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Abstract 

This thesis is a study of stock volatility adopting two factor volatility models 

for large datasets: the orthogonal GARCH model and the stochastic volatility 

factor model. An application is made to the constituent stocks of five Asian 

indexes. Factor analysis and volatility forecasting exercise are carried out. 

Chapter 1 is an empirical application of the orthogonal GARCH model to 

Asian stock returns. Correlation analysis, eigenvalue and eigenvector analysis 

and several diagnostic tests are carried out. Our results show that using large 

number of principal components cannot guarantee an improvement in captur­

ing dynamics. Moreover, GARCH(l,l) is the appropriate specification for the 

principal components of stock returns of some datasets. An empirical example 

of how GARCH analysis of all series in the entire dataset can be summarised by 

a univariate GARCH analysis of the first principal component is also provided. 

Chapter 2 is a factor analysis using stochastic volatility factor models. In 

contrast to the first part of the study, common factors are estimated from 

large datasets of Asian stock volatilities via principal components. Correlation 

analysis of stock volatilities is performed. Examinations of the dynamics of 

factor estimates and their explanatory power are also carried out. Our results 
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confirm that large dataset with many cross-sectional series from the same cate­

gory may not always be desirable for factor analysis. Evidence of long memory 

is found in the first principal component of some datasets but not all of them. 

Chapter 3 is a volatility forecasting exercise. In-sample analysis is im­

plemented using the stochastic volatility factor models and the orthogonal 

GARCH model. Moreover, we propose an extension of a local-factor model 

to a multi-factor model. Testing of factor significance is scrutinised. A com­

parison of forecasting performance shows that the stochastic volatility factor 

models outperform the orthogonal GARCH model in forecasting Asian volatil­

ities. 
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Introduction 

Study of financial volatility has long been under the interest of financial re­

searchers and international investors. Developments of volatility models, mod­

ifications of existing modelling and estimation methodologies, as well as im­

provements of forecasting procedure are ongoing and will continue to be under 

a great deal of attention. Research in this topic was initially aim to improve the 

modelling method in order to account for time-varying properties of financial 

volatility and its observed stylised facts. Different univariate volatility mod­

els have thus been proposed. However, univariate models only allows for the 

study of single financial time series. ,;vhen the interest is to consider linkages 

and comovements of multiple financial time series, univariate models become 

insufficient. Evolution of the study thus moved from focusing on one financial 

asset or one financial market, to the consideration of the relationships between 

different financial assets and linkages between different financial markets. This 

has triggered the development of multivariate modelling technique. Proposals 

of different multivariate models and estimation procedures have undoubtedly 

nourished the study of financial time series. However, the fact that when many 

time series are modelled simultaneously has made modelling and estimation 

procedures complicated. Rccellt development in the topic allows one to use 
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common factors to represent the entire svstem of data series and the use of 

factor volatility models are advocated. 

The aim of this thesis is to provide an empirical factor analysis and an 

evaluation of forecasting performance of h';o factor volatility models, the or­

thogonal GARCR model of Alexander (2001a, b) and the stochastic volatility 

factor model of Cipollini and Kapetanios (2005), with applications to Asian 

stock volatilities. These two models stem from the two main categories of 

volatility models - the GAReR family models and the stochastic volatility 

models. We believe our factor analysis could provide further insight into an 

understanding of the comovements in, the modelling and forecasting of Asian 

stock volatilities. 

In the remainder of this introductory chapter, we will discussed some com­

monly observed stylised facts in financial volatility that have given indication 

to the developments and modifications of volatility models. ,;Ve will also look 

at the basic building block of the two major types of volatility models. Some 

backgrounds of the Asian stock markets will then be presented. Finally, we 

will outline the organisation of this thesis. 

1 Some Stylised Facts of Financial Volatility 

Prior to the invention of volatility models with time-varying conditional ,'ari­

alice, the Autoregressive l\10ving Average (AR:\IA) type models had been com­

monly used for the study of time series data. Rmvever. a major shortcoming 

of the ARl\1A models is the assumption of constant ,'ariance over time, which 
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has been proved unrealistic in many studies of financial time series. The need 

to account for the time-varying properties of volatility has initiated the in­

vention of various types of volatility models. The large amount of empirical 

studies in the topic has revealed some stylised facts of financial volatility. This 

has in turn, provided indications to further developments and modifications of 

different methods of volatility modelling. 

The design of different volatility models aims to capture the following well­

known stylised facts in financial volatility. First of all, distribution of financial 

time series normally has fatter tails than the normal distribution. It is com­

monly found that kurtosis of financial time series is above 3, which is the stan­

dardised fourth moment of normal distribution. It means large positive and 

negative returns occur more often than expected. Moreover, volatility cluster­

ing has been commonly observed. It means there are alternate periods of large 

movements in financial prices and periods when the prices have hardly moved. 

Another interesting feature of financial prices is that negative shocks seem to 

have more pronounced effect on volatility than positive shocks would have on 

it. A negative relationship between price movement and volatility can be ob­

served from many stocks. The nature of declining volatility with increasing 

returns and the increasing volatility with decreasing returns is known as lever­

age effect. Volatility models with asymmetry have been proposed to account 

for this feature. 

In addition to t he above characteristics, developments of volatility models 

in the rccent decades also consider long memory in financial volatility. Persis­

tence is generally observed in financial volatility, especially in high frequency 
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financial data. Evidence can be seen from plots of autocorrelations from '.vhich 

significant correlations exist even at long lags. Conditional yariance equations 

are evident with near unit root rather than exact unit root. It means autocor­

relations of shocks exhibit a slow hyperbolic decay rather than an exponential 

decay. The objective to capture persistence in volatility has promoted the 

development of long memory volatility models. For example, the long mem­

ory GARCH models (see for example, Baillie, Bollerslev, :\likkelsen (1996)), 

and the long memory stochastic volatility models (see for example, Harvey 

(1993)) have been proposed. Finally, movements in one financial market al­

ways induces movements in another financial markets. Stock returns in several 

markets change contemporaneously. This is an evidence of cross-markets rela­

tionships. It is therefore more appropriate to examine cross-markets financial 

time series simultaneously. This has addressed the importance of using multi­

variate models to study comovements in volatility in different financial markets 

and different financial assets. 

2 Modelling Volatility - The Basic Building 

Block of GARCH Models and Stochastic Volatil­

ity Models 

This thesis concerns factor analysis and forecasting using factor volatility mod­

els. The factor '.'olatility models we adopt are the advanced developments of the 

two comparable yolatility models, the GARCH model and the stochastic yolatil­

i ty models. \ Yl' present here a brief explanation of the basic set -up of these two 
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models. A thorough review of the GARCR and stochastic volatility models can 

be found in Knight and Satchell (2007). Reviews of GARCR models can be 

found in Franses and van Dijk (2000). Bauwens, Laurent and Rombouts (2006) 

also provides a survey of multivariate GARCR models. Furthermore,the survey 

papers by Poon and Granger (2003) and Andersen, Bollerslev, Christoffersen 

and Diebold (2006) discuss the various volatility models used for forecasting. 

The basic building block for modelling volatility is to consider the shocks 

in the mean of a financial time series, Ct, as a product of a random variable, Zt, 

and a factor, 0";. Where Zt is an independently identically distributed random 

variable with mean zero and unit variance, and 0"; is the time-varying variance, 

and t = 1, ... ,T. That is, 

(1) 

The task is then to find a process to model the variance, 0";, so that the styl­

ised facts of financial time series can be well-captured. The variety of volatility 

models that have been proposed for this purpose can be classified into two main 

approaches. The first approach refers to modelling the variance using past ob-

servations of the shocks via autoregressive conditional heteroscedasticity, that 

is the ARCR models, first proposed by Engle (1982). Further generalisation 

of this model by Bollerslev (1986) allows the past observations of the condi-

tional variance impact on the current conditional variance, that is the GAReR 

models. Consider the following GARCR(l,l) model, 

(:2) 
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where /30 > 0, /31 > 0, and /32 > ° to ensure non-negative or The sum 

of /31 and (32 has to be less than one to ensure covariance stationarity. The 

unconditional fourth moment of Ct is finite if (/31 + /32)2 + 2/3~ < 1 (see Boller­

slev (1986)). The kurtosis of E t is greater than 3 if Zt also follows a normal 

distribution, which means its distribution has a fatter tails than the normal 

distribution. 

The most distinguished attribute of the ARCR and GARCR models are 

their capability to capture volatility clustering. Moreover, the standard GARCR 

model is linear. Current volatility is modelled by an ARMA process with past 

shocks and past volatilities. This set-up has favoured the estimation proce­

dure as a; can be deduced by using the past information of the shocks. This 

has made maximum likelihood estimation tractable. Nevertheless, there are 

still some drawbacks of the standard GARCR model. First of all, normal 

conditional densities, which are commonly used for the functional form of the 

standard GARCR model, is insufficient to account for the fat tails in the un­

conditional distributions of financial prices and returns. Evidence of excess 

kurtosis not being captured under normality assumption is found, see for ex­

ample, Baillie and Bollerslev (1989). This has led to the use of some non-normal 

distribution in GARCR modelling. Secondly, the impact of a shock on volatil­

ity depends only on its magnitude in standard GARCR model and the sign 

of the shock is irrelevant. Rowever, asynlmetry is generally obseryed in finan­

cial time series that means a negatin' shock has larger impact on yolatility 

than a positiY8 shock ,vith the same magnitude would haye on it. Thirdly, the 

llon-llcgati"ity constraints on the parameters in GAReR models may cause 
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difficulties in estimation procedures (see Rabemananjara and Zakoain (1993)). 

Under the non-negativity constraint, past shocks ahyays have a positiye impact 

on volatility at current period. Larger size of the shock gives larger impact on 

current volatility, regardless of its sign. Thus, non-linearity in volatility cannot 

be captured by the model. Finally, standard GARCH model fails to capture 

the near unit root property in conditional variance. 

The deficiencies of standard GARCH models have led to further modifica­

tions and developments in the literature, including the exponential GARCH 

model and various extensions of GARCH model that consider threshold ef­

fect. These models are capable to capture the leverage effect in financial time 

series. Furthermore, there are also developments which aims to account for 

persistence in conditional variance, for example, the integrated GARCH model 

and the Fractionally integrated GARCH model. All these developments aim 

to seek for modifications of the conditional variance equation so that the com­

monly observed stylised facts can be well-captured. In the first chapter of this 

thesis, an overview of the GARCH volatility models v.rill be presented. 

An alternative class of volatility models which have also received consider­

able attention is the stochastic volatility. In the stochastic volatility models, 

the variance, cr; in equation (1) above is treated as an unobserved variable and 

it is modelled by a stochastic process, for example in its simplest form, is an 

aut oregression 

where ht 

(3) 

lll(cr?). L't is independently normall~' distributed with mean 
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o and variance (/;. Vt and Zt are uncorrelated. The conditional variance, ht, 

is strictly stationary with mean f..lh equals ~ and variance (/2h equals 1C7~· 2 
1-al -al 

if la11 < 1. Moreover, Et in equation (1) is a white noise process due to the 

independence of Vt and Zt. ht is not deterministic conditional upon the past 

history, which is opposite to the GARCH model. 

The set-up of the stochastic volatility models can overcome some drawbacks 

in the standard GARCH model. The above autoregression is not set up for the 

unobserved variance (/~, but for the logarithm of it, that is, ht • Therefore, (/~ 

is always positive. In addition, if Zt is normally distributed, the kurtosis of Et 

is 3 exp ((/~), which is greater than the normal value, 31 . In contrast to the 

standard GARCH model, the stochastic volatility model is more capable to 

account for the excess kurtosis in financial time series as the term exp ((/D can 

take any value. Furthermore, if we relax the assumption that Zt and Vt are 

independent and allow for C ov (Zt, Vt) < 0, asymmetry in financial returns can 

be accounted for (see Knight and Satchell (2007), Hull and White (1987), and 

Engle (1982)). 

Although the stochastic volatility model allows more flexibility than the 

standard GARCH model in accounting for some of the stylised facts in finan­

cial volatility, the popularity of GARCH models in financial applications has 

never been adversely affected. The reason for this is that in contrast to the stan-

dard GARCH model, estimation procedure for the stochastic volatility model 

is more complicated. Different estimation methods for the models have been 

examined. These procedures include generalised method of moments approach 

1 For derivation of the kurtosis coefficient of the stochastic volatility model, see F'ranses 
and van Dijk (2000). 

22 



(see Melino and Turnbull (1990), and Andersen and Srzsrensen (1996)), quasi­

maximum likelihood via Kalman filter by Harvey, Ruiz and Shephard (1994), 

and Bayesian method (see Jaquier, Nicholas and Rossi (1994)). Even though 

there has not been an agreement on which method is the appropriate one, these 

progressions have enriched the modelling of stochastic volatility over time. The 

above set-up of stochastic volatility model in equation (3) is the simplest form 

of the model. FUrther developments of the model have been proposed in order 

to capture more stylised facts of financial volatility. A brief overview of the 

literature on stochastic volatility models will be presented in a later chapter of 

this thesis. 

It is worth mentioning that although the stochastic volatility models may 

seem to be more appealing than the GARCH models, it is difficult to determine 

upon which of them are the winning models from their practical performance. 

The decision upon which of the two models is used for analysis should depends 

on the nature of the data we are dealing with and a model selection procedure 

should be implemented prior to further analysis and forecasting exercises. 

Notice that our discussion of the two models so far has limited to the uni­

variate set-ups. As mentioned at the beginning of this introductory chapter, 

univariate volatility model limits one's interest in a single financial time series. 

The need to examine or study different financial time series or different finan­

cial markets simultaneously promotes the use and evolution of multivariate 

volatility models. Although different multivariate versions of GARCH model 

and stochastic volatility model have been proposed to approach the issue, es­

timation methods involved are always complicated when the number of time 
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series considered gets very large. This necessitates the simplification of the 

modelling procedure. The idea of using a few factors to summarise comove­

ments among a large system of data series and thus simplify the modelling and 

estimation procedure has become popular. Later in the chapters of this thesis, 

we will discuss the multivariate versions of the two volatility models and the 

incorporation of common factors into the models. 

3 The Asian Stock Markets - Some Backgrounds 

Volatility factor models provide a platform to study large datasets of financial 

assets, the comovements among them and the linkages among financial markets 

with ease. By adopting the factor volatility models, our empirical study aims to 

analyse the common factors underlying the Asian stocks and forecasting Asian 

stock volatilities. Before we move on to the core of this thesis, we present here 

some background of the Asian stock markets. 

Stock markets in Asia have attracted a great deal of attention from re­

searchers, academics and international investors in recent decades due to their 

sound record of trade and investment. High returns from the investment in 

the Asian stock markets in comparison to other developed markets have con­

tributed to their popularity. However, the high returns always accompanied by 

high volatility. This has provided an interesting topic for financial researchers 

and an incentive for the international investors to further explore the behav­

iour of these markets. Efforts have been put on studying for the intra-regional 

linkages among those markets, as well as the international linkages behw'en 



them and other financial markets around the world. Other researchers have 

attempted to study the variation in Asian stock returns, modelling and fore­

casting Asian stock volatility. Implications and conclusions drmvn fronl these 

studies have provided crucial information on security pricing strategies and 

global hedging strategies. 

The positions in the world's rankings of stock markets taken by some South-

east Asian stock markets reveal their important roles in international invest-

ment. In 1995, the Japanese stock market was ranked the second, after the 

US market, with a total market capitalisation of US$366.7 billion. Hong Kong 

stock market was ranked the 9th with total market capitalisation of US$30A 

billion. South Korea and Singapore were ranked the 15th and 17th, ,vith market 

capitalisation of US$lS.2 billion and US$14.S billions, respectively. Although 

the markets have been impacted by events like the 1997 financial crisis, their 

importance remained. The total market capitalisation of the Japanese stock 

market fell to US$315.7 billion in year 2000. But it remained at the 2nd place, 

after the US and followed by the UK. The Hong Kong market has gone down 

to the 10th largest but its market capitalisation doubled between 1995 and 

2000, to US$62.3 billion. The Singaporean market has also moved down to 

a lower position, to the 22nd place but with an increase of capitalisation to 

US$15.3. Whereas the South Korean market ,vas ranked the 20th, with a fall 

in capitalisation to US$17.2 billion during the period2
. The significant interna­

tional position of the Southeast Asian stock markets continue even until recent 

years. Tokyo Stock Exchange of Japan "'as ranked the 2nd with market capi-

2 Figures detail from Li (~006). "The Hong Kong Economy: Recovery and Restructuring". 
Source: Standard and Poor's Stock l\Iarket Factbook, 1996 and 2001. 
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talisation of US$20.7 trillion as at ~1ay 2007. The Hong Kong Stock Exchange 

and the Korea Stock Exchange were ranked the 7th and the 16th with market 

capitalisation of US$1.92 trillion and US$l trillion, respectively3. 

The role of Asian stock markets is undoubtedly significant, the linkages 

among those markets and their relationships with the other world stock mar­

kets are also tight. These linkages have been revealed through different em-

pirical literatures on volatility transmission, causal relationship and financial 

contagion, and also through some daily news. These linkages are even more 

obvious in the situation of significant events. We list out the following three 

events in the past decade as examples to illustrate these linkages. 

The 1997 Financial Crisis4 

It is no doubt that the 1997 Asian financial crisis can be viewed as the most 

notable shock in the financial markets of Southeast Asia in the past decade. 

Issues of the crisis have been under attention and debate for many years. Some 

economists understood the crisis as a "bubble burst" after years of economic 

growth, exchange rate stability and prosperity within the region. Whereas 

some others take a different view and argue that this is purely a consequence 

of speculative attack. No matter what has been the actual cause of the crisis, 

the impact of the event on the Asian currency markets and stock markets. 

as well as some overseas markets ,,'as immense. The initial currency crisis, 

:IRanking by market capitalisation as at 1Iay 2007. Source: ""orld Federation of Ex­
changes, June 2007. 

I Source of information and figures: 
Chronology of Asian currency crisis and its global contagion, Nouriel Roubini's Global 

Macroeconomic and Financial Policy Site, http:j jpages.stern.nyu.edu;-nroubinijasiaj 
1997 East Asian financial CrISIS, \Yikipedia, the free encyclopedia, 

http://en.\\,ikipedia.org/\\,iki/Asian_financial_ crisis 
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which was incurred by speculative attack in Thailand, has propagated rapidly 

across the countries in Southeast Asia. It has then evolved quickly into stock 

market clashes and economic crises. Following the Thai and the Indonesian 

stock market clashes in June and August, the Hong Kong stock market also 

suffered from its heaviest slump ever between 20 to 23 October 1997. The 

clash was even more severe than the one in 1987. Hang Seng index plummeted 

by more than 20%. After regaining 718 points on 24 October 1997, the index 

lost another 5.8%. South Korean stock market also fell sharply by 6.9% on 7 

November 1997 and plunged by another 7.2% on 24 November. The shocks in 

stock markets also spread to some Latin American markets, most notably the 

Brazilian and Argentinean markets, and they also suffered from heavy losses. 

The US market experienced its largest point loss ever in October 1997, the Dow 

Jones Industrial Average suffered by 7% loss and the New York Stock Exchange 

suspended trading for a short time. The Asian stock markets experienced the 

losses again in November 1997. The NIKKEI 225 index of Japan dropped to 

its lowest level in more than two years and the market faced major sell-off after 

that. 

Loss incurred and damages caused to the currency and stock markets in 

Southeast Asia were enormous. Crisis countries attempted to stabilise their fi­

nancial system by requesting for international financial aids. The International 

~ Ionetary Fund, the \Vorld Bank and the Asian Development Bank ha\"e taken 

,"ital roles in securing financial stability in the crisis region. Some governments 

in the crisis region hmTe also exercised some domestic emergency procedures to 

restore stability and in\"estors' confidence, such as the purchase of shares and 
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futures contracts in its local market by the Hong Kong government. 

The Dot-com Bubble5 

The bursting of the dot-com bubble can be viewed as the beginning of 

the early 2000s recession, which has affected mostly the "\vestern countries. 

The dot-com boom covered the period 1995 and 2001 and stock markets in 

the Western countries enjoyed a surge due to the rapid grmvth in the IT and 

related industries. However, the Asian markets started to take pleasure from 

the boom since 1999. After the painful period of the 1997 financial crisis, Asian 

firms were eager to search for revenue that could be earned at low cost. The 

dot-com boom has offered them with new hopes to make easy money in a short 

period by just launching new businesses which have shared the common label 

".com". An example of how the Asian market benefited from the boom can 

be seen from a Hong Kong internet venture, Tom.com that launched its Initial 

Public Offering on NASDAQ and its share price increased by five times by the 

end of its first trading day. 

However, the boom came to an end when the US technology NASDAQ 

composite index reached its peak at 5048.62 on 10 JVlarch 2000, exceeded a 

double of its value a year before. The bubble bursted shortly after that. On 13 

March, NASDAQ opened about 4% point lower and the index lost almost 9% 

5 Source of information and figures: 
"Dot-com bubble", Wikipedia, the 

http:// en. wikipedia.org/wiki/Techology _ bubble/ 
"Asia falls as techs swoon", C~I\'" Money, 

http://rnoney.cnn.com/2000/04/04/markets/asia\\Tap/ 
"Tokyo avoids Asian slump", CN~ 110ney, 

http://money.cnn.com/2000/04/24/markets/asiawarp 
"From boom to bust and back again", ZD:\Tet Asia. 

http://ne\,·s.zdnet.co.uk/internet/0,1000000097,3923883,22 .htm 
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in three days time. The Asian stock markets were inevitably affected by this 

burst of bubble. The Tom.com suspended trading six months after its launch of 

IPO on NASDAQ. On 4 April 2000, NIKKEI index fell by 0.6% with prices of 

Japanese internet stocks plunged after the volatile NASDAQ. The Singapore 

Strait Times Index also tumbled by 0.6% on the same day and a 1.47% fall 

on 24 April due to a selling of financial and technology stocks. Whereas the 

Korea Stock Exchange Composite (KOSPI) Index and the Malaysian Kuala 

Lumpur Stock Exchange Composite (KLSE) Index fell by 1.9% and 0.5% on 

4 April, respectively. The KOSPI index fell another 2.55% on 24 April due to 

the decline in telecommunication and technology stocks, while the KLSE index 

fell by 1.23%. The dot-com bubble burst has also caused many job losses and 

bankruptcies in the IT sector in the Asian countries. 

The September 11 Terrorists Attacks6 

The September 11 attacks have caused a sharp plummet in global stock 

markets. The New York Stock Exchange, American Stock Exchange and the 

NASDAQ were closed between 11 and 17 September. The Dow Jones Industrial 

Average experienced its largest one-day point decline with 7.1% fall and the 

largest one-week point decline with 14.3% fall when the stock markets reopened. 

6 Source of information and figures: 
"Gloom lifts from stunned markets", BBC News, 12 September 2001. 

http://news.bbc.co.uk/l/hi/business/153916.stm 
"Stock prices across Asia plummet in wake of attacks in the US", International Herald 

Tribune. http://www.iht.com/articles/2001/09/13/tI5 _ 8.php 
"Asian markets open in shock", CNN Money. 11 September. 

http://money.cnn.com/2001/09 Ill/markets/markets _ asia/ 
"World economic effects arising from the Septem-

ber 11, 2001 attacks", Wikipedia, the free encyclopedia. 
http://en. wikipedia.org/wiki/World _ economic _ effects _ arising_ from _ the _ September _11 %2C _ 2001_ attac 

"September 11, 2001 attacks", Wikipedia, the free encyclopedia. 
http:// en. wikipedia.org/wiki/September _11_ 200 1 #Economic _ aftermath 
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The Asian stock markets were also in turmoil. Following the attacks on the 

11 th, NIKKEI 225 fell by 6.6% the next day, while the Hang Seng Index fell 

by 7% soon after the market was open and fell by 10% shortly after that. 

