
Experimental and Finite Element Studies of Acetabular Cement

Pressurisation and Socket Fixation in Total Hip Replacement
New, Andrew Michael Raymond

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1804

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1804


QU11 MARY ____
AND WtTctELo COLLICI
UNSV$ITy 0; LOPIDOrI

IRC in Biomedical Materials
Queen Mary and Westfield College

UNIVERSITY OF LONDON

I
Unit for Joint Reconstruction

Institute of Orthopaedics
Robert Jones and Agnes Hunt Orthopaedic Hospital

OSWESTRY

Experimental and Finite Element Studies of Acetabular Cement Pressurisation and

Socket Fixation in Total Hip Replacement

by

Andrew Michael Raymond New, B.Eng., A.R.S.M.

Ph.D. Thesis, August 1997

(LONDI,l,)



Abstract

With time, the rate of symptomatic acetabular component loosening accelerates and

overtakes that of the femoral component as the principal reason for the revision of

total hip replacement. In the femur extensive study has shown that cement

pressurisation and good preparation of the bone bed improves the survival rate, but

acetabular fixation requires further investigation.

Production of cement pressure in the acetabulum is anatomically difficult.

Pressurisation with conventional and novel designs of cement pressurisers has been

compared to manual techniques and component insertion. The pressurisers increased

peak and mean pressures and pressure duration. Finite element modethng of cup

insertion showed that flanges and higher insertion rates increased cement penetration

into cancellous bone. Per-operatively, one design of pressuriser produced cement

pressures comparable to those found in the laboratory.

Structural finite element modelling of the natural hip indicated that the subehondral

plate and the relatively dense cancellous bone supporting it distribute the joint contact

force into the medial and lateral pelvic cortices. A perfectly bonded cemented

polyethylene cup stiffened the acetabulum so that more load was transferred directly to

the cortices at the acetabular rim, with consequent interface stress concentrations.

However, complimentary experimental studies using a dynamic joint simulator and a

servo-hydraulic materials testing machine suggested that perfect fixation between

cement and bone at the rim was not possible, even under laboratory conditions.

Debonding of the cement bone interface at the rim, where dense bone prevents cement

interdigitation, allowed micromotion. Since the clinical mechanism of failure of the

acetabular component appears to be progressive debonding, from rim to apex, of the

cement-bone interface, these studies support the initiation of the failure mechanism by

mechanical factors, which may then allow the ingress of wear debris. The experimental

studies suggested that the use of pressurisers reduces the amount of micromotion and

thus may improve the long term stability of the interface.
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1. Introduction

Modern total hip replacement provides a highly successful treatment for disabling

disorders of the hip. Although the first attempts at artificial hip joints were described

over 100 years ago by Gluck (1891), the modern hip replacement owes a great part of

its success to the work of Sir John Charnley, who pioneered the fixation of hip

prostheses to the living skeleton with seif-polymerising acrylic bone cement, a

technology he borrowed from dental surgery. Fundamentally, the philosophy of the

cemented hip implant has changed little since then, indeed variants of the Charnley

design remain amongst the most successful 30 years after they were first implanted.

The performance of cementless implants, introduced after perceived problems with the

material that initially gave the hip replacement its success, has not yet reached the

standard set by cemented implants.

Multi-centre studies show the failure rate for well established designs of cemented

implant to be around 10% after 10 years (Malchau et a!., 1993). However, 38,000 hip

replacements were performed in the U.K. in 1995, 18% of which were revision

operations (Biomaterials and Implants Research Advisory Group, 1996). Similar trends

are seen throughout the world and the number of revisions are forecast to rise for the

foreseeable future. Revisions are complicated, costly and, in general, less successful

than the primary operation (Kershaw et a!., 1991). Further improvements to the long

term performance of the primary hip are therefore essential.

Late failure in the absence of infection is generally referred to as "aseptic loosening",

more properly described as a process rather than an event (Huiskes, 1993) and

characterised by the formation and progressive thickening of a continuous layer of

fibrous tissue around the prosthesis, accompanied by bone resorption and ultimately

gross migration of the prosthesis and clinical failure. A finding common to many long

term reviews (Morscher, 1992) is the increased risk of early revision due to aseptic

loosening for the younger patient. Other notable risk factors are higher than average

body weight (Schurman et a!., 1989) and certain diagnoses, e.g. rheumatoid arthritis

rather than osteoarthritis (Ahnfelt eta!., 1990; Malchau eta!., 1993).
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Much clinical evidence points to an early mechanical initiation of failure. Recent work

suggests that all prostheses migrate from "day one", but it is those that show early,

rapid migration that eventually require early revision (Freeman and Plante-Bordeneuve,

1994; Kirrho1m et a!., 1994). Specialised radiographic techniques such as Röntgen

stereophotogrammetric analysis (RSA) enable accurate measurements, in three

dimensions, of the position of implants within the body and their movement with time.

These studies provide evidence that the early migration of implants in bone is

correlated with, and therefore may predict, early clinical failure.

Since the first long term clinical reviews (e.g. Charnley, 1979), loosening of the

acetabuhir component of cemented hip arthroplasty has been recognised as a significant

failure mode. The rate of acetabular loosening can be 2 to 3 times that of the femoral

component (Schulte et a!., 1993). Wroblewski (1986) reported that in three major

series, the incidence of acetabular loosening, as determined radiographically, was 22-

25% after 10 years. Snorrason et a!. (1993) have used RSA to evaluate several factors

affecting the success of cemented acetabular components. They considered that early

migration indicated an inferior bone cement interface and that the poor primary fixation

that this implied indicated that the fate of the prosthesis might be revealed in the first

post-operative months. Similarly, Carisson and Gentz (1984) and Hodgkinson et a!.

(1988) found that even minor radiological defects in the cement bone interface

appearing in the first post-operative year lead to 35-40% radiological loosening after

ten years.

Improvements in cementing technique have led to a valuable increase in the

survivorship of cemented hip replacements (Malchau and Herberts, 1996). Hodgkinson

eta!. (1993) reported an improvement in post-operative radiological appearance of the

cement-bone interface with flanged compared to unflanged cups which was reflected in

the radiological appearance at 10 years where 43% of flanged sockets showed no

evidence of radiolucency as against 30% of the unflanged group.

Chapter 2 of this thesis provides an overview of current knowledge of total hip

replacement. Having identified clinical evidence that mechanical events in the post-

operative period and pressurisation of bone cement are both important determinants of

the longevity of a hip replacement, the thesis goes on to attempt to investigate the

relationship between these two. Chapter 3 proceeds from the assumption that cement
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pressurisation is an effective means of achieving secure acetabular component fixation.

Various methods of cement pressurisation are then compared using an instrumented

model acetabulum, with the goal of identifying the most effective of current

techniques, such as finger packing, component insertion and the use of various

pressurisation tools. The in vivo measurement of cement pressures with an

instrumented cement pressuriser are also presented. Chapter 4 describes the

development and validation of a finite element modelling technique to predict the

pressurisation and penetration of cement into cancellous bone, going on to describe a

parametric study of the factors that affect the ultimate cement penetration and

consequently the component fixation. Chapters 5 and 6 describe finite element models

of the reconstructed hip. In the first an attempt is made to investigate the mechanics of

the human hip under realistic loading. In the second, the results of finite element

models are compared with experiment for a laboratory model of human acetabular

reconstruction, a bovine calf acetabulum, loaded in a newly developed hip joint

simulator, representing a first attempt to inter-relate the results of chapters 3, 4 and 5

and the relevant orthopaedic literature. Chapter 7 summarises the results and discusses

their significance with regard to the clinical situation, while chapter 8 suggests progress

for the work.
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2. Review of the Literature

2.1 The Hip Joint

The hip (coxal) joint is the articulation of the pelvis and the femur, the long bone of the

thigh. It is a synovial ball-and-socket joint, where the head of the femur is the ball and

the acetabulum the socket (Figure 2-1). The hip joint is highly stable due to its physical

configuration. In normal activity, muscle and gravitational forces transmitted across the

joint tend to maintain the congruency of the joint surfaces. The ligaments and joint

capsule (Figure 2-2) together serve to augment the stability of the joints, to help guide

joint motion and to prevent excessive motion (Carlstedt and Nordin, 1989). The

extended lip of fibrocartilage around the rim of the acetabulum, the acetabular labrum,

serves to increase stability by acting as a skirt extending over the femoral head past the

articular surface. At the extremes of motion of the hip the iliofemoral ligament limits

extension, the pubofemoral ligament limits abduction and extension and the

ischiofemoral ligament limits internal rotation. These functions are also assisted by the

fibrous joint capsule. In a total hip replacement, it is important to note that the

ligaments and joint capsule are sometimes resected, although a pseudo-capsule usually

reforms. This capsule has a bearing on the stability (in the sense of resisting

dislocation) of the replacement hip joint, which must now be achieved by careful

implant design and surgical procedure.

Figure 2-1: Cross-sectional anatomy of the hip joint.
(Adapted from Platzer, 1981)
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FIgure 2-2: LIgaments of the hip joint
(Adapted from Platzer, 1981)

2.1.1 Functional Anatomy of the Pelvis and Acetabulum

The pelvic girdle consists of the two innominate bones (Figure 2-3), each of which, in

the mature adult, is a bony fusion of three separate smaller bones, the ilium, ischium

and pubis. The area of the union of the three bones forms the acetabulum, the socket of

the hip joint. The major function of the pelvic bones is to distribute the weight of the

upper body, the major part of which is transmitted via the vertebral column, into the

lower limbs and to provide attachments for the muscles that articulate the hip joints

and some of the major muscles that maintain vertebral posture. The pelvis also has

secondary roles in protecting and providing attachments for muscles supporting organs

of the abdomen.

In fulfilling its major role, the pelvis transmits forces that can be several multiples of

body weight. The pelvis has thus evolved into an efficient structure according with the

sandwich principle, with a stiff, strong outer shell of cortical bone that bears the bulk

of the loads and a low density "honeycomb" inner core of cancellous bone that serves

as a spacer, a reservoir for haemopoietic tissue and to resist buckling. This is similar to

engineering components highly loaded in bending and designed for minimum weight

such as glider wings and helicopter rotor blades.
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Figure 2-3: Anatomy and muscle attachments of the innominate bones:
(a) medial view, (b) lateral view.

(Adapted from Gray's Anatomy, 1980)

There are approximately 20 major muscles attached to the pelvis. The areas of muscle

attachment are shown in Figure 2-2, while Table 2-1 gives the attachments and actions

of the major muscles that cross the hip joint, grouped by principle active movement.

Table 2-1: Muscles crossing the hip joint, grouped by action
(from Cunningham's Textbook of Anatomy, 1972)

Gluteus maximus	 Gluteus medius
Semimembranosus	 Gluteus minimus

Extension Semitendinosus	 Abduction	 Tensor fasciae latae
Biceps femoris (long head)	 Obturator internus (in flexion)
Adductor magnus (ischial fibres) 	 Piriformis (in flexion)

iliopsoas
Rectus femoris
Tensor fasciae latae

Flexion
	

Sartorius
Adductor longus
Adductor bitvis
Pectineus

--	 Adductor
Adductor longus
Adductor brevis

Adduction Gracilis
Pectineus
Gluteus maximus (lower fibres)
Quadratus femoris

Gluteus maximus
Obturator internus
Obturator externus
Quadratus femoris

External Rotation Pirifonnis
Sartonus
Gemellus superior & inferior
Adductor magnus
Adductor longus
Adductor brevis

Anterior of gluteus medius
Internal Rotation	 Anterior of gluteus minimus

Tensor fasciae latae
Iliopsoas (initial stages)
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The normal acetabulum is approximately hemispherical in shape, with a raised

horseshoe shaped subchondral bone and articular cartilage layer extending around the

postero-lateral rim and inwards towards the depth, framing a fovea which is filled with

fatty tissue. Kurrat and Oberlander (1978) showed that the thickness of the articular

cartilage in both the femoral head and acetabulum varies with position. The inner edge

of the acetabular cartilage ends abruptly and frames the fovea as an unbroken line. The

outer edge blends gradually into the acetabular labrum. As in all synovial joints, the

principle function of the articular cartilage is to provide a low friction bearing surface

(the coefficient of friction of animal joints can be as low as 0.00 1, Charnley, 1979).

The low coefficient of friction means that effectively only compressive forces can be

transmitted across joint surfaces. Below the cartilage and subchondral bone layer is

cancellous bone in the depth of the acetabulum and the cortical bone of the pelvis at

the rim. The macrostructure of the bone in the vicinity of the acetabulum has been

studied by Rubenstein et a!. (1982), who examined transverse cross sections, and

HoIm (1980) who used various cross-sections, to qualitatively elucidate the patterns of

trabeculae. A representative section is shown in Figure 2-4.

FIgure 2-4: Cross section of the acetabular region of the innominate bone.
(IloIm, 1980)
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A significant point to note is that the trabeculae of the cancellous bone are thicker and

more densely packed in the region swept, in normal activity, by the hip joint force

vector, i.e. the dome of the acetabulum.

2.1.2 Biological Materials

Bone is the word used to describe both the rigid structural elements of the skeleton and

the material from which these structures are made. One of the most important

characteristics of bones as structures is that they can alter their structure in response to

varying mechanical demands - they are "dynamically adaptable". Bone is constantly

being "remodelled" by osteoclastic (resorption) and osteoblastic (deposition) cellular

activity. This mechanism enables the bone to adapt to changes in load-bearing

requirements and is discussed further in section 2.4.1(iii). Until recently, with the

advent of "smart materials", no man-made materials shared this property.

Two general types of bone can be distinguished in the adult, on the basis of structure,

properties and function. Cortical (or compact) bone forms the outer shell of most

bones (Figure 2-5). On a microstructural level, it consists of sheets containing fibres of

an ultrastructural collagen-hydroxyapatite composite arranged into densely packed

concentric lamellar structures called osteons, bonded together by calcified organic

material. The osteons are orientated approximately parallel to the principal load axis of

long bones such as the femur. The microstructure of cortical bone is thus comparable

to modern fibre reinforced composite materials. Characteristic macroscopic properties

are a low porosity (5-30 %) (Carter and Spengler, 1978) and high stiffness and

strength.

Cancellous bone is found at the ends of long bones such as the femur and throughout

the core of others such as the pelvis and the vertebrae, and has a porosity between 30

and over 90% (Carter and Spengler, 1978), although the distinction between porous

cortical bone and dense cancellous bone is fairly arbitrary.
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FIgure 2-5: SchematIc of the metaphysis of a typical long bone.
(From Gray's Anatomy, 1980)

Cancellous bone has many properties characteristic of man-made cellular materials

such as polymeric foams. The pore spaces of cancellous bone are filled with semi-

fluid bone marrow. The cellular structure is made up of a three dimensional

interconnecting lattice of rods (trabeculae) and plates, with the trabeculae tending to

beorientated in the directions of maximum stress. It is interesting to note that

cancellous bone is present close to joints, where efficient distribution of bearing loads
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is required, and in elaborately shaped bones, such as the pelvis, where complex loading

involving bending is present.

Subchondral bone, the bone found beneath the articular surfaces of synovial joints, is

essentially very thin cortical bone (0.2-0.4mm), which merges with the cancellous bone

on one side and the calcified zone of the articular cartilage on the other.

A huge body of literature exists on the mechanical properties of bone, using both

direct (mechanically tested) and indirect (e.g. ultrasound velocity) methods. Several

reviews have been published (Carter and Spengler, 1978; Currey, 1984; Goldstein,

1987; Natali and Meroi, 1989).

The most general description of bone is a heterogeneous, anisotropic material, with

asymmetrical (different in tension and compression) properties. Viscoelastic

deformation within the normal range of physiological loading has been proposed.

Characteristics also depend on the type of bone (cortical vs. cancellous), age (Currey

and Butler, 1975), anatomical source (summarised in Goldstein, 1987) and

pathological state (Abendschein and Hyatt, 1970; Deligianni et a!., 1991).

Experimental factors such as specimen storage conditions and preparation (Carter and

Hayes, 1977b), testing environment (Brown and Ferguson, 1980) and specimen

geometry (Choi et a!., 1990) have also been shown to be important in some cases.

The combination of these factors results in a large "data space" of mechanical

properties and difficulty in comparing properties obtained by different authors. This is

a reflection of the inherent variability of biological materials and also the lack of testing

standards and protocols.

2.1.2.1 Cortical Bone

A typical stress-strain curve for cortical bone is shown in Figure 2-6. The Young's

modulus in the longitudinal direction is typically twice that in the transverse direction.

In the longitudinal direction, the ultimate tensile strength is approximately 3 times that

in the transverse direction. Some workers have reported transverse tensile strengths as

low as 10% of the longitudinal tensile strength (Dempster and Coleman, 1960). The

difference in compressive strengths is much less, since in compression there is

19



reduced tendency to separate the fibre-like osteons by failure of the cement lines

(Figure 2-5).

Dry bone tested in the longitudinal direction typically shows values of Young's

modulus and ultimate strength in compression 35% and 65% higher than wet bone

respectively (Dempster and Liddicoat, 1952). These discrepancies are less for the

tangential and radial directions. This emphasises the importance of testing bone wet if

experimental values are to be reliable indicators of in vivo properties. Table 2-1 gives

some literature values for the mechanical properties of cortical bone.

200
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- //ioo

I' -150

-200

0.01	 0.02	 0.03

Longitudinal

Transverse

Strain

Figure 2-6: Typical stress-strain curves for wet cortical bone.
{Gibson and Ashby (1988), adapted from Reilly and Burstein (1975) and Currey (1984)}
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2.1.2.2 Cancellous Bone

Typical stress-strain curves for cancellous bone are shown in Figure 2-7. The curves in

tension and compression show marked differences. The initial portion of both curves

shows approximately linear elastic behaviour, but the "yield" stress in compression is

significantly higher. The initial portion of both curves corresponds to either elastic

extension/compression, or bending of the trabeculae, depending on the load orientation

with respect to the material's principal directions. In compression beyond the linear

elastic region there is collapse of the cell walls, either by elastic or plastic buckling,

depending on density and specimen conditions (Gibson, 1985). In tension this regime is

accompanied by irreversible deformation and fracture of the trabeculae. Table 2-3

gives some literature values for the mechanical properties of cancellous bone.
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Figure 2-7: Typical stress strain curves for wet cancellous bone.

(a) Compressive and (b) tensile loading.
(Gibson and Ashby (1988), adapted from Carter et aL (1980)}
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2.1.2.3 Factors Influencing Mechanical Properties

Cortical bone is anisotropic. The ratio of Young's modulus in the longitudinal and

transverse directions for bovine femoral specimens is between 1.7 (wet specimens) and

2.3 (dry specimens) (Bonfield and Grynpas, 1977). Cancellous bone exhibits

anisotropy, mainly due to orientation of the trabecular structure (Hodgskinson and

Currey, 1990). Dalstra (1993) suggests that for many purposes, such as F.E. analysis,

pelvic cancellous bone can be adequately described as isotropic.

Wright and Hayes (1976) and Carter and Hayes (1977b) investigated the relationship

of modulus of elasticity and ultimate strength with strain rate for cortical and

cancellous bone. All the data showed similar trends, with both properties increasing

approximately linearly with increasing strain rate in the region 10 to 10 s-'. The

presence of masrow was influential in increasing the strength of the cancellous bone

only in tests at high strain rates, i.e. when the forces required to exude the marrow

from the trabecular spaces became significant. Interestingly, energy absorption

capacity, a measure of toughness, was found to show a peak centred around strain rate

values between 10-2 and 10-' s- i . Dalstra (1993), in a finite element analysis of load

transfer across the pelvic bone during walking, found peak strain rates of 4x10' s in

cancellous bone and 10' s-' in cortical bone.

Burstein et a!. (1976) examined the effect of ageing on the properties of cortical bone

specimens from the femur and tibia. A consistent decrease in all measured properties of

femoral bone with age was found with no significant differences between male and

female bone. Tibial tissue showed no regular change. The most important change was

identified as the decrease in ultimate strain which implies a reduced work of fracture

and lower energy absorption capacity.

Deligiarmi et a!. (1991) studied the mechanical behaviour of human trabecular bone

obtained from the femoral heads of females with osteoarthritis, fractured neck of femur

and from cadavers, using compression tests. They concluded that cadaveric and

osteoporotic bone were mechanically equivalent, with the observed differences due to

reduction in density due to osteoporosis. However, osteoarthritis caused some change

in the structure of the bone and they quote Grynpas et a!. (1991) as finding more bone,

but of lower mineral content in osteoarthritis.
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Goldstein (1987) noted that testing conditions, in particular temperature, moisture

content and previous storage conditions, contribute significantly to variation in

materials properties data from different authors. The most reliable data will come from

in vitro experiments that most closely simulate the in vivo conditions. Dempster and

Liddicoat (1952) showed that dry bone has significantly different properties to wet and

recent studies (Hodgskinson and Currey, 1992) have tested bone specimens in a water

bath at 37°C. In conventional materials testing specimens are usually prepared with a

geometry so that a uniform stress field is produced in the region of interest or "gauge

length" and artefacts due to end constraints, e.g. testing machine grips etc., can be

excluded. Due to the difficulties of testing biological materials, especially lack of

material, the importance of specimen geometry has, in general, been neglected. A

recent study by Keaveny et al. (1993) made the point that inter study comparisons of

materials properties may not be valid when differing specimen geometries were used,

since they found different values for Young's modulus and compressive strength during

compression testing of different shaped specimens from the same source.

RØhl et a!. (1991) tested cancellous bone specimens with their ends embedded in

epoxy resin, in order to conduct non-destructive measurements of both tensile and

compressive modulus on the same sample. This has similarities with the

cancellous/cortical bone junction in that there are no unconstrained trabeculae exposed

at the ends, although epoxy resin has a lower modulus than cortical bone. Strain was

measured with an extensometer, which tends to eliminate end effects. They found no

evidence for asymmetry of the Young's modulus and also no evidence of departure

from non-linearity in the elastic regime as has been suggested by earlier studies utilising

ui-embedded specimens, which suggests that this effect may be an artefact of the

particular testing conditions employed.

Using careful specimen design to ensure a gauge length under uniform stress where

specimen strain could be accurately measured and to avoid artefacts associated

with cut specimen ends, Keaveny et a!. (1994a, 1994b) found no difference between

the tensile and compressive Young's modulus of cancellous bone, linear elastic

behaviour until yield and lower average yield strain and yield strength for tensile than

compressive loading. They also proposed an elegant explanation for the greater

progressive reduction of tensile modulus than compressive modulus associated with
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multiple loading cycles based on cracking of trabeculae both parallel and perpendicular

to the load path, rather than yielding behaviour.

2.1.2.4 Dynamic Mechanical Properties

If the stresses during repeated loading are sufficiently high, fatigue failure of bone may

result. The fatigue behaviour of devitalised cortical bone has been extensively studied.

Carter and Hayes (1977a) showed that repeated loading of cortical bone caused a

progressive loss of bone stiffness and strength, which was attributed to accumulation

of microscopic damage such as microcracking and osteon debonding. The review by

Currey (1984) suggests that the mechanisms of fatigue fracture are more similar to

those of fibre reinforced materials than metals, involving accumulation of diffuse

damage, rather than the growth of isolated critical flaws.

The behaviour of cancellous bone has not been so well studied. The reduction in bone

stiffness with number of cycles for bovine cancellous bone tested at various cyclic

stress amplitudes has been measured by Michel et a!. (1993). Their results caused them

to speculate that both damage accumulation and creep of trabeculae contributed to

fatigue failure, with damage accumulation most significant for high stress levels and

creep for low stress levels.

Normally, any fatigue damage accumulation will be compensated for by the processes

of bone turnover and repair. Indeed the equilibrium between rate of damage

accumulation and rate of bone repair has been used as to describe and predict the

remodelling behaviour of bone (Prendergast and Taylor, 1994). Immediately after joint

replacement, however, a necrotic zone of bone exists around the implant, which takes

a significant period of time to revitalise. This region is especially prone to fatigue

damage, since, initially at least, remodelling cannot repair the damage.

2.1.2.5 Density as a Predictor of Mechanical Properties

Many studies have investigated the correlation between density and mechanical

properties. This is of major interest since bone density can be assessed clinically using

techniques such as quantitative CT scanning. Knowledge of the relationship of bone

strength to density, for example, enables assessment of fracture risk in osteoporotic
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and: -

patients. The relationship is also useful in providing data for finite element models of

bones and joints.

The theoretical background to the properties of cellular materials can be found in

Gibson and Ashby (1988). For an idealised open cell foam a power law type

relationship is predicted between elastic properties and density, e.g. for equiaxed cells:-

Equation 2-1
E5	 Li'5

and for a stress oriented "parallel plate-like" structure:-

EquatIon 2-2

E

E5 '1P
	 Equation 2-3

depending on direction, where E = elastic modulus, p = density, superscript * refers to

the properties of the foam, subscript s refers to the properties of the solid, subscript L

refers to in-plane loading of the plates, subscript T refers to transverse loading of the

plates and A, B and C are constants. Similar theoretically derived expressions are also

available for strength.

Hodgskinson and Currey (1992) tested cubes of cancellous bone from various species

(including human) and bones, giving a large density range. They found that density was

an "extremely effective explanatory variable, accounting for 97% of the variance in

mean (Young's) modulus". (The cubes were loaded in the three orthogonal directions,

the mean modulus being the average of these three values). This indicates that the most

important way that cancellous bone properties vary, even between species, is in

amount of bone material present in a given volume.
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For human bone the relationships between apparent density (measured on dry, defatted

bone) and modulus were:-

log E'= —2• 43+l• 96logD	 Equation 2-4

log E"= —1- 46+l• 661og D	 Equation 2-5

logE"= —4•1O+247logD	 Equation 2-6

where E = Young's modulus in compression (MPa), D = apparent density (kg rn-3),

superscript 'refers to the mean Young's modulus for the three orthogonal directions,

superscript "refers to the highest Young's modulus for the three orthogonal directions

and superscript " refers to the lowest Young's modulus for the three orthogonal

directions.

These equations are plotted in Figure 2-8.
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FIgure 2-8: RelatIonships between Young's modulus and density for cancellous bone.
(EquatIon 2-4 - Equation 2-6)

(Hodgsklnson and Currey, 1992)

2.1.2.6 Fracture Properties of Bone

One of the features of cortical bone testing is the large variation in ultimate strength

properties found within groups of nominally identical specimens. Together with typical

strains to failure of 0.5-3.5 % and limited deviations from linear elasticity, these

characteristics establish cortical bone as a semi-brittle material. As such a material,

fracture of cortical bone is controlled not only by the applied loads and microstructural

features, but the size and distribution of intrinsic or applied defects. In conventional
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strength of materials specimens the distribution of defects is more or less random,

going some way to explain the large scatter found in this type of data.

Such a material is suitable for treatment by a linear elastic fracture mechanics (LEFM)

approach, in which the concept of ultimate strength is replaced by that of resistance to

fracture in terms of resistance to crack propagation or "fracture toughness". Two

parameters have been used to express fracture toughness. The first is derived from the

stress intensity, K, at the tip of the crack. K is a measure of the driving force for crack

growth, formed from the physical quantities aand a which represent the nominal stress

in the material and the crack length respectively. It is given by a relationship of the

form:-

K = a'/	 Equation 2-7

In analogy with the yield stress of a ductile material, crack propagation occurs when

the value of K exceeds a critical value, the critical stress intensity factor K. K is in

fact defined for three loading modes (mode I = opening mode, mode II = shearing

mode, mode III = tearing mode) and also turns out to be a thickness dependent

property, which reaches a constant minimum value when plane strain (large thickness)

conditions are approached.

The second parameter is the critical strain energy release rate G. It is derived by

considering the balance between the energy released by the extension of a crack in a

loaded specimen and the energy required to extend the crack. As soon as the specimen

load increases to the point when this process becomes energetically favourable, i.e. the

energy released by crack extension is greater than that absorbed in creating the new

surfaces, crack propagation occurs. In an ideal elastically isotropic solid the quantities

K and G are related by:-

K2 = -I G
	

Equation 2-8

where E = Young's modulus and V = Poisson's ratio.

In a typical fracture mechanics test specimens have a single well characterised crack or

notch deliberately introduced to predetermine the location of the critical defect. The

relationship between load at the onset of crack growth and crack length is then

determined by loading the specimen. From these the fracture toughness can be

calculated.
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Early studies attempted to validate the application of fracture mechanics principles to

bone. Bonfield and Datta (1976) sought to establish K as a materials property by using

single edge notch specimens to investigate the dependence of fracture stress on crack

length and the radius of curvature of the crack tip. The first requirement for the validity

of LEFM, i.e. a linear elastic stress-strain curve, was closely approached. Fracture

stress was found to be inversely proportional to the square root of crack length as

predicted by Equation 2-7. The value of K derived was also found to be independent

of the nominal crack tip radius, suggesting that on a microscopic level the cracks were

propagating from similar flaws at the edge of the machined notch which closely

approached the ideal atomically sharp crack. Tests with centre notched cylindrical

specimens, in which a longitudinally oriented notch was loaded by hoop stresses

generated by a shock wave, confirmed the applicability of Equation 2-8 (Bonfield and

Datta, 1974) and also revealed the sensitivity of the measured K to strain rate and

hence crack propagation velocity. Wright and Hayes (1977) and Bonfleld et al. (1978)

used compact tension (CT) specimens to again demonstrate the linear relationship

between load at the onset of crack growth and crack length. The CT specimen has the

advantage of stable rather than catastrophic crack propagation. Bonfleld et al. also

discovered that crack propagation velocity could be controlled by varying the speed of

the cross head of the materials testing machine and used this to establish the existence

of a critical crack velocity associated with a maximum in the fracture toughness of

bone and coinciding with the transition from controlled to catastrophic crack

propagation. Grooved CT specimens have also been used to evaluate the anisotropy of

fracture characteristics, by forcing the crack to remain in the plane of the groove and

the starter crack, rather than taking the line of least resistance in the osteon direction

(Bonfield et al., 1985).

The microstructural features of bone have a large effect on fracture toughness. Wright

and Hayes (1977) demonstrated the significant effect of increased bone density

increasing K and G. It has also been shown that a higher number of osteons and

larger osteons inhibit crack propagation (Corondan and Haworth, 1986). Norman et

al. (1995) suggested that, because of the effects of the microstructural variations of

bone on the assumptions of LEFM theory, G would be a better defined indicator of

fracture toughness, since it is a measure of global specimen behaviour rather than the

local processes at the crack tip.
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2.1.3 Biomechanics of the Hip

A full engineering analysis of the mechanics of a single joint system is an extremely

complex task, since most joints, including the hip joint, possess a mechanically

redundant set of load transmitting elements, i.e. the musculotendinous structures,

ligaments, joint capsule and the joint surfaces themselves. Muscles, transmitting the

forces they generate to the bones via tendons, can only produce tensile forces, so

active movement of even a simple hinge joint in both directions requires at least two

muscles. However, many synovial joints in the human body allow more degrees of

freedom than a pure hinge and hence, for their control, require more muscles, many

contributing to the control of more than one degree of freedom. In addition to the

muscles, passive structures such as ligaments and the joint capsule can limit movement

at the extremes of the range of movement of the joint; this results in redundancy. An

example of a redundant two joint system is shown in Figure 2-9.

Mathematically, redundancy means that the available set of (in general six) equilibrium

equations that can be written for a joint cannot be solved with a unique solution since

the number of forces (variables) exceeds the number of equilibrium equations that can

be written. In principle, an infmite number of solutions to these equations exist

corresponding to an infinite number of combinations of forces in each of the load

transmitting elements.

Further complications arise: muscles produce forces across joints by active contraction.

As discussed by Thunnissen (1993), this force is dynamic and can vary with time, the

length of the individual muscle and the muscle shortening velocity (i.e. a muscle is not

a constant force actuator). In addition, antagonistic muscle activity is observed, in

which both the muscle(s) which opposes a particular specified motion and the

muscle(s) that produces it are active simultaneously. Muscles also frequently cross

more than one joint (biarticular). Several techniques and combinations of techniques

have been used to overcome these problems. Two general approaches have been used:

(1) Reduction techniques, in which the number of variables is reduced so as to make

exact solution of the equilibrium equations possible by making simplifying assumptions

about the anatomy and function of the load transmitting elements. (2) Optimisation
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techniques, where the full number of variables is included and the "best" of the possible

solutions chosen by minimising some chosen performance criterion.

Figure 2-9: A simple mechanical model of a two joint system.
F Is the variable applied load. F 1 to F4 represent monoarticular and F5 a blarticular muscle.

(Adapted from Thunnlssen, 1993)

Probably the simplest analysis of hip joint biomechanics is presented by Charnley

(1979), based on the early work of Pauwels. In this procedure the hip joint was

analysed during one legged stance, considering only the moments about the hip joint,

generated by the body weight acting through the centre of gravity and the abductor

muscles (lumped into one equivalent abduction force). The force vectors were assumed

to lie in the coronal plane passing through the centre of rotation of the hip joint. This

situation was assumed to be representative of the slow walking of the elderly and/or

infirm. By making these assumptions, the principal of moments of forces could then be

applied to calculate the abductor muscle force and the triangle of forces to calculate

the joint reaction force (Figure 2-10).
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Figure 2-10: Charnley's analysis of the hip Joint.
(a) Anatomical plane considered, (b) Moment equilibrium diagram, (c) Triangle of forces

where M = muscle force, J = Joint reaction force, W = body weight - weight of supporting leg

In their experimental study of one legged stance, McLeish and Charnley (1970)

included the variation in the true position of the centre of gravity for various body

attitudes in order to more accurately calculate the joint and muscle forces. A beam,

simply supported on knife edges at one end and suspended by a load-indicating proving

ring at the other, was used to identify the centre of gravity of a body whose weight was

known. An X-ray was also taken, so the position of the centre of gravity could be

related to the anatomy of the subject. Results when the pelvis was in slight elevation

(considered the most relevant) were that muscle forces (normalised to body weight)

varied from 1.0 to 1.8 and joint forces from 1.8 to 2.7 at 7° to 10° to the vertical. As

the pelvis angle varied, the joint force varied from 1.2 to 1.8 at 2° for a more elevated

pelvis (13° to 17° to the horizontal) and 2.9 to 3.1 at 15° to 20° for a sagging pelvis (-

9° to -18° to the horizontal). As can be expected, considerable variation was seen

between subjects since the pelvic rotation was not simply related to the positional shift

of the centre of gravity. It was also noted that the shifts in pelvic angle produced a

change in the angle of the femur to the vertical, resulting in greater variation of the

direction of the joint force relative to the femur than its variation relative to the

vertical. Due to their simplicity and relative ease of duplication in vitro, models of this
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type have been used in the development of various tests for hips and hip prostheses, for

example Tanner eta!. (1988).

A more complex, pioneering, series of studies of various locomotor activities was

presented by Paul and co-workers (summarised in Paul, 1976). An early form of

modern gait analysis was used, in which ground reaction force, measured using a six

degree-of-freedom force plate, was related to the positions of the lower limb by

cinematic recording. The values of the force components at the hip were calculated

from equilibrium equations, based on the forces and moments at the force plate and the

accelerations of the components of the limb deduced by differentiation of the

displacement of reference points with time (velocity) measured from the films. The

reduction method, to make the equations exactly solvable, was then applied in the

following way.

The friction at the joints was considered to be zero. This is reasonable in a healthy

joint, given the extremely low coefficient of friction of the cartilaginous surfaces and

short moment arm compared to most of the muscles. Only muscle groups whose action

was likely to produce significant compression between the femur and acetabulum were

considered. This led to elimination of the hip rotators (obturators internus and

externus, gemellus superior and inferior, quadratus femoris and piriformis). The

remaining muscles of the hip joint were grouped according to their action and

anatomical positions into long flexors, short flexors, long extensors, short extensors,

abductors and adductors, so that each muscle group could then be represented as a

single "line of force". Representative muscles from each group were chosen for EMG

measurements. Evidence from myographic studies was cited in order to justify

elimination of antagonistic muscle action, so that the two flexor groups or the two

extensor groups were considered active with either the abductors or adductors.

