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ABSTRACT 

For condensation on horizontal low-finned tubes, the 

dependence of heat-transfer performance on fin spacing has 

been investigated experimentally for condensaticn of 

refrigerant 113 and ethylene glycol. Fourteen tubes have 

been used with inside diamete~ 9.78 mm and working length 

exposed to vapour 102 mm. The tube had rectangular 

section fins having the same width and height (0.5 mm and 

1.59 mm) and with the spacing between fins varying from 

0.25 mm to 20 mm. The diameter of the tube ~t the fin root 

was 12.7 mm. Tests were also made using a plain tube 

having the same inside diameter and an outside diameter 

equal to that at the root of the fins for the finned tubes. 

All tests were made at near atmospheric pressure with 

vapour flowing vertically downward with velocities of 0.24 

m/s and 0.36 m/s for refrigerant 113 and ethylene tlycol 

respectively. Optimum fin spacings were found at 0.5 mm 

and 1.0 mm for refrigerant 113 and ethylene !,lycol 

respectively. In earlier experiments for steam usir:g the 

same tubes, the optimum fin spacing was found to be 1.5 mm. 

Maximum enhancement ratios of vapour-side heat-transfer 

coefficient (vapour-side coefficient for a finned tube / 

vapour-side coefficient for a plain tube. for the same 

vapour-side temperature difference) were 7.5, 5.2 and 3.0 

for refrigerant 113, ethylene glycol and steam 

respectively. 
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Enhancement phenomena have also been studied 

theoretically. Consideration has been given to a role of 

surface tension forces on the motion and configuration of 

condensate film. On the basis of this study, several 

semi-empirical equations, to predict heat-trensfer 

performance, have been obtained. These are considered to 

represent recent reliable data (present and other recent 

works) satisfactorily. 
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1. Introduction 

Condensation on finned tubes is a complex phencmenon 

involving surface tension-influenced three-dimensional flow 

of the condensate film. Evaluation of the effEctive 

surface heat-transfer coefficient, either theoretically or 

by correlation of experimental data, is complicated on 

account of the large number of variables involved. 

For horizontal finned tubes, Beatty and Katz [29] 

performed experiments using different geometries of tubes 

and fins and found that the enhancement of vapour-side heat 

transfer, relative to a smooth tube, achieved values higher 

than the corresponding surface area increase due to 

finning. They also proposed a theoretical expression based 

on the Nusselt analysis for the tube in the interfin space 

and for the vertical fin surfaces. Since then s~veral 

works have broadly supported their experimental 

observation. However other data including recent st.udies 

at Queen Mary College, and particularly data for ~team, 

agreed less well with the prediction of the Beatty and Katz 

model. 

Later theoretical studies, following Gregorig [7], have" 

considered the effect of surface tension on the motion of 

the condensate film. More recently attention ha~ been 

drawn to the effect of "flooding" between fins on the lower 

part of tube also due to surface tension. Several models 
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including these phenomena have been proposed. However 

there is as yet no satisfactory model for predicting the 

heat-transfer performance of finned tube. 

Reliable experimental data, from investigations in 

which the important variables are systematically studied, 

are of vital importance to the development of a successful 

model. In the present work, experiments have been conducted 

in which refrigerant 113 (R-113) and ethylene glycol have 

been condensed on fourteen horizontal finned tubes having 

the same diameter, fin height and thickness. The fin 

spacing varied from 0.25 mm to 20 mm. For comparison, data 

were also obtained using a plain tube with diameter equal 

to that at the fin root for the finned tube. The heat flux 

and vapour-side temperature difference were determined for 

a range of coolant flow rates. The velocity of the vapour, 

which flowed vertically downwards on the tubes, was also 

determined. Care was taken to achieve high experimental 

accuracy and, in particular, to avoid errors due to the 

presence in the vapour of non-condensing gases or to the 

occurrence of dropwise condensation. 

For both fluids, the heat-transfer enhancement was 

found significantly to exceed that which might have been 

expected on grounds of increase in surface are~ due to 

finning. For both fluids an optimum fin spacing was found 

in the range tested. The enhancement ratios (finned tube 

heat-transfer coefficient divided by that of the plain 
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tube) were higher for the lower surface tension fluid 

(R-ll3) and the optimum fin spacing was smaller for this 

fluid. These trends are in good accord with earlier data 

for steam, where the condensate has a higher surface 

tension than ethylene glycol and the enhancement ratio was 

lower. 

Theoretical studies, and attempts to correlate the 

data using dimensional analysis, have also been carried out 

as part of the present investigation, with the objective of 

providing improved expressions for predicting the 

heat-transfer performance of horizontal finned tube. 

Theoretically-based equations have been obtained which are 

considered to represent the more recent reliable data 

(present and other recent data) more satisfactorily than 

earlier models. 
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CHAPTER 2 LITERATURE SURVEY 



-24-

2. Literature survey 

2.1 Methods of he~t-transfer augmentation in condensation 

Substantial efforts to achieve higher condenser 

performance and reduced size, i. e. space occupied and 

weight, for the same duty, have been made in recent years. 

Techniques for heat-transfer augmentation on the vapour 

side have been categorised into two groups, i.e. active and 

passive techniques. Active techniques require an external 

agency, such as electric or acoustic field, or vibration, 

while passive ones employ special condensing surface 

geometries or additives. So far, the passive techniques 

have recieved most attention because of their lower cost 

and the complexity of active techniques. 

Dropwise condensation (a passive technique) offers the 

prospect of 

condensation 

coefficient 

highest heat-transfer enhancement. For 

of steam, the vapour-side heat-transfer 

can exceed that of film condensation by a 

factor of around 20. However, this passive enhancement 

technique has not been used industrially to any sigrificant 

extent owing to the difficulty of ensuring in practice that 

the dropwise mode persists throughout the lifetim~ of the 

condenser. Moreover, dropwise condensation can only be 

obtained with a few high-surface tension fluids. 

Since for filmwise condensation, the dominant thermal 
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resistance is that of the condensate film, a surface 

geometry which promotes reduced film thickness will provide 

heat-transfer enhancement. For this purpose, many kinds of 

surface geometries have been used. 

Before discussion in detail of the use of low-fin 

tubes, enhancement techniques with other surface geometries 

are briefly reviewed. 

(1) non-wetting strips 

Brown and Martin (1971) [1] made an analytical study 

of condensation on a vertical platn surface with vertical 

non-wetting ptfe strips. They concluded that the thining of 

the condensate film near the ptfe surf~ce could lead to 

vapour-side heat-transfer coefficient 2 to 5 times higher 

than the values of the Nusselt prediction for the same heat 

flux. The enhancement was dependent on the liquid contact 

angle with the ptfe and the thermal conductivity of the 

metal. 

Cary and Mikic (1973) [2] analysed the same problem 

using a different model. They suggested that the 

enhancement might be due to the Marangoni effect; the 

liquid surface tension for the thinner condensate film near 

the ptfe-metal interface, being lower than elsewhere 

owing the higher temperature, causes the secondary flow. 

The analysis predicted up to about 80 , increase in 
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heat-transfer coefficient for the same heat flux. 

Glicksman et ale (1973) [3] performed condensation 

tests for steam on a horizontal copper tube, 12.7 mm in 

diameter, fitted with non-wetting ptfe tapes, 3.2mm wide 

and 0.16 mm thick. For helically wound strips, the results 

showed a maximum increase in heat-transfer coefficient by 

35 % over that for the plain tube for the same vapour-side 

temperature difference for wrapping with pitch/diameter=3. 

For a single axial strip positioned along the bottom of the 

tube, The maximum increase 50 % was observed. 

(2) Roughness 

Nicol and 

investigated 

closely-knurled 

Medwell (1965) [4] theoretically 

heat-transfer enhancement due to a 

surface roughness for a condensate film 

flowing down a vertical surface. The flow was divided into 

three regions:- an hydraulically smooth regime, a 

transition regime and a fully developed rough regime. 

Theory showed that the 'benefit of roughness was 

characterized by the "roughness Reynolds number". They 

conducted experiments condensing steam on a vertical tube, 

50 mm in diameter and 1.8 m in length, with several 

different surface roughnesses varying in height up to 0.5 

mm. Thermocouples located in the tube wall were used to 

determine the surface temperature. Ratios of local surface 

heat-transfer' coefficient for the knurled surface to the 
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plain tube ranged from 1.4 to 4.2. The experimental 

results offered suport for their theory. Despite the large 

enhancement reported no follow-up work on such surfaces has 

been apparently undertaken. 

Webb [5] reported that Notaro (1979) [6] inves~igated 

an enhancement technique which consisted of an array of 

small diameter metal particles 0.25 to 1.0 mm high bonded 

to the condensing surface, covering 20 to 60 % of the tube 

surface. 

vertical 

diameter 

The tests were made for steam using 6 m long 

tube having 50 % of area covered by 0.5 mm 

particles. The vapour-side heat-transfer 

coefficient ·was reported to be 17 times higher than that 

predicted by the Nusselt equation. There has been, 

however, no report of suport for Notaro's results so far. 

(3) Vertical fluted tube 

Gregorig (1954) [ 7 ] suggested a method of using 

surface tension forces to enhance laminar film condensation 

on a vertical surface. It was noted that the combj.nation 

of convex and concave condensate surface as shown in 

Fig.2-l would establish a suface-tension-induced 

pressure gradient, drawing the condensate from the convex 

into the concave region, and in consequence, a thjn film 

would be formed on the convex surface. Gregorig's analysis 

gave the surface profile for which the film thickness 

over the convex surface would be uniform. 
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Following [7], other investigators [8,9,10,11,12,13] 

have made theoretical studies along the same general lines 

aimed at predicting optimum surface profiles. 

Carnavos (1965) [14] gave experimental data for steam 

using internally and externally fluted tube, nominal 81 mm 

O.D. and 3 m high. Enhancement ratios of vapour-side 

heat-transfer coefficient of around 5 were obtained for the 

same heat flux. 

Cooper and Rose [ 15] reported that Combs (1978) 

[16,17] 

R-22, 

performed experiments for ammonia, R-ll, R-2l, 

R-117, R-114, R-115 and R-600 using three 

fluted tubes with outside-diameter of 8.26 mm, 9.75 mm and 

12.7 mm and with 48, 24 and 60 flutes respectively. For 

comparison, a plain tube with outside diameter of 7.98 mm 

was used. It was found in all cases that fluted tubes were 

significantly better than the plain tube in heat transfer. 

The ratio of heat transfer for fluted tubes to that of the 

plain tube for the same heat flux was in range of 4 to 7 in 

the case of ammonia and for other fluids, in the rante of 2 

to 7. These values exceeded the surface area increase due 

to the fluting. 

(4) vertical wire 

Thomas (1968) [18] found that similar enhancenent to 
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that provided by vertical fluted surfaces, could be 

obtained by loosely attached vertical wires spaced on a 

vertical surface. Seven wires with different sizes, 

including two different shapes ( cylindrical and 

rectangular ) were tested on a vertical tube which was 12.7 

mm O.D. and 1.08 m long. The rectangular shape wires were 

found to increase the condensation rate by a factor of more 

than 9, somewhat greater than circular cross-section wire. 

A simple correlating equation for the vapour-side 

heat-transfer coefficient was given. 

Hifert and Leont'ev (1976) [ 19] performed 

experiments using cylidrical cross-section wires with 

different diameters. It was found that the enhancement 

ratios ranged 3 to 6 and that augmentation decreased with 

increasing heat flux. A theoretical approach, in whLch the 

con den sat e fi 1m flow between wires was governed by l!raV i t y 

and surface tension forces, was also made. 

Thomas et al. (1979) [20] performed condensation tests 

for anmonia on a helically-wire-wrapped smooth vertical 

tube. The measured vapour-side heat-transfer coefficient 

was found to be approximately 3 times higher than that 

predicted by the Nusselt equation. 

(5) Other fin types 

Arai et al. [21 ] investigated experimentaly a 
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"saw-toothed" fin (shown in Fig.2-2) having a notct depth 

approximately 40 % of the fin height and small thickness at 

the fin tips. The commercially available surface, known as 

"Thermoexcel-C", having 13.8 fins/em and 1.2 mm in height 

was found to give 50 % increase of condensation rate for 

R-113, as compared with the same fin geometry but without 

the grooved fin tips. 

Webb and Gee (1979) [22] concluded that significant 

enhancement could be achieved with "spine-fins" having a 

three-dimensinal configuration shown in Fig.2-3. The 

resulting analytical prediction, based on Nusselt theory, 
.-

indicated a reduction of fin material of about 60 % for 

equal condensing duty when considering R-ll and R-22 as 

working fluids. Webb, Keswani and Rudy (1983) [23] 

performed experiments condensing R-12 on s pinE: fins 

extended on a vertical plate, with fins 1.0 mm high and 

0.3 mm square in a uniformly-spaced square array with a 

surface density of 15137 fins per square meter. The 

heat-transfer performance was found to be 3 times higher 

than that predicted by the Nusselt equation. Webb et 

all [23] also gave an analytical model which included the 

effect of surface tension force and agreed with their 

experimental data to within 10 %. 

Nader (1978) [24] gave a theoretical solution for 

condensation on a plane-sided vertical fin attached to a 

horizontal tube at its lower end. The interaction of 
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conduction within the fin and condensation on the fin 

surface was considered in the model. 

Patanker and Sparrow (1979) [25] analysed film 

condensation on a vertical fin attached to a vertica: plate 

or a vertical tube. Their model also included conduction 

within the fin. In the model, temperature variation across 

the thickness of fin was neglected but those along the 

width and the height of the fin were considered. It was 

concluded that the heat transfer on the fins would be 

significantly lower than that predicted by the Nusselt 

model, i.e. an isothermal fin model. 

Mori et ale (1979) [26,27] inves": i gated 

experimentally the vertical finned plates using R-ll3 with 

the plates of 50 mm or 25 mm height and SO mm width having 

equilateral triangular fins of 0.87 mm height and 1.0 mm or 

o.S mm pitch. It was found that the heat flux based on the 

projected area of the test surface were 5 times higher than 

that predicted by the Nusselt equation. The analytical 

model was made for three types of the finned plates shown 

in Fig.2-4. The surface tension forces were assumed to 

play an important role in withdrawing the condensate on the 

fin tips and flanks into the groove. It was stated that 

the triangular and wavy fins performed similarly, while the 

flat bottom groove gave the best heat-transfer performance. 

Further, the higher performance was given by the smaller 

tip angle, i.e parallel sided-fins gave the highest 
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heat-transfer coefficient. Mori et al. (1980) [28] later 

investigated the effect of the flat bottom groove. 

Experiments were conducted simulating the film flow in the 

groove, shown in Fig.2-5, using ethanol. The measurements 

of the distribution of film thickness were made by 

utilizing the reflection of striped light beams on the 

liquid surface. It was found that the film was thinned 

locally, as shown in Fig.2-5. Flow visualization using 

aluminum powder indicated that liquid between edges was 

withdrawn into the wedge. These phenomena were analysed 

with a physical model in which the surface forces as well 

as gravity governed the film flow. Good agreement was 

found with the experimental data. It was mentioned that 

there would exist an optimum fin spacing for the flat 

bottom groove. 
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2.2 Horizontal low-fin tubes 

Low integral-finned tubes have found wide comnercial 

acceptance for condensation on horizontal tubes. These 

tubes permit higher condensation rates than plain tubes and 

this may yield advantage in reducing the size, weight and 

cost of the condensers. Finning increases the effective 

area for heat transfer and can provide a substantially 

higher heat-transfer coefficient. Augmentation of heat 

transfer due to finning has been supported by many 

experimental works. However, the enhancement mechanism is 

still not fully understood, despite significant research 

effort in recent years. 

2.2.1 Experimental works of horizontal low-fin tube 

Beatty and Katz (1948) [29] performed condensation 

tests on horizontal tubes with six different fluids:-

methyl chloride, sulphur dioxide, R-22, propane, 

n-butane, and n-pentane using seven different finned tubes, 

and one plain tube. The dimensions of finned tubes are 

given in the Table 2-1. Preliminary observation~ were 

made to determine the range of temperature and pressure 

over which satisfactory measurements were possible. In all 

cases, the mean temperature of condensing vapour was 

• • maintained constant with range of 37 C to 76 C. Duplicate 

runs were made at each coolant velocity to assess possible 

effect of n~n-condensing gases. During operation, visual 
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observations were made through the sight glasses. Since 

the vapour-side heat-transfer coefficients were determined 

by using the "Wilson plot" method, measurements for each 

tube were made at four or five different coolant rates. 

Only one fluid (R-22) was used with the plain tube, so that 

there is no direct measurement of enhancement for the 

other fluids, except by comparing 

given by the Nusselt theory. Table 

of measurements for R-22. It 

with theoretical values 

2-1 shows the results 

is seen that the 

heat-transfer enhancement ratios for the finned tubes are 

larger than increase of surface area due to finning. 

Katz et al. (1948) [30] investigated condensation on 

six finned tubes in a vertical row for R-12, n-butane, 

acetone and water using a finned tube which had fins of 

15.6 mm in root diameter, 1.56 mm in fin height and 0.48 mm 

in the average fin thickness. The fin density was 15 fins 

per inch. The same procedure as described in [29). was 

made. Measurements were made at five coolant flow rates. 

The vapour-side heat-transfer coefficient was determined by 

the "Wilson plot" method. It was found that the average 

vapour-side heat-transfer coefficient was only 10 % below 

that of the top tube 

condensation was observed 

except water, where dropwise 

and no decrease in heat-transfer 

coefficient was found. Comparison was made with the Beatty 

and Katz [29] prediction (described in the next section) 

modified using Nusselt's model for tubes in a vertical raw. 

The prediction underestimated the average vapour-side 
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heat-transfer coefficient for all tubes by a factor of 1.25 

to 1.5. 

Pearson and Withers (1969) [31] performed experiments 

for R-22. The water-cooled condenser (" 40 tons capacity 

") had 60 copper tubes of length 1.8 m. Tests were carried 

out using finned tubes with 26 fins per inch and with 19 

fins per inch. In both cases the root diameter was 15.8 

mm, the fin height and thickness were 1.42 mm and 0.31 mm. 

Data were obtained at two levels of condenser duty, around 

167 kW and III kW, and several runs at each duty level 

covered a range of water flow and inlet water temperature. 

The apparatus was operated to maintain a constant condenser 

pressure such that the saturation temperature was 58 ~+0.5 

K. Care was taken to purge air from the system. The data 

were analized by a "modified Wilson plot" method. It was 

stated that the heat-transfer rate was 25 % higher for the 

tubes with high density. It was reported that the Beatty 

and Katz model (described in the next section) predicted 

the experimental results satisfactorily. 

Mills et ale (1975) [32] performed experimerts on a 

single tube with 36 threads per inch American standard 

screw thread cut on 0.75 in outside diameter tube. The 

effect of tube material was investigated using tubes of 

copper. brass and cupro-nickel. Thermocouples located in 

the tube wall were employed to determine the surface 

temperature. The measurements were made with steam under 
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saturation conditions at temperatures between 301 K to 327 

K. Vapour-side temperature differences were found between 

I K and 10 K. The enhancement ratios were between about 2.5 

and 5.5 for the same vapour-side temperature difference. 

The enhancement was found to increase with the thermal 

conductivity of the tube metal. The highest enhancement 

ratios occured at lowest temperature differences. At the 

highest temperature differences,. more typical of practical 

steam condensers, the enhancement ratio was around 2.5 to 

3.0 (see table 2-2). 

Carnavos (1980) [33] conducted experiments condensing 

saturated R-II vapour at 35 ~ on twelve different single 

horizontal copper tubes, including a plain tube, and 

low-fin tubes, as well as a fluted tube, a pin-fin 

tube and a pin-fluted tube. The choice of R-ll as the 

working fluid was based on the ability to operate close 

to atomospheric pressure to permit positive venting and 

exclusion of non-condensing gases during operation. 

Operation was in the reflux mode without continuous venting 

of vapour. At the maximum heat flux of 40 kW/m2, the 

• approach velocity of the vapour to the tube was 0.022 m/s 

and condensation was considered to be unaffected by vapour 

shear. Noncondensing gases were considered to be at a 

statisfactorily low level when the vapour temparature, as 

determined by a thermometer located above the condensing 

tube. and the saturation temperature at test section 

pressure, wer~ within 0.25 K. Comparison of heat flux 
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between tubes was made for the same overall logarithmic 

mean temperature difference. Only two different values 

were used for each tube by employing two different coolant 

temperatures. The condensing heat-transfer coefficients 

were also shown as a function of the vapour-side 

temperature difference. The results are given in Table 2-3 

(as rearranged by Cooper and Rose [15]). The fluted tube 

(N-2) appeared to be best with enhancement ratios of 5.6 

and 4.6 at vapour-side temperature differences of 2.5 K 

and 4 K respectively. For this tube, which has an area 

ratio of 2.15, the enhancement is significantly greater 

than the increase of surface area. The data for 

low-fined tubes tested with fin spacing between 0.36 mm and 

0.59 mm indicate that wider fin spacing gives better 

performance. However, it should be noted that the fin 

height and thickness were different for different tubes. 

Honda et ale (1983) [34] conducted experiments 

condensing IR-113 and methanol on three different low-fin 

tubes and a saw-tooth-shaped fin tube fitted with wall 

1 1 f t fOo, thermo coup es at ang es rom op 0 

Care was taken to ensure that the apparatus was leak tight. 

Prior to the experiment, non-condensing gas was removed 

from the vapour loop by a vacuum pump. Duri~g the 

experiments, the pressure was kept above atmospheric. 

Agreement between the saturation temperature at the 

measured vapour pressure and the measured vapour 

temperature were within 0.1 K. The saturation vapour 
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temperature was kept between 321 K and 334 K for R-ll:1 and 

between 338 K and 349 K for methanol. The maximum value of 

the enhancement of vapour-side heat-transfer coefficient 

for the same temperature difference was 9.0 for R-ll~l and 

6.1 for methanol. Table 2-4 shows their results at 

vapour-side temperature difference of 5 K. In addition, 

the measurements of the distribution of temperature in the 

tube wall and the film thickness at the middle point 

between fins in circumferential direction were made. It 

was found that the temperature and film thickness varied 

significantly around the tube. In the cases of the film 

thickness the rate of increase became rather sharp at a 

particular angle around the tube. 

Yau, Cooper and Rose (1983) [35,36,37] conducted the 

experiments with condensation of steam on horizontal finned 

tubes. Thirteen tubes were used with rectangular section 

fins having the same width 0.5 mm and height 1.59 mm <*) 
and with fin spacing, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12, 14, 

16, 18 and 20 mm. For comparison, tests were made using a 

plain tube having the same inside diameter 9.78 mm and an 

outside diameter equal to that at the root of fins f~r the 

finned tubes, i.e. 12.7 mm. All tests were made at near 

<*> note that l~O mm was missreported for the fin height in 

[35]. 
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atmospheric pressure, with vapour flowing vertically 

downwards with velocities of about 0.5, 0.7, and 1.1 m/s. 

Care was taken to expel the non-condensing gases and to 

avoid dropwise condensation. The mass fraction of 

non-condensing gas (taken to be air) as estimated from the 

pressure and temperature measurements was ±0.005, i.e. zero 

to within the precision of the determination. The maximum 

enhancement of vapour-side heat-transfer coefficient for 

the same heat flux (500 kW/m2)was found to be around 3.6 

for the tube with a fin spacing of 1.5 mm. The enhancement 

ratio increased with decreasing fin spacing from 20 mm to 

1.5 mm but decreasing for fin spacing less than 1.5 mm. 

Wanniarachchi et ale (1984) [38,39] performed tests 

at atmospheric pressure and at 11 kPa using single finned 

tubes, 1 mm in fin height and 1 mm in fin thickness, and a 

plain tube. The fin spacings used were 0.5, 1.0, 1.5, 2.0, 

4.0 and 9.0 mm. The diameter at the root of fins was 19.0 

mm and the internal diameter was 12.7 mm. The tubes were 

tested under vertical downwards steam flow with a vE~locity 

of approximately 1 m/s 

pressure, and 2 m/s 

Gibbs-Dalton ideal-gas 

when 

when 

operating 

operating at 

mixture relations 

at atomospheric 

11 kPa. 'the 

were used to 

to be air) compute the 

concentration. 

estimated as 

within the 

enhancement 

non-condensing gas (assumed 

The computed air concentration was 

in [35,36,37] be within 0.5 ~; i.e. zero to 

accuracy of measurements. The maximum 

ratios of the vapour-side heat-transfer 
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coefficient for the same heat flux (*) (1000 kw/m2 and 350 

kw/m~) were around 5.5 and 3.5 at atmospheric ana lower 

pressure respectively and occured at a fin spacing of 1.5 

mm as found by Yau et ale [35,36,37] for tube diameter 12.7 

mm. All of the finned tubes showed heat-transfer 

enhancement in excess of area increase due to finnin~·. The 

finned tube with the smallest fin-spacing (0.5 mm) gave a 

performance increase at least equal to the area increase 

due to finning despite the fact that the fins were almost 

all flooded with condensate. 

Georgiadis (1984) [40] examined in more detLil the 

effect of fin thickness and height using a total of 21 

tubes with 5 fin spacings, 5 fin thicknesses and 2 fin 

heights as detailed in Table 2-5. The apparatus used was 

the same as that of Wanniarachchi et a1. [38]. It was 

found that the heat-transfer enhancement for the same 

heat flux was primarily dependent on fin spacing. It was 

not strongly dependent on the fin thickness for the 

same fin spacing. For a given fin spacing and thickness 

increase in fin height ( giving an area increase of about 

50 %) increase the vapour-side heat transfer coefficient by 

only about 20 %. 

(*) note that the heat flux was not achieved with the plain 

tube and the stated enhancement ratios are based on 

extrapolations. 
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Concluding remarks 

As indicated above, many investigations have found 

that the enhancement ratios of vapour-side heat-transfer 

coefficient on finned tubes are higher than the increase of 

area due to finning. It should be noted however that the 

enhancement has been evaluated with different criteria. 

For example, Beatty and Katz [29], Mills [32], Carnavos 

[33] and Honda et a1. [34] used enhancement values for the 

same vapour-side temperature difference. Yau at al. 

[36,37], Wanniarachchi et ale [38] and Georgiadis [40] 

evaluated them for the same heat flux. Care should be 

taken to define the enhancement, since the enhancement 

ratios are significantly different between two criteria as 

well as depending on the values of temperature difference 

and heat flux at which they are evaluated . 
• 

He~t transfer on finned tubes may be affected by many 

parameters, such as configuration of fins, properties of 

the condensing fluids and vapour velocity. In many 

studies, experiments were performed with non-systematic 

change of variables, e.g. fin spacing, height and 

thickness. Beatty and Katz [29], Carnavos [33] and 

Pearson and Withers [31] all used several fluids and tubes 

but more than one of the geometric variables were chan~ed 

as the same time as the fluid. More recently Yau et all 

[35,36,37]. Wanniarachchi et all [38] and Georgiadis [40] 
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have used fewer fluids but have made a systematic study of 

fin dimensions from which it has become clear that fin 

spacing is the most important geometric variable . 



-43-

2.2.2 Condensate retention 

Katz et ale (1948) [30] investigated the retention of 

liquid between fins. Measurements under static conditions 

( without condensation occuring) were made using acetone, 

carbon tetrachloride, aniline and water with ten different 

finned tubes ( not detailed in [30] ). Results showed the 

portions of tubes covered by retained liquid in the range 

of 15 % to 90 %. However, by examining their heat-transfer 

data, it ·was concluded that the increase of retention was 

not reflected in decrease in heat transfer and that static 

liquid retention was no criterion for judging heat-transfer 

performance during condensation. 

Recent studies have verified that condensate is 

retained between fins at the lower part of the tube due to 

surface tension forces as shown in Fig.2-6, while the 

conensate film elsewhere is thinned by the surface tension 

forces. 

Rudy and. Webb (1981) [41] investigated the retention 
V~V\~ 

angle problem using water, R-Il and n-pentane withAfin 

spacings. They performed experiments under "dynamic" 

conditions (with condensation occuring) anc under "static" 

condition (without condensation but with liquid remaining 

on the tube after "dynamic" experiments). The liquid 

retention angles were measured by sighting through a 

cathetometer. Little difference between "static" and 
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"d ." 1 ynam1c va ues was found (see Fig.2-7). 

Sadesai, Owen and Smith (1982) [42] attempced to 

analyse the retention angle portion using a static force 

balance between surface tension forces and gl:-avity. 

Using reasoning which is not entirely clear, they obtained 

the expression: 
• 

(2-1) 

The above equation was compared with experimental data 

[30,40] and good agreement was found. 

Honda et ale (1983) [34] performed 

experiments condensing of R-113 and ethanol on finnei tubes 

which were observed visually under both "dynami.::" and 

"static" conditions. As in Rudy et ale [ 41] , little 

difference was found between the two conditions. They also 

made a detailed theoretical study of the problem. The 

physical model and coordinates used are shown in FLg.2-6. 

The following force balance equations for the static 

condition were given:

pgz a 
- - = 0 

ro 

a - - + r 
pgycoscp 

~'J here z== R +(Rb+cS )coscp o 0 

The radius of curvature r is given by: 

2 ,/2 
r=(l+(dy/dx) ) 

Iri 2 v/rtv 2 \ 

(2-2) 

(2-3) 

(2-4) 

(2-5) 
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The boundary conditions are given as follows:-

y=O and dy/dx=O at x=O 

r=r =00 at ~=TI o 
The radius of curvature was solved numerical.ly (no 

detail in [34]). It was mentioned that the profile of 

condensate surface between the fins at its intersection 

with a radial plane at any angular position agreed closely 

with a circular arc for the tube and fin geometries used in 

practice. The found result for the so-called retention 

angle was the same as that given by Owen et ale [42] (see 

eq. (2-1». Comparisons with their own experiment~l data 

and that of Rudy et ale [41] and Katz et ale [30] were 

good. It should be noted that careful study of the Honda 

et ale theory (see Chapter 5) reveals that the found 

result is only valid when bS2 h, where band h &re fin 

spacing and height. 

Yau et al. (1983) [37] also conducted experiments to 

observe retention angles. Measurements were made only 

under "static" conditions using water, R-113 and ethylene 

glycol with finned tubes whose fin height was 1.59 mm and 

fin spacing varying between 0.5 mm to 20 mm. Good 

agreement with eq.(2-1) was found for fin spacing less 

than 4 mm (note that is within the range of b<2 h). 

Rudy et al. (1984) [43] analysed the same problem 

using an app~rently simpler but rather obscure different 

model and obtained: 
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(2-6) 

where L is wetted perimeter of fin cross section, 

tb is thickness of fin at the root, 

p is pitch, 

h is fin height, 

Ap is profile area of fin over fin cross 

section. 

Concluding remarks 

Earlier, Katz et ale [30] measured the retention angle 

under "static" conditions, but no analysis was made. For 

reasoning no effect of the condensate retention on 

heat-transfer performance, this problem had been neglected .. 

Recently, Rudy and Webb [40] performed experiments 

under "dynamic" and "static" conditions. It was found that 

there was little difference betwee~two conditions and that 

heat-transfer perforDlance could be affected by the liquid 

retention. Later Honda et al. [34] also performed 

~ 
experiments under"two conditions and results have supported 

Rudy et ale conclusion. 

Owen et ale [41] proposed C1~ equat ion to gi ve the 

retention an,l~. but the physical model was obscure. On 

the other hand Hondo et 01. [34] madendetailed theoretical 
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study with force balances for the static conditions and the 

same expression as Owen et ale was finally given. Rudy et 

ale [42] analysed the same problem with a different 

physical model and .~ similar expression to that of Honda 

et al. was proposed. 

Yau et ale [36] performed experiments under static 

conditions with wide range of fin spacings, 0.5 ml~ to 20 
~e 

mm. Good agreement withAHonda et al. expression was found 

for b<2h. 
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2.2.3 Theoretical studies of low finn~d tubes 

The first theoretical prediction was made by Beatty 

-the. 
and Katz [29] in 1948. Th~ir model was based on~Nusselt 

theory for a vertical plate and a horizontal tube and 

did not include surface tension forces. The total hea~ 

transfer was considered as the sum of the heat-transfer 

rate on the unfinned port ion of tube and on the v'~rt ical 

faces of fins. This lead: to a composite heat-transfer 

coefficient based on an equivalent surface area 

expressed by: 

Ab 
. a BK = A p 

a b + 
Af 

(2-7) nr elL 
P 

where Ap , is the unfinned surface area of the t l~be, 

Af is the surface area of fin sides. 

Ap=Ab + nAf and n is the fin efficiency. 

Clb and'a L are given by Nusselt theory; 

for horizontal tube; 

(2-8) 

for a vertical plate: 

k 3 p2gh ~ 
a = 0.943(. f g ) 

L llllT L 
(2-9) 

where L is the average height of fin side given by: 

,1T(d 2 _d 2 ) 
L= 0 r 

4d o 
(2-10) 

Ap 

Substitution of eqs.(2-8) to (2-10) in eq.(2-7) gives: 



-49-
~ 

aBK=ab(dr/deq) (2-11) 

where the equivalent diameter d eq is given by: 

The 

1 ~ 0.943 Af 
(d-)4 = 0 728 1 

eq . A L~ 
p 

+ 
A d ~ 

p r 
theoretical expression 

(2-12) 

correlated their 

experimental data (see 1n section 2.2.1) on average by 

about!5 %. 

In 1954, Gregorig [7] predicted the effect of surface 

tension on a fluted surface (see Fig.2-8). Though this 

work is not specifically related to horizontal low-fin 

tubes, it has formed the basis of subsequent analyses and 

is therefore reviewed briefly. Surface tension gives 

rise to pressure gradients in the condensate due to +he 

varying curvature of the condensing surface. The pressure 

gradient produces a thin film of condensate over the convex 

part of the surface. Gregorig demonstrated both 

analytically and experimentally the benefits to be gained 

from fluting a vertical condenser surface. The effect of 

gravity on the condensate flow was neglected in comparison 

to that of the surface tension forces, so that the flow was 

two-dimensional. The condensate flow was assumed laminar. 

The force momentum balance equation was given by: 

dp = 
ds 

(2-13) 

where the pressure gradient due to surface tension w~s 

given by: 

d ( - 1 ) 0- r 
ds 

(2-14) 
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The mass and energy balance equations were given by: 

where 

m = pvc 

dm _ k~T 1 -as - h
fg 

0 

r is radius of curvature 

v is average velocity of 

m is mass flow rate per 

s is distance along the 

(2-15) 

(2-16) 

of condensate film, 

condensate flow, 

length of film, 

profile. 

Fig.2-B shows the coordinates and parameters used in 

the calculation. 

The above equations 

expressions:-

l=-J~ ds r C op 

m =J k~T d h c s 
fg 

lead to the following 

(2-17) 

(2-18) 

In addition, the film thickness was geometl'ically 

defined as: 

where 8=l SR- 1 ds 
o 
s 

1.J;=1 r-1ds 
o 

(2-19) 

The set of formulae (2-17) to (2-19) were numerically 

integrated and solved for the film thickness in telms of 

distance along the surface for a given profile of a fluted 

surface. Substituting eq.(2-l8) into eq.(2-l7) leads to: 
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.! =._ 311 k L\ TIs 1 s d s d s + C 
r h

f 
op cS P 
goo 

(2-20) 

On the basis of the above equation, Gregorig proposed 

a surface profile which would give a constant film 

thickness over the convex arc of length S 1. Since ct=k/cS,p 

Gregorig's surface will yield a constant heat-transfer 

coefficient over the entire convex surface. When the film 

thickness is independent of s, the above equation leais to: 

1 -= 
r 

where _opgh fg 
B- llkL\T 

(2-21) 

.'.> .. finite radius ro at the crest of the flute was as:;umed. 

At the termination of the convex surface s=S1' l/r=O were 

given (see Fig.2-8). The film thickness and heat-transfer 

coefficient for the convex surface are given by: 

a
GR 

= ~ = constant (2-23) 

Karkhu and Borovkov (1971) [44] investigate:! the 

effect of surface tension force on a horizontal tube with 

trapezoidally-shaped fins. Fig.2-9 shows their 

physical model. The vapour-side surface was divided into 

two parts: the. ~in flank on which the condensation o~cured 

and the fin spacing into which the condensate was pulled by 

surface tension forces. It was considered that the 

condensate motion on the fin flank was driven by the 
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surface tension forces due to the varying surface 

curvature. The fin trough was considered to serve as the 

drainage path and not 1 contributing to the heat transfer. 

The momentum balance for condensate flow along the fin 

flank is given by: 

with the boundary conditions:-

u=O at y=O 

au=O 
ay at y=o 

(2-24) 

In addition, the pressure gradient was assumed to be 

uniform over the fin flank and approximated as: 

(2-25) 

where rt was approximated by: 

r
t 

= b(l+tane) (2-26) 

Equ.(2-24) may be then solved. The average velocity 

and film thickness were given by:-

3~{h-6)(1+tane)b 
(2-27) 

(2-28) 

For the trough, laminar gravity-driven circumferential 

flow was analysed. The velocity distribution normal to 

the base of the trough was given by: 

(2-29) 
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In the above equation, shear stress at the fir. flank 

surface was considered but that at the surface of tube was 

neglected. The flow rate of condensate in the trough is 

then given by: 

a 
m=htane 

and the mass balance gives: 

= puc 

(2-30) 

(2-31) 

A combination of eq.(2-30) and (2-31) leads to: 

dz 
Cfiij = 2.BH 

1 
(l-z)'2 

a 1/'+ 11 1/'+ k 3/'+ d ~ T 3/,+ 

H = ·r 

z+m 
4tanlJJ 

(2-32) 

p 7/'+ h f ~/'+ b 1/,+ h 3.5 s; n 3 e ( 1 +t an e) 1/1+ 

with the boundary condition; 

az 
dl/J = 0 a t l/J = 0 

Eq.(2-32) was numerically solved for z. Since the 

con den sat e 1 eve lin the t r 0 ugh is de.term'.necl bj con den sat ion 0 n 

the flank, the local condensation rate can be found from 

the rate of increase of depth of the trough with angle 

around the tube. 

On~ empirical expression, based on th(: above 0. 

theoretical work. was made using parameters appearing in 

eq. (2-32). It was 
~ ~~~ 

mentioned that ~ effective area", was 

• limited within ~=150 since there was 0- sharp rise of 
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submergence in the fin spacing at around ~=15~ According 

to this observation, it was assumed that ~=15if ~as the 

boundary of the region in which the condensation occured. 

The depth of submergence up to ~=15if was expressed by: 

(2-33) 

The flow rate at ~=15if , i.e total condensation rate on 

the fin flank was given by substituting Zb into Z in 

eq.(2-30) to give: 

G~ = G~(Zb) 

Therefore the average heat-transfer coefficient over 

total surface area was given by: 

a. = (2-34) 

This expression was . said to correlate their 

experimental data for water and R-113 to within±5 % 

(details of these experiments are not described in [44]). 

A more obscure model, covering evaporation and 

condensation on a horizontal triangular finned tube was 

developed by Edward et ale (1973) [45]. Their analysis for 

a horizontal grooved tube was composed of two seperate 

parts, one dealing with fluid flow in the grooves .End the 

other with heat transfer. The condensate flow around tube 

was considered to be driven by gravity and "capillary 

pressure" due to surface tension. The heat transfer was 

treated seperat~ly as a conduction process in two adjacent 
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phases of the fin and condensate. However, the flow and 

heat-transfer performance are unconnected and their 

treatment seems to include incompatible assumption. No 

comparison with available experimental data was made. 

Hirasawa et al. (1979) [27] have analysed three types 

of vertical fin plates (as described in section 2.1 and 

shown in Fig.2-4). In their model, the gravitational 

forces in the region 1 and 2 were assumed to be negligibly 

smaller than those due to surface tension. While, it was 

assumed that the flow in the region 3 was governed only by 

gravity and the curvature of liquid surface was 

approximated by a circular arc. The following assumptions 

for the condensate profile were made:-

1) In the region 1, the condensate on the leading' 

edge forms a parabola. 

2) In the region 2, the assumption of zero gravity 

leads to: 

a .fL [0 3 fL { ~ I ( 1 + ( dol d ) 2 1 3/2 }] = k ~ T 
~ dy dy dy- Y phfgo (2-35) 

3) In the region 3, the liquid velocity component 

of the horizontal direction is neglected, so 

that the force balance is given by: 

(2-36) 

A numerical solution was used which iterative 

procedures to mutch the slope of the liquid surfac~ at the 
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junction of region I and 2, and region 2 and 3. 

The reliability of the model was checked by comparing 

the computed results with experimental data. Experiments 

were made using R-113 with the triangular finnned plate of 

0.5 mm in pitch and 0.43 mm in fin height. Good agreement 

was found. It was concluded from the calculation that fins 

with a sharp leading edge, i.e. triangular fins, would give 

thinner condensate films than smoothly crested fins in 

region I but that the opposite was truefor region 2. These 

opposite effec~gave the same heat transfer for the both 

types of fin. On the other hand, the flat ~ottomed 

grooves, for the same pitch and height as those of 

triangular fins, gave higher he~t-transfer performance. 

Further, parallel-sided fins (i.e. zero tip angle) gave the 

highest heat transfer, e.g. those with 0.5 mm pitch and 

0.87 mm height gave 10 times higher heat tr~sfer for R-113 

(based on the surface of plain plate) than a plain plate. 

Hirasawa et al. (1980) [28], further, investigated the 

film flow on a pla~~ surface with vertical fins having the 

parallel sides. The following expression was for the film 

thickness in the trough between the fins (see Fig.2-5): 

(2-37) 

where x is measured vertically downward, 

y'i8 measured horizontally and paranely 
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to the base of the trough. 

The profile of film in the vi cinity of the fin root 

was assumed to be parabolic and having an area satifying 

the mass balance. Initial calculation without condensation 

but with constant mass flow from the top was comparej with 

experiment results as described in section 2.1. Good 

agreement ~as found. Then the calculation was carried out 

for the case of condensation of R-113 at Tv =323 K and Tv-Tw 

=10 K with fins having height 0.9 mm. It was concluded 

that the heat-transfer coefficient increased as the fin 

spacing decreased but there seemed to exist an optimum 

spacing which would give ~ maximum heat-transfer 

coefficient. 

Borovkov (1980) [46] modified his previous theory by 

assuming that for the condensate flow in the trough, the 

shear stress at the tube wall was more significant than 

that at the fin side 

used previously [43]). 

by: 

* U 

(note the opposite assumption was 

The mean velocity was then given 

. 0 

The condensate flow in the trough at the angle W=lSrJ was 

given by: 

G = 
IJJ 

* a!:J 
pu --

COS ~) 
(2-38) 

The following differential equation was obtained for 
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flow in the trough: 

1 
dz O.47F. (l-z)~ z (2-39) = CIlj) 1 z2 s inljJ 3't an ljJ 

F '. = 
a 1I~ lJ lI~ k 3J1+ d r II T s 3J1+ n 3J1+ cos 314 6 

(2-40) 
1 a b l/~ h 3A h 2.5 P 3/'+ ( 1 + tan 6 ) 1/,+ 

fg 

It was stated that the relation between the depth of 

film 
o 

on the tube surface at ljJ=150 and the nondimensional 

parameter F l , as given by numerical solution of eq.(2-39), 

,~as represented within 15 % for several fluids and finned 

tube geometries by the following expression: 

Z b = 2. 0 F i 1/3 (2-41) 

Hence, the mean heat-transter coefficient for4finned tube 

based on surface of the smooth tube having the same 

diameter as that at the fin root, i.e. d~, was e~pressed 

by: 

(2-42) 

Since Gy; is the total flow rate at VJ=150° given by eq. (2-38) 

using Zb in eq.(2-4l) (i.e. total condensate rate on the 

fin flank), the average heat-transfer coefficient was given 

by: 

(2-43) 

where s=2(a+b+htanG) 

Owen et ale (1983) [42] developed a similar model to 
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that of Beatty and Katz [29] but included consideration 

of the retention angle. For the upper part of the tube 

(O<~<~f)' where ~f is the retention angle, the Beatty and 

Katz model was adopted. For the flooded part, parallel 

heat-transfer paths were considered for the fins and the 

condensate between fins. The average heat transfer 

coefficient was then written as: 

(2-44) 

where 

N is density of fin 

This model were said to predict experimental data by Beatty 

and Katz, Pearson and Carnavos (see section 2.2) within~O 

t. It may be noted, however, that ~Bk and aL are expressed 

-the . 
on"basls of different areas and may not be simplyccmbined 

as in eq. (2-44) . To correct eq. (2-44)~ the second term of 

the right hand side in eq.(2-44) should be multiplied by 

Rudy and- Webb later (1983) [47] employed the Karkhu 

and Borovkov aproximation of the uniform pressure gradient 
fl'Clll' 

on the fin flaD.klresu]_~ing ,.surface tension, and gave the 

following relation for pressure gradient: 
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(2-45) 

where r't and rb are radius of condensate film 

at fin tip and fin bottom. 

The radii values were approximated (see Fig.2-l0) by: 

• 
• • 

(2-46) 

(2-47) 

The film on the fin flank was then treated by the Nusselt 

model except that the gravity term was omitted and the 

pressure gradient in eq.(2-45) was included. This led to 

the following equation for the heat-transfer coefficient: 

(2-48) 

~ 
Heat transfer in~flooded region was neglected and the 

total heat transfer was considered as-the sum of that on 

the fin flank and that in the trough for unflooded region. 

The average heat-transfer coefficient over th~ total 

surface was given by: 

(2-49) 

where ~b and ~f are given by eq.(2-8) and eq.(2-48). 

Adamek (1983) [12] gave \. a convenient method for 

investigating the optimum shape for flutes on a vertical 

fluted tube. The Gregorig method [7] predicts the 
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heat-transfer coefficient for a specific flute profile. 

Adamek considered the following family of suitable 

; nterf ace prof; 1 e : 
- 1 - 1 n K(s)=r =r -as o 

O<n<oo (2-50) 

n - 1 =as -r o 
-l<n<O 

The angle w, between the tangent at the condensate surface 

at distance s and at the top of flute, varies from zero at 

the c res t to w1 at the end 0 f the con vex par t 0 f the 

surface s=Sl (see Fig.2-ll). The element length along the 

condensate surface, ds, is given by: 

ds=rdw or dw=r-1ds (2-51) 

so that, for the condensate surface profile considered, the 

following expression is given: 

S 1 1 
JK(s)ds= - S a S n + 1 = (ll. 

I-nn 1 -.l 
o ro 

= a S n+l 
n+1 1 

1 
S 1 = wi. 

ro 

o <n<oo (2-52) 

-l<n<O 

The momentum and energy balances as given by Gregorig are 

then used to obtain: 
!-: 

6(S)=(K ... )-l/3(4l S c(K"') l/3ds+c a ) 4 
(2-53) 

At the transition from the convex to the concave surface, 

l/r=O. Hence: 

1 n 
- =aS 1 ra 

where _ (..r22.l) s - ( n + 1 ) 
a-wt n 1 Q<n<oo 

tl t th e film thickness is given by: so . 18 ., 

(2-54) 
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(2-55) 

opgh f B- 9 
- l-lk8T 

The flute profile is found by subtracting the film 

thickness given by eq.(2-55) from the interface. profile 

given by eq.(2-50). The mean heat-transfer coefficient over 

the convex surface is .jfinally given by: 

(2-56) 

The optimum combination of wi' nand 81 in the above 

equation gives the highest heat-transfer coefficient over 

the convex surface.. Fo llowing numer ical inves t i !~at ions 

using the above technique, Adamek suggested that a sharp 

leading edge would lead to high heat-tr.ansfer 

coefficients. 

More recent 1 y, Rudy and Webb (1984) [43] adopted 

Adamek's (12) expression for obtaining the heat-t~ansfer 

coefficient on the fin side and the model of parallel heat 

transfer paths for the fins and condensate for the flooded 

region. The following equation for the heat-transfer 

coefficient was given: 

Ab Af ~f Ab ~f 
aRO=(-A a h+ n- a ) -+ -A aL(l--) 

p Ap f TI P TI 
(2-57) 

where is found by numerically solving -:he two 

dimensional conduction problem for fin and condensate in 

the flooded region matching the heat flux nt the 
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fin-condensate boundary. 
a f is given by Adamek's model. 

a h is predicted by the Nusselt th eory for the interfin 

space with modification to accord for 

condensate from the fin flanks: 

the additional 

To 

is 

m f 

obtain 

equal 

and in 

k 3 2 
a = 1 5 1 4 ( P g) 1/3 
h' \12Re 

Re= 4m 
\1(p-t 

a h ' iteration 

to the sum of 

the trough mh 

c~~ .. ;c.cl Ou. t 
was 

1\ until 

the condensation 

given by: 

(2-58) 

(2-59) 

mass flow rate in m 

rates on fin flank 

(2-60) 

(2-61) 

Adamek's expresion is suitable 
fo~ 

on I y I' fin pro i i 1 es as 

described in the above section. R u d y and Web b 1 a tt:: r mad e 

an approximation to adopt Adamek's express~on to 

trapezoidal c.ross-sectiono.l fins giving moderate valul!s of n 

in eq. (2-56). Flook (1985) [48) reported that thi:; model 

heo,t,.. t...-cl.V\s~r (.OQffiC.,i 'E'~S 
under-estimated the j\. given by Georgiadis (40) fo" steam 

by a factor of around 40 %. 
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Honda et al. (1984) [49] has given what is probably 

the most realistic approch to date. Fig.2-12 shows the 

physical model in which the cross section of the fin was 

composed of straight portions at the tip and side, and a 

round corner at the tip. The condensate" on the fin surface 

was driven by combined gravity and surface tension 

forces into the fin root and liquid between fins was 

drained by gravity. Thus the surface of the fin was divided 

in tot wop art s j i. e. a t h i n f i 1 m reg ion 0 n up per p a)"' t 0 f the 

fin surface and thick film region at the fin root. For 

analysis of the film flow, the following assumptions were 

made; 

1) The wall temperature is uniform. through the fin. 

2) The condensate flow is laminar. 

3) The condensate film thickness is small so that 

the inertia terms in the momentum equation and 

the convection terms in the energy equation can be 

neglected. 

4) Circumferancial flow can be neglected in 

comparison with radial flow. 

5) The fin height is substantially smaller than the 

tube radius. 

~ 
Then the motion for the condensate film alongl\fin 

top and flank was given by the follpwing equation: 
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(2-62) 

where f X is the x component (radial) of "nomalized 

gravity", i.·e. f x=Cos<j>cosa for fin flank and f x=O for fin 

top, r is the radius of curvature of the liquid-vapour 

interface, and c is condensate film thickness. The 

local film thickness on the fin was calculated by using a 

numerical implicit finite difference scheme. The average 

Nusselt number (pitch as representative length) over fin 

side was respectively defined as: 

Nu =2f x (1/c)dx (2-63) 
P 0 

Approximate expression for in both unflooded and 

flooded regions were derived based on the results of the 

numerical analysis. The overall average Nusselt number 

Nudwas written in relevant parameters for the u(unflooded) 

and f(flooded) regions to give the following approximate 

result: 

~ ___ ~,oJ 

.Nu ·unu(l-Twu)~f+Nu~fnf(l-Twf)(l-<j>f) 

(~-fWu)¢f+(l-TWf)(l-~f) 
(2-64) 

where Nu
du 

and NU
df 

are Nusselt number based on the average 

condensate different temperature differences for the 

flooded and unflooded regions, and Twf since 

experiments [34J have shown that the wall temperature 

changes considerably with angle, as a result of large 

difference in heat-transfer coefficient between the 
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unflooded and flooded regions. 

Nu du was expressed as a combination of values for 

surface-tension-force-controlled condensation ( N u d u ) 5 and 

gravity-controlled condensation(NU ) 
1 du 9 

3 3 113 
NUdU={(nudu)g +(Nudu)s} (2-65) 

This approximate expression was justified by con!;iderat;on 

of the numerical solutions. For (NU
d

) , the Be3tty and 
U 9 

Kat z mod e 1 ( see e q. (2 - 1 ) ) was use d . ( N U d ) i s r t~ 1 ate d t 0 
U 5 

Nu pu , such that: 

(d +d ) 
(Nu ) =Nu 0 r 

du 5 pu 
(2-66) 

2p 

For the flooded region, the effect of gravity was neglected 

and NU df (with outer diameter do as the representative 

length) so that: 

(2-67) 
r-

replaced NU pf ' nu and n f are the fin efficiences. Twu and 
,..., 
Twf are dimensionless average temperature differences at 

,...., 
the fin root given by T.=.(T-Tc)/(T,,-T c ) where Tc is coolant 

temperature. ~f is angle of flooded point from the top of 
,.." 

tube and ~f=~f/7T . 'rhe val ues of T wu and T wf were 

determined by solving the considering heat trarsfer from 

vapour to coolant. It was assumed that the coclant-side 

heat-transfer coefficient W~$' constant an~ average 

(constant) values were used for the vapour-side coefficient 

for the unflooded and flooded regions. Circumferential 

conduction in the wall between the two regions was 

neglected so that the temperature drops across the wall for 
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the two regions were found on the basis of uniform radial 

conduction. The heat balance equations for the unflooded 
l"aS i 0",", 

and the flooded" then 

as function of ~: 

yield differential equation for T 

1 k t -1 . 
Nu (T) }T = 

e e. W 

4t d2 T 
w 

1T 2 d dcp2 
r 

(2-68) 

w 

where NUde is the Nusselt number for inner surface of the 

tube and i indicates u (unflooded) or f (flooded). The 

boundary and compatibility conditions are: 

dT /dCP=O at cp=O and 1 
W 

Honda's model was found to predict most of available 

data within 20%, Beatty and Katz's [29] and Owen's [41] 

predictions were less good, and Rudy's model [46] 

predicted most data satisfactorily except for steam. 