The South Korean stock market had a three hour delay in opening and the 

KOSPI index fell by 12%. The Singaporean shares have also tumbled by 7.4%. 

Whereas the stock markets in Taiwan and Malaysia were closed. 

Although this thesis does not focus on the study of the impact of extreme 

events on Asian stock volatility, the aforementioned events and the facts given 

at the beginning of this section both reveal the close relationships between the 

Asian markets and the financial markets around the world and the significance 

of those markets in international investment. Application of the stochastic 

volatility factor model of Cipollini and Kapetanios (2005) to Asian volatilities 

for factor analysis and volatility forecasting is original in this thesis. We hope 

our empirical application can make a contribution to the study of Asian stock 

volatilities through factor analysis and thus provide further insight into the 

understanding of the common movements of Asian stock volatilities. 

4 Outline of the thesis 

This thesis is a study of stock volatility adopting two factor volatility models 

for large datasets: the orthogonal GARCH model and the stochastic volatility 

factor model. An application is made to the constituent stocks of five Asian 

indexes. Factor analysis and volatility forecasting exercise are carried out. The 

study consists of three major parts. The first part of the study is an empirical 
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application of the orthogonal GARCH model to Asian stock returns. We fo­

cus on investigating how well the model can perform when applying to Asian 

stock returns. In particular, several diagnostic tests are carried out to see if the 

model with one principal component or more than one principal component is 

more desirable; and whether the commonly used GARCH(l,l) is the appro­

priate specification for the principal components of stock returns. Correlation 

analysis, and eigenvalue and eigenvector analysis are also considered. 

The second part of the thesis is a factor analysis carried out using stochastic 

volatility factor models. In contrast to the first part of the study, common 

factors are estimated from large datasets of Asian stock volatilities via principal 

components of Stock and Watson (2002a, b). Correlation analysis of stock 

volatility is performed. Examination of the dynamics of factor estimates and 

their explanatory power is also carried out. Moreover, we investigate long 

memory in common factors of stock volatilities and analyse the impact of the 

size of dataset on explanatory power of factor estimates. We compare several 

results obtained here with those from the first part. 

The last part of the study is an exercise of volatility forecasting. In-sample 

dynamics of idiosyncratic volatility are investigated in the context of the sto­

chastic volatility factor model. Moreover, we propose an extension of a local­

factor model to a multi-factor model that is believed to be more applicable for 

empirical situation. Testing of factor significance and ~ comparison of forecast­

ing performance between the factor models and the orthogonal GARCH model 

are scrutinised. 
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Chapter 1 

An Application of the Orthogonal GARCR 

Model to Large Datasets of Asian Stock 

Indexes Constituents 

1 Introduction 

The invention of univariate ARCR and CARCR models by Engle (1982) and 

Bollerslev (1986), and the further generalisation in both univariate and multi­

variate settings have provided financial researchers ,yith means to carry out 

more realistic modelling and forecasting of financial volatility, :\Iultivariate 

CARCR models are widely used for the simultaneous study of the relations 

between the volatilities and cm'ariances of various financial assets and between 

various financial markets. Rov;c,"er. the deficiency of multivariate CAReR 

models in estimation, interpretation, as well as computation of large ,"ariance­

covariance matric(':-; han- led to further developments. These developments can 

be classified into t\\"o streams. In one strealll. the shortcomings of the mul­

th"ariatc CARCH models has cllcouraged acadplllic:-; to s('ck modificatioll:-'l of 
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the volatility models, which is an alternative of GARCH, that is the stochas­

tic volatility models. For example, the multivariate stochastic volatility model 

by Harvey, Ruiz and Shephard (1994) has resolved the problems encountered 

in multivariate GARCH modelling. Further development of this model is the 

stochastic volatility factor model by Cipollini and Kapetanios (2005). 

In the other stream, the drawbacks have encouraged further development in 

the GARCH modelling itself - the use of latent factor in GARCH modelling. In 

this chapter, we will focus on an improvement in multivariate GARCH model 

that is ideal for datasets with large dimensions and at the same time, able to re­

solve difficulties encountered in multivariate GARCH models - the orthogonal 

GARCH model by Alexander (2001a, b). Orthogonal GARCH model provides 

a breakthrough to the conventional GARCH modelling by incorporating prin­

cipal component analysis into GARCH analysis. A few principal components 

are used to represent the entire system of data series. Reduction of dimen­

sionality is thus achieved. Only univariate GARCH estimation is required for 

the construction of volatilities and covariances, computation is then simplified. 

Moreover, positive definiteness of variance-covariance matrix can be achieved. 

In our empirical study, we carry out an application of the orthogonal GARCH 

model to large datasets of constituent stock returns of five Asian stock indexes. 

We carry out an analysis to examine the average correlations in the Asian 

stock returns and to investigate the relationship between overall correlations 

among the return series in a dataset and the explanatory power of the prin­

cipal components. We then examine the distributional characteristics of the 

principal components that represent the systems of Asian stock returns. Uni-' 
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variate GARCH analysis is carried out to check if GARCH(l,l) is appropriate 

specifications for Asian stock return principal components. Our analysis also 

provides empirical examples on how GARCH analysis of the dataset of our 

Asian returns can be summarised by univariate GARCH analysis of their first 

principal component. Finally, diagnostic tests are scrutinised to check if the 

first principal component is able to capture enough dynamics in the datasets 

of Asian stock returns. We also provide empirical evidence to show that using 

large number of principal components in modelling may allow one to benefit 

from larger amount of total variation being explained, but it cannot guarantee 

an improvement in capturing dynamics in the datasets, especially when series 

in the datasets are not very highly correlated. 

Organisation of this chapter is as follow. Section 2.1 gives a brief overview 

of how univariate GARCH model is developed to orthogonal GARCH model. 

The orthogonal GARCH model is discussed in section 2.2. Empirical analysis 

is described in section 3. Concluding remark is in section 4. 

2 The Model 

In this section, we will first give an overview of how the univariate GARCH 

model has been extended to the various specifications that account for compli­

cated time properties of financial time series. We will discuss the progressions of 

univariate GARCH models and their development into multivariate GARCH 

models. Advantages and drawbacks of these models are discussed. We will 

also review further advances into models involving latent factors in view of the 
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shortcomings of the multivariate CARCR models. The orthogonal CARCR 

model is discussed in section 2.2. 

2.1 From Univariate GARCH to Orthogonal GARCH­

An Overview 

Time-varying volatility, also known as heteroscedasticity, is one of the most 

well-known features in financial returns. Ever since the introduction of the 

univariate Autoregressive conditionally heteroscedasticity (ARCR) models by 

Engle (1982), and the further generalization of the model, CARCR, by Boller­

slev (1986), the CARCR family models have been used extensively for volatility 

modelling and forecasting. The standard CARCR models are popular for the 

fact that they are not only able to capture heteroscedasticity. They cue also able 

to capture some other common characteristics found in financial time series, 

including excess kurtosis and thick tailedness. And also volatility clustering, 

that is, periods of large returns alternate with periods of small returns. 

In standard univariate CARCR modelling, time varying volatility is cap­

tured by allowing the conditional volatility, C/;. to be a function of past squared 

observations of unexpected returns and past yariances. In a CARCR(l,l) rep­

resentation, conditional volatility evolves over time via an AR~IA(l)) with the 

autoregressive term being the past yolatility and the moving average term be­

ing the past squared shocks to the time series. Conditional volatilit,V is driven 

by the same shocks as its conditional mean. ?\Iaximulll likelihood estimation 

of lllli,'ariatc CARCR model is straight forward due to the fact t hat although 
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the conditional volatility is unobserved, it can be computed by using the infor­

mation of past shocks. 

Although the standard GARCH models can capture some stylised facts of 

financial time series, they are far too simple to explain some more complicated 

time properties of financial volatility which have also been empirically proven. 

In the simple GARCH model, the impact of a shock on volatility depends on 

its magnitude. The sign of the shock is not taken into account. However, it is 

empirically observed that a negative shock in the current period causes higher 

conditional volatility in the next period than a positive shock would. This 

non-symmetrical dependence is not captured by standard GARCH models. 

The exponential GARCH (EGARCH) model introduced by Nelson (1991) 

is the earliest improvement which aims to capture the asymmetric effects of 

a shock on conditional volatility. In the EGARCH model, conditional volatil­

ity is specified in logarithmic form. There is therefore, no need to impose 

estimation restrictions on the parameters to ensure nonnegativity of the condi­

tional volatility. Other models that consider asymmetric impact of shocks are 

for example, Threshold GARCH (TGARCH), the GJR-GARCH introduced by 

Glosten, Jagannathan and Runkle (1993), Quadratic GARCH (QGARCH) of 

Sentana (1995), and the Logistic Smooth 'Transition GARCH (LST-GARCH) 

discussed by Gonzalez-Rivera (1998), etc. 

Apart from the leverage effect, another empirically proven time property of 

financial time series that has attracted a lot of attention is volatility persistence. 

The impact of a shock on conditional volatility seems to have very long memory. 

Covariance stationarity in a standard GARCH(l,l) model exists if and only 
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if the persistence parameters sum to unity. It implies that the conditional 

volatility is persistent. Engle and Bollerslev (1986) refer the model as the 

Integrated GARCH (IGARCH) model when the parameters sum to one. In 

the IGARCH model, conditional variance is a decaying function of the shocks 

in past and current periods. However, Xelson (1990) argues that the sum-to­

unity constraint can cause very parsimonious representation of the distribution 

of a financial return. In fact, a shortcoming of IGARCH model is that the 

autocorrelations of the shock is not well-defined. 

Although the auto correlations approximation for an IGARCH model given 

by Ding and Granger (1996) shows exponentially decaying auto correlations of 

the shocks, it is in fact commonly observed that the auto correlations decay 

is slower than what is assumed by the IGARCH model. \\Then dealing with 

financial time series with high frequency, one is more likely to obtain the sum 

of the persistence parameters very close to one. In fact, a hyperbolic decay 

is a more realistic pattern of autocorrelations (see Ding, Granger and Engle 

(1993)). This characteristic is regarded as long memory in financial time series. 

Baillie, Bollerslev and Mikkelsen (1996) propose a further development of the 

GARCH model to incorporate long memory, that is, the Fractionally Integrated 

GARCH (FIGARCH(p,d,q)) models,. In the FIGARCH model: the fractional 

differencing operator has yalue lies behveen 0 and 0.;) and autocorrelations 

of the shocks exhibit hyperbolic decay. The model by Davidson (2004) also 

considered long memory in financial time series. 

TIl(' yarious GARCH models that h<:1\T' been discussed so far are all in uni­

yariate settings, in ,,"hich t he impact of shocks on the \"olatility of a single 
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asset is studied. In reality, the arrival of news and shocks impacts on various 

financial assets simultaneously, and thus volatilities of different financial assets 

move together over time. Multivariate modelling of conditional volatility is 

therefore more suitable for studying the real financial situations. An extension 

of univariate GARCH models to multivariate GARCH models allows one to 

study the relationships among volatilities of different financial assets and dif­

ferent financial markets. Moreover, when the formation of covariances among 

different financial assets are needed, for example in portfolio construction, mul­

tivariate GARCH models playa crucial role to model time-varying conditional 

covariances of these assets. 

Unlike the univariate GARCH model, conditional variances and covariances 

in multivariate GARCH model is given by a matrix, Ht . Parameterisation for 

this conditional variance-covariance matrix need to be specified in order to 

construct the model. However, this is not as straight forward as in univari­

ate GARCH modelling. Various parameterisation of this conditional variance­

covariance matrix have been proposed, and this has lead to a board literature 

on multivariate GARCH models. 

A generalisation of matrix H t is proposed by Bollerslev, Engle and \Yooldridge 

(1988), in which the vec transformation is applied. The vech ( .) operator stack 

the lower portion of the matrix Ht such that vech ( .) contains all unique el­

ements of H t . Engle and Kroner (1995) thus call this model as the VEe 

representation. The VEC model is a flexible setting as it allows all elements 

in tIll' conditional yariance-covariance matrix to be a linear function of the 

lagged squared shocks, cross-products of the shocks. and the lagged ,"alues of 
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the elements in the conditional variance-covariance matrix. Howe\"er. the \"EC 

model has two main drawbacks. First, it is difficult to ensure positiye defi­

niteness of matrix H t without imposing strong constraints on the parameters. 

Second, the number of estimated parameters explodes as the number of data 

series increase. Another specification discussed by Engle and Kroner (1995) 

is the BEKK model, which is acronym from the joint v.rork on multi\"aria te 

simultaneous generalised ARCH by Baba, Engle, Kraft and Kroner (1990). 

In the BEKK model, parameters in the generating process of the conditional 

variance-covariance matrix are expressed in quadratic forms. In this parameter­

isation, positive definiteness of H t can be obtained without the need to impose 

constraint on the parameters. However, the problem of too many estimated 

parameters remains. Because of this reason, the VEC and the BEKK models 

are not widely used for datasets consist of many series. 

An alternative multivariate GARCH model that has also guaranteed posi­

tive definiteness of the conditional variance-covariance matrix is the conditional 

correlation models proposed by Bollerslev (1990). This specification can be re­

garded as a nonlinear combination of univariate GARCH models. Conditional 

correlations between the shocks of different series in a dataset are assumed con­

stant over time. The conditional covariances are proportional to the product 

of their conditional standard deviations. The number of parameters can be 

reduced by imposing these constraints. Indiyidual conditional volatilities are 

assumed to have a univariate GARCH(l,l) representations. However, positi,"e 

definiteness of matrix H t can be guaranteed if and only if all individual condi­

tional \"(uianccs modelled by the uniyariate GARCH models are positive and 
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the correlation matrix is positive definite. Moreover, the time-invariant condi­

tional correlations assumption seems to be unrealistic. An alternati,"e model to 

the conditional correlation model is the dynamic conditional correlation (DC C) 

model proposed by Engle (2002), which assumes time-dependent conditional 

correlation matrix. However, the major disadvantage of the DCC model is 

that the parameters are assumed to be scalar, so all the conditional correla­

tions obey the same dynamics. Moreover, although estimation of the DCC 

model can still be implement via a two step approach when a large number of 

series is considered, the restriction of common dynamics become stronger and 

it is more difficult to deal with. 

It is undoubtedly that GARCH models have provided a lot of advantages 

in volatility modelling and forecasting. Multivariate GARCH models allow one 

to generate large variance-covariance matrix. In particular, when modelling 

term structure, the models are able to give mean-reverting term structure of 

volatility and correlation with simple analytic form, making the use of them 

become popular. However, we can also see the shortcomings in various mul­

tivariate GARCH models from the above discussion. \\ nen a large system of 

series is considered and the need for a large covariance matrix is required, e.g. 

for the purpose of pricing and hedging, the use of multivariate GARCH models 

becomes problematic. In general, multivariate GARCH models all expose to 

similar disadvantages when number of series in a dataset increases - too many 

parameters to be estimated, flat likelihood function, and convergence problems 

arise in the estimation process. I\Iorem"cr, using GARCH models to compute a 

large positiyc semi-definite covariance matrix becomes more complex ,,"hen the 
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number of series included in a system increases. Parameterization of multivari­

ate CARCH is normally required for computation and it is hard to implement. 

The above shortcomings of multivariate CARCH models, together \\"ith 

the increasing interest in modelling datasets with large dimensions ha\"e led 

to further progressions in the literature that involves using latent factors to 

summarise the comovements among a large number of data series by a few 

common factors. Early work of multivariate CARCH models that involve re­

trieving latent factor that have CARCH property can be seen from Diebold 

and Nerlove (1989), King, Sentana and Wadhwani (1994) and Dungey, 1,Iartin 

and Pagan (2000). However, these models are difficult to deal with when apply 

to large datasets. Alexander (2001a, 2001b) (see also Alexander and Chibumba 

(1997)) has shown how problems in estimation and the creation of large positive 

definite variance-covariance matrix can be resolved by introducing orthogonal 

factors and principal component analysis into multivariate CARCH modelling. 

This type of CARCH models is known as principal component CARCH or 

according to Alexander (2001a, 2001b), the orthogonal CARCH model (see 

also Ding (1994), and Engle, N g and Rotschild (1990)). The principal com­

ponent C ARCH model and the orthogonal C ARCH model are very similar, 

except the latter suggests the use of less principal components to represent the 

cntire system of data series in order to ensure stable correlation and robust 

volatility estimates. The idea behind these models is to diagonalised the mul­

tivariate problem, and thus only univariate CARCH estimation is im"olved. 

In the orthogonal CARCH model of Alexander (2001a, b), orthogonal fac­

torisation via principal component analysis is exercised. Principal components 
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extracted from the correlation matrix of a system of assets are used to represent 

the entire system. The time-varying variances of the principal components are 

then estimated using univariate GARCH models. Variance-covariance matrix 

of the entire system is thus approximated as the volatilities of the principal 

components time the squared of factor weights. 

Orthogonal GARCH model has a number of advantages over standard 

GARCH models. One of the most important advantages is that only the first 

few principal components representing the system of data series are used for 

calculating GARCH variances. It makes computation relatively simple and 

convergence problems in the optimisation process can thus be avoided. More­

over, the variance-covariance matrix is always positive semi-definite, i.e. all 

eigenvalues are nonnegative when number of principal components used are 

less than the number of series in the dataset. And it is positive definite when 

the number of principal components used equals to the number of data series. 

Mean-reverting term structure of volatility and correlation is still ensured. Fur­

thermore, since only the first few principal components are used for the estima­

tion of GARCH variances that represents all data series in a system, correlation 

estimates become more stable and less likely to be affected by those variation 

caused by the noise in the system. 

Although orthogonal GARCH model can resolve the major drawbacks that 

have commonly exist in multivariate GARCH models, it still has its own disad­

vantage. For orthogonal G ARCH model to perform well, the few chosen prin­

cipal components are required to have accounted for sufficiently large amount 

of total variation in a dataset. Whether the principal components are powerful 
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enough depends on how correlated the series in a dataset are. The higher the 

correlations among the series in the dataset, the stronger the explanatory power 

of the principal components. In her orthogonal GARCH analysis of crude oil 

futures data and the UK zero coupon yield data, Alexander (2001a) has shown 

that the first few principal components from the latter dataset explain a less 

amount of total variation than those from the former dataset. It is because 

some data series included in the zero coupon yield dataset have low correla­

tions with the rest of the series in the dataset, as oppose to the crude oil futures 

dataset. Since variance-covariance matrix of the entire dataset is computed as 

an approximation of the product of the conditional volatilities of the principal 

components and the squared factor weights. Weak dependence among data se­

ries results in weak approximation and thus causing orthogonal GARCH model 

not so favourable. The problem of orthogonal GARCH model with weakly cor­

related series has further led to some recent developments, see for example the 

Generalised orthogonal GARCH model, by van der Weide (2002), but these 

models are less straight forward to implement. 

In the paper by Engle and Colacito (2006), the empirical performance of 

five multivariate GARCH models, including the orthogonal GARCH model. 

They apply tests to stock and bonds, and also to highly correlate assets. The 

tests they have considered, including a comparison of volatility and the Diebold 

and Mariano (1995) approach, show no evidence that the orthogonal GARCH 

model is better than the alternative GARCH models they concern. 

Our empirical applications in this chapter will be implemented in the con­

text of orthogonal GARCH model of Alexander (2001a, b). The model will be 
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further discussed in the next section. 

2.2 The Orthogonal GARCH model 

Orthogonal GARCH model have a lot of advantages over the classical GARCH 

models. First of all, orthogonal GARCH solves the problem of parameter 

estimation that exist in multivariate GARCH models. The model not only 

allows handy computation of the variance-covariance matrices. It also allows 

forecasting exercise to be implemented with ease. When volatility forecast on 

the return series is required, it can be done by multiplying the GARCH(l,l) 

forecast of the few chosen principal components by the squared values of the 

factor weights. We will leave a forecasting exercise to the last chapter of this 

thesis. In this section, we provide a discussion of the orthogonal GARCH model 

of Alexander (2001a, b). 

Suppose there are N stock return series in a dataset, Y is a T x N matrix 

of daily stock returns. Let Yi,t denote the daily return of stock i at time t, 

i = 1,· .. , N. Normalising the data series gives 

(1) 

Where J-Li and (J" i are the mean and standard deviation of Yi, Xi and Yi are 

both T x 1 vectors. Normalisation of the stock returns prior to analysis is 

necessary since the results of the principal component analysis are sensitive to 

re-scaling of data. Matrix X represents the T x N matrix of normalised dataset 

and each column of this matrix has mean equals to zero and unit variance. That 
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is, each stock return series becomes a T x 1 standard normal \'ector. 

Matrix X' X is a N x N symmetric matrix of unconditional correlations 

between stock return series in X, with diagonal elements of ones. Extracting 

the eigenvectors from the matrix X' X gives us the factor weights. These factor 

weights are contained in matrix W, which is an orthogonal nlatrix. A denotes 

a diagonal matrix of the eigenvalues of the unconditional correlation matrix 

X' X. Columns in Ware arranged to descending order according to the size 

of the corresponding eigenvalues. 

If all N extracted principal components are considered, then the matrix 

containing all the principal components, P, is given by 

P=XW (2) 

The kth principal component can be written as 

(3) 

where k = 1,' . " N. We can see from equation (3) that each principal 

component is a linear combination of the column of X with factor weights given 

by the elements in W. The first principal component explains the majority 

of the total variation in X and the principal components are unconditionally 

uncorrelated with each other. Since lV is orthogonal, so TV' = H/-1and pI P = 

A. Inverting equation (2) gives us 

X = pn~' 
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In the case when only K principal components are chosen for modelling. 

where I{ < 1V, equation (4) becomes 

x = PW' +3 (5) 

IVlatrix P contains the chosen K principal components becomes a T x J{ 

matrix and liV' is a I{ x N matrix. PW' represents the part of the stock returns 

that is explained by the K principal components. Alternatively, it can be 

interpreted as the common component of the stock returns \vith weights given 

by the columns in W. 3 is the part of the stock returns that is not captured 

by the common component. Let Ak be the kth eigenvalue, k = 1, ... ~ I{, the 

proportion of variation in X that is explained by the kth principal component 
N 

is given by ~ and L~ = 1. 
k=l 

Principal component analysis provides good results when it is applied to 

a dataset containing series that are highly correlated. The majority of the 

common movements in the dataset can be explained by only a few principal 

components extracted from the correlation matrix X' X. However, when asset 

series contained in a dataset have quite unique characteristics, they tend to 

respond to unexpected market events quite differently. This implies lower assets 

correlation. In such case, the term:=: will be relatively large. 

The conditional variance-covariance matrix of the dataset of stock returns, 

1", is calculated as 

(6) 
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M denotes the conditional variance-covariance matrix of the chosen K prin­

cipal components. It gives the conditional variances and covariances of the 

common movement in the original dataset of stock returns. V contains the 

GAReR volatilities of the series in the original dataset. ~ denotes covariance 

matrix of the errors. Notice that M is a diagonal matrix with the GAReR 

variances of the K chosen principal components on the diagonal. That is, 

M = diag(Var(Pl),· .. , Var(Pk)), where Var(Pk) is the variance of the kth 

principal components. Approximation of variance of X is given by 

V~WMW' (7) 

Accuracy of this approximation depends on the amount of total variation in 

the dataset that is explained by the K chosen principal components. In other 

words, this approximation will be more accurate if the principal components 

chosen, normally the first few of them, are capable of accounting for a sufficient 

amount of total variation in the dataset. It is because the size of the term 

S in equation (5) will become smaller and thus, ~ in equation (6) will also 

become smaller. From here, we can see how orthogonal GAReR model allows 

the N x N GARCR variance-covariance matrix to be generated by only 1< 

univariate GAReR models. l\1ultiplying the conditional variance-covariance 

matrix of the chosen principal conlponents by the squared values of the factor 

weights give us the approximation of the conditional yariance-covariance matrix 

of the original dataset of returns. 