As a result, five equations (the sixth equation, for moments about the axis

perpendicular to the ground, was excluded as the rotator muscles had been eliminated

and it was not realistic to apportion rotation to other muscles) were formed with six

unknowns (the three muscle group forces and the three components of the joint

reaction force). The procedure then followed was to obtain solutions with first one

flexor/extensor group and then the other and to assume that the true value of the

calculated joint force components would lie between the two extremes.
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The basic assumption of an optimisation technique is that the body selects the muscles

to perform a particular action on the basis of some performance criterion, for example

the minimisation of muscle stresses. Mathematically, the performance criteria are

expressed as "cost functions" which are minimised. The advantage of this type of

approach is that the relatively large anatomical and functional approximations and

assumptions that need to be made in the reduction method can be avoided. The

disadvantage is that the performance criteria do not have a well defmed physiological

basis and would be likely to vary according the activity being performed (e.g. walking

or sprinting), so a complete description might require different performance criteria for

different activities.

Crowninshield and Brand (1981) presented a model to predict muscle forces in the

lower limb during locomotion, using a cost function based on a maximum endurance

criterion that they suggested was applicable to prolonged and repetitive activities such

as normal walking. The lower limb model incorporated 47 musculotendinous elements

and five rigid bodies; hemi-pelvis, upper leg, lower leg, patella and foot. The hip joint

was modelled with three components of intersegmental resultant moment, the knee

with one component and the anide with one component. Ligament function at the hip

was assumed to be negligible, while at the knee and ankle was assumed to fully

constrain varus/valgus and internal/external rotation. This effectively assumes that,

during normal walking, the hip acts as a ball and socket joint and the knee and ankle as

pure hinges.

The muscle forces during gait were predicted such that:-

jhhXj	 j=1,2,3
	

EquatIon 2-9

jk7kxj
	

EquatIon 2-10

wFaxf	 EquatIon 2-11
i=36

where superscripts h, k and a refer to the hip, knee and ankle respectively, M =

intersegmental resultant moment, r = length of moment arm of muscle and is the

muscle force.

36



Simultaneously the cost function, Equation 2-12, was minimised.

47

u=(f/A3 )3
	

EquatIon 2-12

where A, is the cross sectional area of the muscle. The minimisation of the cost

function represents maximising endurance by minimising muscle stress. The required

joint moments of force M were obtained from gait kinetics.

Thunnissen (1993) presented a complete three dimensional model of the lower body,

incorporating seven rigid bodies, the pelvis, left and right thighs, left and right lower

legs and left and right feet. The hip, knee and ankle joints were all modelled as ball and

socket joints. The principle feature of this model was a mathematically sophisticated

treatment of muscle action. However, the forces predicted were significantly higher

than the results of other authors, including those where direct measurements were

taken (Bergmann et a!., 1993). The author suggested that the sophistication of the

model made the muscle force predictions very dependent on the choice of certain

parameters, such as the physiological cross section and force-length relationship of the

muscles, which were not known with sufficient accuracy.

Probably the definitive measurements of hip joint force are those of Rydell (1966),

Davy et al. (1988) and Bergmann et a!. (1993), who derived their data from

instrumented femoral prostheses. Rydell used two comparatively young patients and

found forces varying from 1.59 to 3.3 times body weight in the stance phase of

walking. There was a marked difference in maximum forces between the two patients.

The measured hip joint resultant force from the study of Bergmann et a!. for an active,

healthy 82 year old male patient walking on a treadmill at 4 km h' are reproduced in

Figure 2-11.
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Figure 2-11: Magnitude and direction of the hip Joint resultant force.
(Bergmann etaL, 1993)

Some differences were noted between the measured joint forces and those that had

been previously calculated (see above). In particular the second peak at toe-off was

less pronounced in the measured data than that predicted by analytical models.

The peak hip joint force varied with speed of walking in an approximately linear

manner, increasing from three times body weight at 1 km h 1 to five times body weight

at 8 km h-'. Jogging at low speed increased the peak force by 15 to 30 % over walking
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at the same speed. However, as the speed increased, the peak forces for walking and

jogging appeared to converge. The highest forces measured were those that occurred

when the patients stumbled, reaching almost nine times body weight. Figure 2-12

shows a comparison of the hip joint resultant forces predicted by Paul, Crowninshield

and Brand and Thunnissen, compared with the measurements of Bergmann et a!.

x12

x8

o o.

x4

-	 Time	
0

Figure 2-12: Magnitude of the hip Joint resultant force from different authors.
Thunnlssen (1993)	 (a) prediction for walking @ 1.4 m s1

Paul (1976)	 (b) prediction for walking @ 2.01 m s1
(c) prediction for walking @ 1.48 m s
(d) prediction for walking @ 1.10 m s

Crowninshield and Brand (1981) 	 (e) prediction for walking (based on a
maximum endurance optimisatlon

criterion)
Bergmann (1993)	 (1) measured for walking @ 1.11 m s

(as FIgure 2-11)

Bergmann quoted analytical models as showing "a more pronounced speed dependent

increase in the peak forces than was measured." In Bergmann's results, the peak hip

joint resultant force increased to approximately 4.5x body weight at a walking speed of

1.67 m s 1 (6 km h). This may be a consequence of the rigid body assumption used in

these models and suggested that impact forces at heel strike were damped by the

structures of the lower leg before they reach the hip joint.
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2.1.4 Stresses in the Normal and Reconstructed Hip

The hip joint forces are reacted by the pelvis. After joint replacement the stresses in the

bone when compared to the non-implanted case give indications of the likely host

response to the implant in relation to theories of adaptive bone remodelling and

interface breakdown. Stresses in the implant and cement are important as, unlike bone,

they have no capacity for self repair and hence are susceptible to fatigue failure.

Similarly interface stresses between the prosthesis and bone are also important.

The stresses and strains in the pelvis generated by muscle and joint force loading have

been studied using several techniques. These include strain gauging, photoelastic

coating and interferometric studies of cadaveric pelves, model studies and finite

element analyses. Each method has associated advantages and disadvantages and all

the techniques require some approximations to be made. However, they all share the

requirements for the application of realistic boundary conditions and forces. A

significant advantage of F.E. models is that they analyse the whole volumetric field.

This is in contrast to strain gauge, photoelastic coating and interferometric studies

which are essentially surface techniques. A disadvantage is that because F.E. models

are very often simplified to accommodate restrictions in computing power, results can

easily become unrepresentative. In the femur, geometrically simplified models have

been applied to good effect, since the femur possesses an inherent symmetry and the

normal loads are applied approximately parallel to its axis of symmetry. Simple 2D

models can describe the femur reasonably well. The pelvis, however is a 3D structure

with a low degree of symmetry. This means that 3D models are essential for accurate

analyses. As compared to 3D models, 2D models of the pelvic bone tend to

underestimate the structural stiffness of the acetabulum, since they cannot account for

the out-of-plane components of the acetabular wall, and overestimate bone stresses

(Huiskes, 1987). Axisymmetric models are restricted to representing the region close

to the acetabulum and assume a complete acetabular rim, which tends to overestimate

the structural stiffness of the acetabulum (Dalstra, 1993).

Probably the most detailed analysis of the pelvis to date is that of Dalstra (1993) who

used a full three dimensional finite element analysis of the pelvis incorporating multiple

muscle forces and realistic geometry and mechanical properties for the pelvic bone

obtained from CT data.
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Jacob c.	 (1976) investigated the mechanical function of subchondral bone in

an epoxy "sandwich" model (E ,thomjral = 7.9-11.8 GPa, = 0.8 GPa).

They conclude that the horseshoe of subchondral bone in the acetabulum transmits

most of the load as membrane stresses from the point of load application to the

acetabular rim and then into the cortical shell. Thus they suggest the cancellous bone is

relatively lightly stressed in the physiological condition (compared with the FE results

of Daistra.)

Ries et al. (1989) performed a strain gauge study of intact human pelves, loaded with a

"joint reaction force" and an abductor muscle force to simulate single leg stance. The

pattern showed vertical and lateral tensile stresses in the medial wall of the acetabulum,

with the ilium in compression. Using a two dimensional contact finite element model,

Rapperport et al. (1985) found high compression in the iliac and pubic regions of the

acetabulum as it "squeezed" the femoral head.

Recently, concerns have been raised about the accuracy of the McLeish and Charnley

single leg stance models which show high bending in the medio-lateral plane at the

femoral diaphysis. These concerns are based on Wolffs law type considerations which

might be expected to produce an oval cross section with the major axis aligned with

the plane of bending whereas the cross section in reality is close to circular. The

explanation offered is that muscles can act to apply compensatory bending moments.

Recent fmite element models that include the ilio-tibial tract (Taylor et a!., 1994) can

be made to predict much less bending in the femur than those which do not. Concerns

like this may be applicable to the pelvis.

Massin et al. (1993) used a more elaborate set-up, using cadaveric bones (Figure 2-

13). Particular attention was paid to deformations in the region of the acetabulum. The

model included representations of the gluteal muscles, iliopsoas, rectus abdominis and

posterior lumbar muscles.
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FIgure 2-13: Deformation during in vitro loading of the acetabulum.
(Massin et aL, 1993)

Circles drawn around the acetabulum represent zero strain. Strains Inside the circle are
compressive, outside tensile. (b) shows tangential and (c) normal strain for
- neutral, -----lateral and ........ . medial rotation of the femur.

Yoshioka and Shiba (1981) used a stress freezing technique on 3D photoelastic models

(epoxy resin) of the pelvis. They included four muscle forces (abductor, adductor,

rectus femoris, gluteus maximus) and body weight. Slices cut from the model

contained the "frozen-in" stresses. Conclusions were that the "horseshoe" is deformed

so as to "close the beak" of the acetabulum, with the acetabulum stretched vertically

and deformed into an oval shape.

2.1.4.1 Stresses in the Implanted Pelvis

Petty et a!. (1980) performed experiments to determine the effects of details of socket

implantation technique (depth of reaming, use of pilot hole, use of anchoring hole,

methods of reinforcing weakened acetabula) on cadaveric hemi-pelves, instrumented

with strain gauges on the medial acetabular wall, in simulated single leg stance. The

normal pattern was established by applying the hip joint load with an Austin-Moore

type prosthesis (diameter approximately equal to the femoral head). The strain pattern

in the medial wall was hardly altered by the introduction of a prosthesis where the

acetabular subchondral bone was preserved. This suggests that subchondral plate

disruption is an important factor.

42



0
5
10
15
20
25
30 MPa

0
0.2
0.4
0.6
0.8
1.0
1.2 MPa

(b)

(a)

2
3
4
5
6 MPa

(c)

inferior

superior

inftrior

superior

anlerior

posterlo-

Selected results from Daistra's finite element model are shown in Figure 2-14.

FIgure 2-14: FinIte element predictions of von MIses stress in the pelvis.
Stresses In (a) the cortical shell, (b) the cancellous bone and (c) subchondral bone layer for a
normal pelvic bone (left) and a pelvis implanted with a cemented PE cup (right), loaded In

simulated one legged stance (Dalstra, 1993).
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Daistra found that load transfer into the acetabulum takes place in the antero-superior

quadrant of the acetabulum with the principal stress transfer into the cortical shell

directed at the sacroiliac joint along the superior acetabular rim, with a smaller portion

towards the pubic symphysis. After reconstruction with a cemented polyethylene cup,

the overall load transfer hardly changes. The largest differences are restricted to the

immediate vicinity of the acetabulum, as might be expected in accordance with St

Venant's principle. For the subchondral bone and trabecular bone in the acetabular

region the changes are more substantial. In the intact case, the highest stresses are in

the subchondral bone of the antero-superior quadrant. In the reconstructed case the

loads are reduced considerably and are shifted towards the edges (in particular the

posterior edge) with the deeper areas of the acetabulum becoming stress shielded. This

suggests that fixation of acetabular components is critical around the rim. In the

underlying trabecular bone, the situation is approximately reversed, with the trabecular

bone stresses in the superior wall highest.

2.1.4.2 Factors Affecting the Mechanics of a Total Hip Replacement

Several fmite element and experimental studies have looked at the effects of specific

details of the prosthesis and surgical technique on the acetabulum, although few FE

models have made use of 3D models because of the practical difficulties involved. Cup

thickness and the diameter of the "femoral head" were shown by Charniley to be

important. In a photoelastic model, for a given external diameter, a thick cup (small

head) produced a much more uniform stress distribution and lower stresses in the

surrounding acetabular bone (Charnley, 1979). This finding was confirmed by Daistra

(1993) who showed that increasing the polyethylene cup thickness reduced peak

stresses in all surrounding materials (bone, polyethylene, bone cement). Oh (1983)

looked at the effect of cement thickness and concentricity of cup placement on cement

strains in a strain gauge modeL All measured strains were less than 10% of the failure

strain of the cement, even at applied loads of four times body weight. This result seems

to match the clinical observation that full thickness fatigue cracks in the acetabular

cement mantle are rarely found even at late revision (Richardson, 1995). Metal backed

polyethylene acetabular cups were originally introduced to facilitate exchange of the

polyethylene liner. Some finite element studies that used simplified plane 2D and
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axisymmetric models also predicted that load would be more uniformly transferred

with a metal backing. However, this type of cup has a much lower success rate than

the conventional all polyethylene cemented cup (Riuer et a!., 1990). More

sophisticated finite element studies reveal that metal backing causes fairly severe stress

concentrations at the acetabular rim. The stresses at the implant-bone interface in these

regions of stress concentration are three to four times higher for metal backed cups

than non-backed cups (Dalstra, 1993).

The subchondral bone plate plays a vital role in transferring load to the cortical shell.

Removal of this plate by aggressive reaming means load is transferred to the weak

cancellous bone and the sandwich design of the pelvis compromised (Jacob et a!.,

1976). Some studies have considered the effects of drilling anchoring holes through the

subchondral plate. In an early study of the torsional strength of acetabular

reconstruction Andersson et a!. (1972) concluded that reaming the subchondral plate

to produce an irregular surface played the major role, with drill holes being less

significant and suffering the disadvantage of increasing the disruption to the

acetabulum. In another experiment (Oh, 1983) using wooden blocks as model

acetabula in which only the simulated anchoring holes contributed to torsional strength,

the failure torque was 84-157 Nm, very comparable to the results of Andersson eta!.
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2.2 Hip Replacement

2.2.1 Reasons for Hip Replacement

Joint replacement is performed to relieve pain and/or reduced mobility at an affected

joint. A variety of clinical conditions can lead to these problems, the most important

being osteoarthritis, rheumatoid arthritis, trauma, avascular necrosis and ankylosing

spondylitis.

2.2.1.1 Osteoarthritis

The most common reason for joint replacement is osteoarthritis. Osteoarthritis refers

to any degenerative changes to a joint leading to pain, inflammation and loss of

function. The terms osteoarthritis and osteoarthrosis are commonly interchanged, but

osteoarthrosis is probably a better term for primary idiopathic osteoa.rthritis (Figure 2-

15) as it implies "degeneration" rather than "inflammation". It has been estimated that

52% of the adult population of the U.K. have some form of osteoarthritis in one or

more joints, with the frequency of incidence increasing with age. Prevalence in men

and women is similar, but women tend to have more joints affected (Lawrence, 1977).

Pathologically and radiologically, typical features of osteoarthritis are destruction of

articular cartilage and reduction of joint space, osteoscierosis (an increase in bone

density), osteophytosis (production of abnormal bony masses) and formation of fluid

filled cysts.

Many possible biochemical and mechanical causes have been identified, but a general

classification into primary and secondary osteoarthritis can be made (Figure 2-15). In

secondary osteoarthritis, an identifiable cause of the disease can be established,

whereas primary osteoarthritis does not have an easily determined aetiology and thus is

described as idiopathic.
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Localized
Primary Idiopathic Osteoarthritis
(No identifiable underlying cause)

Generalized

Congenital or Developmental
e.g. congenital dysplasia of the hip

Inflammatory
e.g. rheumatoid arthritis

Traumatic
e.g. fracture

Secondary Osteoarthritis
Metabolic
e.g. gout

Endocrine
e.g. diabetes

Other
e.g. Paget's disease

Figure 2-15: Classification of osteoarthritls.
(adapted from Grennan, 1984)

2.2.1.2 Rheumatoid Arthritis

Rheumatoid arthritis is an inflammatory disorder involving a complex immunological

reaction centred on the synovial membrane to a, currently unknown, stimulus. The

immunological reaction culminates in release of enzymes that can destroy cartilage and

ultimately bone adjacent to the affected joint. The disease affects about 5% of women

and 2% of men in the U.K., with onset commonly in the middle years. However, less

than 25% of these will go on to develop severe symptoms and loss of function

(Lawrence, 1977). The disease eventually "burns Out", but after several months or

years and often leaving permanent damage (secondary osteoarthritis). Juvenile

rheumatoid arthritis or Still's disease affects children and teenagers, but in all but a very

few patients resolves with no permanent damage.

A comparison of the typical destructive effects of rheumatoid arthritis and

osteoarthritis is shown in Figure 2-16.
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Figure 2-16: ComparIson of the effects of arthritic disorders.
(a) Osteoarthrltls and (b) rheumatoid arthritis.

(Adapted from Grennan, 1984)

2.2.1.3 Avascular Necrosis

Avascular necrosis is the deprivation of the blood supply to an area of bone, leading to

collapse of the bone, commonly the femoral head. This may be due to traumatic

damage to blood vessels, or precipitated by treatment with steroid drugs or by alcohol

abuse.

2.2.1.4 Ankylosing Spondylitis

Ankylosing spondylitis is another inflammatory disorder, involving inflammation of the

synovial membrane and the bone entheses (regions where ligaments and joint capsules

48



are attached to bones). In severe cases of the disease, calcification and ossification of

the entheses can occur leading to loss of range of motion, sometimes complete. The

principal affected joints are the sacro-iliac joints and those of the lumbar spine, often

with the involvement of the hip and knee joints. Incidence of the disease with clinical

significance are approximately 0.5% in men and 0.05% in women, with onset in the

late teens and early twenties (Lawrence, 1977). Hip joint surgery is the most common

orthopaedic procedure performed in severe cases of ankylosing spondylitis.

2.2.1.5 Mechanical Derangement of the Joint

Where the mechanics of the joint are altered secondary osteoarthritis can occur. This

will typically be the result of intra-articular fractures, where part of the joint surface is

displaced, after congenital dislocation or dysplasia of the hip, or childhood problems

such as slipped upper femoral epiphysis and joint sepsis.

2.2.2 Surgical Treatment

Surgery for the above problems, when they affect the hip, usually follows attempts at a

more conservative approach, e.g. physiotherapy, drug treatment etc. The principal

procedures are (Northmore-Ball, 1992):

1. Osteotomy, where the shape of the femur or pelvis is altered to produce a desired

effect by dividing and re-fixing the bone. The desired effect may be alteration in

the mechanics of the joint, realignment of the joint surfaces etc.

2. Arthrodesis, where bony fusion of the joint is induced by excising the joint

surfaces and fixing as a fracture.

3. Excision arthroplasty, where the bone ends with joint surfaces are removed, in the

hope that a fibrous tissue bridge will form a "pseudo-joint" (Girdlestone

arthroplasty).

4. Total hip arthroplasty, where the malfunctioning joint is completely replaced by

an artificial implant.

The last has to a great extent superseded the others, except in cases where the known

shortcomings of total hip replacement are currently unacceptable, such as very young

LOHDIK.

UM[V.
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Uncemented

Threaded Fixation

Press Fit

Porous Coated

Bioactive Coated

patients or where there is infection of the joint and even in these cases has become

widely used. In some cases total hip arthroplasty is performed as a conversion

procedure, for example to restore a greater degree of function than a previous

operation allowed.

2.3 Design of Hip Replacements

A plethora of hip prostheses is available to replace the defective hip joint, although

nearly all are based on a ball-on-stem for the femoral component and a cup for the

acetabular component. One of the major reasons for all these designs is commercial

pressure, but also reflected are the difficulties in evaluating the efficacy of a particular

design using in vitro methods, or short term clinical trials. Short term clinical studies

do not reliably predict long term performance of implants (Fowler et aL, 1988; Harris,

1992b). Long term studies establishing the success of an implant are only available for

relatively few cases (e.g. the Chamley-type prosthesis, Schulte et al., 1993). Due to the

multitude of prostheses, classification has been attempted on the basis of major design

principles, the most obvious of which is method of fixation (Figure 2-17).

Cemented

PMMA Cement J

Cement Precoated Implants

Alternative Acrylic Cements

Bioactive Cements 1

Hybrid
Cemented Stem/Uncemented Cup J

Proximally Bioactive Coaled/Distally Cemented Stem/Distally "Free" Stem

Figure 2-17: Classification of hip prostheses on the basis of fixation method.
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The common aim of all fixation methods is to produce a strong, durable interface

between the implant and bone. The loads transmitted across the bearing surfaces of the

joint prosthesis are transmitted into the natural bone via the interface, which must be

capable of performing this task for the maximum possible time, ideally the life of the

patient. The integrity of the interface is under threat from both biological and

mechanical processes, although it is difficult to make a true distinction between these.

Aseptic loosening and its consequences, identified as the single most important cause

of long term failure of hip replacements, is due to the breakdown of the original

implant-bone interface and its replacement with a thick membrane of connective tissue.

The mechanisms that have been proposed to lead to interface breakdown and aseptic

loosening are discussed later.

2.3.1 Cemented Implants

Most hip prostheses are still fixed to the skeleton using polymethyhnethacrylate

(PMMA) cement. The original reason for using cement was as a grout to fill the

irregular gap between the bone and the prosthesis and thus obtain a more uniform load

transfer. Being of a low modulus (c. 3 GPa), the cement also functions as a compliant

de-coupling layer between stiff (metallic) implants and bone.

PMMA itself has poor adhesive properties and relies for fixation almost entirely on the

mechanical interlock that can be achieved with the porous cancellous bone and suitably

prepared cortical bone and the geometric features of the prosthesis. For this reason it is

essential to ensure intimate contact between both the cement and bone and the cement

and implant over the maximum possible areas. Intimate bone contact effectively means

intrusion of cement into the cancellous pore spaces or irregularities in cortical surfaces.

Cement intrusion into cancellous bone results in a transition region of a bone-cement

composite, rather than a flat interface between homogeneous cement on one side and

bone on the other. The true bone-cement interface is only revealed on a finer scale,

between individual trabeculae and cement.

In the initial period after implantation, if cement intrusion into a cancellous bone bed

has been achieved, failure of the fixation occurs by failure of bone trabeculae. In the

long term, the precise cause of fixation failure leading to aseptic loosening is not

absolutely clear, although several theories exist.
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Current cementing techniques seek to achieve mechanical interlock by careful

preparation of the bone bed and pressurisation of cement.

2.3.2 Uncemented Implants

It has been theorised that the long term stability of an uncemented prosthesis depends

on both the initial stability of the implant and the biological response of the host.

Initially, all uncemented implants rely on a purely mechanical fixation to the bone. For

the development of secondary, long term, stability uncemented implants rely on a

favourable host bone response, the conditions for which must be achieved by the initial

fixation. In general this will require some growth response and gap bridging by the

bone, since with current surgical techniques, it is impossible to ensure perfect contact

between bone and implant over the whole of the implant. The design features of

uncemented implants can thus be classified into those designed to enhance primary

stability and those designed to promote the required bone response, which take the

form of various surface modifications and coatings. There seems to be a consensus that

enhancement of osseointegration into uncemented prostheses is dependent on

development of improved coating materials and techniques for their application, since

recent studies evaluating osseointegration with uncemented implants have revealed

bony apposition over only a small fraction of the coated area (Pereira eta!., 1995). The

two most important classes of surface treatment are porous metal coatings and

bioactive ceramics.

2.3.2.1 Primary Fixation

To provide the necessary primary stability, several techniques have been applied,

including additional screws, pegs and interference fit (press fit). Threaded fixation

produces initial stability by the mechanical interference between the screw thread and

bone. The thread may be an integral part of the prosthesis or separate fixation screws.

Threaded fasteners serve to "pre-stress" the bone and to provide resistance to shear

forces at the prosthesis-bone interface. Pegs on acetabular components, such as found

on the Freeman acetabular component, essentially provide similar resistance to

shearing forces but do not pre-stress the bone.
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Press fit prostheses rely for their stability on frictional forces developed at the interface

between implant and bone and on the natural shape of the bone. The press fit was the

original method of fixing implants to bone. Modern designs typically feature large stiff,

space filling intramedullary stems in an effort to improve contact area.

Press fit insertion of oversized cups in the acetabulum has been used to obtain the

initial stability needed for bony ingrowth (Kim et a!., 1995). However, press fitting has

disadvantages. In the acetabulum, while equatorial press fit can be achieved, polar

contact is often compromised, with gaps of greater than that thought to be the

maximum for bone bridging (McKenzie et a!., 1994), even with impaction forces of

2 kN. Vigorously inserted oversized press fit cups can also cause acetabular fractures

(Kim eta!., 1995).

2.3.2.2 Porous Coatings

Porous coatings on prostheses are meant to encourage bone ingrowth. Commonly they

are produced by coating the prostheses with beads or mesh, usually titanium on a Ti-

6A1-4V alloy base. The optimum pore size (in dogs) is 50 to 400 jim (Bobyn et a!.,

1980). Retrieval studies have displayed ingrowth into the porous coating between 0

and 50-60 percent (Sumner et a!., 1993). Proposed reasons for failure of porous

coated implants are:

Bony ingrowth never achieved because of excessive micromotion. The bone

adaptation to porous coated implants is thought to occur in two distinct phases

(Galante, 1985), the first phase similar to primary fracture healing and the second

involving remodelling of the primary tissue in response to mechanical stimuli. The

first phase healing response appears to have a much greater influence on bone

adaptation to porous coated implants than mechanical stimuli (Hollister et a!.,

1995). Excessive micromotion at the interface leads to development of a fibrous

tissue interface instead of bone ingrowth (Søballe et a!., 1992, section 2.4.1.1), so

initially a stable press-fit or some means of supplementary fixation is required.

• ingrowth is achieved but not maintained

• coating problems such as fatigue failures of the coating/implant interface due to the

difficulty of welding the dissimilar alloys of the coating and substrate and at the

joints between beads and between the mesh wires.
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2.3.2.3 Bioactive Coatings

The mineral component of bone is a hydrated calcium phosphate, hydroxyapatite

(Ca19(PO4)6(OH)2) with some carbonate substitutions. Animal studies have shown

direct bone bonding to hydroxyapatite coated implants and thus clinical trials of HA

coated prostheses in humans have been undertaken (Geesink eta!., 1987).

A direct chemical bond is formed between bone and a wide variety of calcium

phosphate substances, as has been seen by electron microscopy (Luklinska and

Bonfield, 1992) and mechanical testing (Geesink et a!., 1987). Additionally

hydroxyapatite coatings encourage bone growth into features of the implant thus

enabling a mechanical bond on the macroscopic scale as well as a chemical bond on the

microscopic scale (Stephenson et a!., 1991). It has been found however that failure of

the interface between implant and HA coating can occur (Cook et a!., 1991). The

composition and structure (crystallinity and porosity) of the coating is important.

Bauer et a!. (1995) have shown that mixed HA/TCP (tn-calcium phosphate) coatings

of various compositions were all osteoconductive, but coatings with TCP were less

stable (greater reduction in coating thickness, more coating debris particles, less

coating remaining). This was attributed to the different solubility characteristics under

physiological conditions. The degree of coating stability required for optimal bone

apposition and implant fixation is controversial and some authors suggest that coating

dissolution is required for bioactivity. Also of concern is the rate of coating resorption

with regard to mechanical loading. Overgaard et a!. (1995) implanted plasma sprayed

HA coated implants in dogs. Continuous loading resulted in significantly more

resorption of the HA coating than in unloaded implants.

2.3.3 Materials for Total Hip Replacement

The most commonly used materials in hip replacements are the austenitic stainless

steels, cobalt based and titanium based alloys, ultra high molecular weight polyethylene

and, to a lesser extent, the engineering ceramics alumina and zirconia (for femoral

heads and occasionally acetabular cups). The mechanical properties of implant

materials (Table 2-5) are dependent on composition, processing route and, particularly

for metallic implants, the shaping process used to form the final implant.
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2.3.4 Bone Cement

2.3.4.1 Polymethylmethacrylate Cement

PMMA bone cement is produced in situ by mixing together a liquid component,

methyl methacrylate monomer with an activator, and a solid powder,

polymethylmethacrylate with an initiator/catalyst. When the liquid and powder

components are mixed, the activator reacts with the initiator to produce free-radicals,

which initiate a free-radical addition polymerisation reaction. As the reaction proceeds,

portions of the polymer chains at the surface of the powder particles become

intermingled with and incorporated in the newly forming polymer chains in the liquid.

Eventually, as the reaction completes, the mixture becomes a single solid mass. The

mechanical properties of the cured cement are sensitive to such factors as preparation

and testing method, preparation and testing temperature and conditions and method of

specimen preparation. Thus it is essential for experimental results to include these

conditions along with the mechanical data. If data are to be used for design or

engineering analysis of prostheses, especially the results of extended tests, they need to

be collected under conditions as close as possible to those experienced in vivo. If

comparative data is all that is required, this necessity can be relaxed for convenience,

providing a reasonably representative test is chosen.

PMMA cement is a brittle material with a low fracture toughness and hence its

ultimate properties are controlled by the number, size and distribution of internal

flaws, such as pores and second phase particles, which can serve as stress raisers and

crack initiators. In general, pores are worse than second phase particles, especially in

compression (Gordon, 1976). The mechanical properties and fracture behaviour of

bone cement samples thus vary principally according to additives, mixing and

handling techniques and are relatively insensitive to the variation in intrinsic

mechanical properties that can be produced by differences due to polymer

manufacture such as molecular weight variations. Modern mixing techniques such as

vacuum mixing seek to reduce the porosity in cement introduced by hand mixing in

air. The effects of preparation techniques on porosity have been assessed by Schreurs

et a!. (1988), who compared hand mixing, use of a pressurisation pistol, centrifugation

and vacuum mixing. They showed that vacuum mixing is much the most efficient in
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reducing the overall porosity, but the average pore size was not greatly affected by any

of the methods. Askew et a!. (1990) reported that vacuum mixing significantly

increased bending strength and modulus for specimens conditioned in water at 37°C.

However, this effect was cancelled by the addition of antibiotics, which reduced the

bending strength and modulus of vacuum mixed specimens to that of air mixed

specimens. This was probably due to the antibiotic particle inclusions and the

additional porosity generated when the antibiotic leached out as the samples were

conditioned. It is also possible, depending on the "mould" environment of the cement,

that monomer boiling occurs during cementation of the implant (Huiskes, 1980)

which could produce additional porosity. Gardner et al. (1992) studied the effects of

incorporation of fluids into cement during implantation by measuring the compressive

Young's modulus and yield stress of cylindrical specimens. The specimens were

produced by hand mixing the cement with small quantities of blood, marrow fat,

saline solution and hydrogen peroxide solution, the last two being common lavage

fluids. It was found that all fluids lead to a significant reduction in compressive

properties. Interestingly, the effects of hydrogen peroxide were significantly greater

than the others. This may be due to a chemical effect on the cement polymerisation

reaction (hydrogen peroxide can be a free radical generator like the benzoyl peroxide

catalyst). Some mechanical properties of acrylic bone cements are summarised in

Table 2-6. Being a viscoelastic material, the "static" mechanical properties of bone

cement are dependent on strain rate. High strain rate tests emphasise the elastic

contribution to the mechanical behaviour. The assignment of bone cement to the

"brittle" class of materials is thus only strictly valid at high strain rates. Lee et a!.

(1977) have shown 50% increases in strength and elastic modulus at a strain rate of

1.8 s-' compared to "quasistatic" strain rates, but ultimate strain and energy absorbed

to failure decreased. The dynamic mechanical properties of bone cement are even

more sensitive to flaws than the static properties. Measures taken to reduce porosity

(e.g. centrifugation) are effective in increasing fatigue life at physiological strain

levels (Davies eta!., 1987). Some investigators suggest that fatigue failure of cement is

more dependent on crack propagation than crack initiation and consequently that the

average molecular weight is important in controlling fatigue strength (Wright and

Robinson, 1982). Pal and Saha (1982) showed that surgical grade PMMA cement

subject to 1% compressive strain showed stress relaxation of 24% in 8 hours. Creep
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deformation under a constant compressive stress of 10.5 MPa produced 55-70 % creep

strain in 24 hours.

Cement adheres very poorly to most materials, including metal implants. However,

special surface treatment of the implant with silane coupling agents and subsequent

coating with a thin layer of PMMA during manufacture has been used to promote the

adherence of the in situ cement layer. The effect of bonding conditions at the

prosthesis-cement interface is still a subject of discussion with regards to its role in

transmitting stresses and as a source of wear debris. Harris (1992a) suggests that

measures should be taken to promote firm bonding of the femoral stem to the cement,

whereas Ling (1992) favours a smooth (unbonded) tapered stem to accommodate

cement creep. Weightman et a!. (1987) found little evidence for cement creep in tests

of femoral prostheses fixed with PMMA (CMW) cement, but significant creep when

using an acrylic formulation incorporating butyl methacrylate monomer. Verdonschot

and Huiskes (1994) showed that under physiological conditions creep of PMMA

cement (Simplex P) was possible and that a femoral prosthesis could subside without

cement cracking. McKellop et a!. (1994) showed with a finite element model that a

debonded interface increased the stresses at the stem cement interface.

2.3.4.2 Alternatives to PMMA

Alternative acrylic cement formulations to PMMA exist, for example PEMA

(polyethylmethacylate) and PMMAIPBMA (polybutylmethacrylate) copolymers. These

cements have improved resistance to fracture, but lower stiffness, strength and creep

resistance (Weightman et aL, 1987). Typically these cements are also less exothermic

on curing and the monomer is less toxic. Several bioactive cements are in development

with the aim, as with hydroxyapatite coatings, of achieving direct bone bonding. The

cured cements are either inorganic monoliths or polymer matrix composites with a

bioactive reinforcing phase. An example of the former type is that formed by the

reaction of CaO-Si02-P205-CaF2 glass powder and ammonium phosphate solution to

form initially calcium ammonium phosphate hydrate (CaNH4PO4•H20) which then

further reacts to produce a hydroxyapatite-like material (Nishimura et a!., 1991). The

polymer matrix composite materials may consist of an acrylic matrix reinforced with a

similar glass powder (Kawanabe eta!., 1992).
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2.4 Failure of Cemented Joint Replacement

The cemented total hip replacement, by the standards of any surgical procedure, is

tremendously successful and has been called the "operation of the century". The

incidence of early problems, such as fracture of the stem and deep infection, has been

reduced to low levels by improvements in materials and aseptic techniques

respectively. The infection rate at Wrightington Hospital, for example, dropped from

2.2% in the period 1963-1965 to 0.5% in the period 1989-1992, due to a combination

of clean air systems and antibiotic prophylaxis (Howorth, 1993). The reasons for these

problems are well understood and therefore they can be minimised. The remaining

failures are longer term and more complex in origin and are generally referred to as

"aseptic loosening". The process is characterised by the formation and progressive

thickening of a Continuous fibrous layer, bone resorption and ultimately migration of

the prosthesis and clinical failure. Recent work suggests, however, that all prostheses

migrate from "day one", but it is those that show early, rapid migration that eventually

require early revision (Freeman and Plante-Bordeneuve, 1994; Kärrholm et aL, 1994).

