pores, 

as indicated by the small darker holes. The microstructure from image ((l) indicated that 

sintering was almost complete at this temperature and the grains, though difficult to 

decipher, appeared to be 1-2µm in size. 
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2.5 wt % CAP2-HA: 

(a) 

(c) 

Figure 6.26 2.5 wt % CAP2HA (a)+(b) Unetched, (c)+(d) Etched 

(h) 

The speckles in image (a) were similar in number, but larger in individual size, than the I 

wt% CAP2-HA. At higher magnification in image (b). these speckles/pores were similar 

in shape and texture to that of I wt % CAP2HA. The etchant appeared to have dissolved 

the contents of these pores, as seen in image (c), and higher magnification in image (d 

revealed that residual material from the pores were still present in the form of a fine- 

layered net-like material. A definite grain structure was visible in image (d) and showed 

an average grain size of l-2µm. 
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3.25 wt % CAP2-HA: 

(a) 

(c) 

Figure 6.27 3.25 wt % CAP2-HA (a)+(b) Unetched, (c)+(d) Etched 

(b) 

. r. 
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(d) 

There was a huge increase in the number of white speckles/pores as revealed by image 

(a) in comparison to 2.5 wt% CAP2-HA; some of the pores appeared to have merged. At 

higher magnification, the pores were similar to those found in the other CAP? -HA 

specimens. Image (c) showed that yet again, the etchant dissolved the contents of the 

pores, revealing many, small concave regions for the individual pores, and larger concave 

regions deriving from pore mergence. The grains appeared to be larger in size to that of 

2.5 wt% CAP2-HA, i. e. 2-3µm. 
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4 wt % CAP2-HA: 

(a) 

(b) 

Figure 6.28 4 wt % CAP2-HA (a)+(b) Unetched, (c)+(d) Etched 

(I)) 

(ii) 

Image (a) shows that this specimen contained a similar amount of speckles/pores as 3.25 

wt % CAP2-HA, and at higher magnification, both of their pores looked similar in 

structure. The etched image (d) complemented image (a) in a similar manner as 3.25 

wt% CAP2-HA did. Image (d) revealed that the grains were slightly larger than that of 

3.25 wt % CAP2HA, averaging around 3µm.. 

158 



( HA III IP 
INVESTIGATION INTO THE PRODUCTION OF CALCIUM PHOSPHATE MATGRIAI S FOR RI-INFOR('IN(I I'1n1 11 

5 wt % CAP2-HA: 

s 

i+ 
_a. 

`f 

g 

(a) 

(c) 

Figure 6.29 5 wt % CAP2-HA (a)+(b) Unetched, (c)+(d) Etched 

(h) 

((1) 

Image (a) showed that there were a smaller number of speckles/pores, yet there appeared 

to be more pore mergence than in 4wt % CAP? -HA. At higher magnification, seen in 

image (b), the speckles are - 10µm in diameter. The etching process revealed a lot of 

porosity in image (c) and at higher magnification, the grains appeared to he larger than 

the other CAP? -HA batches; -5µm. 

6.4 DISCUSSION 
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6.4.1 PRODUCTION AND CHARACTERIZATION OF MATERIALS FOR REINFORCING IIA 

The particle size analysis revealed that CAP I. had a much smaller median particle size 
(-9-10mm) than CAP2 (-112-115mm). The additives were not milled prior to particle 

size analyis; they were hand crushed until a fine consistency was reached , and the fact 

that the CAP2 was physically much harder to crush in the pestle and mortar justified this 

large discrepancy. 

The XRF analysis revealed the CAP1 to be more Ca-deficient (Ca/P ratio=0.47) than the 

CAP2 (Ca/P ratio=0.84). Therefore it was assumed that in composite form, the CAP 1 

would slightly reduce the Ca/P ratio of the HA, and cause more HA to decompose to TCP 

(LeGeros, 1993) than CAP2 addition would. 

The most important feature of the DTA trace was the onset of the melting endotherm for 

CAP1 (971°C) and CAP2 (1197°C). This meant that at temperatures higher than 971°C 

and at 1197°C, CAP I. and CAP2, respectively, experienced a reduction in viscosity 

sufficient enough to perform liquid-assisted sintering. CAP2 was a crystalline material, 

the majority of its' crystalline phases due to the presence of Ca2P2Os (as shown by XRD 

in Figure 6.4), whilst CAP 1 lacked any crystalline organization. CAP 1 did vitrify upon 

quenching and was classified as a glass, as opposed to CAP2 which, due to its' crystalline 

nature, was regarded as synonymous to a glass-ceramic. 

6.4.2 PRODUCTION AND CHARACTERIZATION OF CAP1-HA 

The particle sizes of the CAP1-HA batch 1 were very different to batch 2 (refer to Table 

6.3). The reasons for the general difference in particle size was attributed to batch 

variability. Batch 1 displayed a larger do. 1, d0.5, and do.. 9 than batch 2, yet displayed a 

smaller mode. The greatest difference could be seen between the do. 9 of batch 1 and 2, 

which was 152.7µm and 82.3µm, respectively. From the histogram of batch 1, it is 

apparent that there were only a few particles lying in the upper end of the distribution, 

which caused this huge difference. Regardless of this anomaly, the modes of the two 
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batches were similar (36.4-42.6µm) and were slightly smaller than the modes of the HA 

reported in Chapter 5 (43.4-43.7µm). 

XRF analysis revealed the Ca/P ratios of all the CAP1-HA batches (1.65-1.66), sintered 

at the temperatures stated in Table 6.4, were lower than that of HA (1.68-1.73). The 

CAP1-HA, as predicted from the XRF analysis on CAP1 alone, was more Ca-deficient 

than HA alone, as a result of the CAP1 addition, which had a Ca/P ratio of 0.47. 

According to the literature, this signified that the HA in the composite would decompose 

to TCP during sintering. If the commercial HA had the correct stoichiometric Ca/P ratio 

of 1.67, then the CAP1-HA would display an even lower Ca/P ratio than the reported 

1.65-1.66, which would be indicative of the amount of decomposition it would 

experience at high temperature. 

After sintering at a range of temperatures, XRD analysis did indeed reveal a huge 

presence of TCP within the composite (Table 6.5), which was predicted from the XRF 

results. Despite the fact that the Ca/P ratio did not change with respect to the sintering 

temperatures, the amount of TCP increased with increasing sintering temperature. This 

could be due to an increase in activation energy within the system, resulting from an 

increase in temperature, which would enhance the re activity of the glassy phase (hence 

the decomposition process). 

The HA within the composite only decomposed to ß-TCP up until 1300°C, where it 

started to decompose to a-TCP. This is consistent with the literature, in which LeGeros 

(1993), Kuroyama et al (1991), and Tampieri et al (1997) stated that ß-TCP is more 

stable at low temperature and a-TCP is more stable at higher sintering temperatures 

(-1300-1350°C). The huge amount of TCP present would have been detrimental to the 

in-vivo mechanical stability of the composites, whereby the TCP (i. e. the major phase in 

the composite) would have resorbed, leaving little scaffolding material for structural 

support. Already the possibility of using this composite in clinical applications 

seemed limited, due to the disappointing results of the phase composition analysis. 
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The mechanical properties of the CAP 1-HA composites sintered at all temperatures were 

extremely poor in comparison to the mechanical properties of the HA in Chapter S. The 

highest BFS's for CAP1-HA and HA were 26.6MPa (1300°C) and 60.01±14.70MPa 

(1200°C), respectively. It appeared that mixing the HA with CAP! caused the HA to 

experience a reduction in strength, which was far from expected, seeing as the authors 

stated in Table 3.13 reported an increase in strength when reinforcing HA with an 

additive that was very similar to CAP1. Biaxial flexural strengths of up to 100 MPa were 

reported for CaO-P205 glass-reinforced HA systems, which was considerably higher than 

those reported in this investigation. Furthermore, Knowles et al (1994) reported that it 

was the presence of ß-TCP, which enhanced the mechanical strength of HA. 

However in this investigation, the large amount of ß-TCP present in the composites did 

not appear to increase the strength of the HA after being reinforced with CAP1. The 

melting endotherm of CAP1 experienced an onset at 971°C, which meant that at sintering 

temperatures of greater than 1200°C, its viscosity would be very low, and it would be 

aggressive and reactive, causing the corrosive degradation of HA to TCP with 

accompanying high porosity. At temperatures below 1200°C, a progressive decrease in 

temperature and hence increase in the CAP I viscosity combined with the presence of 

large agglomerates (-152µm), which would inhibit full packing potential in the green 

state, may have resulted in a minimal driving force for liquid-assisted sintering and 

therefore minimal densification at these temperatures. 

The densities of the composites increased with increasing sintering temperature and were 

also extremely low, which explained the poor mechanical properties. The highest density 

value, 2.18 g. cm 3 (69% of theoretical), occurred at a sintering temperature of 1300°C; 

HA also achieved its highest density at this temperature (3.04±0.03) (96%theoretical), 

which was significantly larger. Obviously, very little densification occurred within the 

composite, even at high temperature. This is unusual, seeing as glass additives were 

reported by the authors in Table 3.13 to be fundamental to liquid-assisted sintering, a 

process in which the glass (which, at sintering temperature, is a liquid) is a sintering aid, 
improving the sinterability of the starting material. The CAP 1-HA composites 
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experienced much less densification than they what was originally predicted. As 

mentioned previously, this corroborates with the results of the particle size analysis, 

which detected agglomerates as large as 152µm, which prevented full packing density in 

the green state, and therefore affected the as-sintered densities. 

Scanning electron microscopy identified the reason as to why the CAP1-HA densities 

were so low. At first, the micrographs of the CAP1-HA look very similar to that of HA 

in Chapter 5, in terms of particle coalescence at 1000-1100°C. However, there was a 

great deal of porosity in the composites at low and at high temperatures. As the sintering 

temperature increased and the composite started to sinter properly (Figure 6.14-6.16), the 

material in proximity to the pores (indicated by the white speckles in the micrographs) 

appeared to dissolve the most in the etchant. This implied that the material surrounding 

the pores was more resorbable than the rest of the specimen surface, and therefore mostly 

consisted of TCP, which would be very vulnerable during the etching process. It could 

therefore be hypothesized that the pores originally contained CAP 1 particles, which had 

melted and reacted with the surrounding HA. TCP has previously been reported to have 

superior mechanical properties to that of HA (Raynaud et al, 1998) (Akao et al, 1982). 

