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ABSTRACT 

Quaternary diatomaceous sediments and the geological 
evolution of Lakes Turkana, Baringo and Bogoria, Kenya 
Rift Valley. 

R. B. Owen 

Quaternary lacustrine sediments are described from 
three contrasting areas within the Kenya Rift Valley. 
Descriptions are given of the mid-Pleistocene Olorgesailie 
Formation at Olorgesailie. (southern-, Kenya Rift Valley), 
a series of lacustrine sediments deposited between the 
mid-Miocene and present in the Baringo District (central 
Kenya Rift Valley) and finally of Quaternary'(largely 
Holocene) deposits at East Turkana (northern Kenya Rift 
Valley). A wide range of environments are represented by 
these deposits including offshore and littoral lacustrine, 
deltaic and alluvial situations. Emphasis is placed on the 
examination of lacustrine and lake marginal sediments. 

Diatom assemblages found. in these deposits are described 
for the first time. These have 'been studied using optical 
and scanning electron microscopy. The. relationships 
between diatom assemblages and sedimentary facies are 
examined and evolutionary trends in certain diatoms are 
discussed. The contemporary ecology of diatoms at East 
Turkana is discussed and a review is given of diatom 
ecology and lake classification in East Africa. Diatoms 
are used to indicate transgression-regression. cycles 
during the Holocene, and palaeoecological conditions 
through the Quaternary. Mapping in conjunction with some 
altimetric data is used to indicate the location, extent 
and height of several Holocene lacustrine still-stands. 

Geochemical and sedimentological data is presented for 
the Holocene deposits at East Turkana and in the Baringo 
District. Several erosional and depositional processes 
operating at East Turkana are briefly discussed. A 
classification of Holocene environments at East T»rksna 
is presented. 

The palaeogeography of the northern Kenya Rift Valley 
and the development of diatom floras during the Holocene 
is discussed. Data presented here and in the literature 
is considered and reviewed from a palaeoclimatic viewpoint. 
The development of Lakes Turkana, Baringo and Bogoria 
through the Quaternary are also considered. 

Conclusions are drawn as to the value of diatoms in 
palaeoecology and stratigraphy. 
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CHAPTER 1 

INTRODUCTION TO THE THEMES, METHODS 

AND STUDY AREAS 

1(i) The scope and objectives of this thesis 

This thesis concerns Holocene and Quaternary sedimentary 
basins in the Kenya Rift. Three contrasting basins are 
described, all of which contain diatomaceous sediments. 
The three basin are as follows (fig. 1.1). 

1. The East Turkana basin. 
This basin lies in a complex faulted basin 

outside the main Rift, and between Kenyan 

and Ethiopian Domes. The structure is known 

as the Turkana depression. The deposits formed 

on the margins of a large fluctuating lake. 

2. The Baringo basin. 
This lies within the main Kenya Rift. The 

deposits were formed in lakes separated 

both in time and space, during the Miocene 

to'-'Pleistocene. Quaternary- sediments' occur 
in much the same area as modern Lakes 

Baringo and Bogoria. The deposits have been; 

strongly influenced by tectoniftm, and 

volcanism. ' 

3.. Olorgesailie. ' 

Middle Pleistocene graben. -sediments have 
formedýat Olorgesailie (southern Kenya Rift). 

These deposits, contrast with those of 1 and 2 

above. 

The'Holocene sediments, which form the bulk of this 
thesis, -have previously. received little attention. In 

contrast, the older deposits have been intensively studied. 
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No previous work has been conducted on any of the diatom 

floras recorded here, except for some qualitative 
investigations by J. L. Richardson at Olorgesailie. The 

objectives of the work became the following: 

(i) To establish the Quaternary (and in particular 
the Holocene) limnological history. of the areas 

studied. 
(ii) To examine the contribution that diatoms can 

make to stratigraphic and palaeoecological 

studies. 
(iii) To examine several late Tertiary formations in 

order to establish their diatom flora and to 

elucidate any evolutionary trends. The diatoms 

were also used to study the palaeoecology of 
these'deposits. 

(iv) To study the relationships between diatoms and 
sedimentary facies. 

It was expected that this study would shed light on 
the Quaternary history of the rift system in Kenya, and 
would complement volcanic and structural. investigations 

of other workers. It is hoped that the thesis will 
form a bridge between studies of modern and ancient sed 

-invents, and aid in the interpretation of sedimentary 

rocks. This is especially important here, for the Kenya 

Rift may have significance for the study of the early 
stages in the development of major crustal spreading 

centres. 

A substantial part of the work is concerned with diatom 

floras and the petrography of lacustrine sediments. The 

approach adopted has been to produce geological maps and 

sections of the three basins. Samples collected have been 

examined with grain size analyses, infra-red, X-ray 

diffraction and chemical techniques. Scanning electron 

microscopy has been used to investigate selected material. 
The diatom flora has been examined in detail using optical 

and scanning electron microscopes. A total of about 250 
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species have been identified (see appendices). The role 
of diatoms in forming sediment has been studied, along 
with more formal aspects of the floral assemblages. 

Mapping was based on stereoscopic aerial photos and 
base maps produced by earlier workers. Much of the 

surveying was carried out at a scale of 1: 24,000. The 

geology was established by the detailed examination 

of selected traverses. Fieldwork occupied about 25 

weeks, most of which was spent under canvas with the 

cooperation of the National Museum of Kenya. Some 14 

weeks were taken up at East Turkana, 8 weeks at Lakes 

Baringo and Bogoria, and, 3 weeks at Olorgesailie. The 

structure of this thesis is based on the description 

of these three individual basins and a resume of each 
is given in the following sections. 
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Lake Turkana (240 km long, 50 km wide) is a large body 

of alkaline water within a basin of inland drainage in 

northern Kenya (fig. 1.1). Formerly the lake was much 
larger and at several times it has formed one part of 
the Nile drainage system. The lake was discovered in 1888 
by Count Teleki, and named Lake Rudolf after the Crown 
Prince of Austria. This was changed in 1975 by a decree of 
the Kenyan Government to Lake Turkana, after the tribe 

who occupy its western and southern shores. The eastern 
side, between Loiyangalani and Allia Bay, is thinly 

populated by the Rendille, while the El Molo tribe, who 
specialise in fishing, occupy the south-eastern shoreline. 
Prior to 1968, the Gabra tribe made use of grazing between 
Allia Bay and Koobi Fora. The area north of Koobi Fora 

used to be inhabited by the Dassenetch (locally known as 
the Shangilla). Human occupation was effectively removed 
from East Turkana (strictly speaking the area to the 

north east of the lake) by the creation of a National Park 
in 1972. The Dassenetch are now concentrated in the 

extreme north of East Turkana, at Ileret. They herd sheep, 
goats and cattle. Wildlife is abundant and includes 
lion, cheetah, topi, gerunuk, gazelles and snakes such as 
sand vipers. 

I(ii) The geogrr2, hy of the East Turkana basin 

Rainfall is low over the whole area, decreasing with 
altitude. This, combined with very high temperatures 
throughout the year (shade temperatures of 43°C are 
common) has reduced the region to a semi-desert. Climatic 

data within the area are scarce, but information from 

other parts of the lake are shown in table 1.1. Maximum 

rainfall on high ground is about 500 mm/annum, but this 
decreases rapidly with falling altitude. Most of the rain 
is concentrated into two seasons. One from March to June, 

peaking in April and the other from October to December 

with a slight maximum in October. For most of the year an 
easterly wind prevails. This is particularly strong near 
the lake shore. The wind commences after sunset and 
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Table 1.1 Lake Turkana climatic data. 

Climatic observations in the Omo 
Basin, 1968. (after Butzer, 1971) 

Temperatures (0C) 
R i Humidity % Wind speed Km. /hr. 

a n 
ax. min. 7 14 21 mm. 7 14 21 7 14 21 

June -- 25 34 27 - 65 39 57 5 11 2 
11-22 

June -- 25 35 28 - 60 36 46 783 
23-3 

July 39 22 24 36 29 9 62 33 47 7 10 2 

Aug. 40 23 26 37 29 0 57 29 48 986 

The data is rounded off to the nearest degree. 
The number 7 refers to 7 a. m., 14 to 2 p. m. and 
21 to 9 p. m.. 

Climatic observations from the western shore of 
Lake Turkana. (after Walsch and Dodson, 1969 

t ti Total Rainfall mm. on S a 1959 1960 1961 1962 Yearly average 
and number of 
years recorded 

Lodwar 305 124 497 200 165 (37) 

Ferguson's 320 107 505 203 " 
221 (9) 

Gulf 

L6kitaung' 345 251 899 314 398 (26) 

Todenyang NR 12 NR 482 193 (9) 

Lokichogio 470 401 955 363 523 (8) 

NR - Not recörded 
Original-'data in inches' was -rounded' off during' conversion 

Temperatures i e0ý 
R i Humidity % Wind speed Km. /hr. 

ax. min. 7 14 21 
a n 
mm. 7 14 21 7 14 21 

June -- 25 34 27 - 65 39 57 5 11 2 
11-22 

June -- 25 35 28 - 60 36 46 7 8 3 
23-3 

July 39 22 24 36 29 9 62 33 47 7 10 2 

Aug. 40 23 26 37 29 0 57 29 48 9 8 6 

t ti Total Rainfall mm. on S a 1959 1960 1961 1962 Yearly average 
and number of 
years recorded 

Lodwar 305 124 497 200 165 (37) 

Ferguson's 320 107 505 203 " 
221 (9) 

Gulf 

L6kitaung' 345 251 899 314 398 (26) 

Todenyang NR 12 NR 482 193 (9) 

Lokichogio 470 401 955 363 523 (8) 

-- .S-S- 
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continues until the following noon, after which a dead 

calm prevails for several hours. 

Acacia thorn scrub--(particularly-common on-the Holocene 

sediments) is ubiquitous, with larger trees occurring 

along river, courses. Doum palms are common along the 

ephemeral sand'rivers and at oases (eg. Derati). Spike 

rush and sedge's-are found in"shallow water along-the 

lake margin: 

Access to the area-is via two main routes. It is 

possible to reach -Isiolo on a tarmac-surfaced road from 

Nairobi. From here a dirt track road extends 120 km north 

to Marsabit, and for another 100 km to North Horr. From 

here conditions become more difficult until Allia Bay is 

reached after a further,, '70 km. Several possible routes 

may then be used; to cross East Turkana (fig. 1.2). A 

second approach runs from Maralal to Loiyangalani at the 

south-east end of the lake. Northwards' this road connects 

with that, from North Horr. -Several dirt tracks cross 
East Turkana, but these are widely spaced and traverse 

difficult "terrain. -., 'It is not uncommon for a Landrover to 

become trapped in-one of the many ephemeral-sand-rivers. 

A number of the roads are boulder strewn or impassable 

in rain. It is often necessary to"`make 'new roads' in 

order to get to field localities. Much-of the work was 

conducted from a permanents, bäse camp at Koobi Fora. 
{ 

f --u4- s 

Several temporary camps were"set up in order to save 

petrol (a scarce commodity). This also allowed one to 

work during the cooler hours rather than spending this 

time in driving. 

The large geographic--extent-of- the . region necessitated 

the designation of a system of locality references by 

the 'Koobi Fora Research Project' . team.. The areas that 

they recognised are shown in figure 1.2, and have been 

adopted in this study. 

Lake Turkana is- shown- at "a--scale of --1 : 1,000,000 on°--r-J 
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Fig. 1.2 
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the SK. 41 Kenya (north) sheet. East Turkana lies on 
sheets NA-37-1 and NB-37-13 of series Y503 (edition 2-SK) 

at a scale of 1: 250,000. For more detailed work a 1: 100, 
000 scale is available on sheets 5 and 13 of series 
Y6333. These maps contain only rough form lines. Aerial 
photographs were obtained from Hunting Surveys Ltd. with 
the permission of R. E. F. Leakey. These date from 1970 
and are at a scale of 1: 24,000. 

A physiographic map of East Turkana is presented in 
figure 1.3. Several landscape elements can be recognised. 

(i) The surrounding mountains. 
The high ground which surrounds East Turkana 

rarely exceeds 1000 in, but includes several 
distinct peaks: (plate 1.1): Shin, Derati, Kubi 
Algi, Sibilot and Jarigole. These highlands are 
composed mainly of Miocene basalts. 

(ii) The Kokoi uplands. 
These are formed of a north east to south west 

trending upthrown fault block, consisting of 
Pliocene basalts and lacustrine sediments. They 
lie in the centre of the East Turkana basin. 

(iii) The Bakate Gap. 

This is an erosional feature to the north east 
of the basin and was cut by rivers flowing from 
Lake Chew Bahir. During the Pliocene and Pleistocene 

much sediment was introduced to East Turkana via 
this route (Findlater, 1976). 

(iv) The ridges and cuestas. 
The Koobi Fora Ridge is a north east to-south 

west trending feature forming a topographic high 

with steep northerly-facing slopes. Eastwards it 

merges with higher ground and the Karari Ridge. 
In the extreme north is a north to south trending 

upland region known as the Chari Ridge. The 
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Fig. 1.3 Prominent physiographical features at 

East Turkana 
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Plate 1J. 

East Turkana. Semi-desert Acacia scrub can be seen 

sitting on Pleistocene sediments (lighter patches are 

Holocene sands). The distant mountains (the highest in 

the photograph is called SY. iii) are composed of Miocene 

and Pliocene voi. canics. 
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Suregai Cuesta forms part of the eastern margin 

of the basin and consists of interbedded basalts, 

palaeosols and sediments (Bowen & Vondra, 1973). 

(v) The alluvial plains. 
These are aligned along major rivers such as 

the Bakate, Tulu Borr and Ileret. 
_The only 

perennial river entering the northern part of 
Lake Turkana is the Omo, which lies at its 

northern extremity and outside East Turkana. The 

rivers at East Turkana are ephemeral in character. 

(vi) The shoreline plains. 
These form a narrow zone adjacent to the lake 

and consist of recently deposited beach sediments. 
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v(iii) Background to the late Quaternary eg ology 

of Lake Turkana 

1(iii)a History, of research 

Prior to 1968 the major source of palaeontological and 
geological data for East Turkana was a report of Teleki 

and Von Hohnel's expedition in 1888; during which the lake 

was dicovered (Von Hohnel, 1894). Von Hohnel collected 
invertebrate fossils and rock specimens and noted the 

presence of beach ridges and lavas near the lake. V. E. 

Fuchs made two trips to the lake, and described the 

sediments in three papers (1934,1935,1939). The National 

Museum of Kenya organised expeditions to East Turkana in 

1968 and 1969. An intensive research effort resulting 
from these and follow-up studies lead to the publication 

of a series of papers. Those dealing with the geology of 
the area include: Behrensmeyer (1970,1973,1975), Bowen 
(1974), Bowen and Vondra (1973), Cerling (1979), Findlater 
(1978), Johnson (1974) and Vondra, Johnson, Bowen and 
Behrensmeyer (1971). These studies were mainly concerned 
with the Pliocene and Pleistocene deposits and for the 

most part ignored the Holocene., 

There are numerous reports dealing with other parts of 
the lake. Prominent amongst these are: Arambourg (1934, 

1935,1939), Butzer and Thurber (1969), Dixey (1944,1948), 

Dodson (1963) and Walsh and Dodson (1969). Yuretich (1979) 

describes the modern sediments and depositional processes 

operating in Lake Turkana. 

1(iii)b The late Quaternary, sediments around the lake 

The geological structure of the Lake Turkana basin is 

related to the Gregory Rift and the Ethiopian and Kenyan 

domes. These domes are of-disputed origin, but may represent 
large upwarps of continental crust extending over hundreds 
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of kilometres. The Kenya dome, to the south of Lake 
Turkana, is crossed by the faults of the Gregory Rift. 
The Ethiopian Rift extends this structure across the 
Ethiopian dome. The Gregory Rift broadens and becomes 
less well defined. -northwards, and in doing so opens into 
the Turkana basin. To the north, the Turkana basin passes 
into the more clearly defined Ethiopian Rift. East of 
the Turkana depression, a recently active rift and swell 
structure passes through the southern end of Lake Turkana 

and extends to Lake Chew Bahir. 

Late Quaternary sediments surround Lake Turkana and 
are well exposed. A map showing the distribution of these 
deposits is available at the back of this thesis. The 

sediments are briefly described in the following 

paragraphs. 

To the north of Lake Turkana lies a north to south 
linear depression 

. 
known. as the Omo basin. Sediments of 

Pliocene to Holocene age crop out here (table 1.2). Deltaic 

and littoral Holocene deposits are represented by Members 
Na and IVb of the Kibish Formation and by the Lobuni 
Beds (Butzer, Brown ,& Thurber, 1969). These sediments were 
formed during periods of high lake level. Episodes of 
lower lake level have been inferred from periods of non- 
deposition. Such periods are reported between 37,000 and 
9,500 yr. B"P", 7900 and 5750 yr. B. P., and from 5,450 

yr. B. P. until Lobuni Bed sedimentation. The Lobuni Beds 

are alluvial, deltaic and littoral deposits laid down 

during the last two millenia (Butzer and Thurber, 1969). 

Quaternary sediments to the west of the lake have 

received less attention. A series of 'levels' above the 

modern lake were recognised by Walsh and Dodson (1969). 

These were interpreted as representing former lake levels, 

and have been identified at various elevations between 

380 and 480 m O. D.. A distinct level at ca. 445 m seems 
to be of Holocene age. The sediments which make up this 

level are characterised by considerable lateral facies 
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Table 1.2 

The late Cenozoic stratigraphy of the lower Omo basin 

Holocene 

Lobuni Beds 
N.. vvvý 
M. IVb 

M. IVa 

Nakwa extrusions 
M. III 

M. II 

M. I 

Kibish Formation 

Middle to Upper 

Pleistocene 

Faulting in type area 

Shunguru & Usno 

Formations 

Pliocene & 

Pleistocene 

M. III 

M. II Nkalabong Formation 

M. I 

Faulting 

M. IV 

M. I_III Mursi Formation 

nnivýn 
Downwarping and faulting 

Lower Pliocene 

& Miocene 

Volcanics 

Based on Butzer and Thurber, 1969 



-37- 

variation. A 380 m level is a beach ridge only a few 
decades old, whilst many of the other surfaces indicate 
different Pleistocene stages. 

Lacustrine sediments are less extensive at the south 
end of Lake Turkana. Dodson reports a 445 m level at 
Nakwamosin (table 1.3). Although he considered it to be 

upper Pleistocene, it may well prove to be Holocene. To 
the south of the lake lies the Suguta graben, which Fuchs 

thought to have formerly contained a southerly 

extension of Lake Turkana. Today it is arid and separated 
from the lake by the 'Barrier Volcanic Complex'. Truckle 

(1976) suggested a separate 'Lake Suguta' existed during 

the early Holocene. Holocene sediments have been described 

from the south-eastern shores of Lake Turkana, near 
Loiyangalani, by Phillipson (1978). 

East Turkana itself forms a large sedimentary basin 

to the north-east of the lake. This basin extends some 
40 to 50 km from north to south by 30 km from east to 

west. Its northern limit is marked by the border between 

Kenya and Ethiopia. Miocene basalts lie to the east and 

south, while the lake shore forms an effective western 
boundary. This area has been subject to inundation by 
Lake Turkana several times since the Pliocene. 

The East Turkana basin is split by the Kokoi and Suregai 

plateaux. Holocene sediments sit with pronounced 

unconformity on Plio-Pleistocene deposits in the southern, 
Koobi Fora and Kubi Algi areas (table 1.4). In the 

northerly Ileret region they rest on the middle 
Pleistocene Guomde Formation (Findlater, 1978). The 

Holocene Galana Boi sediments show rapid facies variation 

reflecting their origin as littoral and offshore lake 

deposits. They include quartz and feldspar-rich sands and 

silts, diatomites and coquinas. Algal stromatolites are 
locally important. 
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Table 1.3 

445 m- level sediments at Nakwamosin, S. E. 

Lake Turkana 

SEDIMENTS THICKNESS 

feet inches 

Patchy overburden of ashy soil .................. 
5 White diatomite... I ............................. 5-11 

14 Grey diatomaceous layer with dark coarser- 

grained sandy lenses along the upper and 

lower edges. Fossil fish vertebra and 

dorsal spines: Lates nilo. icus, Clarius sp. ... 11-212 

3 Shelly limestone, composed of shells 

cemented in a greyish calcareous matrix........ 112-212 
Fossils: Melanoides tuberculata 

Corbicula africana 
Corbicula consobrina (? ) 

Etheria elliptica 
Mutela nilotica 
Mutela iridina (? ) 

Mutela truncana 

2 Whitish conglomeratic bed composed of lava 

pebbles cemented in a calcareous matrix........ 0-10 

Fossils: Melanoides tuberculata 

Corbicula africana 

1 Pale grey ashy sediment ........................ 
4+ 

Fossils: Melanoides tuberculata 

. orbicula africana 

Etheria elliptica 

after Dodson, 1963 
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Table 1.1t 

Late Cenozoic sedimentation in the East Turkana basin 

Ileret Koobi Fora Kubi Algi 

area area area 

Galana Boi Galana Boi Thin remnants 
Holocene Formation (10m) Formation (30m): of Galana Boi 

Middle 
Guomde 

', ý nwwýrvw 
Formation (145m) 

Pleistocene 

Plio- 
Koobi Fora Koobi Fora Lower Koobi 

Formation (150m) Formation (170m) Fora Formation 
Pleistocene 

(70m+) 

Kubi Algi Kubi Algi Kubi Algi 
Pliocene Formation (20m) Formation (20m+) Formation (80m+) 

Based o n Bowen & Vondra, 1972 
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I (iv) The geograpy of the Baringo district 

The Baringo district lies within the Gregory Rift 

some 160 km to the south of Lake Turkana. It extends 70 
km from north to south by 50 km from east to west. 

This investigation involved the sampling of mostly type 

sections, from several different sedimentary units. Much 

of the work was conducted from temporary camps at the 
localities, whilst most of the equipment and supplies 
were kept at a base camp by the shores of Lake Baringo. 

The area is populated by several tribes. -The Pokot 

inhabit the northern regions. These semi-nomadic people 

were involved in tribal fighting with the Turkana during 

the first field season. The latter live to the north of 
the study area. Herding of cattle and goats forms the 

main occupation of the Tugen, who inhabit the Kamasia Hills 
(part of which are named after them). The Njemps tribe 

live in the area around Logumukum to the south-east of 
Lake Baringo, and in the northern parts of the Ngelesha 

reserve. : 

Climate varies depending on location. On the shoulders 

of the Rift and in the Tugen Hills, rainfall is high but 
declines rapidly with falling height. Around Lake Baringo 
(ca. 967 m O. D. ) it is usually less than 750 mm/annum. 
Rainfall. may vary widely from month to month, and from 

year to year. The rains normally. f all as short-lived, 
heavy downpours which often give rise to flashfloods. 
Precipitation is heavier in two seasons, one from March 

to*tAugust (peaking in July), and the other from October 

to. December. Shade temperatures vary with altitude, but 

average 25,. to., 33°C,, throughout most of the year at Lake 

Baringo. Climatic data'are presented for Marigat (south- 

west of Lake Baringo) in figure 1.4. 

Vegetation varies rapidly with height. At the lowest 
levels Acacia thorn scrub dominates. At higher altitudes 
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Fig. 1.4 Laxe Baringo"climatic data, Marigat station 
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this becomes denser and eventually gives way to luxuriant 

montane forest. Reeds are common in the littoral zones. of 
Lakes Baringo and Bogoria. Nile cabbage is presently 
choking the waters of the Molo Delta, at the southern end 
of Lake Baringo. Extensive papyrus swamps lie between the 
two lakes. Cash crops are being cultivated near Marigat 
by the Perkerra Irrigation Scheme. 

Wildlife was once widespread, but much of the game has 

now disappeared. A few large mammals still survive in the 

remoter regions, while crocodile and hippo remain common 
in Lake Baringo. Dik dik, are plentiful and larger 

antelopes may occasionally be seen. In contrast, birdlife 

is still abundant and includes shrikes, eagles, silver 
birds, starlings, maribou-stork, hornbills etc.. 

The area can be approached by the B4 road, which connects 
Marigat with Nakuru to the south. This fine-earth (murram) 

road becomes treacherous after rain. It is crossed by 

several ephemeral rivers north of Marigat which 

occasionally wash the road away. 'Eventually, it reaches the 

Suguta Valley, passing Lake Baringo, on the way. -Lake` 
Bogoria may be reached from the south on a recently 

constructed road, or from the west via Maji-ya-Moto. It 

may also be approached from Marigat, in the north, but 

this route crosses the Molo River at a ford,.. and the 

river is frequently too high to make the'attempt. A newly 

constructed road now circles the lake. H owever, a bridge 

across the Sandai-Waseges River (at the north end of the 

lake) is subject to collapse. To the east of Lake Baringo 

roads are primitive, boulder strewn and often difficult 

to find. West of the lake roads are scarce, but mostly 

passable except after rain. 

The region contains an amazing topographic diversity, 

which is illustrated in figure 1.5. The dominant feature 

is the westerly-dipping tilt block of the Tugen Hills. 

This range falls from a height of 2600 m to a level of 
967 m at Lake Baringo in a series of steep fault scarps. 
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The western dip slope has been deeply incised. The western 
margin of the Rift Valley is marked by the impressive 
Elgeyo Escarpment, which rises from the Kerio Valley floor 

at 1200 m to heights in excess of 3000 m. The Rift margins 
east of Lake Baringo are gentler, but southwards become 

more pronounced. Near Lake Bogoria the large fault scarps 
of the"'Siracho and Laikipia" ranges lift . the -'surface from 
1000 M to heights of over 2500 m. -West of-Lake Bogoria 

lies a low range of. 'hills composed of, westerly dipping 

tilt blocks. 

Freshwater Lake Baringo (plate 1.2) has a'surf ace area 

of 160, km- It is 13 km wide (east to west) by 21 km long 
(north to south), and has a broadly rectangular shape 
that is structurally controlled.: The Perkerra and Molo 

Rivers are normally perennial and supply the bulk of 

water , and sediment 
" 
input to - the -lake., In contrast, Lake 

Bogoria: (plate 1.3), which lies at ca. 990-m, 0. D., is 

strongly saline, alkaline. It lies 20 km to the south of 

Lake Baringo in a fault controlled asymmetric trough, and 

extends some 17 km (north to south) by 3.5 km (east to 

west). It is a shallow lake of less than 9m depth (Lake 

Baringo averages less than 6 m). The Sandai-Waseges River, 

rising near Menengai Caldera 50 km to the south, flows 

northwards and parallel to the lake before turning and 

entering it from the north. The lower course of the river 
is perennial and provides the bulk of the water input to 

the lake. Both lakes lack a surface outlet although Lake 

Baringo may have a subsurface drainage to the north. 

Lake Baringo is shown at a scale of 1: 1,000,000 on the 

Kenya (north) sheet SK 41. The area is covered at a scale 

of 1: 50,000 by series Y731 on sheets 90/2,90/4,91/1, 

91/2,91/3,91/4 and 105/1. Aerial photographs were 

obtained for 1950 (R. A. F. ) and 1956 (Hunting Aerosurveys 

Ltd. ). 



Plate 1. < 

'/ 7"-7 

Lake Baringo. View looking south-east from 01 Kokwe 

Island. The high ground forms the eastern wall of the 

Rift Valley. Vegetation on the lake is 'Nile cabbage', 

introduced by a recent flood from the Molo River. 
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Plate 1.3 

Lake Bogoria. View looking southwards from its north- 

eastern shore. High ground is the steep Siracho 

Escarpment. Flamingoes can be ,. een feeding in the 

shallow lake margins. White patches in the foreground 

are salt, probably trona. 
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1(v) Background to the geology of the Baringo district 

1(v)a History of research 

The geology of the area was first examined by Gregory 
(1921) who recognised sediments at the foot of the 
Kamasia Hills, which he termed the 'Kamasia lake beds'. 

These deposits were formally raised to 'pluvial status' 
by the 1947 Pan African Congress on Pre-History (Leakey, 

1952), a concept which was later abandoned. The first 

mapping was conducted in reconnaissance style by the 

Kenya Geological Survey in the southern part of the study 

area, during the early 1960's (McCall et. al., 1967). The 

East African Geological Research Unit began a project of 
detailed mapping in 1965 (King, 1970). Pickford (1975, 

1978) has examined Miocene to Pliocene sediments over a 

wide area of the Tugen Hills. Bishop and Chapman (1970) 

have described early Pliocene deposits, while Martyn 

(1967,1969) has studied Plio-Pleistocene strata. Tallon 

(1978) has investigated Pleistocene fluvial units to the 

west of Lake Baringo, and Carney (1972) describes Pleist- 

ocene deposits to the east of this lake. Holocene 

lacustrine deposits were recognised above modern Lake 
Baringo by Nilsson (1932) and Fuchs (1934). These 

sediments were later reassessed by Bishop (1971) and 
Bishop, Spooner and Buckland (1969). 

1(v)b Geological setting of the Baringo district 

The modern Lakes Baringo and Bogoria are the successors 
to a series of lacustrine sedimentary basins that have 

existed in the area for the last 15 my (Chapman & Brooke, 

1978), as a result of interplay between faulting and 

volcanism. The evidence for the former lakes lies mainly 
in the Kamasia Range, a tilt block complex of interbedded 

alkaline lavas and graben sediments dating back to the 

Miocene (fig. 1.6). The gross stratigraphy of these 

sediments and volcanics is shown in figure 1.7. The 
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Fig. 1.6 
Simplified geological map of the Baringo 

district 
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Fig. 1.7 
Generalised stratigraphic succession in 

the Baringo district 
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deposits examined in this study include the following. 

(i) The Muruyur Beds (between 13 and 14 my old), 
which are dominantly shales interbedded with 
the Tiim Phonolites. 

(ii) The Ngorora Formation (between 9 and 12 my old), 
which include shales, diatomites and tuffaceous 
sandstones that. crop, out, on both sides of the 
Kamasia Hills. 

(iii) The Mpesida Beds (ca. 7 my), which are local 

pockets of silts and shales between Kabarnet 
Trachyte flows. They have a maximum thickness 

of about 30 m. 
(iv) The Lukeino Formation (ca. 6.7 my), which was 

formerly included in the Kaparaina Basalts 
Formation. These Formations were separated by 
Pickford (1975). The Lukeino Formation includes 
diatomaceous paper shales, pumice and silts. 

(v) The Chemeron Formation (between 2 and 5.4 my 
old), which has a maximum thickness of about 
200 in, and crops out at the foot of the Tugen 
Hills., Diatomites and tuffaceous silts predominate. 

(vi) The Kapthurin Formation, which is a predominantly 
fluvial silt and boulder sequence of middle to 
late Pleistocene age. 

(vii) The Kokwob Formation and the Loboi silts, which 
are largely of Holocene age, and consist of 
lacustrine and fluvio-lacustrine silts respectively. 

The earlier lakes were centred on the Kamasia Hills area, 
but as the axial rift developed there was a lateral shift 
in basin foci until the middle to late Pleistocene 
Kapthurin Formation was deposited in approximately the 

same area as the present Lake Baringo. 

The rift floor at Baringo is part of a general regional 
northward slope, that extends from Menengai in the south 
to the Suguta Valley in the north. The morphology of the 
rift in this part is distinctly asymmetric. The eastern 

side of the Kamasia Range (to the west of Lake Baringo), 
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is steep and consists of a sequenoe of fault scarps, none 
of which exceeds a height range of 500 in. 

During the Quaternary extensive flood lavas were 

erupted and caldera volcanoes developed along the median 

rift axis. In the south-west of the area, these include 

trachyphonolites (Hanningzon Formation; Griffiths, ' 1977) 

erupted between 1.6 and 0.3 my (Chapman and Brooke, 1978), 

while to the west of Lake Baringo the Baringo Trachyte is 

dated at 0.25 my. Quaternary trachytes and basalts were 

periodically erupted from 01 Kokwe, Korosi and Karau 

central volcanoes, which lie in the centre of, and to 

. he north and east of Lake Baringo respectively. These 

lavas and Pleistocene sediments are interrupted by a dense 

network of late Pleistocene grid faults, which have 

substantially contributed to the present topography. 

The late Pleistocene faulting, northward regional 
tilting and volcanic barrier to the north of Lake Baringo 

(Korosi) have together formed the latest of the series of 

structural basins in which lake sediments have been and 

are still accumulating. 
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ý(vi) The geograp and geological background of the 

Olorgesailie area 

1(vi)a The geography. of Olorgesailie 

This-area lies some 60 to 70 km. to the south west 

of Nairobi, immediately to the north of Mt. Olorgesailie 

( plate 1.4) and within the Kenyan Rift Valley ( fig. 1-. 1). 

It extends 20 km from north. to south by 10 km"from east 

to west and contrasts with the other study areas by the 

absence of a modern lake. 

Tue climate is dry and hot. -Rainfall-figure's for 

Magadi, the, nearest town to-the south, are given below: 

Magadi 

600 m 0. D. 

1950 F 1951 
MM' - mm 
322 561 

, 1952 1953 

mm mm 

364 260 

Average for 28 yrs. 
mm 
370 

The bulk of the rain is concentrated into two seasons: 
March to April, and in December. It normally falls as 
isolated storms accompanied by strong winds from the 

east or north-east. Shade temperatures vary between 220C 
in the cloudy seasons and 430C (usually nearer 400C) in 
the dry seasons. 

The extreme climate has produced a semi-desert 
country. Vegetation is sparse, with Acacia savanna 

predominating. Plains to the east support grasslands. 
Dense woodlands on escarpment crests merge into montane 
forests on well-watered highlands. Forest belts are 
found at the foot of the Nguruman Escarpment to the 

west, where some limited cultivation is practised. 

The area is thinly inhabited by the semi-nomadic 
Masai. Their economy is based on cattle herding. 

However, the grazing is poor and the lack of water for 

much of the year has led to an impoverished livestock. 
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Plate 1.4 

Mount Olorgesailie. This mountain stands within the 

southern Kenya Rift, and rises to 1762 m. It consists 

of Pliocene volcanics, and during the middle Pleistocene 

acted as the southern limit of the Olorgesailie palaeo- 

lake. The light patches on the flat plain are diatomaceous 

silts that were laid down in this former lake. 
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Small herds of zebra, hartbeest, wildebeest and 

gazelle occur, and as recently as 1967 lion, leopard and 
black rhino were reported as common. Today, these animals 

are rarely seen. Giraffe remain quite common between Lake 

Magadi and the Nguruman scarp. An avian fauna is still 

abundant and includes ostrich, guinea fowl, barbets, 

eagles, bustards and many others. 

The topography of this part of the Rift Valley is 

illustrated in figure 1.8. The valley is bounded by the 

spectacular Nguruman Escarpment on the west, and by a 

series of scarps to the east. The valley floor rises from 

its lowest point at Lake Magadi'(604 m) to its highest 

elevation at Gilgil (2070 m), some 130 km to the north 

of Olorgesailie. The terrain is rugged, consisting of a 

complex series of, north to south trending horsts and 

grabens. Several. isolated volcanic'mountains occur, and 

include Olorgesailie (1762 m), 01 Doinyo Nyegi (1169 m), 

Shanamu (1341, m) and 01 Doinyo Esakut. The oldest of the 

volcanics occur at-Mt. Olorgesailie (Pliocene) and are 

strongly dissected. 

Several perennial streams flow on both sides of the 

.. 
Rift Valley. The Uaso Nyiro passes along-the foot of the 

., 
Nguruman scarp having risen in the. Mau Highlands to the 

north. It ultimately reaches Lake. Natron in Tanzania. The 

01 Keju Nyiro River descends several scarps east of 
Olorgesailie, passes. to the`north of Mt. Olorgesailie in 

a deep gorge, and into'the Koora Graben before petering 

out on the Koora P1ain. 'It-maintains its flow over its 

whole course only during the wet seasons. Over most of 

this part of the Rift, surface waters persist only 

seasonally in rivers or ephemeral lakes such as Lake 

Kwenia. The largest of these lakes is Magadi, which contains 

extensive trona deposits. 

To the north of Olorgesailie, the Kedong Gorge marks a 
former water course (Baker & Mitchell, 1976). The 

Olorgesailie area itself consists of the lower, Oltepesi 
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Plain (to the east), and the higher, Legemunge Plain 
(to the west). They are separated by a north to south 
trending, east-facing fault scarp. 

There is one main road into-the area (numbered the C58). 
This runs from Nairobi to Magadi and has a tarmac surface, 
apart for a short section between Nairobi and the Ngong 
Hills. 

A 1: 250,000 scale map of the region is available in 

series Y503 (sheet SA-37-5). Shackleton (in Isaac, 1978) 

produced a geological map of the area at a scale of 
1: 10,000, which has"been used during this work. 

1(vi)b History of ' research 

On a foot safari to the area in 1919, J. W. Gregory 

observed sediments which he attributed to a 'Lake Kamasia' 
(formerly thought to have spread over most of the Kenya 
Rift), and believed them to be of Miocene age (Gregory, 

1921). f. "Leakey examined-the region in' 1943 and found 
numerous-Acheulian hand axes. R. M. Shäckleton made the 
first detailed geological survey (Shackleton, 1955), and 
later Baker incorporated some of this data into his report 
on the Magadi area (Baker, 1958). Archaeological papers 
include those of Leakey (1955), Cole (1963) and Posnansky 
(1959). The sediments have been cited as indicators of 

a middle Pleistocene pluvial by Leakey (1955), and as 

evidence of climate-stratigraphy in East Africa by Cooke 
(1958) and Flint (1959). Isaac has studied the archaeology 
of the region and has worked on the spatial relationships 
of the various lithologies (1968,1978). 

1(vi)c The geology of the Olorgesailie area 

The sediments investigated in this area belong to the 

middle Pleistocene Olorgesailie Formation. Its stratigraphic 
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position is shown in table 1.5. The Formation is 

composed of a series of fluvial and lacustrine deposits 

laid down in a small graben. Climate, volcanism and 
tectonism all affected the pattern of deposition. The 

predominant lithologies are: diatomites, tuffaceous 

siltstones, tuffs and pumiceous sands, together with brown 

claystones. The purely lacustrine units tend to thicken 

towards the Koora Graben (to the south-west), into which 

zhe palaeolake retreated during phases of contraction. A 

generalised geological map of the, area is given in 

figure 1.9. 

Most of the sediments are exposed in a south-facing, 

erosional scarp near the-base of Mt. Olorgesailie. In 

addition there are several small outcrops to-the north- 

west of"the"Koora Graben. ' Exposures also occur along the 

north-eastern foot of Mt. Olorgesailie, and along the 01 

Keju Nyiro River`(where it crosses the Oltepesi Plain)., 

Elsewhere exposure is poor. 

. 
Diätoms°were'previously examined qualitatively by 

J. L. Richardson (pers. comm. ). This study was conducted in- 

dependently of his work and extends it both qualitatively 

and quantitatively. 
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I 

Table 1.5 

Regional stratigraphy of the southern 
Kenya Rift Valley 

million years 
Alluvium,. travertines and swamp deposits -? 
OLORGESAILIE FORMATION (Legemunge Beds) - 0.42 & 0.48 
01 Doinyo Nydki Volcanics - 0.66 
(Magadi) 'Plateauitrachyte series' - 0.66-1.25 
01 Tepesi basalts - 1.4 -1.6 
01 Keju Nero basalts _? 

Limuru trachytes 1 - 1.9 
Singaraini basalts -'2,3 
Olorgesailie volcanics - 2,2-2,8 

. 01 Esayeti volcanics . -'3.6-6.7 

after Isaac, 1978 
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Fig. 1.9 Geology of the Olorgesailie 

Area 
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1(vii) Field and laboratory methods of study 

I(vii)a Techniques adopted during fieldwork 

The main approach to this work was to examine and 

record the details of sections (over 120) from the three 

study areas. Facies changes were noted between sections 

where possible. Samples were"collected at fixed intervals, 

usually between 10 and-50 cm, and at lithological 

boundaries. Up to 5-cm of the sediment surface was 

removed prior to sampling in order to avoid contamination. 
Lithological distributions were plotted on aerial photo 

overlays, Fand later-transferred to maps with the aid of a 

stereoscope. " At East"; Turkana the approximate height of a 

number of outcrops was established with a barometric 

altimeter. '"' "'" 

Modern sediment and diatom samples were collected from 

the shores of Lake Turkana, Baringo and Bogoria. The diatom 

floras were preserved in formalin. Several water samples 
were also collected for later chemical analysis, whilst 
pH was measured in the field. 

1(vii)b Laboratory procedures used in the study, of diatoms 

The method used for cleaning and mounting diatoms for 

microscopic examination is outlined in the following stages. 

1. OneSgram (dry weight) was weighed out for diatom- 

poor samples, and half a gram for diatom-rich samples. 
Accurate'weighing was ignored for qualitative work. 

2. Dilute HC1 was added, and the sample left for 

several hours Under warm conditions in order to dissolve 

calcium carbonate. 
3. Diatoms were allowed to settle and the excess 

liquid was decanted. ýThe sample was then washed with 
distilled'water. 

4. If organic matter was present, this was removed 
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by adding hydrogen peroxide.. and heating to 80°C for 

several hours.. After settling and decantation, the sample 

was washed in distilled, water. ý 
5. If clay was present,!. sodium hexametaphosphate 

(calgon)-was added as-a def. loculent. The sample was later 

washed with distilled water.:, - 
6. The sample was then placed in 200 ml of distilled 

water. and exposed. to ultrasonic vibrations of 12,000 to 

20,000 cycles/second for! 20,. to 45 seconds, in order to 

dislodge particles adhering-to the diatoms. 

7.0.2 ml of the suspension was taken from different 

levels. of the-200aml beaker (in order to avoid bias due 

to differential settling,. rates), and placed on a slide. 
The slides were previously cleaned and degreased. After 

drying, the diatoms were mounted in styrax. 
8. In qualitative studies, coarse and fine sediment 

particles were sgparated from the diatoms by using their 

different'settling-. rates. This was not done in quantitative 

work (except to remove very coarse material) as this might 
have changed the percentage counts. 

An alternative rapid method of examination involved the 
temporary mounting of sediment samples in high refractive 
index. liquids; (ca. 1.74). 

For scanning electron microscopy stages 2 to 6ýwere 

used to_ý, clean the diatoms. After drying, the diatoms were 
placed on:, stubs using: double sided sticky tape. A gold- 
palladium coating was applied. --An-Hitachi S450 electron 
microscope was used. ;.., -. 

Diatom identifications were made using a Vickers 15c 

optical microscope at 1000x magnification, in conjunction 
with photographs taken on a Zeiss microscope (some are 
shown in ý appendix III). . 

The ° main , reference works for 
diatom; identification have been: Bachmann (1938), Cholnoky 
(1954,1956,1957,1959,, 1960), Cleve-Euler (1952,1953, 

1955), Gasse', (1974,1975),: Hustedt (1927-66), Muller (1905, 

1911), Patrick and Reimer:; (1966) and Van Landingham (1967). 
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The diatoms have been studied by means of percentage 
analysis. The relative-percentage of each species has been 

established after counting up to 300 individuals per 
sample at a magnification of 400x. Broken diatoms have 

only been counted if there is at least half of an 
individual' surviving. However'some'diatoms are prone to 
damage due to' their shape , (viz. 'the long slender 

. 
ýynedra 

spp. ). In these'cases a-subjective allowance has been made 
by counting specimens with at least a third of their 

frustule (skeleton)-- surviving. -In''quantitative work two 

complete traverses of'the slide were made at 900 to one 

another when cöunting. "Since'during sample preparation 
fixed amounts of'sämple'änd"°water were used, it was 

possible to calculat'e`the absolute number of diatoms per 

sample weight. 

1(vii)c Laboratory procedures used in the study of 
sediments 

Several approaches to sediment analysis have been used. 
These are' briefly' outlined below. ` 

1. Optical ' microscopy. 
Thin sections were made of sediments for microscope 

study. Many of the samples were unconsolidated and 

required impregnating with Araldite prior to sectioning. 
2. Infra-red absorption analysis. 

This technique was used in the qualitative study 
of fine-grained sediments. It is a rapid method needing 

very little sediment. Poor spectra were obtained where 

complex mineral assemblages were present, but the method 
was found to be particularly useful in detecting nitrate. 

3. X-ray diffraction. 

This method was adopted for the identification of 

minerals in fine-grained deposits. The samples were 

prepared in one of two ways. 

a) Approximately 0.5 g of finely crushed sample 

was placed into the 'window' of a sample 



-63- 

holder, which could then be placed in the 
diffractometer. 

b) Where the clay percentage was high'the crushed 

sample was mixed'with distilled water, to form 

a basally-oriented slurry. This was spread evenly 

over a glass plate, and after drying could be 

placed in the diffractometer. 

4. Grain size analysis. 
A known weight of sample was placed in a column 

of distilled water (having been defloculated with calgon). 
The sediment suspension was thoroughly mixed with the water 

column and allowed to'settle. At set time intervals a 

quantity of the suspension was withdrawn to be dried and 

weighed. From the known weights, the time intervals, and 

settling rates of different particle sizes, the weight 

percentage of each size fraction could be calculated. 

5. Chemical analyses. . 

The carbonate content of the deposits was 
determined by measuring the release of CO2 upon the 

addition of HC1. Atomic absorption spectrophotometry was 

used in analysing modern lake waters. The main ions 

determined, (expressed as oxides) were K20, Na20, CaO, MgO 

and SiO 2* 
Titration Sand gravimetry procedures were used 

in-the examination of Cl-, C03, HCO3 and SO7. 

,.., 
, ý, ý- 

ý, 

r 
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, -,, CHAPTER 2 

' DIATOM-ECOLOGY IN EAST AFRICA 

2(i) Diatom as'semblages' and classifications in 

East' Africa'`' 

The interpretation-of, fossil assemblages requires a 
knowledge of the existing ecological conditions of the 

group being studied. This chapter presents and reviews 

some of the basic information required, with particular 

reference to the ecological conditions as they exist in 

East Africa. The areas discussed include relevant 

classifications�and; -the- Occurrence of diatoms in modern 
lakes, their relationship. to water chemistry and physical 

parameters such. as light, -turbidity and temperature. 

East African assemblages often differ in several respects 
from those of temperate. regions. A classic example is the 

entry of species that occupy benthonic habitats in 

temperate areas, into,.. the plankton of tropical lakes (eg. 
Nitzschia frustulum). Richardson (1968) suggests that 
these diatoms adapt by a reduction in size, or by a change 

of shape that maximises the surface to volume ratio and 
hence produces. more frictional resistance to sinking. 

Both Central and East Africa possess endemic species 

or diatoms that occur rarely in temperate zones. Many of 
these belong to the genera Melosira, Nitzschia, Surirella 

and Thalassiosira. Conversely,, diatoms that are common in 

temperate regions may be almost absent from the tropics, 

eg. Tabellaria flocculosa. 

Early diatom studies tended only to list the species 

present in a lake. Gradually more attention was given to 

the ecological'seczing in which the diatoms occurred, but 

even the, most advanced: studies. still ignored the water 
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chemistry. However, since the second world war and 
especially during the last decade, greater importance has 
been placed on the chemical and physical parameters 
controlling diatom populations. 

In 1949, Hustedt set up an ecological classification 
based on alkalinity. This'was developed from research in 
the Albertine, 'Rift of Uganda. -Lakes in this area are less 

alkaline than those of-the Kenyä-"Rift, reaching a maximum 
value of 16 meq/1 at Lake Kivu. Hustedt's classification 
follows. 

(i) Acid. waters with. a heavy representation of 
the, genera Eunotia and Pinnularia, plus 

rare Nitzschia 

(ii) More alkaline waters with a strong 

, representation of the genus Nitzschia. 

... a)... Lakes in which the genus Melosira 

predominates'have alkalinities of 
about or less than 1.5 meq/1 

b) Lakes in which the 'genus Nitzschia 

predominates have alkalinities above 
1.5 meq/1 -- '. 

In 1965 Talling and'Talling seti. up the following 

chemical classification of tropical. and subtropical lakes 
based upon ionic content. 

Class I -Conductivity=less than 600 pmhos 
Class II - Conductivity between 600 & 6000 pmhos 
Class III - Conductivity greater than 6000 pmhos 
(conductivity-is closely and positively related 

to ionic content). 

Tailing and Tailing noted that class I. lakes were often 
dominated by Melosira and that class II types were 
dominated by Nitzschia. 

The system established by. Hustedt was. improved by 

Richardson (19b8,19b9) from his own research and that of 
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Evans (1962) and Kilham (1971). Richardson's classification 
is as follows. 

(I) Dilute, oftien-acid lakes with low phytoplankton 

productivity. 

A. Cool montane lakes (less than 12°C) 

Fragilaria pinnata, F. bicapitata, F. 

stran uý lata, F. virescens dominant 

B. Warmer lakes (12 to 30°C) 
Melosira ikapoeonensis dominant. M. agassizi, 
M. ambigues, M. nyassensis common 

`(II) Neutral or alkaline lakes, moderate to high 

phytoplankton productivity. 

A. Heavy permanent or near permanent blooms of 
blue green algae; Melosira granulata var. 

anguustissima usually predominates 
B. Blue green algae'less abundant than above, 

though sometimes common. 
(i) Lakes of moderate alkalinity (0.9-4.5 

meq/1). 
a) Si02 relatively low (0.1-10 mg/1) in 

surface water. 
Stephanodiscus astraea dominant. 

Melosira agassizi, M. ambiua., M. 

granulata var. angustissima, M. 

nyassensis & var victoriae common 
b) Si02 mostly above 10 mg/l in surface 

water. 
ynedra spp dominant. Melosira ambigua, 
M. granulata var. jonensis, M. agassizi 

common. 
(ii) Lakes of higher alkalinity (2-18 meq/1) 

` a) SiO2 low (0.1-10 mg/1) in surface water. 
Nitzschia spp (warmer lakes); Stephano- 

discus spp. dominant. Melosira 

. 
goetzeana, Thalassiosira rudolfii, 
Surirella engleri, Fragilaria harissoni. 
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b) SiO 2 above 10 mg/l in surface waters. 

Nitzschia spp (warmer lakes), 

Thalassiosira spp. dominant. yclotella 

meneghiniana, Melosira goetzeana, M. 

granulata var. angustissima common. 

Hecky and Kilham (1973) extended Richardson's work to 

lakes with higher alkalinities. Four diatoms were found 

to be dominant in the lakes studied. These replace each 

other as the alkalinity rises. Below about 50 meq/1 
yclotella meneghiniana is dominant. Between 50 and 80 

meq/1 Thalassiosira rudolfii or Navicula elkab become 

dominant. As the alkalinity rises above about 80 meq/1 
Nitzschia frustulum comes to dominate. 

Diatom assemblages from many of the major lakes of East 

Africa are given. in table 2.1, together with the ecological 
data presently available. Many of these assemblages can be 

placed into one or other of the classifications outlined 

above . At. the present time, no single classification is 

available that can account for the whole range of East 

African diatom assemblages. 

Interpretation is made, easier.. if- a, species with specific 
known requirements occiars`in abundance. These can be used 

as palaeoecological indicators, eg. the silica requirements 

of Stephanödiscus astraea. However, the whole assemblage 

must be considered in order. to obtain a. full story. 
Planktonic - floras are- often:. better- than -benthonic ones ; . '. ' 
for determining major ecological changes in a lake, since 
they are not subject to 'the rapid"environmental shifts of 

littoral zones. These environmental fluctuations are due 

to variations in lake level'. ' proximity to water inflow 

and its nature, vegetation, waterchemistry'(eg. from 

lagoon to`open lake), 'and local sediment type. 

The ecology of individual species, found in the_.. sediments": 

of the Kenya Rift (during,. this, study), are, summarised in 

Appendix I (p. 433). 
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TABLE 2.1 THE PRINCIPLE DIATOMS IN SOME EAST AFRICAN LAKES. 

