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1. 

S, - IRCT 

A survey and evaluation of some models of turbulence 

for isothermal turbulent flo,.,, s is made. Models such as mixing- 

length, one-equation, two-equations and three-equations are 

solved with the aid of a high speed computer for annular 

turbulent flows. The results are com-Pared with each other end 

with experiment and the significance is discussed. The three- 

equation model (three transDort equations plus the mean 

velocity equation) emerges as the most accurate and capable of 

the widest application: one set of constants only is sufficient 

to solve a =rnber of turbulent flows. Illso, this model does not 

require the prescription of any arbitrary length scale. 

A study of the effect-of varying the. constants in the 

three-equation model shows that, the velocity and shear stress 

profiles are insensitive to the variation of the constants. A 

variation of uD to 50ýý, in the value of the constan-'Us produces, 

at most-, less than 2,14, variation in the velocity and shear 

stress profiles. Only the turbulence energy distribution shovis 

some sensitivity. The position of maximum velocity for smooth 

annuli with different radius ratios, as well as friction 

factors for a number of viall conditions are calculated vrith the 

three-equation model. The comparison between predictions and 

experimental data shows a fairly good agreement. 

Starting from this three-equation model, an extended 

model, capab"-e of predictiAg tiirbulent, two-dimensional, 



2. 

incompressible thermal boundary layers is developed. Three 

more equations are incorporated in the isothermal model, 

namely, (1) mean temperature. equation (T), (2) convective heat 

flux equation (u TI) and (3) equation for the intensity of y 
temperature fluctuation Q-TI 2 ). Appropriate approximations are 2 

introduced and the new model of parabolic differential 

equations is solved simultaneously with the equations for the 

isothermal flow. The new five-equations model (five transport 

equations plus mean velocity and me an tem-perature equations) 

is a-pplied to a number of real flows, with and without the 

presence of walls. Both rough and smooth walls are considered. 

Generally, good agreement is obtained when predicted results 

are com-aared with the available experimental data. 
Zia MI_ 



3. 

'WKI EITTS ., -lNOWLED, xE.,,, 2, 

I 

The author would like to take this opportunity to 

express his gratitude to and acknowledge 

Dr. j. 'wooa for valuable advice and encouragement 

throu,,,, r,. qout this researe. h. 

U Iz 
-- tý 

Professor D, C. -Leslie for help, suggestions and 

corrections at the various stvges of this won. 

The other academic staff and contemporaneous students 

for their many valuable opinions and discussions. 

The Instituto de Energia Atomica, Sao Paulo, Brazil, 

for valuable financial support during my stay in London. 

The Fundagao de Amparo A Pesquiza do Estado de Sao Paulo, 

Brazil, for helping with college fees and travel expenses. 



4. 

TABLE OF COITTENTS 

ABSTRACT 

ACKNO"jVLEDGETMINTS 

TABLE OP CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

NOMENCLATURE 

Ut _. ý 1ý 

CHAPTER 1- Introduction. 

1.1 DTIodels of turbulence. 

1.2 Heat transfer in turbulent flows. 

1.2.1 Empirical and semi-empirical methods. 

1.2.2 More elaborate methods. 

1.3 Objectives and purposes. 

1.4 Outline of the thesis. 

, 
CH",,, kPTI3R 2- Critique of some models of turbalence. 

2.1 Basic assumptions common to the models 

2.2 Mixing-length model. 

2.3 One-equation model. 

2.4 Two-equation model. 

2.5 Three-equation model. 

Pa,! ze 

1 

4 

8 

14 

15 

25 

31 

31 

33 

36, - 
37 

39 

40 

41 

43 

45 



2.6 Summary of numerical method used to solve the 
partial differential equations. 

2.7 Quantitative comparison between models. 

5., 

PaF, e 

46 

47 

CHAPTER 3- Analysis and application of a three-equation 
model. 

3.1 Influence of varying the constants in the three, 
equation model-. 

3.2 The position of maximiza velocity in a smooth 
annulus. 

3.3 Turbulent pipe flow. 

3.3.1 Law of the wall. 

3.3.2 Friction Law. 

3.3.3 Velocity defect Law. 

3.3.4 Comparison between experimental results and 
J, , 0', the three-equation model predictions. 

3.4 Friction factors in turbulent annular flow. 

3.4.1 Smooth/Smooth and Rough/Rough annuli. 

3.4.2 Annulus internally roughened. 

3.4.2.1 Overall friction factors. 

50 

55 

57 

58 

59 

59 

61 

63 

63 

66, 

66 

3.4.2.2 Hall's transformation. 67 

(i) Iterative methods based on Hall's 
transformation. 69 

(ii)Methods using the true position of 

zero shear stress. 71 

(iii) Transformed friction factors. 72 

CHAPTER 4- Thermal boundary layers. 

4.1 Equations for thermal boundary layers in turbulent 
f 1017.75 

4.1.1 Equation for the., mean temperature. 76 



6. 

Pa. -- 
4.1.. 2 Equation for the convective heat flux. 79 

4.1.2.. l Viscous and conductive dissipation 
4-e= 
U 

C, 0 

4.1.2.2 "Pressure-rate of strain term. 81 

4.1.2.3 Ti urbulent diffusion term., 82 

4.1.2.4 Approximate eMation for two- 
dimensional convective heat fl=. 83 

4.1.3 Equation for the intensity of temperature 
fluctuation. 85 

4.1-3.1 Dissipation of fluctuating intensity 
term. 86 

4.1-3.2 Turbulent convection term. 87 

. 4.1.3.3 Approximate equation-for two- 
": -dimensional intensity of temperatu. -e 

fluctuation. 87 

4.1.. 4 The final form of the turbulent model. 89 

4.. 2 'Evaluation of constants, in the convective heat 
flux and intensity of temperature equations, 90 

4.2.1 The constants C UrP1 9 CM a-"a ýf2 * 90 

4.2.2 The constants C UT2 and C TT2 * 93 

4-3 Flows studied and description of the solution 
procedure used. 94 

4.3.1 Flovis studied. 94 

4.3.2 Solution procedure. 95 

4.3.2.1 Boundary conditions for dependent 

variables. 95 

IIall boundary. 96 

(ii) Free boundary. 99 

(iii) Sy=etry axis. 99 



7 

Pa. ý7e 
4.3.2.2 Initial profiles of dependent 

variables. 99 

4.4 Discussion of results. 100 

4.4.1 Turbulent annular flow. 100 

4.4.2 Turbulent pine flow. 107 

4.4-3 Flat-plate boundary layer. ill 

4.4.4 Plane. mixing layer. 115 

4.. 4., 5 Plane i et in stagnant surrounding. ?3 119 

CHAPTER 5- Conclusions and recommendations for future 
developments. 

5-. 1 Conclusions. 122 

5.. 2 Puture developments. 125 

REFERENCES 129 

APPENDIX -1-A brief description of the numerical 
method of Patanikar and ST)aldinlg:,. 140 

APPENDIX -2- Ap-? roximation of pressure-rate te= in 

convective heat flux eouation. 146 

APPENDIX -3- Approximation of the triple-co'rrelation 

Uerm. irL the convective heat flux equation. 150. 

FIGURES 153 



a. 

LIST OF FIGURES 

Faze 

21 Length scale influence in veloci-Ity, shear 

stress and turbulence energy profiles in a 

smooth annuli4s using a two-equation model. 153 

Fig. 2.2 Com-carison between models of turbulence: 

velocity, shear stress and turbulence energy 

profiles in a smooth annulus. 154 

Fig. 2 Comparison between models of tur'bulence: 

velocity, shear stress and turbulence energy 

profiles in an annulus internally roughened. 155 

FiX. 2.4 Length scale variation in a s. -, iooth annulus. 156 

u I- *0: ýý 

FiýT- 3.1 Influence of constants C 
S17 

C 
s2l 

C El and C E2 
in velocity, shear stress and turbulence 

energy profiles in a smooth annulus. 157 

Fig. 3.2 Mean velocity distribution in a smooth 

annulus, varying radius ratio. 158 

Fig. 
-3-3 

Experimental ana predictea results on the 

point of maximum velocity for turbulent flow 

in a smooth annulus. 159 

Fig. 3.4 Non-dimensional velocity profile ( u+ vs. 
(RO-R)/e) in a sand roughened pipe. 160 

Fig. 3.5 Friction factors in a turbulent pi-pe flow with 

sand and square ribs roughness. 161 

Fig. 3.6 Defect function (h(ý in a pipe with sana 

roughness. 1 
162 



9. 
Lis-t0ffi,, 7,4uu ,. res (contuld) 

Paý? 7e 
L-f- 3.7 Friction factors in an a'Mralus rouZhe. ned on both sides. 

163 
FLE-. 

-3-8 Radius ratio (Ri/Ro) influence on friction 
factors in 'rough/rough 

and smOOth/s--qooth 
annuli. 

164 

Fig, 3.9 Variation of overall friction factor (V25-1f) 
with roughness ratio (D 

e 
/e) in an annulus 

internally roughened. 165 

F lig. 3.10 Comparison between experimental and predicted 
overall friction factors in an annulus 
internally roughened. 166 

Fig. 3.11 Friction factors obtained with the 3-equation- 

model compared with friction factors obtained 

using iterative method in an annulus 
internally roughened. 167 

Fig. 3.12 Overall friction factors obtained witih the 3- 

equation model compared with friction factors 

obtained using Hall's transformation in an 

annulus internally roughened. 168 

Fig. 3.13 Transformed friction factors in an annulus 
internally roughened: square ribs. 169 

Fig. 4.1 Velocity and temperature profiles in a smooth 

annulus: inner wall heated (or cooled) and 

outer viall insulated. 170 

Fig. 4.2 Shear stress and 'convective heat flux profiles 
in symmetric smooth annulus with small radius 

ratio. 170 



10. 

List of figures (cont, d) Page 

Fig. 4.3 Non-dimensional velocity (viý) and tenz)erature 
W) profiles for the inner portion of a 1 
smooth annulus with small radius ratio. 171 

Fig. 4.4 Turbulence energy and intensity of temperature 

profiles in a symmetric annulus: inner wall 
heated (or cooled) and outer wall insulated. 172 

Pig. 4.5 The ratios shear stress/turbulence energy and 
convective heat/(intensity of temperature x 
turbulence energy) in a smooth annulus. 172 

Fig. 4.6 Turbulence energy balance in a symmetric 
spooth annulus. 173 

Uzr. 14 

Fig. 4.7 Intensity of temperature fluctuation balance 
in a symmetric smooth annulus: heated (or 

cooled) on inner ivall and insulated on outer 
Nvall. 174 

Fig. 4.8 Intensity of temperature fluctuation profiles 
in smooth annular and channel flows. 175 

Fig. 4.9 Eddy diffusivity of heat and momentum ratio 
(4 in a symmetric smooth annulus: inner OT 
wall heated (or cooled) and outer wall 
insulated. 175 

Fig. 4.10 Fully developed Nusselt, numbers for the inner 

wall of a turbulent flow in a smooth annulus: 
heated (or cooled) on the inner side; constant 
Tiall temperature. 176 



ii.. 

List of figures (cont'd) Pa7,, e 

Fig. 4.11 Fully developed Nusselt numbers for the outer 
viall of a turbulent flow in a smooth annulus: 
heated (or cooled) on the outer side; constant 
wall temperature. 177 

1 
Fig. 4.12 Fully developed Nusselt numbers for the inner 

vv, all of a turbulent flow in a smooth a-, -mulus: * 

heated (or cooled) on the inner side; wall 
temperature increasing linearly in direction 

of fl ow. 178 

Fi, g. 4.13 Temperature profiles in a heated (or cooled) 
smooth pipe. 179 

Fig. 4.14 Non-dimensional velocity u+ ) and temperature 
(9+) dis'uYibations in a smooth pipe flow. 180 

Fig. 4.15 Friction factors and Stanton numbers in a 
I smooth pipe flow. . 161 

Fig. 4.16 Velocity and temperature distuributions in a 
rough (sand) pipe flow. 182 

ýFig. 
4.17 Friction factors and Stanton nimbers in a pipe 

with sand roughness. 183 

Fig. 
_4.18 

Velocity and temperature profiles in a heated 
(or cooled) flat-plate boundary layer. 184 

Fig 4.19 Shear stress and convective heat flux profiles' 
in a heated (or cooled) flat-plate boundary 
layer. 184. 

Fig. 4.20 Non-dimensional velocity (u+) and temperature 
(9+) distribution'3 in a flat-plate. 185 



12. 

List of figures (cont'd) Far. e 

Fig. 4.21 Turbulence energy and intensity of tem-perature 

profiles in a flat-plate boundary layer. 186 

Fig. 4.22 Momentum and heat transfer flux correlations 
in a flat--; plate boundary layer. 136 

Fig. 4.23 Turbul6nce energy balance in a flat-plate 
boundary layer. 187 

Fig. 4.24 Intensity of temperature fluctuation balance 
in a flat-plate boundary layer. 188 

Fig. 4.25 Velocity and temperature profiles in a plane, 
mixing layer flow, with zero velocity ratio. 189 

Fig. 4.26 Shear stjý6sEPAnd convective heat flux profiles 
in a plane mixin, -,, layer flow, with zero 
velocity ratio. 190 

Fig. 4.27 Turbulence energy and temperature intensity 
fluctuation profiles in a plane mixing layer 
flow, with zero velocity ratio. 191 

Fig. 4.28 I-Jomentum and heat transfer flux correlations 
in a plane mixing layer, with zero velocity 

ratio. 192 

Fig. 4.29 Eddy diffusivity of heat and momentum ratio in 

a plane mixing layer flow, with zero velocity 

ratio. 192 

Fig. 4.30 Mean velocity and mean temperature profiles in 

a plane jet in stagnant surroundings. 193 



13.. 

List of figures (cont'd) Pa, 6e 

Fig. 4.31 Turbulence energy and intensity of temperature 
fluctuation -, nrofiles in a plane jet. 194 

Fig. 4.32 Momentum and heat transfer flux correlations 
in a plane jet. 195 

Fig. 4.33 Eddy diffusivity of heat and momentLLm ratio 
( in a niane jet. 195 

1.1 11 22 1. 



14. 

LIST OF TABLES 

Table 2.1 Empirical constants for the three-equation 

model. 45 

Table 3.1 I-T-Limerical values of the constant-s 
reco, =ended by several authors. 50 

Table 3.2 Range over which the constan: ts are varied.. 54 

Table 3--3 Predicted and experimental overall friction 
factors in a fully developed smooth annular 
f low. 1 64 

Table 4.1 Empirical constants used in thermal model. 94 

Table 4.. 2 Scalar flux correlation ratio in shear flovis 
in local equilibri=. 114 

Table 4.3 Predicted and measured rates of spread in 

plane mixing-layers and plane jets. 117 

Table A. 1 Terms c and d for 'uhe. set of equations. 141 



15.. 

I-I OME NC LAT URE 

Symbol 11,11eaning Eauation 
'Erst ot 

a-opearance 

m T' 
a - fourth-order tensor (B. 7) ki 

A - constant- ý3.5) 

A - coefficient in the difference equation (A. 7) 

A-)f 
3 - transformed coefficient (A. 8) 

b - constant (4.28) 
1 

B- constant in non-dimensional velocity 

prof ilo, -(=l/K) (3-15) 

B- coefficient in the difference equation (A. 7) 

B-)t - transformed coefficient (A. 8) 

Br- asymptotic value of free constant in 

universal velocity law for rough wall (3-18) 

B, (e+) - free constant in a general universal 
law of the wall (3-15) 

B 
rT 

(e + Pr) - heat transfer roughness function (4.54) 

Bs - asymptotic value of free constant in 

universal velocity law for smooth 

wall (4-52) 

B, j(Pr) - free constant in universal temperature 

lwi for smdoth- wall (4-51) 



16. 

Enuation 
Symbol 6f T i7st 

anDearance 

CD- constant appearing when dissipation 

term of turbulence energy is modelled (2-7) 

Ce - constant. in turbulence energy equation (2.6) 

CP- s-pecific heat at constant pressure (4.1) 

Cs'Csl'Cs2 - constants in shear stress equation (2.14) 

C 
sa - constant appearing in the anproximation 

of the pressure-rate term 
, 

(C. 4) 

C TT1"CTT2 - constants in intensity of temperature I 

equation (4.29) 

CUT17CUT2 - constants in heat flux equation (4.18) 

CEIC611CE2 - constants in dissipation equation (2.13) 

d1U- 
rate of spreading of velocity field of 

dx self-preserving free shear flows 

d 'T 
- rate of spreading of thermal field of 

dx self-preserving free shear flows 

D- pipe diameter 

De - equivalent diameter (=2(RO-Ri)) 

e- rib height (3-15) 

e. u 
e+ d imensionless rib height(= (3.15) 

Iro turbulence energy (2.6) 



Symbol 

1 

fi 

fo 

G(Pr) 

h 

h 

hw 

k 

K 

Meanin, 

- fanning friction factor 

7-7. 

of fir-st 
appearance 

( 'z 0.16) 

- friction factor related with the 
internal wall in annular flow (3.25) 

- friction factor related with the 

external wall in annular flow (3.25) 

- integral function, -con. ponent of the 

f free constant in universal temperature 
law for smooth walls (4.52) 

- channel width (= R 
O-Ri) 

2.10) 

- defqjýt function (or core similarity II tj - function) (3-19) 

- mean value of h(f- ) (volume averaged) (3.21) 

- heat transfer coefficiiant 

- thermal conductivity (4.1) 

- Von Karman constant (2.4) 

- characteristic length scale of 
turbulence (4.16) 

1M- the mixing length (2-3) 

L- length scale (2.10) 

La- length scale in dissipation terra of 
turbulence, ene. rgy equation (2-7) 



S,,, rmb ol Dleanin 

LT length scale in dissipation ter, -. q of 
intensity temperature equatVion 

I 

m" 

N 

Nu 

p 

pt 

p 

Pr 

Pr 

i It 
Q 

r, R 

- length scale in viscosity term 

mass flow entering boundary 

number of grid points in numerical 
solution of differential equations 

- Nusselt number (= hw D/k) 

18. 

Bouation 
OF FIFS-t 

anpearance 

(4.26) 

(2.9) 

(A. 2) 

(4-70) 

- static pressure (2.1) 

- fluctuating pressure (4.13) 
a- '- -ý 

- constant in heat transfer equation 
proposed by Leslie ard Hassid (1973) (4-73) 

- Prandtl number (= cP., /%A-/k) (4-51) 

- turbulent Prandtl number (4.69) 

- mean heat flux, normal to the wall. (4.49) 

- function in heat transfer equation. 
proposed by Leslie and Hassid. (1973) (4-73) 

- radial coordinate 

Re - Reynolds number (= U. De. ýýp IAL 
) 

R- inner radius of an annulus 



Symbol Lleanin 

19.1 

ýc. uation 
f ! Fs--u 

d-onearance 

R 
1"I - radius at which mean velocity is 

maximum, (3-9) 

R0- outer raaius of an annulus or 
radius of pipe 

R 
so - radius of zero shear stress 

R* - radius ratio Ri/Ro) (3-9) 

rib pitch 

St - Stanton nujYber ) (4-73) 
P 

S* - relation between radius defined in text (3-9) 

t - time dimension (2.1) 

To - instantaneous temperature (4.1) 

T - time mean temperature (4-3) 

TG' - temperature at edge of boundary layer (4-57) 

TI - fluctuating temperature 

T - maximum (or minimum) mean temperature 
in a cooled (or heated) fluid flow (4.63) 

Tsi - temperature at internal boundary (4.62) 

12 
I-TI - intensity of temperature fluctuation (4.24) 



SvTr. bol Dleanin 

20.. 

an n5 aranc e 

characteristic velocity in turbulent 
flow (4.16) 

ui - fluctuating velocity components 

i=X, Y, z (4-3) 

u TI - convective heat flux (4.14) i 

u TI - lateral convective licat flux. (4.22) 
Y 

u u - Reynolds stresses (or shear stresses) (4-14) 
i i 

u ýu - Reynolds stress in x, Sr plane (2.1) 
l y 

U+ - dimensionless streamwise velocity 

U/u't (3.15) 

u - friction velocity (3.7) 

U - strea=*, vise time mean velocity in 
boundary layer (x-directio-n) 

U - overall bulk mean velocity (3-16) 

UG - time mean velocity at free edge of 
boundary layer (4-59) 

Ui - time mean velocity components 
( i=xqyIz ) (4-3) 

U_* - instantaneous velocity (4-3) 

UMAX - maximum time mean velocity (3-19) 



21. 

Eriluation 
Symbol '. '.: eanin 

- 
ýf T-3-rst 

ampearance 

U00 - non-disturbed velocity in flat-plate 
boundary layer 

UiooIU200 - non-disturbed velocities of each 
stream in plane mixing layer 

IV - rib wiath 
x- cartesian coordinate, streamvise 

direction 

xi- coordinate axes (x i=xpytz) (2.2) 

y- cartesian coordinate, cross-stream 
direction, measured from internal 
boundary.. ý (2.1) 

Y- characteristic thicImc3s of boundary 

layer (2.4) 

YSO -y coordinate where shear stress is zero (2.11) 

Y0.1 - cross-stream coordinate where velocity 
is 10,, Io' of stream velocity 

YO. 5 - cross-stream coordinate where velocity 
is half the stream velocity 

YO. 9 - cross-stream coordinate where velocity 
is 90oia of stream velocity 

+- dimensionless distance f-rom wall 
(R 

O-Y) 
(4.64) 

- cartesian coordinate. (4.9) 



2 2. 