The diagonal matrix of conditional variances of principal components . .11, 

is estimated by univariate GARCR models yia maximum likelihood estimation. 
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If we assume each principal component follows a GARCH(lJ): the conditional 

variance of the kth principal component at time t is given by 

(8) 

where {30 > 0, {3l) {32 > o. {3l represents the market reaction parameter, it 

measures the intensity of reaction of volatility to unexpected market return in 

the last period, eLl' {32 represents the volatility persistence, it measures the 

persistence in volatility. Both parameters, {3l and ;32' should sum to less than 

1 to ensure convergence. 

We can see from above how reduction in dimensionality and ease of com­

putation can be achieved in the calculation of the GARCH variance-covariance 

matrix of the original dataset of returns using the orthogonal GARCH model. 

Moreover, matrix V is positive definite if all N extracted principal components 

are used. When!< < N, which is usually the case, matrix V will still be 

positive semi-definite. 

In orthogonal GARCH modelling, the choice of the value !< is crucial. When 

dealing with a highly correlated system of data series, it would be preferable 

to choose !\" much less than N. It is because in such case, extraneous noise 

embedded in those relatively less representative principal components is ex­

cluded from modelling, and thus resulting in more stable correlation estimates 

and more robust volatility estimates (see Alexander (2001a)). However, keep­

ing all principal components in the estimation can allow one to ahvays benefit 

from obtaining a positive definite variance-covariance matrix. Reducing the 

number of principal components used in modelling can only guarantee a posi-
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tive semi-definite variance-covariance matrix. \\Then dealing with a dataset in 

which series are less correlated, one may want to keep all principal components 

so that a sufficient amount of total variation in the dataset can be captured 

and to ensure approximation as in equation (7) to be more accurate. But on 

the other hand, this may lead to the danger of having unstable correlation 

estimates. 

The above dilemma has revealed the major drawback of orthogonal CAReH 

model, The model works well when series in the dataset being analysed are 

highly correlated. \\Then the dataset is made up of data series with low correla­

tion, orthogonality condition partly breaks down, leading to weak performance 

of orthogonal CARCR analysis. This will be proved in the diagnostic test on 

the return residuals later in this chapter. 

3 Empirical Results 

3.1 Data and Preliminary Statistical Analysis 

Daily data of constituent stocks of five Asian indexes are obtained from Datas­

tream. The five indexes are NIKKEI 225 (NIK225) and NIKKEI 500 (NIK500) 

of Japan; Heng Seng Composite Index (HSCI) of Hong Kong; Korean Stock 

Exchange Composite Index 200 (KOS200) of South Korea; and Stock Exchange 

of Singapore All Share Index (SIKG) of Singapore. The reason for investigat­

ing both the l\IKKEI 225 and KIKKEI 500 of Japan is for us to investigate if 

t here is any effect of the size of a dataset on the explanatory power of a first 

principal conlponent. The sample rallges from 3 Jalluary 2000 to 30 July 2004, 
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for a total of 1194 daily return observations. Daily returns on each constituent 

stock is calculated as 

(9) 

where Yi,t denotes return on constituent stock i at time t, pri,t and pri,t-l 

denote prices of the constituent stock at time t and tinle t - 1, respectively. 

For each index, only the constituent stocks that have data available throughout 

the whole sample period are considered. This leads us to have 217 stocks 

for NIK225, 481 stocks for NIK500, 176 stocks for KOS200, 227 stocks for 

SING and 161 stocks for HSCI. We exclude the periods when the markets are 

closed from the dataset, the number of observations then becomes 1128 for both 

NIK225 and NIK500, 1121 for KOS200, 1185 for SING and 1128 for HSCI. 

Notice that the preliminary statistical analysis in this subsection is carried 

out prior to normalisation of the dataset, we first compute a mean return over 

all N constituent stocks in a dataset at each period in the entire sample to get 

a T x 1 vector of mean returns. The statistics on the mean returns reported 

in table 1 is the summary statistics for this T x 1 vector of mean returns. The 

reason for not carrying out the analysis using the actual index series is because 

the indexes are weighted indexes 1 . To compute the mean return series, "'C' give 

equal vI'eight to all stocks in each dataset and thus do not need to \\'orry about 

different weighting systems being involved in the analysis. 

ll\IKKEI index is a price-weighted index, HSCI is a capitalisation-Keighted index and 
KOSPI is a market capitalisation-weighted index. 

50 



Figure 1 displays the time plot of mean returns of the constituent stocks 

for the five indexes. We can see from these plots that the mean return se­

ries appear stationary and they all fluctuate around their long term ayerages 

as what one would expect. Two negative extremes can be seen from almost 

all of the plots around April 2000 and September 2001, these coincide \"dth 

the burst of Dot-com bubble and the September 11 terrorists attacks. Table 

1 summarises descriptive statistics of the mean return series. ~Iean returns 

of SIr\G constituents and KOS200 constituents are negati\'e on ayerage dur­

ing the sample period. Average Mean returns on the constituents of HSCI is 

higher than that on the constituents of the other four indexes. ~Iean returns 

on KOS200 constituents has the highest variance, followed by NIK225, HSCI 

and NIK500. Whereas mean return on SING constituents has the lowest. It 

indicates the returns on South Korean stocks are the most volatile on average, 

but Singaporean stock returns are the least volatile on average. The values of 

standard deviation tell us that KOS200 mean returns seem to have deviated 

most largely from its sample mean comparing with the other three markets 

during the sampling period. Whereas the mean returns of SING has the least 

dc\'iation from its sample mean. \Vith regards to the distributional characteris­

tics, it can be seen clearly from the skevn1ess and kurtosis coefficients that none 

of the mean return series are normally distributed and this is also confirmed by 

the Jarque-Bera test statistics as the null hypothesis of normality is rejected 

at 5%. 
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3.2 Analysis of Average Correlations 

Following the preliminary analysis, we now move on to examine the correla­

tions among the series in our five datasets. The datasets of stock returns are 

normalised before further analysis. Since each dataset consists of more than a 

hundred, and some of them more than two hundreds, stock return series, it is 

difficult to report the correlation matrices. We therefore report summary sta­

tistics on average correlations. For each stock i in a dataset, we compute the 

correlations between this stock with the rest of the N - 1 series to get a vector 

of correlations with dimensions equal (N -1) x 1. We then take the average of 

these N - 1 correlation coefficients to get an average correlation between stock 

i and the remaining stocks in the system. We do it for i = 1, .. " N and get a 

vector of N x 1 average correlations. Table 2 shows some summary statistics 

of the average correlations for our five datasets. 

First of all, all of the means of the average correlations are positive during 

the sample period. This indicates that stock return series in each of the four 

markets are positively correlated in general, that is, they tend to response to 

changes in market condition in the same direction. By looking at the values of 

maximum and minimum average correlations, we can see that in fact the South 

Korean, Hong Kong and Japanese markets all have stock returns in their own 

markets that are positively correlated on average. Except for Singapore, we 

see evidence of negative correlation among its stock returns. 

The most highly correlated datasets of stock returns appear to be NIK225 

and KOS200. We expect these high correlations among the stock returns in 

these two datasets can make contribution to good results of principal compo-
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nent analysis. And thus, the first principal components from these t"\,"O datasets 

will be powerful in accounting total variation. Comparing the two Japanese 

datasets, we can see that 011K225 stock returns are more correlated than stock 

returns in the NIK500 dataset in general. Therefore, the first principal com­

ponent from the NIK225 dataset is expected to be more powerful than the one 

from the NIK500 dataset. 

KOS200 stock returns have the largest values of standard deviation in their 

average correlations, followed by HSCI. The smallest value of standard devi­

ation of average correlation appears to be the SING stock returns. The two 

Japanese datasets of stock returns have comparable standard deyiations of av­

erage correlation, with the one of NIK225 slightly higher. It means there is 

evidence of more observations of average correlation deviate from the mean 

average correlations in general in the South Korean and Hong Kong markets. 

This indicates the level of correlations among stock return series varies consid­

erably in these two markets. On the contrary, the level of correlations among 

t he Singaporean return series do not vary that much in general. 

From equation (5), we can see that the stock returns matrix X is divided 

into two components if only K chosen principal components are used to rep­

resent comovements in the entire system. P-VV' is the common component of 

stock returns, in which the common variation within the dataset is summarised 

by tlw chosen !\" principal components, with weight given by vr'. The idiosyn­

cratic component of stock returns :=:, is the remaining part of the stock returns 

that is not captured by the common component. Equation (5) tells us that if 

the chosen K principal components are able to explain a large amount of total 

53 



variation in the dataset, then the term:=: \\Till have small magnitude. There­

fore, principal components extracted from a highly correlated system should 

be powerful enough to ensure a small S. \\nereas for a less correlated system, 

S will be relatively large if 1-( is not large enough. 

3.3 Eigenvector and Eigenvalue Analysis 

In this subsection we apply principal component analysis to the l.V x N symmet­

ric unconditional correlation matrix, X' X, to carry out an analysis on eigen­

vectors and eigenvalues. As explained in section 3.2, eigenvectors from the 

correlation matrix give us the factor weights, whereas eigenvalues of the corre­

lation matrix give us an indication of the explanatory power of the principal 

components. The proportion of total variation in data matrix X explained 

by the kth principal component is given by ~, where Ak is the eigenvalue 

corresponds to the kth eigenvector of matrix X' X. 

Table 3 shows the cumulative explained variation computed for the first 20 

principal components extracted from each of the five correlation matrices. We 

can see from the table that the first principal component always manage to 

explain a large proportion of the total variation in the dataset. Proportions 

of total variation explained by additional principal components are always de­

creasillg. As we have seen from table 2, Singaporean stock returns have the 

weakest correlations on average comparing with those in the other three mar­

kets. This low correlation has reflected in the explanatory pmycr of its first 

principal component as it can explain only 8% of the total variation. The first 

principal componcllts of 1\:OS200 and ::\IK225 stock returns are the strongest 
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as they can explain about 29% and 28% of total variation, respectively. Ex­

planatory power of the HSCI first principal components is ranked the third as 

it captures 23% of the total common movement in its stock returns. Although 

NIK500 first principal component can also explain about 227c, it is relatively 

less powerful than the one of NIK225 dataset. It is because bringing in extra 

stocks to constitute the NIK500 dataset has lowered the overall correlations 

in the dataset and thus causing lower explanatory power of the first principal 

component extracted from the dataset. In the empirical analysis of chapter 2, a 

more detail explanation on why larger dataset \"ith more cross-sectional series 

is not always desirable for factor analysis will be given. In fact, given that the 

number of series included in the NIK500 system are at least the double of the 

others, its explanatory power is not weak. 

One may argue that 20% of the total variation being explained by the first 

principal component can hardly be regarded as a large amount. Consider the 

fact that our datasets are systems of individual stock returns, which have more 

idiosyncratic properties than other financial time series. They are thus less cor­

related when comparing with some other system of highly correlated financial 

assets. In her application to the WTI crude oil futures data on all monthly 

maturity from I-month to 12-month, Alexander (2001) has shown that the first 

three principal components can already explain 99.8% of total variation with 

the first one alone explains 95.9%. "\iVTI crude oil futures data is a highly corre­

lated system which favours the use of principal component analysis. The results 

from her study, together with what we have found from our datasets. confirm 

that a dataset with assets that have sufficiently large correlation is desirable 
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for application of principal component analysis. It is because asset that has 

very idiosyncratic properties tend to corrupt the volatilities and correlations of 

other assets in the dataset. However, this does not demote the implication of 

our application to the returns on stock index constituents. It is because con­

sider the large number of stocks included in our datasets and also consider the 

idiosyncratic characteristics of equities in general, 20% of the total is already 

quite an appealing result. 

Findings in the overall explanatory power of the first 20 principal com­

ponents from the five datasets are quite consistent with the results we have 

obtained regarding the explanatory power of the first principal components. 

It can be seen that around 50% of the total variation in KOS200 and NIK225 

stock returns, and around 46% and 40% of total variation in RSCI and NIK500 

stock returns can be explained by using all first 20 principal components. But 

only 30% of comovements in the SING stock returns can be explained by using 

20 principal components. It means that the Singaporean stock return principal 

components have weak ability in capturing variation in general. 

Although a larger amount of explained variation can be resulted using more 

principal components to model the data system, there is no guarantee that more 

dynamics in a datasets can be captured if more principal components are used. 

This can be seen later from the results of diagnostic tests on return residuals· 

we discuss later in this chapter. 

\Ye are aware that the low correlations among stock returns in our datasets 

lllay not be favourable for orthogonal GARCR modelling and volatility predic­

tion, ('specially if there are not enough principal components chosen to repre-
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sent the datasets. However, the aim of this chapter is just to perform a factor 

analysis in the context of orthogonal GARCH, rather than to evaluate the 

performance of orthogonal GARCH. We will carry out an evaluation of using 

orthogonal GARCH models for forecasting volatility in the last chapter of this 

thesis. 

Having investigated the explanatory power of the principal components, \\-e 

now move on to analyse the factor weights on the principal components. 'Ye 

can see from Table 3 that the fact that the first principal component can alone 

account for the largest amount of variation is applicable to all of the datasets. 

We therefore concentrate our analysis here on the first principal components. 

We compute the factor weights of equation (3), that is the eigenvectors from the 

matrix X' X and these eigenvectors are contained in matrix lV in equation (2). 

Figures 3 to 7 then plot the factor weights on the first principal components 

from our five datasets. In principal component analysis, the first eigenvector 

that corresponds to the largest eigenvalue takes values less than one in a data 

matrix with full rank. Values in the largest eigenvector are larger and more 

similar if the series in the dataset are more highly correlated. This can be 

confirmed by plots of the factor weights on the five first principal components. 

Constituent returns on the Singaporean stocks have the lowest correlation on 

average comparing with those in the other four indexes. It can be seen clearly 

that the factor weights on the first principal component of the Singaporean 

stock returns vary quite a lot in yalues \,'hen comparing v,'ith the factor weights 

on the first principal components of the other four datasets of stock returns. 

Return series ill a data system that have higher correlations tend to han' higher 
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degree of common movement, or put it differently, they tend to response in a 

more similar way to changes in market condition. This can be reflected in the 

values of the factor weights on their first principal component. And it is because 

of this reason, the first principal component from the correlation matrix tend 

to explain the majority of the variation in the dataset as this is confirmed by 

results in table 3. 

3.4 GARCH Analysis of the First Principal Components 

In this subsection, we report the results on the analysis of the first princi-

pal components obtained from our five Asian datasets. We first examine 

their distributions and to check if they are stationary. We then analyse the 

GARCH(I,I) representation of the five first principal components. \Ye as-

sume conditional mean equation follows a strict white noise process and the 

GARCH(I,I) of the principal component has the following representation2
: 

Pt (10) 

(11) 

Plots of the first principal components from the five systems of stock re-

turns are :::;110\,,'11 in figure 2. It is not surprising to observe that the behaviour of 

the first principal components of KOS200, ~IK225, J'\IK500 and HSCI datasets 

2The conditional ,"ariallce equation of principal component, equation (11), ignores the 
possibility that the conditional variance of principal components may haye long memory. To 
account for persistence, equation (11) can be replaced by a long memory GARCH model, 
e.g. a FIGARCH representation. 

58 



mimic the behaviour of their mean stock returns counterparts shmvn in figure 

1. It is because the first principal components from these datasets manage to 

capture a reasonable amount of total variation, they are thus able to represent 

their datasets in the same way that the mean return series can do. Especially, 

less noise is embedded in this principal components than in the mean return se­

ries. However, an exceptional case can be seen from the KOS200 first principal 

component. The plot of its first principal component does not have the same 

pattern as the plot of its mean return series. It is because the Singaporean 

first principal component fails to capture enough variation in the dataset, and 

thus fail to represent the overall behaviour of the dataset. In the case when a 

dominant principal component is representative enough to summarise the co­

movements and the behaviour of the all stock returns in a dataset, a GARCH 

analysis of this principal component can give indication on the GARCH analy­

sis of the entire dataset. 

Figures 8 to 12 plot the histograms of the five first principal components. 

Table 4 reports the distributional statistics of these first principal components. 

All five principal components are leptokurtic, meaning the tails of the distribu­

tions of these series are fatter than normal distribution. That is, large positive 

and negative values in a principal component series occur more often. l\1ore­

m"er, all series appear to have slight negative skev,Tness, indicating the left tail 

in each distribution is slightly fatter than the right tail. This implies there 

are more large negative values than large positive values in a principal com­

ponent series. The non-normal underlying distribution of the first principal 

components are confirmed by the Jarque-Bera normality test. There is clear 
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rejection of the null hypothesis of normality at all levels for the five principal 

components from the five datasets of returns. Having observed these findings, 

we can conclude that the first principal components from the South Korean, 

Hong Kong and Japanese returns have the distributional characteristics that 

can commonly observed in empirical stock return series, and at the same time 

these principal components are able to represent the behaviour of their entire 

system of returns. Although the Singaporean principal component also exhibit 

the commonly observed distributional characteristics of stock returns, it does 

not mimic the overall behaviour of the entire system. 

Table 5 shows results of Augmented Dickey-Fuller test and Phillips-Perrons 

test. The 10% MacKinnon critical value for both tests is about -2.568. The first 

principal component is the trend component and represents comovements of all 

return series in the dataset. If the series is covariance stationary, then shocks 

to the series are temporary. This implies shocks that affect the comovements 

of all series in the dataset are non-permanent. Both its finite variance and au­

tocovariance are also time-invariant. Effects of shocks on the trend component 

faded away over time. However, if the series follows a random walk, effects of 

temporary shocks are then permanent. The Augmented Dickey-Fuller speci­

fication for computing the test statistic includes a constant but not a trend, 

and \"C consider a lag order of 5. \¥hereas 6 lags truncations are chosen for 

the Phillips-Perrons test. Test statistics from both tests are less than the 10% 

critical value, leading to rejection of unit root. \Ye can conclude that the first 

principal components for all five datasets are stationary, and thus impacts of 

shocks on the comovements of all series are non-permanent. 
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Since most empirical studi~ on orthogonal GARCH model suggest that an 

GARCH(p:q) with both p and q higher than 1 is rarely needed, our analy­

sis focuses on the use of GARCH(L1) repr~ntations for modelling the first 

principal components. GARCH model is famous for not only capable of de-

scribing 'Tolatility clustering, but also for capturing many other featur~ in 

financial time series~ for example ex~s kurtosis and fat-tailedness. \Ye also 

try to examine whether G_illCH(L1) is appropriate specifications for the first 

principal components extracted from the five systems of stock return seri~. 

Univariate G_illCH(L1) as in equation (10) and (11) is estimated for the first 

principal component from each dataset. Estimation results are shown in Ta-

ble 6. Due to the non-normality nature found in the distributions of all our 

first principal components, we suspect the residuals may also not be condi-

tionally normally distributed, the reported standard errors computed are thus 

the quasi-maximum likelihood standard errors by Bollerslev and \Yooldridge 

(1992).3 

31 in equation (11) measures the market reaction, it tells how intensely 

volatility at current period reacts to unexpected market returns in the last 

period. \,"hereas 32 measur~ the persistence in volatility. Both parameters 

must have a sum to a value less than one in order to ensure a finite unconditional 

variance~ and .80 must be larger than zero. \Ve can see that all parameter 

estimates in the conditional variance equations for the principal components 

3 ARCH parameter estimates "ill still be consistent if the mean and yariance equations 
are correctly specified when assumption of conditional normality is no longer valid. Howewr. 
estimates of the covariance matrix "ill not be consistent and resulting in incorrect standard 
errors being computed. Quasi-maximum likelihood covariance and standard errors computed 
using the method described by Bollersley and "-ooldridge (1992) are robust to conditional 
non-normality. 
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of all five datasets satisfy these conditions and they are significant at 3 % 

significance level. Notice that the sum of (31 and 32 is quite close to one and this 

is what usually observed in high frequency financial data. V\Te can also see from 

the values of (32 that all principal components from the five markets appear to 

have quite high volatility persistence, with the one for South Korean market to 

be the highest. It can be seen from the values of ~1 that the Singaporean stock 

volatility seems to response to last period's unexpected return most intensely 

as its value of this market reaction parameter being the largest among the fiye. 

Level of intensity of market reaction for Japanese and Hong Kong markets are 

not very different as the values of their /31 are quite similar. There are no 

big difference in the values of /31 and /32 between the two Japanese principal 

components, as stocks in NIK225 is a subset of NIK500. 

We also carry out diagnostic tests to see if the GARCH(l,l) is an appropri­

ate specification for the first principal components of the Asian stock returns. 

In particular, we look at whether univariate GARCH(l,l) is enough to capture 

the dynamics of the first principal components. Some statistics on the standard­

ised residuals are presented in table 7. It is clearly shown that standardised 

residuals of the principal components of all five datasets are negatively skewed 

with those of KOS200 and HSCI principal components being the most. Dis­

tributions of standardised residuals of these two principal components deyiate 

quite largely from normality. Although those of the tv,"O Japanese datasets 

do not strictly follow normality, the level of deviation is less severe comparing 

with the others. This can also be seen from the histograms of the GARCH(l,l) 

standardised residuals for all five principal components in figures 13 to 17. 
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Breusch-Godfrey LM test for serial correlation and an ARCH LM test in 

standardised residuals are also performed. We include 5 lags in the auxiliary 

equation for computing the test statistics for both tests. Table 8 shows the re­

sults of serial correlation LM test, the LM test statistics and the corresponding 

probability values are reported. Evidence of serial correlation is found in the 

GARCH(l,l) standardised residuals of KOS200, HSCI and SING first princi­

pal components at 5 % significance level. Whereas no sign of remaining serial 

correlations is detected in those of the two Japanese datasets. However, test 

on heteroscedasticity shows different results. Table 8 reports ARCH LM test 

statistics and the corresponding probability values. At 5% significance level, 

the GARCH(l,l) is insufficient to capture all the heteroscedasticity present 

in the first principal components of the Japanese stock returns. Whereas the 

model is sufficient to capture those in the KOS200, HSCI and SING datasets. 

To sum up, although GARCH(l,l) is an appropriate specification for the con­

ditional volatility of the South Korean, Hong Kong and Singaporean principal 

components, their conditional means have time properties that require a more 

complicated process than a strict white noise. GARCH(l,l) is not sufficient 

in capturing the dynamics of the conditional volatilities of the two Japanese 

principal components. 

We believe remaining serial correlation found in the standardised residu­

als indicates that strict white noise is not an appropriate specification for the 

conditional mean equation. It also indicates that comovements in the stock 

returns of a market may have an autoregressive specification. Our findings 

suggest that comovements in the Korean, Hong Kong and Singaporean stock 
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returns at current period may depend on their comovements in the local market 

of past periods. This claim can be proved by increasing the order of lags in the 

mean equation to see if it can help to soak up the remaining serial correlation. 

Similarly, unexplained ARCH effect indicates conditional variance in the trend 

component has more heteroscedasticity than a GARCH(I,I) can explain. It 

indicates variance in the comovements of stock returns not only depends on 

the variance of the comovements in the last period, but also on variance of the 

comovements in more remote past. To illustrate our claim, we try to examine 

if there is any improvement in diagnostic test results by increasing the order of 

lags in the conditional mean for the South Korean, Hong Kong and Singaporean 

principal component. But for the Japanese principal components, we only in­

crease the order of lags in their conditional variance equations. Table 10 shows 

the LM test results on both heteroscedasticity and serial correlation for three 

sets of specifications. For the first principal component of the KOS200 and 

HSCI, the statistics are computed for AR(I)-GARCH(I,I) standardised resid­

uals. However, for the SING dataset, we find out that its principal component 

needs an AR(3) in the mean equation to show some improvement. For the first 

principal component of the NIK225 and NIK500, statistics are computed for 

GARCH(2,2) standardised residuals. We can see that there is improvement in 

the explanation of dynamics for all datasets at 5% level. Improvements can also 

be confirmed by comparing the values of Akaike Information criterion (AlC) 

reported in table 6 and 10. 