However, in this investigation, any increase in strength resulting from ß-TCP content was 

nullified by the increased porosity of the CAP 1-HA compared to the HA. 

The micrographs also verified the existence of powder agglomerates in the particle size 

analysis, which reported median particle sizes of 21.4-39.71µm, whilst the grain sizes in 

Figure 6.16, indicate an average grain size <_1 µm. Unfortunately, the etched micrograph 

of the composite sintered at 1300°C was the only one displaying a definite grain structure 
for two reasons. Firstly, in general, the presence of a highly resorbable second phase 

resulted in difficulties with one phase being continuously over-etched, and secondly, the 

composite sintered at 1300°C was deliberately etched with a stronger etchant (2.5 

%orthophosphoric acid, as opposed to 0.5%) in order to identify an approximate grain 

size in the HA. 

163 



Cl IAPTER 6 
INVESTIGATION INTO THE PRODUCTION OF CALCIUM PHOSPHATE MATERIALS FOR REINFORCING P201 I IA 

6.4.3 PRODUCTION AND CHARACTERIZATION OF CAP2-HA 

The particle size analysis revealed bimodal distributions for CAP2-HA, as with the HA in 

Chapter 5. The two modes for the CAP2-HA and HA were -2.5µm/-100µm and 

-3.5µm/-40µm, respectively. The smaller particle fraction decreased in mode from 

-'3.5µm to -2.5µm, which implies that some of the CAP2-HA milled effectively and 

therefore the particle size reduced and did not agglomerate. The larger particle fraction 

increased in mode from -40mm to -100mm, which implies that the large particles seen in 

the histograms (Figures 6.17-6.19) had reduced slightly from > 100µm, but had not 
finished milling in the CAP2-HA powder. 

The Ca/P ratios of CAP2-HA, determined by XRF, ranged between 1.66-1.69 for all wt 

% categories, apart from an unusually low ratio of 1.62 for the 3.25 wt% CAP2-HA. 

Apart from the anomaly at 3.25 wt%, the ratios were generally higher than the CAP1-HA 

composites (ratios of 1.65-1.66) and lower than the HA investigated in Chapter 5 (ratios 

of 1.68-1.73). This was expected because the Ca/P ratios of the CAP1 and CAP2 were 

0.47 and 0.84 respectively, therefore CAP2 did not lower the Ca/P ratio of the HA to the 

extent that CAP1 did. Therefore, less decomposition of the HA to TCP within this 

composite was predicted, in comparison to CAP 1-HA. As regards to the effect of 

increasing CAP2 addition, the Ca/P ratio appeared to decrease slightly with increasing wt 

% CAP2 (despite the anomaly at 3.25 wt % ). This was expected because the Ca/P ratio 

of CAP2 was lower than that of HA, therefore the larger the amount of CAP2 added, the 

more the Ca/P ratio of the composite would decrease. 

XRD was used to assess the relative intensity of TCP (RI-TCP). As expected, referring 

to Table 6.10, the CAP2-HA experienced much less decomposition during sintering than 

the CAP 1-HA. In addition, the amount of decomposition to TCP increased with 
increased wt% CAP2 (Figure 6.21), because the CAP2 additive decreased the Ca/P ratio 

of the HA; therefore, the higher the addition, the lower the ratio of the HA, and the 

increased likelihood of decomposition at high sintering temperatures. It was interesting 

to note that the 2.5 wt % CAP2-HA (which had the same wt % additive as all the CAP 1- 
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HA) and the CAP1-HA, both sintered at 1300°C, contained 10% a-TCP and 60% ß- 

TCP/13% a-TCP, respectively. Even at higher additions of CAP2, such as 5 wt %CAP2- 

HA, the amount of decomposition was was still significantly smaller( 20% a-TCP). In 

terms of phase composition, the CAP2-HA had superior properties to CAP1-HA because 

it contained less TCP, hence a smaller potential in-vivo solubility. The counter-argument 

may be that the CAP1-HA contained mostly ß-TCP, which according to Kuroyama et al 

(1991) is less soluble than a-TCP, where CAP2-HA contained only a-TCP. While 

CAP 1-HA contained mostly ß-TCP, the difference in %TCP between the two composites 

was large enough to disregard solubility differences between the TCP polymorphs. 

Knowles et al (1994) found that the ß- to a-TCP transformation involved a larger volume 

change than the HA to ß-TCP transformation and resulted in a disruption of the overall 

structure of the material, hence a decrease in mechanical strength. Extrapolating upon 

these comments, CAP2-HA (which contained only a-TCP) could be expected to be 

mechanically inferior to CAP1-HA (which contained a large proportion of ß-TCP). 

However, the results of the mechanical testing of CAP2-HA showed otherwise, which 

may be related to the density variation between the two. 

Referring to Table 6.11, the BFS's of CAP2-HA were high, ranging between 74.34±8.59 

MPa (lwt%) and 105.26±19.74 MPa (5wt%), as opposed to CAP1-HA, whose strength at 

1300°C was 26.59 MPa. To compare consistently, the BFS's of the 2.5 wt% CAP2-HA 

and the CAP1-HA (2.5wt% CAP1 throughout) were 91.77±17.29 MPa and 26.59 MPa 

respectively. The addition of CAP2 to HA increased the BFS of P201 HA (1200°C) from 

60.01±14.70 MPa to 91.77±17.29 MPa, with an improvement of -31 MPa, as opposed to 

the addition of CAP I which weakened P201 HA by -34 MPa. The CAP I and CAP2 

appeared to affect the strength of HA in equal magnitude, but opposite direction. The 

melting endotherm of CAP2 (determined by DTA in section 6.1.3) was shown to be 

1197°C, which was very close to the sintering temperature of the composites (1300°C). 

Therefore, the CAP2 was in liquid form at the temperature necessary to enhance 
densification, i. e. near the sintering temperature. CAP1, on the other hand, whose 
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melting endotherm was shown to be 971 °C, was in liquid form at perhaps too low a 

temperature and affected the microstructure in a manner detrimental to the subsequent 

sintering process. 

Increasing the amount of CAP2 additive increased the BFS of the composite, until the 

addition reached 5wt%, upon which the strength decreased to 89.73±11.73 MPa, a figure 

between the BFS of 1 wt% CAP2-HA (74.34±8.59 MPa) and 2.5 wt% CAP2-HA 

(91.77±17.29 MPa). From 1-4 wt %, the CAP2 appeared to behave as a reinforcing 

additive and performed liquid-assisted sintering, as it gradually increased the BFS of the 

composites. However, the decrease in BFS at 5 wt % indicated that the reason for such 

behaviour lay in the microstructure of the composite, i. e. was perhaps due to the presence 

of coarse grains. The Weibull moduli (WM) of the CAP2-HA composites did not appear 

to have a relationship with the wt % of CAP2, but the values merely ranged between 6.2- 

9.8, which were higher than the WM (6.16) of the HA in Chapter 5, sintered at 1300°C. 

Therefore the addition of CAP2 not only increased the strength of the HA but also 

increased the reliability of the mechanical data. 

The densities of the composites increased with increasing wt % CAP2, which verified the 

reinforcing capability of the CAP2 material. Furthermore, the densities ranged from 

2.83±0.12 g. cm 3 at 1 wt % (89.6 % theoretical) to 3.03±0.17 g. cm 3 at 5 wt % (95.9 % 

theoretical), which were much closer to the density of HA at 1300°C (3.04±0.03 g. cm 3, 

96% theoretical)) than CAP1-HA at 1300°C (2.18 g. cm 3,68.9 % theoretical). 

The micrographs revealed information which explained the mechanical properties of the 

CAP2-HA composites between wt % categories, as well as the strength difference 

between CAP 1-HA and CAP2-HA. Firstly, there was a similar degree of porosity and 

similar grain structure in the 1 and 2.5 wt % CAP2-HA, followed by an increase in both 

at 3.25 wt %, which was similar at 4 wt %. However, at 5 wt %, there was significant 

coarsening of the microstructure. As 5 wt% CAP2-HA displayed the highest density, the 

reason for the decrease in strength is possibly due to the presence of these large 
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micropores, which would act as stress-raisers, thereby decreasing the BFS of the 

composite. 

Secondly, comparing the 2.5 wt% CAP2-HA and the CAP1-HA sintered at 1300°C 

(which also contained 2.5 wt%), the grains of the former were slightly larger than the 

grains of the latter, from which one would assume that the CAP 1-HA would exhibit 

better mechanical properties. However, the CAP2-HA was much stronger due to the 

significantly smaller degree of porosity displayed in the microstructure. Furthermore, 

CAP 1-HA contained micropores that were 2-3mm in diameter, whilst the micropores in 

CAP2-HA were <1 µm in diameter. 

At 1300°C, CAP2-HA experienced much less decomposition than CAP1-HA, and also 
displayed better mechanical properties. The better sinterability of CAP2-HA was due to 

the compatibility of the viscosity of CAP2 and the HA at the sintering temperature, as 

well as the higher densities achieved in the green and as-sintered state. As for the ideal 

wt% CAP2 for promoting minimal decomposition and maximum strength, the 2.5 wt % 

CAP2-HA was chosen because it had a RI-TCP of -10% (2nd lowest) and a middle range 

strength (-92 MPa). On either side of this composite, the strength was too low or the RI- 

TCP was too high. 
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CHAPTER 7 

INVESTIGATION INTO THE EFFECT OF 
PHYSIOLOGICAL SOLUTION ON 

HYDROXYAPATITE AND ITS' REINFORCED 
COMPOSITES 

The investigations from the previous chapter revealed that reinforcing P201 HA with 
CAP! decreases the strength and increases phase decomposition, yet reinforcement 

with CAP2 increased the strength, with minimal phase decomposition. Therefore it 

was decided to exclude CAP 1-HA from further investigation. Furthermore, the 

CAP2-HA appeared to be the strongest, with minimal phase decomposition at a 

sintering temperature of 1300°C and 2.5 wt % CAP2, therefore all CAP2HA 

specimens were prepared in this manner for this study. In order to maintain 

consistency in density and surface porosity, the P201 HA samples were also sintered 

at this temperature (despite the optimum strength being at 1200°C), previous XRD 

analysis having demonstrated that P201 did not experience phase decomposition to 

TCP at these temperatures. 