Greelc "Ectuation 
Symbols 11"eaning o T, I, ý- -, -5 t 

a-p-p ear,, -,. n ce 

OC - constant appearing in pressure-rate of 
strain term in convective heat flux 

equation 
1 

(4.18) 

O(l Cý - constants of proportionality between 

normal stresses and turbulence energy (3.2) 

- thermal diffusivity. (= k1f. c ) (4.11) 
p 

- eddy diffusivity of heat (4.68) 

cf- - cross-stream distance vilhere velocity 
is 0.995 of stream velocity (flat 

plate flow) 
UZ 514 

Cf 
- T. Cronecker tensor (4.14) 

- rate of dissipation of turbulence 

energy (2.6) 

T - rate of dissipation of intensity of 
temperature (4.25) 

- mixing length constant (2-5) 

X2 
- constant in length-scale expression (2.11) 

function in length-scale expression (2.11) 

molecular viscosity (4.1) 

turbulent viscosity (2.9) 

kinematic viscosity (2.1) 



Gre ek 
Sym. bols 

p 

k 

ZVI 
9z, 

9 

MIAX 

+ 

fur 

1y 

ECIIIý, a4-jor 
II-canin irst 

2. -olaearance 

- eddy diffusivity of momentum (4.66) 

- density of fluid (2.1) 

- adimensional cross-stream variable 
(=(Ro-r)/R 

0) 
(3-19) 

- value of-ý where eddy viscosity starts 
to be nearly constant throughout the 

core region in -pipe flow (3.20) 

- shear stress (3-11) 

- mean temperature difference (=IT(r)-Tsil)(4.62) 

- maximum mean temperature difference (4.6.4) 3 

- dimensionless temperature (4-51) 

-a general dependent variable (A-3) 

- dissipation function (4.1) 

a stream function (A. 1) 

- dimensionless strearm function or 
grid function (2.12) 

- cross-stream coordinate difference 
(ý Y0.9-YO. 1) 

lb 



24. 

Subscri-ots Yeanin 

C- Couette flow boundary 

E. o- external boundary 

G- free stream edge 

19i- internal boundary 

i, j, k, l, m - indices denoting-direclUions x, y, z 

rR- denotes value at roueh surface 

w- denotes value of quantity at wall 

- dep mooth surface , PtQs value a' s 
I 

xIy- streamwise and cross-stream directions in 

tv.., o-dimensional flovis 

1- associated with the inner portion in Hall's 

transformation 

2- associated with the outer portion in Hall's 

transformation ' 

Surerscrints 

denotes time-average of quantity in question. 

denotes fluctuating component of quantity 



25. 

CITAPT R 

1. Introduction. 

1.1 I, Todels df turbulence. 

Turbulence always has been a major area of interest 

in the field of fluid mechanics: due to its importance, 

complexity and difficulty. Historically, Reynolds (1883) was 

the first to draw attention to turbulence on a qualitative- 

quantitative basis. Reynolds himself showed that the 

statistical averaging of the Navier-Stokes equations, by 

decomposition of the velocity field into mean and fluctuating 
U ; 'I ZI t, 

components and time-averaging the several terms, leads to the 

equations of motion for turbulent flow. Because Reynolds was 

the first to develop such equations, these equations are 

often called Reynolds momentum equations. These equations 

involve the relation between average and fluctuating terms 

and describe the conservation of momentum in a turbulent 

flow. The Reynolds equations still remain the fundamental 

equations in any study of turbulence. 

- From the engineer's point of view7 because he is 

interested in prediction of mean-flow quantities, his main 

interest focuses on the solution of the Reynolds equations, 

for a specified real fluid flow. A quantitative analysis of 

turbulence requires a realistic formulation of macroscopic 

behaviour-of the fluid motlon, _ therefore? it requires * 
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equ, -). tions which express -I. -he time-averag-e requirements f or 

the conservation of mass, momentum and energy. 'dhatever 

method is used to solve the momentum equations, it leads 

inevitably to a situation in which there are more unkno, -. -ns 

than equations. Therefore, even for the simplest floinir, we 

always have a "closure" problem. Thus, to solve a turbulence 

problem, we must ", -. -iodel" the real flow by means of 

arbitrary simplifications `, by neglecting terms or by 

expressing them in convenient forms by analogy with laminar 

f1 ov.. 's 

Until 1925 only simple and empirical theoriesý of 

turbulence were developed. The convenient mijxing-length 

theory, introduced by Prandtl (1925), remained as the most 

important and influential theory fo. c a long time. With 

Taylor (1935) the idea of turbulent motion as random 

continuous function of position and time was introduced and, 

with it, the more rigorous methods of the statistical theory 

of turbulence. Then, more sophisticated methods begin to 

appear. Either by the development of new relationships with 

more physical meaning not implicit in the basic principles 

already introduced, or by the development of new relations 

in the form of new equations. 

The vast majority of the attempts to -predict 

turbulent motion follow the pattern of combining mathematical 

and physical arguments. The main weakness is that no method 

is complete; no model of tilrbulence so far generated is 
an& perfect or general,, talways some empirical information must 
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be incorporated. 

Before the advent of high-speed computers the range 

of turbulence problems that could be handled was very li-mited, 

mainly because of mathematical difficulties in solving the 

complex equations. This explains why before the 1960's only a 

very limited number of flows could be considered. -A: i447hese 

were only solvable due to the gross simplifications introduced 

by integral procedures which had dominated the field until 

that date. The integral equation methods were developed in 

order to speed numerical solutions by hand calculations. This 

method must incorporate, implicitly or explicitly, I 

suppositions about the global influence of turbulence in the 

mean flow. Global hypotheses are valid only over a very 

restricted range of corditions; therefore, it is difficult to 

extend such methods to wider classes of flows. Accuracy and 

width of applicability cannot be achieved without solving the 

partial differential equations, and. to solve them,. the 

knowledge of local properties is required. 

I'lith the advent of fast computers the use of more 

sophisticated numerical methods for solving the partial 

differential equations became feasible. 'From the Stanford 

Conference on computation of turbulent boundary layers, Kline 

et ali. (1969), it emerged that methods using partial 

differential equations are more accurate and practical than 

the best of the integral methods. Then, -a vigorous attack 

in the turbulence problem, 'viapa: ýtial differential methods, 
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started. An evolution from simple to more sophisticated 

methods, covering a very wide range of flows, followed. 

Launder and Spalding (1972) give a complete and detailed 

survey of the available turbulent models, from the simplest 

ones: mixing length theory and turbulent viscosity methods to 

the complex ones, such as, the multi-equation models., Also, 

very interesting and useful up to date surveys on turbulence 

models are presented by Bradsharr (1976), Fernholz (1976). 

Johnston (1976) and Reynolds and Cebeci (1976). Fernholz deals 

with the external, two and three-dimensional boundary layers; 

Johnston surveys the internal flow models and Reynolds-Cebeci 

are interested in the methods of calculating boundary layers 

in turbulent flowq., 
,. 

Prom the wide ý er of models proposed we see no 

method is absolutely general; always conditions and 

limitations of applicability are inherent in each model. 

Motivated by the desire to remove these restrictions and to 

achieve greater generalityt a collection of work has been 

produced, founded on very formal and sophisticated statistical 

theories of turbulence. In the hope of finding a general 

formalism without the need for empirical assumptions, 

theoretical works such as Orszag (1973), 1donin and Yaglo-a (1975) 

Leslie (1973) and Lumley (1970) have appeared. So far, however, 

rather arbitrary postulates are needed in their theories too. 

It seems that the turbulence models, i. e., the partial 

differential equations models that lend themselves to a 

numerical solution, are the only practical way of treating 
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turbulent flows. DI'any individual investigations have been 

reported based on the idea of using a self-contained set of 

differential equations. Apart from the early mixing length and 

turbulent viscosity methods, we have models comprising one-to 

many equations. Among the one-equation models proposed we find 
I 

the models of Glushko (1965), Bradshaw et al. (1967) and Nee 

and Kovasznay (1969). Glushko adopted the tactic of si=ulating 

the turbulence energy equation and assumed the turbulent 

viscosity proportional to the squ are root of the turbulence 

energy; Bradshaw at al., on the other hand, developed an 

equation directly for the shear stress; Whereas, Nee and 

Y, ovasznay developed a model Where the kinematic turbulent 

viscosity is determinfAe4 from a differential equation. 
" . 1, V I- 

All the two-equation models take the turbulence enargy 

equation as the first equation; the distinction between models 

is in the -second equation adopted. Ng and Spalding (1976) 

proposed a two-equation model where the second equation is the 

turbulence energy-length scale product. Among the multi-equation 

models, Hanjalic (1970) proposed a three-equation model, in 

which the equations for the turbulence energy, shear stress and 

dissipation are solved. With slight modifications, Hanjalic and 

Launder (1972b) proposed a very similar, but extended model, 

which refers to 7 constants. Mention may also be, made of Daly 

and Harlow (1970) who developed a model of 5 equations, where 

the turbulence energy equation is substituted for the 3 nomal 

Reynolds stresses equations. Based on the Hanjalic and 

Launder (1972b) model, Launder' et-al. (1975) developed a model 

also of 5 equationsp similar to Daly and Harlow's model, 
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but with more realistic approximations, mainly in the treatment 

of the pressure-rate of strain term near a wall boundary. More 

ambitious models are those o. "L *7 Chou (1945). Davidov (19ol) and 

Kolovandin and Vatutin (1969) proposing models with 17,23 and 

28 differential equations, respectively; these more complex 

models are also reviewed by Launder and Spalding (1972). 

Naturally, a better representation of the real flow 

can be achieved by means of a model with more and more 

equations, but this would result in increasing demand for 

computing time which is directly proportional to the number of 

equations. Now, it is widely accepted that multi-equation 

models should become--the standard method of solving turbulent 

flows, such is the degree of generality and precision of this 

technique. The principal question to be resolved is, what is 

the minimum necessary number of differential equations capable 

of representing well a wide range of turbulent flows. Co=puting 

time costs money, thereforep from the economical point of view, 

it. is evident that models like those proposed by Chou, Davidov 

and Kolovandin-Vatutin are virtually unsolvable. In this work, 

we shall concentrate our attention on intermediate models with 

tPhe purpose of selecting one, hopefully the best, that can be 

extended to deal with thermal boundary layers. Such model 

should, ideally, contain the minimum number of equations 

consistent with the qualities of generality, precision and 

computing-economy. 
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1.2 Heat tr=sfer in tunulent flows. 

The transport of heat to or from fluids flowing 

turbulently in closed conduits, is one of Ithe most important 

modes of industrial heat transfer. Engineering applications 

of convective heat and mass transfer are multiple and extremely 

varied. 

By the nature of the ffechanisms involved, "I. -#here is 

an analogy between momentum and heat transfer, and a close 

relationship between convective heat transfer processes and 

fluid dynamics is observable. Thus,, having established a model 

of turbulence that is purely hydro-dynamic, the extension to a 

model much more complex and general, including the transport 

of heat by convectiont is straightforward. A survey of all 

studies of convective heat transfer to be found in the 

literature permits their classification in one of the two 

categories: 

a) Empirical and se., mi-empirical methods. 

b) 1,11ore elýLborate methods based on transport equation 

1.2.1 Emnirical and semi-emairical methods. 

The vital question, from the en. -ineering point of 

view, is to know the amount of heat', transfered from the wall 
r 

to the fluid or vice-versa, depending cin whether the fluid is 

heated or cooled. For this purpose, several correlations purely 

empirical7 based on relations between non-dimensional numbers, 

were developed. These relations have been modified aad imiprovec, 
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in order to satisfy the needs of the designer of heat tranS. LO. - 

equipment. Usually, the relationships were found from direct 

results of exi)eriments on prototype'equipment . These empirjcal 

expressions do not say anything fundamental about the way heat 

is transferred, therefore, other relations, theoretical and 

semi-empirical, based on a fundamental knowledge of the 

processes occurring, were also developed. 

Reynolds (1901) was the' first to predict 

quantitatively an 'analogy' between heat and momentum. His 

basic assumption was the equality of the turbulent diffusivities 

for momentum and heat ( *-), 2= 
71) 

, making possible a relationship 

between the heat transfer coefficient and the friction factor. 

Since then, both simple and more elaborate methods have been 

proposed, for example, the works of Prandtl (1910). Colburn 

(1933), Martinelli (1947), Lyon (1951), Rannie (1956), Kestin 

and Richardson (1963). Gardner and Kestin (1963). Lawn (1969), 

Spalding (1961a) and, with later extensions of Kestin and Persen 

(1962). Spalding (1964) and Quarmby and Anand (1970). The 

general procedure of these workers was to establish an accurate 

description of the velocity. profile for the turbulent flow 

usually, the non-dimensional velocity u+ vs. the non-dimensional 

cross-stream distance y+), then, use any kind of 'analogy' to 

relate the heat transfer coefficient with the friction factor. 

On the experimental side there are also many 

contributions, for example, Dipprey and Sabersky (1963), Kays 

and Leung (1963)p De'4. ssler"(l9'55),. Johnk and Hanratty (1962), 

Smith and Shah (1962). Edward and Sheriff (1961). Owen and 
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Thomson (1963) , Sparrow and Hallman (1958), Kolar (1965), 

Gowen and Smith (1967), Bettermann (19665), Quarmby (1967) 

Webb et al. (1971), and others. 

Although these authors, considered together, covered 

a very wide range of geometriest conditions and kinds. of flow, 

their main purpose was only to make possible the calculation 

of ýhe heat transfer coefficient (hw), or, alternatively, the 

Nusselt or Stanton numbers. The understanding of the heat 

transfer mechanisms still remained slight. A better 

understanding of the way heat is transferred inside the fluid 

flow must help in the design of more efficient heat transfer 

equipment. But in the design of this equip=ent it is desirable 
"A=% 

to have a detailed knowledge of transport quantities, such as, 

convective heat flux, intensity of temperature fluctuation, 

etc., and for this it is necessary to understand the 

underlying heat transfer mechanisms. This is why more elaborate 

methods are needed. 

1.2.2 More elaborate methods. 

In comparison with the purely hydrodynamic or 

isothermal flows, very little research has been done into 

turbulent flows affected by a difference of temperature,, by the 

use of higher- order correlations. , This is understandable because 

turbulent shear stresses are important 'input" to the heat 

transfer equations, therefore,, - the -heat-flux models had to wait 

until the hydrodynamic models were satisfactorily developed. 
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-dhen a turbulent flow also exch=7ýes heat, in 

addition to the momentum equation, the equation of mean 
temperature (or thermal energy) must be solved. The averaging 

of the mean. temý3erature equation gives, of course, a relation 
between the other mean quantities but also has a term due to 

turbulent effects only. This term is called convective heat 

flux (U 
i TI) and is analogous to the shear st -ress term in the 

equation for mean momentum. The Imoviledge of this term permits 
the calculation of mean temperature distributions across a 
turbulent flow. Therefore, a more elaborate method of 

predictinE heat transfer must model the convective heat . , -Clux 
in terms of higher order correlations. Theories based on more 

exact analyses have been formulated only in recent years and, 

so far, only a small tnount of work of this character has 

appeared. 

Townsend (1958) examined the case of a stably 

stratified, homogeneous, non-developing free turbulent shear 

flow, far from walls. Using the turbulence energy equation and 

an equation for the mean square of temperature fluctuation, he 

derived a relation for the flux Richardson number (ratio of 

the rate at which buoyancy forces extract energy from the 

turbulence to the rate at which it is supplied by the shear 

stress), which provides a measure of the stability of the flow. 

Vilebster (1964) and Nicholl (1970) performed trio 

similar experimental studies of turbulence in density-stratified 

shear flows. Both viere interested in the effects of buoyancy on 
the stability of the turbulent flow. They made measurements in 
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a a wind tunnel, using air at low Reynolds numbers, measurin, -, 

heat flux correlations as well as hydrodynamic correlations, 

in order to observe the dynamical effects caused by an. increase 

in the temperature of the boundary. 

L"I'ore recently, Daunder (1975) developed a m9del to 

explain the case of stably stratified shear flows, far from 

walls, including gravitational effects. Starting with the 

Reynolds shear stresses equations (for UjUj) and the convective 

heat flux equatior4he found non-dimensional fluctuating 

correlations as a function of the flux Richardson nu: -lber. In 
I 

his derivations, Launder neglects all convective and 

diffusional terms;. thýtt is, he supposes that turbulence energy 

production and the rate of dissipation are equal throughout 

the flow. In a subsequent work, Gibson and Launder (1976) 

extended the treatment to a more realistic situation in which 

the production/dissipation rat -io varies. This improvement 

allovis the consideration of jet flows as riell as shear flows. 

Second-order models for atmospheric entraining layers 

were developed by Lumley (1972)v Donaldson et al. (1972) and 

Zeman and Lumley (1976). Lumley (1972) and Donaldson et al. 

(1972) utilized simple transport gradients for the third-order 

fluxes and produced, respectively, models of 12 and 10 

differential equations. Zeman and Lumley (1976) incorporated 

buoyancy effects into Ithe third-order fluxes and proposed a 

model with a minimum of 8 differential equations. An up-t 

date and complete survey on heat and mass transzort can be 

found in Launder (1976). 
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Compared with the other models, the Gibson and 

Launder (1976) model is an intermediate model with 4 

differential equations and 2 algebraic relations, representing 

a compromise between physical realism and practicability of 

solution. Their model always approximates the transport terms, 

namely, convection and diffusion, in such a way that zimple 

algebraic formulae emerge for turbulent stresses and Iieat 

fluxes. But we know that, in general, the values of the 

properties of -'U -urbulence are quite substantially affected by 

local variations, therefore, we know that transport effects 

are significant, Thus, to provide an entirely consistent level 

of closure, quantities of turbulence, such as convective heat 

flux . intensity 9f lqepiperature fluctuation as well as shear 

stressesF should be found from the approximated transport 

differential equations. This is a "deficiency in their model. 

1.3 Objectives and purnoses. 

A study of the literature revealed that all higher- 

order models developed so far to predict convective heat 

transfer boundary layers were restricted to atmospheric or jet 

flows, no reference was found to flovis along solid walls. 

Therefore, we decided to take as our main objective the 

development of a complete model of turbulence capable of 

predicting both.. hydrodynamic and convective boundary layers, 

in the presence of wall boundaries as well as free boundaries. 

It was also decided to pa: ý ipecial attention to internal 

turbulent flows such as pipa and annular flovis vfhicch are the 
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most important in Nuclear l'ingineering. 

The general philosophy of the procedure we adopt 

can be st=arized as follows: by means of a, numerical , 

comparison, we aim to choose, from some of the existing hydro- 

dynamic models, one that is reliable, practicable and 

flexible. Next, for the thermal boundary layers, vie devejop 

a set of differential equations which permits the introduction 

of wall effects. Three further equations are developed: (1) 

mean temperature equation, (2) convective heat flux equa-"Gion 

and (3) intensity of temperature fluctuation equation, to 

account for the influence of heat transfer on the fluid, flow. 

Then, the complete set of equations (hydrodynamic 3: heat 

transfer) is solved for some real flows: annular flow, pipe 

flow, flat-plate boundary layer, p. 'ane mixing layer and jets. 

1.4 Outline of the thesis. 

The thesis is divided into five chapters, of which 

Chapter -1 forms an introduction. In Chapter -2 vie discuss 

the salient features of some existing models of turbulence for 

isothermal flows. By a comparison of the numerical results, 

these models are compared for the case of turbulent annular 

flow. A three-equation model emerges as the most satisfactory 

of those considered. Further analyses and more applications of 

the three-equation model are described in Chapter -3. In 

section . 
1.1 vie study the ýnfluence of varying the constants 

contained in the three-equation model. The -iroblem of the point 
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of max"imum velocity in a sMooth a=lus with different radius 

ratios is analysed in section 3.2 . Some of the 'universal,. 

Imus for pipe flow are examined in section 3.3 . Friction 

factors in both smooth and rough annuli are presented in 
(1962) 

section 3.4 . Also, some methods based on Hall's transformation ýk 
for comparing friction factors in asymmetric geometries, are 
included in that sect -ion. 

The development of a thermal boundary layer model is I 
the theme of Chapter -4. General equations are introduced 

for each one of the dependent variables. Boundary layer 

approximations, together with high Reynolds. and local isotropy 

simnlifications, are introduced and a final set of three : 11 .. EX ý 
differential equations is obtained. These three equations, 

which define the thermal model, combined with the three- 

eauation hydrodynamic model, form. a closed set of equations 

which is solved numerically for a group of real flows, with 

and without vialls. 

Finally, in Chapter -5 we draw some conclusions 

concerning the application of the new model-of turbulence to 

real flows. Also, discussed in this chapter are the areas in 

which the present work could be extended and developed by 

future research. 
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CHAPTER -2 

2. Critique of some models of turbulence. 

2.1 Basic assumDtions common to the models. 

Since all models of turbulence originate from 

equations obtained from the statistical averaging of the Navier- 

Stokes equations, and the number of unknown terms in these 

equations is large, it is necessary to approximate them with 

sufficient accuracy to describe satisfactorily the mean flow. 

It is conventional in turbulence models to close the par-'Ijial 

differential equations by using general assumptions. These 
Uý. "* 

basic assumptions are applicable to a fair number of practical 

flows. VIlith respect to the models presented here, they are 

based dn the following general assumptions: 

a) Flows with high Reynolds numbers. 

b) Fluid properties assumed constant. 

c) Two-dimensional flowý3 with a predominant direction. 

d) Fluid incompressible. 

The above assumptions along with the boundary layer 

approximationsýmake possible the derivation of the fundamental 

equation of turbulent flows which is the momentum or Rey-nolds 

equation (see, for example, Hinze (1959) or Schlichting (1968) 

for details of the derivation). Neglecting the external forces, 

the momentum equation can be written as 

2 
D U. 

It 1 dn 'Duý fý 
u=_a +ý I-C T 



where, 

Dý+UD 
Dt - ý-t i 'd Xi 

and re-peated-suffix imDlies su=ation. 

4'). 