One of the most comprehensive and hence valuable follow-up studies of clinical failure

of cemented total hip arthroplasty is that reported by Ahnfelt et al. (1990) and

Malchau et a!. (1993) which records all re-operations after total hip replacement

carried out in Sweden from 1979-1986, a total of more than 92,675 primary total hip

replacements. The study used the survivorship analysis of Kaplan and Meier (1958)

which seems to have become the de facto technique in recently reported follow-up

studies. Principally evaluated were the influence of implant and patient related factors

on revision rates. Clearly demonstrated was that aseptic loosening was the major

reason for revision in all patient groups and that improvements in surgical technique,

cementing technique and selective use of implants that had previously proved to be

well designed had reduced the revision rate. Overall, a revision rate of approximately

10% after 10 years was reported. In general, an increased risk for revision due to

aseptic loosening was shown for the younger patient. This has been a finding common

to many long term reviews, as reported by Morscher (1992). Other notable risk factors

for early loosening are higher than average body weight (Schurman et a!., 1989) and

certain diagnoses, e.g. rheumatoid arthritis (Ahnfelt et al.,1990; Malchau et al.,1993).
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Since the first long term clinical reviews (e.g. Chamley, 1979), loosening of the

acetabular component of cemented hip arthroplasty has been recognised as a significant

failure mode. Charnley's study, which was the 12-15 year follow up of conventional

Charnley cemented total hip replacements carried out between November 1962 and

December 1965, cemented sockets were classified according to clinical result and

radiographic appearance. Few of the original 396 were revised for aseptic loosening of

the socket. Radiographic appearance was classified according to the following scheme:

grade I represented perfect acceptance of cement with no demarcation of the radio-

opaque bone cement from the bone of the acetabulum, grade II represented slight or

moderate demarcation, grade III severe demarcation and grade IV migration. The

incidence of each is shown in Table 2-7.

Table 2-7: Radiographic evidence of socket condition

Grade NumberofSockets %ofTotal(115)

I	 47	 41

II	 39	 34

III	 16	 14

IV	 13	 11

Despite the variable radiographic appearances all these 115 patients had excellent

clinical function. More worrying was that demarcation accelerated with time and that

those sockets with poor radiographic appearance were probably potential failures.

Severe demarcation and eventually migration represents loss of bone stock, which

makes revision surgery more difficult, so a conflict arises as to whether a "pre-

emptive" revision operation should be performed on the basis of the radiological

evidence even though the patient may still have clinically good function.

Schulte et al. (1993) presented results of cemented Charnley hip arthroplasties after a

minimum follow up period of twenty years (Figure 2-18).
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Figure 2-18: The survivorship of hip replacement components.
(Shulte et al., 1993)

The curves show the probability of retention of the original prosthesis on the y axis against time
in years on the x axis. Radiographic evidence of definite or probable loosening of the femoral

component or aseptic loosening confirmed at revision (a) and radiographic evidence of definite
or probable loosening of the acetabular component or aseptic loosening confirmed at revision (b)

were the endpoints. The dotted lines represent 95% confidence levels.

Their results demonstrate the rate of acetabular loosening, whether judged by

radiographic evidence, or confirmed at revision, was 2 to 3 times that of the femoral

component. Wroblewski (1986) reported that in three major series, the incidence of

acetabular loosening as determined radiographically was 22-25% after 10 years.

Significantly, it can also be seen that very long periods of follow up are needed to

0.2
0
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demonstrate any notable effects of improvements in technique with follow-up studies

using either clinical, or conventional radiographic assessment

However, recent studies have used a special radiographic technique, Röntgen

stereophotogrammetric analysis (RSA) to enable accurate measurements in three

dimensions of the position of implants within the body. The positional accuracy of this

technique is claimed to be 10-250 pm. RSA is thus sensitive enough to be suitable for

the analysis of implant stability under load and with respect to time (migration), non-

invasively in vivo (Selvik, 1989). Significantly, there is evidence that the early

migration of implants in bone is correlated with and therefore may predict clinical

survivorship. This has been shown with relatively long periods of follow-up (10 years)

by Grewal et a!. (1992) for knee prosthesis and in the shorter term (3 to 24 months

post-operatively) by Onsten eta!. (1993) for acetabular cup migration. Snorrason et a!.

(1993) have used RSA to evaluate several factors affecting the success of hip

replacements with cemented acetabular components. They considered that detection of

early migration indicated an inferior bone cement interface and that the poor primary

fixation that this implied indicated that the fate of a cemented prosthesis might be

revealed in the first post-operative months. In support of this evidence are the studies

of Carlsson and Gentz (1984) and Hodgkinson et a!. (1988) who found that even

minor radiological defects in the cement bone interface appearing in the first post-

operative year lead to 35-40% radiological loosening after ten years. Although the

relationship between acetabular component migration in the early post-operative years

and later clinical loosening requiring revision is not quite clear, the RSA technique

shows great promise as a method of evaluation of implants and implantation techniques

in one or two years instead of the ten or fifteen of a clinical trial and with smaller

patient groups. With careful analysis and/or the assistance of computerised image

analysis, it even appears that some of these benefits can be realised with conventional

monoplane radiography (Stocks eta!., 1995), which has the additional benefit of being

applicable retrospectively.

Improvements in cementing technique have led to a valuable increase in the

survivorship of cemented hip replacements (Malchau and Herberts, 1996).

Hodgkinson et a!. (1993) reported an improvement in post-operative radiological

appearance of the cement-bone interface with flanged compared to unflanged cups

63



which was reflected in the radiological appearance at 10 years where 43% of flanged

sockets showed no evidence of radiolucency as against 30% of the unflanged group. It

is clear then that aseptic loosening, in particular of the acetabular component, makes

the most significant single contribution to the overall long term failure rate of cemented

total hip replacement.

2.4.1 Causes of Aseptic Loosening

It is likely that the process of aseptic loosening is the result of a combination of factors,

the importance of each depending on the particular prosthesis design and technique of

insertion. Huiskes (1993) has recently defined a series of "failure scenarios", which are

helpful in attempting to classify the potential failure processes of total hip replacement.

Classification of the scenarios that are probably most relevant to the cemented total hip

replacement, particularly the acetabular cup, are:

(i) The "accumulated damage scenario", where the cement-bone interface eventually

falls as a result of the mechanical stresses placed upon it.

(ii) The "implant-reaction scenario". In this case wear particles from various sources

stimulate the resorption of bone at the cement-bone interface.

(iii) The "bone adaptation scenario". The bone response to the changed stress

patterns causes bone hypertrophy in highly stressed areas and resorption in areas

of low stress.

(iv) The "destructive wear scenario". This is the "simple" case of mechanical wear of

and eventually loss of continuity of the bearing surfaces. This is an important

materials problem, since it represents the limiting lifetime of all types of

prosthesis, but will not be considered further here.

There is some debate as to whether the "accumulated damage scenario" or the "implant

reaction scenario" relates most strongly to the acetabulum in cemented joint

replacement. Schmalzried et a!. (1992) emphasise the cellular response to UHMWPE

wear particles in the acetabulum and mechanical failure of the cement and cement-

prosthesis interface in the femur. However, the recent RSA studies have correlated

early migration rate and long term stability in both knee prosthesis (Grewal et a!.,

1992) and in the shorter term (3 to 24 months) in acetabular cups (Onsten et a!., 1993)
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Snorrason et a!. (1993) considered that detection of early migration indicated an

inferior cement-bone interface and that the poor initial fixation this implied indicated

that the long term prognosis of a cemented prosthesis might be revealed in the first

post-operative months.

2.4.1.1 Accumulated Damage

In the accumulated damage scenario two factors are important - the stresses at the

interface and the strength of the interface. High stresses and low strength (under static

or cyclic loading) contribute to more rapid failure of the interface. Stresses are to some

degree controllable by the surgeon, by the adjustments to hip biomechanics possible

during joint replacement, but mainly depend on the implant design and the materials

from which it is made (section 2.3) and patient related factors such as activity and body

weight. Interface strength, especially with cemented implants, depends to a great

extent on the skill of the surgeon and the surgical technique (Lee and Ling, 1984). In

the case of cemented joint replacements, two major factors are thought to contribute to

production of an interface with insufficient strength - surgical trauma and insufficient

contact/interlock between cement and intact bone (section 2.5).

The process of inserting an implant causes acute bone necrosis, due to damage to the

blood supply and the thermal and chemical effects of the bone cement. In post-mortem

studies of total hip replacement, Willert and Puls (1972), quoted in Feith (1975), found

a zone of necrotic bone and marrow up to 3mm thick around a cemented prosthesis a

few weeks after implantation. The mechanical processes of preparing the bone surfaces

for an implant can damage vascularisation which will lead to bone (cell) death. As with

any wound, there is an acute immune response during which macrophages and foreign

body giant cells proliferate. It has been shown that large numbers of active

macrophages are implicated in aseptic loosening and bone resorption.

Bone cement may cause tissue necrosis in two ways; by chemical toxicity or by heat

damage. Linder (1977) and Feith (1975) showed that, in rabbits, any necrotic effects

due to chemical trauma from the monomer were overwhelmed by the mechanical

damage due to the surgical procedure and thermal damage generated by the

polymerisation. It is well established that excessive heat can cause tissue injury. The
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temperature that the bone reaches during cement insertion depends principally on the

(time dependent) rate of heat generation in the cement and on the rate that heat is

transferred from source (the cement) to sink (effectively the bone and prosthesis),

mainly by conduction.

In the rabbit, Eriksson and Albrecktsson (1983) showed that the threshold temperature

for impaired bone regeneration was 44-47°C for 1 minute exposure. At higher

temperatures the threshold time decreases.

Temperatures at the "interface" between cement and bone have been measured in vivo,

by Meyer et al. (1973), with maximum temperatures of 70°C in the region of the lesser

trochanter, and in vitro by DiPisa et al. (1976) who recorded a very similar

temperature at the base of the "acetabulum" on insertion of a polyethylene acetabular

component into a temperature controlled glass model. Experiments of this type are

rather difficult to perform, since the cement bone interface is a poorly defined region in

which steep temperature gradients exist, making positioning of any temperature probe

crucial.

Huiskes (1980) tried to quantify thermal necrosis using a finite element model to

predict necrotic zones in the acetabulum. Time-temperature damage threshold curves

derived for epithelial cells by Moritz and Henriques (1947) were used in combination

with the results of an axisymmetric finite element model, to generate a "necrosis map"

(Figure 2-19). Lundskog (1972) showed that the response of epithelial cells to thermal

insult was substantially the same as bone cells (osteocytes).

Using a parametric finite element analysis of a cemented femoral prosthesis, Huiskes

(1980) predicted a significant increase in the maximal bone temperature with

increasing cement thickness. Revie et a!. (1994) similarly demonstrated in an

experimental study using polypropylene model acetabula that increasing the cement

mantle thickness leads to a higher "necrosis index", a damage criterion they defined

using similar time-temperature damage threshold curves to Huiskes. They also

demonstrated that cementation pressures (44 kPa) increased curing temperatures by an

insignificant amount, with a slight reduction in curing time. Suggested methods of

reducing the extent of thermal necrosis include varying the properties of the cement

such as the mixing ratio and constituents to modify the heat generating reaction
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(Meyer et aL, 1973; Feith, 1975; Huiskes, 1980), pre-cooling the cement and implants

to improve their efficiency as heat sinks (DiPisa et aL, 1976; Huiskes, 1980), pre-

cooling the bone (Huiskes, 1980) and reducing the quantity of cement used (Huiskes,

1980).

(a)	 (b)
FIgure 2-19: Thermal necrosis due to acrylic bone cement.

(a) necrotic zones after cup cementation, as predicted by finite element analysis, and (b) necrosis
thresholds as defined by Morltz and Henriques (Hulskes, 1980)

Immediately after prosthesis insertion, the tissues in contact with the implant consist

of necrotic and shattered trabeculae, structurally intact bone, tissue debris and blood

(Lee and Ling, 1984). Evidence suggests that, although intimate bone-cement contact

is possible, some fibrous interposition may be present from the start. The fibrous

tissue layer may be stable for a long period of time, but in some cases may grow

progressively and become extensive. It is probably also possible for the fibrous layer

to be partially eliminated by processes of metaplasia (Charnley, 1979), given suitable

mechanical conditions. Repair of the peri-prosthetic tissue occurs in the light of the

new mechanical environment. Living bone will continue with the normal processes of

remodelling and under appropriate mechanical conditions, dead bone can be

substituted by living bone (Ling, 1986). However, mechanical failure of the necrotic

bone may occur before this process is complete if static or cyclic stress levels exceed

the static or fatigue strength of the bone. Necrotic bone is less strong and stiff than

living bone and has lower fatigue strength (Carter et al., 1981). Should the necrotic

bone layer fail before it can be substituted by living bone or a layer of blood clot is

interposed between the implant and the bone, relative motion at the implant-bone

interface can occur. These movements, termed micromotion, can occur if an implant is

not rigidly mechanically coupled to the surrounding bone. Brunski et aL (1979) have

shown that a fibrous tissue layer forms around endosseous implants loaded after
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implantation, whereas direct or nearly direct bone contact can be achieved around non-

functional ones. It was proposed that the small amplitude relative motions

(micromotion) between implant and bone were the cause of fibrous tissue

encapsulation. Swanson (1977) suggested that low amplitude micro-movements are

acceptable provided that they do not steadily increase in amplitude with successive

load applications and do not lead to damage accumulation in the bone. Pilliar et a!.

(1986) have shown that micromotion greater than 150 tm is sufficient to prevent bone

ingrowth into porous coated implants in dogs. Securely fixed implants with bone

ingrowth showed micromotions less than 30 jim when mechanically tested after

sacrifice.

2.4.1.2 Implant Reaction and Wear

The dynamic coefficient of friction of a healthy animal joint is 0.002. For a typical

artificial joint combination of stainless steel on UHMWPE, the value of the dynamic

coefficient is 20 to 25 times higher (Black, 1988). In current artificial joints lubrication

mechanisms similar to the natural joint do not occur and friction and wear rates are

higher. Wroblewski (1985) measured the wear of high density polethylene acetabular

cups retrieved at revision. For cups retrieved when revision was due to a fractured

femoral component, the mean linear rate of wear was 0.12 mm year 1 (range 0.02 to

0.28 mm year 1 ). For other cases, including loosening of either component, the mean

wear rates were higher (mean 0.30 mm year 1 , range 0.07 to 0.52 mm year 1 ). The

direction of socket wear was quite variable in both the medial-lateral and anterior-

posterior planes. Pederson et a!. (1995) recently performed a retrospective

radiographic study of wear. Linear wear rates for both 22 and 28mm diameter heads

were similar to Wroblewski's study, but it was noted that volumetric wear rate for the

28 mm head was almost double that of the 22 mm head.

Wear of the acetabular cup results in the femoral head "boring" into the cup,

progressively restricting the range of movement of the joint and increasing the

likelihood of impingement of the femoral component and consequent shock loading of

the cup. However, the most serious consequence of wear seems to be the generation of

particulate debris. This debris can stimulate cells to resorb bone and form a thick

fibrous layer at the bone cement interface. In a cemented hip joint prosthesis there are
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several possible sources of wear debris: the articulating surface itself, the implant

cement interface, the bone cement interface and, increasingly with more modular

designs of prosthesis, the implant-implant interfaces. It has recently also been found

that metallic implants are covered in milligrams to tens of milligrams of particulate

debris from the manufacturing process "off the shelf', each milligram representing

more than one million particles (Merchant eta!., 1995).

The presence of cells thought to be active in bone resorption such as macrophages,

multinuclear giant cells and osteoclasts, together with particles of implant material has

been reported by many studies of fibrous membranes obtained at revision operations

(Schmalzried et a!., 1992; Revell et a!., 1997). In the laboratory it has been shown that

particles of many materials, including PMMA, polyethylene and titanium, can trigger

processes which culminate in bone resorption, but the mechanisms by which the

particles provide the stimulation and the predominant paths to bone resorption around

an implant are still debated. Yao et a!. (1995) have shown by challenging osteoblast-

like cells in culture with a variety of materials (commercially pure titanium, silver,

polystyrene) and particle sizes, that particle size, at least for this type of cell, is more

significant than composition. Small particles (1 j.tm) suppressed collagen expression by

their cells, whereas larger particles (20 jim) had no effect, compared to controls. This

effect was independent of material They suggested that since osteoblast collagen

synthesis is vital in bone formation and remodelling, it is possible that wear debris is

detrimental to the bone repair process and that suppression of this function by wear

debris might be an important contributor to loosening. Similarly, for human

macrophages challenged with PMMA particles, Gonzalez et a!. (1995) showed that no

proliferative cell response occurred, but the size and the dose of particles were

important in determining macrophage release of cytokines and lysosomal enzymes.

Non-phagocytosable particles (200 .tm) had little effect on release of these factors.

2.4.1.3 Bone Adaptation

The shape and mechanical properties of a mature bone are governed by a combination

of genetic and developmental factors and the loading history of the bone. Under

normal conditions, the rate of bone deposition and repair matches the rate of bone

resorption and fatigue damage accumulation and no net change in bone morphology is

observed, although continual bone turnover occurs. Should the mechanical demands
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made on a bone alter, as for example when a prosthesis is implanted, the bone has the

capacity to adapt its structure in response. According to the theory of adaptive bone

remodelling ("Wolff's Law") bone responds to its mechanical environment by

depositing material in areas that are highly stressed and resorbing material in areas that

are less stressed. This may be manifested as external modelling, characterised by new

bone formation at the cortical surface, or internal remodelling, involving a change in

density of the cortical or trabecular bone and possibly rearrangement and change in the

orientation of trabeculae. Stress shielding, or stress protection, occurs where areas of

bone experience much lower stresses when an implant is introduced than in the normal

case. According to Frost (1992), the biological response of bone can be divided into at

least four "fuzzy" windows, depending on the level of mechanical usage. These are

classified as the "disuse" window, the "adapted" window, the "mild overload" window

and the "pathologic overload" window, depending on the relationship between the

actual bone strain and the bone failure strain (Figure 2-20). Normally bone is in the

"adapted" window, but the introduction of a prosthesis changes the mechanics of the

bone and will most likely shift the response. In the pelvis the articular cartilage and at

least some of the subchondral bone layer of the acetabulum are replaced by a relatively

thick polyethylene cup and bone cement layer. The subchondral and trabecular bone

then experiences an altered mechanical environment (Dalstra, 1993). The effects of

adaptive bone remodelling are probably less significant in the acetabulum than in the

femur, where much stiffer and bulkier implants are used and the insertion of an

intramedullary device represents a greater departure from the normal situation. In any

case clinical evidence for implant failure directly attributable to adaptive bone

remodelling is lacking, although change in stress patterns in bone after implantation is

certain.
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FIgure 2-20: The "windows" of bone response to mechanical stimulus.
(Frost 1992)
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2.5 Aspects of Fixation with Acrylic Bone Cement

In view of the late complications of cemented acetabular cups and the suspected role of

quality of initial fixation in long term success, recently supported by RSA studies, there

is surprisingly little work on the strength and stability of entire acetabular

reconstructions, as compared to that on the strength of the bone cement interface, and

how it is best achieved. Much of the recent work concentrates on cementless fixation

methods. In one of the earliest studies Andersson et al. (1972) examined the strength

of the bone-prosthesis bond in the acetabulum with reference to the technique of

surgical preparation. Compressive loads up to 3920 N were maintained perpendicular

to the acetabular mouth while a torsional moment (torque) was applied to the cup and

the torque at failure recorded. Overall, providing cartilage was removed, but the

subchondral plate preserved and the acetabular fossa thoroughly cleaned, failure torque

was considerably greater than 100 Nm. The eventual failure was always between

cement and bone, and fragments of bone often remained attached to the cement. If the

compressive load was increased, the failure torque was similar, but if greatly reduced

or removed the failure torque was reduced by about 50 %. Anchoring holes appeared

to have only a small effect when a compressive normal load was present, although the

results of Chen et al. (1974) showed somewhat higher torsional strengths than

Andersson et a!. despite using a purely torsional test. Oh (1983) has shown in a model,

again with purely a torsional load, that in the absence of other fixation, distributed

small anchoring holes provided a torsional strength of up to 157 Nm. Many small holes

were more effective than fewer, larger ones as more cracks would need to be

nucleated and propagated before failure. Volz and Wilson (1977) also performed a

torsional test that did not include a compressive load. Acetabula prepared by reaming

with preservation of subchondral bone showed failure at an average torque of 33 Nm,

rising to 43 Nm if the cup was fully seated with the cup rim flush with the mouth of

the acetabulum. In the latter case the failure torque was calculated to correspond to

shear stresses at the bone cement interface of 0.8 MPa. Failure torques were

lower than the comparable results of Andersson et aL, but discontinuities in the

load time curve were used to identify failure rather than the sudden increase

in rotation of Andersson et a!. Removal of the subchondral plate and
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the use of anchoring holes was associated with an increase in the failure torque to 70

Nm if the cup was fully seated and 50 Nm if not. For the former the corresponding

shear stress was 1.3 MPa. This probably reflects the higher shear strength of an

interface between cement and cancellous bone as compared to an interface with

cortical or sclerotic subchondral bone, but the absence of compressive perpendicular

load resulted in the role of the subchondral plate in resisting compression being

ignored. Ohlin and Balkfors (1992) studied the failure torque of cemented cups

retrieved at autopsy after 3-14 years of implantation and compared these with freshly

cemented sockets in cadaver bones. Failure moment in the two groups was 80 and 86

Nm respectively, a similarity that surprised the authors. In contrast to Andersson et a!.,

failure was not restricted to the cement bone interface - failure between socket and

cement and cracks within the cement were universally observed.

Considering the micromotion between implant and bone, Perona et a!. (1992) have

measured that between cup and peri-acetabular bone for various uncemented and

cemented implants. They applied loads stepwise between 0 and 2354 N in an

anatomical direction to cups fixed in cadaveric acetabula, measuring the resulting

micromotion at the ilium, ischium and pubis. Cemented cups showed by far the least

micromotion, the direction of which was inconsistent - the cups sometimes displacing

supero-laterally and sometimes supero-medially. Micromotion was mainly evident at

the ilium (range of-31 to 131 .tm at maximum load) and pubis (-6 to 67 Rm) and much

reduced at the ischium (-23 to 11 .tm). This data matches reasonably well the stress

distributions in the analysis of Daistra (1993).

2.5.1 The Strength of the Bone-Cement Interface

In vivo the cement bone interface at the acetabulum is predominantly subjected to

mixed mode compression and shear loading. In most situations compression testing of

interfaces is not particularly useful since even a completely unbonded interface will

support compressive loads up to the compressive failure strength of the weakest

material. Hence tensile and shear tests are usually employed. Tensile tests are

sensitive to interface conditions and, unlike some shear tests, the interface is not

isolated so the whole cement-bone region is therefore tested. The results of interface

shear strength testing of implants tend to divide the bone-implant combinations into
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three groups; those surrounded by fibrous encapsulation with shear strength of less

than 1 MPa, those tolerated by the host bone with shear strengths of 3-10 MPa and

those that produce a vital bond with bone with shear strengths up to 60 MPa (Tanner,

1994).

The goal of modern cementing techniques is to enhance the fixation of implants by

improving the strength of the cement and the bone-cement interface. Elevated pressure

during curing may help to reduce porosity of cement (Bayne et a!., 1975), which

improves its mechanical properties (Davies et a!., 1989). Intrusion of cement into

cancellous bone by cement pressurisation has been shown in vitro to give the bone

cement interface higher tensile (Krause et al., 1982a; Eftekhar and Nercessian, 1988;

Kuivila et a!., 1989; Mann et a!. 1997) and shear strength (Krause et a!., 1982a;

Lavernia et a!., 1988; Ober et a!., 1989). For a cancellous bone-cement interface

loaded in tension, penetration of the bone cement to less than a certain depth (related

to the mean cancellous cell size) will result in failure by pull out of the cement "fingers"

from the bone (Askew et a!., 1984, Krause et al., 1982a). Penetration deeper than this

threshold level results in interdigitation of the cement into the bone which leads to

failure of the bone itself. For an interface between bone cement and low to medium

density, reasonably homogeneous cancellous bone, there will thus be an optimum

penetration depth for achieving maximal interface strength. Askew et a!. (1984)

suggested that the optimal depth is 4mm. In trabecular bone of high density failure in

the bone cement can occur; it should be noted that pelvic trabecular bone is fairly low

density (Dalstra et at., 1993).

While pressurisation of cement into cancellous bone has been shown to increase the

strength of the bone cement interface, usually (depending on surgical technique) only

part of the reamed acetabular surface is cancellous, although fixation holes may be

drilled through the subchondral plate near the rim to expose cancellous bone. Data

concerning the strength of interfaces between non-cancellous surfaces and acrylic

cement is scant. Balu et a!. (1994) measured the shear strength of the bone-cement

interface formed within sections of femoral diaphyses. The interfacial shear strength for

un-reamed femoral sections was of the order of 3 MPa. Intramedullary reaming with

conical reamers was found to significantly reduce the interfacial shear strength by
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reducing the roughness of the endosteal surface, emphasising the role of mechanical

interlock.

2.5.1.1 Variables Controlling Cement Penetration into Cancellous Bone

A freshly cut surface of viable cancellous bone consists of a mixture of exposed

trabeculae, bone marrow, bone debris from the surgical preparation and blood. For

bone cement to intrude into the cancellous spaces, the pressure applied must be

sufficient to overcome the viscous resistance of the cement to flow into the cancellous

spaces, to displace any marrow, blood and debris and to overcome the bleeding

pressure of the bone. Provided cement can be made to penetrate the cancellous bone,

the cement and bone are joined by a composite layer composed of a continuous cement

phase reinforced with bone trabeculae.

Noble and Swarts (1983) studied the penetration of acrylic bone cements into

cancellous bone plugs completely cleaned of fat, debris and soft tissue, in order to

evaluate the relationship between osseous structure and cement penetration. Here

resistance to flow arises purely from the viscous interaction of the fluid bone cement

and the cancellous bone. The bone samples were then orientated in a mould so that

bone cement was introduced with trabecular orientation parallel to the applied pressure

gradient. The relationships between depth of penetration and cement formulation and

bone structure were independently evaluated for a constant applied pressure of 35 kPa.

A fairly strong linear relationship (correlation coefficient 0.83-0.94) was observed for

the increase in depth of penetration with increase in cancellous cell volume. Penetration

depth was not found to be strongly related to porosity. This suggests that, at least for

significantly anisotropic specimens and within a narrow range of porosity, the

geometry and orientation of the cancellous cells relative to the applied pressure

gradient is more important than their absolute volume.

The relationship between penetration depth and porosity for cancellous bone of human

and bovine origin over a wide range of porosity has been studied by Rey et al. (1987).

The specimens were also dried and defatted, but were not deliberately orientated in any

particular material direction. Their data did show a strong relationship between

porosity and cement penetration depth.
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Recently Beaudoin et al. (1991) developed a micromechanically based model of

polymethylmethacrylate flow in cancellous bone, defining a trabecular bone "unit cell"

which was then used to generate a finite element modeL The geometry of the model

could be manipulated to simulate the various morphological parameters such as

porosity, trabecular spacing and surface to volume ratio, enabling parametric studies.

Increasing depth of penetration was strongly related to reducing surface to volume

ratio. This was broadly consistent with the relationship between cancellous cell volume

and penetration observed by Noble and Swarts. The model was also able to predict the

relationship between porosity and penetration depth observed by Rey et a!. The results

of these three studies are summarised in Figure 2-21.

Several authors have studied the relationship between cement properties and cement

penetration. The significant property of cement in this respect is its viscosity, which in

turn is related to formulation, mixing and handling techniques. The viscosity of several

acrylic bone cements has been studied by Krause et al. (1982b). They found that the

rheological behaviour of bone cements in the implantation "time window" was that of a

non-Newtonian pseudoplastic fluid and that the dependence of the viscosity function

on strain rate and time could be described by a time dependent power law type

expression. Highly significant differences were found between different cement

formulations.

Noble and Swarts, in their study of cement penetration in dried bone, found that

penetration decreased linearly with increase in the cement viscosity as measured at

50% of final penetration depth.

Where marrow and fat are present, they must be displaced by the bone cement,

preferably without entrainment, such that penetration can be achieved. Efforts are

usually made to remove fat and marrow from the prepared cancellous bed during

surgery by brushing and/or pulsatile lavage. This bone preparation has a highly

significant effect on cement penetration (Askew et a!., 1984) and hence interface

strength (Halawa et al., 1978; Krause eta!., 1982a).

Bone, like any other vascularised tissue, bleeds when damaged. Shelley and

Wroblewski (1988) simulated the effects of a blood pressure of 25 mmflg (3.3 kPa) on

cement penetration in a model acetabulum and found that, on release of pressurisation,

this was sufficient to displace cement even 5 minutes after insertion.
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Figure 2-21: Cement penetration into cancellous bone.
(a) Cement penetration as a function of cancellous cell volume for two types of bone cement
(Noble and Swarts, 1983); (b) Cement penetration as a function of porosity as predicted by

F.E.A. (Beaudoin et a!., 1991); (c) Cement penetration as a function of porosity (Rey et a!., 1987).

2.5.1.2 Pressures Required to Achieve Penetration

The level of pressurisation needed in practice to achieve the "required penetration" has

recently been studied in vitro by Juliusson et a!. (1994). Femoral heads obtained at

arthroplasty were drilled to simulate the anchoring holes commonly made intra-

operatively in the subchondral plate of the acetabulum, thoroughly cleaned by

pulsatile lavage and cement introduced via a cement gun with a special silicone

elastomer nozzle to avoid cement leakage at the periphery. The duration of

pressurisation was between 20 and 60 seconds. In this study the effects of blood

pressure were not modelled, although a later study from the same group did include

this (Juliusson et al, 1995). In this case it was found that cement pressures
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approaching 0.3 MPa were needed to achieve penetration of 4 mm. No correlation was

found between penetration and duration of pressurisation.

2.5.2 Intra Operative Pressurisation of Bone Cement

Two separate modes of cement pressurisation can be envisaged (Spierings, 1993); a

closed system in which a hydrostatic pressure is developed by use of a suitable device

(Figure 2-22(a)) and an open system as achieved for example on cup insertion (Figure

2-22(b)). The closed system has the obvious difficulty of achieving an efficient seal

between the pressurising device and the rim of the acetabulum, especially in view of

the highly irregular geometry of this region. In the open system pressure gradients are

produced in the cement by the resistance to flow of the cement itself.

(a)	 (b)

FIgure 2-22: Approaches to cement pressurisation.
(a) Pressurisatlon of a closed system and (b) pressurisatlon In an open system.

(Splerings, 1993)

In the routine method of cup fixation, insertion of the cup into the prepared

acetabulum causes cement to pour out around the periphery of the cup. Flow of

cement is indicative of failure to achieve hydrostatic pressurisation.

The pressure developed on insertion of acetabular cups of varying design has been

studied by Oh et a!. (1985), Shelley and Wroblewski (1988) and Beverland et a!.
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(1993). Oh et a!. compared the effect of four types of cup with differing flange designs

on pressures measured in the lower portion of a model acetabulum. The results showed

a trend for higher pressure under cups with more complete flanges which reflects the

increased resistance to escape of the liquid cement at the periphery provided by the

flange. However the cups were inserted by a materials testing machine operating in

stroke control and unrealistically high insertion forces were produced on inserting, in

particular the continuous flanged cups (forces approached 2500 N). Shelley and

Wroblewski compared the peak pressure generated at the pole of a model acetabulum

for the Charnley "ogee" cup and a scalloped cup when inserted under a constant load

of 78 N. The unflanged socket produced a peak pressure of 5.9 kPa, the ogee

socket 23.7 kPa. Beverland et al. (Figure 2-23) found that insertion of an unflanged

cup produced a higher pressure (measured at a similar location to Shelley and

Wroblewski) than the flanged cup (insertion force 98 N). This was attributed to the

trimmed flange making sufficient contact with the acetabular wall to oppose the

insertion force. Under a custom designed acetabular cup the cement pressure was still

higher. The pressures measured in all cases were notably higher than those reported by

Shelley and Wroblewski.

A Standard

o 20 40 60 80 100 120 140 160 I

Time

I

Figure 2-23: Cement pressure-time curves during acetabular cup insertion.
(Beverland eta!., 1993)

Several devices are on the market that aim to improve pressurisation in the

acetabulum. All rely on the use of a compliant material/structure to attempt to seal the

irregular edge of the acetabulum while allowing sufficient displacement to pressurise

the bone cement. The Exeter pressuriser is basically a silicone elastomer balloon

attached to a handle that enables saline solution to be driven into the balloon to
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expand it against the rim of the acetabulum and hopefully occlude irregularities.

Subsequently, owing to the deformabifity of the balloon, load applied to the handle

results in pressurisation of the cement. Lee and Ling (1974) evaluated the pressuriser

by measuring the pressure produced in bone cement in real acetabula at a point

between the centre of the cross sections of the ilium and ischium. Typical results

showed a peak pressure of the order of 100 kPa and maintenance of the pressure above

35 kPa was achieved for a significant time (1½ to 2 minutes). When bone was

dissolved away from cement, the acetabula in which the pressuriser had been used

showed superior interdigitation of the cement.

The Oh-Harris pressuriser uses a silastic seal, shaped so its surface approximates to the

rim of the acetabulum, attached to a gun with an advanceable plunger to apply pressure

to the contained cement once the seal has been established. In tests using PMMA

cement 3½ minutes from mixing (Oh et a!., 1983), pressures of 113, 120 and 149 kPa

were measured at pressure transducers located in the ilium, ischium and base of

acetabulum respectively. This was compared to finger packing where pressures were

53, 8 and 23 kPa for the same locations. Interdigitation of cement was noted similar to

that seen by Lee and Ling (1974).

2.5.2.1 Side Effects of Cement Pressurisation

Some side effects have been reported with cement pressurisation additional to those

attributable to the PMMA bone cement itselL These are mainly cardiovascular

problems due to reaction of the circulatory system to emboli produced by air, fat and

marrow squeezed into the blood stream by the bone cement (Wenda eta!., 1988).

2.5.2.2 Alternative Techniques to Produce Cement Penetration

Somville et a!. (1987) described in vitro evaluation of a technique in which cement was

injected behind a flanged acetabular cup temporarily held in position by screws.

Pressure measured during injection showed peaks up to 140 kPa.

Draenert (1989) has demonstrated a vacuum technique designed to improve cement

penetration and reduce the risk of complications associated with cement

pressurisation. The technique involves sealing the iliac segment of the acetabulum by

the application of a silicone elastomer capped cement delivery tube and applying a

79



vacuum via a hole drilled above the supero-lateral edge of the acetabulum. The vacuum

helps to remove blood and marrow from the iliac region of the acetabulum and to draw

cement into the cancellous spaces. No figures were given to demonstrate improved

cement intrusion.
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3. Acetabular Cement Pressurisation During Total Hip

Replacement

3.1 Rationale

Although in vitro studies have demonstrated the efficacy of some pressurisation

devices (Lee and Ling, 1974; Oh et al., 1983), per-operative control of cement

pressurisation in the acetabulum remains difficult due to the acetabular anatomy, in

particular the discontinuity of the acetabular wall under the transverse ligament, the

cotyloid notch. Two series of laboratory investigations have been conducted into the

efficacy of cement pressurisation techniques in the acetabulum. Initially ("Machine

Control"), a universal testing machine was used to compare cement pressurisation by

the insertion of an acetabular cup of typical design and a novel design of cement

pressuriser. However, it became apparent that although these controlled tests were

useful, because they eliminated the influence of the surgeon and the particular surgical

technique employed, they created a somewhat unrealistic situation. It has been shown

that the expertise of the surgeon who performs the operation is one of the most

important determinants of the success of an arthroplasty procedure with a given

implant. Thus, in subsequent comparative studies of cementing techniques, reported as

"Manual Control", an experienced orthopaedic surgeon was employed to perform

simulated operations in the laboratory. Two digital cement packing techniques - "finger

packing" and "hand packing", cup insertion, the pressuriser described in "Machine

Control" and two further novel pressuriser designs were compared, together with an

existing commercial device, the "Exeter" pressuriser (Howmedica, Park Royal,

London, U.K.). Finally, per-operative measurement of cement pressure is described,

obtained using an instrumented version of one of the devices described in section 3.2.