7.1 PRE-SOAK PROPERTIES 

Prior to soaking the dense P201 and CAP2-HA in Ringer's solution, all samples were 

labelled according to which day in the 30 day cycle they would be analysed. There 

were 30 samples in each category (eg. P201) and 5 samples in each batch, related to 

the day for analysis, labelled "MD1" for mechanical degradation after day 1, and 
"MD2" for mechanical degradation after day 2, etc. All samples were sintered at 
1300°C. 
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7.1.1 X-RAY DIFFRACTOMETRY 

There was no ß-TCP present in the batches, hence only the RI-TCP of a-TCP are 

shown in Table 7.1; P201 contained no a-TCP, which is consistent with the phase 

composition of P201 in the previous investigation. 

Table 7.1 Percentages of RI-TCP for P201 HA and CAP2-HA in the 
mechanical deeradation study 

Batch RI-TCP (%) 

P201 CAP2-HA 

MDO (dry control) 0 14 

MDl 0 13 

MD2 0 13 

MD4 0 17 

MD8 0 17 

MD30 0 6 

All of the dry CAP2-HA batches in Table 7.1 contained marginally larger amounts of 

a-TCP than its' 2.5 wt % counterpart in the previous investigation. Nevertheless, the 

purpose of analysing the phase composition in this particular investigation was to 

decipher any changes between pre- and post-soaking values, as opposed to simply 

pre-soaking values. 

7.1.2 DENSITY MEASUREMENTS 

The densities of the P201 appeared to be higher than that of the CAP2-HA. The 

results may be seen in Table 7.2. 
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Table 7.2 Mean density values for P201 HA and CAP2-1-IA in the mechanical 
degradation study 

Batch Mean Density (g. cm ) 

P201 CAP2-HA 

MDO (dry control) 3.03 ± 0.03 3.01 ± 0.01 

MD1 3.08 ± 0.03 2.92 ± 0.06 

MD2 3.06 ± 0.02 3.01 t 0.05 

MD4 3.09 f 0.003 2.99 ± 0.01 

MD8 3.07±0.01 3.01 ±0.01 

MD30 3.02 t 0.09 2.96 ± 0.02 

7.2 POST-SOAK PROPERTIES 

7.2.1 X-RAY DIFFRACTOMETRY 

The results from the XRD analysis are shown in Table 7.3. The P201 appeared to 

contain no a-TCP, apart from day 2, whilst the RI-TCP present in CAP2-HA 

fluctuated. With respect to the corresponding pre-soaked values, the RI-TCP in 

CAP2-HA, decreased after 1, increased after day 2, and then decreased up until day 

30, where it appeared to equate its respective pre-soaked value. Figure 7.1 displays 

the trends observed in the phase composition pre- and post-soaking for CAP2-HA 

only (the results for P201 HA are not illustrated due to the fact that most samples 

displayed 0% a-TCP pre- and post-soaking). 
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Table 7.3 The effect of Ringer's solution on the phase composition of CAP2-HA 

Batch RI-TCP (%) 

P201 CAP2-IIA 

MDO (dry control) 0 14 

MD1 0 10 

MD2 2 15 

MD4 0 16 

IvlD8 0 13 

MD30 0 6 

20 

15 

v 10 

5 

0 

Day 

Pre-soaked 
  Post-soaked 

Figure 7.1 The effect of Ringer's solution of the RI-TCP of CAP2-HA 

7.2.2 MECHANICAL PROPERTIES 

The results of the biaxial flexural tests performed under environmental conditions on 

all batches are shown in Table 7.4. 
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Table 7.4 Mean Biaxial Flexural Strengths for P201 HA and CAP2-HA in the 
mechanical degradation study 

Batch Mean Biaxial Flexural Strength (MPa) 

P201 % Original 

Strength 

CAP2-HA % Original 

Strength 

MDO 
(dry control 

10.93 ± 1.06 100 98.01 ± 15.99 100 

MD I 7.89 ± 2.09 72 68.74 ± 17.99 70 

MD2 7.39 ± 0.96 68 65.27 ± 16.55 66 

MD4 10.33 ± 2.46 95 63.79 ± 11.91 65 

MD8 8.76 ± 1.56 80 68.07 ± 11.54 69 

MD30 6.54 ± 1.68 60 76.23 ± 7.62 78 

The largest decrease in strength appeared to lie between day 0 and day 1, after which 

the values fluctuated marginally around the day 1 value, as shown in Figure 7.2. At 

the end of the 30 days, CAP2-HA retained 78 % of its' original strength, whilst P201 

HA only managed to retain 60 %. 

120 
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80 
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60 

40 
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ý- P201 HA 

ý- CAP2-HA 

Figure 7.2 The effect of Ringer's solution on the BFS of P201 HA and CAP-2HA. 
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7.2.3 ICPMS RESULTS 

ICPMS was used to analyse the ionic content of Ringer's solution, pre- and post- 

soaking, as described in section 4.4.8. For the purpose of this investigation, the most 

relevant ions for consideration were the calcium (Ca) and phosphorus (P) ions 

because resorption and re-precipitation processes in Ca/P based ceramics involve the 

loss of Ca and P followed by the formation of a Ca/P-rich layer on the sample surface. 
The results (semi-quantitative) are shown in Table 7.5 and the percentages are shown 

in Table 7.6: 

Table 7.5 Concentration of Ca and P in P201 and CAP2-HA in the 
mechanical degradation study 

Day P201 CAP2-HA 

Ca (µg1-i) P(µgla) Ca(µg1-1) P(µgrl) 

0 927 21 927 21 

1 1737 32 740 29 

2 1090 33 1195 37 

4 1537 19 895 24 

8 1018 23 1468 23 

30 1589 17 930 15 

Table 7.6 Percentage of Ca and P in P201 and CAP2-HA in the mechanical 
denradatinn clm1v 

Day P201 CAP2-HA 

Ca (%) P(%) Ca(%) P(%) 

0 100 100 100 100 

1 187 152 79 138 

2 117 156 129 176 

4 165 90 97 114 

8 109 109 158 109 

30 171 81 100 71 

The results of the ICPMS analysis are illustrated in Figures 7.3 and 7.4. 
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Figure 7.3 The effect of soaking time on the Ca concentration in solution for P201 
and CAP2-HA. 
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Figure 7.4 The effect of soaking time on the P concentration in solution for P201 HA 

and CAP2HA. 

Referring to Figure 7.3, the HA and CAP2-HA appeared to mirror-image each other 

almost perfectly with respect to the amount of calcium (Ca 2) in solution. As the 

amount of Ca increased with regards to the HA, it decreased with regards to the 

CAP2-HA and vice-versa. At the end of the testing period, the release of Ca 2+ ions in 

solution was greatest from the HA in comparison to the CAP2-HA. The amount of 

phosphorus (p) in solution -Mth regards to HA appeared to fluctuate in a similar 
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manner to that of CAP2-HA. Both species caused the amount of P in solution to peak 

at day 2, decrease sharply at day 4, followed by a gradual decrease up to day 8 and 30. 

7.2.4 - SCANNING ELECTRON MICROSCOPY 

SEM was carried out on the dry control batch MDO, and soaked MD I, MD8, and the 

MD30 batches on the assumption that sufficient surface changes would occur after 1 

and 30 days of immersion, with 8 days acting in the middle range. None of the 

samples were etched in fear of losing surface precipitates and therefore nor were the 

dry samples to maintain consistency. The images are displayed on the following 

pages. 

The most significant structures were the white speckles/pores on the specimen 

surfaces. With reference to the P201 HA in Figure 7.5, at low magnification there 

was a small amount of speckles at MDO, which increased significantly in number at 

MD1, followed by a small decrease in number but an increase in individual size in 

MD8. In MD30, the number of speckles was similar to that of MD1. Similarly with 

the CAP2HA in. Figure 7.6, at low magnification the number of speckles increased 

from MDO to MD1, followed by a decrease in number in MD8, finishing with a 

increase in MD30. 

At high magnification, the most noticable change in P201 in Figure 7.5 was the fact 

that the speckles/pores appeared to increase slightly in depth and from MDO to 

MD30. CAP2HA in Figure 7.6 did not appear to experience these changes. 

These speckles were identified in the previous investigation as areas of 

resorption/soluble material, i. e. a-TCP and CaO. The fluctuations seen in the-amount 

of a-TCP present may be due to resorption/reprecipitation processes, and therefore 

these results must be cross-referenced with the phase composition analysis and 

ICPMS analysis in order to very this hypothesis. 
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7.3 DISCUSSION 

Immersing the HA and CAP2-HA in Ringer's solution (RS) over the 30 day period 

affected their physical and mechanical properties. The activity of the two materials in 

solution, in terms of loss/gain of ions, affected the mechanical properties, the effect of 

which was verified by microscopical analysis. Therefore, in order for the results to be 

explained in context, this discussion will focus on the fluctuations in the mechanical 

properties of the two materials, in terms of phase composition, concentration of ions 

in solution, and microstructure. 

In the previous investigation, it was stated that there was a possible relationship 

between the amount of TCP present in CAP2HA and its' BFS, in that the higher the 

TCP content, the lower the BFS. On day 2, the CAP2-HA experienced a decrease in 

strength with an increase in %TCP, and on day 8, the CAP2-HA experienced an 

increase in strength with decreased %TCP. Furthermore, between day 8 and day 30, 

CAP2-HA experienced the largest increase in BFS and the largest decrease in %TCP. 

Therefore, one can assume that the trend between strength and %TCP has occurred 

again. However, on days 1 and 4, the CAP2-HA experienced decreases in strength 

with decreased %TCP. Furthermore, the HA also experienced a constant reduction in 

BFS (with an exception of day 4), despite containing no TCP (apart from day 2). The 

BFS strength of the HA and CAP2-HA was obviously being affected by a further 

factor, possibly surface dissolution/re-precipitation processes, as characterized by the 

results of the ICPMS and SEM. 