While Honda's model appears to have been generally 

satisfactory, it must be noted that numerical computer 

N"d . h' solution is required to obtain~even ln t elr approximate 

model. A further defect is that the circumferancial flow 

of condensate and heat transfer in the trough are 

neglected. (In a private communication, Honda has indicated 

that he has modified his model to include heat transfer in 

trough and has reported that this gave better agreement 

wi th the present author' s data) 
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Concluding remarks 

Several theoretical models have been attempted. In 

outline:-

1. Beatty and Katz [29], 1948. This is basically 

a Nusselt type of approach combining gravity 

flow on a horizontal tube and flow on a vertical 

plane surface. Surface tension forces were 

not included. 

2. Karkhu and Borovkov [44], 1971, and Borovkov 

3 . 

4. 

[45], 1980. This approch attempted to include 

surface tension drainage forces but involved 

several unsubstantiated assumption and 

approximation. 

Owen et al. [42], 1981. This approch is similar 

to the Beatty and Katz model but takes account 

of heat transfer through flooded region using 

parallel paths through fin and flooded interfin 

space. (Note Owen's final result is incorrect 

but readily is modified.) 

Rudy and Webb [47],1983. This approach employed 

the-assumption of (2) (ur.iform pressure gradient 

on finflank) but elso included retention of 
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condensate on a lower part of tube. Heat transfer 

through flooded part of the tube was neglected. 

5. Rudy and Webb [43], 1984. This approch adopts 

Adamek [12] model for treating the fin flank. 

For flooded region, two-dimensional conduction 

analysis is used. Numerical solution is needed 

to determine the average heat-transfer 

coefficient. 

6. Honda et al [49], 1984. This is a complex 

approch for both flooded and unflooded part of 

tube. Numerical solution of the momentum Bnd 

energy equations for condensate film on fin 

flank including surface tension and gravity 

forces. The~e are summ~rised by approximate 

formulae but the final result required additional 

numerical solution to take account of temperature 

variation of the tube wall between the flooded 

and un-flooded regions. 
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Fig. 2-1 Cross section on fluting 
condensing surface reproduced 

from Gregorig [71 

Fig. 2 - 2 II Saw - too the d II fin s , 
so calleD "Thermoexce 1

-

C" reproduced from [2J) 

Fig.2-3 "Splne-fins reproduced 

from ~22] 
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Fig.2-4 Three types of fins investigated by Meri et al. 
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Fig.2-5 Experiments performed by Mar; et a 1 . 
on. eff e c t of surface tension forces 
over vertical finned plate. 
(reproduced from [28] ) 
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VIEW' FROM A 

Fig.2-6 Condensate retention. 

General view and coordinate 
system used by Honda et ale 
[ 34] 
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Fig.2-B Physical model and coordinate 
system of Greogorig's fluted 
surface r 71 

a 

Fig.2-9 Physical model and coordinate 
system of finned tube studied 
by Karkhu and Borovkov [441 
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h 

t -W 
Fig.2-10 Para t me ers and approximations 

in Rudy et ale model [47]· 

5=0 W=O 

I 

~W 

Fig.2~11 Physical model and coordinate 
system of "Gregorig type" 
condensation surface studied 

by Adamek [12] 
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Fig.2-12 Physical model and coordinate 
system of condensation on finned 

tube studied by Honda et al. [49) 
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Tnblc 2-1 Dlmen~ion~ and enhancement performance of smooth 

and finned tubes (reproduced from Beatty and Katz [29J ) 

Tube Numbe·r 1 2 3 4 5 

Fl u i d R-22 

root diamter dr/mm 15.87 19.05 19.51 19.51 19.23 

pitch p /mm 1. 645 3.676 3.708 3.89 

fin spacing b /mm 

fin thickness top 0.33 plain 0.33 0.737 0.406 

bottom 0.584 0.94 0.94 1. 04 

fin hight, h /mm 1. 437 8.66 3.45 7.42 

area ratio 1.9 1.0 5.39 2.38 4.66 

vapour temp. Tv/ K 339 359 358 359 359 

, temp. difference /K 36 36 35 36 36 

Enhancement ratio 

of heat transfer 3.38 8.68 4.07 6.8 

Table 2-2 Data for condensation of saturated steam 
from Mi l1s et al. r 321 (reproduced by 

Cooper and Rose [15] ) 

tube Tsat 6T QxlO- s Q 
material K K W/m 2 Qplain tube 

Copper 313.2 5.5 2. :i 51 3.746 
318.2 8.2 2.200 2.839 
307.1 2.2 1.106 3.829 
316.2 10.0 2.234 2.485 

Brass 310 .• ) 1.1 1. n24 5.965 
305.6 3.3 1 . ~ 75 3.768 
301. 0 6.0 0.~40 1. 53 4 

326.6 S.8 2.626 3.214 

Cuppro- 309.2 1.3 0.478 2.454 
309.4 3.0 1. 263 3.1165 

Nickel 316.3 4. q 1. 383 2.568 
323.6 6.7 1. 702 2.556 

6 7 

19.51 19.51 

3.681 3.676 

0.33 0.533 

0.94 0.94 

8.15 6.17 

4.32 4.03 

359 360 

36 33 

6.57 7.01 
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Table 2-3 Dimensions and enhancement performance of finned 
tubes (reproduced from Carnavos [33] ) 

Tube code W-1 W-2 HC HP N-2 FC-Z 

fins pin fins flute pin flute 

Fl u i d R-ll 

root diameter d/mm 14.3 15.7 15.5 15.8 11. 8 14.3 

pitch p /mm 0.943 0.621 0.725 0.820 0.794 0.704 

fin spacing b /mm 0.587 0.367 0.446 0.566 

fin thickness t /mm 0.356 0.254 0.279 0.254 

fin hight h /mm 1. 32 0.914 1. 04 0.787 0.508 0.89 

area ratio 3.53 3.75 2.79 2.18 

vapour temp. T/K 308 

Enhancement ratio 
of heat transfer 

6T 2.5 K 5.2 4.6 4.0 4.6 5.6 4.2 

4.5 K 4.04 3.65 3.17 3.65 4.57 3. 'I 8 

Table 2-4 Dimensions and enhancement performance of finned 
tubes (reproduced from Honda et al. [34] ) 

Tube code B C D B C D 

Fluid R-l13 Methanol 

root diameter dr/mm 15.77 17.05 17.09 15.77 17.05 17.09 

pitch P /mm 0.98 0.64 0.50 0.98 0.64 0.50 

fin spacing b /mm 0.71 0.46 0.39 0.71 0.46 0.39 

fin thickness t /mm 0.27 0.18 0.11 0.27 0.18 0.11 

fin higth h /mm 1. 46 0.92 1.13 1. 46 0.92 1.13 

area ratio 3.84 3.68 5.48 3.84 3.68 5.48 

vapour temp. T /K 328 341 
v 

temp difference /K 5 5 

Enhancement ratio 
of heat transfer 6.36 8.31 9.08 5.01 5.44 5.05 
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Table 2-5 Geometry of finned tubes used in 

Gerogiadis tests [401 

Fin Fin 
Fin spacing Thickness Height 

mm mm mm 
O. 5 , 1 . 0 , 1 . 5 , 2 .0, 4.0 1.0 1.0 

o . 5 , 1 . 0, 1 . 5 , 2 .0, 4.0 0.75 1.0 

o . 5 , 1 . 0 , 1 . 5 , 2 . 0 , 4.0 0.5 1.0 

1 .0, 1 .5, 2 .0, 4.0 1 .0 2.0 

1.0 1 . 5 1.0 

1 .25 1 . 25 1.0 
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CHAPTER 3 EXPERIMENTAL STUDY 
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3 Experimental study 

3. 1. Apparatus and procedure 

The ,apparatus is shown in Fig 3-1. Vapour was 

generated from subcooled working fluid (R-113 and ethylene 

g 1 yeo 1) i-n the s t a i n 1 e s sst eel b 0 i 1 e r w hie h was fit ted wit h 

four electric immersion heater, providing a total power of 

16 kW, and a transparent level-indicating tube. Tne heater 

specification is shown in Table 3-1. Note that the 

apparatus was rearranged for experiments using ethylene 

glycol so that its specification is different from that 

for water in [35,36,37] and R-113 in present study. 

The condenser tube was located in the test section on which 

a pyrex glass window was located to view the condenser 

tube. Details of the test section are shown in Fig 3-2. 

Cooling water was passed through the condenser tube via a 

float-type flow meter. The test condenser tube and the 

inlet and outlet ducts were well insulated from. the body of 

the test section and from the environment witt nylon66 

and ptfe components. The vapour flowed vertically 

downwards over the condenser tube. Condensate from the 

tube and uncondensed vapour were led to the auxilIary 

condenser and i a 11 the 

gravi ty to' ·the boiler. 

the test" section were 

surroundings. 

condensate was returned by 

The boiler, vapour supply duct and 

thermally well insulated from the 
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Before test runs 
Athe apparatus was first run for around an hour to 

expel air and to achieve steady operating conditions. The 

condenser tube was visually inspected to comfirm that film 

condensation prevailed. That the isothermal immersion of 

the thermocouples was adequate was checked by withdrawing 

the junctions by 1 or 2 cm. No change in the thermo-emf 

was found. 

During operation, the inlet temperature of the 

coolant (water), the inlet-to-outlet temperature 

difference, the vapour temperature in the test section and 

the temperature of condensate returning to the boiler were 

measured with copper-constantan thermocouples which fitted 

tightly in a closed copper tubes. The thermo-emfs were 

measured by a digital voltmeter with a precision 1 )LV. 

All tests were carried out at slightly above 

atmospheric pressure. The pressure in the test se:tion was 

measured with a liquid(condensate) manometer. 

3.2 Tubes tested 

The test condenser tubes were of copper with internal 

9 78 d ff tl" e length, i.e. length exposed diameter . mm an e -ec v 

to vapour, of 102 mm. The outside 

fins was 12.7 mm. The fins in all 

diameter at the root of ... ~ 
cases had rectangular 

" 
cross section. The fin height and width were 1.59 mm and 

0.5 mm respectively. Fin spacings of 0.25, 0.5, 1.0, 1.5. 
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2, 4, 6, 8, 10, 12, 16, 18 and 20 mm were used. DetaLls of 

the tubes are given in Table 3-2 and illustrat~~d in 

Fig.3-3. 

To en sure fi 1m condens a t ion, the tub e and pt fe ')ushes 

were first thoroughly cleaned. The tubes and ptfe hushes 

were first wiped using a clean cloth. After rinsing with 

distilled water, they were then cleaned by imme':"sing, 

for a few minu..tes, in a mixture of 200 g sodium dichcomate 

and 100 concentrated sulphuric acid in 2 i of 
distilled ·water. While immersed, the tube was agitated to 

ensure that all air bl.~bbles were removed so that the 

solution came into contact with all parts of the sUl~face. 

The tubes were then rinsed with distilled water and dried 

with a clean cloth. The tube and bushes were finally 

rinsed with the working fluid. 

3.3. Determination of the experimental parameters 

3.3.1. Pressure 

The test section pressure was obtained addi1g the 

observed gauge pressure to the barometer pressure. 

3.3.2 Input power 

The power input to the boiler was determined usi,g the 

following eqation: 

(3-1) 
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where Qh is the total input power, V. 
~ 

oc.t"OSS 
is potential drop~and 

Hi is the resistance of heater i. Since the resistances of 

the heaters were known (see Table 3-1), Qh was dEtermined 
, 

by recording the potential drop across the heaters 

indicated by a voltmeter. For the R-ll3 tests only one 

heater was used at main potential. For the ethyleLe glycol 

* tests'Athree heaters were also used at main potential. 

3.3.3 Temperature 

The various temperatures were determined by using the 

thermocouple calibration formula [35]: 

A1=273.1 

A2=2.5518496xlO- 2 

A3=-6.6119645xlO- 7 

A4=2.6750257xlO- 11 

where e is the emf/~V and T 

(3-2) 

is the thermodynamic 

temperature /K. In the case of measuring the potential 

1 t a t ; n 1 e t to and 0 U t 1 e t f room the 
drop between the coo an ~ 

condenser tube. the temperature drop was calculatad by the 
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following eqation: 

llT = (dT) lle \de 
e=e 

(3-3) 

m 

where (~T) is obtained by differentiating 
e e=e 

m 
(3-4) 

where AT is temperature increase, ~e is potential 

increase, e l is inlet thermoemf. 

3.3.4 Parameters for the coolant 

The mean coolant velocity was found from the 

continuity eqation:" 

U
c 

= VIA. c , (3-5) 

where Vc is volume flow rate given by the float-type flow 

meter. Ai is the internal cross sectional area of the 

tube. The mass flow rate of the coolant was calculated 

by: 

(3-6) 

The coolant Reynolds number was found by: 

(3-7) 

and the coolant Prandtl number was determinded by: 
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(3-8) 

The properties, kinematic viscosity, 

specific heat capacity and kc thermal conductivity, 

evaluated at the mean coolant temperature Tc ' i.e; 

Tc = (T. +T t)/2 In ou (3-9) 

were 

where Tinis the coolantinlet temperature and Tout is that 

at outlet. 

3.3.5 Heat transfer rate 

The heat transfer rate to the coolant was found 

from: 

(3-10) 

The heat fluxes for the outside and inside surfaces are 

given by: 

where d· 1 

Q =Q 1(1Td .t) c r 

Q.=Q (d Id.) 
1 r 1 

is the inside 

(3-11) 

(3-12) 

diameter and d r is the outside 

diamter for the plain tube and the diameter at the fin root 

for the finned tubes. 
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3.3.6 Overall heat-transfer coefficient 

The overall heat-transfer coefficient is given by: 

U = Q /LMTD (3-13) 

where Q is give by eq.(3-lt) and LMTD (log mean 

temperature difference) is given by: 

Tout_Tin 
LMTD= T -T. 

In( v In) 
T - T v out 

(3-14) 

where Tv is the vapour temperature. 

3.3.7 Vapour mass flow rate 

The vapour mass flow rate and hence vapour veloci t·y 

at the test section were obtained from the input power to 

the boiler by applying a steady flow energy balance between 

the boiler inlet and the test section. A correction for the 

relatively small thermal losses from the apparatus was 

incorporated. The losses were established in preliminary 

tests in which the minimum power required to provi1e vapour 

at the test section was determined [35]. The following 

equation was used for the "heat loss": 

QlosS 
.W 

T -T 
= 8.32B( v

K 
a) (3-15) 

where Tv is the vapour temperature and T8 is the ambient 

temparature. A steady flow enegy balance betw~en test 
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section and boiler inlet gives: 

(3-16) 

where mv is the mass flow rate of the vapour,. Cp is the 

condensate isobaric specific heat capacity, and hf 9 the 

specific enthalpy of evaporation. The vapour velocity is 

then given by: 

(3-17) 

where ~s is the cross-sectional area of test section. 

3.3.8 Mass fraction of non-condensing gases 

The mass fraction of non-condensing gases present in 

the test section was estimated from the pressure and 

temperature mesurements using the ideal-gas mixture laws 

and assuming saturation conditions, i.e: 

(3-18) 

where P is the observed pressure of gas-vapour mixture, 

i.e. the pressure in the test section. Psat(T s ) is the 

liquid-vapour eqiulibrium (saturation) pressure of the 

vapour. Mv is relative molecular mass of the vapour. Mg is 

relative molecular mass of non-condensing gas. 
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Table 3-1 Heater resistances 

Heater 1 2 3 4 

R/n 10.84 19.25 10.83 18.6 Yau wt a 1 • 3S,36,37 
present work 1~ 0 r R-113 

18.0 11.2 17 .0 11.8 present work for 
ethylene glyc)l 

Table 3-2 Geometry of condenser 
tubes used in present 

work 

d. = 9.78 mm 
1 

dr = 12.7 mm 

h = 1.59 mm 
t = 0.5 mm 

b=p-t Area h=p-t Area 
mm ratio mm rat; 0 

0.25 5.92 8.0 1.40 

0.5 4.67 10.0 1.33 

1.0 3.43 12.0 1.29 

1.55 2.82 14.0 1.25 

2.0 2.45 16.0 1.22 

4.0 1.80 18.0 1.18 

6.0 1.54 20.0 1 . 15 

168.0 

~~I---t--~IHHt--__ • __ "j_o+ 
JL-
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CHAPTER 4 RESULTS 
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4. Results 

4.1 Determination of the vapour-side temperature 

The tube wall temperature was not measured directly 

during experiments, because of difficulty of fitting a 

thermocouples in the wa~ls of 13 finned tubes. Further the 

distortion of the isotherms in the tube wall and the 

thermal resistance caused by presence of wall thermocouples 

introduces additional uncertainty in the measured 

heat-transfer coefficients. 

In an earlier investigation for steam [35,36 1 37], the 

coolant-side heat-transfer coefficient was at first 

evaluated by employing thermocouples in the wall of the 

smooth tube. The following "Sieder-Tate type ll equation 
# 

correlated the coolant-side heat transfer very closely: 

(4-1) 

The vapour-side wall temperature of the finned tubes in 

[35] was found by subtracting coolant-side (from eq.(4-1» 

and wall resistances, on the basis pf uniform radial 

conduction, 

given by: 

from the measured overall thermal resistance 

LMTD 
Q 

(4-2) 
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The tube wall was regarded as extending to the root of fins 

so that the effect of fins and condensate are lumped 

together in the vapour-side heat-transfer coefficient. 

In the present investigation, 

that results determined using 

above were not entirely satisfactory. 

it was found for R-ll3 

eq.(4-1) as indicated 

Fig.4-1 shows the 

relation between heat flux and vapour-side temperature 

difference for the tube with fin pitch 1.0 mm. It can be 

seen that, when adopting eq.(4-1) for the coolant side, the 

heat flux seems to approach a finite value at zero 

temperature difference. It is thought that eq.(4-1) 

(determined using data for condensation of steam qn an 

instrumented tube) may be less appropriate for other 

condensing fluids owing to differences in the relative 

magnitudes of the circumferential variation in t"lbe wall 

temperature. When the vapour-side resistance d~minates 

(e.g. R-113), the temperature profile is relatively flat 

[49,50J, while when the coolant-side resistance dominates 

or when the coolant and vapour-side resistances are of 

similar magnitude, a strong variation in wall temperature 

results from the variation of the condensate film t:lickness 

around the tube. 

In this investigation, an alternative calculation 

method has been used. In outline, the method is to select 

suitable function involving unknown "disposable" constants, 
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to express the coolant-side and vapour-side temperature 

drops in terms of the relevant parameters. For a given run 

(tests at several coolant flow rates for a particular 

tube), the constants are determined by minimizing the sum 

of squares of residuals (difference between calculated and 

measured values of the vapour-to-coolant temperature 

difference). Details of the procedure are described 

below. 

For coolant-side heat transfer, a Sieder-Tate type 

equation was used: 

(4-3) 

where is an unknown to be found. The temperature 

difference between coolant and tube inside surface is then 

given by: 

.Qd i 
T -T = k wi c Nu c c 

(4-4) ./ 

The temperature difference between outside (i~e. at fin 

root diameter) and inside surface of tube was found by 

considering uniform radial conduction through a tube wall, 

i.e: 

(4-5) 

In the previous study (35,36,37]. 
'-, 

it was found that 
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the Q-~T curves were fitted closely by equation of the form 

Q=C~T~ For the finned tubes in [35,36,37] values of n 

between 0.64 and 0.86 were found with no systematic 

dependence on fin spacing. The fits were negligjbly less 

good when using a value of 0.75 (with appropriate values of 

the constant n) throughout. In the present work, a "Nusselt 

t y p e " e qua t ion was em p loy e d for v a po u r - sid e he a t -,. ran s fer: 

__ p2gh d 3 

Nu =b( fg r )~ (4-6) 
I V kl1~T 

~ 

where b is an unknown constant to be found. 

This is thought to be an improvement on the equation 
3/4 

Q=C~T in that it should account for property variation in 

an approximate way, even though it does noy include surface 
I'::v 

tension whose effect would be incorporated in o. Eq.(4-6), 

if strictly valid, would indicate that eq.(4-6) has the 

advantage that it enables an "enhancement. ratio" 

'" ,..., Nu/NUplain= b/bplain would be independent of Q or ~T. 

The temperature difference between vapour and wall 

is then given by: 

All values 

(4-7) 

except the "disposable" "" cor~s tants a 

and b are determined experimentally, so that the overall 

temperature difference between vapour and coolant may be 
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expressed as a linear equation: 

(4-8) 

where C 1 ' C 2 and C 3 are gi ven by propert ies, 

the heat flux and the tube dimensions, 

"1 b -b- V3 a=a- and = and E is the deviation of ~T. 

I nth e e q s . (4 - 3) t 0 (4 - 8) J )l u. was e val u ate d at T ., 
... Wl 

h f gat T , cool ant pro per tie sat the a rl t h 10 e tic mea n 0 f the 
V 

coolant inlet and exit temperatures, and the condensate 

properties at: 

* T ;(1/3)T +(2/3)T 
V wo 

(4-9) 

- -Values of a and b (and hence a and b) are then found by the 

"least squares method", such that:-

(4-10) 

(4-11) 

Eqs.(4-l0) and (4-11) lead to the following equations: 

(4-12) 

(4-13) 

which may be solved for a and b. 

In order to evaluate the properties at thE 

temperatures (initially unkown) indicated above thE 
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following iterative procedure was adopted:-

(1) The tube inner and outer wall temperature are set 

initially to be equal to the coolant inlet temperature 

(2) The coolant viscosity Pw and condensate properties 

are calculated at the wall temperature and the 

temperature given by eq.(4-9). 

(3) Then constants C1 ' C2 and C3 are calculated and first 

estimates a and b are obtained from eqs.(4-12) and 

(4-13). 

(4) New values of inner and outer wall temperatures are 

given by eqs.(4-3) and (4-5) with the first estimate -of a. 

This procedure repeated until the variance (ABS(ne\~ value -

old value)/ new value) between new and old values of both 

a and b became less than 5xlO- 1t Proper'ties are 

reevaluated at each step at the new temperatures. It was 

comfirmed that essentially ....., -the same values of a and b were 

obtained when a smaller convergence test value was used. 

The reliability of this method was examined by using 

it also with earlier smooth-tube data for steam [35,36,37). 

The constant ~ was found to be 0.0298 by the method 

described above. This may be compared with 0.03 as given by 
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experiments using the instrumented plain tube ln 

[35,36,37] . Evidently, in the case of steam the present 

method gives essentially the same vapour-side te.nperature 

drop as that found when using eq.(4-l) for the coolant 

side. 

Fig.4-1 illustrates the fact that more reasonable 

results are found for R-ll3 using this technique than when 

using a=O.03 for all tests as in [35,36,37]. For each 

individual data points at a particular coolant flow rate, 

the vapour-side temperature difference was found by 

subtracting the coolant-side temperature drop (as given by 

eqs.(4-3) and (4-4) with the determined value of~) and 

that across the wall (as given by equation (4-5» from the 

measured overall temperature differences. The line through 

the data in Fig.4-l is given by eq.(4-6) with a=O.04l. 
,...., ~ 

Values of a and b of all test are in Table 4-1. It may 

also be noted (as will be seen later) that the present data 

agreed with other recent result for R-ll3 [52] fer similar 

fin geometry. 

A silDilar data analysis procedure has been used by 

Nobbs [53] and described as a "modified Wilson plot" 

method. 
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4.2 Experimental results for R-l13 

All tests were car~ied out at one particular input 

power, giving a vapour velocity at approach to the test 

condenser tube of 0.24 m/s. 

Data for which the coo 1 an t-t empera t u:'e rise 

corresponded to a thermo-emf less than 15 )lV were Judged to 

be ;marginal accuracy (precision of measurement 1 )lV) and 

are not reported. The discarded data are mainly those with 

the pIa in tub e and tub e s wit h 1 a r g e fin spa c in I{ for the 

higher coolant velocities. 

Fig.4-2 shows the overall heat-transfer coefficient 

versus coolant velocity. To avoid confusion the lower 

overall heat-transfer coefficients for b>2 mm and the 

higher values for b~2 mm are s how n s epa rat I~ 1 y • It 

may b e see nth a t the 0 v era 11 he a t - t r an s fer c 0 f~ f f i c i en t 

increased with decreasing fin spacing for b=19.5 mm to 0.5 

mm, but the value at b=0.25 mm was slightly less than that 

at b=0.5 mm, 1 • e. an optimum fin spacing exi.3ts. The 

increase of coolant-side heat-transfer coeffici'~nt, with 

increasing coolant velocity, leads to the observed increase 

in total overall heat-transfer coefficient with coolant 

velocity. 

Since the enhancement is much higher At the higher fin 
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density, the vapour-side performance is shown in Figs.4-3 

and 4-4 only for the tubes with b~2 mm and, for comparison, 

for the plain tube. The lines are given by eq.(4-6) with 

the determined values 
~ 

of b (see table 4-1) and the 

condensate properties evaluated using eq.(4-9) with a mean 

(over all data) vapour temperature of T =321 K • The good 
V 

agreement with the Nusselt theory for the plain tube and 

with the recent data of Honda [52] for a finned tube with 

similar geometry (see Fig.4-5) lends support to the 

reliability of the data and method of processing. It may 

be seen that significant enhancement is obtained with all 

finned tubes, the best being that with fin spacing b=O.5 

mm. 

4.3 Experimental results for ethylene glycol 

As in the case of R-ll3, all tests were carried out 

with the same heater power which gave a vapour velocity at 

approach to the test condenser tube of 0.36 m/s. 

In this case the coolant temperature rise corrsponded 

to~thermo-emf greater than 15 pV so that no data points 

were discarded as in the case of R-l13. However, as will 

be seen later, at low coolant flow rates, boiling occured 

on the inside surface of the condenser tube. In these 

circumstance "there is considerable doubt as to the form of 

the coolant-side correlation, and no attempt has been made 
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to determine vapour-side coefficient. 

Fig.4-6 shows the overall heat-transfer coefficient 

versus coolant velocity. I t can be seen that th,~ overall 

heat-transfer coefficient did not, in general, increase 

mono t on i call y wit h coo 1 an t vel 0 cit y . As wi 11 be e :< pIa i ned, 

t his b e h a v i 0 u r was due t 0 b 0 iIi n gat the cool ant - :; ide w a 1 I 

at low coolant velocity due to the fact for ethyle~e glycol 

the vapour temperature is around 200 ~ at atmospheric 

pressure. When the wall temperature becomes higher than 

the saturation temperature of the coolant (water), nucleate 

boiling may occur at the wall, even though the mean 

temperature of coolant is less than the saturation 

temperature. 

The following equation has been given in [54] for the 

wall temperature, at which the surface boiling occurs: 

80T 1J 
T . = T + { __ S-..:9_ 

WI 5 k hf c 9 

1 

Q }~ 

where the coolant properties are 

saturation temperature. 

(4-14) 

evaluated at the 

Fig.4-7 shows apparent (i.e. as calculated by the 

procedure outline in section 4.2) vapour-side results for 

ethylene glycol. Also shown is the vapour-side. temperature 

difference, at which the boiling occurs, according to 

eq. (4-14). Evidently, in the presence of local surface 

boiling the Sieder-Tate type equation (see eq.(4-3)) will 
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no longer adequately represent the coolant-side heat 

transfer. 

follows. 

The appearance of Fig.4-7 may be explained as 

At high coolant velocity where the coolant side 

temperature drop is small (high ~T) the wall temperature is 

low and no boiling occurs. As the coolant velocity is 

decreased (Q and hence ~T decreasing) the wall temperature 

rises until eventually boiling occurs according to 

eq.(4-l4). Under these conditions the coolant-side 

heat-transfer becomes more dominated by boiling than by the 

single-phase correlation used in determining these data. 

The line on Fig.4-7 indicating onset of boiling was 

determined using eq.(4-l4) as follows. Assuming the 

saturation temperature of coolant T- to be 100~, the inner 
s : 

wall temperature is evaluated by eq.(4-l4) for a given heat 

flux. The wall outer temperature at the fin root is then 

given by eq. (4-5). The vapour-side temperature difference 

is found subtracting the wall outer temperature found from 

the measured vapour temperature. The change in behaviour 

of the curves are clearly in good agreement and testifies 

to the validity of the explanation. Obviously the data to 

the left of this line are invalid. Since we do not have a 

suitable form of coolant-side correlation for the boiling 

region, these data cannot be used to determine the 

vapour-side temperature difference. 

Fig.4-8 shows the overall heat-transfer coefficient 

versus coolant velocity, omitting the data points for 
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which ~T was less than that for which eq.(4-l4) predicts 

onset of boiling as indicated above. The fin spacing which 

gave maximum heat-transfer coefficient was b=l.O mm. For 

the plain tube and tubes with relatively large fin spacing 

the overall heat-transfer coefficient varies only slightly 

with coolant velocity since,in this case, the heat-transfer 

resistance is dominated by the vapour side. Thus with 

increasing in coolant velocity the coolant-side re:;istances 

leading to a decrease in overall resistance and 

consequently increase of condensation rate. The increase 

in condensation rate, however, leads to an increase in the 

vapour-side resistance and consequently to a higher overall 

resistance. 

The vapour-side heat transfer is shown in Fig.4-9 and 

Fig.4-l0. In these figures, lines are given byeq.(4-7) 

using a mean 

seen that the 

vapour temperature T =472 K. Again, it is 
v 

best tube was that with b=l.O Dim and the 

plain tube data are in good agreement with Nusselt theory. 

4.4 Evaluation of heat-transfer enhancement 

4.4.1 Overall coefficient enhancement 

Before considering the more useful concept of 

vapour-s ide· enhancement, it is of interest to examine the 

overall coefficient enhancement at a given coolant 
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velocity. In the present investigation, the overall 

coefficient was the directly-measured quantity w'lile the 

vapour-side coefficients invoked additional assumptions or 

approximations as given above. Since for R-ll3 reliable 

plain tube data were only obtained for relatively low 

coolant velocity, direct comparison can only be made at the 

same coolant velocity for relatively low values. 

Alternatively, the approximate representatives of the 

vapour and coolant-side heat transfer indicated in the 

previous section may be used with the experimental data 

to provide an approximate relation between heat flux and 

vapour and coolant conditions T. ). 
1n 

Using 

eqs(4-3) and (4-6) for Nu ' and Nu with the values found 
c v 

,.... ,..... 
for a and b, we may obtain the overall coefficient from: 

(4-15) 

0. =Nu kId. e e e , 

Rw=d i /(2k t In(drld i )) 

0. =Nu kId 
V V r 

So that for given values of Tv' u and T. and appropriate c 1n 

iterative procedure to obtain the liquid properties as 

indicated in section 4.2, we may obtain U. 

Fig.4-11 shows enhancement ratio of overall 

heat-transfer coefficient of finned tubes to that of plain 

tube for R-l13 and ethylene glycol. For comparison the 

earlier data of Yau et a1 [35,36,37] for the same tubes have 
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also been analysed in this way and the results are 

indicated in Fig.4-11. The coolant velocity used in the 

calculation is 4 mls and coolant inlet temperature is 293 

K. The vapour temperatures are respectively 321 K for 

R-113, 472 K for ethylene glycol and 373 K for 

steam (mean of the experimental values used). The maximum 

enhancement ratio occurs at f1"n spac1"ng of 0 5 mm 10m • ,. m 

and 1.5 mm for R-113, ethylene glycol and steam 

respectively. These maximum values are 5.1, 4.3 and 1.S for 

R-ll3, ethylene glycol and steam respectively. These 

results are indicative of the overall enhancement that can 

he obtained for water-cooled finned condenser tubes but the 

particular values relate to the present coolant-side 

conditions (inlet temperature, velocity and inside 

diameter) . 

4.4.2 Vapour-side enhancement 

In earlier investigations, enhancement ratios 

(vapour-side coefficient for finned tube I vap'Jur-s ide 

coefficient for plain tube) have been given either for the 

same ilT or for the same Q and at the same specified value 

of one of these parameters. The fact that both finned and 

plain tube data have been found in the present 

investigation to be adequately represented by eq.(4-S) 

enables specification of enhancement ratios indepe",dent of 

the values of ~T and Q. Thus: 
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-C'(. b 
C'(. = 'b plain p·lain 

(4-16) 
for the same flT: 

,.." 

for the same Q: d. b It 

C'(. 1 . = ( - ) ~3 
P aln b 

p 1 a i n 
(4-17) 

In the present work we give enhancement ratios (E) 

for the same values of flT, and take value of b of 0.74 
plain 

and 0.78 for R-113 and ethylene glycol respectively as 

given by the plain tube data. Additionally, the same 

processing procedure was adopted for the earlier data 

[35,36,37] for steam. For the plain tube this gave values 
'V 

of b of 0.907, 0.846 and 0.804 for vapour velocities of 

1.1, 0.73 and 0.52 mls respectively. 
,.... 

The excess of b over 

0.728 indicates the effect of vapour shear stress. 

Fig.4-12 shows the vapour-side enhancemen·: ratio 

versus the fin spacing. As fin spacing decreases, the 

enhancement ratio at first increases. For fin :; pac i n g s 

less than 4 mm the enhancement ratios exhibit maximll, which 

occured at around 0.5 mm for R-113, around 1.0 mm for 

ethylene glycol and 1.5 mm for steam. For smaller fin 

spacing, the enhancement ratio drops sharply for R-113 and 

ethylene glycol. It may be noted that enhancement ratios 

were significantly larger· than the area ratio, e:<cept at 

the lowest fin spacing and for steam. 
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0-
There wasl'moderate difference between the enlancement 

ratios for R-113 and ethylene glycol for fin spacing larger 

than 4 mm, although the R-113 data were clearly larger than 

those of ethylene glycol. Enhancement ratios for steam 

were smaller than those for the other fluids but 

differences between the values for the three fluids became 

smaller for fin spacing more than 8 mm. For fin spacing 

less than 4 mm, the difference is more significant. The 

largest enhancements are 7.5 at a fin spacing of 0.5 mm for 

R-113 and 5.2 at a fin spacing of 1.0 mm for ethylene 

glycol and 3.0 at a fin spacing of 1.5 mm for steam. Note 

that for steam only the data for a vapour velocity of 1.1 

mls have been plotted. The enhancement ratios for the 

other velocities used in [35,36,37] are closely similar. 

4.5 Comparison with the earlier theoretical models 

Comparisons with the models presented by Beatty and 

Katz [29], Owen et al. [41] and Rudy et al. [46] are made for 

the present results for mm. Fig.4-13 shows 

comparisons for R-l13. There are large discrepancies and, 

in all cases, systematic dependence on fin spacing; the 

quantity acal/aobs increases, for all three models, with 

decreasing fin spacing. The m 0 s t sat is fa c tor y nl 0 del is 

that of Rudy et al. which underesimates the heat-transfer 

coefficient by about 40 % at fin spacing 2 mm and 

overestimate~ by about 25 % at fin spacing 0.2~ mm, the 

data for the intermediate fin spacings being predicted 
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within these limits. 

Fig.4-l4 shows comparisons for ethylene glycol. The 

models of Beatty and Katz, and Owen et all overpredict for 

the higher fin densities, b=0.25 mm and 0.5 mm, but 

underpredict for lower fin density. For example, 

vapour-side heat-transfer coefficients at a fin spacing 

0.25 mm are overpredicted by a factor of 2.5 (not 

included in Fig.4-l4) by the Beatty and Katz model and by a 

factor of 1.8 by the Owen et all model. On the other hand, 

the Rudy et ale model underestimates the heat transfer for 

the high fin density. The Rudy et ale model does not 

include heat transfer in flooded region, so that for 

completly flooded case, i . e . for a fin spacing 0.25 mm, 

zero heat transfer would be predicted. For fin spacings 

1.0, 1.5 and 2.0 mm, the Rudy et all model gives good 

predictions. 

Fig.4-15 shows comparisons for steam data. All models 

overpredict the heat transfer coefficient. The Beatty and 

Katz model overestimates by between 20 and 250 % (not 

indcluded in Fig.4-l5). The Owen et all model predicts by 

about 10 % at b=1.5 mm and by about 25 % at b=2.0 ~m. Again 

the Rudy et ale model would give zero heat transfer for 

b=0.25 mm and 0.5 mm because of the neglect of heat 

transfer for the completely flooded tubes (b~0.5 mm). For 

the other tubes, the Rudy et al. model overestimates by 20 

% to 90 %. 
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It is apparent that none of the above simpler models 

represents the data adequately, i.e. they do not predict 

the correct dependence on geometry (fin spacing) and fluid 

properties. Comparison with the more complex theory of 

Honda et ale [49], requiring extensive numerical procedures, 

have not made. However, provisonal calculations supplied 

by Honda [52] indicated that this model gives the correct 

general dependence on fin spacing and that it 

underestimated the present vapour-side heat-transfer 

coefficient for R-113 by between 15 and 35 %. For ethylene 

glycol the data were said to be underestimated by up to 25 

% for all tubes except that with b=0.5 mm. In this case 

the model overestimated by 25 %. For steam data of 

Yau et ale [35,36] the model was said to overpredict the 

vapour-side heat transfer by up to 25 %, except at b=2.0 mm 

where it overestimated by 60 %. 
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coefficient vs coolant velocity 
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determination of vapour-side 
coefficient 
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Table4-1 Values of a and b determined 

by modified IIWilson Plot" method 

R-113 ethylene glycol 
pitch/mm 

,..., 
b 

,...., 
D a a 

0.0 0.0412 0.740 0.0486 0.781 

0.75 0.0410 4.78 0.0248 2.18 

1.0 0.0341 5.36 0.0333 2.86 

1 . 5 0.0358 4.55 0.0237 3.95 

2.0 0.0350 4.16 0.0274 3.20 

2 . 5 0.0352 3.54 0.0288 2 .90 

4.5 0.0331 2.42 0.0252 2.38 

6 . 5 0.0317 2 . 14 0.0239 2.14 

8.5 0.0328 1.79 0.0231 1 . 71 

10.5 0.0322 1.88 0.0421 1.45 

12.5 0.0341 1.56 0.0347 1.30 

14.5 0.0380 1 . 19 0.0259 1.39 

16.5 0.0340 1.30 

18.5 0.0382 1 . 1 3 

20.5 0.0364 1.07 
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CHAPTER 5 ANALYSIS 
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5. Analysis 

5.1. Introduct ion 

For condensation on the horizontal finned tubes there 

are no models which can predict all available experimental 

data satisfactorily, though some progress has bee~ made 

towards understanding the phenomena involved. Recent 

investigations have concentrated on surface tension forces 

which cause condensate retention between fins on the 

lower part of tubes (adverse effect) and on the 

film-thinning effect on the upper surfaces (beneficial 

effect) as described in Chapter 2. 

In this chapter, the liquid retention problem is 

studied in detail and the static configuration of retained 

liquid over the whole tube 1S analysed theoretically. 

Initially the heat-transfer problem was approached using 

dimensional analysis. Constants, in the semi-empirical 

equations developed, were determined by "fitting" 

experimental data for three fluids and five fin 

spacings. These results led to the unexpected conclusion 

that surface tension had a negative effect on heat tansfer 

for the upper "unflooded" part of the tube. Theoretical 

studies, described in this chapter, provide a physical 

explanation for this phenomenon as well as alternative 

predictive equations. 
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5.2 Determination of the static configuration 

of retained liguid 

The fact that liquid is retained in the interfin space 

surface has been observed and the "retention" angle was 

measured by Rudy et ale [41], Honda et ale [34] and Yau et 

ale [37], as described in sect ion 2.3. The fact that there 

is little difference in the "retention" angle between 

observations under "dynamic", i.e. condensing, conditions 

and "static" conditions has been also reported by Rudy et 

ale and Honda et ale As reviewed in section 2.3, Honda et 

ale [34] have given a force balance for static conditions 

leading to a second order differential equation describing 

the liquid meniscus at the position where this just rt!aches 

the top of the fin, i.e. the position of "colilplete 

flooding". Honda et a1. solved numerically this eql!ation 

for the film thickness in the radial cross section nt the 

"retention" angle, i.e. at which the interfin spacing is 

completely flooded and the film reaches the fin tip. On 

the basis of this solution a simple equation which gives 

the "retention" angle was proposed. 

As noted above Honda et ale concentrated their 

a t ten t ion 0 nth e I 0 cat ion 0 f "f I 0 0 din g" . Howe v e r , a::; w i 11 

be seen in the analysis which follows, liquid iE also 

h f . t h f 0 0 fA" 1./ e d g e " retained higher on t e sur ace in e rm ~ ~ 

between the fin- flanks and the tube surface, which gets 

smaller with height on the tube, as illustrated in Fig.5-1. 
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Liquid filling interfin spacing in the lower part of the 

tube (E) rises around the tube. The radii of the curvature 

of liquid surface become gradually smaller and film 

thicknesses at the middle point become thinner as liquid 

rises from E to D. At the upper part above the "retention" 

angle ~f' liquid does not reach the top of fin flank (B,C) 

and eventually it sep~rates into two parts adjacent to 

opposite fin flanks (B). 

B V 
c W 

.1 

I . 
0 

I 
I I 
I 
r---~· 

E I \ 
\ 

A-A VIEW 

Fig.5-1 The static configuration of retained 
li~uid on finned tube 
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In this section we adopt the force balances given by 

Honda et al. [34] in order to determine the meniscus shape 

for the general case. Honda et al. have given the 

following expression for the force balances of re:ained 

liquid, i.e:-
a pgz - -
ro 

= 0 

a a - - + pgycoscp 
r = --

ro 

231 2 
r=(l+(dy/dx) ) 

(d 2 y/dx2) 

z= R +(R +0 )coscp Oro 

(5-1) 

(5-2) 

(5-3) 

(5-4) 

Fig.5-2 shows the physical model and the coordinate 

scheme for the cases of Band C in Fig.5-1, where x LS the 

distance measured along the tube from the point of 

can t act oft he 1 i qui d wit h the tub e sur fa c e , y i :i the 

height of the meniscus in the radial direction, z is the 

he i g h t oft he I i qui dab a vet he bas e oft h e tub e (cp :: 'IT ) a t 

x=O, y=O, r is the radius of curvature of the meniscns and 

ro and re are values of r at x=O and x=X e respectivel{. 

Fig.5-3 shows the situation between C and D (see 

Fig.5-1) where dO is the radial distance from the tube 

surface to the meniscus, x is measured from the mid--point 

between fins and y is measured radial~ outward from point 
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Xe x 

h 

Fig.5-2 Physical model and coordinate system 
for static configuration of retained 
liquid at position B, see Fig 5-1 

Fig.5-3 ~hysical model and coordinate system 
for static configuration of retained 
liquid at position between C and 0, 

see Fig.5-1 
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As shown in Fig.5-2, r is a radius of curvature of the 

condensate "wedge" at the bottom' of fins. At the starting 

point of the curvatur~~ex=O, r=r and 6=6 • The varying 
o 0 

radial outward distance y reaches y= h o-6 o and contacts the 

fin flank with zero contact angle. Combination of 

eqs.(5-l) to (5-4) gives: 

.1 = .E.9ycoSCP+.l. 
r a r 0 

(5-5) 

y" 2= ..e.g (Z+yCOS"') 
(l+yl~);V a 'f' 

(5-6) 

For calculation, the following parameters are defined: 

Y=z+ycoscp (5-7) 

-'.9.l (5-8) 
0- d x ' 

OdO=g (5-9) 
dy dx 

Therefore, eq.(5-6} may be rewritten as: 

where dy=dY/cosCP 

so that, 

OdD = pg y2+C 
( 1 + 0 2 ) 3/2 a COS cp 

(5-11) 

Integration of the above equation leads to: 

11+0 2 = -
P9 ____ y2 + C 

2acoscp 
(5-12) 

1 

with the boundary conditions:-
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D=cot6 and y=h -0 at X=Xo o 0 --.. 

0=0 and y=O at x=O 

Putting these boundary conditions in eq.(5-12) we obtain: 

. 6- P9 y2 C Sln --20coscp e+ 

1 

where 

Ye=Ro+(Rr+oo)cOSCP+(hO-oO)cOSCP 

Y =R +(R +0 )COScp o 0 r 0 

r 

(5-13) 

(5-14) 

Eliminating the constant between eqs.(5-13) and (5-14) leads 

to: 

(5-15) 

where 

y2_y2=_2(h -0 )coscp(R +(R +0 )coscp-(h -0 )COS2~ o e ~ 00 0 r 0 .00 

Therefore. the height ho which condensate reaches is found 

by: 

1-sine=£.9.[2(h -0 ){R +(R +0 )cOSCP}+(hO-OO)2COScp] (5-16) 20 0 0 0 r 0 

• 
• • 

=£..9 (h - 0 ) (R + Reo s cp) . (5-17 ) cr 0 0 r 

(5-18) 

We now determine the meniscus profile. i.e. the radial 

"height" of film at any x. Eliminating the constant between 
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eqs.(5-12) and (5-14) leads to: 

1 
'I +1fl = - P 9 ( Y 2 - Y 2 ) + 1 ( 5 -19 ) 

y 2ocasej> a 

The above equation is now solved for D, i.e: 

where 

A=2C1~~Sej>(y2_y~) 

=~y(2z+ycase!» 

~e..9. y(R +R case!» cr a r 

From eq. (5-18), 
~~ ~~ 

y variesAO to h -0 , so that A variesAO to ,. a a 

(l-sin9)<l. Note that this 
-lhA.t 

requirement Aeq.(5-20) has real roots. 

positive sign in eq.(5-20) is taken. 

Now: 

where 

so that 

dA=P9(R +R cas~)dy C1 a r 

=Bdy 

B=e..9(R +R case!» C1 a r 

dy=dA/B 

Therefore, eq.{5-20) may be rewritten 

Defining: 

I-A· dA 
= dx 

B 

K2=2A_A2 

2KdK=2(1-A)dA 

as: 

satisfies the 

Since dy/dx>O, the 

(5-21) 

(5-22) 



i . e. : 

.f!! = dx 
B 
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Integration of the above equation leads to: 

where 

Then 

so that 

K=Bx+C 

C=O for y=O at x=O 

2 2 k K= (2By-B Y ) 2=Bx 

2 2 . 2 2 
2By-B y-B X =0 

1 I -2 2 y='B±B -x 

(5-23) 

(5-24) 

(5-25) 

Differen~iating the above equation leads to: 

(5-26) 

As described earlier, dy/dx)O, so that the negative sign in 

eq.(5-26) is used. From eq.(5-lB), the extent of the 

condensate "wedge" along the interface space: 

xe=;{~-(hO-IiO) }(ho-li o) 

cose =---B 

In the case of 8=0, as in the present work: 

a 

(5-27) 

(5-28) 

Now, the r~dius of curvature of liquid surface in the wedge 

is given in eq.(5-5). i.e: 

1.. = H y 
r a 

(5-29) 
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The radius at the end point of curvature and the starting 

point, re and ro ' are given respectively by: 

~=pg y =P9(R +(R +h )cosct» 
r e .0 e 0 0 r 0 

(5-30) 

1. =tl y =P9(R +(R +0 )cosq,) 
ro 0 0 0 0 r 0 

(5-31) 

Eqs.(5-25),(5-30) and (5-31) indicate that the profile of 

the liquid surface in the wedge is parabolic, and the 

curvature changes smoothly with radii r o ' rand reo For 

the low-finned tube, Ro~Rr' so that the curvature of liquid 

surface can be regarded as a circular arc. 

5.3 Condensate retention angle 

The "retention" angle, ct>f' is defined as the angle 

measured from the top of the tube to the position at which 

liquid film between fins reaches the fin tip (see Fig.5-4), 

i.e. where ho is equal to the fin height h. Therefore ho 

in eq.(5-16) is substituted by h. 

h 

~r-----------~ 
......... -.1-, •• 

Xe 

Fig.5-4 Physical model and coordinate system 
for static configuration of retained 
li.quid at position 0 (i.e. "flooding" 
point) when b<2hcose/(1-sine) 
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Then: 

9 . 2 
1- sin e = to [2 ( h - 0 0) { R 0 + ( R r + 0

0
) cos cP f } + ( h - 00 ) cos cP fJ 

Hence, the retention angle CPf is given by: 

_ a(1-sine~ (h-O o 
COS¢f-{ R (h_o-1}/ 1- 2R ) 

P9 0 0 0 
(5-32) 

For the case where 0 >0 (note we can also define a 
o 

"flooding" as the retention angle for widely-spaced fins 

where 0 =0., 
o 

by the condition that h =h as will be o 

considered next) the approximation that the meniscus is a 

circular arc of radius r leads to: 

h-o =£ (1-sine) (5-33) 
o 2 cose 

Substitute of eq.(5-34) in eq.(5-32) leads to: 

(5-34) 

For predicted low-finned tubes, it is often the case that: 

b I-sine ~ 2h 
cose 

which leads to: 

_2ocose_ 1 COSCPf-pgR b 
o 

as obtained by Honda et al. [34]. 

(5-35) 
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For widely space fins where 

circular arc approximation gives: 

Hence: 

cose 
b > 2h 1-sin6 

o :;:0 (see 
o 

Fig.5-5) 

(5-36) 

the 

Eq.(5.36) indicates that ~f is no longer dependent on fin 

spacing h. 

h 

b/2 

Fig.5-5 Physical model and coordinate system 
for static configuration of retained 
liquid at IIfloodingli point when 
b>2hcose/(1-sine) 
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Liquid retention measurement [55] have been made for 

R-113, ethylene glycol and water using rectangular 

cross-section fins Fig.5-6 shows comparisons of the 

experimental data and lines calculated by eq.(5-35) and 

(5-36). Good agreement was found 'for b<2h. As the spacing 

increased beyond 2h, the retention angle changed little. 

This trend may be explained by eq.(5-36). Experimental 

results are detailed in Table 5-1. 

1.0 ,,-/e q .(5-36) for R-113 

o 
.9 '00 

\ 
2.01 5 e q . ( 5 - 36) for 

.8 ~~ethYlene glycol 

ot.t. ~/1.0 
.7- 0 

0 ~.O 

.6 \eQ.(S-36) for 
water 

.4 

.3 

P9Rob 

o R-113 
6. et.hylene glJC:l1 
o water 

Fig.5-6 Experimental results [55] and 
comparison with theoretical 
predictions by eqs.(5-35) and 

(5-36) 
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5.4 Heat transfer analysis 

5.4.1 Introduction 

In this section we discuss attempts to obtain a 

relatively simple equation to predict heat-transfer 

performance. An approach based on dimensional analysis and 

an approximate theoretical treatment are given. In both 

cases the heat-transfer surface is divided into two areas 

by the "retention" angle CPf. as described in the former 

section. The heat flux on the tubes may be written by: 

(5-37) 

where Q is heat flux based on the nominal surface 

equal to that of plain tube with diameter dr. 

are heat fluxes for the 

the "unf100ded" and "flooded" regions, 

t is the ratio of area of the finned tube to 

that of plain tube, 

and CPf is found from eq.(5-35). 

5.4.2 Dimensional analysis 

(1) Basic expression for heat transfer 

We suppose the average condensate film thickness on a 

particular surface may be written: 
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cS=f(pg,a,L,ll,V) (5-38) 

where a is surface tension, p is density of condensate, II 

is viscosity of condensate, V is volume flux of condlDsate 

and L is geometrical dimension as before. 

The ~-theorem then suggest a relationship between th~ee 

dimensionless parameters. Keeping surface tension and 

gravity separately, we consider: 

~ = 9 ( ~, II V ) 
L 0 pgL2 

(5-39) 

and, in addition, we have: 

(5-40) 

Q=k~T/o=Vphfg (5-41) 

For convenience we suppose eq.(5-39) may be witten: 

(5-42) 

where C t Ct and S are constants. Substituting eq. (5-40) and 

(5-41) into eq. (5-42) gives: 

k6T 1 (llQ )Ct( II Q )8 
---Q ~= c aph 2 h L2 fg p 9 fg 

(5-43) 

The above equation may be rearranged in non-dimensional 

form, thus: 

(5-44) 

where 



n = --a+S+1 

S 
m = a+S+l 

For a plain tube we have: 
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(5-45) 

Nusselt theory would give C
1

=O.728. The present plain tube 

data at low vapour velocity gave value of 0.74 and 0.78 for 

R-113 and ethylene glycol respectively. Yau et ale [35,36] 

data for steam were represented by 0.907, 0.846 and 0.804 

for vapour velocities of 1.1, 0.7 and 0.5 m/s respectively. 