In addition to providing validation of the laboratory methods, these measurements

provide useful feedback to the surgeon and demonstrate the efficacy of the particular

design of cement pressuriser in vivo. An additional goal in the long term is to elucidate

the role of cement pressure on acetabular fixation.
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3.2 Laboratory Studies

3.2.1 Introduction

3.2.1.1 Machine Control

The pressuriser used in this series is a new device, designed by Dr F.P. Bernoski of

Weisteinde Zieckenhuis, Den Hague, The Netherlands (Figure 3-1). It consists of a

moulded silicone ela.stomer head shaped to occlude the mouth of the acetabulum, with

a flap to cover the cotyloid notch. The pressuriser head contains a peripheral

reinforcing ring which is attached to a handle to position the device in the acetabulum

and apply a sealing force (Figure 3-la). The handle incorporates a central plunger,

which is designed to be advanced once a seal has been achieved to displace the central

diaphragm of the head and hence generate pressure in the cement (Figure 3- ib).

Pressuriser Head

To Handle
______	 0'

Plunger

Flap to B1k	 Reinforcing Ring
Transverse Ligament
Notch

(a)	 (b)

FIgure 3-1: Schematic of the Bernoski cement pressuriser.
Shown (a) prior to and (b) after the application of the pressurisation force.

The machine control tests had two alms:

1. To compare the duration, distribution and magnitude of the pressure generated by

insertion of an acetabular cup and the new cement pressuriser.

2. To determine the effect of cement leakage through the transverse ligament notch

on the pressure attained and the efficacy of the flap in preventing this leakage.
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3.2.1.2 Manual Control

The purpose of the second series of tests was to evaluate acetabular cement

pressurisation in vitro under conditions similar to those in a real operation. Clinically a

variety of finger packing techniques, insertion of an acetabula.r cup with a cement

restricting flange and/or various pressurisation tools may be used. Two prototype

designs of pressuriser developed at the Unit for Joint Reconstruction in conjunction

with DePuy CMW (CMW Laboratories, Blackpool, U.K.) were compared with an

established device, the Exeter pressuriser, and the new ("Bernoski") pressuriser tested

with machine controL Further comparisons were made with two manual techniques,

the first in which the adducted fmgers of one hand are pressed against cement and

acetabular rim with the other and the second in which the cement is simply finger

packed, and with insertion of a flanged acetabular cup (DePuy International, Leeds,

U.K.). The first of the new devices (UJR 1) aims to create a closed, cement filled space

within the acetabulum by means of a compliant elastomer seal, similar in principle to

the Exeter and Bernoski devices although using different design features to achieve the

seal (Figure 3-2).

Positioning handle
_..._- Pushing handle

Silicone rubber
pressuriser head

Lip of tear dip Cotyloid notch

Figure 3-2: Schematic of UJR 1.

The second device (UJR 2) attaches to a standard cement gun to allow cement to be

pressure-injected into the acetabulum. It incorporates a trimming aid from an "Ogee"

flanged acetabular cup (DePuy International, Leeds, U.K.), which may be trimmed to

fit the particular acetabulum into which the cement is introduced (Figure 3-3).
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Figure 3-3: SchematIc of UJR 2.

3.2.2 Methods

3.2.2.1 Machine Control

The acetabulum of a "Sawbones" hemi-pelvis (Sawbones Europe AB, Malmö,

Sweden) was reamed to a hemispherical shape 54 mm in diameter. Two pressure

transducers were mounted, one (model 4045A, Kistler Instruments Ltd, Hartley

Wintney, U.K.) at the pole of the acetabulum and the second (EPX series, Entran Ltd,

Watford, U.K.) in the ilium approximately 10 mm from the acetabular rim.

Temperature coefficients of sensitivity and zero drift were less than 2% per 55°C and

less than 2% of full scale per 55°C respectively for the Entran transducer and less than

1% and 0.5% of full scale for the Ki.stler transducer. Given the small temperature

changes in the cement during the pressurisation period as compared to the peak

temperatures during cure and the temperature compensation of the transducers, the

error due to thermal effects during pressurisation was assumed to be negligible. The

sensing membrane of the Kistler transducer was larger (10.5 mm diameter) than the

Entran transducer (3.5 mm diameter) and it was for this reason that the Kistler

transducer was placed at the pole of the acetabulum where the pressure is more

uniform uniform over a wider area. A photograph of the instrumented model with the

Bernoski pressuriser approaching the acetabular mouth is shown in Figure 3-4.
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Figure 3-4: The instrumented model acetabulum with the Bernoski device.

The hemi-pelvis was mounted in a vice fixed to the lower table of a servo-hydraulic

materials testing machine (ESH Testing Ltd, Brierley Hill, U.K.) with the mouth of the

acetabulum horizontal. The pressure transducers and the outputs of the materials

testing machine were connected to an IBM compatible PC (PC2286/40, Amstrad PLC,

Brentwood, U.K. with Microsoft DOS 5.0 operating system) running specially written

software via an analogue-to-digital converter card (AD 1200, Brainboxes, Liverpool,

U.K.), sampling at 20 Hz for each input, to allow near-continuous recording of

pressure, force and actuator displacement. Boneloc bone cement (Polymers

Reconstructive A/S. Farum, Denmark) was mixed in the Boneloc "Vacuum Pac"

mixing system and delivered to the acetabulum with the dedicated applicator gun,

according to the manufacturer's instructions. Although Boneloc cement has been

withdrawn from the commercial market because of problems with subsidence of

femoral stems, attributed to creep of the cement (Thanner et a!., 1995), its handling

characteristics in the post mixing phase are similar, at least qualitatively, to

conventional PMMA cements, particularly the lower viscosity cements such as CMW

3. Four minutes after mixing the cup was inserted or the pressurisation started. All

tests were carried out at a laboratory temperature of 2 1±1°C and humidity of 40±15%,

both measured within 0.5 m of the apparatus. Three groups each of three tests were
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performed, using the following to pressurise the cement:

1. An acetabular cup (Ultima UHMWPE Cup; Johnson & Johnson Orthopaedics,

New Milton, U.K.) size 54 mm. This has a 50 mm diameter body, to allow a 2 mm

cement mantle, a 53 mm diameter flange, to allow a 0.5 mm peripheral gap for

cement extrusion, and PMMA spacers to prevent bottoming out.

2. The pressuriser without flap closing the acetabular mouth.

3. The pressuriser with flap closing the acetabular mouth and covering the acetabular

notch.

In each case the cup or the central plunger of the pressuriser, as applicable, was

pressed into the acetabulum by the testing machine, operating in load control mode

with a constant force of 210 N applied, thus providing a controlled simulation of the

action of a surgeon during an operation. The orientation of the apparatus was such that

the cup was inserted with the flat face parallel to the mouth of the acetabulum. In the

case of the pressuriser tests, the reinforced upper rim of the pressuriser was clamped to

the acetabulum with a force of 100 N. This simulated the force applied by the surgeon

via the metal reinforcing ring by the cup pressuriser handle when used clinically. These

forces were considered to be representative of the maximum forces applied per-

operatively after experiment with a pusher and weighing scales.

3.2.2.2 Manual Control

A "Sawbones" hemi-pelvis was again used, but this time the reaming was carried out to

achieve a more realistic shape representative of a surgically prepared arthritic

acetabulum, with less deepening of the acetabulum and hence a larger radius of

curvature than the model described above. The acetabulum was fitted with the pressure

transducers described above, in similar positions to the machine control series, and

connected to the same monitoring and recording equipment. An improved computer

program was written to allow real time display as well as recording of the cement

pressure. The hemi-pelvis was mounted securely in a vice fixed to a workbench,

simulating the orientation of the acetabulum in a lateral surgical approach with the

patient supine. CMW 1 or CMW 3 bone cement was mixed and loaded into the

dedicated applicator gun according to the manufacturer's instructions. For UJR 2,
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cement was retained in the barrel until pressurisation started. For the remaining

techniques, the cement was simply delivered to the acetabulum with the gun. At 2

minutes after mixing for CMW 1 cement and 4 minutes for CMW 3 cement, use of the

pressurisation device, finger packing or cup insertion commenced and the pressures

achieved recorded. All tests were carried out at a laboratory temperature of 20±2°C

and humidity of 30±10%, both measured within 0.5 m of the apparatus.

3.2.3 Results

3.2.3.1 Machine Control

Representative plots of pressure measured at the pole and rim of the acetabulum are

shown in Figure 3-5 and Figure 3-6 respectively. On each curve, zero time refers to the

time of application of the force to the cup or pressuriser, 4 minutes from the start of

mixing. Cement pressurisation was continued only until 7 to 8 minutes from mixing so

the cement mass could still be removed easily from the model acetabulum.

Solidification time of the cement is difficult to define precisely, but was qualitatively

complete at 10 minutes from mixing. The peak and mean pressures recorded are shown

in Figure 3-7 and Figure 3-8 respectively, averaged for the three tests with each device.

Mean pressures were calculated by integrating the pressure time curve numerically

using the trapezium rule and dividing the area under the curve obtained by the time for

which pressurisation was maintained.

Introduction of the cup alone lead to a rapid, but transient, pressure rise at the pole of

the acetabulum and a smaller rise at the rim. For both locations the pressure then

dropped approximately exponentially, falling to the baseline value after approximately

20 seconds. Peak pressures measured were 120 kPa at the pole and 55 kPa at the rim.

In each test cement extruded from between the cup flange and the rim of the

acetabulum and through the transverse ligament notch. This cement outflow was itself

indicative of pressure gradients in the acetabulum. The peak pressure value at both

locations was coincident with the "bottoming out" of the cup as indicated by cessation

of displacement of the testing machine actuator at constant force.
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FIgure 3-5: Pressure measured at the pole of the acetabuluni.
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flgure 3-6: Pressure measured at the rim of the acetabulum.

With the pressuriser with no flap, the pressure measured at the pole was similar to that

generated by cup insertion. The pressure at the rim was, however, much higher than

that produced by cup insertion and comparable to the pressure at the pole. As with cup

insertion, the peak pressure was reached almost immediately. A relatively rapid fall off

to a plateau then occurred as the bevelled leading edge of the pressuriser head wedged

into the rim of the acetabulum. During this time there was some leakage of cement

from the rim and the transverse ligament notch. The pressure then dropped very

gradually for the remainder of the test. Some leakage, from the transverse ligament

notch only, continued for most of the test.
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Figure 3-7: Peak pressures recorded.
(Error bars represent 1 standard deviation).

Dnm

200
U pole

Figure 3-8: Mean pressures recorded.
(Error bars represent 1 standard deviation).

The addition of the flap to prevent cement leakage through the transverse ligament

notch further increased both the peak pressure and the plateau pressure. The flap

reduced the initial leakage and visual observation showed the flap was indeed

effective in preventing cement flow through the transverse ligament notch.

Significantly, the rim pressure and pole pressure were similar when either pressuriser

variant was used. The pressuriser with flap showed the highest peak pressure, of the
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order of 180 kPa, at both the pole and the rim. The highest sustained pressure (80-90

kPa) was also produced with this device.

Statistical analysis of the peak pressure data at the pole and rim was performed using

Student's t-test. At the pole, there was no significant difference between the cup and

the pressuriser without flap (p = 0.6), but the pressuriser with flap produced

significantly higher pressure than both the cup alone (p = 0.035) and the pressuriser

without flap (p = 0.036). At the rim, the pressuriser with flap produced greater

pressures than the pressuriser without a flap (p = 0.02 1) which in turn was greater than

the pressure with the cup alone (p < 0.005).

Similar analyses for the mean pressures showed that at the pole mean pressures for

both the pressuriser without flap (p < 0.005) and with flap (p = 0.025) were

significantly higher than those for the cup. There was no statistical difference between

the two designs of pressuriser. At the rim the pressuriser without flap (p <0.032) and

with flap (p < 0.005) were significantly higher than those for the cup. Again the

difference between the two pressuriser designs was not statistically significant.

3.2.3.2 Manual Control

Figure 3-9-Figure 3-15 show plots of pressure vs. time from mixing for use of the

UTR1, UJR2, Exeter and the Bernoski pressurisers, insertion of the "Ogee" flanged

cup and the fmger packing and hand pressurisation techniques respectively, as

measured at the pole and the rim of the model acetabulum whilst using CMW 1

cement. The curves had substantially the same shape with CMW 3 cement. Mean

pressures and peak pressures averaged for the three tests with each technique/cement

combination are shown in Figure 3-16 to Figure 3-19. The mean pressure was obtained

by numerically integrating the positive portions of the pressure time curve using the

trapezium rule and dividing by the corresponding pressurisation time.
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Figure 3-19: Peak pressure for various cementation techniques - CMW 3 cement
(Error bars represent I standard deviation).

Statistical analysis of the mean and peak pressures at the rim and pole for the two

cements was performed using Student's i-tests, although due to scatter and the small

number of observations in each group the validity of the analysis is in question. Those

comparisons which showed statistically significant differences at the p = 0.05 level are

shown in Table 3-I.
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There were no statistically significant differences in mean pressure between any of the

pressurisers and only between UJR1 and UJR2 with CMW3 cement was there a

statistically significant difference in peak pressure. With the exception of the flanged

cup at the rim with CMW3 and hand packing at both locations with CMW1, mean

pressures were higher for all the alternative techniques than for fmger packing.

All four pressurisation tools were able to produce sustained cement pressurisation at

both the pole and the rim of the acetabulum. The mean pressures were comparable for

all except UJR 2 with CMW1 cement (discussed in detail in the final paragraph of this

section). The consistently lower pressures recorded at the rim reflect slight leakage of

the cement and loss of hydrostatic pressure with all the devices. The mean pressures

were similar to those achieved with machine control.

High pressure spikes were seen on all the traces but in particular with UJR 2 with

CMW3 cement where transient pressures at the pole reached 200 kPa. In general the

spikes were higher at the pole than the rim. In the case of UJR 2, these spikes were

coincident with pulls on the trigger of the cement gun, which would be expected to

produce high transient pressures in the region of the cement exit hole of the

pressuriser, located directly above the pole transducer. A comparable effect was seen

with the Exeter pressuriser. In some cases, a combination of cement leakage and the

flexibility of the balloon seal allowed this device to behave like a piston in a cylinder

bore and hence generate high, but transient pressures. Occasionally this pistoning effect

led to "bottoming out" of the Exeter pressuriser, which made re-packing of the cement

necessary.

Peak pressures with finger packing and hand packing were low, but in the same range

as the other techniques. Mean pressures for finger packing were very low, however,

due to the transient nature of the technique (Figure 3-14).

All methods showed higher pressures at the pole than at the rim, indicating pressure

gradients in the cement. During cup insertion, the difference between pole and rim

pressures was usually the greatest.

The repeatability of pressurisation showed considerable variation between the devices.

Strict control of the experiments was deliberately avoided to replicate the variability

inherent in the use of such devices during an operation. The experiments using
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machine control showed better repeatability (Bernoski et a!., accepted). With this in

mind, the Exeter pressuriser with both cements and UJR 2 with CMW1 cement

showed the greatest range of trace to trace variation in peak pressure. This was

approximately reflected in the mean pressure. These observations may reflect the

difficulty in fully visualising the acetabulum, in particular the regions of cement

leakage, with the Exeter device. Overall, UJR 1 with CMW1 cement and UJR 2 with

CMW3 cement showed the least variation.

Negative pressure spikes were seen on removal of all the devices from the cement. The

effect was much more pronounced if the device was removed at an early stage as, for

example, when re-packing the cement was required with the Exeter device. This

problem was worst with UJR 2, which as a prototype was made from materials with

higher adherence to the partly cured cement than the elastomers used for the other

devices. With the devices manufactured from elastomeric materials, the general

appearance of the cement mass in the acetabulum suggested clean separation of the

pressuriser head from the cement.

CMW3 cement seems to offer a slight advantage in both peak and mean pressure when

used in the manner described. As used here, with a cement gun, CMW3 cement was

much easier to handle because of the extended time at relatively low viscosity. It was

difficult to fill the acetabulum by extrusion of CMW1 from the cement gun at only two

minutes from mixing in comparison with CMW3 at four minutes. Subsequent

pressurisation of CMW1 using UJR 2 was also impaired. Both of these problems,

however, are simply consequences of the difficulty of extruding cement through the

relatively long, small bore delivery nozzle used in this prototype design.

3.2.4 Discussion

The increasing rate of late acetabular component failure is causing clinical problems

(section 2.4). Since the early 1970's pressurisation has been known to improve

"interlock" by causing penetration of cement into cancellous bone and thus increasing

the strength of the bone-cement interface (Krause et a!., 1982a; Askew et a!., 1984;

Mann et a!., 1997). Cement penetration of 3-5 mm is believed to be the optimum

(Huiskes and Sloof, 1981; Krause et a!., 1982a; Askew er a!. 1984; Walker et a!.,

1984). Clinical evidence seems to support these laboratory studies in that cement
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pressurisation is effective in improving the long term success of the acetabular cup

(Malchau and Herberts, 1996). Surgical skill and experience also seem to contribute

significantly and the "average" orthopaedic surgeon can expect worse results than

those in specialised centres (Malchau et a!., 1993). Simplification of the technique of

cement pressurisation may increase the reproducibility of the procedure: rather than

concentrating on improving the best results, it may be more important to improve the

worst.

The optimum technique for achieving the required cement penetration is unknown.

Pressurisation of cement is easier in the femur than in the acetabulum. In the femur

simply inserting the prosthesis into the cement filled intramedullary canal generates

peak pressures of 220 kPa (Davies and Harris, 1993). Achieving such pressures in the

acetabulum is rather more difficult, owing to its geometry. Cement penetration

depends on factors that are (partially) under the surgeon's control, such as cement

viscosity, preparation of the bone bed and insertion force if using a flanged cup as a

pressurisation device (Chapter 4), and those which are not, such as bone porosity and

bleeding pressure. From the studies of Askew et a!. (1984) and Juliusson et a!. (1994)

it appears that relatively short pulses (5-10 seconds) of elevated pressure are as

effective as sustained pressure in realising cement penetration. The literature suggests

that short duration peak pressures of 75-100 kPa are sufficient to achieve the required

cement penetration into a clean cancellous surface. The results of Noble and Swarts

(1983) indicate pressures of 35-50 kPa sustained for 30-60 seconds produce near

optimal cement penetration into thoroughly cleaned low density cancellous bone. Short

high pressure pulses need to be superimposed on a sustained background pressure to

avoid displacement of cement by blood pressure or possibly elastic recovery of the

cement. Pressure above 5 kPa (37 .5 mniHg) would seem to be sufficient to resist these

effects (Shelley and Wroblewski, 1988). Juliusson et a!. (1995) found that the presence

of blood in the cancellous spaces before pressurisation began reduced penetration by

50% and explained this strong influence of circulation by the incompressibility of the

trapped fluid. This is likely be the reason why thorough cleaning of the bone bed

produces dramatic effects on cement penetration.

In these experiments, machine controlled insertion of an acetabular cup produced peak

pressures of 120 kPa at the pole and 55 kPa at the rim. This compares with the 106
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kPa peak pressure measured by Beverland et a!. (1993) at the pole of a simulated (non-

hemispherical) "revision" acetabulum using an unflanged cup and an insertion force of

approximately 100 N and a peak pressure of 6 kPa reported by Shelley and

Wroblewski (1988) for an unflanged cup with an insertion force of approximately 80

N. Of the two variations of the Bernoski pressuriser tested using machine control, that

incorporating a flap to seal the cotyloid notch was the most effective in increasing the

magnitude of both the peak pressure (180 kPa) and the sustained pressure (80-90 kPa).

The rim pressure and pole pressure were nearly equal when either of the two variations

were used. The absence of the flap would be expected to allow cement to pour through

the cotyloid notch and indeed some leakage was observed. If the rim transducer had

been closer to the acetabular notch, it is expected that the measured pressure would

have been lower, since the flow from the acetabular notch indicates a local cement

pressure gradient in this region. However, the cotyloid notch of the model acetabulum

was wide and shallow and could be partially sealed even by a pressuriser without flap.

If an acetabulum with a deep notch had been used, as can occur in some patients, the

effect of the flap might have been even more pronounced.

Manual cup insertion generated transient pressurisation that, while of longer duration

than with machine control, showed similar characteristics with a relatively rapid rise to

a peak pressure followed by more gradual decay. Under manual control the profile

could be modified by the surgeon by increasing force on the cup inserter in the latter

stages, but this technique could also result in cup mal-position and in the worst case

direct contact between cup and bone. With this method, there may be a conflict

between effective cement pressurisation and control of position of the cup.

Technique was important for all the devices in determining the pressures measured.

The various large spikes visible on many of the traces occurred when a conscious

effort was made to push harder, with a "pistoning" motion, on the pressurising device.

In separate tests where the surgeon viewed the pressure display on the computer

screen, greater control over the pressure was possible.

A common clinical technique relies on finger packing of the cement into the bone

followed by impaction of the acetabular cup. Although finger packing has previously

been shown to generate reasonable pressures, especially in fixation holes drilled

through the subchondral plate, laminations may be introduced into the cement and
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pressurisation is likely to be patchy (Oh , 1983). The present results showed

fmger packing to be ineffective in maintaining mean pressure in comparison to all the

other methods.

The design of a device to achieve a closed cavity is complicated by the irregular

acetabular rim and particularly the presence of the cotyloid notch. With the exception

of UJR 2, which is a cement injection device based on a cement gun, all the

pressurisers had a compliant head designed to deform under load and seal the

acetabulum, thus confining the cement. Thus it is not surprising that no clear-cut

advantage was demonstrated for any particular device. All the pressurisation tools

demo nstrated sustained cement pressurisation at both the pole and the rim of the model

acetabulum. The highest peak pressure was obtained with UJR 2 and CMW3 cement,

the highest mean pressure with the Exeter pressuriser and CMW 1 cement. Overall,

UJR 1 with CMW1 cement and UJR 2 with CMW3 cement showed the least variation

of the tested combinations. UJR 1 is one of the simplest designs imaginable, which

makes it "user friendly". The Exeter pressuriser, for example, is a rather complex

device with which practical difficulties, mainly fluid leakage from the balloon seal, are

often experienced. Its use typically results in somewhat uneven pressurisation of

cement due to the pistoning effect mentioned above.

The signfficance of fixation at the rim of the acetabulum has not been addressed in the

literature. While pressurisation of cement into cancellous bone has been shown to

increase the strength of the bone cement interface (Krause et al., 1 982a; Eftekhar and

Nercessian, 1988; Lavernia et a!., 1988; Kuivila et a!, 1989; Ober et al., 1989), it is

usual, depending on surgical technique, for only part of the reamed acetabular surface

to be cancellous. The peripheral non-cancellous areas do not readily accept cement,

although fixation holes may be drilled through the subchondral plate near the rim to

expose cancellous bone. In these areas cement pressurisation may serve to drive out

trapped blood, marrow and air and hence ensure intimate contact of cement and bone.

It seems that secure fixation is necessary in the periphery of the acetabulum, in

particular in the region of the ilium (Charnley zone 1) where radiolucencies are most

commonly observed on anterior-posterior X-rays and where stresses at the interface

with an implanted acetabulum are highest (Daistra and Huiskes, 199S; section 5).

Improved rim fixation may also help prevent the ingress of wear debris to the back of
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the acetabulum which is considered by some to be the major factor in acetabular

loosening (Schmalzried eta!., 1992).

3.3 Per-operative Cement Pressurisation Measurements

An instrumented pressuriser has been designed to allow the per-operative measurement

of acetabular cement pressurisation. Measurements made at sixteen primary hip

replacement operations are described and compared to the in vitro work described

above.

3.3.1 Design and Testing of the Instrumented Pressuriser

The instrumented pressuriser is a modification of UJR 1 described above (Figure 3-2).

The principal modification is the inclusion of a pressure transducer mounted in the

adapted pressuriser backing plate and protruding through a central hole in the

elastomer pressuriser head (Figure 3-20). Cooling the elastomer head in liquid nitrogen

facilitated the machining of the transducer hole and the counter-bore to accommodate

the boss on the backing plate. The sensing diaphragm of the transducer is positioned

slightly interior to the surface of the pressuriser head to provide it with some

mechanical protection. The mounting configuration ensures that spurious strains are

not produced in the sensing diaphragm by contact with rigid materials.

Figure 3-20: Detail of pressure transducer mounting in the Instrumented pressuriser.

3.3.1.1 Pressure Transducer and Data Acquisition System

A flow diagram of the data acquisition system is shown in Figure 3-21.
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Figure 3-21: Flow diagram of data acquisition and storage scheme.

The pressure transducer (EPX series, Entran Ltd, Watford, U.K.) is a strain gauged

diaphragm type, the strain gauges being connected in a full Wheatstone bridge

configuration (Figure 3-22 (a)). To permit sterilisation, the transducer was factory

sealed at one atmosphere pressure, the leads given a waterproofing treatment and

extended to 2 metres in length. The transducer is temperature compensated in the

range 20°C to 80°C and performs to the same specifications described in section

3.2.2.1. Signal conditioning was by a standard strain gauge amplifier (RS Components,

Corby, U.K.) (Figure 3-22 (b)), for which a regulated power supply was provided by a

custom circuit operated by two 9 volt PP3 batteries (Figure 3-22 (c)). The output of

the strain gauge amplifier was connected to a 10 bit analogue-to-digital converter

(PICO ADC-1 1, Pico Technology, Cambridge, U.K.) interfaced to a portable

computer (386SX-20, Sanyo Ltd, Watford, U.K., running Microsoft DOS 5.0) via the

parallel port. Custom written software was used to log the data and display it in real

time. All the electrical components of the system were powered by batteries to

minimise the electric shock risk to the patient. Battery operation provides a floating

power supply (no ground connection) and hence ground leakage currents, as described

in British Standard 5724 Section 1.1 Part 1 (1992), cannot flow, indeed any current

flow through the patients tissues requires at least a dual fault condition with both

transducer bridge supply wires broken.
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FIgure 3-22: Components of the Instrumentation.
(a) strain-gauged-diaphragm pressure transducer, (b) strain gauge amplifier. (c) power supply.
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The assembled apparatus is shown in Figure 3-23.

Figure 3-23: The instrumented acetabular cement pressuriser and recording apparatus.

3.3.1.2 Calibration and Testing

To test the system, acetabular cementing was simulated using the instrumented

acetabulum described in section 3.2.2.2. Simultaneous computer recordings were made

to compare the outputs of the pressure transducer in the pressuriser and those in the

acetabulum. Three runs were made using CMW 3 cement mixed according to the

manufacturers instructions and delivered to the acetabulum at 4 minutes from mixing,

whereupon pressurisation was commenced. The data from a typical run are shown in

Figure 3-24. It can be seen from these plots that the pole pressure is most comparable

to the pressuriser pressure. This was expected since in use the pole of the device was in

the pole of the acetabulum. The device is thus likely to give a reliable measure of pole

pressure in the acetabulum per-operatively. Section 3.2.3.2 showed that the pole

pressure is a reasonable measure of the overall pressurisation of cement, particularly

for the device (UJR1) on which the instrumented pressuriser is based.
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Figure 3-24: The instrumented pressunser tested in the instrumented acetabulum.

3.3.2 Methods

The components of the pressuriser handle, the pressuriser head and the transducer

were double packed and autoclave sterilised on a low temperature (120°C) programme

to comply with the maximum temperature allowed for the pressure transducer. During

the operation, the components were unpacked aseptically and assembled by a

scrubbed assistant. When required the assembly was handed to the surgeon for trial

positioning (Figure 3-25). Once the trial was complete and the surgeon was satisfied

with the size of pressuriser head, the electrical connection for the pressure transducer

was handed to an assistant outside the sterile field and plugged into the amplifier and

computer ready for data collection. The electronics were switched on at least five

minutes before use to ensure thermal equilibrium had been reached and there would

be no amplifier drift during measurement. Palacos R bone cement was mixed using the

CEMVAC vacuum mixing apparatus and syringed into the surgeon's hand at I to

2 minutes from mixing according to preference. The operating theatre was at a

constant temperature of 2 1°C. During the mixing time the pressure reading from the

transducer was adjusted to zero under software control. The surgeon then introduced

the cement to the acetabulum and commenced use of the device (Figure 3-26).

Pressurisation was typically continued for 1 minute before the pressuriser was

removed and a Chamley flanged acetabular prosthesis inserted. Load was maintained

on the prosthesis until the cement was judged to have set, approximately ten minutes
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from mixing. Two senior surgeons, one of whom also performed the in vitro tests

described earlier, performed all the operations. Details of the patient group, who all

received Chamley total hip replacements for osteoarthritis, are shown in Table 3-2.

The average age at operation was 63 years and there were 10 men and 6 women.

Table 3-2: Details of patients for the per operative cement pressure measurements.
The "head" column gives the diameter of the elastomer pressuriser head used In mm.

Patient Age Sex Surgeon Hip Head 	 Comments

MK	 51 M	 2	 ©	 63

EJ 75 	M	 2	 ®	 63 __________________________________

EH66 F	 2	 ® 63 _________________________

BG	 75	 F	 2	 ®	 50	 Prostrusio acetabulum, bone graft used

JR74	 F	 2	 ®	 50 _______________________________

BH77 F	 2	 ©	 63 ____________________________

RT62 M	 2	 ® 50 ____________________________

PH	 64	 F	 2	 ®	 50

EW	 54	 F	 2	 ®	 50	 Surgeon unhappy with choice of head size

NJ72	 F	 2	 ®	 50 __________________________________

RH69	 F	 1	 ®	 50 ________________________________

GR69 F	 1	 ® 50 _________________________

ED	 81	 F	 1	 50

DB	 73	 M	 1	 ®	 50	 Right (contralateral) hip arthodesis

RM	 37	 M	 1	 ®	 50	 Right (contralateral) hip osteotomy

CJ	 62	 M	 1	 ®	 50

Figure 3-25: The instrumented pressuriser.
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Figure 3-26: The Instrumented cement pressuriser in use.

3.3.3 Results

Figure 3-27 is an example of the pressure traces obtained per-operatively. The initial

flat portion of the curve between 80 and 90 seconds from mixing represents the

pressure signal before software "zeroing" and demonstrates the stability of the

transducer output. At the onset of pressurisation, seating of the pressuriser in the

acetabulum generated a transient pressure spike, followed by a rapid rise to a high

value on commencement of the major pressurisation effort. On removal of the device

from the cement, negative pressure spikes were observed, particularly if early re-

packing of cement was necessary due to excessive leakage. However the general

appearance of the cement mass in the acetabulum suggested clean separation of the

pressuriser head from the cement. It appeared that the negative spikes were due to

adherence of the cement to the diaphragm of the transducer rather than being an

indication of a vacuum effect or adherence of the cement to the pressuriser head itself.
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flgure 3-27: Representative per-operative pressure recording

The mean (calculated as described in section 3.2.3.1) and peak cement pressures for a

total of 16 operations performed by the two orthopaedic surgeons are shown in Figure

3-28. There was no significant difference between either the peak or mean pressures

for the two surgeons at the 5% level (two tailed t-test assuming unequal variances).

\kan
	 Pk

Figure 3-28: Mean and peak per operative cement pressures.

A typical post operative X-ray appearance is shown in Figure 3-29. No obvious

radiolucencies are visible on this radiograph.
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Figure 3-29: Post operative radiograph after use of the instrumented pressuriser.

3.3.4 Discussion

The per-operative measurements are useful for several reasons. Since the

pressurisation required for optimal cement penetration into thoroughly cleaned low

density cancellous bone is reported to be of the order of 35-50 kPa for 30-60 seconds

(Noble and Swarts, 1983), the present data show that this can be attained in vivo using

a simple and inexpensive device. Although the surgeon did not observe the measured

cement pressure per-operatively, the feedback provided to the surgeon by reviewing

the pressure measurements post-operatively with regard to his own cementing

technique was felt to be usefuL The per-operative pressure measurements also showed

satisfying agreement with the laboratory studies, validating their use for the

comparison of cementing techniques. A future goal may be to perform cement pressure

measurements as a fairly routine part of hip replacement operations, which would

provide objective measurement of cementing quality and contribute to establishing

clinically the relationships between cement pressure, radiographic appearance and the

development of aseptic loosening.
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3.4 Summary and Conclusions

Two series of laboratory investigations have been conducted into the efficacy of

cement pressuri.sation techniques in the acetabulum. Initially a universal testing

machine was used to control cement pressurisation by the insertion of an acetabular

cup of typical design and a novel design of cement pressuriser (the "Bernoski"

pressuriser) into an instrumented model acetabulum. In subsequent comparative studies

of cementing techniques an experienced orthopaedic surgeon was employed to perform

simulated operations in the laboratory with a similar instrumented modeL Two digital

cement packing techniques, cup insertion, the pressuriser used under testing machine

control and two further novel pressuriser designs were compared, together with an

existing "benchmark" commercial device. Finally, per-operative measurements of

cement pressure were described, obtained using an instrumented pressuriser.

Under machine control, cup insertion produced transient cement pressurisation, with

peak pressures of 120 kPa at the pole and 55 kPa at the rim. Of the two variations of

the "Bernoski" pressuriser tested in this way, that incorporating a flap to seal the

cotyloid notch was the most effective in increasing the magnitude of both the peak

pressure (180 kPa) and the sustained pressure (80-90 kPa). The rim pressure and pole

pressure were similar when either of the two variants were used.

Manual cup insertion generated transient pressurisation that, while of longer duration

than with machine control, showed similar characteristics with a relatively rapid rise to

a peak pressure followed by more gradual decay. Relying on the cup alone to

pressurise cement may generate a conflict between effective cement pressurisation and

control of position of the cup. Finger packing was ineffective in maintaining mean

pressure in comparison to all the other methods.

The similar design, with the exception of the cement injection device UJIR 2, of all the

pressurisers meant no clear-cut advantage was demonstrated for any particular device,

all demonstrating sustained cement pressurisation at both the pole and the rim of the

model acetabulum. The highest peak pressure was obtained with UJR 2 and CMW3

cement, the highest mean pressure with the Exeter pressuriser and CMW1 cement.

Per-operative pressure measurements showed satisfying agreement with the laboratory

studies, validating their use for the comparison of cementing techniques.
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Technique was important for all the devices in determining the pressures attained. The

various large spikes visible on many of the traces occurred when a conscious effort

was made to push harder, with a "pistoning" motion, on the pressurising device. In

separate tests where the surgeon viewed the pressure display on the computer screen,

greater control over the pressure was possible. Although the surgeon did not observe

the measured cement pressure per-operatively, the feedback provided to the surgeon

by reviewing the pressure measurements post operatively with regard to his own

cementing technique was felt to be useful.
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4. Modelling of Cement Flow During Acetabular Cup

Insertion

Joint prostheses intended for use with cement can be considered as cement

pressurisation devices. Since cement pressurisation with the prosthesis relies on the

displacement (flow) of the fluid cement and the viscous resistance of the cement to this

displacement, it is particularly suited to mathematical modelling. This chapter describes

the characterisation of a representative viscosity for various commercially available

bone cements and the permeability of cancellous bone, parameters which required

definition for the subsequent development of a suitable modelling technique based on

the finite element method. The results of benchmark finite element models and

laboratory experiments have been compared to validate the modelling technique, which

was then used to predict the pressurisation and consequent penetration of bone cement

into cancellous bone during insertion of two representative designs of acetabular

prosthesis.