At day 0, both the HA and CAP2-HA contained a few white speckles on their 

surfaces, which were confirmed, by higher magnification, to be slightly concave 

areas, i. e. surface pores. At day 1, there was a huge increase in the number of pores in 

both the HA and CAP2-HA, which meant that something from their surfaces was 

dissolving in solution. The ICPMS data revealed that at day 1, the P201 released both 

Ca and P into solution, whereas the CAP2-HA only released P into solution, and 

gained Ca. This should not be interpreted as HA being more resorbable than CAP2- 

HA, but rather because the CAP2-HA contained more TCP to begin with, after being 

soaked in solution, the TCP in CAP2-HA immediately was released into solution and 

re-precipitated back onto the CAP2-HA as a relatively Ca-rich apatitic layer, as 
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indicated by the loss of Ca from solution. This is consistent with the findings of 

Knabe et al (1997) and Zyman et al (1998), who found that some bioactive ceramics 

form Ca-rich surfaces following implantation, which provide a bonding interface with 

tissues, and may further facilitate osteoblastic growth. In terms of the mechanical 

properties, the increase in the number of pores explain the loss of strength, because 

they acted as stress-raisers, thereby decreasing the stress required to propogate cracks 

through the specimens. 

Unfortunately, micrographs were not taken of the MD2 and MD4 specimens for 

reasons explained in section 7.2.3. However, with regards to the HA, because the 

BFS decreased at day 2 and increased at day 4, one can assume that the amount of 

surface pores increased at day 2 and decreased at day 4. Similarly with CAP2-HA, 

the BFS decreased at day 2 and continued to decrease at day 4, which indicates a 

gradual increase in surface porosity from day 1 to day 4. 

Porosity was explained previously as a function of ion release. At day 2, the P201 

released more P, but gained Ca. This dissolution behaviour was reminiscent of 

CAP2-HA at day 1, which indicated that the HA was not dissolving at the same rate 

as CAP2-HA, and was in fact one day behind in terms of the dissolution/re- 

precipitation which CAP2-HA experienced at day 1. In fact, the delayed dissolution 

behaviour of Ca with regards to the HA explained the mirror image seen in Figure 

7.3, whereby on the days that CAP2-HA gained Ca, the HA released Ca in solution. 

This behaviour highlighted the difference in dissolution between bioceramics that 

contain resorbable Ca-P materials, such as TCP, in comparison to bioceramics that are 

much less soluble, such as HA. 

At day 8, the microstructure of the HA revealed a slightly larger amount of surface 

porosity to that of the HA at day 0 (control); accordingly, the BFS (8.761.56 MPa) 

was slightly lower than that at day 0 (10.93±1.06 MPa). The CAP2-HA displayed a 

similar amount of surface porosity to that of day 1, the difference being the size of the 

pores at day 8 were smaller than that of day 1; accordingly, the BFS of day 1 and day 

8 were very similar; 68.74±17.99 MPa and 69.07±11.54 MPa, respectively. The HA 
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released P into solution and gained Ca at this point, whilst CAP2-HA released both 

ions into solution. 

At day 30, the HA displayed its' weakest BFS (6.54±1.68 MPa) throughout the testing 

period as well as the most surface porosity. There appeared to be inverse relationship 
between strength and porosity, in that the strength decreased when the specimens 
displayed more surface porosity. However, the same assumption could not be applied 

to CAP2-HA, because at day 30, a BFS of 76.2±37.62 MPa was obtained, despite the 

specimen surface containing a similar amount of porosity to the specimen at day 1, 

which had a BFS of 68.74±17.99 MPa. However, the CAP2-HA contained some TCP 

throughout the 30 day period, regardless of fluctuations, and because the changes in 

strength did not always correspond with the surface porosity, it is possible that the 

CAP2-HA maintained mechanical integrity due to the presence of TCP. 

In Chapter 6, CAP1-HA experienced far more decomposition during sintering, and 

displayed weaker mechanical properties to the CAP2-HA, which displayed much less 

decomposition. However, the CAP 1-HA was much more porous than the CAP2-HA, 

which attributed to its' poor mechanical properties. It is possible that the presence of 

TCP, combined with the effects of the liquid-assisted sintering process instigated by 

the addition of CAP2, enhanced the mechanical properties of HA. Calcium-deficient 

ceramics like TCP have been previously reported (Akao et al, 1982) (Raynaud et al, 

1998) (Furakawa et al, 2000) to display superior mechanical properties to Ca/P 

ceramics with a Ca/P ratio of 1.67 (such as HA). 

Regardless of the reported mechanical properties of TCP, it is not ideal to create a 

bone substitute material which solely consists of TCP, because TCP is extremely 

resorbable, as pointed out in the literature, and as proven by the dissolution rate of 
CAP2-HA during its' first day in solution. If the substitute material dissolves too 

quickly in the first 24 hours of implantation, any form of mechanical stress, be it large 

or small, will be detrimental to the mechanical integrity of the system because there 

will be less material to absorb the stress. 
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Thus, the presence of TCP caused the CAP2-HA to be more resorbable in 

physiological solution than P201 HA, however it was still the stronger species, pre- 

and post-soaking. The commercial HA also experienced some resorption; however 

this behaviour was believed to be primarily due the presence of CaO as detected in the 

investigation in Chapter S. The CAP2-HA proved to be more ideal for bone 

substitution than the HA (even though the RI-TCP in the CAP2-HA was initially < 

20%), because at the end of the 30 day period, not only was it much stronger than the 

HA, but it retained more strength. 
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CHAPTER 8 

INVESTIGATION INTO THE PRODUCTION OF 
POROUS HA AND POROUS CAP2-HA 

8.1 CHARACTERIZATION OF POROUS P201 HA 

This investigation was divided into two sections. First, a pilot study was carried out in 

order to find the optimum sintering conditions of porous P201 HA (pHA) in terms of 

physical/mechanical properties. Once the optimum sintering conditions were established, 

another study was carried out in order to repeat production/characterization at this 

temperature. For both studies, each batch contained 5 samples. 

8.1.1 PILOT STUDY 

Porous P201 HA was initially produced via the burn-out method YU foam (IRC in 

Biomedical Materials, UK), as detailed in section 4.3.4. In order to determine the 

sintering temperature that resulted in optimum mechanical properties, the foams were 

sintered at a range of temperatures, i. e. 1200°C, 1250°C, and 1300°C. 

8.1.1.1 X-Ray Diffractometry 

As with the dense P201, the results of the X-ray diffractometry showed no evidence of 

a- or ß-TCP at 1200°C, 1250°C, or 1300°C. 
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8.1.1.2 Mechanical Properties 

The results of the mean density, porosity, and ultimate compressive strength (UCS) 

measurements are displayed in Table 8.1, and Figures 8.1-8.3 (mean values) and Figure 

8.4 (all values). 

Table 8.1 Porosity, density, and strength measurements for pHA sintered at 
different temperatures 

Materials Sintering Mean Mean Mean Mean 
Temperature Total Closed Apparent UCS 

(°C) Porosity Porosity Density (MPa) 
(%) (%) (g. cm 3) 

HA slurry 1200 72.13 13.09 0.88 1.29 

YU foam t 5.89 t 1.02 t 0.19 t 0.18 

HA slurry 1250 66.67 10.09 1.05 1.76 

YU foam ± 1.79 ± 0.45 ± 0.06 ± 1.00 

HA slurry 1300 64.24 12.72 1.13 2.85 

YU foam ± 2.54 ± 0.42 ± 0.08 ±0.51 

Preliminary mechanical tests showed that the UCS of the pHA increased with increasing 

sintering temperature (Figure 8.1), yet the actual values were very low compared to that 

of the dense HA characterized in Chapter 5. This was expected due to the macroporous 

structure of the specimens. Similarly to the strength, the densities of the pHA appeared to 

increase with increasing temperature (Figure 8.2). The sintering temperature of pHA that 

corresponded to the highest UCS/apparent density was 1300°C. 

The total porosity of the pHA decreased with increasing sintering temperature, whilst the 

closed porosity increased slightly from 1200°C to 1250°C, followed by a slight decrease 

from 1250°C to 1300°C, as seen in Figure 8.3. Figure 8.4 shows that as the total porosity 

of the pHA increased, the UCS decreased. The strongest batch (sintered at 1300°C) 

displayed the lowest porosity. 
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Figure 8.1 The effect of sintering temperature on the UCS of pHA 
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Figure 8.2 The effect of sintering temperature on the apparent density of pHA 

184 



CHAPTER 8 
INVESTIGATION INTO THE PRODUCTION OF POROUS HA AND POROUS CAP2-HA 

80 

70 

60 e 
50 

40 

30 

20 

10 
0 

OTotal Porosity 

 Closed Porosity 

1200 1250 1300 

Sintering Temperature (°C) 

Figure 8.3 The effect of sintering temperature on the porosity of pHA 

4 

3.5 

3 

2.5 
a m2 

1.5 

1 

58 62 66 70 74 

Total Porosity j%) 

0.5 

0 

". 

". 

Figure 8.4 The relationship between strength and total porosity for all pHA specimens 
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Figure 8.5 Porous pHA (a) 1200°C (b) 1250°C (c) 1300°C 

At low magnification, a sintering temperature of 1200°C resulted in a highly 

macroporous structure with visible cracks and little interconnective porosity, which 

remained similar at 1250°C. At 1300°C, the macropores appear to have a more uniform 

size and shape. At higher magnification, the pHA struts sintered at 1200°C and 1250°C 

both displayed large amounts of microporosity, yet there was an apparent reduction in 

microporosity at a sintering temperature of 1300°C. 
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8.1.2 STUDY AT OPTIMAL SINTERING CONDITIONS 

From the pilot study, it was evident that the pHA sintered at 1300°C displayed optimal 

mechanical properties, therefore on this basis the following investigation was carried out 

at this sintering temperature. 

8.1.2.1 X-Ray Diffractometry 

The results of the x-ray diffraction showed no evidence of a- or ß-TCP in the porous 

pHA produced using the YU (IRC in Biomedical Materials) or the BU (Foam Engineers 

Ltd., UK) foam. 

8.1.2.2 MECHANICAL PROPERTIES 

In this study, YU and BU foams were used in the bum-out technique at the optimal 

sintering temperature (1300°C). Two batches, containing 5 specimens each, were 

produced for each foam type. The results of the mean porosity, density, and strength 

measurements are displayed in Table 8.2, and illustrated in Figures 8.6 and 8.7. 