LAKE ABUNDANT, DIATOMS REFERENCE 
( IN ORDER OF DECREASING IMPORTANCE ) 

TANA Melosira italica, '& var. bacillegera, M. agassizi, GASSE, 197 
Stephanodiscus astraea. 
Surirella biseriata, S. fulleborni var. elliptica, BRUNELLI 
S. robusta, S. turgida, Melosira italica var. & 
tenuissima, M. ambigua, Synedra spp. CANICCI, 

1940 
SHALA Nitzchia frustulum, Thalassiosira rudolfi. GASSE 1975 

TURKANA Nitzchia palea, Thalassiosira rudolfi, Rhopalodia BACHMAN, 
vermicularis. 1938 
Cyclotella meneghiniana, Stephanodiscus astraea. RICH, 1932 
Cyclotella meneghiniana, Surirella biseiata, WORTHING- 

TON & 
RICARDO, 

1936 
BARINGO Melosira granulata var. angustissima, Nitzchia 

microcephala. RICH", 1933 
Amphora coffaeformis, Navicula rostrata. WEST & 

WEST 1896 
HANNING- Nitzchia frustulum, Navicula sp. HECKY & 

TON KILHAM 197 
NAKURU "Nitzchia'frustulum, Navicula elkab, Thalassiosira 

rudolfi Ste hanodiscus astraea. " 
ELMENT- Nitzchia sigma, Navicula elkab, Nitzchia frustulum, 
EITA Anomoeoneis s haero Nora. 
NAIVASHA Melosira ambigua, Synedra acus, Surirella linearis, RICHARDS511 

C mbella s pp. & Gomphonema s .. 1968 
EMBAGAI Nitzchia frustulum, Anomoeoneis sphaerophora, HECKY & 

Rhopalodia gibberula. KILHAM 197 
ALBERT Stephanodiscus astraea. BACHMAN , 1933 

Melosira nyassensis, M. granulata, Cyclotella WEST, 1909 
kutzingiana, Synedra sp.. 
Nitzchia bacata, Stephanodiscus astraea. TAILING, 

1965 
EDWARD Surirella engleri, TALLING, 

1965 
Ni-tzchia fonticola, N. lancettula, N. spiculum, HUSTEDT, 
Thalassiosira rudolfi, Stephanodiscus damas 1949 

GEORGE Melosira granulata var. angustissima. TALLING, 
1955 

Nitzchia subacicularis, N. goetzeana. MULLER, 191 
Coscinodiscus sp., Amphora veneta, Anomoeoneis VAN MEEL, 
s haero hora. 1954 

KIVU Nitzchia fonticola, Stepianodiscus astraea. DEGANS, 1973 
Nitzchia confinis, N. lancettula, N. tropica. HUSTEDT, 

1949 
TANGAN- Nitzchia lacustris, N. nyassensis, N. diserta, 

p 
VAN MEEL, 

YIKA Ste hanodiscus astraea. 1954 
SOUTH Nitzchia lacustris, N. nyassensis, N. adapta, N. RICHARDSON 

BASIN ) diserta, Stephanodiscus astraea. 1968 
CHILA Eunotia spp., Cymbella spicula, Gomphonema intric- 

atum, Anomoeoneis sphaerophora, A. exilis. 
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TABLE 2.1( cont.; ) ECOLOGICAL CONDITIONS 

LAKE pH. Si0 ALK. Tý0 C 
NEARBY DIATOP, REFERENCE 2 meq. /1. PLANTS ABUNDANCE 

TANA 7.4 - - 21-23 - high GASSE, 1975 

SHALA 9.8 - - 22.5-26 - high GASSE, 1975 

TURKANA 9.5- - x- 29.6 - high BACHMAN, 1938 
9.8 

BARINGO -- - 23' low low RICH, 1933 

HANNING- 10.6 260 965 - - v. low HECKY & 
TON KILHAM, 1973 

NAKURU 9.8 '" 208 121.6 1' - - low 

ELMENT- 9.4 177. ^107 _° - low - 
EITA - 
NAIVASHA 7.5- - - 19-2.1 moder- moder- RICHARDSON, 

8 ate ate 1968 

EMBAGAI 10.1 111 183.3 - - HECKY & 
KILHAM, 1973 

ALBERT 8.5- -' - 24-29 - -" BACHMAN, 1933 
9.4 

EDWARD 8.9- - -- - - TALLING, 1965 
9.3 

GEORGE 8.0- - - 24-26 - - 
8.7 

KIVU 8.4- - - 23-26 - moder- DEGANS et. al 
9.4., ate 1973 

TANGAN- 8.5- - - 24-27 - moder- VAN MEEL, 
YIKA 9.1 ate 1954 

(S. BA- 8.5- - -- none moder- RICHARDSON, 
SIN 9.1 ate 1968 
CHILA -- - 20-23 moder- high 

ate 

LAKE LOCATION. KEY 

1. TANA 
2. SHALA 

I 3. TURKANA 
4. BARINGO" 
5. ' HANNINGTON' 
6. NAKU RU ý'. 

.' . 7. ELMENTEITA 
8. NAIVASHA 
9. MAGADI 
10. EMBAGAI 
11. ALBERT" ° 

n" ' 12 . EDWARD & 
� " GEORGE 

13. KIVU _ .,.. 
14. TANGANYIKA 
15 . CHILA 
16. VICTORIA 
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2(ii) The importance of water chemistry for diatom growth 

The peculiar tectonic, volcanic and climatic history 

of the Kenya Rift has resulted in the formation of a 
series of alkaline lakes. Often these are centred on 
basins of internal drainage. While the flora is often 
dominated by blue green algae, diatoms are very common and 
sometimes predominate. 

Hustedt (1939) developed an ecological classification 
of diatoms based on pH tolerance (table 2.2). Schoeman 
(1973) stated his belief that it is the pH optimum and not 
the range of tolerance that is important in controlling 
the presence or absence of diatoms. In the Kenya Rift pH 
is frequently high due to the introduction of alkalis 
from local lithologies and this has resulted in a species 
bias. Lakes with. high alkalinities have been related to 
Nitzschia dominated phytoplankton, while Melosira dominated 

lakes are often correlated with water of lower alkalinity 
(Richardson, 1968). Richardson also pointed out exceptions 
to this pattern. Lake Naivasha is a Melosira type lake, but 
it has an alkalinity three times that of Lake Victoria, 

a Nitzschia type lake. It is clear that several factors 

are involved in determining the flora of any particular 
lake. Some of these factors are outlined in the following 

paragraphs. 

Nitrogen and phosphorous are important nutrients for 
diatom growth. Several species show a preference for 

nitrogen in particular forms. Patrick (1961) found in 

several streams of the U. S. A. that Melosira varians, Synedra 

ulna, Navicula viridula, N. mutica and Cocconeis placentula 
were most common in waters of high nitrate concentration 
(2-3 mg/1). Bahls (1973) found an optimum growth for 
Navicula eppytica in waters of high ammonia content. 
Schoeman (1973) has found that C clotella meneghiniana, 
Gomphonema parvalum and Navicula muralis prefer organic 
compounds as a source of nitrogen. Chu (1942) considered 
that nitrogen and phosphorous affected the numbers of 
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Table 2.2 Environmental spectra applied to diatoms 

pH spectrum (Hustedt 1937-1939) 

(i) Acidobiontic : Found at pH values less than 7; 

optimum at or below pH 5.5 
(ii) Acidophilous : Found at a pH of about 7; optimum 

below 7 

(iii) Indifferent : Found at a pH of about 7 
(iv) Alkaliphilous : Found at a pH of 7; optimum at a pH 

above 7 

(v) Alkalibiontic : Appear only in alkaline waters. 

Current spectrum (Hustedt 1937.1 

(i) 
. 

Limnobiontic . Especially found in stagnant water 
(ii) Limnophilous . Optimum development in stagnant water 
(iii) Indifferent Common in stagnztand running water 
(iv) Rheophiloo. s . Optimum in running water 
(v) Rheobiontic . Especially found in running water 

Habitat spectrum 
(i) Planktonic 

(ii) Benthonic 

(iii) Epilithic 

(iv) Epiphytic 

Nutrient spectrum 
(i) Eutrophic 

: Free floating species 

: Species attached to a substratum 

: Species attached to rocks 
Species attached to plants 

Favoured by water rich in organic 

nutrients (eg. N and P) 

Favoured by water poor in organic 

nutrients 

Favoured by water rich in humates 

and low in dissolved nutrients and 

(ii), 0ligotrophic 

(iii) Dystrophic 

oxygen 

The table presents various spectra used in the text of this 

thesis with brief descriptions of the terms used. 
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diatoms present, and that the species composition of an 
assemblage is related to ions such as Ca, Na, K and Si. 

Diatoms have been classified according to their 

salinity preferences by several researchers. Kolbe (1927) 

proposed such a system, based on the preference for NaCl. 

This was revised by Hustedt in 1953 and 1957 (table 2.3). 

The new version took account of NaCl and MgCl in solution. 
Cholnoky (1968) then set up a classification based on 

osmotic pressure. In his view, it is not the quantity of 

salts available, but the variability in the quantity of 

salts that is important (table 2.3). Other systems have 

used the quantity of total salts present, eg. Aguesse 

(1957) as modified to suit diatom studies by Gasse (1975; 

table 2.3). 
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Table 2.3 The. -Halobian spectrum 

Kolbe (1927) 

I'TaCl in solution 
(i) Euhalobes 30 to 40 %o 

(ii) Mesohalobes 5 to 30 ;, o 
(iii) Oligohal'obes . IIalophilous - slightly brackish 

Indifferent - fresh 

Halophobous - fresh, intolem nt of 

salt 

Hustedt (1957) 

NaCl & MgCl in solution 

(i) Euhalobes Polyhalobes - close to or greater 

than sea water 

Mesohalobes -2 to 30 `i,, o 

(ii) Oligohalobes : Halophiles - fresh but stimulated 

by a little salt 

: Indifferent - salt in this range has 

little influence 

(iii)Iialophobes Shun any salt 

Cholnoky (1968) 

(i) Freshwater diatoms : '"Incapable of supporting changes of 

, 
osmotic pressure 

(ii)Brackish diatoms Capable of supporting changes of 

osmotic pressure 

Aguesse. as modified by Gasse (1975) 

(i) Stenohaline Without strict limits 

(ii) Hyperhalobes 

(iii)Euhalobes 

(iv) Oligohalobes : 
(v) Halophobes 

Total salts. -in solution 
35 ; -o + 

Polyhalobes - 16 to 35 'Pa 

I, esohalobes -2 to 16 %o 

0.2 to 2 %o 

0.2 ýjo- 

The table shows some major salinity classifications. This 

thesis follows the system used by Hustedt (1957). 
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2(iii) The importance of physical factors for 

diatom growth 

Three major physical factors can be considered that 
influence the species composition of an assemblage and 
the numbers of diatoms present. These are temperature, 

turbidity and light. 

A. Temperature 

Gasse 1(1975) noted that a tropical flora (reflecting 

high temperatures) could only become important where 

salinities were low, and even then salinity might exert a 

masking influence. Despite the confusion that can be 

caused by high salinities, Richardson (1969) found that 
Nitzschia-dominated lakes did not occur below 23°C in 

East Africa. However, he notes that this may be due to the 

indirect effect of high temperatures promoting organic 
decay and consequent release of nutrients. 

It appears that large numbers of diatoms are able 
to withstand wide temperature changes, while others are 
temperature specific. Barker (1935) found that Nitzschia 

palea had its maximum rate of photosynthesis at 33°C, but 

was strongly'inhibitedwhen temperatures rose above 40°C. 

Wallace (1955), in'contrast, observed that Gomphonema 

parvalum grew"best at 20°C, but still grew fairly well 

at 34°C. 

Temperature can also have several indirect effects 

on diatoms. As mentioned earlier, nutrient recycling may 
be accelerated with higher temperatures. Patrick (1961) 

has also suggested that high temperatures may lower the 

viscosity of water and hence increase diatom sinking rates. 
Warm water forms often have thinner silica walls, which 

might be a response to lower viscosity. Another indirect 

effect may operate through a decrease in oxygen with 

rising temperature. It is clear that relationships between 

diatoms and temperatures exist, but these are complicated. 
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B. Turbidity 

This can be an important influence. Turbid water 
can encourage the recycling of nutrients essential for 
diatom growth. Certain species. occur more often in agitated 
or flowing water, and a current spectrum into which they 

can be placed was. established by Hustedt (table 2.2). High 
turbidity 

. may. favour the, development ofýa_strongplankton. 
Melosira granulata is often found, in turbid water (Kilham 

and Kilham, 1975). In, certain. circumszancesä, turbulence may 

support suspended sediment, whichrwill... reduce light 

penetration, and restrict the numbers of diatoms. 

C. Light 
As a result of their photsynthetic requirements, 

light penetration is often of critical importance to the 

development of diatoms. Many species ., are. favoured by high 

light penetration, eg. Qyclotella meneghiniana and. Navicula 

c ptoce hala (Rice,, 1938). A number of diatoms are 

encouraged by low light bevels, eg.; Campylodiscus spp.. 
Benthonic and epiphytic diatoms (tablse 2.2) are, confined 
to the margins of all but the shallowest lakes as a 

result of their light requirements.,. 

x. _ 
Many of the factors outlined so. _f ar in this chapter, 

can vary over short distances,, especially in the, 1ittoral 

environment. This makes diatomsPparticularly useful in 

palaeogeographical reconstructions. 

. t.. -ý 

,_t, ý. 

..;., 
.ý ..,.,., 
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2(iv) The contemporary ecology of Lake Turkana 

2(iv)a The diatom content of Lake Turkana 

The modern environment and diatoms of 
been studied by several researchers, and 
briefly reviewed here. New data from the 

environments of the lake are presented 1, 

understanding of the modern environments 

reconstruction of palaeoenvironments. 

Lake Turkana have 

their work is 

littoral 

ater (p. 80). An 

helps in the 

F. Rich, as a member of a Cambridge expedition to 

several East African, lakes, visited the western shore of 
Lake Turkana between December 1930 and April 1931. Most 

of the samples she collected were of planktonic algae. 
These were dominated by Hormidium subtile and Arthrospira 

subtile. Diatoms played only a minor role in these 

collections, being dominated by yclotella meneghiniana. 
She found diatoms to be more common on various waterweeds 

and organic debris, and these include: Rhopalodia 

gracilis, R. gibberula and-its varieties pestris and 
vanheurckii, R. hirundiformis, R. ventricosa, Surirella 

biseriata var. lanceolata, Cymbella grossestriata var. 
obtusioscula, C. helvetica, Gomphonema intricatum, 

Gomphoc bella brunii, Navicula pupula, N. cryptocephala, 
Anomoeoneis sphaero Nora var. rostrata and Nitzschia 

hun ag rica. 

" Worthington and Ricardo (1936) sampled an area to the 

north-west of Central Island in water 48 m deep. 
Hormidium subtile and Botryococcus braunii were dominant. 
The diatoms Surirella biseriata and yclotella meneghiniana 
were recorded as 'occurring'. 

Bachman (1938) reports several other species from the 

northern end of the lake. The shallow water floras were 
dominated by Rhopalodia gracilis, R. vermicularis and 
'forma' perlonga. Less common were Thalassiosira rudolfii, 
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a colonial : group of Nitzschia paleä, " bella 'länc'eolata, 
C. macul'ata, Anomoeoneis sphaerophora, Navicula placentula 
var. länceo'lata, Surii'ella'biseriata var. lanceolata and 
occasional. Gomphonenia intrica, cum. fihe blue green alga 
Iiormidium subtile was also recorded. 

B. J. Harbott, in' n unpublished 'Lake Turkana Fisheries' 

report, records that the most common genus is Microcystis. 
Other plankton include Planktonema'lauterbornii, 

Phormidium mucicola, Botryococcus braunii and several 
diatoms belonging to the genera Navicula, Surirella, 
Nitzschia and Rhopalodia. He also recorded yclotella 

meneghiniana as common., 

A seasonal variability of diatoms has been shown by the 
Fisheries department. Surirella biseriata became most 

numerous in September when 32 cells per litre were counted. 
A secondäry, peak occurred in June, while numbers were 
very low between February and April. 

2(iv)b 'The phy. sical and chemical parameters controlling 

diatoms in Lake'Turkana 

The floor of Lake Turkana divides it into northern 

and southern sub-basins. These tend to reinforce a 
chemical 

, 
gradient, caused by fresh waters being mainly 

introduced at the north end of the lake (by the River Omd). 
Ionic concentration is lower in th. e north basin than in 

its southern equivalent. The south basin exhibits almost! 
vertical. homogeneous conductivities of around 3600 pmhos, 
whereas, the+lowest values of 150 pmhos occur in the 

extreme north near the River Omo. Occasionally, enclosed; 
bays attain; higher conductivities.,; This occurs at 
Fergus ons Gulf, -'on the--western shore, where values of 
4500 iimhos have been recorded.: Further data on the 

chemistry of Lake Turkana is givenjin table 2.4. 

0 



-78- 

41 r- r N r ýt LA 
U 

a$ H 0 
4.3 ý t 1 t t 0 t 0a 
4) N 

P, 
"H ,. c\ 0 1 r- 1 1 1 U1 C) 

w N N 

H 
--, 

ý 
i 1 I I I LA 

o ao 
z 

N ri 0 I; N 0 d0 z 
d. I co 

to H -t Ul\ (V i- N 

ri ýp 
ýD 1 " 1 d 1 
`A N 

ul 
H 

r+ rn 0 Ln co V N 1 C\j 1 
q d 't 

0 

`. r. ' ri 
14 a'3 \ N ýt .D O LA LA 
o 

O Ei N r CV (V (V C1 
4) U 
C 

LA 
0 ` °, 
" 1 1 1 " " 

0 - 
N 

"ri $4 N 
++ H 0 CO N N rl On 
" C H 
C l) oD LA 1 Uý 1 LA ýp . -1 O co QN 
P4 H +3 H +3 

O H O O 
U "w ' r I 1 1 I- c ö0 V, fr 

H q N N N -ri cc 
r-I x U 

h-1 H C\j H ß q cd O O tý C" Cd E -4 "r4 U H N 1 1 1 "- t1 O\ d E-+ 
IV. Ea t`- co co . - L o 

" r "ri QO C) 

L_ N H w " "r1 43 
H P. ( 1 1 4) 

Q1 .. to Cl) H Li 
Uý C) "ri "rl cd 0 

(1) PC) N F= H ?+ a 

$4 ý-- (V M ýt Ifs 

4' O O O 0 O 
s 1 1 0 r ý 

rn ° ä 
N N N n n 

0 
a) U 

.0 
co tD 

H ý'1 c'1 ch u'\ 
LA 

/D t- 
"r 1" O' 01 CT O' 
H 4) 
P. +2 " " ".. ý to to t F3 Cd - :3 

-4 1113 



S 

-79- 

Algal nutrients in the'. lake are low. This is especially 
true in the south basin, with-regard to trace elements, 
which may partly account for the relative abundance of 
diatoms here, since they are less dependent on such 
elements than most other algae. 

Yuretich provides the following chemical data relevant 
to diatom nutrition, in Harbott's unpublished report. 
Orthophosphate is generally-less than 140 mg/l. The 

phosphate content is: not likely to be a limiting factor 

anywhere in the lake. Nitrite was not recorded, while 

nitrate was not found in concentrations over 5.0 mg/l. 
Silicate was recorded as low, though mostly above 1.0 

mg/1. He recorded,. surface-ionic concentrations from --the 
northern part of the lake 

, as follows. 

Na 760 - 
K 18.3- 
Ca, 4.5- 
Mg 2.0- 
Cl 585 - 

890 ppm 
26.1ppm 
12.2ppm 

3"lppm 
655 ppm 

The alkalinity was recörded'as-20 to-23'meq/1. Organic 

carbon is highest in the north basin (1.1%), and decreases 
to the middle of the lake at Moiti (0.2%). 

Light peneträtiön 'into the lake also varies, being 

shallowest in the north, due to the influx of suspended 
solids fröm the Omo. 'This varies seasonally in response 
to the annual floods of the River Omo. Thermoclines tend 

to break down due to wind activity. Temperatures in the 
lake range, between 25 and 30C. ° 

.1C. 
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2(v) The diatoms and water chemistry of the north- 

eastern shore of Lake Turkana 

A number of diatoms and water samples were obtained 
from littoral environments along the north-eastern shore 
of Lake Turkana, between. August and September 1977. These 

are described in-the-following paragraphs. 

A series of lagoons exist along the Koobi Fora spit 
(fig. 2.1). These are seasonally inundated by rising lake 

levels, and often change their position. At the time of 

sampling most were separated from the lake, and rested on 

medium to coarse subarkosic sands. No rooted vegetation 

was present and water depths were mostly less than 50 cm. 
The pH values of ca. 9.6 were higher than the open lake 

figure of 9.1. The ; diatom flora from one of these ' 
lagoons (site 1,, fig. 2.1) is described below. 

DOMINANT Anomoeoneis sphaerophora f. rostrata, 
(20% +) Nitzschia-palea. 

F . _. 

OCCASIONAL_ Anomoeoneis sphaero Nora, A. 

phaerophora var. poly ramma. 

Water, samples from the same,, lagoon have been examined, 

and the following'results obtained. 

Na - 4810 mg/l so4 - 68 mg/l 
Ký - 45 "-, mg/l Cl - 2680 mg/l 
Ca .--.... _8 mg/1.., _ .. _ ........ - ... Co, & HCO3- 130 meq/1 
Mg -1 mg/1 
Si02 - 0.7mg/l 

A breached lagoon was also sampled on the spit (size 2, 

fig. 2.1). The pH was the same as the lake. The lagoon 

again lacked any rooted macrophytes. The diatom flora 

was as follows. 
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t 

Fig. '2.1 

Location of diatom and water sampling 
sites , w... .., 

Tulu Bor delta 

5. Littoral 
Lake 
Turkana 

,, r 

3. Littoral 

1. Closed lagoon 

Koobi: i 2. Breached lagoon 
Fora 
spit' 4. Littoral 

N 5 km 
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DOMINANT Anomoeoneis sphaerophora f. rostrata, 
Nitzschia palea. 

SUBDOMINANT . Nitizschia obtusa. 

OCCASIONAL Navicula cryptocephala var. veneta, 
Qyclozella meneghiniana, 
Thalassiosira rudolfii. 

This is essentially-ihe same flora as that of the 

closed lagoon, but the breaching has seen the introduction 

of Qyclorella meneghiniana and Thalassiosira rudolfii. 
Several other algal groups occur in these lagoons, but 

these are'not within the scope of. phis work. The water 

chemistry of the breached-lagoon is as follows. 

Na - 1100 mg/1 SO4 - 45 mg/l 
K- 

. 
33 mg/l... C1 - 830 -mg/l 

Ca -8 mg/1 -'-. . CO3 '& HCO3. -- 26.5 meq/1 
Mg -4 mg/l, 
Si02 -3 mg/l 

Sodium, chlorier carbonate and bicarbonate are less 

abundant than in the closed lagoon. Potassium has also 
decreased, but slight increases in magnesium and silica 
have been recorded. The dominant diatoms remain the same, 
but there are--changes-in the less common species. 

A lititioral-open water area, dominated by reeds, was 

also examined--(size 3, '-fig. 2.1). The diatoms differ 

from the lagoonal areas, and are as follow. 

DOMINANT : Goinphocymbella brunii, Nitzschia 

palea. 
SUBDOMINANT : Gomphoriemaýinrricatum, Anomoeoneis 

sphaero Nora f. rostrata, Cymbella 

gro`ssestri>ata, Navicula gastrum. 
OCCASIONAL : yclotella meneghiniana, Navicula 

c ptocephala. 
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Littoral reed-dominated environments were also studied 
on the southern side of the Koobi Fora spit (site 4, fig. 
2.1). A similar flora was found, with the exception of 
one area open to wave action'. `Here, the diatoms were 
heavily dominated by Nitzschia palea (95%) with 
Anomoeoneis sphaerophora f. rostrata also occurring. 

A further series of samples were collected from the 

southern side of the Tulu Borr delta (size 5, fig. 2.1). 

A typical shallow water area with abundant reeds was 

sampled and the flora is shown below. 

DOMINANT : Anomoeoneis sphaero Nora f. rostrata 
Nitzschia palea. 

SUBDOMINANT : Rhopalodia gibberula, R. ventiricosa, 
Gomphonema brunii. 

OCCASIONAL : Gomphonema intricatum, yclotella 

meneghiniana, Anomoeoneis 

sphaerophora var. guntheri. 

Here, the lake waters are slightly more dilute than 

they are furuher south. This probably relates to the 

proximity of the Omo River. The data-from this area 
follows. 

Na - 908 mg/1 
K- 22 mg/1 
Ca - 7 mg/1 
Mg -6 mg/1 
Si02 -4 mg/1 
Fe - 0.4 mg/1 

604 
C1 

CO3 & HCO3 

- 48 mg/1 

- 674 mg/1 

- 25.5 meq/1 

Slight increases in silica and magnesium are detectable, 

while iron was recorded for the first time. 

The most important features of the diatom floras are 
as follow. 

A. The abundance of Anomoeoneis sphaerophora, especially 
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in lagoons. 
B. The abundance of Nizzschia palea in reedy zones. 
C. The dominance of Thalassiosira rudolfii and 

Cyclotella meneghiniana in the plankton. 
D. The absence of Surirella biseriata var lanceolata, 

which was often recorded by other researchers. It 

may have been 'missed', since ii was Usually found 
in the plankton and the samples collected here had 

a littoral bias. 

All the diatoms recorded here are capable of living in 

alkaline waters. From this study it appears that: 

(i) Anomoeoneis sphaerophora is favoured by 
high alkalinities (at least up to 135 meq/1). 

(ii) Nitzschia palea is favoured by littoral reedy 

zones. No clear alkalinity preference could be 

detected within the range found here. 
(iii) Gomphoc bella brunii is associated with littoral 

reedy zones and fresher waters. 
(iv) Rhopalodia gibberula and R. vermicularis are 

most common in littoral regions, and in waters 
wich alkalinities of less than about 35 meq/l. 

(v) Thalassiosira rudolfii has a planktonic habit. 

(vi) Cyclotella meneghiniana may live in both littoral 

and planktonic situations, but favours the latter 
in this lake. 

Where data is available from other lakes, these tend 

to confirm the above observations. 
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PART II 

THE EVOLUTION OF LAKE TURKANA 
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CHAPTER 3 

I 

THE DIATOM-STRATIGRAPHY'AND SEDIMENTS OF EAST TURKANA 

3(i ); Definition of the Holocene"Galana Boi Formation 

f4 

3(i)a The Galana. BoiýFormation 

The Holocene sediments-. at East; Turkana were informally 

termed the Galans Boi beds by-Vondra, Johnson, Bowen and 
Behrensmeyer (1971). The, 'name wasr. derived from the Gabra 
word for Lake Turkana. :. These, deposits form a distinct 

sequence both stratigraphically and spatially, "and it is 

proposed here zhat., they should be-named the Galana Boi 

Formation. { 

TheGalana, Boi, Formation°lies with gross unconformity 

on Pliocene and: Pleistecene,, sediments. Although over 

much of, their-distribution they are less than 10 m thick, 

in Area' 103 .. 
(fig. 1.2) they 'attain a maximum thickness 

of 34 m. Commonly they'. crop 'out as discontinuous linear 

; bodies that formed parallel to palneoshorelines. The 

thickest individual sequences infil1 palaeovalleys. The 

deposits occur up to 80 m above_the"modern lake, which 
liesat-ca. 375, m O. D.. Fluvio-lacustrine and aeolian 
sediments are, present locally. Units are typically 

lenticular and exhibit rapid lateral and vertical facies 

; variation. The sediments consist of grey, laminated, 

diatomaceous, quartzo- feldspathic silts, and littoral 

subarkosic and sublitharenitic sands. A simplified 

geological map showing the distribution of Holocene 

sediments is presented in figure 3.1. 

The stratigraphy and the sediments of this area have 
been: studied in detail in-; some 85 particular sections. 
However, " these details are epitomised in one section, here 

'n6mbered'72 (plate'3: `1)'. 'This chapter ' gives' a detailed 
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Plate 3.1 

Im 

Section ; 2. Laminated diatomaceous silts can be seen. 

These contain diatoms that suggest several lake level 

fluctuations. Sandier deposits continue the sequence 

ibý v-` that wh i _`; can öýý seen in thivý photograph. 

iiatomacous silt from the 
upper part of the section 
(x25, with photographic 
enlargement of x2.5). Several 
Rh_ palodia can be seen. Quartz 

and feldspar dominate in the 
lower half of the photo. 
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account of the diatom stratigraphy and the lithological 

succession in section 72, while later chapters deal with 
the wider sediment distribution. 

3(i)b..,. The location and importance of section 72 

., 
Section 72 lies 

Fora, in Area 103. 

and on the. geologil 
Koobi Fora, at the 

was selected for 
'a 

reasons. 

some 9 km to the south-east of. Koobi 

Its location is shown in figure 3.1, 

cal map of the area to the east of 
back of this thesis. This section 
detailed. examination for the following 

A. Diatoms were found to be abundant in the silts 

of Area 103 during the first field season. 

B. The thickness of these deposits, up to 30 m, 
suggested that a detailed history of Lake Turkana 

could be obtained. Using dates obtained by Raynolds 
(IL)72), a mean sedimentation rate, of about 2 cm/ 
annum is indicated. However, in, view of the grain 
size variability, this figure must be treated with 
caution. 

; C. These deposits lie adjacent to the Koobi Fora Ridge. 
This relatively high ground would have. tended, to 

establish shoreline conditions in this area. In turn, 
this would make the locality particularly sensitive 
to variations of lake level. 

D. Section 72 does not occur in the. area of maximum 

sediment thickness. Composite sections which 

represent a greater thickness were examined, but 

in less detail. Section 72 represents the thickest 
'continuous' sequence available, and was chosen for 

this reason. 
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AM) The diatom stratig of section 72 

3(ii)a The diatom zonation of section 72 

Samples for this study were collected at 10 cm 
intervals. In all, 128 slides were prepared from these 

samples, and were examined for their diatom content. 
The diatoms in this collection of slides reflect the 

early and middle Holocene history of Lake Turkana. 
Figure 3.2 illustrates all the diatom species that formed 

1% or more of the total flora, in at least two samples. 
Species occurring. at lower percentages have been ignored, 

since. their presence is highly sensitive to reworking, 
transportation, contamination and count size. Emphasis has 
been placed on those diatoms that were abundant or 

common. 

The zones established here are used in an informal 

sense, for descriptive purposes only. They are based on 
changes in the diatom flora and on variations in diatom 
abundance, and can be considered as loosely related to 
'assemblage zones'. Since these zones are based upon 
diatoms, they closely reflect environmental changes and 
are not useful for correlation on anything other than 
a local scale. 

Four of these 'zones' can be recognised from an 
inspection of figure 3.2. These will be dealt with in 
turn, but their major characteristics are summarised 
below. 

ZONE D Diatoms infrequent, often absent. When 

present Rhopalodia vermicularis and 
Cocconeis placentula dominate. 

----------- UNCONFORP'IITY-------------- 

ZONE C Diatoms abundant, Rhopalodia vermicularis 

and Cocconeis placentula dominate 
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ZONE B Diatoms abundant, Synedra spp. and 
Cocconeis placentula common Rhopalodia 

vermicularis and Stephanodiscus spp. 
present. Melosira nyassensis var. 
victoriae occasionally abundant. 

------------------------------------- 

ZONE A Diatoms abundant, Melosira spp. 
dominant, Stephanodiscus spp. common 

and occasionally dominant. 

In general, the floral-succession indicates an 
initially deep lake during the early Holocene, after 

which lake levels' graduälly -fell. '-This-fall was not 

continuous, but was'interrupted by several transgressive 

episodes. A tötal-regression from the area occurred 
towards the end ofýthe middle Holocene. 

3(ii)b The diatoms of Zone A 

Mollusca occurring in Zone A sediments, some 100 m east 
of section 72, have been dated at 9880 + 245 yr. B. P. by 
Raynolds ('1972). ' This zone is characterised by an 
abundance of planktonic diatoms. The maximum possible 
water depth, based on topographic data and on the maximum 
shoreline heights recorded at East Turkana, is about 30 m. 
The most abundant öf`the planktonic species are Melosira 

71 agassizi; ' M. granulata-aýassizi and M. ' a aý; ssizi var. 

malayensis. The first"two'have been grouped together'in 
figure 3.2, since' they are morphologically similar and' may 

represent' 'a single species. Stephanodiscusýspp. form 

the second ' most 'importantt group, with S. astraea . and its 

vari'ezy minutülä-becoming dominant at cerzainýýlevels. 
Several-'Other-diatoms are important and include Coccbneis 

placentula, Fragilaria brevistriata, F. lapponica and 
Nitzschia palea'var. tienuirostris. 

For convenience of descriptiOn)-several, n, several subzones can be 
recognised, whichare based on four diätöm assemblages. 
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SUBZONE DISTINCTIVE ASSEMBLAGE 
CHARACTERISTICS 

(vii) 

(vi) 

(v) 

(iv) 

(iii) 

(ii) 

(i) 

Nitzschia palea var. 
tenuirostris dominant 

Melosira spp. dominant 

Stephanodiscus astraea var., 

minutula dominant 

Melosira spp. -dominant 

Melosira/ftephanodiscus 

dominant 
Nitzschia palea var. 
tenuirostris dominant 

Melosira/Stephanodiscus 

dominant 

DISTRIBUTION 
(cm) 

365-375 

235-365 

215-235 

185-215 

145-185 

135-145 

0-135 

In the following description these subzones will be 

grouped together according to which of the four major 
assemblages is present. 

A. Subzones (i) and (iii) 

Subzones (i) and (iii) are characterised by a Melosira/ 

Stephanodiscus flora, with roughly equal percentages of 

the two genera.:: However, the Stephanodiscus component is 

somewhat more common in the lower 50 cm of subzone (i). The 

dominant species are: S. astraea,. S. astraea var. minutula, 
M. agassizi and M. granulata-agassizi. Other, less common, 
diatoms include: Cocconeis placentula, Fragilaria 

brevistriata, F. elliptica and Navicula scutelloides. 

The Melosira/Stephanodiscus assemblage is planktonic, 

and as such suggests deep water, although proximity to a 
shoreline is suggested by the presence of benthonic and 

epiphytic diatoms. The flora is of oligohalobian nature 
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(table 2.3, P. -73), -and modern, assemblages of this cype 
are often found in-slighzlytalkaline water. 

B. Subzones (ii) and.; (vii). 

The second, assemblage, which. -occurs in subzones (ii) 

and (vii), is characterised by Nitzschia palea var. 
tenuirostris (40 to 50%). Other diatoms present include: 

Stephanodiscusýspp., Melosira'spp., Cocconeis placentula 

and Nitzschiä fonticola. 'The dominant species is cited as 
ä littoral type by-Gasse-(1975), and as such may reflect 

a shallowing 'of-! the lake. 

C. *-'Subzones'(iv) and (vi) 

A third assemblage occurs in subzones (iv) and (vi). 

This is dominated by Melosira agassizi, M. granulata- 

agassizi and M. agassizi var. malayensis. The percentage 

of each species variesi,. but together they form up to 98% 

of the., total-flora. Stephanodiscus astraea and its 

varieties-, form the-second-most common group of diatoms, 
but rare lyýexceed,:. 10'% of. the total. Cocconeis placentula 
is. the main benthonic contribution to the flora. 

",,, The, high-percentage-of planktonic species suggests 
that, deep. water was; prevalent.. Melosira agassizi is' 

endemic; to the. modern, tropics and its abundance in these 

subzones and, throughout Zone. A, may reflect warm water. 
Today,. M. agassizi occurs in; dilute waters, such as those 

, 
of Lake, ýVictoria and; Shiwa Ngandu.. Its presence indicates 

much fresher waters than are found in modern Lake 

Turkana. 

D. Subzone --(v) 

This. subzone is c; 

assemblage, which is 

var. minutula (up to 

agassizi also occur. 

haracterised by the fourth diatom 

dominated by Stephanodiscus astraea 
90%). S. astraea and Melosfra 

Benthonic species are at lower 
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percentage than at any other point in Zone A, which may 
suggest that the lake was at its deepest. Richardson (1968) 

has found that S. astraea and its varieties are only 
'common'in lakes with-silica concentrations of between 0.1 

and 10 mg/1. This suggests lower silica levels than other 
subzones dominated by Melosira spp. Ir (which have higher 

silica requirements). `-- 

., The large percentage of planktonic species in Zone A 

suggests that it, represents a period. of deep water, and 
therefore high lake levels. The zone terminates after a 

major decline in Melosira spp, and after the almost total 
disappearance of Stephanodiscus spp. and Nitzschia palea' 

var. tenuirostris. ; '' 

3(ii)c The diatoms of Zone B 

The transition to Zone B occurs above a height of 375 

cm from the base of -section 72. -Above this boundary there 

is an increased percentage of, epiphytic and other littoral 

species (fig. 3.3). Rhopalodia spp. appear in significant 

numbers for the first time, while at several horizons 

Melosira nyassensis var. 'victoriae becomes important: 

Stephanodiscus'sp; p. contribute significantly* to' "the" flora 

at many levels. A major feature of the zone is the presence 
öf Nedra spp.. The upper boundary of the zone is less 

disiindt'`thän.. the. lower.. It has been placed above'--the last 
major bloom of Stephanodiscus astraea var. minutula,, which 

also corresponds to a decline in Nedra spp.. This lies 

at 795 cm in section 72. 

As with Zone A, several subzones can be recognised for 

descriptive purposes. In this case, seven subzones can be 

distinguished, and these are_based on six diatom 

assemblages.; 
" 



uaS ý: ýBu rc op(r; 

, "o " o,, I 

"üS ýuý'ýrT1Jý)ý. 

3o "c;; i 

O0 Olt 
-l 

l 
.k. ä1w ýäti 

C- 

s-. 

r 
0 

0 
-4, 

ýY 

-{ 

. rtýý,, i'rý«ýý, 

u0 

,. 
r- 

rý 

. -.. 

<.: 

rý 

iI 

klýrýl'ý`ýý'rý ý 
.! 

i ý ýI 
ýý`1 X11' ý 'ý 

Vii- 3,. i. ' 7, i.. . 

ýirý 

Gi r, ' ----1_. __11. _ t ., ý.. ,ý, L 

c"I LO C\j 



0 

-97- 

SUBZONE DISTINCTIVE ASSEMBLAGE DISTRIBUTION 

CHARACTERISTICS (cm) 

(vii) 

(vi. ) 

(v) 
(iv) 

(iii) 

(ii) 

(i) 

Stephanodiscus astraea var. 

minutula dominant 
Rhopalodia vermicularis dominate 

R. gracilis, Cocconeis 

placentula, Synedra spp. common 

Melosira nyassensis var. 

victoriae dominant 

Cocconeis placentula, Nedra 

sip. dominate 
Melosira nyassensis var. 

victoriae dominant 

Stephanodiscus aszraea common, 
S. astraea var. minutula, 
Cocconeis placeniula and edr, 

pp. present. 
Cocconeis placenzula dominant 
Stphanodiscus astraea var. 

minutula and S nedra spp. 

common. 

765-795 

725-765 

705-725 

655-705 

635-655 

475-635 

375-475 

In the following description these subzones are grouped 

according to which of the six diatom assemblages is 

present. 

A. Subzone (i) 

Cocconeis placentula constitutes up to 30 % of the flora 

found in subzone (i). ynedra ulna and its varieties, 

and Stephanodiscus astraea are subdominant (10 to 20 %). 

There are many 'occasional' (less than 10 %) species, most 

of which belong to the genera Epithemia, Navicula and 

bella. All, except S. astraea, occur in littoral areas 

of modern lakes. The large number of epiphytes suggests 

the presence of aquatic plants. Tailing and Tailing (1965), 
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and. Richardson (1968) have observed that ynedra ulna 
dominates or is common in lakes that have a dissolved 

silica range-of 1.5 to 30 mg/1. This suggests a high 

silica content in the palaeolake. 

B. Subzone (ii) 

In the second assemblage of Zone B, which occurs in 

subzone (ii), Stephanodiscus astraea becomes important 
(up to 25 /), while its variety minutula constitutes 

about-10 % of the total flora. Nedra spp. remains common, 
but Cocconeis placentula declines in comparison to 

subzone (i). Important 'occasional' species include 

Melosira agassizi and M. nyassensis var. victoriae. The 

rise in planktonic species (fig. 3.3) since subzone (i) 

suggests a deepening of the lake. 

C. - Subzones (iii) and (v) 

These two subzones are characterised by the same flora. 

There is a strong dominance of Melosira nyassensis var. 

victoriae (50 to 70 %). The flora resembles that found 

in the deeper water of Lake Victoria. It differs in the 
higher percentage of Melosira nyassensis var. victoriae 
found here, and by an absence of Melosira ambig. The 

assemblage suggests deep waters, possibly the deepest 
indicated by the Zone B record. 

D. Subzone (iv) 

Diatoms are absent, other than as fragments from the 
base of this subzone. This may reflect a period of 

emergence or near emergence. The flora in the remainder 

of the subzone is dominated by Nedra ulna (30%), and by 

Cocconeis placentula (20%). The strong epiphytic 

component suggests an abundance of macrophytes, although 
these decline at the top of the subzone. All the diatoms 

occur in shallow waters of modern lakes, and probably 

reflect a regression between subzones (iii) and (iv). 



-99- 

E. Subzone (vi) 

The dominant species in this subzone are Rhopalodia 

vermicularis (45%) and R. gracilis (20%). Subdominant 

diatoms include Cocconeis placentula and ynedra epp.. 

These are all found in littoral situations today. The 

Rhopalodia spp. occur in modern Lake Turkana at its 

fresher, northern end, and are often associated with 

littoral reeds. Planktonic species occur, but in very 

low percentages, and include Melosira nyassensis var. 

victoriae and Stephanodiscus astraea. 

F. Subzone (vii) 

Stephanodiscus astraea var. minutula (60%) dominates 

in this subzone. It is a planktonic diatom and indicates 

the last major rise in lake level, as reflected in the 

record of section 72. Rhopalodia vermicularis and other 
littoral diatoms remain common and suggest a proximity 

to a shoreline. 

Zone B represents a period of lower lake levels than 

Zone A. Evidence exists for emergence or near emergence 

at several horizons. It should be noted that by the end 

of Zone B times the lake floor was some 8m higher than 
it had been at the commencement of Zone A times. 

3(ii)d The diatoms of Zone C 

Zone C begins at a height of 795 cm. It is typified by 

a reduction in the percentage of ynedra spp., except at 

one or two horizons, and by a dominance of Rhopalodia 

vermicularis (15 to 45%) and Cocconeis placentula (10 to 

40%). Other diatoms include: Rhopalodia gracilis, R. 

vermicularis var. perlonga, Nedra ulna, S. dorsiventralis, 

Navicula pupula and bella spp. Plankzonics are rare. 
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Two subzones have been recognised and these are as 
follows. 

SUBZONE DISTINCTIVE ASSEMBLAGE DISTRIBUTION 

. CHARACTERISTICS (cm) 

(ii) Cocconeis placentula dominant 

(i) Rhopalodia vermicularis 
dominant 

885-1025 

795-885 

The assemblages of both subzones are similar. They 

have been separated, for descriptive reasons, on the 
basis of the dominant diatom. 

A. Subzone (i) 

Subzone, (i) is characterised by Rhopalodia vermicularis 
(20 to 45%), with Cocconeis placentula occurring as a 
subdominant., R alodia gracilis (5%) is also present. 
The dominance of Rhopalodia species suggests a water 

chemistry similar to that at the north end of Lake 

Turkana, where the genus is common today. The predominance 

of littoral species suggests shallow waters, probably rich 
in reeds. 

B. Subzone (ii) 

In this subzone Cocconeis placentula becomes dominant 
(25 to 40%), and Rhopalodia vermicularis declines. 

Gomphonema dubravicense appears in the flora, while the 

genus Nedra is represented only by S. dorsiventralis. 

This flora suggests shallow littoral areas, possibly rich 
in reeds. In the middle of the subzone a minor transgression 
is reflected by a slight increase in planktonic species. 
These include Stephanodiscus astraea, S. astraea var. 
minutula and Melosfra nyassensis var. victoriae. 
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Zone C represents a period when littoral conditions 

prevailed across the area of section 72. The upper 
boundary occurs at a minor unconformity at 1025 cm. 

3(ii)e The diatoms of Zone D 

Zone D lies above a minor unconformity at 1025 cm. It 

differs from the other zones in that it is based on rapid 

changes. in diatom numbers (0 to 107 valves/g sed. ). The 

flora is dominated by littoral species. 

The subzones recognised, including two separated because 

they lack diatoms, are as follows. 

SUBZONE DISTINCTIVE ASSEMBLAGE 

CHARACTERISTICS 

DISTRIBUTION 
(cm) 

(v) No diatoms 11195-1300 

(iv) ynedra/Melosira dominant 1185-1195 

(iii) No diatoms 1125-1185 

(ii) Cocconeis placentula dominant 1075-1125 

(i) Rhopalodia vermicularis 1025-1075 

dominant 

The main features of these, subzones are as follows. 

A. Subzone (i) 

The bottom and top of this subzone consists of only 

rare diatoms and occasional fragments. Between these two 

levels Rhopalodia vermicularis dominates (20 to 60%), 

with-Cocconeis placentula forming between 10 and 25 To of 
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the flora. Stephanodiscus astraea is the most common 
planktonic species, but does not exceed 10% of the flora. 

The fragmentation, low numbers of diatoms, and littoral 

species suggest shoreline conditions at this time. 

B. Subzone (ii) 

Cocconeis placentula dominates (30%), with Rhopalodia 

vermicularis forming less than 25%. Melosira agassizi var. 
malayensis occurs at the top of the subzone, but forms less 

than 15% of the flora. Shallow waters are probable, 

although there may have been a slight deepening by the 

end of the subzone. 

These sediments lie at a height of about 70 m above the 

modern lake, indicating that while the lake was shallowing 
at this site (partly due to sediment infilling), the lake 

still stood well above modern lake heights. 

C. Subzones (iii) and (v) 

Nö diatoms occur in these subzones. The sediments are 
composed of subarkosic, cross-bedded sands that resemble 
modern beaches around lake Turkana. 

D. Subzone (iv) 

This subzone is dominated by Nedra dorsiventralis 
(25%) and Melosira agassizi var. malayensis (15%). Other 

common species include: Rhopalodia vermicularis, R. 

gracilis and Cocconeis placentula. ynedra dorsiventralis 

occurs in littoral and planktonic habitats today. Its 

association with M. agassizi var. malayensis suggests a 
slight deepening, and the final transgression recorded by 

section 72. 

Several minor unconformizies occur in Zone D. These, and 
the rapid changes in diatom numbers suggest proximity to 
a shoreline and fluctuating lake levels. 
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3(iii) The palaeoecological implications of the diatoms 

of section 72 

3(iii)a The chemisrry of the palaeolake 

Floristic changes in section 72 have resulted mainly 

from the effects of lake level fluctuations on planktonic 

and benthonic diatoms. However, certain palaeoecological 
inferences can be made. 

The varying dominance of diatoms favoured by low 

silica concentrations (Stephanodiscus spp. ), and species 

favoured by higher silica levels (Melosira spp., medra 

. 
Epp. ), suggests that the silica content fluctuated. 

Throughout this period silica was probably equal to or 

greater than it is today. 

The pH of the lake appears to have remained fairly 

constant during the deposition of section 72. Alkaliphilous 
(table 2.2, p. 71 ) species dominate, while 'indifferent' 

and alkalibiontic diatoms occur much less often. The flora 

suggests a pH of about 7.5 to 8.5 (the modern lake has a 
pH of 9.2, at Koobi Fora). 

The flora is dominated by oligohalobian diatoms (tolerant 

of total salinities of 0.2 to 2.0%%). Occasional 

mesohalobian (2 to 16%0) species, such as Rhopalodia 

gibberula, reflect an increasing salinity towards the top 

of the section. 

The large numbers of diatoms may reflect nutrient-rich 

water. Diatoms such as Cocconeis placentula are often 

suggestive of high nitrate levels (Patrick, 1961). 

ysical aspects of the palaeolake 3(iii)b The PPDh- 

The diatoms in section 72 include species that are 

confined to the modern tropics, and wider ranging 
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cosmopolitan forms.,.. The tropical diatoms reach their 
highest percentages in Zones A and D. However they occur 
throughout the section and suggest warm waters. 

In the lower part of the section, alternating light 

diatom-rich, and dark diatom-poor, laminated silts, suggest 

periodic water and sediment input to the lake. This in 

turn may reflect a periodicity (possibly seasonal) to the 

palaeoclimate. 

Two major high lake level periods can be recognised 
from the diatoms of section 72, together with many, 

probably shorter-lived, transgressive episodes. However 

lake levels probably did not fall below about 50 m 
during deposition. The highest lacustrine sediments 

representative of this period occur between 75 and 80 m 

above he modern. lake. 
I 
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3(iv) The geology. of section 72 

3(iv)a The lithology of-section 72 

Therlithological succession is shown in figure 3.4. 
The sediments are poorly consolidated, and dominated by 

diatomaceous silts and sands. 

Grain-size analyses have confirmed the dominance of 

silt grade deposits in the lower ten metres (fig. 3.5). 

Fine to medium silts (5 co 8.5 phi) form up to b5 wt. /, 

and coarse silts (3.5 to 5 phi) up to 30 wt. % of sediment 

samples., The grain-, size distribution of the silts is 

tunimodal and, skewed; to the right in samples from the 
lower six'mezres. Clays from these lower six metres 

constitute up to. 28 wt. / of the sediments. Fine sands (2 

"Co 3.5. phi) make up to 75 wt. % of samples from the upper 
. three metres. Coarser sands never occur above 5 wt. %, 

except between 1120 and 1140 cm, where they form about 

, 60 wt. % of . 'the sediment. 

The silts are rich in diatoms and laminated uhroughout. 
Varying diatom numbers in the lower two to three metres 
result in alternating light and dark bands about 0.5 cm 
thick. At higher levels varying shades of grey and brown 

occur, but not indistinct bands. 

Excluding diatoms, which may form up to 80 % of a silt 
! sample, feldspars are the dominant consticuent. Albi-ce. 
is usually the most common mineral (up to about 50 %), 

with microcline and orthoclase also common (up to about 
30 % each). Quartz may form up to 25 % of the silts, but 
is usually less than about 15, %. Montmorillonize is the 

only common clay mineral and contributes from ca. 5 to 
28 %., Biotite and. muscovize contribute small amounts to 

the sediment (and are best observed in hand specimen). 
Other minerals detected by X-ray diffraction include: 

chlorite, hornblende, magnetite, ` haematite and-ilmenize. 
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Calcite, is also present, mostly as shell debris, in a 
few samples. A typical X-ray diffraction of the silts of 
section 72 is shown in figure 3.6. 

Limonite-stained, carbonate-cemented, siltstone 

nodules are common in the silts and fine sands. These are 
a flattened ovoid shape with a long axis of up to 12 cm. 
They occur scattered through the deposits, and also line 

up in well-defined layers. Their secondary origin is 

suggested by silt laminae passing uninterrupted through 
the-nodules, and by nodule layers transgressing the laminae 

of the silts. 

The sandy units are composed of subangular sublith- 

arenites, and better sorted, subangular to subrounded 
subarkoses. Heavy. minerals are scattered throughout the 

sands. Occasionally they are sorted into distinct bands, 

which often pick out planar cross-beds. These bands are 
up to 3 mm thick, and are most common above 1200 cm. 
Similar deposits occur along the modern shore of Lake 

Turkana. Subangular grits, in lenses, suggest small 

channels at levels between 1200 and 1300 cm in the section. 

Lithological boundaries are usually gradational, but 

sharp and erosional transitions do occur, particularly in 
the upper sandy deposits. 

3(iv)b The palaeontology of section 72 

Fish vertebrae are rare in section 72, but elsewhere 

are common in silts, and include Lates, Tilapia and Clarius. 

Molluscs are abundant, and are found both scattered 

and in 'pockets'. Mutela emini, Etheria elliptica and 
Pila ovata occur in the sandier units. Melanoides 

tuberculata, Corbicula africana, Cleopatra pirothii and 
Caelatura sp. are found in both sands and silts. Several 

other species occur in the sediments lateral to the 
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section, but these are dealt with in chapter 4. 

Carbonised root marks and plant debris occur at 
several levels within the silts, and are also found in 
the silty sands between 1140 and 1200 cm. 

3(iv)c The nitrate and carbonate content of section 72 

Salts occur at several levels within the silts. A 

chemical analysis showed this to be sodium nitrate 
(nitratine). Aisemi-quantitative estimate of the percentage 

of nitratine present in section 72 was established using 
the following method. 

(i) A-reference collection of samples with 5,10, 

25,50 and 90 wt. % sodium nitrate was made by 

adding this compound to nitrate-free silt. 

(ii) The infra-red spectrum of these samples was 
obtained. Using the % transmission readings 

at the side of the chart, the log of the 

reciprocal of the top of the silicate peak was 
subtracted from the log of the reciprocal of 
the base of the silicate peak. Having done the 
same for the nitrate peak, the ratio between 

the two was established. 

(iii) The ratio obtained from stage (ii) was then 

calibrated against the known wt. % of sodium 

nitrate for each of the specially prepared 
samples. The data from this procedure could 
then be used to estimate the wt. % of sodium 

nitrate from the infra-red charts. 

A typical example of the infra-red spectrum of the 

nitrate rich silts is shown in figure 3.6, while the 
percentage of nitrate in section 72 is shown in figure 3.7. 
Here, the sodium nitrate fluctuates between 0 and 8 wt % up 
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Fig.. 3.6 
Typical infra-red spectrum and X-ray diffraction 

of thej silts from section 72 
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Fig. 3.7 

The stratigraphic development of Nitrate and 
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to a height of 850 cm. 

Two possible origins of the nitratine can be considered. 

(i) It may be primary and reflect a lake rich in 

nitrate (modern Lake Turkana has little nitrate). However, 

nitrate is easily dissolved and it seems unlikely that it 

would form while the area was covered by a freshwater lake. 

A later Holocene period of volcanism from North Island is 

indicated by lavas stepping over high lake level erosional 
benches. This activity may have provided a source of 

nitrate to the lake. 

(ii) At Eliye Springs near Fergus4ons Gulf (western 

Lake Turkana), ' nitrate-rich waters are associated with 
leaching from nearby soils. An explanation such as this, 

involving a local origin is better than the one above, 

since the nitrate is confined to the silts of Area 103. 

This leaching process would probably have operated since 
lake regression. 

The carbonate content was established by adding HC1 and 
measuring the release of CO2 (fig. 3.6). The carbonate 
increases from the bottom to the trop of the section, but 
irregularly. The carbonate appears to be associated with 
shell material (whole or fragmentary). The increase in 

carbonate probably reflects greater proximity to littoral 

areas, in which molluscs thrived. 

:. Primary precipitates probably contribute little to the 

carbonate content in view of the neutral to slightly 
alkaline pH of uhe palaeolake. In contrast, the modern high 

alkalinity and pH cause the lake to be saturated with Ca 

and Mg carbonates (Yuretich, 1979). As a result calcite is 

apparently precipitated, much of it biologically by 

osLracods in the southern basin of Lake Turkana. Carbonate 

rich cores have been recovered from the lakes northern 
basin (Barton, pers. comm. ), which may be of a primary 
chemical-origin. 
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CHAPTER 4 

THE GEOLOGY AND DIATOM STRATIGRAPHY OF AREAS 102 AND 103 

4(i) The sedimentology, palaeontology and dating of the 

Holocene deposits of Areas 102 and 103 

4(i)a -Introduction to the eý ology and location of Areas 

102 and 103 

Areas-102 and 103 lie some 5 to, 10 km to the east and 
south-east, respectively, of'Koobi Fora (fig. 1.2, p. 29 
For descriptive reasons, these areas have been split into 
smaller sectors, which will form the framework for 

discussing the sediment distribution. 

Holocene lacustrine: and f luvio-lacuszrine sediments 
(plate 4. i)'ar'e widely distributed throughout Areas 102 

and 103, and represent a series of former, higher lake 
levels. Figure, 4.1 shows a map of the major lithofacies 

present. Many of the: facies indicated are diachronous, or 
formed during one or more distinct time periods. No time 
implications should, therefore- be drawn from this map. The 

general sedimentological,,; palaeontological and dating 

aspects of these deposits will be discussed in the rest 
of. this-, section, -, before going on' to describe the sediment 
distribution-in more detail. 