Since we are working with daily observations of the first principal com­

ponent that summarise the comovements of the returns on the constituent 
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stocks of a stock index, these findings provide interesting empirical implica­

tions. Throughout our sampling period, we find evidence to show current 

common movements in South Korean and Hong Kong stock returns depend on 

the comovements in their local market in the last period. For the South Korean 

market, comovements in returns today depends on comovements in the past 

three days. The same does not apply to the Japanese market. Common move­

ment in current Japanese returns is independent from the comovements in the 

past period. Moreover, current conditional volatilities in stock return comove­

ments of Hong Kong, South Korean, Singapore all depends on the unexpected 

comovements in local market return, and also on the fluctuation in stock return 

comovements in the last period. Whereas comovements of current conditional 

volatility depend on the unexpected comovements and the volatility in the last 

two days in the Japanese market. 

From here, we can observe empirically the beauty of orthogonal GARCH 

modelling: applying only a univariate GARCH analysis of the dominant prin­

cipal component that represents mostly the behaviour of the entire dataset of 

financial system allows us to get a picture of GARCH analysis of the entire sys­

tem, provided the dominant principal component is strong enough to represent 

the entire system. Time-consuming computation can thus be simplified. 

3.5 Diagnostic Tests on Residuals 

We know when a larger number of principal components are used for modelling 

a system of data series, a larger proportion of the total variation in the system 

can be explained. However, using a large number of principal components for 
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modelling is not always desirable. First of all, notice that the idea of orthogonal 

GARCH model and any factor models that involve the use of principal compo­

nent analysis is aiming to reduce dimensionality and to encourage convenient 

estimation procedure. That is, we try to summarise the comovements among 

series in a dataset using K principal components, rather than concerning all N 

series in the dataset, with K always being much smaller than N. The adoption 

of a large number of principal components in modelling contradicts the frame­

work of those modelling techniques. For example, if the dataset consists of 

more than a hundred series and one is to use a large number of principal com­

ponents in a orthogonal GARCH model, then there may be a need to estimate 

more than a hundred univariate GARCH models of the principal components. 

Therefore, the amount of work and the complication involved in the analysis 

will not be a lot less than the use of multivariate GARCH models. 

Secondly, Alexander (2001a) points out that when only the first few prin­

cipal components that represent the entire system are used for estimation of 

GARCH volatilities, correlation estimates become more stables and less likely 

to be affected by those variation caused by the noise in the system and volatil­

ities estimates are more robust. In other words, we can avoid the stability of 

correlation estimates being corrupted by the extra noise from those relatively 

less important or less representative principal components. Finally, the other 

reason why using a large number of principal components may not be desirable 

relates to the amount of dynamics that can be captured by the chosen principal 

components. Although the use of large number of principal components can 

guarantee large proportion of total variation in a dataset being captured, there 
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is no guarantee that one can benefit from an improvement in diagnostic test 

results by modelling the dataset with such a large number of principal compo­

nents. With the above understandings in mind, it is essential to decide upon 

the appropriate number of principal components to be chosen for orthogonal 

GARCH modelling. Decision should be made in the sense that a reasonable 

amount of total variation in the dataset can be accounted for and the dynam­

ics in the dataset can be captured, while the number of principal components 

involved in modelling is not too large. 

In this subsection, we carry out a diagnostic tests on the return residuals 

when the returns are modelling by K chosen principal components. We want to 

check whether using a large number of principal components can be rewarding 

in terms of the explanation of the temporal features of a dataset of stock return 

series. This will also give an implication on whether large amount of variation 

being explained can guarantee a better diagnostic test results. 

Residuals in stock returns, S, are computed as in equation (5). That is, after 

the common component is computed by multiplying the chosen K principal 

components with the matrix containing the corresponding factor weight, we 

subtract it from the matrix of return series to obtain the residuals at level. 

Consider the explanatory power of the principal components as shown in table 

3, we consider two cases. In the first case, we test on the residuals of all N 

return series in a dataset when only the first principal component is used for 

modelling. In the second case, we test on the residuals of all N return series in 

a dataset when the first 20 principal components are used. The choice of these 

two numbers is not arbitrary. For all of our five datasets, except SING, the first 
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principal component alone can already explain over 20% of the total variation. 

With reference to the large number of series that each dataset contains, the 

explanatory power of these first principal components is quite appealing. The 

reason for considering the second case is because for most of our datasets, the 

first 20 principal components can account for over 40% of total Yariation, except 

for SING. For KIK500, they can even account for more than half of the total 

variation. 

In order to detect if there exists any remaining serial correlation and het­

eroscedasticity not being captured by the principal components, we carry out 

the Breusch-Godfrey LM test for serial correlation and an ARCH L~I test to on 

return residuals of all N series in each dataset. We include 6 lags in the auxiliary 

equations of both tests and the level of significance is equal to 17c. Since the 

number of return series, N, contained in each datasets is more than a hundred, 

this involves estimating more than N auxiliary equations and the computation 

of the N corresponding probability values. To report the test results in table 

10, we calculate the number of stocks that show no remaining serial correlation 

and no remaining ARCH effect when K = 1 principal component, and when K 

= 20 principal components are used. 

First of all, consider the case when only the first principal component is 

used, only the return residuals of more than 50% or about 50% of the total 

number of stocks in KOS200, NIK225 and ~IK500 show no remaining serial 

correlation not explained by the model. However, in view of heteroscedasticity, 

t lw majority of the return residuals in all fi\'e datasets haye unexplained ARCH 

effect. This finding has suggested that modelling the return series with only 
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t he first principal component is not appropriate. 

In the case when the first 20 principal components are used for modelling, 

we can see that only the return residuals of over half of the total number of 

stocks in KOS200 show no remaining serial correlation v;hereas the majority of 

the return residuals of all other four datasets show significant serial correlation 

not being captured. For test on heteroscedasticity, we have the same finding 

as in the case when only the first principal component is used, that is, the 

majority of the return residuals in all five datasets have unexplained ARCH 

effect. 

Comparing the two cases, we can see that slight improvement in capturing 

both of the two temporal features when larger number of principal components 

are used only present in the return residuals of KOS200. However, the number 

of KOS200 stocks that show no remaining serial correlation and ARCH effect 

is not a lot larger when 20 principal components are used. For the other four 

datasets of return residuals, improvement is found only in capturing ARCH ef­

fect. The number of stocks in these datasets, which have no remaining ARCH 

effect in their residuals, is larger when 20 principal components are used. ~ev­

ertheless, less number of their stocks have residuals that shows serial correlation 

when only the first principal component is used. 

To sum up, four out of five cases show that using large number of principal 

components to represent the datasets cannot guarantee an improvement in 

capturing dynamics. Only one case shows that slight imprm'ement can be 

obtain('d "'ith a large number of additional principal components are used. 

"T(' oeliE'\'(' the reason behind is that these extra principal components that 
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are relatively weak in representing the behayiour of system haye contained 

extra noise. Therefore, when they are used for modelling, the problem of 

misspecification is worsened. These findings imply that although we can benefit 

from having a larger proportion of total variation in a dataset be accounted 

for when more principal components are used for modelling, we cannot always 

be better off in terms of capturing the dynamics of our datasets by modelling 

with more principal components. 

4 Concluding Remarks 

In this chapter, we have applied the orthogonal GAReH model into an analysis 

of the constituent stock returns of five Asian indexes. Results of our correla­

tion analysis reveal that the South Korean stock return series are the most 

highly correlated on average but those in the Singaporean market are the least. 

Higher correlations among stock return series contribute to stronger explana­

tory power of the first principal component and this claim is once again empir­

ically confirmed by our study here. Moreover, the lowest correlations among 

the Singaporean stock returns on average is also reflected in the values of the 

factor weights on its first principal component as they vary quite a lot \\"hen 

comparing with the factor weights on the first principal components of the 

other four datasets of stock returns. 

Examination of the distributional characteristics of the first principal com­

ponents extracted from the five datasets of returns reveals that first principal 

component s from the South Korean. Hong Kong and Japanese returns have 

t he distributional characteristics that can be commonly obser"('d in empirical 
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stock return series, and at the same time these principal components are able 

to mimic the overall behaviour of their entire system of returns. Although the 

Singaporean first principal component also exhibits the commonly observed 

distributional characteristics of stock returns, it does not mimic the overall 

behaviour of the entire system. 

Results from the univariate GARCH(l,l) analysis on the first principal com­

ponent shows that although GARCH(l,l) is an appropriate specification for the 

conditional volatilities of the South Korean, Hong Kong and Singaporean prin-

cipal components, their conditional means have time properties that require a 

more complicated process than a strict white noise. GARCH(l,l) is not suffi­

cient in capturing the dynamics of the conditional volatilities of the Japanese 

principal components. We have also shown how GARCH analysis of the entire 

dataset of our Asian returns can be summarised by an analysis of univariate 

GARCH analysis of their first principal components4 . 

Finally, diagnostic tests are scrutinised to check if a first principal compo-

nent is able to capture enough dynamics in the datasets of Asian stock returns. 

Our findings show that modelling the return series of all five datasets with only 

the first principal component is not appropriate. However, only slight improve-

ment in capturing dynamics in South Korean stock returns is shown when 20 

principal components are used. For the other four datasets, using more prin-

cipal components for modelling has worsened the problem of misspecification. 

(The idea of applying factor analysis into GARCH analysis allows reduction in dimen­
sionality which in turn overcome the common drawbacks multiyariate GARCH models suffer 
from when dealing wit h large dataset, However, if the entire system of data series can be 
summarised by only [\- principal cornponents, with K \'ery small. One may considered esti­
mating these principal components \'ia a multiyariate GARCH, proyided K is small enough 
t.o l'llSlIn' those common drawbacks do not kick in, 
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Our empirical evidence sho\',:s that using large number of principal components 

in modelling may allow one to benefit from larger amount of total "ariation 

being explained, but it cannot guarantee an improvement in capturing dynam­

ics in the datasets, especially when series in the datasets are not very highly 

correlated. 

The GARCH analysis carried out in this chapter allows us to gain a basic 

understanding of the characteristics of the principal components. These basic 

understanding will help us to build insight into how the model can be used for 

forecasting purpose. Furthermore, the above findings reveal the fact that or­

thogonal GARCH model works well for highly correlated system of data series. 

When the dataset is made up of data series with low correlations, orthogonal­

ity condition partly breaks down, leading to weak performance of orthogonal 

GARCH analysis. In the next chapter, we will carry out an empirical factor 

analysis on stock volatilities using a comparable factor volatility model, the 

stochastic volatility factor model of Cipollini and Kapetanios (2005). Kotice 

that the basic building blocks of these two factor volatility models are the two 

main categories of the commonly used volatility models for financial time series 

analysis, that is, the GARCH family model, and the stochastic volatility model. 

In view of the shortcoming of the orthogonal GARCH model, we believe the 

stochastic volatility factor model provides a more flexible framework than the 

orthogonal GARCH model both in terms of modelling volatility and in terms 

of modelling t he idiosyncratic part of the dataset which is not captured by 

t he common component. Forecasting performance evaluation of the h\'o factor 

volatility models will be carried out in chapter 3. 

72 



5 Tables and Figures 

Table 1: 

Descriptive statistics of the mean return series for the five indexes 

SING HSCI KOS200 NIK225 NIK500 

;\0. of periods 1185 1128 1121 1128 1128 

No. of stocks 227 161 176 217 481 

Mean -0.00037 0.00027 -0.00012 0.00005 0.00006 

Median -0.00081 0.00078 0.00063 0.00035 0.0006 

Maximum 0.0397 0.0537 0.0808 0.0662 0.0544 

~'linimum -0.0526 -0.1028 -0.1357 -0.0764 -0.0729 

Std. Dev. 0.00915 0.01432 0.01935 0.01435 0.01274 

Variance 0.000084 0.000205 0.000374 0.000206 0.000162 

Skewness -0.1321 -0.8678 -0.8486 -0.1858 -0.4005 

Kurtosis 6.1624 7.7122 7.6298 4.8508 5.1817 

J-B test 497.24 1176.8 1135.7 167.49 253.89 

[0.000] [0.000] [0.000] [0.000] [0.000] 

Note: probabilities are reported in brackets. 
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Table 2: Summary statistics of average correlations 

KOS200 NIK225 NIK500 HSCI SING 

No. of stocks 176 217 481 161 227 

Max. of average correlations 0.3856 0.3627 0.3345 0.3253 0.1367 

Min. of average correlations 0.0672 0.0845 0.0552 0.0544 -0.0128 

Median of average correlations 0.2787 0.2808 0.2206 0.2158 0.0632 

Mean of average correlations 0.2670 0.2723 0.2134 0.2129 0.0609 

S.D. of average correlations 0.0672 0.0488 0.0452 0.0617 0.0300 

74 



Table 3: Cumulative explained variation of the first 

20 principal components from the five datasets 

PCs KOS200 NIK225 NIK500 HSCI SING 

1 0.2883 0.2846 0.2250 0.2359 0.0818 

2 0.3118 0.3363 0.2676 0.2794 0.1564 

3 0.3316 0.3610 0.2870 0.3001 0.1697 

4 0.3508 0.3829 0.3024 0.3148 0.1814 

5 0.3647 0.3972 0.3138 0.3282 0.1912 

6 0.3762 0.4090 0.3243 0.3408 0.2001 

7 0.3874 0.4198 0.3331 0.3522 0.2083 

8 0.3976 0.4304 0.3407 0.3627 0.2166 

9 0.4076 0.4395 0.3478 0.3725 0.2247 

10 0.4168 0.4484 0.3543 0.3820 0.2327 

11 0.4256 0.4566 0.3603 0.3913 0.2405 

12 0.4342 0.4645 0.3661 0.4003 0.2482 

13 0.4426 0.4717 0.3718 0.4093 0.2557 

14 0.4509 0.4789 0.3770 0.4181 0.2632 

15 0.4588 0.4858 0.3821 0.4268 0.2707 

16 0.4665 0.4927 0.3871 0.4353 0.2779 

17 0.4739 0.4994 0.3920 0.4437 0.2849 

18 0.4813 0.5059 0.3967 0.4519 0.2919 

19 0.4886 0.5124 0.4014 0.4600 0.2989 
--

20 0.4956 0.5187 0.4060 0.4680 0.3058 
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Table 4: Distributional statistics of the first principal components 

KOS200 K11<:22.5 N1K500 HSC1 I S1XG 

Skewness -0.8138 -0.1426 -0.3371 -0.7621 -0.6643 

Kurtosis 7.5563 4.9648 5.0887 7.3829 8.5988 

Jarque-Bera statistics 1093.4 185.27 226.42 1004.9 1643.9 

p-values 0.000 0.000 0.000 0.000 0.000 

Table 5: Test for unit root in first principal components 

KOS200 N1K225 NIK500 HSCI S1J\'G 

ADF test statistics -13.514 -13.884 -14.212 -13.256 -12.224 

PP test statistics -32.167 -33.648 -32.011 -30.118 -32.118 

Note: 10% MacKinnon critical values = -2.568 
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Table 6: GARCH(l,l) estimation outputs for the first 

principal components 

ao /30 /31 /32 

KOS200 Coefficient 0.2760 1.639 0.1069 0.8679 

(0.1630) (0.5178) (0.0232) (0.0242) 

z-statistic 1.693 3.165 4.595 35.833 

{0.0905} {0.0016} {O.OOO} {O.OOO} 

AIC 6.65 

NIK225 Coefficient 0.1251 4.281 0.0882 0.8438 

(0.2113) (1.521) (0.030) (0.0433) 

z-statistic 0.5923 2.815 2.937 19.448 

{0.5536} {0.0049} {0.0033} {O.OOO} 

AIC 6.97 

NIK500 Coefficient 1.770 8.179 0.0813 0.8446 

(0.2791) (3.209) (0.0277) (0.0458) 

z-statistic 0.6343 2.548 2.935 18.412 

{0.5259} {0.010} {0.003} {O.OOO} 

AIC 7.48 

HSCI Coefficient 0.1874 3.1854 0.0831 0.8318 

(0.1687) (1.424) (0.0218) (0.045) 

z-statistic 1.111 2.236 3.802 18.355 

{0.2664} {0.025} {O.OOO} {O.OOO} 

AIC 6.41 

SING Coefficient -0.0103 1.1146 0.1268 0.8157 

(0.1039) (0.4324) (0.0329) (0.0427) 

z-statistic -0.9918 2.577 3.848 19.081 

{0.9210} {0.010} {O.OOO} {O.OOO} 

AIC 5.64 

Note: Standard errors are reported in parentheses. Probabilities 

are reported in curly brackets. 
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Table 7: Descriptive statistics on standardised residuals 

of GARCH(l,l) of first principal components 

KOS200 :\IK225 NIK500 HSCI SI~G 

Mean -0.054 -0.023 -0.026 -0.037 -0.001 

Std. Dev. 0.999 1.000 1.000 0.999 1.000 

Skewness -1.169 -0.191 -0.370 -0.927 -0.278 

Kurtosis 9.251 4.058 4.563 8.417 6.058 

Table 8: LM test for serial correlation in GARCH(l,l) 

standardised residuals of principal components 

KOS200 NIK225 NIK500 HSCI SIXG 

LM test statistics 13.15 4.580 10.55 20.41 47.29 

P-values {0.022} {0.469} {0.060} {0.001} {O.OOO} 

Table 9: ARCH LM test for heteroscedasticity in GARCH(l,l) 

standardised residuals of principal components 

KOS200 NIK225 NIK500 HSCI SIXG 
-J 

LM test statistics 1.297 16.79 15.03 2.941 6.206 

P-values {0.935} {0.004} {0.010} {0.709} {0.286} 



I 

Table 10: LM test results for serial correlation and 

heteroscedasticity of standardised residuals 

Results of standardised residuals of AR(I)-GARCH(I,I) 

KOS200 HSCI 

Serial correlation LM test 6.169 1.672 

P-values {0.290} {0.892} 

ARCH LM test 1.091 
I 

2.549 

P-values {0.954} {0.769} 

AIC 6.64 6.39 

Results of standardised residuals of AR(3)-GARCH(I,I) 

SING 

Serial correlation LM test 8.874 

P-values {0.114} 
I 

ARCH LM test 7.176 

P-values {0.207} 

AIC 5.61 

Results of standardised residuals of GARCH(2,2) 

NIK225 NIK500 

Serial correlation LM test 4.090 10.47 
I 
I 

P-values {0.536} {0.07} 
I 

ARCH Ll\1 test 9.079 5.335 

P-values {0.106} {0.376} I 

AIC 6.89 7.46 
I 

~ --
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Table 11: Diagnostic test results on return 

residuals in the five datasets 

K=1 

No autocorrelation No ARCH effect 

KOS200 99 21 

NIK225 109 58 
I 
I 

NIK500 246 96 

HSCI 76 59 

SI~G 75 71 

K=20 

No autocorrelation No ARCH effect 

KOS200 104 30 

NIK225 81 71 

NIK500 188 144 

HSCI 69 68 

SING 65 85 

I\ote: Number of stocks are reported in this table. 
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FigLTe 1: Time plots of mean retLms 
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Figure 1: Time plots of mean returns 
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Figure 2: Plots of first principal components from the 

five datasets of stock returns 
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Figure 3: Factor weights on first principal component of KOS200 (Key: Factor 

weights plotted here is the values of the eigenvector that corresponds to the 

largest eigenvalue of unconditional correlation matrix XI X of normalised returns 

of KOSPI 200 constit uents . That is, vector Wi ,k in equation (3), where k = 1 and 

i = 1 . . . N) , , 
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Figure 4: Factor weights on first principal components of NIK225 (Key: Factor 

weights plotted here is the values of t he eigenvector t hat corresponds to the 

largest eigenvalue of unconditional correlation matrix X' X of normalised returns 

of NIKKEI 225 constituents . That is, vector W i ,k in equation (3) , where k = 1 and 

i = 1 '" N) , , 
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Figure 5: Factor weights on first principal components of NIK500 (Key: Factor 

weights plotted here is t he values of t he eigenvector t hat corresponds to the 

largest eigenvalue of uncondit ional correlation matrix X' X of normalised ret urns 

of NIKKEI 500 constit uents . That is, vector Wi ,k in equation (3), where k = 1 and 
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Figure 6: Factor weights on first principal components of HSCI (Key: Factor 

weights plotted here is the values of the eigenvector t hat corresponds to the 

largest eigenvalue of unconditional correlation matrix XI X of normalised returns 

of HSCI constituents. That is, vector W i ,!;; in equation (3) , where k = 1 and 

i = 1 . .. N) , , 
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Figure 7: Factor weights on first principal components of SING (Key: Factor 

weights plotted here is t he values of the eigenvector t hat corresponds to the 

largest eigenvalue of unconditional correlation matrix X I X of normalised returns 
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Figure 10: Histogram of NIK500 first principal component 

90 



H is to 9 ra m 0 f H SCI firs t p rin c i p a l eo m po n e n t 

240 

r--f--

200 -

160 - f--

r-

120 -

I--

80 -
r-

.---- I--
-40 

-rlT In-. 
I I I I o 

- 3 7 . 5 - 2 5 . 0 - 1 2 . 5 o . 0 1 2 . 5 25 . 0 

Figure 11: Histogram of HSCI fi rst principal component 

91 



H i s t og r am o f S I NG firstprincipalcom ponent 

3 50 
r--

3 00 
I--

-

25 0 -

2 00 -

1 5 0 - ~ \----

1 0 0 -

r-- I--
50 -

S- ~ 
I I o 

- 3 0 - 2 0 - 1 0 o 1 0 

Figure 12: Histogram of SING first principal component 

92 



KOS200 : Histogram of standardised residuals of GARCH ( 1 , 1 ) 
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NIK225 : Histogram of standardised residuals of G A RCH ( 1 , 1) 
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Figure 14: Histogram of GARCH(l,l ) standardised residuals of NIK225 

princi pal component 
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NIK5 00 : Histogram of standardised r esi d uals o f GARCH(1 , 1 ) 
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Figure 15: Histogram of GARCH(I ,I ) standardised residuals of 

NIK500 principal component 
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Figure 16: Histogram of GARCH(I ,I ) standardised residuals of HSCI principal 

component 
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Chapter 2 

Factor Analysis of Stock Volatility Using 

Stochastic Volatility Factor Model: Evidence 

from Five Asian Stock Indexes 

1 Introduction 

In the previous chapter, our analysis has been carried out in the context of 

the orthogonal GARCR model of Alexander (2001a, b). In this chapter, our 

analysis will be carried out in the context of a comparable model, the stochas­

tic volatility factor model of Cipollini and Kapetanios (2005). In contrast to 

t he orthogonal GARCR analysis, common factors in stochastic volatility factor 

model are estimated from large datasets of Asian stock volatilities \'ia princi­

pal components of Stock and \Yatson (2002a). \Ye ,vill perform a correlation 

allalysis of stock volatilities and an examination of the dynamics of common 

volatility factor estimates. The explanatory power of common factors is also 

illvestigated. In particular, we will anal~"se the impact of the size of dataset on 

explanatory power of factor estimates. ':-'lol'co\'e1'. ,,"e ,,"ill detect if long lll<'lll( ll"V 
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exists in common factors of stock volatilities. 