(2.2) 

The mean momentum equation (2.1) represents a relation* 

between mean properties of the flow with'the exception of the 

shear stress term (iT--u, ) which is due to the influence of 
x 

turbulence. The difference between the models we consider lies 

in the way that Uýýuy is related to the mean properties, In 

our comparison we consider the following particular models: 

1) Dlixing-length model. 

2) Onee-equation model. 

3) Two-equation model. 

4) ThreeLequLtion model. 

iie now summarize the salient features of these models. 

2.2 llixina:: length model. 

The earliest, and simplest,, attempt to close the 

momentum equation for turbulent flow vvas made by Prandtl (1925). 

This work is ref erred to as the mixing-length theory. The key 

assumption of this theory is the approximation 

Uxu3r 
21DUXI ýUx 
m -7TY -; ý-y (2-3) 

vihere, e lm is the mixing-length. For flovis far from walls, 1M 

is usually taken as uniform across the boundary laver and 

proportional to the thickdess, of the layer. In our numerical 

conparison of the above models we take: 
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1m= Ky for 0 --- y . -, 
X1Y, /K (2.4) 

im = /A\ 
Jýr, for Y> Alm, IK 

7 (2-5) 

where K is the Von Karman constant, X1 is also a constant 

(Z 0.09) and Y, is a characteristic thickness of the boundary 

layer. For annular flow, where there are two boundary. layers, 

relations (2.4) and (2-5) can also be used, but when y: >b-/2 

(where h is the annular gap) a new y' is defined as yl=h-y 

2.3 One-equation model. 

With few exceptions (for example, Nee and 

Kovasznay's (1969)-`model which uses the kinematic turbulent 

viscosity as the other dependent variable), the one-equation 

models use the turbulent energy, equation (BO) as the auxiliary 

equation. An appropriate equation for two-dimensional 

boundary layer flows was developed by Hanjalic (1970). It 

takes the fom. 

D EI E2 
0 

ýEC) ._ 9U 
x 

Dt, 
9 c ý, e7&- 

) 
] 

2y u (2.6) 
xuy dy 

where, E is called dissipation of turbulence energy and Ce is a 

constant. However, the set of equations (2.1) and (2.6) still 

do not form a closed system, uxuy and 6 remain unknown. It can 

be closed by means of dimensional analysis and the use of a 

local isotropy concept, when the dissipation term is modelled 

int 0 3/2 
F- =cE0 (2-7) 
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Furthennore, by using a Prandtl-type eddy viscosity Ij 
hypothesis, the Reynolds stress uxu y can be represented by 

ux"i x (2.8) 
Y 

and, 

E 1/2 L (2.9) 
'ýLt 0 'ýý 

I 

where C in (2.7) is a constant 0.07) and L., L are D 
length-scales, respectively, for dissipation and shear stress. 

To complete the model it is necessary to provide the length- 

scale variation appropriate to a particular flow. If the 

Reynolds numbers are high, L and L are nearly equal, d 
therefore, vie can put L=Lcl=L The prescription of L is 

rather arbitrary ahd d1so involves, empirical relationships. 

We test three different relations, applicable to annular flow: 

L=C 1/4. Ky(l - y/h) D 
(2.10) 

b) Length-scale proposed by Hanjalic (1970), taking 

account of the position of zero shear stress, 

1/4 y23 L= CD - Kh 
[-rj+ 

0.4 + (A-6.4)'YU ] (2.11) L 

where , 
AeL =X 

(1- Y) 

hh 

X2 
A= 32 K- (1-2y 

so 
/h) 

Ysol-- y-coorainate where shear stress is zero 

ý'2 = constant (Z0.14) - 

I. 
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c) Length-scale constant in the direction of fluid flow 

but varying with the grid function (, Ur) as 

L= Cl/4. rh,,, r (TXz! 0 - 5) (2.12a) 
D 

('IJ-> 0 5) (2.12b) 

ivhere, 'IX=1X(N,, R,, R 
0 

is the grid function (see 

Appendix 1 for definition)t proportional 

to distance Y from the wall, 0<'IAfý<l. 

N= number of grid points. 

2.4 Two-equation model. 
t% 

The difficulty of finding a relationship for the 

length-scale, motivated the research-workers to develop new 

models. The next natural development was a two-equation model. 

Invariably, the first of these two equations is taken as the 

turbulence energy equation (E 
0 

). as before. However, there is 

some choice of what is to be specified as the second equation. 

Jones and Launder (1972) and Ng and Spalding (1976) are good 

examples of two-equation models; the former pair chose the 

dissipation of turbulence energy (E) as the dependent variable 

in the second equation, the later pair chose the product EOL. 

The procedure followed by the majority of worker's 

was to develop an equation for F, and use the eddy viscosity 

concept to determine u u.. The length-scale was determined b7 

a relation between Bo and F, (equal or similar to (2-7)). 
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For example, a dissipation equation, suitable for two- 

dimensional boundary layers, was proposed by Hanjalic (1970) 

-12 2 EI 
0) 2.8 ly; - v 

'DU 
l' DE -a [( 
dý 

9 
't -ý + ce c lE 'Lý ,C -jý- , 

(2.13) Dt = ; 5-y F- la Yl -W0? y 82 
0 

v, there C., , cel and C 62 are constants. The predictions of the 

two-equation model (EO96) represented by the system of. 

equations (2.1), (2.6), (2-7), (2.8), (2.9) and (2.13) are 

compared in section 2.1 with experiments and with the other 

models. 

A second two-equation model, using a shear stress 

equation/ instead of a dissipation equation, is also tested. 

Although this new model needs the prescription of a length- 

scale (In order to calculate 6), it avoids the use of the eddy 

viscosity hypothesis inherent in the use of equation (2.8). Vle 

take as our second equation the following equation for the 

shear stress derived by Hanjalic (1970) 

2 
D+C EO-)_L(U Du, 

SE 
Cs2(CslEo ay y x 3r Qy BO 

(2.14) 

where Csq CS, and Cs2 are also constants. The two-equation 

model (Bot T- 
, uy) given by relations (2.1), (2.6), (2-7) and 

(2.14), and one of the length-scale relationships from (2.10) 

to (2.12). is also compared in section 2.7 with the other models. 

w 
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2.5 Three-ecuation model. 

The desire to represent snecial. real flows, such as 

flows %,,, here zero shear stress and maximnwm velocity do not 

occur at-the same position, ana recirculating flows, where the 

normal stresses are important, led to the development of multi- 

equation models. Among the many multi-equation models-to be 

found in the literature, vie found as am-enable to a numerlcal 

approach, the following: the Hanjalic's (1970) three-equation 

model, the Hanjalic and Launder's (1972b) three-equation model 

and the Launder et al. 's (1975) five-equation model. 

Hanjalic (1970) developed the three equations already 

presented here: t1fe ttLrbulence energy equation (2.6), the 

dissipation energy equation (2.13) and the shear stress 

equation'(2.14). Together with the Reynolds equation (2.1p they 

form a closed set of equations. No length-scale is needed, but 

constants must be assigned numerical values. Table 2.1 gives 

the values assigned by Hanjalic to the constants; some of the 

constants he determinated from experiments in simple flovis and 

the others he found by computer optimization.. 

Table 2.1 Empirical constants for the three-equation 

model (Hanjalic). 

c 
sl 

c 
s2 

c Ei' c e2 C*si/ce os, /cs csi/ce 

0-07 2.8 1.45 2.0 1.0 0.9 1.1 

This three-equalion model is also compared with the 

other models and vrith experiments in section 2.7 

and, of course, the continuity equation (4.6). 
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2.6. Su=ary of nunerical method used to solve the 

-oartial differential eauations. 

Each one of the models represented by one, two or 

three equations is solved numerically for the dependent 

variables UxIE0PuxuY and E. The solution method employed 

is the finite-difference procedure originated by Patankar and 

Spalding, where the partial differential equations are 

integrated in a forward-marching procedure. In Appendix a 

brief description of the essential features of the numerical 

method is given. For a full account of the numerical procedure 

and computer implementation, see Patankar and Spalding (1970). 
1 

One sinqýeqomputer program,, hereafter referred to 
t'. 

as TTBL, developed by the author, solves all 5 models of 

turbulence we have just described. For each model, the basic 

data required by the program is the geometr"j and flow 

conditions of the particular flow being considered. In order 

to predict asy=etric profiles which are characteristic of the 

annular flows, a non-uniform gridds used. The density of mesh 

points being greater in the vicinity of the wall. The non- 

uniform spacing of the grid points is of a logarithmic foxm 

and their precise distribution is made a function of the radius 

ratio. 

At, the beginning of a calculations, the computer 

progr= requires both boundary conditions- and the initial 

profiles of the de-gendent- variables to be specified. These 

initial condition3 are provided by means of input data. In 
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practice, it is found satisfactory to ass=e that the initial 

profiles across the flow are constant. The boundary conditions 

are the same as those specified by Hanialic and L"er (1972b) 

and Ng and Spalding (1976). 

2.7 Quantitative comnarison between the models. 

The type of flow considered is the turbulent annular 

flovi, and the cases of smooth annuli with two different radius 

ratios and annuli internally rouF)lenedare examined. The 

predicted results are compared with the experiments of, L, -,, -; n 

(1970) and Brighton and Jones (1964). A single set of constants 

as given in table', 2.17-, is used for all models tested. Von 

Karm. an's constant (K) is taken equal to 0.42 and a logarithmic 

grid of 60 points is used in numerical calculations. 

Figure 2.1 shows the influence of length-scale on 

velocity, shear stress and turbulence energy 
, profiles, using a 

t,,, Yo-equation model (Bov UTY). A comparison with Lawn's (1970) 

experimental results shows that-the length-scale expressions 

(2.10) and (2.11) give quite good predictions, while relation 

(2.12) exaggerates the asymmetry of the points of maximm 

velocity and zzero shear stress, and therefore, is the least 

accurate in predicting the three profiles, the inaccuracy U 

being mainly on the side nearer the inner wall. The 5 models 

are compared with the experimental results of Brighton and 

Jones (1964) in figure 2., 2 
. 

for the case of an annulus with 

a radius ratio not s-mall. As the radius ratio is 0.562, the 
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asymmetry of the profiles is very small, so, as expected, all 

models give good predictions for velocity and shear stress 

profiles. However, a bigger discrepancy is observed in the 

turbulence energy profile. 

The predicted profiles of velocity, shear stress and 

turbulence energy in an annulus internally roughened,, are 

compared with experiment in figure 2.3 . As the experimental 

results of Lawn (1970) indicate, the maximum velocity and zero 

shear are shifted closer to the outer wall. The two and three- 

equation models predict quite well the velocity and shear 

profiles, while. the one-equation model fails to predict the 

asymmetryp predicting the maximum velocity on the line of U -, 01 
geometric, symmetry of the annulus. By means of expression (2-7), 

length-scales for the two-equation (EO, E) and tilree-equation 

models are deduced. In both models EO and Eare determined by 

equations. These two length-scales and the one predicted by the 

expression (2.10), are compared with the experimental results 

in figure 2.4 . As we can see, the, predicted length-scale from 

the three-equation model (the case where R 
3. 

/R 
0 =0.088) is in 

better agreement with the experimental results found by Lawn 

(1970), except in a small region near the centre of the flow, 

where a depression is revealed by the experiment. Lawn justifies 

the presence of this depression as due to no production of 

turbulence energy in this region, and as a result, the 

dissipation e1quals the diffusion. 

As can be seen from our, results, all models are 

capable of predicting satisfactory velocity prAOfileS- Even 
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the one-equation model migat be capable 

by changing the value of some constants 

lensth-scale. It is in the shear stress 

that the major differences are ex1qibite, 

except the three-equation model and the 

of given good results 

or/an. d. modifying the 

and turbulence energ-j 

d. All the models, 

Two-equation model 

(E096 ), use some kind of length-scale. The length-sc,,,,. le is 

arbitrary and it is not, necessarily, the same for all kinds 

of flows (and,. even for the same flow, it might depend on the 

type of model used). It must be found by trial and error, 

checking against the experimental results until a 'good' 

length-scale is obtained. This procedure contains undesirable 

arbitrariness,. and as a result, models using length-scale are 

gradually falling in disuse. 

The two-equation model (LO96) does not need a 

length-scale but uses the turbulent viscosity concept which, 

in some cases, fails to predict accurately the shear stress or 

turbulence energy profiles. As vie have seen, in this particular 

geometry, the three-equation model grives correct predictions. 

This confirms the findings of Hanjalic and Launder (1972b) who , 
tested the model in a great number of turbulent flovis and also 

found it gave accurate results. The-efore, because of its 

generality and accuracy, vvre adopt the three-equation model in 

our further studies. By generality we mean that it can be 

applied to a variety of conditions and flows using a single 

set of constants. 



5C. 

C-- 

" ni'si ici 'i Y1-'Tt±o: 1 

"luence 0- e 

The -,. -odel, renresen. ed by 

and ( 2.1 c()ntp. i. n. s 7a dj-ustable const an 

C 

ramýý! -, CC CE Cý 

determinated b-, j- -uiie c a-,. on 'D 

si ap 1e0 "ll s, S, cas C) c 10' 

turbulontu flo-Is. , a-Utnors reco=ervled a oet of 

values for t-hese na-ra-neters. 'Table 3.1 s-, u=ari--es tqe val-ues 

of cc---is I ants reco-nmendled. --. ac: ý! ! ý, etl of conctu--a-los -,.,,, as 

ontý "I -I"U1 
.1 11 lb-ý7 fittin-, -". -ip tu'neoretic; al results to indivi-cl-aal 

ex. -, Ie 

T77ý--'ble 3.1 values of tll-e constants recomni.. ýnded 

by sever 'Iaors. -1 , ý. u- 

Sit s2 't 1 -E 2 

2.0 ý. 07 0.0 -4 0. "f, 

2 'D 
Launder 

Launder n i-V7 1 

\J. ID, - 
"1 

. 44 5 

U I. '175) c 

ti on s an d 



51. 

The values reco=ended by the various authors shoym 

in table 3.1 appear to be in good agreement. This occurs not 

only because the models are similar, but is also due to the 

fact that the constants were derived by fitting the same 

experimental data. If the comparison between theory and 

experiment were to be made over a wide range of experimental 

data, greater differences could emerge. Therefore, in this 

section, we study more comprehensively the influence of varying 

the constantst on quantities like velocity, shear stress and 

turbulence energy. 

B-y considering ideal flows we can estimate tlýe range 

over which the constants should be varied. For a logarithmic 
tE 11. to I 

flow', advection terms are zero and viscous diffusion terms are 

negligible. Under these conditions, the shear stress and 

turbulence energy equations can be even further simplified. 

Thusp relating the resultant terms in (2.6) and (2.14) we have 
2 

CS1 (3-1) 

From the experimental data, the ratio of shear stress and 

turbulence energy (Z; a, /E 
0) 

lies between 0.25 and 0.30 - Thus, 

C 
sl can be assumed to vary between 0.06 and 0.09 . 

The parameter C 
s2 ohows greater variation among the 

authors. Following Rotta (1962), many aorkers assurned C. 2 as 

4 +cCl - 4c)(2 
(Ij (3.2) Cs2 7 cC 1+5 c/2 -b=2.8 

where , c(l and cC 2 are con: Ert,, ý. nts of proportionality between 

normal shear stresses and ttirbulence energy and are given by 
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u2 
x - OC E 10 and u2= y 

c; < E (3-3) 2o 

The values ofc( 1 and C( 2 are obtained from 

experi-ments on nearly homogeneous shear flovis. For excanple, 

from the experiments of Champagne et al. (1970), we found 

0.937 and 0ý'2 = 0.497 . (3.4), 

Leslie (1975) pointed out that-evidence is 

acc, =ulating against assumption (3-3), and that the degree of 

anisotropy of the diagonal components varies markedly across 

a typical filow. Therefore, there is still some disagreement 

about the best value for C 
s2l and it should be of interest to 

study how a change in C 
.2 affects the results given by'the 

model. 'We consider the effect of varying C 
.2 

in the range 1.5 
a '. 01 - 

to 4.0 . 

In a grid-generated flow there is no production terms 

and the diffusion terms are negligible. This simplification 

-oermits the evaluation of C F-20 Applying this simplification 

to (2.6) and (2.13) and relating the resulting expressions for 

E0 and 6 we obtain, 

A j-n and nAIT x-(n+') (3-5) 
0x 

where, A is a constant, x is the distance downstream of the 

gricý and 
1 

cE 2-1 
(3.6) 

-P The eXperiments of Batchelor and Tovinsend (1948) 

indicated a grid turbulence decay of the for-m EOC i-1 (n=l). 
0 

Launder et al. (1975) suggested that n should be at least 1.1. 

In our analysis n is varied from 1.25 (C, 2=lo8), correspon(ling' 
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to a high rate of decay, to 0.33 (CE2=4.0), representing a 

low rate of decay. 

Finally, imposing the condition that the dissipation 

equation (2.13) must also describe the logarithmic flow, it is 

possible to determinUe C. l. It is well-known that for a 

logarithmic flow, 'DU, /Dy-and F- vary as lly, or more precisely, 

U 
and 

U. -Z (3-7) 
'? y 7-Y Ky- 

No', ", invoking (3-7) and neglecting the advection. 

term, (2.13) becomes 

CC C6K 2 ýC3/2 (3-8) el E2 sl 

The proposed range of variation for C 62 and C 
sl 

causes C El in (3.8) to vary from 1.15 to 3.47 The ratios 

C 
slICs' 

Csl/Ce'and C 11C, are defined as the turbulent Pran. dtl 

Schmidt numbers for shear stress, turbulence energy and 

dissipation, respectively. Comparisons with experimental data 

show that the turbulent Prandtl-Schmidt numbers do not differ 

significantly from unity. Hence, vie vary all 3 ratios, 

systematically, from 0,9 to 1.1 

The range of values of the constants which vie study 

is summarized for convenience in table 3.2 . The influence of 

-ants in the turbulence model is tested in a varying the cons-IV 

smooth annulus with small radius ratio, and the results are 

comnared with the ex-oerimental values of Lavin (1970). The 

procedure for solving the three-equation model is the same as 

described in section 2.6 . Values of the constants are 
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systematically varied until. all possible variations in the 

range are covered. 

Table 3.2 Range over which the constants are varied. 

c 
si s2 El 62 

c 
sl 

O'l c 
S- sl 

-- 7u Iu U 
e 

0.06-0.09 1.5-4.0 1.15-3.47 1.8-4.0 0.9-1.31- 

The results are shown in figure 3.1, where, Velocity, 

shear stress and turbulence energy distributions are compared 

for the chosen rarfge 8f the constants. As can be seen, velocity 

and shear stress display insensitivity to the variation of the 

parameters; the maximum variation of these quantities being 2, /ý. 
Only the energy profile shows some sensitivity; then only C 

sl 
affects the energy distribution. Roughly, an increase of 50ýa 

in C 
sl 

decreases E0 by about 18elo. Althou&ýj the profiles of the 

main dependent variables are almosý unaffected, some 

characteristic points of the flow, for example, location of 

maximum velocity and zero shear stress, are changed, as we 

shall see in the next section. 

A similar study was performed by the author on jet 

flows,, and identical pattern was observed. Profiles were 

nearly unchanged by variation of, the constants' values, and, 
I 

again, specific parameters. -only, for example, the rate of 

spre-ading, were greatly affected. 
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3.2 The -position of maximum velocity in ,, smooth 
annulus. 

As is well-knovm, -Cully developed armular flow 

involves the combination of two boundary layers, each extending 

X -P these from a wall to the point of mazimum velocity. Each o& 

boundary layers may be quite different from the otherý in the 

profiles of velocity, shear stress and other turbulence 

quantities. Such asymmetric distributions are substantially 

affected by geometrical conditions, such as annular radius 

ratio (Ri/Ro) or unequal roughness of-walls. Here vie devote 

some attention to the effect of varying the radius ratio and 

the constants, on velocity profiles in a smooth annulus. 

Numerical tests with ithe three-equation model are carried out 

for a i-ante of annular r'adiub"-ratios varying from 0.063 to 

0.9 . The constants are varied as indicated in table 3.2 The 

results are shown in figures 3.2 and 3.3 

The velocity profiles are in figure 3.2 .A 

comparison with the experimental results of Brighton and Jones 

(1964) shows quite-good agreement. Again, over the range of 

the constants studied, no significant change in the calculated 

velocity profiles is found. Both theoretical and experimental 

results show a flow curvature effect, that is, the points of 

maximun. velocity and zero shear stress are shifted from the 

centre towards the inner wall, as the radius ratio decreases. 