4(i)b The-sedimentology-ofýthe'Galana Boi Formation 

; to the eäst'of Fora Koobi 

The sediments of Areas 102 and 103 display rapid facies 

changes, both vertically and laterally. These changes are 
related to variations in grain size, structure and 
mineralogy (mainly differences in the quartz, to feldspar 
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plus lithics ratio). The complexity of the sediments is 

due to numerous shifts of environment during their 
formation. These environmental shifts were a response to 

the interaction of lake level fluctuations and a much 

eroded topography. 

As in section 72 (chapter 3), fine sands. (2.0 to 3.5 

phi) and silts (3.5 to 8.5 phi) dominate. Coarser units 

are less common, except in the western sector of Area 103 

(fig. 4.1). Twenty sediment samples, representing both 

silts and sands, all possessed a unimodal grain size 

distribution. Sording ranged from good to poor. 

Deposition was closely related to the palaeotopography. 

Bedding or laminae in the silts closely parallels the 

pre-existing surface. Initial dips of up to 150 are 

common at the base of many sections. As the flooded 

palaeovalleys were gradually infilled, topographic 

surfaces became gentler and dips declined. Disconformities 

and minor unconformities (related to lake level changes)' 

are common in the sands, but also occur in the silts. 

X-ray diffraction of the silts show them to be 

similar to those in section 72 (p. 105). Several typical 

diffraction spectra are shown in figure 4.2, and a thin 

section is shown in plate 4:. 2. 

Sands were examined in thin section (plate 4.2), and 

by X-ray'diffraczion. They are dominated by moderately 

to well sorted, subrounded, subangular and angular, 

sublitiharenites, subarkoses, arkosic arenites and 

litharenites. The mineralogy and descriptive terminology 

of the sands i shown in figure 4.3. Most units are loose, 

although a few are weakly cemented with calcite. Often, 

calcareous cementation was best developed in the surface 

of outcrops. Arkosic arenites and litharenites tend to be 

found today on Lhe floors of ephemeral rivers, and at their 

point of entry into the lake. The better sorted subarkoses 

and sublitharenizes are more common along the modern 
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Fig. 4.2 

Area 103 X- Ray Diffraction Spectra 
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Fig. 4.3 
Sand terminology and mineralogy of the 

Holocene deposits of East Turkana 
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shoreline. The presence of either sediment type may 
therefore have a palaeoenvironmental significance. Heavy 
minerals are also present in the Holocene sediments, and 
often pick out cross bedding (plate 4.3). Similar heavy 
mineral layers occur along the Koobi Fora shoreline today, 
where they are sorted by wave activity. 

Cross-stratification is often well developed in the 
sandy units (plates 4.4 and 4.5). This includes non- 

erosional 'alpha' types, and smaller scale structures 

similar to '. kappa' and 'nu' cross beds that indicate 

linguoid ripples (terminology afrer'Allen, 19(3). 'Lambda' 

types, that are formed by the migration of straight 

crested sand ripples, also occur. Well sorted, medium to 
coarse sands often *show larger scale planar. cross-beds. 
These include both low and high angled types. Cross- 

strata of this, kind are forming today in response to beach 
formation and barrier' migration on the Koobi Fora spit. 
Trough cross bedding is uncommon, being mostly found in 

sands and sandy gravels of probable 
_aeolian and * fluvial 

origin. 

Plagioclase (predominantly albite), orthoclase and 
microcline, together with quartz (both volcanic and 
metamorphic types) are the most common minerals in the 
sands. The percentage contribution of each mineral varies 
considerably. Beach sands ( as indicated by cross-strata 
and heavy mineral bands) commonly contain a high 
percentage of quartz (up to ca. 80%). Quartz grains range 
from angular to subrounded, and occasionally have 
secondary silica overgrowths. The feldspars may be 
partially altered to clays and may form up to about 65% 
of a sand sample. Lithic fragments are usually less than 
40% of the beach deposits, and are mostly well rounded. 
However, they may constitute up to 90% of sands in basal 
and channel units. The lithics consist of lavas such as 
basalt, and reworked sandstones. Hornblende, chlorite, 
biotite, muscovite, magnetite and ilmenite are all 
common. The heavy minerals may be sorted into distinct 
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Heavy mineral bands are common in the early and middle 

Holocene sands of East Turkana, as can be seen in this 

photograph. Similar layers are forming along the modern 

beaches of Lake Turkana. 
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Middle Holocene sands. The lower part of the section 

resembles beach bar sediments forming along the edge of 

the modern lake. The upper part, with its planar cross beds, 

and heavy mineral bands, is similar to low ant'; le beach 

.; orelines. 



Plate 4.5 

Laminar silty-sands giving way to ripple drift laminated 

units. The photograph was taken in the upper part of }. 

2m sequence of middle Holocene beach ty-ý, e deposits. 
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layers, where they may make up to 95% of the sediment. 

The mineralogy of the Galana Boi Formation is similar 
to that of the Pliocene and Pleistocene Koobi Fora 
Formation, for which Findlater'(1976)_gives the following 
list. 

Metamorphic 

quartz (undulose extinction) 
K feldspar (microcline) 

biotite 

amphibole 
rutile 

apatite 
tourmaline 

zircon 

opaques 

Volcanic 

basalts, ignimbrite, 

acid tuffs and 
amorphous silica 
K feldspar (sanidine, 

anorthoclase) 

amphibole 

plagioclase 
pyroxene 

olivine (& serpentine) 
zircon 

opaques 

The source of the metamorphics in the Koobi Fora 
Formation appears uo be the west Amar Kokke Highlands 
(west of Lake Chew Bahir). The volcanics were derived 
from these and other highlands that surround East Turkana. 
The Holocene deposits may have derived their minerals 
from reworking of the older sediments, and from renewed 
erosion of the surrounding volcanics. 

Siltstone nodules of the type described in chapter 3 
(p. 108) occur throughout the silts and fine sands of 
Areas 102 and 103 (plate 4.6). These are often centred on 

molluscs and are usually limonite-stained. Limonite 
(diffuse and banded) is found in interdistributary regions 

of the modern Omo delta (Butzer, 1971). Buzzer states that 

"ferric concretions and more continuous limonitic bands 

are theoretically possible among these inzerdistribuzary 

clays at depth". He did not observe any concretions, but 

stated that quite long periods of suitable conditions may 
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Plate 4.6 

Early to middle Holocene diatomaceous silts. Note the 

distinctly white, highly diatomaceous unit at the top. 

Limonite-stained, calcareous-cemented, siltstone nodules 

can be seen at the base of the slope. 
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be needed. While the silts of 102 and 103 are not of 
interdistributary character, they may have provided 
suitable conditions of stability. 

Gypsum occurs along several fracture planes. Cerling 
(1979) suggests that its presence in the olderýFormations 

may be due to sulfuric acid (released from pyrite by 

oxidation) attacking calcite. The gypsum in the Holocene 

units is'secondary, but its origin must remain speculative 

since no evidence of pyrite has been found. 

Nitratine is widely distributed throughout Area 103, 

but has not been recorded in Area 102. It decreases in the 

fine sands and is absent from coarser units. This may 

reflect the permeability of the sands and the ease with 

which nitratine can be leached. It is absent from the 

younger silts that crop out in the western sector (fig. 

4.1) of Area 103. 

Syndepositional, precipitated carbonate appears to be 

rare'. Carbonate found in the sediments is probably 
derived from comminuted shell debris. Secondary deposits 

occur-in various nodular forms, as a cementing agent and 
as c alcrete. 

4(i)c Palaeontological aspects 

Fish vertebrae are common in 

comprise about. 75 % of the faun 
(Nile Perch) and Clarius lazera 

about 20% and 5% respectively. 

of the Holocene sediments 

the silt units. Tila is sp 

a, while Lates nilozicus 
(catfish) account for 

Occasional crocodile teeth occur and hippo bones have 

been reported by Raynolds (1972). A sparsity of terrestrial 

vertebrates reflects the dominance of lacustrine 

environments in Areas 102 and 103. Further east, in Area 

127, equid teeth have been recovered from alluvial and 
beach deposits. Archaeological digs by J. Barthelme (1978) 



-127- 

have revealed the presence of warthog, equids, hippo and 
rhino in Area 102 and throughout East Turkana. 

Archaeological evidence indicates that during the 
Holocene, human occupation was based on two economic 
traditions (Barthelme, 

- 978). The. earlier, was based on 
fishing and the manufacture of barbed bone, harpoon_heads. 
The second, later economy, was based on domestic animals 

and has left a distinctive suite of pottery fragments. 

Mollusca are abundant in the Holocene sediments. In 

contrast, today they are rare and confined only to a few 

species. Cerling ('979). states that the upper limit of 

alkalinity,: tolerance is about 16 meq/1. Mollusc 

identifications have been based on Williamson (pers. comm. ), 

Mandahl-Barth (1954) and Adam (1957). 

., The, gastropoda include: Melanoides tuberculata, Pila 

ovata, Cleopatra pirothii, C. bulimoides, Bellamya 

unicolor, Gabbia Lymnaea exserta and 
Biomphalaria stanleyi. Raynolds (1972) also reports the 

presence of Gabbia walleri, G. kichwambae, Cleopatra 

nyanzae, Biomphalaria sudanica, Gyraulus costulatus and 
Bulinus tri oý nus. 

Bivalves include: Caelatura hautecoeuri, C. monceti, 
C. bakeri, C. rothschildi, Etheria elliptica, Corbicula 

africana, C. flumiriälis, C. artini, Mutely nilotica and 
M. emini. Raynolds also reports the*presence of ssano- 
donta parasitica. 

Molluscs are both scattered through the sediments and 
occur in laterally extensive coquinas. The most common 
molluscs in the sandier units are Mutela emini, Etheria 

elliptica and to a lesser extent Pila ovata. 'Often they 

are partially reworked. In the silts, 'Melanoides 

tuberculata and Corbicula africana dominate, with 
Cleopatra pirothii. Laterally extensive coquinas or mollusc 
-rich horizons tend to be dominated by Melanoides 
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i, -tuberculata and/or Corbicula africana. 

Root"'m'arks are common and consist of two main types. In 
the siltier units a"carbonised film has been left by the 
decay of aquatic vegetation. These cut through and lie 

parallel to the laminae... The... second_. _type.. forms_calcareous 

tubular casts in sands.,. These are often better cemented 

than the surrounding matrix, and occur ` as -dense ' 

concentrations in growth position. 

Ostracods are present in several units. Rather 

tentative identifications, based on Carbonel and 

Peypouquet (1979), suggest the presence of Hemicypris 

kliei and Limnocythere africana. Other species occur but 

identifications were not attempted. More rarely, pollen 

and siliceous phytoliths were observed. A. Vincens (pers. 

comm. ) states that although uncommon when compared to 

diatoms, pollen is still significant. 
5C 

Coi 

4(i)d Thedating. of the Galana Boi Formation 

No radiocarbon dates were obtained during this study, 
but severäl earlier, workers have established a series of 
dated units. Raynolds reports three dates from Area 103 
(eastern sector). These are 9880 + 670,4390 + 235 and 
5060 + 245 yr. -B. P.. The latter two are anomolous in, that 

they are stratigraphically in the wrong order. One or both 

may be based on derived material. 

J. Barthelme (pers. comm., 1978) has obtained a series 

of dates between 3890 and 9660 yr. B. P. (table 4.1). They 

suggest that the lake stood about 75 to 80 m above modern 
levels between ca. 10,000 and 7,700 yr. B. P., and from 

about 5,500 to 4,000 or 4,500 yr. B. P. Dates from a 
number of localities around Lake Turkana are plotted against 
height in figure 4.4. This gives a crude curve of lake 
level fluctuations for the Holocene. 



-129- 

Tadle 4.1 Caroon-14 aaies from Holocene hign level 
sediments in the Turkana Basin. 

East Turkana (N. E. Lake Turkana) 

Source 14C 
date Nature of Context Lake fed. 

sample level unit 
(years) (m. ) 

xaynolds, 70b0 + 245- Charcoal littoral 
19'(2 4390 + 235 Mutela Beach- G 

9880 + b7U Mixed shell' littoral +ca. 68 A 
L 

vondra et. 9360 + 1,55 shell? Beach? - A 
al, 1971 N 

A 
Barthelme 3970 + 60 Charcoal Beach +43-46 
(pers. 4160 + 110 Charcoal Beach +43-46 B 

comm. ) 0 
3890 + 60 Charcoal Beach +45-47 I 
3945 + 135 Charcoal Beach +45-4( 
4100 + 125 Humic acid Beach +45-47 e 

residue 0 
H 

4560 + 1s5 Mammal done Beach 55-5b M 
A 

'(855 + 160 Fish bone Littoral +73-7ýp T 
1 

8657'+ 2j5 mammal bone spit 95- 0 
8395 + 2'10 Mammal bone Spit plifti 14 
y660 + 235 Mollusc she. tl ? 
9940 7 2J5 Mollusc shell ? 

Lowasera (S. E. Laxe Turkana) 

rhillipso 3970 + 1z0 bone apatite Terrestrial ? U 
1978 )120 + 13> Bone apatiice otabilisea ? tv 

beach N 
4b0 + 110 Bone apai, iLe Beach ? A 

J6.50 + 155 Bone. apatite Beach M 
(785 + 15U Bone apai, ize . each +75 E 
410 + 200 Snell mittoral 14 D 

sand 

Lothagem (boo* Laxe Turkana) 

Robbins, 900 + 140 Shell Littoral ? ? unnam 
1y7, ý 420 + 165 ohell Beach ? -ea 

8230 + 180 Mollusc Shell bed ? 
6010 + 155 Mollusc Shell bed ? 
6200 + 125 Charcoal Hearth? ? 

1978 6300 + 80 Shell Shell bed ? 
7000 + 800 Charcoal Hearth? ? 
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_ý 

i 
Table 4.1 Carbon-14 dates from4Holocene high level 
(cont. ) sediments in. the. Turkana Basin. 

Omo Region (N. Lake Turkana) 

Source 14 C 
Nature of ext Context Sed. 
sample level unit 

years (m. ) 

utzer 3250 + 150 Mixed shell Beach ridge +70 
et. al. 4400 + 100 Etheria, Littoral 66 
1972 5150 + 350 Mixed shell Beach ridge 70 K 

5450 + 100 Mixed shell Littoral 69 IVb B 

5700 ± 100 Mixed shell Littoral 67 
5750 ± 100 Unionidae Channel fil 69 I 

6600 + 150 Mixed shell Trans- 15 S 

gressive 
H 

sandstone 
7160 + 80 Unionidae Littoral 66 
7900 + 150 Etheria Littoral 80 F 

oyster bank 0 

8650 + 150 Corbicula Littoral 72 R 

8700 + 200 Corbicula Littoral 72 M IVa 
8800 + 200 Corbicula Littoral 72 A 

8900 + 300 Mixed shell Littoral 59 T 

9100 300 Mixed shell Channel fil 72 T 

9300 ± 400 Unionidae Littoral. 78 0 
9500 ± 150 Unionidae Channel fill 80 N 

9500 ± 150 Corbicula Littoral 67 

Kangatotha (W. Lake Turkana)' 

ivings 4800 + 100 Etheria Beach 66 unnamed 
-one & 

endall . 
1969 

i. 
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Fig. 4.4 Holocene lake level fluctuations of Lake 

Turkana. 

Early to mid Holocene 
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4(ii) The distribution of Holocene sediments and their 

diatom stratigraphy, in Area 102 

4(ii)a The lacustrine sediments in the south of Area 102 

Area 102 has been divided into southern and eastern 
sectors for descriptive purposes (fig. 4.1). 

Three main outcrops can be recognised in the southern 

sector of Area 102. These are: 

(i) The high level silts 
(ii) The low level silts 
(iii) The clayey-silts 

Each of these sediment outcrops will be discussed in 

turn. 

(i) The high level silts 

Lacustrine silts, at heights of up to ca. 75 m above 
the modern lake (barometric altimeter reading), form 
a north-facing, arcuate scarp in the extreme south of 
Area 102. Sections 13 to 18 (fig. 4.5, and map of, the 
Koobi Fora area at the back of this thesis) all lie along 
the line of this scarp. These deposits can be traced 

southwards a short distance into Area 103, where they have 

been dated at between 10,000 and 5,000 yr. B. P. (Raynolds, 

1972). 

The pre-Holocene surface on which these sediments 
unconformably sit is a shallow depression with a central 
ridge of slightly higher ground (fig. 4.5). This ridge 
separates highly diatomaceous white silts (to the east) 
from diatomaceous grey silts (to the west). As the 
depression was gradually infilled, initial dips became 

gentler and the grey silts spread across the central 
divide. Two distinct horizons of white silt, towards the 
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the top of the silty units, merge westwards at a topographic 
high. The silts pass vertically and laterally into fine, 
medium and coarse, mollusc-rich sands. - 

0 
Section 19, in figure 4.5, lies in-sediments whose. 

lateral relationships are obscured by aeolian sand 
and vegetation cover. Fine sands at the base of this 

sequence give way to planar cross-bedded and ripple- 
laminated, medium to coarse, well sorted, subarkosic 

sands. Heavy mineral bands are present. The deposit 

probably represents a beach, possibly contemporary with 
the second group of lacustrine silts. 

(ii). 'ý The 10 vi level silts 

Lacustrine silts crop out at section 20 (fig. 4.5), 

to the north-west of the high level silts. These lie 

at a maximum elevation of ca. 65 m. The sequence begins 

with coarse and medium, subarkosic sands, which give 

way to finer units. The succeeding laminated, diatomaceous 

silts and clayey silts suggest a transgressive event. 
A subsequent regression is marked by coarse, well 
sorted, planar cross-bedded sands with numerous molluscs. 
This latter unit, and a sequence of cross-bedded fine 

sands have'been dated between 3890 and 4160 yr. B. P. by 
J. Barthelme (pers. comm. ). Calcified 'sandy root casts are 
common in the sands and suggest littoral reeds. 

Coarse to medium, reworked (bioturbated) subarkosic- 

sands of probable littoral origin are, )spread across the 

top of all the sectionsrso far discussed. This deposit 

may be related to a final regressive-episode. 

(iii) The clayey-silts 

Lacustrine sediments also crop out to the north of 
those discussed above (sections 15 & 16, fig. 4.5). At the 
base of sections 15 and 16 are sublitharenitic (littoral ?) 
sands, with litharenites in channels. Molluscs are common, 
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Fig. 4.6 Holocene sections in the south of area 102. 

Section locations 
illustrated in fig. 4.7 

Section 16 

Alternating fine and 
medium/coarse sands. 
Shell lenses; brown; 
indurated. 

Well washed, medium 
and coarse sands. 
Pebbles;. shells. 

Fissile, clayey silts. 
Alternating light and 
dark grey laminae. 
Limonite stained 
nodules scattered and 
in horizons. Limonite 
staining of silts 
near base. Occasional 
root-cast horizons. 

Loose, nmedium sand. 
Scattered shells. 

Pebbly coquina. 

Metres 

2 

1 

0 

Section 15 

Fawn, massive, medium 
sand with pebbles 
and shells near base. 

Grey, well laminated 
silts. More fissile 
towards top. 

Grey, pebbly, silty 
sand 
Pine sand with 
shell fragments. 
oa yosan 

el sand. 

Coquina. 
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consisting mainly of Corbicula spp.. A deeper-water, 

clayey-silt litihofacies succeeds the sands of both 
sections. These silts are about 7m thick'in section 16, 
and'-'2 m thick in section 115. They are highly fissile and 
resemble paper, shales. Alternating-light-and dark laminae 
(ca. 1 cm thick)-are common. Limonite-stained,. ýcalcareous, 

siltstone `"nodules, 'are abundant. Root casts 'are''common, 

particularly at the top of section 16. Resting with a 
sharp boundary on top of the silts are massive, medium, 
brown subarkosic sands and arkosic arenites with pebbles 

and molluscs. In section 16, the latter units give way 
to alternating fine and pebbly coarse sands. These 

sandy units indicate a return to shallow-water, high- 

energy environments. The age relationships and height of 
these sediments are uncertain. 

4(ii)b The lacustrine sediments in tihe east of Area 102 

This area lies along the western flanks of the Koobi 

Fora Ridge (fig. 4.1). The maximum elevation of the 

deposits is about 80 m above the modern lake. The 

sediments are mostly of littoral character and they lack 

the deeper water facies of southern 102. Figure 4.7 

shows a series of sections in these deposits, and these 

are referred to in the following account. 

Section 34 lies in the northernmost of the outcrops. 
It is also the thickest at 15.5 m. The sequence begins with 
conglomerates and coarse to medium, poorly-sorted 
litharenites, which are locally cross-bedded. These give 
way to lacustrine silts and a coquina, that probably 
formed during a high lake level. A regression is indicated 
by the succeeding poorly-sorted litharenites which 
contain root casts. Above an 80 cm thick fine sand is 

an alternating sequence of fine and coarse sandy units, 
which might reflect a fluctuating lake level. About 
7m of mollusc rich, fine to medium, moderately well 
sorted litharenites completes the succession (apart for 
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a thin aeolian sand cover). 

Immediately to the south of section 34 are a series of 
beach-type sediments in which Barthelme (pers. comm. ) has 
found evidence of human occupation. These deposits lie, 
at heights between 70-and 80 m. " 

Section 35 lies in. a former shallow embayment of the 

palaeolake. It is dominated by litharenitic sands, which 
in mid-sequence contain a 20 cm thick coquina of 
Melanoides and Corbicula. Tilapia vertebrae are common in 
these sediments. 

The silts at the base of section 36 record a high-level 
lake. Angular blocks of Koobi Fora sandstone sit on this 
deposit, and, are succeeded by a2m thick unit of medium 
grained litharenites, which suggest a lake regression. 

Sections 37 and 39 contain cross-bedded litharenites 

and root cast, pebbly litharenites, respectively. Section 
38 contains a fine sand with abundant Melanoides and 
disarticulated Corbicula (plus several other less common 
species). 

All of these deposits formed close to palaeoshorelines 
of Lake Turkana, although not necessarily at the same 
time. The probable line of the highest shoreline, through 
the eastern sector of Area 102, is shown in figure 4.7. 
In the south-east of the inset of this figure is marked 
a large embayment. This is the location of the Koobi Fora 
Ridge airstrip. This is a large, almost flat, circular 

area of mudcracked silts. These deposits are surrounded by 

sands, and lie close to the 80 m lake maximum, widely 
recorded at East Turkana. It probably represents a former 
lagoonal area. 
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4(ii)c The diatom stratig of Area 102 

Diatoms are uncommon and often fragmentary through much 

of the high-level silts of southern 102. However, diatom 

-rich horizons do occur. Near the base of section 14 (fig. 

4.6) is a benthonic flora dominated by Rhopalodia and 
Surirella species. Rhopalodia vermicularis is the most 

common diatom and is favoured by slightly alkaline, littoral 

waters. It is oligohalobian and endemic to East Africa. 

Planktonics are rare, except in two horizons in the middle 

of the succession. Towards the top of section 14, benthonic 

forms become increasingly common. 

An abundant planktonic flora was only observed in the 

low level silts of section 20, and in the clayey-silts of 

sections 15 and 16. 

In section 20 (fig. 4.6), Stephanodiscus astraea 

dominates in the lower 50 cm of the silt sequence. Today, 

this planktonic, oligohalobian diatom is recorded from 

lakes low in dissolved silica (Richardson, 1968), with 

a low alkalinity (0.9 to 4.5 meq/1), and a moderate to 

high phytoplankton content. The remainder of the silts 

are dominated by Melosira agassizi, which is another 

planktonic diatom favoured by low alkalinities. Although 

M. aRassizi has a broad salinity tolerance, it is most 

often found in dilute water. It often occurs in shallower 

water than Stephanodiscus app., and usually indicates 

higher silica concentrations. 

The diatom stratigraphy of sections 15 and 16 are 

shown in figure 4.8. Section 15 includes about Im 'of 

diatomaceous clayey silts. The flora is dominated by 

Stephanodiscus astraea with less common Melosira agassizi. 
Section 16 contains about 9m 'of clayey silts. S. astraea 

dominates in the lower 1 in, after which M. agassizi 

predominates up to about 5 in. At this level there is an 
increase in the littoral diatom Cocconeis placentula. 
This marks a probable fall in lake level. A second 
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transgressive episode can be suggested from the increase 
in S. astraea above about 6 m. A final regression is 
recorded in section 16 by the occurrence of non-diatomaceous 
littoral sands. 

Diatomaceous sediments are rare in the eastern sector 
of Area 102,, but diatomaceous silts have been found in 

sections 34 and 36. These are dominated by an epiphytic 
bella, pithemia and GoMphonema flora (Cocconeis, Eym 

species), which suggest shallow reed rich water. 

., 
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4(iii) The geology and diatoms of Area 10 

4(iii)a Introduction to the geology of Area 103 

The Holocene sediments in Area 103 are the thickest 
and most extensive deposits of this age at East Turkana. 
Here, the Galana Boi Formation rests unconformably on a 
highly dissected Pleistocene surface. This surface 

exerted a strong influence on Holocene sedimentation. 

Figure 4.9 shows an east to west cross-section through 
Area 103. This diagram shows the thickest sequences 

occurring in low parts of the Pleistocene surface. These 

correspond to palaeovalleys. A series of isopachytes 
(ignoring local incised river valleys) in figure 4.10 

shows the location of the thickest Galana Boi sequences. 

Contemporary or post-depositional faulting was not 
observed. At present the poorly-consolidated Holocene 

sediments of Area 103 are being rapidly eroded, mainly 
by wind deflation. 

Area 103 has been split into three sectors, following 
the system used by Raynolds (1972), for descriptive 

purposes (fig. 4.1). These sectors will be described in 
the following parts of this chapter. 

4(iii)b The distribution of lithof acies in central 103 

The deposits of the central sector are shown in figure 
4.11. They reach a maximum thickness of about 33 m. To 
the east and north they thin into the silts of eastern 
103 and southern 102, respectively. Westwards they thin 
and give way to sandier units in western 103, while to the 
south the sediments are eroded, leaving isolated outliers. 

Section 72, which was discussed at length in chapter 3, 
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lies at the eastern margins of this sector. Poorly- 

sorted, lithic, silty-sands and sands, which locally 
incorporate blocks of Koobi Fora sandstones, occur in the 
lower one or two metres of the sediments, throughout this 
sector. A few, poorly-sorted river channel grits and 
conglomerates are found-in these basal"units., These 

alluvial. and colluvial sediments"arefollowed, by, a thick 

succession of. lacustrine diatomaceous silts. High initial 

dips of up to 150 occur-at the�base of the silts, but these 

decrease towards the top. 

Transgression-regression cycles are not clear from the 

field evidence. Calcareous, limonite-stained, siltstone 

nodules, are,, abundant in the silts and silty-sands. They 

often occur, in layers (as well as scattered), both 

cross-cutting and parallel,. to the silt laminae. 

,,,. 
The diatomaceous silts are often fissile and commonly 

consist of alternating light and dark laminae (ca. 1 cm). 
These bands might relate to seasonal floods. Such events 

occur . today. 

Two distinct horizons of white silt occur in the west 
of the sector. These close together westwards, although 
they remain separate, before dying out between sections- 

and 4"(fig: "*4.11). 

The silty, lacustrine units are succeeded by sandier 
deposits throughout the sector. These resemble littoral 

sands forming on the modern shores I_ Lake Turkana. The 

deposits consist of loose, moderately to Well-sorted, 
subarkoses and sublitharenites and less common arkosic 

arenites. -Several minor unconformities-occur. Heavy 

minerals pick out cross beds. These sediments may be 

time-transgressive, becoming younger to the west. They are 
dated at ca. 5,000 yr. B. P. in the eastern sector, and 
Barthelme (pers. comm. )-has obtained-dates of ca. 4,000 

yr. B. P. to the north-west, in Area =102. ' 
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4(iii)c The lacustrine deposits of eastern 103 

The sediments of the eastern sector are shown in 

figure 4.12. At the base of section 4a occur subangulä± 
pebbles of Koobi Fora sandstone (up to 10 cm), in a very 

} 

poorly sorted litharenitic, fine to coarse : sand of up to 

,Im . 
thickness. Several centimetres of poorly-sorted, 7 

'silty lithic sand follows, 'and in turn is succeededtby ä. 

coquina. This consists'of well-preserved Corbicula and 

less common Melanoides tuberculata. Raynolds dated this 

nit at 9880 + 670 yr. B. P.. The coquina is succeeded by 

diatomaceous silts, which in the:, upper half of section 
% 

4a alternate with well-sorted: finesublitharenites. These 

alte rnations may'reflect changes ih 'the level of the 

ancient lake. "At the' top , of section 4a occur fine to 

coarse, subarkosic and sublitharenitic sands, similar to 
, those in the upper parts of the deposits of central 103. 

These sands are. 'rich in molluscs, and Raynolds (1972) has 

obtained adate? of 5060 ± 245 yr. B. P.. 

The coquina at the base of section 4a continues into 

the, base , 
of section 12 (fig. 4.12). The overlying silty 

units have thinned and occasional small, gritty, channel 
! scours. can°be seen at the top. Above these are Corbicula 
}and Melanoid'es rich sands. The molluscs occur in thin 

+(4 to 5�cm)^: mollusc-rich beds that alternäte--, with mollusc= 

. poor units. fy4, \v[ 

L3; 

Throughout the central and 'eastern sectors a recurrent, 
_ st 1R 

pattern of sedimentation is apparent. ý_This is as follows.. 

C. Upper, littoral, well-sorted sublitharenites 

and subarkoses. 
B. Middle, lacustrine diatomaceous, silts 

N�_C. 
Lower, 

. alluvial, colluviäl and occasional 
littoral, poorly-sorted, litharenites. 

This pattern is also repeated in the isolated section 29 
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(fig. 4.12). The pattern does not indicate that the units 
are contemporary. In fact they are probably diachronous 
and follow major transgression-regression cycles. 

4(iii)d The sediments in the western sector of Area 103 

Figure 4.13 shows the sediment distribution in the 
western sector of Area 103. Alternating poorly-sorted 
arkosic arenites,, litharenites and better sorted 
sublitharenites and subarkoses are common. Diatomaceous 

silts and impure diatomites also occur, together with a 
tuff unit. Individual units range up to two or three 

metres thick, and are laterally variable and difficult 

to trace. Erosion surfaces, palaeosols and reworked 

sediments are common. 

At sections 6 and 7 (fig. 4.13, plate 4.7) a2m thick, 
massive impure-diatomite sits unconformably on moderately 
indurated silty sands. The impure diatomite is calcareous, 
and is succeeded by ab 'ZO 7 cm thick, flaggy tuff. This 
is the only tuff yet observed in the Galana Boi Formation. 
The nearest potential source is North Island, some 15 km 
to the north-west. Here, trachytic lavas overstep 
probable Holocene high lake level erosional benches. If 
these are associated, then a young age., is implied for 
these deposits (middle to late Holocene ? ). The tuff is 
succeeded by a well-laminated, slightly calcareous, impure 
diatomite. It has been strongly eroded, and the maximum 
thickness that remains is about 3 in. The erosion suggests 
a regression, after a period of quiet water diatomite 
sedimentation. Blocks of eroded diatomite (ca. 6 cm) occur 
in a channel in the middle of section 9. Above the impure 
diatomites is an arkosic silty-sand rich in molluscs. This 
deposit suggests a transgression and the development of a 
littoral environment. 

In section 9 (fig. 4.13), below the eroded diatomite 
blocks, occur well-sorted, cross-bedded, litharenitic sands 



-150- 

9 
0 

43 
cý 
0 

\ 
0 

r-4 id xa v aý cn 
d *24 +' r ýd 10 :3 

Q) 0 

I of a. 0c ++ 
1.4 10 H r. : ýi 4-2 

(a Ril 00 

-4 tko 

ý'4d, 
"\ý" 

,., 

"1', 

ý" 

, 
`' , 

, 
\\\ý 

n , ri" 

4 
'gýa as 

136 

/ý44 

A 

/ a, 

r z s rl 94 cc 

z ur I 0 -4 cc P. 

0 (a -4 
T- O0 td 

(v 0 
4-2 N 
rd ri 

co 0 

cc rA 
!ýý. t -i f1 q) d ýi ýi 

trl 

QD 

\I '1 

/\\ 
/ 

v1 , r i-a -1 
co 

CS r4 
+11 +3 b 'd ti 7 
H r1 co cß H 

j ý1 !] 7 7J U 34 

ö 0 oo 
"ri O IQ 0 

' V 
O 

" Imo 
Ili 

" 
c6 

ri 
ja 

T" ld 
0 
O 

0 13 

4-1 . 
" O' 

U , 
' 

Q) 

1iiii 



Plate 4.7 

Middle to late Holocene impure diatomiteL . Calcareous 

impure diatomites occur at the base of the outcrop. A thin 

tuff (the only clearly defined deposit of this type, of 

Holocene age, that occurs at East Turkana) forms the ledge 

at 'Robins' shoulder. Above this, a well laminated impure 

diatomite continues the succession. These are some of the 

youngest lacustrine (other than beach deposits) sediments 

in the area. 
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with gastropods., Their orientation suggests a south- 
westerly palaeocurrent. At a height äf, 1.5 m in the section, 
and below the gastropod sands, is 

.a 
calcareous litharenite, 

which contains `aý 2 to 3 cm thick fish. bed. ' Ostracods are 
common in parts-of this unit. At the basw of this section" 

occur subangular,. poorly-sorted litharenites,,, with. n' 
occasional=fish ýfragments. 

Beach deposits dominate in the eästöf-, tihe sectör. At 

section 4 "(fig. - 4.13), planar cross "beds and-ripple drift 

tlaminae, are., present at the top of the sequence. These sands 

are well-sorted, 
jcontain 

heavy mineral bands, and are of 
subarkosic", -co"'subl'itharenitic character. They overlie silty 

sands that contain fish vertebrae. Pebbly, ' poorly-sorted, 

coarselitharenizes occur at the base of.,,, these Holocene 

, 
deposits. 'Correlation of these sediments-with those of the 

central sector is 411 due to poor, exposure. They may 
be equivalent. to the upper sands of the central sector, 
, or rest unconformably on them. Their stratigraphic position, 
as :. far as can be assessed, and lithology are similar to 

ithe sands of section 19 (p. 134). These', two outcrops may Y; 
nt, 

, form part of the same palaeoshoreline. 

-This, sector. was subject to several, probably middle to 
; late Holocene, a, transgressions and regressions, with several 
periods of., emergence from the palaeolake. 

; 4(iii)d 'The diatoms of Area 103 

The diatom stratigraphy of section 72, which-lies in 
Area 103s'ýýhasa"already been described. Several other; sections 

were examined ±o r` their. diatoms,.. and. -theseare described in 
, the following paragraphs. -- 

Section 45 lies about 300 m to th'e south" of section 72 
`(fig. 4.14). Here the deposits are, 33 m thick, of which 

, 
15 m are diatomaceous. This section'lies at a slightly 
: lower altitude than section 72, which is reflected in a 
higher proportion of planktonic floras. The Zone A flora 

"t 

,., 
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(see chapter 3), with its dominance of Melosira and 
Stephanodiscus, appears to be well developed between 3 and 
8 m. A regression is probable between 8 and 9 m, where 
diatoms disappear apart for some fragments. The planktonic 
flora between 9 and 12 m suggests renewed high lake levels. 
Above this, the diatom Rhopalodia vermicularis becomes 
dominant, except for one or two levels, suggesting , ggesting a 
shallowing of the lake. Stephanodiscus astraea-var. 
minutula and Melosira nyassensis var. ývictoriae", are 
dominant at 12.5 and 14.5 m respectively. Richardson (1968) 

comments that the latter is favoured by slightly alkaline 
water. It is common in oligohalobian lakes, and is endemic 
to Africa.: Today, it occurs in, Lakes Kyoga and Victoria 
in open water, and is favoured by, 'low silica concentrations. 
S. astraea var. tninutula', isalso, an alkaliphile diatom, 
found in oligohalobian lakes of low silica concentration. 
It is common in nutrient-rich environments, and is 

favoured by transparent waters, -(allowing light penetration). 
Above 18 m, diatoms disappear and sandy sediments- 
suggestive of littoral conditions prevail. 

The generic counts shown-in section la (200 m west of 
Oection. 72)_ 

, 
of. figure 4.15 are dominated by lplanktonic 

diatoms. Two transgressions are probable, with shallow water 
phases being represented by reworked diatoms. Sections 2a 

and 3a, in; the same figure, reflect , shallow waters with 
occasional periods of "emergence. Transgressions in these 
latter sections are, indicated by increases in'the percentage 
of Stephanödiscus acid Melosira. ' 

The diatoms of sections 6 and 7 (western 103) contrast 

with°those. recovered from the sediments of central. -103. 
The'diatom: stratigraphies of these, s'ections, are shown in 
figure 4.16. Sections 6 and'17 contain the most highly. 
diatomaceous' deposits... found-in eithez_Area-103 or `Area 102. 
Melosira. granulata,, is-more. common here than elsewhere, 
Thalassiosira rudolfii and C clotella meneghiniana appear 
for the first time. The genus Stephanodiscus, common in 

. other localities, -is-absent, while Fragilaria species are 
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Fig. 4.15 Generic diatom stratigraphy of sections la, 2a, 

and 3a; Area 103 ( Central sector ). 
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more common. 

Rhopalodia vermicularis occurs in a silty sand at the 
base of section 7, but declines rapidly to be replaced by 
several Fragilaria species (present in both sections 6 and 
7). Today, Fragilaria pinnata, F. construens and F. 
brevistridta are able to live in either planktonic or 
benthonic habitats, while the other common species,. F. 
lapponica is a benthonic diatom. All are favoured by a pH 

of about 7.5 to 8, and while they have a wide salinity 
tolerance are most common in oligohalobian water. They also 
tend to occur in lakes of low nutrient status. All diatoms 

disappear at the tuff horizon (210 cm in section 7). This 

probably represents an ash fall into the lake, sufficiently 

rapid not to allow the accumulation of diatoms. Above the 
tuff, the percentage of Melosira granulata increases. This 
might be due to an increase in silica availability, 

associated with 
. 
the volcanism. M. granulata is today 

found in lakes with, a high silica concentration. It is 
fävöured by slightly alkaline, nutrient-rich, oligohalobian 
waters, and has a pH optimum of 7.8 to 8.2 (Cholnoky, 1968). 
It normally occurs in planktonic habitats. M. granulata 
soon declines and is replaced by Fragilaria spp.. There is 

also a slight increase in Thalassiosira rudolfii and 
C clotella meneghiniana at these levels. These latter two 
diatoms occur in the modern lake, and probably reflect a 
slight increase in the alkalinity. 

The lake then regressed and the diatomites were partially 

eroded. A final transgression is recorded, by the silty 

sands at the top of section 6, but these contain no diatoms. 

y 
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4(iv) The eg ological history, of the area to the east of 

Koobi Fora 

Figure 4.17 shows a series of simplified palaeo- 
geographical maps for the region to the east of Koobi Fora. 
These indicate the approximate position of shorelines, as 
indicated by mapping in conjunction with diatom and 
sedimentological studies. The reliability of the dating 
varies from good to poor, but the stratigraphical order 
is essentially correct. The 'Zone' terminology is based 

on the study of section 72, -and is discussed in chapter 3. 

During pre-Zone A times the area was dominated by 

erosion. Channel, conglomerates suggest a well-ordered 

stream network. "This latest Pleistocene erosive phase, 
has also been recognised`-in`the Omo region, to the north 
of Lake Turkana, -by Butzer (1972). '. He dated it at between 
37,000 and 10,000 yr. B. P.. The shoreline position is 

unknown, but probably lay to the west of Areas 102 and 103. 

A major transgression"during Zone A times led to 
the deposition of silts throughout Areas-102 and 103. At 

this time-the Koobi Fora Ridge may have been periodically 
inundated, but more probably was emergent as a. linear, 

north-east to'south-west trending landmass (for further 

data see chapter 5). The diatom evidence' suggests that 

the lake-level was not stable. Altimeter readings on 
beach sediments suggest a maximum height of about 80 m 

above the modern lake. The`palaeolake contained a rich 
biota which included fish=, crocodile,,, hippo, molluscs, 

ostracods, diatoms and macrophytes. The shorelines were 
frequented-by early fishermen. Sediments dated from here 

and other parts 
, of, "East r 

Turkana suggest that this phase 
took place between about 9,800 and 7,700 yr. B. P.. 

A regression of limited extent took place during 
Zone B(i) times. '. The shoreline shifted away from the Koobi 
Fora Ridge, but still remained closely'parallel to it. 
Silt deposition was maintained through most of Areas 102 
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Fig. 4.17 Inferred shoreline changes at Koobi Fora 

during the Holocene 
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and 103. The lake remained fresh and of. essentially 
unchanged character. 

A second major transgression occurred during Zone 
'B(ii)' times, although the lake may not have attained the 

heights it did during Zone A. A second high-level phase 
has been recorded elsewhere along the Koobi'Fora Ridge. 

This conforms to a pattern noted by Butzer in the Omo 

region, where he dated the second transgression at 
between about 5,000 and 6,000 yr. B. P.. However, such a 

correlation must be treated with caution. 

A regression occurred during Zone B(iii) times. Small 

streams advanced, particularly on the northern side of the 

Koobi Fora Ridge. The shoreline still lay close to the 

Ridge. 

By Zone C times the shoreline was located over areas 

of earlier silt deposition. Alternating lacustrine silts 

and beach sands suggest that the lake was still subject 
to fluctuations of height. Fluvial sediments were 
prograding into what was still a freshwater lake with an 

extensive biota. 

Lacustrine silt sedimentation had receded from most 
of Areas 102 and 103 by Zone D times. Sediments belonging 
to this phase in the lake's history have been dated by 

Ray nolds (1972) and Barthelme (pers. comm., 1978) at 
between 4,000 and 5,000 yr. B. P.. 

A third, more limited transgression, during'impure 
diatomite' times, lead to the deposition of impure, 

calcareous diatomites. The lake had become slightly more 

alkaline, but remained much fresher than it is today. 
Contemporary volcanism took place, probably centred on 
North Island. Fluvial and deltaic environments were more 
widespread across Areas 102 and 103. 

Regression lead to erosion of former lake deposits 



-161- 

during 'post impure diatomite' times. The shoreline may 
have stood close to its modern location. A minor 
transgression followed in 'silty sand' times, during 
which the shoreline probably passed through the western 
sector of Area 103'and through southern 102. 

The lake continued to recede, probably with several 
minor transgressions, until the modern shoreline-was 
attained. Butzer (1971) has demonstrated that during 
historical times the lake has risen and fallen between 
heights of -5 m and +15 m (fig. 4.4). 
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CHAPTER 5 

THE VARIETY OF QUATERNARY LACUSTRINE SEDIMENTS ACROSS 

THE EAST TURKANA BASIN 

5(i) Introduction to the range of lithofacies present 
1 r? 

at East Turkana 

This chapter describes several distinct areas, that 

together complete the story of Holocene sedimentation at 
East Turkana. These areas include: 

(i) Areas 120 and 127. The deposits present include 

Etheria shell banks, coquinas, diatomaceous silt 
and impure diatomite, littoral and aeolian sands. 

(ii) Area-119. The deposits present include coquinas, 
beach ridge sands, lagponal silts and regressive 
sand sheets. 

(iii) Areas 100 and 104. The deposits include micaceous 
littoral sands and silts, coquinas, calcretes and 
alluvial sediments. 

(iv) The Chari Ridge area, in the extreme north of 
East Turkana. Both Pleistocene and Holocene 

sediments are described. These include littoral 

sands, stromatolites, coquinas, claystones and 
siltstones. 

W. Areas of the modern lake from which cores have 
been obtained. The sediments are dominated by 
light and dark banded, calcareous clays. 

Figure 5.1 shows a, , 
series, of, Holocene 

, 
'local' type 

sections' for each of the areas to be discussed (except 

for the core material), and also shows the section, 72, 

sediments (discussed in chapter 3). The diagram includes 
data on heights, lithologies, dates and major transgressions. 
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5(ii) The lacustrine's'ediments and 'Etheria elliptical 

shell concentrations of Areas 120 and 

t 

5(ii)a Introduction to the sediments of Areas 120 and 127 

Holocene läcustrine sediments crop out-"toýthe east of 
the Bura Hasuma River, 25 km east of Koobi' Fora; "''within 
Areas 120 and 127. There are no direct roads'°into`these 
Areas, but they can be approached from the north without 
too much difficulty. A geological map, based on aerial 

photographs and field observations, _is'shown 
in figure 5.2a, 

while the facies variations are given in the block 

diagram of figure 5.2b. The local, type section (numbered 

52) is presented in figure 5. i. 

This area'is informally referred to as the 'Etheria 

Reef' locality, because of local concentrations of the 

mollusc, Etheria elliptica. Although found elsewhere in 

the East Turkana region, it is most abundant here. 

The sediments can be informally, divided into two units, 

an upper and a lower unit''(fig. 5.2b). The upper unit 
consists of. aeolian and littoral, litharenitic and 
sublitharenitic sands, with local Etheria concentrations. 
The upper unit often rests unconformably on the lower unit. 
The lower unit is'less extensive than the upper, änd. is. 

_ 
dominated'by lacustrine, feldspathic silts, coquinas and. - 
impure. diatomites. The various lithofacies present in 

both units will be described in the remainder of, this 

section. 

'5(ii)b The distribution, lithology and palaeontology of 
the 'Etheria shell banks' and cö uq inas 

The 'Etheria facies' consists of tightly cemented 
shells of Etheria elliptica. Where it is best developed, 
such as in sections 52 and 74 (fig. 5.2b, plate 5.1), there 
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is little or no detrital contribution of silt or sand. 
This biogenic deposit is confined to the upper unit, 
where it often forms a cap-rock. The Etheria facies 

reaches a maximum thickness of 4.5 m at section 52 (fig. 

5.1). In this section the facies passes gradationally into 

underlying and lateral, poorly consolidated, litharenites. 
At section 73 (fig. 5.2a), Etheria elliptica shell banks 

sit on a. planar erosion. surface cut into lacustrine silt. 

Etheria elliptica thrives under high energy conditions 
(Williamson, pers. comm. '). Today, it occurs along the 

interdistributary channels. of-. the Omo=River, delta (Butzer, 

1971). Satellite photos show that"a possible overflow 

from Lake Chew 'Bahir see discussion in chapter 7, p. 223 ) 

may have entered the palaeolake. in this area. 'A high 

energy shoreline, with a freshwater input, would seem to 

be ' a'. suitable environment for 
_ 

this , 
mollusc'. - In other parts 

of-East Turkana,: Etheria occur scattered through sandy 

deposits, but never attain the concentrations found here. 

No diatoms were recorded in this facies. 

Other molluscs occur in coquinas that are usually 
lensoid bodies of less than Im lateral extent and 4 to 

5 cm vertical thickness. However, the most extensive 

coquina (in the vicinity of section 52) can be traced for 

about 400 in. The molluscs mostly occur in a silt or 

poorly-sorted, fine to medium sand matrix., Three common 
types of coquina occur (based on mollusc content), all of 

which are best developed in the lower unit. These are: 

a) Melanoides tuberculata dominated. Usually 

found in low numbers. 
b) Corbicula africana dominated. Usually found 

in high numbers. 
c) Corbicula africana and Melanoides tuberculata 

jointly dominant. A wider variety of species, 

eg. Mutela sp. and Cleopatra spp.. Usually 

found in high numbers 
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Plate 5.1 

-- i 

: -!! 0 
ý. _ y: r 

Section j'. Early Holocene deposits up to 80 in above the 

modern lake. Note the 'panga' and hat, for scale (about 30 

cm). Lacustrine diatomaceous silts and clays are overlain by 

shell banks, composed of well. -cemented Ftheria elliptica. 
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Among the more common molluscs present are: Melanoides 
'tuberculata, Pila ovata, Bellamya unicolor, Cleopatra spp., 
Mutela emini, Etheria elliptica, Caelaturä sp. and 
Corbicula africana. A large p. -portion of the shells are 
disarticulated or worn, especially in the upper unit. This 

probably indicates transportation prior to deposition. 
ie 

Diatoms occur, but 'are -mostly fragmentary. ' The ; most common 

species belong to the genera Rhopälodia,, ithemia and 

Cocconeis, and are all littoral forms. 

SCii)c The fine grained lithofacies of the 'Etheria Reef' 

locality 

Three groups of fine, grained lithofacies occur. These 

are: 

a) The black shales 

b) The diatomaceous silts 

c) The impure diatomites 

Each of these lithofacies will be discussed in turn. 

a) The black shales,, 

X-ray diffraction and grain size analyses of these 

shales show that montmorlllonite'. clay (8.5+ phi) forms up 

to 85 wt. % of the black shale lithofacies. The remainder 

consists of fine to medium silts'(5.0 to 8.5 phi). This 

, is the only part of East Turkana, wher, e clays attained 

such concentrations. The black shales are confined -Co 

the lower unit. They crop out in section 52 (fig. 5.1) as 

two`thin horizons, both less than 4 cm thick. The two 

horizons are well consolidated and devoid of any biota. 

Black shales are best developed at section 69 (fig. 

5.3). Here, hard black shales form a deposit about Im 

thick. The upper and lower boundaries of this deposit are 

sharp, while laterally it grades into dark grey silts, with 

abundant root casts. No fossils were observed in the 



-170- 

W 
VO 

: d 
l0 : ý... ý" . 

"y 

0 t- Cc vi 
U N 
0" 

ý 
. 0-1 Sý4 

" 
, 

IDO "rl 

N 

' ' . : i: ": :. 1 ." +S 

AD It c 

W4 
+ , % 

( i w r-4 Id : " . ý 0 4-3 V4 

" 
Cc 

V. 11 cß " 
0 :1 N " ' s`i1 In 

(D 
.03N cd 

C) ILI 
4.4 "". \ 0-i 

0, 
d 1-i w G9 p 

O 
'' "" ,/, 1' 

to cd 0 :3 ) 

, ' "ý 
O 17' 

to 
Cd 

'ý'4 - "F 
Ho 

r-I $4 
1 O NOO 

4-' Y""+ Off' i 
fs 

v I 1 'ý 
Oýý ý ý I r""1 Cc co 

Id 0 
-, . '. -+1 

1 
. ' O . O if , II . "' N 

I I to 4 
9 

cd 1 I , ( o 0 "r-I q4 

o 111 '' " "' 
`1 

ý 
Cd 
H 

Id 
"ri C) 

10 
"0 11, .. 

:ý pq 

:. ý II (ii III 
X11, ý3' 

C 
' ý ý ++ D 

( ý ý I I " 

H ,I( 1 Oil 4-31 I' I' ý, . "II +I r-+ " I II I ýI ý' '" I j r-I E . 1-1 0 
f 1I , :ý " ." ''ý'' I 1 (t) 

""I' 11 ,I ý�'' p, Cc- - 

$4 
tio 

tko 

I I 4-1 
'" ' II $ II ' t: ," 

" ' 
J I , i jl ) y., ' '1 

(I 
I 

ý 
a 

If' ' 
i 

Ii ., ý 
ý1 cÖ "rl E 

A a F-i 

. 
°p ý "ýý":; '" "I T. II, ýý 

ýý 
ý! ý III .;; I at I ý 



-171- 

shales. They probably represent' quiet-water sedimentation, 
and possibly anaerobic conditions (in view of the lack 
of fossils). Possibly they are lagoonal. 

b) The diatomaceous' silts 

Lacustrine diatomaceous silts form the bulk ofx. the. 
lower unit. They are poorly consolidated and occasionally 
weakly laminated. Diatoms'are often fragmentary and 

consist mainly of , littoral. types. These are dominated by 

Rhopalodia vermicularis and Cocconeis placentula. Their 

'fragmentation suggests a turbulent environment, perhaps 

as a result of wave action. The silts attain a maximum 
thickness, of about 5m in sections 52 and 73 (fig. 5.2b). 

X-ray diffraction : shows feldspars to be dominant (up to 

about 80 while minor quantities of montmorillonite are 
present. 

c) The impure diatomites 

Impure diatomites occur only in the lower unit. They 

often contain root casts (eg. in section 67, fig. 5.3), 

and are powdery to the touch. Laterally they grade into 
less diatomaceous silts. The-flora of these deposits is 

as follows. 

DOMINANT' Rhopalodia vermicularis 
SUBDOMINANT : Cocconeis placentula 
OCCASIONAL S nedra ulna & varieties,.. S. rumpens, 

Rhopalodia gracilis, R. hirundiformis 

Today, these diatoms occur in littoral environments, 
often rich in reeds. In order to allow these diatoms to 

accumulate, the areas may have been sheltered or lagoonal. 

5(ii)d The sandy lithofacies of the 'Etheria Reef' locality 

Sandy sediments are mainly confined to the upper unit, 
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and the north-eastern parts of the lower unit. Both 
littoral and aeolian sands can be recognised. 

The littoral deposits consist of unconsolidated, 
structureless, fine to medium, arkosic and lithic arenites. 
In thin section, the sands-can be_. seen. to be dominated by 
orthoclase, albite, quartz and., lithic, fragments. The latter 
include basic volcanics and less common reworked 
sandstones. Other minerals are the same as those found 
in the sands of Areas 102, and 103. (p. 120). Heavy minerals 

are common, but do not, form distinct bands. The grains in 

most sands are subangular to angular (lithics are often 
better rounded), and moderately to poorly sorted. The poor 
sorting, angularity and mineralogy of the sands suggests 
the proximity of an area of sediment input. Molluscs, in 

various states of preservation, are common. 

Better sorted, fine sands also occur in the area. These 
occasionally show trough cross bedding and are devoid of 
lacustrine fossils, other than comminuted shell debris. 
Although these deposits were not examined in detail, they 
are probably of aeolian origin. 