The enhancement ratio (for finned tube and plain tube with 

the same ~T) is given by: 

(5-46) 

The present experimental results and those of Yau et al., 

the enhancement ratio is essentially independent of ~T, in 

which case eq.(5-46) would suggest: 

1 -n-(m-li)=O 

Eq.(5-55) is then simplified as: 

Q 
. n d ~ 

= K(...E- ) (-r-) ~ 
pgL2 

(5-47) 

At this point we note that eq.(5-47) has two unknown 

constants K and m and that we have yet to specify the 

appropriate value of L. For the unflooded region we now 
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applyeq.(5-47) to the fin flank, when we take L=h, and to 

the interfin space, when we take L=b. For the top .)f fin 

we ignore surface tension effects. Moreover J fo r:- the 

flooded region we neglect effects of surface tension and 

suppose that the enhancement may be written as a constant 

(to be found) multiplied by the finned-to-plain tube area 

ratio. On basis of those assumption, the enhancement ratio 

(E) for the whole tubes is given by: 

t cr nd}4 b 
E= Kl - +K 2 (-) (--I:) + b+t pgb 2 b b+t 

(5-48) 

where KI , K2 , K3 , K4 and n are constants. 

I l' the Nus se I t theory were appl ied for the fin ~:op in 

~4 
the unflooded region, we would haveKl~{(d +2h)/d} ~l for 

r r 
low-fin tube. Also we expect K4<1. 

(a) Determination of the constants 

We now employ the present results and those of Yau et 

ale [35,36] to determine the values of KI , K2 , K3 and K4 so 

as to minimize the sum of squares of relative residual, 

i.e. we minimize {(Ecal-Eobs)/Eobs}2. Note that Kl' K2, 
K3 and K4 are involved in a linear manner and can be found 

by a straight-forward "least-squares" procedure, while an 

iterative minimization technique is needed for n. The 

procedure followed is to iterate on n and at end iteration 

to determine the best values of Kl' K2 , K3 and K4 by "least 
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squares". The computer program "NONLIN" (see Appel~dix E) 

was used for this problem. 

It was considered more appropriate to minimize 

relative residuals that absolute residuals, i.e. 

(Ecal-Eobs)' since the range of E was different for the 

three fluids considered. As assessment of the "goodness of 

fit" was give by the standard deviation as: 

where nd is number of experimental data points, 

nc is number of linear constants and 

is number of non-linear constants. 

The experimental data used for this analysis are listed in 

Table 5-2. 

(b) Results and comparisons 

The results of the curve fit described above are shown 

in Table 5-3. The low (negative) value of n would sttggest 

that surface tension is not important (apart from its role 

in the determination of af ). However, Kl and ~3 are 

unreasonable • This resul t~ no doubt due to 

"overfitting", i.e. the data are not adequate to determine 

five caDstants. 

Supposing heat transfer to the fin top in the 
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unflooded region to be of minor importance, we set K1=0 and 

redetermine the other constants. The results of this 

procedure are given in Table 5-4. It is seen that the 

standard deviation is reduced and the constant:3 are 

moderate magnitude. Unexpecte:d_ n is negative, 

indicating that surface tension has a detrimental effect on 

heat transfer in the unflooded region. 

The negative value of n was at first considered 

unacceptable and, keeping Kl=O, n was set arbitrary to a 

positive value of 0.25 and the other constants 

redetermined. Table 5-5 shows that, in this case, the 

standard deviation of the fit was doubled K 2 became 

to indicate a detrimental effect of 

and 

t . . aUo\" t nega lve ln A attemp 

surface tension. We are therefore forced to the conclusion 

that, if the data are reliable and if the above approach is 

soundly based, surface tension has a negative effec:t on 

heat transfer in the unfl~oded region and the value of the 

constants considered most appropriate are then given in 

Table 5-4, i.e.: 

n=O.275 

Fig.5-7 shows the comparison with experimental data for 

this case. In all three cases the maximum enhancement 

given by eq.(5-48) occurs at approximately the correct fin 

spacing. Only-in the case of ethylene glycol the errors 

are significant with maximum value by about 26 %. 

of 
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(2) Modified approach 

As already described in section 5.2, the "wedge", i.e. 

the thick film formed at the fin root, will clearly 

constitute a region of high thermal resistance, s~ that 

this region will reduce the effective surface on the fin 

flank and in the interfin space. Here we treat this in an 

approximate way be taking an average "wedge radius" given 

by: 

1 
'Y'= 

Qlf 

CPf 

J r d¢ 

o 

(5-49) 

As noted in section 5.2, r can be treated as constant at a 

given angle ~ and given by: 

so that: 

1 ~..£.....i R (l+coscp) 
r a 0 

(5-50) 

(5-51) 

For the unflooded region, the "wedge" may be considered to 

extend to the height of r on the fin flank and along the 

interfin space to a distance F. Therefore the effective 

space for heat transfer over the fin flank and interfin 

space will be reduced by (l-r/h) and (1-2r/b) respectively. 

Regarding the surface covered by the wedge to be adiabatic 

eq.{5-48) became: 
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t C1 n d k b-2r 4 

E={K 1 b+t +K (pgb 2 ) 
(~ ) 

2 D b+t 

C1 n d k 2(h-r) <P <P 4 

+K3 (pgh 2 ) 
(-1:... ) } J. +K (1_--1) 

h b+t 7T 4 7T (5-52) 

Note that in eq.(5-52) where 2r/b>1 the interfin space 

along tube surface (in the unflooded region) is covered 

entinUY by the wedge. In this case the second term in the 

expression for E, i.e. eq.(5-52), is zero, i.e. 

(1-2r/b) should be set to zero when negative. 

the term of 

Determination of constants. Results and comparisons 

Curve fits were now carried out as described above in 

correction with eq.(5-48). As before all five constants 

were regarded as disposable. The results are given in 

Table 5-6. As in the former case, Kl took an unrea~onable 

value (large and negative). This is no doubt due to 

"overfitting". We again set and redetermi ne the 

remaining constants. As previously, the constants (see 

Table 5-7) take reasonable values and n is small and 

negative showing a weak (but deleteriQ.us) effect of surface 

tension. As before n was arbitrarily set to +0.25 where, as 

indicated in Table 5-8. the standard de\'iation 

significantly increased. Finally, since in table 5-~ n was 

quite close to zero it was therefore worth setting n=O to 

give an appreciably simple final result. Table 5-9 shows 

that the remai ni n9 constants and the standard deviation were 
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not greatly changed. 

Fig.5-8 shows the comparison with experimental data 

for this case. As in the case of Fig.5-7, the only 

significant deviation are for ethylene glycol, where the 

fit is somewhat improved. It may be noted tha'c the 

graphical representation of eq.(5-52) with the constants 

give in Table 5-7 ( i . e small negative value of !l) is 

essentially the same as Fig.5-8. 

(3) Concluding remarks 

It is noteworthy that. comparing eqs.(5-48) and 

(5.52), and using the constans found when Kl was set to 

zero:-

(a) The allowance for the adiabatic condensate "wedg,~tI 

(eq.(5-52» le\d to an improved fit (i.e. smaller 
--r 

standard deviation) and to a value of n clos~ to 

zero. Note: n=O implies no effect of 
surface tension forces in the unflooded region. 

(b) Eq.(5-48). with constants given by table 5-4, 

accounts for surface tension empirically. Eq.(5-52) 

includes 8 theoretically-based correction while 

eq.(5-52) give almost the same results. For n=O. 



-150-

the simpliest equation may be written as: 

(c) It is of interest to note that in all of the curve 

fits for both eqs.(5-48) and (5-52) the constant K4 

for the "flooded region" was little changed having 

a value of about 0.47 in all cases. This may reflect 

the fact that the approximate, somewhat arbitrarily, 

treatment for the flooded region may be a good 

approximation to the truth. 

Further development of thisapproach must await new data for 

other fluids and fin geometries. 
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5.4.3 Theoretical analysis 

The following assumption are employed:-

1) There exist no non-condensing gases and vapour 

is saturated. 

2) Wall surface temperature is uniform, . 

3) For vapour speed is slow or zero so that the 

viscous shear force of the vapour on the condensate 

film is negligible. 

4) The condensate film is thin, so that the inertia 

and convection terms are negligible. 

Moreover, we restrict our attention to plain parallel-side 

fins (as used in the present experimental investigation). 
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(1) Theoretical expression 

(a) Differential equation for the film thickness 

on the fin flank 

Fig.5-9 shows the physical model and coordinate 

system. Additionally, in the momentum balance It is 

assumed that, while gravity and surface tension forcl~s are 

considered in the radial direction, only the gravity force 

is present in the circumferantial direction where the 

curvature of the liquid surface changes little. In the 

energy equation, only conduction normal to the fin flank 

is cons idered. The momen tum, energy, and mass balanc.:!s are 

then given by: 

a2u + pgcosCP +.21. = 0 
~az2 ax 

a2w + pgs;ncp = 0 
~azr 

d 2 T azz = 0 

0 <5 

1 a J + ~xJ udz = k loT] 
(R -x)Tcp wdz hfgP oZ z=<5 o 0 . . 0 

Z-~----A-------~·~ 

A 

h 

Fig.5-9 Physical model and coordinate system 
for theoretical analysis on motion of 

(5-54) 

(5-55) 

(5-56) 

(5-57) 
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with the boundary conditionsj 

u=O , w=O an d T=T at z=O (5-58) 
w 

~=O aw=O and T=T at z=c (5-59) 
a z ' az s 

The pressure difference across the liquid-vapour interface 

at a point x is given by: 

P-Ps=-~ (5-60) 

where the c urv a ture of condensate surface is found by: 

The velocity profile across the film at position x is 

calculated as follows:-

Integration of eq.(5-54) gives: 

~=(_pgCOS<j> _ 1. 2..!:)z+C 
az ~ ~ dX 1 

The constant C
1 

is found using the boundary condition 

(5-58) as: 

Integrating again, we have: 

( 
pgcoS lap)lz2+C z+C 

u= - ~ -~ax 2 1 2 

C
2 

is zero according to the boundary condition (5-59). 

Eventualy, the velocity profile in radial direction is 

given by: 

_ 1( pg cosct>+lap)(z2-2oZ) 
u--2 . ~ '\laX 

(5-61) 

Then, 
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where 

Hence, 

Integration of eq.(5-55) gives: 

The boundary condition (5-58) gives: 

C1=P1l9 s incp 0 

Integrating again, we have: 

po ',f,1 2 Po . .r C 
w=-~sln~·-z +~s'n<p·uz+ 

II Z II 2 

The boundary condition (5-59) gives: 

Therefore, the velocity profile 

direction is given by: 

So that, 

Hence, 

(5-62) 

(5-63) 

(5-64) 

in circumferl.ntial 

(5-65) 

(5-66) 

(5-67) 
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As in the Nusselt theory, the temperature distribution 

in the condensate fOI b 1 m may e assumed linear, since the 

film is thin and laminat, so that: 

I aT] _ T v - T w 
az z==o ---6- (5-68) 

Eq.(5-57) may be rearranged using eqs.(5-64), (5-67) and 

(5-68) to give the differential equation for the cond~nsate 

film thickness over the fin flank: 

+ l[p 9 cos <I> ~ 3 _ ql {6 3 a ( r - 1 ) }J 
3 ~ ax ~ax ax 

= k(Tv-Tw) 
(5-69) 

It may be noted that, in a simpler approach by Honda et 

al [49], the first term in the left hand side, i.e. 

oarrising from the circumferantial flow, was not included. 

(b) Differential equation for the film thickeness 

on the tube surface between fins 

Fig.5-l0 shows the physical model and coordinate 

system. It is also assumed that both of gravity and 

surface tension forces are considered in the horizontal 

direction, and only gravity is considered in the 

circumferential direction in the momentum balance. Only 

radial conduction is taken account for energy equation. The 

momentum. energy and mass balances are then given by: 

a2 w + pgs;n4> 0 (5-70) l.1a? = 

a1 v + ap 
l.1a? ax = 0 (5-71) 



The 

The 

a2 T 
~ = 0 

o 0 

1 0 J' a J k aT R acp wdz+a- vdz=~ fa-zJ 
roo fg P z=o 

z 

b 
2 

(5-72) 

(5-73) 

Fig.5-10 Physical model and coordinate system 
for theoretical analysis on motion of 
condensate on the tube surface between 
fins. 

boundary conditions are: 

w=O , v=O and T=T 
W at z=O (5-74) 

oW lY=O and az=O, T=T at z,= a oZ v 
(5-75) 

same procedure as de~cibed in (a) above gives: 

(5-76) 

v=-21 E3(r-
1
)(z2_ 2oz ) 

l.I ax 
(5-77) 

Eqs.(5-76) and (5-77) are substituted into eq.(5-73) .. The 

mass balance then gives the required equation: 

(5-78) 
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(c) Differential equation for the film thickness 

on the fin top 

Eq.(5-78) also describes the film profile on tne fin 

top except that Rr in the first term is replaced by Ro. 

i.e: 

(5-79) 

(2) Approximations and solutions 

Eqs.(5-69). (5-78) and (5-79) are the fourth order 

differential equations for the film thickness. which 

require numerical solution with appropriate boundary 

conditions. Honda et ale [49] solved eq.(5-69) 

numerically but without circumferantial flow for fin flanks 

as described in Chapter 2. However, the solution is not 

enti~ly satisfactory and some points are questioned by the 

present author:-

1) The choice of the boundary condition for the 

angle of the tangent to the film surface at the 

fin-tube interface is not explained. 

2) The fin profile mentioned in [49] had a given fin 

radius. It is not clear how to treat the sharp-



edge fin used in the present work. 

Moreover, in [49] the approximate equations for heat 

transfer on the fin were based on an arbitrary combination 

of the surface tension effect given from numerical solution 

and the gravity effect given by the Beatty and Katz 

analysis [29]. Also the heat transfer on the tube surface 

in the interfin space is not taken into account. 

Rather than attempting detailed numerical solution 

using arbitrary assumptions for uncertain boundary 

conditions, we shall proceed here in a simpler approxi-

mation in order to obtain a relatively simple equation. 

(a) Approximations for "unflooded" region 

(Surface tension driven condensate flow on the fin 

flank and tube surface between fins) 

Karkhu and Borovkov [44], Borovkov [46] and Rudy and 

Webb [47] employed the simplification that the radial 

pressure gradient was uniform along the fin flank. In 

their models, only radial flow was concerned and i': was 

assumed that flow was governed by surface tension forces. 

Therefore eq.(5-69) may be reduced to: 

(5-80) 

Further, in their models, the pressure in the condensate 



film given by eq.(5-60) was approximated to change 

linearly. The pressure drop over distance ~x with radii of 

r l at the begining and r at the end is given by: 
2. 

1 1 
~P=a( - --) 

r 1 ·r 2 

The pressure gradient (taken to be constant) over ~x is 

then given by: 

(5-81) 

Karkhu and Borovkov [44] and Borovkov [46] took r
1
=t/2 

and The effective length of fin flank ~x was 

taken as the fin flank side minus the film thickness in the 

interfin space (see Chapter 2). Rudy and webb [47], on the 

other hand, took r l =t/2 and r 2 =b/2 and ~x=h. Honda's [49] 

analysis suggested constant radius over the fin top with an 

approximate value, based on the numerical solution, r l =t/2. 

~ 
At "moment, there is no conclusive support for the 

I 

above approximaion. According to Honda's analysis, the 

linear approximation (eq.(5-81)) 
L--

might be valid for a 

relatively low height fin but he gives no criterion for 

this. 

As a matter of expediency we shall here adopt 

eq.(5-81) and take r
1
=t/2 and r2 given by eq.(5-30) or 

(5-38) in static condensate configuration analysis 

(section 5.2)~ The active distance along the fin flank is 

taken as h-h o ' where ho is given by eq.(5-18). For the 
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interfin space, r
2 

is given by eq.(5-31) or (5-38) and a 

radius at the middle of spacing is r 3+CO(note this is not 

strictly valid for the relatively small region between C 

and D as seen in Fig.5-1). Fig.5-11 shows parameters. The 

mass balances given by (5-80) are then approximated by:-

Q 
2 

AX 
h 

F;g.5-11 Parameters for approximations 
of theoretical expression for 
lIunflooded ll region 



for fin flank: 

1 do 3 1 
"3 SfdX ="6 

--
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oph 
Sf=k~(Tf~T ) h:h (~+;) 

v W 0 

for interfin space: 

1 do 3 1 
JSbdX = 6 

s - aph fg 1 1 
b-k~(Tv-Tw) (b/2-X

e
)r 

Eq.(5-82) may be written: 

Integrating, we have: 

(5-82) 

(5-83) 

(5-84) 

(5-85) 

It is now assumed that 0 =0 at x=O, i. e. at fin tip. So 
• 

that, 

(5-86) 

Following the same procedure and employing the assumption 

of 0 =0 at the middle of interfin space leads to: 

( 4 1 

°b = x)~ (5-87) -rb 
'l'he average film thickness .' given by: IS 

o =4(.i.)~(h_h )~ (5-88) 
f 5 Sf 0 

<5 =4(4 )~(b_X )~ 
b 5 Sb 2 e 

(5-89) 

The corresponding average heat-transfer coefficients are 
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k Sf 1 
- - =O.884(h_h )~ 

Of 0 

,k _ Sb ~ 
-O.884(b/2_X ) 

0b e 

(5-90) 

(5-91) 

The h 0 and X e are both taken as the mean "wedge" radius r 

in eq.(5-5l), as described in the former section. Note that 

this procedure neglect any heat transfer across the 

retQ.ined liquid "wedge". 

(b) Approximation for "flooded" region 

(Surface tension driven condensate flow on fin top) 

Owen et ale [42] and Rudy and Webb [47] analysed heat 

transfer in the flooded region as a conduction proble:n with 

parallel path composed of fins and condensate as described 

in Chapter 2. Honda et ale [49] on the other hand 

considered the surface tension forces on the heat transfer 

a 1 s 0 i nth e un flood e d reg ion. E q. (5 -7 9 ) was use d f I) r the 

top of fin in horizontal direction but no detailed results 

were given in [49]~ However their approximate equation 

for heat transfer in the flooded region based on their 

numerical analysis, indicated the same form as eq.(5-87) 

and (5-88) in which the approximation of uniform pressure 

gradient due to surface tension forces is used. (again no 

explanation were given in [49]) The following expression 

w hie h too k ace 0 un ton 1 y 0 f he at t ran s fer 0 nth e fin t ~) p was 

proposed: 

aphfg k
3 

1 }~ 
a = O.9{\I(T -T )(o.at/2)2 r 

~ v w om 
(5-92) 
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where rom is the radius of curvature of condensate film at 

the fin tip which was assumed to contact smoothly the 

curvature of condensate 

Fig.5-l2). The average value of 

film 

r. ' is 
om 

between fins (see 

given by: 

(5-93) 

where p is pitch, r t is the radius of fin tip, and rb is 

the average radius of condensate surface in interfin space. 

The local radius rb (radius of curvature assumed constant) 

is given by eq. (5-1), i.e: 

a r = --. b pgz 

where z is given for low-finned tube by: 

z=R (l-COSCP) 
o 

(5-94) 

The average value of r~ is given by substitution of the 

average value of z in eq.(5-96): 
7T 

Z = ~ J R (l+cosC/»dcj> 
7T-'t' 0 

(5-95) 
cj> 

=R (l_sinC/» 
o 7T-C/> 

so that, the average value of rb is given by: 

a 
(5-96) 

R (l_sinC/>} 
p 9 0 7T- cp 

The assumption of uniform pressure gradient is again 

d t d 1• e taken rt+~ (m1' dd1e of top of fin wherf! fi 1m a op e. •. -." 
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is thin so that the radius of curvature of film surfrce is 

much larger than that of liquid surface between 

(5-97) 

Fig.5-12 Parameters for approximations 
of theoretical expression for 
"flooded" region 

fins) 
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It may be noted that since in the flooded region 

that static configuration indicates the two approximately 

uniform radii of curvature are directly connected (i.e. 

there is no intermediate region of low curvature as on the 

fin flank and in the interfin space for the unflooded 

region). The adoption of the uniform-pressure g~dient 

approximation is probably more valid for the flooded 

region. 

Since all of the condensate on the fin top flows 

horizontally into the interfin spaces, i.e. no account is 

taken of circumferantial flow on the fin top, the film 

thickness at the middle of fin top is taken to be zero. 

The same procedure as that between eqs.(5-82) and (5-91) 

leads to: 

where 

s - aph fg ~l 
t-k (T -T ) t rb v· w 

Hence the average heat-transfer coefficient 

(5-98) 

(5-99) 

is given by: 

(5-100) 

(c)Approximate'expression of heat transfer for whole tube 

Eqs.(5-90~ and (5-91) give the average heat-transfer 
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coefficient for fin flank and interfin space for the 

unf100ded region and eq.(5-100) gives the heat-transfer 

coefficient for the flooded region. The total heat-transfer 

rate for the whole tube is t~en given by: 

(5-101) 

Note that no heat transfer on the fin top in the unflooded 

region is included and only heat transfer on the fin top in 

the flooded region is considered. 

The effective areas, for the whole circumferece over 

one pitch (i.e. over ABC D E as seen in Fig.5-13), are 

gi ven by:-

for fin flank: 

TI 2 2 
A

f
=2 4{{d

r
+2h) -(d r +2r) } (5-102) 

~2TId (h-r) 
r 

for interfin spacing: 

for fin top: 

1 pitch 
(5-103) 

(5-104) 

Fig.5-13 Definition of one pitch 
of fin 
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Then, the enhancement ratio of heat transfer on the finned 

tube to that of the plain tube may now be found. Here, the 

Nusse1t equation is used for the plain tube. (Note that we 

have neglected effect of vapour velocity in the treatment 

for the finned tube.) The enhancement ratio for the same 

vapour-side temperature difference is given by: 

E - Qfin 
-Q = Eu + Ef (5-105) 

p 1 a i n 

E =[0.884{...£.. dr (l+1.)}~(2(h-r)) 
u 0.728 p g(h-h )2 t r b+t 

o 

+0.884{ cr dr 1 ~ b-2r J~f 
0.728 p-Q{b/2-h )2 r} (b+t ) -n 

o 

E - 1.25 a dr 1 k dr +2h t ~f 
f-O.728(pg-p F)4( d )(i)+t)(l--) 

r 1T 

Fesult and comparison 

Comparisons with the present experimental data are 

shown in Fig.5-l4 where ratios of enhancement in unflooded 

region and flooded region are also shown seperately. 

E=Eu+Ef, where Eu is ratio for the unf100ded region and E¢ 

is that for the flooded region. It may be seen that 

eq.(5-l05) overpredicts for all cases. For ethylene glycol 

with b=O.25 mm and for steam with b=O.25 mm and 0.5 mm the 

tubes were completely flooded, i.e'~f=O t so that E=Ef. 

and prediction overestimates by a factor of around 2.2. 

For all three fluids and for values of b such that complete 

flooding does not occur, E~ alone overestimates ~he total 

enhancement except for b=0.5 mm for ethylene glyccl. The 

following reasons may account for these discrepancies:-
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a) The assumption of uniform pressure gradient due 

to surface tension forces may not be adequate for 

all cases. 

b) Approximations used lead significant errors during 

simplifying procedure, e.g. using inadequate 

average values. 

(3) Ajustment of constants 

For the second reason mentioned above, it might be 

possible em~rically to compensate for errors by adjusting 

the constant coefficients, i.e. replacing the theoretical 

nurnberes, 0.884/0.728 and 1.25/0.728, by constants selected 

to give the "best" overall fit to the experimental data. 

Eu*=~lEu and Ef*=C2Ef where C l and C 2 are constants, i.e. 

E=C
1

E
u

+C
2
E

f
, so that if eq.(5-l05) were perfect correct, 

C1=C 2=1. 

Minimization of the sum of squares of relative 

. 2 
residuals ~(Ecal/Eobs-l) using the least squares method 

and the data as described in section 5.4.2 gave C]=0.675 

and C
2

=0.44. Results are shown in Fig.5-l5. As may be 

seen, the modified equation underestimated the enhancement 

for R-ll3 and ethylene glycol and overestimated for steam. 

This modified equation predicts enhancement ratios by 

between 2 , and 24 , for R-ll3, between 5 , and 22 , for 

ethylene glycol and between 7' and 35 , for steam. Table 
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5-10 shows numerical results for this case. 

In an attempt further to improve the agreement between 

theory and expression, we next investigate empirical 

constants in the terms giving the heat transfer for the fin 

flanks and interfin spaces seperately. Thus we write Eu in 

eq.(5-l05) as: 

Eu=[C 11 1.214{~ 
dr 2 

+ ~)} 
~ 2(h-r) 

(h-r)2(T (5-106) 
p 9 r b+t 

d ~ !.f +C 12 1.214{-L t: ~} 4 b- 2rJ 
p 9 (b/2-r)2 r b+t 1T 

"Best" values for"C ll , C12 and C2 were again determined as 

indicated above. The values obtained were Cl1 =O.55, 

C12 =O.99 and C2=0.45. Results are superimposed on Fif:. 5-15 

and Table 5-11 shows numeric~l comparisons. The fit was 

marginaly improved. The fact that for the interfin space 

the constant C12 w~ very close to its theoretical value 

might be taken to infer that the uniform pressure gradient 

due to surf~ce tension forces might be adequate in the 

interfin space but less satisfactory for the fin flank. 

(4) Alternative approach using gravity condensate 

flow for ~he unflooded region 

(a) "Beatty and Katz type" approach 



-170-

We now assume that a gravity overwhelms the effects of 

surface tension forces. This is essentially a Beat:y and 

Katz [29] approach but allow for the presence of the liquid 

"wedge" (assumed adiabatic) at the fin roots in determining 

the effective heat-transfer area. 

As Fig.5-l6 shows, the fin surface at the fin root is 

covered by relatively thick film, so-called "wedge". 

Therefore the average fin vertical height L is obtained as: 

A 
L -~ - X 

f 

(5-107) 

where Afu is area of fin flank subtracting the "wedge" part 

given by: 

For low fin, Ro=Rr, so that: 

. a 'IT 
Af:::!hR cf> --tan 2 o f pg 

(5-109) 

and Xf is maximum base length 

Xf = Ro 

=Rosincf>f 

Ie'or the 'fin 

for tP f >1f/2 

for cf>f<1f/2 

(5-110) 

flank, the 

coefficient is then given by: 

Fig.5-16 Physical model for modifying 
Beatty and Katz model using 
theoretical analysis of static 
configuration of retained 

liquid in unflooded region. 

average heat-transfer 
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(5-111) 

For the interfin space, the· average hea t-trf! nsfer 

coefficient is given by: 

k 3 p2 h .k 
= O.728( 9 fg 4 

Ct b ) (5-112) 
l1ilTd 

r 

Thus, the enhancement ratio is given by: 

. d ~ ( ~ 
E =[C 11 1 295(-i) 2 h-F) + C

12 
b-2F ]--f 

. L b+t b+t TI 
(5-113) 

dr 1 ~ d +2b t ~f 
+ C2f1.717(-.£.. _) (r )(-)](1--) 

p 9 t 2 r d b+t TI 
r 

Results after ajusting constants by curve fitting 

procedure are shown numerically in Table 5-12 and 

graphically in Fig.5-17. As shown in table, the following 

constants appear: 

The follows comments may be made in relation to the above. 

In comparison with the former case (i.e. flow driven by 

only surface tension forces); 

(a) The overall fit is better, i.e. the standard 

\ 
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deviation is smaller. 

(b) The lines are closer to the data points for R-l13 

and steam, but the fit became marginally worse 

for ethylene glycol. The rate of fall of 

enhancement ratios with increasing spacing 

becomes smaller. 

(c) The constant found for the fin spacing term, i.e. 

C12=4.27 is of moderate magnitude but slightly 

lower than the "expected" value of unity. 

, 

(b) "Hybrid" approach 

Finally, in view of the unsatisfactorily large value 

of C 12 above and of the fact that, for the surface tension 

driven model, the constants for the interfin space was 

close to unity, and for the sake of completeness, we 

consider a model using gravity only for the fin flank and 

surface tension only for interfin space. As in all cases 

above, the surface tension model is used for the flooded 

region. 

Thus: 

a dr 1 ~ d +2b t 'f 
+ C2(1.717(- ::-) (r )(-)](1--) 

p 9 t 2 r d~ b+t ~ 
(5-114) 
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Results are shown in Table 5-13 and illustrated in 

Fig.5-l7. Constants found by fitting procedure are as 

follows: 

In relation to the above, the following may be noted:-

(a) The lines are closer to the data points for R-l13 

and steam in comparison with surface tension 

mod e 1 but dis c rep an c i e s be com e s 1 i g h t 1 y 1 a r 1( er in 

compar i s on wi th the " Beat t y and Katz type" lRodel. 

For ethylene glycol the results for all three 

cases are very similar. For steam the result of 

the hybrid model falls between the other two 

cases. 

(b) The constants found for fin flank and interfin 

space are reasonable, i.e. both are close to the 

"expected value" of unity. 
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(5) Effect of experimental errors in relation to 

the curve fitting procedures 

Note that when finding disposable constants, 

the dimensional analysis based equation and 

both in 

i1 the 

theoretically based equation. we have taken no acco~nt of 

experimental errors and have treated all data equally, i.e. 

we have not used weighting functions. (Note that in 

Appendix C we conclude that on the basis of non-unilormity 

of wall temperature the uncertainties on vapour-side 

heat-transfer coefficient are greatest for steam and least 

for R-113) In view of this it is possible that 

minimization of absolute residuals of E which would give 

maximum weight to the large values, i.e. the dat~ for 

R-113. might be a better procedure to have adopted. 

Results based on minimization of absolute residuals have 

been found for the case of eqs.(5-53), (5-113) and 

eq.(5-ll4). Fig.5-l8 shows results and numerical 

comparisons are listed in Table 5-14. As seen in Table 

5-14. constants are not greatly different to those found 

when minimizing 

to represent the 

relative residuals. The equations appear 

data more closely in comparison with 

results seen in Figs.5-8 and 5-17 for dimensional analysis 

based equation and for theoretically based equations. 

This, however. is natural since the absolute deviations 

of the points for the lines have been minimized. 
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(6) Concluding remarks 

The important aspect of the present theoretical model 

is considered to be the recognition of the insulating 

effect of the condensate "wedge" retained at the fin roots 

in the unflooded region. This has not been included in 

earlier works, and explains the deleterious effect of 

surface tension for the unflooded region suggested by the 

study of the present experimental data using dimensional 

analysis. Earlier theoretical investigations have 

concentrated on the enhancing effect of surface tension 

through its effect on the condensate flow. The present 

study, on the contrary, seems to suggest that this may 

be of less importance. 

Several somewhat different theoretical approaches have 

been used. These all have the common feature that the 

static configuration of the liquid in the unflooded region 

was used to estimate the surface area (both on the fin 

flanks and in the interfin space) "blanked" by the 

condensate "wedge". In general, agreement between theory 

and experiment was sufficientlly good to give confidence in 

the general method of approach. On the basis of the 

present experimental data, for the unflooded region it 

appears that the "Beatty and Katz" approach (gravity only) 

is probably the best. An unsatisfacory feature is the fact 

that, in all c~ses, and as a matter of expediency, the same 

surface tension driven flow model was used for the flooded 
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region. This is a subject for future theoretical 

investigation. It may be significant that the constant for 

the flooded region obtained by the curve fitting procedure 

took closely similar values for all approaches. A similar 

result was found when fitting the data using equations 

based on dimensional analysis. 

5.4.4 Comparison with other experimental data and 

other prediction 

Comparisons are made for various expressions obtained 

both by dimensional analysis (see section 5.4.2) and by 

theory (see section 5.4.3). 

From dimensional analysis: 

(5-ll5) 

where Cil=2.93 C12=3.5l C2=O.473 by minimization of 

relative residuals 

by minimization of 

absolute residuals 

This was the simplest of the equations and also appeared 

best to fit the present data. 

From theoretic~l approach we first consider: 

dr ~ 2(h-r)) + b-2r} tP.& (5 116) 
E2={C11[1.295(~) 6+t C12 ~ -b+t 1T 

d 1 ~ d +2h t tP f . 
+C 2 [1. 717 Cfg-P -;- l ( rd

r 
l,(b+t l] (I-il) 

b 
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by minimization of 

relative residuals 

by minimization of 

absolute residuals 

This is based on the Beatty and Katz model for the 

unflooded region (i.e. flow driven by only gravity). 

We also consider: 

a dr 1 k d +2h t ~ 
1 ~ r ~ 

+C 2 1.717(-t2~) ( d ) b+t](l-1T ) 
P 9 rb r 

(5-117) 

by minimization of 

relative residuals 

by minimization of 

absolute residuals 

This is so-called "hybrid" model and gives similar rc::sults 

to those of eq. (5-116). In this case the constants apl,eared 

to be closer to the theoretical values. 

(1) Comparison with recent experimental data 

In the available data listed in Appendix B, only in 

the case of Georgiadis steam data [40] the fin geometry 
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(i.e. fin spacing, thickness and height) was systematically 

studied. The data of Honda et a1. [34] are also 

considered. These data appear to be of good rell~bllity. 

For the Georgiadis data, enhancement ratios were 

calculated, by the present author, using the sa~e procedure 

as that described in section 4.1 and using the coolan~-side 

heat-transfer correlation given in [40]. 

Considering 

in Fig.5-l9 to 

having (a) t=0.5 

first the steam data of Georgiadis [40], 

5-21, comparisons are made with the tubes 

mm h=1.0 mm, (b) t=l.O mm h=l.O mm and (c) 

t=l.O mm h=2.0 mm. 

As Fig.5-l9 shows, eq.(5-ll5) (dimensional analysis) 

gives reasonable general agreement with the experimental 

data. Little difference was found between results when 

using constants determined by minimization of relative and 

absolute residuals. For the case when b=0.5 mm (completely 

flooded) eq.(5-1l5) underpredicts the enhacement ratios. 

For the higher spacing, eq.(5-ll5) marginally overpredicts 

for tube with h=2.0 mm. and underestimates the enhancement 

for other cases. 

As Fig.5-20 shows, eq.(5-1l6) (Beatty and Katz 

type) generally underpredicts the enhancement ratios. 

These theoretical predictions are the same when using the 

consta~based.on minimization of relative and absolute 

residuals. 
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As Fig.5-2l shows, eq.(5-ll7) ("hybrid") generally 

underpredicts (except for the completely flooded case b=O.5 

mm) when using constants determined by minimization of 

relative residuals. This prediction is, 

significantly improved when using constants obtained by 

minimization of absolute residuals and appears to give the 

best representation of the Georgiadis data. As other models, 

enhancement ratio decreases, as incresing fin thickness. 

In Fig.5-22 the predictions are compared with the 

Georgiadis data by plotting enhancement ratio again 

fin spacing for a particular fin spacing (b=l.O mm). For 

the three cases (dimensional analysis, Beatty and Katz type 

and "hybrid") the constants found by minimizati(Jn of 

absolute residuals have been used. The equations Eire in 

broadly agreement with the data, particuraly the 

dimensional analysis and "hybrid" , but do not sllow a 

maximum in the experimental data of fin thickness. 

Figs.5-23 to 5-25 show comparisons with the Honda et 

al. data for R-ll3 and methanol. Since no experimental data 

for a plain tube are given, comparison is made on the basis 

of the calculated to measured heat-transfer coefficinet, 

In their experiments, three dif1'erent 

fins and tubes geometries were used: 

(a) dr=17.09 mm, b=O.39 mm, t=O.ll mm, h=l.13 mm, 9=0 deg 
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(b) dr=15.8 mm, b=O.47 mm, t=0.51 mm, h=I.46 mm, e=4.5 deg 

(c) dr=17.05 mm, b=0.35 mm, t=0.29 mm, h=O.92 mm, e=5.3 deg 

where e is the "half angle at the fin tip" (zero for 

rectangular cross section fin). In (b) and (c) the fin 

cross sections are trapezoidal. Note that the theoretical 

expression and the determination of the constants using the 

present experimental data all relate to the case of 

rectangular section fins. When comparing three equbtions 

with data for trapezidal fins arithematic mean values have 

been used for band t. 

Eq.(5-l15) (dimensional analysis) is compared in 

Fig.5-23 with the data for both fluids. Good agreement may 

be seen, except for case C. for both liquid. Eq.(5-ll6) 

(Beatty and Katz type) also shows good agreement with the 

data (see Fig 5-24). In this case, except those for low 

temperature difference, which are less reliablE:, it 

predicted to within 20 t. Eq.(5-117) ("hybrid") is 

compared with the data in Fig.5-25. This preG.icted 

heat-transfer coefficient are somewhat higher than those 

given by the Beatty and Katz type equation but are again 

seen to be in good general agreement with the the datto 
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(2) Comparison of earlier predictions with 

the recent experimental data 

It is of interest to make comparison of those data 

used above with earlier predictions (described in section 

2.2.3 and section 4.5). The Beatty and Katz [29], O~en et 

a 1. (42) and Rudy et ale [47] predict ions are con.pared 

with the data of Georgiadias [40] and Honda et ale [34]. 

Figs.5-26 to 5-28 show comparisons with the 

Georgiadias data. As seen in Figs.5-26 and 5-27, the 

equations of Beatty and Katz, and Owen et al. are clearly 

less satisfactory than the equations developed in the 

present work, while their expressions give the correct 

enhancement at particular fin spacings. The Rudy et ale 

equation 

behaviour. 

(see 

This 

Fig.5-28) predicts correct ge:neral 

model, however, predicts zero heat 

transfer for the case of complete flooding at fin spacings 

less than 0.5 mm. 

Fig.5-29 compares the Rudy et ale equation with the 

Georgiadis data for dependence of enhancement on fin 

thickness. The general behaviour is seen to be sOJlewhat 

similar to the present predictions. 

Fig.5-30 s,hows compari sons wi th Honda et ale datI. for 

R-113 and methanol. As Fig.5-30 (a) shows, the Beatty and 
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Katz equation underpredicted heat-transfer coefficient 

30 % for R-113 and overpredicted those for metha 

Fig.5-30 (b) compares Owen et ale equation with the d 

This equation made generally good agreement for meth 

but underpredicted heat-transfer coefficients for R-ll 

40 %. Fig.5-30 (c) shows comparisons between Rudy et 

prediction and the data. In the case of tube(c) for 

fluid and in the case of tube(b) for R-113 good agree 

was made. However, in other cases, discrepancies are 

to be larger than those with the Beatty and Katz, and 

et ale equations. 

• 
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Fig.5-7 Comparison of eq.(5-48), using cons tan 
n=O K1=O K
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=1.17 K
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=1.4 K4=O.48 

(see Table 5-4), with the data. 
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Fig.5-17 Comparison of the different theoretica 
models (constants found by minimizatiol 
of relative residuals) with the data. 
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_"_ based on dimensional 
analysis 

---- IIBeatty and Katz type'l 
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I ',,,\ 
o ,~ 

'~~ "'~ '. 

'~. 
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Fig.5-18 Comparisons of the differ~nt expres~ 
(constants found by minimization of 
absolute residuals) with the data. 
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(a) relative residuals 
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Fig.5-19 Comparison of eq.(5-115) (based on 
dimensional analysis) (constants 
found by minimization of (a) relat 
and (b) absolute residuals) with t 

data of Georgiadis [40] for steam. 
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Fig.5-21 Comparisons of eq.(5-117) ("hybrid" 

model) with the data of Georgi~dis 
[40]. Constants found by minim;za 
zat;on of (a) relative and (b) 
absolute residuals. 
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Fig.5-22 Comparisons of eq.(5-115) (based on 
dimensional analysis), eq.(5-116) 
( " B eat t y and Kat z t y p e " mod e 1) a n c: 
("hybrid" model) (constants in all 
cases obtained by minimization of 
absolute residuals) with the steam 
data of Georgiadis [401 . 
Dependence of enhancement on fin 

thickness. 



Vl 
.0 
0 

~ 
C 

tf 

-193-

cs;:> 

· N d b h r -CD mm mm mm · ( a) • R-113 17 . 1 0.39 1. 13 
\l methanol 

tD ( b ) ... R-113 15.8 0.47 1.46 · + methanol 
( c ) • R-113 17.1 0.35 0.92 

..q- 0 methanol 
· 

N · 
~ \ 

f1 .rI 
cs;:> A~ 9 AW" V 

· AU j A'~i 
~ --,~ A_A'J,-'l 

A 4+ 49 
V A -+ 4.., V 

~ ~ A I 9 • !' + ' ! v • 

* • * CD 

· 
o ••• o II •• 

III .1 .. . o 0 II· 00000 11 .- - 'I tD <> <> <> • - . 0 <> <> 0 · 0 0 

..q-

· 

N 
· 

( a) ( b ) 

cs;:> Ti 

0 5 10 15 20 0 5 "10 15 

~T/K ~T/K 
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Table 5-1 Measurements of IIretention ll 

angle [ 55] 

Fin Liquid 
CPf/7T Liquid sDacing tem~erature 

mn ere 
R-113 0.5 ; 0 59 . . 0.051 

1 .0 3.0 0.712 
1 . 5 1.55 0.784 
2.0 1 .35 0.790 
4.0 0.88 0.906 
6.0 1 . 1 3 0.906 
8.0 2.40 0.940 

ethylene 0.5 22.5 0.072 
glycol 1.0 22.0 0.498 

1 . 5 21.5 0.594 
2.0 21.5 0.649 
4.0 22.0 0.732 
6.0 21.5 0.7~5 
8.0 22.0 0.743 

110.0 19.0 0.759 
12.0 19.0 0.776 
14.0 20.0 0.769 
16.0 20.0 0.785 
18.0 20.0 0.787 
20.0 20.0 0.772 

water 0.5 12 .5 0 
1.0 12.5 0.181 
1 . 5 12.8 0.436 
2.0 13.0 0.525 
4.0 13.0 0.685 
6.0 12.0 0.721 
8.0 12.5 0.755 

10.0 12.0 0.697 
12.0 12.5 0.780 
14.0 12.5 0.769 
16.0 12.5 0.704 
18.0 12.0 0.757 
20.0 12.0 0.725 
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Table 5-2 Calculated values of enhancement 
ratio from experimental data and 
"retention" angle for eq.(5-35). 

b E Q> 

mm deg 

R-113 0.25 6.46 80 
0.5 7.25 115 
1.0 6.14 135 
1.5 5.62 144 
2.0 4.79 149 

ethylene 0.25 2.68 0 glycol O. 5 3.69 23 
1.0 5.10 92 
1 . 5 4.13 111 
2.0 3.74 121 

steam 0.25 3.02 0 
0.5 2.21 0 
1 . 0 2.18 58 
1 . 5 2.43 85 
2.0 2.12 100 



Table 5-3 Computed results for eq.(5-48) (based on 

dimensional analysis) by minimization of 
relative residuals (no constrained 
parameters) 

50=0.16299, n =-0.0023 
K1=-2606 

R-113 

JL 
mm 

0.25 
0.5 
1.0 
1.5 
2.0 

K2=l.84 

K3=245 
K4=0.484 

Ecal 
Eobs 

1.1200 
l.0259 
1.0268 
0.9752 
l.0220 

ethylene 
glycol 

b 
mm 

0.25 
0.5 
l.0 
l.5 
2.0 

Ecal 
Eobs 

1. 0685 
0.7680 
0.7051 
0.8292 
0.8627 

b 

mm 

steam 0.25 
0.5 
l.:> 
l.5 
2.0 

Table 5-4 Computed results for eq.(5-48) (based on 
dimensional analysis) by minimization of 
relative residuals (K1=0, fixed) 

50=0.15996, n =-0.275 
K1=0 

JL 
mm 

R-113 0.25 
0.5 
1.0 
1.5 
2.0 

K2=l.168 
K3=1;401 
K4=0.479 

1.1257 
1. 0036 
0.9940 
0.9632 
1.0437 

ethylene 
glycol 

-L 
mm 

0.25 1. 0586 
0.5 0.7817 
1.0 0.7058 
1.5 0.8173 
2.0 0.8537 

steam 

b 
mm 

0.25 
0.5 
1.0 
1.5 
2.0 

Ecal 
Eob s 

0.9432 
1.)222 
1. 1110 
1.0590 
1.1905 

0.9394 
1.0126 
1.1491 
1.0746 
1.1956 



Table 5-5 Computed results for eq.(5-48) (based on 
dimensional analysis) by minimization of 
relative residuals (K 1=0, n=0.25 fixed) 

SO=O. 32803) n =0.25 
K1=0. 
K2=-2.443 
K3=2.831 
K4=0.439 

b Ecal b Ecal b 
mm ~ mm ~Obs mm 

R-113 0.25 1.0531 ethylene 0.25 0.9702 steam 0.25 
0.5 0.8427 glycol 0.5 0.8766 0.5 
1.0 0.6838 1.0 0.8321 1.0 
1.5 0.5519 1.5 0.8321 1.5 
2.0 0.5046 2.0 0.7468 2.0 

Ecal 
EObs 

0.8609 
0.9281 
1.494 
1. 331 
1.3082 
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Table 5-6 Computed results for eq.(5-52) (based on 
dimensional analysis) by minimization of 
relative residuals (no constrained para
meters) 

5D=0.06691, n =0.1332 
K1=-121.59 

b 

mm 

R -113 0.25 
0.5 
1.0 
1.5 
2.0 

K2=5.86 
K3=14.85 
K4=0.479 

1.0114 
0.9789 
1.0262 
0.9749 
1.0162 

ethylene 
glycol 

b b 

mm mm 

0.25 1.0586 steam 0.25 
0.5 0.8862 0.5 
1.0 0.9383 1.0 
1.5 1. 0460 1.5 
2.0 1.0285 2.0 

Table 5-7 Computed results of eq.(5-52) (based on 
dimensional analysis) by minimization of 
relative residuals (K1=0, fixed) 

50=0.1389, n =-0.0494 
K1=0 

R-113 0.25 
0.5 
1.0 
l.5 
2.0 

K2=2.300 

K3=1.696 
K4=0.4799 

1. 0964 
0.9963 
1.0078 
0.9730 
1.0388 

ethylene 
glycol 

b 
mm 
0.25 
0.5 
1.0 
1.5 
2.0 

1.0600 
0.7926 
0.7400 
0.862 
0.8967 

steam 

b 
rom 
0.25 
0.5 
1.0 
1.5 
2.0 

0.9394 
1.0127 
1.1137 
0.9502 
0.9716 

0.~406 
1. (1140 
1. 130e 
1.0579 
1.1805 
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Table 5-8 Computed results for eq.{5-52) (based on 
dimensional analysis) by minimization of 
relative residuals (K 1=0, n=0.25 fixed) 

50=0.2170 , n =0.25 
K1=0 
K2=3.27 

K3=1.33 
K4=0.4697 

b Ecal b Ecal b 

mm Eobs mm Eobs mm 

R-113 0.25 0.8704 ethylene 0.25 1.0375 steam 0.25 
0.5 0.8455 glycol 0.5 0.7575 0.5 
1.0 0.8623 1.0 0.7992 1.0 
1.5 0.8004 1.5 0.9490 1.5 
2.0 0.8137 2.0 0.9663 2.0 

Table 5-9 Computed results for eq.(5-52) (based on 

dimensional analysis) by minimization of 
relative residuals (K 1=0, n=O fixed) 

50=0.1455 , n =0 
K1=0 

b 

mm 

R-113 0.25 
0.5 
1.0 
1.5 
2.0 

K2=3.51 
K3=2.985 
K4=O.473 

1. 'J 856 
0.9689 
0.9654 
0.9317 
1. 0007 

ethylene 
glycol 

b b 

mm mm 

0.25 1. 0450 steam 0.25 
0.5 0.8021 0.5 
1.0 0.7557 1.0 
1.5 0.8764 1.5 
2.0 0.9143 2.0 

Ecal 
Eobs 

0.9207 
0.9925 
1. 2099 
L 246 
1.4109 

0.9274 
0.9997 
1.1685 
1.0979 
1. 2279 
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Table 5-10 Computed results for ajustment of constants 
in eq.(5-105) (surface tension model) by 
minimization of relative residuals. 

SO=0.2069 , C1 =0.675 
C2=0.44 

b 

mm 
R-113 0.25 1. 012 

0.5 0.901 
1.0 0.852 
1.5 0.766 
2.0 0.766 

ethylene 
glycol 

b b 

mm mm -
0.25 0.999 steam 0.25 
0.5 0.771 0.5 
1.0 0.808 1.0 
1.5 0.907 1.5 
2.0 0.393 2.0 

Table 5-11 Computed results for eq.(5-106) (surface 
tension model) by minimization of relative 
residuals 

SO=0.2125, C11 =0.55 

C12 =0.99 
C2 =0.45 

b 

mm 

R-113 0.25 0.9395 
0.5 0.8640 
1.0 0.8592 
1.5 0.7970 
2.0 0.8148 

" 

ethylene 
glycol 

b b 

mm mm 

0.25 1.1)819 steam 0.25 
0.5 0.7972 0.5 
1.0 0.7509 1.0 
1.5 0.8720 1.5 
2.0 0.9109 2.0 

1.J42 
0.909 
1. 258 
1. 250 
1.352 

0.9601 
0.9840 
1. 13;~ 
1. 052 
1. 18:!. 

\ 
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Table 5-12 Computed results for eq.(5-113} ("Beatty 

and Katz type" model) by minimization of 
relative residuals. 

SO=0.15156, C11 =1.54 
CI2 =4.27 
C2 =0.446 

b Ecal 
b Ecal 

b Ecal 
Eobs Eobs c--rnm mm mm "obs 

R-113 0.25 1.0879 ethylene 0.25 1.0676 steam 0.25 0.9474 
0.5 0.9204 glycol 0.5 0.8143 0.5 0.9710 
1.0 0.9275 1.0 0.7533 1.0 1.1727 
1.5 0.9181 1.5 0.8750 1.5 1.1063 
2.0 1. 0099 2.0 0.9285 2.0 L2473 

Table 5-13 Computed results for eq.(5-114) ("hybrid" 
model) by minimization of relative residuals 

SO=0.1728 C11 =1.295 
CI2 =0.94 

C2 =0.444 

b E cal b Ecal b Ecal 

mm Eobs mm Eobs mm Eobs 

R-113 0.25 1.0644 ethylene 0.25 1.0621 steam 0.25 0.9425 
0.5 0.9481 glycol 0.5 0.7849 0.5 0.9660 
1.0 0.9257 1.0 0.7933 1.0 1. 2008 
1.5 0.8519 1.5 0.8986 1.5 1.1804 
2.0 0.8659 2.0 0.8986 2.0 1.2880 



..... , < ••• 

-207-

Table 5-14 Computed results by minimization of 
absolute residuals. 

(a) eq.(5-53) based on dimensional analysis 
(b) eq.(5-113) "Beatty and Katz type" model 
(c) eq.(5-114) II hybrid" model) 

(a) so=o. 5344 ~ Cl1 =2.965 
C12 =4.108 
C2 =0.4915 

b Ecal b E cal b ~ mm Eobs 1fiffi Eobs 
mm 

Eobs 

R-113 0.25 1. 093 ethylene 0.25 1.086 steam 0.25 0.964 
0.5 0.982 glycol 0.5 0.821 0.5 1.Cl41 
1.0 0.997 1.0 0.775 1.0 1.193 
1.5 0.979 1.5 0.913 1.5 1.136 
2.0 1. 065 2.0 0.965 2.0 1. 290 

Ibl SO=O. 5613, C11 =1.58 
C12 =4.75 
C2 =0.453 

b Ecal b Ecal b Ecal 

mm Eobs mm Eobs mm Eobs 

R-113 0.25 1.1189 ethylene 0.25 1. 0840 steam 0.25 0.9679 
0.5 0.9545 glycol 0.5 0.8314 0.5 0.9860 
1.0 0.9743 1.0 0.7827 1.0 1.2050 
1.5 1.0272 1.5 0.9203 1.5 1.1535 
2.0 1. 0681 2.0 0.9856 2.0 1.3156 

(C) SO = 0 . 5411 , C11 =1.18 
C12 =1.27 
C2 =0.458 

b Ecal b E ca 1 b Ecal 

mm Eobs mm Eobs mm E obs 

R-113 0.25 1. 059 ethylene 0.25 1. 097 steam 0.25 0.974 
0.5 0.982 glycol 0.5 0.786 0.5 0.995 
1.0 0.998 1.0 0.839 1.0 1. ~~ 2 8 
1.5 0.941 1.5 0.985 1.5 1. ?72 
2.0 0.971 2.0 1. 011 2.0 1. 1139 -



-208-

CHAPTER 6 CONCLUDING REMARKS 
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6. Concluding remarks 

The main objective of the research described ir this 

thesis was to obtain reliable experimental data under 

well-defined conditions, and with systematic change of some 

of the important variables, so as to obtain improved 

predictions of the heat-transfer performance of horizontal 

finned tubes. 