Table 8.2 Porosity, density, and strength measurements for pHA using YU and BU foam 
Materials Sintering Mean Mean Mean Mean 

Temperature Total Closed Apparent UCS 
(°C) Porosity Porosity Density (MPa) 

(%) (%) (g. cm 3) 

HA slurry 1300 68.99 17.99 0.98 2.19 

YU foam ± 6.72 f 5.63 f 0.21 t 1.20 

HA slurry 1300 68.52 11.06 0.99 1.29 

BU foam ± 2.11 ± 1.69 t 0.06 t 1.02 
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Figure 8.6 A comparison of the total/closed porosity between pHA made with YU and BU foam. 
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Figure 8.7 A comparison of the density/strength of pHA made with YUand BU foam 

Referring to Figure 8.6, the use of YU foam as a polymeric pre-cursor resulted in pHA 

having similar total porosity, higher closed porosity. The mechanical properties in Figure 

8.7 show that despite having similar densities, the pHA produced with YU foam (YU- 

pHA) was stronger. 
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rw fib nrt s. $j 
A image (a) showed that YU-pHA macrostructurally contained pores of various sizes with 

some interconnectivity, whilst there appeared to be more macroporosity in the BU-pHA, 

and the BU foam pores were also slightly smaller, referring to the micron bar. At 

medium magnification in image (b), there appeared to be some porosity within the struts 

of YU-pHA, as well as some darker regions of interest in the bottom right of the 

micrograph. At this magnification, BU-pHA revealed more microporosity within the 

struts; there was much better densification in YU-pHA than in BU-pHA. Image (c) 

revealed that at high magnification, both YU-pHA and BU-pHA contained considerable 

porosity, as indicated by the concave regions, much like the dense HA reported in 

Chapter 5. 

8.2 CHARACTERIZATION OF REINFORCED POROUS HA 

After extensive analysis of the dense materials in Chapter6, the dense CAP2-HA 

appeared to have the strongest dry mechanical properties in comparison to the dense HA; 

hence, for the purpose of this study, porous CAP2-HA (pCAP2-HA) was also produced 

and characterized. Each batch reported in sections 8.2.1 and 8.2.2 contained five 

samples. 

8.2.1 PILOT STUDY 

As with the pHA, a preliminary study was carried out using YU foam (to produce YU- 

pCAP2-HA) in order to determine the sintering temperature which corresponded to the 

highest mechanical strength; the batches were sintered at 1250°C, 1300°C, and 1350°C. 

Unfortunately, no analysis was carried out on the batch sintered at 1250°C, because the 

samples disintegrated in the furnace, possibly due to lack of densification. 
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8.2.1.1 X-Ray Diffractometry 

X-ray diffraction of the two batches (Table 8.3) showed that the RI-TCP (a) increased 

with increasing sintering temperature. This indicated that at 1350°C, the pCAP2-HA 

would be more resorbable than at 1300°C, which is undesirable for high load-bearing 

applications. However, these results must be balanced against the mechanical criteria in 

selection of the optimal sintering temperature. 

Table 8.3 Effect of sintering temperature of the RJ-TCP of pCAP2-HA 

Sintering Temperature (°C) RI-TCP (%) 

1300 21 

1350 38 

8.2.1.2 Mechanical Properties 

The results of the mean porosity, density, and strength measurements are displayed in 

Table 8.4 and the mean values illustrated in Figures 8.9 to Figure 8.11, with all values 

used in Figure 8.12. 

Table 8.4 Porosity, density, and strength measurements for pCAP2-HA sintered at 
different temperatures 

Materials Sintering Mean Mean Mean Mean 
Temperature Total Closed Apparent UCS 

(°C) Porosity Porosity Density (MPa) 
(%) (%) (g. Cnf 3) 

CAP2-HA 1300 79.42 3.09 0.65 0.33 

YU foam ± 1.54 ± 1.81 ± 0.05 ± 0.11 

CAP2-HA 1350 73.51 17.53 0.84 0.87 

YU foam t 4.27 t 11.71 t 0.14 t 0.34 
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As with the pHA, the pCAP2-HA experienced an increase in UCS and density with 

increased sintering temperature, shown in Figure 8.9 and Figure 8.10, respectively. A 

sintering temperature of 1350°C was therefore chosen as the optimum because the best 

mechanical properties (mean UCS and density of 0.87±0.34 MPa and 0.84±0.14 g. cm 3) 

were obtained at this temperature. The optimal mechanical properties were lower than 

that of pHA, which displayed an optimal mean strength and density of 2.85±0.51 MPa 

and 1.19±0.08 g. cm-3, respectively. 

Similarly to the pHA, the pCAP2-HA) experienced a decrease in strength with increasing 

total porosity (Figure 8.12), i. e. the highest UCS corresponded to the lowest porosity. 

However, unlike the pHA, whose closed porosity merely fluctuated with increased 

sintering temperature, the closed porosity of pCAP2-HA increased (Figure 8.11). 

8.2.1.3 Scanning Electron Microscopy 

SEM of the batches in this study are displayed on the next page: 
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The macrostructure of pCAP2-HA sintered at 1300°Clat low magnification revealed a 

large amount of interconnectivity as well as the presence of thick struts, with some 
(ark 

cracks. Higher magnification"revealed a large amount of porosity and small cracks within 

the struts. At a higher sintering temperature (bi), the pCAP2-HA displayed a similar 
(N) 

amount of interconnectivity than that sintered at 1300°C, slightly thicker struts, and 
rh0 

slightly less cracks. At higher magnification" the struts appear to have a similar amount of 

internal porosity/cracks to that of 1300°C. 
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8.2.2 STUDY AT OPTIMAL SINTERING CONDITIONS 

The pilot study identified pCAP2-HA sintered at 1350°C as having optimal conditions, 

therefore, for the purpose of this investigation, YU-pCAP2-HA and BU-pCAP2-HA were 

produced and characterized at this optimal sintering temperature. Two batches were 

sintered at 1350°C and a further two batches at 1400°C; it was decided to experiment 

with increasing the sintering temperature in the hope of improving the mechanical 

properties at the risk of increasing phase decomposition. 

8.2.2.1 X-ray Diffractometry 

The results of the x-ray diffraction on all batches (Table 8.5, Figure 8.14) only display the 

amount of RI-TCP of a-TCP detected, as no ß-TCP was present in any of the samples. 

One representative sample was chosen from each batch for analysis. 

Table 8.5 The effect of sintering temperature and foam-type on the RI-TCP of 
UCAP2-HA 

Materials Sintering Temperature (°C) RI-TCP (%) 

CAP2-HA 1350 17 

YU foam 

CAP2-HA 1350 19 

BU foam 

CAP2-HA 1400 19 

YU foam 

CAP2-HA 1400 23 

BU foam 
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Figure 8.14 The effect of sintering temperature on the RI-TCP of YU-/BU-pCAP2-HA 

The batches deriving from the YU and BU foam showed an increase in the amount of 

phase decompositon to a-TCP with increasing sintering temperature. In comparing the 

foams, the BU-pCAP2-HA experienced more phase decomposition than the YU-pCAP2- 

HA at both temperatures. 

5.2.2.2 Mechanical Properties 

In this study, YU and BU polyurethane foam were used in the bum-out technique at the 

optimal sintering temperature (1350°C). The results of the -mean porosity, density, and 

strength measurements are displayed in Table 8.6, and these mean values illustrated in 

Figures -8.15-8.18, all values displayed in Figure 8.19. 
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Table 8.6 Porosity, density, and strength measurements for YU-BU-pCAP2-HA sintered at 
different temperatures 

Materials Sintering Mean Mean Mean Mean 
Temperature Total Closed Apparent UCS 

(°C) Porosity Porosity Density (MPa) 

. cm-3 
CAP2-HA 1350 75.20 12.98 0.78 0.66 

YUfoam ±1.15 ±1.51 ±0.04 ±0.23 

CAP2-HA 1350 79.31 12.86 0.65 0.46 

BU foam ± 0.83 ± 4.59 t 0,03 ± 0.20 

CAP2-HA 1400 71.91 11.98 0.89 0.58 

YU foam ± 0.76 ± 1.21 ± 0.02 ± 0.29 

CAP2-HA 1400 76.05 12.29 0.76 0.76 

BU foam ± 1.63 ± 1.25 ± 0.05 ± 0.37 
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Figure 8.15 The effect of sintering temperature on the UCS of pCAP2-HA made with YUBU Foam 
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Figure 8.16 The effect of sintering temperature on the apparent density of YU-BU-pCAP2-HA 
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Figure 8.17 The effect of sintering temperature on the total/closed porosity of YU-pCAP2-HA 
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Figure 8.18 The effect of sintering temperature on the total/closed porosity of BU-pCAP2-HA 
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Figure 8.19 The relationship between strength and total porosity for YU-BU-pCAP2-HA 

Unlike the BU-pCAP2-HA, which increased in strength with increasing sintering 

temperature (Figure 8.15), the YU-pCAP2-CIA experienced a decrease in strength. This 
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was unusual as the density of both the YU- and BU-pCAP2-HA increased with 
increasing temperature (Figure 8.16). The densities and strengths of the YU- and BU- 

pCAP2-HA at 1400°C were 0.89±0.02g. cm'3/0.58±0.29MPa and 0.76±0.05g. cm 3 

/0.76±0.37MPa, which indicated that the weaker samples(YU-species) were more dense. 

Both the YU- and BU-pCAP2-HA experienced marginal reductions in total and closed 

porosity as shown in Figures 8.17 and 8.18, respectively. As the BU-pCAP2-HA 

decreased in porosity, the UCS increased (Figure 8.19), unlike the YU-pCAP2-HA, 

which did not appear to have a relationship with porosity. 

The following table summarises the behaviour of the two species during the temperature 

increase: 

Table 8.7 Summary of YU-/BU-pCAP2-HA 
Species Porosity Density Strength 

YU-pCAP2-HA 4, T no change 

BU-pCAP2-HA ,ý T 'j' 

8.2.2.2 Scanning Electron Microscopy 

SEM micrographs taken of the batches in this study are displayed on the following page 

in Figure 8.20 and Figure 8.21. 
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YU-/BU-pCAP2-HA sintered at 1350°C: 
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Figure 8.20 YU-/BU-pCAP2-HA sintered at 1350°C 
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Figure 8.21 YU-/BU-pCAP2-HA sintered at 1400°C 
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Figure 8.20 

At low magnification in image (a), there was a huge difference between the 

macroporosity of the YU and the BU species. The YU species displayed nmacroporosity, 

with some macrocracks within the struts, whereas the BU species displayed what appears 

to be merged macroporosity into very large pores that were even visible to the eye 

outside of SEM analysis. At medium magnification in image (b), the YU struts contained 

some cracks and some porosity, whereas the BU struts lacked structural integrity and 

appeared thin and porous. At high magnfication in image (c), the straits of both species 

displayed similar amounts of microporosity. 