Kays and Leung ý196.3) correlated the results of 

various investigators, and defining 
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R 
and R* =Ri0 (3-9) 

0 

found a curve to predict the point of maximura velocity as a 

function of the radius ratio. They found the curve which best 

fits all the data to be: 

S* = (R*)0.343 0 (3-10) 

A curve for sy=etric, shear profile (shear stress 

equal on both surfaces) can be derived, in order to com-oare 

with (3-10). A comparison of accurate shear stress and velocitýr 

profiles shovis that the points of zero shear and maximum 

velocity do not coincide (the point of zero shear is nearer the. 

inner wall than is the point of maximum velocity). But in this V 
derivation vie assume ppro shear and maximum velocity occur at 

the same point. If we consider the balance of forces on an 

element of channel of length dx we may write, 
2 RT, - R? d-p) 6i 

= 'I 2Ri 
I (ux- (3-11) 

R02 - Rjý 
'I d-p -Lo = (dx) (3.12) 

which gives the'ratio of shear stress as 

22 'Lo Ro RIJ Ri 
(3.13) 

2R0 0' 

If '60 =V1, relation (3.13) gives IýL=(RiRO)0.5 and 

substituting in (3-9) Nve find a relation to predict the point 

of zero shear in symmetric shear profiles, which is 

(R*)0.5 (3.14) 

The position of maximum velocity as a function of 

k 
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the radius ratio is shown in figure 3.3 . Our predictions usin, r 

the three-equation model are compared with the experimental 

results of Brighton and Jones (1964), and those'referred to b-Kr 

Kays and Leung (1963), as well as the empirical expressio ns of 
(3.10) and (3.14). As can be seen, our predictions com. pare well 

with most of the experimental data. Although the effect on 

profiles is almost negligible, the point of ma, ximmum velocity is 

altered by the set of. constants used. The influence of the 

variatIon of the constants in our predictions for S*, is also 

shovm in fi gure 3.3 . We observe that the influence of C 
sl 

is 

negligible as is also the Schmidt-Prandtl numbers. S* is most -ly 

affected by C. 2 and C, 
-2,, 

An increase in Cs2l' for a fixed C E21 
brings the point of maximum velocity closer to the inner wall 

V*ni; 
(i. e., S* decreases). The opposite effect is observed when Cs2 

is fixed and C is increased. The limits of variation of S* E2 

shown in figure 3.3 are obtained with C 2=4.0 and C F-2 =1.8 for 

minimum S* and C, 2=2.0, C, 2=4.0 for maximum S*. The overall 

effect is more substantial for small radius ratios, and 

decreases as the radius ratio is increased. 

3.3 Turbulent Dine flow. 

In this section we devote some attention to the 

experimentally observed and so-called Lavis of Similarity in 

fully developed turbulent flows, in the presence of rough 

vialls. In order to verify such similarities vie concentrate on 

the particular case of a ; round pipe. Numerical solutions are 

obtained using tPhe three-equalklion model already described, and 

results are compared with the exneriments. Dlnree of these tavis 
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are viell-knovin, namely, the law of the wall, the frict - -ion law 

and the velocity defect lav. 7, r, and some details of' each are given 

below. 

3.3.1 Law of the wall. 

The law of the wall postulates the existence o-AP a 

region near the wall where the non-dimensior . al velocity (u 

shows a logarithmic profile of the fom: 

u+ =B (e+) + B'. ln( 
Ro-ý) 

(3-15) 
re 

where, e+=eu, /, ) .e is the roughness height, (RO-R) is the 

distance from the'Vialli to the point considered, B and Br (e+) 

are constants and u,, is the friction velocity. 

The velocity distribution represented by (3-15) is 

the logarithmic velocity profile, and the region in which is 

valid, namely, the outer part of the constant shear stress 

layer, is therefore called the logarithmic region. Many 

experiments confirm this relationship, and show that the 

constant, B=1/K, is approximately equal to 2.5 whatever the 

nature of the wall. The other constantp Br (e+), dependsv mainly, 

on the kind of wall roughness. When e+ is large, Br approaches 

an asymptotic value. Nikuradse (1950) found an asymptotic value 

of B 
r=8.48 

for sand-grain roughness. In the case of rib- 

roughened surfaces, Lawn and Hamlin (1968) pointed out a big 

scattering in the suggesýed values for Br. The values of Br 

quoted by them vary from 2.83 to 4.65. A value co=only used is 

B. =3.75 which lies about the middle of the range of Br values. 
. A. 
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3.3.2 Friction Law. 

Using the concept of friction factor (f), the flo-vv 

throuý*. i a pipe can be related to the friction it generates. It 

is customary to express the viall resistance in terms of a 

friction factor defined by 

1 (3-16) f0 -ff jl-ý U 

where, T., is the shear stress at the wall and'U is the average 

mean velocity across the flow. Since the friction velocity is 

given by u%=( 'C, /J" ) 1/2 
p 

(3.16) can be re-written as 

u- 
f= 2( Z)2 (3.17) 

Furthermore, we can obtain an expression for the 

average velocity across the whole section, whica, together with 

(3-17) and with the Law of the wall (3.15), gives 

r2 RO) 
(B 

r-3.75). + B. ln( 
e 

(3-18) 

The relationship (3-18),, which was proposed by 

Schlichting (1968), is the logarithmic friction factor formula, 

which preaicts successfully a very large mass of experimental 

data. 

3.3.3 Velocity defect Law. 

For the outer region, or core region . of the flow, 

the logarithmic distribution, represented bY (3.15), no longer 

applies since t'-rie'conditions on which it is'based are no longer 

valid. In the core region, direct viscous effects continue to 
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be negligible and the total stress is identified with the 

Reynolds stress. This imDlies that the velocity scale is u,, 5 

and the leng-th scales are Ro and r. Thus, in the core reggion, 
,, -U(r) * 

the velocity "defect", defined as . is a function 
U te 

of (R -r)/R only. This type of similarity ; fhich holds in the 
00 

core region has the form 

u MAX - U(r) 
(3-19) 

U16 

where, 'low, the velocity 
UIIAX is the maximum velocity (in pipe JL 

R 
O-r at the centre of the piýe), R0 is the -pipe radius and ý=R' 

Equation (3-19) is known as the velocity defect law, it is 

independent of Reynolds number and roughness height. The defect 

law should be regarded as an empirical relationship, although 

it can be shown that its form is cc-apatible with the equations 

of motion. 

Using the eddy viscosity fo=alism, Leslie (1977) 

developed a theoretical relation for h(g ), matching both the 

logarith-rLlic and core regions. His proposed relationship is: 

h(P B+ ln 

(3.20) 

2ý1 

-ion of vilaere, B=1/K and is the value of T where the varia, 

the eddy viscosity is assumed to become nearly constant for 

the remaining of the core region. Leslie f ouna ý 
1=0.16 to be 

the value lahich results in the profile (3.20) having quite 

good agreement with the experimental measurements. 



: ý, -n 

61. 

S-patially averaging h(A ) vie obtain the mean value, 

h, from 
0 

-T, =12 2V rh(r) dr (3.21) 
'IYRO 

2(1-A)h( P )dý (3.22) 

0 
Substituting (3.20) into (3.22) and integrating, 

Leslie (1977) found 

h=B+2:. _ ý3 (3.23) 
4P 

+ Pl 
- 

12 
12 1 

'3-3.4 Copparison between exDerimental results and 
the three-equation model predictions. 

The three-equation model represented by equations 

(2.1)v (2.6), (2.13) ana (2.14) is solvea for a turbulent pine 

flow, using, the nwerical technique of Patankar and Spalding 

(1970). The set of constants employed is the same as in table 
56 2.1 . Reynolds niLmbers ranging from 5-OxlO to 5. OxlO are 

tested. Both sand-roughened and square-rib-roUghened walls are 

considered, with roughness ratios (D/e) varying from 40 to 800. 

The form assumed for the law of the wall, (3.15) is 

verified in figure 3.4 . Our. predictions for u+ vs. (RO-R)/e 

are compared with the experimental correlations. The predicted 

results, for all three roughness ratiost agree quite well with 

the ITikuradse (1950) relation for sand-roughness (B 
r =8.48). A 

similar good agreement is observed for square-rib-rougl-iness. 

The friction factors in the turbulent rough pipe flow, as a 
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function of roughness ratio, are shovin in figure 3.5 . As we 

can see, the predicted results and the experimental data, 

represented by (3.18), agree viell for both kinds of rouz#-mess: 

sand-roughening with Br =8.48 and square-rib-roughened wall 

with B =3.75 r 

Figure 3.6 shows the defect function h(ý ). defined 

by (3-19), for. a pipe-flow with sand-roughness. The predict 

results and the profile proposed by Leslie (1977) of (3.20)p 

are very close. Also in figure 3.6 are plotted the 

experimental results obtained by Lawn (1970). Once again, good 

agreement is observed. As an alternative to (3.21), the 

average of the defect function can be defined-as, 

U MAX-U V -2 U MAX 
u=7( ýý (3.24) 

Ic U 

Substituting the values we find from our numerical 

calculationp, ý into (3.24)lwe obtain -h=4.69; this value we --find 
to be nearly independent of the roughness ratio and Reynolds 

number. But tak.; ngpl=0.16 the relation (3.23) proposed by 

Leslie (1977) gives h=4.28 The value h=4.69 seems a little 

high compared to the second value of h. In a similar study to I 

that made in section 3.1 and section 3.2. that is varying the 

constants of table 2.1. we find that the values C 
. 2ý3.2 and 

C92ý1* 8 decreases h to 4.32 , while the defect function remains 

practically unchanged. Therefore, it appears that C 
s2 =3.2 and 

CE2=1-8 are better values to use in the model to predict pine 

flows. 
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3.4 Friction factors in turbulent annular flo-.. -,,. 

In gas-cooled reactors the basic ggeometry of 4-- "-le 

coolant charuiel is annular geometry. As a consequence, very 

extensive experiments have been made in annular turbulent flows 

(mainly with rougheninig and heat flux on the inner side only). 

In order to handle the high reactor heat fluxes, it is' 

necessary to increase the transference of heat from the 

cladding to the coolant.. Therefore, various geometries have 

been tested for this desirable characteristic . One of the 

most common devices used is to roughen the inner side o-E ' the 

channel by regularly spaced transverse square ribs. Here we 

examine the friction factors obtained with the three-equation 

model for several vr-aU'-conditions and the results obtained are 

compared with the available experimental data. The corresponding 

heat transfer cofficients are discussed in section 4.4 Three 

configurations are considered: (1) both walls smooth (smooth/ 

smooth), (2) both walls rough (rough/rough) and (3) internal 

wall rough and external viall smooth (rough/smooth). 

3.4.1 Smooth/smooth and rough/rough annuli. 

To begin withp we. consider the smooth/smooth annulus. 

Reynolds numbers varying from I. OxlO 4 to l. lxl06 are considered; 

also, the radius ratio is varied from 0.125 to 0.75 . Results 

predicted with the three-equation model are shown, in table 3.3. 

These predictions are also compared in table 3.3 with the 

experiments of Lee and Barlow'(1964), Jonsson and Sparrow (1966) 

Brighton and Jones (1964) and Watson (1970). As can be seen, 
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Table 3.3 Predicted and ex, nerimental overall friction 

factors in a fully developed smooth annu jar 

f low. 

X, 
I X100 

f / Re erence Re Ri R 
o EXMeriment Predicted 

1.0X104 0.613 0,85 0.82 

4. OxlO4 0.613' 0.62 0.61 

Lee and 1.0X104 0.387 0.90 0.35 

Barrow (1964) 4.0X104 0.387 0.64 a. 61 

l. ox, 04 0.258 1.00 
-0.86 

4. Ox, 04 0.258 0.64 0.61 

5.0X104 0.750 0.56 0.57 

Jonsson and 
5-OxlO 4 0.281 0.53 0.58 

Sparrow (1966) 1.0X105 0.231 0.47 0.49 

'5 2.0.,, 10 0.281 0.41 0.42 

1.0X105 0.375 0.49 0.49 

Brighton and 
2.0X105 0.375 0.41 0.41 

Jones (1964) 1. OX105 0.125 0.47 0.48 

2.0X105 
1 

0.125 0.43 0.41 

3.5x, 05 0.513 0.40 0.3ý 

5., X, 05 0.513 0.36 0.36 

Watson (1970) 
lO, 5 0 13 34 0 7.7x .5 . 

9.5x, 05 0.513 0.34 0.34 
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the overall aggreement is good especially for high Reynolds E. > 9 

numbers. 

The variation of the friction factor in a rouglh/ 

rough annulus, as a function of Reynolds number, is shovin in 

figure 3.7 The roughening on both sides is achieved by 

square ribs. From figure 3.7 we see that the overall friction 

factor has a nearly constant value and is in excellent 

agreement with the experimental data of Lawn and Hamlin (1969). 

Also in figure 3.7 we plot the friction factors for the 

internal and external surfaces, fi and f0 res-pectively'. A 

slight disagreement between prediction. and experiment-is 

observed. We suggest that this discrepancy is due to the 

definitions of fi ahd? f-, 
0. 

Ile define our fi and f0 by a relation 

similar to (3.16), using the same average mean velocity U to 

calculate both factors.. 'Uhile Lavin and Hamlin define, 

f2 and f 
TO 

(3.25) 
o ý'- 1 j) U2 

2, p Ui 7o 

Wherep Ui is the average mean velocity for the portion of flow 

between the inner wall and the point of zero shear stress, and 

U0 is the average mean velocity for the outer portion. 

The influence of the radius ratio (R*) on friction 

factors in smooth/smooth and rough/rough annular flow is shown 

in figure 3.8 . The experimental data is that cited by Watson 

(1970) and shows that the effect of radius ratio is significant 

only for small and moderate Reynolds numbers (Re. <105). This 

effect is observed also in'our predictions as shown by 

figure 3.8 . The smooth/smooth and the rough/rough annuli (sand- 
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roughened, B 
rý8 . 48) are independent of radius ratio. The 

radius ratio seems to show some effect only on square-rib 

roughened annuli (with Br =3.75), when R4. -, -, 0.4 . For exam-ple, 

when R* is decreased from 0.4 to 0.2, the overall friction 

factor increases by 16%o. 

3.4.2 Annulus internally roughene . 

3.4,2.1 Overall friction factors. I 

ITumerical calculations with our three-equation model 

are carried out for an annular turbulent. flow having the 

internal wall roughened and the external wall smooth. Several 

Reynolds numbers and i-adius -ratios, as well as different kinds 

of roughness, are considered. Predicted overall friction - 

factors with Re=5. OxlO 5 
and R*=0.5 as functions of roughness 

ratio (De/e)-and kind of roughness (B 
r 

). are shorm in figure 

3.9 . In order-to check our predictions, vie compare our results 

with the experimental data'of Lee (1972) and Wilkie (1966) in 

figure 3.10 . Although both authors used the same kind of 

roughness (ie. square ribs), we observe a scattering in the 

experimental values. This. is due to different geometrical 

conditions, i. e., different radius ratios, ribs pitch ratio 

(s/e) and ribs width -ratio (e/w), being used by the two workero. 

In'figure 3.10 we show preaictions with two values of BrI 

naniely, '3.75 and 3.0 . As vie can see, an acceptable agreement 

is obtained with the valAe B. -3.75, this curve being the best 

fit to experimental data. 
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3.4.2.2 Hall's transfo=ation. 

In order to enable a comparison of friction factors 

and heat transfer coefficients in channels with different 

cross-sections, or different kinds of roughness at each wall, 

or. even different proportions of heated and unheated surfaces, 

Hall (1962) devised a transformation method. The key feature 

of the method he proposed lies in the isolation of the effect 

of each wall. For example, in an annulus internally roughened,, 

the assumption is made that the distribution of the fully 

developed flow is largely determined by the geometry of the 

flow area. between the rough surface and the surface of zero 

shear stress, and is little affected by the smooth surfacý 

opposite., Then, we can define a separate friction factor for 

the system associated with the rough surface (and a friction 

factor to be associated with the system of smooth surface). 

The assumption is then made of equivalent diameter, defined by 

the flow area between the zero shear stress and the rough 

surfaces and by the rough surface, perimeter. Finally, a further 

assumption is made that the resulting friction factor and' 

Reynolds number will be the same as would exist for a circular 

passage having the same relative roughness and the same 

equivalent diameter. 

In its original formp Hall's method requires the 

measurement of the velocity and temperature distributions in 

the channel. It is assumed that the position of zero shear 

stress is coincident with that of maximum velocity. By applyin, ý 

a force balance on the two regions of the annular passage,, 
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namely, rough/zero shear surfaces and smooth/zero shear 

surfaces, Hall (1962) found: 

2 
rý. 

= -! i0 do 
=1 

da De 
1 2Ri dx Zdx1 

7 
1 

U12 
fl 1 

72- 

22 

= 
Ro -R TJ dp 

=1 
d13 De 2RO -- dx 4 -n, 2 

7U2 
f )72 

(3.26) 

( -4 
. 0.27) 

where, the equivalent diameters De 1 end De 2. associated with 

the rough and smooth portions, are defined as, 

2 
De 

4 
11 

Ri) 
(3.28) 2 1YR i 

4lY(R 2- R3) 
De = In- 

2TYR 
0 

(3.29) 

The overall friction factor is given by the Fanning 

equation: 
Da 
--2 2U 

(3-30) 

where, De, T and T now refer to the whole of the annular 

passage and, also, 

De = 2(R 
O-T-Ii) 

(3-31) 

Now, relating (1.26), (3.27) and (3-30) it follov's 

Del 

De (3.32) 
lul, 
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and 

f2 ; 5U2 De 2 
3P2 Ue- (3-33) 

2 

By analogy with the Reynolds ntmber for the whole 

passage, the Reynolds nimber for each section is defined as, 

u1 De lj'l u2 De 2J)2 Re, 

., ooou 1 
and Rc20.34) 

(i) Iterative methdds based on Hall's transformation. 

In an attempt to avoid the measurement of veiociluy 

distribution as proposed by Hall (1962), a number of simplified 
U'. V, 

methods of transformation have been proposed. One of the most 

popular is the method Cleveloped by Wilkie (1966) 
. in which the 

shear stress on the smooth wall is obtained by a correlation, 

and related toýthe-rough wall by means of three -para. "reters Kl, 

K2 and K 3' obtained from the analysis. of a lar,: -, e number of 

experiments. Wilkie developed a sYstem of 3 equations which can 
I 

be solved iteratively for the uzLknowns f1 and. Del. This nethod 

still assumes that the surface of zero shear and maximum 

velocity are coinciaent. 

We now propose an even simpler method based on well 

Imovin empirical correlations, *which gives resulýts r1hich do no-IV 

differ significantly from the Wilkie method. Since the average 

mean velocity in each of the trio sections does not differ too 

much from the average mean velocity of the whole annulus, then 

we can assume U1=U2. Now, relating (3-32) and (3-33) vie 
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obtain, 

De 1 
-, %- = 12G2 

The friction factors f1 and f2 in each section can be 

derived from pi-pe correlations, provided that equivalent 

diameters De and De are used. We use two well-known' 12 

correlations which summarize most of the experimental data i, -I 

pipes. For the inner (rough) section we adopt the relation 

proposed by Schlichting (1968). This relationshiD was 

introduced earlier in (3.18) but is reproduced here for 

convenience: I 
r2 

(Bx. --3.75) + 2.5 ln( 
De 
-Te-) ` 

The friction factor for the outer (smooth) section is well 

predicted by the Blasius formula, 

.2 0.. 046Re-0 22 (3-36) 

Thus, for a given geometry (i. e., Rj_t R07 Re and e 

known), the set of equations (3.28), (3.29), (3.34), 0-35)p 

(3.18) and (3-36) can be solved iteratively. An initial guess 

f or Iý,,, . is required; a reasonable starting value-is Rrif=(RiRo) 1/2 
I 

The overall friction factor for the whole channel is then 

calculated by 

De 
lDe 1- 

(3-37) 

Using this method we calculate the overall friction 

factors in annuli with radius ratio equal to 0.5 and Reynolds 
5. faraneters B and e, ;,, hich number equal to 5. OxlO Ur 

characterize the kind of roughness on the inner wall, are 

varied in the range: 
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2.0 z-z-zB 4 and 40 <20-, <800 
0 

Results are compared in fiTire 3.11 with those 

obtained by the three-equation model, under the same 

geometrical conditions. As we can see, this method gives 

results about 10- 15-1-4o lower than the three-eauation model for 

the same value of Br. Results of this method with other values 

of Br are also shown in figure 3.11. Rouglily, the same frict tion 

factors are obtained with this me. thoa if one uses aB r value 

which is 1 less than the Br value used in the three-equal-Pion 

model. Therefore, this method gives good predictions provided 

that ive use aB r=7.48 
for sand roughness and aBr =2.75, for 

square-rib-roughening. 
W:, t2 1, 

(ii) Methods using the true position of zero shear 
stress. 

The previous methods are based on the assumption 

that the surfaces of zero shear and maximum velocity are 

coincident. Direct measurements by. Hanjalic and Launder (1972a) 

in a rectangular channel and lawn (1970) in an annulus have 

shown that,, where there is an asymmetric-velocity profile,, the 

positions of zero shear and zero velocity gradient differ by 

quite large amounts. This led Nathan and Pirie (1970) to 

develop a transfomation based on the actual position of the 

surface of zero shear. In fact, their method is an extension 

of Wilkie's (1966) method, and the functions Kl, K2 and K3 are 

modified to allow for the difference between the -position, 3 of 

zero shear and maximum velocityo 
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We also propose a method for calculating friction 

factors in =rrali, based in Hall's formulation and pi-pe 

correlations, using the actual position of zero, shear stress, 

R. 
oo 

Using R. 
0 

instead of %, from (3.23) it is possible to 

calculate Del. Then, from (3-18) we can find f1 and, finally, 

the overall friction factor is calculated by means of . 
0.32). 

The values of R 
so are determined by-applying the three-equation 

model to an annulus internally roughened with R4=0.5 and 

Re=5. OxlO5. Since the three-equat ion model gives'velocity and 

shear profiles, it is simple matter to obtain Rso from those 

distributions. Overall friction factors are obtained with 
I 

this method and results-are shown in figure 3.12 . These results 

are compared with the three-equation model and with the results 

from the previous iterative method. As expected, the new method 

gives better agreement with the three-equation model (for the 

same Br) than does the iterative method. As can be seen in 

figure 3.12, this method using the true position of zero shear 

gives the same friction factors as the three-equation modelr if 

we use a B. value which is, roughly, 0.5 less than the B. used 

in the three-equation model. 

(iii) Transfo=ed friction factors. 

The two methods just developed illustrate, clearly the- 

difficulty of choosing which value of Br is the most apposite. 