The deposits of the 'Etheria Reef' locality are mostly 
of littoral or lake marginal character. The sediments lie 
between 75 and 80 m above the 1977 lake level. Barthelme 
(pers. comm. ) has obtained a date of 7855 + 160 yr. B. P., 
from molluscs in the lower unit. This suggests that the 
early Holocene shoreline passed through this area. 
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5(iii) The beach ridges and sandy lithofacies to the 

south of the Koobi Fora Ridge 

The sediments to be discussed here lie some 10 to 15 
km to the east of Koobi Fora, mainly in Area 119. They crop 
out on the gentle southern slopes of the Koobi Fora Ridge. 
Several lithofacies occur; these include beach ridge 
sands and coquinas, regressive sand sheets, pebble- 

conglomerates and aeolian sands. No diatoms were found in 

these sediments, which will be described under two headings: 

the beach ridges, and the sandy lithofacies. 

a) The beach ridges 

Two beach ridges are visible on aerial photographs of 

this area. They run parallel to the Koobi Fora Ridge on 

a north-east to south-west trend for about 6 km (see map 

of the area to the east of Koobi Fora, at the back of the 

thesis). Both ridges are well exposed due to river 

incision at their south-western ends (fig. 5.4). To the 

north-east they become topographically less distinct, 

particularly the lower ridge. Eventually they diverge due 

to a change in angle and orientation of the slope on which 
they sit. 

Figure 5.4 shows the lithologies and lateral relation- 

ships of these ridges. The higher ridge (on the right of 
the diagram) consists of well-sorted, medium litharenites 

and sublitharenites, which contain two distinct shell beds. 

The lower is dominated by Melanoides tuberculata (90%). To 

the palaeoland side (north-west) and above this shell bed, 

calcareous sandy root casts are found in growth position. 
These probably developed in linear lagoons parallel to 

the palaeoshorelines, and protected from the lake by the 
beach ridge. Similar environments exist along the modern 
shoreline (except that molluscs are absent due to the 
high alkalinity). The upper shell bed is dominated by 
Corbicula africana, although Melanoides tuberculata is 
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increasingly common towards the palaeoland. Pila ovata 
occurs in? nlenses below the latter shell bed. 

,. ý. -The ' Corbiculacoquina passes, downslope, ` into 'a, coarse 
sublitharenite. In turn, this grades into the lower, beach 

: ridge where Corbicula rich sands (1 to'2 cm thick) alternate 
with medium, well-sorted, sublitharenites ((2, to; 3 cm thick). 

At the base ' of ; this lower beach ridge, Etheria elliptica 
,` 

dominates in'a, medium sand (up to 10 cm thick). Melanoides, 

Corbicula and-Mutela are also common. Finesands, with 
scattered Melanoides and Corbicula occur in the upper 80 

cm of the ridge. 

While the ridges are not dated, their height of ca. 75 

m above modern Lake Turkana, indicates that they developed 

during a high lake phase, possibly the early Holocene. The 

continuity of sediments between the two ridges suggests 
that the two ridges are not widely separated in time. 

b) The sandy lithofacies 

A series of sections showing the sediments to the 

north-east of the beach ridges are shown in figure 5.5. 
These deposits are up to 4m thick and represent a complex 
series of shoreline environments. The sediments are'. 
dominated by poorly-sorted, lithic arenites. Molluscs are 
common and often broken. Pila ovata was found in several, 
sections, but was particularly abundant in section 47. 

Today, this amphibious snail is characteristic of 
temporary swamps. It occurs at Sandersons Gulf ( to the 

north of Lake Turkana), which is subject to periodic 

submergence by Lake Turkana (Butzer, 1971). 

At section 48, and in the upper part of section 51, 
coarse lithic sands alternate with rounded gritty pebble- 

conglomerates. This may reflect the influence of an 
Oscillating shoreline. However, the ancestral river Bura 
Hasuma would have entered the lake about 200 m to the east, 
and the alternating sediments possibly reflect changes 
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in sediment supply. 

Large spreads of mainly structureless sands occur to 
the south-east of the beach ridges. 'Shoreline sediments 
usually'form-linear bodies, but'upon'a regression a`series 
of such deposits may coalesce to-form'broad-sheets-of 

sand. This is considered the probable origih of the 

structureless sands. The lack of-structure'may be-due to 
reworking and/or bioturbation. 

In general, the deposits to the south of the Koobi Fora 

Ridge can be considered to have formed along the shores 

of a high-level lake, with an area of sediment-input to 

the north-east. 

i 

01 
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5(iv) The sediments to the north of the Koobi Fora Ridge 

Extensive deposits of modern and late Holocene alluvium 

occur about 5 km to the north of the Koobi Fora Ridge 
(fig. 3.1, p. 87). Older, Holocene alluvium and colluvium 

underlie these sediments and fringe along the lower 

flanks of the Ridge. At higher altitudes are a further 

series of sediments, which contain evidence of former 

higher lake levels. It. is these latter deposits that form 

the subject of this section. 

In contrast to the southern gentle slopes of the Koobi 

Fora Ridge, the northern side consists of steep scarps 

and deeply incised valleys. -These valleys often contain 

remnants of Holocene sediment. The largest-Holocene 

outcrop is shown in plate 5.2 and in the inset of figure 

5.6, which also illustrates several sections from this 

area. These sections will be described'in-the following 

paragraphs. The local, composite, type section (numbered 

23/25) is given in figure 5.1. 

A high lake level incursion is indicated by 20 cm of 
laminated silts, 2m from the base of section 23. Several 

diatoms occur, including Rhopalodia vermicularis, 
Cocconeis placentula, ýqpithemia zebra and nedra spp.. In 

modern lakes such floras are common in the littoral, reed- 

rich areas. Root casts are in fact common, especially in 

the sandier units. Above the silts in section 23 is a 

coquina up to 50 cm thick (plate' 5.2). This is laterally 

extensive, and can also be seen in section 33. Well 

preserved Corbicula spp. dominate. Two thin (0.5 cm) 
horizons of white, diatomaceous silt, dominated by 

Rhopalodia spp., occur within the coquina. 

A lake regression is indicated by a coarsening upwards 
into fine, micaceous litharenites above the coquina of 

section 23. A secohd sandy unit, rich in mica, above this, 

contains abundant root casts. This unit can be traced 

downhill, where it experiences a facies change. By section 
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Plate 5. ' 

-' x 

View looking north from the Koobi Fora Ridge. Holocene, 

diatomaceous, lacustrine silts, sands and coquinas (white 

beds) can be seen in the middle distance. These are 'banked 

up' against high ground, and were laid down under an 

expanded Lake Turkana, that formerly covered the plain beyond. 
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25, the root cast sandy unit has passed into a sequence 
of diatomaceous silts and silty sands, cross-bedded, fine 
sands, and a coquina. These deposits suggest a second, 
lower lake level. A former river channel, containing 
imbricated conglomerates, is. eroded into the top of the 
latter deposits. This fluvial unit grades laterally into,, 
medium grained, micaceous sands, with root casts and 
occasional tabular calcrete. The calcrete may reflect 

an arid environment. 

The thickest unit of diatomaceous silt occurs in section 
33, where they attain 2.5 m. These silts are laterally 

equivalent to those of section 23 (described above). At 

the top of section 33 is a root cast sand that contains 

abundant tabular calcrete. 

A number of sections could not be directly correlated 

with those previously discussed. These indicate a wide 

range of environments from fluvial to littoral lacustrine 
and swamps. In section 78, scattered fish bone and bone 
harpoon heads occur in a sandy coquina, which rests on a 
pebble conglomerate. This probably represents a shoreline 
occupied by people practising a fishing, economy. 

The contrasting nature of the sediments so far 
discussed in this chapter, allow a generalised reconstruction 
of the palaeogeography of the Koobi Fora Ridge to be 

attempted (fig. 5-7). * The reconstruction shown in figure: 
5.7 represents the early Holocene lake maximum, and pulls 
together data that may not be strictly contemporary. 
However, the broad relationships are probably correct, and 

, 
the diagram brings out the central role played by the 

Koobi Fora Ridge. 
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Fig. 5.7 

Generalised palaeogeography of the Koobi Fora 

Ridge and 'Etneria Bank' areas during the 

early Holocene lake maximum. 
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5(v) The Quaternary sediments of the Chari Ridge, 

northern East Turkana 

5(v)a The Pleistocene sediments of the Chari Ridge 

The Chari'Ridge is an area of high ground in the 

extreme north'of the study area, that lies between Ileret 

village and the Kokoi volcanics (fig. 1.3, p. 31 ). It is 

formed by folded and faulted sediments of the Koobi Fora 

and Guomde Formations, of Plio-Pleistocene and Pleistocene 

ages respectively. These are overlain unconformably by 

the Holocene sands of the Galana Boi Formation. Figure 

5.8 shows the distribution of these Formations. 

Although no diatoms were observed in the Koobi Fora 

Formation of this area, diatoms have been recovered from 

equivalent sediments, about 10 km to the east of Koobi 

Fora. Here, diatoms occurred in low numbers in two of 
twenty samples from lacustrine units. The diatoms found 

were: Melosira granulata, Nedra ulna and Rhopalodia 

vermicularis. Findlater (pers. comm. ) notes the presence 
of diatomites, although these were not examined. 

Diatoms are more common in the Guomde Formation. This 
Formation was defined by Bowen and Vondra (11973) as 
being, " the strata overlying the Chari tuff and underlying 
the Holocene diatomaceous siltstones". Both upper and 
lower boundaries are unconformable. The name of the 
Formation was taken from the Kolum Guomde, a tributary 

of the Lage Tula Borr. These shallow lacustrine and 

alluvial deposits (plate 5.3) are of middle Pleistocene 

age. The same time span to the south of the Kokoi 

volcanics is represented by an unconformity. 

Guomde Formation diatoms attain a maximum concentration 
of about 1000 valves/g of sediment. Figure 5.9 summarises 
the floral distribution in the two main sections studied. 
The following species occur: Melosira granulata, 
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Fig. 5.8 

The Geology of the Chari Ridge Area 
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Plate 5.3 

Holocene sands (Galaaa I; oi Formation) can be seen resting 

unconformablY on the middle Pleistocene Guomde Formation. These 

latter deposits consist of .. mixture of lacustrine clays, silts, 

sands and bioclastic units, alluvial silts and sands, and tuffaceous 

sediments. 
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Fig. 5.9' 

The Lithology and Diatoms of the 
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clotella kutzinginiana, Rhopalodia vermicularis, R. 

°gracilis, Synedra ulna, S. acus, Epithemia argus and 
Cocconeis placentula. N. granulata is most common, while 
the other species are scattered through the sections in 
low numbers. Today, these diatoms, 

, occur. , 
in' clear, 

oligohalobian waters of moderate'alkalinity: -,:, ° 

Grid faults cut the Pleistocene sediments, and may be 

partly responsible for the cessation of lacustrine 

sedimentation in this area. However, climatic aridity may 
have contributed, and certainly had an impact during the 

latest Pleistocene, when most East African lakes were low. 

The latest Pleistocene at East Turkana was predominantly 

a period of erosion, although lacustrine sediments may 
have been laid down only to be subsequently stripped off 
(the Galana Boi deposits are being rapidly eroded today). 

By the early Holocene an irregular, deeply incised, 

topography had formed, and it was upon this that the Galana 

Boi Formation was laid down. 

`5(v)b The Holocene sediments of the Chari Ridge 

Holocene sediments, up to 80 m above the modern lake, 

. occur at the Chari Ridge. Vondra et. al. (1971) dated these 
deposits at 9,360 + 135 yr. B. P.. Figure 5.10 shows a 
series of sections in these sediments. 

Stromatolites distinguish these deposits. from other 

, 
Holocene units at East Turkana, although they have been 

reported from Allia Bay, in the extreme south (Barthelme, 

pers., comm. ). The distribution of stromatolites at the 

north-eastern end of the Chari. Ridge is shown in figure 
5.11. -Here, the Galanä Boi'Formation sits unconformably 
on-the Koobi Fora and Guomde Formations. Section 42 (fig. 

5"10) shows the sediment succession at this locality. The 
deposits are ca. 7m thick, and consist, of, poorly-sorted, 
medium to coarse, arkosic and lithic arenites. Two 
contrasting stromatolite horizons occur. 
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Fig. 5.11 
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The lower horizon, at the base of section 42, consists 

of well spaced, dark grey stromatolites (algal heads), 
resting in a medium to fine, poorly-sorted sand (plate 
5.4). These algal heads are up to 70 cm in diameter, and 
have formed around several molluscan centres. (usually 
Etheria elliptica). Recrystallisation has obscured the 

stromatolitic laminae, and replaced it with'radial 
(cf. travertine) patterns. These commonly rest on eroded 
Guomde Formation, and are restricted to the soüth, of the 

area shown in figure 5.11. 

. The second stromatolite horizon occurs 2m from the 

base of section 42. These'are light creamish grey 

stromatolites, whose shape-is a smooth, flattened ellipsoid 
(oncolite;. plate 5.5).: They are centred on Etheria, 

Melanoides, and less often on. pebbles. and bone. fragments. 

Alternating light and dark, concentric laminae (composed 

of low magnesian calcite) may reflect seasonal or longer 
term lake level changes, and hence climatic fluctuations. 
The oncolites sit on a flat erosional surface, and their 
distribution is shown in figure 5.11. Two sizes are common, 
although these grade into one another. The larger may be 
up to 25 cm in the long axis (although 50 cm is recorded 
elsewhere), and tend to occur on higher ground. At 
slightly lower elevations the oncolites are smaller and 
more spaced out. 

The smaller types were examined in some detail at site 
I (marked in figure 5.11), where in situ beds are well 
exposed. The oncolites rest on a poorly-sorted, calcareous 
litharenite. Their shapes range from tubular to ellipsoid. 
Indentations occur where oncolites are in contact. The 
long axes of the oncolites are usually parallel to the 

erosion surface on which they sit, although they 

occasionally dip at up to 5 or 6°. The mean lengths of the 

a, b and c axes were as follows. 

a=8.3 cm 
b=6.5 cm (sample of 50 specimens) 
c=4.1 cm 
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Plate 5.4 

l-. , u_ - 
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Irregular stromatolites centred around several Etheria 

shells. These are found in the base of early Holocene 

sandy units, at heights of up to ca. 75 m above the 

modern lake. 
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Plate 5.5 
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ovoid stromatolites 
(oncolites) in early Holocene sands, 

near Ileret (northern East Turkana). These lie on a 

widespread 'flat surface', and probably formed under 

shallow water. 
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Where double layers are present, the upper part usually 

consists of larger, smooth oncolites, while the lower is 
composed of smaller, slightly pitted, and more irregular 
types. 

The size variations may reflect proximity to ancient, 
shorelines. Johnson (1974) has used stromatolites in the 

older East Turkana units to indicate near shore and distal 

zones. Open growth forms, such as occur in the upper 
horizon are more common in distal, environments. Coalesced, 

compound types, such as in the lower horizon, are found 

in proximal environments. Stromatolites are mostly found 

in well aerated water with little detrital input. 

Above the upper stromatolite horizon of section 42 are 
well consolidated, medium to coarse, poorly-sorted 
litherenites. Molluscs are common and often fragmentary. 

Medium grained, brown litharenites sit unconformably on 
top. These sands lack any molluscs. 

Some 0.5 km to the south-east of section 42 are thinner 

sandy sequences, with no stromatolites. At the base of 
section 43 (fig. 5.10) are abundant root casts, which 
suggest aquatic macrophytes along the palaeoshoreline. 
At section 44 the sands are less pebbly and contain 
fewer root casts. The sediments are dominated by poorly- 
sorted, medium-grained sands, with thin (1 to 2 cm) levels 

rich in Melanoides. Oncolites again become common at the 

southern end of the Chari Ridge. 

Holocene sediments also occur on the northern slopes 
of the Kokoi uplands. These range from diatomaceous silts, 
with abundant root casts at ca. 50 m in palaeovalleys 
(section 81, fig. 5.10) to beach type sands ( with high 
initial dips and heavy mineral bands) in section 82. These 
latter deposits are devoid of stromatolites, lie at ca. + 
15 in, and probably reflect an historically high lake level 
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5(vi) Late Holocene sedimentation in Lake Turkana 

A large number of short cores (1 to'3 m long) were 
obtained from Lake Turkana-by Yuretich ' (1979)'. 'Using 

removal rates'of calcium carbonate"-from, the lakeewater, 

he estimated a mean sedimentation rate of 50 'tä. '100' cm% `' 

1000 years. - His "cores were' dominated' by 'fine muds. - 

Detrital sedimentation was found to be dominant in the 

northern of the two basins of Lake Turkana, while biogenic 

(diatoms and ostracods) a position prevailed in the 

southern one. This pattern reflects the dominant water 

and sediment input from the River Omo, at'the northern 

end of Lake Turkana. 

Dr. C. Barton kindly made core material available to 

this study. Data from here contradict the estimated 

sedimentation rate of Yuretich. Counting laminae (from a 

core'near Central Island), and assuming an annual 

periodicity, a rate of 1000 cm / 1000 years is obtained. 

However, strong rainfall periodicities of 3 to 5 years 
(Rodhe and Virji, 1976) may have influenced the development 

of these laminae. If so, a lower sedimentation rate is 

implied. Barton has suggested a rate of 450 cm/ 1000 years, 

based on data from palaeomagnetic declinations. These 

would suggest that his 6m long cores represent the last 

1200 years. 

The cores examined (from the north basin), consist of 

soft, very fine-grained, greenish brown-grey, calcareous 

banded muds. Barton has determined water contents of 79 

to 86 wt. %. Diatoms were infrequent in the core taken 

near Central Island. Melosira granulata is the most common 

species. Much less common are Rhopalodia vermicularis 
(often broken) and Stephanodiscus astraea var. minutula. 

Generally, the state of preservation is good. M. granulata 
is usually found in fresh water and its presence in even 
the youngest parts of the core, which ought to reflect 
the modern saline, alkaline conditions, suggests that it 

may be derived. 
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Banded muds were also present in a core from Allia Bay, 

just offshore East Turkana. These muds are probably derived 
from the River '. Omo. Since the Omo delta was up to .:. 100 : km 
further north during the earlier Holocene, sediments from 
this source. ' ought `to : have 

. been finer: -and/or=less common, 
at this time. The question arises as to the. source of the 
Holocene silts at East Turkana. Three possibilities can 
be recognised. 

a) Local reworking of sediments and lavas 

b) A contribution from longshore drift 

c) Sediments carried in from the Chew Bahir overflow 
(see chapter 7, p-223'), and active minor streams 

A large source of silt would seem unlikely from any one 
source, and a combination of these provenances may have 

operated. Beach sands, on the other hand, probably owe 
their existence mainly to longshore drift, after the initial 

sediment input. 

: i' 

} 
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CHAPTER 6 

MODERN SEDIMENTATION AND THE ENVIRONMENTAL IMPLICATIONS 

OF THE LITHOFACIES AT EAST TURKANA' 

6(i) Present day sedimentation and processes operating 

at East Turkana 

6(i)a Contemporary, shoreline development at East Turkana 

Deposits forming today were briefly studied as an aid 
to palaeoenvironmental interpretation. Figure 6.1 shows 

, 
the distribution of major depositional and erosional 
environments near Koobi Fora. The environments shown will 
be referred to in the following text. 

The modern shoreline has developed in response to a 

, 
mainly regressing lake. Beach deposits are predominantly 

. of sand grade, probably redistributed by wind-generated 

. waves and long-shore drift processes. Well developed ridge 
and swale patterns have been left behind the active shore. 
Each ridge records a former, higher lake level (with 
increasing antiquity inland). These fossil beach ridges 
are subparallel to the present"lake margins, are usually 

, 
less than one metre in, relief, are up-to several hundred 
metres long and are spaced up to 100 m apart. 

Contemporary beach ridges consist-of moderately to 
well-sorted, fine to coarse-grained, subarko'ses and 
sublitharenites, with derived shell debris. The percentage 
of. quartz tends to decline towards the ephemeral deltas 
`of East Türkäna,. 

-where it is replaced by an increase in 
lithic'fragments. This implies a process of differential 
isorting and/or erosion of the mineral grains. Heavy 
minerals are abundant and are often sorted into distinct 
bands. 
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Fig. 6.1 Contemporary and recent depositional 
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Lakewards, beach bars consist of small scale ripple 

laminae, interbedded with low angle, planar cross-strata. 
Landwards, higher angle, landward-dipping laminae-are--4 
'common. The slopes of contemporary, ridges rise sharply 
from a sandy surface. Erosive contacts occur. at. their 

bases, 'and several bars can be. seen'to cut into older 

ones. These bars may'result"°from waves . breaking on the 

! shoreline and dumping. their coarser sediments. Migration! 

. of bars occurs due to the seasonal and longer term shifts 

'in lake level. 

�Lagoons often. develop behind the beach bars. Today, 

these often contain blue-green algae and diatoms (p. 80 ). 

! Silts and silty sands commonly form the substrate. Fine 

; laminae may be present, but normally such features are 

disrupted by littoral reeds. Evaporative concentration 

of lagoonal water, supplied by washover events, seepage 

fand capillary rise, takes place (fig. 6.2). During 

periods of dessication layers of salt (trona) often 
, forms on the surface of the sediments. These mostly form 

'blister crusts'. Mudcracks also develop at such times. 

Recently exposed beach'shorefaces show low angle, 
lakeward-dipping cross-strata, occasionally associated 

with ripple laminae, in mainly fine and medium sands. 
However, such structures have often been disturbed by 

the roots of littoral plants. 

6(i)b The ephemeral deltas and floodplains 

Many deltas along the shores of East Turkana are only 

occupied by flowing water during flood periods. These 

ephemeral deltas consist of poorly to moderately-sorted, 
fine to coarse, subangular litharenites. These deltas 

mostly form irreizularly indented shorelines. Sediment 
-vvv 

input is presumably equalled or exceeded by processes of 

sediment removal (long shore drift, currents). As a result 
--delta shorelines rarely extend into the lake. 
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Fig. 6.2 
Salinity controls in the lagoonal environment 
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Fringing, littoral vegetation is common on the 

sublacustrine portions of the deltas. These plants may 
act as sediment traps, partly offsetting removal processes. 

Although not examined in detail, -deposits were. studied 
at various localities along: the. courses of. several rivers. 
The largest-rivers at East Turkana have-floodplains=that, 

extend up to 30 km'away from. the lake. 

These ephemeral floodplains rarely contain flowing 

water, except during brief flash floods. Complex networks 

of braid bars occur, together with a few non-braided, well- 
defined channels. Numerous tributaries join a central 

river complex. The floodplains are usually covered with 

wind blown sand, derived from the dry river beds. Calcrete 

is locally present. 

Near upland source regions, such as the Koobi Fora 

Ridge, of the smaller floodplains, the deposits consist 

of channel-fill conglomerates, with inclined bedding and 

grits with horizontal or subhorizontal laminae. Trough 

cross-bedding and planar laminated sands with occasional 
ripple laminae predominate in the middle stretches. 
Towards the lake, fine sand with less common medium sands 
predominate. In these areas horizontal and ripple 
laminae are. the most common structures. 

6(i)c Aeolian processes operating at East Turkana 

Large tracts of Holocene alluvial sands and lacustrine 
silts are being eroded by winds. This process is 
enhanced by the sparse vegetation. and the unlithified 
nature of the Holocene sediments. 

Two types of wind are common at East Turkana. Dust 
devils blow between 11.00 a. m. and 3.00 p. m.. These 
were subjectively estimated to reach heights of up to 75 in. 
They tend to move in a westerly direction. The second 
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wind type is a strong and continual wind. This blows from 
early evening until the following noon, towards the lake. 

A thin cover of, aeolian sand is present over much of 
the area. In some places it. has formed small hillocks 
(less than. 2 m high), stabilised by xerophytes and/or 
carbonate cements. These were not examined in detail, but 
they do show occasional trough cross bedding in well- 
sorted fine sands. 

During the earlier Holocene these processes may not 
have been as important, since the region was wetter and 
there was probably more. stabilising vegetation. In 

addition, much of the area now being eroded by winds was 
then under water. 

6(i)d The significance of quartz grain surface textures 

Quartz grains were. collected. 'from a variety of modern 

environments (beach, ' fluvial and aeolian) and examined 

with a scanning electron microscopeýfor. surface textures. 
It was hoped that environmentally significant characters 
might be observed. However, solution and redeposition of 
silica have smoothed the surface relief of-. most grains 
(plate 6.1). This is apparently. a common process in 
tropical desert regions (Krinsley and. Doornkamp, 1973). 
Solution and redeposition may be localised on quartz 

grains or may be transported from one part to another. 
The undulating smooth surface of many grains suggests' 

rapid silica precipitation . Kuenen and Perdok (1962) 

attribute smoothness of this type to a rising pH, due to 
the presence of dissolved salts, during the evening (and 

consequent silica'removal), followed by daytime evaporation, 
which leads to silica redeposition. 

Chemical etching, deep surface solution, precipitated 
upturned plates and smooth precipitation surfaces obscure 
mechanical features that may be environmentally important. 



Plate 6.1 

Quar-'. z frriin nur _ ,, ", 

} 

This SJ . M. photo chows preferential solution along 
int"rsecting cleavage lines. The quartz grain was 
obtained from an aeolian sand dune. 

ti 9 

ý 'art '! ý 'ý.. - q, 
ýý 

-"7 

The irregular surface of many quartz grains has been 
W :, cured by the secondary precipitation of silica. 
Two small patckys of redeposited silica can be seen 
cn this grain, which was recovered from an aeolian 
sand dune. 
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Mechanical 'V' forms were observed in modern high energy 
beach deposits, but these were less common than straight 
or curved grooves. 

8x ti 

A sample " from` sands'. of probable aeolian origin again 
possessed, extenside silica precipitation. Many grains were 
rounded, probably due to: abrasion. (with secondary silica 
overgrowths enhancing this appearance). Dish shaped 
concavities were occasionally present and may reflect 
impacts during transportation. 

6(i)c Soil formation at East Turkana- 

Soils are very poorly; developed on the Holocene 

sediments. When present-they are of lithosolic type, 

forming on highly, permeable sands. A weakly developed 

organic horizon may be present in the upper one or two 

centimetres of soil profiles. Roots penetrate below these 

dark grey humified layers. 

Calcretes occur, but for the most part are spatially 

restricted. Calcareous horizons develop in areas such as 
East Turkana because leaching is only slight, and soluable 
constituents are not removed. Calcium carbonate is also 
responsible for the stabalising of a number of sandy units. 

6(i)f The contrasting_patterns of drainage and erosion 
on Holocene sediments 

Modern drainage and slope evolution varies dramatically 
on Holocene sediments of differing lithology. Silt-dominated 
deposits tend to develop dense dendritic drainage patterns 
with intensive rilling on the interfluvial slopes. A less 
dense pattern is developed on sandier facies. 

Silts have higher threshold angles than sands and hence 
steep-angled (often vertical) slopes are found at incised 
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channels cutting through, them. -More gentle slopes typify 
the sands. 

These differences are well exemplified in the boundary 
region between Areas 102 and 103 (fig. 6.3). The central 
area is predominantly silty, but becomes sandier to the 

west and east. In the central area dendritic channels 
carry silt onto a thin alluvial apron, and then into the 

main channel system (section 2, fig. 6.3). In contrast, 
in the sandier west,, slope retreat bypedimentation is 

taking place, while rills have developed on. the, sc. arp 

slopes. Below the piedmont angle (section 1, fig. 6.3), 

sediment is'carried across a pediment, by sheet wash and 
is redeposited on an alluvial apron downslope. In both 

cases the alluvial apron is incised on its lower margins, 

and ultimately feeds the main channel system. 
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Fig. 6.3 Slope development. in areas 102 and 103; 

East Turkana. 
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6(ii) Major influences on sedimentation at East Turkana 

While the detailed distribution of lithofacies relates 
to local conditions, major aspects of sediment type and 
location can be related to a few important factors. These 
include tectonic, volcanic, source rock lithology and 
climatic influences. - 

Tectonic influences, such as uplift and subsidence, have 

played only a minor role in influencing Holocene lithologies 

at East Turkana. This is mainly due to the tectonic 

quiescence of the period. However, the orientation of 

, 
Holocene sedimentary, units, such as beach bars, have been 

, influenced by fault scarps existing from the Pleistocene. 

The modern shoreline still reflects these fault lines 
(fig. 6.4). The shorelines of the northern half of Lake 

Turkana follow a broad north to south trend, although this 

simplification breaks down when examined in'detail. To 

the east of the lake,, north-west to south-east and north- 
east to south-west structural trends dominate, with the 

eastern shoreline following this pattern(interfering to 

produce the north to south alignment). Similar', though 
differently orientated relationships exist to the west of 
the lake. 

Lr 

On a longer time 
, scale,, tectonics. have probably 

affected sedimentation, potentially through subsidence of 
the Turkana trough, by changing outlet heights of the lake, 

or by changing the heights of source areas (and hence 

accelerating or retarding erosion rates). - 

Volcanism seems to have had little impact on late 
Quaternary sedimentation at East Turkana, although 
eruptions have occurred at North Island. The role of 
volcanism in controlling sedimentation is discussed further 

when describing the Baringo'district (chapter 8, p. 267 )" 

The lithology of the surrounding areas has resulted in 
the mineralogy of Lake Turkana sediments differing from 
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Fig. 6.4 
The relationship between modern shoreline 

orientation and major structural trends, N. Lake Turkana 

Key: Shoreline and structural 
orientations around-Lake 
Turkana 

Simplified shoreline; 
approximated to a straight A. eastern lake margin 
line trend. N 

cn Complex shoreline; 4 
unsimplified 

Major structural trends; 
mainly faults but also 
prominant ridge alignments. B. western lake margin 

Based on satellite photos. 

Ozuo 
Region V 

. 
C. structures to the east ý, '. t; `\ of Lake Turkana 

i i 
' Lake 

' 
' D. structures to the west i Turkana -' of Lake Turkana 

f 

I; 10 km ý `. 

Shorelines are simplified to approximate straight lines (see 
map) and are shown together with major structural elements. 
The orientations of these trends are plotted on the rose 
diagrams. Note the similarity of the western shoreline and 
western structural alignments and how these differ from areas to the east. 
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most other Kenya Rift lakes. Here, the deposits contain 
an abundance of quartz, which mainly reflects the outcrop 
of metamorphic rocks in the basin. Such outcrops are 
rare in other parts of the Kenya Rift. However the 
dominance of alkali volcanics, as in other basins of the 
Kenya Rift, has resulted in the modern and ancestral Lake 
Turkana being predominantly fresh to saline and alkaline. 
This water chemistry has in turn played a major role in 

controlling biogenic contributions to the sediments. 

Climatic influences have dominated the late Quaternary 

history of Lake Turkana. Sediment supply has varied in 

relation to changing rainfall. This process has mainly 

operated by changing erosion rates, and by producing and 
losing rivers and overflows from other basins. Rainfall 

periodicities have and are resulting in seasonal and 
longer term pulses of sediment input, causing 'varve like' 

deposits to form. The interaction of climatically 

controlled lake level fluctuations and an irregular 

topography has controlled the detailed_facies distribution, 

and resulted in lacustrine sediments that are presently 
left well above modern, lake levels. 
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6(iii) Environmental recognition in the Galana Boi 

Formation 

6(iii)a Environmental classification of the Holocene 

sediments of East Turkana 

Several attempts have been made to Glas 
and Pleistocene sediments of East Turkana, 
their environment of formation (Findlater, 

Bowen, 1979). These attempts were based on 
and as such are not suitable in studies of 
Boi Formation. 

sify the Pliocene 

according to 
1978; Vondra & 

wide environments 
the Galana 

A complex and varied range of environments are recorded 
by the Galana Boi Formation. Certain lithofacies appear 
to characterise different environments (as confirmed by 
diatom and modern shoreline studies). The classification 
suggested here summarises the range of environments present 
in the Holocene deposits of East Turkana. This classification 
follows, and the various environments are shown in figure 
6.5. 

A. THE LACUSTRINE ENVIRONMENT 

(i) Littoral and shallow water subenvironments 

a) The beach bar zone 
b) The lagoonal zone 
c) The beach shoreface zone 
d) The proximal-offshore zone' 
e) The distal offshore zone 

(ii) Deep'water subenvironments 

a) The proximal (to sediment supply) zone 
b) The distal (to sediment supply) zone 

B. THE FLUVIO-DELTAIC ENVIRONMENT 
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C. THE TERRESTRIAL ENVIRONMENT 
i 

(i) Fluvial subenvironments 
(ii) Colluvial subenvironments 
(iii) Aeolian subenvironments 
(iv) Pedogenic subenvironments 
(v) Erosional subenvironments 

The major characteristics'of_'the lacustrine environment 
are summarised in figure 6.6. The Galana Boi Formation is 

essentially lacustrine in character. Fluvio-deltaic 
; environments are less common. ''Where present they are 
mostly represented by subangular arkosic and lithic arenites, 
, which have a sheet-like, form, tänd which are often cut by 

channel sands and conglomerates. Terrestrial environments 

are rare in the Formation. However, late'-, Holocene fluvial 
! situations were common across much of East Turkana, having 

advanced westwards in response-to a regressing lake. 

Colluvial and, aeolian deposits are present locally and 

soils have been observed in only a few,. restricted Galana 
, Boi units. Erosional breaks are common°and of varying scale. 
They relate to climatically induced lake level changes 

, rather than tectonic events.,. --.. _ 

z6(iii)b Summary' of the "main--criteria used in environmental 
interpretation 

Diatoms have proved extremely useful in-characterising 
depositional environments-.. _Figure 

6.7-shows how some of 
the major diatoms present in the Galana Boi Formation 

, relate to the : habitatin which, they, were laid down. The 

diagram also incorporates the-effects of alkalinity changes, 
which is a major factor, in determining the particular 
species present. 

"R, r 
Diatoms are far from being the only diagnostic fossils. 

Molluscs are also useful indicators of environment. 
Etheria elliptica occurs along rivers and on high energy 
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Fig. 6.7 

R"ajor lacustrine environment: an typified 

by dominant diatoms in the Galana Bot Led.. 
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shorelines (Williamson, pers. comm.; Butzer, 1971), while 
Pila ovata often occurs in seasonally inundated swamps 
; (Butter, 1971). However, late Holocene sediments at East 

; Turkana lack molluscs due to the higher alkalinities of 
this period (molluscs disappear above about 16 meq/l; 
Cerling, 1979).. The 

, size and spacing of stromatolites can 
; indicate shoreline proximity-(Johnson, 1974), while root 
casts commonly reflect littoral zones. Figure 6.8 

'summarises the presence or absence of different fossil,. 

groups in various environments'. 
_, 

The data in 
-figure . 

6.8 are 

abased on this work and information presented by 
Behrensmeyer (1975) and Findlater (1976).. 

= Figure 6.8 also shows a number of environmentally 
'significant sedimentary-criteria;, -that commonly occur in 

, 
the Galana Boi Formation. While : the fauna and flora have 

varied with-chemical changes, through the Holocene, features 

such as cross-bedding and-lithology have remained constant. 
These can be used to compare: earlier Holocene and modern 

, 
conditions. The most useful sedimentary characteristics 
have proved: -to`"-be ' the litholögy, bed shape, sorting, grain 

size., and lamination. 
D' 1D 

The value of the Holocene sediments of East Turkana is 

that they allow both modern and recently deposited 

sediments tobe studied in three dimensions, rather than 

as theitwo dimensional sections more commonly available4 
in older, -better 

lithified Formations. They therefore 
provide abridge between ancient and modern Rift Valley, 

sediments, "änd-should-aid; in, recognition of the former'. 

6(i'iJi)c �Summary of the distribution'-and significance of 

-the Holocene sediments-at East Turkana 

The: Holocene Galana Boi, Formation consists of sediments 
laid down-under a" series of, _former.; 

`higher_'lake_levels. 

Numerous transgressions and regressions resulted in the 
build up of a complex body of mainly lacustrine deposits, 
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which show rapid lateral and vertical facies variation. 

{ 
Figure 6.9 shows a series of. representative sections 

in, the Holocene sediments at East Turkana. Although 
simplified, they demonstrate the main lithological types' 

present. The diagram'also shows the environments, under 
which these deposits'formed, and the probable correlations 

between sections: The most complete record of the Holocene 

is provided by''considering sections 72,20 and 6 together. 

These provide'a record of events from ca. 10,000 yr. B. P. 

up to between 4,000 and 3,000 yr. B. P.. These three 

sections are combined, in a highly idealised manner, to 
produce figure 6.10. Two major lithofacies are recognised 
in this latter diagram, which are lacustrine silts and 
littoral sands. Their distribution reflects the changes 
in level of Lake Turkana through the Holocene. Four main 
transgressive periods can be'recognised (labelled Tý to 

T4 in the diagram), although many, less significant, 
fluctuations can also be-suggested.. 

Figure 6.11 summarises the distribution of Holocene 
3_i5 

sediments to the east 6f Koobi Fora. This area contains 
the best record ofw Holocene lake'-level fluctuations and 
environmental diversity at East Turkana. The early 
Holocene palaeoshoreline is also. shown in this figure. 
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Fig. 6.9 Major lithologies in the Galana Boi Formation 

and their environmental implications. 
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CHAPTER 7. xe 

THE HISTORY OF LAKE TURKANA-'AND OTHER LEAST AFRICAN LAKES 

DURING THE LATE QUATERNARY 

7(i) The labe Quaternary history-and palaeohydrology of 
Lake Turkana 

7(i)a The late Pleistocene history of Lake Turkana 

During the latest Pleistocene', extensive erosion occurred 

, around the. present margins, of Lake Turkana. This erosive 
phase is reflected in major unconformities at the base of 
the , 

Galana 
. 
Boi Formation, '"; and.: between lembers III and IVa 

of the Kibish Formation (Buzzer; &. Thurber, 1969). In the 

. 
latter case the erosive period has: -. been dated between 

37,000 and 9,500 yr.. B. P.. "Three: hypotheses"can be suggested 
to, explain the;. -lack of, . 

high 
. 
level,, lacustrine sediments of 

. this age. 

(i) Prolonged internal drainage and low lake levels 
due to lower precipitation and/or higher 

evaporation (climatic control). 
(ii) Successive veneers of high level lacustrine units 

may have been stripped off during later arid 

phases', just as the Galana Boi Formation is 

being * ra p idl y removed today y (climatic control). 
(iii) Changes"in the outlet height of the lake by 

% 
uplift arid' subsidence., may. have resulted in lower 
lake levels (tectonic control). 

Any of these hypotheses can independently, or in 

combination; explain'the observed facts. The Holocene 
record of lake level +changes ät"` Turkana is similar to 
that of the Ethiopian lake=s, yeti it' apparently differs 
during the läse Pleistocene. The latter group of lakes 
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expanded prior to 70,000 yr. B. P., again from prior to 
40,000 yr. B. P. to about 30,000 yr. B. P., and finally 
between about 30,000 and 17,000 yr. B. P. (Gasse & Street, 
1978). The question arises; did the third lake expansion 
take place at Lake Turkana? No high level sediments of 
this age have yet been recognised. However, in view of the 

close relationships with the Ethiopian lakes shown. during 

the Holocene, it cannot be discounted. 

7(i)b The early Holocene palaeohydrology of Lake Turkana 

Lake Turkana reached its outlet height during the early 
Holocene, at which point it stood about 80 m (ca. 450 m O. D. ) 

above its modern elevation. 

Estimates of palaeohydrological parameters such as 

rainfall, evaporation and runoff can be made from a 

knowledge of the modern water balance for any lake, if its 

former extent is known. The annual water balance for a 

closed lake such'as Turkana is given by the following 

equation (from Street, 1979). 

AbPbK + A1P1 = A1E 

where Ab = catchment area (km2). 

A1 = lake surface area (km2) 

Pb = mean ppt. over the-catchment (mm) 

P1 = mean ppt. over the lake (mm) 

K = runoff coefficient (the proportion of rain 

falling on the catchment that reaches the 

lake), 
E = evaporation from the lake surface 

When this equation is applied to the modern lake (data 

shown in table 7.1), a budget only 6% in error results. 
The error may be due to inaccuracies in estimating the 

runoff coefficient. 
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Table 7.1 

Data used to compile hydrological budgets. 

Turkana: 

Item Data Source 

Catchment area (Ab): 140,000 km2 Butzer, 1971, 

Modern lake surface area (A ): Butzer, 1971 1 
7500 km2 

Surface area of +80m. lake:. Sheet SK 41, Kenya 

. 
~18,000 

km2 (north). 

Mean annual precipitation (Pb): Average over whole basin; 

798 mm. from maps in Griffiths 

1972 

Mean precipitation on lake. 
, 
As above 

surface (P1): 250mm. .11. 1 ." 

. Evaporation from the lake surface Base on Lodwar climatic 

(E): 3607 mm. data in Griffiths 1972 

& Morgan, 1971. 

Runoff coefficient (K): 0.24 Schumm, 1965 

Suguta: 

Item Data Source 

Catchment. area (Ab): 13,000 km Butzer, 1971 
. 

Modern lake surface area (A ): Sheet SK 41 Kenya (north) 
1 

128 km mean of max. and min. 

extent of ephemeral lake 

Area of +330m. lake:. -1216. km?; ' ' Sheet SK 41. 

Mean annual precipitation (Pb): Average over whole basin; 

360mm. from maps in Griffiths 

1972 
Mean precipitation on lake-, {'. Dodson, 1963 

surface (P1): negligible 
Evaporation from lake surface Estimate based on Langbein 

(E): 5000 mm. 
_ rt"'_" __'1961 and other rift lakes 

Runoff coefficient (I: ): 0.14 Estimate based on total 

r".;, -. < -evaporative loss to total 
ý" ̀ "" - water input ratio. 

.. ý ; ý.. ... _ w .. ýýý _ý. ., 
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Figure 7.1 shows several combinations of precipitation, 

evaporation and runoff that could support Lake Turkana at 
+ 80 in. If we assume that runoff and evaporation were 
similar to today (diatom floras suggest that temperatures 
were similar), then an increase in precipitation of the 
order of 106 % (compared with today) would be required to 
maintain the lake at + 80 m. Should the runoff constant 
have been greater, perhaps 0.3 (due to vegetation changes? ), 

then a 70 % increase in mean annual rainfall would be 

needed to maintain the highest lake levels. However, these 

represent minimum figures, since at its outlet height, any 
further increase in rainfall would be lost by overflow, and 
not be recorded by lake expansion. 

The results of this study are somewhat high when compared 
with other estimates of early Holocene rainfall. Examples 

of these include the following (all are minimum values). 

Basin 

Nakuru-Elmenteita 
Naivasha 
Manyara 

Ziway-Shala 

ppt. above Source 

present 

65 Butzer et. al., 1972 
25 Butzer et. al., 1972 
33 Holdship, 1972 
47 Street, 1979 

The high values at Lake Turkana probably reflect the 

addition of two drainage systems that are today isolated 

and fragmented into a series of smaller closed basins. 
These are the Chew Bahir-Chama-Abaya and the Suguta 

drainage basins (fig. 7.2). Each will be discussed 

separately in the following sections. 

7(i)c The Chew Bahir-Chama-Abaya drainage network 

Increased rainfall during the early Holocene resulted in 
the expansion of the Ethiopian lakes. Lakes Shala, Ziway, 
Abiyata and Langano, formed a single large water-body that 
drained to the north via the Awash River (Street, 1979). 
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Lach line-represents balancing covariations of rainfall (over -7 the whole catchment) and evaporation (from the lake surface), 
with a particular runoff constant. - 



-225- 

Fig. 7.2 
Early Holocene and contemporary drainage 

basin network of the northern Kenya Rift 
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To the south-west we enter the palaeodrainage basin of 
Lake Turkana (fig. 7.2). Today this area is fragmented 
into a series of smaller drainage basins. 

Modern Lakes Abaya and Chama are occasionally linked 
by a river that probably also operated during the early. 
Holocene. In turn, the Sagan River would have linked these 
to Lake Chew Bahir (Grove et. al., 1975). Today, Lake 
Chew Bahir'varies between marshy and fully lacustrine states. 
During the early Holocene it stood some 20 m higher (Grove 

et. al., 1975). This former drainage line is shown, y 
, 
together with overflow heights, in figure 7.3. 

Satellite photos show the former line of drainage that 
linked Lake Chew Bahir with Lake Turkana. It can be seen 

entering the latter to the'south of the Koobi Fora Ridge. 

7(i)d The Suguta 'drainage network - 

A second major drainage network formerly entered the 

ancestral Lake Turkana along its south-western shore, via 
the Kerio River. The lower Suguta Valley was occupied by 

a large lake (Lake Suguta) during the early Holocene, of 
which Lakes Alablab and. Logipi are remnants. 

Lacustrine sediments are reported at heights of up to 
'600 m O. D. (dated at 9660 ± 210 yr. B. P.; Truckle, 1976). 
Truckle reports'thatat-606"m O. D. Lake Suguta would have 

overflowed into the Kerio Valley via the Kamuge River, 

feeding ultimately Lake Turkana. 

Several pos sible, wäterbüdgets, sufficient to maintain 
'a lake at 606"-m O. D. ' have been , 'calculated (fig. 7.1b). 
Assuming modern runoff, rates and similar temperatures to 
today, an 800'%'increase in rainfall would be required. 
Clearly this bears no relation to data from other basins 
(p. 223). Assuming-an increased runoff constant of 0.3, 
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`Fig. 7.3 Mosern and early Holocene lake heignts ana 

overflows in the northern Kenya Rift Valley 
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and. similar evaporation rates to today, rainfall would 
still have to increase by 360 %. 

These figures clearly argue for drainage basin 

enlargement. Lakes Baringo and Bogoria may'have been linked 
during the early Holocene (chapter 9, p. 1305), and, both 

may in turn have been joined to the Suguta. River by 

subsurface and/or overflow mechanisms. -The-addition-of 
these two basins (fig. 7.2) would have doubled the 

catchment of Lake Suguta. 

7(i)e The early Holocene palaeogeogrra of Lake Turkana 

and adjacent drainage basins 

The present extent of, and connections between lakes in 

northern Kenya and southern Ethiopia are contrasted with 

their former areas and links in figures 7.4 and 7.5, 

respectively. 

The addition of new drainage networks, and increased 

rainfall, resulted in a great expansion of Lake Turkana at 
the start of the Holocene. The Omo delta was situated 70 

to 100 km further north (Butzer and Thurber, 1969), while 
East Turkana formed a large'embayment. Expansion was less 

spectacular in the south, where--steep slopes confined the 

lake. Maximum surface levels were about, 80 m-above present. 

Figure 7.5 shows several early Holocene links, with 

other lakes and with the White Nile. Today, high-level 

strandlines mark the position of the 'former outlet of 

Lake Turkana, which lay to the north-west of the expanded 
lake (marked 'A' in fig. 7.5). Overflow waters may have 

entered a 'Lake Lotigipi', which is today reduced to a 

swampy area. A further overflow (marked 'B' in fig. 7.5) 

may have provided a link to the River Kengen and ultimately 
the River Nile. 
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7(i)f The middle and late Holocene development of 
Lake Turkana 

A period of lower lake levels (though probably not less 
than about 55 m above modern heights) followed the maxima 
of the early Holocene. "' Dated-sediments from East Turkana 
(Barthelme, pers. comm. )_and the, Omo region (Butzer and 
Thurber, 1969) suggest that this phase took place between 

about 7,500 and 6,600 yr. B. P.. 

This 'dry phase' was terminated by a second major rise 
in lake levels between ca. 6600 and 4000 yr. B. P.. At 

this time the lake probably fluctuated between about 45 

and 80 m above its present height. The youngest diatomaceous 

sediments at East Turkana suggesta final transgression, 

after a period of very low levels, to about 50 m above 
the modern lake, -probably during the late Holocene. 

Throughout the early and middle Holocene the lake 

maintained a fresh character. Only in the late Holocene 
is their'a suggestion of a change to the more alkaline 
and saline conditions of today. By the late Holocene links 

with other basins were probably severed. Butzer (1971) 

records? a minor rise in. the last-'millenium or two, while 
in historical times he notes a height range from 365 to 
385, m o. D.., 
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The development of-East African lakes durin the 

Holocene 

{-r 

7(ii)a The major lake level' trends in East' Africa 

ý I Figure 7.6 shows the fluctuations in" surface height of several 
East African lakes. Allistbod at high; levels 

during the early ! Holocene. ` Lake Bäringo apptears to , be an 
exception, but there` is -__some' 

questioni about' the reliability 
of, the dating (chapter 9, p. 285`") 

Three patterns emerge-from an inspection of figure 7.6. 
First-, Lakes Nakuru, {Naiväsha; Magadi and possibly Lake 
Baringo,, all. record a single-major high lake level, during 
the, early Holocene. Second, , LakeslAbhe, ýShala, Ziwäy and' 
Turkana show at least two major periods of high lake 

level during the Holocene. Finally, Lake Victoria shows 
, 

both an early Holocene high lake level, and another between 
ftf. 
about' 10,000 and 12,000 yr. B. P.. 

Possible causes of these differences relate to shifts 
in the 

position of the 'inter tropical convergence zone', 
E 
and are discussed more fully in section 7(iii). 

Many East African'lakes have been described in varying 
detail. The major ones will be briefly reviewed in the 
following discussion, in order to place the Holocene 

evolution of Lake Turkänä '11i "a broader context. The 
following lake groupings c"an be recognised. 

(i) The Ethiopian Rift lakes 
(ii), The'_ Kenyä . Rift lakes 
(iii) The western Rift Valley lakes 
(iv) _y'The non Rift 'Välley lakes` 

1 

I 

e 
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Fig. 7.6 LAKE LEVEL FLUCTUATIONS DURING THE LAST 15,000 
YEARS IN EAST AFRICA 
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from, left to right. 

A series of generally high lake levels can be seen to 
characterise the early Holocene lakes between 8000 and 
10000 years B. P.. Lake Baringo is out of phase, possibly 
due to C1' errora_ 
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7(ii)b The Ethiopian Rift lakes 

These lakes are found in, or derive their main water 
input from the Ethiopian, Highlands. Lakes. Turkana, Chew 
Bahir, Chama and. Abaya lie. within this area and have been 
discussed earlier in this chapter-Two-other sets of lakes 
fall within this group, these are the Galla'lakes and the 
Afar lakes. 

Today, the Galla lakes are separate, but linked by 

rivers within'a basin of internal drainage (fig. 7.4). They 
include Lakes Ziway, Langano, Abiyata and Shala. Grove et. 
al. (1975) report that they started to, rise from about 
14,400 yr. B. P. and reached a maximum elevation just after 
9,500 yr. B. P., when they formed one single-large lake 
(fig. 7.5). After regression a second high level was 
attained by 6,500 yr. B. P.. At its maximum this combined 
'Lake Galla' overflowed into the-Awash River and ultimately 
into the Afar region of Ethiopia. 'Gasse (1975) has noted 
that the early and middle Holocene lakes were typified by 
tropical diatoms-such as Melosira'nyassensis var. 
victoriae and M. agassizi. 

Several highly alkaline lakes, occur in-the lowland, 
Afar region of , 

Ethiopid. These include LakesAbhe, Afrera 

and Asal.. Gasse (1975) has established that the climate 
was arid in this area prior to 11,000 yr. B. P., but that 
between 11,000 and 8,400 yr. B. P. wetter conditions 
prevailed. ' Prior to 9,400-yr. B. P., Gasse notes the, presence 

of euryhaline diatoms, 'which-werereplaced . by oligohaline 
forms after this date. A: second: -arid phase developed 

between 8,400 and 7,400-yr. B. P., with a-third occurring 

from about 4,000 to 2,500 yr. B. P.. Today, the area is 

again very arid. 
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7(ii)c The Kenya Rift lakes 

Lakes Baringo and Bogoria lie within the Kenya Rift. 
However, these form the subject of a detailed examination 
and will be discussed fully in chapter 9. 

Further south, occur Lakes Nakuru, Elmenteita and 
Naivasha. These occupy the highest part of the Kenya Rift. 
During the early Holocene a major watershed passed between 

the'enlarged Lake Naivasha and combined Lakes Nakuru and 
Elmenteita. -Butzer et. äl. (1972)-note that Lake Naivasha 

had an overflow to the south via the Njorowa and Kedong 

Gorges, while Lakes Nakuru and Elmenteita had a common 

overflow to the north, into' the Menengai caldera. 

Richardson (1972) recognised three stages in the history 

of'Lake Naivasha, -based on diatom studies. Between 9,200 

and 5,650 yr.. B. P. `the, climate was warmer and more humid 

than-today, with the-lake expanded to its overflow. From 

5,650 to 3,040 yr. B. P. the lake contracted. Finally, 

after about 3,000 yr. B. P., the lake-fluctuated near to, 

or below modern levels. 

Lakes Nakuru and Elmenteita reached their maximum height 

about 9,000 yr. B. P. (Blitzer et. al., 1972). A second 
minor rise occurred between 6,000 and 4,000 yr. B. P., after 
which both lakes regressed to their modern positions. 

Lakes Magadi and ' Natron'lie at the southern end of the 
Kenya Rift. Lake Natron is highly saline and alkaline, 

while' Lake Magadi is ephemeral and has precipitated a thick 

trona sequence.. Butzer et. al. (1972) report a date of 
9,120 + 170 yr. B. P. for a terrace of-silts and clays 12 m 
above Lake Magadi. Servant (in Eugster'& Ming Chou, 1973) 

noted that the. diatoms were dominated by Nitzschia spp.. 
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7(ii)d The western Rift Valley lakes 

A number of large lakes occur in the western I branch of 
the East African Rift. Reports of the Holocene sediments 
are scarce, however detailed diatom analyses of cores have 
been made by Haworth (1977) and Harvey (1976), for Lakes 
George and Mobutu Sese Seko respectively. 

Lake George lies in the Albertine Rift and is joined to 

the much larger Lake Edward by a narrow stretch of water 
known as the Kazinga Channel. Haworth recognised three 

diatom assemblage zones, spanning the last 3,600 years. 
The earliest was dominated'by Melosira and Fragilaria which 

give way to a flora dominated by Nitzschia and Fragilaria. 

The final assemblage consists of Nitzschia and 8ynedra. 

She concluded that"the changes were related to an increase 

in organic'matter and nitrogen compounds. 