Studies of the underlying forces that cause fluctuations in financial time 

series have long been under the interest of empirical researchers. Empirical 

studies in this literature tend to take two different approaches. Some litera­

tures study a set of pre-defined global and local macroeconomic variables that 

are believed to have made a contribution to the fluctuation in a particular 

stock market as a proxy for common factors. For example, Bilson, Brailford 

and Hooper (2001) employ a multifactor model to select common explanatory 

factors for emerging markets from a set of global risk variable and local eco­

nomic variables. This type of studies relies on observable significance of the 

"proxy common factors". However, this may be quite restrictive in the sense 

that if fluctuations in the financial time series are actually driven by some un­

observed common forces, then these forces will be neglected in the analysis. 

Another approach employs state-space representation. Common factors are 

defined as some unobserved components in the state-space setting. Stock and 

Watson (1998, 2002a) call these common factors "diffusion indexes". These 

unobserved common factors summarise the information from a large group of 

driving forces that account for variation in a dataset. This group of driving 

forces may be generated by both macroeconomic variables and some other un­

observed forces. No pre-definition of the common factors is made therefore, 

state-space factor analysis is relatively more flexible. 

The seminal paper by Harvey, Ruiz and Shephard (1994) is influential in 

the stochastic volatility literature. In view of the complications in estimation 

and interpretation of the multivariate GARCH models due to large number of 
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parameters and the need to impose constraints, they propose a multivariate 

stochastic volatility model. They have also made suggestion to incorporate 

common factors, which is assumed to follow a multivariate random walk, into 

the model. The model is estimated by quasi-maximum likelihood in a state­

space approach. 

However, Cipollini and Kapetanios (2005) argue that although state-space 

approach is powerful and intuitive, but it is not computationally tractable for 

datasets with very large dimensions. Moreover, allowing the common factor 

to follow only a multivariate random walk is too restrictive in the sense that 

more complicated dynamics in the factors cannot be accounted for. They have 

therefore proposed a stochastic volatility factor model for large datasets by 

extending the model of Harvey et. al. (1994). Redefining the factor vector 

and by making no prior assumption to the form of the process that underlies 

the common factors, their model allows more complicated temporal features of 

common factors other than non-stationarity being captured. Moreover, their 

suggestion of using principal components method of Stock and Watson (2002a) 

for extracting common factors has simplified computation with large datasets. 

Their studies and that of Bai (2003) show principal components estimation 

provides consistent estimates in large datasets. Bai (2003) also studies the 

asymptotic properties of this estimator. All these are remarkable developments 

in factor analysis. 

The stochastic volatility factor model is comparable to the orthogonal GARCH 

model. Both of them belong to the type of volatility models with latent fac­

tors. The former is an advanced development of stochastic volatility model that 
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involves using latent factors to model common volatility. Whereas the latter 

is an advanced development of the GARCH model and involved using latent 

factors to summarise comovements in a dataset of financial asset and compute 

volatilities of the entire system using GARCH volatilities of these latent factors. 

In this chapter, we will apply the stochastic volatility factor model to 

analyse the Asian stock volatilities. We adopt the approach that Cipollini 

and Kapetanios (2004) use in their paper for our analysis. Applying their 

stochastic volatility factor model and using principal components for factor es­

timation, we analyse the common factor in the constituent stock volatilities of 

the Japanese, South Korean, Hong Kong and Singaporean indexes. The outline 

of this chapter is as follows. Section 2.1 presents a brief overview of stochastic 

volatility literature. The remainder of section 2 outlines the methodology used 

for the analysis in this chapter. The extension of the original multivariate sto­

chastic volatility model into the stochastic volatility factor model is reviewed in 

section 2.2. Principle components method of Stock and Watson (2002a) is also 

discussed in section 2.3. In section 2.4, we discuss the fractionally integrated 

autoregressive moving average (ARFIMA) representation of the common fac­

tors. Section 3 displays our empirical results. We first implement a correlation 

analysis to look at the correlation among constituent stock volatility series of 

the Asian indexes. We then examine the estimated factor series for all five 

datasets to see if there is any evidence of heteroscedasticity and serially corre­

lations. Explanatory power of the set of factors for each dataset of constituent 

stock volatilities are then evaluated. In particular, cumulative R2 of the domi­

nant factors of the two Japanese datasets of volatilities are compared in order 
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to see how size of a dataset impacts on the explanatory power of a factor. Fol­

lowed by the investigation of the dynamics of the factor series, we focus on the 

examination of the long memory nature in the factor estimates. Conclusion 

is made in section 4 and tables and graphs are presented at the end of this 

chapter. 

2 The Model 

As mentioned in the introductory chapter of this thesis. The stochastic volatil­

ity models are comparable to the GARCH type models. The main difference 

between the two models is that an unobserved shock to the return variance is ex­

plicitly included in the volatility dynamics in the former. The variance has thus 

become a latent process and it is unobserved even when we have full knowledge 

of all the observable past information. This has made the use of standard max­

imum likelihood estimation of the parameters in the stochastic volatility model 

infeasible. Despite the fact that the estimation of stochastic volatility model 

is less straight forward when comparing with the standard GARCH models, 

the former have naturally overcome some drawbacks of the latter. Moreover, 

increasing popularity of the study of realised volatility and the use of high fre­

quency financial data has enriched the development of the stochastic volatility 

model due to their close and natural linkage to the continuous-time version of 

the model. All of these have contributed to the vast and rapid growth of the 

. stochastic volatility literature. In this section, we present a brief overview of 

the stochastic volatility literatures. 
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2.1 Stochastic Volatility - An Overview 

In the early progressions of the stochastic volatility literature, most of the 

econometricians focused on the discrete time versions of the model. \\ nereas 

the financial mathematicians and financial econometricians focused more on 

t he continuous time versions of model, which were mainly used to deal with 

option pricing. Recall equation (3) in the introductory chapter, Taylor (1986) 

is the first to introduce this logarithmic stochastic volatility model by using 

an autoregression to represent the unobserved logarithmic volatility, ht. The 

disturbance term in this autoregression and the shocks in the return equation 

are assumed to be uncorrelated. The normality assumption on the disturbance 

in the autoregression of the logarithmic conditional volatility has been widely 

adopted. This model was then known as the stochastic volatility model. As 

opposed to the standard GARCR model, the simplest form of the stochastic 

volatility model has a more flexible set-up that allows the model to capture 

leverage effect or asymmetry that the standard GARCR model fails to account 

for. This can be done by allowing a negative correlation betv,Teen the shocks in 

the cl.1ltoregression of the logarithmic volatility and the shocks in the return. In 

this sense, the stochastic volatility model is analogous to the EGARCR model. 

l\Ioreover, the model is more capable of explaining excess kurtosis found in 

financial time series than the standard GARCR model. 

Persistence is another ,yell-known feature of financial volatility. By allowing 

the logarithmic conditional volatility to follow a random walk process, persis­

tence in financial volatility can be captured. This specification is analogous to 

the IGARCR model. There has been considerable empirical e\'idcllCe to ;:-;hO\y 
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that autocorrelations in financial time series has a faster rate of decay at short 

lags but a slower rate of decay at long lags. Example can be seen from the 

study of Standard and Poor 500 index by Ding, Granger and Engle (1993), 

in which the autocorrelation of fractional moments of return series has a very 

slow decay. The study of Psaradakis and Sola (1995) on stock volatility using 

22 UK stocks via FIGARCH model also provides evidence of long memory. 

Their results confirm the commonly observed fact that shocks die out at a slow 

hyperbolic decay. In the long memory stochastic volatility model by Harvey 

(1998), the logarithmic conditional volatility, ht, is generated by a fractional 

noise. The model is covariance stationary if the differencing operator is less 

than 0.5. In the cases when the operator takes the values of 1 and 0, the process 

reduces to a random walk and a white noise, respectively. The long memory 

stochastic volatility model has a hyperbolic decay. The study carried out by 

Harvey (1998) has shown that the autocorrelation function of the long memory 

process of ht has a much slower decay as compared to the AR(l) representation 

of ht. Breidt, Crato and de Lima (1993) also suggest a long memory stochastic 

volatility model. They construct the model by introducing an ARFL\1A process 

into a standard stochastic volatility set-up. Their application have shown the 

model performs better than other volatility models. 

Modern development of the stochastic volatility literatures lie in the con­

text of realised volatility and the application of the model into high frequency 

financial data due to their close linkage with the continuous time yersion of the 

model. See for exan1ple, Andersen, Bollerslev, Diebold and Labys (2001) and 

Barndorff-Nielsen and Shephard (2002). 
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Although the construction of stochastic volatility model favours its flexibil­

ity in capturing stylised facts of volatility than the standard GARCH model, 

its complication in estimation has also been an issue. The construction of 

GARCH model has made available its likelihood function but this is not the 

case for the stochastic volatility model. An extensive amount of stochastic 

volatility literatures focus on the estimation and inference of the models. 

Some literatures on the inference of stochastic volatility models initiate es­

timators based on moments of the model that can be easily computed. For 

example, Taylor (1982) uses the method of moments for estimation. G:"[\I ap­

proach has also been discussed, see for example, Andersen and S0rensen (1996). 

The approach suggested in the seminal paper by Harvey, Ruiz and Shephard 

(1994) has been significant among the literature of the stochastic volatility 

model. They suggest to estimate the model using quasi-maximum likelihood 

via Kalman filter. By adopting their method, the parameter estimates, filtered 

estimates and smoothed estimates of the conditional volatility process can all 

be obtained. 

Other literatures on the estimation of stochastic volatility models advocate 

the use of simulation-based inference. For example, Danielsson and Richard 

(1993) propose an accelerated Gaussian importance sampler. Jacquier, Polson 

and Rossi (1994) develop the Bayesian frame,;vork and using ~Iarkov Chain 

l\loute Carlo (I\IC~IC) algorithm for the simulation from the posterior dis­

tribution. Their sampling experiments show Bayesian estimators have better 

performance t llall the methods of moments and the quasi-maximum likelihood 

('~timators. ~1Ul'(, discussions on the development of ~IC~dC methods for the 

105 



stochastic volatility models have also been carried out, see for example, An­

dersen (1994a) and Kim, Shephard and Chib (1998). Apart from the use of 

MCMC method, there is another simulation based approach so-called the in­

direct inference approach or the efficient methods of moments (EMM), see for 

example, Gourieroux, Monfort and Renault (1993). EMM is a simulation-based 

moment matching procedure. The matched moments are called the score gen­

erator. Efficiency in the parameter estimates of the stochastic volatility model 

as in maximum likelihood estimation can be obtained if the score generator 

gives a good approximation of the distribution of the data (see Gallant, Hsieh 

and Tauchen (1997) for application of the method). 

So far the part of the above discussion regarding the modifications of the 

stochastic volatility models has been limited to the univariate stochastic volatil­

ity models, the need to study several financial time series simultaneously has 

nourished the extension to a multivariate set-up. Harvey, Ruiz and Shep­

hard (1994) propose the discrete time multivariate stochastic volatility model 

in which the logarithmic unobserved variance is modelled by a random walk. 

They estimate the model via state-space approach. Chib, Nardari and Harvey 

(2002) have suggested Bayesian estimation of this model via MCMC method. 

However, Cipollini and Kapetanios (2005) argue that estimation via state-space 

approach is powerful but not ideal when the dimensions of dataset is large due 

to computational constraints. Whereas the Bayesian estimation via MCMC 

requires knowledge in the computational algorithm and involve selection of 

several parameters (e.g. the prior density), this may be contentious. Moreover, 

Harvey, Ruiz and Shephard (1994) also discussed the incorporation of latent 
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factors into the model by allowing the common factors to follow multh-ariate 

random walk. This suggestion has nurtured further extension of the model into 

the stochastic volatility factor model by Cipollini and Kapetanios (2005)_ In 

contrast to the suggestion by Harvey et. al. (1994), they have redefined the 

dynamics of the factors and thus allow more complex dynamics rather t han a 

random walk to be captured. In particular, they advocate the use of principal 

components of Stock and ';Vatson (2002a) to estimate their factor model. This 

has simplified both the modelling and estimation procedure. The studies in 

both their paper and in Bai (2003) show this estimators are consistent. 

Our empirical study in this chapter is to apply the stochastic yolatility 

factor model into large datasets of constituent stock volatilities of the five 

Asian stock indexes considered in chapter 1. We adopt the approach and the 

factor model of Cipollini and Kapetanios (2005) to carry out empirical analysis. 

They extend the multivariate stochastic volatility model of Harvey, Ruiz and 

Shephard (1994) to allow more complex temporal features to be captured in 

the process that underlie the common factors by redefining the factor vector. 

Their application of the model is made to the constituent stock volatilities of 

Standard and Poor 100 and 500 (S&P 100 and S&':P 500) indexes. Our empirical 

application here aims to examine the dynamics of the common factors estimated 

da principal components. ,;Ve will compare some of the findings here \yith the 

those obta.ined in chapter 1 \,"hen common factors are extracted from datasets 

of returns. :Moreover, we will also provide empirical eyidence to show that large 

dat a~(·ts may not ahyays be desirable for factor analysis as claimed by Boh-in 

and i\'"g (2003). In the next subsection, we \yill go through the progression 
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of the original multivariate stochastic volatility factor model to the stochastic 

,'olatility factor model. Estimation method and the underlying process of the 

common factors will also be explored. 

2.2 Stochastic Volatility Factor Model 

It is well known that financial time series are featured ,,·ith heteroscedasticity 

and serial correlation. The ARCH and GARCH family models by Engle (19~2) 

and Bollerslev (1986), and further modifications of those models that feature 

with time-varying volatility and serial correlation are widely used in financial 

econometric analysis. However, Harvey, Ruiz and Shephard (1994) argue that 

the multivariate version of GARCH family models may not be convenient to 

estimate and interpret due to the possibility of large number of parameters. The 

maximum likelihood estimation of this multivariate version requires imposition 

of restrictions. They have therefore, proposed an alternative approach, which 

is to model volatility as an unobserved stochastic process. The logarithm of 

this process is then a linear stochastic process like an AR process. They call 

this kind of model a stochastic volatility model or stochastic variance model. 

Let's first look at the basic setting of this model. 

Consider first a univariate time series, Yt 

(1) 

where t L .. , T. Yt IS tlw product of a Gaussian ,,·hite nOIse proC('SS 
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with zero mean and variance equals to one. (J t is the standard deviation and ht; 

denotes In( (J;). Harvey et al. (1994) suggest that ht can be modelled by a simple 

AR process, an ARMA process or it can follow a random walk. Now suppose 

there are N constituent stocks included in a particular stock index. Consider 

the following generalization to a multivariate time series of N constituent stock 

returns Yt. For stock i at time t, 

(2) 

where i = 1, ... ,N, t = 1, ... ,T. Yt = (Yl,t,·.·,YN,t)'; and Ut = (Ul,t, ... ,UN,t)' 

is a multivariate normal vector of disturbance with mean zero and variance-

covariance matrix E, which has diagonal elements of ones and off-diagonal 

elements of Pi t's. Squaring both sides of equation (2) and taking naturalloga-, 

rithm gives us 

(3) 

Denotes In(Y;'t) by Y:,t1 E(ln( ut,t)) by ai and In( ut,t) - E(ln( ut,t)) by (i,t· 

Equation (3) can be written as 

(4) 
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Harveyet al. suggest that logarithm of the unobserved variance, hi,t can 

be modelled by a multivariate random walk. 

hit = hi t-l + Ei t , , , (5) 

Alternatively, one can also incorporate common factors into the stochastic 

volatility model and to treat equation (4) and (5) as the measurement and 

transition equations in a state-space representation. Allowing the N x 1 vector 

of unobserved variance to incorporate a vector of K common factors it, i.e. 

ht = () it, where () is a N x K matrix of factor loadings with K < N, equation 

(4) and (5) becomes 

(6) 

it = it-l + Vt (7) 

y; = (y; t, """' y*rvt) is a N x 1 vector of transformed data using standard , , 

logarithmic transformation. This is used as a volatility proxy. it is a K x 1 
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vector of common factors and it follows a multivariate random walk. () is a 

N x K matrix. (t and Vt are uncorrelated. 

However, Cipollini and Kapetanios (2005) argue that this setting of the 

model can be quite restrictive, since it only allows the factors to follow a random 

walk. Therefore, if the true underlying process of the common factors has 

more complicated dynamic natures, for example, long memory, the state-space 

version of the stochastic volatility model becomes inadequate. Their extension 

to the above stochastic volatility model allows one to capture more temporal 

properties of the data. They propose that the unobserved variance, ht should 

have a common component and a disturbance 

hi,t = (}~ft + 7Ji,t (8) 

Substitute equation (8) into equation (4) gives 

(9) 

where Wi t = '11. t + 1". t is an idiosyncratic error term. From equation (9), we , , It, ':, 't, 

can see that stochastic volatility of stock i, Yi t' has two components. A common , 

component represented by (}~ft, and an idiosyncratic component represented 

by Wi,t. The former tells us how much of the volatility in stock i is due to 
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market condition as the common factor it summarises the unobserved forces 

that cause changes in market condition. The latter tells us how much of the 

volatility in stock i is caused by forces that are unique to the stock itself. The 

analysis in this chapter restricts to the common component as our aim is to 

examine the dynamics and temporal features of this common comovC'l1lents 

of the stocks in a market. The extension as in equation (9) is more flexible 

than the original stochastic volatility model setting as they do not make any 

specific assumption about the form of the process that underlies the common 

factors. Therefore, once factors are estimated, then by careful examination of 

the estimates, one can seek for an appropriate specification that best captures 

the temporal features of the series. In their paper, they have found persistence 

in the auto correlations of their factor estimates of S&P 100 and S&P 500 

constituent stock volatilities. This suggests that the underlying specification for 

their estimated factor series should fall in the category of long memory models. 

\Vc will also see later from the empirical results in this paper, constituent stock 

volatilities of some Asian indexes have factor estimates that also appear to have 

long memory. 

There are several assumptions on the factor, it , the factor loading and 

the error term, Wi t in order for us to obtain consistent factor estimates us-, 

ing principal components method by Stock and \Yatson (2002a, 2000b). The 

stochastic volatility factor model of Cipollini and Kapetanios (2005) is also 

flexible in the 'way that one can use principal components estimation to obtain 

consistent factor estimates without making further assumptions additional to 

the ('stimation method. \y(~ will go through the basic mechanism of principal 
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components estimation method and the relevant assumptions in the following 

subsection. 

2.3 Estimation of Common Factors: Principal Compo­

nents Method 

Conventional factor analysis focuses on small datasets. The analysis requires 

some restrictive assumptions to hold, and the use of maximum likelihood esti­

mation. Bai (2003) discusses some limitations of classical factor analysis due 

to those restrictive assumptions. He points out that the assumption of fixed 

number of cross-section dimension (N), which is required to be smaller than 

the time dimension (T) is unrealistic since the number of series included in the 

dataset is much larger than the number of time series observations in economic 

datasets. The assumption of idiosyncratic innovations being i.i.d. across time 

and across cross-section is too strong for economic time series. Moreover, max­

imum likelihood estimation is not feasible for estimating factor model with a 

very large number of series in the dataset. 

Stock and Watson (2002a) suggest the method of principal components 

for estimating factors in an approximate dynamic factor model with large 

dataset. Principal components method involves eigenvalue decomposition of 

sample variance-covariance matrix. It is simple to use and asymptotically 

equivalent to the maximum likelihood estimation. In their paper, Stock and 

Watson (2002b) study the finite sample properties of principal component esti­

mator. They show that under rather general assumptions, the factor estimates 

of an approximate factor model obtained by using this method are consistent, 
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even if idiosyncratic innovations are serially and cross-sectionally correlated. 

Bai (2003) also shows that the necessary conditions for ensuring consistency 

are asymptotic orthogonality and asymptotic homoscedasticity in idiosyncratic 

innovations. l Consistency in factor estimates can be obtained even in the pres-

ence of serial correlations and heteroscedasticity. Cipollini and Kapetanios 

(2005) claim that the results of Bai (2003) on consistency of factor estimates 

estimated by principal components can still be valid if the underlying processes 

of the factor estimates are stationary long memory ARFIMA(p,d,q) with finite 

fourth moment. 

Consider the following approximate dynamic factor model. Xt = (Xl,t, "" XN,t) 

is aN-dimensional vector of multivariate time series. At time t for series i 

Xi,t = )..~it + ~i,t (10) 

it is a K-dimensional vector of common factors with t = 1, "" T. )..~ is the 

ith row of matrix A, which is a matrix of factor loadings. Xi,t is the element 

in the tth row and ith column of a T x N data matrix X. ~i t is the ith , 

element of ~t = (~l t, , .. , ~Nt)' which is a vector of idiosyncratic innovations. , , 

1 Consider the factor model in equation [10], Bai (2003) calls the restrictions 
N 

N-l L:ei,tei,.~ -+ 0, for t =I- s 
i=l 

N 
and N-l L:€i,t. -+ 0'2, for all t as N tends to 00 

i=l 
asymptotic orthogonality and asymptotic homoscedasticity, respectively, 
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In contrast to a strict factor model which assumes idiosyncratic innovations 

to be i.i.d., these ~t here are allowed to be weakly time and cross-sectionally 

dependent. Estimation of factors and factor loadings by principal components 

method requires us to minimise the following objective function with respect 

to f and A. 

N T 

V(f, A) = (NT)-1 LL)Xi,t - A~ft)2 (11) 
i=1 t=1 

This is analogous to minimising the variance of the idiosyncratic innovations 

~i t· Estimating ft requires the eigenvectors of the matrix X X'. Minimising , 

the above objective function with respect to the factor is equivalent to max-

imising the matrix trace of f'(XX/)f, subject to the restriction on T-1(f' f) 

being orthogonal, i.e. T-1(f'f) = h, where f = (f1, ... ,fK)' In order words, 

the consistent estimate of f is given by the K largest eigenvectors of matrix 

X X'. The matrix of factor loadings, A = (J' f) -1 J' X = j~ x. Several mild 

assumptions on the factors ft, the factor loadings A and the innovations ~ t, are 

required for the estimation to provide consistent estimates. Those assumptions 

are outlined as follows. 2 

1. For the factor loadings, (A' AI N) -t h and II Ai II < A < 00 

2. For the factors, f' f has finite unconditional second moment, that is, 

E(f' f)2 < 00. The factors are also allowed to be serially correlated, 

so E(f' f) = 'E j , where 'E j is a diagonal matrix with diagonal elements 

2For detailed discussion of the assumptions, see Stock and Watson (2002a, b). 
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Pi,i > Pj,j > 0, for i < J. Moreover, ~f is the probability limit of 
T 

T-1(Ef'f) 
t=l 

3. The innovations, ei,t are uncorrelated with the factors ft. Moreover, eit , 

has zero unconditional mean and they are assumed to be serially corre-
00 

lated, so E(e~eHs/N) = 'YN,t(S) and SUPN L i'YN,t(s)i has finite limit as 
s=-oo 

N ---+ 00. Cross-sectional correlations in innovations are also allowed, so 
N N 

E(ei,tej,t) = Tij,t and SUPt N-1 L E ITij,tl has finite limit as N ---+ 00. The 
i=lj=l 

N N 

size of fourth moment is limited as well, so snPt,s N-1?= L iCOV(ei,sei,t' ej,sej,t) i 
t=lj=l 

has finite limit as N ---+ 00. 

Cipollini and Kapetanios (2005) advocate the use of principal components 

method to estimate the factors from their extended stochastic volatility factor 

model as in equation (9). They point out that as long as the assumptions 

on the innovations and the factors are valid for Wi,t and ft in equation (9), 

then this estimation method can provide consistent estimates. Estimation of 

factors becomes very straightforward in this context. We can take the following 

four-step approach in estimating the common factors. Suppose there are N 

constituent stocks in a particular stock index, then for stock i 

1. First compute the daily return on this stock, demean this return series 

and denote it as Yi,t 

2. Transform the return series by standard logarithm transformation and 

name it as Y; t i.e. Y; t = In(y; t). This is the volatility proxy. , , , 
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3. Demean the transformed returns, denote it as Yi,t. The stochastic volatil­

ity factor model in equation (9) can then be written as 

(L2) 

4. Apply principal components method to matrix YY', that is, to extract 

the K largest eigenvectors from matrix YY'. Where Y is the T x S 

matrix of demeaned and transformed constituent stock returns, which is 

thus a matrix of stochastic volatilities. The element in the tth row and 

ith column of matrix Y is fJi.t. The extracted I{ largest eigenvectors are 

the K estimated factor series. Grouping these estimated series together 

gives us a T x I{ matrix of factor estimates F, with the kth factor series 

in its kth column, jk,t = (A,l, ... , jk,T )'. 