Figure 8.21 

Image (a) revealed that the YU-pCAP2-HA experienced a slight reduction in macropore 

size from 1350°C, with less interconnectivity, but similar-sized struts. Even though the 

BU-pCAP2-HA appeared to have improved at this temperature in comparison to that of 

1350°C in terms of merged macroporosity, it was still much more macroporous than the 

YU species. At medium magnification in image (b), the YU-pCAP2-HA appeared to 

display less porosity within the struts in comparison to the BU-pCAP2-HA, but the latter 

species did experience a reduction in strut porosity in comparison to that of 1350°C. 

Image (c) showed that at high magnification, both species experienced a reduction in 

internal microporosity in comparison to their appearance at 1350°C. 

8.4 DISCUSSION 

8.4.1 PRODUCTION OF POROUS HA (PHA 

The pilot study revealed that an increase in temperature caused the pHA to decrease ill 

porosity, and increase in strength and density (similar to the findings of LiuO 1997,1998) 

and Rodriguez-Lorenzo et al (1998)). This behaviour was expected, seeing as in Chapter 

5, the dense HA (which existed as struts in pHA) experienced increases in strength and 

density with increasing sintering temperature. As the temperature was increased in this 

investigation, the pHA struts densified, as shown in Figure 8.5, indicated by the smaller 
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degree of microporosity within the struts sintered at 1300°C, as compared to those at 
1200°C and 1250°C. 

The highest mean UCS (2.85±0.51 MPa) and density (1.13±0.08 g. cm 3) were obtained at 

a sintering temperature of 1300°C; the former was comparable to the findings of Holmes 

et al (1984), where a highest UCS of 2.3-5 MPa was reported. However, this was -2-11 

MPa lower than the values generally reported for porous HA in Table 3.6. The optimal 

strength of the pHA in this study corresponded to a total porosity of -64%, with pores 

sizes of <_ 600µm. According to the literature, the optimal pore diameter for 

homogeneous and abundant bone ingrowth was 565µm (Gauthier et al, 1998), with a 

minimum pore size of 100µm (Klawitter et al, 1971; Hench, 1991). Therefore not only 

did the batch sintered at 1300°C prove to display optimal mechanical properties, but also 

potential for bone ingrowth, with minimal resorption (as indicated by the absence of TCP 

in the as-sintered materials). 

The study carried out at optimal sintering conditions revealed that at a sintering 
temperature of 1300°C, the pHA made with YU foam (YU-pHA) was stronger than the 

pHA made with BU foam (BU-pHA). However, despite the fact that the YU-HA 

displayed a mean UCS of 2.19±1.2 MPa, and that of BU-HA was 1.29±0.1.02 MPa, the 
BU-HA exhibited a similar density toYU-pHA (refer to Figure 8.7). This can be 

explained by differences in porosity between the two species. The YU-pHA displayed a 

closed porosity of -17%, which was higher than that of the BU-pHA(-11 %). 

Furthermore, because both species displayed similar total porosities (-68%), the BU- 

pHA contained a larger number of open pores. Therefore, the increased number of struts 

closing the pores in the YU-pHA indicated a larger number of surfaces to absorb stress, 
hence the higher mean UCS. 

Closed porosity is indicative of a greater concentration of struts, as opposed to open 

porosity, where the struts are eliminated, to allow a passage between each macropore. 
So, although the presence of closed porosity implied a greater number of potential stress- 

raisers, it also implied the presence of a greater amount of dense HA (within the greater 
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number of intact struts) to absorb mechanical stress during testing, hence mechanical 

properties were improved with increased closed porosity. 

The SEM verified the differences in closed porosity between the two species. The BU- 

pHA contained several, large, merged macropores (Figure 8.8) (S 1000µm), as opposed 

to the many smaller macropores (5 600µm) present in the YU-pHA. The macropores in 

the BU-pHA appeared to merge into large voids, which explains the greater calculated 

open porosity in comparison to the YU-pHA. 

The results indicated that at 1300°C, the YU-pHA displayed more structural and 

mechanical integrity than BU-pHA, and therefore the YU foam proved to be the more 

successful polymeric pre-cursor in the production of pHA. 

8.4.2 PRODUCTION OF POROUS CAP2-HA (PCAP2-HA) 

The pilot study revealed that an increase in sintering temperature resulted in an increase 

in the decomposition of pCAP2-HA, as shown in Table 8.3, from 21 % a-TCP to 38 % 

a-TCP. This was expected, seeing as the dense HA reinforced with CAP 1 in Chapter 6 

experienced similar behaviour when subjected to increments of temperature. 

As the sintering temperature increased from 1300°C to 1350°C, the density increased 

(Figure 8.10), and the total porosity decreased (Figure 8.12), as would be expected. 

However, the closed porosity increased from -3% to -17% with increasing sintering 

temperature (Figure 8.11), indicating superior densification within the struts. This 

increase in strut density was believed to result in an enhanced ability of the structure to 

absorb stress during mechanical loading, hence the mean UCS increased from 0.33±0.11 

MPa to 0.87±0.34 MPa with increasing closed porosity. The increase in closed porosity 

as well as the decrease in open porosity is apparent in the macrostructure shown in Figure 

8.11. 
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The pCAP2-HA was unfortunately much weaker than the pHA; the optimal 

strength/density of the pHA and pCAP2-HA were 2.85±0.51 MPa/1.19±0.08 g. cm'3 and 

0.87±0.34 MPa/0.84±0.14 g. cm'3, respectively. 

As a result of the differences in sintering, optimal pHA, showed an average pore size of 

<_ 600µm, while the optimal pCAP2-HA appeared to have a larger average pore size of < 

800µm (Figure 8.13). Therefore, the pCAP2-HA displayed weaker mechanical 

properties. During the bum-out and sintering process, it would be expected that after 

pyrolysis of the pre cursor, the ceramic coating would consolidate and shrink into a 

positive replica of the polymer foam. The SEM results indicated that the in the case of 

pCAP2-HA, the ceramic coating did not shrink to the same extent as in the case of pHA, 

which may reflect a loss of some CAP2 material in the slip, resulting in poor sintering 

and the increased pore size. Therefore, the differences in strength were attributed to 

processing complications arising from the solubility of CAP2 in the water/binder mixture, 

leading to loss of material and inhibited sintering. 

The study carried out at optimal sintering conditions revealed that the BU-pCAP2-HA 

decomposed to a-TCP to a greater extent at 1350°C and 1400°C than the YU-pCAP2- 

HA did, yet both experienced an increase in decomposition with increasing temperature 

(Figure 8.13). These results imply that there use of BU foam as a polymeric pre cursor 

caused the pCAP2-HA to be more reactive at high temperature, hence increasing the loss 

of OH' ions that accompanies decomposition, than when produced with YU foam. 

As for the mechanical properties, an increase in sintering temperature to 1400°C, caused 

the YU-pCAP2-HA to experience a decrease in UCS (from 0.66±0.23 MPa to 0.58±0.29 

MPa), despite the increase in density (from 0.78±0.04 g. cm"3 to 0.89±0.02 g. cm 3. 

Furthermore, the average pore size for both temperatures (<_ 700µm) did not appear to 

change. As can be seen in Figure 8.19, the volume of porosity had little to no effect on 

the UCS of the YU-pCAP2-HA. However, Figure 8.18 revealed that the closed porosity 

decreased from -13% to -12%, indicating further densification of struts. 
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Usually, an increase in density accompanied by a decrease in porosity would indicate 

better structural/mechanical integrity. Increased densities with accompanying decreased 

strengths indicate grain growth. This phenomena may have occurred in the struts of the 

specimens in this study, yet the micrographs in Figures 8.20-8.21 were not etched and 

therefore could not reveal any details of the grain structures for verification. The 

specimens in this study, as well as the entire porous investigation, were not etched on the 

basis that the macrostructure and microporosity within the struts were fundamental to 

understanding the mechanical properties. 

The BU-pCAP2-HA experienced an increase in strength (from 0.46±0.20 MPa to 

0.76±0.37 MPa) (Figure 8.15) and density (from 0.65±0.03 g. cm 3 to 0.76±0.05 g. cm'3) 

(Figure 8.16) with increasing temperature, with a corresponding decrease in total porosity 

(from -79-76%) (Figure 8.19). On comparing the macrostructures of specimens sintered 

at the two temperatures (Figure 8.20-8.21), it was clear that the average macropore size 

of the BU-pCAP2-HA decreased with increasing temperature from <_ 600 µm to <_ 

500µm; furthermore, there appeared to be less mergence of macropores, all of which 

would be expected to contribute to the increased strength. At 1400°C, the BU-pCAP2- 

HA was stronger than the YU-pCAP2-HA, whilst at 1350°C, the opposite occurred. 

These results indicated that the YU-pCAP2-HA reached the end-levels of sintering (i. e. 

grain growth) at a lower temperature than the BU-pCAP2-HA, which explains the 

difference in strength between the two species. 

Nevertheless, in terms of producing a porous implant with minimal resorption, i. e. less 

TCP, the YU-pCAP2-HA at 1350°C appeared to be the most ideal candidate because at 

this sintering temperature, it was stronger and experienced less decomposition to TCP 

than the BU-pCAP2-HA. 

In order to decipher the better porous material, the optimal properties found for pHA 

(1300°C) and YU-pCAP2-HA (1350°C) are listed in the following table: 
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Table 8.8 Summary of optimal pHA and optimal YU-pCAP2-HA 
Material % Total Mean Apparent Mean UCS 

a-TCP Porosity Density (MPa) 
%) (g. cm 

YU-pCAP2-HA 17 73 0.87±0.34 0.84±0.14 

pHA 0 64 2.85±0.5 1.13±0.08 

Therefore, given that the criterion in this investigation for optimal properties were high 

strength and minimal decomposition, the pHA sintered at 1300°C was the more suitable 

candidate, under the processing conditions used. 
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EPILOGUE 

9.1 SUMMARY 

The characterization of HA (P201, Plasma Biotal Ltd., U. K. ) revealed that the optimal biaxial flexural 

strength (60±15 MPa; density of 2.88g. cm 3) was obtained at a sintering temperature of 1200°C, with no 
decomposition to, TCP. 