Lake Mobutu Sese Seko lies to the north of Lake Edward. 
Harvey has dated his core back to about 28,000 yr. B. P., 

and recognised four parts to the core: 

(iv) The Stephanodiscus-Nitzschia portion 
(iii) The upper Stephanodiscus-Melosfra portion 
(ii), Diatoms rare 
(i) The lower Stephanodiscus-Melosfra portion 

7(ii)e The non Rift Valley lakes 

The largest of these is Lake Victoria. The lake had risen 
by about 12,000 yr. B. P. (Kendall, 1969), but by 10,000 
yr. B. P. had again fallen to 12 m below modern levels. The 
lake was especially high between 9,500 and 6,500, and 
dominated by the freshwater diatoms Stephanodiscus astraea 
and Melosira spp.. The lake contracted after 6,500 yr. B. P., 
and pennate diatoms became more common. 

Other lakes outside the rift valleys have received little 
attention. Strandlines are present along the margins of 
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the Chalbi Desert in northern Kenya (fig. 7.5; Phillipson, 
1978). In southern Kenya, Lake Amboselli once stood at 
much higher levels (Williams, 1972). In north-western 
Kenya, an early Holocene lake is possible in the area 
of the modern., Lotigipi mudflats= (fig. 7.5). 

7(ii)f Diatom floral 4 trends during the Holocene 

A number of trends can be discerned in the centric 
diatom populations of many East African lakes. These 

mainly relate to climatically induced transgressions and 
regressions. Such fluctuations affect the salinity and 

alkalinity of the lakes and hence affect the diatoms. 

Figures 7.7 presents a-series of diagrams that attempt 
to show diatom assemblage changes through the Holocene. 

The diagrams indicate the range of diatom assemblages that 

occurred within the early, middle and late Holocene. Only 

ceru ric diatoms are included for simplicity, since 
these tend to reflect major environmental shifts. 

'Lake Afrera (fig 7.7) shows a change from an early 
Holöcene flora dominated by Stephanodiscus/Melosfra and 
Melosira/2yclotella, -to an assemblage consisting of 
Qyclotella, spp. during the middle Holocene. By the late 

4 

Holocene, the lake was much contracted, of higher alkalinity 
and lacked 

_. 
diatoms. 

Lakes Abhe and Asal maintained similar floras during 
the early and middle Holocene, as did Lake Turkana. 
Diatoms disappear from"the former two lakes during the 
läte, Holocene, while they decline and change to a Qjclotella 
/Thalassiosira flora in Lake Turkana. 

Lake Baringo was dominated by a Melosira/Stephanodiscus 
assemblage during the early Holocene. By the late Holocene, 
both Melosfra and yclotella/Thalassiosira floras were 
common. 
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Fig. 7.7 Major changes of centric diatom assemblages during 
the Holocene in East Africa 
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that it is present in the lake during that time period. Based 
on Kendall, 1969; Richardson & Richardson, 1972; Gasse, 1975 
and ersonal nhgarvntinni-, _ 
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Lake Naivasha has shown a trend from Stephanodiscus- 
dominated (early Holocene) to Melosira-dominated floras 
(middle Holocene), and finally to assemblages consisting 
of. varying percentages of Melosira and yclotella (late 
Holocene. 

Finally, Lake Victoria has shown a ,. change from 
Stephanodiscus-dominated floras to assemblages in which 

Melosira is most common. This changeover took place at the 

early to middle Holocene boundary. 

The above descriptions illustrate the main floral trends 
in East. African lakes during the Holocene. This can be 

summarised as a change from Stelphanodiscus and Melosira- 

dominated assemblages, through*Melosira only dominated 

floras, to ones consisting of Qyclotella and/or 
Thalässiosira. As a lake contracts, dissolved salts tend 

to increase, which results in changes of diatom flora. The 
changes described in earlier paragraphs therefore closely 
reflect the limnological history of East Africa. 

xýrý! 
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7(iii) The climatic evolution of Africa 

i" 
7(iii)a , Introduction to climatic studies : ii Africa 

During the (last fifteen years a,. large body of lake level, 
river terrace `ändIpalaeontological däta has been accumulated 
which now allows attempts at palaeoclimatic; reconstruction 
to be made. Some of this data, are shown in-*, figure`7.8. 

Climatic changes have been the principle cause of lake 
level fluctuations during the late Quaternary. Formerly, 
the link between lake expansion and climate was used to 
invoke the occurrence of a 'pluvial' (wet phase), for any 
time span represented by lacustrine sediments. The 1947 
Pan-African Congress on Pre-History declared the existence 
bf four*pluvials, and. compared them with the glacials of 
Europe'. ' The pltavial concept was later abandoned as a 
formal stratigraphic framework, with the realisation that 
lacustrine sediments may be present, or absent, due to the 
influence of tectonic and/or volcanic events (Bishop, 1971). 
Palaeoclimatic conclusions for the early and middle 
Pleistocene;.: areý now based mainly on', fossil -criteria. 

7(iii)b-`". The Pleistocene=climatic evolution: of Africa 
J>s 

,1 

Data from : the Omo sediments (Bonnefille, 11976), to. 'the 
north-, 'of, Lake Turkana, 

"suggest 
that this area 

was 
moist 

, 
between 2 and 1: 2" my. A dry phase-followed , 

from 1.2 until 
0.2 my., with .d brief moist episode at-about 0.7 my that 

: has also been reported from Melka'Kontoure in Ethiopia 
(Gasse, Rognon and Street, 1980). 

Van'Zinderen Bakker and Maley (1979) suggest that 
during the .,, I early Wurm', conditions ranged from" dry in 

; Senegal to semi-arid in Mauritania and the northern 
'Sahara-(but. -colder. than today), to wet and colder in the 
Maghreb (north-west Africa). 



-240- 

Fig-7.8 
Late Quaternary climatic fluctuations in Africa 
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In the Afar region of Ethiopia, Gasse, Rognon and Street 
(1980) have suggested that the climate was humid, with an 
irregular rainfall regime, prior to 70,000 yr. B. P.. From 

70,000 to 60,000 yr. B. P. lake levels fell, suggesting 

greater aridity. Humid conditions returned after 60,000 

yr. B. P., but with rains that were more regular and with 

warm temperatures. This period lasted until about 31,000 

yr. B. P.. 

Lakes developed and expanded in modern arid areas such 
as'Mauritania, Chad and the Afar, 'between about 40,000 

and, 20,000 yr. B. P. (Rognon & Williams, 1977)-. Two or 

three wet/dry climatic cycles occurred during this period 
(Conrad, 1969; Servant, 1973). According to Maley (1976) 

these cycles may have been related to movements of 

tropical-depressions. -. Steep temperature gradients between 

the equator and the arctic apparently accelerated the wind 

systems, while climatic belts were compressed and moved 

equatorwards. This"southerly movement (in north Africa) 

shifted-cyclonic-tracks over the Maghreb, so that it 

received increased rainfall. 

From 21,000 to 12,500 -yr. - B. P. - the-tropics underwent 

a'period of increased 'aridity, although wetter phases 
persisted, intermittently; along'the southern Mediterra nean, 
in the Saharan mountains, near the. "RedýSea and'in'southern 
Africa'(Street''and Grove,; -1979). The majority of East' 

African and Saharan lakes partially or'completely dried 

out'; while active dunes moved southwards across the Sahel- 

(Grove and Warren, 1968). The increased aridity of this 

period, on a world scale, has been attributed'to increasing 

continentality (due to lower sea levels) by Webster and 

Streten'(1972). However, this probably played only a minor 
role in Africa. Newell et. ' al. (1975) suggested a global 

reduction in moisture, due to lower sea surface 
temperatures. Street and Grove (1979) state that the west 
African, and'south Asian monsoons were probably greatly 
suppressed. Lake level data from equatorial Africa suggests 
that'ýaridity reached its maximum between 15,000 and 
12,500 yr. B. P.. During this latter phase, only Africa 
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south, of 25°S (Heine, 1978), and areas such as the Tibesti, 

Jebel Marra and the Red Sea Hills, experienced wetter 

conditions than today (Street and Grove, 1979). Ethiopian 

data suggests a rainfall reduction by 9 to 40. % 

compared with today (Street, 1979). 

7(iii)z. The Holocene climatic evolution of Africa 

:.. Rognon and Williams (1977) note that the Holocene 

began with a rapid rise in sea surface temperatures, and 

with a re-organisation of the summer monsoons. The Sahel 

was;. again wet, which may reflect a northward shift in 

the mean position of the 'inter tropical convergence zone' 

and of the subtropical anticyclones of the Sahara. 

Sahelian high lake levels occurred at Rub'al Khali (18 to 

239N) between 8,800 and 6,100 yr. B. P., and in the eastern 

Sahara (15 to 23°N) from 8,700 to 4,200 yr. B. P. (Street 

and. Grove, 1979). -This moist phase was interrupted at 

about 7,500 yr. B. P., during which time dune formation 

took-. place at several localities (Wendorff, 1977). 

..;, 
In Kenya, high lake levels developed somewhat earlier, 

at about 9,500'to 10,000 yr. B. P. and lasted until about 

7000 yr. B. P., with in some cases a second rise between 

about 6,500-and'4,000 yr., B. P. (fig. 7.8). Diatoms, in these 

lakes suggest similar temperatures to today. Laminated 

sediments at Lake Turkana imply a cyclicity to the 

palaeoclimate on a seasonal-, or perhaps longer term basis. 

Rainfall maxima occurred-in-the Maghreb (fig. 7.8) at 

12,000, and 10,500 to'10,000 yr. B. P., with the most 

important peak from about 9,000 yr. B. P.. However, Conrad 

(1969) notes that the northern Sahara remained dry for 

much of the early Holocene. This suggests that the westerly 

cyclones and Saharan anticyclones were over the Maghreb 

and northern Sahara respectively. 

Data from southern Africa are sparse, however, Van 
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-Z, inderen Bakker and Clark (19b2) have noted some evidence 
Df greater aeolian activity during the early Holocene. 

1Butzer (1979) suggests that the lower Vaal basin was at 
this time slightly moister than today (fig. 7.8). 

During the early Holocene monsoonal rains were probably 
more common, prolonged and gentler than today. Rognon and 
Williams (1977) hypothesize that this involved a change in 

the inclination of the 'inter tropical convergence'. They 

state that rainfall intensity would decrease, and that the 

width of the Sahel rainfall belt would increase, due to 

warm moist tropical air overriding cool dry desert air, 
during the early Holocene. This contrasts with today, where 

moist tropical air passes under hot dry desert air. 

From about 4,500 yr. B. P. the Sahara has experienced a 

southerly movement in the limits of the monsoonal rainfall 

area. This is related to an equatorward shift in the 
tropical high pressure cells. In turn, this has brought 

about increasing aridity and falling lake levels, not only 
in the Sahel belt,, but throughout equatorial Africa. 
Rognon and Williams (1977) attribute such changes to an 
intensification of the desert anticyclones (on a world 
scale) and to falling temperatures. 

In summary, the main factors that have influenced the 

climatic changes in Africa are as follows. 

(i) Shifts in the mean position and inclination of 

the inter tropical convergence. 
(ii) Shifts in the position of the, arid inducing, 

tropical anticyclones. 
(iii)Shifts in the position of the westerly cyclones, 

which induce wet conditions. 
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CHAPTER 8 

; LATE CENOZOIC SEDIMENTATION AND DIATOMS OF THE BARINGO 

DISTRICT 

sL. 

r. ý. : 

8(i) Miocene sedimentation and diatoms of the Baringo 

rýi Gtri r. t"' 'ý` 

Ft 
1. 

8(i)a 
,' 

Introduction to the sediments of,, the Bäringo district 

fi The Baringo district 
. 
contains, a; 

_number of lac. üstrine 

units that are separated both intime and space, and which 

extend back to the middle', Miocene, Th'e distribution and 

general-'stratigräphic relationships* of these deposits are 

-shown in, figures 8: 1 rand` 8.2 respectively. tT ie" latter 

, 
diagram gives. the; maximum possible age ranges of the various 

rt 
units, although'; *they were probably formed'du1'ing'shorter 
time intervals.,. '- 

This chapter-`äims, _-tö uses diatoms to increase our, 

, 
knowledge ofýthe'palaeochemistry and'palaeöecology of this 
ancient series, of-, lakes. <Each of the sedimentary units 
recognised in-'the area will be discussed-, individually in 

the following sections. 

8(i)b The" Muruyur Beds 

These lacustrine: deposits are dominated by tuffaceous 

sediments and shales, which are locally well silicified. 

, 
The-Muruyur Beds formed about 13.5 my ago, and have a 
maximum-thickness of about 300 m at Muruyur, although 
elsewhere they are much thinner (Pickford, Pers. comm. ). 

-Orily - six samples-were collected from these Beds, from the 

, 
Kituru; area.: The location is numbered '3' in figure 8.3, 
which-shows the position of sampling sites in the Baringo 
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Fig. 8.1 

The distribution of late Cenozoic sediments 

in the Baringo district. 

(simplified after E. A. G. R. U. maps) . 
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Fig. 8.2 Approximate age and distribution of sedimentary 

units in the Baringo District. 
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Fig. 8.3 MAP SHOWING THE LOCATION OF SECTIONS SAMPLED 
DURING THE SUi. TiER OF 1976 AND THE ST RATI GRAPHIC 
RELATIONSHIPS OF THE CE' IMEN"ARY UNITS. 
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district. Unfortunately no diatoms were found, and therefore 
no florally-based conclusions can be drawn. 

8(i)c The Ngorora Formation 

-Pickford-(1978) has demonstrated that the Ngorora 

sedimentary basin was-limited 't6 the-north by the Tiati 

volcanics, -to the, west. 
-. 
by the Elgeyo escarpment and to 

the, south and -, east by: a -rise in the palaeorift_ floor. The 
basin was also. split" by north. -to south-trending-faults, 
the movements 

. 
of"which""partly controlled sedimentation. 

-The Formation lies between lavas dated at 9, my and 12 my 
(Pickford, 1978). It was divided into five; units by Bishop 

and Chapman (1970), which ;, were. ", later ranked as Members by 
Pickford". These Members are as'follow-(thicknesses taken 
from the type section ' atKabarsero). 

MEMBER I' LITHOLOGY JENVIRONMENT 

E white laminated shales and Lacustrine 
diatomites. 125 m 

D fluvial sands. 66-m Subaerial 

C white laminated shales & lacustrine 

rare palaeosols. 62 m 
B fluvial sands and palaeosols Subaerial 

42 m 
A coarse volcaniclastics, lahars Subaerial 

& fluvial deposits. 104 m 

Members C and E were sampled at 50 cm intervals, at 
Kabarsero (figure 8.2; plate 8.1). Member C was also 
sampled in the Kerio Valley, at Barwesa (fig. 8.3). The 
sediments at this latter locality lack diatoms, probably 
reflecting the highly saline nature of the palaeolake 
suggested by Pickford, on sedimentary grounds. Diatoms 
were recovered from both Members C and E at Kabarsero. 



_i 
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Plate 8.1 

Members '. ' to l of the Ngorora i, 'ormation at Kabarsero. Member C 

consists of white, laminated, lacustrine shales. M-mber D is 

composed of buff coloured fluvial sands, and forms the pyramid- 

like mound in the centre of the photo. Member E includes white, 

laminated, lacustrine shales, and occasional diatomites. This 

latter Member is partially hidden by Acacia thorn scruff,. 
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, The Ngorora diatoms are amongst the oldest recorded 
from the Kenya Rift. Several Melosira spp. occur. Diatoms 
are*usually found in low numbers and are absent from large 
parts of Members C and E. However, in the latter Member 
they occasionally form diatomites. 

Two assemblages are common, although intermediate types 

also occur. 

Assemblage (i) 

DOMINANT : Melosira granulata-agassizi 
SUBDOMINANT : M. agassizi var malayensis, M. 

granulata 

Assemblage (ii) 

DOMINANT" Melosira granulata 

These Melosiranare somewhat archaic and posses coarser 
ornamentation than their modern counterparts (p. 269). For 

example, -M"'granulata resembles the coarsely ornamented 
Mýraegranulata described by Servant (1973). Other, less 

common, diatoms include: M. granulata var. angustissima form 

curvata, Synedra ulna, FraFilaria consrruens, F. 
brevistriata and Nitzschia spp.. 

Today, Melosira granulata occurs in lakes of moderate 
eutrophy, with alkalinities of mainly less than 8 or 9 meq 
/1, pH values of less than about'9, conductivities of less 

than 600 pmhos and with silica concentrations of more than 
5 to-10 mg/l. The lack of diatoms in many parts of the 
Formation may reflect competetive exclusion by other algal 
groups, a lack, of: silica or alkalinities that were too high. 

It-,., 
, 



-252- 

8(i)d The Mpesida Beds 

The Mpesida Beds are dated at about 7 my (Pickford, pers. 

comm. ). The sediment outcrop is restricted to the eastern 

side of the Tugen Hills. Tuffs dominate, but clays, silts 

and grits are also present. Several samples were collected 

near Yatya (fig. 8.3), but none contained diatoms. -'However, 
Pickford has noted the presence of Melosira near Koitugum. 

8(i)e The Lukeino Formatiön 

The Lukeino Formation has been examined by Bishop et. 

al. (1971), and by Pickford (1975,1978). Pickford defined 

the Formation as, "A body of sediment and contained lavas 

deposited on trachytes and sediments of the Kabarnet 

Formation and capped'by lavas of the Kaparaina Basalts 

Formation to the west and north-west of Lake Baringo". 

The Formation is dated at about 6.5 my (Pickford, 1975). 

The sediments formed in an assymetric fault-controlled 

trough. Pickford divided the Formation into five Members, 

which are as follows (thicknesses taken from the type 

section at Kobuluk; fig. 8.3). 

MEMBER 

D 

C 

B 

A 

LITHOLOGY 

diatomaceous & tuffaceous 

paper shales. 35 m 

pumiceous tuffs., 12, m 

diatomaceous and tuffaceous 

silts, red marls. 50 in 

red marls, channel sands and 

algal limestones. 15 in 

ENVIRONMENT 

lacustrine 

lacustrine & 

subaerial 
1acustrine 

subaerial 

Samples were collected from Members B and D, at Kobuluk, 

which are richly diatomaceous. Two main assemblages can be 

recognised, which are as follow. 
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Assemblage (i) 

DOMINANT : Melosira granulata (71-100%) 

OCCASIONAL : Nitzschia frustulum, Melosira 

granulata var. angustissima, M. 

granulata var. muzzanensis, Navicula 

cryptocephala, ynedra ulna 

The Melosira suggest a fresh to slightly saline and 
alkaline lake, with a pH of less than about 9. Assemblages 

with a higher than normal percentage of Navicula crypto- 

ce hala may reflect a nearby shoreline or shallower water. 

Assemblage (ii) 

DOMINANT : Nedra acus var. angustissima (71 

to 80%) 

SUBDOMINANT : Melosira granulata (1 to 22'x) 

OCCASIONAL : ynedra ulna and its variety aequ alis, 
Fragilaria construens & var. venter, 
Nitzschia frustulum. 

This assemblage is of planktonic character. ynedra spp. 
occur mainly in lakes with dissolved silica concentrations 
of between 10 and 30 mg/l (Gasse, 1975). The flora suggests 
that the water was warm and biologically productive. 

Large parts of Members B and D include 'varve like' 

sediments. Normally, these consist of alternating bands 

of creamish white diatomite (0.8 to I mm thick) and dark 

grey diatomaceous clays (0.1 to 0.2 mm thick). These were 

examined for variations of diatom flora, with the following 

results. 

Dark lamina (4.2 x 105 valves/g of sediment) 

Melosira granulata 64% (some broken) 
. ynedra spp. 14% (a lot broken) 
Nitzschia frustulum 8% 



-254- 

Fragilaria construens var. venter 3% 

Light lamina (1.8 x '1012 valves/g of sediment) 

Melosira granulata 97% 
Nitzschia frustulum 3% 

The light laminae owe their colour to the abundance of 
diatoms, while the dark laminae have a high clay content 
(X-ray diffraction shows this to be smectite). The 

diatomites contain an almost monospecific flora, while the 
diatomaceous clays are dominated by two species, although 
M. granulata is the more common. Seasonal blooms may 

account for these differences, although variations in 

detrital input may or may not be involved. 

8(i)f The Kaparaina Basalts Formation 

This Formation is about 5.4 to 6.5 my old (Pickford, 

1975)" It is dominated by basalts. However, during phases 

of volcanic quiescence, weathering profiles and lacustrine 

sediments formed on the lava surfaces. These lake deposits 

are highly localised and one such sequence was examined 

near Pelion (fig. 8.3), where a maximum thickness of 3m 

of diatomaceous silts crop out between lava flows. The 

samples contained a single assemblage which was as follows. 

DOMINANT : Fragilaria construens, F. construens 
var. venter 

OCCASIONAL F. brevistriata, Nedra ulna, 
Melosira granulata and Cocconeis 

placentula 

The flora probably reflects a shallow environment of 
fresh to slightly alkaline water. 
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8(u) Pliocene sedimentation and diatoms of the Baringo 

district 

.:,,,. The Pliocene Chemeron Formation crops out between the 
Tugen Hills and Lake Baringo (figs. 8.1 and 8.3). It is 

of uncertain age, but dated lavas indicate it to be older 
than-2 my and younger than 5.4 my (Bishop, 1972). The 
Chemeron Formation consists of lacustrine and fluvial 

deposits, with a maximum thickness of 230 m (Martyn, 1967). 
It rests unconformably on the Kaparaina Basalt Formation 

in the south, and on the Lukeino Formation in_. the north. 
Martyn divided the sequence into five Members, which are 

as follow. 

MEMBER LITHOLOGY ENVIRONMENT 

E The Upper Tuffs. 6-30 m lacustrine 

D The Upper Fish Beds. fluvial lacustrine & 

sands and gravels, lacustrine subaerial 
silts & diatomites. 80 m 

c Lower Tuffs. 3-5 m. lacustrine 

B Lower Fish Beds. Silts, lacustrine 
diatomites and rare, fluvial 

sands. 100 m 
A Basal Beds. Fluvial sands and Subaerial 

-rare impure diatomites. 0-50 m` 

Several diatomites were sampled near Pelion (fig. 8-3)- 

-Two assemblages were . recognised, which-ar, e. as follow. 

Assemblage (i) 

DOMINANT 

SUBDOMINANT 

OCCASIONAL 

: Melosira granulata (60 to 70°x) 

Stephanodiscus astraea, S. astraea 
var. minutula 
S. hantzschii var. pusilla 
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Today, these planktonic diatoms are favoured by slightly 
alkaline water (0.9 to 4.5 meq/l; Richardson, 1969). 
Melosira thrives at a pH of about 8, in water of high 
silica content (over 10 mg/l; Richardson, 1969). However, 
the presence of Stephanodiscus suggests that silica was 
not much over this figure. 

Assemblage (ii) 

DOMINANT : Melosira granulata (45 to 80'x) 

OCCASIONAL : ynedra ulna, S. ulna var. ae ug alis, 
S. rumpens, Cocconeis placentula, 
Epithemia arges, Melosira ambigues, 
Fragilaria pinnata & Stephanodiscus 

astraea 

The flora contains a number of epiphytic and littoral 
diatoms, but is essentially planktonic. The greater 
number of littoral types suggests shallower waters than 
those represented by assemblage (i). The lack of 
Stephanodiscus spp. may reflect higher silica levels than 
were present in lakes dominated by the first assemblage. 

Two diatomite samples were collected from the Kapthurin 
River (fig. 8.3). One sample, taken from 6m above the 
base of the Lower Fish Beds (Member B) contained a flora 

similar to that of assemblage (i), but also included 
Melosira granulata var. angustissima (8%). The second 
diatomite was collected from the middle of the Upper Fish 

Beds (Member D). This was dominated by Melosira granulata 

and its variety angustissima , while Stephanodiscus 

astraea forms only about 3 to 4 %. 

The diatoms suggest that the Chemeron lake was slightly 

alkaline, highly productive Wand contained moderate to 
high levels of dissolved silica. The waters were probably 
clear,, with little sediment input during periods of 
diatomite formation. 
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8(iii) Pleistocene sedimentation and diatoms of the 

Baringo district 

8(iii)a The Kapthurin Formation 

The sediments of the mid- to late Pleistocene Kapthurin 
Formation lie to the south-west of Lake Baringo (fig. 8.1). 
The Formation was divided into five Members by Martyn 
(1969), which are as follow. 

MEMBERS LITHOLOGY 

Upper Silts & Gravels 

Bedded Tuff 

Middle Silts & Gravels 

Pumice Tuff 

Lower Silts & Gravels 

Fluvial silts, sands, gravels 

and boulders. 20 m 
Tuffs. 12 m 

Fluvial silts, sands, gravels. 
Lacustrine red and black clays 
40 m 
Pumice. 20 m 

Fluvial silts, sands, pebbles. 
Lacustrine red and black clays 
35 m 

Both the Lower and Middle Silts and Gravels Members pass 

eastwards into red and black lacustrine clays, in the north 

-eastern part of the Kapthurin basin (fig. 8.4). Tallon 

reports the presence of oncolitic and laterally linked 

stromatolitic limestone at several levels within the clays. 
He suggests that the vertebrate fauna (possibly washed in) 
indicates a freshwater lake. 

Several samples were collected from the lacustrine clay. 
No. diatoms were found. However, X-ray diffraction shows 
the clays to be predominantly smectite (fig. 8.4). These 
sediments are rich in analcime, and contain minor amounts 
of calcite, dolomite and feldspar. A pale green, indurated 
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Fig. 8.1+ 

Locality map and section of the lacustrine facies of the 

Kapthurin Formation 
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The map is simplified after Tallon (1978). The lacustrine facies 
outcrop is shown by the dashed line symbol, the lacustrine facies 
of the Pumice Tuff by small crosses. The principal mineralogy is 
shown at the appropriate level to the left of the section in order 
of decreasing abundance. Index to minerals: A: alkali feldspar; C: 
calcite; D: dolomite; F: fluorite; I: illite; K: kaolinite; P: 
plagioclase; S: smectite; Z: analcime. 
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tuffaceous siltstone, within the red clays contains 
abundant fluorite as well as analcime. The fluorite 
crystals are euhedral, up to 2 mm long and almost 
certainly authigenic. The association of authigenic 
analcime, fluorite and dolomite suggests a saline and 
alkaline lake, rather than the fresh one indicated by 
Tallon (1978). This area of clay lithofacies probably 
represents an arm-of a 'central rift lake',.; Much of the 

sediments formed in this lake must now be buried beneath 

younger deposits in the downfaulted axis of-the Baringo 

Graben. Kapthurin sedimentation was terminated by. late 
Pleistocene grid faulting (Tallon, 1978). 

8(iii)b The Ilosowuani Beds 

Pleistocene sediments crop out near the village of 
Logumukum (fig. 8.5, plate 8.2), to the south-east of 
the Baringo Graben. They consist'of a3m sequence of silt, 
clay-'and grit that is faulted and tilted to-the east at 

about 120. The. sediment succession is given in figure 8.6. 
The Ilosowuani Beds are unconformably overlain by Holocene 

strandline sediments. Both groups of deposits were mapped 
as 'Logumukum sediments' by McCall (1967), who considered 
them to be Holocene. Farrand et. al. (1967) recognised the 

. two groups as being of different age. 

The older, faulted sequence is here termed the 
Ilosowuani Beds. Six lithological units can be recognised 

at the type section (fig. 8.6). With the exception of the 
'white laminated tuff' of unit 3, the lateral extent of 
the sediments is difficult to determine, due to poor 

exposure. 

The oldest exposed unit (numbered I in fig. 8.6) is a 
sequence of pale brown, structureless or weakly laminated 

silts, that are moderately well sorted and locally 
tuffaceous. They are at least 98 cm thick and probably 
rest unconformably on Hannington trachyphonolites (Griffiths, 



Plate 6.2 
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'v'iew looking west from the Ilosowuani horst (which lies to the 

south of Lake Baringu). Pleistocene, lacustrine, fluvial and 

colluvial sediments (Ilosowuani Beds) form the eroded knoll, 

and underlie much of the surface. The line of white sediments 

(Kokwob Formation), in the middle distance, represent an early 

Holocene strandline, and are composed of shelly material. 
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Fig. 8.6 Section through the Ilosowuani Beds 
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angular lava clasts in sandy-silt P 

'wý matrix. 0-40 cm. 
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reworked calcareous root casts, well 
indurated. 0-45 cm. 
/tr1LCITIC GRITS 

Orange indurated clayey silt with 
manganiferous stains and nodules. 10 cm. 

Orange analcitic silts, black rootcasts. 
0-30 cm. 

In 

5 
CALCRETE - with veins that 
penetrate lower beds. 0-10 cm. 

4 PALE YELLO? 1 CLAY - locally 
silty and ostracod-boaring; 
weakly laminated. 30-40 cm. 
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unc onf ormity 

WHITE LMIIPIATED TUFF - upper 
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occurence (laterally local 
palaeosols). 0-15 cm. 

TUFFACEOUS SILTS - friable, 
structureless or weakly 
laminated; pale brown. 98 cm 

Faulted Hannington lavas 
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1977). The lack of structure in this unit suggests that 
the deposits might be of floodplain and/or colluvial 
origin. 

Unit 2 is a green pumiceous grit found in channels. A 

thin grey-brown, organic palaeosol, in the upper 5 cm of 
the underlying silts, indicates pedogenesis. 

The white laminated silt of unit 3 was termed a diatomite 

by previous workers. Petrographic examination shows it to 

be a fine tuff. The well-developed fine laminae suggest 

deposition in a lake (part of the central rift lake 

mentioned earlier ? ). Root casts in the top of this unit 

suggest lake marginal vegetation. 

Unit 4 consists of calcareous, pale yellow clays (X-ray 

diffraction shows this to be montmorillonite), which are 

locally tuffaceous, silty and ostracod bearing. The 

siltier lithofacies also contains diatoms. Four species 

dominate. These are: Rhopalodia gibberula var. sphaerula, 

R. gibberula var. rupestris, Anomoeoneis sphaero Nora var. 

guntherii, and Surirella ovalis. Other diatoms present 

include: Thalassiosira rudolfii, yclotella meneghiniana, 
Anomoeoneis sphaero horn var. polygr amnia, pithemia argus, 

. 
ýjy. nedra ulna, Cocconeis placentula, Navicula pupula, N. 

grimmei and Fragilaria brevistriata. Today, such a flora 

is usually found in shallow, highly alkaline (up to about 

80 meq/1) water. 

Following lake-retreat and erosion, only subaerial 

deposits formed. Unit 4 is locally capped by a calcrete, 

which R. Renaut (pers. comm. ) considers to be of pedogenic 

origin. This gives way, towards the scarp of the 

Ilosowuani Horst (fig. 8.5), to reddish-brown grits. 
Analcime forms up to 40 % of these grits (Renaut, pers. 

comm. ), and may have formed by reaction of clay and 

volcanic glass with sodium carbonate solutions. It seems 
probable that both the calcrete and zeolitisation of the 

grits are related to an arid, late Pleistocene (? ), phase. 
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The Ilosowuani Beds predate the early Holocene 

strandlines, mentioned earlier, and postdate the 
Hannington trachyphonolites, dated between I änd 0.3 my 
elsewhere. To the west of Lake Baringo pumice grits occur 
in the Kampi-ya-Samaki Beds, which also predate early 
Holocene sediments. The deposits rest on-the Bari hgo 
Trachytes (dated--at"-0: 23 'my). 'Although the age of the 
Ilosowuani Beds-is uncertain, its stratigraphic position 
suggests that it is of late Pleistocene age. It may be 

equivalent to the upper part of the Kapthurin Formation. 

A sequence of probable late Pleistocene. sediments also 
occurs to the east of Lake Baringo. These are known as 
the Loiminange Beds (Carney, 1972), and may be laterally 

equal to the Ilosowu'ani Beds. The sequence recorded by 

Carney is as follows. 

a) Shingle deposits. 1-2 m 
b) Tuffaceous silts and clays. 3-5 m 

c) Conglomerates and silts. more than 2 m` 

The extent or duration of any labe Pleistocene lake is 

imprecisely understood. The volcanics of Korosi, to the 

north of Lake Baringo, have not been dated. However, it 
is"probable that this 'barrier' existed during the late 
Pleistocene. The diatoms and mineralogy of the Pleistocene 

sediments suggest that this lake was at least periodically 
saline and alkaline. Its southern boundary is even less 

certain, it may have continued into the present Bogoria 

basin, but as yet no data is available to confirm or deny 

this. It would seem that the fluvio-lacustrine Loboi silts 
(fig. 8.1; 'p. 216 ) advanced across the area between Lakes 

Baringo and Bogoria, both before and after the formation 

of early Holocene strandlines, and that they are in part 
of late Pleistocene age. 
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8(iv) Late Cenozoic lakes and the factors influencing 

sedimentation in the Baringo district 

8(iv)a Summary, of the palaeochemistry and palaeogeograp 

of the major late Cenozoic lakes 

Figure 8.7 shows the inferred palaeochemistry of 

several major lakes that have existed in the Baringo 

district during the last 12 my. The Miocene and Pliocene 

lakes, at their maximum extent, all had a similar 

chemistry, with moderate pH, low alkalinity and low 

salinity. Silica appears to have been more variable, 

possibly in response to intermittant volcanism. The 

Pleistocene 'central rift lake' had a much higher pH, 

alkalinity and salinity, at least periodically. Dissolved 

silica concentrations were probably high. All, except the 

Pleistocene lake, appear to have been biologically highly 

productive during part, or all of their existence. The 

probable palaeogeographic settings of these lakes, at 
their maximum extents are also shown in figure 8.7. 

8(iv)b Tectonic influences on sedimentation in the 
-Baringo district 

Faulting and graben subsidence are primarily responsible 
for the initiation of lake basins in rift valleys. In this 

area, the major lacustrine units all developed within the 

main rift axis. Small graben basins also occur at the rift 

margins, in which localised deposition takes. place. 

Subsidence has been of major importance in allowing 
thick sediment sequences to build up. The Muruyur Beds 

are up to 300 m thick, while the Ngorora Formation is up 
to 400 m. Today, Lake Baringo lies in a downwarp within 
the main axis of the Kenya Rift (King, 1978). 

Sedimentation in the middle Miocene Ngorora basin has 
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Fig. 8.7 
The approximate palaeochemistry and palaeogeography 
of late Cenozoic lakes in the Baringo district. 

Approximate palaeochemistry of the late Cenozoic lakes at their 
maximum extent 

LA123 (named after pH elk. sal. Si0 l Nutrient 
the sed. unit) meq/1 ",. mg/ status 

modern L. Baringo 8-9 5-6 0.3-0.7 15-30 high 

Pleistocene 'central 
rift lake' 

-L. Ilosowuani 9+ 50-80 2-16 high low 
L. Kapthurin 9+, >100 high ? ? 

Pliocene L. Chemeron 7-8.5 ca-5 <2 ca. 10 moderately 
high 

Miocene L. Lukeino 7-8.5 ca. 5 <2 10-30 high 

I. Iiocene L. Ngorora 7-8.5 ca-5 <2 >10 moderately 
high 

All except L. Kapthurin, based on diatom evidence, using 

--ecological data in Richardson, 1969; Gasse, 1975 and Hecky & 
Kapthurin based on mineralogy, and chemical , Kilham, 1973. L. 

, data in Cerling, 1979. 

The approximate location of major lakes in the Baringo 
district since the middle Miocene. (based on Vartyn, 1969; 
Pickford, 1975 and Tallon, 1978). 

(d) 

e) modern lakes Baringo & Bogoria 
d) Kapthurin lake maximum (a) c) Chemeron lake maximum 
b) Lukeino lake maximum 
a) Ngorora lake maximum 

N. B. These lakes are separated by 
long periods without lacustrine sed. 
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been closely related to fault movements by Pickford (1978). 
Shifts along north to south-trending faults, that bisect 
the Ngorora basin, were responsible for the initiation of 
major lacustrine sedimentation during Member C times (p. 2 
L19 ). Three separate lakes formed, with conditions ranging 
from fresh to saline and alkaline. Pickford reports that 
after contraction, a further lake expansion occurred during 
Member E times. This lake crossed the now subdued and 
tectonically less active 'l'ugen Hills fault divide (fig. 

8.7). Renewed faulting and uplift of the Tugen Hills again 

split the basin into two, prior to its complete elimination. 

Tectonism can also play a role in influencing the style 

of sedimentation, as well as basin formation. Numerous 

examples exist in the Baringo district, amongst which the 

following can be cited. Uplift along the Saimo fault (one 

of the many north, to south trending faults of the Tugen 

Hills ) during the Pleistocene, resulted in the accumulation 

of the thick alluvial sediments of the Kapthurin Formation 

(Tallon, 11978). Faulted Javas at the north end of modern 
Lake Baringo,, which has no, surface outlet, allows 

seepage and the maintenance of a freshwater lake, in which 

only detrital sediments dominate. In contrast, Lake 

Bogoria, which also "has no surface outlet, has no or only 
limited subsurface seepage, and is highly saline and 

alkaline. As a result, evaporites are forming along the 

centre, of the lake (Tiercelin, pers. comm. ). 

8(iv)c Volcanic influences on sedimentation in the 

Baringo district 

The Baringo district, within its rift valley setting, 
has a northerly-falling slope, which seems to have existed 
for much of its history (Pickford, 19? 8). Volcanoes have 

formed important downslope barriers. During the Miocene, 
the Tiati volcanics partly 'dammed' the Ngorora lake. 
Today, Lake Baringo is also dammed, but this time by Korosi 
volcano.. This combination of volcanism and regional slope 
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has been of major importance in the formation of lake basins. 

Volcanism may also be important in causing the cessation 
of lacustrine sedimentation. This can operate by infilling 
the basin itself, or by drainage diversion and so 
reduction of water input to the lake. 

8(iv)d The role of climate in influencing sedimentation 

Although climatic changes probably contributed to the 

expansion and contraction of. the late Cenozoic lakes, its 

precise role is often difficult to-evaluate. This is 

because of the confusing influence of tectonism and/or 

volcanism. 

In cases where `varve like' sediments develop (such as 
in the Lukeino Formation), this is almost certainly due 

to climatic factors. Arid climates can be suggested for 

the low lake levels of the latest Pleistocene, and are 

probably related to the development of calcretes and 

analcime during this period. Changes in lake level, caused 
by climatic changes, are more easily discerned for the 
Holocene. The relationship between Holocene sedimentation 
and climate is examined in more detail in chapter 9. 

4 
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8(v) The evolution of Melosira granulata 

The sediments-of the Baringo district contain the diatom 
Melosira granulata, and record its evolution since the 

middle Miocene. See appendix IIl. for photos of this species. 

Hustedt (1930) describes three modern morphological 
types of. granülata (types a, fl and y ), which are 
defined according to the coarsness of the ornamentation. 
Cultural. experiments by Kilham and Kilham (1975) have shown 
that it develops into the variety angustissima as part of 
the species life cycle. Gasse (1975) noted in the lake 

sediments of the Afar region (Ethiopia), that different 

morphotypes seemed to be related to the age of the 

deposits in which they were found. She observed that 

types a and ß were common in the Holocene, while in older 
sediments the species differed in general form and had 

a coarser ornamentation (and has been named Melosira prae- 
granulata). 

For comparative purposes the measurements used by Gasse 

were adopted here. The results are shown in table 8.1, 

which also includes data from East Turkana. The figures 

in this table are based on measurements of 100 individuals. 

Although there is. variability within each group of 
figures, their means (as shown in the table) do show 
several trends. Major, evolutionary changes occurred near 
the Plio-Pleistocehe boundary. The main changes are as 
follows: 

(i) An increase in the valve height to diameter ratio 
(ii) Increasingly finer ornamentation 
(iii) A reduction in. frustule. thickness and col height 

These trends are shown diagramatically in figure 8.8. 
The ancient forms of M. granulata (M. praegranulata) 
approach in morphology its modern variety valida, as first 

pointed out by Gasse (1975). In older deposits M. granulata 
shows less variability than it does today. 
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ffr 
Table=8.1 The morphology of Melosira granulata 

during the late Cenozoic. 

Age and location H D S A T C 
of sample 

Baringo District 

Holocene kKokwob 1b. 2 8.9 9.4 9.7 .9 1.0 

Formation) 

Plio-Pleistocene 15.1 9.3 8.9 8.9 1.8 1.8 

2-5my. (Chemeron 

Formation) 

Pliocene ca. 13.0 11 8 8.5 1.9 1.8 

6.5my. (Lukeino 

Formation 

Late Miocene 1e. 0 10 /. b 8. U ?. U 1.9 

9-1[my. (Ngorora 

Formation) 

Afar 

Holocene 15.4 s. 5 11' 9.6 1.0 0.8 

Upper Pleist. lb. ts 7.7 12 10.6 0.2 1.0 

Lower Pleist. 1b. 0 1U 8. U ts. U 1.5 1.5 

Flio-deist. 13.2 11 1.3 7.4 2.1 2.1 

East Turkana 

Holocene 15.0 8.0 1U 9.4 U. 9 0.9 

Midale Pleist. 15.5 9.8 9 9.4 1.2 1.4 

H: Height of the valve 
U: Diameter of the valve 
S: Number or striae in 10u 
A: Number of areolae in 10u 
T: r'rustuie thickness. 
C: Height or the col. 
tmeasurea in microns unless otherwise stated) 

i 

i 
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Fig. 8.8 

Evolutionary trends in Tr'elosira pro. nulata(Lhr. )Ralfs. 
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Melosfra agassizi shows similar trends in ornamentation 

and frustule thickness. It becomes increasingly difficult 

to separate this species from Melosira granulata in 

older deposits, which suggests a common origin. Even 

today, it might be argued that there is a continuous range 
from M. granulata through M. granulata-agassizi to M. 

agassizi and that we may be recognising 'end members' of 

a continuous population. 

I 
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CHAPTER 9 

HOLOCENE SEDIMENTATION IN THE BARINGO AND BOGORIA BASINS 

9(i) 

9(i)a 

The Holocene sediments of the: Bäringo basin 

Introduction to the Holocene sediments of the BarinRo 

and BoRoria basins 

Chapter 8 demonstrated that lacustrine sedimentation 
has taken place during several quite distinct periods, in 

this part of the Kenya Rift. By the Quaternary,. lacustrine 

and&lake marginal deposits were being formed in about the 

same area as the modern Baringo and Bogbria grabens. 
During the Holocene, several distinctive sedimentary units 

were laid down, and it is these that form the subject of 

this chapter. Their distribution is shown in figure 9.1, 

and their stratigraphic relationships in figure 9.2. 

, The depos`it's to be discussed include the early Holocene 

lacustrine sediments that make up the Kokwob Formation, 

and more recent deposits obtained from a core in the modern 
Lake Baringo. Fluvial and fluviolacustrine sediments 
belonging to"the Loboi silts, will'al'so be described. 

Finally, the various lithofacies found- in the IBogoria 

graben will be examined. Together, ' these deposits record 
the latest Pleistocene/Holocene history of'Lakes_B'aringo 

and Bogoria, and at the end of this chapter an early 
Holocene' palaeogeographical reconstruction is attempted. 

9(i)b Definition and introduction to the Kokwob Formation 

The Kokwob Formation consists of lacustrine and 
marginal lacustrine sediments of latest Pleistocene/ 
Holocene age, that are restricted to the Baringo basin, 
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Fig. 9.1 The geology of Lakes Baringo and Bogoria 

(based on E. A. G. R. U. maps and personal observation 
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Fig. 9.2 Chronology and correlation of Quaternary 

sediments in the Baringo Basin 
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and which rest unconformably on volcanics and older 
sediments. 

Holocene raised beaches in the Baringo area, which 
are part of the Kokwob Formation, were first examined by 
Nilsson (1932), who also noted the existence of an 
overflow channel to the north of the lake. Later workers 
have been unable to confirm this outlet (Bishop and-Young, 
pers. comm. ). Fuchs (1934)'also recognisedýläke deposits 
in this basin. Martyn (1969) noted ' , 

the existence'-. of : shell 
bearing silts around'the lake.. The sediments were- 

reassessed�by Bishop, Buckland and-Spooner (1969), `, 
_who 

mapped'several Kokwob. localities, and''designated aetype 

section at Kokwob Murren. Tallon (1976). 
-briefly reported 

the Holocene deposits in-his thesis. 

Outcrops are discontinuous. 'On, the-western lake: 'margin, 

there'are several inliers'-of early Holocene sediment in 

younger, eastward advancing, fluvial , silts. (fig. 
_, 9., 1). 

Kokwob. strandlines occur-near the village of Logumukum, 

in the'south-east of the-basin, while small patches of 

mollusc-bearing silts are found near the Baringo-Bogoria 

watershed. Other outcrops are preserved in palaeo- 
embayments. 

9(i)c Thome section of the Kokwob Formation 

The type locality, as designated by W. W. Bishop (pers. 

comm. ), lies at Kokwob Murren (fig. 9.3; plate 9.1), 

near the village of Kampi-ya-Samaki. The sediments are 
preserved in a north to south trending graben. Here, the 
Kokwob Formation rests unconformably on Baringo Trachyte 

and the Kampi-ya-Samaki Beds (laterally equivalent to 
part of the Kapthurin Formation; fig. 9.2), with primary 
dips of between 2 and 8° to the north. High-level beach 
sediments have been levelled at 985.8 m O. D. (15.85 m 
above 1969 lake level) by Bishop (Bishop, Buckland and 
Spooner, 1969). A cross section through the deposits is 



Plate 9.1 

IV i< 

Baringo). Light coloured deposits, forming the low ground, are 

Kokwob Formation silts and coquinas. This area once formed an 

embayment of an expanded Lake Baringo. 
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shown in figure 9.3. Six lithological units can be 

recognised (fig. 9.4, section K1), each of which will be 
briefly described in the following paragraphs. 

Unit I consists of up to 30 cm of friable grey silts, 
which contain a few molluscs, but no diatoms. This, unit 
is restricted to the centre of", the outcrop>and rests,. 

unconformably on a palaeosol (part of the Kampi-ya-Samaki 

Beds). 

Unit 2 is composed of up to 25 cm of lithified, 

laminated, white silts, containing molluscs. It is even 

more laterally restricted than unit 1. Epiphytic diatoms, 

such as Cocconeis placentula dominate in this highly 

diatomaceous deposit (fig. 9.5). Amongst the planktonic 

species present, Melosira granulata is the most common, 

and'probably represents the dominant diatom of deep waters. 

The succeeding shell bed (unit 3) has been observed at 

several localities. The bed which is 5 to 20 cm thick, 

contains abundant Melanoides tuberculata and Corbicula spp.. 

Ostracods and fish bones are also present. The matrix is 

composed of comminuted shell debris and diatomaceous, 

feldspathic silts (plate 9.2). Loose grain mounts, 

examined by X-ray diffraction, show that sanidine dominates, 

while minor amounts of montmorillonite and plagioclase 

are. also present. Other minerals identified include 

calcite, nepheline, aegerine, aegerine-augite and an 

amphibole. Basalt and trachyte fragments are common. Locally, 

unit 3 forms the basal deposit of the Formation. Diatoms 

are common, with the genus Epithemia more common than 

Cocconeis. E. sorex is the dominant species. The modern 
distribution of these diatoms suggests that this unit 

reflects an increase in littoral vegetation. 

Unit 4 contains up to 40 cm of laminated white silts, 
which thicken lakewards and thin landwards. It contains 
few molluscs, but numerous diatoms. The flora is dominated 
by Cocconeis and pithemia. Among the latter E. sorer has 
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Fig. 9.3 Geological map of the West Bay area, Lake Baringo 
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Fig9,4 LithostratiGraphic sections of the Kokwob h'orration 
(K1, K2) and the Loboff silts (L1, L2) 
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Plate 9. 

i'tun sc tiU of tr: - uCune ß]1L:; of t, K: ýKwcb 

Formation. Photographed at x 63 magnification (with 

a photographic enlargement of x''. 5). Abundant diatoms 

can be seen, which include Rho )alodia, 1"'ragilaria, 

`, 'er sinne and Melosira species. A large shell. 

fru nent occurs in the upper left corner. sediment 

was unconsolidated, and was impregnated with araldite 

prior to sectioning. 
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declined and is replaced mainly by E. zebra var. saxonica. 
The lake was probably shallow at this site, and again 
contained numerous littoral reeds. 

Unit 5 consists of up to 30 cm of grey silts, which 
contain molluscs, fish. bones,... and infrequent-diatoms. --The 
diatom flora is dominated by Epithemia zebra var. 
saxonica, Cymbella ventricosa and Rhopalodia gibberula. 

Up to 170 cm of pebbly grits constitute unit 6. Small 

lava pebbles (less than I cm) are abundant, while rare 
shells and a few fragmentary diatoms also occur. This 

unit is much coarser than any other and may represent a 
beach deposit. 

The data from Kokwob Murren suggests that the silts 

were laid down in quiet, shallow fresh waters, with 

numerous aquatic plants-Similar environments border the 

modern lake, but diatoms are rare due to competitive 

exclusion by blue-green algae. The grits of unit 6 suggest 

an increase in wave energy. This might have been brought 

about by a rise in lake level, which would have breached 

a shallow col to the east of the Kokwob Murren palaeo- 

embayment. 

Samples of the shell bed (unit 3) have been 14C dated 
by Bishop (reported in Williams & Johnson, 1976). The 

results were: 

13,670 + 320 yr. B. P. (inner shell fraction) 

13,850 + 430 yr. B. P. (middle shell fraction) 

9(i)d The distribution and age of the Kokwob sediments 

In the lower valley of the River Kapthurin (K2, fig. 
9.1), to the south-west of Lake Baringo, Kokwob sediments 
rest unconformably on the calcreted top of a trachyte lava 
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flow (K2, fig. 9.4). The lower Kokwob unit consists of 
20 cm of pale grey, shelly silts, and is overlain by 
diatomaceous silts, up to 40 cm thick. The flora of the 
latter unit is as follows. 

DOMINANT : Rhopalodia gibberula var. rupestris, 
Nitzschia frustulum 

OCCASIONAL : R. gibberula var. sphaerula, Nitzschia 

obtusa, Navicula simplex, N. mutica var. 

undulates, Anomoeoneis sphaerophora var. 

guntheri, Stiephanodiscus astraea var. 

minutula 

Today, the dominants are commonly found in brackish 

water and in littoral situations. The deposits lie at 
15.54 m above 1969 lake level (Bishop et. al., 1969). 

Williams and Johnson (1976) report that molluscs have 

yielded the following dates. 

12,260 + 280 yr. B. P. (inner shell fraction) 

12,600 + 280 yr. B. P. (middle shell fraction) 

A lower strandline of non. -diatomaceous, shell-bearing 
silts, 2 km south-east of Kampi-ya-Samaki, lies at a height 

of 10.06 m above 1969 lake. level. This deposit has yielded 
the following dates (Williams & Johnson, 1976). 

9,940 ± 250 yr. B. P. (inner shell fraction) 

10,810 + 270 yr. B. P. (middle shell fraction) 

A non -diatomaceous, shelly grit occurs near the Kampi- 

ya-Samaki airstrip, at a height of 3.66 m above 1969 lake 

level (Bishop et. al., 1969). Bishop obtained the following 
dates for this deposit. 

7,620 ± 180 yr. B. P. (inner shell fraction) 
8,460 + 180 yr. B. P. (middle shell fraction) 

At Logumukum, 10 km to the south of Lake Baringo (fig. 
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9.1), a series of Kokwob strandlines rests unconformably 
upon eroded Ilosowuani Beds (fig. 8.5; plate 8.2). 
Melanoides tuberculata, Corbicula fluminalis and Unio spp. 
are molluscs that are locally abundant and found in sub- 
rounded grits. The associated fauna includes catfish, 
chelonids, hippo, bovids and other unidentified bones. A 

few fragmentary, littoral diatoms occur (Rhopalodia and 
Cocconeis species). Obsidian, chert and phonolite flake 
tools are present. Williams and Johnson report the 

following dates: 

11,870 + 310 yr. B. P. (inner shell fraction) 

10,860 + 280 yr. B. P. (middle shell fraction) 

The strandline has been levelled at 985 m O. D., almost 

the same as the sediments at Kokwob Murren. 

There are several reasons for questioning the validity 

of these dates. These are as follow: 

(i) Some of the dates show wide variations between 

inner and middle shell fractions 
(ii) Dating problems have also arisen with cores from 

the modern lake (Tiercelin, pers. comm. ) 
(iii) The dates are 'out of phase' with dates from other 

early Holocene high lake levels in Kenya. 

(iv) Dates differ for sediments at similar heights 

within the same basin. 

. Young and Renaut (1979) have pointed out that dating 

problems may be related to isotopic replacement, and 
hardwater effects. 

The deposits at Logumukum and Kokwob Murren record a 
late Pleistocene/early Holocene expanded Lake Baringo (Lake 

Kokwob).. -The diatoms suggest that this lake was fresh, 

although locally more brackish conditions may have occurred. 

rf, 
ýý 
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9(ii) Late Holocene and modern sedimentation in 
Lake Baringo 

9(ii)a The Lake Baringo core 
0 

This section reports on the litho- and diatom 

stratigraphy of a3m core, made available to this study 

by Dr. C. Barton. As yet no firm age is available for the 

core. However, it does reflect modern sedimentation at its 

top, and in view of the large sediment input and short 

core length it is not likely to date beyond the late 

Holocene. The lithostratigraphy is shown in figure 9.6, 

and the diatom stratigraphy in figure 9.7. These are 

referred to in the following paragraphs, which describe 

the core from base to top. 

Below 295 cm occur dark brown clays, which contain much 

organic debris and undecomposed rootlets. This is suggestive 

of shallow water, in which plants were common. This is 

confirmed by the diatoms (fig. 9.7). A few epiphytic 

Gomphonema spp. occur above a layer devoid of diatoms. 

Above 295 cm, Melosira granulata var. angustissima is 

found in a brown organic mud. Today, this diatom is often 

associated with cyanophytes (Richardson, 1968). It also 

suggests a transgression (since it is a planktonic species), 

and fresh to slightly alkaline conditions. At 290 cm, a 

short-lived bloom of Thalassiosira rudolfii indicates more 

alkaline conditions (up to 80 meq/l; Hecky & Kilham, 1973). 