Experiments have been made using two different fluids, 

i.e. H-113 and ethylene glycol, and fourteen finned tubes 

(having the same tube diameter and geometry of fin, but 

different fin spacings) to investigate the effect of fin 

spacing and liquid properties, especially surface tersion, 

on heat-transfer enhancement. 

It has been found that the vapour-side data fur all 

tubes and both fluids, together with earlier data for steam 

[35,36,37], may be represented satifactorily by an equation 

of the form: 

3 
Q = C ~ T :-'4 (6-1) 

so that the enhancement ratios Qfin tube/Qplain tube, for 

the same tiT, (=Cl fin tube/Clplain tube) are independent of bT 

and are given by Cfin tube/Cplain tube' Evidently, for the 

same 0, the heat-transfer coefficient enhancement ratio is 

"l 
given by(C fin tube/Cplain tube) 3. 
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The enhancement was highest for R-113 and lowest for 

steam, i.e. in reverse order of surface tension. It was 

found that there exist optimum fin spacings for all three 

fluids; this was lowest for R-113 (0.5 mm) and highest for 

steam ( 1. 5 mm) . For ethylene glycol the optimuJD fin 

spacing was 1.0 mm. The maximum enhancement ratios 

obtained (for the same llT) were 7.5, 5.2 and 3.0 for H-113, 

ethylene glycol and steam, respectively. 

Study of the data by dimensional analysis and "curve 

fitting" led to the conclusion that surface tension forces 

play an adverse role on heat transfer for the upper part of 

the tube. A detailed theoretical study of the :;tatic 

configuration of retained liquid on a finned tube has 

been made. This revealed the existence of a " wed I! e " 0 f 

fluid at the fin root for the unflooded portion 0:' the 

tube. This phenomenon has apparently not been reco~nised 

earlier and evidently explains the' above-mentioned faet. 

Seve ra 1 exp res s ions fo rhea t-t rans fe r enhan cemt:!n t 0 f 

finned tube to plain tube have been developed and 

investigated both by dimensional analysis and using an 

approximate 

expressions 

theoretical approach. In both cases, 

were obtained to best fit the data by 

adjusting constants. The equations found are considered 

data (i.e. present data plus that of to represent the 

Yau et ale [35,36,37] for steam using the same set of 
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tubes) satisfactorily. Furthermore these equations, when 

compared with the recent data of Georgiadis [40] for steam 

and Honda et al. [34] for R-113 and methanol, with 

different tube diameter and fin geometries, showed quite 

good agreement. It is noteworthy that no earlier models 

are able to predict the data (present, Yau 

al.) with the same Georgiadis and Honda et 

success. Had time been 

et a 1 . , 

of 

available the present equations 

could have been further improved by including the data of 

Georgiadis and Honda et al. in the curve fitting procedure. 

The following topics are suggested for future work to 

obtain improved expressions for heat transfer on low finned 

tubes:-

(a) Further measurements to obtain data using other fluids 

and other geometries of finned tube. 

(b) Visual observation to verify the theoretical 

expression for the configuration of retained liquid on a 

finned tube. 

(c) Further theoretical study of the condensate flow 

problem, particularly for the lower "flooded region" of the 

tube. 
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APPENDIX A Present experimental data 
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R-113 

PITCH" O.OOOmm 

DATE OF EXPERIMENT 21-12-1983 

ambiente temp .. 19.50 C 
atmospheric press = 29.368 inch 
input power = 2.97 kW 

Data no. 1 to 1 

PITCH= O.OOOmm 

DATE OF EXPERIMENT 7- 3-1984 

ambiente temp = 20.75 C 
atmospheric press ... 30.702 inch 
input power - 3.10 kW 

Data no. 2 to 7 

PITCH" O.ooOmm 

DATE OF EXPERIMENT 15- 3-1984 

ambiente temp - 18.95 C 
atmospheric press - 30.000 inch 
input power - 3.07 kW 

Data no. 8 to 19 

flow rate Tin Tout Tv Twi Two Qx10·s 

l/min K J/m'2. s 
1 3.00 296.23 296.69 319.87 301.84 301.94 0.023772 
2 3.00 293.77 294.24 321.13 299.71 299.81 0.024489 
3 2.60 293.74 294.32 321.03 300.72 300.83 0.025691 
4 2.20 293.74 294.39 321.01 301.36 301.47 0.024573 
5 L80 293.72 294.47 321.01 302.16 302.26 0.023198 
6 1.40 293.69 294.62 321.03 303.57 303.66 0.022251 
7 1.00 293.67 294.84 321.03 305.36 305.45 0.020187 
8 4.00 . 294.01 294.44 320.36 299.62 299.74 0.029207 
9 3.00 294.01 294.51 320.38 300.24 300.35 0.025770 

10 2.40 293.99 294.59 320.36 301.13 301.23 0.024738 
11 2.00 293.99 294.70 320.41 302.15 302.25 0.024479 
12 1.80 293.99 294.74 320.41 302.40 302.50 0.023190 
13 1.60 294.01 294.86 320.47 303.30 303.40 0.023360 
14 1.40 293.99 294.94 320.50 304.08 304.18 0.022844 
15 1.20 293.96 295.01 320.50 304.78 304.87 0.021641 
16 1.00 293.96 295.19 320.54 306.09 306.18 0.021037 
17 0.80 293.89 295.31 320.59 307.36 307.45 0.019577 
18 0.60 293.79 295.49 320.57 308.95 309.02 0.017515 
19 0.40 293.72 295.84 320.57 311.15 311.21 0.014594 
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R-113 

PITCH" 0.75Omm 

DATE OF EXPERIMENT 22- 1-1985 

ambiente temp .. 16.00 C 
atmospheric press = 29.260 inch 
input power .. 3.69 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qxl0-' 
l/min K J/mzs 

1 23.00 291.26 291.69 319.89 299.37 300.08 0.168521 
2 20.00 291.26 291.74 319.94 300.06 300.75 0.163774 
3 15.00 291.26 291.86 319.99 301. 7 2 302.37 0.155143 
4 12.00 291.26 291.99 320.01 303.29 303.92 0.149960 
5 9.00 291.26 292.09 320.01 304.17 304.71 0.127975 
6 7.00 291.26 292.27 320.06 306.07 306.58 0.120637 
7 5.00 291.26 292.47 320.10 307.82 308.25 0.103390 
8 4.00 291.26 292.64 320.08 309.35 309.74 0.094764 
9 3.00 291.29 292.84 320.08 310.50 310.83 0.080107 

10 2.40 291.39 293.14 320.13 312.04 312.34 0.072337 
11 1.80 291.41 293.47 320.10 314.14 314.41 0.063540 
12 1.40 291.39 293.72 320.13 315.83 316.07 0.056041 
13 1.20 291.41 293.92 320.13 316.84 317.06 0.051644 
14 1.00 291.39 294.12 320.15 318.06 318.26 0.046905 
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R-113 

PITCH- 1.00Omm 

DATE OF EXPERIMENT 12-12-1983 

ambiente temp = 18.75 C 
atmospheric press = 30.011 inch 
input power lilt 3.05 ktol 

Data no. 1 to 9 

PITCH=- 1.000nnn 

DATE OF EXPERIMENT 1-10-1984 

ambiente temp = 18.85 C 
atmospheric press • 30.146 inch 
input power • 2.94 kW 

Data no. 10 to 17 

PITCH- 1.00Omm 

DATE OF EXPERIMENT 9- 3-1984 

ambiente temp - 19.00 C 
atmospheric press =- 30.788 inch 
input power - 3.08 kW 

Data no. 18 to 29 

flow rate Tin Tout Tv Twi Two Qx10-' 
l/min K J/m.2.s 

1 24.50 294.82 295.22 320.41 303.62 304.33 0.168204 
2 20.00 294.84 295.29 320.41 304.34 304.99 0.154463 
3 15.00 294.85 295.39 320.39 305.54 306.12 0.138364 
4 12.00 294.88 295.50 320.41 306.72 307.26 0.128700 
5 9.00 294.89 295.64 320.38 308.26 308.75 0.115819 
6 7.00 294.93 295.80 320.41 309.71 310.15 0.105082 
7 5.00 294.94 296.01 320.41 311.84 312.23 0.092202 
8 4.00 294.94 296.16 320.41 313.30 313.66 0.084046 
9 3.00 294.94 296.36 320.41 315.04 315.35 0.073317 

10 20.00 292.74 293.19 320.71 302.50 303.15 0.154871 
11 15.00 292.76 293.31 320.68 303.98 304.58 0.141952 
12 12.00 292.76 293.41 320.68 305.40 305.96 0.134201 
13 9.00 292.81 293.61 320.71 307.41 307.93 0.123859 
14 7.00 292.84' 293.77 320.68 309.05 309.52 0.112879 
15 5.00 292.86 294.02 320.71 311.54 .311.96 0.099961 
16 4.00 292.88 294.24 320.71 313.53 313.92 0.092854 
17 3.00 292.88 294.44 320.68 315.19 315.52 0.079948 
18 25.00 293.13 293.55 321.31 302.71 303.48 0.182747 
19 20.00 293.18 293.68 321.26 303.93 304.65 0.171978 
20 15.00 293.23 293.85 321.31 305.84 306.52 0.161207 
21 12.00 293.25 293.98 321.33 307.20 307.83 0.149587 
22 9.00 293.28 294.15 321.31 309.09 309.66 0.135385 
23 7.00 293~25 294.20 321.26 309.58 310.06 0.114323 
24 5.00 293.25 294.43 321.29 312.03 312.45 0.100986 
25 4.00 293.25 294.55 j21.29 313.08 313.46 0.089376 
26 3.00 293-.28 294.73 321.31 314.12 314.43 0.074758 
27 2.40 293.25 294.85 321.22 315.21 315.49 0.065989 
28 1.80 293.25 295.08 321.20 316.83 317.07 0.056444 
29 1 20 293.20 295.43 321.38 319.58 319.77 0.045868 
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R-113 

PITCH=- 1.5 OOmm 

DATE OF EXPERIMENT 12- 1-1984 

ambiente temp "" 18.00 C 
atmospheric press =- 29.723 inch 
input power ... 2.89 kW 

Data no. 1 to 8 

PITCH= 1.500mm 

DATE OF EXPERIMENT 9- 3-1984 

ambiente temp - 19.80 C 
atmospheric press = 30.754 inch 
input power = 3.07 kW 

Data no. 9 to 19 

floW' rate Tin Tout Tv Twi Two QxlO-G 

l/min K J/m 2 s 
1 20.00 293.25 293.68 320.89 302.02 302.63 0.146175 
2 15.00 293.28 293.83 320.89 303.94 304.53 0.142860 
3 12.00 293.30 293.93 320.94 304.86 305.40 0.12B954 
4 9.00 293.33 294.08 320.92 306.38 306.86 0.111>046 
5 7.00 293.35 294.28 320.89 308.57 309.04 0.lL.303 
6 5.00 293.35 294.50 320.92 310.95 311.36 0.09!3827 
7 4.00 293.35 294.65 320.92 312.32 312.69 0.089365 
8 3.00 293.37 294.93 320.92 314.61 314.95 0.079899 
9 20.00 293.45 293.87 321.24 302.20 302.81 0.141> 139 

10 15.00 293.50 294.05 321.22 304.13 304.72 0.14L821 
11 12.00 293.50 294.12 321.24 305.03 305.57 0.12:3922 
12 9.00 293.57 294.32 321.24 306.58 307.07 0.111)011 
13 7.00 293.57 294.47 321. 15 308.36 308.81 0.10:3266 
14 5.00 293.57 294.65 321.20 310.03 310.41 0.09:D60 
15 4.00 293.55 294.80 321.24 311. 78 312.14 0.085910 
16 3.00 293.57 294.97 321.29 312.82 313.12 0.07n55 
17 2.40 293.55 295.07 321.10 313.58 313.84 0.062875 
18 1.80 293.55 295.32 321.24 315.48 315.71 0.05·'+879 
19 1.20 293.52 295.67 321.29 317.92 318.10 0.04,'+306 
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R-113 

PITCH- 2.00Omm 

DATE OF EXPERIMENT 12- 1-1984 

ambiente temp • 18.25 C 
atmospheric press • 29.700 inch 
input power • 2.97 kW 

Data no. 1 to 7 

PITCH- 2.000mm 

DATE OF EXPERIMENT 9- 3-1984 

ambiente temp • 20.30 C 
atmospheric press - 30.733 inch 
input power • 3.07 kW 

Data no. 8 to 20 

PITCH- 2.000mm 

DATE OF EXPERIMENT 19- 3-1984 

amblente temp - 18.15 C 
atmospheric press - 30.108 inch 
input power · 3.10 kW 

Data no. 21 to 35 

flow rate Tin Tout Tv Twl Two QxlO" 
llmin K J/m.is 

1 15.00 293.18 293.65 320.94 302.62 303.13 0.122537 
2 12.00 293.20 293.75 320.89 303.63 304.11 0.113499 
3 9.00 293.25 293.95 320.92 305.71 306.16 0.108323 
4 7.00 293.25 294.10 320.89 307.57 308.00 0.102296 
5 5.00 293.25 294.33 320.92 310.08 310.47 0.092397 
6 4.00 293.28 294.53 320.92 311.91 312.27 0.085939 
7 3.00 293.28 294.73 320.94 313.61 313.93 0.074758 
8 20.00 293.84 294.24 321".22 302.20 302.78 0.137477 
9 15.00 293.89 294.41 321.29 304.19 304.76 0.135311 

10 12.00 293.84 294.47 321.38 305.54 306.08 0.128867 
11 9.00 293.77 294.52 321.15 306.99 307.48 0.115982 
12 7.00 293.64 294.54 321.24 308.70 309.15 0.108257 
13 5.00 293.59 294.70 321.31 310.73 311.12 0.094504 
14 4.00 293.50 294.72 321.26 311.73 312.08 0.084198 
15 3.00 293.50 294.90 321.15 313.12 313.42 0.072162 
16 2.40 293.57 295.10 321.17 313.97 314.24 0.062873 
17 2.00 293.62 295.27 321.24 314.86 315.10 0.056681 
18 1.80 293.64 295.49 321.29 316.84 317 .08 0.057188 
19 1.20 293.59 295.67 321.31 317.61 317.78 0.042759 
20 1.00 293.55 295.80 321.29 318.62 318.78 0.038636 
21 15.00 293.79 294.27 320.64 303.16 303.67 0.122443 
22 12.00 293.84 294.42 320.66 304.64 305.13 0.118561 
23 9.00 293.86 294.56 320.66 306.23 306.68 0.108240 
24 7.00 293.82 294.64 320.54 307.63 308.05 0.099218 
25 5.00 293.69 294.69 320.57 309.32 309.68 0.085907 
26 4.00 293.64 294.79 320.66 310.78 311.11 0.079032 
27 3.00 293.64 294.92 320.73 311.57 311.85 0.065712 
28 2.40 293.64 295.09 320.87 313.08 313.33 0.059779 
29 2.00 293.62 295.17 320.92 313.64 313.87 0.053249 
30 1.80 293.62 295.27 320.96 314.46 314.67 0.051013 
31 1.60 293.62 295.37 321.03 315.17 315.38 0.048090 
32 1.40 293.57 295.47 321.03 316.31 316.50 0.045684 
33 1.20 293.57 295.62 321.08 317.32 317.49 0.042246 
34 1.00 293.50 295.67 321.08 317.80 317 .96 0.037352 
35 0.80 293.42 295.82 321.08 319.04 319.18 0.032971 
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R-113 

PITCH- 2.50Omm 

DATE OF EXPERIMENT 7-11-1983 

ambiente temp - 19.80 C 
atmospheric press - 29.986 inch 
input power 2.99 kW 

Data no. 1 to 7 

PITCH- 2.500nun 

DATE OF EXPERIMENT 12-12-1983 

ambiente temp - 19.00 C 
atmospheric press - 30.077 inch 
input power • 3.07 kW 

Data no. 8 to 14 

PITCH- 2.500mm 

DATE OF EXPERIMENT 21-12-1983 

ambiente temp - 21.00 C 
atmospheric press • 29.368 inch 
input power - 2.97 kW 

Data no. 15 to 21 

PITCH- 2.500mm 

DATE OF EXPERIMENT 11- 1-1984 

ambiente temp • 20.15 C 
atmospheric press D 29.759 inch 
input power - 2.96 k'" 
Data no. 22 to 28 

PITCH- 2. 500mm 

DATE OF EXPERIMENT 11- 3-1984 

ambiente temp - 19.50 C 
atmospheric press - 30.240 inch 
input power - 3.12 kW 

Data'no. 29 to 42 

PITCH- 2.50011lm 

DATE OF EXPERUfENT 15- 3-1984 

ambiente temp - 18.15 C 
atmospheric press • 29.999 inch 
input power - 2.82 kW 

D3ta no. 43 to 57 
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flow rate Tin Tout Tv '!'wi Two Qxl0· 
l/min K J/m2 s 

1 15.00 295.26 295.68 320.45 303.47 303.93 0.109356 
2 12.00 295.28 295.78 320.45 304.50 304.94 0.102916 
3 9.00 295.31 295.91 320.45 305.73 306.12 0.092616 
4 7.00 295.31 296.03 320.47 307.24 307.61 0.087035 
5 5.00 295.28 296.16 320.45 308.72 309.03 0.075025 
6 4.00 295.26 296.28 320.47 310.26 310.55 0.070305 
7 3.00 295.23 296.41 320.47 311.44 311. 70 0.060442 
8 15.00 295.70 296.15 320.52 304.34 304.82 0.115724 
9 12.00 295.70 296.22 320.52 305.32 305.77 0.103004 

10 9.00 295.70 296.30 320.53 306.07 306.45 0.092570 
11 7.00 295.71 296.47 320.52 308.18 308.56 0.091489 
12 5.00 295.70 296.67 320.52 310.52 310.87 0.083551 
13 4.00 295.71 296.R2 320.52 311.84 312.16 0.076260 
14 3.00 295.68 297.00 320.52 313.60 313.88 0.067471 
15 15.00 296.23 296.63 319.81 303.88 304.31 0.102800 
16 12.00 296.24 296.72 319.80 304.91 305.32 0.097654 
17 9.00 296.27 296.84 319.80 306.15 306.52 0.088651 
18 7.00 296.28 296.98 319.80 307.68 308.03 0.083933 
19 5.00 296.31 297.20 319.81 309.94 310.26 0.077069 
20 4.00 296.31 297.33 319.80 311.12 311.41 0.070213 
21 3.00 296.31 297.52 319.81 312.79 313.06 0.062286 
22 15.00 292.91 293.36 320.36 301.86 302.35 0.115128 
23 12.00 292.93 293.46 320.41 302.90 303.35 0.109378 
24 9.00 293.03 293.68 320.59 304.62 305.04 0.100617 
25 7.00 293.03 293.83 320.66 306.53 306.94 0.095308 
26 5.00 293.08 294.11 320.71 309.14 309.51 0.083121 
27 4.00 293.08 294.26 320.71 310.63 310.97 0.080806 
28 3.00 293.10 294.51 320.71 312.75 313.05 0.072197 
29 15.00 293.35 293.78 320.80 301.77 302.23 0.10·~618 .' 

30 12.00 293.37 293.87 320.80 302.83 303.26 0.103162 
31 9.00 293.42 294.07 320.80 304.95 305.38 0.10')567 
32 7.00 293.42 294.17 320.80 306.05 306.43 0.09')247 
33 5.00 293.42 294.37 320.78 30B.30 308.64 0.081642 
34 4.00 293.40 294.50 320.71 309.82 310.14 0.075622 
35 3.00 293.40 294.62 320.68 310.65 310.91 0.063156 
36 2.40 293.40 294.80 320.71 312.19 312.43 0.057737 
37 2.00 293.40 294.95 320.73 313.41 313.63 0.053264 
38 1.80 293.37 295.03 320.80 314.20 314.41 0.051029 
39 1.60 293.37 295.13 320.87 314.92 315.12 0.04:1105 
40 1.40 293.35 295.20 320.92 315.51 315.70 0.044496 
41 1.20 293.33 295.30 320.94 316.24 316.41 0.04:>714 
42 1.00 293.30 295.45 321.01 317.32 317.47 0.03)932 
43 15.00 294.35 294.75 320.47 302.19 302.62 0.103042 
44 12.00 294.38 294.85 320.54 303.25 303.66 0.097882 
45 9.00 294.38 295.00 320.54 305.35 305.75 0.09)585 
46 7.00 294.38 295.08 320.45 306.05 306.40 0.08~133 

47 5.00 294.40 295.30 320.54 308.36 308.68 0.077253 
48 4.00 294.38 295.38 320.52 309.19 309.48 0.06~667 

49 3.00 294.40 295.58 320.38 310.78 311.03 0.06)504 
50 2.40 294.38 295.70 320.38 312.00 312.23 0.OS·~S79 

51 2.00 294.38 295.85 320.45 313.24 313.46 0.05)627 
52 1.80 294.35 295.90 320.50 313.75 313.95 0.047880 
53 1.60 294.33 295.95 320.57 314.19 314.38 0.044619 
54 1.40 294.33 296.13 320.71 315.67 315.86 0.043242 
55 1.20 294.30 296.20 320.71 316.15 316.31 0.039122 
56 1.00 294.28 296.33 320.80 316.98 317.13 0.035173 
57 0.80 294.28 296.58 320.85 318.57 318.70 0.031565 
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R-113 

PITCH= 4.500mm 

DATE OF EXPERIMENT 12- 1-1984 

ambiente temp = 18.25 C 
atmospheric press = 29.765 inch 
input power = 2.97 kW 

Data no. 1 to 6 

PITCH= 4.500mm 

DATE OF EXPERIMENT 11- 3-1984 

ambiente temp ... 19.50 C 
atmospheric press = 30.266 inch 
input power ... 3.05 kW 

Data no. 7 to 19 

flow rate Tin Tout Tv !wi Two QxlO-' 
l/min K J/m.2s 

1 12.00 293.42 293.84 320.58 301.72 302.08 0.085108 
2 9.00 293.42 293.92 320.66 302.90 303.22 0.077367 
3 7.00 293.47 294.10 320.78 304.68 304.99 0.075207 
4 5.00 293.50 294.30 320.82 306.84 307.13 0.068751 
5 4.00 293.50 294.45 320.86 308.58 303.86 0.055308 
6 3.00 293.52 294.67 320.89 310.68 310.92 0.059283 
7 9.00 293.91 294.36 320.82 302.41 302.70 0.069589 
8 7.00 293.94 294.49 320.66 303.78 304.06 0.066147 
9 5.00 293.94 294.64 320.68 305.60 305.86 0.06e128 

10 4.00 293.94 294.76 320.78 307.04 307.28 0.056688 
11 3.00 293.91 294.89 320.82 308.50 308.71 0.050243 
12 2.40 293.89 295.01 320.87 309.94 310.13 0.045375 
13 2.00 293.89 295.19 320.92 311.69 311.88 0.04L1 653 
14 1.80 293.86 295.24 320.94 312.29 312.46 0.042505 
15 1.60 293.86 295.31 320.96 312.82 312.99 0.03~841 

16 1.40 293.82 295.39 320.96 313.83 313.99 0.037866 
17 1.20 293.72 295.42 320.99 314.66 314.80 0.03~Q34 

18 1.00 293.64 295.49 321.01 315.60 315.73 0.03~771 

19 0.80 293.64 295.77 321.06 317.65 317.77 0.O2 l 190 



..... 
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R-113 

PITCH- 6.50Omm 

DATE OF EXPERIMENT 20-10-1983 

ambiente temp - 20.45 C 
atmospheric press = 30.460 inch 
input power = 3.03 kW 

Data no. 1 to 5 

PITCH- 6.500mm 

DATE OF EXPERU1ENT 12- 1-1984 

ambiente temp = 18.00 C 
atmospheric press = 29.819 inch 
input power a 2.96 kW 

Data no. 6 to 11 

PITCH- 6.500mm 

DATE OF EXPERIMENT 11- 3-1984 

ambiente temp = 18.85 C 
atmospheric press • 30.282 inch 
input power a 3.10 kW 

Data no. 12 "to 25 

flow rate Tin Tout Tv Twi Two QxlO'"' 
l/min K J/m:1s 

1 9.00 294.89 295.29 321.22 302.69 302.95 0.061783 
2 7.00 294.82 295.29 321.22 303.61 303.85 0.057066 
3 5.00 294.77 295.37 321.22 305.13 305.34 0.051488 
4 4.00 294.72 295.44 321.24 306.65 306.86 0.049771 
5 3.00 294.72 295.62 321.26 308.64 308.84 0.0t.6333 
6 12.00 293.57 293.97 320.92 301.95 302.29 0.082514 
7 9.00 293.59 294.07 320.89 302.97 303.27 0.073484 
8 7.00 293.62 294.19 320.89 304.37 304.66 0.069180 
9 5.00 293.64 294.42 320.94 307.09 307.37 0.066592 

10 4.00 293.67 294.57 320.96 308.55 308.81 0.061859 
11 3.00 293.67 294.74 320.96 310.38 310.62 o. O~: 5409 
12 9.00 294.04 294.44 320.85 301.92 302.18 0.061950 
13 7.00 293.99 294.49 320.87 303.33 303.58 0.0f.0132 
14 5.00 293.96 294.61 320.92 305.21 305.50 0.O~5833 

15 4.00 293.91 294.69 320.92 306.77 306.99 0.0~3255 

16 3.00 293.91 294.84 320.99 308.35 308.55 0.OL,1668 
11 2.40 293.91 294.94 320.99 309.19 309.37 0.042254 
18 2.00 293.94 295.11 321.03 310.76 310.93 0.040360 
19 1.80 293.94 295.24 321.10 312.10 312.27 0.Ol·0185 
20 1.60 293.89 295.26 321.10 312.64 312.80 0.0)1781 
21 1.40 293.89 295.36 321.15 313.45 313.59 0.035461 
22 1.20 293.84 295.42 321.13 314.08 314.22 0.032455 
23 1.00 293.79 295.57 321.11 315.71 315.84 0.030479 
24 0.80 293.72 295.69 321.17 317.01 317.12 0.0:!7130 
25 0.60 293.62 295.84 321.15 318.37 318.46 0.O:!2922 
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R-113 

PITCH= 8.500mm 

DATE OF EXPERIHENT 20-10-1983 

ambiente temp 
atmospheric press 
input power 

Data no. 1 to 4 

PITCH- 8.500mm 

... 21.45 C 
= 30.447 inch 
::a 3.10 kW 

DATE OF EXPERIMENT 7-11-1983 

ambiente temp - 21.50 C 
atmospheric press - 29.950 inch 
input power - 3.05 kW 

Data no. 5 to 8 

PITCH= 8.500mm 

DATE OF EXPERIMENT 13-12-1983 

ambiente temp ... 19.30 C 
atmospheric press = 30.130 inch 
input power m 2.98 kW 

Data no. 9 to 13 

PITCH= 8.S001Um 

DATE OF EXPERIMENT 21-12-1983 

ambiente temp ... 21.00 C 
atmospheric press - 29.374 inch 
input power - 2.94 kW 

Data no. 14 to 17 

PITCH- 8.500mm 

DATE OF EXPERIMENT 12- 3-1984 

ambiente temp ~ 18.95 C 
atmospheric press'" 30.286 inch 
input power 3.05 kW 

Data no. 18 to 32 
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flow rate Tin Tout Tv !wi Two QxlO-6 

l/min K J/mls 
1 7.00 296.06 296.46 321.03 303.15 303.35 0.04798] 
2 5.00 296.04 296.54 321.03 304.31 304.49 0.04284-_ 
3 4.00 295.99 296.61 321.06 305.84 306.02 0.042840 
4 3.00 295.96 296.71 321. OB 307.11 307.27 0.038555 
5 7.00 296.11 296.54 320.45 303.63 303.84 0.050971) 
6 5.00 296.14 296.68 320.43 305.20 305.39 0.04711B 
7 4.00 296.09 296.74 320.43 306.31 306.50 0.04454B 
8 3.00 296.04 296.81 320.41 307.53 307.69 0.039835 
9 9.00 295.04 295.44 320.24 302.57 302.83 0.061772 

10 7.00 295.01 295.49 320.25 303.51 303.75 0.057053 
11 5.00 294.96 295.59 320.25 305.38 305.60 0.053619 
12 4.00 294.93 295.66 320.25 306.65 306.86 0.050615 
13 3.00 294.90 295.80 320.25 308.36 308.55 0.046323 
14 7.00 296.38 296.78 319.79 303.44 303.64 0.047964 
15 5.00 296.38 296.92 319.79 305.21 305.41 0.046033 
16 4.00 296.3S 297.03 319.78 306.57 306.75 0.044532 
17 3.00 296.38 297.18 319.78 308.18 308.35 0.041102 
18 9.00 293.77 294.19 320.89 301.89 302.17 0.065735 
19 7.00 293.77 294.27 320.89 302.84 303.0 r 0.060143 
20 5.00 293.74 294.39 320.85 304.72 304.96 0.055843 
21 4.00 293.74 294.52 320.80 306.22 306.44 0.053267 
22 3.00 293.79 294.67 320.80 307.07 307.26 0.045099 
23 2.60 293.82 294.79 320.80 308.16 308.34 0.043549 
24 2.40 293.86 294.89 320.82 308.68 303.85 0.042257 
25 2.20 293.89 294.94 320.82 308.80 308.97 0.039678 
26 2.00 293.86 294.99 320.89 309.52 309.68 0.03g647 
27 1.80 293.86 295.06 320.94 310.19 310.34 0.037099 
28 1.60 293.84 295.17 320.96 311.40 311.55 0.036/.11 

29 1.40 293.82 295.24 320.96 312.18 312.32 0.034263 
30 1.20 293.82 295.37 321.01 313.15 313.28 0.0319.'.2 
31 1.00 293.77 2')5.!i9 321.01 314.46 314.59 0.0296;2 
32 0.80 293.69 295.64 320.99 316.02 316.13 0.0267£:7 
R-113 
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R-113 

PITCH=10.500mm 

DATE OF EXPERIHENT 12- 1-1984 

ambiente te:np = 17.50 C 
atmospheric press = 29.856 inch 
input power = 2.99 kW 

Data no. 1 to 5 

PITCH=10.500mm 

DATE OF EXPERUIENT 12- 3-1984 

ambiente temp = 19.50 C 
atmospheric press = 30.239 inch 
input pOwer = 3.10 kW 

Data no. 6 to 20 

flow rate Tin Tout Tv !wi Two Qxl0·' 
l/min K J7m.~~-:-

1 9.00 293.59 294.02 320.99 301.89 302.17 0.0657~10 
2 7.00 293.62 294.14 321.01 303.33 303.59 0.0631(16 
3 5.00 293.62 294.29 320.99 305.24 305.48 0.058004 
4 4.00 293.62 294.39 320.99 306.35 306.57 0.0532j'5 
5 3.00 293.64 294.59 320.96 308.31 308.51 0.0489;'2 
6 9.00 294.16 294.56 320.80 301.92 302.18 0.O618~.0 

7 7.00 294.18 294.66 320.68 302.93 303.17 0.057112 
8 5.00 294.16 294.76 320.66 304.46 304.67 0.0515::7 
9 4.00 294.13 294.86 320.68 306.00 306.20 0.0498u7 

10 3.00 294.13 2"94.98 320.73 307.23 307.42 0.0437~'3 
11 2.40 294.13 295.11 320.80 308.47 308.64 0.0401&3 
12 2.20 294.13 295.16 320.85 308.93 309.09 0.038722 
13 2.00 294.16 295.26 320.99 309.71 309.86 0.0377;5 
14 1.80 294.11 295.31 321.01 310.69 310.84 0.0370[.8 
15 1.60 294.11 295.38 321.01 311.29 311.44 0.0350:'6 
16 1.40 294.06 295.46 321.01 312.39 312.53 0.033652 
17 1.20 294.04 295.56 321.01 313.37 313.50 0.031418 
18 1.00 293.96 295.64 320.99 ·314.41 314.53 0.0287~7 

19 0.80 293.89 295.81 321.01 316.29 316.40 0.0264:,8 
20 0.60 293.84 296.06 321.01 318.21 318.30 0.022916 
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R-113 

PITCH-12.50Omm 

DATE OF EXPERIMENT 12- 3-1984 

ambiente temp :I: 19.40 C 
atmospheric press = 30.218 inch 
input power .,. 3.10 kW 

Data no. 1 to 13 

flow rate Tin Tout Tv Twi Two Qx10·-o 
l/min K J/m·z.,s 

1 7.00 294.38 294.83 320.75 302.22 302.44 0.054094 
2 5.00 294.38 294.95 320.78 303.71 303.92 0.049367 
3 4.00 294.35 295.03 320.82 304.81 305.01 0.046361 
4 3.00 294.38 295.15 320.87 305.70 305.87 0.039918 
5 2.40 294.35 295.25 320.87 306.90 307.06 0.037034 
6 2.00 294.35 295.40 320.89 308.42 308.57 0.0361)50 
7 1.80 294.35 295.48 320.92 309.09 309.23 0.034761 
8 1.60 294.33 295.50 320.94 309.36 309.50 0.032272 
9 1.40 294.35 295.68 320.96 310.80 310.93 0.031839 

10 1.20 294.30 295.75 320.96 311.73 311.86 0.029·365 
11 1.00 294.28 295.88 320.99 312.79 312.90 o. 027 ·~60 
12 0.80 294.26 296.11 321.01 314.65 314.75 0.025397 
13 0.60 294.21 296.36 321.01 316.51 316.61 0.022l34 
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R-113 

PITCH::a14.500!nm 

DATE OF EXPERIMENT 21-10-1983 

ambiente temp ~ 21.75 C 
atmospheric press = 30.646 inch 
input power = 3.07 kW 

Data no. 1 to 3 

PITCH=14.500mm 

DATE OF EXPERIMENT 10- 1-1984 

ambiente temp a 19.05 C 
atmospheric press - 30.156 inch 
input power - 2.97 kW 

Data no. 4 to 6 

PITClI-14.500mm 

DATE OF EXPERIMENT 13- 3-1984 

ambiente temp m 19.50 C 
atmospheric press - 30.208 inch 
input power - 3.12 kW 

Data no. 7 to 18 

flow rate Tin Tout Tv 
l/min K 

1 5.00 295.94 296.38 321.36 
2 4.00 295.94 296.46 321.36 
3 3.00 295.94 296.59 321.36 
4 5.00 292.81 293.31 320.71 
5 4.00 292.86 293.49 320.71 
6 3.00 292.88 293.64 320.73 
7 5.00 293.96 294.44 320.61 
8 4.00 293.94 294.51 320.64 
9 3.00 293.96 294.66 320.68 

10 2.40 293.96 294.79 320.78 
11 2.00 293.94 294.89 320.78 
12 1.80 293.96 294.99 320.82 
13 1.60 293.94 295.06 320.85 
14 1.40 293.91 295.14 320.87 
15 1.20 293.89 295.21 320.89 
16 1.00. 293.89 295.39 320.92 
17 0.80 293.84 295.59 320.99 
18 0.60 293.82 295.92 321.06 
R-l13 

Twi Two gxlO·" 
J/m2.s 

302.28 302.43 0.037492 
303.20 303.35 0.035990 
304.41 . 304.55 0.033417 
300.33 300.51 0.043014 
301.81 301.99 O.OLt3008 
303.00 303.16 0.0:!8703 
301.01 301.18 0.0t.·0805 
302.08 302.24 0.0~9516 

303.30 303.45 0.0::.6076 
304.46 304.60 o. 0~,.4012 
305.57 305.70 0.032636 
306.23 306.36 0.031689 
307.07 307.20 0.030915 
307.82 307.94 0.029454 
308.46 308.58 0.027306 
309.75 309.86 0.O:!5758 
311.49 311.59 0.024039 
313.72 313.81 0.021631 
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R-113 

PITCH-16.50Omm 

DATE OF EXPERIMENT 21-10-1983 

ambiente temp .. 21.25 C 
atmospheric press - 30.652 inch 
input power = 3.06 kW 

Data no. 1 to 3 

PITCH-16.500mm 

DATE OF EXPERIMENT 12- 1-1984 

ambiente temp :a 18.40 C 
atmospheric press =- 29.783 inch 
input power =- 2.94 kW 

Data no. 4 to 7 
• 

PITCH-16.500mm 

DATE OF EXPERIMENT 13- 3-1984 

ambiente temp .. 20.65 C 
atmospheric press .. 30.192 inch 
input power =- 3 .12 kl~ 

Data no. 8 to 19 

flow rate Tin Tout Tv Twi Two Qx10-6 

'l/min K J/m2,s 
1 5.00 296.72 297.14 321.26 303.51 303.66 0.036386 
2 4.00 296.57 297.09 321.29 304.40 304.54 0.035106 
3 3.00 296.45 297.09 321.24 305.63 305.77 0.032754 
4 7.00 293.55 293.95 320.85 300.65 300.85 0.048135 
5 5.00 293.57 294.12 320.85 302.65 302.85 0.047269 
6 4.00 293.59 294.27 320.95 304.21 304.41 0.046405 
7 3.00 293.59 294.40 320.85 305.45 305.62 0.041246 
8 5.00 294.65 295.10 320.80 302.01 302.18 0.038625 
9 4.00 294.60 295.15 320.80 303.19 303.35 0.037767 

10 3.00 294.62 295.30 320.82 304.55 304.70 0.034759 
11 2.40 294.62 295.42 320.87 305.84 305.98 0.032954 
12 2.00 294.60 295.52 320.89 307.08 307.21 0.031751 
13 1.80 294.62 295.60 320.92 307.49 307.62 0.030119 
14 1.60 294.60 295.67 320.94 308.43 308.55 0.029517 
15 1.40 294.60 295.77 320.99 309.29 309.41 0.028228 
16 1.20 294.57 295.87 320.99 310.31 310.42 0.026769 
17 1.00 294.55 296.02 321.01 311.72 311.82 0.025308 
18 0.80 294.55 296.27 321.03' 313.67 313.77 0.023674 
19 0.60 294.48 296.55 321.06 316.09 316.18 0.021356 
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R-113 

PITCH-18.500mm 

DATE OF EXPERIMENT 21-10-1983 

ambiente temp = 20.60 C 
atmospheric press = 30.659 inch 
input power .. 3.13 k'-1 

Data no. 1 to 3 

PITCH-18.500Ium 

DATE OF EXPERIMENT 11- 1-1984 

ambiente temp .. 20.10 C 
atmospheric press == 29.709 inch 
input power .. 2.96 kW 

Data no. 4 to 6 

PITCH=18.500mm 

DATE OF EXPERIHENT 13- 3-1984 

ambiente temp == 20.65 C 
atmospheric press - 30.173 inch 
input power = 3.10 kW 

Data no. 7 to 18 

flow rate Tin Tout Tv Twi Two Qx10-~ 
l/min K J /rnZ,s 

1 5.00 296.45 296.85 321.26 302.19 302.33 0.031.257 
2 4.00 296.48 296.96 321.29 303.15 303.29 0.03~398 

3 3.00 296.52 297.14 321.33 304.42 304.55 0.031467 
4 5.00 293.25 293.75 320.59 300.69 300.87 0.042991 
5 4.00 293.25 293.85 320.57 301.77 301.94 0.041268 
6 3.00 293.28 294.03 320.59 303.29 303.46 0.03f.684 
7 5.00 294.94 295.36 320.66 301.15 301.30 0.03(,467 
8 4.00 294.94 295.46 320.75 302.26 302.41 0.036035 
9 3.00 294.96 295.61 320.89 303.50 303.64 0.03:i45S 

10 2.40 294.94 295.71 320.96 304.65 304.78 0.031912 
11 2.00 294.92 295.82 321.03 305.77 305.90 0.030881 
12 1.80 294.92 295.87 321.01 306.13 306.25 0.029336 
13 1.60 294.99 296.04 321.03 307.06 307.18 0.0288'17 
14 1.40 294.92 296.06 321.03 307.78 307.89 0.027617 
15 1.20 294.92 296.21 321.08 308.98 309.09 0.026757 
16 1.00 294.89 296.34 321.08 309.99 310.10 0.02l.869 
17 0.80 294.87 296.57 321.08 311.74 311.84 0.02:1322 
18 0.60 294.72 296.72 321.08 313.44 313.53 0.020579 
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R-113 

PITCH-20.50Omm 

DATE OF EXPERIMENT 13- 3-1984 

ambiente temp D 20.50 C 
atmospheric press ~ 30.166 inch 
input power = 3.12 kW 

Data no. 1 to 12 

flow rate Tin Tout Tv Twi Two Qxl0·' 
l/min K J/m2.s 

1 5.00 294.96 295.39 320.96 301.45 301.60 0.036465 
2 4.00 294.94 295.46 320.99 302.59 302.74 0.036035 
3 3.00 294.92 295.57 320.99 303.84 303.98 0.033460 
4 2.40 294.92 295.67 320.96 304.75 304.88 0.030884 
5 2.00 294.89 295.77 320.96 305.92 306.05 0.030025 
6 1.80 294.89 295.83 320.92 306.46 306.58 0.028951 
7 1.60 294.89 295.89 320.87 306.93 307.05 0.027449 
8 1.40 294.99 295.99 320.R7 307.76 307.88 0.026418 
9 1.20 294.89 296.12 320.89 308.76 308.87 0.025215 

10 1.00 294.84 296.22 320.92 309.84 309.93 0.023585 
11 0.80 294.84 296.42 320.99 311.23 311.32 0.021610 
12 0.60 294.82 296.72 321.03 313.40 313.48 0.019549 
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ethylene glycol 

PITCH=- O.OOOmm 

DATE OF EXPERIHENT 31- 8-1984 

ambiente temp = 23.40 C 
atmospheric press = 30.069 inch 
input power = 8.B7 kW 

Data no. 1 to 9 

flow rate Tin Tout Tv Twi Two Qx1C""' 
l/min K J /m':s 

1 23.50 298.54 299.29 471.63 315.80 317.06 0.301(140 
2 22.00 298.59 299.41 471.67 317.25 31B.55 0.309~75 
3 20.00 298.64 299.54 471.71 31B.54 319.82 0.307=80 
4 18.00 298.64 299.66 471.59 320.71 322.03 0.315(141 
5 16.00 298.69 299.83 471.63 322.74 324.06 0.314144 
6 14.00 298.69 299.96 471.63 324.55 325.82 0.304730 
7 12.00 298.78 300.30 471.63 328.47 329.78 0.312~2i 

8 10.00 298.78 300.55 471.63 331.85 333.12 O. 302f: 9i. 
9 8.00 298.83 301.02 471.71 337.53 338.79 0.300239 
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ethylene glycol 

PITCH- 0.750mm 

DATE OF EXPERIMENT 5- 2-1985 

ambiente temp - 20.00 C 
atmospheric press = 29.990 inch 
input power = 7.68 kW 

Data no. 1 to 14 

flm" rate Tin Tout Tv Twi Two QxlO·-& 
l/min K J/mzs 

1 22.00 294.43 296.40 465.61 338.58 341.70 0.745402 
2 20.00 294.48 296.62 465.65 341.33 344.42 0.737558 
3 18.00 294.55 296.95 465.75 345.30 348.41 0.740806 
4 16.00 294.60 297.27 465.75 349.37 352.45 0.733778 
5 14.00 294.62 297.59 465.79 353.45 356.44 0.713909 
6 12.00 294.67 298.04 465.79 358.71 361.62 0.693984 
7 10.00 294.70 298.54 465.83 364.39 367.15 0.659501 
8 9.00 294.74 298.84 465.77 367.04 369.68 0.631958 
9 8.00 294.79 299.26 465.83 371.25 373.82 0.612940 

10 7.00 294.82 299.76 465.77 376.42 378.90 0.593060 
11 6.00 294.82 300.43 465.81 383.65 386.07 0.577417 
12 5.00 294.134 301.60 465.81 395.97 398.40 0.5791: .. 0 
13 4.00 294.87 303.44 465.75 414.29 416.75 0.5874~,3 

14 3.00 294.89 305.69 465.81 433.34 435.67 0.555063 

ethylene glycol 

PITCH- 1.000mm 

DATE OF EXPERIMENT 27- 8-1984 

ambiente temp III 22.70 C 
atmospheric press • 30.204 inch 
input power == 8.93 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Tvi Two gxlO··' 

llmin K J/mi!I 

1 23.50 296.60' 299.14 471.06 351.59 355.88 1.024893 
2 22.00 296.65 299.36 470.96 ·354.31 358.60 1.0251!.9 
3 20.00 296.72 299.69 470.88 358.01 362.27 1.017205 
4 18.00 296.77 300.01 470.88 361.84 366.03 0.9999al 
5 16.00 296.84 300.43 470.90 366.60 370.73 0.9841':»8 
6 14.00 296.84 300.83 470.90 371.66 375.66 0.956625 
7 12.00 296.89 301.37 470.88 377.65 381.51 0.922123 
8 11.00 296.96 301.80 470.82 381.85 385.67 0.910746 
9 10.00 296.94 302.17 470.90 386.46 390.21 0.896044 

10 9.00 297.01 302.74 470.94 392.10 395.80 o. 882.8~.4 
11 8.00· 297.01 303.48 410.82 400.65 404.37 0.886754 
12 7.00 297.08 304.62 470.82 412.60 416.38 0.903560 

6.00 297.08 305.86 470.82 425.32 429.09 0.901598 
5 CO 297.11 307.75 470 •. 82 443.49 447.30 0.90991)0 
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ethylene glycol 

PITCH- 1.500mm 

DAT£ OF EXPERIMENT 27- 8-1984 

ambiente temp - 21.80 C 
atmospheric press .. 30.204 inch 
input power "" 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qxl()" 0.6 

l/min K J/m~s 
1 23.50 296.14 299.20 470.76 361.49 366.67 1.236216 
2 22.00 296.16 299.38 470.84 363.54 368.63 1.213615 
3 20.00 296.18 299.65 470.82 366.97 371.95 1.188594 
4 18.00 296.26 299.97 470.84 370.11 374.91 1.1464i14 
5 16.00 296.31 300.34 470.86 374.16 378.80 1.107656 
6 14.00 296.33 300.72 470.86 378.13 382.53 1.052700 
7 12.00 296.40 301.34 470.90 384.63 388.88 1.014670 
8 11.00 296.38 301.86 470.86 391.68 396.01 1.033145 
9 10.00 296.43 302.41 470.80 397.49 401.78 1.024232 

10 9.00 296.45 303.05 470.80 404.56 l.08.83 1.017412 
11 8.00 296.50 304.09 470.84 416.03 420.39 1.040178 
12 7.00 296.52 305.23 470.84 427.92 432.29 1.043595 
13 6.00 296.52 306.65 470.82 442.02 446.37 1.039387 
14 5.00 296.57 308.97 470.80 463.98 468.42 1.060403 

ethylene glycol 

PITCH- 2.000mm 

DATE OF EXPERIHENT 27- 8-1984 

ambiente temp .. 23.80 C 
atmospheric press = 30.181 inch 
input power :. 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two ~0-6 

l/min K J/UI'Z:S 

1 23.50 297.06 299.75 470.96 354.67 359.22 1.08.(.456 
2 22.00 297.08 299.98 470.92 357.78 362.35 1.090272 
3 20.00 297.13 300.25 471.00 360.91 365.38 1.06i845 
4 18.00 297.16 300.52 470.96 364.19 368.54 1.03;755 
5 16.00 297.16 lOO.87 470.96 368.83 373.10 1.01 j'893 

6 14.00 297.21 301.29 470.88 373.l9 377.50 0.980036 
7 12.00 297.23 301.84 470.96 379.68 383.65 0.94i264 
8 11.00 297.33 302.21 470.82 382.68 396.53 0.919690 
9 10.00 297.28 302.51 470.92 386.50 390.25 0.895665 

10 9.00 297.33 303.23 470.84 394.64 398.45 0.909311 
11 8.00 297.35 304.00 470.76 403.07 406.88 0.910147 
12 7.00 297.38 304.99 470.88 413.56 417.38 0.912135 
13 6.00 297.40 305.48 470.72 416.52 420.00 0.830111 
14 5.00 297.42 308.36 470.76 446.86 450.77 0.934877 
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ethylene glycol 

PITCH- 2.500mm 

DATE OF £XPERIMENT 27- 8-1984 

ambiente temp =- 24.50 C 
atmosph~r1c press =- 30.060 inch 
input power = 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qxl(~--
l/min K J/m?s 

1 23.50 297.28 299.82 470.88 351.88 356.17 1.024023 
2 22.00 297.33 299.99 470.82 353.64 357.85 1.005~·15 
3 20.00 297.35 300.24 470.82 356.87 361.02 0.990826 
4 18.00 297.40 300.59 470.82 361.17 365.29 0.983753 
5 16.00 297.42 300.91 470.82 365.06 369.06 0.956222 
6 14.00 297.47 301.38 470.82 370.58 374.51 0.937993 
7 12.00 297.50 301.88 470.82 376.20 379.97 0.901004 
8 11.00 297.52 302.15 470.72 378.88 382.53 0.872689 
9 10.00 297.57 302.60 470.78 383.56 387.17 0.861337 

10 9.00 297.57 303.00 470.72 387.83 391.33 0.836lf02 
11 8.00 297.59 303.64 470.86 394.78 398.25 0.828388 
12 7.00 297.64 304.68 470.82 405.98 409.51 0.843591 
13 6.00 297.67 305.85 470.86 417.75 421.27 0.839998 
14 5.00 297.54 307.68 470.88 436.37 439.96 0.859623 

ethylene glycol 

PITCH- 2.500mm 

DATE OF EXPERIMENT 23- 8-1984 

ambiente temp • 24.90 C 
atmospheric press • 29.816 inch 
input power ZI 8.96 kW 

Data no. 1 to 15 

flow rate Tin Tout Tv Twi Two ~O-6 

l/min K J/m~s 

1 23.50 297.42 300.14 470.44 355.30 359.88 1.093983 
2 22.00 297.50 300.39 470.36 357.94 362.50 1.089711 
3 20.00 297.52 300.64 470.40. 361.05 365.52 1.067328 
4 18.00 297.57 300.91 470.42 363.88 368.19 1.029554 
5 16.00 297.59 301.28 470.44 368.53 372.76 1.010526 
6 14.00 297.64 301.70 470.38 373.09 377.17 0.973545 
7 12.00 297.67 302.20 470.46 378.59 382.49 0.931438 
8 10.00 297.69 302.82 470.58 385.07 388.75 0.878207 
9 9.00 297.72 303.29 470.44 390.01 393.61 0.859188 

10 8.00 297.77 304.03 470.36 397.91 401.51 0.858771 
11 7.00 297.79 304.90 470.36 406.97 410.54 0.852341 
12 6.00 297.79 306.09 470.44 419.30 422.87 0.852571 
13 5.00 297.84 307.97 470.42 437.49 441.12 0.866963 
14 4.00 297.86 310.47 470.38 459.60 463.21 0.862135 
15 3.00 297.89 314.54 470.34 492.30 495.87 0.853215 



-234-

ethylene glycol 

PITCH- 4.500mm 

DATE OF EXPERIMENT 23- 8-1984 

ambiente temp I: 23.90 C 
atmospheric press = 29.834 inch 
input power = 8.74 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qx10-Et 

l!min K Jlm.2s 
1 23.50 297.28 299.37 470.44 343.07 346.60 0.843545 
2 22.00 297.28 299.50 470.40 344.97 348.48 0.836644 
3 20.00 297.30 299.70 470.38 347.51 350.94 0.820294 
4 18.00 297.35 299.99 470.40 351.21 354.62 0.814993 

• 5 16.00 297.38 300.29 470.36 355.01 358.36 0.799458 
6 14.00 297.40 300.64 470.44 359.24 362.50 0.777073 
7 12.00 297.45 301.11 470.46 364.57 367.73 0.752922 
8 10.00 297.47 301.66 470.38 370.64 373.65 0.716817 
9 8.00 297.50 302.48 470.42 379.54 382.40 0.682330 

10 7.00 297.52 303.10 470.48 396.03 388.83 0.668419 
11 6.00 297.52 303.99 470.30 395.65 398.43 0.664644 
12 5.00 297.55 305.43 470.48 410.38 413.21 0.674691 
13 4.00 297.57 307.56 470.40 430.60 433.47 0.683580 
14 3.00 297.62 310.43 470.44 453.95 456.70 0.656901 

ethylene glycol 

PITCH- 6.500mm 

DATE OF EXPERIMENT 23- 8-1984 

ambiente temp = 21.85 C 
atmospheric press • 28.86'0 inch 
input power = 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qxl0-6 

l!min K J!m?-s 
1 23.60 296.72 298.62 470.36 338.80 342.01 0.767084 

2 22.00 296.72 298.74 470.36 340.76 343.95 0.762065 
3 20.00 296.72 298.91 470.40 343.40 346.56 0.752576 
4 18.00 296.77 299.16 470.36 346.32 349.41 0.738757 
5 16.00 296.82 299.46 470.44 349.86 352.89 0.724922 

6 14.00 296.82 299.76 470.36 353.86 356.82 0.705985 
7 12.00 296.84 300.18 470.36 359.03 361.91 0.686993 