4. 
The unusually high Ca/P ratio (1.68-1.73), combined with the CaO found at high 

temperature, indicated that this commercial powder was not stoichiometric. The BFS value was much 
lower than the optimal BFS values found for HA in the literature, due to the difference in density, as 

shown in Table 9.1: 

Table 9.1 Comnarison of BFS/Densitv values of HA ; ... _ . 
Author Flexural Strength (MPa) Density . cm 

;.. r: Parsons (2001 60 2.88 (9% porosity) 
Lu et al (1998) 110 3.12 (1% porosity) 

Tam Teri et al (1997) 130 - 
Willman (1996) <100 3.16 (0% porosity) 

However, despite the large strength differences, the P201 HA showed similarities to that of Aoki (1991) 

with regards to the effect öf sintering temperature of the BFS of HA, as shown in Table 9.2. Aoki's HA 

increased in «strength iip until 1300°C, and ̀the P201 HA increased until 1200°C, where it' decreased 

sharply. ' Both sets of data reveal that the largest increase in'strength was'observed between) l00°C and 
1200°C. ' ý". "ý- ;;:. ': '. 

Table 9.2 The effect of cinterino temperature nn the RFS of HA 

Parson s (2001) Aoki 1991 
Sintering Temp. ° BFS Pa Sintering Temp. ° BFS (MPa) 

1000 22±7 - - 
1100: : 2818 1150 61±8 
1200 60±15 1200 104±11 
1250 21±11 1250 106±10 
1300 11±2 ' . ", 1300 113±12 

When sintered with 2.5 wt % CAP 1, the HA showed a significant decrease in strength and decomposition 

to TCP, as indicated by thCoptiniäl mechanical properties obtained for CAP1-HA (26.59 MPa) and RI- 

TCP (73%). Compared to the values found in the literature (Table 9.3) for HA reinforced with 2.5 wt% 

additive, the optimal BFS of CAP1-HA was very low (unfortunately, no density values were recorded in 

the comparable literature).,, ' 

:4 .. "t , 
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Table 9.3 Cmmriarisnn of RFS values of HA reinforced with 2.5 wt% additive 

Author Sintering Temperature (°C) Optimal BFS (MPa) 

Parsons (2001 1300 -27 
Santos et at (1992) 1300 -73 

Knowles et al (1993) 1350 -124 
Tancred et at (1996) 1250 -32 
Wang et al (1998) 1250 -91 

At first, it seemed possible that the presence of TCP was contributing to the poor mechanical properties. 
However, particle size analysis revealed that the CAP! -HA particle sizes (do, 5--*21-39µm) were much 
larger than the grain sizes (-1µm) observed under scanning electron microscopy; it appeared there was a 
large presence of agglomerates in the composite powder in the green compacts, pre-sintering. The CAP 1 

particles were much larger than the HA particles pre-milling and judging by the bimodal distribution of 
the composite powder post-milling, there was a mismatch of particle size between the CAP! and HA 

powders. This uneven particle size distribution inhibited the intimate mixing of the powders, which 

ultimately affected its packing/density in green compact form, and resulted in the presence of 

agglomerates. The agglomeration resulted in the existence of porosity in the as-sintered composites, 
which attributed to the decrease in strength in comparison to that of the P201 HA studied in Chapter 5. 

In contrast, additions of CAP2 (2.5 wt%) resulted in reinforcement of the HA with an increase in strength 
to 91.77±17.29 MPa, with much less decomposition to TCP (RI-TCP of 10%). This clarified the 

assumption that TCP could not have been the reason for CAP1-HA's decreased strength, seeing as it was 
also present in CAP2-HA which displayed superior mechanical properties. At optimal sintering 
conditions, the CAP2-HA displayed a higher density (93% theoretical) than the HA (91% theoretical), 

and better mechanical properties despite the larger grain sizes, which indicates that the increased strength 
was due to better sintering, which resulted in reduced porosity. The highest BFS recorded for the CAP2- 
HA was actually found in the 4 wt% composite, which proved to be stronger than the 4 wt% composites 
of similar systems found in the literature (Table 9.4) 

Table 9.4 RIPS of T-4A reinfnrceci with d wt0/n aMitive 
Author Sintering Temperature (°C) BFS (MPa) 

Parsons (2001) 1300 105±20 
Santos et al (1996) 1350 93±27 

Knowles et al (1996) 1250 -94 

The ideal wt% of CAP2 was decided on the basis of high strength and minimal decomposition to TCP. 
At 1 wt%, the CAP2-HA contained the smallest amount of TCP out of all the wt%'s (6%TCP), however 
its BFS was also the lowest (74.34±8.59 MPa). The 2.5 wt% composite was much stronger (91.77±17.29 

210b 



CHAPTER 9 
u_... EPILOGUE 

MPa) with slightly more decomposition to TCP (10%). Above 2.5 wt%, the amount of decomposition 

toTCP'increased, therefore it was decided that the 2.5 wt% CAP2-IIA fit the mechanical and chemical 

criteria the best :°' `'''' 

After, soaking in physiological solution for 30 days, the 2.5 wt% CAP2-HA showed good retention of 

strength where the CAP2-HA retained 78% of its strength whilst HA, only retained 60%. This decrease 

in bending strength with time is consistent with that found in the literature (Table 9.5) where Xiaodong et 

al's (1998) composite 'rods 'retained 62% of its strength after 4 weeks, which is similar to the 60% of 

strength retained by the P2011 HA after 30 days (--4 weeks). Unfortunately, the data from Table 9.5 refers 

to HA/PDLLA= composite rods; , as no literatüie was found regarding the effect of soaking time on the 

bending strengths of HA and its, glass reinforced composites: However, de With (1981) demonstrated a 

reduction in strength when performing 3 point bend tests ön, HA (72-94% dense) in distilled water as 

opposed to in dry N2 which equated to an average loss in strength of 30±6 %. 

Table 9.5 'Effect of soaking time on mechanical nronerties of HA and HA comnosites. 
Week Percentage of Original Strength 

HA, Parsons, 2001 CAP2/HA Parsons, 2001 HA/PDLLA Xiaodong et at, 1998, 
1 80% 69% 
2 69% 

60% 62% 

The presence of TCP in the CAP2-HA increased its resorption in Ringer's solution. This behaviour 

manifested within the first 24 hours, in which it was assumed that Ca was released into solution and re- 

precipitated by day 1 (unfortunately, there was no SEM evidence to corroborate this assumption), as 

opposed to the HA which experienced this behaviour a day later than the CAP2-HA. The CAP2-HA 

displnyed'Aigher rate of dissolution than the HA due to the presence of TCP, which may be interpreted 

as detrimental to the mechanical integrity of the mäterial in-vivo, yet 78% of its strength was' ̀retained 

after 30 days. -Therefore, - under the test conditioni, the CAP2-HA showed better potential th an the HA 

used in this study for maintaining. mechanical/structural integrity., ---The amount of TCP was sufficient 

enough to, speed up, the precipitation of a Ca-rich layer on the surface of CAP2-HA, but not so large that 

it disappeared entirely. in solution.,,, ... : }" 

Unfortunately, the CAP2-HÄ'was not as ̀successful `whence the technology was'transferred to porous 

structures. The pHA was stronger and did not decompose to TCP (with both YU and BU foam), whereas 

the pCAP2-HA was much weaker and did experience decomposition. Due to the much higher strength of 
CAP2-HA in dense form, the poor mechanical properties in porous are assumed to be due to the 

incompatibility of the CAP2-HA powder and the water-based binder system. The solubility of CAP2 in 
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water may have had a detrimental effect on both the viscosity of the slurry and its wettability with the 

foam precursor, leading to insufficient retention of the slurry by the foam and hence weaker strengths. 

The strengths of the porous structures were generally lower in comparison to the values found in the 

literature, as shown in Table 9.6, which displays compressive strengths of porous HA (values of porous 

reinforced HA were not found in the literature). For example, the porosity of the optimal pHA was 64%, 

yet Sepulveda et al (1999) managed to produce a more porous structure (-80% porosity) with a much 
higher compressive strength (4.4-4.7MPa), almost twice that of the optimal pHA. These differences in 

strength highlight the need to carry out further work on the production of porous structures via foam 

burnout, which is discussed in Section 9.3. 

Table 9.6 Compressive strengths of norous HA from various authors 
Author Porosity Highest Compressive Strength (MPa) 

Parsons (2001) 64% 
74% 

2.85 
0.87 

White et al (1986) 50-75% 9.25 

Holmes et al (1984) 66% 2.3-5 

Haddock et al (1999) - 5.87 

Sepulveda et at (1999) 80% 
76% 

4.4-4.7 
7.4 

Metsger et al (1999) - 9.3 

Despite the poor compressive strengths that the pHA displayed in comparison to many of those found in 

the literature, there were similarities in the relationships between strength and porosity, particularly to 

those of Lui (Figure 9.1). 
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Figure 9.1 The relationship between strength and total porosity for (a) a porous HA ceramic with different pore 
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Therefore, although there is room for improvement with regards to the strength of the porous P201 HA, it 

appeared to follow the porosity-strength trends as those shown in the literature. Unfortunately, there did 

not appear to be a definite relationship between the strength and porosity of the pCAP2-HA. The 

pCAP2-HA displayed a similar trend to that of pHA when produced from BU foam only, as shown in 

Figure 9.2. A comparison of the strength-porosity relationship between the p1-IA and the pCAP2-HA is 

shown in Figure 9.3, with some commercial values used as a means of comparison. The UCS values 

recorded in the investigation in Chapter 8 are marginally lower than some of the commercial values in 

the same porosity range, as shown in Figure 9.3, which highlights the potential of the porous 

investigation in this thesis. 
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Figure 9.2 The relationship between strength and total porosity for YU-BU-CAP2-HA 
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9.1 CONCLUSIONS 

" CAP1-reinforcement is detrimental to the physical and mechanical properties of HA 

" CAP2 improves the mechanical properties of HA with little phase decomposition to TCP 

" CAP2-HA is slightly more resorbable, yet still much stronger than HA, as indicated by the difference 

in dry strengths and the ability of CAP2-HA to retain more strength after soaking in Ringer's 

solution for 30 days 

9 Using aqueous slips and foam bum-out techniques, pHA is stronger than pCAP2-HA 

9.3 FURTHER WORK 

0 Investigate the effect of milling the additives prior to milling the composite mixture to produce 

monomodal powder distributions in order to avoid agglomerations in the green compact. 

" Reinforce HA with between 1 and 2.5 wt% CAP2 in order to determine whether similar strengths, 

with less TCP, are obtained than with an addition of 2.5 wt% CAP2. 