Between 290 and 278 cm, homogeneous grey muds occur. 

These lack diatoms, except at the top, where Melosira 

granulata var. angustissima is dominant 

From 278 to 258 cm, well-banded, brown and greenish grey 

clays prevail. Diatoms are at their most abundant here. 
Melosira granulata var. angustissima dominates, except at 
270 cm, where Thalassiosira rudolfii is most abundant. The 
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7 

Fig. 9.6 

Lake Baringo core 'BB' stratigraphy 
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flora suggests changing alkalinity, probably related to 
fluctuating lake level. 

Above 258 cm and below 210 cm, non -banded, brown clays, 
which contain organic debris, predominate. A mollusc occurs 
at the base. Diatoms are rare, but dominated by Melosira 
granulata, and to'azlesser extent, by Shanodiscus 

astraea. These suggest a fresh lake and; possibly deeper 

water than was present during the formation of the previous 
unit. The low numbers may be due to competition from blue- 

green algae. 

Between 210 and 205 cm, a sharp boundary is overlain 
by grey-brown muds, that contain abundant rootlets. The 
layer is devoid of diatoms and may reflect a lake 

regression, and subsequent pedogenesis of the sediment 
(which contains an orange-brown mottling) below the sharp 
boundary. 

At 205 cm, diatoms become abundant. They are dominated 
by Melosira granulata var. angustissima, which may suggest 
a fresh to slightly alkaline lake. 

Homogeneous, grey-brown muds occur between 205 and 175 
cm. In percentage terms, the diatoms are dominated by 
Melosiragranulata and Stephanodiscus astraea,. although 
both species only occur in low numbers. Thalassiosira 

rud olfii,. is dominant at 190 cm, but again in low numbers. 

Between 160 and 175 cm, pale grey-brown clays with a 
vague lamination occur. This level is dominated by 
Thalassiosira rudolfii, which occurs in some abundance. Its 
presence suggests a return to alkaline conditions. 

From 160 to 135 cm the clays are a dark brown, with a 
pale grey-green mottling below 150 cm. Diatoms are rare, 
and dominated by Melosira granulata and Stephanodiscus 
astraea. These species suggest that the lake was again 
fresh, while their low numbers may reflect dominance by 
cyanophytes. 



-290- 

-, '., Well banded grey to greenish-grey muds occur between 
90 and 135 cm. The banding possibly suggests a seasonal 
or longer term sediment input into calm water. The diatom 
flora remains unchanged from that of the preceding unit, 
and'is again present in low numbers. 

Above 90 cm, -occur pale brown-grey. `muds. with= a faint 

banding. These contain no diatoms except at-two levels, 

where a few Melosfra granulata have been observed. A gap 

occurs in the core at bO cm, above which the sediment is 

progressively disturbed due to the coring operation. 

The Baringo core indicates a lake that has been 

intermittently more saline and alkaline than it is today. 
Although this could be related to changes in the chemistry 
of the water input (eg. by changes in spring discharge), 

the most probable explanation involves fluctuating lake 
levels (and resultant ionic concentration/dilution). 
Indeed the core provides evidence of emergence, or near 

emergence, of this part of the lake floor at two stages. 

9(ii)b Modern sedimentation in Lake Baringo and recent 
lake level fluctuations' 

Today, the waters of Lake Baringo are warm (24 to 29°C), 
fresh to slightly alkaline, have a pH of 7.5 to 8.5, and 
are dominated by HCO 3- and Na+ ions (McCall, 1967).. The 

lake supports an abundant phytoplankton, dominated by the 

cyanophyte Microcystis aeruginosa (Tiercelin, 1979). 

Diatoms are uncommon, 'consisting mainly of Melosira 

granulata var. angustissima and Nitzschia spp.. Algae, 

together with plant debris washed-in by rivers, makes up 

a major part of the sediment body. 

Deposition differs significantly from that of 
neighbouring Lake Bogoria, in that Lake Baringo lacks 

evaporites. This is surprising since both lakes have no 
surface outlet and drain areas of similar lithology. 
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However, during a period of low lake levels, Gregory (1921) 
observed water escaping through lavas to the north-east. 
McCall (1967) has suggested that hot springs at Kapedo, 
some 110 km to the north, may represent the reemergence 
of this water. Although subsequent workers have been 
unable to relocate Gregory's outlet (Worthington, 1932; 
Bishop, pers. comm. ), such a subterranean outflow would 
be capable of maintaining a freshwater lake. 

Evidence from cores and shallow trenches around the lake 
indicate that recent sedimentation is predominantly 
clastic, with bedded sands, silts and clays, derived from 
inflowing streams. A stromatolitic limestone (up to 2m 

above the lake) coats lavas near Kokwob Murren (fig. 9.3). 
Although undated its good state of preservation suggests 
a Holocene age. Tallon (1976) reports that oncolites are 
common around the modern shoreline. 

J. J. Tiercelin (1979) collected cores from the south 
and south-east, which contained mainly brown ooze and 
silty clays, with massive silty clays at their base (1.5 m). 
In other parts of the lake his cores consisted of brown 
clays and oozes, alternating with silty clays and silts. He 

reports ostracods, sponge spicules and diatoms as common. 

Evidence of recent lake level changes are minor wave-cut 
cliffs, strandlines, drowned vegetation and fluvial 
terraces that suggest higher local base levels. 

Gregory (1921) noted that the lake was low in 1893. 
Powell-Cotton (1904) observed recent higher strandlinesin 
1902, and also evidence of lower levels, in the form of 
drowned trees. He was informed by natives of a time when 
it was possible to walk to the islands. Gregory (1921) 

noted a low lake in 1912. Photographs shown by Nilsson 
(1932), suggest high levels in the early 1930's. R. A. F. 
aerial photographs indicate low lake levels in 1950. In 
1964 the lake was 5.5 m above 'normal' according to Bishop 
(pers. comm). Since then the lake has continued to rise and 
fall. 
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9(iii) The nature and distribution of the Loboi silts 

The deposits which today form the bulk of the inter- 
lacustrine plain (ca. 260 km2), between Lakes Baringo and 
Bogoria, were informally termed the Loboi silts by McCall 
(1967). They were considered to be deltaic, having formed 
under a unified LakeBaringo-Bogoria. Walsh (1969) noted 
"lacustrine silts of. the Loboi Plain" near Marigat. 
Griffiths (1977) did not think that they were recognisably 
lacustrine. Farrand et. al. (1976) described the Loboi 

silts to the north of Lake Bogoria. 

The distribution of the Loboi silts is shown in figure 

9.1. They rest on downfaulted Kapthurin Formation, on the 

mid-western portion of the Loboi Plain (Walsh, 1969), 

reaching a maximum thickness of ca. 15 m. Although thinner 

immediately to the east (due to a high part of the surface 

on which they sit), they may thicken towards the poorly- 

exposed centre of the basin. Bogoria silts overlie these 

deposits in the south. Elsewhere erosion has planed off 

much of the surface, or it is hidden by swamps. 

The Loboi silts are normally massive and structureless, 
but occasionally show a faint lamination. Two sections (Li 

and L2) are shown in-figure 9.4, and their locations are 

given in figure 9.1. In general, sand, gravel and clay 

occur in lenses; more rarely they form thin broad sheets. 
In the west, grits with well-rounded lava gravels underlie 
well-sorted, laminated buff silts. The gravels may be 
imbricated or cross-bedded. 

X-ray diffraction shows the silts are dominated by 

sanidine and plagioclase, which together form about 90 % 

of the sediment. Smectite and calcite are also present. 
Analcime is locally abundant (up to 40 %) on the southern 
Loboi Plain. Renaut (pers. comm. ) has observed dolocrete as 
remnant patches on analcimic Loboff silts. Ferromanganiferous 
nodules (less than 2 cm) occur in several localities. 
Renaut has also noted such nodules, at a depth of ca. 70 cm, 
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in deltaic silts, west of Lake Bogoria. Palaeosols occur 
locally, while calcareous root casts are more common. 

. 
Bovids, crocodile, hippo (Coryndon, 1978), fish bone and 

organic debris all occur. No diatoms were found. Farrand et. 
al. (1976) recorded obsidian-flakes on the surface of the 
Loboi silts. Middle Stone. Age artefacts-(late Pleistocene) 
have also been found in parts of the Loboi silts. 

These deposits record the infilling of a downfaulted 
basin. However, it is often difficult to give them a 
definite origin. The sediments are derived from a number of 
rivers, which include the Molo, -Perkerra, Sandai-Waseges and 
01 Arabel (several of which are shown in fig. 9.1). The 
imbricated gravels are suggestive of fluvial conditions, 

" while the weakly-laminated buff silts may represent 

overbank or lacustrine, sedimentation. The fauna is ambiguous, 
since it found in both fluvial and lake environments. 

Loboi silt type deposition may well occur in the 
transition from floodplain, through deltaic to lake 
environments, at the southern end of Lake Baringo. Indeed, 
deposits forming here, may be a time transgressive lateral 
equivalent of the older, Loboi silts. 

The age and lateral relationships of the Loboff silts are 
unclear. They were initially considered Holocene (McCall, 

1967), but this is probably an oversimplification. Farrand 

et. al. (1976) pointed out that they may partly predate 
the Kokwob high levels (fig. 9.2). Part of the Loboi silts 
must have been present in order to hold the water of the 
high-level, early Holocene, Lake Bogoria (p. 307 ). Of major 
importance is the depth and age of sediments in the modern 
watershed area, where there is regrettably little exposure. 

1ý 
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9(iv) Sedimentation in the Bogoria basin 

9(iv)a The diversity of lithofdcies present in the 
Bög_oria basin 

Highly saline and alkaline Lake Bogoria lies'some`17 km 
to the south of Lake Baringo (fig. 9.1), from which`it is 

separated by a low watershed. The lake extends 17 km from 
north to south, and is 0.5 to 3.5 km wide. It lies in an 
as/ m4tric fault controlled trough. Today, the lake's flora 
is dominated by cyanophytes, of which Oscillatoria 
platensis is the principle species. Diatoms are rare, but 
Hecky and Kilham (1973) have recorded Nitzschia frustulum. 

This small basin is remarkable for the diversity of 
lithofacies present. These have been studied in some detail 
by Renaut (pers. comm. ) and Tiercelin (1979; pers. comm. ), 

and will only be outlined here, based on personal 
observations, before going on to discuss the diatom flora. 

Fluvial lithofacies occupy a small part of the Bogoria 
basin. Such sediments are best developed along the Emsos 
and Sandai-Waseges Rivers, to the south and north'of the 
lake respectively. Fluvial deposits are also found along 
the course of'several small rivers to the west of the lake. 
These deposits consist of feldspathic silts with common 
lithic fragments. Laminated clays and silty clays often 
occur, and are frequently associated with plant remains. 

Coarser sands and gravelt are found near areas"of sediment 
supply, and in point or braid bar settings. 

Downstream, the fluvial lithofacies grades into deltaic 
deposits. Here, the sediments consist mainly of silts and 
clays (often laminated). Tiercelin has observed, in cores 
from the Sandai-Waseges delta, alternating clays, silts 
and fine sands. The clays are dominantly smectite and 
plant debris'is common. 
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Alluvial fans occupy a large area to the east of the 

lake (fig. 9.8). Matrix supported clasts, suggestive of 
debris flows, occur in the upper (proximal) portions of 
these coalescing fans (bajadas). Downslope, these give way 
to clast supported conglomerates, and cross-stratified 
sands. Similar fan deposits occur to the south-east of 
Lake Baringo. As the fans enter Lake Bogoria (fan-delta 

environment), graded gravels alternate regularly with 
finer, parallel-bedded sands (1 to 2'cm thick), which dip 

0 lakewards at about 10. 

Extensive areas of granular, feldspathic sands occur 
along the modern shoreline and form beach bars and spits. 
Similar deposits are found on terraces ranging up to 6 

or 7m above the 1977 lake level. The lower of these 

terraces are occasionally reached by the modern lake, during 

wetter years. This occured in 1979 (Tiercelin, pers. comm. ). 

Fossils recovered from the marginal sediments of Lake 

Bogoria include mollusca, crocodile, hippo and fish bones. 
None of these are found in the modern lake. 

Tiercelin (1979) has recognised two broad facies zones 
in the modern lake. The first of these is composed of 
alternating-fine'sands or silts, and silty clays with 
much allochthonous organic debris. These deposits occupy 
a zone that extends throughout the northern end of the 
lake, and which forms a littoral belt to the south (fig. 
9.8). The second facies consists of chemical and organic 
sediments. These include finely laminated black oozes with 
evaporite minerals that lie in a north to south belt at 
the centre of the lake-(fig. 9.8). Tiercelinýrecords local 

concentrations of diatoms in these sediments. 

Hot springs are common at'Lake Bogoria (plate 9.3). The 
main centres of activity are at Kiboriit-Loburu, Mawe Moto 
and Mwanasis, on the western margins of the lake (fig. 9.8). 
Spring deposits consist mainly of calcite and aragonite 
(travertine). 
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Fig. 9.8 Simplified sediment distribution map of the 
Bogoria basin (modern lake ignored) 
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Plate 9.3 

Hot springs, such as this, are common along the western and 

southern margins of Lake Bogoric. In many cts, s they have formed 

mounds of travertine and tufa. 

., 
ý«_ 
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A grey stromatolitic limestone (plate 9.4) coats lavas 
and sediments in a belt (entirely above modern lake level) 
around the margins of the lake. This limestone has a 
consistent upper limit of ca. 11 m above 1977 lake level. 
This height corresponds to that of the present watershed 
between Lakes Baringo and Bogoria, which suggests that the 
lake may have had an outlet near the time of. formation, 

although it may have been 'cut off' when precipitation 

actually took place. The, limestone varies in thickness 

from less than a millimetre to a metre or more. It is thickest 

on the north side of the Mwanasis peninsula, and'thins 

northwards. It has recently been dated at 3730 +"180, yr. B. P. 

by Tiercelin, from material supplied by Renaut. However, 

many problems have arisen with dates from this basin 

(probably due to 'old 14C'), 
and the date should be'treated 

with caution. 

Other dates have recently been obtained from molluscs. 
Shells have been'dated from two localities on the western 

margin of the lake by Renaut (pers. comm. ). These dates 

follow. 

north-west shore: 

10,500 + 170 yr. B. P. (inner fraction) 
10,320 + 150 yr. B. P. (middle fraction) 

Kiboriit-Loburu: 

15,520 + 420 yr. B. P. 

The latter date may be particularly suspect since it was 
obtained from shells near to an area of hot spring activity. 
Also, this date suggests high lake levels at a time when 
most Kenyan lakes were low. The sediments, from which both 
dates were obtained, suggest lake levels 6 or 7m above 
those of 1977. That this lake was fresh along its margins 
is demonstrated by the presence of molluscs. Cerling (1979) 

suggests that molluscs are only common at alkalinities below 

about 16 meq/1. 



Plate 9.4 

Limestone coating rocks and 'twigs' on the margins of Lake Bogoria. 

This deposit thickens towards the southern portions of the lake, 

and attains a maximum elevation of about 11 ni above the modern 

lake height. It has been dated at 3730 + 180 yr. B. P. 
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9(iv)b The diatoms and Holocene history of Lake Bogoria 

Diatoms are absent from most of the marginal deposits 
around Lake Bogoria. However, two sources of diatom material 
are known. 

The first of these sources occurs to the south of 
Mwansis peninsula and near the south-eastern shores. Here, 

patches of a siliceous deposit rest on a conglomerate. Thin 

section and scanning electron microscopy have revealed that 

numerous casts of diatoms occur (appendix III, A. III. 9). 

Melosira species dominate and include M. granulata, M. 

agassizi and M. agassizi var. malayensis. Less common are 
Surirella biseriata, Epithemia zebra var. saxonica, 
Rhopalodia gibba and Anomoeoneis sphaerophora. This flora 

suggests fresh waters ('ca. 5 or 6 meq/1), in a part of the 

lake that is today highly saline and alkaline. The siliceous 

deposit appears to be most common near hot springs. It may 
be that the peculiar state of preservation of these diatoms 

is related to this fact. 

The second source of diatoms is in core material obtained 

by J. J. Tiercelin (pers. comm. ). A brief examination of a 

slide from a core, in the south basin of Lake Bogoria (to 

the south of Mwanasis), revealed numerous Melosira spp... 
Tiercelin indicates that these are common below evaporite- 

rich sediments. The similar flora suggests that the 

siliceous deposits, above the modern lake, are of similar age 
to the diatomaceous sediments in the core. 

That a Melosira dominated lake 
basin suggests considerably lower 

occur today. This 'Melosira lake' 

which the stromatolitic limestone 
by limestone sitting on top of si 
south of Mwanasis. 

existed in the Bogoria 

ionic concentrations than 

predates the one in 

was formed. This is shown 
liceous precipitate to the 

The following rather tentative sequence of events can be 
suggested. 
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(i) During the terminal Pleistocene/early Holocene a 
higher, fresh water (less than 16 meq/1) lake 

existed. This may have overflowed to the north 

via a lower watershed than exists today. 

(ii) A Melosira dominated lake was probably contempor- 

ary with phase (i) above. However, its precise 
duration is uncertain. This lake was of high 

silica content (greater than 10 mg/1), moderate 

pH and low alkalinity (5 or 6 meq/1). The fresh 

water nature is suggestive of overflow. 

(iii) A high lake, standing at ca. 11 m above modern 

heights and in which limestone was precipitated, 

overflowed into Lake Baringo, some time in the 

late Holocene. The Bogoria silts, at the north 

end of the lake, may relate to this period. The 

lake was probably of low alkalinity. 

(iv) The lake contracted and lost its outlet. 

Alkalinity, salinity and pH increased 

significantly. Evaporites eventually developed 

at the basin centre. 

It must be emphasised that gaps may occur in the scheme 

above, and that many events are of unknown duration. 
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9(v) The Holocene history of Lakes Baringo and Bogoria 

9(v)a Summary, of the history of Lakes Baringo and Bo op ria 

Loboi silt sedimentation probably commenced during the 
late Pleistocene. These deposits were laid down in, and on 
the margins of, a successor to the 'central rift-lake' 

mentioned in chapter 8 (p. 259 ). During the latest 

Pleistocene this 'Loboi lake' (fig. 9.9) regressed and 

fluvial Loboi silts advanced across the area between modern 
Lakes Baringo and_Bogoria. An arid climate at this time is 

suggested by the development of analcime on Loboi silts and 
by calcrete. 

A wetter climate developed during the latest Pleistocene 

/early Holocene, -when both Lakes Baringo and Bogoria 

expanded. It was at this time that the Kokwob Formation was 
laid down. Loboi silt sedimentation probably continued 

on the margins of these lakes. 

During the later Holocene, Lakes Baringo and Bogoria 

developed in different ways. Lake Baringo was dominated by 

clastic sedimentation, while stromatolitic limestones, 

diatomaceous silts and evaporites formed in Lake Bogoria. 

Loboff silts continued to form near the southern margins of 
Lake Baringo. 

The chemical evolution of both lakes is summarised in 

table 9.1. During the early Holocene, Lakes: Baringo and 
Bogoria were of fresh character. While remaining fresh 

for most of its history, Lake Baringo has undergone 

several more alkaline and saline stages during the late 

Holocene, associated with contraction. Lake Bogoria also 
has been fresh for much of its history, but during the late 
Holocene it became highly saline and alkaline, which 
eventually resulted in the formation of evaporites. 
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Fig. 9.9 

Summary of the history of Lakes naringo and Dogoria 

modern Lake Baringo - elastic Lake Bogoria - elastic, 
and organic deposition organic and evaporite 

deposition 

Regression and 
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levels - fresh to f late Holocene 

saline and alkaline limestone 
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Regression 

Molosira dominated 
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Loboi silts 

Holocene expanded lakes Bogoria seds. 

Regression - arid Calcrete, 
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Alluvial fan & 
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V 
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late Loboi lake 

Pleist. (combined Lake Baringo &G Loboi silts 

Bogoria) 

Central Rift Lake Ilosovruani Beds 
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modern Baringo basin; possibly facies) 
extended into the Bogoria basin) 
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9(v)b The early Holocene palaeo eograpy of Lakes 

Baringo and Bo oria 

Early Holocene Lake Baringo was confined by steep scarps 
to the west, and by the lavas of Korosi volcano to the 
north. The southern limits remain ill defined (fig. 9.10). 
The Lobat Pass, to the*west of Korosi (fig. 9.10), is the 
lowest potential outlet point for Lake Baringo. This Pass 

lies 3 to 8m above the highest recorded Kokwob sediments 
(Bishop, pers. comm. ). There is no convincing sedimentary 

or morphological evidence to substantiate a prolonged 

overflow. However, subsurface seepage was probably important, 

possibly with short-lived lake level rises to the outlet, 
in explaining the fresh nature of the early Holocene lake. 
Whatever the method of outlet, the outflowing water would 
eventually reach the Suguta drainage network (p. 226 )" 

The highest Kokwob sediments lie at ca. 985 m O. D. (fig. 

9.11), while early Holocene sediments around Lake Bogoria 
lie up-, to about 996-7 m O. D.. The two lakes must therefore 
have been separate, despite their considerable expansion. 
Today, the minimum drainage divide between the Baringo 
and Bogoria basins lies at 999 m O. D.. This is above the 
highest early Holocene sediments of Lake Bogoria. However, 

wide height fluctuations of the modern lake, and the fresh 

water character indicated by early Holocene molluscs, 
suggests the possibility of periodic overflow. Whether or 
not the lake reached its outlet, a probably higher water 
table would have resulted in the expans'ion'-of-swamps on 
the Loboi Plain. This statement is supported by the presence 

of calcareous root casts, scattered over parts of the Plain. 

An important factor in. controlling lake level changes 
may have been shifts in the course of the Sandai-Waseges 
River (fig. 9.10). Today, it is the main source of water 
for Lake Bogoria. On leaving the Sandai Gorge, the river 
turns sharply south. However, the assymetry of associated 
fan deposits (skewed northwards) at this point, suggests 
that it may have formerly entered Lake Baringo. Although 
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Fig. 9.11 Modern and early"Holocene lake levels- 
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it would have been only one of several rivers entering 
Baringo, its loss to Lake Bogoria would have been highly 
significant. 

Several late Quaternary shorelines are shown in figure 
9.10. These reflect a complex series of lake expansions 
and contractions, which due to seepage, overflow and 
river capture, may not have responded in the same manner to 

climatic changes as other Rift lakes. If we allow for 

possible dating errors, an early Holocene period of high 

lake levels can be recognised. The probability is that these 

are related to an increase in rainfall, as suggested for 

many other East African lakes. Since the early Holocene, 

the height of Lake Baringo has progressively fallen. There 

was no corresponding fall at Lake Bogoria, possibly due 

to drainage diversion of the Sandai-Waseges. However, a 
fall in lake level has been evident at Bogoria during the 

late Holocene. 
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PART IV 

THE QUATERNARY DIATOMACEOUS SEDIMENTS OF 

OLORGESAILIE 



-310- 

CHAPTER 10 

THE SEDIMENTS OF THE OLORGESAILIE FORMATION 

X0(1) Definition and introduction to the Olorgesailie 

Formation 

10(i)a Location, definition and age of the Olorgesailie 
Ti ýrnm C, 4 Fvl 

The Olorgesailie sedimentary basin occupies an area of 
less than 100 sq. km. in the southern part of the Kenya 

Rift (fig. 10.1). Actual outcrops cover an even smaller 

part of the basin and are shown in figure 10.1 and plate 
10.1. The topography and vegetation of the area have been 

described on page 52, along with a brief history of research. 

Interest in this part of the Kenya Rift was stimulated 
by the occurrence, of Acheulian hand axes. The deposits in 

which they are found form part of a series of outcrops of 
Pleistocene strata, that occur to the north of Mt. 
Olorgesailie. (fig. 10.1). These sediments were designated 
the '0lorgesailie Lake Beds' by Baker (1958). Later, Baker 

and Mitchell (1976)used the informal term 'Legemunge 
Beds' to refer to", these deposits. Isaac (1967,1977) 

ranked the sediments'; at the Formation level', and defined 
them as, "a series. of well stratified diatomites, pale 
yellowish volcanic siltstones, and claystones, and 
subordinate quantities of brown siltstones and volcanic 
sands". The''Formation' rank is retained in this work. 

Olorgesailie Formation sediments reach a maximum 
thickness of 55 to 60 m, and rest unconformably on varioub 
faulted volcanics. These include the Mt. Olorgesailie 
Volcanic Series, the 01 Keju Nyiro Basalts, and the 
(Magadi) Plateau Trachyte Series (Baker, 1958). The upper 
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Plate 10.1 

Outcrops of Olorgesailie sediments are common to the north of 

Mt. Olorgesailie. They often occur in gorges, such as the one 

shown in this photograph. The view is looking south-west, and the 

deposits exposed belong to Members 2 to 10. The Koora Graben lies 

to the left (south) of the distant scarp. 

ý- 
.a.. .... 

.. 

-- ,_ý, _-ýýi 



-313- 
boundary is erosional in all parts of the area, although to 
varying degrees. Most of the Formation is overlain by 
alluvium, aeolian, swamp and travertine deposits. A 
generalised sediment stratigraphy is shown in figure 10.2. 

Baker and Mitchell (1976) have dated the underlying 
Plateau Trachyte Series at between 0. '63 and 1.25 my. 
Evernden and Curtis (1965) have obtained dates ranging 
from 2.9 to 0.425 my, from within the Formation. Isaac 

suggests that most of the dates were obtained from 

reworked material, but accepts as possibly valid two dates 

of 0.425 and 0.486 my, since they are consistent with 
faunal and archaeological data. 

10(i)b The significance of the Olorgesailie Formation 

Diatomites and highly diatomaceous sediments form a 

greater percentage of the Olorgesailie Formation than 

occurs in any of-the other Quaternary basins reported in 

this thesis. The Guomde and Galana Boi Formations (East 

Turkana), the Kapthurin and Kokwob Formations (Baringo 

district), and the Loboi silts and marginal sediments of 
Lake Bogoria all contain a lower percentage of diatoms. 

The deposits of other Pleistocene basins, such as Olduvai 
(Hay, 1976) and Peninj (Isaac, 1967), similarly show a 

much lower, diatom content than occurs at Olorgesailie. Only 

at Kariandüsii (near Lake Elmenteita, central Kenya Rift) 

are Pleistocene diatomites more abundant within the Kenya 

Rift. 

Tectonics have played a relatively more important 

role here, than in the other Quaternary basins studied in 

this work. The Olorgesailie sediments were laid down in a 
series of connected grabens. Fault movements took place 
during deposition, and lacustrine sedimentation was finally 
terminated by regional tilting towards, the south (Isaac, 
1968), which allowed water to flow uninterrupted through 
the area. There is no lake at Olorgesailie today. 
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Fig. 10.2 

The stratigraphic relationships between the 

sedimentary units of the southern Kenya Rift 
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Volcanism has also played an important role, mainly 

in providing source rocks that could be easily eroded 
and transported into the palaeolake. Numerous pure tuff 
bands suggest ash-fall directly into lake water. The role 
of climate is difficult to ascertain, but at least some 
of the many lake level fluctuations, reported later, are 
likely to be climate-related. 
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10(ii) The stratigraphy of the 01orgesailie Formation 

10(ii)a Introduction to the Members of the Olorgesailie 
Formation 

Shackleton divided the Formation into fourteen numbered 
units, which were later published by Baker (1958)-as 

layers Li to L14. Isaac (1968) modified this scheme and 

referred to the units as Members. Figure 10.3 shows the 

distribution of the Members. A composite of three sections 

were designated as the 'type section', by Isaac (1968). These 

were re-examined during fieldwork, -. and their lithologies 

are shown in figure 10.4. 

Most of the Members show significant lateral facies 

variation, with finer grained and more diatomaceous units 

occurring towards the west. This reflects deeper-and more 

permanent water in the west. Much of the outcrop area lay 

in a critical zone, on the margins of an expanding and 

contracting lake, centred mainly ön the Koora Graben (fig. 

10.1). Any lake beds formed in the graben itself are now 

covered by a thick fluvial sequence, brought down from Mt. 

Olorgesailie, and introduced by the 01 Keju Nyiro River. 

Three small exposures exist, that are difficult to 

correlate with the main outcrop of Olorgesailie sediments. 
Isaac (1978) gave these the following informal names: the 

Oltepesi beds, the Sonorua beds and the Shanamu beds. All 

contain similar lithologies to those found in the 

Olorgesailie Formation (see fig. 10.1 for their locations). 

The various Members of the Olorgesailie Formation will 
be described in the following sections, paying particular 
attention to their lateral relationships. Certain 
Members can be traced throughout the area, while others- 
are only distinguishable in a few local outcrops. 
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10(ii)b The lithologies and facies variations of 

Members 1 and 2 

Member I includes conglomerates, tuffaceous and 
diatomaceous siltstones, diatomites and claystones. Palaeo 

-sols, calcretes and calcareous root casts occur locally. 
Isaac (1978) notes several artefact localities in this 
Member. It is mostly between I and 3m thick, but 

occasionally reaches 10 in. Member 1 is exposed in sections 
I and 4 (figs. 10.4 and 10.5 respectively). In both sections, 
the Member begins with a poorly-sorted sandy conglomerate. 
This gives way to to pebbly siltstones, with clay pellets 
and local root casts. These coarse units are confined to 
the base of Member 1, and are usually less than Im thick. 
Their poorly-sorted nature, angularity and lithology 

suggest local transportation, possibly involving fluvial 

and subaerial,, processes. 

The conglomerates are succeeded by structureless 

claystones and pebbly tuffaceous siltstones. The latter 

deposits are indistinctly laminated. Powdery carbonate 

concretions (1 to 2 mm) are common at several levels. 

Diatoms are rare and confined to the siltstones. These, 

together with diatoms from other parts of the Formation, 

will be discussed in chapter 11. The fine grained nature, 
weak lamination and presence of diatoms suggests at least 

a shallow water cover at the time of formation. Further 

east, in the museum area (from which samples could not be 

obtained), Member I consists of buff claystones overlain 
by. laminäted cream diatomites, which suggest lacustrine 

conditions. 

Shackleton (in Baker, 1958) described Member 2, in the 
museum area, as consisting of brown laminated clays and 
diatomites. These pass westwards into tuffaceous silty 
sandstones with diatoms, and ultimately into well 
laminated, highly diatomaceous, white siltstones. This 
Member attains a maximum thickness of about 6 m. Diatoms 
form up to 90. % of the sediment, while montmorillonite 
constitutes the remainder. A westerly and south-westerly 
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Fig. 10.5 Composite section of Members 1 to 11 
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increase in thickness, improved lamination, increase in 
diatom numbers and floristic changes, suggest a lake that 

was centred on the Koora Graben (fig. 10.1). Lake marginal 
conditions are recorded by the coarser, tuffaceous, silty 
sandstones, mentioned earlier. 

10(ii)c The lithologies and facies variations of 
Members 3 to 8 

Members 3 and 4 can be recognised in most outcrops. 
However, they become progressively difficult to distinguish 

from one another, and from Members 5 to 8, in western 

exposures. Members 5 to 8 can only be clearly identified in 

the east. Their original designation as Members owed much 

to the existence of Acheulian hand axes in the east, and to 

the relatively more detailed stratigraphic studies that 

these artefacts stimulated. 

Member 3 includes yellowish grey, tuffaceous and 

diatomaceous siltstones, and tuffaceous fine to medium 

sandstones. It is indistinguishable from Members 4 to 8 

in the extreme west. However, it is quite well defined at 

section 4 (fig. 10.5). Here, 3m of siltstones and 

tuffaceous sandstones rest on Member 2, and are eroded by 

channels at the base of Member 4. Diatoms are rare and 

often fragmentary. Further east, at the archaeological 

museum, Shackleton (in Baker, 1958) describes 1.5 to 4m 

of greyish weathering, bedded, tuffaceous and diatomaceous 

siltstones as forming Member 3. The bedding, although 

often weak, and presence of diatoms, suggests deposition 

under lake conditions. 

Member 4 consists of tuffaceous sands and fine to 

coarse pumice gravels, which in most areas have an erosional 
base. Locally they are trough cross-bedded. These deposits 
decrease in grain size to the west, where they pass into 
silty sands and sandy silts. At the same time the 
erosional base becomes gradational and the Member difficult 
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to recognise. These are probably alluvial sediments, 
which pass westwards into lake marginal deposits. They 
reflect an influx of pumice sands into the lake, and 
probably a regression towards the Koora Graben. 

- 

Members 5 to 8 cannot be separated at the type section} 
(fig. 10.4), where they are represented by yellow and white 
siltstones, tuffaceous siltstones, ash layers and 
claystones. Diatoms are uncommon and often fragmentary, and 
when present suggest shallow waters. These Members could not 
be properly studied in the east, because of the National 
Museum status of the area. However a detailed account of 
the lithological sequence has been given by Isaac (1968), 

and this is summarised below. 

M8 Pale brown tuffaceous shales (marls) with beds of 
hard volcanic siltstones which may be bright red, 
11 ft. 

M7 Pale yellow volcanic silts, diatomaceous silts 
plus a, palaeosol horizon. Cut and fill bedding, 
7 to 15 ft. 

M6 Greenish'"silty volcanic sandstone, 3 ft. 

M5 Massive root marked greenish yellow volcanic silts. 
Weathered during deposition, 2 to 6 ft. 

10(ii)d The-lithologies and facies variations of 
Members 9 and 10 

Member 9 is up to 8m thick, and consists of basal 
tuffaceous sands and between I and 5m of overlying white 
and yellow diatomaceous silts. To the east, the silts thin 
and pass into pale tuffaceous, and less diatomaceous, 
siltstones. Westwards, at section 12 (fig. 10.6), Member 
9 has been eroded, and a post-Olorgesailie Formation 
calcrete sits directly on Members 5 to 8. At the type 
section (fig. 10.4) two diatomites are present, which 
include a mixed! benthonic, epiphytic and planktonic . flora'. 
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The diatoms are commonly broken and may be reworked. 
However, the sparse diatom flora found in many parts of 
this Member does suggest deposition under lacustrine and 
marginal lacustrine conditions. 

Up to 3 in of Member 10 sediments rest on eroded 
surface cut into-Member 9. The deposits consist of 
tuffaceous sands and pumice gravels, similar to those of 
Member 4. Isaac (1968) has determined that they have an 
overall fan shape, the alignment of which indicates a 
north-easterly provenance. Westwards, the pumiceous sands 
and gravels pass into finer, poorly-sorted sands and silts. 
In these areas, reworked diatomaceous silt fragments may 
also be found. -The sediments and lack of diatoms suggest 

a lake regression, and the south-westerly advance of rivers. 

10(ii)e The lit1ologies and facies variations of 
Members 11 to 14 

1. 
.E 

Member 11'attains a maximum thickness of about 18 m. 
A wide range"of, sediments are present and include brown 

silty clays, ands silty sands, grey tuffaceous silts and 
clays (which are locally reddened), pumiceous tuffs, 
diatomaceous: silts and diatomites. Many horizons are 
calcareous, and in a few layers carbonate nodules are well 
developed. Member 11 is shown in sections 2,5,6 and 7 of 
figs 10.4,10.5,. 10.7 and 10.8 respectively. The Member 

oversteps Members 1 to 10 in the south-east, and comes to 

rest directly on the volcanic slopes of Mt. Olorgesailie. 
At the museum site, Shackleton (in Baker, 1958) 

describes the Member as 19 to 27 ft of impure diatomite 

with ash bands. Diatoms (described in chapter 11) and root 
casts suggest-that much of the sequence was laid down 
under lake marginal conditions , although occasional 
deeper water episodes can be suggested from the diatom data. 

Member 12 is up to 4m thick and commences with a poorly 
consolidated tuff. This is overlain by a prominant 
diatomite, which on its upper bedding plane is locally 
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Fig. 10.7 Members 10 and 11 from a section on the 
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bright red. The diatomite is very pure and contains 
mainly benthonic and epiphytic species (many of which 
are broken), that suggest shallow, possibly turbulent, 
moderately alkaline water. 

Member 13 is about 12 m. thick at. its maximum. It consists 
of brown clays and silts, diatomaceous silts and clays and 
`diatomites. Exposures are restricted to*the-western and 

, central areas of figure 10.3. The Member is shown in 

section 3 of figure 10.4. 

Member 14 is exposed only in the north-west, along the 

line of a iseries of south and south-east facing scarps. It 

is included, with Member 13 in figure 10.3, because of its 

narrow outcrop, and is shown in section 3 of figure 10.4. 

, 
The unit consists of up to 3m of reworked diatomaceous 

silts and partially silicified limestones. In situ, 

: carbonate-filled root casts are common. In view of their 

`diatom content and root casts, it is probable that Member 

14 represents sedimentation under marginal lake conditions. 

10(ii)f 'ThekOltepesi, Shanamu and Sonorua beds. 

These deposits are similar to the Olorgesailie 

Formation, but their exact relationships are uncertain. As 

a result, they were informally designated the Oltepesi, 

Shanamu and Sonorua beds, by Isaac (1978). 

The Oltepesi beds were considered to post-date the 

Olorgesäilie-Formation by Shackleton. In contrast, Isaac 
(1978) thought that they were equivalent to the upper 
Members of the Olorgesailie Formation. They crop out in 

a gorge cut by the 01 Keju Nyiro River, and are shown in 

section 9 (figs. 10.3 and 10.9). The sediments are up to 
15 m thick' and include brown silts and silty clays, 
yellowish tuffaceous silts, grey tuffs and some diatomaceous 
silts. Pumiceous units and imbricated pebbles may have been 
laid down in river channels. Diatoms are rare and often 
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broken, consisting mainly of benthonic species. 

The Sonorua beds are a series of small sediment patches 
that lie along the western margin of the Koora Graben. They 

are mainly less than 5m thick, and include diatomaceous 
silts, clays and tuffaceous units. The Shanamu beds were not 

examined in this work. Isaac (1978) reports'that they are 

poorly exposed sediments in a small depression on the crest 

of the Shanamu horst, which forms the western boundary 

of the Legemunge Plain and the Koora Graben. 

,, 
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'10(iii) The mineralogy of the Olorgesailie Formation 

10(iii)a Detrital and biogenic sedimentation 

A series of grain size analyses of selected lithologies 

are shown in table 10.1. These sediments are typical of 
the Olorgesailie Formation, and reflect the dominance of 
silt ("9 to 4 phi), and clay (+9 phi) grades, except in 
the fluvially deposited pumice gravels (which have a 
bimodal size distribution), and the volcanic sands. Most 

deposits show only a slight skewness. Maximum values of 
0.21 to 0.40 occur in tuffaceous/pumiceous deposits. 

Sorting is variable, and probably reflects the relative 

roles of three sediment sources. 

(i) Fluvially derived detrital grains 
(ii) Ash falls directly into the palaeolake 
(iii) Biological contributions (mainly diatoms) 

of floras and faunas that lived in the 

palaeolake. 

A semi-quantitative summary of the mineralogy of 
different size fractions is given in table 10.2. Excluding 

pumiceous units, the sand and granule fractions (4 to 3 

phi) are composed mainly of lithic grains, and alkali 
feldspar (mostly anorthoclase), with subsidiary 

clinopyroxenes, volcanic glass and quartz. Lithic fragments 

are dominated by trachyte (70 %). Basalts, phonolites, 
obsidian and reworked calcite cemented tuffs have also been 

recorded. Basalt fragments appear to decrease upwards in 

the succession. Non-volcanic particles include micritic 
limestone with coatings of Mn-oxides (reworked calcrete ? ), 

and cryptocrystalline silica of uncertain origin. 

The silt fraction is often dominated by alkali feldspar 
(anorthoclase, sanidine and cryptoperthites), volcanic glass, 
biogenic opaline silica (diatoms, sponge spicules), and 
varying quantities of quartz. Mafic minerals include augite, 
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Table 10.2 The minerals of the Olorgesailie Formation 

MINERAL SANDS SILTS CLAYSTONES 

Alkali feldspar xxxx xxxx xx 
Plagioclase x,, , xx .. '. :..: " x. ý:.. ,. Nepheline - xF x ;, Quartz xx xxx x 
Volcanic glass xxxx xxxx XXX 
Opaline silica xx xxxx xxx 
Smectite - xx xxxx 
Kaolinite - x xx 
Illite - - x 
Chlorite - - x 
Analcime - - x 
Augite xx xx - 
Aegerine x xx x 
Aegerine-augite x xx x 
Aenigmatite xx xx - 
Kataphorite x? x - 
Arfvedsonite -"- x 
Basaltic hornblende x? x - 
Hornblende x x - 
Kaersutite - ? - 
Magnetite/ilmenite - x 
Limonite/iddingsite x xx x 
Sphene X 
Calcite xxxx xxxx xxxx 
Mn-oxides x xx x 
'X-ray amorphous' clay - x xx 
Lithic fragments xxxx xx x 

The table indicates semi-quantit ative estimates of the range of 
compositions of different grain size fractions. The symbols used 
indicate the following: 

xxxx - abundant in most samples 
xxx - common to abundant 
xx - present to common 
x- present in some samples 

Lithic clasts. (based on data supplied by R. Renaut): 

1. Aphyric trachyte - sanidine, aegerine-augite 
2. Anorthoclase-phyric trachyte - anorthoclase phenocrysts, sanidine 

groundmass, ? aenigmatite. 
3. Trachyte (3 types) 
4. Felsic trachyte 
5. Weathered basalts (possible 2 types) 
6. Aphyric, aphanitic felsic lava ? phonolite 
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aenigmatite and a range of alkali pyroxenes and amphiboles. 
Plagioclase (An80_55) accounts for up to 50% of the total 
feldspar. The purest diatomites, vitric tuffs and ashes 
contain very little extraneous matter. 

The clay fraction is consistantly dominated by smectites 
(70 to 100 %), with lesser kaolinite (0 to 20 %) and 
minor illite and chlorite (0 to 10 %). X-ray diffraction 
data suggests that much of the smectite in tuffaceous 

claystone and siltstone is poorly crystalline, although 
interference by glass and diatom silica may have caused 
poor reflections (Renaut, pers. comm. ). Higher intensity 

peaks were recorded in non tuffaceous claystones, suggesting 
a more ordered structure. Kaolinite is most abundant in 
brown siltstones and claystones. Chlorite is commonly 
found with plagioclase-bearing sediments, suggesting it may 
be a product of basalt weathering (Renaut, pers. comm. ). 

10(iii)b Authigenic mineralisation and post-depositional 

processes 

As noted by Isaac (1978), authigenic minerals indicative 

of high salinity and alkalinity (Hay, 1970) have generally 
not developed at Olorgesailie. Diffraction traces of the 
clay fraction of tuffaceous clayey siltstones from the base 

of Member 11, whose diatom flora suggests an alkalinity 
of up to ca. 85 meq/1 (p. 366 ), indicate the presence of 
minor amounts of analcime. Although not confirmed 
optically, its apparent restriction to this Member suggests 
an authigenic origin. Cerling (1979) has shown that 

analcime is stable in East African lakes at alkalinities of 
ca. 100 meq/1 or more, slightly above that suggested by the 
diatoms. 

The most significant post-depositional processes of 
alteration are the localised dissolution and replacement 
of glass shards by clay minerals, and widespread 
cementation by calcium carbonate. In several thin sections 
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fine glass shards are replaced by clay pseudomorphs, 
presumably smectites. The alteration is most common in 
root-marked palaeosols and below local disconformities, 
suggesting a weathering reaction. Hay (1976) similarly 
recorded alteration of tuffaceous sediments to smectite 
from 'soils' at Oldüvai Gorge. Althöügh"glass has been 

altered, diatom frustules have remained unchanged., 

Calcium carbonate occurs throughout th 

a calcite cement, and as various forms of 
Cementation appears to have occurred soon 

as calcite cemented intraclasts have been 

several levels. Isaac (1978) has recorded 

of calcrete in Member 14. 

e Formation as 

calcrete. 

after deposition, 

observed at 
the silicification 
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10(iv) The sediment provenance of the Olorgesailie 

Formation 

10(iv)a The origin of the detrital minerals 

The alignment of palaeochannels, inferred palaeocurrent 

directions (Isaac, 1978), facies'distributions and the 

gradual development of a southward sloping Rift floor 

(Crossley, 1979), all suggest a predominantly north to south 

drainage during the deposition of the Olorgesailie Formation. 

With the possible exception of coarse pumice and ash, the 

detrital mineralogy can be more or less accomodated by 

lithologies in the present catchment, though at times this 

may have extended further north, perhaps as far as modern 

Lake Naivasha. 

The dominance of anorthoclase among the feldspars of the 

sand fractionsmäy reflect its occurrence as phenocrysts 

in the trachytes north and west of Olorgesailie (Limuru 

Trachytes, Plateau and Magadi Trachytes). Sanidine is a 

common groundmass mineral of the lavas and is correspondingly 

common in the silt fractions. Plagioclase probably 

originates from the 01 Keju Neru and 01 Tepesi Basalts to 

the east, but is rarely significant, perhaps reflecting 
its more rapid weathering than alkali feldspar. Its 

irregular distribution points to periodic inputs into the 

basin. Quartz may originate from the Plateau and Magadi 

Trachytes (where it is found as interstitial grains; 
Crossley, 1979). The range of alkali pyroxenes and 

amphiboles suggest several types of trachytes (and/or 

phonolites) may have been weathered. 

The abundance of smectite in the clay fraction indicates 
an imperfect leaching of cations in the contemporary source 
region (Singer, 1980). This, together with the freshness 
of many minerals and periodic calcrete development, 
suggests that the climate prior to and during deposition was 
not exceptionally humid. Clay samples from modern volcanic 
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soils in the catchment show a similar predominance of 
smectite, with some kaolinite detected in reddish latosolic 
soils along the eastern Rift shoulder (Renaut, pers. comm. ). 

10(iv)b The origin of'the pumice and ash 

Most of the ash horizons are composed of fresh, 
comminuted, glass shards. In the thicker, coarser units, 
alkali feldspar and pale green pyroxenes are present, while 
anorthoclase is found in coarse pumice fragments. This 

suggests a broadly trachytic composition. 

Suswa and Longonot are trachyte-phonolite and trachyte 

central volcanoes on the rift floor, to the north of 
Olorgesailie. Scott (1980) has shown that both became 

active at ca. 0.4 my, or about the time of Olorgesailie 

sedimentation. 'Both volcanoes experienced an early 'pre- 

caldera' stage, but only Longonot shows evidence of 
pyroclastic, eruptions at this time. Longonot may therefore 
be the primary source of much of the coarse pumice and ash. 
Possibly of significance are records of obsidian in the 

primitive Longonot volcano (Scott, 1980), which has also 
been found as sub-rounded grains in the pumice sands and 
gravels of Member 10. A possible palaeodrainage link 

would have been via the Kedong Gorge (Sikes, 1926), with 
rivers eventually reaching the palaeolake along its 
north-eastern shoreline (fig. 11.8, p. 372). 
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10(v) Lithofacies classification of the Olorgesailie 

Formation 

Although the Olorgesailie sediments often grade into 

one another, ten broadly defined sediment types can be 

recognised, each having its own environmental significance. 
Figure 10.10 shows the distribution of these 'lithofacies' 

in a hypothetical lake, and they are described in the 

following paragraphs. 

(1) Laminated siltstone lithofacies 

This is characterised by well laminated, white to pale 

yellow, highly diatomaceous, often tuffaceous, clayey 

siltstones and siltstones (plate 10.2). Wispy black flecks 

are sometimes present on bedding planes. The fine grain 

size and moderate sorting suggest a low energy environment. 
This, together with their planktonic diatom content, 

probably reflects deposition under deep, calm water. 
Although present throughout the Formation, this lithofacies 

is best developed in Member 2, where it attains a thickness 

of ca. 5 m. 

(2) Structureless, tuffaceous, diatomaceous siltstone and 
claystone lithofacies 

This facies, which is present in most Members, consists 

of a heterogenous mixture of varying proportions of 

volcanic ash and diatoms in structureless clays, silts and 
fine sands (plate 10.2). The sediments are white, pale 

yellow, or grey, moderately to poorly sorted, and though 

generally massive, locally display mudcracks. Units range 
from a few centimetres to several metres thick. Root casts 
are locally present, taking three forms: 

a) Fine, subvertical, carbonaceous root marks. 
b) Irregular and branching, calcareous (locally 
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ý. 10.10 : cberwitic repreaentntion or depositional 

c: aviror. cnta occurir. g in tt. e 01orge: ilie F. 

vplcanic source 
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well laminated siltstone : deep lacustrine 

structureless, tuftaceous, diatomaceous: shallow lacustrine 
siltstone and claystone 

redoposited diatomaceous siltstone : marginal lacustrinc 

massive diatomite : shallow lacustrine 

interbedded volcanic, siltstone : fluvial channels & 

and conglomerate floodplain 

pumiceous sandstone and : fluvial channels & 

conglomerate floodplain 

volcanic ash and tuff : airfall into lake 

Drown ailtatonc and claystone 

9 poorly-sorted sandy conglomerate 

10 calcrete 

: floodplain 

: colluvial 

: subaerial evaporation 

zones 



Plate 10.2 

Members 2 to 10 of the Olorgesailie Formation. Laminated siltstor, e 

lithofacies forms the distinct white mound at the scarp foot. Grey 

layers are volcanic ash and tuff. Much of the remaining deposits 

belong to the structureless, tuffaceous, diatomaceous siltstone and 

claystone lithofacies. The exposure is capped by pumiceous sandstone 

and conglomerate (uppermost grey unit). The scarp is about 20 m high. 
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siliceous) root casts. 
c) 'Infill root casts', in which fine grained silts 

infill former root cast voids. 

Diatoms are mostly littoral forms, suggesting-shallow 
lacustrine sedimentation, t. with local: patchestof. reed-bed. 

C3) Rede osited diatomaceous siltstone and claystone 
lithofacies 

Periodic regressions across gently sloping littoral 

flats have permitted the local reworking of lake marginal 

deposits, probably by a mixture of ephemeral streams, 

sheetwash, wind and limited wave action. The resulting 

sediments are generally mixed siltstones composed of highly 

fragmented diatoms and/or small irregular intraclasts of 

diatomaceous and tuffaceous silts in a mixed clay-silt 

matrix. Root marking and allochthonous plant debris 

(macrophytes) are often associated. 

(4) Massive diatomite lithofacies 

Pure diatomites occur in beds up to 10 cm thick, and are 
found in several of the higher Members, notably in Member 
12, where one attains about 1 in. The diatomites are 
homogeneous, white, biogenic siltstones consisting almost 

entirely of whole and fractured diatom frustules.. They 

are essentially structureless, moderately sorted and 
locally contain fine, black and brown root marks. The 

diatoms are typically littoral (often epiphytic) forms, and 
suggest deposition under shallow water with local reed 
beds. Clastic input would have been low at the site of 
sedimentation. 
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ý5) Interbedded volcanic sandstone, siltstone and 
conglomerate lithofacies 

This lithofacies is prominent in some of the northern 
and eastern exposures (mainly Members 5 to 7). It is 

characterised by generally lenticular units of inter- 

stratified, bedded and massive, volcanic sands, silts and 

gravels, lying in shallow erosional channels. High, angle 

planar cross beds, trough cross beds'and horizontal beds 

occur. 

Both'distally: and vertically, _the 
sands and'silts 

extend 'beyond 
_the channel confines as. thin, - poorly 

laminated sheets, that are 'root marked. and bear palaeosolic 

features. 

The facies-probably represents streams traversing a 

lo w 
. gradiant 'alluvial' 'to lake marginal plain. The thin 

tabular silt and sand sheets may represent'distal 

outwash and overbank deposits'on the margins of the 

palaeolake. 

(6) Pumiceous sandstone and conglomerate lithofacies 

Pumice conglomerates and sands are present in several 
Members, but are best developed in Member 10 (plate'10.2). 

They occur as both coarse channelled deposits (plate 10.3), 

and thinner, generally finer-grained, laterally extensive 

spreads. The chanelled sequences show normal grading and 
trough- and planar cross stratification. Minor 

disconformities and channel scour features are common. They 

are mostly very poorly sorted, but often very well rounded. 
The channel units resemble lithofacies (5), and are 
probably fluviatile in origin. The sheet-like pumice 
sandstones are poorly sorted (table 10.1), and have a 
mixed origin, probably as overbank deposits mixed with 
airfall tephra. The pumice gravels of Member 4 are mixed 
with lava sands, and are locally reworked into a series of 



Plate 10.3 

The pumiceous sandstone and conglomerate lithofac: 'Les. The photo 

shows a well developed channel eroded into structureless, 

tuffaceous, diatomaceous, siltstones and claystories. The channel 

deposits are dominated by fining upwards pumice. Volcanic pebbles 

and cobbles are common in the lower part. The channel is 2 to 3m 

high. 
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poorly defined, regressional beach deposits (Isaac, 1977). 

(%) Volcanic ash and tuff lithofacies 

Although tuffaceous units occur throughout the 
Formation, several horizons consist almost entirely of 
tephra. These range from thin (less than 2 mm), grey dust 

layers, to coarse ash beds, (up to 0.5 m) at the, base of 
Member 9. Most of the thin beds are moderately well 

sorted, vitric or sparsely crystal-vitric. Most of the 

thinner tuff units were probably introduced by direct ash 
fall into the palaeolake. Some of the thicker, less pure 
tuffs, may represent the finer suspended load of 

lithofacies (6), or represent airfall tephra that has been 

reworked in channels or on a floodplain by sheezwash. 

(8) Brown siltstone and claystone lithofacies 

This facies occurs mainly in the higher Members. It 

consists of massive, often root marked. siltstones and 
claystones, that are generally poorly sorted and show 
prismatic and sub-angular blocky structures. Locally they- 

are weathered to pale olive clays. Fine gravel stringers or 
dispersed clasts, mud-cracks and calcareous nodules are 
present. Isaac (1978) noted the similarity of these 
deposits to recent alluvium, derived from erosion of 
local volcanic soils. They are essentially floodplain 
deposits, locally mixed with colluvium and modified by 

pedogenesis. 