8 10.00 296.89 300.75 470.36 365.42 368.19 0.661961 

9 8.00 296.94 301.60 470.36 374.70 377.38 0.638548 

10 6.00 296.96 302.89 470.36 388.31 390.86 0.609031 

11 5.00 296.9.9 304.25 470.36 402.66 405.26 0.622149 

12 4.00 296.96 305.99 470.40 419.58 422.17 0.618092 

13 3.00 ·296.99 308.91 470.38 444.91 447.47 0.611880 

14 2.00 297.08 313.20 470.42 474.76 477.07 0.550912 
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ethylene glycol 

PITCH- 8.5001Um 

DATE OF EXPERIMENT 29- 8-1984 

ambiente temp ::I 22.00 C 
atmospheric press ::I 30.156 inch 
input power = 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two gx10·6 

l/min K J/m~s 
1 23.50 297.47 299.02 471.63 332.05 334.66 0.622675 
2 22.00 297.47 299.12 471.69 333.67 336.27 0.620500 
.3 20.00 297.50 299.29 471.63 336.03 338.61 0.615297 
4 18.00 297.52 299.47 471.69 338.20 340.71 0.599842 
5 16.00 297.55 299.74 471.69 342.00 344.52 0.601441) 
6 14.00 297.55 300.01 471.69 345.85 348.33 0.591943 
7 12.00 297.57 300.39 471.69 350.53 352.96 0.578989 
8 10.00 297.55 300.79 471.43 355.72 358.05 0.554951 
9 8.00 297.57 301.46 471.33 363.38 365.61 0.532526 

10 7.00 297.62 302.05 471.47 369.86 372.08 0.531462 
11 6.00 297.64 302.67 471.49 376.25 378.41 0.516755 
12 5.00 297.69 303.86 471.39 388.79 391.00 0.528292 
13 4.00 297.72 305.47 471.37 404.65 406.87 0.531168 
14 3.00 297.72 308.05 471.31 427.92 430.14 0.530332 

• 

ethylene glycol 

PITCH- 8.5001Um 

DATE OF EXPERIHENT 29- 8-1984 

ambiente temp • 22.00 C 
atmospheric press .. 30.159 inch 
input power .. 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two gx10-6 

l/min K J/m'!3 
1 23.50 297.08 298.68 471.55 332.84 335.54 0.643054 

2 22.00 297.16 298.85 471.65 334.49 337.17 0.639536 

3 20.00 297.18 299.03 471.59 336.83 339.49 0.6326l9 

4 18.00 297.21 299.20 471.57 338.98 341.56 0.615446 

5 16.00 297.23 299.47 471.73 342.76 345.33 0.615333 
6 14.00 297.30 299.77 471.75 345.74 348.22 0.592123 

7 12.00 297.42 300.24 471.81 350.47 352.89 0.579095 

8 10.00 297.35 300.69 471.63 357.25 359.65 0.572130 

9 8.00 297.38 301.36 471.63 364.82 367.11 0.546279 

10 7.00 297.40 301.86 471.67 370.16 372.39 0.534585 

11 6.00 297.47 302.58 471.89 377.23 379.43 0.524517 

12 5.00 297.45 303.62 471.49 388.76 390.97 0.528451 

13 4.00 297.47 305.18 471.51 404.05 406.26 0.527938 
~ , 310e 297.50 307.83 471.55 427.95 430.18 0.530475 
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ethylene glycol 

PITCH=10.500mm 

DATE OF EXPERUIENT 29- 8-1984 

ambiente temp = 22.85 C 
atmospheric pre~s - 30.142 inch 
input power = 8.90 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two QxlO'" 
l/min K J/m2..s 

1 23.50 297.62 299.02 471.65 329.03 331.39 0.562366 
2 22.00 297.67 299.16 471.61 330.74 333.10 0.564006 
3 20.00 297.72 299.36 471.53 333.19 335.56 0.563920 
4 18.00 297.77 299.58 471.53 335.94 338.29 0.561263 
5 16.00 297.79 299.83 471.45 339.35 341.70 0.560315 
6 14.00 297.84 300.16 471.37 343.34 345.66 0.555917 
7 12.00 297.89 300.55 471.43 348.13 350.43 0.548091 
8 10.00 297.91 301.05 471.43 354.27 356.52 0.537665 
9 8.00 297.91 301.75 471.51 362.75 364.95 0.525492 

10 7.00 297.96 302.24 471.47 367.80 369.95 0.513377 
11 6.00 298.01 302.96 471.43 375.30 377.44 0.508874 
12 5.00 298.03 304.05 471.47 386.91 389.07 0.515340 
13 4.00 298.08 305.54 471.59 401.10 403.24 0.510601 
14 3.00 298.10 307.67 471.45 419.57 421.62 0.490806 

ethylene glycol 

PITCH-12.500mm 

DATE OF EXPERIMENT 29- 8-1984· 

ambiente temp - 23.50 C 
atmospheric press - 30.124 inch 
input power - 8.82 kW 

Data no. 1 to 14 

floy rate Tin Tout Tv Twi Two Qx1C~ 
l/min K J/m7:s 

1 23.50 297.91 299.16 471.57 326.08 328.18 0.501976 
2 22.00 297.96 299.31 471.57 ·327.85 329.97 0.507468 

3 20.00 298.01 299.48 471.49 329.88 331.99 0.503981 
4 18.00 298.06 299.68 471.45 332.24 334.34 0.499634 

5 16.00 298.08 299.90 471.53 335.32 337.41 0.498704 

6 14.00 298.08 300.15 471.43 338.98 341.06 0.496067 
7 12.00 298.10 300.50 471.41 343.53 345.59 0.491685 
8 10.00 298.13 300.92 471.51 348.69 350.69 0.477896 

9 8.00 298.25 301.66 471.43 356.45 358.40 0.467407 

10 7.00 298.25 302.08 471.43 361.36 363.29 0.459611 

11 6.00 298.30 302.78 471.45 368.83 370.76 0.460254 

12 5.00 298.30 303.77 471.15 379.85 381.82 0.4681.93 

13 4.00 298.32 305.04 471.53 392.13 394.06 0.459f12 

14 3.00 298.30 307.44 471.53 414.95 416.92 0.469143 .. 
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ethylene glycol 

PITCH-14.500mm 

DATE OF EXPERIMENT 30- 8-1984 

ambiente temp = 22.05 C 
atmospheric press = 30.050 inch 
input power = 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two QxlO-6 
l/min K J/m':s 

1 23.50 297.64 298.96 471.08 327.48 329.71 0.532247 
2 22.00 297.67 299.06 471.08 328.69 330.89 0.526/.38 
3 20.00 297.69 299.19 471.04 330.18 332.33 0.512717 
4 18.00 297.72 299.39 471.04 333.01 335.17 0.515210 
5 16.00 297.74 299.61 470.96 336.06 338.21 0.512569 
6 14.00 297.74 299.86 470.94 339.70 341.83 0.508220 
7 12.00 297.79 300.21 470.92 343.80 345.88 0.496995 
8 10.00 297.79 300.63 470.92 349.35 351.39 0.486621 
9 8.00 297.86 301.37 470.94 357.82 359.83 0.481257 

10 7.00 297.89 301.82 470.86 362.70 364.67 0.471734 
11 6.00 297.91 302.39 470.86 368.72 370.65 0.460'.76 
12 5.00 297.89 303.29 470.88 378.79 380.72 0.462362 
13 4.00 297.91 304.75 470.82 393.60 395.56 0.468327 
14 3.00 297.91 306.91 470.88 413.34 415.27 0.461i57 

ethylene glycol 

PITCH-16.500mm 

DATE OF EXPERIMENT 30- 8-1984 

ambiente temp = 22.15 C 
atmospheric press = 30.048 inch 
input power =- 8.87 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two Qx10'; 
1/m1n K J/m'2.s 

1 23.50 297.69 298.76 470.80 322.21 324.02 0.431863 
2 22.00 297.77 298.91 470.88 '323.55 325.36 0.432445 
3 20.00 297.81 299.08 470.88 325.70 327.53 0.435~W4 

4 18.00 297.86 299.26 470.84 327.70 329.50 0.430618 
5 16.00 297.89 299.48 470.92 330.93 332.77 0.437386 
6 14.00 297.93 299.75 470.92 334.34 336.17 0.436445 
7 12.00 297.96 300.08 470.88 338.67 340.49 0.435490 
8 10.00 297.98 300.47 470.94 343.67 345.46 0.426849 
9 8.00 298.01 301.10 470.94 351~35 353.12 0.423256 

10 7.00 298.03 301.52 470.96 356.11 357.86 0.418031 
11 6.00 29,8.06 302.09 470.96 362.44 364.18 0.414467 
12 5.00 298.10 303.03 471.02 372.57 374.34 0.4218~6 

13 4.00 298.15 304.37 470.96 386.02 387.80 0.4257'35 
14 3.00 298.15 306.36 470.94 404.52 406.29 0.4210l6 

III!I 
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ethylene glycol 

PITCH-18.500lUm 

DATE OF EXPERIMENT 30- 8-1984 

ambiente temp = 22.90 C 
atmospheric press = 30.032 inch 
input power :I 8.87 k\-' 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two gxlO -Ii 
l/min K J/m~s 

1 23.50 297.93 298.96 470.92 321.31 323.04 0.411664 
2 22.00 297.98 299.08 470.92 322.65 324.38 0.413543 
3 20.00 298.03 299.25 470.96 324.83 326.58 0.418612 
4 18.00 298.08 299.45 470.96 327.35 329.12 0.422819 
5 16.00 298.13 299.70 470.98 330.61 332.41 0.430428 
6 14.00 298.15 299.95 470.96 334.01 335.82 0.430356 
7 12.00 298.18 300.27 470.92 338.35 340.16 0.430264 
8 10.00 298.20 300.69 470.92 343.78 345.57 0.426732 
9 8.00 298.25 301.36 470.96 351.84 353.63 0.426544 

10 7.00 298.27 301.81 470.94 356.95 358.73 0.423862 
11 6.00 298.30 302.33 470.94 362.53 364.26 0.414342 
12 5.00 298.32 303.30 470.96 373.30 375.08 0.42601~ 

13 4.00 298.35 304.52 470.96 385.44 387.21 0.42229) 
14 3.00 298.35 306.72 470.90 406.46 408.26 0.42979g 

ethylene glycol 

PITCH-20.500mm 

DATE OF EXPERIHENT 30- 8-1984 

ambiente temp :I 23.35 C 
atmospheric press = 30.016 inch 
input power .. 8.90 kW 

Data no. 1 to 14 

flow rate Tin Tout Tv Twi Two QxlO-S 

l/min K J/mzs 

1 23.50 298.20 299.22 471.04 321.51 323.23 0.411527 
2 22.00 298.25 299.37 470.78 323.37 325.14 0.422794 
3 20.00 298.27 299.50 470.78 325.00 326.75 0.418485 
4 18.00 298.32 299.69 470.82 327.51 329.28 0.422691 
5 16.00 2~8.35 299.89 470.84 330.27 332.05 0.423467 
6 14.00 298.37 300.14 470.30 333.69 335.46 0.424270 
7 12.00 298.40 300.46 470.80 338.04 339.82 0.425033 
8 10.00 298.42 300.89 470.84 343.48 345.25 0.4223~·7 

9 8.00 298.47 301.51 470.94 350.78 352.52 0.416213 
10 7.00 298.52 301.93 470.92 355.20 356.91 0.40~845 

11 6.00 298.52 302.50 470.94 361.90 363.61 0.409128 
12 5.00 298.57 303.37 470.94 371.04 372.76 o .4110:~8 
13 4.00 298.59 304.76 470.94 385.48 387.25 0.42211,3 
14 3.00 298.61 306.47 470.94 400.64 402.33 0.4030.'.1 

~ 
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APPENDIX B Recent experimental data of Yau et al. 
[35,36,37], Georgiadis (40] and Honda 
[ 52 ] 
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Symbols 

ALF vapour-side heat-transfer coefficient 
obtained by experiments 

ALN vapour-side heat-transfer coefficient 
obtained by Nuuselt equation 

AR area ratio of finned tube to plain tube 
o diameter at the fins of finned tube 

outer tube diameter of plain tube 

DT 
h 

Pitch 

PSI 
Q 

t 

Tw 
Ts 

e 

vapour-side temperature difference 

fin height 
fin pitch 
IIretention ll angle calculated by eq.(5-35) 

heat flux 
fin thickness 
outside wall temperature 
vapour temperature 

a half angle og fin tip 
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Steam data of Yau et al. [35,36,37) 



QMC 
WATER 
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----- TUBE DIMENSION -----
D' Pitch h t e 

------------------------------------------------------_._-,-
12.700 0.000 1.585 0.000 0.000 

----------------------------------------------------------
V=O.52 MIs 

----- DATA TABLE -----
TS/K Tw/K Q /J/m2s 

------------------------------------------
1 372.98 352.81 0.303600E+06 
2 372.98 345.38 0.340300E+06 
3 372.98 341.03 0.375500E+06 
4 373.00 336.91 0.396800E+06 
5 373.00 334.16 0.420000E+06 
6 372.98 331.92 0.440700E+06 
7 372.98 329.35 0.449600E+06 
8 372.98 328.09 0.470600E+06 
9 372.85 347.16 0.311300E+06 

10 372.86 342.29 0.349900E+06 
11 372.86 338.18 0.376800E+06 
12 372.85 335.25 0.402100E+06 
13 372.85 333.21 0.428200E+06 
14 372.85 330.81 0.442500E+06 
15 372.85 329.15 0.460200E+06 
16 372.85 327.54 0.473700E+06 
17 372.38 351.06 0.295900E+06 
18 372.42 344.03 0.333700E+06 
19 372.41 339.56 0.366800E+06 
20 372.38 336.73 0.399900E+06 
21 372.42 333.74 0.420300E+06 
22 372.44 331.24 0.438300E+06 
23 372.44 329.42 0.457600E+06 
24 372.40 327.63 0.471500E+06 
25 372.44 347.21 0.316100E+06 
26 372.42 341.45 0.349500E+06 
27 372.44 337.68 0.380300E+06 
28 372.42 334.96 0.408600E+06 
29 372.40 332.43 0.429600E+06 
30 372.42 330.25 0.447400E+06 
31 372.42 328.57 0.465600E+06 
32 372.44 327.23 0.483700E+06 
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CALCULATION RESULTS 
CASE DT ALF ALN ALF/ALN PSI 

K J/m2s J/m2s deg 

-----------------------------~------------------------------

1 20.170 15052.1 12098.6 1.244 0.000 
2 27.600 12329.7 11000.4 1.121 0.000 
3 31.950 11752.7 10495.9 1.120 0.000 
4 36.090 10994.7 10078.0 1.091 0.000 
5 38.840 10813.6 9825.5 1.101 0.000 
6 41.060 10733.1 9633.3 1.114 0.000 
7 43.630 10304.8 9423.4 1.094 0.000 
8 44.890 10483.4 9324.7 1.124 0.000 
9 25.690 12117.6 11244.3 1.078 0.000 

10 30.570 11445.9 10643.6 1.075 0.000 
11 34.680 10865.1 10210.0 1.064 0.000 
12 37.600 10694.1 9931.9 1.077 0.000 
13 39.640 10802.2 9750.1 1.108 0.000 
14 42.040 10525.7 9547.3 1.102 0.000 
15 43.700 10530.9 9413.3 1.119 0.000 
16 45.310 10454.6 9287.8 1.126 0.000 
17 21.320 13879.0 I1n80.5 1.163 0.000 
18 28.390 11754.1 10883.0 1.080 0.000 
19 32.850 11165.9 10380.4 1.076 0.000 
20 35.650 11217.4 10098.3 1.111 0.000 
21 38.680 10879.0 9819.3 1.108 0.000 
22 41.200 10638.3 9602.5 1.108 0.000 
23 43.020 10636.9 9453.1 1.125 0.000 
24 44.770 10531.6 9313.4 1.131 0.000 
25 25.230 12528.7 11292.6 1.109 0.000 
26 30.970 11285.1 10583.3 1.066 0.000 
27 34.760 10940.7 10187.3 1.074 0.000 
28 37.460 10907.6 9929.5 1.099 0.000 
29 39.970 10748.1 9705.6 1.107 0.000 
30 42.170 10609.4 9521.4 1.114 0.000 
31 43.850 10618.0 9386.2 1.131 0.000 
32 45.210 10699.0 9280.9 1.153 0.000 
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----- TUBE DIMENSION -----
D' Pi tch h t 9 AR 

----------------------------------------------------------
12.700 0.750 1.585 0.500 0.000 5.920 

-----------------------------------------------------------
V-0.52 M/S 

----- DATA TABLE -----
TsfK Tw/K Q /J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

373.22 
373.20 
373.22 
373.24 
373.26 
373.31 
373.33 
373.37 
373.39 
373.43 
373.48 
373.52 
373.50 
373.52 
373.46 
373.48 

350.42 
350.84 
351.19 
352.46 
352.70 
353.86 
354.91 
355.89 
356.78 
357.56 
358.20 
359.11 
360.30 
361.65 
362.35 
364.26 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.974474E+06 
0.948125E+06 
0.920147E+06 
0.906790E+06 
0.874516E+06 
0.855063E+06 
0.832227E+06 
0.805881E+06 
0.776081E+06 
0.742856E+06 
0.706271E+06 
0.670991E+06 
0.635630E+06 
0.599041E+06 
0.553025E+06 
0.513857E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------
1 22.805 42730.7 11673.4 3.661 0.000 

2 22.363 42397.0 11741.5 3.611 0.000 , 
3 22.035 41758.4 11794.2 3.541 0.000 

4 20.782 43633.4 12001.9 3.636 0.000 

5 20.561 42532.8 12040.6 3.532 0.000 

6 19.448 43966.6 12240.3 3.592 0.000 

7 18.419 45183.1 12435.9 3.633 0.000 

8 17.480 46103.0 12626.4 3.651 0.000 

9 16.612 46718.1 12812.3 3.646 0.000 

10 15.875 '.6794.1 12980.0 3.605 0.000 

11 15.281 46218.9 13122.1 3.522 0.000 

12 14.408 46570.7 13342.0 3.491 0.000 

13 13.198 48161.1 13670.7 3.523 0.000 

14 11.869 50471.1 14076.7 3.585 0.000 

15 11.102 49813.1 14333.2 3.475 0.000 

16 9.215 55763.1 15073.3 3.699 0.000 
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----- TUBE DIMENSION -----
D Pitch h 

12.700 1.000 1.595 

t 

0.500 

V=0.52 MIS 

----- DATA TABLE -----
TS/K TwJK Q' /J/m2s 

------------------------------------------
1 372.85 359.90 0.441900E+06 
2 372.86 356.84 0.508300E+06 
3 372.85 354.78 0.571000E+06 
4 372.87 351.36 O.607300E+06 
5 372.85 349.16 0.647700E+06 
6 372.85 347.03 o. ~) g 1 000::+06 
7 372.85 345.82 0.721600E+06 
~. 377..87 36?1~ O.407300E+06 
9 372.86 358.17 0.475000E+06 

10 372.87 355.52 0.537700E+06 
11 372.87 353.51 0.595400E+06 
12 372.87 350.91 O.636400E+06 
13 372.85 34R.76 0.671.100E+06 
14 372.85 347.47 0.717200E+06 
15 372.87 345.93 O.751200E+06 

CALCULATION RESULTS 
CASE DT ALF !.LN .\Lf I I.t:~ 

-r J/m'J.s J/I l!? :; 

e AR 

0.000 4.690 

P~T 
~~(' 
\,; .. ~ 

------------------------------------------------------------
1 12.950 34123.6 13718.1 2.487 0.000 

2 16.020 31729.1 12925.6 2.455 0.000 

3 18.070 31599.3 12487.5 2.530 0.000 

4 21.510 28233.4 11866.7 2.379 0.000 

5 23.690 27340.7 11526.9 2.372 0.000 

6 25.820 26374.9 11226.8 2.349 0.000 

7 27.030 26696.3 11068.0 2.412 0.000 

8 10.690 38101.0 14458.4 2.635 0.000 

9 14.690 32334.9 13245.4 2.441 0.000 

10 17.350 30991.4 12635.2 2.453 0.000 

11 19.360 30754.1 12240.7 2.512 0.000 

12 21.960 28980.0 11793.7 2.457 0.000 

13 24.090 27982.6 11468.3 2.440 0.000 

14 25.380 28258.5 11286.5 2.504 0.000 

1S 26.94'0 27884.2 11080.3 2.517 0.000 
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----- TUBE DIMENSION -----
D" Pitch h t e AR 

-------------------------------------------------------~--
12.700 1.500 1.585 0.500 0.000 3.460 

----------------------------------------------------------
V-0.52 MIS 

----- DATA TABLE -----
Ts/K Tw/K Q /J/m2s 

--------------~---------------------------

CASE 

1 372.52 
2 372.52 
3 372.49 
4 372.52 
5 372.52 
6 372.51 
7 372.51 
8 372.50 
9 372.50 

10 372.52 
11 372.52 
12 372.50 
13 372.50 
14 372.51 
15 372.50 

357.80 
354.99 
352.82 
351.08 
348.63 
347.21 
346.25 
360.15 
356.15 
353.79 
351.69 
349.46 
347.97 
346.66 
344.85 

CALCULATION RESULTS 
OT ALF -K J/m2s 

0.428100E+06 
0.494200E+06 
0.553700E+06 
0.608400E+06 
0.645700E+06 
0.689300E+06 
0.734900E+06 
O.395600E+06 
0.461000E+06 
0.524200E+06 
0.579000E+06 
0.623000E+06 
0.668700E+06 
O.711100E+06 
0.740000E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------
1 14.720 29082.9 13225.1 2.199 51.787 
2 17.530 28191.7 12585.0 2.240 51.250 
3 19.670 28149.5 12170.3 2.313 50.831 
4 21.440 28376.9 11865.7 2.392 50.501 
5 23.890 27028.0 11485.7 2.353 50.030 
6 25.300 27245.1 11285.4 2.414 49.755 
7 26.260 27985.5 11156.1 2.509 49.570 
8 12.350 32032.4 13885.3 2.307 52.233 
9 16.350 28195.7 12837.6 2.196 51.470 

10 18.730 27987.2 12346.5 2.267 51.020 
11 20.830 27796.4 11967.8 2.323 50.618 
12 23.040 27039.9 11611.8 2.329 50.188 
13 24.530 27260.5 11392.7 2.393 49.901 
14 25.850 27508.7 11210.7 2.454 49.649 
15 27.650 26763.1 10977.1 2.438 49.299 
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----- TUBE DIMENSION -----
D' Pi tch h teAR 

----------------------------------------------------------
12.700 2.000 1.585 0.500 0.000 2.845 

V-0.52-~/;------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Q /J/m2s 

------------------------------------------

CASE 

1 372.66 
2 372.66 
3 372.68 
4 372.63 
5 372.66 
6 372.67 
7 372.63 
8 372.62 
9 372.63 

10 372.68 
11 372.68 
12 372.68 
13 372.68 
14 372.68 
15 372.66 

360.25 
357.40 
355.57 
353.28 
350.92 
349.59 
348.47 
363.08 
358.30 
356.69 
354.07 
352.17 
350.54 
349.06 
347.83 

CALCULATION RESULTS 
DT AL'F 
K J/m2s 

0.449300E+06 
0.519600E+06 
0.586900E+06 
0.639400E+06 
0.681400E+06 
0.729700E+06 
0.775900E+06 
0.417500E+06 
0.481800E+06 
0.556500E+06 
0.610200E+06 
0.662300E+06 
0.710100E+06 
0.753800E+06 
0.795900E+06 

ALN ALF/ALN 
J/m2s 

PSI -deg 

------------------------------------------------------------
1 12.410 36204.7 13872.9 2.610 85.719 

2 15.260 34049.8 13096.9 2.600 85.432 

3 17.110 34301.6 12678.8 2.705 85.250 

4 19.350 33043.9 12233.9 2.701 85.019 

5 21.740 31343.1 11821.7 2.651 84.786 

6 23.080 31616.1 11611.8 2.723 84.655 

7 24.160 32115.1 11450.4 2.805 84.543 

8 9.540 43763.1 14899.8 2.937 86.003 

9 14.330 33621.8 13329.1 2.522 85.521 

10 15.990 34803.0 12925.8· 2.693 85.362 

11 18.610 32788.8 12375.4 2.650 85.101 

12 20.510 32291.6 12028.4 2.685 84.911 

13 22.140 32073.2 11758.2 2.728 84.750 

14 23.620 31913.6 11531.1 2.768 84.603 

15 24'.830 32054.0 11356.0 2.823 84.481 
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----- TUBE DIMENSION -----
D- Pitch h t e AR 

----------------------------------------------------------
12.700 2.500 1.585 0.500 

V=0.52 M/S 

----- DATA TABLE -----
Ts/K Tw/K Q /J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

372.30 
372.30 
372.31 
372.30 
372.31 
372.33 
372.31 
372.29 
372.31 
372.31 
372.30 
372.30 
372.29 
372.31 
372.29 

355.39 
352.62 
350.30 
347.99 
345.62 
343.60 
342.28 
357.50 
353.46 
350.92 
348.66 
346.05 
344.41 
342.72 
341.29 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.415100E+06 
0.479200E+06 
0.535100E+06 
0.580700E+06 
0.616700E+06 
0.649200E+06 
0.685800E+06 
0.382100E+06 
0.444300E+06 
0.503100E+06 
0.553600E+06 
0.590200E+06 
O.631100E+06 
0.664800E+06 
0.696700E+06 

ALN ALF/ALN 
J/m2s 

0.000 2.476 

PSI 
deg 

------------------------------------------------------------
1 16.910 24547.6 12707.5 1.932 100.802 
2 19.680 24349.6 12161.6 2.002 100.592 
3 22.010 24311.7 11765.6 2.066 100.418 
4 24.310 23887.3 11417.0 2.092 100.244 
5 26.690 23106.0 11092.7 2.083 100.068 

6 28.730 22596.6 10838.8 2.085 99.918 
7 30.030 22837.2 10685.5 2.137 99.820 
8 14.790 25835.0 13198.9 1.957 100.962 

9 18.850 23570.3 12315.9 1.914 100.656 

10 21.390 23520.3 11866.3 1.982 100.464 

11 23.640 23417.9 11514.6 . 2.034 100.294 

12 26.250 22483.8 11149.9 2.016 100.099 

13 27.880 22636.3 10941.0 2.069 99.977 

14 29.590 22467.0 10736.4 2.093 99.852 

15 31.000 22474.2 10575.4 2.125 99.746 
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----- TUBE DIMENSION -----
D" Pitch h t e AR 

----------------------------------------------------------
12.700 0.000 1.585 0.000 0.000 1.000 

----------------------------------------------------------
V=0.73 MIS 

----- DATA TABLE -----
Ts/K Tw/K Q /J Im2s 

------------------------------------------
1 373.00 353.65 0.309000E+06 
2 373.00 345.71 0.343400E+06 
3 373.00 341.39 0.379400E+06 
4 373.00 337.53 0.403900E+06 
5 373.00 335.04 0.431000E+06 
6 373.00 332.33 0.447100E+06 
7 373.00 333.03 0.460500E+06 
8 372.99 328.52 0.478800E+06 
9 372.95 348.39 0.321900E+06 

10 372.98 343.40" 0.362300E+06 
11 372.98 339.11 0.390200E+06 
12 372.98 336.23 0.418000E+06 
13 372.98 333.76 0.440700E+06 
14 372.98 331. 38 0.456800E+06 
15 372.98 329.47 0.472400E+06· 
16 373.00 327.87 0.487200E+06 
17 372.42 352.45 0.304400E+06 
18 372.38 344.76 0.339700E+06 
19 372.39 340.36 0.374500E+06 
20 372.38 337.57 0.409300E+06 
21 372.40 334.95 0.434700E+06 
22 372.38 332.40 0.454300E+06 
23 372.40 330.38 0.472000E+06 
24 372.40 328.88 0.491700E+06 
25 372.38 347.73 0.320000E+06 
26 372.40 342.44 0.358000£+06 
27 372.41 338.75 0.390900E+06 
28 372.40 335.60 0.416200£+06 
29 372.40 333.34 0.441600E+06 
30 372.42 330.95 0.457600E+06 
31 372.41 329.57 0.480800E+06 
32 372.42 328.24 0.500700E+06 
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CALCULATION RESULTS 
CASE DT ALF ALN ALF/ALN PSI 

K J/m2s J/m2s deg 
------------------------------------------------------------

1 19.350 15969.0 12247.3 1.304 0.000 
2 27.290 12583.4 11040.2 1.140 0.000 
3 31.610 12002.5 10533.4 1.139 0.000 
4 35.470 11387.1 10137.6 1.123 0.000 
5 37.960 11354.1 9904.4 1.146 0.000 
6 40.670 10993.4 9666.9 1.137 0.000 
7 39.970 11521.1 9726.8 1.184 0.000 
8 44.470 10766.8 9357.7 1.151 0.000 
9 24.560 13106.7 11404.5 1.149 0.000 

10 29.580 12248.1 10761.2 1.138 0.000 
11 33.870 11520.5 10295.4 1.119 0.000 
12 36.750 11374.1 10015.0 1.136 0.000 
13 39.220 11236.6 9791.3 1.148 0.000 
14 41.600 10980.8 9588.2 1.145 0.000 
15 43.510 10857.3 9433.0 1.151 0.000 
16 45.130 10795.5 9306.9 1.160 0.000 
17 19.970 15242.9 12113.8 1.258 0.000 
18 27.620 12299.1 10976.6 1.120 0.000 
19 32.030 11692.2 10466.5 1.117 0.000 
20 3LI .810 11758.1 10180.2 1.155 0.000 
21 37.550 11576.6 9920.6 1.167 0.000 
22 39.980 11363.2 9704.0 1.171 0.000 
23 42.020 11232.7 9533.0 1.178 0.000 
24 43.520 11298.3 9411.6 1.200 0.000 
25 24.650 12981.7 11371.4 1.142 0.000 
26 29.960 11949.3 10696.7 1.117 0.000 
27 33.660 11613.2 10296.7 1.128 0.000 
28 36.800 11309.8 9989.9 1.132 0.000 
29 39.060 11305.7 9784.9 1.155 0.000 
30 41.470 11034.5 9579.2 1.152 0.000 
31 42.840 11223.2 9466.5 1.186 0.000 
32 44.180 11333.2 9360.2 1. 211 0.000 
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----- TUBE DIMENSION -----
D' Pitch h 

V.O.73-~/;-------------------------------------------------.. ----

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

373.48 
373.48 
373.48 
373.48 
373.50 
373.50 
373.46 
373.48 
373.46 
373.43 
373.46 
373.50 
373.50 
373.50 
373.50 
373.46 

352.20 
352.57 
352.93 
353.71 
354.44 
355.57 
356.14 
357.10 
357.51 
358.26 
359.77 
360.26 
361.41 
362.36 
363.44 
364.97 

CALCULATION RESULTS 
DT ALF 

-r- J/m2s 

0.992451E+06 
0.965355E+06 
0.936484E+06 
0.914103E+06 
0.889121E+06 
0.868853E+06 
0.838320E+06 
0.811593E+06 
0.775487E+06 
0.742355E+06 
0.716054E+06 
0.675209E+06 
0.639523E+06 
0.59S674E+06 
0.556128E+06 
0.513574E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------. 

1 21.281 46635.5 11926.2 3.910 0.000 

2 20.902 46184.8 11989.8 3.852 0.000 

3 20.547 45577.7 12050.6 3.782 0.000 

4 19.766 46246.2 12188.5 3.794 0.000 

5 19.061 46646.1 12319.1 3.786 0.000 

6 17.930 48458.1 12539.0 3.865 0.000 

7 17.317 48410.2 12663.4 3.823 0.000 

8 16.372 49572.0 12868.6 3.852 0.000 

9 15.949 48622.9 12963.7 3.751 0.000 

10 15.169 48939.0 13147.7 3.722 0.000 

11 13.686 52320.2 13532.2 3.866 0.000 

12 13.239 51001.5 13659.0 3.734 0.000 

13 12.088 52905.6 14005.5 3.777 0.000 

14 11.140 53740.9 14321.5 3.752 0.000 

15 10.055 55308.6 14724.7 3.756 0.000 

16 8.~88 60505.9 15407.1 3.927 0.000 
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----- TUBE DIMENSION -----
D' Pi tch h teAR 

-~;~;~~-----~~~~~-----~~;;;-----~~;~;-----;~~~~-----~~~;~-
V-0.73-;/~------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

372.91 
372.90 
372.87 
372.87 
372.87 
372.87 
372.87 
372.87 
372.87 
372.89 
372.89 
372.88 
372.87 
372.86 
372.86 

360.58 
356.96 
354.89 
352.14 
350.20 
347.88 
346.45 
361.37 
358.25 
354.97 
353.83 
350.33 
348.87 
347.09 
345.80 

CALCULATIO~ RESULTS 
DT ALF 
K J/m2s 

0.448000E+06 
0.510500E+06 
0.573700E+06 
0.618500E+06 
0.663800E+06 
0.695700E+06 
0.734000E+06 
0.402600E+06 
0.477100E+06 
0.534000E+06 
0.600800E+06 
0.631100E+06 
0.678000E+06 
0.714000E+06 
0.751700E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

-----~---------------------~--------------------------------

1 12.330 36334.1 13907.2 2.613 0.000 

2 15.940 32026.3 12945.4 2.474 0.000 

3 17.980 31907.7 12506.2 2.551 0.000 

4 20.730 29836.0 11997.4 2.487 0.000 

5 22.670 29281.0 11681.8 2.507 0.000 

6 24.990 27839.1 11341.1 2.455 0.000 

7 26.420 27782.0 11147.8 2.492 0.000 

8 11.500 35008.7 14173.8 2.470 0.000 

9 14.620 32633.4 1'3263.5 2.460 0.000 

10 17.920 29799.1 12519.0 2.380 0.000 

11 19.060 31521.5 12297.3 2.563 0.000 

12 22.550 27986.7 11700.8 2.392 0.000 

13 24.000 28250.0 11482.1 2.460 0.000 

14 25.770 27706.6 11233.9 2.466 0.000 

15 27.060 27779.0 11064.5 2.511 0.000 
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----- TUBE DI~mNSION -----
D: Pi tch h teAR 

-----------~----------------------------------------------
12.700 1.500 1.585 0.500 0.000 3.460 

V-0.73-~/;------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 372.54 358.66 0.435700E+06 
2 372.56 355.10 0.496400E+06 
3 372.53 353.14 0.558700E+06 
4 372.53 350.96 0.608900E+06 
5 372.~<\ :H. 'J • 1.4 O.65HBOOE+06 
fi ': "7'~ .55 347.31 0.7005001':+06 
7 372.53 346.14 0.735300E+06 
8 372.55 360.80 O.400900E+06 
9 372.55 356.45 O.464600E+06 

10 372.55 354.11 0.528700E+06 
11 372.55 352.03 O.5R4400E+06 
12 372.54 350.51 0.638100E+06 
13 372.54 348.3 /• 0.675900E+06 
14 372.54 347.01 o • 7 191001::+0 () 
1:i ...... " 1:',' ' I. ~ 0 (l 'I ..... I ~ 5DOE+0i", 

,. .. - .. ~ . -1 '. J t 

r..\LCllLATION RESULTS 
CASE DT ALI" ALN ALF/ALN PSI 

Ir J/m2s J/m2s deg 

------------------------------------------------------------
1 13.880 31390.5 13445.0 2.335 51.953 

2 17.460 28430.7 12601.0 2.256 51.275 

3 19.390 28813.8 12222.9 2.357 50.897 

4 21.570 28229.0 11844.7 2.383 50.479 

5 23.110 28507.1 11602.9 2.457 50.188 

6 24.740 28314.5 11364.8 2.491 49.875 

7 26.390 27862.8 11139.7 2.501 49.551 

8 11.750 34119.1 14078.4 2.424 52.362 

9 16.100 28857.1 12895.8 2.238 51.532 

10 18.440 28671.4 12403.6 2.312 51.084 

11 20.520 28479.5 12022.0 2.369 50.686 

12 22.030 28965.0 11770.7 2.461 50.393 

13 24.200 27929.8 11441.4 2.441 49.976 

14 25.510 28188.9 11257.8 2.504 49.724 

15 26.560 28670.9 11117.8 2.579 49.521 
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----- TUBE DIMENSION -----
D P 1 t c h h teAR 

-~--------------------------------------------------------
12.700 2.000 1.585 0.500 

V-0.73 M/S 

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 372.66 
2 372.61 
3 372.67 
4 372.63 
5 372.62 
6 372.63 
7 372.67 
8 372.66 
9 372.65 

10 372.62 
11 372.63 
12 372.66 
13 372.66 
14 372.66 
15 372.66 

361.16 
358.14 
356.14 
353.64 
352.22 
350.20 
349.62 
363.94 
358.42 
356.40 
354.65 
352.79 
350.70 
349.98 
348.77 

CALCULATION RESULTS 
DT AL'F 
K J/m2s 

0.456900E+06 
0.527400E+06 
0.594200E+06 
0.645300E+06 
0.700800E+06 
0.740900E+06 
0.796300E+06 
0.424100E+06 
0.483800E+06 
0.554700E+06 
0.618100E+06 
0.671400E+06 
0.713900E+06 
0.769300E+06 
0.813000E+06 

ALN ALF/ALN 
J/m2s 

0.000 2.845 

PSI 
deg 

------------------------------------------------------------
1 11.500 39730.4 14165.7 2.805 85.811 

2 14.470 36447.8 . 13292.1 2.742 85.504 

3 16.530 35946.8 12803.9 2.807 85.307 

4 18.990 33981.0 12301.1 2.762 85.055 

5 20.400 34352.9 12045.3 2.852 84.913 

6 22.430 33031.7 11710.6 2.821 84.714 

7 23.050 34546.6 11616.3 2.974 84.658 

8 8.720 48635.3 15264.6 3.186 86.092 

9 14.230 33998.6 13356.0 2.546 85.534 

10 16.220 34198.5 12871.2 2.657 85.330 

11 17.980 34377.1 12497.5 2.751 85.156 

12 19.870 33789.6 12140.4 2.783 84.972 

13 21.960 32509.1 11786.2 2.758 84.765 

14 22.680 33919.8 11672.7 2.906 84.693 

15 23.890 34031.0 11490.7 2.962 84.574 
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----- TUBE DIMENSION -----
D- Pitch h 

12.700 2.500 . 1.585 

t 

0.500 

V-0.73 M/S 

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m~s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

372.30 
372.30 
372.29 
372.29 
372.28 
372.29 
372.28 
372.30 
372.30 
372.29 
372.30 
372.29 
372.29 
372.30 
372.29 

356.31 
353.60 
351.77 
349.53 
347.47 
345.53 
344.54 
358.78 
354.85 
352.18 
350.43 
348.60 
346.33 
345.21 
343.86 

CALCULATION RESULTS 
DT ALF -K J/m2s 

0.422600E+06 
0.488800E+06 
0.551500E+06 
0.600100E+06 
O.642200E+06 
0.677900E+06 
0.721900E+06 
0.390900E+06 
0.456100E+06 
0.515800E+06 
0.573800E+06 
0.622600E+06 
0.658100E+06 
O.702600E+06 
0.738800E+06 

ALN ALF/ALN 
J/m2s 

e AR 

0.000 2.476 

PSI -deg 

----------------------------------------------------~-------

1 15.990 26429.0 12911.7 2.047 100.872 

2 18.700 26139.0 12344.2 2.118 100.666 

3 20.520 26876.2 12012.6 2.237 100.528 

4 22.760 26366.4 11647.1 2.264 100.359 

5 24.810 25884.7 11345.3 2.282 100.204 

6 26.760 25332.6 11082.9 2.286 100.060 

7 27.740 26023.8 10958.1 2.375 99.986 

8 13.520 28912.7 13534.5 2.136 101.060 

9 17.450 26137.5 12593.5 2.075 100.761 

10 20.110 25648.9 12084.3 2.123 100.559 

11 21.870 26236.9 11787.7 2.226 100.427 

12 23.690 26281.1 11506.8 2.284 100.289 

13 25.960 25350.5 11188.1 2.266 100.120 

14 27.090 25935.8 11040.8 2.349 100.037 

15 28.430 25986.6 10873.6 2.390 99.936 
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----- TUBE DIMENSION -----
D" Pitch h 

12.700 0.000 1.585 

t 

0.000 

V=1.1 His 

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 372.74 354.04 0.314000E+06 
2 372.73 346.49 0.353100£+06 
3 372.30 342.19 0.391800E+06 
4 372.78 339.08 0.425700E+06 
5 372.78 336.43 0.454000E+06 
6 372.76 333.78 0.475300£+06 
7 372.75 332.06 0.497400E+06 
8 37"2.80 330.67 0.519900E+06 
9 372.83 349.41 0.331500E+06 

10 372.83 344.06 0.371600£+06 
11 372.80 340.47 0.407800£+06 
12 372.85 337.66 0.439100E+06 
13 372.80 334.96 0.462400£+06 
14 372.83 333.40 0.491500E+06 
15 372.85 331.32 0.507600£+06 
16 372.85 330.34 0.534600E+06 
17 372.99 355.37 0.319700£+06 
18 372.99 348.39 0.364200E+06 
19 372.99 343.61 0.400400E+06 
20 373.00 339.87 0.429600E+06 
21 372.99 336.30 0.447800E+06 
22 372.98 333.63 0.466400£+06 

23 372.98 331.65 0.485900£+06 
24 372.98 329.95 0.503100£+06 
25 372.98 349.83 0.332200E+06 
26 372.95 344.93 0.376000E+06 
27 372.98 340.32 0.403000£+06 
28 372.96 337.48 0.433400£+06 
29 372.95 335.05 0.458700E+06 
30 372.95 332.72 0.477300E+06 
31 372.94 331.44 0.499200E+06 

32 372.93 329.34 0.512700£+06 

e AR 

0.000 1.000 
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CALCULATION RESULTS 
CASE DT ALl" ALN ALF/ ALN PSI -

K J/m2s J/m2s deg 
------------------------------------------------------------

1 18.700 16791.4 12360.2 1.359 0.000 
2 26.240 13456.6 11166.5 1.205 0.000 
3 30.610 12799.7 10637.0 1.203 0.000 
4 33.700 12632.0 10305.6 1.226 0.000 
5 36.350 12489.7 10045.6 1.243 0.000 
6 38.980 12193.4 9804.7 1.244 0.000 
7 40.690 12224.1 9656.4 1.266 0.000 
8 42.130 12340.4 9538.1 1.294 0.000 
9 23.420 14154.6 11566.3 1.224 0.000 

10 28.770 12916.2 10851.7 1.190 0.000 
11 32.330 12613.7 10449.0 1.207 0.000 
12 35.190 12478.0 10159.5 1.228 0.000 
13 37.840 12219.9 9908.2 1.233 0.000 
14 39.430 12465.1 9767.6 1.276 0.000 
15 41.530 12222.5 9589.4 1.275 0.000 
16 42.510 12575.9 9508.9 1.323 0.000 
17 17.620 18144.2 12583.7 1.442 0.000 
18 24.600 14804.9 11400.2 1.299 0.000 
19 29.380 13628.3 10784.9 1.264 0.000 
20 33.130 12967.1 10372.0 1.250 0.000 
21 36.690 12205.0 10021.0 1.218 0.000 
22 39.350 11852.6 9779.9 1.212 0.000 
23 41.330 11756.6 9610.7 1.223 0.000 
24 43.030 11691.8 9471.4 1.234 0.000 
25 23.150 14349.9 11612.2 1.236 0.000 
26 28.020 13419.0 10947.1 1.226 0.000 
27 32.660 12339.3 10420.4 1.184 0.000 
28 35.480 12215.3 10135.2 1.205 0.000 
29 37.900 12102.9 9908.1 1.222 0.000 
30 40.230 11864.3 9702.7 1.223 0.000 
31 41.500 12028.9 9595.1 1.254 0.000 
32 43.590 11761.9 9424.9 1.248 0.000 
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----- TUBE DIMENSION -----
D Pitch h t 9" AR 

-------------------------------------------------------~--
12.700 0.750 1.585 0.500 0.000 5.920 

V-1.1 M/S 

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 373.33 352.42 0.991479E+06 
2 373.35 352.80 0.964409E+06 
3 373.37 354.12 0.952733E+06 
4 373. l .1 354.90 0.929458E+06 
5 373.43 355.13 0.895933E+06 
6 373.48 356.24 0.875256E+06 
7 373.46 356.81 0.844300E+06 
8 373.48 357.74 0.817221E+06 
9 373.46 358.14 0.780698E+06 

10 373.43 358.89 0.747147E+06 
11 373.46 359.93 0.715332E+06 
12 373.48 360.83 0.679"256E+06 
13 373.50 361.97 0.643136E+06 
14 373.50 362.49 0.598089E+06 
15 373.46 363.98 0.558937E+06 
16 373.48 365.47 0.516018E+06 

CALCULATION RESULTS 
CASE DT ALF ALN ALF/ALN PSI 

K J/m2s J/m2s deg 

------------------------------------------------------------

1 20.906 47425.6 11983.8 3.957 0.000 

2 20.551 46927.6 12045.3 3.896 0.000 

3 19.247 49500.3 12279.7 4.031 0.000 

4 18.512 50208.4 12420.9 4.042 0.000 

5 18.306 48942.0 12461.9 3.927 0.000 

6 17.236 50780.7 12681.2 4.004 0.000 

7 16.649 50711.8 12806.5 3.960 0.000 

8 15.738 51926.6 13013.5 3.990 0.000 

9 15.320 50959.4 13111.9 3.887 0.000 

10 14.548 51357.4 13302.8 3.861 0.000 

11 13.521 52905.3 13577.8 3.896 0.000 

12 12.650 53696.1 13830.9 3.882 0.000 

13 11.526 55798.7 14189.2 3.932 0.000 

14 11.006 54342.1 14368.7 3.782 0.000 

15 9.478 58972.0 14959.1 3.942 0.000 

16 8.010 64421.7 15647.3 4.117 0.000 
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----- TUBE DIMENSION -----
D" Pitch h 

V-1.1 ~/;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

372.85 
372.85 
372.87 
372.87 
372.85 
372.89 
372.87 
372.88 
372.90 
372.90 
372.89 
372.91 
372.89 
372.91 
372.91 

363.00 
358.93 
356.76 
353.87 
352.21 
350.20 
348.10 
363.70 
359.79 
356.84 
355.33 
352.80 
350.27 
348.76 
347.80 

CALCULATION RESULTS 
OT ALF - J/m2s K 

0.469400E+06 
0.532200E+06 
0.597800E+06 
0.644200E+06 
0.696600E+06 
0.736200E+06 
0.767300E+06 
0.421000E+06 
0.493000E+06 
0.555800E+06 
0.621900E+06 
0.667300E+06 
0.702500E+06 
0.745400E+06 
0.790600E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------
1 9.850 47654.8 14781.2 3.224 0.000 

2 13.920 38232.8 13445.9 2.843 0.000 

3 16.110 37107.4 12905.4 2.875 0.000 

4 19.000 33905.3 12307.9 2.755 0.000 

5 20.640 33750.0 12012.1 2.810 0.000 

6 22.690 32446.0 11679.4 2.778 0.000 

7 24.770 30977.0 11371.9 2.724 0.000 

8 9.180 45960.6 15064.9 3.044 0.000 

9 13.110 37604.9 13673.5 2.750 0.000 

10 16.060 34607.7 12917.9 2.679 0.000 

11 17.560 35415.7 12592.4 2.812 0.000 

12 20.110 33182.5 12106.7 2.741 0.000 

13 22.620 31056.6 11690.3 2.657 0.000 

14 24.150 30865.4 11461.8 2.693 0.000 

15 25.110 31485.5 11325.9 2.780 0.000 
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----- TUBE DIMENSION -----
D' Pitch h teAR 

-~;~;~~-----~~;~~-----~~;~;-----~~;~~-----~~;~;-----;~~~~-
~/;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 372.57 
2 372.57 
3 372.56 
4 372.56 
5 372.56 
6 372.57 
7 372.55 
8 372.57 
9 372.54 

10 372.57 
11 372.56 
12 372.57 
13 372.56 
14 372.55 
15 372.56 

361.00 
357.39 
355.78 
353.72 
351.14 
349.57 
348.69 
362.89 
358.29 
355.86 
353.87 
351.96 
351.03 
348.83 
348.11 

CALCULATION RESULTS 

2I ALF 
K J/m2s 

0.455200E+06 
0.519600E+06 
0.589200E+06 
0.644900E+06 
0.684600E+06 
0.729800E+06 
0.780100E+06 
0.416400E+06 
0.481900E+06 
0.548100E+06 
0.607600E+06 
0.659200E+06 
0.716700E+06 
0.750000E+06 
0.799900E+06 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

-----------------------------------------------------------_. 