" Soak the CAP2-HA and HA for longer periods of time to establish which material is more 
biocompatible and mechanically intact 

0 Investigate the toxicity of CAP2-HA and HA, as indications of long-term clinical use 

" To carry out an in-vivo study involving the implantation of pCAP2-HA 

" To determine the effect of different binder systems on the mechanical properties of pCAP2-HA and 

pHA 

" To carry out rheological studies on the CAP2-HA/HA slurries in order to establish how to create a 
CAP2-HA slurry with sufficient viscosity and wettability for adhering to the foam pre-cursors 

" To experiment with different porous production techniques described in the literature 
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APPENDICES 

APPENDIX A. 1 

Table A. 1.1 The mechanical properties and Weibull Modulus of P201 HA sintered at different 
temperatures 

Batch Sintering 
Temperature (°C) 

Mean Density 
(g. cm 3) 

Mean Biaxial 
Flexural 

Strength (MPa) 

Weibull 
Modulus 

1 1000 1.64± 0.012 22.71 ± 9.14 0.43 

2 1000 1.64±0.023 21.56±3.64 6.54 

3 1100 2.02 ± 0.016 23.04 ± 6.58 3.63 

4 1100 2.19±0.053 33.06±4.95 7.06 

5 1200 2.78 ± 0.038 55.76 ± 16.86 2.96 

6 1200 2.97 ± 0.041 64.27 ± 11.40 5.36 

7 1250 2.97 ± 0.015 16.43 t 6.25 3.90 

8 1250 3.07 ± 0.015 24.63 t 12.72 2.59 

9 1300 3.05 ± 0.031 11.11 t 2.37 5.76 

10 1300 3.04±0.034 11.80±2.44 5.68 
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APPENDIX A. 3 

PHYSICAL PROPERTIES OF A NOVEL GLASS-CERAMIC-REINFORCED 
HYRDROXYAPATITE COMPOSITE 

N. S. Parsons, K. A. Hing, T. Buckland, S. M. Best and W. Bonfield 

IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London El 
4NS, UK 

ABSTRACT 
An investigation was performed with the objective of determining the effects of adding calcium-phosphate 
based materials of varying Ca: P ratios on the sintering characteristics and phase composition of 
hydroxyapatite. Samples were prepared from a commercially available hydroxyapatite (Plasma Biotal, U. K. ) 
and two Ca-P additives, CAPI and CAP2. Compacts were then pressed and sintered at 1300°C for 2 hours 
and characterised by measurements of linear shrinkage, density, and X-ray diffraction. The results were 
compared with those for pressed and sintered hydroxyapatite, which served as a control. The CAP2-HA 
underwent a greater degree of shrinkage and densification than both CAPI-HA and as-received HA, 
demonstrating its potential as a sintering aid. Furthermore, X-ray diffraction patterns demonstrated that there 
was minimal decomposition of the HA to TCP in the CAP2-HA than in the CAP 1-HA, and preliminary 
strength tests indicated that the CAP2 additions reinforced the HA.. 

KEYWORDS: glass-ceramic, hydroxyapatite 

INTRODUCTION 
Hydroxyapatite has been successfully used as a bone substitute material for the past thirty years'. 
However, due to its relatively poor mechanical strength, its use has been limited to non-major 
load-bearing applications. As a result, attempts have been made to reinforce hydroxyapatite with 
secondary phase additions such as calcium/phosphate-based glasses2J. However, the improved 
mechanical properties obtained by secondary-phase reinforcement are often associated with 
decomposition of the HA to tricalcium phosphate (TCP), which may be undesirable due to the 
increased solubility of the latter in-vivo4. 
The mechanical integrity of dense hydroxyapatite is dependent upon a number of factors, 
including processing conditions, sample preparation, and the degree of densification during 
sintering. The present study aims to investigate the effects of varying the Ca: P ratio of the 
reinforcing secondary phase on the phase composition, densification and mechanical properties of 
the final composite material. 
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MATERIALS AND METHODS 
Two Ca-P additives were produced via a melt/crystallisation process of the precursors; material 
CAN had a Ca: P ratio of 0.5 and material CAP2 had a Ca: P ratio of 0.835. The raw materials 
were combined in a pestle and mortar and placed in a platinum-rhodium crucible for melting in the 
furnace at 1350°C for -1 hour, followed by quenching onto a stainless steel plate. 
Differential thermal analysis (DTA) was used to determine the thermal behaviour of the Ca-P 
additives. DTA was carried out using a Setaram Labsys DSCIDTA with a 1600°C sensor rod, at a 
ramp rate of 10°C. min' in platinum crucibles, under a nitrogen atmosphere. 
X-ray diffractometry (XRD) was performed to determine crystalline phase composition using a 
Siemens D-5000TM X-ray diffractometer measuring from 25 to 40° 20. Intensity data was 
collected using a scintillation counter, and the results were compared with JCPDS Ca-P standards. 

Two composite powders (CAP1-HA and CAP2-HA) were prepared by wet-milling commercial 
HA in 300 ml of methanol for 24 hours in a ceramic ball mill with 2.5 wt% of the CAN and 
CAP2 additives respectively. The mixed powders were then dried and mechanically sieved 
through a 75 µm mesh. The resulting composites were uniaxially pressed at 85 MPa in a steel die 
using 5g of powder to produce 30 mm diameter discs. The discs were placed in a furnace on an 
alumina tile and then fired at a rate of 5°C. min' up to 1300°C , the temperature was held for 2 
hours, followed by furnace cooling at a rate of 10°C. min'. As a control, discs were prepared from 
the as-received commercial HA powder using similar processing conditions. 
The resulting sintered discs were characterised by calculating their linear shrinkage and apparent 
density, taken as an indication of the degree of densification achieved during sintering. XRD was 
performed to establish the crystalline phases present post-sintering. 

All the discs were mechanically tested in biaxial flexure (in their as-sintered, unpolished state), 
using a concentric ring jig with a load ring diameter of 4 mm and an outer support ring diameter of 
17 mm. The specimens were tested to failure on an Instron test machine (Instron 4464) at a 
crosshead speed of 1mm. min' using a2 kN load cell. The flexural strengths (in MPa) were 
calculated using the peak load at failure and the following relationship: 

3P d' 
251 

22 

75 
d°-d 

0 CBFS = 
)- 

2nt 

(1. 
n dý . 2d 

where QBFS is the biaxial flexural strength (BFS) in MPa, P is the load at failure in N, and d,, d1, d 

and t are the support ring diameter, the loading ring diameter, the specimen diameter and the 
specimen thickness respectively, in mm. A minimum of nine disks of each material were tested. 
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RESULTS 
CAP 1 remained glassy when quenched, in contrast to CAP2, which crystallised spontaneously on 
cooling. DTA of the two materials is shown in Figure 1., Regions of interest are identified as A, 
B, C and D. Point A, at 467.5 °C, shows the onset of the glass transition in CAP 1. Point B, at 
557.4 °C shows the subsequent peak crystallisation temperature. This is followed by the melting 
of the crystalline phase, the onset of which is marked by C at 9710C. In CAP2, the crystalline 
material shows a melting endotherm whose onset is marked by D at 1197 °C. The starting 
composition of CAP2 (Ca: P ratio of 0.835) suggests that the inflection point at E may be 
indicative of a residual phosphate-based glass transition, followed by a crystallisation at point F. 
XRD of CAP2 as prepared, shown in Figure 2, demonstrates the crystalline phase to be Ca2P2O1. 

Linear shrinkage measurements are given in Table 1, and showed that relative to HA, CAP1-HA 

produced less shrinkage and CAP2-HA produced more shrinkage. These results are corroborated 
by the apparent density values, where the mean density of the sintered discs increased when HA 
was combined with CAP2 and decreased when HA was combined with CAP I. 

XRD of the composites, shown in Figure 3, demonstrated the decomposition of HA to TCP in 
CAP1-HA. The diffraction pattern of CAP2-HA was similar to that of the sintered HA control 
material; there was minimal decomposition. 

Mean BFS of the composites and the HA controls are shown in Figure 4, together with their 
standard deviations. These preliminary results indicate that additions of CAP! were detrimental to 
the mechanical integrity of the composite, where as additions of CAP2 appeared to reinforce the 
as-received HA. 

9 E 
3 
0 
I. 
w 
m s 

N 
.i 5ý 

T 
1CN 

W 
C 

29(degrees) 

Figure 1: DTA traces for CAPI and CAP2 materials Figure 2: XRD pattern for CAP2, showing peaks characteristic 
of Ca2P2O7 

Table 1: Linear shrinkage measurements and mean density measurements of CAP1-HA, HA and CAP2-HA 

HA CAP1-HA CAP2-HA 
Linear shrinkage (%) 18.3 13.6 19.3 

Mean apparent density ± SD (g. cm 1) 2.78 ± 0.04 2.54 t 0.05 2.98 ± 0.06 
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Figure 3: XRD patterns of the two sintered composites, Figure 4: Mean and standard deviations of the biaxial flexural 
CAPI-HA and CAP2-HA, showing HA decomposition to strengths measured for CAPI-HA and CAP2-HA, compared 

TCP in CAPI-HA to that of sintered HA controls 

DISCUSSION 
XRD of CAP2 (Ca: P ratio of 0.835) showed the presence of Ca2P2O7, a crystalline phase with a 
Ca: P ratio of 1: 1. This suggested that there were surplus phosphorus ions present in the material, 
forming a residual glassy phase (points E and F in Figure 1. ) Furthermore, the associated 
deficiency of Ca ions is greater in CAP1 than CAP2, increasing the driving force for the 
decomposition of the as-received HA to TCP and CaO in CAP1-HA. 

The greater degree of densification of CAP2-HA was attributed to liquid-phase sintering, possibly 
as a result of differences in viscosity between the liquid phases within the two composites at 
elevated temperature. This correlates with the mechanical data, whereby the composite that 
underwent the most densification also appeared to have the highest mean biaxial flexural strength. 

CONCLUSIONS 
These results indicate that glass-ceramic reinforcement using a Ca: P ratio of 0.835 (CAP2) 
suppresses decomposition experienced by glass-reinforced samples with a Ca: P ratio of 0.5 
(CAP1). Preliminary mechanical results demonstrated that CAP2 reinforcement resulted in an 
improvement in mechanical performance over not only the CAP1 samples but also the 
commercially available HA used in the composites. 
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