(9) Poorly sorted sandy conglomerate lithofacies 

This lithofacies is confined largely to the base of 
Member 1, and to the upper Members near the slopes of 
Mt. Olorgesailie. It consists of angular to sub-rounded, 
coarse (up to 60 cm) weathered lava clasts, set in a poorly 
sorted matrix of brown and olive silty sands. They are 
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probably of colluvial origin. 

i 

(10) Calcrete lithofacies 

Calcrete occurs throughout the Formation, having-formed 

in 'soils' 
. on the floodplain and regressive`-margins of 

the palaeolake. It takes severalforms, "including. powdery, 

nodular. and massive hardpans. '"A. distinctive platy"calcrete, 

at theýbase of Member 2, =infills. polygonal, dessication 

cracks, and may, have formed 
" 
from capillary, rise of". 

''- 
groundwater on the margins of". the former, lake (plate 10.4). 

Although mostlyýpale'grey, - 
many, calcretes" are heavily 

stained with 'manganese oxides,, 'often . concentrated . in''" 

concentric rings or as dendrites., One analysed' sample 

contained-0.64% MnO - nearly-five times the mean figure 

for calcrete quoted by Goudie (1973). 

The lithofacies described above, are complexly 

intertongued and interbedded. Their distribution can be 

related to lake level fluctuations, which are in turn 

caused by climatic and tectonic interactions. Generally 

speaking, the deeper'water lacustrine facies have formed 

in the western parts of the basin, while the marginal 
lacustrine and fluviatile facies have predominated in the 

north and east. The broad facies relationships are 

summarised in, figure 10.11. Consideration of the various 

palaeogeographicäl relationships that gave rise to the 

lithofacies is'postponed until"'after a detailed discussion 

of the diatom floras (chapter 'l l) .' 



Plate 10.4 

ar 

, . 1cr(te infilling polygonal dessication cracks, in a lamiuatLd 

diatomaceous silt (basal Member 2). Note the lens cap for scale. 

The same calcrete is shown in thin section below. Manganese oxides 

can be seen, infilling cracks in the micritic limestone, and 

occurring as 'dendrites'. Magnification i: x 25 (photographic 

enlargement x. 5) . 

i 
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CHAPTER 11 

THE DIATOMS OP 'THE OLOR('ýE3AILIE FORMATION AND THEIR 

PALAEOECOLOGICAL CONDITIONS 

11(i) The distribution of cii rat; om:: wi. ttºi ri the O] orge ini 1ir. 

Formation 

11(i)a Introduction to the diatoms, of the O orgesai1 ie 

Forrantion 

This chapter aims to document the 1: iinnoiog. ical history 

of a Rift Valley lake from its inception to ee:: satiori. '. '!. ": 

detail available is unique amongst i: ho Pleistocene u id 

older lacustrine sequences that occ>>r in 11 w Kenya Iii f t. 

The diatom populations sugg; e: 3t a lake whose chemistry has 

fluctuated widely. Of the lakes examined in this, thesis, 

this chemical range has only been exceeded by Lake 

Bogoria (during the Holocene). However, in, this latter 

case, diatoms are not common alyd the: atrýxt. i[; caphic 

relationships difficult to establish. 

Diatoms farm a major paart of the Olo: r gesailie Formation, 

with diatomites occurring at seve-a1 horizons. Diatom 

p eservation is variable and fragments are common in many 

uits. These are commonly of benthonic species, and may 

record turbulent littoral environments and/or reworking 

;o littoral sediments upon a lake regression. Often, 

reworking can be suggested from the occurrence of diatomite 

or diatomaceous silt particles in a deposit. In most cases 
fragmentation and/or ''nomalou, species' have made it 
possible to exclude such diatoms from percertt, ige counts. 

A wide range of diatom , are present in the Olorgesaili. e 
: : rmation. Most of these belong, to a few typical genera, 
. $rhlch include: Melosfra, Thalassiosira, Cyclotella, 
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Eýithemia, Rhopalodia, Cocconeis, Surirella and 
Cam lodiscus. Of particular interest is the coexistence of 
Melosira and Thalassiosira. These tend to develop under 
fresh and highly alkaline conditions respectively, and have 
not been recorded together elsewhere during this work. 

Much of the Olorgesailie Formation is exposed in an east 
to west trending, south-facing scarp. This excellent 

exposure, together with the lateral continuity of many 
Members, has made possible a study of the spatial 
distribution of the diatoms. The results of this work are 
summarised in figures 11.1 and 11.2, and will be discussed 

in the following sections. 

11(i)b The lateral distribution of diatoms in 

Members 1 to 9 

The lateral and vertical distribution of diatoms in 

Members I to 9 is summarised in figure 11.1. This figure 

points out the presence of various genera, and attempts to 

show where diatoms are most common by an increase in the 

density of the relevant symbol. 

Diatoms have been studied in westerly outcrops of 
Member 1. Here, the basal conglomerates lack diatoms. They 

appear in the succeeding silts, but in low numbers. 
Epiphytes such as Epithemia zebra var. saxonica and E. sorex 
dominate initially, together with lesser numbers of 
Surirella ovalis and Rhopalodia spp.. Towards the top of 
the Member, Melosira granulata becomes more common, 
although still in low numbers. 

Member 2 has been sampled at several localities. Diatoms 

are extremely abundant, and are dominated by Melosira 

granulata and its varieties valida and angustissima, M. 

agassizi, M. ambigua, M. distans, and to a lesser extent by 
Thalassiosira rudolfii and Stephanodiscus astraea. Several 
benthonic species also occur, but in low percentages. The 

1 
?; ý ., 
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diatom composition of this Member is uniform across the 

section shown in figure 11.1, although there is some species 
variation vertically. 

Member 3 diatoms are often broken and contain a higher 

percentage of benthonic species than Member 2. They 

occur in low to moderate numbers, with planktonic species 
becoming slightly more common eastwards. pithemia zebra 

var. saxonica. E. sorex, Rhopalodia vermicularis, R. 

gracilis and R. iý bba are the main benthonic species. 

Diatoms are absent from Member 4 in much of its outcrop. 
However in the finer sediments of the west, diatoms are 

more common. These are dominated by planktonic species 

such as Melosira ambigues and M. agassizi. The benthonic 

flora present includes Epithemia zebra var. saxonica, 
Rhopalodia ig bba and R. vermicularis. 

No attempt was made to distinguish Members 5 to 8 
(see chapter 10, p. 322). Diatoms are absent from much of 

this part of the Olorgesailie Formation. Various pithemia, 

Rhopalodia, Qyclotella and Thalassiosira species form the 

highest percentages of several rather sparce floras. 
Melosira spp. become more common eastwards, although they 

still occur only in low numbers. The low diatom density 

and common fragmentation suggests that some of these 
levels may represent periods of emergence from the 

palaeolake. Species such as Thalassiosira rudolfii, 
Cyclotella meneghiniana and Rhopalodia gibberula occur in 

low numbers towards the top of the sequence (probably in 

Member 8), across most of the cross section shown in figure 

11.1. The flora of the easternmost (museum site) locations 

is unknown. 

The basal tuff of Member 9 contains no diatoms. Above 

this, diatoms occur in low numbers and consist mainly of 
alkaline-loving species such as Thalassiosira rudolfii, 
Cyclotella meneghiniana, Rhopalodia gibberula and 
Anomoeoneis sphaerophora. This assemblage appears to be 
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constant over much of the area. Vertically, it gives way 
to a highly diatomaceous deposit that contains a diverse 
flora with a high degree of fragmentation. Unbroken 
diatoms are dominated by Melosira Rranulata var. valida and 
var. angustissima (up to 35 %) in the west, and by Epithemia 

sorex and Rhopalodia gibba (up to 50 %) in the east. In the 

extreme south-east (fig. 11.2), diatoms are uncommon in 
Member 9. Here, the flora is dominated by pithemia and 
Rhopalodia species , with a higher than usual 

percentage of Surirella ovalis, ylodiscus clypeus and 
its variety bicostata. 

11(i)c The lateral distribution of diatoms in 

Members 10 to 14 

. The pumiceous sands and gravels of Member 10 were 

sampled at several localities, but no diatoms were found. 

In contrast, Member 11 shows a wide range of assemblages 
(fig. 11.2), from. fresh water types, dominated by Melosira 

ambigua, M. agassizi and pithemia. species, to more 

alkaline-loving floras, dominated by Thalassiosira rudolfii, 
Qyclotella meneghiniana and Anomoeoneis sphaerophora. In 

the western outcrops, planktonic species predominate, but 

these are gradually replaced by benthonic diatoms, such 

as Epithemia, Rhopalodia and Surirella, to the east. In the 

extreme south-east, Campylodiscus clypeus var. bicostata is 

locally important. The diatoms in Member 11 occur mainly in 

low numbers, although a few 'diatomites' are known. 

Several parts of the sequence lack any diatoms, and may 
represent subaerial deposition. Such levels become more 
common eastwards. 

Above a non-diatomaceous, pumiceous tuff, at the base of 
Member 12, is a diatomite. This consists of comminuted 
diatoms, and a few unbroken species. The latter are 
dominated by Cocconeis placentula var. euglypta (50 to 70%), 
Rhopalodia spp. and pithemia spp, across the whole of the 
western outcrops (fig. 11.2). 
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Much of Member 13 consists of non-diatomaceous sediments 
that probably formed under alluvial and colluvial 
situations. However, several horizons contain low to 

moderate numbers of diatoms. Two floras are typical. The 
first includes varying proportions of Melosira granulata 
and its varieties valida and angustissima, M. agassizi and 
M. ambigua. The second is favoured by higher alkalinities 

and consists of Thalassiosira rudolfii, yclotella 

meneghiniana. Rhopalodia gibberula and Epithemia spp.. 

Diatoms are uncommon in Member 14, except at one level 

where Epithemia sorex and Rhopalodia gibberula dominate. 

The Member only crops out in the west and no lateral 

variation studies were attempted. 

In general, the diatom floras of the Olorgesailie 

Formation become. increasingly planktonic in character 

towards the west. This probably reflects a lake that was 

centred on the Koora Graben. Large parts of this lake 

were shallow and reed-rich, except during the formation of 

Member 2, when deeper waters were widespread. 
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The diatom stratigrapy of the type section of the 

Olorgesailie Formation 

11(ii)a Introduction to the diatom strati ra and 
location of the type section 

The diatom stratigraphy shown in figure 11.3 is based on 

sampling intervals of Im in most units, plus samples at 
50 cm intervals, in parts of.. the section that were clearly 
diatomaceous, when viewed in the field. The diatom 

percentages are based on counts of 200 individuals. 

The stratigraphy shown in figure 11.3 is based on three 

separate sections, that could be easily correlated. These 

sections are numbered 1,2 and 3, and their locations are 

shown in figure 1h0.3, p. 317 . They correspond to the 

composite type section designated by Isaac (1978). Their 

lithologies are shown in figure 10.4. 

11(ii)b The diatom strati graphy of Members I and 2 of 
the type section . 

Between 0 and 150 cm no diatoms occur, other than for a 
few fragmentary species. There appears to be no"major lake 

occupying the section site at this time. From 150 to 170 

cm, Melosira granulata becomes' important, and suggests a 

minor lake expansion. The modern ecology of this diatom 

suggests a freshwater lake. Diatoms decline above 170 cm, 

and occur in very low numbers until the end of Member 1, at 
310 cm. No diatoms are shown in figure 11.3 for this 

interval, because of the unreliability of such low numbers. 
The species that are present are all benthonic types, and 
include pit` and Rhopalodia species. 

A major change occurs at the base of Member 2, with 
diatoms reaching concentrations of l0ll valves/g of 
sediment. They decline above about 500 cm, and reach very 
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low numbers towards the top of the Member (at 1000 cm). 
Within this part of the sequence, planktonic diatoms 
dominate. These consist mainly of Melosira granulata and 
its variety valida (up to 95 %), but also include M. 

granulata var. angustissima, M. ambigua, M. agassizi, 
Stephanodiscus astraea, Cyclotella meneghiniana and 
Thalassiosira spp.. Benthonic diatoms are very rare, 
consisting mostly of Rhopalodia spp.. Modern studies of 
these diatoms (Richardson, 1968; Kilham and Kilham, 1975) 

suggest a moderately eutrophic, deep water lake, with 

alkalinities of less than about 18 meq/1, and possibly less 

than 8 meq/1. Dissolved silica probably exceeded 5 to 10 

mg/1. The lack of benthonic diatoms suggests that the 

section site was far from a shoreline or shallow water. This 

is confirmed by the lateral distribution of these diatoms 
(p. 348 ). Member 2 represents a major lacustrine 

transgression, and, as shall become evident later, the 

maximum lake expansion. 

11(ii)c The diatom stratigpy of Members 3 to 8, at 

the type section 

These Members were-designated in areas to the east of 
the type section (Isaac, 1978). Unfortunately, they cannot 
be clearly defined at the type section, where they are 

represented by a complex of tuffaceous and diatomaceous 

silts (p. 321). 

Between 1000 and 1100 cm (from the base of the type 

section) diatoms are uncommon (ca. 10 to 100 valves/g of 

sediment), and are often broken. Epithemia zebra var. 

saxonica, E. sorex, Cocconeis placentula, and Rhopalodia 

vermicularis predominate. The modern ecology of these 

species suggests a shallow, fresh to slighly alkaline lake, 

with numerous littoral macrophytes. 

From 1100 to 1200 cm plhnktonic diatoms dominate. These 
consist mainly of Melosira ambigua, M. a assizi and M. 
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granulata. The remaining flora (40 %) includes benthonic 
and epiphytic elements. The assemblage probably reflects 
a shallow (though deeper than the preceding case), fresh 
lake, with reeds, at least in the vicinity of the section. 

Diatoms are uncommon and often broken between 1200 and 
1650 cm (the top of Members 3 to 8). This may reflect 
periods of emergence and/or reworking under shallow, 
littoral conditions. For these reasons, diatoms are not 

shown in this part of the section, in figure 11.3. However, 

a few unbroken Rhopalodia, ýithemia and Surirella are 

present. Towards the top of the sequence, Qyclotella 

meneghiniana becomes relatively more common, although it 

still occurs in very low numbers. This change may reflect 

a transition from fresh to alkaline water. It must be noted 
that in view of the low numbers this must remain a rather 
tentative conclusion. 

11(ii)d The diatom stratigraphy of Members 9 and 10, at 
the type section 

Volcanic products (ash and pumice) form a major part of 
Members 9 and 10. Diatoms are absent from much of these 

units. This includes the lower 50 cm of Member 9 (1650 to 

1700 cm in fig. 11.3), where only a few fragmentary 
individuals occur. 

Between 1700 and 1750 cm diatoms are uncommon (ca 102 to 

103 valves/g of sediment). These are dominated by alkaline- 

. 
loving species such as C clotella meneghiniana, Thalassiosira 

rudolfii, Rhopalodia gibberula and Anomoeoneis sphaerophora, 

with less common Cocconeis placentula. The flora also 
suggests shallow waters. 

From 1750 to 1800 cm diatoms are common (105 valves/g of 
sediment), with many fragments also present. The unbroken 
individuals are dominated by Melosira granulata var. 
valides and var. angustissima. pithemia sorex is also 
common, with several other benthonic species. The breakage 
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suggests that the deposit may have been reworked. If not, 
the assemblage of unbroken diatoms indicates a moderately 
alkaline lake, probably less than 10 meq/1. 

Above 1800 cm and below 1850 cm diatoms are absent, 
except for a few broken specimens. Member 10 occurs 
between about 1850 and 1940 cm ( the lower boundary is 

erosional and varies in height). This unit consists of 
pumiceous gravels and is devoid of diatoms. It probably 
records a lake regression. 

11(ii)e The diatom strati of Members 11 to 14, at 
the type section 

The diatoms of Members 11 to 14 record a series of 
transgressions and regressions. Several periods of emergence, 

and widely fluctuating water chemistry, can be inferred. 

Between 1940 and 2050 cm (fig. 11.3) diatoms are 

abundant (108 valves/g of sediment), and are often broken. 

The flora is dominated by Thalassiosira rudolfii (75 /), 

with Cyclotella meneghiniana, Melosira granulata var. valida, 
Anomoeoneis sphaerophora and Cocconeis placentula 

also common. The assemblage suggests open, probably 
shallow water, with an alkaline chemistry (50 to 80 meq/1). 

From 2050 to 2100 cm a fresh water (ca. 5 meq/1) flora 

prevails. This is dominated by Melosira ambigua (80 %), 

with Cymbella ventricosa, Cocconeis placentula and Synedra 

species constituting the remainder. 

Diatoms are absent from 2100 to, 2400 cm, except for a 
few fragments that are probably reworked. This level 

suggests lake regression and possible emergence of the 
section site. 

Diatoms are common between 2400 and 2450 cm, being 
dominated by yclotella meneghiniana (75 %). Melosira, 



-359- 
Thalassiosira and Epithemia form the remainder. The 
assemblage may reflect shallow, open water, with an 
alkalinity of probably less than 50 meq/1. 

Only diatom fragments occur between 2450 and 2650 cm, 
which suggests emergence from the palaeolake. They become 

common between 2650 and 2800 cm, except for a 50 cm 
interval in the middle of this level (fig. 11.3). The flora 
is dominated by Epithemia zebra var. saxonica (up to 75%), 
E. sorex, Rhopalodia vermicularis and R. gracilis. These 

diatoms suggest shallow water, abundant reeds, and low 

alkalinity and salinity. 

In the remainder of Member 11, and at the base of Member 

12, diatoms are absent (in the section interval 2800 to 

2950 cm). Above these levels, and below 3000 cm, Qyclotella 

meneghiniana becomes dominant (80 %), suggesting shallow, 

reed free, alkaline (but less than 50 meq/1) water. 

Diatoms are extremely abundant between 3000 and 3250 cm, 
but with a high degree of breakage. Unbroken diatoms 

attain concentrations of 1011 valves/g of sediment. 
Cocconeis placentula var euglypta is dominant (60 %), with 
Epithemia sorex, E. zebra var. saxonica, Rhopalodia 

vermicularis, R. gracilis, R. gibba and Cymbella sp.. The 

flora suggests a shallow, moderately fresh lake, with 
abundant reeds. The broken diatoms may have been washed in. 

Diatoms disappear again, between 3250 and 3350 cm, 
suggesting a lake regression at the base of Member 13. 
Higher lake levels can be suggested from the planktonic 
floras between 3350 and 3550 cm. This interval is dominated 
by Melosira agassizi (up to 90 %), except for the upper 
50 cm, which consists mainly of Melosira ambigua (up to 
70 %). Today, both these diatoms are found in fresh (ca. 5 
meq/1) lakes, with moderate water depths. The section area 
was clear of reeds at this time. 

A lake regression can be suggested for the succeeding 
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50 cm, from the lack of diatoms. They reappear between 
3600 and 3650 cm, where they are dominated by Melosira 
granulata var. valida (75 %) and var. angustissima (15 /). 
They suggest slightly alkaline conditions in a relatively 
deep lake. These species are commonly found in water with 
a high dissolved silica content (over 10 mg/1), and high 
nutrient content. 

From 3650 to 3950 cm diatoms are absent, or occur only 
as isolated fragments. Lake levels had probably fallen, 

and the area may have been subject to permanent or 
intermittent emergence. Between 3950 and 4000 cm several 
planktonic diatoms become common. These include Melosira 

granulata and its variety valida, M. ambigua, M. agassizi 
and Thalassiosira rudolfii. The lake at this time was 
probably quite fresh (ca. 5 meq/1), nutrient rich and 
relatively deep, with a high dissolved silica content (over 

10 mg/1). 

A subsequent regression and low lake levels and/or 
competetive exclusion by blue-green algae, may account for 

the absence of diatoms between 4000 and 4200 cm. A 

planktonic flora occurs from 4200 to 4300 cm. This is 
dominated by Melosira granulata and its varieties valida 
and angustissima (fig. 11.3). The flora suggests possibly 
deeper water and a fresh lake. 

A regression is indicated by the benthonic diatoms 
between 4300 and 4350 cm. These are dominated by pithemia 

zebra var. saxonica, E. sorex and Rhopalodia vermicularis. 
These diatoms suggest fresh, shallow, reedy areas at the 

section site. A very similar flora again occurs between 
4450 and 4500 cm, otherwise the remainder of the section 
(and Member 14) consists of non-diatomaceous sediments. 
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The diatom stratigrap of the composite 

sections 4 and 
_2 

11(iii)a Introduction to the location and stratig p 
of sections 4 and 5 

Two sections (numbered 4 and 5), to the east of the type 

section, have also provided a good diatom record, and will 
be discussed in this part of the chapter. Their locations 

are shown in figure 10.3, while their lithologies are 

given in figure 10.5. The diatom stratigraphy of these 

sections is illustrated in figure 11.4. 

Members I to 10, and the basal part of Member 11, are 

well exposed in sections 4 and 5. Unlike the type section, 
Members 3 and 4 can be clearly identified, but. Members 5 

to 8 remain difficult to separate. The two sections are 

used to form a single diagram in figure 11.4. 

11(iii)b The diatom stratig a of Members I to 3 

These Members are heavily-dominated by planktonic 
diatoms, wich account for 100 % of the flora through much 
of the sequence. 

The lower 50 cm of this composite section are dominated 
by Melosira granulata var. valida, but the flora only 
occurs in low numbers (10 to 100 valves/g of sediment). 
Between 50 and 100 cm, Thalassiosira rudolfii dominates, in 

similarly low numbers. These two assemblages are difficult 
to interpret accurately` because of the low numbers 
involved. However, they probably represent initially fresh 
water, that became more alkaline. 

A major transgression is indicated at 100 cm, by an 
increase in diatom numbers, and by the development of a 
flora dominated by Melosira granulata var. valida. This 
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diatom suggests fresh, deep 'water,., that 

, was-nutrient 'rich, 

and of high dissolved silica content. It continues up to 
950 cm as the sole dominant', except between 300 and 450 

cm, where Melosira granulata var. angustissima becomes 

common. This may suggest an increase in blue-green algae, 
with'which it is often associated in modern lakes. 

Diatoms are absent between 950 and 1000 cm, which, 

corresponds to a tuffaceous unit. This may represent an 

ash-fall into the lake, sufficiently rapid not to allow 
diatoms to accumulate. Above the tuff, and through the 

remainder of Member 3, there is a return to a Melosira 

granulata var. valida dominated flora. 

11(iii)c The diatoms of Members 4 to 11 

These units either lack diatoms or contain diatoms that 

suggest higher alkalinities than those of the lower 

Members. 

Member 4 is devoid of diatoms, and consists of coarse 

pumice gravels. It probably represents a lake regression, 

and fluvially transported volcanic debris. This level 

occurs between 1350 and 1400 cm in the section (fig. 11.4). 

From 1400 to 1650 cm, the flora is dominated by 

Melosira granulata and its, variety valida, Thalassiosira 

rudolfii and several Epithemia spp.. Modern floras of this 

type are mainly found in shallow, moderately alkaline 

water, with a few macrophytes. 

Diatoms disappear between 1650 and 1850 cm, apart from 

a few fragmentary individuals. A lake regression is 

probable with a very shallow sheet of water covering this 

area, or more likely complete emergence. 

From-1850 to 1900 cm, and between 2000 and 2100 cm, the 
flora is dominated by varying percentages of Cyclotella 



-364- 

meneghiniana, Epithemia zebra var. saxonica, 
Rhopalodia gibberula. These suggest shallow, 
areas of an alkaline (though less than about 
which was probably rich in nutients. Diatoms 
between 1900 and 2000 cm, which reflects an 
fluvially deposited pumice. 

E. sorex and 
reed -rich 
50 meq/1) lake, 

are absent 
influx of 

A few broken diatoms occur between 2100 and 2200 cm. 
From 2200 to 2250 cm Epithemia zebra var. saxonica and 
E. sorex predominate. While occuiiing in low numbers (102 to 
103 valves/g of sediment), their presence does suggest 
abundant reeds, and possibly a marshy area. 

Diatoms occur in very low numbers through the remainder 
of the composite section 4/5 (Member 11). These are not 
shown in figure 11.4. They are often broken and are dominated 
by benthonic species, belonging to the genera Rhopalodia, 
E-Pithemial Surirella Cy-matopleura. These diatoms 

suggest shallow, reedy areas, probably close to a shoreline. 
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11(iv) The palaeo eogra and palaeoecology of the mid- 

Pleistocene Lake Olorgesailie 

11(iv)a The major ecological aspects of ancient Lake 

Olorgesailie 

Several major fluctuations of salinity and alkalinity 
(as indicated by diatoms) of the palaeolake are shown in 

figure 11.5. Two major phases of high alkalinity (over 10 

meq/1), and high salinity (over 2 g/1), can be recognised. 

The highest probable alkalinities were of the order of 80 

to 90 meq/1. This is consistent with a lack of saline 

minerals in the Olorgesailie Formation. Three major stages 

in the evolution of the palaeolake can be identified from 

an inspection of figure 11.5. 

(i) An early phase, during which the alkalinity was 

mainly less than 10 meq/l, and when salinity was less than 

2 g/l. This chemically fresh lake was deep at the type 

section, during all of Member 2 times, and probably stood 

at a relatively stable surface level. This situation is 

most likely to have been brought about by an outlet in 

the Koora Graben. 

(ii) A second phase, during which the alkalinity 
fluctuated between about 5 and 90 meq/1, and with total 

salinity varying from less than 2 g/1 to about 20 or 25 g/1 
(fig. 11.5). Such wide changes suggest a lake that stood 
below its overflow, and which had limited or no subsurface 
drainage. ' Under these conditions a lake is very sensitive 
to changes in the evaporation/precipitation balance. 

Concentration of saline and alkaline water develops during 

periods of high evaporation and low precipitation, with the 

lake becoming more dilute during phases of higher rainfall. 

(iii) During the third major phase, the water was of 
predominantly fresh character (with short-lived exceptions, 
not shown in figure 11.5). However, the diatoms and facies 
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Fig. 11.5 The alkalin ity and salinity fluctuations 

of Palaeo lake Olorgesaili e 
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distributions suggest shallower water, over the outcrop 
area, than existed during phase (i). If this were simply 
due to a smaller water body, a higher alkalinity might be 
expected. The fresh conditions, with comparatively 
shallower water, may be explained in one or a combination 
of three ways. 

a) Infilling had taken place (with no subsidence), 
raising the lake floor closer to the outlet height. 

b) Subsurface seepage had been established, perhaps 
by contemporary faulting. 

c) The outlet height was lower than it was during 

phase (i). This may have been due to either erosion 
or more probably tectonic movements, such as 
faulting and/or tilting (fig. 11.6). 

The diatom data suggests that lake levels were fluctuating 

during phase (iii). This may support a seepage mechanism, 

unless tectonic forces were changing the outlet height at 

a sufficient rate. 

From the foregoing discussion, it seems probable that 
the many lake level fluctuations occurred due to a 
combination of climatic and tectonic processes. 

Several other, ecologically important, factors appear 
to have remained more constant during deposition, than did 

alkalinity or salinity. The common occurrence of Melosira 

suggests that dissolved silica was often high (over 10 

mg/1). This would be consistent with an active volcanic 
region. It may be that the abundance of diatoms in the 
Olorgesailie Formation is related to this silica 
availability. 

The presence of many species restricted to the modern 
tropics, or endemic to Africa, suggest that the lake water 
was warm. This may also relate to the high nutrient levels, 
suggested by the diatom floras. The abundance of epiphytes 
probably reflects a lake that was often fringed by numerous 
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Fig. 11.6 Suggested evolution of the Olorgesailie 

basin 

Phase 3 Fresh to slightly alkaline lakes, faulting and 

tilting to the south west; sediment infilling & 

Phase 2 Alkaline and fresh water lakes, periodic loss of 
outlet. Sedimentary infilling plus contemporary 
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littoral reeds and marshes. 

Diatom fragments are common at many levels, and reach 
great abundance in several horizons. This may reflect 
reworking of marginal sediment, during low lake levels, and 
/or turbulent littoral environments. 

11(iv)b Summary, of the palaeo ego rLaaph of the 
Olorgesailie Formation 

Figure 11.7 shows a series of block diagrams that 

illustrate the probable palaeogeography of the Olorgesailie 

basin at several key stages. 

During Member I times, the ancient lake was confined 

mainly to the Koora Graben. Although the lake was mostly 
fresh (suggesting an outlet, mechanism), it periodically, 

and locally became more alkaline (up to about 50 meq/1). 
The lake expanded and reached its maximum extent during 

the laying down of Member 2 (fig. 11.7). Contraction 

occurred during Member 3 times, and eventually the fluvial 

pumiceous units of Member 4 were formed. The palaeolake 
continued to expand and contract during the deposition 

of Members 5 to 8, with mostly shallow waters, of varying 
alkalinity, prevailing. Occasionally parts of the present 
Legemunge and Oltepesi Plains would become emergent.. By 
Member 9 times the lake was alkaline, shallow, and 
contained numerous macrophytes (fig. 11.7). A second major 
input of pumice occurred during the formation of Member 10. 
The palaeolake attained its maximum alkalinity soon after. 
During Member 11, times, the Legemunge and Oltepesi Plains 

were often emergent or covered with shallow, reed-rich 
alkaline water. Shallow depths continued to prevail during 
the deposition of Members 13 and 14 (fig. 11.7), but 

alkalinity declined, suggesting an outlet mechanism. 

Figure 11.8 shows a simplified palaeogeography of the 
southern Kenya Rift, during the middle Pleistocene. North 
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Fig. 11.7 
The palaeogeography of the mid-Pleistocene Lake 
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to south drainage predominated (Isaac, 1978). Longonot 

volcano was probably active, and may have been the source 
of the pumice units, and many of the ash horizons, in the 
Olorgesailie Formation. Baker and Mitchell (1976) have 
indicated that diatomites, at Munyu wa Gicheru, may be of 
middle Pleistocene age. If so, they imply a small lake 
between Olorgesailie and Longonot, at the same time as 
Olorgesailie Formation deposition. It is not known if this 

would have interrupted southerly drainage from Longonot. 

The Olorgesailie palaeolake-may have overflowed, or may 
have been drained by subsurface seepage (or both). Any 

water leaving this lake would have eventually reached the 
Magadi basin. Eugster'ý(1980)-"has noted the probability that 

a very large 'Lake: Oloronga'-linked the Magadi and Natron 

basins at this time (fig. 11.8). 

Ancient, Läke 0lorgesailie eventually ceased to exist due 

to a combination-of faulting and regional southerly 
tilting (Isaac, 1978). Today, no lake occurs at Olorgesailie, 

and the region can be classified as semi-arid. 

t- 
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Fig. 11.8 Schematic representation of modern and middle 

Pleistocene lakes and drainage in the southern 

Kenya Rift 
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MID-PLEISTOCENE PALAEOGEOGRAPHY 

Lake Magadi 

Lake Longonot 

... Mt. 
Olorgesailie 

r 

of volcano 

e Munyu wa 
Gicheru 

\/ \. ' - 

Lake Olorgesailie 

G "y 

Lake Olor nga 
1 

_ý_ ~ ''ßt4, 
-- 

f 

N. B. boundaries of palaeolakes are approximate only. 

ýý' 

4i 



-373- 
CHAPTER 12 

DISCUSSION AND CONCLUSIONS 

ý2(i) Lacustrine sedimentation in the Kenya Rift 

ý2(i)a Basin formation and lake typology 

Today, the Kenya Rift is characterised by a series of 
lakes that lie at-, the centre of basins of internal 

drainage. These-basins. are the result of interactions 

between faulting, subsidence, tilting and volcanism, and 
have' formed', vexisted and finally been destroyed many 

times during the last 15 my. Several basins appear to have 

continued for long periods. Such is the case at Lake 

Turkana, where sediments have been forming since the 

Pliocene. Other basins have been shorter-lived. Perhaps 

typical of these was the Olorgesailie basin, which developed 

and ceased to exist during the middle Pleistocene. 

Modern and ancient lakes of the Kenya Rift can be placed 
into four broad groupings, based on their pattern of 

sedimentation., These 'lake types' are: 

(i) The clastic lake 
(ii), The biogenic lake 

(iii) The perennial saline lake 
(iv) The ephemeral saline lake 

Examples of each lake type (all taken from this study, 
except Lake Mägadi) are shown in figure 12.1, together with 
their main facies distributions. Figure 12.2 places the 

major Kenya Rift lakes, both modern and ancient, into this 

classification. One notable feature is that many of the lakes 
have shifted-from one type to another at different stages 
in their evolutions. 
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Fig. 12.1 Rift Valley lakes and their sediments 
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Fig. 12.2 Kenyan Rift Valley lake classification and 
associated sediments and phytoplankton. 

Lake type Dominant minerals Dominant plankton Ref. 
Contemporary 

_ 
Clastic" 

Baringo Feldspar, clays Cyanophyceae, This work 
diatoms 

Naivasha Pyroclastics, Diatoms, desmids Richardson 
feldspar, clays botryococcus, 1966. 

blue green algae 
Turkana Quartz, feldspar, Chlorophyceae This work 
(N. basin) clays, heavy mins. 

Bio enic: Diatom silica, Ostracods, diatom Yuretich, 
Turkana ostracod calcite. chlorophyceae 1979 
(S. basin) 

Perennial 
saline lake: 
Bogoria Feldspar, clays Cyanophyceae. Tiercelin 

evaporites 1979, This 
work 

Elmenteita Pyroclastics, Cyanophyceae Hecky & 
feldspar, clays, Kilham 1973 
evaporites. Rich, 1932 

Nakuru Pyroclastics, Cyanophyceae Hecky & 
feldspar, clays, Kilham 197 
evaporites. Rich, 1932 

Ephemeral 
saline lake: 
L: agadi Evaporites (trona) Cyanophyceae Baker 1958 

minor clay. This work. 
Alablab Evaporites Cyanophyceae Dodson 1963 

Classification of Rift Valley Palaeolakes. 
(Several lakes reappear in different classes due to varying 

conditions during the period considered) 

Holocene 
Clastic: Turkana, Baringo, Bogoria (? ), '6uguta'(5uguta Beds), 

Nakuru/Elmenteita, Naivasha, Magadi (? ). 
Perennial 
saline lake: Magadi (7) 

Pleistocene 
Clastic: Turkana, 'Suguta', 'Kapthurin' (Kapthurin P. ), Nakuru/ 

Elmenteita/Naivasha, '0lorgesailie' (Olorgesailie F. ) 
Biogenic: 'Suguta', Nakuru/Rlmenteita/Naivasha, 'Olorgesailie'. 

Pliocene 
Clastic: Turkana, 'Chemeron'(Chemeron V. ), 'Lukeino'(Lukeino F) 
Biogenic: 'Chomeron', 'Lukeino' 

Miocene 
Clastic: VIaril and Kabarsero lakes (Ngorora F. ). 
Ephemeral saline: Lake Kapkiamu N orora 
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12(i)b Sedimentation in the clastic lake 

This lake type is dominated by inputs of detrital 
minerals from mainly perennial rivers and streams. The lake 
waters are usually fresh and exclude the development of 
evaporites. Biotic elements form only a small percentage 
of the sediment body, due largely to rapid sedimentation 
rates. 

An idealised facies pattern for such a lake is shown in 
figure 12.3. Shoreline sands and gravels pass progressively 
into finer deposits towards the lake centre. However, where 
wave action is limited (eg. small lakes), or only fine 

grained sediments are available, silts and clays may reach 
the shoreline. In cross section, the deposits often show 
interfingering relationships, due mainly to successive lake 

expansion and contraction (fig. 12.3)., 

Smectites are the dominant clays in the Kenya Rift lakes. 

Montmorillonite has been observed in the present day Lakes 

Baringo and Turkana during this study, and is similarly 
common in ancient lacustrine sequences such as the Miocene 
Lukeino and Ngorora Formations of the Baringo district. 

Silts and sands consist mainly of feldspars and volcanic 
glass, with or, without lithic fragments and ferromagnesian 
minerals. Detrital quartz is rare in most basins, due to 
the composition of the volcanic source rocks. Lake Turkana 
is somewhat exceptional in this respect, since it contains 
quartz-rich basement rocks within its drainage basin. 

During the early Holocene, and at several stages during 
the Pleistocene, many rift lakes were larger than they are 
today. In some cases, the resulting greater 'fetch', allowed 
coarser deposits to be sorted into littoral zones. This 
probably occurred at Lake Nakuru (central Rift Valley), where 
sandy deposits have been left above the modern lake, which 

, 
today has muddy or silty shorelines. Lake expansion, 
dilution and increased sediment supply resulted in many lakes 

lIý 
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Fig. 12.3 Schematic block diagrams of depositional 
environments in the Gregory Rift Valley. 
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of the clastic type forming during the early Holocene. 

12(i)c Sedimentation in biogenic lakes 

Deposits of this lake type are dominated by faunal and/ 
or floral debris. In-Kenya, three groups have been important 

sediment formers. These are ostracods, diatoms and molluscs. 
Concentrations develop where ecological conditions were 

optimal during life, and where sedimentation rates of 
detrital minerals were low. 

Sequences dominated by molluscs are usually of local 

extent. One example, recorded in this work, is that of 
Etheria shell concentrations (up to 3m thick and tens of 

metres across) at East Turkana (p. 164). 

Examples of extensive biogenic deposition are rare today. 

However, the southern basin of Lake Turkana does provide 

such a situation. There, ostracods predominate in the 

sediments (Yuretich, 1979), with diatoms also present. 

Almost pure diatomites are recorded from the deposits of 

several palaeolakes. Perhaps the most famous of these, are 
the diatomites at Kariandusii (near Lake Elmenteita), which 

represents a much expanded Pleistocene lake. Less well 
known diatomites occur in the Lukeino and Chemeron 

Formations of-the Baringo'district. Often these are 
dominated by the planktonic species of the genus Melosira. 

Outside the modern Kenya Rift, large concentrations of 
diatoms are often found in very fine grained profundal 
sediments of large non-calcareous lakes, where they are 
undiluted by detrital'grains or limestone precipitates (eg. 

Lake Tanganyika; Degens et. al., 1971). However, highly 
diatomaceous deposits may also form under shallow waters, 
where there is little sediment input to the lake. This is 
probably the case with several diatomites in the 
Olorgesailie Formation. 
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The rate of sedimentation of diatomites or diatomaceous 
deposits will vary in relation to the productivity of the 
environment in which the diatoms lived, and in relation to 
competition from other organisms, as well as the rate of 
clastic input. Several estimates are indicated below. 

LOCALITY SOURCE 

Lake Turkana 
(silts with diatoms) 
Lake Naivasha 
(silts with diatoms) 
Lake Manyara 

n (diatomaceous silts) 
Valle del' Inferno 
(Italy)(diatomites) 

North Wisconsin 
(diatomite) 

This work 

Richardson, 1966 

Holdship, 1976 

Bonnadonna, 1965 

Conger, 1942 

SEDIMENTATION 

RATE 

1m/ 250-300 yrs. 

Im/ 325-466 yrs. 

Im/ 540 yrs. 

1m/ 952 yrs. 

Im/ 3280 yrs. 

It is clear that the modern and ancient lakes of the Kenya 

Rift have periodically developed near perfect conditions for 

diatom growth, and to a lesser extent the growth of 

molluscs and ostracods. 

12(i)d Sedimentation in perennial saline lakes 

For a perennial saline lake to form, öutflow must be 

restricted o1 stopped, evaporation must be high and inflow 

must be sufficient to maintain a standing body of water. 
Such lakes are usually shallow (less than 10 m), although 
deeper ones are recorded outside Kenya (eg. Dead Sea). 
Water input is derived from both permanent and ephemeral 
rivers, while hot spring activity may be important in 

concentrating ions. 

Evaporative concentration eventually results in the 
formation of surface brines and saline minerals, which 
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sink to the bottom, below less dense and less concentrated 
inflow water. A continuous repetition of this sequence is 
typical of these lakes. Tiercelin (1979) has recorded the 

occurrence of evaporites along the median axis of Lake 
Bogoria (fig. 12.1), which have resulted from this type of 

process. The lake deposits are often associated with 

organic debris. Lakes of this type may have littoral zones 
that are dominated by clastic sediments. Trona (NaHCO3. Na2 

CO3.2H2O) is often the most common evaporite in Kenya. 

12(i)e Sedimentation in ephemeral saline lakes 

Ephemeral saline lakes occur in regions of low rainfall, 

and are subject to periodic dessication. Water input may be 

from infrequent storms or springs. During wet seasons, thin 

., layers of silt and clay may form, while during 'drying out', 

evaporites develop. An idealised facies distribution in 

such a lake is shown in figure 12.3. 

The particular saline minerals formed will depend on 

the brine involved and its evolution. In the Kenya Rift, 

the waters are dominated by Na, HCO 3 and CO3. The best 

known ephemeral saline lake in Kenya is Lake Magadi (fig. 

12.1),, which'has deposited up to 40 m of trona (Baker, 

1958). The bedrocks in its catchment are mainly volcanic. 
Hardie et. al. (1978) have pointed out that the resulting 

-dilute inflow, upon which evaporative concentration acts, 
is of a Ca-Na-HCO3 type, and suggest the following 

simplified brine evolution. 

undersaturated inflow low Mg calcite HCO rich, 
HCO3 >>Ca + 

, 
Mg precipitated 

ýCa 
poor water 

(Ca»Mg) 

º Na-CO 3-SO4 C1 brine 

Today, major ephemeral saline lakes are rare in the Kenya 
Rift. They are found at Lake Magadi and in the Suguta 
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Valley (Lake Alablab), but appear to have been absent 
during the wetter, early Holocene (fig. 12.2). 

12(i)f Summary of the major influences on lacustrine 

sedimentation 

It has already been pointed out, that in the Kenya Rift, 

lacustrine basins are usually initiated by tectonism and/ 

or volcanism, and that climate is important in the further 

development of the lake. When considering the pattern of 

sedimentation, it is useful to consider three factors, 

although these are in turn influenced by source rock 
lithologies, wind speeds, water depths and so on. These 

factors are: 

(i) The evaporation/precipitation balance 

(ii) The rate of detrital input 
(iii) The energy of the environment 

Figure 12.4 shows the broad relationships between these 

three influences and sedimentation. As evaporation 
increases, evaporites tend to be promoted. As precipitation 
increases, -biogenic or clastic deposits tend to be favoured. 

Which of the two actually develops depends on the rate of 
detrital input. High energy environments are usually 

associated with coarse deposits; (or mollusc dominated 
biogenic sediments), while lower energies favour the 
formation of clays and silts (or diatom dominated biogenic 

units). 
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Fig. 12.4-Tne relationship oetween certain environmental 
parameters (energy, clastic input ana the 
evaporation/precipitation balance) and sedimentation 
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12(ii) 'The relationships between sediment types and 

diatoms 

12(ii)a The links between lithology and diatom content, 
and their causes 

Planktonic (free floating) diatoms tend to predominate 
over benthonic (bottom living) species in the deeper parts 
of lakes. Commonly, these regions are distal to sediment 
supply, and as a result planktonic forms tend to be 

associated with finer grained deposits. This broad relation 
holds true in the Galana Boi Formation (East Turkana), 

where the percentage of planktonic diatoms tends to 
increase as grain size decreases. Benthonic species are 
more common in the fine and medium sands, while diatoms 

disappear in the coarse sands (which formed along high 

energy shorelines). 

Diatoms may also show relationships that are not 
dependent on grain size. Most diatoms disappear above 
alkalinities of about 150 meq/1, although a few Nitzschia 

species may occur up to about 300 meq/1 (Holdship, 1976). 
The general upper limit results in diatoms not being found 
in sediments that contain primary authigenic minerals such 
as gaylussite, natron and trona (fig. 12.5). Analcime 
formation is, in most cases, beyond the tolerance limit 

of diatoms, although some 'overlap' does occur with certain 
Nitzschia spp.. Montmorillonite and calcite may develop, or 
remain stable, between alkalinities of about 4 and 100 

meq/1, in-Kenya waters (Cerling, 1979). This range overlaps 
with that of many diatoms. As a consequence, they are often 
found with montmorillonite, calcareous clays, or 
limestones. Gasse (1975) has observed that Stephanodiscus 
astraea and Nitzschia spp. often occur in limestones of the 
Afar region of Ethiopia. 

A number of diatoms, such as Navicula elkab and 
Thalassiosira rudolfii, live in waters beyond the tolerance 

21 1 
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Fig. 12.5 The relationship between diatoms, macrorauna 
and mineral formation with regard to alkalinity. 

HC03- + CO32 meq. /1. 

Based on Hecky & xilham, 1973; Holdsriip, 1y7b; xicharason, 
1, j68 and Gerling 1979. 

1 10 100 1 00u 
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limits of most molluscs (up to 16 meq/1; Cerling, 1979) and 
fish (up to 40 meq/1; Cerling, 1979). Such species are 
therefore often found in sediments devoid of fish or 
mollusc fossils. 

Diatoms also bear a close relationship to dissolved 

silica concentrations. Often, they occur in abundance in 

volcanic terrains, where the silica content of waters may 
be high. Melosira and Nedra species usually occur where 
the dissolved silica exceeds about 10 mg/l (fig. 12.5, 
inset). Other species, such as Stephanodiscus astraea, 
are favoured by low levels. 

Today, pure diatomites are not forming in the major 
Kenya Rift lakes, although fossil deposits are common. 
These ancient diatomites normally include only one or two 

species. The following floras constitute the bulk of East 
African diatomites. 

(i) Melosira spp. 
(ii) Melosira/Synedra spp. 
(iii) Stephanodiscus spp. 
(iv) Nitzschia spp. 

In the Kenya Rift Valley, only (i) and (ii) are common, 
although some diatomites (of'1oca1 extent) are dominated by 

benthonic species. Floras (iii) and (iv) have been observed 
in the Pleistocene diatomites of the Afar (Gasse, 1975). 

Figure 12.6(a) subjectively attempts to summarise the 

abundance of certain diatoms in different lithologies 
(based on personal observations). For example, clays were 
mostly associated with Melosira spp., while forms such as 
Rhopalodia vermicularis often occur in fine sands and silts. 

i 
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[Fig. 12.6 

a) Subjective frequency estimates of certain diatoms 
in aiiferen4 litnologies. 

Sand 
C. Ito. F. Silt Clay Diatomite Lmst. 

Nitzscnla spp. + ++ + +++ + 
Melosira spp. + ++ +++ +++ 
(granulata & 

agassizi) 
Stepnanodiscus + ++ ++ +++ 
astraea & vars 
Cyclotella + ++ ++ + + 
meneghiniana 
Thalassiosira + ++ ++ + + 
ruaoifii 
Campytodiscus + ++ ++ + 
clypeus 
Rnopaloaia + + ++ +++ + ++ 
vermicularis 
Cocconeis + + ++ +++ + ++ 
placentula 
Epithemia + + ++ ++ 
zebra 

+ present ++ common +++ abundant 

o) Centric diatom triangular diagram illustrating 
cowman ilural assemblages ooservea in the Kenya 
Rift Valley. 
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12(ii)b Floristic groupings and their relationships to 
lacustrine deposition 

If one considers only the centric diatoms, two broad 
floristic groupings can be recognised, that are typical of 
the Kenya Rift sediments (fig. 12.6(b)). Group 1 floras 

consist of varying proportions of the genera Melosira and 
Stephanodiscus. Group 2 floras are dominated by mixtures of 
Qyclotella and Thalassiosira. The two floras rarely mix, 

probably due to their contrasting alkalinity requirements. 
However, some assemblages, which include Melosira, 
Qrclotella and Thalassiosira are known from the Afar 
(Ethiopia), and the Olorgesailie Formation of Kenya. 

, 
Group 1 floras are typically associated with fresh lakes 

of the elastic type (discussed earlier), in which silt and 

clay deposition predominates. Where detrital input is low 

a biogenic lake may develop. The proportion of Melosira to 

Stephanodiscus is probably controlled by silica (p. 385 ). 

Group 2 floras are associated with higher alkalinities, 

which often develop during the terminal or regressive 
phases in a lakes evolution. Under these circumstances 
sands and coarser deposits advance lakewards. In extreme 
cases tha flora may be found in sediments interbedded with 
evaporite units. 

12(ii)c Diatom fossilisation and the consequent difficuties 

in environmental interpretation 

There are many processes that influence the final 

composition of a fossil diatom assemblage. An understanding 
of these is essential before interpretations can be made. 
Figure 12.7 indicates the'main processes involved in 

changing a 'living assemblage' to a 'final recorded 
assemblage'. Three main sets of factors should be 
considered - pre-depositional, post-depositional and 
collection. 
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A. Pre-depositional factors 

As a result of various mixing processes, fossil diatom 

assemblages may represent only the average state of a 
lake over several years. Where a lake has remained in the 

same ecological condition for long periods, this is of 
little importance. However, rapidly changing ecosystems 

may become blurred in the fossil record. 

A(i) Passive mixing 

This involves a simple settling of diatoms, after death, 

onto the lake bottom, and involves little or no breakage. 

Living assemblages may be easily changed by this process. 

For example, a planktonic flora may sink and mingle with 

a benthonic assemblage. The resulting flora then represents 

two differing habitats. East African lakes are sometimes 

stratified, and each layer may contain a characteristic 

community of its own. Upon death, these will sink and 

mix, producing a single combined flora. 

Time may also play an important role in passive mixing. 

Diatom populations may vary from season to season, 

reflecting changing conditions. These may become mixed as 

they fall onto the lake floor, and disguise the seasonal 

changes. However, this is not inevitable. Bonnadonna (1965) 

has recorded seasonal changes in 'varve like' sediments. 
Simildr periodic changes are also preserved in 'varves' 

from the Miocene Lukeino Formation of the Baringo district. 

A(ii) Active mixing 

Active mixing involves a process of movement, other than 

simple settling. It can take two main forms. The first 

type involves resuspension of the diatoms, without 
transportation from their original depositional sites. This 

maybe caused by wind induced turbulence, or perhaps by a 
breakdown of seasonal thermal stratification. It is 
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probably more important in the shallower parts of lakes. 
Diatom breakage may occur, and the relative percentages of 
different species will probably be altered. 

The second major type of active mixing involves 

transportation. Diatoms may be moved from their life 

habitat prior to deposition. This may or may not involve 

damage, and size selection might operate. The effect of 
transportation would be to distort percentage counts and 
to. introduce exotic species to the new area. Although 

difficult to detect, the transported flora would probably 
form only a small part of the indigenous assemblage. 
Diatoms can also be resuspended, or reworked, from older 
deposits, and then transported. Under these circumstances 
their is a strong chance of breakage. 

Transported diatoms may be suspected from breakage, or 

by the occurrence of diatoms of differing ecologies in 

the same assemblage. In most cases, they will probably 
form only a small part of the indigenous flora. For these 

reasons, it is advisable not to include damaged, or rare, 
diatoms in percentage counts, although their presence 

should be noted. Further problems may arise from selective 
breakage. For example, of long slender types such as 
ynedra. In these cases, it may be necessary to make some 

allowances to compensate for the problem. 

B. Post-depositional factors 

After a flora has formed a fossil or death assemblage 
(fig. 12.7), it may be subjected to further alteration 
from one or more of three differing processes. 

B(i) Biological alteration 

Once deposited, diatoms may be further mixed by 
bioturbation. Burrowing organisms or root penetration may 
contribute to varying degrees. This process will tend to 
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be concentrated in shallow, aerobic water, or in subaerial 
habitats, upon a lake regression. The main effect will be 
to further mix the diatom floras, although there may be 

some breakage, depending on the circumstances. 

B(ii) Mechanical alteration 

As sediments accumulate, compaction will increase. This 

may result in some diatom breakage, particularly of the 
more delicate or elongate forms. Some mixing may occur, but 
is probably minor in its effects. 

B(iii) Chemical alteration 

Highly alkaline groundwaters may result in the 

dissolution of diatoms. Thin walled species would probably 
be removed firsts and perhaps the entire flora in extreme 

cases. When examining a deposit affected in this way, 

chemical etching of surviving species should make it clear 
that the process has operated. 

C. Collection factors 

Further mixing of diatoms may occur when collecting 
samples. Inevitably, a certain thickness of sediment is 

obtained, and this represents a period over which 
deposition occurred, and during which the flora may have 

changed. If the sediment is well lithified, the problem 
can be minimised by taking a scraping from the surface of 

a sample. While this is usually possible in older units, it 

is more difficult in younger deposits, which are often 
unconsolidated. Contamination may also occur from other 
parts of the section being studied, and it is essential 

that its surface be 'cleaned' prior to sampling. 

Errors may also be introduced in the laboratory. 
Accidental breakage and differential settling rates, 
during preparation for slides (p. 61 ), may result in a 
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bias, if care is not taken. Inaccuracies may develop through 
counting too few diatoms. Figure 12.8 shows the percentages 
obtained for several species after different counts, 
based on the same slide. In order to ensure that all 
diatoms forming over I% of the flora are observed, two to 
three hundred individuals should be counted (fig. 12.8(a)). 
If accurate percentages are required for rare (less than 

I %) diatoms, it may be necessary to count 500 or more 
individuals (fig. 12.8(b)). A judgement is required as 
to. the level of accuracy required. 

From the foregoing discussion, it-can be seenthat many 
factors influence the final composition of a diatom flora. 
Consequently, interpretations should be made with care, and 
the realisation that, the inferences are often based on an 
hypothetical 'average state', and rarely an instant in 

time. 

ý'i .. 

} 

: it '.. ý, 

-. ýýr 
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Fig. 12.8 
Variation in diatom percentages with 

count size 

(a) 

30 

% of Rhopalodia 
total 20 vermicularis 
diatom 
flora Cocconeis 

placentula 
10 

Synedra ulna 

Rhopalodia 
gracilis 

100 200 300 400 500 
no* counted 

(b) 

"of Surirrella 
total 0.5 biseriata 
diatom 
flora Navicula radiosa 

Nitzschia robusta 
500 1000 1500 000 

The diagram illustrates the changes in percentage 

of selected diatoms with increasing count size. 

(a) For common, diatoms, a count of between 200 and 
300 is sufficient to approximate the actual 

percentage. 