To avoid this problem, a similar method to the iterative method 

(but without the iterative, procaps) can be introduced. This is 

obtained by working with the relations on the smooth side of 

the annulus. The friction factor on the outer side (smooth viall) 
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is given by (3.36) as 
-0.2 

.2 .2 
De, ] De 2. f f 0.046Re-0 0.046Re-0 -= 22 -e De 

thus, 
De 2 0.046Re-0.2 

5/6 

0 (3.38) De -If 

Once, Re and f for the whole channel are knovvm, from 

(3-38) and (3.29) it is possible to calculate R-,,. Then, De is 
11 1 

obtained from (3.28) and, finally, (3-37) gives the traxisformed 

friction factor fl, 

Overall friction factors in annuli with sauare-rib 

roughening on the inner side are calculated using the three- 

equation model. The geometry parameters used are R*=0.5; 

Re=5. ox, 05 and 20---'De/et! 55ý800. Results are transformed in terms 

of f1 vs. e/IYel , by using the simple method just described. 

Predictions and experimental data are compared in figure 3.13. 

As can be seen, our predicted results agree quite well with 

the experimental data of Watson (1970). Also a good agreement 

is observed with the results from ýhe transformations of 

Wilkie (1966) and Nathan and Pirie (1970). Included in figure 

3.13 is the Schlichting's (1968) correlation, (3.18), with 

B =3.0 and B =3-75 . The line with B =3-0 =atches fairly well rrr 
our predictions. Based on his own experi=ents, Wilkie (see 

Leslie (1976)) proposed, for annular flow or cluster 

configurations, that the transformed friction factor is given 

by,, 

f=0.0098 + 1.92 .2 (3-39) 1 De 1" 
Therefore, in fiyre 3.13 we also plot Wilkie's 

correlation (3-39). Wilkie's expression predicts greater 



74. 

friction factors than any of the other methods. For small 

transformed roughness ratios (i. e. small e/D- 1) the difference 

is slight and may be acceptable. The experimental results of 

Wilkie (1966) were obtained for roughness ratios less the'n 

0.011 (roughly, e/Del--<0.06). Thus vie regard e/DelS-'O. 01 as 

the upper limit of the validity of (3-39). Therefore, the 

application of relation (3.39) must be restricted within -hat 

range of validity. 

W, ti 11 
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CHAPTER - 

Thermal boundary layers. 

4.1 Equations for thermal boundary layers in 
turbulent flow. 

Having selected a versatile model of t-arbulence, 

which can be solved in a reasonable amount Of computing time,; &-ntI 

which is capable of solving purely hydrodynamic boundary layers, 

we can devote our attention to the thermal boundary layers. As 

vie remarked in section 1.2, the hydrodynamic model can'be 

extended to a new and complete model which combines the effects 

of heat and momentum transfer. Three equations, namely, (1) 

mean tempeiature equ6tion, (2) convective heat flux equation 

and (3) intensity of temperature fluctuation equation, are 

sufficient to describe the influence of heat transfer on the 

turbulent fluid flow. Thus, the new model, in addition to the 

three-equation model (3 transport 
'e' 

quations, uxuyt EO and F, 

plus the momentum equation), will have 2 transport equations 

more, plus the mean temperature equation. Therefore, for 

consistency of nomenclature, we call this new model the five- 

equation model. Although vie propose the simultaneous solution 

of 7 differential equationsp this new model still can be 

considered as an intermediate model Mhen compared with the 

ten-equation model proposed by Donaldson et al. (1972) and the 

twelve-equation model proposed by Lumley (1972). Also, as vie 

shall see, it is uncomplicated, numerically amenable and 

accurate. 
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As was mentioned in the Introduction, the system of 
thcrmal equations, even after the boundary layer sin-oli-Cicat- i on. 
has more unknown quantities than equations; therefore, a 

closure procedure is needed. The following sections contain t1he 

development and closure of the thermal boundary layer equations. 
In order to make possible these simplifications, we will cres 
the same general assumptions specified in section 2.1 

Differences of temnerature between fluid and boundary must be 

assumed small, in order to make acceptable the assumption of 

constant fluid properties. If it transpires that some other 

assumptions are needed, they will be stated as they occur. 

tr '. ti 11 

4.1.1 Equation for the mean temnerature. 

The basic equation for the conservation of energy in 

a laminar incompressible fluidp neglecting the potential 

energ-j, is 

DT 
0 

'd T 
(k 0) + PCI3. 

-D xm DT' xm ýxm 

where 
U. *- Ou-n U 

1 
j-x-ý + (4.2) 

') xi 

T and U* are the instant values of temperature and 0k 
vclocity. In turbulent flows, variables like velocity, pressure 

temperature, etc., do not remain constant with time. at a 

fixea point, they perfonn very irregular fluctuations, Thus, 

using the concept of "time average", we can assume each 

dependent variable is the sum of a mean value -olus a 
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fluctuating value. Therefore, we snecify the variables as 

T0T+ T' 

UU+ ui 

(4-3) 

In these relations, T and Ui are the mean temperature 

and mean velocity, while, T' and ui exe the respective. 

turbulent fluctuations. By definition, the time average of a 

fluctuating component is zero, thýxs 

T' and u0 (4.4) 

Stfostituting (4-3) and (4.2) in (4.1) and wieragging 

we find 

(T+Tl) +--(Uj*uj)'ý (T+Tl) (k (T+T')) + 
_PC p Tt 

IIa xrm -Dxm 

(U +ui) +ý (u +U (u +U T---i i zxi iiI edx iii 

ý 
(4.5) 

Considering separately, each term of (4.5) and using 

t1he cont-inuity equations 

, 

DU 
0 and 

ui=0 
(4.6) 

ýx xi 

plus relations (4.4), we obtain 

DT k2T 'Dui 'Dui ')Uý 

Di=. +ý(+i. )Dx+ 
v , 

pc p _, 
P Cp Idx iýxi 

, Du. gu - ? u. 9 
Txi(ui TI) . (4-7) 

.. "PC pX 2j- ?x 
Equation (4-7) it the general equation for the mea. -i 

temperature , in an incompressible turbulent flow. Reynolds(1974) 
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shows that the dissipation in the turbulent field, represented 

by the teim 
0. ? U. 

(iui + 
fa 

)I 

. PC p ý)x i ý)Xi ; WX-5 

varies slowly along the channel. This term i's negligible, in 

comparison with the other terms of (4-7), for, the majority of 

flows. It is of significance only when the flow is nearly 

adiabatic, or when the velocity is very high (i. e., comparable 

with the speed of the sound). Since these two conditions are 

beyond the range of our consideration, we will neglect this 

term in (4.7). For incompressible flow, the effects of'viscous 

dissipation in the mean flow can be ignored too. Therefore, 
Z; tt 

we assume 
'Pui Id u 

ýcl 
p -a X -d Xi 'd xi (4.10) 

Now, with the two simplifications above and introducing , 
the boundary layer approximations 

"d 
a) 57-, ( )x << 

9'13, 
( )x 2-( ) *' (4.8) 

*? Y c) Yx 

b) 0 (symmetric or two-dimensional 
RZ Xly 

flow) (4.9) 

the equation of mean temperature (4-7) becomes 

DT TQ (-, 21 . (U" (4.12) 
D7 eý37r YY 

where 
kc 

is the thermal diffusivity, (4-11) 
p-p 
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Equation (4.12) is the final form of the mean 

temperature equation for two-dimensional incompressible 

turbulent flow. Comparing (4-12) with the corresponding equation 

for laminar boundary flow, the only difference is the presence 

of the term 
2-(T--Tt') 

which represents the effect of turbulent 
I? yy 

transport of heat and is analogous to the Reynolds stress term 

in the equation of mean momentum (2.1). 

4.1.2 Eauation for the convective heat flux. ' 

An equation for the convective heat flux (uiTI) can 

be derived from the Navier-Stokes equation and the equation 

for conservation of thermal energy (4.1). Neglecting-external 

'-forces and buoyancy effects, the Navier-Stokes equation for 

turbulent flow is 

2 
(Ui+ui) + (Uk+uk) ý3 (Ui+ui) -x (u 

I +u i) ICM-d m 

9 (P+pl) (4-13) 
Xi 

Idultiplying (4.1) by ui, (4-13) by' TI, making use of 

relations. (4.4), averaging and summing the two resultant 

equations, we obtain 

u- (. u Di 
7j. T I)=- 

x k 7k ýXk*5Xk 

MI (II) (III) 
, 

TO . *-dT' .2 'T +- ý0 

-( lu MI, 
xi - 5, uT (4.14) 

lp 
xi "k k ik... p 

(IV) M 



8o. 

where ik 
is the Kronecker delta, i. e., 

C'ik =1 when k 

=0* %qhen -iX 

Terms in (4.14) have the following physical 

interpretation: 

Term I- Advection (or convection), represents the rate 

of change of convective heat flux. , 

Term II - Production from the mean flow. 

Term III- Viscous and conductive molecular dissipdtion. 

Term IV - "Pressure-rate O: t strain". 
a _3ý 

Term V- Turbulent-diffusion. 

The above equation for convective heat flux contains 

a number of unknown correlations of fluctuating quantities. 

Therefore, in its present form, of course, it is not 

immediately employable'in a model of turbulent motion. Thus, 

(4.14) must be closed, i. e., the unknown quantities need to be 

approximated in terms of the main dependent variables. The 

following sections describe the approximations and assumptions 

made, in order to simplify the convective heat flux equation 

(4.14) 

S In fact, term IV is a prý, sure-temperature gradient correlation 
but, as this tera is the counterpart of the pressure-strain 
correlation in the stress equations, throughout this thesis we 
call it "pressure-rate of strain" term. 
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4.1.2.1 Viscous and conductive dissipation terms. 

The first terms to receive attention are the 

dissipation terms III, which are 

2T1 -Du i (4.1 . 5) 55Eý " Tx-k 

and 
j? T1 2ui 

(4.16) Txk 'ý 3Fk 

The dissipative correlations (4.15) and (4.16) are 

zero in isotropic turbulence and will be negligible also. in 

non-isotropic turbulence provided that,. as we assume here, the 

turbulence Reynolds number is high. Thus, we can make 

A QVI 'dui 
+ý)0'=0 (4.17) ý -xk dx k 

4.1.2.2 "Pressure-rate of strain" term. 

As shown in Appendix - 21, the "pressure-rate of 

strain" term, IV, can be approximated by the mim of two terms: 

the first-due only to turbulent effects and the second due to 

mean motion effects. Thereforep from Appendix - 2, we have 

_Q U. ? T' cuTI+ C(UMT t19 9-axi - UT1 11-0 i ý5xm 

where CUT, and OC are constants. 
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4.1.2.3 Turbulent diffusion term. 

Tennekes and Lumley (1973) -pointed out that nearly v 
all -previous authors have neglected -the pressure-, ý; oxqcc tem 

d'ik ukP' 
)' which appears in iihe shear stress equation. Those 

k 
who neglected the term justified its omission on the grounds of 

a. poor correlation existing bet-; ýreen pI and u ! ow -hie k* 7 
Which occurs in the turbulent quantity 

ýik T 

diffusion term V. corresponds to the pressure-work term of the 

shear stress equation. Thus, by analory,, we assume that a poor 

correlation excists between n? and T', and so the average 

product ý91T' may be neglected. Zeman and Lumley (1976)'and 

Launder (1975) also closed the convective heat flux equation 

by neglecting-this term. Therefore,, the pressure effect on the 

diffusion tarm V is assumed zero, i. e. 

'ý 
( cr ik 

r2l -P 0 (4.19) 5xk 
jp 

The triple correlation u Tlu is also a component 
Ii k 

of the turbulent diffusion term V. Triple correlations are 

neglected by some workers. But we ourselves do not follow this 

practice because these terms have order of magnitude of the 

production terms II., and, therefore, they should be included. 

Following the procedures proposed by Chou (1945) and Hanialic 

and Launder (1972b), we find, after some. approximations and 

further assumptions, an algebraic relation to simulate the 

triple correlation terms as a function-of second-order 

correlations. The detailed derivation is described in 

Appendix - 3. There, it is shown that vie may vrrite 
I 
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Eo(- 9- -'D -- 'D 
u Tlu uu-: -u Tt+ uj Iyi ik UT 2ý i mläx k j-ýX, ý�iuk + ulýur-eý, -�ui 

mm 
(4.20) 

where., C UT2 is a constant. 

4.1.2.4 Approximate equation for two-dimensional 
hAn+ fIll-r- 

Substituting relations-(4.17), (4.18), (4-19) and 

(4.20) in (4-14) we obtain 

r w DTI 
? U. 

-rt (uiT (ui u -T 
L-L ulcrý-ý + 0' UT1 E0 uiT, +m ljxm. 

0 E0 
(- a-- -) -- 'D - ui"Lia"x. (; UT27-, E 7, F-UO UJ'ý ýxmuiuk+ukum"ýX-nlui 

(4.21) 

It is interesting to note that neglecting both terms 

the convection andsecond-order products and introducing the 

buoyancy effects, (4.21) reduces to the equation proposed by 

Launder (1975) in his study of frqe shear flows under 

gravitational effects. Zeman and Lumley (1976) when modelling 

buoyancy driven mixed layers also found. a similar equation to 

(4.21). In their approach Zeman and Lumley neglected the 

convection term and included buoyancy effects in the triple 

correlations; buoyancy effects being a major considering in 

atmospher1c flows which were their particular concern. 

When-we introduce the boundary layerg approximations 

(4.8) and (4.9), a further simplificaticn of (4.21) for two- 

dimensional flows is obtained, namely, 
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D fj 02 2uTI+ 2ý=(c 
-2u u TI) D7(u y 

TI) 
Dy 0y 

UY, 
2-T 

- CUT1 ER 
y UT ý-e y ýýy y 

(4.22) 

Obviously, as vie are interested only in the 
Nt- 

cnnvectie-a heat flux component uy T' . terms contairigingc/, do 

not appear in (4.22), because the relation 
IDU 

Y is negligible -a xM 
in boundary layer approximations. Terms contain/ding oC will 

appear when the equation for uTl is derived (this is the 

case, for example, in shear flovis with buoyancy effects vfhere 

the term uTl is important). 

As was previously mentioned, nearly all experimental 

work. suggests a linear relationship between normal shear 

stresses and turbulence energy. This was expressed in (3.3) and 

takes the form 

2 
uy= 4"2 BO (3.3) 

Finally, substituting (3-3) in (4.22) and rearranging the terms 

one 'L inds 
2 

D2 'D (u T 
t 

(", T, (C c CC2E. 
o -0 y ut- y ýy UT2 FI? y YTI)) -c UT1 E0 yTt 
(4.23) 

Equation (4.23) is an appro-ximat-ep differential 

equation for the convective heat flux as a function of Imo,. rn 

dependent variables and with 3 constants-CUT1"CUT2 md. Cý2* 

The constants will be evaluated later. 

b 
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4.1.3 Equation for the intensity of temperatu-re 
fluctuation. 

Althoug-h (4.12) and (4.23), together with the 

purely hydrodynamic equations form a closed system,, we also 

introduce and solve the equation for the intensity of 

temperature fluctuation (12ýT 12 ). A knowledge of this term, 

which is very similar to the turbulence energy, permits the 

determination of important dorrelations between heat and 

momentum. Alsog this term may be needed for future developmerylts, 

of the model, for example, in the study of shear flows with 

buoyancy effects. In the later, the convective 1neat flux 

equation contains the term -1-T 12 . thus, a transport equation 2 

for the intensity of temperature fluctuation will be needed. ý I- t-I " 

An equation fO r -12-T 12 is easily obtained by 

multiplying the equation for conservation of thermal energy 

(4.1) (neglecting the dissipation term) by the temner, ', -ture 
fluctuation T', and averaging. This yields 

D22 #2) T 12uky 1)2. 
7('T' 

(-32-T 
V fdxig xi UkT 'ýx k- 

ýýUT 
k D 

CII) (III) (IV) M 
(4.24) 

Terms in (4.24) have a similar meaning to the terms in the 

turbulence ener gy equation, specifically, 

Term I Advection (or convection), represents the rate 

of change in the intensity of temperature 

fluctuation. 

Term II+V- Dissipation of fluctuating intensity by heat 

conduction '(molecular dissipation). 
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Term III - Production of fluctuating intensity of 

temperature by turbulent flux of heat along 

the gradient of mean temperature. 

Term IV - Turbulent diffusion of fluctuating intensity 

of temperature. 

Equation (4.24) has only two terms vfnich are not 

functions of any of the main depe; ldent variables. These are 

terms IV and V, therefore,, only these two need be approximated. 

1 4.1-3.1 Dissipation of fluctuating intensity, term V. 

Let ET represent the dissipation term in (4.24). 

Thus 
A E OTI )2 

T ox k 
(4.25) 

is the rate of dissipation of temperature intensity fluctuation 

and, in the suIbject of heat fluctuations,, -plays the'same role 

as E does for velocity fluctuations. Tovmsend (1976) proposed 

that the dissipation rate should be proportional to T, 2 

1/2 
T 

and B0 thus, we may assume 

-E 
1/2 

,20 EI 
T= T' . r- 5 

(4.26) 

Where., LT is a length-scale determined by the large-scale 

properties and is similar in magnitude to the dissipation 

length-scale Ld defined in expression (2.7),. Following 

Townsend (1976), we assume, 

LT=b. L d 
(4.27) 
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where, b is a constant. Now, using the relationships (4.26), 

(4.27) and (2.7), the dissipation rate of temperature intensity 

fluctuation becomes 

T=CMS 
(-; 'ýTT 2) 

0 

where, CM is a new. constant given by 

c2 M-b. C Dý 

- convection, term IV. 4.1.3.2 Turbulent 

(4.28) 

(4.29) 

I 
The other tem. in (4.24) needing approximation is the 

2 turbulent, diffusion term : ý= - -21-T" uk) . Vie vvill assume that 
2, W. M, 'ýxký 

is proportional to the gradient of the fluctuating 'k 

intensity of temperature, i. e. 

22 12) (4-30) 2 (-I-T -IT I Uk 
x k 

Then, by purely dimensional analysis, -(4.30) becomes 

E2 
I-T j, 2 o 2) 
2ukC TT2 'E ýx k 

(4.31) 

2 
where, C TT2 is a constant and E0 /e may be interpreted as the 

product of a velocity-scale and a length-scale. 

4.1-3.3 Approximate equation for two-dimensional 

intensity of temperature fluctuation. 

Introaucing the 
11 
approximations represented by (4.28)9 

and ream-ranging the te=s, '(4.24) becomes 
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2 
D2 "'d 0 12)] T 
j7t (12-T cv ,c -) 

'ý (ýT 
Ix TTý-F- -axi "kT "Pxk 

c (-IT j2) TT1 E2 
(4.32) 

., 0 

If we neglect convection and diffusion terms, t, ýje 

equation (4-32) becomes 

T22 
Eo T '(4-33) =-a7 

M 'dxk 

which is the relation proposed by Launder (1975). Also, if we 

use the dissipation term (E,, ) in its original form (4.25), 

neglect the convection texm and also neglect the molecular 

effect on the diffusion., (4.32) becomes the equation proposed 
I 

by Zeman and Lumley (1976). 

In their model, Zeman and Lumley (1976) developed a 

transport equation for E,,, ins tead of using an approximation 

similar to (4.28). Naturallyp their procedure increases the 

computing-time. Alsor the closure of a transport equation fwý 

ET is achieved by using such crude approximations that its 

contribution to increasing the accuracy in predicting -JT12 is 

very small. Therefore? we regard approximation (4.28) as the 

most suitable for our calculations. 

For a two-dimensional flow Nvith movement predominantly 

in the x-direction, the boundary'layer approximations (4.8) and 

(4.9) are applicable. As a consequencet (4-32) becomes 

2 
D 2) 

= 
'2ý 

-02E ('ýTt2). ,ý (JT I I )j- -C Y-C 
(tT CTT2ý -F)j- -ý y TT1 

--ID y 
IM 

yy0 
(4-34) 
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A final comment about the inclusion of the molecular 

diffusion term ? D2 
(-IT 1 2) 

seems in order. We recognize the 
; pýr2 2 

small influence of this term and, like many other molecular 

effects, it should perhaps be ignored, but as vie retain 

similar terms in the equations for turbulence energy, shear 

stress and dissipation, in order to maintain the same level of 

closure, it seems appropriate also! ), yetain this term in the 

intensity of temperature fluctuation equation. 

4.1.4 The final form of the turbulent model. 

The thermal set of equations just developed, together 

with the three-eqifdti8n model, form the new five-equation model 

of turbulence. Thus, su=ari"zing, the equations vihich represent 

the new model of turbulence ard: 

1) blean momentum equation 

D la 13 ux 1 dp 
--- u= -(Y Df xay 'vy y d-, c 

2) Turbulence energry equation 

E2 'ýE, 
0 

2ux 
c 0) 

-uu-E (2.6) 13 DTEO y e8. IDY X YQY 

Shear stress equation 

-M 
2 I-T uu 

+c 0) c (C 
SlE 

ýxX Y) 
y gy s6 gy 5r s2 o 1ý yE0 

(2.14) 
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Dissi-pation of twýlbulence energy eque-t,; Aon 

DE= 2_ V+ 
EO) 3 ? UX 

-cF, Yt ?y 
1( 

CC 
(S -0 y'-] - ElE Eo -p yE 2--Z-0 

Mean temperature equation 

DT= 'ý' (V 2-T 
u ITE ?yIy- YT, 

6) Convective heat flux equation 

2 
D(u T' -c( E9T 
D: E Oy(CUTý jE, f? y- 

CUTI ýE- 

0y2o 
Dy 

-0 

(4.23) 

Intensity of temperature fluctuation equation 

2 
D2 'DU 

2E 
U72T (-IT 92) Z2 

gy[('ýýc TT 
(ýTl* 

gy -c TT1 py 0 
(4.34) 

Hanjalic (1970) and Hanjalic- and Launder (1972b) give 

suitable values for constants C 
S, 

C 
sl? 

Cs2l Ce7 CE? CU ana c 62 

as shown in table 2.1 . Also, a comprehensive study on the 

influence of varying these constants was made in section 3-1. 