2.4 Investigation of Long Memory in Common Factors 

A large amount of existing empirical studies show that financial time series 

C'xllihit persistence of shocks and slow hyperbolic rate of decay in autocorre­

lations. For example the paper by Baillie, Bollerslev, and :\likkdsen (1996) 

on daily nominal percentage returns on Deutschmark-US dollar exchange rate 

in the frame'work of FIGARCH model; and Davidson's (2004) study on dol­

Ln ('xcitallgl' rates for Korean ""OIl. Indonesian Rupiah and Tah\"an Dollar. 

""right (1999) use log-periodogram regression to find evidence for positive long 

11\('1I10r~" in some emerging market stock returns. 
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We expect the factor estimates of our Asian constituent stock volatilities 

have long memory. Our investigation starts off by examining the autocorrela­

tions of our factor estimates and the first difference of them. We then move 

on to specify our factor estimates in an Autoregressive Fractionally Integrated 

Moving Average (ARFIMA(p,d,q)) representation. Hosking (1981), Granger 

(1980, 1981), and Granger and Joyeux(1980) propose fractional differencing 

i.e. fractionally integrated I( d) time series. An I( d) time series shows long 

memory and thus have slowly decaying impulse-response weight. For simplic­

ity, the moving average terms are dropped out in our analysis. An ARFI(p,d) 

process of the estimated factor series, ii,t takes the following form3 

(13) 

p 

where <I>(L) = 1- LcALi are polynomial of lag operator of order p and the 
i=l 

roots lie outside the unit circle. et is a white noise process with variance 0-
2

• 

d is the fractional differencing parameter. For -0.5 < d < 0.5, the process is 

covariance stationary. it exhibits long memory and its autocorrelations have a 

hyperbolic decay for ° < d < 0.5. However, if -0.5 < d < 0, it is said to have 

immediate memory. The fractional difference is defined as 

00 

(1 - L)d = L7rj(d)Lj 
j=O 

(14) 

30ur analysis here concern modelling each factor series using univariate ARF I M A(p, d, q) 
model. However, future work on using more than one factor series for the model may consider 
a multivariate ARF I M A(p, d, q) specification for the factors. 
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and 

7r-(d) - (_l)k f(d+ 1) 
J - f(j+1)f(d-j+1) (15) 

where f(.) denotes the gamma function. Conventional methods of estimat­

ing ARFIMA(p,d,q) process rely on maximum likelihood estimation. Whit­

tle's (1951) Approximate Frequency Domain Maximum Likelihood Estimator 

(AFDMLE) is in the context of frequency domain. In the context of time do­

main, ARFIMA model can be estimated by Exact Maximum Likelihood Esti-

mation (EML) (see Sowell (1992)), Modified Profile Likelihood (MPL) (see Cox 

and Reid (1987)), or Approximate Maximum Likelihood Estimator (AMLE) of 

Beran (1995). In this paper, we adopt Beran's (1995) method. This estimation 

method bases on minimising the sum of squared naive residuals (see also the 

Conditional Sum of Square estimator (CSS) of Chung and Baillie (1993), and 

Beveridge and Oickle (1993)). One of the remarkable advantages of this estima­

tion method is that it is applicable for non-stationary ARFIMA process with 

d > 0.5, without the need of prior differencing4 • Since our data have already 

been demeaned, we can drop the term J1 in the above ARFI(p,d) process. The 

lEML and MPL require imposing -1 < d < 0.5. Moreover, AMLE (or CSS) is easier to 
extend and thus can be used to estimate ARF I M A process with conditional heteroskedas­
ticity (See Chung (1998)). CSS is preferred to the other methods due to its computational 
efficiency. 
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AMLE method of Beran minimizes the sum of squared residuals in equation 

(13). That is, 

n 

8(13) = 2: e; (16) 
t=2 

where f3 = (d, <PI' <P2, "', <pp) is a vector of estimated parameters. We evaluate 

the value of our estimated fractional differencing parameters to see if our factor 

estimates of Asian stock volatilities have long memory. 5 

Furthermore, heteroscedasticity is another common feature that is found in 

the financial time series. Baillie, Bollerslev and Mikkelsen (1996) incorporate 

long memory fractional differencing into GARCH and propose the FIGARCH 

model, with the assumption that the fractionally differencing parameter lies 

between 0 and 1. We believe our findings about dynamics of common factors 

of Asian stock volatilities are similar to those in the FIGARCH literatures. 

The next section presents our empirical results. We start our analysis off 

by analysing the correlations among the constituent stock volatility series in 

Singaporean, Hong Kong, South Korean and Japanese indexes. We then use 

5We use here the value offractional differencing parameter, d, estimated by Beran's (1995) 
AMLE and the pattern of autocorrelation plot as indication of whether a factor exhibits long 
memory. Some tests for long memory, for example the Lobato and Robinson (1998) test, 
can also be implemented for the detection of persistence. See also Robinson (1995) for his 
proposal of a log-periodogram semiparameteric estimator for d, which can be used to estimate 
d in the cases of long memory (when d lies between 0 and 0.5), short memory (when d equals 
0) or negative memory (when d lies between -0.5 and 0) under the condition that standard 
normal approximation holds. 
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principal components to estimate the common factors from those datasets of 

stock volatilities. Next, we move on to look at the explanatory power of the fac­

tor estimates and followed by an examination of the dynamics of those factor 

estimates. Autoregressive (AR) representation is to be fitted to the domi­

nant factor of each dataset. Autocorrelations of the factor estimates are to be 

checked carefully to see if there is any evidence of long memory nature. Finally, 

ARFIMA process is fitted to the dominant factor series that shows persistence 

in auto correlations in order to confirm their long memory nature. Dominant 

factors of Korean and Japanese stock volatilities are found to have autocorrela­

tions that show slow hyperbolic decay and evidence of long memory. Whereas 

factor estimates of Singaporean and Hong Kong shows low explanatory power 

and thus lead us to conclude that the stochastic volatility factor specification 

being an inappropriate underlying model of them. 

3 Empirical Analysis 

The five Asian indexes considered for our empirical analysis in chapter 1 are 

reconsidered here. Daily observations of constituent stocks of five Asian indices 

are obtained from Datastream. The five indexes are NIKKEI 225 (NIK225) and 

NIKKEI 500 (NIK500) of Japan; Heng Seng Composite Index (HSCI) of Hong 

Kong; Korean Stock Exchange Composite Index 200 (KOS200) of South Korea; 

and Stock Exchange of Singapore All Share Index (SING) of Singapore. The 

reason for investigating both the NIKKEI 225 and NIKKEI 500 of Japan is for 

us to look at the impact of the size of dataset on the explanatory power of a 

dominant factor. Daily returns on each constituent stocks i is calculated as the 
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difference between the logarithm of constituent stock price at time t and time 

t - 1. Daily volatility is computed as the logarithm of squared daily return. 

As in chapter 1, our analysis considers only stocks that have data available 

throughout the entire sample period. The number of stocks in each datasets are 

thus 217 stocks for NIK225, 481 stocks for NIK500, 176 stocks for KOS200, 227 

stocks for SING and 161 stocks for HSCI. We look at the same sample period 

as in chapter 1, which is from 3 January 2000 to 30 July 2004, for a total of 

1194 daily observations of stock volatility. Once again, we exclude the periods 

when the markets are closed from the dataset, the number of observations 

then becomes 1128 for both NIK225 and NIK500, 1121 for KOS200, 1185 for 

SING and 1128 for HSCI. For the preliminary statistical analysis of the daily 

return, one can refer to table 1 of chapter 1. In the next subsection, we present 

a correlation analysis of the constituent stock volatilities of our five Asian 

indexes. 

3.1 Correlation Analysis 

As a first step of our analysis in this chapter, we carry out a correlation analysis 

of our datasets. In contrast to the correlation analysis carried out in chapter 1 

in which datasets of stock returns are concerned, here we look at the correlation 

among the series in our five datasets of stock volatilities. Once again, since the 

number of series in each dataset is too large for us to report the correlation 

matrix, we compute average correlations in the same manner as in chapter l. 

For each stock i in a dataset, we compute the correlations of its volatility with 

the rest of the N -1 volatility series in the dataset to get a vector of correlations 
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with dimensions equal (N - 1) x 1. Then we take the average of these N - 1 

volatility correlation coefficients to get an average correlation between volatility 

of stock i and the volatility of the remaining stocks in the system. We do it for 

i = 1,· .. , N to obtain a N x 1 vector of average correlations. Table 1 shows 

some summary statistics of the average correlations of the Asian daily returns. 

We can see from table 1 that volatility series in KOS200 and NIK225 appear 

to be the most correlated on average when comparing with the other three 

datasets, the former has mean average correlation of about 0.09 whereas the 

latter has mean average correlation of about 0.07. NIK500 volatility series 

are less correlated than the NIK225 volatility series on average, and its mean 

average correlation is 0.05. Concerning the fact that NIK500 index contain a 

wider range of stocks for which some them are relatively less related, this finding 

is reasonable. There is a weak correlation among the SING volatility series on 

average, with mean average correlations of 0.05 only. Based on these results, we 

expect the first factor extracted from the South Korean stock volatilities will be 

the most powerful one in terms of the amount of variance in the dataset being 

captured, but the one from the Singaporean stock volatilities will be the least 

powerful. From the maximum and minimum values of the average correlations 

in the five datasets, we can see that the volatilities in KOS200, NIK225 and 

HSCI are all positively correlated on average. However, evidence of negative 

correlation among volatility series is found in NIK500 and SING datasets as 

the minimum values of their average correlations are negative. 

The HSCI and KOS200 stock volatilities have the largest values of standard 

deviation in their average correlations, both have the values around 0.024. The 
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smallest value of standard deviation of average correlations appear to be the 

NIK500 stock volatilities. It means there are more observations of average 

correlation that have deviated from the mean average correlations in general 

among the Hong Kong and South Korean stock volatilities. This indicates the 

level of correlations among stock volatility series varies quite a lot. However, 

correlations among the NIKKEI 500 stock volatility series do not vary that 

much in general. 

The results obtained here is quite different from the results obtained from 

the correlation analysis of stock returns in chapter 1. We can see that the 

summary statistics on average correlations we present in table 1 of this chapter 

are much smaller in value than those presented in table 2 of chapter 1, except 

statistics on standard deviation. These results simply reveal the fact that there 

are more correlations among stock return series than among the volatility series. 

It is because individual volatility series has more variation than individual 

return series, and thus it is less correlated with other volatility series in the 

dataset which also exhibit large amount of variation. 

3.2 Explanatory Power of Factor Estimates 

By implementing the four-step approach described in section 2.3, the first 10 

factors are extracted from the dataset of constituent stock volatilities of each 

of the five indexes. 

Table 2 shows the cumulative R2 of these factors. 6 Some clarifications need 

6 As we will see later the cumulative R2, computed via Factor Augmented Regression 
(FAR), is used here to give us an indication of the explanatory power of factor estimates 
in terms of average goodness of fit. However, if we use some other procedures, then K, the 
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to be made before we move on to the intrepretation of these statistics. In 

contrast to the statistics shown in table 3 of chapter 1, the cumulatiye R2 

here is computed from the factor model. They are the average coefficients 

of determination when K factors are included in the factor model. Factor 

Augmented Regression (FAR) is formed for the computation of these statistics.7 

That is, for each stock, we regress its volatility proxy on the factor estimates. 

We do this cumulatively for k = 1, . .. ,K. We then calculate the average R2 

across all fit and report it cumulatively for the first K factors and we set K = 10 

here. These statistics shows the average goodness of fit of the model when K 

factors are used. Whereas in table 3 of chapter 1, each value of the cumulative 

explained variation is computed by adding up the value ~ for k = 1" .. ,K, 

where Ak is the eigenvalue corresponds to the kth eigenvector. If all N extracted 
N 

principal components are considered, then 2: ~ = 1. Therefore, the difference 
k=l 

between each value with its preceding value in that table gives the amount of 

total variation explained by that principal component, i.e. ~. And ~ shows 

the relative importance of the kth principal component. Although the statistics 

in these two tables are computed in different ways, they are very heavily related 

due the fact that the conventional principal component analysis carried out in 

chapter 1 and the principal components method of Stock and Watson (2002a) 

applied in this chapter are statistical equivalent but the latter is more robust. 

optimal number of factors to be included in the factor models for our dataset can be found. 
For example, Bai and Ng (2002) develop a modification of standard Akaike Information 
Criteria as a decision rule of finding an appropriate number of factors. \Vhereas Kapetanios 
(2004) proposes a new method to estimate the number of factors in a factor model by adding 
factors to a series until no neglected factor structure is detected in the residuals from the 
factor analysis. His method shows better performance than the Bai and Ng (2002) approach 
\'ia Monte Carlo studies. 

7For details of FAR, see equation (16) of Chapter 3. 
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So, comparison between the two sets of statistics can still be made for this 

reason. 

We can see from the table that for KOS200, NIK225 and NIK500, the first 

factors have the highest values of cumulative R2. The first factor of KOS200 is 

the most powerful one among the five, 10.1% of variation for a total number of 

176 stocks can be explained when it is included in the factor model. When the 

first factor of NIK225 is used in the factor model, about 8.1 % of the variation 

can be explained for a total of 217 stocks. While for the first factor of NIK500, 

about 6.1% of the variation can be explained in the dataset of 481 stocks. 

Although they do not seem as powerful as the first factor of KOS200, they are 

quite good in general. We can then conclude that the first factor of KOS200, 

and that of NIK225 and NIK500 are the dominant factors for these datasets. 

Considering the first 10 factors from these three datasets, we can see additional 

factors only have marginal contribution to the explanatory power of the set 

of factors. These findings are quite similar to the results of the explanatory 

power of principal components we obtained in chapter 1. We also found large 

proportion of total variation being explained by the first principal components 

from the constituent stock returns of these three indexes. 

However, the same story does not apply to the factors of SING and HSCI 

stock volatilities. The first factor of SING stock volatilities can only explain 

5.3% of the variation for a dataset of 227 stocks when it is included in the factor 

model. This amount is quite low. An interesting finding appear to be the low 

explanatory power of the first factor from the HSCI dataset of volatilities as 

the model has the value of R2 equals to 1.7% only when it is included in the 
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factor model. However, we can see from table 2 that when its first three factors 

are used for modelling, the cumulative R2 increases a lot, with the third factor 

gives the largest contribution to the average fit. These results imply that for 

these two datasets, modelling the volatilities with only the first factor does not 

provide a good fit on average. 

;'\otice that although we find high average correlations in the HSCI volatil­

ities, but this does not mean modelling with only the first factor will result in 

good fit of the factor model. High average correlations does not mean good fit 

of the factor model. It only suggests possible factor structure in the dataset and 

the first factor embeds the majority of the variance. It is because according to 

the definition of principal components, the first factor is the linear combination 

that has maximum variance subject to a normalisation. Our finding shows the 

factor model may not be an appropriate specification for both HSCI and SING 

In our case. 

Moreover, high average correlation in a dataset suggests possible factor 

structure. This applies to our analysis no matter it is carry out via conventional 

principal component analysis as in chapter 1 or via the Stock and Watson 

(2002a) lllet hod as in chapter 2. High correlation implies powerful principal 

components in terms of accounting for variation. "\Ve expect the proportions of 

t()t al ,"ariation explained by the principal components are in descending order, 

meaning the first principal component explains the most due to the fact that 

majority of the variance from the dataset is in the first factor. This is proH'd 

in the analysis in chapter 1. 

III addition, attcntion should be paid to the amount of explained variation 
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for the first factor of the NIK225 dataset and that of the NIK500 dataset. 

We can see that having more stocks in the dataset does not strengthen, but 

weaken the explanatory power of the dominant factor. Boivin and Ng (2003) 

explain why using more series to estimate factors may not be desirable in factor 

analysis. Their studies show the resulting factor estimates from a dataset with 

more series added to it are only useful if the errors of factor estimates are 

i.i.d. It is because factor estimates may appear to have innovations that are 

heteroscedastic and cross-sectionally correlated. If more series from the same 

category are added to the dataset, average size of their common component 

will become smaller. Number of correlated innovations will increase as more 

series from the same category are included. As a result, the correlations among 

innovations may be too large for the factor estimates to remain consistent, 

making larger dataset not advantageous to factor analysis.8 In our case, the 

dominant factors of NIK225 and NIK550 are highly correlated with correlation 

coefficient equals 0.9527 and we have also seen that the errors of our factor 

estimates are serially correlated. Stocks in NIK225 are more representative 

than stocks in NIK500 and they are believed to have made a large contribution 

to the fluctuation in the Japanese market. NIK500 dataset contains both stocks 

in NIK225 and other stocks that are relatively less "important" in explaining 

the fluctuation. Including these relative less "important" stocks may generate 

noise and therefore, reduce the average size of common components, making 

the innovations more time and cross-sectionally dependent, and thus lower 

!!Principal components estimation method by Stock and Watson (2002) shows factors es­
timates are asymptotically consistent if innovations are stationary, factor loadings are trivial 
and idiosyncratic errors are weakly serial and cross-sectional correlated. See also Bai and Ng 
(2002) and Boivin and Ng (2003) 

128 



the explanatory power of the factor estimates. Our results here confirm the 

suggestion of Boivin and Kg (2003) and consistent \\'ith the findings in the 

Cipollini and Kapetanios (2005) paper. 

Our findings here shows that factor model may not be an appropriate spec­

ification for both SING and HSCI constituent stock volatilities. Therefore, 

follow-on examination of long memory in factor dynamics will be centered on 

the dominant factors of KOS200, KIK225 and NIK500. \Ve will also not carry 

out the examination of long memory on the third factor of HSCL It is because 

although including it into the model gives a better fit, less variance from the 

dataset is embedded in the third factor than in the first factor. Since our 

analysis ignored the first HSCI factor, we also ignored the third HSCI factor. 

3.3 Dynamics of Factor Estimates 

The first factor estimates from all five datasets of stock volatilities are plotted 

in Figure 1. If we compare these plots with the plots of the first principal 

components extracted from the datasets of returns in the last chapter, it is 

not difficult to see that the factors from the stock volatilities exhibit larger 

fluctuations than the principal components extracted from the stock returns. 

As a first step to understand the properties of factor estimates, the esti­

mated first factor for each dataset is regressed on a constant term plus i.i.d. 

disturbances to form a strict v,'hite noise process. \Yc then test for serial corre­

Ia t ion in the residuals and squared residuals. This is t he same as breaking our 

fact or ('st imates into a deterministic component (a constant) and a stochastic 
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component (the disturbance), this allows us to carry out residual tests, which in 

turn give us the idea of the temporal properties of our factor estimates. Table 3 

shows the computed Breusch-Godfrey serial correlation LM test statistics and 

Engle's ARCH LM test statistics, and the probabilities corresponding to these 

statistics9 • Clear rejections of no serial correlation are found for the residuals 

and squared residuals for all five factors at 5%. This indicates the estimated 

factor series have residuals and squared residuals that are serially correlated 

and they are clearly not i.i.d.. It also suggests the model underlying those 

common factors should incorporate these properties. 

3.3.1 Estimation of Autoregressive Models of Common Factors 

In the above section, we have already seen two important dynamic properties of 

the factor estimates for all of our five datasets, i.e. serial correlation in residuals 

and squared residuals. We now take a further step to examine more deeply into 

their dynamic characteristics. Based on the findings in section 3.2, we center 

our analysis on the dominant factors of KOS200, NIK225 and NIK500 datasets. 

The first factor of SING and that of HSCI are also investigated for comparison 

purpose. AR(p) representation of the following form is fitted into each of these 

estimated factor series 

95 lags are included in the auxiliary equations of both Breusch-Godfrey LM test and 
Engle's ARCH LM test. Auxiliary equation of Breusch-Godfrey LM test is 

et = ao + alet-l + a2et-2 + a3et-3 + a4.et-4. + a5e/.-5 

Auxiliary equation of Engle's ARCH LM test is 

e~ = /30 + /31eLl + /32eL2 + /33eL3 + /34.eL4. + /35eL5 
Both LM statistics have asymptotic X2 distribution under null hypothese of no serial 

correlation and no ARCH effect, respectively. 
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(17) 

where ik,t denotes factor k at time t, and (aI, ... , a p ) denote the AR co­

efficients. Table 4 reports the estimated AR coefficients, t-statistics and the 

corresponding probabilities for the factor estimates of the five datasetslo . Num­

ber of lags included in the above AR representation of the first factor series 

for each of the five datasets are chosen according to the Akaike Information 

Criterion (AIC) and the Schwartz Bayesian Criterion (SBC). Besides, AR(p) 

processes with highly insignificant coefficients are avoided. These selection cri­

teria lead us to choose AR representations with 7 lags for the dominant factors 

of KOS200, NIK225 and NIK500; but only 3 lags and 5 lags for SING and HSCI, 

respectively. It can be seen clearly that those factor estimates that appear to 

have stronger explanatory power are found to sustain an AR representation 

with longer lags. Empirical studies of financial time series have shown that 

volatility in stock return has extremely long memory. If a dominant factor is 

capable of representing the behaviour of the entire system of stock volatilities, 

it can also show persistence, and thus sustain a higher order AR process. The 

first factor of HSCI apparently does not persist. However, the dominant factors 

of KOS200, NIK225 and NIK500 seem to have obtained this characteristic. In 

the next section, we move on to examine the long memory nature of the factor 

estimates. We focus our analysis on the dominant factors of KOS200, NIK225 

laThe autoregression in equation (17) is known as Factor Augmented Regression (FAR). 
Using the statistical inference of principal component factor estimates developed by Bai and 
Ng (2006), hypothesis testing can be carried out. Further discussion on this issue will be 
presented in chapter 3 of this thesis. 
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and .\'IK500 datasets. We concentrate out the first factor of SIXG and that 

of HSCI due to the fact that they have low explanatory power since it implies 

t hat the factor models may be inappropriate specifications for them. 

3.3.2 Long Memory in Common Factors 

Long memory nature of the dominant factors of these three datascts is further 

confirmed by the persistence exists in their autocorrelations. Figures 2 to 

6 graph the autocorrelations of the factor estimates up to 200 lags. Time 

series with long memory should have autocorrelations that are persistently 

significant at long lags with a hyperbolic decay. When they are differenced, 

they appear to have the characteristics of alternating positive and negative 

autocorrelations out to long lags, which indicates the series has been over­

differenced. Autocorrelations of the dominant factors of KOS200, NIK225 and 

NIK500 shows persistence even up to 200 lags and they also exhibit a slow 

rate of decay. This is apparently an evidence of persistence. Autocorrelations 

of the first factor of HSCI however, does not show hyperbolic decay. Figures 

7 to 9 plot the autocorrelations of the first differenced dominant factors of 

KOS200, NIK225 and ?-JIK500 datasets. Their autocorrelations are alternating 

positively and negatively even up to 200 lags, meaning the estimated factor 

series are o\"er-differenced. 