1 11.570 39343.1 14138.7 2.783 52.402 

2 15.180 34229.2 13113.0 2.610 51.713 

3 16.780 35113.2 12745.2 2.755 51.405 

4 18.840 34230.4 12326.9 2.777 51.011 

5 21.420 31960.8 11870.4 2.692 50.516 

6 23.000 31730.4 11620.4 2.731 50.215 

7 23.860 32694.9 11491.2 2.845 50.044 

8 9.680 43016.5 14839.5 2.899 52.762 

9 14.250 33817.5 13346.6 2.534 51.8H2 

10 16.710 32800.7 12760.8 2.570 51.421 

11 18.690 32509. t. 12355.6 2.631 51.039 

12 20.610 31984.5 12007.2 2.664 50.674 

13 21.530 33288.4 11852.3 2.309 50.495 

14 23.720 31618.9 11511.7 2.747 50.07~ 

15 24.450 32715.7 11406.2 2.868 49.934 
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----- TUBE DIMENSION -----
n- Pitch h t e AR 

-~;~;~~-----;~~~~-----~~;;;-----~~;~~-----~~~~~-----;~~;-

V-l.l ~i;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr./J/m2s 

------------------------------------------
1 372.68 364.23 0.482600E+06 
2 372.70 358.34 0.532200E+06 
1 372.70 356.77 0.604600E+06 
4 372.68 35i,.30 0.657400E+06 
5 372.69 352.44 O.708400E+06 
6 372.69 351.65 0.767300E+06 
7 1,72.70 350.09 O.809Rf)f)E+06 
f~ 37? • 7:~ 36~. 1 0 o. 433400r.l.C~l 
9 372.72 359.46 0.4t)46I)OE+Oo 

10 372.72 357.27 0.566100E+06 
11 372.70 355.56 0.631600E+06 
12 372.72 353.27 0.681200E+06 
13 372.72 353.09 0.752000E+06 
14 372.73 351.45 0.797100E+06 
15 372.73 349.80 0.835300E+06 

CALCULATION RESULTS 
CASE DT ALF ALN ALF/ALN PSI 

- -
K J/m2s J/m2s deg 

-----------------------------------------------------------_. 
1 8.450 57112.4 15394.1 3.710 86.122 

2 14.360 37061.3 13323.9 2.782 85.529 

3 15.930 37953.5 12940.3 2.933 85.371 

4 18.380 35767.1 12420.1 2.880 85.123 

5 20.250 34982.7 12074.1 2.897 84.939 

6 21.040 36468.6 11938.4 3.055 84.860 

7 22.610 35816.0 11685.0 3.065 84.706 

8 7.630 56802.1 15819.4 3.591 86.213 

9 13.260 37300.2 13623.7 2.738 85.642 

10 15.450 36640.8 13053.5 2.807 85.422 

11 17.140 36849.5 12673.1 2.908 85.250 

12 19.450 35023.1 12218.8 2.866 85.023 

13 19.630 38308.7 12185.9 3.144 85.005 

14 21.280 37457.7 11899.7 "3.148 84.842 

15 22.930 36428.) 11636.8 3.130 84.679 



QMC 
WATER 

-262-

----- TUBE DIMENSION -----
D Pitch h teAR 

-~;~;~~-----;~;~~-----~:;;;-----~~;;;-----~~~~;-----;:~;~-

V-1.1 ~/;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

372.31 
372.29 
372.31 
372.35 
372.30 
372.34 
372.33 
372.34 
372.35 
372.33 
372.36 
372.34 
372.36 
372.33 
372.36 

359.15 
355.99 
354.32 
352.66 
349.76 
348.64 
347.76 
360.60 
357.19 
354.87 
352.82 
351.09 
349.16 
348.14 
346.87 

CALCULATION RESULTS 
OT ALF - J/m2s K 

0.444900E+06 
0.511800E+06 
0.579500E+06 
0.638600E+06 
0.674100E+06 
0.724800E+06 
0.774200E+06 
0.403700E+06 
0.476500E+06 
0.543400E+06 
0.601800E+06 
0.655300E+06 
0.698700E+06 
0.748400E+06 
0.789700E+06 

ALN ALF/ALN 
J/m2s 

PSI -deg 

------------------------------------------------------------
1 13.160 33807.0 13636.7 2.479 101.089 

2 16.300 31398.8 12841.0 2.445 100.847 

3 17.990 32212.3 12483.7 2.580 100.721 

4 19.690 32432.7 12161.6 2.667 100.597 

5 22.540 29906.8 11681.6 2.560 100.377 

6 23.700 30582.3 11507.2 2.658 100.294 

7 24.570 31510.0 11381.0 2.769 100.228 

8 11.740 34386.7 14073.5 2.443 101.202 

9 15.170 31410.7 13107.6 2.396 100.941 

10 17.460 31122.6 12592.5 2.472 100.764 

11 19.540 30798.4 12189.2 2.527 100.609 

12 21.250 30837.6 11890.6 2.593 100.478 

13 23.200 30116.4 11582.5 2.600 100.334 

14 24.190 30938.4 11435.3 2.706 100.256 

15 25.490 30980.8 11254.1 2.753 100.163 
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Steam data of Georgi adi 5 [40] 
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----- TUBE DIMENSION -----
D . Pitch h t e AJt 

-~;~~~~-----~~~~;-----;~;;;-----;~~;;-----;~;;;-----~~~;;-
SIA111----------------------------------------------------------

----- DATA TABLE -----
TalK TW/K Qr/J/m2s 

------------------------------------------

CASE 

1 373.03 
2 372.94 
3 373.18 
4 373.38 
5 373.07 
6 373.14 
7 373.01 
8 372.86 
9 372.93 

10 372.97 
11 372.91 
12 372.88 
13 372.77 
14 372.85 
15· 373.24 
16 373.11 
17 373.23 
18 373.15 

320.11 
319.98 
321.47 
321.46 
323.09 
323.10 
326.80 
326.80 
330.04 
330.13 
334.47 
334.47 
338.43 
338.51 
324.47 
324.36 
320.23 
320.23 

CALCULATION RESULTS 
DT ALl-" -K J/m2s 

0.559688E+06 
0.556595E+06 
0.542495E+06 
0.542497E+06 
0.522547E+06 
0.522545E+06 
0.493725E+06 
0.493725E+06 
0.464928E+06 
0.466311E+06 
O.434417E+06 
0.434417E+06 
0.407173E+06 
0.407984E+06 
0.518579E+06 
0.516437E+06 
0.558375E+06 
0.558375E+06 

ALN ALF/ALN 
J/m2s 

--.ru 
deg 

---~--------------------------------------------------------

1 52.924 10575.3 8019.1 1.319 0.000 
2 52.957 10510.3 8014.1 1.311 0.000 
3 51.709 10491.3 8099.3 1.295 0.000 
4 51.917 10449.3 8092.8 1.291 0.000 
5 49.980 10455.1 8205.4 1.274 0.000 
6 50.043 10441.9 8203.6 1.273 0.000 
7 46.215 10683.2 8454.4 1.264 0.000 

8 46.065 10718.0 8459.9 1.267 0.000 
9 42.893 10839.3 8689.0 1.247 0.000 

10 42.838 10885.5 8694.4 1.252 0.000 

11 38.445 11299.7 9034.4 1.251 0.000 

12 38.415 11308.5 9035.9 1.252 0.000 

13 34.344 11855.7 9385.2 1.263 0.000 

14 34.340 11880.7 9388.2 1.265 0.000 

15 48.767 10633.8 8289.9 1.283 0.000 

16 48.749 10593.8 8286.9 1.278 0.000 

17 53!,003 10534.8 8020.8 1.313 0.000 

18 52.923 10550.7 8023.1 1.315 0.000 
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----- TUBE DIMENSION -----
D" Pitch h t e AJt 

-~;:~~~-----;:;~~-----~:~~~-----~:;;~-----~:~~~-----~;~~-
F5T125~~;;------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.33 
373.62 
373.50 
373.42 
373.23 
373.24 
372.88 
372.62 
373.04 
373.15 
373.32 
373.35 
372.86 
372.78 
373.56 
373.54 
373.11 
372.84 

344.98 
345.22 
347.04 
346.93 
348.82 
348.93 
351.93 
351.83 
355.14 
355.23 
358.83 
358.91 
361.39 
361.32 
350.35 
350.35 
345.50 
345.38 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.114338E+07 
0.114954E+07 
0.109991E+07 
0.109721E+07 
0.103613E+07 
0.103846E+07 
0.917487E+06 
O.915734E+06 
0.829145E+06 
0.830518E+06 
0.732804E+06 
0.733841E+06 
0.648202E+06 
0.647387E+06 
0.101127E+07 
0.101127E+07 
0.115567E+07 
0.115259E+07 

ALN ALF/A'LN 
J/m2s 

PSI 
deg 

------------------------------------------------------------~-

1 28.352 40328.0 10008.0 4.030 87.256 
2 28.401 40475.3 10011.8 4.043 87.292 
3 26.461 41567.2 10232.4 4.062 87.456 
4 26.495 41412.0 10225.7 4.050 87.442 
5 24.408 42450.4 10481.1 4.050 87.610 
6 24.311 42715.6 10494.2 4.070 87.621 
7 20.955 43783.7 10960.9 3.995 87.886 
8 20.790 44046.8 10978.0 4.012 87.864 
9 17.901 46318. i• 11482.2 4.034 88.197 

10 17.924 46335.5 11481.6 4.036 88.211 
11 14.486 SUS37.0 12202.8 4.146 88.562 
12 14.438 50827.1 12215.1 ! •• l('~ ~.:·l.571 

13 11.471 56507.9 1299B.9 4.347 83.i~5 

14 11.458 56500.9 13000.1 4.346 88.774 
15 23.208 43574.2 10653.i. 4.090 87.770 

16 23.188 43611.8 10655.5 4.093 87.769 
17 27.613 41852.4 10084.6 4.150 87.294 
18 27.464 41967.3 10093.0 4.15S 87.270 
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----- TUBE DIMENSION -----
D' Pitch h teAR 

-~~:~;~-----;:;~;---.--~:;;;-----~:;;;-----~:;;;-----~~;~~-

F25T15~~~;------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

---------------------,----------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.00 
373.36 
373.04 
372.77 
373.00 
373.10 
372.96 
372.96 
372.96 
372.91 
373.42 
373.55 
372.94 
372.60 
373.16 
373.12 
373.24 
373.04 

343.21 
343.47 
345.14 
345.03 
347.16 
347.27 
350.70 
350.70 
353.86 
353.95 
357.84 
357.84 
360.33 
360.11 
348.79 
348.58 
344.30 
344.18 

CALCULATION RESULTS 
DT ALF - J/m2s K 

0.110983E+07 
0.111599E+07 
0.106511E+07 
0.106241E+07 
0.100856E+07 
0.101088E+07 
0.903798E+06 
0.903798E+06 
0.817020E+06 
0.818400E+06 
0.723657E+06 
0.723653E+06 
0.639426E+06 
0.636990E+06 
0.985933E+06 
0.981669E+06 
0.113439E+07 
0.113131E+07 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

-------------~---------------------------------------------~ 

1 29.786 37260.1 9841.4 3.786 71.714 

2 29.891 37335.3 9841.8 3.794 71.767 

3 27.897 38180.1 10049.9 3.799 71.952 

4 27.742 38296.1 10058.8 3.807 71.922 

5 25.837 39035.5 10292.2 3.793 72.197 

6 25.830 39135.9 10296.3 3.801 72.217 

7 22.265 40592.8 10767.4 3.770 72.629 

8 22.265 40592.8 10767.4 3.770 72.629 

9 19.096 42784.9 11266.6 3.797 73.020 

10 18.958 43169.1 11288.8 3.824 73.028 

11 15.582 46441.9 11958.6 3.884 73.541 

12 15.707 46072.0 11936.0 3.860 73.549 

13 12.614 50691.8 <12667.4 4.002 73.820 

14 12.491 50995.9 12689.7 4.019 73.772 

15 24.374 40450.2 10483.3 3.859 72.406 

16 24.5.43 39997.9 10459.9 3.824 72.378 

17 28.939 39199.4 9940.3 3.943 71.962 

18 28.860 39199.9 9942.5 3.943 71.835 
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----- TUBE DIMENSION -----
D Pitch h teAR 

-~;:~~;-----;:~~~-----;:~OO-----~.O~;-----~:~~;-----~:;;;-

F05E2A~;;-------------------------------------------------------

----- DATA TABLE -----
TS/K Tw/K Qr/J/m2s 

-~----------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

373.09 
372.88 
372.79 
372.84 
372.90 
372.98 
372.94 
373.25 
373.16 
373.27 
373.16 
373.08 
373.05 
372.51 
372.39 
372.82 
372.84 

344.16 
344.04 
345.66 
347.50 
347.71 
351.10 
351.21 
354.46 
354.29 
357.89 
357.82 
360.76 
360.76 
348.60 
348.39 
344.20 
344.33 

CALCULATION RESULTS 
DT ALF -K J/m2s 

0.112814E+07 
0.112507E+07 
0.107309E+07 
0.101311E+07 

, 0.101776E+07 
0.907146E+06 
0.90S895E+06 
0.825257E+06 
0.822492E+06 
0.723621E+06 
0.t22585E+06 
0.643446E+06 
0.643446E+06 
0.981652E+06 
0.977388E+06 
0.113129E+07 
0.113437E+07 

ALN ALF/ALN 
J/m2s 

2!!. 
deg 

------------------------------------------------------------
1 28.926 39000.9 9936.8 3.925 134.578 

2 28.843 39006.7 9939.2 3.925 134.569 

3 27.128 39556.5 10130.4 3.905 134.628 

4 25.338 39983.8 10349.1 3.864 134.697 

5 25.195 40395.3 10369.1 3.896 134.706 

6 21.877 41465.7 10824.8 3.831 134.835 

7 21.735 41817.1 10844.5 3.856 134.838 

8 18.789 43922.3 11329.5 3.877 134.961 

9 18.869 43589.6 11312.5 3.853 134.959 

10 15.316 47061.7 11998.5 3.922 135.099 

11 15.345 47089.3 12001.6 3.924 135.094 

12 12.323 52215.0 12153.9 4.094 135.205 

13 12.293 52342.5 12761.4 4.102 135.205 

14 23.909 41051.8 10523.8 3.901 134.732 

15 23.998 40127.9 10507.9 3.876 134.722 

16 2~.621 39526.6 9961.1 3.968 134.514 

11 28.514 39182.9 9914.2 3.989 134.519 
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----- TUBE DIMENSION -----
n" Pitch h teAR 

-~~~;~;-----;~~~~-----;~~;~-----~~~;;-----;~;;;-----;~;;~-
F03E2A~~~-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 373.44 
2 372.97 
3 372.55 
4 372.59 
5 373.40 
6 373.48 
7 373.09 
8 373.03 
9 373.07 

10 373.03 
11 373.40 
12 373.51 
13 373.21 
14 373.13 
15 373.07 
16 373.10 
17 373.49 
18 373.56 

348.62 
348.49 
349.72 
349.71 
352.00 
352.00 
354.93 
354.93 
357.69 
357.69 
361.26 
361.41 
363.88 
363.81 
352.83 
352.93 
348.99 
349.11 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.123890E+07 
0.123583E+07 
0.116754E+07 
0.116755E+07 
0.111060E+07 
0.111060E+07 
0.977251E+06 
0.977251E+06 
0.876336E+06 
0.876336E+06 
0.768198E+06 
0.770274E+06 
0.679196E+06 
0.678384E+06 
0.106907E+07 
0.107120E+07 
0.125450E+07 
0.125758E+07 

ALN AL'F/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------

1 24.820 49915.4 10434.4 4.784 114.082 

2 24.482 50479.1 10463.0 4.825 114.060 

3 22.830 51140.6 10673.3 4.791 114.120 

4 22.876 51038.2 10668.1 4.784 114.121 

5 21.397 51904.5 10910.3 4.757 114.278 

6 21.477 51711.1 10900.8 4.744 114.281 

7 18.160 53813.4 11436.4 4.705 114.442 

8 18.100 53991.8 11445.3 4.717 114.440 

9 15.380 56978.9 11990.8 4.752 114.605 

10 15.340 57127.5 11998.3 4.761 114.604 

11 12.138 63288.7 12818.2 4.937 114.828 

12 12.096 63680.1 12834.2 4.962 114.841 

13 9.330 72797.0 13759.1 5.291 114.980 

14 9.322 72772.4 13759.4 5.289 114.974 

15 20.243 52811.8 11079.6 4.767 114.317 

16 20.175 53095.4 11091.5 4.787 114.324 

17 24.496 51212.4 10478.0 4.888 114.105 

18 24.446 51443.2 10486.8 4.905 114.114 
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----- TUBE DIMENSION -----
D'· Pitch h teAR 

-~~:~~~-----;:;~~-----;:~~~-----~:~~~-----~:~~~-----;:;~;-
F25E2A~;;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

-~---~------------------------------------

CASE 

1 373.13 
2 373.02 
3 373.16 
4 373.41 
5 373.10 
6 373.18 
7 372.88 
8 372.74 
9 372.99 

10 373.04 
11 373.30 
12 373.18 
13 372.72 
14 372.58 
15 373.40 
16 373.56 
17. 372.73 
18 372.68 

348.75 
348.64 
350.26 
350.39 
352.19 
352.19 
355.19 
355.09 
357.96 
358.14 
361.52 
361.44 
363.87 
363.66 
353.71 
353.81 
349.22 
349.22 

CALCULATION RESULTS 
DT ALF 

K J/m2s 

0.125473E+07 
0.125164E+07 
0.118947E+07 
0.119216E+07 . 
O.112009E+07 
O.112009E+07 
0.988356E+06 
0.986596E+06 
0.883361E+06 
0.886118E+06 
0.773475E+06 
0.772439E+06 
0.680060E+06 
0.677624E+06 
0.108829E+07 
0.109042E+07 
O.126067E+07 
O.126067E+07 

ALN ALF/ALN 
J/m2s 

PSI 
. deg 

--------------------~~--------------------------------------

1 24.380 51465.5 10481.6 4.910 102.163 
2 24.384 51330.4 10477.5 4.899 102.150 
3 22.900 51941.9 10683.4 4.862 102.273 
4 23.025 51776.8 10674.0 4.851 102.292 
5 20.915 53554.4 10974.4 4.880 102.412 
6 20.995 53350.3 10964.6 4.866 102.415 
7 17.692 55864.6 11515.7 4.851 102.624 
8 17.647 55907.3 11519.5 4.853 102.612 
9 15.028 58781.0 12066.5 4.871 102.833 

10 14.899 59475.0 12097.5 4.916 102.848 
11 11.783 65643.3 12919.4 5.081 103.109 
12 11.742 65784.3 12927.5 5.089 103.098 
13 8.850 76842.9 13937.1 5.514 103.263 
14 8.925 75924.3 13900.5 5.462 103.242 
15 19.690 55271.2 11180.8 4.943 102.534 
16 19.753 55202.8 11175.7 4.940 102.547 
17 23.508 53627.3 10585.2 5.066 102.182 
18 23.458 53741.6 10590.4 5.075 102.181 
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----- TUBE DIMENSION -----
D' Pitch h t e }JR 

-;;:~~~-----~:~~~-----;:~~~-----;:~~~-----~~O--OO------------
3.333 

F02E2A~~;~------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 373.05 
2 372.99 
3 373.04 
4 373.13 
5 372.99 
6 372.99 
7 373.25 
8 373.32 
9 372.93 

10 373.00 
11 373.32 
12 373.25 
13 372.90 
14 373.01 
15 373.18 
16 373.24 
17 373.01 
18 372.90 

347.11 
347.12 
348.74 
348.87 
350.56 
350.66 
354.0R 
354.08 
356.79 
356.80 
360.25 
360.17 
362.85 
362.92 
352.15 
352.05 
347.72 
347.84 

CALCULATION RESULTS 
DT ALF - J/m2s K 

0.120520E+07 
0.120519E+07 
0.114600E+07 
0.114869E+07 
0.107806E+07 
0.108038E+07 
0.959648E+06 
0.959644E+06 
0.859670E+06 
0.859663E+06 
0.752544E+06 
0.75150SE+06 
0.665277E+06 
O.666089E+06 
0.104968E+07 
O.104754E+07 
0.121422E+07 
O.121730E+07 

ALN ALF/ALN 
J/m2s 

2ll 
deg 

------------------------------------------------------------
1 25.939 !,6/d12.9 11)~?1.2 4.519 79.217 

2 25.873 46581.0 10287.4 4.528 79.215 

3 24.298 47164.4 10489.4 4.496 79.393 

4 24.263 473/.3. :3 10497.0 4.510 79.412 

5 22.434 48054.7 10744.0 4.473 79.587 

6 22.327 4838B.9 10759.4 4.497 79.599 

7 19.172 50054.7 11263.2 4.444 79.985 

8 19.23() 49887.9 11251 •• (, lh 4 "i3 7~'. ~I(~I' 

9 16.145 53246.8 1182:~.j " r'" ;,n.;t)~ "y-. "i , .. ; 

10 16.205 53049.2 11812.5 4.491 80.268 

11 13.073 57564.8 12556.1 4.5S5 80.665 

12 13.081 57450.3 12551.6 4.577 80.653 

13 10.049 66203.3 13475.9 4.913 80.930 

14 10.087 66034.4 13466.1 4.904 80.944 

15 21.035 49901.6 10958.4 4.554 79.770 

16 21.1~7 49442.6 10937.0 4.521 79.763 

17 25.288 48015.7 10360.9 4.634 79.281 

18 25.064 48567.7 10385.7 4.676 79.288 
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----- TUBE DI~mNSION -----
D- Pi tch h teAR 

-~~~~;;-----;~;~;-----~~;;;-----;~;;;-----;~;;;-----~~;~;-
F250IA~~;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.28 
373.15 
372.98 
373.05 
373.01 
372.93 
373.27 
373.34 
373.31 
373.33 
373.15 
373.15 
373.32 
373.03 
373.19 
373.27 
373.25 
373.16 

344.52 
344.53 
346.23 
346.12 
348.06 
347.95 
351.71 
351.82 
354.86 
354.86 
358.23 
358.16 
361.24 
361.10 
349.10 
349.40 
344.95 
344.95 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.116549E+07 
0.116548E+07 
O.111184E+07 
0.110913E+07 
0.104713E+07 
0.104480E+07 
0.936002E+06 
0.937758E+06 
0.843724E+06 
O.843724E+06 
0.737538E+06 
0.736498E+06 
0.656842E+06 
0.655214E+06 
0.100894E+07 
0.101537E+07 
0.117152E+07 
0.117151E+07 

ALN AL'F/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------
1 28.756 40530.3 9961.6 4.069 110.157 
2 28.620 40722.6 9972.4 4.084 110.153 
3 26.746 41570.3 10181.6 4.083 110.254 
4 26.932 41182.6 10161.8 4.053 110.249 
5 24.952 41965.8 10403.6 4.034 110.368 
6 24.981 41823.8 10397.3 4.023 110.359 
7 21.556 43421.9 10882.1 3.990 110.605 
8 21.524 43568.0 10889.2 4.001 110.614 
9 18.454 45720.4 11390.7 4.014 110.805 

10 18.474 45670.9 11387.8 4.011 110.805 
11 14.916 49446.1 12097.4 4.087 111.014 
12 14.991 49129.3 12080.3 4.067 11l.010 
13 12.085 54351.8 12830.8 4.236 111.212 
14 11.935 54898.5 12864.6 4.267 111.194 
15 24.091 41880.4 10521.7 3.980 110.439 
16 23.868 42541.1 10554.0 4.031 110.460 
17 28.303 41392.1 10010.9 4.135 110.182 
18 28.207 41532.6 10018.7 4.145 110.180 
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----- TUBE DIMENSION -----
D' Pitch h t e AJt 

-~;:~~~-----~:~~~-----~:~~~-----~:~~~-----~:~~~-----;:~;;-
F202IA~~;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.46 
373.60 
372.99 
372.75 
372.95 
373.01 
373.22 
373.29 
372.99 
373.11 
373.16 
373.16 
373.22 
373.21 
372.85 
372.98 
373.21 
373.22 

345.85 
345.97 
347.24 
347.24 
349.32 
349.32 
352.71 
352.81 
355.65 
355.65 
359.28 
359.20 
362.14 
362.14 
350.51 
350.61 
346.37 
346.37 

CALCULATION RESULTS 
DT ALF -K J/m2s 

0.120267E+07 
0.120576E+07 
0.113905E+07 
0.113905E+07 
0.107754E+07 
0.107754E+07 
0.957259E+06 
0.959020E+06 
0.859046E+06 
0.859043E+06 
0.757271E+06 
0.756223E+06 
0.669143E+06 
0.669140E+06 
0.104339E+07 
0.104553E+07 
0.121500E+07 
0.121500E+07 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------. 
1 27.614 43552.9 10095.7 4.314 97.356 
2 27.632 43636.4 10098.1 4.321 97.371 
3 25.752 44231.5 10302.3 4.293 97.447 
4 25.512 44647.6 10324.3 4.324 97.437 
5 23.634 45592.8 10575.2 4.311 97.609 
6 23.694 45477.3 10569.0 4.303 97.611 
7 20.512 46668.2 11041.5 4.227 97.888 

8 20.485 46815.7 11048.1 4.237 97.898 
9 17.341 49538.4 11585.9 4.276 98.113 

10 17.456 49211.9 11568.0 4.254 98.118 

11 13.885 54538.8 12342.5 4.419 98.410 

12 13.960 54170.7 12323.9 4.396 98.404 

13 11.080 60392.0 13135.2 4.598 98.644 

14 11.066 60468.1 13139.4 4.602 98.644 

15 22.341 46702.9 10752.8 4.343 97.699 

16 22.l66 46746.4 10753.5 4.347 97.712 

17 26.842 45264.9 10177.6 4.447 97.387 

18 26.852 45248.0 10176.8 4.446 97.387 
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----- TUBE DIMENSION -----
D Pitch h teAR 

-~;:~~~-----~:~~~-----~:~~~-----~:~~;-----~:~~~-----;:~~~-
F150IA~~;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

. 

373.42 
373.50 
373.31 
373.21 
373.29 
373.36 
373.07 
373.05 
373.12 
373.20 
373.01 
373.03 
373.26 
373.33 
373.00 
372.80 
373.14 
373.26 

343.81 
343.93 
345.55 
345.55 
347.63 
347.64 
350.93 
350.93 
354.03 
354.13 
357.61 
357.68 
360.99 
360.98 
348.82 
348.72 
344.39 
344.51 

CALCULATION RESULTS 
..Q!. ...£! 
K J/m2s 

0.115013E+07 
0.115321E+07 
0.109837E+07 
o .109837E+07 
0.104022E+07 
0.104021E+07 
0.923754E+06 
0.923754E+06 
0.832751E+06 
0.834129E+06 
0.734241E+06 
0.735285E+06 
0.655280E+06 
0.655283E+06 
0.100694E+07 
0.100479E+07 
0.116241E+07 
0.116550E+07 

ALN ALF/ALN 
J/m2s 

PSI 
deg 

------------------------------------------------------------
1 29.614 38837.4 9873.2 3.934 71.812 
2 29.566 39004.6 9880.9 3.947 71.833 
3 27.759 39568.1 10074.3 3.928 72.019 
4 27.659 39711.1 10082.5 3.939 72.013 
5 25.660 40538.6 10323.4 3.9-27 72.272 
6 25.725 40435.8 10317.6 3.919 72.277 
7 22.144 41715.8 10788.6 3.867 72.664 
8 22.124 41753.5 10790.8 3.869 72.663 
9 19.086 43631.5 11273.7 3.870 73.051 

10 19.072 43735.8 11278.7 3.878 73.067 
11 15.405 47662.5 11983.3 3.977 73.486 
12 15.346 47913.8 11996.9 3.994 73.497 

13 12.275 53383.3 12773.9 4.179 73.922 
14 12.350 53059.4 12755.0 4.160 73.926 
15 24.185 41634.9 10503.0 3.964 72.400 

16 24.084 41720.2 10509.9 3.970 72.376 
17 28.150 40431.7 9957.8 4.060 71.867 

18 28.748 40542.0 9961.8 4.070 71.889 



AMERICA 
WATER 

-274-

----- TUBE DIMENSION -----
D Pitch h teAR 

-~;:~~~-----~:~~~-----~:~~~-----~:;~;-----;~~~;-----;~~~;-
FI00IA~~;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

-----------~------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.32 
373.43 
373.41 
373.31 
372.99 
372.84 
372.80 
372.83 
373.11 
373.08 
373.19 
373.27 
373·.04 
373.08 
372.97 
372.91 
373.36 
373.39 

342.73 
342.86 
344.35 
344.47 
346.18 
346.08 
349.65 
349.65 
352.99 
352.92 
356.57 
356.65 
359.58 
359.65 
347.56 
347.55 
343.11 
343.23 

CALCULATION RESULTS 
DT ALF - J/m2s K 

0.111275E+07 
0.111584E+07 
0.106012E+07 
0.106283E+07 
0.100031E+07 
0.997981E+06 
0.893556E+06 
0.893556E+06 
0.810397E+06 
0.80900BE+06 
0.712493E+06 
O.713530E+06 
0.6355583E+06 
0.636395E+06 
0.972387E+06 
0.972391E+06 
0.111626E+07 
0.111934E+07 

ALN ALF/ALN 
J/m2s 

PSI 
"(leg 

----------~-------------------------------------------------

1 30.588 36378.6 9767.8 3.724 0.000 

2 30.569 36502.3 9773.3 3.735 0.000 

3 29.065 36474.1 9932.0 3.672 0.000 

4 28.843 368[.8.8 9953.0 3.702 0.000 

5 26.812 37308.3 10174.1 3.667 0.000 

6 26.765 37286.8 10174.8 3.665 0.000 

7 23.151 38596.9 10636.6 3.629 0.000 

8 23.181 38546.9 10633.4 3.625 0.000 

9 20.116 40286.2 11101.4 3.629 0.000 

10 20.164 40121.4 11092.6 3.617 0.000 

11 16.618 42874.8 11734.6 3.654 0.000 

12 16.618 42937.2 11737.2 3.658 0.000 

13 13.460 47220.1 12445.4 3.794 0.000 

14 13.427 47396.7 12455.3 3.805 0.000 

15 25.415 38260.4 10343.6 3.699 0.000 

16 25.361 38342.0 10348.5 3.705 0.000 

17 30~249 36902.4 9904.3 3.764 0.000 

18 30.163 37109.7 9814.2 3.781 0.000 



·......,..iZ Mg" -275-

AMERICA 
WATER 

----- TUBE DIMENSION ----- " 
D' Pitch h teAR 

~----------------~-~----------------------~-18.000 2.750 1.000 0.750 O.O~~-----~~;;;-
F275IA;;--------------------------------------------------------

----- DATA TARLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 373.04 345.81 0.119313E+07 
2 372.79 345.68 0.119005E+07 
3 372.97 347.42 0.113610E+07 
4 373.04 347.42 0.113610E+07 
5 373.30 349.57 0.107733E+07 
6 373.21 349.46 0.107500E+07 
7 373.19 352.85 0.955317E+06 
8 373.07 352.84 0.955321E+06 
9 373.15 355.87 0.858885[+06 

10 373.21 355.87 0.858885E+0(' 
11 373.08 359.04 0.747l)04E+06 
12 373.10 :i5 11 • :'1 (). 747 I}Ovl~+OG 

13 373.19 362.18 0.G67402E+06 
14 373.08 362.04 0.665774£+06 
15 J7J.01 350.52 0.103893E+07 
16 373.02 350.63 0.104107F.+07 
17 373.07 34(,.12 0.120244E+07 
18 373.02 346.12 0.120244E+07 

CALCULATION RESULTS 
CASE OT ALF ALN ALF/ALN PSI 

-K J /;:1'2!; J/m2~ deg 

-----~------------------------------------------------------

1 27.230 43816.7 10126.6 4.327 110.229 

2 27.107 43901.9 10132.9 4.333 110.213 

3 25.549 44467.5 10326.9 4.306 110.327 

4 25.619 44346.0 10320.4 4.297 110.329 

5 23.728 45403.3 10573.9 4.294 110.472 

6 23.746 45270.8 10568.5 4.284 110.462 

7 20.342 46962.8 11067.6 4.243 110.674 

8 20.227 47230.0 11082.2 4.262 110.670 

9 17.278 49709.7 11603.4 4.284 110.864 

10 17.338 49537.7 11593.9 4.273 110.866 

11 14.043 53258.1 12300.9 4.330 111.064 

12 14.058 53201.0 12297.9 4.326 111.064 

13 11.008 60628.8 13157.4 4.608 111.269 

14 11.038 60316.5 13143.8 4.589 111.256 

15 22.486 46203.4 10737.2 4.303 110.522 

16 22.391 46495.0 10751.2 4.325 110.529 

17 26.949 44619.1 10160.5 4.391 110.249 

18 26.899 44702.0 10164.7 4.398 110.248 



A.t.tERICA 
WATER 

-276-

----- TUBE DIMENSION -----
D Pitch h teAR 

-~;~~~~-----;~;;~-----~~;;~-----;~;~;-----~~~~~-----~~;;~-
F225IA~~;-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 373.34 346.56 0.121483E+07 
2 373.37 346.69 0.121792E+07 
3 372.95 347.94 0.114969E+07 
4 372.95 347.94 0.114969E+07 
5 372.99 349.88 0.108433E+07 
6 373.00 349.99 0.108666E+07 
7 372.82 353.05 0.958830E+06 
8 372.78 353.06 0.958826E+06 
9 373.05 356.17 0.863007E+06 

10 373.08 356.17 0.863007E+06 
11 373.41 359.72 0.756165E+06 
12 373.32 359.65 0.755124E+06 
13 372.90 362.26 0.667352E+06 
14 373.01 362.40 0.668982E+06 
15 373.34 351.34 0.105384E+07 
16 373.23 351.23 0.105170E+07 
17 373.18 346.82 0.121780E+07 
18 373.08 346.94 0.1220S9E+07 

CALCULATION RESULTS 
CASE DT ALF ALN ALF/ALN PSI - J/m2s 

-
K J/m2s deg 

------------------------------------------------------------
1 26.780 45363.3 10189.2 4.452 97.407 

2 26.683 45644.0 10201.7 4.474 97.418 

3 25.011 45967.4 10394.1 4.422 97.500 

4 25.006 45976.6 10394.7 4.423 97.501 

5 23.111 46918.4 10648.3 4.406 97.655 

6 23.013 47219.4 10662.3 4.429 97.663 

7 19.768 48504.1 11148.8 4.351 97.899 

8 19.722 48617.1 11155.1 4.358 97.898 

9 16.883 51116.9 11677.0 4.378 98.156 

10 16.913 51026.3 11672.1 4.372 98.158 

11 13.687 55246.9 12400.5 4.455 98.456 

12 13.671 55235.5 12401.4 4.454 9FL447 

13 10.637 62738.7 13270.1 4.728 98.641 

14 10.612 63040.1 13282.5 4.746 98.656 

15 22.004 47893.1 10817.9 4.427 97.784 

16 21. 998 47808.9 10815.2 4.421 97.771 

17 26 .. 358 46202.3 10234.5 4.514 97.421 

18 26.137 46711.2 10258.0 4.554 97.427 



-277-

A.l1ERICA 
WATER 

. ,~W 

----- TUBE DIMENSION -----
D Pitch h t 8 AR 

-~~~~~~-----~~;;~-----~~;;~-----~~;;;-----~~~~~-----2.;;~-
F175IA~~~-------------------------------------------------------

----- DATA TABLE -----
Ts/K TwjK Qr/ J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.40 
373.25 
373.19 
373.14 
373.32 
373.18 
373.01 
372.88 
373.05 
373.16 
373.26 
373.22 
373.06 
373.04 
373.13 
373.16 
373.24 
373.25 

345.28 
345.17 
346.75 
346.75 
348.87 
348.77 
352.18 
352.09 
355.20 
355.30 
358.78 
358.78 
361.60 
365.13 
350.28 
350.08 
345.70 
345.70 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.118081E+07 
0.117771E+07 
0.111983E+07 
0.111982E+07 
0.106098E+07 
0.105865E+07 
0.941156E+06 
0.939392E+06 
0.846371E+06 
0.847745E+06 
0.742625E+06 
0.742625E+06 
0.659190E+06 
0.823124E+06 
0.103023E+07 
0.102595E+07 
0.118684E+07 
0.118684E+07 

ALN ALF/ALN 
J/m2s 

~ 
deg 

---------------------------------------------------------- ... -

1 28.118 41994.8 10036.5 4.184 71.992 

2 28.077 41945.7 10036.3 4.179 71.969 

3 26.442 42350.4 10224.7 4.142 72.158 

4 26.386 42439.9 10229.8 4.149 72.156 

5 24.449 43395.6 10478.7 4.141 72.427 

6 24.411 43367.7 10479.1 4.138 72.406 

7 20.834 45174.0 10984.0 4.113 72.814 

8 20.795 45173.9 10985.8 4.112 72.795 

9 17.853 47407.8 11491.4 4.125 73.190 

10 17.865 47452.8 11492.9 4.129 73.209 

11 14.477 51296.9 12202.9 4.204 73.648 

12 14.437 51439.0 12210.9 4.213 73.646 

13 11.459 57526.0 13009.7 4.422 73.987 

14 7.915 103995.5 14369.9 7.237 74.426 

15 22.847 45092.6 106R9.9 4.218 72.589 

16 23.080 44451.9 10658.2 4.171 72.566 

17 27.536 43101.4 10097.6 4.268 72.033 

18 27.546 43085.7 10096.8 4.267 72.034 



.---------/ -278-

A,.\fERICA 
WATER 

----- TUBE DIMENSION -----
D Pitch h t e A~ 

--------------------------------------------
18.000 1.250 1.000 0.750 O.;~;-----;~;;~-

FI25IA~;~-------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.02 
373.32 
373.32 
373.29 
373.03 
372.98 
373.26 
373.35 
373.31 
373.44 
373.04 
372.97 
372.76 
372.80 
372.95 
373.03 
373.17 
373.30 

343.06 
343.22 
344.74 
344.95 
346.72 
346.62 
350.40 
350.49 
353.47 
353.47 
356.96 
356.80 
359.64 
359.79 
348.18 
348.28 
343.86 
343.75 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.111629E+07 
0.112193E+07 
0.106821E+07 
0.107365E+07 
0.101196E+07 
0.100963E+07 
0.907660E+06 
0.909424E+06 
0.818719£+06 
0.818719E+06 
0.718769E+06 
0.716694E+06 
0.637255E+06 
0.638880E+06 
0.987449E+06 
0.989589E+06 
0.114053E+07 
0.113743£+07 

ALN ALF/ALN 
J/rn2s 

PSI 
deg 

------------------------------------------------------------

1 29.958 37261.8 9823.8 3.793 0.000 

2 30.105 37267.2 9818.0 3.796 0.000 

3 28.580 37376.1 9982.3 3.744 0.000 

4 28.337 37888.6 10008.4 3.786 0.000 

5 26.308 38465.9 10235.7 3.759 0.000 

6 26.361 38300.1 10227.6 3.745 0.000 

7 22.860 39705.2 10692.3 3.713 0.000 

8 22.859 39784.1 10695.3 3.720 0.000 

9 19.838 41270.2 11153.4 3.700 0.000 

10 19.968 41001.6 11136.4 3.682 0.000 

11 16.077 44707.9 11840.4 3.776 0.000 

12 16.166 44333.4 11819.5 3.751 0.000 

13 13.119 48575.0 12524.5 3.878 0.000 

14 13.013 49095.5 12554.1 3.911 0.000 

15 24.775 39856.7 10L.24.4 3.823 0.000 

16 24.750 39983.4 10430.2 3.833 0.000 

17 29.308 38915.3 9898.0 3.932 0.000 

18 29.554 384g6.5 9875.7 3.897 0.000 



A,.\fERICA 
WATER 

-t./9-

----- TUBE DIHENSION -----
D Pitch h teAR 

-~~~~~~-----;~;;~-----~~~~~-----~~~~~-----~~~~~-----~~;~~-
F25IA1~~--------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------
1 373.07 346.53 0.120251E+07 
2 373.05 346.53 0.120251E+07 
3 373.01 348.16 0.114670E+07 
4 373.09 348.15 0.114671E+07 
5 373.35 350.27 0.108643E+07 
6 373.45 350.26 0.108644E+07 
7 373.20 353.55 0.963947E+06 
8 373.30 353.55 0.963951E+06 
9 373.09 356.42 0.864266E+06 

10 373.24 356.51 0.865647E+06 
11 373.24 359.79 0.755029E+06 
12 373.11 359.70 0.753999E+06 
13 372.94 362.37 0.667284E+06 
14 372.84 362.36 0.667290E+06 
15 373.18 351.45 0.105375E+07 
16 373.06 351. 34 0.105161E+07 
17 372.97 346.82 0.121461E+07 
18 372.15 346.81 0.121462E+07 

CALCULATION RESULTS 
CASE DT ALl" ALN ALF/ALN PSI 

- ·J/m2s J/m2s deg K 
------------------------------------------------------------

1 26.537 45314.5 10209.4 4.439 97.394 

2 26.523 45338.4 10210.4 4.440 97.393 

3 24.853 46139.3 10416.3 4.430 97.520 

4 24.944 45971.4 10407.2 4.417 97.522 

5 23.079 47074.4 10664.5 4.414 97.700 

6 23.190 46849.5 10652.4 4.398 97.703 

7 19.646 49065.8 11181.6 4.388 97.954 

8 19.751 48305.2 11167.4 4.370 97.958 

9 16.668 51851.8 11721.2 4.424 98.178 

10 16.730 51742.2 11713.8 4.417 98.191 

11 13.450 56136.0 12454.9 4.507 98.455 

12 13.408 56235.0 12461.2 4.513 98.442 

13 10.568 63141.9 13295.0 4.749 98.651 

14 10.477 63690.9 13322.6 4.781 98.646 

15 21.729 48495.1 10853.3 4.468 97.786 

16 21.719 48418.9 10850.8 4.462 97.773 

17 26.152 46444.2 10252.6 4.530 97.413 

18 25.338 47936.7 10326.6 4.642 97.3RO 

• "." SMA 



AMERICA 
WATER 

-280-

----- TUBE DIMENSION -----
D· Pi tch h t a AR 

-~;~~~~-----;~~~~-----~~~~~-----~~~~~-----~~~~~-----;~~~~-. 
F02IAl;~--------------------------------------------------------

----- DATA TABLE -----
TS/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
·3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

373.35 
373.43 
373.21 
373.21 
373.17 
373.20 
373.40 
373.41 
372.79 
372.70 
373.17 
372.87 
373.02 
373.18 
373.40 
373.36 
373.08 
372.99 

345.09 
345.23 
346.79 
346.58 
348.72 
348.72 
352.39 
352.40 
354.90 
354.90 
358.57 
358.42 
361.46 
361.60 
350.35 
350.35 
345.91 
346.02 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.116235E+07 
0.116542E+07 
0.110848E+07 
0.110306E+07 
0.104583E+07 
0.104583E+07 
0.937335E+06 
0.937331E+06 
0.835044E+06 
0.835044E+06 
0.734058E+06 
0.731979E+06 
0.652434E+06 
0.654058E+06 
0.101790E+07 
0.101790E+07 
0.117440E+07 
0.117748E+07 

ALN ALF/ALN 
J/m2s 

PSI -deg 

------------------------------------------------------------
\ 

1 28.258 41133.5 10019.1 4.105 71.965 

2 28.205 41319.6 10027.7 4.121 71.986 

3 26.417 41960.9 10228.3 4.102 72.165 

4 26.635 41413.9 10202.2 4.059 72.138 

5 24.446 42781.2 10474.2 4.084 72.399 

6 24.476 42728.8 10471.3 4.081 72.401 

7 21.011 44611.6 10969.3 4.067 72.865 

8 21.015 44603.0 10969.0 4.066 72.866 

9 17.895 46663.5 11475.0 4.067 73.137 

10 17.805 46699.4 11488.6 4.082 73.131 

11 14.599 50281.4 12171.2 4.131 73.616 

12 14.447 50666.5 12196.6 4.154 73.579 

13 11.564 56419.4 12975.9 4.348 73.966 

14 11.580 56481.7 12976.7 4.353 73.994 

15 23.046 44168.2 10670.7 4.139 72.614 

16 23.006 44245.0 10675.0 4.145 72.612 

17 27.172 43221.0 10134.6 4.265 72.049 

18 26.968 43662.1 10155.6 4.299 72.057 



AMERICA 
WATER 

-281-

----- TUBE DIMENSION -----
D . Pitch h t e ~ 

-~;~~~~-----~~;~~-----~~~~~-----~~~~~-----~~~~~-----;~~81-

F15IA1~~--------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

372.94 
373.08 
373.49 
373.38 
373.33 
373.41 
373.24 
373.15 
373.10 
373.09 
373.01 
372.88 
372.91 
372.93 
372.99 
373.01 
372.89 
373.01 

341.59 
341.72 
343.71 
343.59 
345.79 
345.90 
349.21 
349.31 
355.07 
352.32 
355.94 
355.86 
359.09 
359.17 
347.53 
347.53 
342.63 
342.63 

CALCULATION RESULTS 
DT ALF 
K J/m2s 

0.108498E+07 
0.108807E+07 
0.104662E+07 
0.104391E+07 
0.993367E+06 
0.995697E+06 
0.886548E+06 
0.888305E+06 
0.843576E+06 
0.800762E+06 
0.705276E+06 
0.704239E+06 
0.630736E+06 
0.631548E+06 
0.972408E+06 
0.972408E+06 
0.109749E+07 
0.109749E+07 

ALN ALF/ALN 
J/m2s 

PSI -deg 

------------------------------------------------------------
1 31.347 34611.9 9678.3 3.576 0.000 

2 31.358 34698.3 9681.7 3.584 0.000 

3 29.784 35140.3 9857.3 3.565 0.000 

4 29.790 35042.3 9853.2 3.556 0.000 

5 27.537 36073.9 10100.4 3.572 0.000 

6 27.508 36196.6 10106.3 3.582 0.000 

7 24.030 36893.4 10531.4 3.503 0.000 

8 23.837 37265.8 10554.3 3.531 0.000 

9 18.033 46779.6 11459.9 4.082 0.000 

10 20.770 38553.8 10996.6 3.506 0.000 

11 17.067 41324.0 11639.6 3.550 0.000 

12 17.017 41384.4 11645.0 3.554 0.000 

13 13.816 45652.6 12351.0 3.696 0.000 

14 13.764 45884.0 12364.6 3.711 0.000 

15 25.464 38187.6 10338.1 3.694 0.000 

16 25.484 38157.6 10336.3 3.692 0.000 

17 30.259 36269.9 9788.1 3.706 0.000 

18 30.379 36126.6 9779.5 3.694 0.000 



-..,,'--=-------- -282-

Data of Honda [52] for R-113 and methanol 



HONDA 
R113 

-283-

----- TUBE DIMENSION -----
D Pitch h teAR 

-~;~~;~-----~~;~~-----~~~;~-----~~~~~-----~~~~~-----;~~;~-
----------------------------------------------------------

----- DATA TABLE -----
Ts/K Tw/K Qr/ J /m2 s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

327.68 
325.01 
326.28 
322.09 
321.23 
323.74 
327.45 
334.96 
328.35 
343.25 
324.76 

318.36 
317.22 
321.76 
318.25 
319.33 
321.46 
324.30 
320.03 
316.30 
324.63 
319.70 

CALCULATION RESULTS 
DT ALF - J/m1 s K 

0.137200E+06 
0.119500E+06 
0.745000E+05 
0.635000E+05 
0.364000E+05 
0.415000E+05 
0.551000E+05 
0.201200E+06 
0.167100E+06 
0.244100E+06 
0.803000E+05 

ALN ALF/ALN 
J/ml.s 

PSI 
deg 

------------------------------------------------------------
1 9.320 14721.0 1407.8 10.457 114.399 

2 7.790 15340.2 1474.7 10.402 114.087 

3 4.520 16482.3 1687.8 9.765 114.741 

4 3.840 16536.5 1762.7 9.381 114.034 

5 1.900 19157.9 2102.6 9.111 114.115 

6 2.280 18201.8 2005.8 9.075 114.542 

7 3.150 17492.1 1845.4 9.478 115.142 

8 14.930 13476.2 1245.7 10.818 115.076 

9 12.050 13867.2 1319.9 "10.506 114.182 

10 18.620 13109.6 1171.6 11.189 116.217 

11 5.060 15869.6 1642.6 9.661 114.384 
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R113 

----- TUBE DIMENSION -----
D Pi tch h teAR 

----------------------------------------------------------
17.050 0.640 0.920 0.290 5.300 3.680 

----------------------~-----------------------------------

----- DATA TABLE -----
Ts/K Tw/K Q /J/m.'Ls .... ·~ 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

325.46 
327.90 
331.49 
330.22 
327.11 
324.09 
324.56 
331.66 
328.48 
326.11 
326.43 

318.98 
320.34 
321.64 
317.12 
316.61 
315.96 
318.45 
314.75 
324.93 
323.75 
321.46 

LCULATION RESULTS 
DT .ALF - J/mzs K 

0.872000E+05 
0.100900E+06 
0.126900E+06 
0.156700E+06 
0.129600E+06 
0.104100E+06 
0.834000E+05 
0.189600E+06 
0.536000E+05 
0.382000E+05 
0.690000E+05 

ALN ALF/ALN 
J/m2.s 

PSI 
deg 

------------------------------------------------------------
1 6.480 13456.8 1544.5 8.713 109.380 

2 7.560 13346.6 1483.9 8.995 109.739 

3 . 9.850 12883.2 1385.7 9.297 110.173 

4 13.100 11961.8 1291.9 9.259 109.452 

5 10.500 12342.9 1367.9 9.023 109.167 

6 8.130 12804.4 1460.7 8.766 108.870 

7 6.110 13649.8 1568.2 8.704 109.244 

8 16.910 11212.3 1211.2 9.257 109.224 

9 3.550 15098.6 1790.9 8.431 110.425 

10 2.360 16186.4 1986.5 8.148 110.091 

11 4.970 13883.3 1649.1 8.419 109.792 
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----- TUBE DIMENSION -----
D Pi t ch h .t e AR 

----------------------------------------------------------
15.770 0.980 1.460 0.510 4.500 3.840 

----- DATA TABLE -----
Ts/K Tw/K Qr/J /m"l:s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

322.30 
324.37 
326.71 
329.37 
324.84 
321.70 
324.77 
325.22 
327.10 
324.36 
328.78 

310.17 
313.50 
317.60 
320.90 
318.42 
314.53 
319.56 
323.83 
324.38 
320.31 
314.57 

CALCULATION RESULTS 
DT ALF 
K J/m2 s 

0.120100E+06 
0.109600E+06 
0.940000E+05 
0.877000E+05 
0.690000E+05 
0.754000E+05 
0.591000E+05 
0.207000E+05 
0.354000E+05 
0.479000E+05 
0.128900E+06 

ALN ALF/ALN 
J/m?s 

...f.ll 
deg 

------------------------------------------------------------
1 12.130 9901.1 1348.9 7.340 118.611 

2 10.870 10082.8 1385.0 7.280 119.093 

3 9.110 10318.3 1445.5 7.138 119.683 

4 8.470 10354.2 1469.3 7.047 120.211 

5 6.420 10747.7 1579.2 6.806 119.670 

6 7.170 10516.0 1539.0 6.833 119.059 

7 5.210 11458.7 1663.8 6.887 119.795 

8 1.390 14892.1 2313.5 6.437 120.309 

9 2.720 13014.7 1953.7 6.662 120.482 

10 4.050 11827.2 1772.2 6.674 119.857 

11 14.210 9071.1 1292.1 7.020 119.458 
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----- TUBE DIMENSION -----
D Pitch h t e AR 

----------------------------------------------------------
17.090 0.500 1.130 0.110 0.000 5.480 

----- DATA TABLE -----
Ts/K Tw/K Qr/J/m1s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 

344.46 
344.45 
344.44 
344.46 
344.62 
344.44 
344.46 
344.51 

330.91 
333.25 
335.41 
337.41 
339.29 
340.26 
341.40 
342.49 

CALCULATION RESULTS 
DT ALF -K J/m 1 s 

0.328900E+06 
0.272600E+06 
0.229400E+06 
0.189700E+06 
0.148300E+06 
0.119100E+06 
0.917000E+05 
0.652000E+05 

ALN ALF/ALN 
J /m's 

~ 
deg 

------------------------------------------------------------

1 13.550 24273.1 3525.4 6.885 68.560 

2 11.200 24339.3 3705.0 6.569 68.979 

3 9.030 25404.2 3917.2 6.485 69.367 

4 7.050 26907.8 4174.4 6.446 69.729 

5 5.330 27823.6 4483.8 6.205 70.083 

6 4.180 28492.8 4768.6 5.975 70.242 

7 3.060 29967.3 5160.2 5.807 70.450 

8 2.020 32277.2 5730.0 5.633 70.652 
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----- TUBE DIMENSION -----
D Pitch h teAR 

----------------------------------------------------------
17.050 0.640 0.920 0.290 5.300 3.680 

----- DATA TABLE -----
Ts/K Tw/K Q~/J/~.s 

------------------------------------------

CASE 

1 344.53 
2 344.36 
3· 344.35 
4 344.35 
5 344.26 
6 344.91 
7 344.32 
8 344.61 
9 344.31 

10 344.63 
11 344.44 

320.02 
334.37 
338.24 
341.21 
342.89 
332.45 
335.86 
339.23 
339.23 
341.00 
342.25 

CALCULATION RESULTS 
DT ALF - J/m2.s K 

0.308700E+06 
0.218700E+06 
0.147400E+06 
0.869000E+05 
0.431000E+05 
0.271700E+06 
0.196300E+06 
0.161000E+06 
0.128000E+06 
0.101000E+06 
0.669000E+05 

ALN ALF/ALN 
J /m"'2s 

PSI 
deg 

------------------------------------------------------------
1 24.510 12594.9 3011.6 4.182 54.013 

2 9.990 21891.9 3818.4 5.733 57.273 

3 6.110 24124.4 4332.1 5.569 58.149 

4 3.140 27675.2 5129.3 5.396 58.822 

5 1.370 31459.9 6320.0 4.978 59.193 

6 12.460 21805.8 3607.0 6.045 56.899 

7 8.460 23203.3 3985.5 5.822 57.606 

8 5.380 29925.7 4475.7 6.686 58.403 

9 5.080 25196.9 4540.5 5.549 58.369 

10 3.630 27823.7 4945.7 5.626 58.806 

11 2.190 30547.9 5617.6 5.438 59.068 
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----- TUBE DIMENSION -----
D Pitch h t 

15.770 0.980 1.460 0.510 

----- DATA TABLE -----
Ts/K Tw/K Qr/ J/m2s 

------------------------------------------

CASE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

344.30 
344.20 
344.30 
344.11 
344.21 
344.19 
344.25 
344.18 
344.28 

333.43 
333.31 
335.17 
336.63 
338.31 
339.98 
341.50 
342.37 
342.41 

CALCULATION RESULTS 
.!IT. ALF 

J/m~.s K 

0.222500E+06 
0.226000E+06 
0.189600E+06 
0.161100E+06 
0.130100E+06 
0.980000E+05 
0.653000E+05 
0.452000E+05 
0.469000E+05 

ALN ALF/ALN 
J/m2.s 

9-. AR 

4.500 : .• 840 

PSI -deg 
------------------------------------------------------------

1 10.870 20469.2 3809.2 5.374 80.596 

2 10.890 20753.0 3807.1 5.451 80.572 

3 9.130 20766.7 3985.0 5.211 80.850 

4 7.480 21537.4 4193.9 5.135 81.050 

5 5.900 22050.8 4456.6 4.948 81.303 

6 4.210 23277.9 4855.7 4.794 81.547 

7 2.750 23745.5 5408.0 4.391 81.776 

8 1.810 24972.4 6008.5 4.156 81.899 

9 1.870 25080.2 5959.9 4.208 81.912 
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APPENDIX C Error analysis 

As indicated in [42], the probable uncertainty in 

computated quatity is given by: 

(C-l) 

where W is the calculated result, i.e. 

temperatures of vapour, coolant to-inlet 

and rise between to-inlet and from-outlet, 

coolant flow rate and potential across the 

heater terminal in the present work, 

Xl,X a··· .Xn are measured quatities, 

~Wl,AW2··AWn are uncertainties in measured 

quantities. 

a 

T h us we use e q. (C - 1 ) toe s tim ate the err 0 r sin Q, L 1-1 T D, U 

and vv. 

(1) Uncertainty of overall heat-transfer coefficient 

The uncertainty of the overall heat-transfer 

coefficient given by eq.(3-17) is then determined by: 

(C-2) 

where 

(C-3) 

8 L MlO _ (A 2 + A 2 + A 2) ~ 
LMTO - 1 2 3 

(C-4) 
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T. - T 1n out 
Al=I:1T~ 1 -I. 

l(T -T. )(T -T )In( v 1n)} v 1n v out T-T . v out 
• 

1 
A =I:1Te T -T. 

2 {(T -T. )In( v 1n)} 
v 1n T -T t v au 

1 
A3=I:1Te T -I. 

{(Tv-Tout)ln(Tv_T,n j} 
v out· 

~Te is dependent on the precision of digital 

voltmeter and estimated to be ±l pV equivalent to a 

temperature difference of 0.025 K, and AV is dependent on 

the accuracy of the flow meter estimated to be ±l %. 