Our next step-is to determine the constants C UTIP CUT21' CTT11 

C TT2 and c; ( 2 which appear in the thermal equations. 

4.2 Evaluation of co'nstants in the convective heat 

flux and intensity of temnerature eguations. 

4.2.1 The constants.. C UT11 cM and CWL 20 

The constants C UT1 9 CTT1 ma Cý2 can be found to 
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within narrow limits, provided that the set of equations 

sunr, iarized in section 4.1.4 satisfies the ex-perimental data 

for simple turbulent flows. In this evaluation we use a 

similar process to that'jado-oted by Launder (1975). 

Firstly, CM is determined by considering a grid- 

generated turbulent flow. In this kind of flow. the production 

term is zero -and the diffusion terms are negligible. Thus, the 

turbulence energy equation (2.6) and the intensity of 

temnerature fluctuation (4.34) becomev respectively, 

D dE 
0 

'BITE ux (4-35) D0x 
A 

and , D (-12-T 2) Uk d (j, 2E 
dx 2TI C TT 70 ('T'2) (4-36) 

Substituting (4.35) in (4.36) and rearranging the 

terms, vie haava 

dE dC10 (4.37) dx M Bo TF 0 

Following the work of Gibson and Schwarz (1963), Launder (1915) 

assumed that TI 2 
varies inversely as the power 1.5 of distance 

behind the grid, i. e., 

1, T, 2=A. 
x -1- 

5 (4-38) 

where, A is a constant. Leslie (1975) reco=ends that the grid 

turbulence energy decays like x-1-0 '? i. e., 

Eo = (4-39) 
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where, B is a constant. Relations (4.38) and (4.39) yield, 

respectively, 

and, 

d '(-IT 
d= 

.12 

ZC 2 

2T1 

dE 
0 1.0 x (4.41) U0 ýFx 

Thus, substituting (4.40) and (4.41) in (4-37) vie obtain 

= 1.5 . (4.42) 

The values for the other constants C UT, and Oe- 2 are 

.I found using the experimental data for nearly homogeneous 

shearýflows, in connection with the equations for convective 

heat flux and intensity of temperature fluctuation. For nearly 

homogeneous flow, both equations have the convection and 

diffusion terms very small and they can be neglected. Thus, 

from (4.23) and (4-34) we have, respectively, 

cýu T' OC E 
'DT -2 ") T (4.43) 

UT1 E0 
-Y 

2o 5y UY 
15Y 

and 
ZýTT 2-T c (-12-T 2 (4.44) 

ay ME0 

Substituting the mean temperature gradient 
2-T from (4.44) into 
9y 

(4.43) and rearranging the terms, vie have 

(u 2 )(TI 2 
c UT1 = 2*CTT1 

LY (4.45) 
-Y -T, 

From the experimental data of Webster (1964), the 

correlation between fluctuating quantities (u TI 2 /((u 2 )(T 12 
Y. y 

A. 
is, aproximately, 0.2 . Introducing this value and the value 



suggested for C TH into (4.45), we obtain 

c=3 
UT1 , . 75 (4.46) 

The, constant oC 2, defined in (3-3), is also 

evaluated from the experiments in nearly homogeneous shear 

flows. Champagne et al. (1970) found OC2go. 49 . ý`Iebster (1964), 

with a similar kind of flow, but with temperature variation, 

found Cý( varying from 0.4 to 0.6, depending on the Richardson -2 

nurriber. Here vie will adopt the mean of the values, that is 

CC 2 0.5 (4.47) 

4.2.2 The constants C UT2 and C TT2* 

For nearly homogeneous shear flows, the diffusion 

and convection tems appearing in the shear stress equation. 

can be neglected, thus 

E- 
GE 

? 
-U u XUY sl Ody 0 

or, what is equivalenty,, 

uuE2 xc 
-7j ýux 

ID y 

(4.48) 

The inspection of equations (4.23) for u r, and 

(4-34) for -'ýT' 
2 

shows that the coefficients of the'diffusion 2 

terms, C and C are proportional to E 2/6 
. Sot UT2 TT21 0 

according to (4.48), the 'diffusion constants C uT2 and C TT2 are 

proportional to C too. Ratios C /CTT2 are sl V sl/CUT 2 and' C 
sl 
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identified as the effective Prandtl-Schmidt numbers. As 

Patankar and Spalding (1970) reported, effective Prandtl- 

Schmidt numbers are around unity for most of the confined 

flovis. For free turbulent flows it seems that these numbers 

are lower (, vO. 07). In our computations we use ratios 

c 
sl/CUT2 ý1 and Csl/OTT2 ý1. Table 4.1 summarizes the 

values assigned to the constants in the thermal model. 

Table 4.1 Empirical constants used in thermal model. 

c UT1 c M 2 c 
sl 

c 
sl 

c U"P2 

c 
sl 

c TT2 

3--75 1.5 0.5 
1 

0.07, 1 
f: .. t1l ý", 

4.3 Flows studied and descri-ation of the solution 
procedure used. 

4.3.1 Flovis studied. I 

For the purpose of testing the complete model of 

turbulence just described, as well as for showing the 

capability and universality of the model, several types of 

turbulentflows are considered: 

a) Annular turbulent flovi. 

b) Pipe turbulent flow. 

c) Boundar-j layer on'a flat-rlate. 
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d) Plane mixing layer (with and without sta, --nant 

surroundings). 

e) Plane jet in stagnant surroundings. 

For each type of flow, the set of 7 simultaneous 

equations, (2.1), (2.6), (2.14), (2-13), (4.12), (4.2j) and 

(4-34), is solved num erically. The complexity of the 

calculations is such that, of course, the aid of a hia-speed 

computer is essential. 

4.3.2 Solution procedure. 
: r:. LIZ *1 

The solution method employed is based on the finite- 

difference procedure developed by Patankar and Spalding (1970), 

already referred to in section 2.6 ., The method is sum: narized 

in ApPendix - 3. The computer program developed by the -author 

to solve the three-equation model (and the other models 

developed in Chapter - 2) is expanded in order to solve the 

additional equations of the thermal model. One single program 

solves all the 5 flows listed in section 4.3.1 - Each type of 

flow is specified by a series of geometrical parameters and 

indices in the input data to the program. Initial profiles of 

the dependent variables and the snecification of boundary 

conditions are described in the following section. : 3ý 

4.3.2.1 Boundar,, ýý conditions for dependent variables. 

The flows considered are a combination of two of the 
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following bowidaries: 

(i) Wall bo-Lmda-ry. 

(ii) Free stream boundary. 

(iii) Sy=etric boundary. 

Boundary conditions for the variables U V, 
X, ac IE and 

uxuY are the same as specified by Hanjalic and Launder 
(19742). 

The boundary conditions for the heat transfer variables T. uY T' 

and -1 12 2T . for each one of the boundary types, are specified 

below. 

M 'Wall boundar 

Boundary conditions for mean temperaturep convective 

heat flux and intensity of temperature fluctuattion, in a region 

near a wall can be-deduced by using the a-pproximations of one- 

dimensional Couette flow. The boundai-y condition for u. y 
T' is 

given by the mean temperature equation applied to Couette, flow, 

vihich is 

P (4.49) 

where, subscript C denotes the condition at the. edge of the 

viscous sublayer where the Couette floiv approximation is still 

valid. Consequently, for wall boundary layers, the conditions 

are actually applied "near" the wall. 

Boundary conditions for the, intensity of temperature 

fluctuation follow directly from the intensity equation (4.34), 

after neglecting convection terms and dif-fusion -terms, thus vie 
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can virilie, 

3rT 

E0 
Z-T (4.50) 

C M[E , ýD C 

The boundary condition for the temperature "near" 

the wall can be established by using viell-knovin- empirical 

functions. The logarithmic law (or law of the wall) for the 

temperature profiles provides the means for fixing the mean 

temperature at the edge of the viscous sublayer. The 

temperature logarithmic law, for smooth walls, at the edge of 

the viscous sublayer is representea by 

c 13 
(T 

c- TS), p u-t 
G=. =BT (12") +B ln( 9) (4-51) 

where, subscript S denotes conditi. ons at wallf YC is the 

distance froin the wall to the edge of the viscous sublayer, 

BT (Pr) and B are constants which depend on the type and 

thermal condition of wall surface. 

Spalding (1964) surveyed the experimental, data and 

recommended for smooth walls B T( Pr) = 3.3 and B=2.22 . In 

order to better specify the condition of the fluid and type of 

viall, most workers have preferred to resolve B, (Pr) as 

B T- (Pr) =Bs+ G(Pr) (4-52) 

'Where, Bs is a constant accounting fo r the type of wall and 

G(Pr) is a function which accounts for the condition of the 

fluid. For smooth walls BS is usually taken equal to 5.5 

Many relations for G(Pr) have-been proposed, for example, 

Leslie and Hassid (1973) used a correction in the von Karman. 
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analogy and computed the function G(Pr). Their results are 
tabulated as a function of the Prandtl number. Another 

pro, oosed form. for G(Pr), also based on the von Karman analogy, 
is 

5 (pr G(Pr) = 5(Pr + 5-ln 11 
+6_ 1)] . (4.53) 

Our calculations are performed for a fluid with 
Pr--0.7 . This value of Pr introduced in (4.53) and (4.52) 

gives B, 2(Pr =2-56. Introducing Leslie and Hassid (1973) results 
in (4-52) the value B, (Pr)=2.63 is obtained. We adopt 
BT (Pr)=2.9 which gives the most accurate predictions in our 

numerical calculations. The other constan-t, B, which anpears 

in (4.51) is taken equal to 2.5 . following most other authors., 

For rough vialls, the temperature law of the wall is 

conventionally represented as 

E) +=B (e+, Pr) + B. ln(LC) 
rT e 

(4.54) 

Where ,B rT 
(e+, Pr) is a function ýihich describes the conditions 

of the wall. This function is not so easily found as BT( Pr) 

since there is greater disagreement between the experimental 

data. Several relations for BrT (e+, Pr) have been proposed. The 

one considered the best is that due to Dipprey and Sabersky 

(1963) who found experimentally the relationship (valid in 

the 'fully rough' region (e+>-, 70)), 

B,,, (e+, Pr) = 5.19(e+) 0.2prO. 44 
IP 

(4-55) 

+fe where,, e Re - (7)2.13C 
0 (4.56) 
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(ii) Free boundar. --, [. 

At the free-stre,, m edge, the boundary condition 

must be the same as the undisturbed surro=ding flow condition, 

that is, 

TTG 

and 

YTG 

(4-57) 

(4.58) 

Vihere,, subscript G denotes evaluation of variables at -the edge 

of the free boundary. The condition for the intensity of 

-he degenerate form temperature fluctuation is established by t 

of the intensity of temperature equation (4-34), -vi-hich is 
I 

d2 ý- G'2 
- Q-TI G. CITI Q-T 1 (4-59) 'TG 

cl3c 
2E 

OG 
2 G-' 

(iii) Sýmmnetry axis. 

I; Phen the boundary layer is a sy. -=etric axis, the 

boundary conditions for the convective heat flux and intensity 
, 

of temperature fluctuation are, respectively, 
I 

uy T' 0 (4.60) 

and 
I'D 2 
i-Y UST 0 (4.61) 

4.3.2.2 Initial profiles of dependent variables. 

, In addition to the boundary conditions, profiles for 

dependent variables at the beginning of the step by step 

procedure are also needed. At the starting point, the mean 
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temperature is assumed constant, the intexisity of te=perat,.,, re 
fluctuation is assumed uniform and proportional "t-jo the mcan 
temperature and, finally, the convective heat flux is set- 

equal to zero. It is perhans worth emphasizing here that the 

types of flow considered in this chanter are self-preserving 

or equilibrium flows, and the initial profiles do not have a 

significant effect on the flow dor. -nst-ream.,.. 

4.. 4 Discussion of results. 

4.. 4.1 Turbulent annular flow. 

The comrrletawmoael of' turbulence, combiming hydro- 

dyna-mic and thermal effects (from now on called f1ve-equation 

model), is applied to an annular flow under a inimber of wall 

conditions.. We will give only the results for the case of 

smooth annuli heated (or cooled. ) on the inner side while'the 

outer side is insulated. The fluid used is air-with a Prandtl 

number equal to 0.7 . and the maximum temperature difference 

inside the channel (Gjj, 
ýX) is 30 OC. Numerical calculations are 

performed using a non-uniform grid with 60 points. The dynamical 

equations are solved using the set of constants given in table 

2.1 . In order to verify the sensitivity of the the=al 

quantities to changes in the constantSp the constants CUT1 and 

GM were varied in a range of-values around the calculated 

values shown in table 4.1 .C and C were varied from 2.5 UTI M 

to 4.0 and from 1.0 to 2. P, respectively. Very small 

differences were observed in the results, therefore, the values. 
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of the constants assigned in table 4.1 are retained. Results 

for smooth annuli are shown in figures-4.1 to 4.12 . 

Temperature (G/e,, 
AX) -and velocity (U/U, ) profiles a 1,,,,; AX 

are plotted in figure 4.1 - Here, G stands for the difference 

between the tem-aerature at the internal wall a-rid the 

temperature at a given point in the fluid, 

i. T 
si - T(r) I- (4.62) 

And therefore, 

E) PIAX =ITsi- TI-Ii (4.63) 

where, Tsi. is the temperature at the internal wall and TM is 

the minimum (or maý: imun e fluid is, fluid temperature when th 
heated (or cooled). The velocity profile: shown in figure 4.1 

is co. mpared with the experimental results of Lav-m (1970), and 

our predictions agree very well. Since we use a fluid with 

Pr--0-7, the temperature distribution should lie below the 

velocity distributionp. although they should be close to one 

another. As can be seen in figure 4.1, when the internal wall 

is cooled (or heated), the velocity and 

are not too close; this is because the- 

sensitive to the influence of the small 

temperature is almost unaffected by the 

as we will see later, the heat transfer 

affected by the radius ratio. But, when 

temperature profiles. 

velocity is much more 

radius ratio, while the 

radius ratio, although 

coefficient is slightly 

the conditions of 

heating are changed, i. e., when the internal wall is insulated 

and the external viall cooled (or heated velocity and 
temperature show a much closer agreement-, as is also shovm in 

figure 4.1 .. 
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Temperature and velocity profiles in the non- 

dimensional forms G+ and u+ are plotted in figure 4-3 - All 

results are referred to the internal vrall. Velocityýprofile 

is pompared with the experimental results of Knudsen and Katz 

(1958) for annuli with small radius ratio. As can be seen, our 

results are %yell inside the range of Knudsen and Katz annular 

measurements. The temperature profile is comPared with two 

relationships: one proposed by, Spalding (1964) and the other is 

deduced from the results of Leslie and Hassid (1973).. The 

. relationship -proposed by Spalding (1964) is- based' -on the 

results of'a nuMer. of experiments. He proposes the relation 

3-3 + 2.22 ln i (4.. 64) 
I 

Using the results tobtained by Leslie and Hassid (1973) we can 

find a new relation for et. For a smooth wall B, =5.5 and from 3- 

Leslie and Hassid with. Px--0.7 vie get G(Pr)=-2.87 , thus (4.52) 

gives B,, (Pr)=2.63. Hence, with B=2.5 . 
(4-51) becomes 

et = 2.6 3 -1- 2.5 ln y+' (4.65) 
IL 

Relations (4.64) and (4.65) are also plotted in figure 4.3 

As vie can see, our results compare well with both. relationships. 

The shear stress and convective heat flux profiles 

are shovin in, figure 4.2 . The shearstress distribution is in 

-good agreementýviith the Lavm (1970) experimental results. The 

extreme difficulty of measuring fluctuating temperature 

correlations is the responsible for the. lack of experimental 

results in thisfield of study. Thus our predictions ca=iot be 

compared with experimental data. Neverthelessr we can see in 
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fiMre 4.2 the similarity between shear stress and convective 
heat flux profiles', Mich confirms the ass=3tion at the heart 

of all analogies between moment= and heat transfer. 

The distributions of turbulence energy and intensity 

of. tem-perature fluctuation are shwm in figure 4.4 . The ratios 

shear stress/turbulence energy and convective heat f lux/ 

intensity of temperature fluctuation x tuzýbulence energy) are 

plotted in figure 4.5 . In both figures, the exclusively 

dynamic correlations are in good agreement with the La: xr. (1970) 

experimental results for smooth annulus. Althou&h there is no 

available experimental data to corroborate our theoretical 

results for the heat transfer correla-tions shown in figures 4.4 

and 4.5 , it seems that-our distributions represent well the 

physical behaviour'of the intensity of te-mperatare fluctuation 

and convective heat flux ratio. 

The balances of turbulence energy and intensity of 

temperature fluctuation, in terms. pf each component- 

(production.. dissipation and diffusion),,. are plotted in figures 

4.6 and 4.7 , respectively. The turbulence energy terms agree 

well with the measured values of Lavrn (1970). In figure 4.7 

the. same kind of behaviouras shown in figure 4.6 for the 

energy , is displayed by, the components of the intensity of 

temperature fluctuation. 

Figure 4.8 shows the comparison of our results for 

t7ae intensity of temperature fluctuation (iTl 2 /T with the 

1 
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exterimental measurements of Nicholl (1970) for ch ann A flow. 

In the region very near the wAll where the *laminar sublayer 

still has influence, the experimental values are larger than 

ours. But inside the logarithmic region both theory and 

experiment are much closer and acceptable, considering the 

different heating conditions. Nicholl's results were ob-1k, Med 

with G0 80 C and under the influence of buoyanc., vAhile our 

results are obtained for a 91,, IAX=30 
OC and. no buoyancy eff 'ects 

are considered. 

Another interesting parameter in convective heat 

flows is the relation between the eddy diffusivities Of heat 

and momentum, The eddyýdiffusivity for moment= (, -), ) is defined 

by )IT rd. 
ýU, 

ý 'D 

-P 'D Yx TýJýý, (4.66) 

The counterpart for heat, the eddy diffusivity for heat (I. ) is 

defined by 

- ,, PC uk T- py 1ý 

or, what is equivalent, 6ýý, ' 

T' 
k T-'DT 

_^A 
9T 

y Tc-, Uy^ 'OT/g-y 
p 

Thus the diffusivity ratio (V, 11), ) is 

0 

m 

UYTI. gfx 
0 -7T rn Uýuy ty-T 

(4.67) 

(4.68) 

(4.69) 

The inverse of the diffu3ivity ratio is co=only 

called tufoulent . 'Drandtl number 
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In most work on heat transfer it is assumed '460hat 
I even though experimental investigation has shown that 

this assumption is not true. The diffusivity ratio depends, 

on the type of flow, Reynolds number and geometry of the 

channel. Townsend (1976) states that the diffusivity ratio can 

vary between 1.0 for large strains and 2.5 for small strains. 

In figure 4.9 we show our predicted diffusivity-ratio ýor an 

annulus with small radius ratio. The ratio 
VmlýT is calculated I 

using (4.69) with the distributions for shear stress, convective 

heat flux, temperature gradient and velocity gradient obtained 

from the five-equation model. As we. can see in figure 4.9 , the 

diffusivity ratio varies from 1.5 near the inner wall 
Ito 2.1 in 

the region, of maximum velocity,, corroborating the experimental 
ax M 

results. 

Fina: Lly, the heat transfer coefficients, in terms of 

Nusselt numbers, are compared in figures 4.10 to 4.12 . Nusselt 

numbers with respect to the heated (or cooled) inner side of an 

annulus are shown in figure 4.10 Our predictions with the 

five-equation model for the case of conýtpýnt wall temperature 

are compared with the experimental results of Quarmby and 

Anand (1970). The theoretical and experimental results are in 

fairly good agreement. As can be observed, the Nusselt number 

increases slightly with decreasing radius ratio. Figlire 4.11 

shows results for a different cooling arrangement. Here the 

external wall is cooled with constant temperature and the 

internal wall is insulated. Our predictions for the external, 

NuEselt number- (Nu 
0) as afunction of Reynolds number and 

radius ratio are shown in figure 4.11 - Our results are again 
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compared with the corresponding data of Quarmby and Anand(1970) 

whichwere obtained experimentally under similar conditions. 

Again, theory and experiment agree quite well. It is worth 

noting that in this configuration the external Nusselt number 

is nearly independent of the radius ratio. 

In-order to establish the influence of the type of 

cooling on the wall, we considered a case in which the wall 

temperature changes step by step (this configuration is 

equivalent to the case when wall heat flux is constant). We 

study an annular flow with two different radius ratios, R*=0.2 

and R*=0.5 . The internal viall temperature is increased 

linearly from the, qntrpLnce of the channel to the exit of the 

channel. The difference of wall temperature from entrance to 

exit is taken to be 30 0 C. Results for internal liusselt number 

as a function of the Reynolds number. and radius ratio are 

plotted in figure 4.12 . Our predictions are compared with the 

experimental measurements of Kays and Leung (1963) and with 

the experimental correlation based. on the experiments of 

Quarmby (1967) which is 

109 Ifu =-K, + 0.706 log(Re) (4-70) 

where , 

log K, = 0.1658 - 0.1056 log(RO/Ri) . (4.71) 

As can be seen in figure 4.12, the agreement between 

our predictions and the experiments is quite good. Comparing 

the results of figure 4.12 with those of figure 4.10, we see 

U 4-hat for the s&-n. - radius ratio and sane Reynolds numbe---, the 

Nusselt number is slightly higher When the wall heat flux is 
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constant (fig. 4.12) than when the viall, temperature is constant 

(fig. 4.10), which corroborates the experimentally observed 

result. 

4.4., 2 Turbulent pipe flo . 

The second flow studied is -the turbulent pipe flow. 