4.1 Parameter Definition

4.1.1 The Rheological Behaviour of Acrylic Bone Cements by

Oscillating Plate-on-Plate Rheometry

4.1.1.1 Theory

An elastic material subject to a shear strain wifi instantaneously develop a shear stress

proportional to the shear strain, the constant of proportionality being the shear

modulus. If the shear strain is made to vary in time (e.g. sinusoidally), the shear stress

will vary exactly in-phase with the shear strain. For a purely viscous material

subjected to the same sinusoidally varying shear strain, the shear strain varies exactly

% radians out-of-phase with the shear stress, or alternatively the shear stress is

exactly in-phase with the shear strain rate. There is then a linear relationship between

shear stress and shear strain rate, the constant of proportionality being the Newtonian

viscosity. For a viscoelastic material, the shear stress is out-of-phase with the shear
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strain by the loss angle (O>ö>^), or alternatively is displaced from the shear strain

rate by the angle g/ -& In such a material viscous flow and elastic deformation occur

simultaneously. The material response of such a material can be represented by a

complex number, the complex viscosity 11' where:-

- T(t)
11 =11 -171- -	 Equation 4-1

where 11' and 1" are the real and imaginary parts of the complex viscosity respectively,

r(t) is the shear stress, (t) is the shear strain rate and t is time.

The real part of the complex viscosity, 11', is a measure of the viscous contribution to

the overall material behaviour, while the imaginary part, ii", measures the elastic

contribution. The ratio of the real and the imaginary parts is equal to the tangent of the

phase angle between shear strain and shear stress and is used as a measure of the

viscous or elastic nature of the material.

4.1.1.2 Method

The rheological behaviour of five conventional polymethylmethacrylate (PMMA)

acrylic bone cements, CMW 1 and CMW 3 (DePuy CMW, Blackpool, U.K.), Palacos

LV3O, Palacos LV4O and Palacos R (Schering Plough, Weiwyn Garden City, U.K.)

and one modern copolymer formulation, Boneloc (Polymers Reconstructive A/S.

Farum, Denmark), e-Q.- measured using an oscillating plate-on-plate rheometer

(RHEOLAB MC100 with US 200 software, Physica MeStechnik GmbH, Germany;

measurements performed by Dr Sanjukta Deb at the IRC in Biomedical Materials,

QMW, London). Although Palacos LV3O and Palacos LV4O have nominally the same

composition, differing in the final volume of the mix, they were treated as different

cements in this study. These cements represent a broad spectrum of those in current

surgical use from subjectively the lowest (Palacos LV) to highest (CMW1) viscosity.

All the powder and all the liquid supplied in the manufacturer's pack were mixed in a

glass beaker for 30 seconds at room temperature and a small sample (approximately 5

cm3 ) immediately transferred to the base plate of the rheometer. The rheometer head

was lowered to give a plate to plate spacing of 1 mm and the test commenced. The

temperature of the bone cement was maintained at 21.9 °C by the thermostatically

controlled lower plate of the rheometer. The oscillating frequency was 1Hz with an
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oscillation amplitude of 0.5% of one revolution (h). The geometry of the testing

domain produced shear strain rates in the cement varying from 0 to 0.5 sec' (Appendix

A).

4.1.1.3 Results
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Figure 4-1: Real part of complex viscosity, 77', for commercial acrylic bone cements.

Figure 4-1 shows the real part of the complex viscosity for the six bone cements vs.

time from mixing. Some cements showed an initial settling period, during which rapid

changes to ' apparently occurred, but thereafter all the cements behaved similarly,

with log( ii') increasing approximately linearly with time. The conventional PMIMA

cements were ranked throughout the curing period, after 120 seconds, in order of

increasing viscosity, CMW3, Palacos LV3O, Palacos LV4O, Palacos R, CMW1. Taking

the rate of change of viscosity with time as a measure of the rate of cure, it can be seen

that all the conventional cements have similar curing kinetics. The sixth cement,

Boneloc, incorporates higher methacrylates and showed a more rapid rate of change of

viscosity/rate of cure, consistent with its different chemical formulation. Linear

approximations to the curves of log(real part of complex viscosity) vs. time from

mixing in the window from 120 to 480 seconds from mixing were made using the

method of least squares. These relationships (Table 4-1) were then assumed to describe

a linear (Newtonian) viscosity, ij (Pa s), for the bone cement at time 1 (s). The
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table shows slope and intercept (m and c) for the regression equation (Equation 4-2)

describing the relationship between viscosity and time: -

log 7= ml + C	 Equation 4-2

Viscosity can thus be recovered from these relationships by:-

77
	 Equation 4-3

Table 4-1: Linear relationships for log (real part of complex viscosity) v& time.

Cement Type	 Relationship	 Validity

Slope	 Intercept	 R2

Palacos R	 1.5310-	 2.63	 0.993	 100<t<500

Boneloc	 3.44x103	 1.62	 0.957	 150<t<500

Palacos LV3O	 2.90x10-	 1.69	 0.998	 150<t<350

CMW 1	 1.9910	 2.70	 0.975	 150<t<400

Palacos LV4O	 2.04x103	 2.12	 0.917	 150<t<450

CMVl 3	 4.20x1()3	 0.49	 1.000	 150<t<450

Figure 4-2 shows the loss angle tan delta vs. time from mixing which gives a measure

of the relative contributions of the viscous and elastic components of the material

behaviour.

Figure 4-2: Tan delta for commercial acrylic bone cements.

The higher tan delta, the more "liquid" is the character of the material. In general there

was a relatively high early rate of decrease of tan delta. For Palacos R, Boneloc and
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ii dt-
Equation 4-4

Palacos LV4O, the rate of change of tan delta decreased smoothly and towards the end

of the measurement time it appeared that tan delta was approaching a constant value,

in accordance with the continuing viscoelastic behaviour of the fully cured cement. The

remaining cements, Palacos LV3O, CMW1 and CMW3, showed similar behaviour after

an intermediate period when the rate of change of tan delta was low (the slight

plateaux on the curves). The ranking of the cements according to tan delta is

somewhat different to the ranking according to viscosity; in descending order of tan

delta, CMW 3, CMW 1, Palacos LV3O, Palacos LV4O, Palacos R. CMW 1 cement

despite being "high viscosity", showed anomalously low elasticity. Again the

copolymer Boneloc cement behaves differently, showing a more rapid rate of change

of tan delta in the central portion of the graph.

4.1.2 The Permeability of Cancellous Bone

The simplest treatment of flow through a porous medium is Darcy's law which states

that the average velocity perpendicular to a section through a block of porous material

is proportional to the pressure gradient perpendicular to the section with a constant of

proportionality k, called the permeability, viz:-

where v is the velocity perpendicular to the section, is the volumetric flow rate, A

is the area of the section, i is the fluid viscosity, P is pressure and x is the spatial co-

ordinate perpendicular to the section.

Numerous relationships exist to describe the permeability in terms of the geometry of

the pore spaces. The most commonly used is the Carmen-Kozeny equation (Kay and

Nedderman, 1985) which models the porous material as a bundle of narrow tubes and

expresses the pressure gradient dP/dI across a bed of porous material of length 1 in the

flow direction as:-

Vm	

(k 

S2 (le\21 dPi
- ° ijJ J ar	 Equation 4-5

where Vm is the superficial flow velocity through the bed, l is the effective length of

the flow channels, S is the total wetted surface per unit volume, e is the porosity and

k0 is a constant.
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Thus by comparison with Darcy's law the permeability can be expressed as:-

2

k = [k0 —TJ 
J	

EquatIon 4-6

The value of the constant k0 for flow channels of circular cross section is 2 and, for an

isotropic network of flow channels, where the average angle of passage of cement

through the channels is 450, 1 ( becomes equal to 	 Then Equation 4-6 simplifies

to:-

I 2\

k - I ._ 1	
EquatIon 4-7

)

and the two parameters required for the specification of permeability are the wetted

surface area per unit total volume, S, and the porosity, C.

4.1.2.1 Method

Eleven specimens of cancellous bone from various sources (bovine proximal tibia - 8

specimens, bovine calf acetabulum - 2 specimens, human vertebra - 2 specimens,

human proximal tibia - 4 specimens) were defatted by water jet and cleaned of

residual fat and marrow by soaking overnight in 1,1,1 trichloroethane. The apparent

dry density of the specimens was established by weighing the specimens on an

analytical balance and measuring the specimen dimensions with Vernier callipers. The

specimens were then prepared histologically by dehydration in graded aqueous alcohol

solutions, decalcification in EDTA, embedding in paraffin wax, sectioning by

microtome (slice thickness 3.5 .tm) and staining with haematoxylin and eosin. Digital

images of the sections were then produced by photographing the sections on a light

table using a Kodak DCS42O 24 bit digital camera fitted with a Nikon macro lens. The

images were transferred from the camera, converted to grey scale and stored on

computer disk for processing using the image analysis program UTHSCSA

ImageTool (developed at the University of Texas Health Science Center at San

Antonio, Texas and available from the Internet by anonymous FTP from

ftp://maxrad6.uthscsa.edu ). An IBM compatible PC running Microsoft Windows 95

was used for all the digital image processing. The images were reduced interactively

to binary images by grey level thresholding using the original image as a reference and

then the automatic object detection algorithm invoked. The detected objects were then
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processed to give object perimeters and areas. An assessment of the errors involved in

this process is given in Appendix B. The steps in the extraction of required parameters

are illustrated in Figure 4-3.

(a)

(b)

(c)

Figure 4-3: Steps in extracting morphological parameters using ImageTooL
(a) raw image after conversion from 24 bit colour to grey-scale, (b) binary image after grey level

thresholding and (c) extraction of objects in the image with the object detection algorithm

By the principle of Delesse (Delesse, 1847, cited in Whitehouse, 1974), the area

fraction of porosity in the section is numerically equal to the volume fraction of

porosity in the sample. Since bone area was derived by the image analysis, porosity is

equal to (1 - area fraction of bone).
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The wetted surface area to total volume ratio is related to the total boundary length per

unit area of test specimen, BA, by the relationship (Whitehouse, 1974):-

s 4BA	 Equation 4-8

Permeability was then calculated using Equation 4-7.

4.1.2.2 Results

Figure 4-4 shows a plot of permeability vs. apparent dry density. Fitting a straight line

through the data using the method of least squares gives the regression equation:-

k = —2.76 x 10"pOd + 1.69 x 10	 (R2 = 0.63)	 Equation 4-9

where Pad 1S the apparent dry density.

000.OE+O

200	 250	 300	 350	 400	 450	 500	 550	 600

l)iy DrnhIty (kg/ia')

Figure 4-4: Permeability of cancellous bone vs. apparent dry density.

4.2 Development of Modelling Technique

4.2.1 Theory

The incompressible isothermal flow of a Newtonian (linear) fluid can be completely

described by the continuity (conservation of mass) equation and the Navier-Stokes

(momentum) equation, given by Equation 4-10 and Equation 4-11 respectively.
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k
i7=--VP

71
Equation 4-12

+ (V . pi7) = 0	 Equation 4-10

= VP + i1V 2 T 	 Equation 4-11

where p is the fluid density, t is time, ii is the fluid velocity, P is pressure and lithe

fluid viscosity.

The resistance to fluid flow produced by the porous cancellous bone was modelled by

Darcy's law (Equation 4-4), expressed in co-ordinate free vector notation as:-

the constant of proportionality being k, the permeability of the solid medium.

4.2.2 Method

The modelling of cement flow during insertion of a prosthesis into a bone bed is

complicated by the changing shape of the fluid domain. To overcome this problem the

method summarised in the flow chart (Figure 4-5) was adopted, with the fmite

element method used to di.scretise the fluid domain and solve the fluid flow equations.

In the fmite element formulation the resistance to flow presented by the cancellous

bone was implemented by incorporating extra resistance terms into the momentum

equations in the elements representing cancellous bone, this formulation being

equivalent to Darcy's law. Prosthesis insertion was simulated by applying a constant

velocity at all the boundary nodes associated with the exterior surface of the

prosthesis. By calculating the steady state velocity and pressure solution to the Navier-

Stokes and continuity equations and integrating the pressure over the same set of

nodes, a linear relationship was established for insertion force vs. insertion velocity to

allow the development of cement penetration based on a constant applied force, a

more realistic simulation of the action of a surgeon during an operation. A new

solution was then calculated based on the cup insertion velocity extrapolated to the

required insertion force and the bone cement domain modified based on the velocity

of the prosthesis and the exit velocity of the bone cement through the porous

cancellous bone. Using this method, it was possible to simulate prosthesis insertion

under constant applied force or constant insertion velocity. Bone cement was in all
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cases assumed to behave as a linear viscous (Newtonian) liquid. Since the prosthesis

reaches its fmal position in the bone bed and total cement penetration typically occurs

within a few seconds of the application of pressurisation force (Walker et a!., 1984),

no attempt was made to model the increase in viscosity with time for the curing

cement. Cancellous bone was modelled as an isotropic porous material. It was further

assumed that the flow was incompressible and isothermal, that gravitational forces

could be neglected and that quasi steady state conditions were maintained (Tadmor

and Gogos, 1979). Laminar flow was a natural consequence of the fluid properties,

fluid domain shape and insertion velocities/forces considered. The analyses was carried

out using the ANSYSIFLOTRAN commercial finite element package (release 5.3)

running under Microsoft Windows 95 on an IBM compatible PC.

Start

Generate initial geometry of flow
domain and produce mesh

Apply boundary conditions and
calculate solution for

arbitrary orosthesis velocity

Calculate reaction force
on prosthesis

Extrapolate velocity
for required force

Calculate solution based
on this velocity

Generate new mesh

Has limit of prosthesis
motion been reached ?

N0J Update geometry based on prosthesis

I	 velocity, exit velocities and step size

Yes

Figure 4-5: Flow chart showing cement flow modelling technique.
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4.3 Experimental Validation of Modelling Technique

The fmite element modelling technique was tested against two experimental protocols.

The first (Acetabular Model) involved simulation of the insertion of two designs of

acetabular cups into a model acetabulum. This was to validate the assumption of linear

viscosity and the quasi steady state assumption made in the modelling formulation. The

second protocol (Porous Material Model) was intended to evaluate the predictions of

flow into cancellous bone by placing a cylindrical porous ceramic disk, designed to

have similar morphology to cancellous bone, under the actuator of the testing machine

and squeezing bone cement into it with a descending impermeable disk.

4.3.1 Acetabular Model

4.3.1.1 Experimental Methods

The instrumented model acetabulum described in section 3.2.2.1 was held in a vice

under the actuator of a servo-hydraulic materials testing machine (ESH Testing,

Brierly Hill, U.K.). An attachment to the actuator of the testing machine permitted the

insertion of (a) a scalloped rim Charnley acetabular cup, outside diameter 43 mm, and

(b) a flanged Charnley acetabular cup, outside diameter 40 mm, with the flange

trimmed to fit snugly at the rim of the acetabular cavity (Figure 4-6).

:	 ___

FIgure 4-6: A scalloped (left) and a trimmed flanged (right) acetabular cup.
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CMW 1 or CMW 3 cement was mixed in a bowL At three minutes from mixing the

cement was placed in the acetabulum and the cup inserted under displacement control

at velocities of 1.28, 2.56 or 5.13 mm s'. Repeated withdrawals and insertions of the

cup were made until the cement set. Pressures at the rim and the pole of the

acetabulum were measured and recorded according to the method described in section

3.2.2.1.

Displacement control was chosen for two reasons. Firstly, in displacement control the

control loop of the testing machine is closed whether a specimen is present or not.

With a labile material such as bone cement, true load control presents difficulties and

introduces some uncertainties. Secondly, under displacement control high shear strain

rates are generated in the cement as the gap between cup and acetabulum narrows.

This represents a stern test of the linear constitutive law chosen to model the cement

and one in which deviations from linearity, such as shear rate dependent viscosity

and/or elastic effects, would be expected to manifest themselves.

4.3.1.2 Finite Element Models

Initial finite element models of the bone cement domains were generated to represent

the geometry of the model acetabulum and the two acetabular cups. Three dimensional

and axisymmetric finite element meshes were compared to evaluate the effects of the

irregular acetabular rim on cement pressure. In the both the three dimensional and the

axisymmetric models the rim of the scalloped cup and the flange of the flanged cup

were represented by areas concentric with the cup body and with total area equal to

the total area of the rim minus the scallops or the trimmed flange respectively. The

three dimensional and axisymmetric finite element meshes of the bone cement domain

with the cup in the initial position are shown in Figure 4-7.
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Scalloped cup	 Flanged cup
Figure 4-7: Initial axisymmetric and 3D meshes of bone cement flow domains.

1 indicate boundaries on which velocity was specified, > where pressure was specified. Velocity
specifications are not shown on the three dimensional models for clarity.

To simulate cup insertion, velocity of the cup surfice (including rim/flange) was

specified as 1.28, 2.56 or 5.13 mm s as in the experiments. In the axisymmetric

models the velocity component across the axis was set to zero. In the exit areas

between rim and acetabulum (scalloped cup) and flange and acetabulum (flanged

cup), pressure was specified as zero. Wall boundary conditions (all velocity

components zero) were assumed elsewhere. Viscosity was specified for each model

according to the insertion time in the relevant experiment and the viscosity time

relationships reported in Table 4-1. The density of liquid bone cement is not

commonly reported in the literature. Haas et a!. (1975) report the density of cured

bone cement to be approximately 1.2 x 1O kg rn 3 and the shrinkage on cure to be

approximately 8%. Therefore assuming constant mass, 	 O.92p, = 1.1 x 1O3 kg rn3,
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where p, and p are the density of the liquid and solid respectively. In the three

dimensional models strain rates were calculated, using the macro described in

Appendix C to extract the components of the strain rate tensor. An effective strain rate

was then calculated from the second invariant of the strain rate tensor, J2 , given by:-

= 6	 - 22 )2 + (A2 - )2 + (A - A1 
)2 +
	 +	

+ 2)]	
EquatIon 4-13

where	 are components of the strain rate tensor. This is analogous to the von Mises

stress in solid mechanics, which is the second invariant of the deviatoric stress tensor

(Dieter, 1988).

4.3.1.3 Results

Figure 4-8 shows finite element model predictions of the pressure distributions for

scalloped and flanged acetabular cups inserted under displacement control at a velocity

of 2.56 mm s'. Viscosity was 895 Pa s. Pressures are shown normalised to the

maximum pressure, which is noted at the bottom-right of each plot. Discrepancies of

10%-20% can be seen between the peak pressures predicted by the axisymmetric and

three dimensional models, although pressure distributions are similar. There are some

differences at the margins of the models, which can be explained by small differences in

the geometric representation of the cups in these regions.

Figure 4-9 shows typical experimental pressure time curves for the scalloped and

flanged cups. The peak rim pressure was approximately 50% of the peak pole pressure

for the scalloped rim cup and approached 100% of the peak pole pressure for the

flanged cup.

A comparison of some representative experimental curves and the corresponding finite

element predictions are shown in Figure 4-10.
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Figure 4-8: Cement pressure distributions during acetabular cup insertion.
(a) Unflanged cup with cup apex to acetabular apex separation of 5.5 mm

(b) flanged cup, separation 5.5 mm (c) unflanged cup, separation 2 mm
(d) flanged cup, separation 2 mm.

Figures at the bottom-right of each plot are maximum pressure in kPa.
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Figure 4-9: Experimentally determined pressure vs. time curves, repeated cup insertion.
(a) Scalloped rim cup, CMW1, time zero =3 mm. from mixing, stroke rate 2.56 mm

(I,) Hanged cup, CMWI, time zero =3 mm. from mixing, stroke rate 2.56mm s.
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Figure 4-10: Comparison of measured and predicted pressure vs. time curves.
(a) Scalloped cup, CMW1 cement, time zero = 4Y2 minutes from mixing, stroke rate=2.56 mm i'.

(b) flanged cup, CMW1 cement, time zero 3 minutes from mixing, stroke rate=2.56 mm
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The model was generally less successful in predicting the experimental results for

CMW1 cement than for CMW3. In the early stages of cup insertion, where the gap

between cup and acetabulum was relatively large, the finite element models usually

underestimated the cement pressure by between 10 and 20 %. In the latter stages the

agreement was better. The errors were found to depend on the type of cement, the cup

insertion velocity and the time from mixing. The errors may occur for a number of

reasons in addition to those associated with the simple treatment of the constitutive

behaviour of the cement; in the early stages of the experiment the finite element models

do not represent the experimental geometry well, since the cement tends to pool in the

apex of the acetabulum. Comparison of the peak pressures generated at the rim and

pole transducers and the corresponding finite element predictions are shown in Figure

4-11 and Figure 4-12. In these figures, the shape of the data point marker indicates the

insertion time (from mixing of the bone cement) and hence the cement viscosity. The

colour of the data point marker indicates the insertion velocity and the location in the

acetabulum at which pressure was sampled. The lines join data points obtained at a

given location with the same cup insertion velocity.

The measured and predicted peak pressures are generally in good agreement. This is

particularly true for CMW3 cement and for the measurements soon after cement

mixing. The results for CMW1 cement are poorer, which indicates that the major

source of error, at least for the peak pressure predictions, is the assumption of

Newtonian behaviour for the liquid bone cement, rather than inadequate representation

of the geometry of the flow domain.
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Figure 4-11: Comparison of predicted and measured pressures for CMW I cement.
(a) Scalloped cup and (b) flanged cup. The heavy black line represents a 1:1 relationship.
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Figure 4-12: Comparimn of predicted and measured preasures for CMW 3 cement.
(a) scalloped cup and (b) flanged cup. The heavy black line represents a 1:1 relationship.
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Strain rates are shown in Figure 4-13 for the flanged and unflanged cups as the cup

approaches the acetabulum. Results for cup-acetabulum separations at the pole of 5.5

and 2 mm are shown. A comparison is made between the strain rates generated by

velocity (2.56 mm s') and force (100 N) controlled cup insertion.
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Figure 4-13: Strain rates during cup insertion (s').
Results for (a) velocity (2.56 mm s') and (b) force (100 N) control.

Since strain rates are controlled by the velocity of cup insertion, the velocity

controlled results are independent of cement viscosity. However, in the force

controlled case the instantaneous cup velocity depends on the cement pressure which

in turn depends on the cement viscosity. Thus under force control strain rate becomes

a function of viscosity. Results in Figure 4-13 (b) are presented for a cement viscosity

of 500 Pa s. Strain rates varied from 0 to 63 However, regions of high shear rate

were localised to geometric restrictions in the flow domain, such as close to the flange

of the flanged cup throughout the insertion process and near the apex of the

acetabulum for both cup designs as the gap between cup and acetabulum closed. In the

velocity controlled case, strain rates were highest for the flanged cup, being dominated
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Impermeable plate

Bone cement

Porous ceramic disk

by the narrow gap between flange and acetabulum. In the force controlled case, strain

rates were highest for the unflanged cup because its velocity of approach was higher.

4.3.2 Porous Material Model

4.3.2.1 Experimental Methods

In this experiment an open pore hydroxyapatite ceramic foam with an apparent density

of 400 kg m 3 and a permeability of 2.5x1ft7 m2 (North Wales and Oswestry Tissue

Bank, Wrexham, U.K.) was used to simulate cancellous bone. A disk of the porous

ceramic material was placed on the base-plate of an ESH materials testing machine

(Figure 4-14). CMW1 cement was mixed as described above and at three minutes from

mixing placed on the top surface of the porous disk. The impermeable plate mounted

on the actuator of the testing machine was lowered from an initial separation of 11.5

mm to a fmal separation of 2.5 mm at a constant velocity of 1.28 mm s 1 , resulting in

cement penetrating the porous surface and exuding from the gap between plate and

disk at the circumference. After the cement had cured, the cement penetration was

measured (with correction for magnification) from a plane X-ray taken perpendicular

to the axis of rotational symmetry of the disk.

Actuator force

60mm
Figure 4-14: Schematic of the porous disk experiment.
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4.3.2.2 Finite Element Model

The methodology used was similar to that described in section 4.3.1.2. Axisymmetric

finite element models were used; the initial finite element mesh is shown in Figure 4-

15. As boundary conditions, the component of velocity across the axis was set to zero

and pressure was specified as zero at the cement exit regions between the bottom of

the impermeable top plate and the top of the porous disk and at the penetrating front of

bone cement. Cement viscosity and density were specified as described in section

4.3.1.2.

30mm

Figure 4-15: Initial finite element mesh for the porous disk simulation.1 indicate boundaries on which velocity was specified, > where pressure was specified.

4.3.2.3 Results

The development of cement penetration was followed in the finite element model by

tracking the locations of nodes on the exterior edge of the mesh representing the

cement front. The mesh at three stages in the development of the cement penetration is

shown in Figure 4-16.

-ii
Figure 4-16: Development of the mesh showing three stages of cement penetration.

Figure 4-17 shows the final finite element mesh overlaid on an X-ray of the

corresponding experiment. The good agreement between the predicted penetration

over the whole of the specimen is evident.
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I
Figure 4-17: Predicted penetration profile superimposed on an X-ray of the porous disk.

4.4 Parametric Analysis of Cement Penetration During

Acetabular Cup Insertion

The enhanced initial fixation brought about by careful preparation of the bone bed and

cement pressurisation are considered to be responsible for the reduction in the rate of

aseptic loosening with modern surgical techniques (Malchau and Herberts, 1996).

Various studies suggest that cement pressurisation and subsequent penetration of

cement into cancellous bone produces a stronger interface (Krause et a!., 1982a;

Askew et a!., 1984). Prosthesis design is important for cement pressurisation (Shelley

and Wroblewski, 1988; Beverland et al. 1993) and appears to be clinically significant

since improvements in the radiographic appearance of the cement bone interface for

flanged cups are observed in the long term (Hodgkinson et a!., 1993). To analyse the

effect of varying parameters such as the design of the prosthetic cup, the viscosity of

the bone cement and the permeability of the cancellous bone, the modelling technique

developed above was used.

4.4.1 Method

Axisynimetric finite element meshes of the acetabulum with an unflanged and flanged

cup are shown in Figure 4-18. The deep region of the acetabulum was assumed to be

covered by solid subchondral bone plate while the peripheral region was cancellous
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bone. Cup insertion under force control was simulated, using a force of either 100 N or

200 N, as described in section 4.2.2. At the axis of symmetry the velocity component

across the axis was set to zero. On the exit boundaries, at the outer edge of the

cancellous bone and between cup body and acetabulum (unflanged cup) and flange and

acetabulum (flanged cup), pressure was specified as zero. Wall boundary conditions

(all velocity components zero) were assumed elsewhere.

Unflanged Cup	 Flanged Cup

Figure 4-18: FinIte element meshes of acetabula with unflanged and flanged cups.

Parametric analyses were carried out, varying cup insertion force as described above

and assuming cement viscosity of either 500 or 1000 Pa s. These values were intended

to be representative of those encountered in clinical use of the cement and are in

accordance with those measured in section 4.1.1. In addition the permeability of the

cancellous bone was varied from i0 to i0 m 2 . The permeability of normal

cancellous bone ranges from 2x10 9 to 10 m2 , corresponding approximately to

apparent wet densities of 1100 to 800 kg m 3 respectively. However pathological

changes to cancellous bone as a result of arthritic conditions range from extensive cyst

formation to appreciable densification (Grennan, 1984). Due to the uncertainty of these

changes a larger range of permeability was adopted.

4.4.2 Results

Figure 4-19 shows cement pressure distributions for two prosthesis positions and two

prosthesis designs. The pressure was always highest at the pole of the acetabulum. Gap

closure between prosthesis and bone bed produced steeper pressure gradients.
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Figure 4-19: Cement pressure distributions at two cup positions for 100 N insertion force.

Further results are presented as cement penetration in the radial direction for the

cancellous bone region. Figure 4-20 to Figure 4-22 show the results of the parametric

analyses for the two prosthesis design variations. The development of cement

penetration is shown as the gap between prosthesis and bone narrows from 8 to 1 mm.

Cement penetration varied from negligible (Figure 4-22) to more than 5 mm (Figure 4-

21).

Cement Penetmtion and VIcoity
0.006	 • Unflanged Cup, p = 500 Pa s

Flanged Cup, p = 500 Pa s

o.00s	 UnflangedCup,u= 1000 Pas
w Flanged Cup, p = 1000 Pas

10.004
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0.001

0	

2	 3	 4
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Figure 4-20: Predicted relationship between cement penetration and cement viscosity.
(k=107m2,F=IOON)
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Figure 4-21: Predicted relationship between cement penetration and insertion force.
(k = iO4 m2, i = 500 Pa s)
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FIgure 4-22: Predicted relationship between cement penetration and bone permeability.
(F=100N,i,=500Pas)

4.5 Discussion

Bone cement is rheologically an extremely complex material. After mixing its

behaviour changes from that of a labile liquid to a rigid solid in approximately 6 to 10

minutes. During this time the material's response to an applied load changes from
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depending principally on the rate of loading to depending principally on the amount of

loading. Acrylic bone cements are known to exhibit viscosity that decreases with shear

rate, described as pseudoplastic behaviour. A power law model was used by Krause et

al. (1982b) to describe the behaviour of Zimmer LVC, Zimmer MMH65 and Surgical

Simplex. Such materials cannot in general be fully described by the Newtonian

viscosity. However, a sensible choice of constitutive equation (material model) for a

given flow situation depends on the magnitude of the various effects and the accuracy

of the required predictions. Indeed the dominant non-linear effect appeared to be

increasing elasticity as the cement cured (Figure 4-11 and Figure 4-12). Inclusion of

the shear rate dependent viscosity, noted by other authors (Krause et al., 1982b;

Beaudoin et al., 1991), in the model was not found to be necessary to predict

successfully experimentally determined cement pressures without penetration of

cancellous bone. In this study, a simple measure of the cement viscosity was made at a

single average shear rate (Appendix A), which proved to be significantly lower than the

peak strain rates encountered during the cup insertion process. However, consideration

of the strain rate distribution during cup insertion indicates that the average shear rate

used in the rheometric testing was not hugely different from the average shear rate

experienced by the cement during cup insertion. This may explain why such a simple

constitutive law gave reasonable results in the latter experimental and finite element

modelling. It is worth noting that similar analyses for femoral component insertion

indicate that shear rates are much lower than in the acetabulum, since for the same

insertion force, the prosthesis insertion velocities are much lower (New, unpublished

data).

Although the conventional cements are all nominally polymethyhnethacrylate

formulations, large differences in viscosity were found. These differences may be

explained by differences in powder particle size and molecular weight distribution,

different accelerator composition and the effects of various copolymer species such as

styrene (Lautenschlager et al., 1987). The chemical make up of Boneloc differs

considerably from the conventional cements, the pre-mixed cement having a powder

component composed of poly(butyhnethacrylate-methylmethacrylate) copolymer and a

monomer component composed of a mixture of methylmethacrylate, n-decyl

methacrylate and isobornyl methacrylate. There are also modifications to the
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accelerator system and thus the different curing kinetics of this cement are easily

explained.

The permeability measurement technique developed here to obtained permeability from

theoretical relationships between morphology, measured by computerised image

analysis, and resistance to flow. The results show reasonable agreement with those of

Beaudoin et a!. (1991), who obtained permeability directly from measurements of

pressure drop across human proximal tibia! cancellous bone specimens through which a

Newtonian fluid was flowing. Beaudoin et a!. (1991) give the relationship for

permeability against apparent wet density, p, as:-

k = — 1.85 x 10'p + 2.69 x	 Equation 4-14

When the present results are recast in terms of apparent wet density (using the

measured porosity and assuming a marrow density of 800 kg m 3), the regression

equation is:-

k = —3.63 x 10"p + 4.29 x 10	 (R2 = 0.52)	 Equation 4-15

These adjusted results are compared with those of Beaudoin et a!. in Figure 4-23.
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Figure 4-23: Permeability of cancellous bone vs. apparent wet density.

Durst et a!. (1987) described the underestimation of the experimentally determined

pressure drop by theoretical relationships based on the bundle of smooth channels

approximation, such as Equation 4-7, by factors of 2 to 3. However these errors are

typical of porous materials, such as gravel beds, in which the cross section of the flow
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channels changes rapidly along the flow path and hence where the fluid is subject to

large elongation and contraction as it passes along the flow path. Elongation and

contraction dissipates additional energy and adds to the viscous pressure drop in the

channels, assumed smooth. In cancellous bone the cross section for flow is relatively

large and does not change nearly as rapidly along the flow path. This may explain why

large discrepancies are not apparent between the present results and the results of

Beaudoin et a!. (1991). Thus the technique provides a relatively straightforward

method of determining cancellous bone permeability, which can be derived after, for

example, the infiltration of the bone specimen with bone cement, provided there is

sufficient contrast between bone and cement that they can be adequately distinguished.

Many studies have attempted to define the amount of cement penetration required to

produce a mechanically optimal cement-bone interface. Generally mechanical

properties improve as penetration increases until a plateau is reached, after which no

further improvements can be achieved. Further penetration may lead to increased

physiologically undesirable effects such as thermal bone necrosis and excessive

viable bone becoming engulfed in bone cement. As a result, most authors agree that

2 to 5 mm of cement penetration is optimal (Huiskes and Sloof, 1981; Krause et a!.,

1982a; Dorr eta!., 1984; Walker eta!., 1984), which equates to 1-2 pore diameters in

cancellous bone. It has been postulated that the final strength of the cement bone

interface is principally determined by the strength of the cancellous bone

(Majkowski et a!., 1994), which is in turn related to the density (Carter and Hayes,

1977b) and hence permeability (Beaudoin et a!., 1991). It is not clear, therefore, how

bone permeability would affect the interface strength, since less penetration

into denser bone may produce a stronger interface. Many authors have tried to address

the question of the pressures required to achieve the desired cement penetration

in the acetabulum. One study highlighted the need to continue cement

pressurisation to prevent displacement of cement by bleeding of the bone (Benjamin et

a!., 1987). Juliusson et a!. (1995) found that the presence of blood in the

cancellous spaces before pressurisation began reduced penetration by 50%

and explained this strong influence of circulation by the incompressibility of

the trapped fluid. This is likely be the reason why thorough cleaning of the bone

bed produces quite dramatic effects on overall cement penetration. Previous

141



attempts to use the finite element method (Beaudom et al., 1991) have sought to

model simple laboratory studies, limited to situations where controlled uniform

pressure is employed. The uniform pressurisation assumed in these models is often the

very thing that is difficult to achieve in practice. In many cases the prosthesis itself is

relied on to generate cement pressure and this was the situation modelled in this study.

The modelling technique appears to perform reasonably well, particularly in the

prediction of peak pressures and the penetration of cement into cancellous bone. The

accuracy of the predictions does, however, appear to be dependent on the cement type,

suggesting that the major source of error is the treatment of bone cement as a

Newtonian fluid. As mentioned above, the dominant non-linear effect appeared to be

increasing elasticity as the cement cured. Overall, these results suggested that the

modelling technique was applicable to the parametric analyses that followed.

The analyses of section 4.4 found that 90% of the ultimate cement penetration was

achieved within 2-3 seconds of commencing the pressurisation effort. Neglecting the

increase in viscosity as the cement polymerises was thus justified. In the model

formulation, as soon as the prosthesis stops moving, cement pressure drops

instantaneously to zero. This is a consequence of the Newtonian fluid model assumed.

The cause of the cessation of cup motion is impingement of some part of it on the

acetabulum; with the unflanged cup the apex of the cup meets the depth of the

acetabulum. Alternatively, the flange of the flanged cup may meet the side of the

acetabulum, depending on flange size. Although experimentally high pressures

continue to be measured after this situation has occurred, particularly with the flanged

cup, cement penetration is then essentially complete. The continued application of

pressure is valuable clinically to prevent the effects of bleeding mentioned above, but

does very little to increase penetration of cement, the effect considered here.