(b) For rare diatoms, a count in excess of 500 

is needed to obtain a reasonable approximate 
of the actual percentage. 
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12(iii) The application of diatoms to geological research 

12(iii)a Diatoms as an aid to correlation 

In a study of the western U. S. A., Andrews (1971) noted 
that about 80 % of the species present in the middle 
Miocene were alive today. This figure drops to about 20 % 

for the late Eocene. Most East African Rift Valley 

sediments are younger than the middle Miocene. This suggests 
that diatom extinctions may be of limited value as a 
correlation tool in such areas. 

However, there are a few possible exceptions. Stephano- 

discus'carconensis, a species commonly found in the lower 

Pleistocene, but rarely today (Gasse, 1975), has been 

observed in the Plio-Pleistocene Chemeron Formation of the 
Baringo district. It would seem that this diatom is a 
useful 'stratigraphic marker', where it is abundant. 
Melosira granulata, M. granulata-agassizi and M. agassizi 
are common in the Holocene deposits of the Kenya Rift. They 

are often difficult to distinguish and their ancestral 
forms appear to merge. In general, the older forms posses 
thicker frustules and a coarser ornamentation, which may 
provide a clue to the age of a deposit. 

Pluvial stratigraphy (based on wet-and dry periods) has 

been discredited for the last 15 to 20 years, because of 
the confusing influences of tectonism, volcanism and 

regional climatic variability. However, lake level 

fluctuations (upon which pluvial stratigraphy was largely 

based) may be used in local correlations for the late 

Quaternary, in areas where tectonism and volcanism has 

been minimal. Such lake level changes may be inferred from 

diatom studies. Comparisons made on this basis can be made 
in intra-basin studies, but become increasingly crude 
beyond the local level. 

A summary of these points follows. 
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a) Only a few diatoms are of use in the Kenya Rift, 

as 'stratigraphic markers'. 
b) Diatom morphology may be used in some cases as 

an approximate indication of age. 
c) Diatoms may provide an indirect correlation method 

(by indicating lake levels), in late Quaternary 

studies. 

, 
12(iii)b Diatoms as a palaeoecological tool 

The high representation of living species from the middle 

-Miocene onwards, results in diatoms being of great value in 

. palaeoecological studies of the Kenya Rift. Diatoms are 

often closely related to water depth and clarity. They can 
be used to infer the salinity,, alkalinity, pH, nutrient 
status and the broad palaeotemperature of former lakes. 

Diatoms usually record local environments, often with 

, great accuracy. This contrasts with pollen studies, which 

; -are normally concerned with. much wider regional variations. 
The short life span of diatoms, ranging from days to months, 
is a great advantage to this type of study. It allows 
changing ecosystems to be reconstructed with considerable 
accuracy. However, the precise 'resolution' possible 
depends on the degree of alteration that the living flora 
has been subjected to. "In this thesis, they have been used 
to suggest environmental changes ranging from seasons 
(Lukeino Formation) to decades (Galana Boi Formation). 

The, relative 'percentages . 'of planktonic and benthonic 

species have ; proved extremely useful in suggesting former 
lake level fluctuations. A detailed record of the Holocene 

expansions and contractions of Lake Turkana has been 
obtained in this manner. The occurrence of epiphytes can be 
used to suggest former reed beds (and shallow water). In 
some cases it may be possible to infer the proximity of a 
river from the presence of diatoms, such as Pinnularia spp. 
(favoured by fresh inflow waters). 
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The chemical nature of a palaeolake can be inferred from 
its fossil flora. In the case of Lake Turkana, increasing 

alkalinity during the late Holocene, is indicated by a 
change from Melosira/Stephanodiscus assemblages to 
yclotella/Thalassiosira types. Changing alkalinity and 
salinity has been shown to be an important pari of the 

evolution of ancient 'Lake Olorgesailie'. Diatoms can also 
be used to suggest former dissolved silica concentrations, 

and it would appear that these have exceeded 10 mg/1, at 
least periodically, in most of the palaeolakes examined. 

In some instances, palaeotemperatures may be estimated. 
Modern warm water species (including several Nitzschia spp. ) 

can be contrasted with cold water forms (eg. clotella 

ocellata). When these data are combined with information 

from geological evidence, it may be possible to estimate 
former precipitation/evaporation balances. 

Wherever possible diatom studies should be combined with 

geological investigations, in order to provide an overall 

synthesis of palaeoecological conditions. 

In summary: 

a) Diatoms are sensitive''ecological indicators. 

b) They 'allow fine scale reconstructions to be made. 
c) They usually indicate local rather than regional 

conditions 

d) They are very useful in reconstructing lake 

level fluctuations' 

e) Pälaeoclimati: c reconstructions' can be made, 

especially'when'diatom and geological studies 

are combined. 

ýý 

aý ý- - 
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12(iv) Summary of the stratig= and evolution of the 

-East Turkana, Baringo-Bogoria and Olorgesailie 

areas 

i2(iv)a: 'Comparisons and contrasts between the study areas 

The three areas examined in this thesis lie in 
.z. 

differing parts of he Kenya Rift, and show -contrasting' 
histories, and, sedimentation patterns. For the most part, 
these differences relate to variations in tectonism, 

volcanism, climate and catchment geology. The chronology and 

probable depositional environments of, the units studied are 

shown, in figure 112.9. This_ diagram also relates these. 
deposits to "sediments`rexposed in other parts of the Rift. 

The contrasting natures of the basins-are illustrated in 

cross section, in -figure 12.10. Section 'A' of this 

diagram indicates the situation at East Turkana. This 

region is a somewhat ill-defined, and altitudinally low, 

part of:. the Rift, that has existed on the margins of a 
large like since at least the Pliocene. The-sediments 

reflect four major lacuszrine expansions, that have 

occupied an 'East Turkana embaymenu', during this period. 
The Galanä Boi Formation, which has received'. considerable 

attentioZ: ý; in_this work, represents the last (Holocene) of 
these major transgressions. 

Further south, in the Baringo district, zhe, Rift is 

better, -, defined (fig. 12: 10, section 'B'). This region has 

been subjected, -co more incense`volcanism and'tectonism than 
has East Turkana. This has resulted in the formation and 
destruction-of-'a series of palaeolakes (distinctly 

separate in both space and time)', rather than the continual 

exis-cance of one'greät lake. These ancient lakes have 

tended., to': ble ycentred further east as the Rift has "developed, 

until-by' the earlier Pleistocene, lacustrine sedimentation 
was taking place_. in_much, the same area as today. 
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The third area studied lies. in the southern Kenya Rift, 
and contained a lake for a relatively short period (the 

middle Pleistocene). Here, the-Rift. is well defined and its 
floor consists of numerous horsts`and grabens, with a north 
to south alignment (fig. 12.110, * section 'C'). This region 
provides an example of a lake basin that formed' in a series 
of interconnected grabens, and which was partly 

}dammed 
to 

the south by the volcanics 'of Mt. Olörgesäilie - atypical 
rift valley situation. 

' 
It 

A wide range of depositional environments occur in 

grabens. These range from fluvial and colluvial: to littoral 

and offshore lacustrine. The environments'. recorded in! 
-this 

work are summarised in figure 12.1'1, which also indic"ätes 

their relative importance in the units studied. * 

The last of this series of summary diagrams deals with 
i. 4 

the range of chemistries of the palaeolake`s investigated. 
This is done in a classification form,, bäsed on diatoms, and 
is shown in figure"12.112. The principle' divisions in this 

classification are based on the alkalinity-and salinity 
preferences of the diatoms found in the 'sediments. The 
diagram also indicates at what time, and` in which basin, 

lakes'of. these chemical types have arisen. The 

classification ignores highly saline and alkaline lakes 

such as modern Bogoria, or the Kapthurin palaeolake, since 
their chemistries are beyond the tolerance limits of most 
diatoms 

12(iv)b Summary of the evolution of the East Turkana area 

Since the Pliocene, East Turkana has intermittently 
formed an embayment of, an expanded Lake Turkana. The 

evolution of this embayment is summarised in figure 12.13. 
The sediments through out 

Rthis, 
period have, been dominated by 

quartzo-feldspathic silts and sands. These reflect outcrops 
of volcanics and quartz rich metamorphics within the 
catchment. Heavy minerals are common, as are bioclastic and 
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Fig. 12.11 Major depositional environments and lithologies 
represented by the various sedimentary units studied 
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Fig. 12.12 Ecological classification of the Rift Valley 
palaeolakes based on diatoms 

LACUSTRINE ENVIRONIh'UNT 
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Lake development during the late Cenozoic at East Turkana and in the Baringo district. 
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pyroclastic sediments in several units. Four major 
transgressions can be recognised. The first two gave rise 
to the Pliocene Kubi Algi Formation and the Plio- 
Pleistocene Koobi Fora Formation (fig. 12.10, section 'A'). 

A third major transgression produced the deposits of 
the Guomde Formation. Diatoms are rare in this unit, and 
usually dominated by Melosira granulata, which is suggestive 
of a fresh lake. Although the age of this Formation is 

uncertain, it must pre-date late Pleistocene grid faults, 

which dislocate the entire basin. After regression, and 
probably during the latest Pleistocene, erosion deeply 
incised the landscape. 

Lake Turkana again covered much of East Turkana during 

the early and middle Holocene, when it stood up to 80 m 

above modern heights. Periodic overflow to the River Nile 

is probable, and the lake was probably augmented by water 
from Lake. Chew Bahir (to the north-east) and a former 'Lake 

Suguta' (to the south). The early Holocene alkalinity was 
less than 5 or 10 meq/1 (today, 23 meq/1), salinities 

were less than 2 g/l (above this today), and dissolved 

silica ranged between about I , to over 10 mg/l (today, less 

than 3 mg/1). The early Holocene lake was eutrophic, and 
of similar temperature to today. The diatom flora has 

shifted from one dominated by Melosira granulata- 
Stephanodiscus astraea-Ralodia vermicularis-Cocconeis 
placentula to a much less abundant flora dominated by 
yclotella meneghiniana-Thalassiosira rudolfii-Surirella 
biseriata-Anomoeoneis sphaerophora. Today, the lake abounds 
in blue-green algae. 

Many lake level fluctuations have been recorded, from 
diatom assemblages and beach deposits, for the Holocene. 
Two phases of generally high lake levels can be recognised 
for the early, and middle Holocene, separated by low 

elevations. at. about 7000 yr. B. P.. 

Tectonism may;. have played a role in controlling lake 
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levels during the Pliocene and Pleistocene. However, late 
Quaternary changes are almost entirely due to climatic 
effects. Arid phases can be inferred for the late 
Pleistocene and late Holocene. A wetter climate than today 
(possibly seasonal in character) prevailed during the 

early and middle Holocene. 

12(iv)c Summary of lacustrine sedimentation in the 

Baringo district 

Although the sedimentary record is incomplete, lake 

environments have been recurrent in the Baringo and Tugen 
Hills areas for the last 12 my, and have, perhaps, been 

continuous since Kapthurin times (early-middle Pleistocene 

onwards)(fig. 12.13). 

The sediments are diverse and include diatomites, 
feldspathic silts, montmorillonite clays, pyroclastics and 

evaporites. These reflect a wide range of conditions, that 
have intermittently developed. 

The diatoms in most units are dominated by Melosira 

species, and many deposits are monospecific. Other 

important diatoms include Synedra spp. (Lukeino Formation), 

Stephanodiscus spp. (Chemeron Formation), Thalassiosira 

and yclotella (Ilosowuani Beds and core material from 
Lake Baringo). Inferences from diatoms and authigenic 

minerals suggest that the chemistries of these lakes have 

varied widely. Alkalinities range from less than 5 meq/1 to 

580 meq/1 in modern Lake Bogoria. Dissolved silica has, for 

the most part, exceeded 10 mg/l, and the waters have 

generally been eutrophic. The chemical aspects of the 

different lakes are summarised in figure 12.13. 

The older lacustrine units (Ngorora, Lukeino and 
Chemeron Formations) were formed in a series of quite 
separate tectono-volcanic basins, that have since been 
destroyed. The Pleistocene Kapthurin Formation was deposited 
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on the margins of a central rift lake, whose northerly and 
southerly limits are as yet unclear, but which occupied 
much the same area as modern Lake Baringo and the Loboi 
Plain. The Ilosowuani Beds may represent a lacustrine 

sequence on the eastern side of this lake, towards the end 
of the Pleistocene. Late Pleistocene grid faulting lowered 

the axial zone, terminated Kapthurin sedimentation and 

resulted in the present configuration of the basin. During 

the latest Pleistocene/early Holocene, a regional increase 

in precipitation resulted in high levels for both Lakes 

Baringo and Bogoria. The Kokwob Formation was deposited in 

the former, while diatomaceous silts were laid down in the 
latter. Since then, lake levels have been lower, but 

continue to fluctuate in response to climatic variation. 

In an area where extensive tectonic deformation and 

volcanism have been prevalent, it is difficult to evaluate 

the degree to which climatic changes may have been an 
important factor in hydrological variation. Few direct 

palaeoclimatic inferences can be made from pre-Holocene 

sediments. The late Pleistocene/early Holocene high lake 

levels, *common to both Lakes Baringo and Bogoria, are 

widely reported from other East African lakes. These are 

generally considered to be the result of increased rainfall. 
Since the early Holocene, the climate has been generally 
drier, resulting in successively lower lake levels. That 

Lake Baringo has, or almost has, dried out during the later 

Holocene is shown by palaeosols in a core from the modern 
lake. 

12(iv)d Sedimentation in the middle Pleistocene Lake 

Olorgesailie 

The Olorgesailie Formation was laid down in a middle 
Pleistocene lake. This Formation contains the most diverse 
range of sediments'and diatoms of any single unit studied 
in this thesis. This range reflects deposition on the 
margins of an expanding and contracting lake. 
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The sediments include pyroclastics (in great abundance), 
diatomites, quartzo-feldspathic silts, sands and 
conglomerates, plus montmorillonite rich clays. The diatoms 

are varied and consist mainly of species belonging to the 
genera Melosira, Thalassiosira, C clotella, pithemia, 
Rhopalodia, Cocconeis and Campylodiscus. Their sequential 
development suggests at least eleven transgressive 

episodes of varying scale. 

The alkalinity of the palaeolake varied widely, reaching 

a probable maximum of about 85 meq/l. However, for much of 
its existence it was considerably fresher (less than 10 

meq/1). Dissolved silica concentrations mostly exceeded 
10 mg/l, in water that was probably of comparable 
temperature to similarly situated lakes today. Littoral reed 
beds were abundant, and many areas may have been marshy. 
Blue-green algae. may have periodically been important. 

Again, due to tectonism and volcanism, climatic 
inferences are difficult to draw. However, it seems 
probable that at least some of the lake level changes were 
climatically induced, while rainfall may have been 

generally higher than today, in this modern semi-arid region. 

Lacustrine sedimentation was initially made possible by 

graben formation, and blockage of southerly drainage by the 

volcanics of Mt. Olorgesailie. It was finally terminated by 

regional southerly tilting,. which lowered the outlet height 

and allowed through drainage. 

12(iv)e Concluding comments 

Much of the work in this thesis has been concerned with 
Holocene deposits. These can be examined in three 

dimensions in many cases, due to their good exposure and 
unaltered state. Other parts of the thesis are concerned 
with older units, mostly studied in two dimensional 

sections. It is hoped that this work to some extent bridges 
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the gap between these two approaches, and provides an 
understanding of the typical sedimentation patterns found 
in rift valley settings. 

Diatoms form a particularly powerful tool in studying 
lacustrine units. They allow detailed reconstructions of 
water chemistry and lake ecology to be made. When combined 

with geological data a well rounded synthesis of the 

palaeoecology and palaeogeography of former sedimentary 
basins can be inferred. 

A great diversity of sediment types are preserved in the 

Kenya Rift. Although these have been studied for many years, 

several gaps still remain in our knowledge, and large areas 

still require initial examination. Notable among these poorly 

explored regions is the Suguta Valley, to the south of Lake 

Turkana. Sediments to the west-of this large lake have also 

received little formal study. Another possibly fruitful 

area for further research might be the Kedong basin, to the 

east of Suswa volcano. 

Many other deposits, already examined in the field, could 
benefit from detailed laboratory analyses. Although pollen 

studies have been conducted on sediments to the north of 
Lake Turkana, no diatom investigations have been made. 
Conversely, the Holocene sediments at East Turkana would 
benefit from a pollen analysis. 

Research in the-Kenya Rift is perhaps entering a new 

phase. Much large scale mapping has now been completed, and 
attention should be shifted to more detailed and 
multidisciplinary work. 
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APPENDIX I 

List of fossil diatoms and their ecologies 

On the following pages are listed diatoms observed 
during this work. Anumber of abbreviations are used and 
these are listed below ( for definition of terms see tables 
2.2 and 2.3 on pages 71 and 73 respectively). 

Habitat (Hab): 

p-planktonic; 1-littoral; a-aerophile; c-crenophile; 

e-epiphyte. 

PH : 

al-alkaliphilic; ab-alkalibiontic; i-indifferent; ac- 

acidophilic. (numbers indicate pH optima). 

Salinity (Sal): 

o-oligohalobe; m-mesohalobe; p-polyhalobe; y-hyperhalobe; 
h-halophobe; e-euryhalobe. 

Trophism (Tro): 

o-oligotrophic; e-eutrophic; Hf-facultative nitrogen 
heterotrophe; h-obligatory nitrogen heterotrophe. 

Current (Cur): 

Ilp-limnophilous; lb-limnobiontic; i-indifferent; rp- 

rheophilous; rb-rheobiontic. 

Geographic extent (Geog. ext. ): 

c- cosmopolitan; t-tropical; e-endemic to tropical Africa; 

T-temperate; A-alpine. 

Sedimentary unit containing taxon (Sed. unit): 
GB- Galana Boi Formation; GF-Guomde Formation; KF-Koobi 

Fora Formation; K-Kokwob Formation; I-Ilosowuani Beds; C- 

Chemeron Formation; L-Lukeino Formation; KB-Kaparaina 

Basalts Formation; N-Ngorora Formation; O-Olorgesailie 
Formation. 
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Ecology 

Taxon Hab pH Sal T. rb Cur" 
Geog Sed 
ext unit 

iýlosira 

OSTENFELD p al e t UB, K, C, L, 

1 0", 
var. malayensis hU6Tzar p al e t uB, KC, L, 

01 
M. '-ambigua kuH. ) MULLrR P. al 0 c uB, O. 
M. aistans BHnEvBnRu P, l ac n 0 A uB. 

goe-czeana mUulzR p al e - - e Gb , 0. 
granulaza kzmR. ) nAliF. D. p b 0 e - c uB, Gz-, rj,, 

KvC, lj, O 
var. angustissima MuLLER p 8 0 e - c Gb, yý., u, ij, 

U. 

, r. curvata nUziTz1)T p al 0 e - c Ub, U. 
var. va. Lida p al o, e t U 

M. granulaia-agassizi Gb. 
W. italica (witt. ) KuTZIvG p al 0 e - c 0. 
M. nyassensis MuLLEii p al 0 - - e UB. 

var. victoriae MULLER p - 0 - - e GB. 
M. praegranulata RALPS p - - - - - N. 

, M. varians AGARDH Pti 8. - )0 e - C GB. 

Stephanodiscus 
S. astraea (EHR) GRUNOW p al 0 e - c GB, C, O. 

var. intermedia, FRICKE Pý-, al 0ý e - C GB, C, O. 
var. minutula (KUTZ)GRUNOW p al 0 e - c GB, K, C, O. 

S. hantzschii GRUNOW P, i o e c C. 
var. pusilla GRUNOW P, ý'! 1 0 e c C. 

S. carconensis GRUNOW 1 pý i o 0 -; T CO 

Cyclotella 

- C. kutzingiana THWAITES P. 1 al 0 0 - c 0. 
var. planetophora FRICKE P'l al 0 0 - C GB. 

C. meneghiniana KUTZING P'l ab e Hf - c GBj, O 

,, var. ý, Pumila GRUNOW P, l al e - - c 0. 
Co ocellata PANTOCSEK P. 1 al o 0 -- c 0, 

Thalnqqiosir 
T,, rudolfii BACHMANN p ab O, U e GBýKqI. 

, 
T. ' lac. ustris GRUNOW p al c GB., 

Terpsinoe 
T. musica EHRENBERG a al O, e e t GB, K. 

Pragilaria 
F. brevistriata GRUNOW 1, p al O, e 0 1 c GB, K, I, C, 

L, KB, O 
F. construens (EHR)GRUNOW 1, p al o, e 0 i c GB, C, L, KB 

i 

0. 
var. binodis,, (EHR)GRUNOW p al O, e 0 1 C KB. 
var. subsalina HUSTEDT lop - O'n 0 - C GB. 
vare venter, (EHR)GRUNOVI 1, p al O, e 0 - c GB, KB. 

F. lapponica GRUNOW ý 1 - - - lp 

I 

c 

f 

GB, K, C, O. 

I 
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Ecology "jeog . 
Ta xon - ext . Sed. 

Hab H 
Ip 

. Sal 
I 

, Tro "ur. .. unit 

F. intermedia URUNUW 1 7, Eo - - c GB. 
P. pinnata EHRENBk; nU i, p 7, Eo, e 0 i c PB, K, C 

var. lancettula (SCII)HUSTEd 
. L, p '/, Eo, e 0 - C UB. 

Synedra 
S. acus KUTZING Le 7. ' 0 - - c GBIK,. b. 

, var. anguszissima GRuNUW p al 0 c L. 
- S. affinis ZUTZIPG L, e - m C UO 

aorsiventralis MULLER I, p al 0 t Gij 
S. rumpens &UTZiNu 1, e b, t 0 c GB, K, C. 

var. famillaris kAuiZ)GAU14Uw C 
var. fragilamoides URuNuW Ite 0 c GB, A, L; 

S. uina (NiT6CH) DHhENBERu 1, e y, 6o, e e i c GB, ur-, KF, 
K, C, L, O. 

var. aequalis kKuTZ)mU, ýTEDT 1, e C 
var. danica kAUiZj' UnUNOW p al 0 b - c GBqK. 
varo uxyrnyncus (AUxZ) 

VA. N nBUxU& I, e al 0 e - C UBK. 

vocconeis 
C. aiminuia rANTuCzXA 1, e 1 0 c uB. 
C. discuius (oua) uLtVB 1, e i 0 T, GB. 
C. peuicuius tHitENBhRu 1, e al e c K. 
C. placentula DHR6NBERG 1, e 8 a 0 i c GBIUP, K, 

C, KB, O. 
var. eugiypta (zHx) CLEVE 1, e a 0 0 i C GB, K, O. 
var. lineata (tHn) ULEVE 1, e al i - i c GB, &. 

Achnantnes 
A. exigua GnUBOW 1, e 8 0 - c GB. 
A. lanceoiaza (Bh. )GnUBOW 1, e 7,9 0 - rb c GB, K, C, 

KB. 

masLogloia 
M. braunii uAvauW I al m - C K90. 
M. elliptica kAuAtO) CiEVE I al m - - C 0. 

Anomoeoneis 
A. exilis kiWTZ)CLEVE a 0 1 C Gj3. 
A. spnavropnora (rui: Z)Pr-IxZrR I B-5 O, E - - c GB, O. 

var. gun4heri MUj., LBR 1 7 m - - C 0 
var. polygramma KUTZiNG 1 - m - - C 0'1 
f. rostrata MUuLcR 1 - - - - c L; B. 

SLauroneis 
S. smitnil GnUvOn 1 - - - - C Gb, t.. 

Dipluneis 
D. e1iiptica (nUiZ)CizVL o lp c, T GB. 
Ii. ovalis k1liLaE) CuEVE I i o i c GB, K. 

var. obionge1lakNAE4)uLEVE I al o, e - C GB, 
D. subovaiis CLLVE I 7, E o, e - t Gb* 
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Bcolugy 

Taxon liab. pH. Sal Tro Cur Geog zsed. 
ext, unii 

Caloneis 
C. bacillum. (unuN)CLEVE L, c al 0 0 rp c GB, O 

var. iontinaiis UnuaOW 1, c - 0 - c uo 
C. siiicuia ýzHR)CLEVE 1 8.5 o - c UO 

Gyros. Lgma 
G. acuminatum kKUTZ)CLEvE 1 8 o - - c GB! 
G. spenceri SMITH- 1 al 0 - - c GB. 

var. nodifera (GRUNOW) 1 o - c GB. 

Pleurosigma 
P. salinarum GRUNOW m 7 c 0 

Navicula.. 
N. accomoda HUSTEDT 1 al o 0 GB. 
N, atomus (KUTZ)GRUNOW 1 6,7 o c GB. 
Ne"cinc't'a'(EHR)KUTZING 1 8 o, e - rp -c 

0.. 
N. confervacea KUTZING 1 8.4 0 - - c 0. 
N. cryptocephala KUTZING 1 8 o, e e i c GB, K, C, 

var. intermadia GRUNOW 1, al o, e e - c GB. 
var. veneta (KUýZ)GRUNOW 1 al m - - c 0 

N. damasi HUSTEDT 1 7.3 0 - - e GB. 
N. elkab MULLER 1 8.5 m - - e GBo 
P. -exiguiformis HUSTEDT 1 al 0 - - GB. 
N. gastrum EHRENBERG 1 al 0 - - c GB, K, 09C. 
N. grimmei KRASSKE 1, c al o, e - - c I. 
N. halophila (GRUN)CLEVE 1 8 O, M - - c GB, K. 
N. hungarica GRUNOW - al o - rp c C. 
N. menisculus SCHUMAN 1 al o - - c GB. 
N. minima GRUNOW 1 7,8 0 - - c GB, C 

var. atomoides (GRUN)CLEVE 1 i o - - c GB. 
N. muralis GRUNOW a 8 o - - 0. 
N. mutica KUTZING 1, c 8 O'm - i c 0. 
N. perrotetti ORUNOW 1 8.3 o, e - - t 0. 
N; placentula EHRENBERG 1 8 o - - c GB. 
N. pupula KU 

, 
TZING 1, C B, o, e. - i c GB, C, I, O 

var. rectangularis GRUNOW 1, c s o, e - i c GB, C. 
var. capitata HUSTEDT 1, C 8 O, e - i c GB, C. 
var. elliptica HUSTEDT 1, c a o, e - i c GB. 
var. rostrata gUSTEDT 1, c a o, e - i c GB. 

N. radiosaýKUTZING 1 7 0 - i c GB, K 
N. rhyncocephala KUTZING 1 7.5 o, e - i c GB 
N. schoenfeldii HUSTEDT 1 al O, m - c GB, O 
N. seminuloides HUSTEDT- 1 7,8 0 - c GB. 
N. seminulum GRUNOW 1 8.4 o Hf i c GB. 
N. scute 

, 
11oides 

- 
SMITH 1 al o - - c, q GB. 

N. simplex KRASSKE 1 al o - - c 0 
N. tenera HUSTEDT 1 - o - - c 0 
N1. thienemanii HUSTEDT 1,8 - O'm - - t I 
N., viridula K, U. TZING 1 al o - - c GB. 
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Taxon 

i'Gomphonema 
G. acuminatum var. turris 

(EHR. )CLEVE 
: G. clevei FRICKE 
G. constrictum EHRENBERG 

, G. dubravicense PANTOSCEK 
ýG. gracile EHRENBERG 
, G. abbreviatum KUTZING 
`G. inticatum KUTZING 

var., pumilum GRUNOW 
G. lanceolatum EHRENBERG 
G. olivaceum (LG. )KUTZING 
G. parvulum (KUTZ)GRUNOW 
G. subtile EHRENBERG 

Ecology 

b. H+a1. Tro. ur. _eog. 
Sed. 

ext. unit 

,e 
la]. oI -- alp IcI GB, O 

,e 1 0, - - t 0. 

,e 8 0 0 i c 0. 

te - o - - c GB. 
e .3 0 0 1 c GB. 
e i i - - c K. 
e 7.5 0 - lp c GB 

,e .2 0 - i c GB, 0, K 

,e 8 0 - i c GB. 

,e 8 0 - - c GB, 0 

,e al 0 Hf lp c GB. 

,e 7 0 - - c GB. 

Gomphocymbella 
G. brunii (FRICKE )PMLER ,e1---- 

GB. 

Amphora 
A. coffaeformis AGARDH ,c 8 m - - c 0 
A. exigua GREGORY ,e - m - - c 0 
A. ovalis KUTZINC ,e 8 0 - i c GB, K, C. 

; ivar. libyca EHRENBERG e al o - i c GB, K. 
var. pediculus KUTZING ,c 8 o, - i c GB, O. 

A. perpusilla GRUNOW ,e al o, - - c GB. 
A. veneta KUTZING ,e .5 o, - - c 0. 

Cvmbella 
C. affinis KUTZING L, e 7,8 o i c GB. 
C. tumida (BR) CLEVE L, e al o - - c GB. 
C. turgida (GRUN)CLEVE 1, e 7.3 o - lp c GBjO 
C. ventricosa KUTZING 1, e 7.8 o 0 1 c GBK, C, 

KB, O. 

Nitzschia 
N. acuta (HANTSCH c GB. 
N. aequalis HUSTEDT p 3.5 0 e e GB. 
N. amphibia GRUNOW 1 3.5 0, ý Hf i c GB, K, O 

var. pelagica HUSTEDT p al 0 - - c GB, K, O 
N. bacata HUSTEDT p al 0 e - ýt K. 
N. epiphytica MULLER 1, p al 0 - - e 0 
N. fonticola GRUNOW 1, p al o, e h i c GB. 
N. frustulum (KUTZ)GRUNOW 1, p 8 e, ir h - c GB, K, L, O 

var. minutula GRUNOW 1, c al e, u Hf - c GB. 
var. perminuta GRUNOW l, c al e, n Hf - c GB. 
var. perpusilla GRUNOW 1, c al e, r Hf - c GB. 
var. subsalina HUSTEDT l, c - c GB, K. 

N. ýlobtusa SMITH 1 - m c 0. 
N. ovalis ARNOTT 1 - m h - c 0. 
N. palea (KUTZ) SMITH I al o h - c GB. 

var. tentirostris GRUNOW 1 al o - - t GB. 
paleacea GRUNOW 1 8 o - - c GB. 
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Ecology 

Taxon Hab pH Sal Tro. 
I 
Cur. Geog Sed. 

ext. unit 

N. parvula LEWIS 1 - m - - c GB. 
N. punctata (SM) GRUNOW 1 al m - - c GB. 
N. recta HANTZSCH 1 al o - rp c GB. 
N. robusta HUSTEDT 1 9 o, e - - e 0. 
N. sigma (KUTZ) SMITH 1 al m, e - - c GB. 
N. spiculum HUSTEDT p 8 0 h? - e GB. 
N. thermalis GRUNOW 1 al o e - c GB. 
N. tropica HUSTEDT p 8 0 - - e 0. 
N. tryb1ionella HANTZSCH 1 al 0,111 - - c GB. 
N. vitrea GRUNOW 1 - M - - c GB. 

Epithemia 
E. argus KUTZING 1 8 ooe - - C GB, C, IGF, 

0. 
E. mulleri FRICKE 1 al 0 - lp c K. 
E. sorex KUTZING 1 8 ooe - - C GBIK, O. 

var. gracilis HUSTEDT 1 al - - - c 0. 
E. turgida (EHR) KUTZING 1 8 0 - - c 0. 
E. zebra (EHR) KUTZiNG 1 al 0 0 - c GB, O 

var. porcellus (KUTZ)GRUNOW 1 al 0 0 - c GB. 
var. saxonica (KUTZ)GRUNOW 1 al 0 - - c GBqK, O 

Rhopalodia 
R. gibba (KUTZ) MULLER 1 al 0 0 1 c GB. 

var. ventricosa (KUTZ)MULL. 1 al 0 0 - c GB. 
R. gibberula EHH. MULLER I al e, m 0 - c OIC, K 

var. baltica (MULLER) I al eom 0 - c 0. 
var. debyi (PANT)MULLEK 1 al e, m 0 - c 0. 
var. protracta (GxUN)MULLER 1 al e, m 0 - c I. 
var. rupestris SMITH 1 al e, m 0 - c I, K 
var. sphaerula MULLER 1 ai e, m 0 - c I, K 
var. vanheurcki MULLER i al e, m 0 - c I. 

R. gracilis MULLER 1 al GB. 
R. ventricosa MULLER I al o - - GB. 
R. hirundiformis MULLER lop - 0 - - e GB. 
R. musculus (KUTZ)MULLER 1 al mop - - c 0. 
R. rhopola (EHR) MULLER 1 al o - - e GB. 
R. parallela (GRUN) 14ULLER 1 al o - - c GB. 
R. vermicularis MULLER 1 al o - - e GB, GP, KP, 

. L, C, O. 
var. perlonga 1 al 0 - - e GB. 

eymatopleura 
3. solea ýBh) SAlIT11 1 al o - - c, T GBu, 

var. laticeps MUI, LiýR 1 al 0 - - c GB9 
var. rugosa MULLER 1 al 0 - - c 0. 

Surirella 
S. biseriata BREBISSON p, l al 0 - - C GB, O. 

var. ianceolata RICH pol al 0 - - C GB. 
S. engleri MULLER -P al 0 - - e GB. 

f. angustior MULLER 
L 

p al 0 - - e GB. 
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Ecology 

Taxon Hab pH Sal Tro Cur eog Sed. 
ext unit 

S: `-engleri f. recta MULLER p al -o - - e GB. 
S. fullebornii MULLER p al o - - e GB. 

var. elliptica MULLER p al- o e GB. 
S. cdnstricta var. africana p al o - - e GB. 

MULLE k( 
S. linearis var. elliptica 1 o - - c GB, K. 

MULLER 
S. ovata KUTZING 1 al m - - c I. 
S. ovalis BtEt3ISS0N 1 8.5 m - - c I, 0 

var. apiculata MULL1R I - m - - c 0. 
S. linearis var elliptica 1 i o - - c UB. 

MULLER 
,., var. constricts IEHR)UuUNUW I i o - - c GB. 
_ S. robusta EHRENBERG 1 - o - - c B, O. 

Campylodiscus 
C. clypeus EHRENBERG 1 al m - - c 

-var. bicostata (SM)HUSTEDT 1 al m c 
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APPENDIX II 

Descriptions of some common diatoms from the Quaternary 

sediments of the Kenya Rift 

CENTRICAE 

MELOSIRA Agardh 

M. 
granulate 

(Ehr. )Ralfs. 

Pl. A. III-1, ph. 1-3 

Valves cylindrical, forming chains. Diatleter 8-15 11; valve 

height 12-17 }z. Areolae coarse, in longitudinal rows (striae), ca. 

8-12/10 }z; 7-10 areolae/10 u along pervalvar axis. Heteromorphic 

spines encircling valvar disc. Very polymorphic species. 

M. granulata var. angustissima Muller 

Valves cylindrical. Similar to nominate species, except length: 

width ratio much greater. Diameter 4-6 p; valve height 18-25 u. 

ranulata var. valida Hustedt 

Valves cylindrical. Similar to nciinate species, except very 

coarse ornamentation. Diameter 9-15 i; valve height 13-19 11; striae 

7-9110 }z. Areolae quadrangular; well developed sulcus. 

M. a asg sizi Osterfeld 

P1. A. III-1, ph. 14,18 

P1. A. III-7, ph. 6 

Similar to Melosira granulata, but with finer ornamentation, and 

smaller heibht: width ratio (less than 1). Diameter 12-35 u; valve 
height 10-18 u; 12-13 striae/10 p; 14-16 areolae/10 p. Areolae 
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: round'or elongate perpendicular to the pervalvar axis. Spiral 

processes common. 

M. nyassensis var. victoriae "Muller 

Pl. A. III-1, ph. 7 

Cylindrical valve. Diameter 12-18 u; valve height 20-28 u; 7-8 

striae/10 11; 5 or 6 areolae/10 }i. Areolae elongate parallel to 

pervalvar axis, and split by a median plate. Col well developed (up 

to 5 }z in height). Sulcus weak and frustule thin. 

CYCLOTELLA Kutzing 

C. meneghiniana Kutzing 

P1. A. III-7, ph. 12,13 

Valve discoid with linear tangential undulations. Diameter 10- 

35 u; striae 6-10/10 u, radial and restricted to the margins. 

STEPHANODISCUS Ehrenberg 

S. astraea (, Ehr. )Grunow 

Pl. A. III-2, ph. 5,6 

Valve discoid with concentric undulations. Diameter 20-45 ]1. 

Valvar disc with hyaline ribs in outer quarter (terminated by spines). 
6-8 radial striae/10 u; 2 'or 3 rows of areolae at the end of the 

radial striae. About 12 areolae/10 i. Central area consists of 

disordered areolae. 
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S. astraea var. minutula (Kutz. ) Ehrenberg 

Pl. A. III-2, ph. 3,4,7,8 

P1. A. III-7, ph. 10,11 

Frustule more delicate than nominate species. Diameter 6-28 u. 
Radial hyaline ribs longer (a third of the diameter) than in 

S. astraea, otherwise similar. 

PENNATAE 

FRAGILARTA Lyngbye 

F. construens (Ehr. )Grunow 

P1. A. III-3, ph. 2,5,7 

P1. A. III-8, ph. 2 

Rectangular in girdle view, cruciform in valvar view. Length 6- 

18 u; width 5-10 p. Transapical striae 14-17/10 11, slightly radial. 

Pseudoraphe narrow, slightly lanceolate. 

SYNEDRA Ehrenberg 

S. ulna (Nitzsch. )Ehrenberg 

P1. A. III-3, ph. 10,11 

Valve linear, very gradually tapering to subrostrate apices. 
Pseudoraphe very narrow. Striae about 10/10 i, parallel. Length 60 

-350 ji; width 5-8 ji. Many varieties exist. 

COCCONEIS Ehrenberg 

C. placentula Ehrenberg 

Pl. A. III-3, ph. 13 
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P1. A. III-8, ph. 1 

Elliptical in valvar view. Length 10-60 u; width 7-35 ji. 
Raphe valve: - radially punctate. Transapical striae 20/10 11. 

Hyaline ring interrupts striae. Raphe straight. 

Axial area narrow, rounded at centre. 

Rapheless valve: - Transapical striae distinctly punctate, 22/10 )a, 

radial. Pseudoraphe narrow, linear 

ANOMOEONEIS Pfitzer 

A. sphaerophora (Kutz. )Pfitzer 

Pl. A. III-4, ph. 1 

P1. A. III-9, ph. 4 

Valve elliptic-lanceolate, with rostrate apices. Axial area 

narrow, broadening at centre, with lateral hyaline areas 

interrupting the striae. Striae 15-17110 ý, slightly radiate, 

composed of irregularly spaced punctae. Length 40-65 11; width 12-18 p. 

NAVICULA Bory 

N. Bastrum Ehrenberg 

Pl. A. III-i, ph. 6,15 

Pl. A. III-8, ph. 16,17 

Valve broadly elliptic, with short rostrate apices. Length 25- 

40 ji; width 12-17 ji. Axial area narrow, linear (rectangular at 

centre). Raphe straight. Transapical striae strongly radial, 

alternately short and long in the middle, 8-10/10 p. 

hula Kutzing 

P1. A. III-1, ph. 1 

Valve linear-lanceolate. Rounded broad apices. Length 20-43 )1; 
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wiaýh 7-11 )1. Raphe straight. Axial area narrow. Transapical striae 

3radial, 22-25/10 p. Terminal nodules transversely wwdened. 

N. radiosa Kutzing 

Pl. A. III-k, ph. 13 

Valve lanceolate with sharply rounded apices. Ill-defined 

central area. Striae radial at centre, slightly convergent at 

apices, 10-12/10 i. Length 35-85 p; wwdth 8-17 11 

N. scutelloides Smith 

Pl. A. III-4, ph. 11 

Pl. A. III-8, ph. 18 

Valve broadly elliptic. 10-30 ji long, 8-20 ja wide, punctae 

distinct, about 10/10 ji. Striae radial, about 10110 ji. Raphe 

straight, axial area narrow. 

EPITHEMIA Brebisson 

E. zebra var. saxonica (Kutz. )Grunow 

Pl. A. III-5, ph. 6 

Pl. A. III-8, ph. 6-10 

Dorsal margin strongly convex, ventral margin straight or 

slightly concave. Slightly rostrate apices. Length 17-55 ý1; width 

8-10 ji. Costae 2-4/10 ji, radial. kreola rows 12-14J10 p. 4-8 areola 

rows between costae. 

E. sorex Kutzing 

P1. A. III-8, ph. 5 

Dorsal margin highly convex and ventral margin concave. Rounded 

apices. Length 18-43 ji; width 8-14 ji. Raphe bent strongly towards 
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the dorsal margin. Costae 5-7/10 p, radial. Areola rows 12-14/10 

2-3 areola rows between costae. 

RHOPALODIA Muller 

R. gibberula (Ehr. )Muller 

P1. A. III-5, ph. 2 

Valves in girdle view, long and elliptical with rounded apices. 

Dorsal side highly convex, ventral margin straight or concave. 

Areolae distinct between costae. Length 35-54 p; width 19-23 ji, 

costae 3-4/lo ji; 2-8 rows of areolae between costae. 

R. vermicularis Muller 

P1. A. III-5, ph. 5 

Pl. A. III-8, ph. 11 

Margins straight, wedge shaped in girdle view. Length 140-250 11; 

maximum width of girdle face 32-38 ýi. 
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APPENDIX III 

Diatom photographs 

, The' diatoms in each of the lists below'refer to plates. on the 
following pageý. The magnifications given. include the effects of 
photographic enlargement. -, C 

Plate A. III-1 Optical microscope pLotogLaphs (Centri6ae),, 

1- ýelosira 
granul_ata (3500), Chemeron F. (Plio-Pleistocene) 

, 2-- M. anulata (3000), Chemeron F. (Plio-Pleistocene) gjanulata 

3-M. granulata (3300), Galana Boi F. (Holocene) 

ý, 
4 - stissima f. curvata (4350) Kokwob F. (Holocene) 

5 M. granulata var an&ustissima'f. curvata (5200) Galana Boi F. 
(Holocene) 

6-M. - goetzeana (3850), Olorgesailie F. (middle Pleistocene) 
7-M. nyassensis var victoriae (850), Galana Boi F. ý(Holocene) 

1 8ý- M. granulata (3500), Chemeron F. (Plio-Plei'stocene) 
9-L. 

_gLanulata 
(3500), Galana Boi F. (Holocene) 

10- ML. 
_gLanulata 

(3500), Chemeron F. (Plio-Pleistocene) 

11- M. granulata (3200), Kokwob F. (Holocene) 

12- M. 
_gLanulata 

(3350), Kokwob F. (Holocene) 

13- M----granulata-aga'ssizi (3950), Galana Boi'F. (Holocene) 

, 
147 M. agassizi (4000), Galana Boi F. (Holocene) 

15- M. agassizi var malyensis (3000), Chemeron. F. -(Plio-Pleistocene)- 
16- M. agassizi var malytTLsis (3000), Chemeron F. (Plio-Pleistocene)' 

-17- M. ', granuiata-aaassizi (Holocene)-ý 
, 
(3500), Galana Boi F' 

18- M. 
_aigassizi 

(3800),, Galana Boi F. (Holocene) 

ý'19- 
M. granulata-agassizi (3900), Galana B6i F. (Holocene) 

M. aFassizi var malayensis (3500), Chemeron'F. (Plio-Pleist. ) 

M--. goetzeana (3200), Olorgesailie F. (middle Pleistocene) 
'24- M'. distans M (4200), Ilosowuani Beds (late Pleistocene) 
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Plate A. III-2 Optical microsco-pe photographs'(Centricae) 

1- Thalassiosira rudolfii (3300), Galana Boi Formation (Holocene) 

2- Thalassiosira rudolfii (3300), G%lana Boi Formation, (Holocene) 

3- Stephanodiscus astraea var minutula (3800), Galana. 'Boi' 

Formation (Holocene) 

4 S. astraea var. 
-minutula 

(3900), Chemeron Formation (plio-, 

Pleistocene) 

5 S. 'astraea (3500), Galana Boi Formation CHolocene) 

6 S. astraea (3500), Galana Boi Formation (-Holocene)' 

7-S. astraea var minutula (3700), Galana Boi Formation (golocene) 

8-S. astraea var. minutula (3800), Galana Boi Formation (Holocene)' 

9- Thalassiosira rudolfii C2900),, Olorgesailie Formation (Holocene) 
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Plate A. III-3 optical microscope photog I raphs (Pennatae) 

4 

1 ý_ Frag 
, 
ilaria construen Is var triundulatai" (. 3200), Ga'lana ., . 

'Bo'l F. 
(Holocene) 3 

2 F. construens (3800), Galana Boi F. (Holocene) 

3 -_F. ýlapp. 2nica (3500), Galana Boi F. (11olocene) 

4 -F. ", lapponica C 500), Galana Boi F. CHolocene) 

5-F. construens (3200), 'Galana Boi F. (Holocene) 

6-F. construens var sub'salina C3350), Galana Boi'F. (11olocene) 

7-F. construens' (2900), Kaparaina Basalta F. (: upper Miocene) 

8-F. pinnata, (3250), Galana Boi F. (Holocene) 

9- Tetra y,, clus lacustris var emarginatus (750), Galana Boi F. 

(Holocene) 

10- Synedra ulna (1400), Kokwob F. (Holocenel 

11- S. ulna (14oo), Kokwob F. (Holocene) 

12- Achnanthes sp. (3200), Ilosowuani Beds (late Pleistocene) 

13- Cocconeis placentula'(2600), Galana Boi F'. '_(Holocene)ý, 'ý 
14- C. placentula var euglypja (4850), Kokwob F. (Holoc'ene) 

15- Diplbneis suboyalis (3000), Galana Boi F. (. Holocene)--' 

16- D. subovalis (3000), Galana Boi F. (, Holocene),, 

2 17- Terpsinoe musica (4200) Galana Boi F. (Holo. cene, ): ', 

18- T. '-inusica (4200), *Galana Boi F. (Holocene) 

.. 

''ý 
-i ýý'` 

ý ., f 

. . 

+__ 
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Plate A. 111-4 Optical microscope Photographs (Pennatae) 

1 -Anomoeoneis sphaerophora var sculpta (3300), 'Ilosowuani Beds 

jlatý Pleistocene) 

,2 -'Navicula halophila (3000), Gýlana Boi F. (Holocene) 

3-N. haloý, hila (3000), Galana Boi F. (Holocene-) 

4-N. p! pula var capitata (3200), Galana Boi F. (Holocene)', 

5-N. ppula var rectangularls"(3200), Galan ,a Boi, F. (Holocene) 

6-N. 'Igastrum. (3550), Galana Boi F. (Holocene) 

7-9, - Navicula sp. 2/23 (3900), Galana Boi F. (Holocene) 

10- N. 'halophila (_? ) (1500), ''Galana Boi F. (Holocene) 

11- N. scutelloides (3200), Galana Boi F. (Holocene) 

12- Navicula sp. 1/20 (3000), Galana Boi F. (Holocene) 

- i3- N. radiosa (2600), Galana Boi F. (Holocene) 

14-, N. radiosa (2450), Galana Boi F. (Holocene) 

15- E. 92, strum (1500), Galans. Boi F. (Holocene) 

16- Caloneis bacillum (1650), Galýna Boi F. (Holocene) 

17- Mastoaloia braunii (2300), Kokwob"F. (Holoceýe) 

z 

aý 
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Plate A. III-5 Optical microscopf photographs (Pennatae) 

I 
_-, 

Rhopalodia gibberula var sphaerula (3950), Ilosowuani Beds 
(late Pleistocene) 

2 R. ' Sibberula C1650), Kokwob F. (Holocene)ý 
3 (Holocene) 

_gibberula 
(950), Kokwob*F. 

4-R. vermicularis var perlonga, (950), Galana Boi F. (Holocene) 
5- ý- vermicularis (1200), Galana Boi F. (Holocene) 
6- 1pithemia zebra var saxonic .a (2400), Galana Boi F. (Holocene) 
7-E. zebra var. saxonica (2400), Galana Boi F. (Holocene) 
8-E. sorex (2400), Olorgesailie F. (middle, Pleistocene) 
9. - gymhella tiEýgida. (2000), Galana Boi F. (Holocene) 

. 
10- C. turgida (2000), Galana Boi F. (Holocene) 

11- ýýhora ovalis var ljýyca (2650), Galana Boi F. (Holocene) 

12- Gom hocymbella brunii (2200),, Galana Boi F. (Holocene) 

13- Am hora ovalis var liýyca (3100), Galana Boi F. "*(Holocene) 
14, - Nitzschia amphibia (4050), Galana Boi F. (Holocene) 
15- N. amphibia (3700), ' Galana Boi F. (Holocene) 

16- N. 2Ephibia (3800), Galana Boi F., (Holocene) 

17- E.! 
--palea 

(3800), 'ýqalana Boi F-. (Holocene) 

18- E-. 
-P. 2: lea (3800), Galana Boi F. (Holocene) 

ý" ' 
Y F 
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Plate A. III-6 Optical microscope photographs (Penn4tael, 

1-- Surirella ovalis var apiculata (1600), Ilosowuani Beds (late 

Pleistocene) 

2-S. biseriata C1600), Galana Boi F. (_Holocene), 

3-S. ovalis (1000), Olorgesailie F. (middle Pleistocene) 

.4-S. 
linearis (950), Galana Boi F. (Holocene) 

5 S. linearis (950), Galana Boi'F. (Holocene) 
6f nat 

. 
j2pleura solea (1600), Olorgesailie F. (middle Pleistocene) 

7 C. solea (1600), Olorgesailie F. (middle Pleistocene) 
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PLATE A. II1-6 
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Plate A. III-7 Scanning electron microscope pLoLogLaphs (Centricae) 

1- Melosira & Stephanodiscus assemblage from. the Chemeron F. 

(Plio-Pleistocene) (10001 

2- Melosira and Stephanodiscus'assemblage from the Chemeron F. 

(Plio-Pleistocene) (1800) 

3- Melosira granulata var curvata (20001 Ngorora F. Cupper Miocene) 

4-M. granulata C2500), Galana Boi F. '(-Holocenel 

5-M. granulata (2500), Galana Boi F. (Holocene) 

,6-M. 
agassizi C2ý00), Galana Boi F. CHolocene) 

7- Stephanodiscus'astraea var minutula (4200), Galana Boi F. CHolocene 

8-S. astraea (external view)(840), Galana Boi F. (Holocene).,. 
9-S. astraea, Cinternal view)C1500), Galana Boi F. (-Holocene), 

10- S. -astraea var minutula (external view)(3800), Galana Boi F. 
(Holocene) 

11- S. astraea var minutula_(internal-view)(4100), Galana Boi'F., 
(Holocene), 

12- Cyclotella meneghiniana (externalview)(-1500), Ilosowuani 

Beds (late_ Pleistocene) 

13- C. meneghiniana (internal view)Cl, 200), Ilosowuani-Beds, -(late 

Pleistocene)* 
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Plate A. III-8 ' Scanning electron microscope_ 
_photogrýjphs 

(Pennatae) 

1- Cocconeis placentula (1500), Kokwob F. (Holocene) 
2- Fragilaria construens (2800), Galana Boi F. (Holocene) 
3-F. lapponica C3000), Galana Boi F. (Holocene) 
4- Epithemia zebra, (2400), Galana Boi F. (Holocene) 
5-E. sorex (1100), Galana Boi F. (Holocene)' 
6-E. zebra var saxonica (1000), Galana Boi F. (Holocene) 
7-E. zebra var saxonica (1100), Galana Boi F. (Bolocenelý 
87E. zebra var saxonica (900), Galana Boi F. (Holocene), 

9 E. zebra var saxonica (8900), close up of central'area, Galana 
Boi F. (Holocene), 

10- E. zebra var saxonica (8900), internal-view showing transverse 

costae and raphe system, Galana Boi F. (_Holocene), 
I. I-,. 11- Rho alodia vermicularis-(500), Olorgesailie F. (middle Pleist. ) 

12-. R. gibberula var debyi (14oo), Galana Boi'F. CHolocene) 

13- E_. gibberula (1600), Olorgesailie F. (middle Pleilstocene) 
14- a) Cy'mbella turgLda (2200), Galana Boi F (Holocene) 

b) C. turgida (1800), Galana Boi F. (Holocene) 
15- fampy (550), 

_Olorgesailie 
F. , 

(middle Pleistocene) 

16- Navicula jgaýtrum (1500), Galana Boi F. (Holocene) 

17- N. gastrum (1900), Galana Boi F. (Holocene) 

18- N. scutelloides, (2100), Galana Boi F. (Holocene). 

19- SUrirella ovalis(700), internal view, Olorgesailie F. (jaiddle 

Pleistocene) 

20- S. ovalis (60o), external view, 'Ilosovuani Bedsqý. (-late 

Pleistocene) 

21- Navicula sp. 2/10 (1200), Galana Boi F. (Holocene), 

22- N. Vastrum (2200), Galana Boi F. (Holocenej 

23- Navicula sp. 2/23 (4300), Galana Boi F. CHolocene) 

24- Nitzschia punctata (2400), Galana Boi F. CHolocene) 

25- Nitzschia sp. 1/18, (4200), Galana Boi F. '(. Holocene) 
26- Nitzschia . sp. 1/24*(4200), Galana'Boi F. (Holocene) 
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Plate A. III-9 Diatom-casts in a siliceous precipitate from 

Lake Bogoria 

1-3 Melosira Icasts', in a siliceous deposit. Note the well developed 

spiral processes Cinternal). 
-Finely 

ornamented species with 20 

pores/10 u, arranged in double rows. 14 pore-rpws/10 u. -Photo 
1 resembles Melosira Franulata var_muzzanensis (Holocene) 

4- Anomoeoneis sphaerophora var sculpta, Lake Bogoria (Holocene) 

5- fpithemia zebrA var saxonica (internal view), -"Lake Bogoria, 

(Holocene) 
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Plate A. III-10 fentric diatom morphology 

1-3 Melosira aranulata. -, 

V valvar disc St- suture 
M mantle Su sulcus 

CM criblee membrane C col 
A areola 
T- marginal teeth 

S- marginal spine 

a var minutula 

'"S, r, marginal spine (note pore-c'anals below spines) 
R hyaline ribs 

CB connecting bands (part of the''girdle') 
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