Both smooth and rough-geometries' are considered. The fluid is 

air and the wall temperatur. e is assumed constant. 
-The 

maximum 

difference of temperature between fluid and wall is 30 OC. Our 

predictions with the five-equation model are presented in 

figures 4.13 to 4.17 

Temperature profiles (9/9. ) in a smooth pipe we 

shown in figure 4.13 . Our predictions are compared with the 

-experimental results of Seban and Shimazaki (1951) which were 

also obtained for a pipe flow with constant wall temperature. 

Our results are also compared with the theoretical results 

obtained by using Martinelli's analogy, as described by 

Knudsen and Katz (1958). As can be seen in figure 4.13, the 

results from the Martinelli's analogy are higher than the 

exnerimental results in the logarithmic region. The agreement 

between our predictions and the experimental data is better 

although our results are slightly largerý in the log region. In 

figure 4.14, velocity and temperature in the non-dimensional 

forms (u + and. G+), are compared. with experimental correlations. 

Velocity profile is, compared with the law of the viall for 

smooth surfacesq represented by 
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U+ =Bs+B ln(y+) (4.72) 

Spalding (1961b) and Kestin and Richardson (1963) 

surveyed the experimental relations proposed far the law of the 

wall in smooth surfaces. From the results they included in 

their review, vie take as representative values B =5.5 and 

B=2.15 . The comparison between predicted ii+ and correlation 

(4-72) shows a fairly. good agreement. The temperature profile 

is compared with (4.65), which was pro-nosed by Leslie (1977), 

and with (4.64), which was proposed by Spalding (1964). Our 

results, as shovm in figure 4.14, lie between these. two sets of 

results, which indicates the validity of our theoretical model. 

Friction factors and Stanton numbers are compared in 

figure 4.15 . Our calculated friction factors agree quite well 

with the results from Blasius' formula (3-36). For Stanton 

numbers, several relations both empirical and semi-empirical 

have been proposed. All these relations are based on some kind 

of analogy betvie6n heat and momentum. Leslie and Hassid (1973) 

working with exact-equations rather than approximations, and 

using an improved velocity profile (u+=f(y+)), developed a 

relationship applicable to moderate Prandtl nu=bers. For smooth 

pipes, they recommend the relation: 

12+ 12 f 
7 G(Pr) +P +\F7 Q (4-73) -9t =TT 

where, P=ý8.2 and Q=15.5 for pipe flow and G(Pr) is the 

function introduced in (4-52), G(Pr)=-2-87 for Pr--0.7 . The 

Stanton numbers given by-our model- and by (4-73) are compared 

in figure 4.15 . The results given by the two methods can be 
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seen to be in good agreement. 

Analogies between heat and momentu,,, made by previous 

workers have been quite successful in predicting heat transfer 

from smooth surfaces. But they have not been so successful 

when applied to the, much more complex problem of turbulent 

heat transfer in rough pipes. In order to test the capab4lity 

of the five-equation model to solve a flow with rough ijails, 

we considered the case of pipe flow with sand-roughening. The 

rougTmess. ratio (D/e) is taken equal to 200 and the Reynolds 

--, equal to l. OxlO5 the calculated number The results oj. 

velocity and temperature profiles are shown in figure 4.16 

The velocity distribu. -tion is compared with the law of the wall 

(3-15), with Br =8.48 As we can see, very good agreement is 

obtained. The temperature profile (G+) given by the model is 

comnared with that given by the temperature law of the wall 

expression, which is 

G+ = BrT (e+, Pr) +B ln( 
e 

(4-74) 

The calculated values shown in-figure 4.16, are 

obtained using for the. boundary condition . 
(4.54) in the five- 

equation model the following value of BrT( e_ý_j Pr) 

+)0.2prO. 44 B 
rT 

(e+, Pr) = 4.70(e v 
(4-75) 

The reason why vie choose (4-75) instead of the experimental 

relation given by (4-55) will be made clear shortly. The 

comparison of predicted temperature profile obtained with the 

five equation model and results from, (4.74), is shorm in 

f igure 4.16 . As can be seen our predictions agree quite well 
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with results from (4-74) using (4-75). For clarity, the 9+ 

profile of (4-74) using (4-55) is not shovm in figure 4.16, but 
this combination gives results no higher than 6cp of our 

predictions. 

Stanton numbers for rough pipes with sand roughness 

are shown in figure 4.17 Continuing the work of-Leslie and 

Hassid (1973) for smooth pipes, Leslie (1977) proposed tlj'e 

following, theoretically derived.. relation for Stanton numbe-rs 

in rough surfaces: 

"R 
Q 

2 F2R [B,,, 
(e + Pr) B, (e+)] + P+ (4.7G) st R-- 

TR +IR 
F-2 

Where, the index R is used to indicate the rough conditiori, All 

parameters appearing in (4-76) were already described. Based on 

their experimental datd, Dipprey and Sabersky (1963) proposed 

the relation 

2 f2 

F 
F 

[Br,, 
(e+, Pr) R (e+ (4.77) St-R- FR +FRr 

Where,, B' (e+, Pr) is given by (4-55). The Dipprey and Sabersky 
rT I 

results are plotted in figure 4.17 . We solve the five-equation 

model using the Dipprey and Sabersky relation (4-55) as the 

boundary condition for the rough wall and the results obtained 

are also shown in figure 4.17 . As can be seen, our predictions 

are lower than the experimental results; the same discrepancy 

is observed when Leslie's expression (4-76) is used with (4-55). 

Therefore, using a trial technique we vary the constants in 

(4.55), and use this new relation as the boundary condition in 

our numerical calculations, The iteration is continued until 

our theoretical values coincide with the experimental data. The 
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best fit'. is obtained with expression (4.75). As shovm iri 

figure 4.17, in this case, the agreement is very good; using 

(4.75) in Leslie's relation (4-76), a good agreement is also 

obtained. 

Since the value of B 
rT 

(e + Pr) given by (4-75), -- 

introduced as boundary condition in our five-equation model, 

gives the best agreement with experiment for Stanton numbers, 

we assume that this value also predicts more accurate 

temperature profile (which is the profile shoirm in figure 4.16). 

Thereforep vie propose that the temperature law of the wall is 

better represented by (4-74) when the Br2(e+-lPr)*value given by 

(4.75) is used. 

4.4.3 Flat-plate boundary layer. 

The experimental results and the predictions of the 

five-equation model for a smooth flat-plate boundary layer are 

compared here. An undisturbed velocity (ITcb) equal to 40 m/s is 

used in all our calculations. lThe 
maximum difference of 

is 30 OC. Results temperature between fluid and ivall. (e,,,, 

from the five-equation model, are shov. m in figures 4.18 to 4.24. 

Velocity and temperature profiles are plotted in 

figure 4.18 . The velocity distribution is compared with the 

experimental results of Klebanoff (1955)-and a good agreement 

is displayed.. The temperature profile, as expected, is slightly 

lowpr than the velocity profile, however the shape is similar. 
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The non-dimensional velocity and temperature profiles are 

shown in figure'4.20 . The predicted u profile is com-oared 

with the experimental relationships proposed by Nikuradse 

(1950) and Schultz-Grunow (1941). Our results agree well with 

the Schultz-GrLmow expression. and are*slightlyýlower than the 

Nikuradse values. The temperature profile e+ is again compared 

with the expression (4.64), proposed by Spalding (1964) as the 

best representation of the thermal law of the wall. As c= be 

seen, the predicted values are quite close to those of 

Spalding's expression. 

/ 

The shear stress and the convective heat fl-wp 

profiles are plotted in figure 4.19, while the turbulence 
; Iz V% 1ý 

energy and the in ensity of temperature fluctuation are sýhown 

in figure 4.21 . Predictions for exclusively-momentum 

correlations are compared with the experiments of Klebanoff 

(1950) and the agreement is good for nearly all the flow area. 

Slight departure of the predicted results from the experimental 

ones occurs when the free boundary region is approached. But 

this departure is acceptable considering that near a free 

boundary the flow is characterised by extreme instability and 

even the experimental results show an unusual degree of 

uncertainty in-this region. Our calculated values of the 

convective heat flux and intensity of temperature short a 

similarity to the shear stress and turbulence energy, 

respectively. 

Figure 4.22 disi'31ay .s the variation of shear stress/ 

turbulence energy ratio ( ýýXUY/E 
0 

). A characteristic of 
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turbulent flovis is the approximate constancy of vhearj stress/ 

turbulence energy ratio for nearly all the area across the 

flow. In figure 4.22 this expected constancy is-displayed by 

the calculated values and a good agreement with the 

experimental data of Klebanoff (1950) is obtained. Theoretical 

and experimental values for the ratio shear stress/tjurbulence 

energy in the constant region are approximately 0.. 28 

one would expect a similar characteristic between the 

various heat transfer correlations', Thus, the convective heat' 

flux/(turbuiene'e energy x intensity of temperature fluctuation) 

ratio is also plotted in figure 4.22 ., The constýftncy of the 

ratio is, verifiedp although the heat correlations. ratio is 

greater than the momentim correlations ratio. Townsend (1976) 

stated that the heat correlations ratio should be around 0.36 . 

Launder (1976) summarized the experimental results, of this 

correlation and we make use of his data to produce table 4.2 

In his original summary, Launder listed. the-ratio 

2/ ( u. 
2) (T "2 The transformed ratio (u T")/ 
yy-0 

listed in table 4.2 is obtained assumi ng u2=0.5E . Although 
v0 

there is too large a variation among the measurements to make 

definite conclusions, analysing table 4.2. it-seems that a 

value between 0.40 and 0.50 is the most likely.. From our 

results in figure 4.22 we obtain a value of 0.45 in the 

constant-ratio region and we note that this lies inside the 

range of experimental data. 

Figures 4.23 an& 4. '24 show, respectively, the 

Lturbulence energy balance and the intensity of temperature 
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Table 4.2 Scalar flux correlation ratio in shear flows 
in local equilibrium (after Launder (1976)). 

Author 
uY TI 

FE 
0. 

ý=, 
Tj 2 

IF 2 

Geometry 

Webster (1964) 0.39-0-55 Homogeneous shear flow 

Bremhorst & Bullock(1973) 0.45 Pipe flow 

Bourke & Pulling-(1970) 0. -45 Pipe flow 

Lawn & White (1972) 0.40 Pipe flow 

Ibragimov et al. (1968) 0.77 Pine flow 

Arya Ac. Plate (1969") 0.33 Smooth flat. plate 

Johnson (1959) 0.45 Smooth flat plate 

Pimenta et al. (1975) 0.55-0.. 63 Rough flat plate 

fluctuation balance. For the turbulence energy as shown in 

figure 4.23, the dissipation, production, diffusion'and 

advection are in close agreement to the corresponding terms 

-ion of each term measured by Klebanoff (1950).. The distribut 

contained in the intensity of temperature fluctuation is shown 

in figure 4.24 . As can be seen, each term has a siinilar 

behaviour to the corresponaent term in the turbulence energy 

equation. As expected, the production and dissipation terms 
'A - are nearly equal at-every point across the flow. 
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4.4.4 Plane mixinglayer. 

The mixing. layer between tuvio'streans, initially 

having uniform velocities U 10c, and U 2*3,1 is called the 

turbulent. -plane mixing. layer. Cases with and without stagnant 

surroundings (one of the layers has zero velocity) are 

considered. Here we show results for two cases, one vd: th zero 

velocity ratio (U =0) and the other with velocity ratio 
! 2-7-0.5 

2oo U 100- 
In both cases, - the maximum difference, o-, "' temperature betoween 

0 the two layers is set to 30 C. The fluid considered is air 

with Prandtl-number equal to 0.7 - 

The,, velocity profile ob-ttainea by means of the five- 
V equation model is 'Sihof-ýn in figure 4.25 . The velocity profile 

for the case of zero velocity ratio is compared with the 

experimental results of 'vVygnanski and Fiedler (1970) and with 

the analytical results obtained by Tollmien (1945). As can be 

seen, both theories and experiment are in good agreement. It is 

interesting to note that for the case, of a plane. mixing layer 

with a velocity ratio 0.5 , the same velocity distribution is 

obtained, provided the ratio ( 
U(y)-U200 

is used, instead of UTIAX7'U2oo) 
U(Y The temperature profile obtained with the five-equation 

MAX 
model, in terms of -is also plotted in figure 4.25 . The 

- 
UMAX 

differences of temperature'denoted by e and 0 MAX are calculatecl 

using, respect ively, (4.62)and (4.63), T 
si 

being, for this type 

of flow, the undisturbed temperature at the internal boundary. 

The temperature 'ratio'is compared ..,; ith-the analytical solution 

proposed by Tollmien (194"5), as vie can see, our model gives 

predictions that are much more realistic than the simple lineal, 
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profile proposea by Tollmien. 

An important parameter commonly measured in free 

turbulent flows is the ra' 

for momentum and for heat 
d1T. 

Where' and T. - 1,1 u and 

the flow, both parameters 

te of spreading. The rate of spreading 
d1 

is defined, respectively, by d. 
u 

1T are characteristic lengths across 

depend mainly on the type of flow. 

For the plane mixing layer we define. 1 
U 

(or 1T) as the distance 

across the flow between the points where 
U (or E) is UMAX GMAZ 

equal to 0.1 and 0.9 . In table 4.3 we show a comparison 

between the measured spreading parameters and those predicted 
i by our model. As can be seen, our predictions for the two 

types of plane mixing layer are well inside the variation of 

the experimental data. 

The shear stress and convective heat flux profiles 

are shown in figure 4.26 . Turbulence energy and intensity of 

temperature fluctuation distributions are plotted in figure 4.27. 

Roth momentum correlations - shear stress and turbulence energy- 

agree well'with -'%-, he Wygnanski and Fiedler (1970). and Bradshaw 

et al. (1964) experimental results. Again,, a. small-departure is 

noticeable in the predicted results when the free boundary is 

approached. It is impossible to say conclusively that the 

discrepancy in this region is due to a weakness of the model 

because is commonly accepted it is difficult to make reliable 

experiments in this region, therefore, it is reasonable to. 

assume that the experimental results contain a large error. The 

heat. correlations, also pl8ttea in, figures 4.26 and 4.27, display 

a similarity to the momentum relations both in form and location 



117. 

Table 4.3 Predicted and measured rates of spread in 

plane mixing layers and plane jets. 

Kind of flov" Predicted 3xpe rim e ntal Data sburces 
rates of data 

s-oread 

Various 
(A) Plane mifing 

laye workers 
dIu 0.130; 0.150; 

I -- = CLX 
0.145 0.169; 0.200 py Cited 

1) Velocity Gibson and 
ratio 0 d. 1 If 

= 0.146 0.165 
-Launder(1976) 

= 
d lu 

0.05C 0.046 Watt(1967) 
2) Velocity dx 

data cited by 
ratio 0.5 

d1 Gibson and T= 
dx 

0.057 0.051 Launder(1976) 

-a 1U 0.088; 0.. 096; Data cited by 
. dx 

0.11C 0.120; 0.096 
Jenkins and 

(B) Plane jets 
Goldschmidt 

-d 1 T 0.123; 0.137; (1973) 
_ dx 00144 0. -141; 

0.170 
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of maximum -values. 

The shear stress/turbulence energy ratio and 

convective heat flux/(turbulence energy x intensity of 

temperature f luctuation) ratio-are shown in figure 4.28 . The 

predicted momentum correlation, in -agreement with the 

exnerimental measurements of Vlygnanski and Fiedler (1910),, 

exhibits a constant value for nearly the entire section across 

the flow.. The predicted ratio of 0.28 is quite near the 

experimental value of 0.26 . The heat correlation also shows 

the same-kind of-constancy,, with a predicted ratio of 0.46 

This value is nearly the same as predicted for flat-plate 

boundary layers, which shows that the flux correlations are not 

affected by the prdserfb .e of a wall. Of the experimental data 

su=arized in table 4.21 only Webster's (1964)-datarelates to 

free shear flow. Our value of 0.46 lies roughly'at the mid- 

point of the 'Webster data. 

For a plane mixing layer, our predicted diffusivity- 

ratio s'plotted in figure 4.29 . As OT/V I) defined by (4.69)1ý i 

can be seen, a variation from 2.2 in the region of maximum 

productionýto l.. 5 towards the edges is predicted by our model. 

Launder's (1976) survey reveals a ý7ide variation in the 

experimental. results and it is not possible to make a concrete 

e 
conclusion about the best experimental estimative for the 

diffusivity ratio. But a variation between 2.0 at the region of 

maximum production to 1.5 at-the edge of the boundary agrees 

with most of the experimental, data, and confirms the reliability 

of the model in the particular cont -ext of plane mixing layers. 
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4.4.5 Plane jet in stagnant surroundin 

A two-dimensional turbulent plane jet results vf. qen a 
jet, flows freely through a rectangular orifice into a 

surrounding-fluid of uniform velocity, This type of jet flow 

occurs when the velocity on the centre-line-of the jet is much 

greater than that of the surrounding flow. Here vie cons'ider the 

case of stagnant surroundings, i. e., the case when the 

undisturbed velocity of. the ambient fluid is zero. Vie apply the 

five-equation model to the plane jet, and our predicted. results 

for both thermal and dynamic quantities are summarIzed in 

figures 4.30 to 4.33 

The dist: ýibiftions for velocity (T' ) and -temperature UMAX 
- 

are 9hown in figure 4.30 . The temperature differences 9 
LIAX 

and e MAK are calculated using (4.62) and (4,63), where, T 
si. 

is 

the undisturbed temperature of the surrounding flowý 70. 
ý5 

is 

the value of the cross-stream coordinate, measured frouthe 

centre of the jet-, where the velocity is half the maximum jet 

velocity. The velocity profile is compared. with the experimental 

results of Bradbury (1965), while, the temperature distribution 

is commared with the Xenkins and GbldschmidtJ1973) experimental 

data. As can be seen. in fiEure 4.30, the predictions for both 

temperature and velocity agree well with the experimental 

results. 

The rates of spreading-for momentum and heat u 
d l- I dx 

and d. -,. respect-ively,, are defined in a similar way to that 

for plane mi"Xing layers. Here we define 1U (or 1T) as the 
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distance between the centre. of the jet and the point where 
U6 (or ; Uji, ) is equal to 0.5 

... 
Our predictions are shown in uva 

IAX 
table 4,3, and our results are well inside the range of 

variation of the experimental data. 

I 

The turbulence energy and intensity of temperature 

fluctuation profiles are shown in figure 4.31 . The turbulence 

energy distribution is in close agreement with Bradbujy1s 

(1965) experimental results, and the intensity of temperature 

profile shows a similarity to. the turbu lence energy profile., 

The flux correlations shear stresS/turbulence energy ratio and 

convective heat flux/(turbulence energy x intensity of 

temperature) are plotted in figure 4.32 . The constant value 

of 0.30 given by the theory for the momentum correlation is 

very close to the value of 0.32 implied by the experimental 

data of Bradbury (2: 965). The constant value of the heat flux 

correlation over a region is also verified for jet-flows. In 

the constant region, our results give a flux correlation ratio 

of 0.46 which agrees with most of ýhe experimental ratios 

murnmarizea in table 4.2 

Finally, our predictions for the diffusivity ratio 

are shown in figure 4.33'.. Launder (1976) pointed out that the 

variation of the diffusivity ratio in plane jets should be 

similar to that in plane mixing layers. If this is true, than 

one would'expect the experimental values of 
TT 

-to vary from- 

about-2.0 (in the region of maximum production) to about 1.5 

(at the edge). A study of figure 4.33 shows that our results 
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vary steadily from 2.3 at the centre'of the jet to 1.5 at the 

edge.. This tends to confirm, our theo--Y and Launder's- 

hypothesis. 

li I; - D I- 
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CHAPTER - 

Conclusions and recorimendations for future 
develoloments. 

5-1 Conclusions. 

The following conclusions regarding two-dimensional 

incompressible turbulent flows can be dr=n from the work 

presented in this thesis. 

(1) An appraisal, both quantitative and qualitative, of 

some isothermal models of turbulence, already existing 
"' 'a- TV in the literature, shows that a three-equation model 

i-.. the most- suitable for predicting turbulent boundary 

layers, based 
. 0n. such criteria as range of flows, 

accuracy and computing-time economy. 

(2) P4f study of the influence of varying the constants in 

a three-equation model, applied to annular flow, 

discloses an almost negligible (less than 2ýS), influence 

on velocity and shear stress distributions even When 

some constants are varied by ap =ch as 50',, - Only the 

turbulence energy distribution shows any sensitivity 

to the variation and then only to the variation of the 

constant CS, (see (2.14)). 

10 



123. 

The optimum three-equation model is applied to 

specific problems such as: 

(a) prediction of the point of -maximum velocity in a 

smooth annulus, varying-the radius ratio, 

(b. ) prediction of the characteristic of 

similarity in a turbulent rough pipe -flow, and, 
(c) prediction of friction factors in turbulent annular 

flow with sy=etric and asy=etric wall conditions. 

A comparison of the predictions of the model vi-it-h the 

experimental data for the flows considered con, firms 

the validity of the theoretical model chosen. 

A complementary model of convective heat transfer, 
W. '. ' IL"I ;- 

capable of predictin<g, two-dimensional, incompressible 

turbulent thermal boundary layers is developed. 

NWnerical solutions of the thermal model, 

simultaneously with the three-equation model, are 

performed for annular, pipe,, flat-plate, mixing layer 

and plane jet flovis. In gq, neral, a good agreement for 

temperature distributions (9 and e+), between the 

predictions of the theoretical model and experimental 

results, is achieved. 

Predicted profiles for heat transfer correlations, 

such as convective heat flux and intensity of 

temperature fluctuation show a strong similarity to 

the correspondent distributions for momentum - shear 

stress and turbulence energy. Our predictions of 
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characteristic flow parameters, such as diffusivity 

ratio, spreading ratio and convective heat flux/ 

intensity of temperature ratio, are also in good 

agreement with the experimental data. 