The uncertainty in the vapour velocity is calculated 

as follows. When assuming negligible error in measurement 

of dimensions of the test section and in properties 

equations, the uncertainty of the vapour velocity is given 

by: (C-5) 

~Q 2 
= { ( ) 

Qh-Q1oss 

The uncertainty of input power is estimated by: 

~v 
= 2n( Vvolt) 

volt 
(C-S) 

where n is the number of heaters used, i. e. one for R-113 

and three , for ethylene glycol and we estimated 

~Vvolt ±S V Eq.(3-l5) was judged to give the thermal 

losses with an accuracy of 10 eli ,.. The thermal losses from 
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the apparatus were about 4 and 16 % for R-ll~: and 

ethylene glycol respectively of the total boiler input 

power so that the estimate of the error in Qloss is not a 

critical significance. 

were in fact found to be 0.2 % and 1 % for R-113 and 

ethylene glycol respectively. The values of 6Q I(Q n ) h h-·.(loss 
~ere found to be 4 % and 14 % for R-113 and ethylene ,lyc01 

respectively. 

The value of the third term in the right hand side 

in eq.(C-5) is negligibly small in comaprison with other 

terms. Eventually, the uncertainties of vapour velocities 

were found to be around 6 % for R-113 and 15 % for ethylene 

glycol. These are probably upper limits. 

Table C-l shows the calculated consequential error 

estimates at a coolant velocity of around 4 mis, eXct!pt in 

the case of plain tube for R-l13 in which errors were 

estimated at a coolant veloci ty of around 0.9 mis, (dil"ta at 

higher coolant velocities were neglected as described in 

section 4.3). The table also includes results for Yau et 

al. [35.36] steam data for comparison. 

(2) Uncertainty of vapour-side heat-tarns fer coefficient 

The calculation of the vapour-side coefficient from 

the overall coeffcient invokes the assumption of uniform 

radial conduction. i.e. concentrics isotherms, in the tube 
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wall. Even for the case of the plain tube this cannot be 

valid since the vapour-side coefficient decreases as the 

condensate film thickens around the tUbe. For finned tube 

the phenomenon of condensate retention accenturates the 

variation of wall temperature. Thus a vapour-side 

coefficient defined as the mean heat flux devided by the 

mean wall temperature differs from that obtained by the 

subtracting wall and coolant resistances from the measured 

overall resistance. It is therefore not possible to obtain 

Itt " t' t f" ", h ' , , rue es lma es 0 error ln t e vapour-slde coefflclent. 

We can infer that the vapour-side coefficients 

reported here (i.e. based on a "modified Wilson plot" 

methnd) will be less valiable when the error in the overall 

coefficient is large. Howe v e r , as i n d i cat e dab 0 v e, t ~li sis 

not the only factor to be· considered, since whon the 

coolant-side resistance is small, the wall temperat,lre is 

more uniform and the assumption underling the calcu.ation 

is more valid. As a guide to the validity of the uniform 

wall temperature approximation, we may use the rat'.o of 

coolant-side temperature difference. When this quantity 

appears zero the approxiamtion becomes comp~etely valid 

(since the coolant-side coefficient is essentially uniform 

over the tube). Thus we consider: 

(C-7) 

For the present' data and those of Vau et ale [35,36) this 

"index of uncertainty" (small values are "good") was found 

to be between 9.35 and 0.5 for R-113, between 0.4 and 0.65 
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for ethylene glycol and between 0.7 and 0.85 for steam. On 

this basis, the uncertainty of vapour-side heat-transfer 

coefficients increases in the sequence steam, ethylene 

glycol and R-113. Since this is in reverse order of the 

estimated errors in the overall heat-transfer coefficients 

(see Table C-l), it could be the case that all of the data 

are of similar reliability although this cannot be said 

with certainty. 

Table C-1 Estimation errors of parameters calculated 
directly from measured variables 

(~) x100 C~\LMTD) xl 00 (@.)x100 
I:::. v 

( --..1.) x 100 U LMTD Q Vv 

R-113 plain 12 8.3 8.4 4 

b~2mm 10 7.0 7.5 

ethylene plain 5.0 3.5 3.6 14 
glycol 

b~2 mm 2.0 1 . 2 1.6 

steam plain 3.0 2.Q 2.5 17 

b.$2 mm 2.0 1 .4 1 . 7 
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Appendix D Computer program for data processing 

A. Program "ANA" 

This program is written for calculations described in 

section 3.3, section 4.2 and section 4.3. 

All data given from the experiments may be set in the 

data file or alternatively manual input is possible in this 

program. The data files should be written in the following 

formj-

INPUT FORM 

1 i s t 
fin pitch 
date 
number of heaters 
conditions 

measurement 

flow 
rate 

t/min 

coolant 
inlet 

p/mm 
day, month, year 

lsn~4 

no. of heater ambient. barometer 
& potential/W ' temp./ C ' reading/inHg 

temperature 
condensate vapour coolant 
return increase 

data set 

gage pressure 
in test section 

em liquid 
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Data set which give flow rate, temperature of coolant 

inlet and outlet, and vapour in FV or K are also avilable, 

e.g. Yau et ale [35,36,37] data and Georgiadis [40] duta. 

For run of this program, the following command may be 

required. 

F(ANA,F=3.BMC+4.data file+7.outl+8.out2+9.out3) 

where BMC is data file for Barrow meter correction. 

Calculated parameters are written in outl, and optionally 

out2 is data file for graph drawing, Q vs Tv-Tw. Library 

source "CURV" can offer program for drawing graphs. The 

out3 is data for construction of data base 

"MULTI". 

B. Data base "MULTI" 

Configuration of finned tubes, temperature of vapour 

and tube wall, and heat flux 

the following data;-

are stored in this file for 

1) The present data for R-113 and ethylene glycol 

2) Yau et al. [35,36,37] data for steam 

3) Honda et al. [34] for R-113 and methanol 

4) Georgiadis [40] for steam 
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C. Program "CALL" 

This program is written for collecting parameters 

from the data of "MULTI" as follows;-

(1) For selected name of experimentors or liquid or 

both from the list shown on the screen, the 

vapour-side heat-transfer coefficient, Tv, Tw and 

Q, the retention angle and all properties are 

listed in the output file. 

(2) The parameters for requirement are also listed 

in the other output file. 

For run this program, 

usedj-

the following command may be 

F(CALL,F=4.MULTI+7.filel+8.file2) 

where filel stores results (1) and file2 stores (2). 
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Computer program "ANA" 
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C PROGRAM ANA 
C 
C This progrmme is for analysing the experimental data by using 
C the theory of least squares and for calculating theoretical 
C heat transfer coefficients on the base of experimental temFarature 
C differens (Ts-Tw). 
C 
C command for run: 
C F(ANA,F=3.BMC+4.datafile +7.outl+8.out2+9.out3) 
C BMC: barometer correction 
C 7 : all output 8: Q-dT graph data 9: Tw,Ts and Q data 
C 

C 

COMMON/VALU/VOLU(100),PD(100),T(7,100),Q(100),UW(100),VOL(100), 
1 UV(100) 

COMMON/CCC/CPLC,VLC,VISC,KC,HFGC 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
COMMON/BMC/BARO(11,2S) 
REAL KL,KC,KT 

C------------------------------------------------------
C DIMENSIONS OF FINNED TUBE AND APARATUS 
C------------------------------------------------------
C 

C 
C 

C 

DATA DI,DO,AL,KT/.009779,.0127,.1016,.3962/ 

PI=4*ATAN(1.) 
DTS=.1143 
AS=PI*DTS**2/4 

C------------------------------------------------------
C CORELATION OF BAROMETER 
C------------------------------------------------------
C 

C 

C 

READ(3,*) «BARO(I,J),I=1,11),J=1,2S) 
DO SO 1=1,11 
DO SO J=1,2S 

SO BARO(I,J)=BARO(I,J)/1000. 

10 CONTINUE 

C------------------------------------------------------
C INITIALIZATION 
C------------------------------------------------------

C 

DO 100 1=1,100 
VOLU(I)=O. 
VOL(I) =0. 
UV(I) =0. 

100 CONTINUE 

C------------------------------------------------------
C MAIN CALCULATION FLOW 
C-----------------:------------------------------------
C 

WRITE(6,1200) 
READ(S,*) ISD 
WRITE(6,1400) 
READ(S,*) LIQ 



C 

C 

C 

C 

C 
300 
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IF(LIQ.EQ.l) WRlTE(7,5100) 
IF(LIQ.EQ.2) WRITE(7,5200) 
IF(LIQ.EQ.3) WRITE(7,5300) 
IF(ISD.EQ.l) CALL INPUTl(N,AS,PI,DI,DO,AL,LIQ,PIT) 
IF(ISD.EQ.2) CALL INPUT2(N,PI,DI,DO,AL,PIT) 

WRITE(6,1500) 
READ(5,*) MET 
IF(MET.EQ.1) WRITE(6,2000) 
IF(MET.EQ.1) READ(S,*) COA,COB 
1F(MET.EQ.1) CALL COOL(N,DO,DI,KT,COA,COB) 
1F(MET.EQ.2) CALL LEAS(N,DO,DI,KT,L1Q) 

CALL THEOR(N,DO,LIQ) 

CALL UNCERN(N,DO,DI,KT,PI) 

DO 300 I=l,N 
VOLU(I)=VOL(I)*60000. 
CONTINUE 

WR1TE(9,2400) N 
DO 400 I=l,N 
Q1000=Q(I)*1000. 
TS=T(3,1) 
TW=T(6,I) 
t-lRITE(9,2200) TS,TW,Q1000 

400 CONTINUE 
WRITE(6,1000) 
READ(5,*) IJK 
IF(IJK.EQ.2) GO TO 999 
GO TO 10 

C 

c 

999 WRITE(8,1600) 
STOP 

1000 FORMAT(/' 
1200 FORMAT(/' 

1 /, 
1400 FORMAT(/' 

1 /, 
2 I' 

1500 FORMAT(/' 
1 /' 

IF INPUT NEXT DATA, YES=l : NO-2') 
DATA FORM: 5 TEMP DATA=l', 

3 =2') 
LIQUID CHOICE WATER=l', 

Rl13 =2', 
ETHLEN=3') 

Chose Analysis Method; Original=l', 
Wilson =2') 

1600 FORMAT('////') 
2000 FORMAT(/' Give COA and COB (usualy COA-0.03 COB-O) " 

1 /' (america COA-0.0635 COB-26.4)', 
2 I' for [COA]*RE**.S*PR**.33*(VIS/VISW}**.14+[COB]') 

2200 FORMAT(3E15.6) 
2400 FORMAT(!3) 
5100 FORMAT(' WATER') 
5200 FORMAT(' R-113') 
5300 FORMAT(' .ETHYLENE GLYCOL') 

END 

c----------~--------------------~------------------------c SUBROUTINE PROGRAMME 
c-----------------~~-----~~~-----------~---~---------c 
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c 
C INPUT FORM 
C---------------------------------------------------------
C 

c 

c 

c 

C 

SUBROUTINE INPUT1(JN,AS,PI,DI,DO,AL,LIQ,PITCH) 

DIMENSION E1D(100),E2D(100),E3D(100),E4D(100) 
COMMON/VALU/VOLU(100),PD(100),T(7,100),Q(100),UW(100) VOL(100) 

1 UV( 100) , , 
COMMON/CCC/CPLC,VCL,VISC,KC,HFGC 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KC,KL 

WRITE(6,3000) 
READ ( 5 , *) MC 
IF(MC.EQ.1) GO TO 5 
WRITE(6,1000) 
WRITE(6,1100) 
READ(s,*) PITCH 
WRITE(7,11s0) PITCH 

5 CONTINUE 
J=O 
IN=O 

10 CONTINUE 
IF(MC.EQ.1) GO TO 200 
WRITE(6,1200) 
READ(s,*) IDAY,IMON,IYEAR 
WRITE(6,1400) 
CALL POWER(QP,TA,PA,LIQ,s,IYEAR) 
WRITE(6,1600) 
READ(s,*) N 
GO TO 250 

200 CONTINUE 
READ(4,*) PITCH 
WRITE(7,11s0) PITCH 
READ(4,*) IDAY,IHON,IYEAR 
CALL POWER(QP,TA,PA,LIQ,4,IYEAR) 
READ(4,*) N 

250 CONTINUE 
CALL PCOR(PA,TA,PAN) 
IF(LIQ.EQ.1) VLA=.01*(.099917+TA*(6.sE-6+3.83333E-7*TA» 
IF(LIQ.EQ.2) VLA=(.617+.000647*TA**1.1)*1.E-3 
IF(LIQ.EQ.3) VLA=9.24848E-4+6.2796E-7*(TA-6s.)+9.2444E-10 

1 *(TA-6s.)**2+3.0s7E-12*(TA-6s.)**3 

1-0 
15 1-1+1 

IF{MC.EQ.1) GO TO 300 
WRITE{6,1700) 
READ{S,*) VOLU{I) 
WRITE{6,1800) 
READ(S,*) E1D{I),E2D{I),E3D{I),E4D(I) 
WRITE ( 6,1900) . 
READ{S,*) PD{I) 

GO TO 3S0 
300 READ{4,*) VOLU{I),E1D(I),E2D(I),E3D{I),E4D(I),PD{I) 
350 CONTINUE 



C 

C 

C 

C 

C 

C 

IF(I.LT.N) GO TO 1S 

20 CONTINUE 
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WRITE(6,2400) IDAY,IMON,IYEAR 
WRITE(6,11S0) PITCH 

WRITE(6,2000) 
WRITE(6,2100) (I,VOLU(I),E1D(I),E2D(I),E3D(I),E4D(I),PD(I), 

1 I=1,N) 
WRITE(6,2200) 
READ(S,*) IC 
IF(IC.EQ.999) GO TO 2S 

WRITE(6,2100)IC,VOLU(IC),E1D(IC),E2D(IC),E3D(IC),E4D(IC),PD(IC) 
WRITE(6,2300) 
READ(S,*) VOLU(IC),E1D(IC),E2D(IC),E3D(IC),E4D(IC),PD(IC) 
GO TO 20 

2S CONTINUE 
WRITE(7,2400) IDAY,IMON,IYEAR 

WRITE(7,2000) 
DO SO I=l,N 
IJN=I+JN 

WRITE(7,2100) IJN,VOLU(I),E1D(I),E2D(I),E3D(I),E4D(I),PD(I) 
SO CONTINUE 

WRITE(7,2S00) 

JO=J+1 
DO 100 I=l,N 

IF(E4D(I).LE.1S.) GO TO 100 
J=J+l 
VOL(J)=VOLU(I)/60000 
UW(J)=VOL(J)/(PI*DI**2/4) 
E1=E1D(I) 
E2=E2D(I) 
E3=E3D(I) 
E4=E4D(I) 
P =PD(I) 
CALL TEMP(TIN,E1) 
CALL TEMP(TSUB,E2) 
CALL TEMP(TS,E3) 
ES=E1+E4/2 
DT=(2.S518416E-2-6.611964SE-7*ES+2.67S02S7E-11*3*ES**2)*E4 
TOUT=TIN+DT 
TM=(TIN+TOUT)/2 
CALL WATER(TM,TS) 

QCOOL-CPLC*VOL(J)*(TOUT-TIN)/(PI*DO*AL*VCL) 
PA-PAN+P/VLA/100*9.8ll83/1E+6 
CALL PROP(TS,TS,PS,LIQ) 
QLOS-S.328*(TS-TA-273.1S)/lOOO 
U-(QP-QLOS)*VV/AS/(CPL*(TS-TSUB)+HFG) 

IF(LIQ.EQ.1) AMASS-l8.01S 
IF(LIQ.EQ.2) AMASS-187.38 
IF(LIQ.EQ.3) AMASS-62.07 
W-(PA-PS)/(PA-PS*(1.-AMASS/28.96» 
W-W*lOO. 
WRITE(7,2600) PA,PS,W,U 
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C 
T(l,J)=TIN 
T(2,J)=TOUT 
T(3,J)=TS 
T(4,J)=TSUB 
T(s,J)=TM 
Q(J) =QCOOL 
UV(J) =U 

100 CONTINUE 
C 

IN=J 
WRITE(7,2700) 
WRITE(7,2800) (I,(T(K,I),K=1,4),I=JO,JN) 
WRITE(6,2900) 
READ(s,*) III 
IF(III.EQ.1) GO TO 10 
RETURN 

C 

C 

C 

1000 FORMAT(/' INPUT EXPERIMENTAL DATA') 
1100 FORMAT(/' PITCH 1') 
1150 FORMAT(/ ' PITCH=',F6.3,'mm') 
1200 FORMAT(/' DATE DAY,MONTH,YEAR ?') 
1400 FORMAT(/' V LOSS(volt) Ambient Temp(c) Atmospheric Press(in)') 
1600 FORMAT(/' NUMBER OF TEST CASES') 
1700 FORMAT(/' FLOW RATE(l/min) ?') 
1800 FORMAT('Read of MicroVolt E1,E2,E3,E4 ?') 
1900 FORMAT('CHAMBER PRESS (cm liquid)') 
2000 FORMAT(/'CASE VOL COOLANT LIQUID 

1 ' L/MIN INLET RETURN 
2100 FORMAT(1H ,I3,F6.2,4F10.2,4X,F6.2) 

TEST 
SECTION 

DT' , lOX, 'P' / 
(M. VOLT)') 

2200 FORMAT(//'WHICH CASE WOULD YOU LIKE CHANGE? IF NO, INPUT 999') 
2300 FORMAT(lH ,'INPUT NEW VALUES') 
2400 FORMAT(/' DATE OF EXPERlMENT',I3,'-',I2,'-',I4) 
2500 FORMAT(/9X,' PA PS(Mpa) W(io) U(m/s)') 
2600 FORMAT(9X,4F8.4) 
2700 FORMAT(/' CASE TIN 
2800 FORMAT(2X,I3,4F8.2) 

TOUT TS TSUB') 

2900 FORMAT(/' Any Other DATA? YES=1 OR NEXT=999') 
3000 FORMAT(/' DATA FILE=l or MANUAL INPUT=2') 

END 

c------~---------------------------------------------c INPUT FORM FOR YAU'S AND AMERICAN DATA 
, C----------------------------------------------------
c 

c 

SUBROUTINE INPUT2(JN,PI,DI,DO,AL,PITCH) 
DIMENSION E1D(50),E2D(sO),E3D(sO) 
COMMON/VALU/VOLU(100),PD(100),T(7,100),Q(100),UW(100), 

1 VOL(100),UV(100) 
COMMON/CCC/CPLC,VCL,VISL,KC,HFGC 
REAL KC 

WRITE(6,3000) 
READ(S, *) MC 
IF(MC.EQ.l) WRITE(6,3100) 

,READ(S,*) lTD 
IF(ITD.EQ.l) WRITE(6,3200) 



C 

.. 

C 
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IF(ITD.EQ.1) READ(5,*) lAME 
IF(MC.EQ.l) GO TO 5 
WRITE(6,1000) 
WRITE(6,1100) 
READ(5,*) PITCH 
WRITE(7,1200) PITCH 

5 CONTINUE 
J=O 
IN=O 

10 CONTINUE 
IF(MC.EQ.1) GO TO 200 
WRITE(6,1300) 
READ ( 5 , *) IDAY, IMON , IYEAR 
WRITE(6,1400) 
READ(5,*) N 
GO TO 250 

200 CONTINUE 
READ(4,*) PITCH 

IF(IAME.NE.1) READ(4,*) IDAY,IMON,IYEAR 
READ ( 4, *) N 

250 CONTINUE 
1=0 

15 1=1+1 
IF(MC.EQ.1) GO TO 300 
WRITE(6,1600) 
READ(5,*) VOLU(I) 
WRITE(6,1800) 
READ(5,*) E1D(I),E2D(I),E3D(I) 
GO TO 350 

300 READ(4,*) VOLU(I),E1D(I),E2D(I),E3D(I) 
350 CONTINUE 

IF(I.LT.N) GO TO 15 
20 CONTINUE 

WRITE(6,2400) IDAY,IMON,IYEAR 
WRITE(6,1200) PITCH 
WRITE(6,2000) 
WRITE(6,2100)(I,VOLU(I),E1D(I),E2D(I),E3D(I),I-1,N) 
WRITE(6,2200) 
READ(5,*) IC 
IF(IC.EQ.999) GO TO 25 
WRITE(6,2100) IC,VOLU(IC),E1D(IC),E2D(IC),E3D(IC) 
WRITE(6,2300) 
READ(5,*) VOLU(IC),E1D(IC),E2D(IC),E3D(IC) 
GO TO 20 

25 CONTINUE 
WRITE(7,1200) PITCH 

WRITE(7,2400) IDAY,IMON,IYEAR 
WRITE(7,2000) 
DO 50 I-1.,N 
IJN-I+JN 
WRITE(7,2100) IJN,VOLU(I),E1D(I),E2D(I),E3D(I) 

50 CONTINUE 
Jo-J+1 
DO 100 I-~,N 
J-J+1 
IF(ITD.EQ.1) GO TO 120 



120 

160 

180 

140 

100 

C 

-306-

VOL(J)=VOLU(I)/60000 
UW(J)=VOL(J)/(PI*DI**2/4) 
E1=EID(I) 
E2=E2D(I) 
E3=E3D(I) 
CALL TEMP(TIN,El) 
CALL TEMP(TOUT,E2) 
CALL TEMP(TS,E3) 
GO TO 140 
CONTINUE 
IF(IAME.EQ.l) GO TO 160 
TABS=O. 
GO TO 180 
DI=0.0127 
DO=0.018 
AL=0.133 
TABS=273.16 

CONTINUE 

CONTINUE 

UW(J)=VOLU(I) 
VOL(J)=UW(J)*PI*DI**2/4. 
VOLU(I)=VOL(J)*60000. 
TIN=E1D(I)+TABS 
TOUT=E2D(I)+TABS 
TS=E3D(I)+TABS 

TM=(TIN+TOUT)/2 
CALL WATER(TM,TS) 
QCOOL=CPLC*VOL(J)*(TOUT-TIN)/(PI*DO*AL*VCL) 
T(l,J)=TIN 
T(2,J)=TOUT 
T{3,J)=TS 
T(5,J)=TM 
Q(J) =QCOOL 
UV(J)=O. 
CONTINUE 
IN=J 
WRITE(7,2700) 
WRITE(7,2800)(I,(T{K,I),K=1,3),I=JO,JN) 
tofRITE( 6,2900) 
READ(S,*) III 
IF{III.EQ.1) GO TO 10 
RETURN 

1000 FORMAT(/' INPUT EXPERIMENTAL DATA') 
1100 FORMAT(/' PITCH (mm) 1') 
1200 FORMAT(/' PITCH-',F6.3,'mm') 
1300 FORMAT(/' DATE DAY,MONTH,YEAR 1') 
1400 FOtUlAT( /' NUMBER OF TEST CASES') 
1600 FORMAT(/' FLOW RATE (l/min)') 
1800 FORMAT(' READ OF MicroVolt E1,E2,E3') 
2000 FORMAT(/'. CASE VOL COOLANT TEAS', 

1 /, l/min inlet outlet SECTION(m.volt)') 
2100 FORMAT(2X,I3,F6.2,3FI0.2) 
2200 FORMAT('Which would you like change? no. or 999 for next') 
2300 FORMAT('Change VALUES') 
2400 FORMAT(/'. DATE OF EXPERlMENT',I3,'-',I2,'-',I4) 
2700 FORMAT(/' CASE TIN TOUT TS') 
2800 FORMAT(2X,I3,2X,3F9.2) 
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2900 FO~~T(!'Any other data? YES=l or 999 for next') 
3000 FORMAT(!' DATA FILE=l or MANUAL INPUT~2') 

3100 FO~t1AT{/' If data witten tn temp., input 1') 
3200 FORMAT(/' If american data, input 1') 

C 
C 

END 

C----------------------------------------------------------
C ANALYSIS 
C----------------------------------------------------------
C 
C LEAST SQUEAR METHOD 
C----------------------------------------------------------
C 

C 

C 

C 

C 

C 

C 

SUBROUTINE LEAS{N,DO,DI,KT,LIQ) 
COl'-IMON!VALU/VOLU( 100), PD( 100), T( 7,100) ,Q( 100), UW( 100), VOLe 100), 

1 UV(100) 
DIMENSION DT(100),C1(100),C2(100),C3(100) 
REAL KT 

EPS-.OOOS 
ALFO=1/.03 
BETO=1/.728**(4./3.) 

DO 100 I:a1,N 
T(6,I)=(T(3,I)+T(S,I»/2 
T(7,I)=T(S,I) 

100 CONTINUE 

10 CONTINUE 
A=O. 
8=0. 
C=O. 
D=O. 
E=O. 
DO 200 Ial,N 
T\~O=T( 6, I) 
TWI=T(7,I) 
TS=T(3,I) 
TM=T(S,I) 
DTI-TS-TM 
DT(I)=DTI 
QCaQ(I) 
U =UW(I) 

CC3=QC*DO*ALOG(DO/DI)/(2*KT) 
C3(I)-CC3 . 
CALL NUSP(TM,TWI,U,DI,DO,QC,CC1) 
C1(I)-CC1 
CALL NUST(TS,TWO,DO,QC,CC2,LIQ) 
C2(I)-CC2 

A=A+CC1*CCl 
'S=-B+CC1*CC2 
C-C+(CC1*DTI-CC1*CC3) 
n-D+CC2*CC2 
E-E+(CC2*nTI-CC2*CC3) 

200 CONTINUE 

ALF-(C*D-B*E)/(A*D-B*B) 



C 

C 

C 
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BETa(A*E-B*C)/(A*D-B*B) 
DO 220 Ia1,N 
T(7,I)=T(5,I)+ALF*C1(I) 

220 T(6,I)=T(7,I)+C3(I) 
IF(ABS«ALF-ALFO)/ALF).LT.EPS.AND.ABS«BET-BETO)/BET).LT.EPS) 

1 GO TO 250 
PRINT *,ALF,BET 

ALFO=ALF 
BETO=BET 

GO TO 10 
250 CONTINUE 

ALF=l/ALF 
BET=(1/BET)**(3./4.) 
WRITE(7,1000) 
WRITE(7,1200) ALF,BET 
WRITE(7,1400) 
WRITE(7,1600) (I,T(7,I),T(6,I),DT(I),I=1,N) 

RETURN 
1000 FORMAT(/' CALCULATING RESULTS') 
1200 FORMAT(/' a=',E12.4,' b-',E12.4) 
1400 FORMAT(/' CASE TI TO Ts-Tm') 
1600 FORMAT(2X,I3,2F8.2,F8.3) 

END 

C------------------------------------------------------------
C THEORETIVAL CALCULATION FOR PLAIN TUBE 
c------~-----------------------------------------------------
C 

C 

C 

SUBROUTINE THEOR(N,DO,LIQ) 
COMMON/VALU/VOLU(100),PD(100),T(7,100),Q(100),UW(100),10L(100), 

1 UV(100) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
COMMON/CCC/CPLC,VC,VISC,KC,HFGC 
DIMENSION ALF(3),ARTH(3),QQ(3) 
REAL KL,KC 

DO 200 K-1,3 
ALF(K)=O. 
ARTH(K)=O. 
QQ(K) -0. 

200 CONTINUE 

WRITE(7,1000) 
DO 100 I-1,N 
TS-T(3,I) 
TO-T(6,I) 
TIN-T(l,I) 
TOUT-T(2,I) 
TML-(TOUT-TIN)/ALOG«TS-TIN)/(TS-TOUT» 
DT-TS-TQ 
QC-Q(I) 
U -UV(I) 
IF(DT.LT.O.) WRITE(7,1400) I 
IF(DT.LT.O •• ) GO TO 100 
Q100o-QC~1000. 
WRITE(8.1600) DT,Q1000 
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C OUV-Q1000/TML 
C WRlTE(S,1600) UW(I),OUV 

IF«VOL(I)-VOL(I+l».LT.O.) WRI~E(S,lSOO) 
TSM-.6667*TO+.3333*TS 

c 
C 
C 
C 

CALL PROP(TSM,TS,PS,LIQ) 

C 300 
C 

IF(LIQ.GE.2) GO TO 300 

SL=(-.0003*(TSM-273.15)**2-.13S*(TSM-273.15)+75.6)/100O. 
CONTINUE 

C 
C 
C 
C 
C 

IF(LIQ.EQ.2) SL=(-.11*TSM+50.1)/1000. 
IF(LIQ.EQ.3) SL-5.021E-2-S.9E-5*(TSM-273.15) 
PRAN=VISL*CPL/KL 
XX=SL*VL/9.S11S3 

C 350 
, C 

WRITE(9,2100) I,TS,TO,CPL,VL,VISL,KL,HFG,SL,XX,PRAN 
CONTINUE 

C 

C 

ALEX=QC/DT 
EXNU=DO/KL*ALEX 

IF(U.EQ.O.) GO TO 49 
FF=9.81183*DO*VISL*HFG/(U**2*KL*DT) 

RE-U*DO/(VISL*VL) 
AREX=EXNU/RE**.5 

49 K=l 
50 CONTINUE 

IF(U.EQ.O.) FF-O. 
IF(U.EQ.O.) AREX-O. 
IF(K.EQ.l) GO TO 400 
IF(K.EQ.2) GO TO 420 

C SHEKRILADZE EQATION 
C~L SHE(TS,TO,U,FNU,DO) 

GO TO 450 
C 
C FUJII EQATION 

C 
C 

420 CALL'FUJI(TS,TO,U,FNU,DO) 
GO TO 450 

400 
C 

NUSSELT EQATION 
CALL NUSSEL(TS,TO,FNU,DO) 

C 

'C 

C 

450 CONTINUE 

ALF(K)-FNU*KL/DO 
QQ(K)-ALF(K)*DT 
IF(U.NE.O.) ARTH(K)-FNU/RE**.5 

IF(U.LE.O.) GO TO 60 
IF(K.EQ.3) GO TO 60 
K-K+l 
GO TO 59 

60 CONTINUE 

1 
WRITE(7,1200) I DT ALEX QC,ALF(1),QQ(1),ALF(2),QQ(2), 

ALF(3),QQ(3),FF,AREX,ARTH(1),ARTH(2),ARTE(3) 
100 CONTINUE, 



C 

YRITE(8,1800) 
RETURN 
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1000 FORMAT(/10X,'EXPERIMENT' ,8X,'NUSSELT',7X,'FUJII',6X,'SHKLlRAZE' 
1 18X 'DT' 5X 'hI 5X 'Q' 6X 'h' 5X 'Q' 6X 'hI 5X 'Q' SX 'hI , " " " " " " " 2 5X, 'Q'I' CASE' ,lOX, 'F' ,3X, 'Nu/RE' ,8X, 'NU/RE' ,8X, 'NU/RE', 
3 8X,'NU/RE')' 

1200 FORMAT(2X,I3,F7.2,4(F6.2,F7.2)/11X,2F7.2,3(7X,F6.2» 
1400 FORMAT(/' (Ts-Tw) is negative at CASE=' ,13) 
1600 FORMAT{F10.3,F14.3) 
1800 FORMAT{'IIII') 

C2000 FORMAT{I I' CASE' ,4X, 'Ts' ,5X, '!w' ,5X, 'Cp' ,lOX, 'v' ,9X, 'U', 
C 1 9X, 'K' ,9X, 'Rfg' ,6X, 'Sigm' ,6X, 's/{p*g)' ,6X, 'Pr' 
C 2 I 12 X, 'K' , 9 X, 'KJ I Kg k' , 5 X, 'm3 I Kg' , 5 X, 'Kg I ms' , 5 X, 'KJ I m s k' , 
C 3 5 X, 'KJ I Kg' , 5 X, 'N Is' ) 
C2l00 FORMAT{/2X,I3,2F7.2,7E10.3,E12.4) 
C2200 FORMAT{2E12.4) 

END 
C 

\ C 

C--------------------------------------------------------------
C HEAT TRANSFER OF COOLANT SIDE 
C--------------------------------------------------------------
C 

C 

SUBROUTINE COOL(N,DO,DI,KT,COA,COB) 
COMMON/vALU/VOLU(100),PD(100),T(7,100),Q{100),UW(100), 

1 VOL{lOO),UV(lOO) 
COMMON/CCC/CPLC,VCL,VISC,KC,RFGC 
DIMENSION DT(lOO) 
REAL KC,KT 

DO 100 I=l,N 
QI=Q(I)*DO/DI 
TIN=T{l,I) 
TOUT=T{2,I) 
TIO=T{5,I) 

200 CALL NUSC(TIO,UW{I),DI,ANU,COA,COB) 
ALIN=ANU*KC/DI 
AA=ALIN* (TOUT-TIN) IQI 
BB-EXP(AA) 
TI-{BB*TOUT-TIN)/{BB-l) 
IF{ABS«TIO-TI)/TIO).LT.l.E-5) GO TO 250 
TIO=TI 
TM=TI-(TOUT-TIN)/ALOG«TI-TIN)/(TI-TOUT» 
CALL WATER(TM,TS) 
GO TO 200 

250 CONTINUE 
C 

TO-TI+DO*ALOG(DO/DI)*Q(I)/(2.*KT) 
T(6,I)-TO 
T(7,I)-TI 
DT(I)-T(3,I)-T(5,I) 

100 CONTINUE 
WRITE(7,1000) 
WRITE(7,1400) 
WRITE(7,1600) (I,T(7,I),T(6,I),DT(I),I-1,N) 

RETURN . 
1000 FORMAT(/' CALCULATING RESULT') 



C 
C 

C 
C 

C 
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1400 FORMAT(/' CASE TI TO 
1600 FORMAT(2X,I3,2FS.2,FS.3) 

END 

Ts-Tm') 

SUBROUTINE NUSP(TM,T1,U,DI,DO,Q,CC1) 
COMMON/CCC/CPC,VC,VIS,KC,HFGC 
REAL KC 
CALL WATER(TM,TS) 
VISW. =.00002414*10**(247.S/(T1 -140» 
RE=U*DI/(VIS*VC) 
PR=CPC*VIS/KC 
ANU=RE**.S*PR**(1./3.)*(VIS/VISW)**.14 
CC1=Q*(DO/DI)*DI/(KC*ANU) 

RETURN 
END 

SUBROUTINE NUSC(TI,U,DI,ANU,A,B) 
COMMON/CCC/CPLC,VCL,VISC,KC,HFG 
REAL KC 
VISW=.00002414*10**(247.S/(TI-140.» 
RE=U*DI/(VISC*VCL) 
PR=CPLC*VISC/KC 
ANU=A*RE**.8*PR**(1./3.)*(VISC/VISW)**.14+B 
RETURN 
END 

c-------------------------------------------------------------
C HEAT TRANSFER OF VAPOUR SIDE 
C FOR WILSON METHOD 
C-------------------------------------------------------------
C 

C 
C 

SUBROUTINE NUST(TS,TW,DO,Q,CC2,LIQ) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL 
TSM=.6667*TW+.3333*TS 
CALL PROP(TSM,TS,PS,LIQ) 
A-Q**4*VISL*DO*VL**2 
B=KL**3*9.S11S3*HFG 
CC2-(A/B)**(1./3.) 

RETURN 
END 

c--------------------------------------------------
C THEORETCAL FORMURA 
c--------------------------------------------------

SUBROUTINE FUJI(TS,TO,U,FNU,DO) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL 
R-(VV*VIS~/(VL*VISV»**.S 
H-KL*(TS-TO)/(VISL*HFG) 
FR-U**2/(9.S11S3*DO) 
RE-U*DO/(VISL*VL) 
X-.9*(1+1/(R*H»**.3333 
FNU-X*(1+.276/(X**4*FR*H»**.2S*RE**.S 
RETURN . 



C 

C 
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END 

SUBROUTINE NUSSEL(TS,TO,TNU,DO) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL 
DT=TS-TO 
G=9.8ll83 

RP=G*DO**3*HFG/(KL*VISL*VL*VL*DT) 
TNU=.728*RP**.25 
RETURN 
END 

SUBROUTINE SHE(TS,TO,U,ANU,DO) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL 

"RE=U*DO/(VISL*VL) 
AK=9.81l82*DO*HFG*VISL/(KL*(TS-TO)*U*U) 
ANU=.64*SQRT(RE*(l+SQRT(l+1.69*AK») 
RETURN 
END 

C--------------------------------------------------------
C TEMPARATURE CONVERT 
C--------------------------------------------------------

C 

SUBROUTINE TEMP(T,E) 
T=273.0995+2.55l8496E-2*E-6.6119645E-7*E**2 

1 +2.6750257E-1l*E**3 
RETURN 
END 

C--------------------------------------------------------
C PROPERTIES 

. C--------------------------------------------------------
! C 

C 

SUBROUTINE PROP(T,TS,PS,LIQ) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
COMMON/CCC/CP,V,VIS,KC,HFGC 
REAL KC,KL 
IF(LIQ.EQ.l) CALL STEAM(T,TS,PS) 
IF(LIQ.EQ.2) CALL REFRI(T,TS,PS) 
IF(LIQ.EQ.3) CALL ETYLEN(T,TS,PS) 
RETURN 
END 

" C----------------------- PROPERTIES OF WATER 
SUBROUTINE WATER(T,TS) 
COMMON/CCC/CP,V,VIS,KC,HFG 
REAL KC 
V_.Ol*(.099917+(T-273.15)*(6.5E-6+3.83333E-7*(T-273.l5)~) 
KC __ .92247+2.8395*(T/273.15)-1.8007*(T/273.15)**2+ 

1 .52577*(T/273.15)**3-.07344*(T/273.15)**4 
KC-KC/1000 

Y-247.8/(T-140) 
VIS-.00002414*10**Y 
CP-4391.21-.7*T 
CP-CP/IOOO 

HFG_3468920.-TS*(5707.4-TS*(11.5562-.0133103*TS» 
HFG-HFG/IOOO. 

RETURN 
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END 
C 
C----------------------------- PROPERTIES OF STAEM 

SUBROUTINE STEAM(T,TS,PS) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL KL HFG 
REAL KL ' , 

C 

C 

CPL=4391.21-.7*T 
CPt-CPL/1000 
HFG=3468920.-TS*(S707.4-TS*(ll.SS62-.0133l03*TS» 
HFG=HFG/1000 
PS=PSTE(TS) 
VL=.01*(.0999l7+(T-273.16)*(6.5E-6+3.83333E-7*(T-273.16») 
R=461.51 
VV=R*TS/PS 
Y=247.8/(T-140.) 
VISL=0.000024l4*lO**Y 
VISV=-4.47841SE-6+TS*(S.02l6E-8-l.S79E-ll*T) 
TT=T/273.l6 
KL=-. 92247+2. 839S*TT-l. S007*TT**2+.52S77*TT**3-. 07344*TT1:*4 
KL=KL/1000 
PS=PS/l.E+6 
RETURN 
END 

FUNCTION PSTE(TS) 
TP=TS/1000. 
Al=lS.492l790l 
A2=-S.67837l7693 
A3=1.4S97S84637 
A4=13.S7700060S 
AS=-80.887673S9l 
A6=123.S68S3468 
A7=-188.3l2l2064 
AS=660.9176348S 
A9=-1382.474009l 
A10=1300.l040l84 
All=-449.39S7l976 
PSTE=1.E+6*EXP(Al+A2/TP+A3*ALOG(TP)+A4*TP+AS*TP**2+A6*TP**3 

1 +A7*TP**4+A8*TP**S+A9*TP**6+A10*TP**7+All*TP**S) 
RETURN 
END 

C----------------------- PROPERTIES OF REFREGERANT 
SUBROUTINE REFRI(T,TS,PS) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL,J,Jl 
CPL-929+l.03*(T-273.1S) 
CPL=CPL/1000 

HFG-(1.611-.003l*(TS-273.1S»*lE+S 
HFG-HFG/1000 

TC-487.2S 
Jl-(TC-TS)/TS 
J--Jl*(2.8+.l*(1+18S*Jl**S.8)**.2) 
PS-10**J*3.413 

, C VL-4.91E-4+2.72E-8*T+l.S8E-9*T*T 
VL-(.617+.000647*(T-273.1S)**1.1)*1.E-3 
R-44.372 
PC-l.41l 



C 
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VV=R*TS/«1+.636*(PS/PC)**.816)*PS*lE+6) 
J=503/(T-2.15) 

VISL=1.34E-5*10**J 
VISV=(.92+.003*(TS-273.15»*lE-5 
KL=.0802-.000203*(T-273.15) 
KL=KL/1000 

RETURN 
END 

C----------------------- PROPERTIES OF ETHYLE~~ GLYCOL 
SUBROUTINE ETYLEN(T,TS,PS) 
COMMON/PPP/CPV,CPL,VV,VL,VISV,VISL,KL,HFG 
REAL KL 

C 

CPL=4186.8*(1.6884E-2+3.35083E-3*T-7.224E-6*T*T 
1 +7.61748E-9*T*T*T) 

CPL=CPL/1000. 
HFG=1.35234E+6-6.38263E+2*TS-O.747462*TS*TS 
HFG=HFG/1000. 
A=9.394685-3066.1/TS 
PS=133.32*lO**A 
PS=PS/l.E+6 
TB=T-338.15 
VL=9.24848E-4+6.2796E-7*TB+9.2444E-10*TB*TB 

1 +3.057E-12*TB**3 
R=133.95 
VV=R*TS/(PS*1.E+6) 
VISL=EXP(-11.0179+1.744E+3/T-2.80335E+5/T**2 

1 +1.12661E+8/T**3) 
VISV=7.2E-5+2.5974E-7*(TS-273.15) 
KL=418.68E-6*(519.442+0.32092*T) 
KL=KL/1000. 
RETURN 
END 

C----------------------------------------------------
C BARROW METER CORRECTION 
C----------------------------------------------------
C 

C 

SUBROUTINE PCOR(P,T,PA) 
COMMON/BMC/BARO(11,25) 

IP=INT(P) 
PO=(P-FLOAT(IP»*lO. 
IF(PO.LT.5.) P1=FLOAT(IP) 
IF(PO.GE.5.) Pl=FLOAT(IP)+.5 
IT=INT(T) 
TO=(T-FLOAT(IT»*lO. 
IF(TO.LT.5.) Tl=FLOAT(IT) 
IF(TO.GE.5.) Tl=FLOAT(IT)+.5 
I=INT«Pl-26.)/.5)+1 
J=INT«Tl-16.)/.5)+1 
A=BARO(I,J) 
B=BARO(I+l,J) 
C=BARO( I" J+ 1) 
D=BARO(I+l,J+1) 
Xl=A+(B-A)*(P-Pl)/.5 
X2=C+(D-C)*(P-Pl)/.5 
X =X1+(X2-Xl)*(T-Tl)/.5 



C 

C 

PA=(P-X)*0.0033864 
RETURN 
END 
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C---------------------___________________________ _ 
C POWER INPUT C---------------------___________________________ _ 

c 

SUBROUTINE POWER(QP,TA,PA,LIQ,K,IY) 
DIMENSION NH(4),VH(4),R(4) 
R(1)=18. 
R(2)=17. 
R(3)=11.2 
R(4)=11.8 

C We changed the heaters after the experiments with Rl13 in 1984. 
C 

C 

C 

C 

IF(LIQ.EQ.2.AND.IY.LE.1984) GO TO 100 

READ(K,*) J 
READ(K,*) (NH(I),VH(I),I=l,J),TA,PA 
GO TO 200 

100 J=1 
READ(K,*) VH(l),TA,PA 

200 CONTINUE 

QP=D 
DO 300 I=l,J 
IF(LIQ.EQ.3.0R.LIQ.EQ.1) RES=R(NH(I» 
IF(LIQ.EQ.2) RES=l8.6 
QP=VH(I)*VH(I)/(RES*lOOO.)+QP 

300 CONTINUE 
RETURN 
END 

C--------------------------~------------------------
C ERROR ANALYSIS 
c------~--------------------------------------------
C 

SUBROUTINE UNCERN(N,DO,DI,KT,PI) 
COMMON/CCC/CP,VCL,VISL,KL,HFG 
COMMON/VALU/VOLU(100),PD(100),T(7,100),Q(100),UW(lOO),VOL(100), 

1 UV(lOO) 
DIMENSION UN(lOO) 
REAL KL,KT 

C uncertainty of temperature 
UDT-O.025 

c 
WRITE(7,lOOO) 

DO 100 I-l,N 
TS-T(3,I) 
TWO-T(6,I) 
TIN-Tel,I) 
TOUT-T(2,I) 
DTS-TS""'TWO 
DTLM-(TOUT-TIN)/ALOG«TS-TIN)/(TS-TOUT» 
TC-(TIN+TOUT)/2. 
QC-Q(I)*lOOO. 



C 

C 

C 

C 

C 

C 
C 

C 
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TWI=TWO-Q(I)*DO/(2*KT)*ALOG(DO/DI) 

W=VOL(I) 

coolant properties 
CALL WATER(TC,TS) 

AR=l./VCL 
AK=KL 
AC=CP 
AM=VISL 

uncertainty of flow rate 2 % 
UDW=O.Ol*W 

uncertainty of properties 
TCD=TC+2*UDT 
CALL WATER(TCD,TS) 
BR=l. /VCL 
BK=KL 
BC=CP 
BM=VISL 
UR=ABS(AR-BR) 
UK=ABS(AK-BK) 
UC=ABS (AC-BC) 
UM=ABS(AM-BM) 

uncertainty of heat flux 
DQ=QC*(2*(UDT/(TOUT-TIN»**2+(UR/AR)**2+(UDW/W)**2 

1 +(UC/AC)**2)**.S 

uncertainty of log mean temp difference 
Al=UDT*(TIN-TOUT)/«TS-TIN)*(TS-TOUT)*ALOG«TS-TIN)/(TS-TOUT») 
A2=UDT/«TS-TIN)*ALOG«TS-TIN)/(TS-TOUT») 
A3=UDT/«TS-TOUT)*ALOG«TS-TIN)/(TS-TOUT») 
DL=DTLM*(Al**2+A2**2+A3**2)**.5 

C uncertainty of overall heat transfer coeff. 

C 

UO=QC/DTLM 
DU=UO*«DQ/QC)**2+(DL/DTLM)**2)**.S 

C uncertainty of Reynolds and Prantle number 
RE=AR*W*4./(PI*DI*AM) 
DRE=RE*«UDW/W)**2+(UR/AR)**2+(UM/AM)**2)**.5 
PR=AM*AC/AK 
DPR=PR*«UM/AM)**2+(UC/AC)**2+(UK/AK)**2)**.S 

C 
C uncertainty of coolant-side H-T-C 

HI-QC*{DO/DI)/(TWI-TC) 
C DHI-HI*«UK/AK)**2+(.S*DRE/RE)**2+(.25*DPR/PR)**2+ 
C 1 2*(.14*UM/AM)**2)**.5 

DHI-HI*{(DQ/QC)**2+3*(UDT/(TWI-TC»**2)**.S 
C 
C uncertainty of vapour-side H-T-C 

C 

HC>-QC/D'fS 
DHO-HO*«DU/UO**2*HO)**2+(DO/DI*DHI/HI**2*aO)**2)**.5 

C % error 
DU-DU/UO*100. 
DQ-DQ/QC*lOO. 
DL-DL/DTLM*lOO. 
DHI-DHI/HI*lOO. 
DHD-DHO/HO*lOO. 



C 

C 

C 

C 
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WRITE(7,1200) I,UO,DU,DTLM,DL,QC,DQ,HI,DHI,HO,DHO 
UN(I)=DHO 

100 CONTINUE 

SHO=O. 
DO 200 I=l,N 
SHO=SHO+UN(I) 

200 CONTINUE 
SHO=SHO/N 
WRITE(7,1400) SHO 

1000 
1 
2 
3 
4 

1200 
1400 

RETURN 

FORMAT(/10X,'UO: overall H-T-C LMTD: log-mean temp. difference', 
Q: heat flux' ,/10X, 'HI: coolant side H-T-C', 
HO: vapourside H-T-C %: % ERROR', 

I I 4X, , CASE' , 4X, 'UO' , 9X, '%UO' , 4X, 'LMTD' , 7X, '%L' , 8X, , Q' , 9X, '%Q' , 7X, 
'HI' ,8X, '%HI' ,8X,'HO' ,5X,'%HO') 

FORMAT(5X,I3,5(E12.4,F6.2,' ')) 
FORMAT ( I' average of % HO =' , F6. 2) 
END 
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Computer program "CALL" 
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C PROGRAMME CALL 
C This Progrmme is for calling DATA form DATA BASE, which stores 
C destinction of NAME , LIQUID , TEMPARATURE DATA and HEAT FLUX, and 
C the dimension of FINNED TUBES. The heat transfer coefficient based 
C on both experimental data and NUSSELT's theory are calculated. Add 
C to them, properties of liquid are predicted. 
C 

C-----------------------------------------------------------------------
C MAIN PROGRAMME 
C-----------------------------------------------------------------------
C 

C 

DIMENSION A(100,5),B(100,40),P(100,lOO,3),D(40,6),LP(100),NT(100) 
DIMENSION NAME(100,6),ND(100),LIQ(10,6),MESAG(100,20) 
DIMENSION FL(50),FLO(50),LF(50),V(100),C(100,5) 
COMMON/PROP/ROW,HFG,AK,AMIU,SIGM,CP 

C-------------------------------------- DATA 
PI=4.*ATAN(1.) 
G =9.81183 
DATA IEND,INO,IYES/3HEND,2HNO,3HYES/ 

C-------------------------------------- READING DATA 
C DIMENSION OF TUBE 

READ(4,*) N 
READ(4,*) (NN,(D(I,J),J=1,6),I=1,N) 

C LIQUID KINDS 
READ(4,*) NL 
READ ( 4,1250) (NN, (LIQ( I, J) , J=l, 4) ,I-I ,"NL) 

C EXPERIMENTAL DATA 
K=O 

100 CONTINUE 
K=K+1 
READ(4,1000) NAME(K,1),NAME(K,2) 
IF(NAME(K,l).EQ.IEND) GO TO 150 
READ(4,*) LP(K),NT(K),V(K) 
READ(4,1100) (MESAG(K,I),I=l,20) 
READ(4,*) ND(K) 
NN=ND(K) 
READ(4,*) «P(K,I,J),J=1,3),I=1,NN) 
GO TO 100 

150 CONTINUE 
NO=K-l 
WRITE(6,2800) 
READ(5,*) JAMP 
IF(JAMP.EQ.1) GO TO 250 

C---------------------------------------- DATA OUTPUT 
J-JAMP 
WRITE(J,2000) 
DO 200 K-l,NO 
WRITE(J,lOOO) NAME(K,1),NAME(K,2) 
LL-LP(K) 
NN-NT(K) 
NS-ND(K) 
WRITE(~,1200) (LIQ(LL,JJ),JJ-1,4) 
WRITE(J,2200) 
WRITE(J,2300) (D(NN,JJ).JJ-l,6) 
WRITE(J,2400) 
WRITE(J,llOO) (MESAG(K,JJ),JJ-l,20) 
WRITE(J,2500) 
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WRITE(J,2600) (II,(P(K,II,JJ) JJ=1 3) 11=1 NS) 
200 CONTINUE ' " , 
250 CONTINUE 

C--------------------------------- LEQUEST ----------
WRITE(6,2900) 
READ(5,1000) IG1,IG2 
WRITE(6,3550) 
IS=O 

330 IS=IS+1 
READ(5,*) LF(IS) 
IF(LF(IS).EQ.O) GO TO 340 
IF(LF(IS).EQ.99) GO TO 360 
GO TO 330 

360 IS=22 
DO 380 I=1,IS 

380 LF(I)=I 
340 CONTINUE 

IF(LF(IS).EQ.O) IS=IS-1 
WRITE(6,3370) 
READ(5,1150) N1,N2 

300 CONTINUE 
WRITE(6,3000) 
WRITE(6,3050) 
WRITE(6,1000) NAME(1,1),NAME(1,2) 
DO 320 K=2,NO 
IF(NAME(K,1).NE.NAME(K-l,1» WRITE(6,1000) NAME(K,1),NAME(K,2) 

320 CONTINUE 
WRITE(6,3100) 
WRITE(6,1200)«LIQ(I,J),J=1,4),I=1,NL) 
WRITE(6,3200) 
READ(5,1000) NA,ME 
WRITE(6,3300) 
READ(5,1200) L1,L2,L3,L4 
WRITE(6,3350) 
READ(5,1000) Ml,M2 
IF(M1.EQ.INO) GO TO 325 
WRITE(6,3360) 
READ(5,*) PITCH 
PITCH=PITCH/IOOO. 