Having observed this nature, we then move on to fit a Autoregressiye Frac­

tionally Integrated :Moving Average (ARFIMA(p,d,q)) process \vithout the 

moving an~rage terms to the series of the dominant factors of KOS200, ~IK22G 

alld \'IK500 only and we estimate the process by AJ\ILE. The number of lags 
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included in the ARFI process as in equation (13) of a dominant factor is once 

again determined by the AIC, which tell us that ARFI(l,d) should be chosen 

for all three dominant factors. Table 5 reports the estimated parameters, the 

standard errors and the computed 95% confidence interval of d for the ARFI 

specifications for these dominant factors. We can see from the results that the 

estimated d's lie between 0 and 0.5 for all three dominant factors. This is an 

indication of hyperbolic decay in their autocorrelations. Computed 95% confi­

dence intervals of our estimated d also lies within this range, showing evidence 

that the true d also lie between 0 and 0.5. Moreover, these values also lies be­

tween -0.5 and 0.5, meaning the ARFI(l,d) processes of these factor estimates 

are covariance stationary. 

There is quite strong evidence to show that the underlying process of dom­

inant factors of KOS200, NIK225 and NIK500 constituent stock volatilities 

should be the one that characterised with long memory. This finding is similar 

to the FIGARCH literatures. A dominant factor represents the common com­

ponent of a dataset of stochastic volatilities. Long memory in this common 

component means persistence can be found in all constituent stock volatilities 

in general. 

4 Concluding Remarks 

In this chapter, we have applied principal components estimation to the sto­

chastic volatility factor model to study the constituent stock volatilities of five 

Asian stock indexes. We have found evidence to show that the first factor of 
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KOSPI 200, NIKKEI 225 and NIKKEI 500 can account for a lot of variation 

in the dataset when they are used for modelling volatilities. But factor model 

may not be an appropriate specification for the HSCI and Singapore All Share 

Index stock volatilities. We have also provided empirical evidence to confirm 

that datasets with more series from the same category are not always desirable 

for factor analysis. Long memory characteristic is also detected in these factors. 

These findings provide an insight into empirical studies of common factors that 

contribute to Asian stock volatilities. 

It is worth mentioning that some studies show some long memory in finan­

cial time series may be caused by neglected structural breaks in the series, see 

for example, Granger and Hyung (2004). It may thus be interesting to further 

investigate the presence of structural breaks in common factors. 

It is obvious that the stochastic volatility factor model of Cipollini and 

Kapetanios (2004) is a single local-factor specification. Our analysis here also 

restricts to this local-factor settings. Given the empirical evidence of volatility 

transmission, it may be interesting to look at how common factor in stock 

volatilities extracted from one market impacts on stock volatilities in another 

market. An extension from their single local-factor model to a multi-factor 

model allows one to investigate on spillover effects. Forecasting exercise can also 

be carried out by using both a single local-factor and a multi-factor specification 

of stochastic volatility factor model. One should notice that this factor model is 

favourable for large dataset with many cross-sectional series. Further empirical 

in-sample and out-of-sample comparison between this factor model and other 
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factor volatility models that are also designed for large datasets, for example 

the orthogonal GARCH model discussed in chapter 1, may bring insight into 

appropriate model selection for large financial dataset in the context of factor 

analysis. 

The empirical analysis in this chapter and chapter 1 is on an in-sample basis. 

In the next chapter, we will focus on evaluating the empirical performance of 

the orthogonal GARCH model and the stochastic volatility factor models in 

predicting volatility. We will also discuss an extension of the single local­

factor model into a multi-factor model. Testing of factor significance using the 

asymptotic results of principal component factor estimates developed by Bai 

and Ng (2006) will be performed in the selection of factors in the multi-factor 

models. 
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5 Tables and Figures 

Table 1: Descriptive statistics of average correlations of daily volatilities 

SING HSCI KOS200 NIK225 NIK500 

Max. of average correlations 0.0904 0.1185 0.1429 0.1168 0.1037 

Min. of average correlations -0.0136 0.0048 0.0266 0.0350 -0.0267 

Median of average correlations 0.0511 0.0676 0.0904 0.0717 0.0545 

Mean of average correlations 0.040 0.0662 0.0896 0.0734 0.0547 

S.D. of average correlations 0.0174 0.0243 0.0239 0.0171 0.0150 
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Table 2: Cumulative R2 for the first 10 

factor estimates of the five datasets 

~o. of factors SING HSCI KOS200 NIK225 NIK500 

1 0.053 0.017 0.101 0.081 0.061 

2 0.109 0.032 0.115 0.096 0.071 

3 0.124 0.092 0.122 0.111 0.083 

4 0.135 0.101 0.131 0.121 0.088 

5 0.141 0.112 0.143 0.133 0.094 

6 0.152 0.123 0.152 0.141 0.101 

7 0.159 0.134 0.162 0.149 0.105 

8 0.165 0.143 0.171 0.156 0.111 

9 0.171 0.152 0.181 0.163 0.115 

10 0.177 0.162 0.189 0.170 0.120 
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Table 3: Breusch-Godfrey LM test statistics and i 

Engle's ARCH LM test statistics 
I 

SING HSCI KOS200 XIK225 KIK500 

B-G LI\I test 483.08 32.74 305.06 210.14 284.21 

[0.000] [0.000] [0.000] [0.000] [0.000] 

ARCH LM test 81.78 21.52 82.99 77.74 88.18 

[0.000] [0.001] [0.000] [0.000] [0.000] 

Note: Both LM statistics are asymptotically X2 distributed with 5 degree of 

freedom. Probabilities are reported in brackets. 
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Table 4: 

AR representations of the first factor estimates of the five datasets 

AR coeff. SING HSCI KOS200 NIK225 NIK500 

al 0.334 0.113 0.149 0.076 0.119 

{11.59} {3.786} { 4.970} {2.561} {3.991 } 

a2 0.119 -0.05 0.235 0.161 0.187 

{3.914} {-1.683} {7.779} {5.369} {6.238} 

a3 0.126 0.119 0.118 0.150 0.176 

{4.164} {4.001 } {3.804} { 4.981} {5.798} 

a4 0.072 0.061 0.044 0.025 

{2.382} {1.959} {1.452} {0.840} 

a5 0.151 0.044 0.131 0.106 

{5.264} {1.446} { 4.360} {3.478} 

a6 0.088 0.050 0.039 

{2.926} {1.677} {1.288} 

a7 0.062 0.079 0.087 

{2.071} {2.653} {2.926} 

Max. abs. eigenvalue 0.918 0.50 0.920 0.908 0.918 

Note: t-statistics are reported in curly parentheses. 
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Table 5: ARFI(l,d) specifications for the dominant factors of 

KOSPI, NIK225 and NIK500 
, 

KOS200 NIK225 NIK550 
A 

¢l 0.5177 0.3181 0.4181 

d 0.2677 0.1492 0.1831 

Standard error of ¢l 0.0370 0.0499 0.0452 

Standard error of d 0.0411 0.0493 0.0489 

95% C.l. of d [0.1871, 0.3493] [0.0514, 0.2470] [0.0873, 0.2789] 

Standard error of residuals 0.0256 0.0295 0.0287 
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Figure 2 : Plots of the firs t factors 
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Autocorrelations of NIK500 first factor 
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Figure 5: Autocorr lations of NIK500 first factor 
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Figure 6: Autocorrelations of SING first factor 
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Autocorrelations of factor 1 of NIK225 (first 
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Chapter 3 

Forecasting Stock Volatility: Stochastic 

Volatility Factor Models versus Orthogonal 

GARCH Model 

1 Introduction 

Forecasting volatility is a crucial exercise in the study of financial and macro­

economic time series. Various volatility models have been proposed and the 

topic has attracted a lot of attentions from not only academics, policy makers 

and financial researchers, but also international investors. According to a sur­

H'y paper by Po on and Granger (2003), at the time of the production of their 

survey, at least 93 papers regarding volatility forecasting have been published. 

this number does not include the number of working papers that have already 

be(,ll produced at that time. ,Yo can also see an extensiye amount of research 

in \'olat ility forecasting continue to be carried out after then. 
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As aforementioned in the previous chapters, volatility models can be classi­

fied into two main categories: the stochastic volatility models and the GARCH 

family models. The two types of models differ from each other in different as­

pects. First of all, in terms of specifying the conditional volatility, time varying 

volatility is captured by allowing the conditional volatility to be a function of 

past squared unexpected returns and past variances in GARCH models. Con­

ditional volatility is driven by the same shocks as its conditional mean. It 

evolves over time via an autoregressive moving average process with the au­

toregressive terms being the past volatility and the moving average term being 

the past squared shocks to the time series. In stochastic volatility modelling, 

an unobserved variance component is included in the model and a linear sto­

chastic process is used for modelling of this unobserved variance component. 

Current volatility is subject to an additional contemporaneous shock, which 

has an impact on the logarithm of current volatility. 

Secondly, comparing the univariate GARCH(l,l) model with the univari­

ate stochastic volatility model, the former has been criticised for not capable 

of capturing excess kurtosis in financial time series completely. Finally, max­

imum likelihood estimation of univariate GARCH model is straight forward. 

Conditional distribution of the shock on past history can be derived easily 

in univariate GARCH model. Therefore, the likelihood function can be con­

structed with ease. However, estimation of stochastic volatility model is less 

straight forward; It is because the conditional distribution of the shock on past 

history can not be described explicitly; due to the fact that the conditional 

volatility is unobserved and past information on the time series cannot help 
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in the derivation. Therefore, making standard maximum likelihood estimation 

not favourable for the estimation of stochastic volatility model. Various es­

timation procedures have thus been developed. These procedures have been 

outlined in chapter 2. 

Further developments of the two types of models inyolve more complex 

specifications of the conditional variance and also an extension of the models 

into multivariate settings. However, in facing with large datasets, the conven­

tional multivariate versions of both models encounter several constraints. In 

the past two chapters, we have already looked at the advanced generalisations 

of these two types of models - the orthogonal G ARCH model of Alexander 

(2001a, b) and the stochastic volatility factor model of Cipollini and Kapetan­

ios (2005). They are designed to allow for effective estimation and computation 

when working with large datasets and at the same time resolve constraints faced 

by conventional multivariate GARCH and stochastic volatility models. In the 

next subsection, we provide a comparison of the two factor volatility models in 

several aspects. 

1.1 Orthogonal GARCH Model and Stochastic Volatil-

ity Factor Model - A Comparison 

A rPlllarkable attribute of both· the orthogonal GAReH and the stochastic 

\"olatility factor models is the ease of factors or principal component:-; ('sti­

Illation. Principal component analy:-ds is the basic frame\vork of both models. 

C()IllOH'IllCllts \\"ithin a large dataset are summarised by a few principal compo­

llellts (in orthogonal GARCH) or common factors (in stochastic yolatilit:v factor 
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model) and thus reduction in dimensionality can be easily achieved. Both mod­

els are ideal for applications to and analysis with large datasets that contain a 

lot of cross-sectional time series. However, although the two models are both 

ideal for large datasets and involve the adoption of principal components. They 

are clearly different in various aspects. 

First of all, in terms of the estimation of principal components, orthogonal 

GARCH model is constructed by extracting principal components from a sys­

tem of financial time series. In our analysis, this is a system of stock return 

series. Common variation in the dataset is thus represented by a few princi­

pal components. In contrast to the orthogonal GARCH model, the stochastic 

volatility model is constructed by applying principal components to a dataset 

of financial volatilities. In our analysis, this is a system of stock volatilities. 

Common factors are estimated via principal components method of Stock and 

Watson (2002a). 

Secondly, in terms of modelling volatility, an univariate GARCH(l,l) is the 

underlying process of the conditional volatility of each of the extracted prin­

cipal components in orthogonal GARCH model. Volatility and covariances of 

the series in the original system of financial time series are approximated by the 

variance-covariance matrix of the chosen principal components multiplied by 

the squared of the factor weights. Accuracy of this approximation depends on 

the level of correlations among the data series. Whereas in stochastic volatil­

ity factor model, common factors summarise comovements in the system of 

volatilities and are modelled by long memory processes. 

Finally, the models are different in terms of accounting for idiosyncratic 
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characteristics of the individual financial time series in a dataset. In orthogo­

nal GARCH modelling, although the squared of the idiosyncratic part of each 

chosen principal components in its conditional mean goes into its conditional 

variance equation in the univariate GARCH(l,l). The idiosyncratic part of 

the original system which is not approximated by the chosen principal compo­

nents are left out of the model. This has made the performance of orthogonal 

GARCH model highly depends on how good the principal components are in 

capturing variation in the dataset. In the case of weakly correlated system, 

a large number of principal components will be needed for accounting a large 

amount of total variation. However, using a large number of principal com­

ponents is not desirable. It is because this will result in unstable correlation 

estimates and the volatility estimates will also be less robust since extraneous 

noise in the less important principal components gets into the model. As a 

result, causing problem of misspecification as we have already seen from the 

empirical analysis in chapter 1. When a small number of principal components 

are used, the volatility approximation becomes weak. As a result, it will weaken 

the power of the orthogonal GARCH model. 

In contrast, stochastic volatility factor model does not have this shortcom­

ing. It is because the idiosyncratic part of individual stochastic volatility that 

is not captured or approximated by the common component is modelled by a 

state-space representation. So even though the series in a dataset is not very 

highly correlated and thus not a lot of common variation can be captured by the 

factors included in the model, the "larger" idiosyncratic part will still be taken 

into account for modelling. When the stochastic volatility factor model is used 
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for forecasting volatility, idiosyncratic volatility forecast has also made contri­

bution to the formation of an overall volatility forecast for individual financial 

asset in the dataset. This ability of capturing idiosyncratic characteristics has 

made the stochastic volatility factor model relatively flexible. 

The aim of this chapter is to provide an evaluation of the volatility forecast­

ing performance of the orthogonal GARCH model and the stochastic volatility 

factor models. In the consideration of volatility transmission, we also propose 

an extension of the stochastic volatility factor model to several multi-factor 

specifications which allow overseas factors to play roles in the determination of 

local market stock volatilities. We also recommend a procedure in selecting an 

appropriate multi-factor specification for local stock volatilities. 

This chapter is organised as follow. Section 2 provides a discussion of the or­

thogonal GARCH model and the stochastic volatility factor model. We propose 

an extension of the single local-factor stochastic volatility model of Cipollini 

and Kapetanios (2005) into a multi-factor specification to allow for informa­

tion transmission of common component in stochastic volatility among stock 

markets. Various multi-factor specifications are presented. We also discussed 

an application of the asymptotic results developed by Bai and Ng (2006) for 

testing factor significance. This can provide an indication of the choice of an 

appropriate multi-factor specification for a local market. Forecasting method­

ology is discussed in section 3. Section 4 provides an outline of the statistics 

adopted in our evaluation of out-of-sample forecasting performance of the factor 

volatility models. Empirical results are analysed in section 5. We examine both 

the in-sample and out-of-sample performance of the factor volatility models. 
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Section 6 concludes. 

2 The Models 

This section provides a review of the forecasting models ,ye use for forecasting 

Asian stock volatilities. As well as revising the stochastic volatility factor 

model, we will look at the specification of the idiosyncratic part of individual 

stock volatility in the stochastic volatility factor model as suggested by Cipollini 

and Kapetanios (2005). To further develop the factor model, we ,,,,ill propose 

an extension of the original stochastic volatility factor model that contains 

only a local factor into a multi-factor specification that is believed to be more 

applicable to empirical situation. Moreover, we also consider how to determine 

which factors should enter into the multi-factor specification for a particular 

market. 

2.1 Stochastic Volatility Factor Models 

2.1.1 The Single Local-Factor Specification - A Revision 

In the paper by Harvey, Ruiz and Shephard (1994), they propose a multi­

\'rtriate stochastic volatility model. This model is a better alternati,'c to the 

multivariate GARCH models for modelling financial time series featured ,vith 

tinH'-varvill O volatility. Consider there are JV stocks in a dataset. ~Iultiyariate 
. b " 

st odw:-;tic volatility model of daily stock returns takes the follov,'ing form 

, ( ( )) 1/2 Yi,t = /li,t exp hi,t (1) 
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where Yi,t denotes the daily return of stock i at time t, and i = 1"", Nand 

t = 1,' . " T. So, Yt is a N-dimensional vector of stock return, i.e. Yt = (Yl,t, .. 

" YN,T)'. Ut = (Ul,t,' . " UN,T)' is a multivariate normal vector of disturbances 

with zero mean and variance-covariance matrix~. ~ has diagonal elements of 

ones and off-diagonal elements Pi t· Applying logarithmic transformation to , 

equation (1), it becomes 

(2) 

where Yi,t denotes In(yl,t) , ai denotes E(ln(ut,t)) , (i,t denotes In(ut,t) -

E(ln(ut t )). Harveyet. al. (1994) make two suggestions to model the logarithm , 

of the unobserved variance, hi,t. They suggest that it can either be modelled 

by a multivariate random walk, or to incorporate common factors into the sto-

chastic volatility model, i.e. the N x 1 vector of unobserved variance, ht = () it, 

where it is a K-dimensional vector of common factor, it = (il,t,'" ,fK,t)'. 

They estimate this model using Kalman filter and assume normality for Ut. 

However, both suggestions have limitations on the nature of the underlying 

processes of the unobserved variance and the common factors. Thus, if com-

mon factors have more complex temporal features, their model will become 

insufficient. Moreover, estimation via Kalman filter is not ideal when dealing 

with datasets with very large dimensions. 

Cipollini and Kapetanios (2005) propose a generalisation to the stochas­

tic volatility model, the stochastic volatility factor model, that improves the 

shortcomings of the state-space version mentioned above. In their factor model, 

unobserved variance ht features a common component and a disturbance that 
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is unique to each individual stock. That is, 

, 
hit = (J. It + '11. t , 1.Ji 'I?, (3) 

substituting equation (3) into (2) gives us the stochastic volatility factor 

model 

'" , 
Yi,t = ai + (Jilt + Wi,t (4) 

where Wi,t = TJi,t + (i,t is the idiosyncratic volatility of stock i. It can be 

seen from equation (4) that the logarithmic of squared daily return is used as a 

proxy for daily volatility. Principal components of Stock and Watson (2002a) 

is suggested for factor estimation of this model. Moreover, we can also see 

from equation (4) that stochastic volatility of individual stock is made up of 
, 

two components, a common component (Jilt, and an idiosyncratic component, 

Common component constitutes the part of stock volatility that has been 

caused by some common driving forces which induce fluctuations in returns on 

all stocks in the dataset. In other words, it is the contribution to individual 

stock volatility made by market fluctuations. The idiosyncratic component, 

on the other hand, summarises the part of stochastic volatility that is mainly 

caused by some other factors that is unique to individual stocks. Compar­

ing the original stochastic volatility model with the stochastic volatility factor 

model, it is not difficult to see that the latter is far more flexible than the 

former as it allows both the factor estimates and the idiosyncratic shocks to 

be driven by more complicated underlying processes that best describe their 

158 



empirical temporal properties. Thus, the dynamics of financial volatility can 

be best captured. Moreover, no extra assumptions, in addition to those re­

quired by principal component estimation, are required for the factor model to 

provide consistent factor estimates. All these advantages make the stochastic 

volatility factor model easy to use, more applicable to empirical situation and 

very tractable. 

It is worth mentioning that in the studies of the Standard and Poor stock 

volatilities by Cipollini and Kapetanios (2005), the common factor in their fac­

tor model is the dominant factor of the local US market. Being the world lead­

ing stock market, it is not surprising to find that the US local dominant factor 

contains sufficient information to provide a good forecast for stock volatilities in 

its own market. However, when our interest is to concern stock markets around 

the world, whether a single local dominant factor contains enough information 

for modelling stock volatilities in a local market is uncertain. We will leave a 

further discussion of this issue in the next section. We now move on to look at 

the specifications of the common factor and the idiosyncratic volatility. 

The Common Factors Dynamics of common factors have already been dis­

cussed in the last chapter. Let us have a revision here. We have already seen 

from equation (4) that individual stock volatilitY'contains the common compo­

nent that involves the common factor, and the idiosyncratic component that 

represents the part of fluctuations in return that is unique to the stock. To 

obtain the common factors from stock volatilities, Cipollini and Kapetanios 

(2005) suggest the principal components method of Stock and Watson (2002a). 

Extending the results of Bai (2003), they point out that this estimation method 
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can still provide consistent factor estimates if the factor process is a stationary 

long memory Fractionally Integrated Autoregressive Moving Average process 

(ARFIMA(p,d,q)) with shocks that have finite fourth moment. Their Monte 

Carlo analysis shows that this factor estimation method performs well in esti­

mating their factor model. An appropriate specification for the factor estimates 

can be obtained by carefully examining the time properties of the factor esti-

mates. It is well-known that financial time series have long memory and this 

is evident by many existing empirical literatures. If common factor is able to 

represents comovements in stock volatilities then the common factor should 

also have long memory. This claim is first proved by Cipollini and Kapetanios 

(2005). They suggest factor estimates follows an ARFIMA(p,d,q) process that 

takes the following form 

(5) 

where <I> (L) and W (L) are lag polynomials and the roots of <I> (L) lie outside 

the unit circle. Et is a white noise process with variance (72. The fractional 

difference is defined as 

and 

00 

(1 - L)d = ~ 7rj(d)Lj 
j=O 

k r(d + 1) 
7rj(d) = (-1) r(j + l)r(d - j + 1) 

(6) 

(7) 

where r(·) denotes the gamma function. The ARFIMA(p,d,q) process is 
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covariance stationary when the value of the fractional differencing operator d 

lies between -0.5 and 0.5. For 0 < d < 0.5, it exhibits long memory and its au­

tocorrelations show persistence. For simplicity, we drop out the moving average 

terms in equation (5) in our empirical analysis, and thus we assume the common 

factor follow only an ARFI(p,d) process. We adopt the Approximate Maximum 

Likelihood estimation (AMLE) of Beran (1995) (see also Conditional sum of 

Square estimator (CSS) by Chung and Baillie (1993)) to estimate ARFI(p,d) 

process of the factor. 

Notice that persistence does exist in a dominant factor, that is the first 

factor that corresponds to the highest eigenvalue of matrix YY', where Y is 

a T x N matrix of stock volatilities. This can also be seen from our analysis 

of Asian factors in the previous chapter. However, persistence may not always 

exist in additional factors. This can be seen later in our empirical analysis. 

When long memory is absent from an additional factor that is also proved 

significant in explaining stock volatility, an autoregressive process (AR(p)) is 

recommended. 

The Idiosyncratic Stochastic Volatility Our discussion so far has only 

focused on the dynamics and the underlying process of the common factor and 

little have been said about the idiosyncratic volatility, Wi,t. In order to con­

struct the factor model, a specification of the idiosyncratic volatility is required. 

The idiosyncratic stochastic volatility of a particular stock i is obtained by sub­

tracting the common component from the stochastic volatility. Cipollini and 

Kapetanios (2005) recommend an univariate state-space model as the under­

lying process of this idiosyncratic component. In a state-space representation, 
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idiosyncratic volatility of stock i is assumed to be driven by some unobserved 

forces that are summarised by the state vector. That is, 

'TJi,t 

(8) 

(9) 

where C,t rv N(O, qi), K,i,t rv N(O, 1), and 'TJi,O rv N(ao,po). 'TJi,O is the initial 

state of stock i and it has mean equals 0.0 and variance equals Po. 