Predicted Nusselt numbers, in concentric annuli heated 

(or cooled) on one side while the other side is 

insulated, match well the experimental data. We find 

the radius ratio effect on the Nusselt number is smaller 

when the outer wall is heated (or cooled) than w1hen 

the inner wall is heated (or cooled). Constant wall 

temperature boundary conditions give slightly lower 

Nusselt numbBrs than in the case-of a linear rise in 

wall temperature (which is equivalent to unifo= heat 

flux). 

(7) In rough pipe turbulent flow, the relation 

B 
rT 

(e + Pr), = 4.70(e+)0.2prP_44 (4-75) 

gives a better representation to the temperature law 

of the wall than the relation (4-55) proposed by 

Dipprey and Sabersky (1963). The relation (4.75) also 

gives Stanton numbers which are in better agreement- 

with the experimental data. 
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5.2 Future developments. 

To the present time, for most of the real fluid 

flows, no measurements of fluctuating heat flux quantities such 
2 

as ui T' and Tv have been reported in the literature. This, 

undoubtedly, is due to the technical difficulties presented by 
LC 

such measurementsp butýýlso possibly due to the lack of incentiv-:: ý 

to produce experimental results, since there have been no 

theoretical results for comparison. Now that some theo-Aetical_ 

models of turbulent heat flux are beginning to appear, a great 

shortage of thermal measurements is apparent. Therefore, 

parallel to theoretical investigations, the experimental field 

must now be extensively researched. Thus, we hopeýthat the 

development and improVement of measurement techniques, either 

by the well established wire anemometer technique or by the new 

laser Doppler anemometer technique, will overcome the technical 

difficulties and enable investigators to produce more basic and 

comprehensive experimental results relating to thermal 

turbulence., 

The first reco=endation for the extension of the 

model is to include buoyancy effects. Such effects can be 

represented in the Havier-Stokes equation by-the inclusion of 

external forces due to gravitational effects. Thus, each 

equation of the-model which is derived from the Navier-Stokes 

equation would then-include these terms, Consequently, the 

shear stress-and turbulence energy equations would then have* 
gi 

the extra production term - uiTI , where r gi is the 

gravitational acceleration in the direction xie Alsot the 
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convective heat flux equation would have the additional term 
gi 2 JTI There is an influence of the gravitational field 

in the dissipation equation too, but due to its smallness,, as 

a first approximation it could be neglected. Special attentiýn 

must be given to the approximation of the pressure-strain 

terms (in shear stress and convective heat flux equations) 

because, now, the Poisson equation for the pressure fluctuating 
gi 'a TI term is affected by terms like y-. - , After the inclusion 

of these additional terms it would then be possible to apply 

the five-equation model to flows such as the atmospheric 

stratified shear flow. 

Because flows characterized by low Reynolds number 
&I !, ; 04 -1 - 

are important in engineering applications, it is desirable to 

extend our model in order to include flows of this nature. 

Unlike the high Reynolds flows, the low Reynolds flows are 

affected by the viscous sub-layer, Where the molecular 

properties affect the process of production, diffusion and, 

mainly, dissipation of turbulence.. Tentative solutions using 

simple models such as the mixing. length or the eddy viscosity 

have resulted in unsatisfactory predictions. Some published 

work suggest that models based on transport equations have a 

better likelihood of success. Thus, a model for, low Reynolds 

number flows, based on our model, can be developed provided 

that: (1) molecular diffusion terms are included, (2) further 

terms are added to-allow for the fact the dissipation process 

near the wall are not isotropic. -It should be. noted that some 

molecular terms (viscositý and thermal conductivity) are 

already-included in our model, but there are others neglected 
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whose inclusion should now be considered. Also, a study and 

verification of the valueýof the constaný--s should be made, it 

being possible that they depend upon the Reynolds number. - 

The present model was entirely developed for 

incompressible flows (constant properties). To Comply, with this 

condition, our model can only be applied when the difference of 

temperature between boundary and undisturbed flow-is relatively 

small. blany real flows have differences of temperature not so 

small, thus, it should be of value to include compressibility 

effects in our modeI in order to extend the model to predict 

such flows. A simple method is to incorporate the best possible 

functional relatiqns4ips for the variation of density, 

viscosity and thermal conductivity with pressure and 

temperature. Naturally, a careful study of the validity of some 

of the anproXi=ations must be made. Such a model could then be 

applied to flows with greater temperature differences, for 

example, it could be used-for the desiga of gas-cooled reactor 

fuel elements in order to predict-temperature distributions.,, as 

well as velocity, turbulence energy, convective heat flux 

profiles and many other important correlations. 

The study of two-dimensional flows was our main 

objective, but some three-dimensional flows have similar 

characteristics and it is possible to extend our model to apply 

to these flows. Such three-dimensional flows as the round jet, 

the flow over an aerofoil, flow in a non-circular channel come 

into this calliegory. These flows are characterized by the fact 

that there is a predominant direction of flow, and also the 
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gradients in two of the directions (say, x and z) are small 

compared with the gradient normal to the surface.. Consequently, 

the ordinary boundary layer approximations apply and the 

upstream conditions alone determine the conditions dovnstream. 

In these flows all Reynolds 9tresses are importan-t. thus, one 

of the first, considerations would be to develop an individual 

222 
equation for each normal stress u., uy and uz instead of 

using the turbulence energy equation. Equations for the lateral 

shear stress uýuz and lateral convective heat flux 
. 
uzTI would 

be anproximatued, in addition to the already developed 

equations, for uxUy and uy TI . Due to the parabolic character 

of the equations, the same nwmerical method (marching 

procedure) could be employ. ed., In most of these flows there is 
V, ý, V4 - 

a variation of pressure in the direction norm. al to the flow, 

thus, an allowance for the pressure variation in the cross- 

stream plane should be included'in the numerical. calculations. 
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APPEI, TDFt', ' -1 

A brief descrintion of the n=erical method of 
Patanicar and SDaldin . 

Patanlicar and Spalding (1970) developed a general 
method of calculating boundary layer flows, by solving 
numerically the, partial differential equations by a finite- 

differences procedure. A brief description of the method is 

given in this appendix. 

Each one of the modelsof turbulence prese-ated in this 

thesis has two or more partial differential equations to be 

solved. An-inspection of these equations, which are summarized 
in section 4.1.4, shows that they have a similar mathematical 

structure, therefore7 it is possible to develop a general form 

of solution, as follows. It is common in turbulerrt boundary 

layers to use the stream function Y as the. cross-stream variable 
in place of y. - The`x-ýY system is known as the von Mises 

coordinate system. The stream function Y is defined by 

2 T- =r 
Tj- 

= -f uyr 
ID yP 

UX ax 

In practice, it is more convenient to use a dimensionless stream 
functionn. xras the cross-stream variable. The function 'Ur(called 

grid function) is defined by 

V= 
ý_Y, '? 4), ." 11 YE-Yr rII -r. mý (A. 2) 

where, and Mý are. the mass flows entering the internal and 

external boundaries, respectively. Then, using (A. 1) and (A.. 2)p 

the set-of turbulence equations of section 4.1.4 is transformed 

from the system x-y to the system x-VP.. Any of the seven 
transport equations is then reduced to the general form 

'ý ý- 
-t- +b -ur) 

?ý=9- 
(a 

fý ý)+d- 
(A-3) 

'a x "? 'I.,. r Vill. Q our 

- where, 
ý 

is the general dependent variable (see table'A. 1) 

rI ýIOYE-yl) (A-4) 
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( 
-A .5', 

c and d are r-n1--itions between variia-I es. 
"'he exact ex-cressions for c and d are -; L-Iý table Iu 

Table A. 1 : Terms c and d for set of equations. 
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The general eauation A. JI-s solved b-,. r am -i c --,, D 

-o t The cross-flow -i-s divided t in evalluation. ns ri. s 
fore, tlýe ru--'Oer of (TIN is 

,,,, )r--es, n, o-n:,, s to one value of -luT , varies from 0 to 1 

(Ij. =u) at inner bounl-lar. y and -,, t outlor 'o3und, ýtr-,, -). A control 

volu. mp is deffined between 33 consecutive -:, -. id roints as shown 

in figure A. 1 . 

xrnai bu-i 

i-1, j+l 

i-1,1+1/2 

tJ 

iI 
li+ 

I 1-i 
, 

]__; V 

LJ 
J 

jrtenaal 

Fi, ýure "1.1: A typiCal control volume (slnaded) for 

-vilnich micro-integrals are formulated. 

A-p-ýlying (A-3) to the control voiume of fignire A.! Z7, 
we have the following micro-inte, 7ral eauation: 

=( C_ ) -,, Cý CL,., j CLX f, -) 

/J 42 

'% L The integral equation ('. 61 is solved using the 

tranezo-idal n-iles and t(he following assumn-tions: 

is constant with JL, tlius, -ý&f i-17 j 
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(ii) ý varies linearly between adjacent- cross- 
strips, that is, for-b-r=-', -S. 11j+1/2 

Ti, 
j+1/2 = 'HiIj + Ti, 

j+1 

(iii) Value's of ýj between x i-i and xi are uniform 

j e. and equal to 

for x i-i <x<xiI= Iiii - 
Thus, after extensive algebra (A. 6) becomes: 

fipj =A jli, j+l +B Ai'j-1 +j (A-7) 

Coefficients Aj. Bi and Ci are functions of, a, b, 

c and d,, as well as the grid parameters. All three 

coefficients are calculated for the previous step (say, x 

were al! parameters are known. 

Equation, (A. ") 

simpler form: 
can be transformed into the 

B)t i 

Where , 

Mt A /(l-B-'A-)t_ 
iiia 1) 

0 

B)t = (B Bt_l +C )/(l-B A4t_, ) 
iiJiIiJ 

(A. 8) 

(A. 9) 

(A. 10) 

A*2 =A2 (A. 11) 

Bý =B2 §1 + C2 (A. 12) 

At start of calculations (sectioh xi_, ) all 

'parameters 
and distributions are assigned thus, A-'If 

and Bit can be calculated for all the grid points (j=l, N+3). 
j 

Equation (A. 8)-is then solVea by back-substitution from 
j=N+3 (external boundary whose co naitions are imposed or 
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known, "e'v Ii, 
143 is fixed) to j=1 (internal boundary) for 

section xi a. This procedure enables the calculation of the 

profile of the dependent, ý, variable Jij for the whole section 
xi*. New values for Att and B-ý- can now be calculated. An 
increase in x is then given and all the operations are 
repeated for the next step, and so on, until the end of the 

channel. 

Based on this numerical method we develop a 
computer program called TTBL (Two-dimensional Turbulent Boundary 
Layers), capable of solving any one of the models proposed in 

chapter - 2, as well as the thermal model, described in chapter- 
4. The selection of the model to be solved is made through the 
index NEQ which stands for the number of equations to be solved. 
The flow geometry can be a combination of any two of the three 

boundaries: wallt free and symmetry line. The specification of 
geometry-is made by ubing indices KIN-and KEX , which refer to 
the internal and external boundaries, respectively, KIN and KEX 

are attributed the values 1.2 or 3 depending on whether the 

boundary is a wall, free or a symmetry line. 

Two grid functions (-tT) are incorporated; one is the 

uniform grid, ivilere all-the grid points are equally spaced 

between internal and external bottndaries; the other is the 

logarithmic grid, where the density of grid points is greater 

as the boundary is approached.. Any one of the two grids can be 

selected at the start of the program via the data. The 

logarithmic grid is particularly used in flows where there is 

an asymmetry in the profiles of turbulent quantities; - it has the 

advantage of giving more accurate results, but the 

disadvantage of being more sensitive to instabilities in the 

solution of differential equations in comparison to the uniform 

grid. 

The tendency of instabilities of the munerical 

solution, in general can be pI revented by selecting a suitable 
grid distribution with an adequate number of grid points and/or 
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choosing a smaller forward increment, Ax, . There is no exact 
x-ale to establish either IT or Ax'. But from our eXperience 
vie found that grids with N between 40 and 60 points are 
suitable; and forward incrementsLx. of about 4c, ýo of the 
distance between the two boundaries of the fluid flow proved- 
to be sufficient. 

Computing time, obviously, depends on the of 
equations, number of'grid -points and size of forward ste-C. - 
Our program was run., on a CDC 7GOO com-putex,. In a typical case, 
for TT=GO points and a Lx abou-t 4PI of cross-strea= distance 

between bouridaries, a run of the thermal model (7 differential- 

equations to be solved) took less than 15 seconds. 'Whereas a 

run of the three-equat-Ion model (4 differential equations to 

be solved) took less thax-1 10 seconds -per case. I 

0 

M,:, VI 11 
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APPENDIX -2 

A-oproximation of Dressure-rate term in the 

convective heat fliuc eauation. 

The pressure-rate of strain term appearing in the 

Reynolds shear stress equation was approximated. by Hanjalic and 

Launder (1972b)ana Launder et al. (1975) followinýK proposal by 

Chou (1945) and Rotta (1962). 'We will use a similar procedure 
T) 1'ý TI in order to approximate the pressure-rate term which 

appears in the convective heat flux equation. 

Taking the divergent of the Navier-Stokes equation for 

turbulent flow and, imfit the continuity equation, we find the 

transport equation for the pressure fluctuation 

1 3ýý 'ýUm 9Uk 2 
. 
7u- 

x22 
fd xk-F: cm - rýxk/)"'ým 

(uuk7 
M) 

(B. 1) 

k 

A formal integration of (B. 1) over the volume of the- flow gives 
--4,. the fluctuating pressure at a position rO 

ý)U 
m 

Qtj 
k ý2 d(vol). 2 (U 

0 
pl(r 0 qx k D. 'Km, 'ýxkP"'m, muk ar 

01 

Multiplying (B,.. 2) by and averaging-, vie obtain 
, 

(B. 2) 

QX ro 

U D2 U L. Uk 1 2'ýuý.. 
? 'k "dTI QTL I d(vol) 

ly 'a7-k QxVST'J_ orC1; 0-; 

r AT L 

r0 

10 

rr qx 
(B -. 3) 

The left hand side' of (13-3) is just the pressure-ra: 1-e 

term of the convective heat flux equation, v-fhose approximated 

form, we are seeking. By inspection of (B-3) we see that the 
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pressure strain originates from two processes: (1) elffects due 

to mean velocity over fluctuating components uM 'and TI, and 
(2) effects from purely turbulence interactions. From this vie 

can assume that the pressure strain (B. 3) is the sum of the 

two terms, 

(. pl T17 Mnean + ('pp-Zx (B. 4) 3. f 10V, 

Turbulent component in (B. 4). 

A similar term appears when the pressure-strain term 

for the Reynoldsshear stress equation is approximatedl, it then 

has the form 

+ xx turbulent 

Rotta (1962) proposed (and thereafter every vior', zer . who made 

closure approximations for the pressure-strain term, did the 

same) the relation, 

dui Qu 
2E 

j:, 
k. )turbulent Gol IT. (IiIj 3. j 0) 

where, G41 is a constant.. 

By analogy, vie will ass=e that- the turbulent- 

component in (B-4) can be approximated by 

131'ýT' FE -T 
turbulent CUTI. U70 u (B-5) 

where, OUT, is also a constant. 
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1.1can flow comnonent in (B. 4). 

From (B-3), the mean flow com-nonent is 

(-at VTI 'ýU M 02TI d(vol 
Qx, rr ; 5-xi)mean 7-v 

orr 
(; ýxk 

f low 
i 

fvO 

0- 
(B. 6) 

Assuming a flow writh homogeneous turbulence, where the mean 

properties can be assumed inde-oendent of position, (B. 
-ý) can 

be written as 

mt, DT-tI -m T' "k 
al, i xjn 

(B - 
f lovi 

where the tensor am is defined by, ki 

f d: (Vol) (unj I)--,,. 
-.,. I 

(B. 
:Lý 2ýtý' ; T'ýk 

O-r ` 
floll, 

Again, following Rotta (1962),, the fourth-order tensor 

am 
T' 

must satisfy the following conditions, in order to satisfy ki- 
the symmetry reqUirements and the lavis of conservation: 

am 
T' 

=a 
T' m, = aT** a (B. 9) kikik 

aiý 
Tl* 

=2 uJI (B. 10) 

The condition (B. 10) - suggests a form for the tensor m TI: that "i i 
is a combination of convective heat flux terms. -Therefore with 

this a. s=ription, the most general form for "I TI hould be lic i, 

T. 1 OC SiOMT "+ ýuj 
-k 

where,, o( JN and'YJ are constants and m, k and i are indices 

whi. ch can be any of the coordinates x, y or z. Subscripts m. 

k and i refer only to velocity-components, and tierms like Or, 3 21 

are meaningless, thus the only way (B. 1l)-can satisfy all the 
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symmetry conditions in (B. 9) is by making 

mTI= 0ý. 0 
(B-. 12) ak i 

J'ilýumv 

As ýik is different from zero only when i=k, (B. 12). can be 

written as 

aý 
T CC i UMT B-13) 

If (B. 13) must satisfy the law of conservation (B. 10), then 

2 umT I= OC uT I and t,: )C = 2.0 

I 
Thus, relating (B. 7) and (B. 13) vve obtain the mean 

flow component of the pressure-rate term, namely, 

OTI Ui 
= O(UMTt'axM (B-15) 

xi mean 
flow. 

Finally,, substituting (B. 15) and (B. 5) in (B. 4) we 

derive the total pressure-rate term to be used in the 

convective heat-flux equation: 

W 'DTI e-- 
Ou. 

(.,.. -) =-C TI + c? C u TO I, (B. 16) 
'a x UT1 U0 ui m -d Xm 
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APPEKIDIX - 

A-pproximation of the-tri-ale-correlation term in the 

convective heat flux equatio . 

The analysis of a triple-correlation equation 

provides a foundation for anproximating the tri-ple-correlation 

term appearing in the convective hea-'Lf- flux equation. The 

equation-for triple-correlation is obtained, after some 

mathematical manipulation, by multiplying two similar Navier- 

Stokes equations in IiI and Ik' coordinates and the lGemperature 

equation, for turbulent flows, by ukTIj. ir. TI and u 1 iuk 

respectively,, then su=ing, the 3 resultant equations and 

avera-ging each term;, Plinally, making use of the mean momentUM 

equations for lil and Ik' coordinates as well as the mean 

temperature equation, we obtain the triple-correlation equation 
D (Ut-uiixkT') in. itus exact form, neglecting only external forces 

effects.. This general form is: 

D (ui ýý IT -5t-(UiukT- xm -r 
(I) 

+ T, Ul-3x-, -: 
ý ýU-m 

IT Fx-m: 
ýIýum + ýliuk-ý;, 

F. -UmT 

+ (uT 
uuT 

IrD 
2 Uk lu 

- U, 
ID 2T 

TX7. iX 
ml- 

+1 ic X, 

a -P + (Tl'lllý 
I T. Iu i7a--Sýc- 

(IV) 

-T, T u+u+ ["ra-1 
UkT 1*;, 5ý4x-Ui +- ýx k 

. 4- mi 

+ umukT I ýýX-mu T 
ra 

u+ i+ ulný'i k 
rd -iu 

I 
3, 

FMT-1 

(C. 1) 
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Folloviing. Hanjalic and Launder (1972), * the fourth- 

order correlation term (I) in (C. 1) can be anproximated. in ter=-, - 

of second-order correlations as follows: 

uiukum T' =uIum ukTI +-uiu k , uTl +-umukouiTI o (C. 2) 

Using this approximation for (I) and adding it to term (II) of 
(C. 1) gives 

- ra - -9 --? (I) + (I! ) (UjulnýqýXýT I +- umT 1,1ýx-ujuk + týýUM79EýýjT 
m 

(C-3) 

Each of the first two compenents Of term (III) has 
23 

order of magnitude 
Gr -%X E) 

where e and t are -L _%. Re 

a velocity-scale, a temperature-scale and a length-scale. Any 
3a 

t-erm, of (C-3) has 'the. 'drder, r-0: 
9, 

], 
. thus, as we only Of Pý 

consider flows with high Reynolds numbers, the first -h-; o 

components of (III) are negligible when compared, with the terms 

of (C-3). The same applies to the last co=onentof (III),. 

because we are considering fluids which have'ý and t of the 

sane order. Therefore, 'vie can neglect, all components of term 

(III) in (G. 1). A comparison of each term of (IV) with the 

approximation of turbulent terms on pressure-rate (Appendix-2. 

relation (B-5)), suggests the relationship- 

(IV) =-1 (u T' 'ý. o +- u T' 9=-Ca 
jukT 

1 4, 
'd -0 - 

k X_' 
9 

sa u 
k0 

(C. 4) 

The last term (V) in (C. 1) is itself a sum consisting 

of products of average mean quantities and fluctuating 

correlations. Although, when considere&. theoretically, each 

term of (V) has the same order of map ritude as each term in 

(C. 3)y as a first approximation we are going-to neglect-all 
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terms which are products of'fluctuating te=s and mean flow 

terms. By this argument, term (V) can be neglected. For the 
D 

saime reason, the convective term in (C.. 1)7 a(uiukT'), is also 

negligible.. We concede that this approximation is somewhat 

crude, but triple-correlations are already small in magnitude 

and the exclusion of one or two terms should not introduce a 

significant error. 

Introducing the approximations discussed above,, with 

relations. (C. 3) and (C. 4) into (C. 1) vie olatain 

E-? 
- -9 - uu T' u- UkT I+ um. T U. ul +- ukur47- u. 

.C ,C . iTI) ik UT2 E XIM Im 

fr; ý 
(C. 5) 

where, GUT2 is a new constant '/Csa)' 

The triple-correlation term given by eXpression 

(C. 5) is the approximated form of u iukT' . v4hich we use to 

close the turbulent diffusion term in the equation of convective 

heat, flux. 

t 
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