The distribution of cancellous bone assumed in the model representing the acetabulum

was a considerable simplification of the real thing. Cancellous bone extended from the

edge of the acetabulum to the depth, whereas in the great majority of clinical cases a

lip of dense bone of variable width will extend from the rim, representing the edge of

the pelvic cortex and the remains of the subchondral plate, which may have become

thickened and eburnated by the osteoarthritic disease processes. However, the results

presented here sampled the cement penetration approximately 10 mm below the rim,
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where cancellous bone is quite likely to be exposed during acetabular pressurisation.

For this reason the results are presumed to be representative of cement penetration in

this area. A further possible criticism of the finite element modelling technique, also

applicable to previous laboratory studies, is that a surgeon applies neither a constant

force nor constant velocity when inserting a prosthesis. In reality the direction and the

magnitude of the push are likely to change, usually in a deliberate attempt to control

the extrusion of the bone cement in some way. In principle arbitrary velocity-time or

force-time profiles could be applied to the prosthesis to examine these effects, but to

compare prosthesis designs the present technique is ideal, since the numerical results

are absolutely repeatable and reproducible. From previous literature, constant force

experiments seem to be preferable to constant velocity, although a surgeon is neither a

constant force or constant velocity device. Also, by incorporating a very powerful

method of solving fluid flow equations for arbitrary fluid domains, namely the finite

element method, the technique developed here can easily be generalised to any

prosthesis-bone cavity geometry. The values for insertion force, cement viscosity and

cancellous bone permeability were chosen to be at the extremes of the ranges

encountered clinically. Parametric variation showed cement penetration to be greater

with flanged cups, reduced viscosity cement, higher insertion force and more

permeable bone. Permeability appears to have a very strong effect simply because it

was varied by a factor of 100 compared to factors of 2 for the insertion force and

cement viscosity. Several studies have attempted to quantify the cement penetration

into cancellous bone in the acetabulum using various methods of cement

pressurisation. Typically a few small diameter tubes are placed at strategic locations in

the acetabulum. While useful for comparative tests, the somewhat arbitrary diameters

chosen by various authors make for difficult comparisons with the present study, where

an attempt was made to accurately account for the permeability of the cancellous bone.

In general, however, the same trends emerge as reported here. As expected, the

flanged cup was always at an advantage compared to the unflanged cup, resulting in

approximately 20% increase in overall cement penetration in all cases. Halving the

cement viscosity or doubling the insertion force both resulted in 40% increase in

ultimate cement penetration. These comparisons, together with qualitative

comparisons with post-operative X-rays, suggests that the finite element modelling

143



technique presented is suitable for describing the effects of prosthesis design on cement

penetration and for evaluation of design improvements.

With regard to cementing technique, the results suggest that the prosthesis should be

inserted with as much force as possible to produce maximum cement penetration.

Although the use of reduced viscosity cement would also seem to be advisable, clinical

experience shows the "low viscosity" cements to be difficult to handle under surgical

conditions. Practical advice would be to insert the cement and then the prosthesis as

soon as the cement is judged to be able to reasonably support its own shape. Since

body forces (gravity) on the bone cement were not considered, this particular effect

cannot be assessed from the current models. If these effects were to be considered, a

more sophisticated treatment of cement viscosity with time would be required.

4.6 Summary

Aseptic loosening is the most common cause of late failure of total hip replacement.

Analysis of the Swedish Arthroplasty Register has demonstrated that modem surgical

techniques have lead to a reduction in the rate of aseptic loosening (Malchau and

Herberts, 1996). The enhanced initial fixation brought about by careful preparation of

the bone bed and cement pressurisation are considered to be responsible for the

improvement. Various studies suggest that cement pressurisation and subsequent

penetration of cement into cancellous bone produces a stronger interface (Krause et

a!., 1982a; Askew et a!., 1984). Prosthesis design is important for cement

pressurisation (Beverland et a!., 1993; Shelley and Wroblewski, 1988) and appears to

be clinically significant since improvements in the radiographic appearance of the

cement bone interface for flanged cups are observed in the long term (Hodgkinson et

al., 1993). A model of cement flow during component insertion in joint replacement,

based on the finite element method and using simple treatments of cement viscosity and

cancellous bone permeability, has been developed and then applied to quantify the

effects of prosthesis design on cement penetration into cancellous bone in the

acetabulum. Parametric analyses showed cement penetration to be greater with

flanged cups, reduced viscosity cement, higher insertion force and more permeable

cancellous bone. Cement penetration varied from negligible (less than 0.5 mm) to
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more than 5 mm. The trends were in agreement with those reported in the literature

and appeared reasonable in comparison to typical post-operative radiographic

appearances.
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5. Mechanical Aspects of Acetabular Cup Fixation

5.1 Introduction

The mechanism of failure of cemented acetabular cups is still debated (section 2.4).

Recent studies have emphasised the role of cellular reactions to particulate debris

arising from wear of the cup articulating surface, but there is considerable evidence

that the initial quality of fixation is an important determinant of long term success.

Understanding of the mechanics of the pelvis and of acetabular reconstruction remains

incomplete, especially with regard to sub-optimal component fixation (partial

debonding at the cement-bone interface). Thus structural finite element analyses of the

innominate bone in various configurations have been performed. Using these models,

modifications to acetabular mechanics induced by the implantation of acetabular

prostheses have been investigated. Additionally, the effects of sub-optimal fixation

have been studied.

5.2 Methods

All the structural finite element models used are derived from the nodal, connectivity

and material properties definitions of Dalstra (1993). The full details of the

development of this model, which includes validation with a strain gauge study, are

given in Dalstra et a!. (1995), but a brief summary and a description of some necessary

modifications is given below. All structural analyses were performed with the ANSYS

general purpose finite element package (releases 5.Oa and 5.3) and its integrated pre-

and post-processing modules (ANSYS mc, Houston, Pennsylvania, USA), running on

various IBM PC compatible computers with Microsoft Windows 95 and MS-DOS 6.0

operating systems.

5.2.1 The Basic Finite Element Mesh

The basic mesh consists of elements that describe the cortical shell and the cancellous

bone of the bulk of the pelvis. The geometry of the model was defined by manually

sectioning and digitising slices from the pelvis of an 87 year old male. The digitised

sections were then divided into 4 node quadrilaterals which, when the sections were
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stacked, were connected to form 8 node brick elements representing the cancellous

bone. The faces of the brick elements on the surface of the model were then overlaid

with 4 node membrane elements to represent the cortical shell. Young's moduli were

assigned to the brick elements by superimposing the mesh on a dual energy quantitative

CT scan, from which the Young's modulus of the cancellous bone was derived with the

empirical relationship:-

\2.46

E = 20 17.3 c	 I

	

0.626 J	
EquatIon 5-1

where E is Young's modulus and Pcaq is the calcium equivalent density, a calibrated

quantity derived from X-ray absorption values. Poisson's ratio for these elements was

assumed to be 0.2. The thickness of the cortical shell was also measured from the CT

scan slices and assigned to the nodes of the relevant membrane elements. Young's

modulus and Poisson's ratio for the cortical shell were assumed to be 17 GPa and 0.3

respectively. All materials were assumed homogeneous, isotropic and linear elastic.

5.2.2 Modifications

Due to differences between the MARC finite element program (MARC Analysis

Corporation, Palo Alto, USA) used by Daistra and ANSYS, certain changes had to be

made to the basic model A computer program was written to modify elements too

distorted to be acceptable to ANSYS. Some 15% of the original 8 node brick elements

were transformed into 6 node prisms and 4 node tetrahedra. Fortunately, since such

mixed meshes can perform poorly, only 15 tetrahedral elements were required.

Similarly, 55% of the original 4 node membrane elements were transformed to 3 node

triangles because of excessive deviation from planarity ("warping"). These adjustments

were made by modifying the element connectivity and did not affect the positions of

nodes and hence the geometry of the modeL Care was taken to ensure that the correct

distribution of material properties and membrane thickness was preserved. The

modified finite element mesh, the distribution of Young's modulus in the cancellous

bone and the distribution of cortical thickness are shown in Figure 5-1. In total the

model comprises approximately 700 nodes and 1300 brick and membrane elements.

Comparative tests with the results of Dalstra (1993) showed negligible differences in

the results due to the mesh modifications and the different FE codes.
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5.2.3 Applied Loads

Force vectors representing 22 muscles acting across the hip joint and the hip joint

reaction force during 8 "snapshots" of the gait cycle were available for application to

the model (Table 5-1). The magnitudes and directions of the muscle forces were

derived by Daistra from the studies of Crowninshield and Brand (1981) and Dostal and

Andrews (1981) respectively and the hip joint reaction force from Bergmann et al.

(1993). Muscle insertions are shown in Figure 2-3.

Table 5-1: HIp joint force and muscle forces for eight load cases during gait. ()

1	 2	 3	 4	 5	 678......_

Hip joint reaction force	 426 2160 1876 1651 1180 187 87 379

Gluteusminimus	 228 140 263 228 175 123 114 219

Gluleusmedius	 1018 1053 1474 1509 1412 982 105 421

Gluteus maximus	 842 930 167 377 456 491 114 482

Tensor fasciae latae	 0	 132	 88	 158 149 88 70 96

Adductor brevis	 0	 114	 0	 0	 0 202 0 114

Adductor longus 	 0	 88	 0	 0	 88 158 70 140

Adductor magnus	 0	 0	 0	 0	 132 263 0	 0

Semimembranosus	 579 368 333 368 421 298 61 421

Semitendinosus	 0	 140 105 246 316 368 105 0

Biceps femoris (long head) 298 202	 88	 70	 123 114 79 377

Gracilis	 0	 0	 0	 0	 88 158 70 140

Sartorius	 0	 88	 0	 0	 35 158 88 88

Iliacus	 0	 0	 0	 228 307 272 0	 0

Psoas	 149	 0	 316 175	 88 175 105 140

Gemellus inferior	 0	 0	 0	 0	 0	 140 79 149

Obturator externus 	 0	 0	 0	 0	 123 167 135 123

Obturator internus	 167 123	 0	 61	 61 149 123 0

Pectineus	 0	 0	 175 96	 0	 149 0	 0

Piriformis	 202 175	 0	 0	 0	 0 123 228

Quadratus femoris	 61	 96	 0	 0	 88 184 0	 0

Gemellus superior	 140 88	 123 79	 0	 0 158 202

Rectus femoris	 0	 123	 0	 0	 0	 175 105 96
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The most important muscles not included in this model are the erector spinae, the

internal and external obliques and quadratus lumborum. These muscles do not cross

the hip joint and are principally active on the contralateral side during the stance phase

of gait, since they function to stabilise the upper body with respect to the pelvis

(Cunningham's Textbook of Anatomy, 1972).

To describe correctly the transfer of load between the femoral head (femoral

prosthesis) and the acetabulum (acetabular cup), a portion of the femoral head (femoral

prosthesis) was included in all models. The femoral section was coupled to the

acetabulum by contact elements supporting only compressive load transfer at the

interface, since the contact between head and cup was in all cases assumed to be

frictionless.

5.2.4 Solution

Since the models include non-linear contact elements, initial solution of the finite

element displacement equations required iterative techniques. Once contact was

established, however, the solution proceeded as for a linear problem unless the contact

status of a contact element changed. Other non-linearities such as large deflections and

stress stiffening may occur in the pelvis under physiological loading, but were

considered to be of secondary importance and were omitted. Under these conditions,

typical total solution time was 2 hours using a Pentium 120 PC with 32MB of RAM.

5.2.5 Hoffman Failure Criterion for Cancellous Bone

Failure criteria provide methods for comparing the actual state of stress in a material to

some allowable state of stress and hence determine whether failure is likely to occur.

The von Mises criterion, developed to predict yielding in ductile metals, assumes

failure (yielding) will not occur providing the von Mises equivalent stress remains

below the uniaxial yield stress of the material. Applying the simple von Mises yield

criterion to cancellous bone is difficult since failure under pure hydrostatic stress is

excluded, clearly a problem for a porous material, and no allowance is possible for

differences in tensile, compressive and shear strength. The Hoffman failure criterion

(Hoffman, 1967) has been used previously to describe the failure of cancellous bone

(Stone et a!., 1983) and bone implant interfaces (Weinans et a!., 1993). The Hoffman
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criterion has been modified to allow its use in problems involving multiaxial stresses in

cancellous bone (Equation 5-2). Failure is said to have occurred when the left hand

side of this equation, the Hoffman failure index, exceeds the critical value 1. Although

this criterion may not predict failure under hydrostatic stress, it does allow for different

tensile, compressive and shear strengths.

2F,F [(c 
-a) 2 	-a)2 +(	

)2]

(1	 1 '	 1	 2	 2	 2	

EquatIon 5-2

-	 + + a) + jT (z + +	 1

where a, cr and a are the component normal stresses, ;,,	 and ; are the

component shear stresses and F, F and F5 are the tensile compressive and shear

strengths respectively. The relationships of Kaplan et al. (1985) and Stone et at.

(1983) (Equation 5-3 to Equation 5-5) were used to calculate the tensile, compressive

and shear strength for each cancellous bone element based on its apparent density

(calculated from the CT density of Dalstra (1993)).

	

= 3.24.101 p' .85	 EquatIon 5-3

	= 145.107 p' 7'	 Equation 5-4

	

F5 = 2• 16.1 0 p' 65 	 EquatIon 5-5

5.3 Analyses

To investigate the effects of assumptions regarding the loading of the pelvis and the

kinematic boundary conditions applied, three finite element models representing the

normal pelvis were used. The first modelled the full pelvis by reflecting the hemi-pelvis

mesh in the plane of the pubic symphysis and connecting the two halves by solid

elements (Young's modulus of 11.5 MPa, Poisson's ratio 0.45), assumed to be

representative of symphyseal fibrocartilage. Both sacroiliac joints were assumed to be

"built-in", i.e. all degrees of freedom at the nodes attached to the element faces

representing the joint surfaces were specified as zero. The second modelled the hemi-

pelvis with both the sacroiliac joint and the pubic symphysis "built-in" and the third the

hemi-pelvis with just the sacroiliac joint "built-in".

The subchondral bone layer of the lunate surfaces was modelled with membrane

elements, 2 mm thick, with a Young's modulus of 2 GPa and a Poisson's ratio of 0.3,
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and the cancellous bone underlying the lunate surface modelled with solid elements as

previously described for the basic mesh (sections 5.2.1-5.2.2). The distribution of

Young's modulus in the underlying cancellous bone is shown in Figure 5-2. Articular

cartilage (Young's modulus 11.5 MPa and Poisson's ratio 0.45) with a thickness of 2

mm was assumed to cover the lunate surfaces and the femoral head. To avoid

confusion, henceforth "subchondral bone" will refer to the cortical layer modelled

with membrane elements and "sub-lunate cancellous bone" to the layer of cancellous

bone immediately below it. There is no sharp anatomical distinction between the

cancellous bone of this region and that in the bulk of the pelvis. In all cases the loaded

(left) side of the pelvis had the muscle forces and hip joint reaction force

corresponding to the early single leg stance phase of gait applied (load case 2, Table 5-

1).

89-274	 MPa

	

275-459	 MPa

	

___ 460-644	 MPa
645-830 MPa
831-1010 MPa
1011-1200 MPa
1201-1380 IPa
181-1570 MPa
1571-1760 MPa

Figure 5-2: Young's modulus distribution in the sub-lunate cancellous bone.

The effects of the replacement of the normal acetabular joint surface with a cemented

polyethylene cup were examined. Recent studies of reconstructed femora in various

configurations have indicated that, after prosthesis implantation, peak cancellous bone

stresses can be an appreciable fraction of, and may even exceed the strength of, the

bone and also that these stresses correlate with early migration (Taylor el a!., 1995).

Based on these observations it has been suggested that migration is caused by the

collapse and subsequent remodelling of cancellous bone (Taylor and Tanner, 1997). In

view of this hypothesis, the cancellous bone stresses in the normal and in the

reconstructed acetabulum have been compared to the bone strength using the Hoffman

failure criterion. Since stresses at the bone-cement interface are also highly significant,

these were also considered. The nodal force method described by Kuiper (1993),
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which divides the nodal forces that act between the elements of the materials adjacent

to the interface by the area attributed to the nodal points, was used to calculate

interfacial stresses, resolved into tilting and twisting shear stress and normal stress

components according to Figure 5-3.

Figure 5-3: Positive direction of normal, twisting and tilting shear stress.

The hemi-pelvis model with built-in pubic symphysis and loaded with load case 2

(Table 5-1) was used to analyse the stresses in the normal pelvis and two variations of

a pelvis implanted with a cemented all-polyethylene prosthesis. Two cement mantle

thicknesses were studied (3 mm and 6 mm, with 18 mm and 15 mm cup thicknesses to

keep the total cement plus cup thickness constant) (Figure 5-4). In the implanted

models, the acetabular floor region between the lunate surfaces was filled with 8 node

brick elements (Young's modulus 622 MPa and Poisson's ratio 0.2), approximating

the shape of a typical pre-implantation acetabulum. Two separate cases were

considered for each implanted model in which the subehondral bone plate was assumed

to have been removed by reaming, or retained. The results of the finite element

analyses were then used to define a Hoffman failure index for each cancellous bone

element based on the equations presented in section 5.2.5.
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Key Material
	

Young's
	

Poisson's
Modulus
	

Ratio

0.2
0.3
0.2
0.45
0.3
0.4
0.2
0.3
0.3

Pelvic cancellous bone
Subchondral bone
Sub-lunate cancellous bone
Articular cartilage
Bone cement
Acetabular cup
Femoral cancellous bone
Femoral prosthesis

I	 I Pelvic cortical bone

Variable (see text)
2x iO
Variable (see text)
ll.5x 106
2.5x iO
I x l0
800x 106
210x l0
l7x l0

Figure 5-4: Sections through the normal and implanted acetabula.

To simulate debonding of the cement bone interface, the model with the thick cement

layer and retention of the subchondral bone had successive layers of nodes associated

with element edges at the perimeter of the cement-bone interface separated by

inserting gap elements which only allowed transmission of compressive and (in the

case of a non-zero coefficient of friction) shear forces across the interface. The model

was analysed in four configurations, the first assuming a fully bonded cement bone

interface and the second, third and fourth assuming one, two and three circumferential
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layers of nodes were released at this interface respectively. The release of one, two and

three layers corresponded to debonded layers 10, 23 and 36 mm deep respectively,

extending from the acetabular rim towards the pole (Figure 5-5). These models will

henceforth be referred to as the "one layer", "two layer" and "three layer" debonded

models.

Figure 5-5: Locations of debonding for the one-, two- and three layer debonded models.

Since the gap size was chosen arbitrarily, the effect of the initial gap size was

investigated by comparing 0.1 mm and 0.5 mm gaps. To investigate the effects of

friction on the interface, a Coulomb friction model with a friction coefficient (p.) of

0.25 was assumed. This value lies between those for surfaces with a fairly effective

lubricant and ones with no lubricant (O'Connor, 1968). The load transfer behaviour of

the gap elements is illustrated in Figure 5-6, where FN is the force normal to the

interface, FT is the force tangential to the interface (friction model only), ((UN)1 - (uN))

and ((uT)1 - (uT)) are the relative displacements of the gap element nodes in the normal

and tangential directions respectively and KN and KT are the normal and tangential

contact stiffnesses. If the gap element closes when loads are applied to the structure,

equal and opposite normal contact forces are applied to the nodes of the gap element

which are shared by solid elements on either side of the interface, according to the

relationships of Figure 5-6. The normal contact stiffness constant KN was in all cases

assumed to be equal to the average stiffness of the cancellous bone elements attached

to the contact element node. K-r was assumed to be equal to KN. The two effects of

interest in this case were the alterations to the stresses in the acetabulum and the

micromotion between cement and bone brought about by the debonding. In this thesis

the term "micromotion" is used exclusively to describe small sliding displacements

between two materials at a non-bonded interface. An alternative definition of
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(u,)-(uN) (uT)J-(uT),

micromotion is the elastic and plastic deformation of the materials at the interface

(Taylor and Tanner, 1997).

1:'
	

V

(a)
	

(b)

Figure 5-6: Force deflection relationships for contact (gap) elements.
(a) normal and (a) perpendicular to the Interface.

5.4 Results

5.4.1 The Effect of Boundary Conditions on Pelvic Mechanics

The effect of changes in the kinematic boundary conditions on nodal displacements are

shown in Figure 5-7. Peak displacements in the iliac wing were virtually unchanged by

the choice of boundary conditions, in all cases being in the region of 6 mm under the

action of the hip abductor muscles. Near the pubic symphysis, displacements were,

predictably, highest when the symphysis was unrestrained, with up to 6 mm of

posterior-medial displacement. The presence of a contralateral hemi-pelvis reduced

displacement at the pubis to about half that seen for the unrestrained symphysis.

Generally the displacements in the hemi-pelvis were least with the built-in pubic

symphysis, intermediate with the full pelvis and most with the free pubic symphysis.
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The overall pattern of the von Mises stresses in the cancellous bone underlying the

subchondral bone plate were similar for the built-in pubic symphysis model and the fill

pelvis model. Stresses were marginally higher for the built-in pubic symphysis model,

particularly in the region of the pubic bone. Allowing the pubic symphysis to move

freely reduced stresses in the depth of the acetabulum and produced high stress in the

region of the greater sciatic notch. There was a general trend to increase the area under

higher stresses as the pubic symphysis became progressively more constrained.

5.4.2 Load Transfer in Normal and Reconstructed Acetabula

Figure 5-8 compares the peri-acetabular displacement fields for the normal and

reconstructed acetabula for load case 2 (Table 5-1). In the reconstructed case the

overall displacements are smaller, particularly in the superior quadrant, suggestive of

significant stiffening of the acetabulum by the implant.

•
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

Figure 5-8: Peri-acetabular displacements in normal and reconstructed acetabula.
Contours represent magnitude (mm) and arrows direction of the displacement vector.

Von Mises stresses in the cancellous bone and the distribution of the Hoffman failure

criterion for the normal and both reconstructed models without the subchondral plate

are shown in Figure 5-9. Peak stresses in the sub-lunate cancellous bone in both

reconstructed acetabula were lower than in the normal acetabulum and stresses were

distributed over a wider area. In the reconstructed cases significantly more stress was

transferred through the rim of the acetabulum. Changing cement thickness produced

minimal changes in both the displacement and stress fields.
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Figure 5-9: Distribution of the Hoffman criterion and von Mises stress.

(a) Normal, (b) thin cement layer and (c) thick cement layer.
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In the normal acetabulum the maximum value of the Hoffinan index in the region of the

acetabulum was less than 0.4 (greater than 1 represents failure). In both reconstructed

acetabula the maximum value was reduced to below 0.15, again there was virtually no

difference between the two cement thicknesses.

Comparing the effect of removal or retention of the subchondral plate, small

differences were seen in the cancellous bone von Mises stresses and the Hoffman

index. The differencewere most clearly manifested in the interface stress components

as shown in Figure 5-10 and Figure 5-11. Where the subchondral plate was

peak stresses at the interface were slightly raised, but overall the differences were

negligible. Compared to the bulky acetabular cup and bone cement, the stiffness of the

subchondral plate is small, so it contributes relatively little to the stifihess of the

acetabulum.

Preserved Suhchondral Bone Plate Sacrificed Suhchondral Bone Plate

(a)

L/	 •.r

T)
,K /	 \ C I

V/	 f_	 '
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1 --7 L
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r'/'/
\	 I 

//\ \
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(b)

(c)

- _ U	 -

<-1	 -1	 -0.67	 -	 0	 0.33	 0.67	 1	 >1
Figure 5-10: Effect of sacrifice of the subchondral plate on interface stress.

Results for thick cement model (a) normal, (b) twisting and (c) tilting stresses (MPa)
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Figure 5-11: Maximum and minimum values of the interface stress components.
Results for thick cement model with preserved and sacrificed subchondral bone plate.

5.4.3 The Effect of Prosthesis Debonding on Acetabular Mechanics

Figure 5-11 shows the micromotion at the bone cement interface for three locations

around the acetabular rim of the frictionless, Oi mm gap ("baseline") model for the

two layer debonded case.

-.--Ilium
	 100

* Pubis
tschium

a

50.

I

50&	 100	 150	 200

-50

-100

Twisting MicTomotion (inn)

Figure 5-12: Tilting and twisting micromotion at the ilium, ischium and pubis.
Results for the two layers debonded baseline modeL Black markers represent load case 1, the

line joins the points that represent the further load cases in the order they appear in Table 5-I.
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The position of each point represents the relative displacement parallel to the interface

of the two nodes of selected gap elements at the ilium, ischium and pubis for the eight

load cases representing the complete gait cycle defined in Table 5-1. In the unloaded

model, the relative displacement in both directions is zero. Tilting and twisting

micromotions as defmed in Figure 5-3 are shown on the y and x axes respectively.

Figure 5-13 shows the amplitude of the micromotion over the gait cycle for the one,

two and three layers debonded baseline modeL At all locations, except the ilium in the

twisting direction, the range of micromotion increases almost linearly with the amount

of debonding. With a single debonded layer, representing a debonded width of 7-12

mm depending on position, micromotion parallel to the interface in both directions was

greater at the ilium than at the pubis or ischium. Twisting micromotion dominated at

the ilium, the total motion over a complete gait cycle being 55 tm in twisting and 30

.Lm in tilting. This is in accordance with the path the hip joint reaction force vector

sweeps in the acetabulum, since the range of the locus of the vector is greater around

the symmetry axis of the cup than perpendicular to this axis. A similar effect was

observed at the ischium and the pubis, although at the pubis the two sliding

components were closer in range. With two layers debonded, this situation was

reversed, micromotion at the ilium being least. With three layers debonded, the

micromotions at the ilium and pubis were similar and significantly less than that at the

ischium. In all cases the relative size of the two components depended on both location

and the amount of debonding. At the ischium the tilting component was always less

than the twisting. At the pubis, with the exception of the one layer model, the twisting

was less than the tilting. At the ilium twisting was greater than tilting in all except the

case with two layers debonded.

The effect of friction on the micromotion at the ilium is shown in Figure 5-14. Friction

had a small effect, decreasing the amplitude of micromotion. Adding friction to an

interface model makes the response of the system dependent on loading history. The

application and then removal of load on the system may or may not result in the model

returning to its original configuration - it is generally non-conservative. Despite this, in

the present model each successive loading cycle generated substantially the same

micromotions. This invites the conclusion that in the present model frictional forces

were substantially less than elastic restoring forces in the loaded structure.
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flgure 5-13: Tilting and twisting micromotion at the ilium, pubis and ischiuni.
(baseline model)

Twisting Micromotion (rim)

-20	 0	 20	 40	 60	 80

-20

-'	 -40
a

I

I

-lot

Friction Cycle I
-.-Fncticsi Cycle 2

Friction Cycle 3
- Frictionless

-120j

Figure 5-14: The effect of friction on micromotion at the ilium.

163



250

te 200

- l50

a
too.

50 -

0 - Eli-i

Figure 5-15 summarises the range of motion at the three locations as a result of

CemnteJ. (lap 0.5mm

(a)

'5°in
loot

:J.I± P
Cemented	 Cemented. Gap 0.5mm

(b)

vaiying the model parameters.
350 -

•TwIM
•lik

300 Dap

6 250-

20O-

150

I00 —

50-'-

0- L.	 -

Cmcnted

350 T •Twig

•rk
300-r DG.p

250

I 200

Cemented. Friction i'0.25)

Cemented, Friction 110.25)

iL
Metal Backed

In
ILL

Metal Backed

350 - ________
UTwiat
•Tik

300 OGap

ILL
Cemented	 Cemented. Gap 0.5mm 	 Ccmcntcd Frictinn t 0.25)	 Metal Backed

(c)

Figure 5-15: Effect of varying model parameters on the range of micromotion.
Results at (a) the ilium, (b) the ischium and (c) the pubis.
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The assumed size of the gap between cement and bone was by far the most significant

parameter. Increasing this gap greatly increased micromotion at the ilium, since most

load transfer occurred at this site once debonding was included. Friction had a

relatively small influence on the micromotion where little debonding was present,

progressively increasing as the amount of debonding increased. A small decrease in

micromotion for one layer debonded was noted at the ilium, accompanied by a slight

increase at the pubis and almost no change at the ischium. As more debonding was

introduced the effect of friction became slightly more noticeable, decreasing

micromotion at the ilium and particularly making changes in the distribution of

interface stresses. Metal backing made small changes, comparable in magnitude to the

effect of friction. Gap size made significant changes to the micromotion at the ilium,

but not at the ischium and pubis, again reflecting the direction of the hip joint reaction

force. The effect of prosthesis debonding on the interface stresses is shown in Figure 5-

16. These results are for a frictionless model with a gap size of 0.1 mm using the

second load step in the gait cycle (peak hip joint reaction force).
Normal Stress	 Twisting Shear Stress	 Tilting Shear Stress
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Figure 5-16: The effect of debonding at the cement bone interface on interface stresses.

Stress (MPa), fnctionless model with (a) one layer, (b) two layers and (c) three layers debonded.
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Figure 5-17 shows results for the two layer debonded model when friction and

increased gap size were introduced. As with micromotion, friction had a relatively

small influence where little debonding was present, progressively becoming more

important as the amount of debonding increased. The small decreases in micromotions

were accompanied by negligible changes in the peak values of the interface stress

components. As more debonding was introduced the effect of friction became more

noticeable, decreasing micromotion at the ilium and particularly making changes in the

distribution of interface stresses. With a gap size of 0.1 mm the cup tilts towards the

anterior superior wall and makes contact by closing the gap, thus transferring load by

compressive contact. With a gap size of 0.5 mm, this mechanism was not evident,

resulting in increased tensile stresses at the bond line opposite the contact area in the

small gap model. Compared to the bonded case, stresses were much lower. In the

bonded models the stiffness of the cortical shell causes high stress at the rim.

Normal Stress Twisting Shear Stress

-,(_	 .''	 /,'c"7- 'i--'A

W \ '	 ...,
'\ / / / I \ ,l" .4'
'( "&!

(a)

Tilting Shear Stress

(b)

• _ • - •	 •
<-1	 -1	 -0.67 -0.33	 0	 0.33	 0.67	 1	 >1

Figure 5-17: The effect of debonding at the cement bone interface on interface stresses.
Stress contours (MPa) for two layer debonded model with friction (& = 0.25)

and a gap size of (a) 0.1 mm and (b) 0.5 mm

Figure 5-18 summarises the interface stress at the ilium, ischium and pubis for the

various models. The maximum and minimum interface stresses are shown and

compared to the equivalent filly bonded model.
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Figure 5-18: Maiimum interface stresses for the bonded and debonded models.
(a) normal interface stress, (b) twisting component of the shear stress

and (C) tilting component of the shear stress.
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In light of these results, it is instructive to review the various models with regard to the

gross effects on load transfer in the acetabulum (Figure 5-19). In the normal hip the

load appears to be shared between the cancellous bone in the depth, which transfers

load into the medial cortex, and the lateral cortex. In the reconstructed hip assuming

perfect bonding between bone and cement over the whole surface of the cement

mantle, more load is transferred into the lateral cortex and less via the cancellous bone,

as indicated by the different stress distributions. As debonding, simulated by releasing

element connectivity around the rim of the acetabulum and inserting gap elements,

progresses, the subchondral bone layer transmits loads into the lateral cortex and the

cancellous bone regains a more significant role in load transmission. Gap size appeared

to have a relatively small effect. It is interesting to note that now the removal of the

subchondral plate has a more significant effect on the distribution of load between the

cortices and the cancellous bone, with larger increases in cancellous bone stresses than

demonstrated with the perfectly bonded models described above.

168



ii

U

.-1

Ii-I

I I

I I

I
h
P

I

- r I	 •• 'n .0

'Eliul
- (1

IEIEIIIIIEJIII

169



5.5 Discussion

Recent work at the University of Nijmegen has revealed the inadequacy of two

dimensional and axisymmetric finite element models in predicting the mechanical

behaviour of the acetabulum (Daistra and Huiskes, 1995). Two dimensional models are

inherently too flexible since they cannot account for reinforcement by the anterior and

posterior acetabular walls, whereas axisymmetric models are too stiff because the

acetabular wall is assumed to be circumferentially continuous with no allowance for the

acetabular notch. The effects of these modelling assumptions are highly significant and

in the past may have lead to misleading conclusions about the effects of implant design

on the mechanics of the acetabulum, e.g. the role of metal backing. Three dimensional

models are thus prerequisite for modelling the acetabulum, despite the increased

complexity of mesh generation and the computational effort required.

For the purposes of this discussion, the hemi-pelvis is mechanically linked to the rest

of the body via muscles and three joints, the hip joint, the sacroiliac joint and the

pubic symphysis. During the single leg stance phase of gait the weight of the upper

body is transferred into the pelvis principally via the ipsilateral sacroiliac joint and

secondarily via the contralateral innominate bone, the pubic symphysis and by direct

bearing of the abdominal viscera on the medial surfaces of the iliac wings. The hip

joint is stabilised by the muscles that cross the hip - at the hip the ligamentous

structures and the joint capsule only operate at the extremes of the range of motion of

the joint. The hemi-pelvis is thus essentially a beam, albeit one of intricate geometry

and subject to complex loading, supported at the two non articulating joints, the pubic

symphysis and the sacroiliac joint. The constraints applied to the finite element

models at these joints define their ability to transmit forces and moments.

Anatomically the sacroiliac joint is characterised by strong ligamentous support and

an interlocking surface which appears to indicate "design" for resistance to bending

and shear loading. Building in the sacroiliac joint(s) in the finite element models
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allows it to generate forces and moments exactly equal and opposite to the out of

balance forces that result from the out of balance applied loads, seemingly in keeping

with the physical structure of the joint. The behaviour of the pubic symphysis is more

difficult to predict, so the effects of varying the boundary condition at the pubic

symphysis have been studied. It was found that while the overall displacement field of

the loaded hemi-pelvis was strongly affected by the boundary conditions, the second

order quantities strain and stress were much less affected. The patterns of von Mises

stresses around the acetabulum were not greatly different for the built-in pubic

symphysis model and the full pelvis modeL Stresses were marginally higher for the

built-in pubic symphysis model, particularly in the region of the pubic bone. Allowing

the pubic symphysis to move completely freely reduced stresses in the depth of the

acetabulum and produced higher stresses in the region of the greater sciatic notch. The

general trend was to increase the area under higher stresses as the pubic symphysis

became progressively more constrained. It was thus concluded that some constraint

was necessary at the pubic symphysis to represent the stiffness of the contralateral

hemi-pelvis and produce realistic load transfer. To provide this constraint a built-in

pubic symphysis, in which all degrees of freedom of the nodes at the pubic symphysis

were set to zero, was assumed in all latter models. Although this constraint is not

completely consistent with the anatomy of the pubic symphysis, the differences in the

strain and stress fields between the full pelvic model and the built-in pubic symphysis

model were small, and thus the built-in pubic symphysis was applied to all subsequent

models. This has the additional benefit of maintaining consistency with previous work

(Dalstra, 1993).

Muscle forces have a considerable influence on the displacement, strain and stress

fields in the pelvic bone (Dalstra, 1993). When muscle forces are omitted the pelvis

becomes loaded in a three point bending mode and maximum stresses occur around the

supports of the sacroiliac joint and the pubic symphysis. The peak von Mises stresses

at the superior rim of the acetabulum are reduced by 15%. With the exception
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of the models considering the micromotion produced by a debonded cement bone

interface, where multiple load cases representing the complete gait cycle were used

(Table 5-1), the representative load case chosen simulated the beginning of the single

support phase of gait with the hip in 18° of flexion. It was at this stage that Daistra

(1993) found the highest peri-acetabular stresses.