325 CONTINUE 
C------------------------------------------ SELECT DATA & CALCULATION 
C 

IC-O 
DO 400 K=1,NO 
IF(NA.EQ.INO) GO TO 420 
IF«NAME(K,1)+NAME(K,2».NE.(NA+ME» GO TO 400 

420 CONTINUE 
LL-LP(K) 
NN-NT(K) 
NS-ND(K) 
IF(Ll.EQ.INO) GO TO 440 
IF«LIQ(LL,1)+LIQ(LL,2».NE.(L1+L2» GO TO 400 

440 CONTINUE 
IF(M1.EQ.INO) GO TO 460 
IF(ABS(D(NN,2)-PITCH).GT.0.00IE-3) GO TO 400 

460 CONTINUE 
IF(Nl.EQ.INO) GO TO 480 
IF«MESAG(K,2)+MESAG(K,3».NE.(N1+N2» GO TO 400 



480 CONTINUE 
IC-l 
DR =D(NN,l) 
PIT=D(NN,2) 
HIG=D{NN,3) 
THI=D(NN,4) 
SPA=PIT-THI 
ANG=D(NN,5) 
ANG=ANG/l80.*PI 
AR =D{NN,6) 
SUMP=O. 
SUMTS=O. 
SUMTW=O. 
SUMR=O. 
SUMK=O. 
SUMH=O. 
SUMM=O. 
SUMS-O. 
DO 600 I=l,NS 
TS=P(K,I,l) 
TW=P(K,I,2) 
Q =P(K,I,3) 
DT=TS-TW 
ALF=Q/DT 
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CALL PROPR(LL,TS,TW) 
ALN-.728*(G*ROW**2*AK**3*HFG/(AMIU*DT*DR»**~25 

C FLOODED POINT 
IF(PIT.EQ.O) GO TO 700 

FP=4.*SIGM*COS(ANG)/~ROW*G*(PIT-THI)*(DR+2.*HIG»-l 
IF(FP.GE.l) GO TO 700 
PSI=ATAN(SQRT(l./(FP*FP)-l» 
IF(FP.LT.O.) PSI=PI-PSI 
IF(PSI.LE.O.) PSI=O. 
GO TO 750 

700 PSI-O. 
750 PSI=PSI/PI*l80. 

C ARRENGEMENT OF DATA 
A(I,l)-DT 
A(I,2)-ALF 
A(I,3)=ALN 
A(I,4)=ALF/ALN 
A(I,5)=PSI 
B(I,l)-ROW 
B(I,2)-AK 
B(I,3)-AMIU 
B(I,4)-CP 
B(I,5)-HFG 
B(I,6)-SIGM 
B(I,7)-SIGM/(ROW*G) 
B(I,8)-V(K) 
e(l,l)-SPA 
SUMP-PSI+SUMP 
SUMTS-TS+SUMTS 
SUMTW-TW+SUMTW 
SUMR-ROW+SUMR 
SUMK-AK+SUMK 
SUMH-HFG+SUMH 
SUMM-AMIU+SUMM 



C 

C 

C 

SUMS=SIGM+SUMS 
600 CONTINUE 

PSIM=SUMP/NS 
TSM =5UMTS/NS 
TWM =SUMT\\T/NS 
ROWM=SUMR/NS 
AKM =SUMK/N5 
HFGM=SUMH/NS 
AMIUM=SUMM/NS 
SIGMM=SUMS/NS 

IF(IS.LE.O) GO TO 880 
DO 800 I=l,NS 
DO 850 J=1,I5 
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IF(LF(J).LT.7) FL(J)=D(NN,LF(J)) 
IF(LF(J).GE.7.AND.LF(J).LT.10) FL(J)=P(K,I,LF(J)-6) 
IF(LF(J).GE.10.AND.LF(J).LT.1S) FL(J)=A(I,LF(J)-9) 
IF(LF(J).GE.1S.AND.LF(J).LT.23) FL(J)=B(I,LF(J)-14) 
IF(LF(J).GE.23) FL(J)=C(I,LF(J)-22) 

850 CONTINUE 
800 WRITE(8,SOOO) (FL(J),J=l,IS) 
8S0 CONTINUE 

C----------------------------------------- FILING DATA 

C 

C 

C 

DO 10 J=1,4 
D(NN,J)=D(NN,J)*lOOO. 

10 CONTINUE 
WRITE(7,1000) NAME(K,1),NAME(K,2) 
WRITE(7,1200) (LIQ(LL,J),J=1,4) 
HRITE(7,2200) 
WRITE(7,2300) (D(NN,J),J=1,6) 
WRITE(7,2400) 
WRITE(7,1100) (MESAG(K,I),I=1,20) 
WRITE(7,4S00) 
WRITE(7,2S00) 
WRITE(7,2600) (I,(P(K,I,J),J=1,3),I=1,NS) 
WRITE(7,4S00) 
WRITE(7,4000) 
WRITE(7,4200) (I,(A(I,J),J=l,S),I=l,NS) 
WRITE(7,4S00) 
WRITE(7,4400) 
HRITE(7,4600) (I,(B(I,J),J=1,7),I=1,NS) 

WRITE(7,4900) 
WRITE ( 7,4950) TSM, TWM, PSIM, Rmm,AKM,AMIUM, HFGM, SIGMM 
WRITE(7,4S00) 

DO 20 J=1,4 
D(NN,J)=D(NN,J)/1000. 

20 CONTINUE 

c-----------------------------------------------
IF(IG1.NE.iNO) WRITE(S,29S0) 

400 CONTINUE 
DO 500 1==1,15 
FLO(I)==O. 

500 CONTINUE 

...... 



IF{IC.EQ.O) WRITE{6,3400) 
IF{IC.EQ.1) WRITE{6,3S00) 
WRITE{6,3600) 
READ{S,*) NC 
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IF{NC.EQ.1) GO TO 300 
IF{IG1.NE.INO) tlRITE(S,29S0) 
IF(IG1.EQ.INO) WRITE(S,5000) (FLO(I),I=l,IS) 
STOP 

C------------------------------------------------ FORMAT 
C 

1000 FORMAT(2A4) 
1100 FORMAT(20A2) 
1150 FORMAT(2A2) 
1200 FORMAT(4A4) 
1250 FORMAT(I2,4A4) 
2000 FORMAT(lH ,'********* DATA BASE ***********') 
2200 FORMAT(lH ,SX,'----- TUBE DIMENSION -----, 

1 17X,'Dr mm',6X,'Pitch',7X,'h',9X 't' 9X '0: 9X 'AR' 
2 16X,5S('-'» , , , " , 

2300 FORMAT(lH ,4X,FS.3,S(2X,FS.3» 
2400 FORMAT(6X,SS('-'» 
2500 FORMAT(1H ,SX,'----- DATA TABLE -----', 

1 114X, 'Ts K' ,5X, 'Tw K' ,SX, 'Qr J/m2s', 
2 I' ------------------------------------------') 

2600 FORMAT(1H ,6X,I3,2X,F7.2,2X,F7.2,2X,E14.6) 
2S00 FORMAT(1H ,'Finishing READING DATA, DO YOU NEED REFERENCE?', 

1 I' NO=l or YES= 6 ON DISPLAY or 7 IN FILE') 
2900 FORMAT(/' DO YOU MAKE GRAPH DATA? YES OR NO') 
2950 FORMAT('IIII') 
3000 FORMAT(II' SELECT DATA FOR CALCULATION',I 

1 ' IF YOU DO ONT NEED LEQUEST, INPUT "NO"') 
3050 FORMAT(lH ,'-----VARIETY OF DATA NAME') 
3100 FORMAT(1H ,'-----VARIETY OF LIQUID') 
3200 FORMAT(lH " DATA NAME 1') 
3300 FORMAT(lH " LIQUID NAME ?') 
3350 FORMAT(II' DO YOU SELECT PITCH? YES OR NO') 
3360 FORMAT(/' PICTH=') 
3370 FORMAT(/' VAPOUR VELOCITY V=? NO or ANY NUMBER') 
3400 FORMAT(lH " NO DATA FOR YOUR REQUEST') 
3500 FORMAT(1H " NO MORE DATA') 
3550 FORMAT(I I' LIQUEST FOR DATA FILE' ,/' l=DR 2=PITCH 3-HIGTII 4-T:iICK', 

l' 5-ANGLE 6-A.R' ,/'7=TS S=TW 9=Q 10=DT I1=ALF 12-ALN 13-ALF/ALN', 
2' 14-PSI',/'15=ROW 16=K 17=MIU 1S=Cp I9=Hfg 20=Sigm 21-S/(P*G)', 
3' 22-V 23-b', I' PUTIN NUMBER,or STOP=O ALL-99') 

3600 FORMAT(lH " If you want to continue,type 1', 
1 I' otherwise any_oter number.') 

4000 FORMAT(lH " . CALCULATION RESULTS', 
1 /3X, 'CASE' ,5X, 'DT' ,SX, 'ALF' ,6X, 'ALN' ,6X, 'ALF/ALN' ,5X, 'PSI', 
2 /12X,'K ',6X,'J/m2s',4X,'J/m2s',17X,'deg',/60('-'» 

4200 FORMAT(/(3X,I3,2X,FS.3,2(2X,FS.1),2(2X,FS.3») 
4400 FORMAT( 1H " PROPERTIES' , 

1 /' CASE' ,7X,.'P' ,lOX, 'K' ,12X, 'U' ,12X, 'Cp' ,11X, 'Rfg' ,lOX, 'S', 
2 10X,'S/(P*G)', 
3 /12X, 'Kg/mJ' ,6X,' J/msk' ,7X, 'Kg/ms' ,7X,' J/Kgk' ,7X,' J/Kg' .9X, 
4 'Nm/s',9X,'m2') 

4600 FORMAT(/(2X,I3,7(2X,Ell.4») 
4800 FORMAT(//) 
4900 FORMAT(/' MEAN VALUES' , 
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1 /4X,'TS' ,6X,'TW' ,6X,'PSI' ,6X,'ROW',8X,'AK',9X,'&~IU' 
2 6X 'HFG' 9X 'SIGM') , , " 

4950 FORMAT(3F8.2,5Ell.4) 
5000 FORMAT(7E12.4) 

C--------------------------------------------------------------------
E~ 

C--------------------------------------------------------------------
C SUBROUTINE PROGRAMME 
C---------------------------------------------------------------------

SUBROUTINE PROPR(L,TS,TW) 
COMMON/PROP/ROW,HFG,AK,AMIU,SIGM,CP 
TM=.6667*Tw+.3333*TS 
IF(L.EQ.l) CALL WATER(TM,TS) 
IF(L.EQ.2) CALL REFRE(TM,TS) 
IF(L.EQ.3) CALL ETHYL(TM,TS) 
IF(L.EQ.4) CALL METAL(TM,TS) 
IF(L.EQ.5) CALL Rll(TM,TS) 
IF(L.EQ.6) CALL R22(TM,TS) 
RETURN 
E~ 

C---------------------------------- WATER 

C 

C 

SUBROUTINE WATER(T,TS) 
COMMON/PROP/R,H,AK,AM,S,CP 

V=.01*(.099917+(T-273.15)*(6~SE-6+3.83333E-7*(T-273.1S») 
R=l./V 
H=3468920.-TS*(S707.4-TS*(11.SS62-.0133103*TS» 
AK=-.92247+2.839S*(T/273.1S)-1.8007*(T/273.1S)**2+ 

1 .S2577*(T/273.1S)**3-.07344*(T/273.1S)**4 
Y=247.8/(T-140) 
N1=.00002414*10**Y 
S=-.0003*(T-273.15)**2-.138*(T-273.1S)+7S.6 
S=S/1000. 
CP=4391.21-.7*T 
RETURN 
E~ 

C-------------------------------- Rl13 

C 

SUBROUTINE REFRE(T,TS) 
COMMON/PROP/R,H,AK,AM,S,CP 
REAL J 

V=(.617+.000647*(T-273.1S)**1.1)*1.E-3 
R=l/V 
H=(1.611-.0031*(TS-273.1S»*1.E+5 
AK=.0802-.000203*(T-273.15) 
J=S03/(T-2.1S) 
AM=1.34E-5*10**J 
IF«T-273.1S).GE.20.) S=-1.lE-4*(T-273.15)+0.0217 
IF«T-273.15).LT.20.) S=_1.3E-4*(T-273.15)+0.0221 
CP=929+1.03*(T-273.1S) 
RETURN 
END 

C 
C------------------:-------------- ETYLENE GLYCOL 

C 

SUBROUTINE ETHYL(T,TS) 
COM}10N/PROP/R,H,AK,AM,S,CP 



----------------/ 

C 

TB=T-338.1S 
V=9.24848E-4+6.2796E-7*TB+9.2444E-I0*TB*TB+3.0S7E-12*TB**3 
R=l./V 
H=1.3S234E+6-6.38263E+2*TS-.747462*TS*TS 
AK=418.68E-6*(S19.442+.32092*T) 
AM=EXP(-11.0179+1.744E+3/T-2.8033SE+5/T**2+1.12661E+8/T**3) 
S=S.02lE-2-8.9E-S*(T-273.1S) 
CP=4186.8*(1.6884E-2+3.3S083E-3*T-7.224E-6*T**2 

1 +7.61748E-9*T**3) 
RETURN 
END 

C----------------------------------- METHANOL 

C 

SUBROUTINE METAL(T,TS) 
COMMON/PROP/R,H,AK,AM,S,CP 
R=-1.E-S*T**3+8.49E-3*T**2-3.29*T+1278.8 
H=1.107E-2*TS**3-21.61*TS**2+8.666E+3*TS+2.3E+S 
AK=(687.314-0.689S19*T)*1.E-4 
AK=AK*4.187 
Y=-8.8S7+3.835E+3/T-9.593E+S/T**2+9.344E+7/T**3 
AM=lO**Y 
S=-1.2E-9*T**3+1.163E-6*T**2-0.4606E-3*T+87.97E-3 
CP=(O.S8248S-3.7S646E-4*T-l.67844E-6*T**2+1.06214E-8*T**3)*lE+3 
CP=CP*4.187 
RETURN 
END 

C----------------------------- Rll 

C 

SUBROUTINE Rll(T,TS) 
COMMON/PROP/R,H,AK,AM,S,CP 
R=-1.3021E-S*T**3+8.789E-3*T**2-4.142*T+227S. 
H=-8.S94E-7*TS**3+6.44SE-4*TS**2-.244*TS+81.17 
H=H*4.187E+3 
AK=-2.89E-4*(T-273.1S)+.09S 
Y=-6.169+1.S93E+3/T-3.208E+S/T**2+2.781E+7/T**3 
AM=lO**Y 
S=8.889E-8*T**2-0.1812E-3*T+O.06392 
CP=1.071E-3*T**2+1.829E-l*T+73S. 
RETURN 
END 

C----------------------------- R22 
SUBROUTINE R22(T,TS) 
COMMON/PROP/R,H,AK,AM,S,CP 
R=_7.639E-S*T**3+0.05367*T**2-1S.S88*T+3092. 
H=_S.62SE-6*TS**3+3.~44E-3*TS**2-1.032*TS+1S8.6 
H=H*4.187E+3 
AK=-S.7SE-4*(T-273.1S)+O.lOl * 
Y=_lO.S403+4.S27E+3/T-l.0264E+6/T**2+8.277E+7/T* 3 
AM=lO**Y 
S=2.E-7*T**2-2.632E-4*T+O.0686 
CP=1.944E-2*T**2-7.864*T+1868. 
~TURN 

END 



APPENDIX E Computer program for curve fitting 

--------------~~ 
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Appendix H Computer program for curve fitting 

1. Linear equation 

Consider the linear equation: 

(B-1) 

If this equation is fitted to m sets of data, then, for the 

i'th set of data: 

y.=K 1X. 1+K2X, 2+···+K X. +ey. 
1 1, 1, n 1,n 1 (B-2) 

where 

Y. and X. 1 •• X, 
1 1, 1,n 

, are measured values 

are n parameters to be calculated 

using the method of least squares 

and Gaussian elimination 

ey. 
1 

is the observational error In 

8Y i=Y i ,obS- Y i ,cal 

"Leas t squares" anal ys is produces the following :Jet of 

n linear equations: 

a11 K1 +a 12K2+··· +a 1nKn=b 1 

a21K1+a22K2+···+a2nKn=b2 
. 

an1K1+an;K2+···+annKn=bn 

where 
. m 

a =L X. X. r,c ;=1 l,r l,C 
r=l to n c=l to n 

and m 

b =L x. Y. 
r' ;=1 l,r 1 

(E-3) 
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To begin with, the function LESQ computes the value of 

all ar,c , and b r and then proceed to calculation the value 

of Kl to Kn' from the resulting sets of n equations. 

During the calculation of the ar,c' and br values, LESQ 

calls on a subroutine L(N,I,K), for eachset of data. This 

subroutine supplies the values of X; 1 to X . and y . when 1 , n 1 , , 
it is called for the i'th set of data. X. 1 to X . Bre 

1 , ' • n 

put into the variables K(l) to K(N-I) and Y; is put into 

K(N), where N=n+l. When LESQ has finished its work, the 

parametars Kl to Kn are held in variables K(l) to K(N-I) 

and the variables KeN) and LESQ each hold the quantity 

m 
LOY~ , which is the usual calcuation for "goodess of fit". 
. 1 
1 

2 Non-linear equations 

A nonlinear equation may be solved by a modified 

version of the previous method, if the equation can be 

expressed in the form: 

where 

• • 

(8-4) 

II 
) 

Xl to Xr are kown quantities d~termined from the data 

tor each data set. 

tare unkown non-linear parameters vI 0 V S 
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KI to Kn are unkown linear parameters. 

When kown values for vI to Vs are introduced into the 

above equation, the functions fl to fn may be calcu~ated, 

thus reducing the equation to a linear form. The routine 

LESQ may then be used to find the parameters Kl to Kn' for 

the given set of values vI to vS. 

An iterative technique is required to determine the 

values of vI to Vs which minimize 

LEMINI is a routine which minimizes a function of one 

variable, with respect to that variable. More precisely, 

LEMINI varies the values of a variable VAR, between 

specified lower a~d upper limit LOW and UPP, until the 

given function, FUN(VAR), attains a mimimum value, the 

variable VAR being determined within the specified 

tolerance, TOL. A boolean variable, CUP, is set to T1UE or 

FA L SEa c cor din g tow h e the r 0 r not the min i m i z at ion h a:; bee n 

successful, i.e whether or not a minimum has been fo~nd in 

the specified range. 

3 Outline of method 

Consider the known values have been substituted 

in eq. (E-4) for the non-linear parameters (v
1

,v 2 ·· .V s ) , An 

initial calIon LEMINI will vary vI until a minimum has 

been found for the specified function, which is the 
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function LESQ. Let this minimumvalues of LESQ or 
2 

LOY. be 
1 

named lemil. This initial calIon LEMINI, being involved 

with calls on LESQ, thereby also finds values for the 

linear parameters Kl to Kn' 

A second calIon LEMINI will vary the second 

non-linear parameter v2 , in order to minimize the second 

specified function, which is lemil. Let the minimum values 

of lemil be called lemi2. Every time that parameter 2 is 

given a new value, between the specified lower and upper 

limits, the initial calIon LEMINI is invoked to find a new 

value for lemil and also for vI and Kl to Kn. 

Futher calls on LEMINI are necessary to optimi~e any 

other non-linear parameters, until at the end of this 

process of LEMINI calls within LEMINI calls, final optimum 

values will have been determined for all the parameters, 

linear and non-linear. At this stage, the quantity LOY~ 
1 

will have its over all minimum values. 

4 Note about Recursion 

Recursion is not allowed in FORTRAN programs and so 

the non-linear problem e requires several copies to be made 

of LEMINI, one copy for each non-linear variable. Each 

d · t' t which should be used copy must have a 1S lnc' name, 

throughout the 'body of the funct ion. For example, names 

given to copies of LEMINI could be: LEMINI, LEMIN2, LEMIN3 
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etc. 

-Meaning of variable names-

STDV standerd diviation= 
2 ~ 

(LOY. J(m-n-s)) 
. 1 
1 

n= number of linear parameters 

s= number of non-linear parameters 

(a) Variables in LESQ 

K An array which eventually holds the values of the 

1 i n e a" r par am e t e r sKI t 0 K n , inK ( 1) t 0 K ( N - 1) . 

While in the process of solving for Kl to Kn 1 the 

variables K(l) to K(N) are used to hold values of 

L 

M 

X, to X and Y, for each set of tata, in turn. ... n 

The subroutine which calculates the values of Xl to 

X and Y, for each set of data in turn. The values n 
are put into K(l) to K(N) and returned to LE::iO. 

Total number of sets of data or experimental 

points. 

N Number of linear parameters plus Ii N=n+l 

C Array for manipulating data, used inside LESO. 

Ie Size of array C, equal to (N*N+N)/2 

ESPLIN A numerical precosion as a result of FORTRAN 

compilation. It is the number which, if any smaller 

would not be destinguished from zero, by the 

computer, when added to 1. 
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(b) Variables in LEMINI 

LOW(I) Specified lower limit to the value of non-linear 

variable number I. 

TOL(I) Specified tolerance, or prcision, within which 

VAR(I) is determined. 

UPP(I) Specified upper limit to the value of parameter 

number I. 

FUN The function of non-linear parameter number II 

which is to be optimized by LEMINI. 

VAR(I) The values of non-linear variable number I, which 

is to be optimuzed by LEMINI in order to mininize 

FUN. 

CUP(I) A logical (boolean) variable for parameter nucber 

I, the value of which is set ti TRUE or FALSE 

according to whether or not FUN has been 

successfully minimized. 

MNREAL The smallest positive number that a REAL varinble 

can hold. 

ESPLIN see above. 



C 
C 
C 
C 
C 

C 

Pfte8Ml!·tte~ 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION LO\-1(4) ,K(ll) ,MNREAL,LEMINI 
LOGICAL CUP(4) 
EXTERNAL FUNC 
COMMON MNREAL,EPSILN,X(350,6),Y(350,2) 
COMMON/BLESQ/K,M,N,IC . 
COMMON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

MNREAL is smallest positive number that can be held and EPSLIN is 
largest number such that (l+EPSLIN)-l=O (l+EPSLIN cannot be 
distinguished from 1 by the computer). 

MNREAL=5.3976D-79 
EPSILN=2.2204D-l6 

C READ OBSERVATIONAL DATA PRESENTED IN FREE-FORMAT MODE 
C 

READ(4,*) M,(Y(I,1),X(I,1),X(I,2),X(I,3),X(I,4),X(I,5),X(I,6), 
1 Y(I,2),I=1,M) 

C 
C NL is numbe of equation linear parameters; NN is number of non-linear 
C parameters. Maximum values are 10 and 4 respectively. 
C 

· .C 

NL=4 
NN=2 

C IC is number of element of main array in 'linear least squareas' function 

C LESQ. 
C 

N=NL+1 
IC=(N*N+N)/2 

10 DO 20 I=1,NN 
WRITE(6,500) I 
READ (5,*) LOW(I),UPP(I) 
TOL(I)=O.lDO*(UPP(I)-LOW(I» 

20 CONTINUE 
500 FORMAT(/' Give LOW and UPP for non-linear parameter number ',11) 

C 

DX=M-NL-NN 
STDV=DSQRT(LEMINI(LOW(2),TOL(2),UPP(2),FUNC,VAR(2),CUP(2),MNREAL, 

lEPSILN)/DX) 

C PRINT RESULTS AT TERMINAL 
C 

CALL SUMM1(6,STDV) 
C 
C PRINT EQUATION AND DATA VALUES COMPARISON TABLE, IF REQUIRED 
C 

WRITE(6,510) 
510 FORMAT(1H /'00 you want a results table? a-NO, 1-Yes') 

READ(5,*) IYN 
IF (IYN.NE.l) GOTO 40 
WRITE(6,520) 

520 FORMAT(1H /'Where should table be printed? 6-VDU, 7-Lineprinter') 
READ(5,*) ~ 
CALL SUMM2 (NW , STDV) 

40 WRITE(6,530) 
530 FORMAT(IH /'Type: O-Stop, I-Change values of LOW and UPP') 



READ(S,*) IGO 
IF (IGO.EQ.1) GO TO 10 
STOP 
END 

C-----
C 
C 
C 

,C 

SUBROUTINE SUMM1(NW,S) 

PRINT EQUATION SUMMARY AT TERMINAL NUMBER NW 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION LOW(4),K(11) 
LOGICAL CUP(4) 
COMMON/BLESQ/K,M,N,IC 
COMMON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

WRITE(NW,lOO) S 
100 FORMAT(lH /'Standard Deviation = ',D13.6) 

IF (NN.EQ.O) GOTO 10 
WRITE(NW,110) 

110 FORMAT(lH /, I LOW(I) TOL(I) UPP(I) 
l' VAR(I) CUP(I)',/) 
WRITE(NW,120) (I,LOW(I),TOL(I),UPP(I),VAR(I),CUP(I),I=l,NN) 

120 FORMAT(1H ,(I3,2X,4(D13.6,2X),lX,L2» 
10 NL=N-1 

WRITE(NW,130) (I,K(I),I=l,NL) 
130 FORMAT(1H /'K(',I1,') = ',D13.6) 

RETURN 
END 

C-----
SUBROUTINE SUMM2(NW,S) 

C 
C PRINT COMPARISON-TABLE OF EQUATION AND DATA VALUES AT TERMINAL NUMBER 

NW 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION K(11),LOW(4),MNREAL 
LOGICAL CUP(4) 
COMMON MNREAL,EPSILN,X(3S0,6),Y(3S0,2) 
COMMON/BLESQ/K,M,N,IC 
COMMON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

IF (NW.EQ.7) CALL SUMM1(7,S) 
WRITE(NW,100) 

100 FORMAT(1H /'Obs. no. Yobs Yeal Ydif', 
l' %Ydif',/) 

DO 10 I-1,M 
YCAL_K(1)*X(I,1)+K(2)*X(I,2)*X(I,6)**VAR(1)+K(3)*X(I,3)**V~~(l) 

1 *X(I,4)+ 
2 K(4)*X(I,S)**VAR(2)*Y(I,2) 
YDIF-YCAL-Y(I,l) 
PYDIF-100.DO*(1.DO-Y(I,1)/YCAL) 

10 WRITE(NW,110)' I,Y(I,l),YCAL,YDIF,PYDIIF 
110 FORMAT(lH ,I4,3(2X,D13.6),2X,F7.2) 

RETURN 
END 

c----
SUBROUTINE L(N,I,K) 

c 
C This routine calculates the variable part of each linear term and also 
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C 
C 

the variable Y-term of the equation. These values are put in K(l) to 
K(n). The routine is called by the function LESQ f h b 

C 
C 

1 to M. 

C 

C-----
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION K(N),LOW(4),MNREAL 
LOGICAL CUP(4) 
COMMON MNREAL,EPSILN,X(350,6),Y(350,2) 
COMMON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

K(l)-X(I,l) 
K(2)=X(I,2)*X(I,6)**VAR(1) 
K(3)=X(I,3)**VAR(1)*X(I,4) 
K(4)=Y(I,2)*X(I,5)**VAR(2) 
K(N)=Y(I,l) 
RETURN 
END 

FUNCTION FUNA(V) 

, or eac 0 servation 

C THE VALUE OF FUN(V) IS MINIMISED BY LEMINI WITH RESPECT TO VARIABLE 
C VAR 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION K(11),LOW(4),LESQ,MNREAL 

C SIZE OF ARRAY C IS (NMAX*NMAX+NMAX)/2: (NMAX-ll HERE) 
C 

C 

c-----

C 

DIMENSION C(66) 
LOGICAL CUP(4) 
EXTERNAL L 
COMMON MNREAL,EPSILN,X(350,6),Y(350,2) 
COMMON/BLESQ/K,M,N,IC 
COMMON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

VAR(l)=V 
FUNA=LESQ(K,L,M,N,C,IC,EPSILN) 
RETURN 
END 

FUNCTION FUNC(V) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION K(11),LOW(4),JEMINI,MNREAL 
LOGICAL CUP(4) 
EXTERNAL FUNA 
CO~~ON MNREAL,EPSILN,X(350,6),Y(350,2) 
COMHON/BLEMI/NN,LOW,TOL(4),UPP(4),VAR(4),CUP 

VAR(2)-V 
FUNC_JEMINI(LOW(l),TOL(l),UPP(l),FUNA,VAR(l),CUP(l),~~AL, 

lEPSILN) 
RETURN 
END 

c-----
FUNCTION LESQ(K,L,M,N,C,IC,EPS) 

C SOLVES A SYSTEM OF M LINEAR EQUATIONS IN N-l UNKNOWNS (M'GE'N-l) 
C OF THE FO~ : F(N) • V(l)*F(l) + ...... + V(N-l)*F(N-l) • 
C A CALL OF SUBROUTINE L(N,G,K) MUST PUT THE COEFFICIENTS OF THE G-TH 
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C EQUATION INTO K(l) TO K(N) • EVENTUALLY : THE SOLUTION IS PUT IN 
C K(l) TO K(N-1) • THE SUM OF THE SQUARES OF RESIDUALS IS PUT IN K(N) 
C AND LESQ IS SET TO K(N). 
C THE REAL ARRAY C HAS ITS UPPER BOUND EQUAL TO IC - (N*(N+l»/2 • 
C SINCE THIS IS VARIABLE THE ACTUAL ARRAY FOR C MUST BE DECLARED IN 
C THE MAIN PROGRAM SEGMENT WITH UPPER BOUND EQUAL TO THE MAXIMUM 
C VALUE OF IC THAT HIGHT OCCUR.THE ACTUAL PARAMETER FOR IC MUST HAVE 
C ITS VALUE ASSIGNED IN THE MAIN SEGMENT EACH TIME THAT N IS 
C ALTERED. 
C SO THAT ARRAYS OF VALUES (1 :M), READ-IN TO THE M..c\IN 
C PROGRAM SEGMENT CAN BE INTRODUCED TO THE SUBROUTINE L, IN ORDER 
C TO CALCULATE THE COEFFICIENTS (l:N) FOR EACH OF THE M EQU~TIONS, 
C THE LATTER SUBROUTINE MUST INCLUDE A DECLARATION OF A CO~~ON BLOCK 
C ( ALSO DECLARED IN THE MAIN SEGMENT), THAT INCORPORATES A LIST OF 
C SUCH ARRAYS. 
C 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION K(N),LESQ 
DIMENSION C(IC) 
INTEGER D,E,F,G,H,S,T 
LOGICAL 0 
EXTERNAL L 

NN=O 
5 0-M.LE.N-1 

IF (0) N=M+1 
D.= N 
F = 1 
IZ = (D*D+D)/2 
DO 10 I - 1,IZ 

10 C(I) = O.ODO 
DO 20 G - 1,M 
CALL L(N,G,K) 
H = 0 
DO 20 I - 1,D 
DO 20 J == I,D 
H = H+1 

20 C(R) = C(R) + K(I)*K(J) 
P-C(R) 
Q-p*EPs/D 
DO 50 I - 1,N-1 
A=C(F) 
IF ( A.GT.Q .OR. N.LT.3 ) GOTO 25 
N=N-1 
NN-NN+1 
GOTO 5 

25 A-1.0DO/A 
C(F)-A 
E == F + D - I 
F = F + 1 
R == E + 1 
D040S == F,E 
B - A*C(S) . 
J - S - H 
G == E - J 
DO 30 T - H,G 

30 C(T) - C(T) - B*C(T+J) 
40 H - G + 1 . 



50 F = E + 1 
K(D) = C(F) 
B = K(D) 
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IF ( 0 .OR. B.LT.O.ODO ) B = O.ODO 
IF ( P.LT.O.ODO ) P = O.ODO 
IF ( B.GT.O.ODO .AND. P.GT.B ) GOTO 55 
K(D)=O.ODO 
GOTO 58 

55 B=B/P 
P=l.ODO+B 
IF ( .NOT.P.GT.l.ODO ) K(D)=O.ODO 

58 DO 70 S = 1,N-l 
I = N - S 
H = F' - 1 
E = H - D 
F = I + E 
IPl = I + 1 
IF ( IPl.GT.N-l ) GOTO 70 
DO 60 J = IP1,N - 1 

60 C(ll) = C(H) - K(J)*C(J+E) 
70 K(I) = C(H)*C(F) 

IF ( 0 ) GOTO 80 
LESQ = K(D) 
GOTO 90 

80 LESQ = O.ODO 
90 IF ( NN.EQ.O ) RETURN 

DO 100 I=l,NN 
K(N+1)-K(N) 
K(N)=O.ODO 

100 N=N+l 

C----

C 

RETURN 
END 

FUNCTION LEMINI(LOW,TOL,UPP,FUN,VAR,CUP,MNREAL,EPSILN) 

C LEMINI MINIMIZES THE FUNCTION FUN(VAR) WITH RESPECT TO VAR. THE SPEC
C IFIED LOWER AND UPPER LIMITS ON VAR ARE LOW AND UPP RESPECTIVELY AND 
C TOL IS THE SPECIFIED TOLERANCE ON VAR WITHIN WHICH VAR IS CALCULATED • 
. C FINALLY, VAR IS SET EQUAL TO ITS OPTIMUM VALUE AND LEMINI IS SET 
C EQUAL TO THE MINIMUM VALUE OF FUN(VAR). CUP IS A LOGICAL V/~IABLE 
C THAT INDICATES WHETHER OR NOT THE MINIMIZATION HAS BEEN SUCCESSFUL 
C WITHIN THE LIMITS OF LOW AND UPP, SET ON VAR. CUP-TRUE AND CUP-FALSE 
C RESPECTIVELY INDICATE A SUCCESSFUL AND AN UNSUCCESSFUL ATTI~PT AT 
C MINIMIZATION. 
C 

c 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION J,K,L,M,N,LOW,LEMINI,MNREAL 
INTEGER G 
LOGICAL A,B,C,D,E,F,CUP 
EXTERNAL FUN 

IF (UPP. HE-. LOW) GOTO 5 
VAR-UPP 
CUP-.TRUE. 
LEMINI-FUN(VAR) 
RETURN 

5 M-16.0DO*MNREAL 
N- 8.0DO*EPSILN 



C TWO 

O=DABS(TOL) 
G=-l 
D=.TRUE. 
CaD 
VAR=-DMAX1(-LOW,-UPP) 
X=VAR 
U=FUN(VAR) 
B=.FALSE. 
CUP=B 
VAR=DMAX1(LOW,UPP) 
Z=VAR 
W=FUN(VAR) 
S=Z-X 
L=8.0DO*S 

10 T=S/2.0DO 
R=S-T 
VAR=X+T 
Y=VAR. 
V=FUN(VAR) 
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IF (CUP) GOTO 30 
CUP=U.GT.V.AND.V.LT.W 
IF (CUP) GOTO 30 
X2=M+N*(DABS(X)+DABS(Z» 

C YZ 

CXY 

IF (S.LE.DMAX1(O,X2) GO TO 130 
IF (U.LT.W) GOTO 20 

X=Y 
U=V 
S-R 
GOTO 10 

20 Z-Y 
W=V 
S=T 
GOTO 10 

C TEST 
30 J=M+N*DABS(Y) 

K=M+N*DABS(V) 
P=W-V 
X2-J+N*DABS(Z) 
F=R.LT.DMAX1(O,X2).OR.P.LT.K+N*DABS(W) 
Q-U-V 
X2-J+N*DABS(X) 
A-T.LT.DMAX1(O,X2).OR.Q.LT.K+N*DABS(U) 
IF (A.AND.F) GO TO 130 
E-G.EQ.1 
IF (.NOT.(A.AND.F.OR •• NOT.A.AND •. NOT.F» GOTO 160 
IF (R.EQ.T) GOTO 140 
A-R.GT.T 
GOTO 160 

140 IF (.NOT.«U.NE.W).OR.E» GOTO 150 
A-W.GT.U 
GOTO 160 

150 A-G.EQ.O 
160 IF (C) GOTO 50 

C SAFE . 
40 IF (.NOT.A) GOTO 170 



Q=R 
GOTO 180 

170 Q=-T 
180 Q=Y+Q/2.0DO 

GO TO 70 
C CONIC 

50 P=P/R 
Q=Q/T 
K=P-Q+(U-W)/S 
P=(P+Q)/S 
Q=K/(P+P) 
K=P 
P=V-Q*K*Q 
Q=Y-Q 
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IF (E.AND.Y.NE.Q) GOTO 60 
K=(1.0DO-N)*DABS(K) 
J=M+2.0DO*N*DABS(P) 
IF (J.GE.K) GOTO 190 
GOTO 200 

190 IF (K*8.0DO/J.NE.0.ODO) GOTO 200 
K=N/M 
GO TO 210 

200 K=J/K 
210 X2=(M+N*DABS(Q)*2.0DO)/(1.0DO-N) 

K=(1.0DO-128.0DO*N)*DMAX1(DM}~1(0,X2),DSQRT(K)) 

DG=G 
IF (.NOT.E) Q=Q+(1.0DO+2.0DO*DG)*K 
IF (Q.NE.Y) GOTO 60 
IF (.NOT.A) GOTO 220 
X2=R/2.0DO 
XQ=-DMAXl(-K,-X2) 
GOTO 230 

220 X2=T/2.0DO 
XQ=DMAX1(-K,-X2) 

230 Q=Q+XQ 
C CHECK 

60 IF (Q.GE.Z.OR.Q.LE.X) GOTO 40 
C SET 

70 IF (E) G=-l 

C CALL 

IF (.NOT.E) G=G+1 
D=.NOT.D 
IF (.NOT.(E.AND .. NOT.D)) GOTO 80 
C=64.0DO*S.LT.L.OR .. NOT.C 
L=S 

80 VAR=Q 
P=FUN(VAR) 
A=Q.GT.Y 
B=P.GT.V 
IF (.NOT.B) GOTO 250 
IF (A) GOTO 120 
GOTO 110 . 

250 F=P.LT.V 

C XQY 
IF (A) GOTO 90 

Z=Y 
W-V 
S-T 



C YQZ 

R=Y-Q 
T=S-R 
IF (F) GOTO 100 
X=Q 
U-P 
S=R 
GOTO 10 

90 X-Y 
U=V 
S-R 
T=Q-Y 
R=S-T 

C QQ 

IF (F) GOTO 100 
Z=Q 
w=p 
SaT 
GOTO 10 

100 Y=Q 

C QYZ 

V=P 
GOTO 30 

110 X=Q 

C XYQ 

U=P 
T=Y-X 
S=R+T 
GOTO 30 

120 Z=Q 
w=p 
R=Z-Y 
S=R+T 
GOTO 30 

C EXIT 
130 VAR=Y 

IF (B) LEMINI=FUN(VAR) 
IF(.NOT.B) LEMINI=V 
RETURN 
END 

-340-

C LEMINI OF 1967.05.04, AMENDED 1973.11.05, TRANSLATED INTO 
C ALGOL 68-R 1977.10.10, TRANSLATED INTO FORTRAN IV 1979.10.11. 
C----

FUNCTION JEMINI(LOW,TOL,UPP,FUN,VAR,CUP,MNREAL,EPSILN) 
C 

. C JEMINI MINIMIZES THE FUNCTION FUN(VAR) WITH RESPECT TO VAR. THE SPEC
C IFIED LOWER AND UPPER LIMITS ON VAR ARE LOW AND UPP RESPECTIVELY AND 
C TOL IS THE SPECIFIED TOLERANCE ON VAR. WITHIN tmICH VAR. IS CALCULATED. 
C FINALLY, VAR IS SET EQUAL TO ITS OPTIMUM VALUE AND JEMINI IS SET 
C EQUAL TO THE MINIMUM VALUE OF FUN(VAR). CUP IS A LOGICAL VAR.IABLE 
C THAT INDICATES WHETHER OR NOT THE MINIMIZATION HAS BEEN SUCCESSFUL 
C WITHIN THE LIMITS OF LOW AND UPP, SET ON VAR. CUP-TRUE AND CUP-FALSE 
C RESPECTIVELY' INDICATE A SUCCESSFUL AND AN UNSUCCESSFUL ATT!:MPT AT 
C MINIMIZATION. 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOUBLE PRECISION J,K.L,M,N,LOW,JEMINI,MNREAL 
INTEGER. G . 



C 

LOGICAL A,B,C,D,E,F,CUP 
EXTERNAL FUN 

IF (UPP.NE.LOW) GOTO 5 
VAR=UPP 
CUP=.TRUE. 
JEMINI=FUN(VAR) 
RETURN 
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5 M=16.0DO*MNREAL 

C TWO 

N= 8.0DO*EPSILN 
O=DABS(TOL) 
G=-l 
D=.TRUE. 
CaD 
VAR=-DMAX1(-LOW,-UPP) 
X=VAR 
U=FUN(VAR) 
B=.FALSE. 
CUP=B 
VAR=DMAX1(LOW,UPP) 
Z=VAR 
W=FUN(VAR) 
S=Z-X 
L=8.0DO*S 

10 T=S/2.0DO 
R=S-T 

C YZ 

CXY 

VAR=X+T 
Y=VAR 
V=FUN(VAR) 
IF (CUP) GOTO 30 
CUP=U.GT.V.AND.V.LT.W 
IF (CUP) GOTO 30 
X2=M+N*(DABS(X)+DABS(Z» 
IF (S.LE.DMAX1(0,X2» GOTO 130 
IF (U.LT.W) GOTO 20 

X-Y 
U-V 
S-R 
GOTO 10 

20 Z-Y 
W=V 
S-T 
GO TO 10 

C TEST 
30 J-M+N*DABS(Y) 

K-M+N*DABS(V) 
P-W-V 
X2-J+N*DABS(Z) 
F_R.LT.DMAX1(0,X2).OR.P.LT.K+N*DABS(W) 
Q-U-V 
X2-J+N*DABS(X) 
A_T.LT.DMAX1(0,X2).Oa.Q.LT.K+N*DABS(U) 
IF (A.AND.,F) GOTO 130 
E-G.EQ.1 
IF (-.NOT. (A.AND.' .OR •• NOT .A.AND •• NOT. F» GOTO 160 



IF (R.EQ.T) GOTO 140 
A=R.GT.T 
GOTO 160 
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140 IF (.NOT.«U.NE.W).OR.E» GOTO 150 
A=W.GT.U 
GOTO 160 

150 A=G.EQ.O 
160 IF (C) GOTO 50 

C SAFE 
40 IF (.NOT.A) GOTO 170 

Q=R 
GOTO 180 

170 Q=-T 
180 Q=Y+Q/2.0DO 

GOTO 70 
C CONIC 

50 P=P/R 
Q=Q/T 
K=P-Q+(U-W)/S 
P=(P+Q)/S 
Q=K/(P+P) 
K=P 
P=V-Q*K*Q 
Q=Y-Q 
IF (E.AND.Y.NE.Q) GOTO 60 
K=(1.0DO-N)*DABS(K) 
J=M+2.0DO*N*DABS(P) 
IF (J.GE.K) GOTO 190 
GOTO 200 

190 IF (K*8.0DO/J.NE.0.ODO) GOTO 200 
K=N/M 
GOTO 210 

200 K=J/K 
210 X2=(M+N*DABS(Q)*2.0DO)/(1.0DO-N) 

K=(1.0DO-128.0PO*N)*DMAX1(DMAX1(O,X2),DSQRT(K» 
DG=G 
IF (.NOT.E) Q=Q+(l.0D0+2.0DO*DG)*K 
IF "(Q.NE.Y) GOTO 60 
IF (.NOT.A) GOTO 220 
X2-R/2.0DO 
XQ=-DMAX1(-K,-X2) 
GOTO 230 

220 X2=T/2.0DO 
XQ-D}lAXl ( -K, -X2) 

230 Q-Q+XQ 
C CHECK 

60 IF (Q.GE.Z.OR.Q.LE.X) GOTO 40 
C SET 

70 IF (E) G--l 

C CALL 

IF (.NOT.E) G-G+l 
D-.NOT.D 
IF (.NOT.(E.AND •• NOT.D» GOTO 80 
C-64.0DO*S.LT.L.OR •• NOT.C 
L-S 

80 VAR-Q 
P-FUN(VAR) 
A-Q.GT.Y 



B=P.GT.V 
IF (.NOT.B) GOTO 250 
IF (A) GOTO 120 
GOTO 110 

250 F=P.LT.V 
IF (A) GOTO 90 

C XQY 
Z=Y 
W=V 
SaT 
R=Y-Q 
T=S-R 
IF (F) GO TO 100 
X=Q 
Uap 
S=R 
GOTO 10 

C YQZ 
90 x=y 

C QQ 

U=V 
S=R 
T=Q-Y 
R=S-T 
IF (F) GOTO 100 
Z=Q 
W=p 
S=T 
GOTO 10 

100 Y-Q 
V=P 
GO TO 30 

C QYZ 
110 X=Q 

C XYQ 

U-P 
T=Y-X 
S=R+T 
GOTO 30 

120 Z-Q 
w-p 
R-Z-Y 
S-R+T 
GOTO 30 

C EXIT 
130 VAR-Y 

IF (B) JEMINI-FUN{VAR) 
IF(.NOT.B) JEMINI-V 
RETURN 
END 
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C JEMINI OF 1967~05.04. AMENDED 1973.11.05, TRANSLATED INTO 
C ALGOL 68-R 1977.10.10, TRANSLATED INTO FORTRAN IV 1979.10.11. 
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APPENDIX F Tables and equations of fluid properties 
(R-113, ethylene glycol, water, methanol) 
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Table F-l Thermophysical properties of water 
(reproduced from r 54] ) 

1; P P hfg xl0- 6 C xl0- 3 ~xl06 kxl0 3 
p 

or Pa kg/m 3 J/kg J/kgK Ns/m2 W/mK 
10 1227 999.78 2.4779 4.193 1308 582 
20 2337 998.28 2.4543 4.182 1003 560 30 4242 995.71 2.4307 4.179 797 615 
40 7375 992.25 2.4069 4.179 653 629 
50 12335 988.03 2.3829 4.181 547 641 60 19920 983.15 2.3586 4.185 467 651 
70 31162 977.66 2.3340 4.190 404 659 
80 47360 971.64 2.3088 4.197 355 667 
90 70109 965.11 2.2832 4.205 315 673 

100 101325 958.12 2.2569 4.216 282 678 
110 143270 950.69 2.2300 4.229 254 681 
120 198540 942.84 2.2022 4.245 232 683 
130 270130 934.56 2.1736 4.263 213 685 
140 361380 925.87 2.1440 4.285 196 685 
150 476000 916.78 2.1132 4.310 182 684 

Correlations reproduced from [56] 

t=T-273.15 
u =0.01·(0.099917+t(6.5x10- 6 +3.83333xl0-'t)) 

p =l/v 

k =-0.92247+2.8395(T/273.15)-1.8007{T/273.15)2 
+0.52577(T/273.15)3-0.07344(T/273.15)~ 

Y = 247.8/(T-140.0) 

~ = O.00002414xl0 Y 

2 
a =(-0.0003t -O.138t+75.6)/1000.0 

h
f9

=3468920.-Tx(5707.4-TX(11.5562-0.0133103T)) 

cp = 4391.21 - O.7T 

axl0 3 

N/m 
74.22 
74.74 
71.20 
69.60 
67.95 
66.24 
64.49 
62.68 
60.82 
58.92 
56.97 
54.97 
52.94 
5C.94 
50.86 
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Table F-2 Thermophysical properties of R-113 
(reproduced from [54] 

t Px10- s 
P hfg x10- 3 11x10 s 

-C Pa kg/m 3 J/kg Ns/m 2 

-50 0.01 1720 173.0 0.85 
-30 0.03 1683 167.8 0.90 
-20 0.05 1664 165.4 0.92 
-10 0.09 1643 163.2 0.94 

0 0.12 1621 160.6 0.97 
10 0.19 1599 158.0 0.99 
20 0.37 1576 155.2 1.02 
30 0.55 1553 152.3 1.04 
40 0.79 1529 149.2 1.07 
50 1.11 1503 145.9 1.09 
70 2.04 1452 139.4 1 . 13 

Correlation reproduced from 156] 

t=T-273.15 
1 1 

U = (0.617+0.000647t )/1000 
p = l/u 
k = 0.0802-0.000203 t 

Y=503/(T-2.l5) 
11 = 1.34xlO- s lO Y 

a = -1.lx10- 4 t+0.0217 
-1.3x10- 4 t+0.0221 

hfg =(1.611-0.0031t)x100 

cp = 929+1.03t 

) 

k (J 

W/mK N/m 
0.120 2.86 
0.119 2.60 
0.118 2.47 
0.118 2.34 
0.117 2.21 
0.108 2.08 
0.098 1.96 
0.097 1.84 
0.095 1.73 
0.94 1.62 
0.091 1.40 

( * ) 

(*) the equation for (J was correlated by the present 
author. 
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Table F-3 Thermophysical properties of ethylene glycol 
(reproduced from [ 56] ) 

T 

K 

300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
4 iO 
480 

P 

Pa 
19.92 
42.55 
86.70 

169.19 
317.42 
574.51 

1006.09 
1709.32 
2824.20 
4547.63 
7150.40 

10997.34 
16570.75 
24497.13 
35577.15 
50818.84 
71473.58 

'99074.82 
135479.00 

ux10 4 hfg x10- S c
p 

m3/kg 

9.021 
9.078 
9.137 
9.198 
9.260 
9.324 
9.390 
9.459 
9.530 
9.603 
9.679 
9.759 
9.841 
9.927 

10.016 
10.109 
10.206 
10.307 
10.413 

J/kg J/kgK 
1.094 
1.083 
1.072 
1.060 
1.049 
1.037 
1.026 
1.014 
1.002 
0.990 
0.977 
0.965 
0.952 
0.940 . 
0.927 
0.914 
0.901 
0.857 
0.874 

2418.5 
2463.5 
2508.0 
2552.7 
2597.8 
2643.3 
2689.4 
2736.4 
2784.4 
2833.6 
2884.3 
2936.5 
2990.6 
3046.6 
3104.8 
3165.4 
3228.5 
3294.4 
3363.3 

Correlations reproduced from[56] 

Tb=T-338.15 

11x 1 0 4 

Ns/m 2 

158.15 
108.08 

76.93 
56.71 
43.09 
33.60 
26.80 
21.81 
18.06 
15.19 
12.94 
11.17 

9.74 
8.58 
7.62 
6.82 
6.15 
5.58 
5.09 

U =9.24848xlO-4+6.2796x10-7Tb+9.2444x10-1~Tb2 

+3.057x10- 12 Tb
3 

p =l/u 

k =418.68xlO- 6 (519.442+0.3209xT) 

c 2 
11 =exp(-11.0179+1.744x10 3 /T-2.80335x10-/T 

+1.12661x10 8 /T 3
) 

a =5.021x10- 2 -8.9x10- S (T-273.15) 

h =1 35234x10 6 -6.38263x10 2 T-0.747462 T2 
fg · 

k 

W/mK 
0.258 
0.259 
0.260 
0.262 
0.263 
0.265 
0.266 
0.267 
0.269 
0.270 
0.271 
0.273 
0.274 
0.275 
0.277 
0.278 
0.279 
0.281 
0.282 

=4186.8(1.6884x10- 2 +3.35083x10- 3 T-7.224x10- 6 T2 
cp 

+7.61748x10- 9 T3 ) 

C1 

N/m 
0.048 
0.047 
0.046 
0.045 
0.044 
0.043 
0.042 
0.042 
0.041 
0.040 
0.039 
0.038 
0.037 
0.036 
0.035 
0.034 
0.034 
0.033 
0.032 
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Table F-4 Thermophysical prperties of methanol 
(reproduced from [ 58] ) 

t P 
hfg x10 6 ~X103 

a 
Cc kg/m 3 J/kg Ns/m2 . N/m 

0 810 1.210 0.817 24.5 
10 800.8 1.2016 23.5 
20 791.5 1.1911 0.578 22.6 ( * ) Equations 
30 782.5 1.1786 0.509 21.8 
40 774.0 1.1639 0.446 20.9 are given 
50 765.0 1.1472 0.393 20.1 
60 755.5 1.1304 0.347 19.3 
70 746.0 1.1095 0.306 18.4 
80 735.5 1.0844 0.271 17 . 5 
90 725 1.0593 0.240 16. 6 

100 714 1.030 0.214 15. 7 
110 702 1.0006 0.19 14.7 
120 690 0.9713 0.17 13. 6 
130 677 0.9399 O. 152 12.6 
140 644 0.9043 0.136 11 . 5 
150 649.5 0:8667 0.121 10.4 
160 634 0.829 0.109 9 . 3 
170 616 0.7871 0.098 8. 1 
180 598. 0.7411 0.0883 6.9 
190 577 0.6908 0.0794 5 . 7 
200 553 0.6364 0.0716 4. 5 

Coorelations obtained by least squares method 

u = l/p 

k = (687. 314 - 0 . 680519 T ) x 4 . 187 x 10- It 1* I 

Y=-8.857+3.835x103/T-9.593x105/T2+9.344x107/T3 

~ = 10 Y 

for k 2nd 

in[59] 

o = -1.2xlO-9T3+1.163xlO-6T2-0.4604xlO-3+87.97xl0-3 

hfg=1.107x10-2T3-21.61T2+8.666x103T+2.3xl05 

cp = (0.582485-3.75646x10- 4 T-l.67844x10- 6T2 

+1.06214xlO- eT3)x4.187xl0 3 
( 'K) 

Cp 
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