In the normal acetabulum there appear to be two mechanisms for the transfer of the hip

joint reaction force into the pelvis. The load is shared between the cancellous bone in

the depth of the acetabulum and the pelvic cortex at the acetabular rim depending upon

the relative stiffness of each. In the unreconstructed case the hip joint reaction force

causes the acetabulum to bulge in the superior and posterior directions, becoming more

ovoid in shape with the major axis of the ovoid approximately coincident with the line

of action of the hip joint reaction force. The principal effect of acetabular

reconstruction is to stiffen the acetabulum. The presence of the relatively stiff

acetabular cup suppresses the deformation of the acetabulum and causes the

acetabulum to behave as a more rigid body and hence to tend to retain its

approximately hemispherical shape. In the reconstructed acetabulum loads are not

transmitted as efficiently as in the natural situation. If a fully bonded prosthesis is

assumed, most of the load is transferred at the rim and the cancellous bone in the depth

is stress shielded compared to the normal acetabulum. This is a more extreme version

of what happens in the normal joint, where the articular cartilage and subchondral plate

combined, which are less stiff than the polyethylene cup and cement combined, transfer

load directly into the lateral cortex and to the medial cortex via cancellous bone (Jacob

et a!., 1976). With a debonded prosthesis, the character of the load sharing changes,

less load is transferred at the rim (cortex) depending on gap size and relatively more at

the depth by the cancellous bone. Then the pattern of loading changes and the

cancellous bone becomes relatively more highly stressed.

The Hoffman index gives a measure of the load carried by a particular region of bone

with respect to its total load carrying capacity. In the normal acetabulum "Wolff's
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Law" arguments might suggest that the Hoffman failure index should be evenly

distributed over the acetabulum. However, in this study the Hoffman index was

considered for only one load case (representing single leg stance phase in walking).

Other phases of walking and activities such as stair climbing will produce different

stress distributions in the acetabulum owing primarily to changes in the direction of the

hip joint reaction force. The concentration of high values of the Hoffman index along

the line of the hip joint reaction force is noteworthy - this concentration would be

expected to follow the hip joint reaction force as it sweeps the acetabulum.

The reduced values of the Hoffman index and the redistribution of stress in both

reconstructed acetabula as compared to the normal case lead to the conclusion that,

under the static conditions modelled, cancellous bone is within its load bearing

capacity. From these results, it seems collapse and remodelling of cancellous bone is

less likely to be a significant failure mechanism in the acetabulum than in the femur.

Indeed both the redistribution of stresses in the reconstructed case and the reduction in

the Hoffman index throughout the acetabulum appears to indicate "stress shielding" as

a result of the introduction of the implant, although the significance of this effect with

respect to bone remodelling cannot be addressed here.

In considering the surgical options in acetabular reconstruction, the stress magnitude

and distribution are negligibly changed by retention or removal of the subchondral

bone plate. The introduction of the relatively stiff implant and cement composite means

the subchondral plate contributes little to the overall stiffness of the structure. The

major effect of the retention of the subchondral plate can be expected to be deleterious.

The hard dense surface it presents, especially in the osteoarthritic case, prevents

interlock occurring between cement and bone and hence reduces the strength of the

cement bone interface. For the interface stresses the same pattern was observed

whether the subchondral plate was removed or preserved. Studies have shown the

negligible strength of the interface between bone cement and cortical bone (te Nuyl and

Vossebeld, 1996).
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In the debonded models it was assumed that some degree of debonding wifi be

present, if not immediately post operatively then shortly after rehabilitation starts. The

simplest possible model for describing the mechanics of a debonded interface was

adopted, that of frictionless contact. A number of uncertainties were present when

assuming this modeL The effect of the assumed size of the gap, whether friction was

important and the effects of the stiffness of the prosthesis were assessed by varying

these parameters. Friction was found to hardly influence the micromotion or the

interface stresses. Weinans et a!. (1990) compared a variety of modelling techniques

in the femur and found that the gap element approach, as used here, tended to

underestimate micromotions by a factor of 3 to 5 compared to more elaborate

techniques involving interposition of non-linear interface layers. However, the present

models differ in two important ways. Unlike Weinans et al., it was assumed that a

significant area of the cement bone interface was still fully bonded and thus

considerable remote resistance to micromotion existed. Weinans et al. also set out to

model the interposition of a relatively thick layer of compliant tissue in an implanted

femur. Thus the loading, the shape and the nature of the secondary stability of the

construction was very different to the situation here. The aim of the present study was

to simulate the immediate post-operative conditions where the thickness of interposed

material is small. The stability of the prosthesis is mainly due to the regions where

perfect bonding stifi remains, i.e. varying amounts of the depth of the acetabulum. The

remaining fully bonded interface also provides an explanation for the validity of

neglecting friction at the debonded interface since, because of the stored elastic energy

in this (deformed) interface, there will always be a significant restoring force to

restore the original configuration of the interface when only relatively small loads on

the implant are present.

Micromotion at the interface was controlled by the amount of debonding and locally at

the ilium by the size of the gap. The magnitude of the micromotion was relatively

insensitive to friction and the stiffness of the implant. Debonding allows the cup and
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cement to move relative to the bone, but the combination of rigid body motion and

deformation makes it somewhat difficult to describe the overall motion of the cup and

cement with respect to the bone. However, it appears that there is a combination of

twisting about the axis of the cup and tilting about an axis passing slightly deep to the

centre of rotation of the cup and through the acetabular notch. In the early stages of

debonding the motion is greatest at the ilium, being for both twisting and tilting more

than double that at the ilium and pubis. With two layers debonded the largest motion

transfers to the ischium and the pubis, a trend which continues with three debonded

layers. In the fully bonded case the peak interface stress components are higher than in

all the debonded cases. This is due to the direct transfer of load from the extreme

edges of the cement mantle to the pelvic cortex, which is stiffer than the acetabular

cancellous bone. If the layer of nodes at this location is released and a gap interposed,

this mechanism of load transfer is much reduced even for a gap size of 0.1 mm. A

larger gap (0.5 mm) allows more movement of the cement and cup at the ilium,

however in neither case was the deformation enough to allow contact at the ilium in

the location for which results are presented, since the motion was smaller than the

initial gap size. The suggests that in the small gap case, load transfer still partially

occurs at the cortex. The contact regions are reflected in the stress plots (Figure 5-16

and Figure 5-17) where, in the small gap case, considerable loads are still transferred at

the superior acetabular rim. The increase in stress as more layers are debonded is

explained by the reduction in surface area available for elastic load transfer. It is also of

note that, even with large debonded areas, the cancellous bone stresses remain low.

Various clinical follow up studies have shown that all end stage fixation failures

(aseptic loosening) are characterised by the formation of a fibrous interfacial layer

which allows gross motion of the prosthesis. Several pathways by which this end stage

is reached are possible. There is considerable evidence that all prostheses migrate to

some degree from the first day post-operatively. It is also reasonably clear that the

magnitude of this migration in the first few years post implantation is a strong
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of the total lifetime of the prosthesis (Stocks et al., 1995). This would

appear to support theories that failure to achieve adequate fixation per-operatively is a

strong causative factor. Numerous radiological studies of the acetabulum, although

considered to be of limited quantitative value (Schmalzried, personal communication)

show that radiolucent lines appear first in the regions of the superior rim (Charnley

zone I) and the inferior rim (Charnley zone III) and as time passes progress inwards

towards the depth (Stromberg et al., 1996). Bos et al. (1995) reported the

reorganisation of trabeculae into a neo-cortex parallel to the cement mantle and

connected to the pelvic cortex. The thickness of the neo-cortex was correlated with the

patient's body weight. In 15 of 25 acetabula there was also focal metaplasia to

cartilage in direct contact with the cement. In the reconstructed acetabulum the medial

wall had thinned to a mean of 5 mm after a mean implantation time of seven years,

compared to 12 mm in non-implanted controls. Schmalzried et a!. (1992) found

intimate bone contact over extensive areas in the depth of the acetabulum. The present

results suggest that the assumption of a fully bonded interface removes the driving

force for the neo-cortex formation reported by Bos et a!. and the thickening of the

bone abutting the cement reported by Schmalzried et a!. However, these clinical

observations may represent the consequences of a sequence of events initiated by rim

debonding.

5.6 Critique

As always, the results of the present analyses need to be interpreted within the limits of

the assumptions that are made in their formulation. The most ill defined feature is the

anatomy of the acetabulum, as presented to a surgeon during a hip replacement

procedure. In a normal acetabulum a thin layer of subchondral ccrF, C e) bone

underlies the articular cartilage and overlies a trabecular network of supporting

cancellous bone. In severe cases of osteoarthritis the cartilage wifi have worn through

and there will usually be a substantial thickening and eburnation (polishing) of the
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subchondral bone plate. In this situation the supporting cancellous bone often contains

fluid filled cysts and has little residual load bearing capacity, also the lunate surface of

the acetabulum may have disappeared leaving an almost hemispherical dome. The

eburnated bone has very little prospect for achieving an interlock fixation with acrylic

cement, so holes are drilled in it. The arthritic acetabulum therefore presents a

spectrum of pathological changes in the supporting bony structures, from the nearly

normal to those cases with a thick eburnated subchondral surface and rarefied

supporting cancellous bone, which present different problems in achieving fixation.

None of these factors are examined in the present study and their effects on the

mechanics of the pelvis are largely unknown, but clinically they influence the potential

success of the operation. In the femur, where the region affected by arthritic changes is

usually completely removed, these problems do not arise.

Much of work assumed a fully bonded interface. Whether this hypothetical situation

can be achieved in practice is dubious, particularly when cement is in contact with a

relatively smooth subchondral bone plate. The description of the interface is complex

and necessarily must be simplified, both geometrically and with regard to its load

transfer behaviour. An attempt was made to address the problem of sub optimal

cement bone bonding by frank debonding of the cement bone interface around the

acetabular rim. Debonding at the acetabular rim may arise in two ways. It might occur

rapidly post operatively due to a failure of cementation technique, or it may occur late

in the lifetime of a prosthesis. Although these results provide an indication of the

effects of prosthesis debonding in the immediate post-operative period and how these

effects depend on the amount of debonding, they should be interpreted with care when

trying to extrapolate to late stage debonding associated with aseptic loosening, paying

due attention to the fact that bone is a dynamically adaptable material that constantly

changes its properties in response to the loads applied to it in accordance with

'Wolff's Law". The assumptions made in these models about the structure and

properties of the bone that surrounds the acetabulum (that they remain unchanged
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throughout) can only be expected to be sensible for debonding occurring at an early

stage, before significant adaptive changes have taken place. The essentially non-linear

processes of debonding and adaptive bone remodelling have been linearised in this

case, completely ignoring the effects of bone adaptation. To truly model the

progression of debonding a full non-linear simulation of the remodelling process may

be required. Having said this it is also difficult to identify the starting point for the

prosthesis debonding and the two layer and even three layer debonded models may

well be realistic starting points given the presence in some cases of quite extensive

radiolucent lines on post-operative X-rays.

5.7 Summary and Conclusions

1. The choice of kinematic boundary conditions has a profound influence on the

displacements of the pelvis, but the second order quantities strain and hence stress

are much less affected.

2. Muscle forces also have a strong effect on the displacements of the pelvis. However

in the region of the acetabulum, the distribution of strain and stress is dominated by

the hip joint reaction force.

3. The bonding assumed at the interface between cement and bone has a significant

effect on the distribution of load throughout the acetabulum.

4. In the perfectly bonded case, the retention or sacrifice of the subchondral plate has

only a small effect on the load transfer in the acetabulum. In the normal hip the

subchondral plate transfers the joint contact forces into both the underlying

cancellous bone and the cortical shell, but the replacement of the compliant cartilage

layers and the femoral head by a much stiffer construction negates this role.

Compared to the stiffness of the prosthetic components, the contribution of the

subchondral plate is negligible. However, when debonding is assumed at the cement

bone interface, the subchondral plate appears to play a more important role, but

since the interface strength between cement and the subchondral bone plate is
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much less than that between cement and good quality cancellous bone, debonding is

less likely to occur in the first place in the latter case.

5. Peak interface stresses were much higher in the fully bonded acetabulum owing to

load transfer at the rim into the stiff cortical bone of the pelvis.

6. Micromotion in the debonded case was controlled by the amount of debonding and

locally at the ilium by the size of the gap. The magnitude of the micromotion was

relatively insensitive to friction and the stiffness of the implant.
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6. Stability of Cemented Acetabular Cups Under

Dynamic Loading

Kloss (1996) designed a new joint simulator which has now been validated. This device

has been used to investigate the relationship between cement pressurisation, especially

pressure distribution, and acetabular component fixation. The mechanical stability of

acetabular cups implanted with the conventional technique and using a cement

pressurisation tool were compared directly. Finite element modelling and mechanical

testing of the proposed loss of fixation at the rim of the acetabulum for conventional

cementing techniques has been performed.

6.1 Design and Validation of a New Joint Simulator

6.1.1 Description

The Unit for Joint Reconstruction (UJR) Joint Simulator has been designed to provide

a laboratory simulation of the motion and loading in a normal human hip when used in

conjunction with a servo-hydraulic universal testing machine. The principal feature of

the machine is a large space for specimen mounting, in contrast to most other joint

simulator designs that are intended for wear studies and hence have restricted specimen

space. The flexibility of the design also means it can easily be adapted for the testing of

other multiple degree-of-freedom joints. Two views of the UJR Joint Simulator,

mounted in an ESH servo-hydraulic testing machine, are shown in Figure 6-1. The

major components are (A) the simulator mechanism, (B) the simulator control unit, (C)

the universal testing machine control unit, (D) the load frame and (E) the data logging

computer (Amstrad 20286, Amstrad, U.K.)
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6.1.2 Mechanical Design

The apparatus (Figure 6-2) consists of a rigid steel frame (components A) that is

bolted to the base plate of the servo-hydraulic universal testing machine. An aluminium

slide block (B) is supported on two shafts (C) with end bearings that run on semi

circular rails (D) incorporated in the frame. A stepper motor (E) mounted on the slide

block drives two shaft mounted pinion gears (F) that engage with semi-circular racks

(G) mounted below the rails. Torque is transmitted from motor to shaft by sprockets

and chain (H). A second stepper motor (I) drives a rotating table (J), also via sprockets

and chain (K) about an axis perpendicular to the axi of rotation of the slide block. The

driven axes allow positioning of the acetabular cupany specified orientation relative to

the actuator of the materials testing machine.

A. B

4/

Figure 6-2: The principal mechanical components of the UJIR Joint Simulator.

Fixed to the actuator of the testing machine is a loading stem that accepts a modular

prosthetic femoral head with a standard taper (5°40'). Incorporated into the fixture is a

biaxial linear slide that transmits only axial forces perpendicular to the sliding surface.
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This biaxial slide allows for the inevitable misalignments in the load train introduced

when potting the specimens and by specimen deformation under load and prevents the

introduction of side loads into the specimen and the testing machine actuator.

6.1.3 Operation and Validation

The operation of the machine and the procedures for its validation are discussed here

with respect to the acetabular specimens described latter in this chapter, however the

fundamental principles are widely applicable. The acetabular specimen under test is

mounted such that the centre of rotation of the acetabulum (the geometric centre of the

cup bearing surface) is coincident with the intersection of the axes of rotation of the

two driven axes of the Joint Simulator. This intersection is arranged to lie along the

line of action of the testing machine actuator and hence force can be applied along any

line passing through the intersection of the two axes and any point on the surface of a

partial spheroid acetabular cup.

The functional relationships between the components of the simulator are shown in

Figure 6-3. Overall control of the system is provided by the simulator control unit. This

unit provides power and command signals to the motors from a programmable control

board, which also generates an 8 bit digital output that, after suitable digital-to-

analogue conversion and ifitering, is used as a command signal for the load servo

controller of the universal testing machine. The control board is programmed using a

proprietary "C" type control language from a remote computer via an RS-232 (serial)

data link. Thus control programs can be written and downloaded to the control board

such that the motions of the two driven axes and the load applied by the materials

testing machine are correctly synchronised. Arbitrary load and motion proffles may be

programmed. The outputs of the testing machine control system (load and stroke)

together with additional signals from specimen mounted transducers are logged by the

data logging computer fitted with an analogue-to-digital converter card (AD 1200,

Brainboxes, Liverpool, U.K.) and running suitable custom written software.
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AID Conversion	 .	 4

Control Unit	 :	 I	 Actuator

Stepper

Motor 1
Data Logging
	

Simulator

(PC)
	

Control Unit
Stepper
Motor 2

Data Storage

FIgure 6-3: Functional diagram of the UJR Joint Simulator.

Double headed arrows Indicate bi-directional processes, e.g. closed loop (servo) control.

6.1 .3.1 Verification of Load Cycle

Tests to prove the adequacy of positional and load control were required since the

control system for the motors is of an open ioop design, there being no feedback signal

to the simulator control unit from the stepper motors driving the rotation axes or the

actuator of the servo-hydraulic testing machine. A specimen was mounted in the

simulator as described in section 6.2.1.1. A simplified gait cycle was used which

encompasses the important features of normal gait. The face of the acetabular cup was

initially positioned at an angle of 38° to the vertical plane and rotated about the axis of

the rotating table (Figure 6-2, J) so that the bisector of the angle between the pubic

bone and the ischium was aligned with the long axis of the joint simulator. This

position thus represents the 0° location. Sinusoidal load and angle functions were

generated and used to program the stepper motor control board such that the required

load and motion cycles were properly synchronised (Figure 6-4). The locus of the hip

joint reaction force vector on the acetabular cup is shown in Figure 6-5.
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Figure 6-4: Simulated gait cycle: magnitude and orientation of the hip load.
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Figure 6-5: View of a mounted specimen along the axis of the testing machine actuator.
Shows the locus of the hip joint reaction force vector (thick line on inner surface of cup).

Figure 6-6 shows the result of the load test. It can be seen that there is relatively small

error (root mean square error of 3.9 %) between the command signal and the load

measured on the ram of the testing machine. A large proportion of this error is due to a

slight phase lag of the true (measured) load with respect to the command signal, this is

particularly evident where there is a combination of high load and high loading rate as

can be seen in Figure 6-6.
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Figure 6-6: Comparison of command and output signals of the UJR Joint Simulator.

The positional control of the table and slide was verified by making a pencil mark at

the extreme range of each motion. After 70 cycles, the total positional error was less

than 2 degrees, less than 0.03° per cycle. If long term tests were required the

cumulative effect of such an error might become significant. However it would be easy

to add a limit switch to provide a datum position which could be re-acquired as

necessary to prevent the accumulation of such errors. Provision for such limit detection

is made for in the motion control unit. Overall this system performed adequately.

6.2 The Effect of Cementing Technique on Acetabular

Component Fixation

6.2.1 Method

Six segments of frozen bovine calf pelvis were thawed and cleaned of soft tissues and

prepared for cup implantation by reaming the acetabula with a 50 mm diameter "cheese

grater" type reamer followed by vigorous brushing with a stiff polyethylene fibre brush

driven by a power drill (Figure 6-7).

186



•

•

.
.	

.

dI

S

Figure 6-7: The prepared calf acetabulum.

CMW type 1 cement was mixed in a mixing bowl in accordance with the

manufacturer's instructions. At three minutes from mixing the cement was delivered to

the acetabulum. In group 1 (3 acetabula), a plain UHMWPE cup with 48 mm outside

diameter (Ultima, Johnson & Johnson Orthopaedics) and 28 mm bearing surface

diameter was immediately inserted and held in place until the cement had cured. In

group 2 (3 acetabula), the instrumented acetabular cement pressuriser with a suitable

size (63 mm diameter) pressuriser head was used to pressurise the bone cement.

Cement pressures were recorded, a typical trace is shown in Figure 6-8. In this trace,

the principal pressurisation effort occurs for approximately 1 minute (between t=20

and t=80 on the trace). The spikes at longer times show when cement was repacked

and re-pressurised to ensure sufficient volume of cement in the acetabulum for correct

cup seating. Mean and peak pressures for the pressurised group (as described in

section 3.3.3) were 41.5 kPa (standard deviation ±18.8 kPa) and 64.7 kPa (18.8 kPa)

respectively, which are comparable to per-operative measurements (section 3.3). After

cement pressurisation was complete an identical cup was inserted as in group 1. Prior

to mechanical testing a radiograph was taken.
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Figure 6-8: Typical pressure time trace for cement pressurisation in group 2.
Time zero 3 mm. from mixing.

6.2.1.1 Specimen Mounting

For mechanical testing the prepared acetabula were then potted in Wood's metal (mpt.

60°C) in a fixture attached to the Unit for Joint Reconstruction Joint Simulator. To

ensure that the centre of rotation of the acetabular cup corresponded to the centre of

rotation of the joint simulator (as described in section 6.1.3) the centre of the

acetabular cup was mounted precisely on the axis of rotation of the specimen mounting

table at a height of 152 mm above the table using a specially designed cup inserter. The

slide was moved to the extreme position with the table horizontal. The position of the

testing machine actuator was then fixed by placing a gauge block of known length

between the actuator and table. Knowing the length of the cup inserter, the

displacement transducer of the testing machine was used to accurately position the

whole acetabulum at the correct height. The cup inserter then held the prepared

acetabula in the required position while the Wood's metal was poured and allowed to

solidify.

To measure motion of the implanted cup relative to the acetabular rim a DC energised

linear variable differential transformer (LVDT, Schlumberger DFg5, RS Components,

U.K.) was mounted on the superior rim of the acetabulum using a Steinmann pin and

jubilee clip. The sensing armature of the LVDT was attached via a small aluminium
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bracket to the acetabular cup (Figure 6-9). Power to the LVDT was provided by a

combined power supply/amplifier unit (Entran PS3OA). This unit also served to amplify

the output from the LVDT to increase sensitivity. The output was then connected to

the input of the PC's analogue-to-digital converter card via a passive low pass filter.

Between test runs the acetabula were kept under wet paper towels to ensure

desiccation did not occur. The laboratory temperature was 19±3°C at 51±20% relative

humidity.

FIgure 6-9: Potted acetabulum ready for testing.

The biaxial slide (A) and the position of the LVDT (B) can be seen.

Cyclic loads were applied in groups of ten load cycles, steadily increasing the load

amplitude in six successive groups until the maximum load amplitude of 2.4 kN was

reached. For each specimen five experimental runs were carried out to assess the
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repeatability of the tests and to accommodate any time dependent conditioning effects.

A second radiograph of each acetabulum was taken after testing.

6.2.1.2 Transducer Calibration

Since the LVDT was being used at the limit of its specified performance, it was

calibrated after every test using a digital Vernier calliper (Mitutoyo) which in turn was

verified against a workshop standard gauge block. A typical calibration curve is shown

in Figure 6-10 and remarkably little variation was observed from run to run.

-0.Oi

Transducer Output (V)

Figure 6-10: A calibration curve for the LVDT.

6.3 Micromotion	 in	 the	 Cemented	 Acetabular

Reconstruction

The results of section 6.2 together with the finite element studies reported in section

5.4.3 prompted a further finite element and experimental study of the debonding

mechanisms that might be responsible for the micromotion observed.

6.3.1 Finite Element Models

To investigate further the mechanisms responsible for the micromotion detected in the

laboratory study described above and to permit comparison with the results reported in

section 5.4.3, finite element models were generated to represent the potted acetabular
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segment. Of particular concern are the influence of the different boundary conditions

imposed by potting in a rigid material and the influence of the cartilaginous growth

plates that are present in the juvenile bovine acetabulum. To simplify the model a

uniform material property distribution was assumed for the pelvic cancellous bone and

a uniform thickness of 2 mm for the cortical shell. Since the apparent dry density of the

bovine acetabular cancellous bone was 0.48 kgm 3 (section 4.1.2), Young's modulus

was set to 0.5 GPa based on the data of Hodgskinson and Currey (1990). Limited data

are available for the mechanical properties of growth plates, Alberts et a!. (1993) used

Young's moduli of 6, 20 and 50 MPa for the growth plates of the canine distal femur,

which reflects the large range of values reported for the "real time modulus" of

articular cartilage. In view of this uncertainty and since the mechanical properties of

the growth plate are likely to change as an animal matures (the age of the animals at

slaughter was unknown), the median value of 20 MPa was chosen, with Poisson's ratio

of 0.4. All materials were assumed to behave as linear elastic continua.

To simulate debonding between cement and bone at the acetabular rim, contact

elements were inserted between the nodes of adjacent elements at the interface

between cement and bone (detailed in section 5.4.3). The model was analysed in four

configurations; the first assuming a fully bonded cement bone interface and then

releasing one, two and three circumferential layers of nodes at this interface

respectively. The one, two and three layers corresponded to debonded layers extending

from the acetabular rim towards the pole, 10, 20 and 30 mm width respectively.

Because of the complex bone geometry, a hexahedral mesh could not be generated

easily, so cancellous bone, bone cement, the acetabular cup and the prosthetic femoral

head were modelled using four node tetrahedral elements with additional rotational

degrees of freedom at the nodes (ANSYS type SOLID72). This element was chosen in

preference to higher order elements since the ANSYS program does not support

contact between elements with mid-side nodes. Also, since contact requires an iterative

solution, significant savings in solution times were afforded by the reduced wavefront

due to the absence of mid-side nodes. The cortical shell was modelled using three node

triangular shell elements having degree of freedom compatibility with the solid

elements (ANSYS type SHELL63). The lack of mid-side nodes in the finite elements

means that the results cannot be expected to be as accurate as a higher
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order mesh of similar refinement. However, given that in this case the first order

displacement solution is of interest rather than derived second order solution quantities

such as strain and stress, the present mesh seems a reasonable compromise between

solution time and accuracy of results. Although the models presented in chapter 5 have

a lower mesh density than those presented here and use different finite elements, it is

not expected that significant differences between the displacement solutions would

exist.

The mesh consists of approximately 5200 solid and shell elements and 1100 nodes. The

effect of the potting medium was simulated by constraining the rotational and

translational degrees of freedom of the external nodes more than 20 mm from the

centre of rotation of the cup in the z direction (Figure 6-11(a), lower view). Loads

were applied in 30 load steps, with magnitude and direction taken from the discrete

points of Figure 6-4. The model thus had approximately 5500 active degrees of

freedom.

Young'. Modulus Poi.son's Ratio

(CPa)	 0.3

N/S Cortical Bone	 17	 0.2

• Cancclkus Bone	 0.5	 0.2

t Gmwth Plate	 0.02	 0.4

• Acctabular Cup (UHMWPE)	 I	 0.4

• Bone Conit (PMMA)	 2.5	 0.3

• Fanoial Head (CoCr)	 210	 0.3

N/S = N thown

(a)	 (b)

Figure 6-11: Mesh and material property distribution for the finite element models.
(a) Two views of the finite element mesh. Rotation (buff symbols) and translation (cyan symbols)
constraints are shown in the lower view. The red arrow represents the applied load for a single

load case, (b)Matenals properties assigned to the various components.
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6.3.2 Laboratory Experiments

To provide some comparative data for the finite element models, two cases were taken

from the experiments described in section 6.2. These represented the worst (from the

cup insertion group) - case 1 - and the best (from the pressurised group) - case 2 -

fixation, as assessed qualitatively from radiographs. In addition a third acetabulum -

case 3 - was implanted as described for group 2, but with a layer of PVC electrical

insulation tape 25 mm deep placed around the rim of the acetabulum to simulate severe

prosthesis debonding in the initial post operative stages.

6.4 Results

Figure 6-12 shows the average micromotion amplitude for the final test run for the two

cementation techniques. Given the limited data points and the scatter, there is no

statistically significant difference between the two groups (p 0.54, two tailed t-test

assuming unequal variance). However the simple observation that the scatter for the

cup insertion pressurisation technique is far greater is noteworthy.

Companson of Micromotion with Two Cement Techniques

Figure 6-12: Micromotion at the ilium for two cementing techniques.
Error bars represent one standard deviation.

The pre-testing radiographs of cases 1 and 2 selected for section 6.3.2 are shown in

Figure 6-13.
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Some characteristic features emerged in all the laboratory tests. Typically on the first

run some settling/conditioning of the specimen was noted. This was observed as a

background drift superimposed on the progressive increase in the amplitude of

micromotion with the amplitude of the applied load cycles (Figure 6-14). Some small

background drift was to be expected, since the minimum load was non-zero and thus

scaled with the rest of the load cycle. Of the three specimens compared in the second

part of the study, only in case 2 did this settling disappear in the latter tests (Figure 6-

15 and Figure 6-16). It is difficult to isolate the origin of this behaviour. The juvenile

bovine acetabula contained non-ossified triradial cartilaginous growth plates and the

apparent settling behaviour may have been due to consolidation of these relatively

compliant layers. It is also possible that the cut trabeculae produced by reaming settled,

although the cement would be expected to constrain these trabeculae if sufficiently

interdigitated with the bone. In mechanical testing of isolated cancellous bone

specimens, the initial "toe" in the stress strain curve is now thought to be an artefact of

the cut surface in contact with the loading platens (Keaveny et a!., 1 994a) which can

be eliminated by careful embedding of specimen ends and measurement of strain in a

gauge section suitably remote from the region of load application.

0	 20	 40	 60	 80	 100	 1 21)	 140	 160	 80

—Final Run
-80 -

rime ()

Figure 6-14: Comparison of micromotion variation between 1d and 5 eiperimental run.

Figure 6-15 shows the micromotion measured on the first of the five runs for each

specimen. Figure 6-16 shows the same measurements for the last of the five runs. Case

'1, which appeared to be the best fixed of all the specimens tested, showed
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different behaviour to the other two. On the initial run, the background drift for this

specimen was conspicuously larger than for cases I and 3. However, in the final run,

this background drift had almost completely disappeared, whereas with cases I and 3 it

persisted.
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Figure 6-15: Initial run micromotions for the three cases.
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Figure 6-16: Final run micromotions for the three cases.

Figure 6-17 plots the increase in micromotion with load amplitude for the three

specimens. It can be seen that the response is almost linear for all cases. However in

case 1 the slope of the curve appears to be smaller than would be expected.
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flgure 6-17: Micromotion as a function of load amplitude.

Figure 6-18 compares the results of the finite element models and the experiments for a

representative load cycle at maximum load amplitude. In Figure 6-19 the magnitudes

of the cyclic micromotions are compared.
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Figure 6-18: Cyclic micromotion: finite element and experimental results.
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Figure 6-19: Range of micromotion: finite element and experimental results.

There is quite good agreement between the finite element models and the experimental

results. Given the only information available about the condition of the interface in the

experimental specimens was from plane radiographs, these results must be viewed with

some caution. Nevertheless it is tempting to conclude that the finite element models

have reasonably captured the behaviour of the partially fixed cup.

To investigate whether the displacements measured by the LVDT could truly be

attributed to interface micromotions, the finite element models were re-examined. The

absolute interface motions as derived from the relative displacement of the nodes of the

relevant interface gap element were compared to the displacement calculated from the

relative positions of one node, in the acetabular cup, and a second, in the acetabular

rim, corresponding to the locations of the centre of the aluminium bracket and the

Steinmann pin mounting the LVDT respectively. The results are presented in Figure 6-

20. From these results, it appears that the transducer would overestimate the true

interface micromotion, owing to the additional deformation of the intervening material.

Although the amount of the overestimation cannot be precisely related to the

experimental specimens, it appears that this is a relatively small effect.
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Figure 6-20: Predicted artefact due to remote measurement of interface micromotion.

6.5 Discussion

Comparison of the experimental results with the finite element model provides a

useful check of the methodology adopted in Chapter 5 to simulate the effects of

prosthesis debonding in a human hemi-pelvis subjected to what was intended to be

physiological loading. It also gives an indication how well the laboratory model

represents the reconstructed human hip. The finite element predictions compare

favourably with the experimental data, which gives some confidence to the

micromotion predictions presented in Chapter 5, at least as far as proving the tactic of

simply inserting contact elements to represent debonding. The more elaborate

treatments of interposed soft tissues as non-linear elastic materials may not be

required, at least for comparative studies of methods to augment cemented fixation.

Weinans et a!. (1990) compared a variety of modelling techniques for an uncemented

press-fit femoral prosthesis and found that the gap element approach, as used here,

tended to underestimate micromotions by a factor of 3 to 5 compared to more

elaborate techniques involving interposition of non-linear interface layers. However,

the present models differ in two important ways. In the models of Weinans et a!., all

the resistance to cyclic motion of the prosthesis relative to the bone came from

frictional forces or the restoring forces due to deformation of the compliant interposed

soft tissue and from macroscopic interference due to the shape of the prosthesis and
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the bone bed. The shape of the bone bed was necessarily changed between the

"contact" and "compliant layer" treatments and thus changed the properties of the

taper coupling between prosthesis and bone. In the present case it was assumed that a

significant area of the cement bone interface was still fully bonded and thus

considerable remote resistance to micromotion existed, thus the stability of the

prosthesis was mainly due to the regions where perfect bonding still remained, i.e.

varying amounts of the depth of the acetabulum. Weinans et a!. also set out to model

the interposition of a relatively thick layer of compliant tissue. The aim of the present

study was to simulate the immediate post-operative conditions where the thickness of

interposed material is small. The support afforded by the remaining fully bonded

interface also provides an explanation for the validity of neglecting friction at the

debonded interface, since because of the stored elastic energy in this (deformed)

interface there wifi always be a significant restoring force to restore the original

configuration of the interface when only relatively small loads on the implant are

present. The amount of motion in the finite element models for a given amount of

debonding depends most strongly on the material properties assigned to the cancellous

bone, since the bony support for the cemented cup arises principally from the

cancellous bone, particularly if the prosthesis is debonded at the acetabular rim.

A recent study demonstrated that relatively small changes (compared to the present

study) in the boundary conditions of the acetabulum produced significant changes in

the contact pressure distribution measured in the normal hip joint (Bay et a!., 1997).

Stiffening the acetabulum by any means interrupts what appears to be a natural

mechanism for increasing the contact area between joint surfaces under load,

effectively the flexure of the pubis and ischium about an axis somewhere between the

geometric centre of the femoral head and the centre of the acetabular fossa. This effect

was also referred to by Massin et a!. (1993) who described it as "closing the beak" of

the acetabulum. The present experiments do not suffer to the extent demonstrated by

Bay et a!., since the stiffness of the acetabulum has already been considerably increased

by the introduction of the prosthesis, which has already gone quite some way to nullify

the natural deformation pattern of the acetabulum.

By making comparisons with a finite element model it was possible to separate the

true interface micromotion and the measured apparent motion which is a combination
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of the true interface micromotion and the deformation of the materials to which the

measuring transducer was mounted. It was found in the simulation of the experimental

study that tissue deformation could contribute up to 25% of the total measured

motions. However, even taking tissue deformation into consideration, the

experimentally measured "micromotion" was never as low as predicted by the fully

bonded fmite element model.

Radiographic studies show that radiolucencies between cement and bone first appear at

both the proximal and distal edges of the acetabulum as viewed on an anterior-

posterior radiograph and that these radiolucencies progress in time towards the depth

of the acetabulum, eventually "cutting out" the cement and cup. The study of autopsy

specimens by Schmalzried et a!. (1992) indicates that these radiolucencies represent a

fibrous tissue layer which is circumferential, although this cannot be detected on a

conventional anterior-posterior radiograph. Thus the pattern of debonding modelled in

this study is probably representative of the true progression of the fibrous interposition.

The motions at all three positions was sufficient to jeopardise the possibility of the

cement bone interface being reinstated by a healing response. Many studies have

looked at the effects of micromotion on potential for ingrowth, usually in connection

with uncemented implants, and have shown that gaps per se are not particularly

harmful, bone being able eventually to bridge gaps up to 2 mm with porous coated

(Sandborn et a!., 1988) and 0.75 mm with smooth (Thomas et a!., 1987) implants.

However, if the gap permits micromotion, the amount of micromotion required to

prevent gap bridging is very small. If it is assumed that PMMA is essentially bio-inert,

it can be assumed that micromotions of more than 150 p.m definitely preclude bony

apposition, whereas movements of less than 30-40 p.m do not prevent apposition

(Pilliar et al., 1986; Burke et a!., 1991). Since these values are almost universally from

animal studies, where healing potential is generally greater than in elderly humans, we

may expect that 40 p.m is an optimistic estimate of the maximum tolerable

micromotion. If this is accepted the micromotions predicted here are worrying, even

the smallest amount of micro motion, generated by releasing a single layer of nodes to a

depth of 10 mm, is greater than the threshold for apposition. Thus a cemented implant

that is even marginally loose at its rim will move more than the tolerable amount and

the probability of the interface recovering will thus be small.
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7. Conclusions

An extensive body of literature supports, both directly and indirectly, relationships

between cup fixation strength, prosthesis survivorship and cementation technique in

the acetabulum during total hip replacement. In this thesis some of those factors which

may be controlled at the time of operation, or which occur relatively soon post-

operatively and are thought to influence the long term success of the acetabular

reconstruction, have been investigated.

Various studies have suggested that cement pressurisation and subsequent cement

penetration into cancellous bone produces a stronger cement-bone interface (Krause et

a!., 1982a; Askew et a!., 1984; Mann et a!., 1997). A range of methods of cement

pressurisation were compared using an instrumented model acetabulum. Typically cup

insertion lead to a transient pressure rise at the pole of the acetabulum and a smaller

rise at the rim, indicating pressure gradients in the cement. Although finger packing

generated reasonable peak pressures, pressurisation was patchy and could not be

maintained. Two novel cement pressurisers, designed to produce a closed cavity, are

described and their use shown to produce effective cement pressurisation in the

laboratory. One of these cement pressurisers was then instrumented with a pressure

transducer to allow per-operative cement pressure measurements in the acetabulum,

the first time such measurements have been described. These measurements showed

satisfying agreement with the laboratory studies, helping to validate their use for the

comparison of cementing techniques. On average, the mean pressures for two

orthopaedic surgeons during 16 total hip replacements were 48.9 kPa (standard

deviation 17.4 kPa) and 46.9 kPa (16.7 kPa) and the peak pressures 76.0 kPa (4.7

kPa) and 93.4 kPa (14.5 kPa). No statistically significant difference was found between

either the mean or the peak pressures for the two surgeons.

In many operations the acetabular cup itself is used as a pressurisation device, in

which case cup design is important for cement pressurisation and penetration of

cement into cancellous bone (Beverland et a!., 1993, Shelley and Wroblewski, 1988),

an effect which appears to be clinically significant since it results in improvements in

the radiographic appearance of the cement bone interface in the long term

(Hodgkinson et a!., 1993). A finite element modelling technique to predict the
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pressurisation and penetration of cement into cancellous bone during prosthesis

insertion was developed and validated. This model was then used to perform a

parametric study of the factors that affect the ultimate cement penetration and

consequently the component fixation. These analyses showed cement penetration to be

greater with flanged cups, reduced viscosity cement, higher insertion force and more

permeable cancellous bone. Cement penetration varied from negligible (less than 0.5

mm) to more than 5 mm. The trends were in agreement with those reported in the

literature and appeared reasonable in comparison to typical post-operative radiographic

appearances.

Further clinical evidence suggests that dynamic mechanical processes in the short term

post operatively determine the lifetime of a prosthesis and consequently that the

mechanisms of failure of the cement bone interface that are manifested as prosthesis

migration and eventual clinical failure are predominantly mechanical, or at least

mechanically triggered (Taylor and Tanner, 1997). The mechanics of cemented

acetabular reconstruction remain little studied, particularly with respect to the dynamic

aspects of hip joint loading during activity, where both the magnitude and the direction

of the hip joint reaction force change significantly with respect to the anatomical axes

of the pelvis.

A three dimensional finite element model of the pelvis incorporating a realistic material

property distribution and muscle forces (Dalstra, 1993) was used to study the factors

that affect the mechanics of the reconstructed acetabulum and an attempt was made to

examine the effects of sub-optimal prosthesis fixation (debonding at the acetabular

rim). In the normal acetabulum there appear to be two mechanisms for the transfer of

the hip joint reaction force into the pelvis. The load is shared between the cancellous

bone in the depth of the acetabulum and the pelvic cortex at the acetabular rim

according to the stiffness of each. In the reconstructed acetabulum, the presence of the

relatively stiff acetabular cup suppresses the deformation of the acetabulum with the

result that loads are not transmitted as efficiently as in the natural situation. If a fully

bonded prosthesis is assumed, most of the load is transferred at the rim of the

acetabulum directly into the cortical shell and the cancellous bone in the depth is stress

shielded. With a debonded prosthesis less load is transferred at the rim (cortex) and

relatively more in the depth by the cancellous bone, depending weakly on certain
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modelling assumptions. In the debonded models, the total range of rnicromotion

between cement and bone over a complete gait cycle was dependent on location in the

acetabulum and on the amount of the cement-bone interface assumed to be debonded,

but was up to 55 p.m for one debonded layer of nodes, representing a debonded width

of 7-12 mm. According to published literature and assuming that PMMA is essentially

bio-inert, micromotions of more than 150 p.m would definitely preclude bony

apposition at the cement-bone interface, whereas movements of less than 30-40 p.m do

not prevent apposition (Pilliar et al., 1986; Burke et a!., 1991). Since these values are

almost universally from animal studies, where healing potential is generally greater than

in elderly patients undergoing hip replacement, it may be that 40 p.m is an optimistic

estimate of the maximum tolerable micromotion. Even the minimum micromotion was

greater than this presumed threshold for apposition. Thus a cemented implant that is

even marginally loose at its rim is likely to move locally more than the tolerable amount

and therefore the probability of the interface recovering will be small. In addition to

these direct mechanical consequences, rim debonding also opens a pathway for wear

debris from the articulating surface to reach the depth of the acetabulum and

exacerbate loosening by cellular mechanisms leading to bone resorption.

The results of similar finite element models were compared with experimental results

from a laboratory model of human acetabular reconstruction, a bovine calf acetabulum,

loaded in a newly developed hip joint simulator designed to provide a laboratory

simulation of the motion and loading in a normal human hip when used in conjunction

with a servo-hydraulic universal testing machine. A simple comparison was made

between specimens where a cement pressuriser was either used or not used and in

specimens where debonding was deliberately introduced. The results showed that there

were measurable differences in the stability of "well fixed" and "poorly fixed" cups and

micromotion was found, even in the best fixed case, to be far greater than would be

expected from that which could be attributed to elastic deformation of the intervening

material. Thus it is reasonable to assume that "perfect" bonding was never achieved in

the laboratory and that relatively large micromotion could still occur in specimens that

appear radiologically perfectly fixed with no apparent radiolucent lines. These results

suggested that rim fixation against the edge of the pelvic cortex may not be achievable
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even with the best current cementing technique and thus finite element models which

assume complete bonding in this region may be unrealistic.

This experimental study represents a first attempt to relate cement pressurisation and

the global fixation status of the acetabular cup. Radiolucencies frequently develop in

the short term at the superior acetabular rim. If these radiolucencies are present

immediately post operatively the prognosis for the acetabular cup is worse (Stromberg

et a!., 1996). As well as providing a path for wear debris to reach the cancellous bone

supporting the cup in the depth of the acetabulum, the gaps facilitate micromotions

that, even if the length of the radiolucent line is as small as 5-10 mm, are already large

enough to preclude bone apposition at the cement surface.
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8. Future Work

Much of the work described here represents studies which are in many senses

preliminary. In particular it remains difficult to answer the surgeon's favourite question

- are the results clinically significant?

A particular shortcoming of this project is that no human anatomical specimens have

been studied, however, obtaining such specimens is difficult. Computer models need

experimental validation, but for practical reasons this can often only be achieved with

respect to an experiment that is in itself a model of the real situation, as presented here.

The extension of these studies to human specimens is an obvious next step.

The method for simulating bone cement flow during prosthesis insertion is applicable

to any cemented prosthesis. It could, for example, be used to predict cement mantle

and bone-cement composite thicknesses around femoral components and under tibial

trays. The latter is probably the easiest to simulate since the cancellous bone exposed

per-operatively has the simplest geometry.

The experimental studies of chapter 6 represent a first attempt at investigating the

fixation of acetabular prostheses using an approximation to physiological loading,

simulating both the magnitude and direction of the hip joint reaction force during

activity. Using bovine acetabula, it was shown that the cementing technique has

measurable effects on initial fixation. Much more work is required to establish an

optimum cementing technique, but it appears that a pressurisation tool is essential.

There is good evidence that mechanical or chemical bonding is required for the long

term stability of the interface between implant and bone and that implants that show

fibrous tissue between implant and bone (e.g. lucencies on radiographs), while often

appearing clinically successful, are meta-stable at best. Present acetabular prostheses

appear to fail by the gradual advance of a fibrous tissue layer from the rim to the depth

of the acetabulum, radiographic evidence of this mechanism appearing soon after the

operation. The present work appears to support the contention that mechanical factors

are strongly involved in this mechanism. It is possible that "pre-cracks" present post-

operatively or resulting from early localised mechanical failure of the cement-bone

interface at the acetabular rim grow principally under the influence of continued
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mechanical loading. Despite the complex state of stress at the crack tip, modern

techniques that combine fracture mechanics with finite element analysis may be

applicable to this situation, particularly in these early stages which appear to be so

influential in the outcome of a joint replacement. For laboratory verification of such

studies, ideally a non destructive method of measuring the progress of the interface

crack would be required. Radiography is generally inadequate for accurately tracking

the progress of interfacial cracks, however ultrasonic testing methods are routinely

used for assessing the damage levels in composite materials and, despite the complex

geometry of the acetabulum, modern digital signal processing techniques may enable

information about the interfaces to be extracted.

With the assumption of fully bonded cement bone interfaces, which may not be a good

one, stresses predicted by finite element models suggest that, according to "Wolff's

Law" of bone adaptation, the bone should become rarefied in the depth of the

acetabulum, whereas autopsy specimens show it to become densified, with the

formation of a neo-cortex (Schmalzried et a!., 1992; Bos et a!., 1995). Debonding of

the cement bone interface at the rim of the acetabulum leads to a stress distribution

that feasibly might lead to the development of densified bone in the depth of the

acetabulum. The application of a bone remodelling algorithm to the acetabulum in both

the fully bonded and partially bonded configurations may provide further insight into

the mechanism of acetabular loosening.
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Appendix A Shear Rates in Oscillating Plate-on-Plate

Rheometry

Consider two circular plates separated by a distance H, one fixed and one driven so as

to oscillate sinusoidally about an axis through the plate centres (Figure A-i)

Figure A-i: Diagram and nomenclature for oscillating parallel plate problem.

where r, 0 and h are the radial, angular and axial co-ordinate directions respectively, R

the plate radius, A and f the amplitude and frequency of the oscillation, Vong the angular

velocity of the driven plate, Vian the tangential velocity of a point on the driven plate

and t is time.

The angular velocity of the driven plate at time t is given by:-

v (t) = A cos 2irft	 Equation A- 1

The tangential velocity of any point on the plate is then given by:-

vu,, (t, r) = rA cos 2itft	 Equation A- 2

The shear rate is therefore given by:-

- vu,, (t, r) = - A cos 2itft	 Equation A- 3

Shear rates as a function of r for the tests of section 4.1.1 are shown in Figure A-2.
0.5-,-
0.4	 _____________

0.3	 —r=0.005

0.2	 —r=0.O10
0.1	 r=0.015	 1-1HZ

01	 02	
018	

A =03% =21t/200

lime(s)

Figure A-2: Shear strain rates in rheometer tests as a function of r (m).
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S2(0)=Ø Equation B- 1

dS2(0)
dx4

Equation B- 2

I 4jrJ? 1	 3x	 x311+--
2	

I83	

4R 16R3J

13

forx ^ 2R

Equation B- 4

forx ^ 2R

Appendix B Errors in Image Processing of Bone

Microstructures

A number of possible sources of error exist in the processing of images to obtain the

permeability of a porous material as described in section 4.1.2. The most important of

these are loss of image resolution in the digitisation process due to the finite extent of a

digital picture element (pixel), which depends on magnification of the object, and

errors associated with conversion to a binary image (thresholding). To assess the

magnitude of these two errors, the method used by Berryman (1985) was employed.

Consider an arbitrary two phase composite material. Define a two point spatial

correlation function S2(x) such that S2(x) is the probability that two points a specified

distance x apart are in the same phase of the material. For an isotropic material the

value of S2(x) evaluated at x = 0 is equal to the porosity 4 and the derivative of S2(x)

evaluated at x = 0 is proportional to the specific surface area (internal area per unit

volume), s, viz:-

The penetrable sphere model for a two phase composite assumes that the material can

be modelled by an array of spheres of fixed radius R whose centres are distributed

randomly in space. The spheres defmed in this way may overlap if the density and/or

the sphere radius is high enough. The analytical solution for the two point spatial

correlation function of this model is given by:-

S2 (x) = exp(—pV2 )	 Equation B- 3

Where p is the number density of spheres and V2 is the union volume of two spheres of

fixed radius R and centres x apart, given by:-
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'2(°) d	 (	 4,rR( 3x	 x3
=exp—p 

3	 4Rl6R

= !p;it(x 2 _4R2)exp(jp7r(x_4R)(x+2R)2)

	 Equation B- 5

Computer generated images of a penetrable sphere material, with qualitatively similar

microstructure to the cancellous bone specimens (Figure 4-3), were produced by a

specially written computer program. Examples of images created in this way are

shown in Figure B-i. Note that in this situation the porosity is equivalent to the

trabeculae in the cancellous bone images. This has no effect on the surface area to

volume ratio calculated, and simply involves the substitution of bone volume fraction

for porosity.

R=1O, ç=O.16

R=15, =O.16

Figure B-i: Computer generated images of penetrable sphere material.
Images before (left) and after (right) edge detection and perimeter measurement.

Analysis on the computer generated images was performed on an IBM compatible PC

running Microsoft Windows 95 using the program described in section 4.1.2. This
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program measures the perimeter of objects directly by measuring the length of the

boundary lines shown in Figure B-i. Figure B-2 shows the relationship between the

theoretical and measured surface area to volume ratio for the computer generated

images.
0.12 -

	

0.08	 -...-.-.
.

	

0.06	
Data point at low

porosity

0.04

0.02

01 — 	 I	 I	 I	 I

0.00	 0.02	 0.04	 0.06	 0.08	 0.10	 0.12
Measured

Figure B-2: Surface area to volume ratio for the computer generated images.
The dashed line represents the 1:1 relationship. Units are pixel2/pixel3.

The direct measurement of object boundaries fails when the void spaces and the

particles are of similar size. This causes the object detection algorithm to count some

boundaries twice, as belonging to both a particle of void and a particle of solid material

(see Figure B-3 for an example). This however occurs only under conditions of high

porosity (for the penetrable sphere model) or high density of trabeculae (for cancellous

bone), where objects tend towards spanning the entire image field.

R=15, =O.3

Figure B-3: Example of the breakdown of the object boundary measurement.

Thus, for the images of cancellous bone, where the surface area to volume ratio for a

typical image was of the order of 0.08 pixel 2/pixel3, the digital image processing

method for determining morphological parameters appears to perform satisfactorily.
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Appendix C Calculation of Strain Rate in Fluid Flow

Analysis

Typical finite element formulations for fluid flow assume the variation of velocity

across an element to be described by simple polynomials (in this case linear

polynomials) - the element shape functions. In the isoparametric formulation, the same

set of shape functions are used for the co-ordinate transformation from the global

Cartesian co-ordinate system (x, y, z) to the element natural co-ordinate system (r, s, t)

and to describe the variation of degree of freedom values (velocity) across the element.

The relevant element shape functions N for 8 node isoparametric brick elements are:-

N1 =+(l—r)(1—sXl—t)	 N5 =+(1—rXl—sXl+t)

N2 =+(l+rXl—sXl—t)	 N6 =+(1+rXl—sXl+t)
Equation C- 1

N3 =j-(1+r)(1+s)(1—t)	 N7 =+(l+r)(1+sXl+t)

N4 =+(1—rXl+s)(1—t)	 N8 =+(1—r)(1+sXl+t)

Figure C-i: Eight node Isoparametric brick element.
Node numbering and element natural co-ordinate system.

The derivatives of the shape functions with respect to the element natural co-ordinates

are given by:-
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dx

0

0
ci = I dN,

dy

0

dN1
.dz

dr

= . (1 - s)(1 - t)
	

etc.
	 Equation C- 2

dt

The relationship between strain rate and velocity is given by:-

{y} = [C]{v}	 Equation C- 3

where [C] is the strain rate-velocity matrix, based on the element shape functions and

evaluated at the element integration points, and {v} is the vector of nodal velocities.

The submatrix c1 associated with node i of the finite element has the form:-

o	 o

dN 0

o

dN, A

dx"
dN1 dN1
dzdy

dN
dx

Equation C- 4

where n is the number of nodes per element. The matrix C is formed by summing the

submatrices c.

The derivatives of the shape functions with respect to the x, y, z axes are related to the

derivatives with respect to the r, s, t axes by:-
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dN,
xi

dN.
J= Exi

=' dN.

dN1

dN,
yi

dN.
Equation C- 6

dN,

dN.
ds

dN.

dN1
dx	 dr
dN, - - 1 dN1 ._

-J 
-;-,l- 

...n

dN,

Equation C- 5

where .1' is the inverse of the Jacobian matrix J:-

and x1 , Yi, z are the nodal co-ordinates in the global Cartesian system.

To derive the strain rate tensor from the nodal degree of freedom values (velocity), an

ANSYS macro was written to calculate the strain rate tensor at the element centroid,

for which r = s = t =0.

The macro was tested in two ways:

1. Against the built in algorithm for calculating strain in a linear elastic stress analysis,

since strain in this case is analogous to strain rate in a fluid flow analysis. The macro

gave identical results to the built in algorithm.

2. In a test case for which an analytical solution for the strain rate is available.

The test case was the laminar incompressible isothermal flow of a viscous fluid in a

long straight pipe. The velocity gradient (rate of strain) as a function of radial co-

ordinate q in a pipe in which flows a fluid of viscosity p is given by (Kay and

Nedderman, 1985):-

dv	 LiP
- - 22L'1
	

Equation C- 7

where AP/L is the pressure gradient in the fully developed flow region.

The finite element mesh and boundary conditions for the finite element solution to the

problem are shown in Figure C-2.
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Wall, velocity =0 ms-1

Inflow, velocity = 1 ms- 1	".•.	 Outflow, pressure =0 Pa
/

4J 
1 . ELF	 I 11 • :•

Figure C-2: Finite element mesh and boundary conditions

The consequent calculation of strain rate with the macro produced the results shown in

Figure C-3. Figure C-4 compares this result with the analytical solution.

/¼<. —
7E.LL. L i... j&)(	 1Q48]
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- :'- -4	 . 144
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'/.'_,	 d'52
(;	 17806
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ç
= –333881 Pa m', u = 500 Pa.s

dv	 333881

2-500 
q=334qs'

..)
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,. -,- -4 –t.

Figure C-3: Variation in strain rate across pipe section.

or
0	 0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	 0.08	 0.09	 0.1

Rathal Codm1s Cm)

Figure C-4: Comparison of analytical and fmite element results.

It can be seen that in general the macro performs well, except at the boundaries of the

fluid domain where the effects of averaging of strain rate across the element become

apparent. Given the parametric nature of the simulations performed in section 44, the

performance of the macro is deemed to be adequate.
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Finite Element Modelling of Bone Cement Flow During Component Insertion in Hip
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An Improved Acetabular Cement Pressuriser

Dr. F.P. Bemoski	 Den Haag, NETHERLANDS
R.A. Scott	 New Milton, ENGLAND
A. New	 Oswestry, ENGLAND

Aseptic loosening of the acetabular component in total hip arthroplasty remains one of
the limiting factors in prosthesis longevity. Acetabular cement pressurisation has been
shown to improve fixation in the acetabulum. However, pressure must be sustained
and uniformly distributed to be effective; this requires the acetabulum to be sealed
while pressure is applied. A pressuriser has been designed which not only seals around
the rim of the acetabulum, but also covers the transverse ligament notch.
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In Vitro Evaluation of Two New Designs of Acetabular Cement Pressuriser

A M R New'", M D Northmore-Ball , K.E. Tanner"

Unit for Joint Reconstruction, The Robert Jones and Agnes Hunt Orthopaedic Hospital,
Oswestry, Shropshire SY1O 7AG
IRC Biomedical Materials, Queen Mary and Westfield College, London El 4NS

The purpose of this study was to evaluate acetabular cement pressurisation in vitro with two
new designs of pressuriser and to compare the results with those of an established device, the Exeter
pressuriser'. The first new device (Device 1) aims to create a closed, cement filled space within the
acetabulum by means of a compliant silicone rubber seal. The second (Device 2) attaches to a standard
cement gun to allow cement to be pressure-injected into the acetabulum.

A "Sawbones" hemi-pelvis was mounted securely on a workbench in a position simulating a
lateral approach with the patient supine. The acetabulum was fitted with two pressure transducers
connected to a PC for data logging, one at the pole of the acetabulum and the second in the ilium
approximately 10 mm from the acetabular rim. Each pressuriser was tested three times with both
CMW1 and CMW3 bone cement, mixed using a standardised method. Use of the pressuriser was
started at 2 minutes after mixing for CMW1 and 4 minutes for CMW3.

Maximum pressures and mean pressures averaged for the three tests with each device I

cement combination are shown in the figures below (error bars represent one standard deviation).

All three devices were able to produce sustained cement pressurisation at both the pole and
the rim of the acetabulum. Mean pressure was comparable for all except Device 2 with CMW1
cement. The highest peak pressure was obtained with Device 2 and CMW3 cement. Common to all
devices was consistently lower rim pressure, reflecting slight leakage of the cement and loss of
hydrostatic pressure. Overall, Device 1 with CMW1 cement and Device 2 with CMW3 cement
showed the least variation between tests.

In view of its simplicity and ease of use, Device 1 would appear to offer the most reliable
method of acetabular cement pressurisation.

Lee AJC, Ling RSM. A Device to Improve the Extrusion of Bone Cement into the Bone of the Acetabulum in
the Replacement of the Hip Joint. Biomedical Engineering 1974, 522-5 24
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CANCELLOUS BONE STRESSES IN NORMAL AND
RECONSTRUCTED ACETABULA

+a	 +	 *A.M.R.New , M.D. Northmore-Ball , K.E. Tanner

The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire SY1O 7AG

LRC in Biomedical Materials, Queen Mary and Westfield College, London El 4NS

Recent studies of reconstructed femora in various configurations have indicated that
peak cancellous bone stresses can be an appreciable fraction of and may exceed the
strength of the bone and also that these stresses correlate with early migration'. Based
on these observations it has been suggested that migration is caused by the collapse
and remodelling of cancellous bone. In view of this hypothesis, the cancellous bone
stresses in the normal and reconstructed acetabulum were compared with the bone
strength.

A three dimensional finite element model of the pelvis, constructed from CT scans2,
was used to analyse the normal acetabulum and an acetabulum reconstructed with a
cemented all-polyethylene prosthesis. The CT density data provided Young's modulus
and tensile, compressive and shear strength data on an element by element basis. The
results of the stress analysis were used in conjunction with the strength data to define a
Hoffman failure index for each cancellous bone element.

In both the normal and reconstructed acetabulum the maximum value of the Hoffman
index in the region of the acetabulum was less than 0.2 (values greater than 1 represent
failure). More significantly, the introduction of a prosthesis increased the peak
cancellous bone stresses (and thence the Hoffman index) only slightly. Varying the
cement thickness also produced minimal changes. We conclude that collapse and
remodelling of cancellous bone is less likely to be a significant failure mechanism in the
acetabulum than in the femur, agreeing with RSA studies indicating that acetabular
component migration is less than femoral component migration in the first years post
operation.

Acknowledgement: The authors would like to thank Professor Rik Huiskes and Dr.
Michel Dalstra for the fmite element mesh data.

1 Taylor M., Tanner KE., Freeman M.A.R., Yettram A.L.; Finite element modelling -
predictor of implant survival?; Journal of Materials Science: Materials in Medicine 6,
1995, 808-812.

2 Dalstra M., Huiskes R., van Erning L.; Development and validation of a three
dimensional finite element model of the pelvic bone.; Journal of Biomechanical
Engineering 117, 1995, 272-278.
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Per-oierative Measurement of Acetabular Cement Pressurisalion
fe	 +	 a	 •1•New, A.M.R. , Northmore-Ball, M.D. , Tanner, K.E. , Cheah, S.K.

The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire SY1O 7AG

IRC in Biomedical Materials, Queen Mary and Westfield College, London El 4NS

Cement pressurisation in the acetabulum has been shown to improve the longevity of hip
replacements'. However, the pressures that are required for optimal fixation in the acetabulum and the
pressures that are achieved in practice are uncertain. Using an instrumented pressuriser, we have
measured the cement pressurisation in the acetabulum during 16 primary hip replacement operations
performed by 2 experienced surgeons.

The pressuriser (figure 1) consists of a domed
silicone rubber pressuriser head mounted on a
support jomidied to a positioning handle, with a
separate pusher to apply pressurisation force. A
pressure transducer (Entran EPX series) was
mounted in the support and fitted into a sized
hole drilled through the centre of the silicone
head such that the sensing diaphragm remained
approximately 1 mm interior to the surface. Per-
operatively, the pressure transducer was
connected to a standard IBM compatible portable
computer via a power supply/amplifier unit and
an analogue to digital converter (PICO ADC-1 1)
for data collection and display. By using battery
powered equipment the electrical hazard to the
patient was minimised.

A typical pressure recording is shown in figure 	 -	 -
2. Figure 3 shows mean and peak pressures
(calculated as indicated in figure 2) for the two Figure 1: Use of the instrumented pressuriser.
surgeons. The differences between the surgeons were not significant at the 0.05 level (one tailed t-test
assuming unequal variances).
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Figure 2	 Figure 3

The pressurisation required for optimal cement penetration into low density cancellous bone is
reported to be of the order of 35-50 kPa for 30-60 seconds 2. The present data show that this is
practically achievable in vivo using a simple and inexpensive device. In the short term the
measurements have proved useful in validating laboratory models of cement pressurisation 3, with
which we have found excellent agreement. In the long term we hope to perform cement pressure
measurements as a fairly routine part of hip replacement operations and to establish the relationships
between cement pressure, radiographic appearance and the development of aseptic loosening.

'Malchau, H., Herberts, P. Prognosis of Total Hip Replacement Surgical and Cementing Technique in ThR: A
Revision Risk Study of 134,056 Primary Operations. 63rd Annual Meeting AAOS, Febnzaiy 1996.
2 Noble, P.C., Swans, E. Penetration of Acrylic Bone Cements into Cancellons Bone. Acta Orthop. Scan. 54.
566-573, 1983.
3 New, A.M.R., Ncrthmore-Ball, M.D., Tanner, K.E. In Vitro Evaluation of Two New Designs of Acetabular
Cement Pressuriser. Poster at the BOA Spring Meeting, Uandudno, April 1996.
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Measurement of Acetabular Cement Pressurisation Durina Total Hip
Replacement
New, A.M.R.°, Northmore-Ball, M.D., Tanner, K.E. 4, Cheah, S.K.
The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire SY1O lAG

4IRC in Biomedical Materials, Queen Mary and Westfield College, London El 4NS

Cement pressurisation in the acetabulum has been shown to improve the longevity of hip
replacements'. However, the pressures that are required for optimal fixation in the acetabulum and the
pressures that are achieved in practice are uncertain. Using an instrumented pressuriser, we have
measured the cement pressurisation in the acetabulum during 16 primary hip replacement operations
performed by 2 experienced surgeons.

The pressunser (figure 1) consists of a domed
silicone rubber pressuriser head mounted on a
support attached to a positioning handle, with a
separate pusher to apply pressurisation force. A
pressure transducer (Entran EPX series) was
mounted in the support and fitted into a sized hole
drilled through the centre of the silicone head such
that the sensing diaphragm remained
approximately 1 mm interior to the surface. Per-
operatively, the pressure transducer was connected
to a standard IBM compatible portable computer
via a power supply/amplifier unit and an analogue
to digital converter (PICO ADC- 11) for data 	 Figure 1: The instrumented pressunser.

collection and display. Exdusive use of battery powered equipment minimised the electrical hazard to
the patient.

A typical pressure recording is shown in figure 2. Figure 3 shows mean and peak pressures (calculated
as indicated in figure 2) for the two surgeons. The differences between the surgeons were not
significant at the 0.05 level (one tailed t-test assuming unequal variances).
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The pressurisation required for optimal cement penetration into low density cancellous bone is
reportedtobeoftheorderof35-5OkPafcw3O-60scconcls2.Thepresentdatashowthatthiscanbe
attained in vivo using a simple and inexpensive device. In the short tam the measurements have
proved useful in validating laboratory models of cement pressurisauon3, with which we have found
excellent agreement. In the long term we hope to peribrm cement pressure measurements as a fairly
routine part of hip replacement operations and to establish the relationships between cement pressure,
radiographic appearance and the development of aseptic loosening.

'Malchau, H., Herberts, P. Prognosis of Total Hip Replacement Surgical and Cementing Technique in THR: A
Revision Risk Study of 134,056 Primaiy Operations. 63rd Annual Meeting AAOS, Febniaiy 1996.

Noble, P.C., Swarts, E. Penetration of Acrylic Bone Cements into Cancellous Bone. Acta. Orthop Scan. 54,
566-573, 1983.
3 New, kM.R., Nithmore-BaIl, M.D., Tanner, K.E. In Vitro Evaluation of Two New Designs of Acetabular
Cement Pressuiiser. Poster at the BOA Spring Meeting, Uandudno, April 1996.
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Finite Element Modelling of Bone Cement Flow During Component Insertion in Hip
Replacement
New, A.M.R.t°, Northmore-Ball, M.D.t, Tanner, K.E.
tme Robert Jones and Agnes Hunt Orthopdic Hospital, Oswestry, Shropshire SY1O 7AG

°WC in Biomedical Materials, Queen Mary and Westfield College, London El 4NS

Aseptic loosening is the most common cause of late failure of total hip replacement. Analysis of the
Swedish Arthroplasty Register' has demonstrated a relationship between modern surgical techniques
and improved survivorship. The enhanced initial fixation brought about by thorough cleaning and
cement pressurisation is considered to be the source of the improvement. In this study the finite
element method has been used to predict the pressurisation of bone cement and subsequent penetration
into cancellous bone during component insertion in joint replacement operations.

The method used is summarised in the flow 	 Stool

chart. Prosthesis insertion was simulated by 	 of flow

applying a constant velocity at all the boundary	 bo.mn and prodice .eah

nodes associated with the exterior prosthesis 	 calculate	 for	
t3.nor.ts new sub

gbitrary prosthesis velocitysurface. By calculating the steady state velocity
and pressure solution of the Navier-Stokes	 CaIclati r.action force

on prosthesis

equations and integrating the pressure over the
same set of nodes, a linear relationship was
established for insertion force vs. insertion

Ckulate solution bared

velocity, which allowed the development of 	 on Iii. velocity

cement penetration based on a constant applied
force, a more realistic simulation of a surgeon.	 _________ _________
A new solution was then calculated and the	 Has limit of prosthesis	 J Updati 5som.try based on prosthesis

.otios ban reached?	 velocity, exit velocities mid step size

bone cement domain modified based on the
velocity of the prosthesis and the exit velocity
of the bone cement through the porous 	 Fimib

cancellous bone. Bone cement was assumed to
behave as a linear viscous liquid. Since cement penetration typically occurs within a short time of
commencing prosthesis insertion, no attempt was made to model the increase in viscosity with time
for the curing cement. Cancellous bone was modelled as an isotropic porous material. The penetration
of fluid through such a material can be described by Darcy's law which assumes a linear relationship
between volumetric flow rate and pressure gradient, the constant of proportionality being the
permeability. All analyses was carried out using ANSYS 5.3/FLOTRAN running under Windows 95
on an IBM compatible PC.

Results for a flanged 25 mm diameter acetabular cup inserted into a 30 mm diameter acetabulum are
shown in figure 1. The development of cement penetration is shown for a constant insertion force of
150 N as the gap between prosthesis and bone narrows from 5 to 0.5 mm.
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Figure 1: Development of cement penetration for flanged acetabular cup.

Parametric studies show that lower cement viscosity cement permits greater cement penetration
regardless of prosthesis design. Occlusion of cement outflows by prosthesis design features further
enhances penetration, but only if the occlusive features, such as flanges on cups, are well fitting.
1 Malchau, H., Herberts, P. Prognosis of Total Hip Replacement Surgical and Cementing Technique in THR: A
Revision Risk Study of 134,056 Priinaty Operations. 63rd Annual Meeting AAOS, February 1996.
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An In Vitro Study of a New Design of Acetabular Cement Pressuriser

Frans P. Bernoski l*MD PhD

Andrew M.R. New 2 BEng

Robert A.Scott 3 MA

Martin D. Northmore-Ba11 4 MA FRCS

ABSTRACT

Aseptic loosening of the acetabular component remains one of the limiting factors in

the long term success of total hip arthroplasty. Cement pressurisation has been shown

to improve fixation. A new pressuriser has been designed which seals around the rim of

the acetabulum and covers the transverse ligament notch with a flap. The results of in

vitro testing of this device are presented and compared with pressure generated by

insertion of an acetabular cup. The pressuriser allowed sustained, uniform cement

pressurisation. Peak pressures with the new pressuriser were 180 kPa at both the iliac

region of the rim and the pole of an instrumented model acetabulum, compared with 55

kPa at the rim and 120 kPa at the pole on cup insertion. Pressures were maintained in

the 80-90 kPa range. The flap was effective in preventing cement leakage from the

notch, and pressures were higher than when the flap was absent. Cup insertion alone

gave only transient pressurisation, substantially less near the rim of the acetabulum than

at the pole. Peripheral pressurisation may be significant in producing secure local

fixation at the rim of the acetabulum, in particular in the region of the ilium (Charnley

zone 1) where radiolucencies are most commonly observed and where stresses in the

implanted acetabulum are highest. Improved rim fixation may also play a role in

preventing the ingress of wear debris.
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Dynamic Mechanical Testing of Prosthetic Acetabular Components for Total Hip
Replacement

New, A.M.R. 1 ' 2, Kioss,	 Northmore-Ball, M.D.', Tanner, K.E. 2 , Veldkamp, E."

, Kuiper, J.H.'
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in Biomedical Materials, Queen Mary and Westfield College, London El 4NS, UK.

3 Fachhochschul Studiengaenge Vorarlberg, 6850 Dornbirn, Austria.
4 Hogeschool Enschede, P.O. 70000, 7500 KB Enschede, The Netherlands.

The mechanics of cemented acetabular reconstruction remain little studied, particularly
with respect to the dynamic aspects of hip joint loading during activity, where both the
magnitude and the direction of the hip joint force vary significantly with respect to the
anatomical axes of the pelvis. A simulator has been designed to reproduce the forces
acting on reconstructed joints when used in conjunction with a servo-hydraulic
materials testing machine. This device has been used to investigate the relationship
between cementing technique and acetabular component fixation in bovine calf
acetabula. There were measurable differences in the stability of cups defined
qualitatively by radiological examination as "well fixed" or "poorly fixed".
"Micromotion" between prosthesis and bone, measured by a displacement transducer
at the anterior-superior margin of the acetabulum, was found, even in "well fixed"
cases, to be far greater than that which could be attributed to elastic deformation of the
intervening material. Thus it is reasonable to assume that "perfect" bonding was never
achieved even under laboratory conditions and that relatively large micromotion was
possible in specimens that appeared radiologically well fixed with no apparent
radiolucent lines. These results suggest that rim fixation against the edge of the pelvic
cortex may not be achievable even with the best current cementing techniques and thus
finite element models which assume complete bonding of the cement bone interface
may be unrealistic.

Keywords: Biomechanics, Dynamic Failure Mechanics
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