Equation (8) is known as the measurement equation. Wi,t is the idiosyn­

cratic volatility of stock i at time t. 'TJi t is known as the state. (i t is serially , , 

uncorrelated disturbances with mean zero and variance qi. 'TJi t is unobservable , 

in general. It is generated by a first-order Markov process as in equation (9), 

which is known as the transition equation. K,i,t is the serially uncorrelated dis­

turbance with zero mean and we assume it has unit variance, i.e. E(K,t t) = l. , 

We also assume that 0.0 = E('TJi,O) = ° and Po = E('TJt,o) = 1:>'~· 'Yi' Ai, and qi 
• 

are the hyperparameters of the above univariate state-space model, which are 

estimated via prediction error decomposition by Gaussian maximum likelihood 

using Kalman filter. Harvey, Ruiz and Shephard (1994) show in their paper 

that Gaussian maximum likelihood can provide consistent estimates.1 

Notice that in their study of Standard and Poor 500 constituent stock 

volatilities, Cipollini and Kapetanios (2005) use only the dominant factor ex­

tracted from this dataset to forecast US stock volatilities. Therefore, their 

1 Further discussion on normality assumption in state-space model can be found in, chapter 
3 of Harvey (1990). 
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model in the form of equation (4) is actually a single local-factor model spec­

ification. Their findings show that the volatility forecasts by the single local­

factor stochastic volatility factor model outperforms the forecasts produced by 

some other time series models. Since the US market is the world leading mar­

ket, its local fluctuations have a lot more significant impact on other markets 

in the world than the fluctuations in those markets have on it. Therefore, it is 

sensible to regard the US local dominant factor as the global barometer of stock 

volatility and thus to consider its local factor being strong enough in explaining 

stock volatilities of its own market. However, whether the single local dominant 

factor of other stock markets in the world also contains enough information to 

produce accurate volatility forecasts for their O"wn markets remains a question. 

Moreover, local-factor model only allows the study of comovements within the 

dataset of volatilities in a local market, it does not allow for study of linkages 

among different markets. YVith these concerns in mind, we propose an ex­

tension of the single local-factor model to a multi-factor specification, namely 

multi-factor stochastic volatility factor model. YVe suggest various specifica­

tions of this multi-factor model for the investigation of the impacts of overseas 

factors on local market stock volatilities. 

2.1.2 The Multi-factor Specifications (MSVF) - An Extension 

A lot of empirical studies provide evidence of volatility transmission and in­

terdependence among financial markets. Some studies show significallt stock 

volatility spillovers from US and Japanese markets to some Asian markets. (see 

E'.g. )Jg (2000). and l\liyakoshi (2003)). Other ~tudies shO\\· \'olatility trans­

mission and ('ausalit~; among some Asian market~ (see e.g. In, I\:illl. Yooh and 
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Viney (2001), and So, Lam and Li (1997)). Linkages among Asian stock mar­

kets and financial markets around the world can also be seen from the impacts 

of extreme events on stock markets. Based on these empirical evidence, we 

believe if there exists volatility spillovers, then dominant factor in a foreign 

market that summarises the common movement in its stock volatilities should 

impact on the stock volatilities of a local market. Therefore, by introducing the 

common factors of the foreign market into the factor volatility model for this 

local market should increase the model's goodness of fit and thus, strengthen 

the forecasting power of the model. This brings about an idea of extending a 

single local-factor model into a multi-factor model. The remaining question we 

are facing now is what factors, other than the local factor, should be included 

in the volatility model of a local market? 

Although our empirical analysis in this chapter focuses on only the Japanese 

and Korean markets, the discussion of the multi-factor models here applies to all 

stock markets in general. According to existing empirical evidence, we believe 

that apart from a local dominant factor, three other types of factors should 

also play essential roles in explaining stock return volatility. These factors are, 

first of all, a US factors that summarise the common driving forces of stock 

volatility in the US market. Regional leading factors that describe the common 

fluctuation in stock returns of a leading market of the region. Finally, regional 

factors that are extracted using data of constituent stocks of all representative 

indexes of the markets in the same region, except the regional leading factor. 

We also consider the situation that more than one local factor may be needed 

for modelling and forecasting local market stock volatilities. 
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Our forecasting exercise in this chapter has been carried out for only the 

South Korean and Japanese markets. When the analysis will be further ex­

tended to cover the entire Asian region, we suggest the followings: to obtain 

the three types of common factors explained above, principal component est i-

mation will be applied to extract the US factors from a dataset of US stock 

volatilities. Regional leading factors are represented by the factors of Japanese 

market and these factors are extracted from the Japanese stock volatilities. 

The regional factors are to be extracted from the constituent stock volatilities 

of all representative indexes of the markets in the Asian region, except those in 

the regional leading index. The regional factors describe the common variation 

in stock volatilities in the region except the regional leading market. Stock 

returns in the regional leading market are not included in the dataset for ex-

tracting the regional factor because we want to see how much comovements in 

stock volatilities of the entire region as a whole can contribute to the volatil-

ity forecasts for a local market, without the impact of the stock volatilities of 

the leading market.2 Moreover, since we are introducing the common factors 

from a leading market as regional leading factors, we have already singled out 

and emphasized the importance of stock return fluctuations in this market in 

determining local market stock volatilities. 

Following the above argument, we propose an extension to the original single 

local-factor stochastic volatility factor model, that is, the multi-factor models. 

Consider the following multi-factor stochastic volatility factor model 

2This can of course be verified to include regional leading market stock returns in the 
dataset if one is more interested in examining the contribution of common variations in 
stock returns in all markets of the region. 
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(10) 

rvL rv ,......,; I 

where Yt = (YI,t,···, YN,t) is a N x 1 vector oflocal market stock yolatility. 

"Y denotes the number of constituent stocks of a particular index. e is a X x R 

matrix of factor loadings. Wt is a N x 1 vector of idiosyncratic volatilities. Lv't = 

(WI,t,· .. , WN,t)', and this is obtained after the common component is removed 

from the stochastic volatilities. fr is a R-dimensional vector of factors. Xotice 

t hat the dimension of vector fr (and also, e) depends on the number of factors 

we include in our multi-factor model. 

Let fF, fFs , ftR , and ftRL denote K(j)-dimensional vectors of local factors, 

US factors, regional factors, and regional leading factors, respectively. \Yith 

KU) < R, j = L, US, R, RL, and the value of I{U) depends on how many 

of each types of these factors are proved significant in modelling local market 

volatility. We will discuss the testing of factor significance later in this chapter. 

gL, gUS, gR and gRL are the matrices of their corresponding factor loadings. 

We consider the following 5 specifications of a multi-factor model in equation 

(10). 

IIIodification 1: Local - Regional Leading factor model (L-RL) 

Stock volatilities of a local market depends on its local factors, and the 

factors from a leading market of the region. 

f/l = (fF, ftRL )' and e = (e L
, gRL) i.e. 
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Modification 2: Local - US factor model (L- US) 

Factors from the local market and the US market are used to explain local 

market stock volatilities. 

(12) 

Modification 3: Local - Regional Leading - US factor model (L-RL-US) 

This model assumes the local factors, together with the regional leading 

factors and the US factors, are all crucial determinants of local stock volatilities. 

f M - (JL JRL JUS)' and (j = ((jL (jRL (jus) The model becomes t - t, t 't , , . 

(13) 

Modification 4: Local-Regional-US factor model (L-R-US) 

This model considers the local factors, the regional factors, and the US 

factors being significant in explaining local volatilities. The impact of the 

regional leading market is ruled out. 

In this case, ftM = (fF, ftR, fFs ), and (j = ((jL, (jR, (jus). 

(14) 

Modification 5: Local-Regional Leading-Regional-US factor model (L-RL-R-

US) 

In this specification, all common factors are concerned. 
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(15) 

There is a reason for not simply to take a model that includes all US, re­

gional, regional leading factors, but to concern different specifications of the 

multi-factor model. Although some studies of financial contagion have shown 

intra-regional contagion effects in the Asian financial markets e.g. Masih and 

Masih (1999), there are also some studies which show no support for conta­

gion among some markets during some periods e.g. Khalid and Kawai (2003). 

Therefore, we do not want to rule out the possibility that a factor may be 

an important determinant of stock volatilities in some markets, but not in 

some other markets. Notice that these specifications can be further extended 

by including lagged factors. By doing so, it will allow us to study for causal 

relationships among international stock markets. 

Estimation of the multi-factor model is straight forward and this is in the 

same manner as the estimation of the single local-factor model. We estimate 

each type of the common factors using principal components. Once we obtain 

the factor estimates, we remove them from the stochastic volatility of each 

stock in the dataset and what we are left with is the idiosyncratic stochastic 

volatility. 

Similar to the single local-factor model, all common factors in the multi­

factor stochastic volatility factor model may have a long memory underlying 

process. We model all the factors that exhibit long memory with ARFIMA(p,d,q) 
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processes. For those common factors that do not have long memory, we model 

them with an AR(p) process. Idiosyncratic component is the part of stochastic 

volatility that is unique to each individual stock. Analogous to the local-factor 

volatility model, this is caused by some driving force with unknown form. And 

thus, it will also be modelled by a state-space representation. 

2.1.3 Testing for Factor Significance 

When our interest is to examine how overseas factors impact on stock volatilities 

in a local market, and thus intend to use a multi-factor model, the next task is 

to decide on an appropriate specification. That is, which of the specifications in 

equation (11) to (15) should be chosen? The questions we need to answer here, 

are (1) are the chosen common factors significant in explaining local market 

stock volatilities? (2) Is the model including the selected factors strong enough 

to explain local market volatilities and thus to be used for forecasting? It is 

important to know how significant those factors are because this will give us 

an idea of whether our dataset of stock volatilities support a single local-factor 

or a multi-factor stochastic volatility factor models. If it is the latter that is 

needed, then how many of the local factors, regional leading factors and US 

factors should be included. 

Answer to the first question can be easily drawn by carrying out test for 

significance on common factors. However, no existing literatures about factor 

models seem to have carried out a significance test on common factor. The 

reason behind is that factors are estimated rather than observed, statistical test 

for significance on factors cannot be carried out without some well-developed 
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statistical inferences on factor estimates and the parameters in those factor 

models. Until recently, Bai and Ng (2006) have made a remarkable contribution 

to this issue by carrying out a detailed study on statistical inference of principal 

components factor estimates via the use of factor-augmented regression. 

Bai and Ng (2006) show that under some general assumptions, least square 

estimates of the above factor-augmented regression are asymptotically normal 

and .JT consistent if l' tends to O. They also show that in the setting of factor-

augmented regression for a given T, a large N, the number of series that are 

used for factor estimation, enables precise factor estimation. Thus, estimation 

errors can be ignored and the cost of having to estimate the factor is negligible. 

Moreover, consistency of parameter estimates is not affected by the fact that 

factor is estimated rather than observed as both T and N tend to infinity 

(see also Bai and Ng (2002)). These results still apply under the conditions of 

heteroscedasticity and cross-sectional dependence in the idiosyncratic shocks. 

Given these results, we can carry out significance tests on our factor estimates in 

the context of factor-augmented regression. We apply the inferences they have 

developed and we use least squares parameter estimates of factor-augmented 

regression to compute the test statistics. 

Suppose there are N stocks in a dataset, consider the following factor-

augmented regression 

~ '{3' Y i,t = C + a it + A1t + ei,t (16) 

where i = 1 ... Nand t = 1 .. " T. Y~' t denotes volatility of stock i 
" , t, 

at time t that is computed by applying standard logarithmic transformation 
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to daily return of stock i. it is a K -dimensional vector of common factors, 

It = (/l,t,· .. , IK,t). Common factors contained in matrix It is estimated from 
rv 

the (T x N) dataset of stochastic volatilities, Y, using principal components. 

c is a constant. a and f3 are vectors of least squares estimated coefficients of 

the common factors, It, and M t is a set of other observable variables. ei t is the , 

disturbance. Notice that in our empirical study, matrix M t is not considered. 

In the Monte Carlo study by Bai and Ng (2006), confidence intervals of 

estimated conditional mean is computed using their Cross-section and het­

eroscedastic autocorrelation consistent (CS-HAC) covariance matrix estimator. 

Factor-augmented regression is used as a forecasting model with different cho­

sen combinations of Nand T. Their results show that when idiosyncratic errors 

are heteroscedastic and cross-sectionally correlated, the coverage rate for con-

ditional mean is the highest when N = 100 and T = 400. While the coverage 

rate for forecasting variable is found the highest when N = 100 and T = 400, 

and when N = 100 and T = 200. High coverage rate suggests more robust con-

fidence interval in general. When computing confidence interval, error variance 

in the prediction of conditional mean is needed. This variance has two parts -

asymptotic variance of factor estimates and asymptotic variance of parameter 

estimates. Factor estimation error will be small due to precise factor estimation 

if N is sufficiently large. Variance of factor and error variance in prediction of 

conditional mean will then be small. As a results, narrower confidence interval 

will be found and high coverage rate is resulted over repeated sample. To sum 

up, when the conditions (1) ~ tends to 0, and (2) large N are met, robustness 

of confidence interval is ensured. This allows high coverage rate which in turn, 
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indicates consistent parameter and precise factor estimates. 

As we will see later in our empirical results in section 5 that the -: ratios of 

our Korean and Japanese datasets are quite close to the one they have chosen 

and we have a larger N. Consistency in parameter estimates and precise 

estimation of factor should also be obtained in our study. The asymptotic 

results they develop should thus be applicable to our analysis and allow us 

to perform test for significance on factor estimates. We use their results in 

this chapter for the determination of the number of common factors to be 

included in our multi-factor model. The following procedure will be taken for 

the selection of common factors. We first fit a factor-augmented regression into 

the stochastic volatility of every stock in each dataset, that is, we will estimate 

N factor-augmented regressions in total via least squares method. By applying 

their asymptotic theory, we compute t-statistics to test for factors significance 

in everyone of these N regressions. We then move on to check how many times 

a common factor is found significant out of N models. This will give us an idea 

of how powerful this factor is in general. 

In answering the second question stated at the beginning of this subsection, 

we believe the statistics that can provide us with the ideas of goodness of fit 

will be good indicators for selecting an appropriate specification. In order to 

determine which specification is appropriate for a local market, we estimate all 

five specifications using data of this market in the estimation sample. Then for 

each specification, we compute the adjusted R2 for each stock in the dataset 

of a local market. We then move on to compare the average adjusted R2 over 

all stocks between the five specifications and the one of the local-factor model. 
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The model that gives us highest average adjusted R2 is preferable. Comparing 

adjusted R2allows us to pick the specification that is most appropriate to the 

local market of interest, at the same time account for loss in degree of freedom 

due to the addition of extra factors into the model. Another advantage of doing 

this is there will be less time consumption for a forecasting exercise. Instead 

of forecasting volatility by everyone of the above specifications as shown in 

equations (11) to (15) for every local market we consider, we use only the 

one which best describes stocks volatility of that market. We then compare 

it with the forecasting performance of a local factor model and that of the 

other volatility models. In our exercise, we compare their performance with 

the orthogonal GARCH model. The set-up of the orthogonal GARCH model 

is reviewed in the next subsection. 

2.2 Orthogonal GARCH model 

Orthogonal GARCH model is a comparable factor volatility model to the sto­

chastic volatility factor models. We have once looked at the model in chapter 

1 and a comparison between the two models have been given at the beginning 

of this chapter. We now have a revision of the orthogonal GARCH model here. 

Let X represents the T x N matrix of normalised dataset of stock return 

series and each column of this matrix has mean 0 and variance 1. Matrix X' X 

is a N x N symmetric matrix of unconditional correlations between data series 

in X, with diagonal elements of ones. Eigenvectors extracted from matrix X' X 

gives the normalised factor weights, which are contained in matrix W. Each 

principal component, Pj, j = 1,· .. , K, is a linear combination of the column 
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of X with weight given by the corresponding column in W. A denotes the 

diagonal matrix of eigenvalues of the unconditional correlation matrix X' X. 

Columns of W is arranged to descending order according to the magnitude 

of the corresponding eigenvalues. Thus, the first principal component explains 

the majority of the total variation in X. Moreover, the principal components 

are uncorrelated with each other. If the entire normalised dataset of stock 

return is represented by all N principal components, then the data matrix has 

the following form: 

X=PW' (17) 

where P, X are both T x N matrices, but W is N x N. Notice that 

P and Ware orthogonal matrices. W' = W- 1 and pIp = A. However, if 

only K principal components are chosen to represent the dataset, which means 

when comovements in stock returns are only approximated by the K chosen 

principal components, the above representation will include a disturbance term 

and becomes 

X=PW'+B (18) 

Matrices X and B both have dimensions equal to T x N. Whereas P 

becomes a T x K matrix and W' is K x N. PW'represents the common 

components of stock returns. B is the disturbances, it represents the amount 

of stock returns that is not explained by the common components. The time­

varying covariance matrix of X, when only K chosen principal components are 

used, can be calculated as 
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v = TVJf1V' + v:. (19) 

where v:. denotes covariance matrix of the errors, "~1 denotes the time­

varying covariance matrix of [{ principal components and it is a diagonal ma­

trix. V denotes the time-varying conditional variance-covariance matrix of the 

dataset of stock returns. Approximation of the variance of X is given by 

v ~ TV l\f1V' (20) 

The diagonal matrix M of covariances of principal components is estimated 

by univariate GARCR models. Assunling the conditional volatility of each of 

the J{ principal follows a GARCR(l,l) in the following form, 

(21) 

"\vhere (30 > 0, (31' (32 > O. 3 1 represents the market reaction parameter, it 

measures the intensity of reaction of volatility to the unexpected market return 

in the last period, that is~ c;-1. 32 measures the persistence in volatility. Both 

parameters should sum to less than 1 to ensure convergence. Parameters in 

the GARCR representations of the principal components are estimated using 

maximum likelihood estimation. The conditional yolatilities for the orthogonal 

CARCR model are computed as the GARCR(l,l) conditional yariance esti­

mates of principal components from the stock returns times the squared ,"alue 

of the corresponding factor weights as in equation (20). 

;'\otice that the major differences bet\yeen stochastic yolatility factor models 
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and the orthogonal GARCH model is first, the application of principal compo­

nent analysis to the two models. In the stochastic yolatility factor model, prin­

cipal components are extracted from the dataset of stock volatilities. \i\llercas 

in the orthogonal GARCH model, principal components are extracted from the 

dataset of stock returns. Moreover, it is not difficult to see that the stochas­

tic volatility factor model is a more flexible specification than the orthogonal 

GARCH model in the sense that it allows the idiosyncratic part of the sto­

chastic volatility to be modelled by a state-space representation. HOWeYCL the 

idiosyncratic parts of all stock returns that are not approximated by the model 

are simply ignored in the orthogonal GARCH model. This has made the sto­

chastic volatility factor models more advantageous in modelling datasets that 

consist of series with low correlations. 

3 Forecasting Methodology 

3.1 Forecasting With The Single Local-Factor Specifica-

tions 

\\'(' adopt the method proposed by Cipollini and Kapetanios (2005) to produce 

our forecasts for Asian stock volatilities using their single local-factor stochastic 

volatility factor model. Recursive forecasting scheme is adopted to produced 

oIl('-step ahead volatility forecast for each constituent stocks in a dataset. It 

nlC'(1ns to produce each point forecast, the common factor, the factor loadings as 

,yell as the idiosyncratic shocks are to be re-estimated. The forecast is produced 

h,Y using t he stochastic yolatility factor model in the form of equation (4). One-

176 



step ahead volatility forecast is thus computed as 

(:2:2) 

where t = T,'" ,S. T is the last period of the estimation sample and 

S is the last period of the entire sample, which is also the last period of the 
------

forecast sample. Yi,Hlltdenotes the one-step ahead forecast for the volatility 

of stock i made at time t. wi;0lt denotes the one-step ahead forecast of idio-

----syncratic volatility, and f/+ 11t denotes the one-step ahead forecast for the local 

dominant factor estimate. Equation (22) is a local-factor stochastic volatility 

forecast since only the dominant factor that is extract from the dataset of a 

local market is considered. We can see that the forecasting procedure using 

the stochastic volatility factor model is very different from the conventional 

forecasting exercise using a volatility model that does not involyes common 

factor. The overall volatility forecast on stock i consists of a forecast using 

estimated data rather than empirical or observed data. Worries about \yhether 

an accurate forecast can be obtained may arise. It is because the factor esti-

mation error may deteriorate the fitness of stochastic volatility factor model 

and thus it may contribute to the disparity between the actual volatility and 

fon'casted volatility. However, the findings by Bai (2003) shows, although error 

is incurred due to the fact that a factor is an estimated series rather than ob-

Sl'IT('d. its size is tiny and can thus be neglected if vT / N tends to zero. Based 

OIl the findings of Bai (2003), Cipollini and Kapetanios (2005) point out that 

a [\dor model which involves estimated series as an explanatory variable can 

still prm-ide good forecast for the stochastic volatility. 
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Equation (22) shows that the overall volatility forecast is produced by com­

bining a forecast for the local dominant factor and a forecast of the idiosyn­

cratic shocks. We now explain how the final forecast is constructed using the 

following five-step approach. Let t = 1,· .. ,T be the estimation sample, and 

t = T + 1, ... ,S be the forecast evaluation sample. Therefore, the number of 

periods in the forecast evaluation sample is thus S - T. In the last period of 

the estimation sample, period T: 

1. Estimate the dominant local factor from a dataset of stock volatilities 

using principal component method. Let iF denotes the dominant local 

factor. Consistent estimate of iF is given by the largest eigenvectors 

of matrix YY', where Y is the matrix of volatility proxies. The factor 

loadings is computed as, A = (j' i) -1 j'y = t',!. New estimates of the 

factor, factor loadings and idiosyncratic shocks are then obtained. 

2. Estimate the ARFIMA(p,d,q) process shown in equation (5), without 

the moving average terms of the local dominant factor using AMLE. The 

estimated parameters of this ARFI(p,d) are used to form a one-step ahead 

---forecast of the local dominant factor for the next period, Le.fF+1IT 

3. Then for each stock i in the dataset, we fit a univariate state-space model 

into its idiosyncratic volatility, Wi,T, and estimate it via prediction error 

decomposition by maximum likelihood using Kalman filter. A one-step 

ahead forecast for the idiosyncratic shock for the next period, that is 

Wi:mIT, is then obtained. 

4. Finally, combine the forecasts produced in step 2 and 3, together with 
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the factor loadings estimated for period T, we can produce a forecast of 

volatility for stock i. 

-'" - e fL -
Yi,T+IIT - ai + i T+IIT + Wi,T+IIT 
-

(23) 

5. Repeat steps 1 to 4 for the remaining dates t = T + 1 to S, until a S - T 

dimensional vector of volatility forecasts for stock i is obtained. 

Forecasting volatility using a local factor model clearly ignores the fact that 

fluctuations in other international financial markets can have predictive power 

towards stock fluctuations in a local market at current period. It assumes 

the common volatility in the stocks of the local market is explained solely 

by a local dominant factor and thus it can provide sufficient information in 

predicting future volatility. However, existing studies on transmission of shocks, 

causality and financial contagion provide us with lots of empirical evidence of 

how fluctuations in one market can impact on another one. Therefore, one 

may argue that using a local factor model to forecast volatility is not general 

enough. Based on this argument, we also consider forecasting volatility using 

the multi-factor models. 

3.2 Forecasting With The Multi-Factor Specification 

If additional factors other than the local factors are proved to be essential de­

terminants of stock volatilities in a local market, volatility forecasts can then 

be achieved by using an appropriate specification of multi-factor stochastic 

. volatility factor model. Forecasting exercise is done in a similar manner as 
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when the single local-factor stochastic volatility factor model is used. The only 

difference is that for every period in the forecast evaluation sample, we fore-

cast not only the local factors in the first step, but we also produce forecasts 

on additional factors included in the chosen multi-factor model using either 

ARFI(p,d) or AR(p) , depending on the time properties of the common fac-

tors. We then forecast idiosyncratic stochastic volatility for every stock using 

univariate state-space model. An overall volatility forecast for an individual 

stock is formed by combining these forecasts. Forecasts constructed by the five 

specifications of the multi-factor model as in equation (11) to (15) are as follow 

L-RL factor model: 

---L ------'" L L RLfRL ---
YHIlt = a + () fHIlt + () HIlt + WHIl t (24) 

L- US factor model: 

---L ------'" L L uSfus ---
YHIlt = a + () fHIlt + () HIlt + WHIlt (25) 

L-RL- US factor model: 

---",L L L RL Iii: ()uSfUs ---
YHIlt = a + () f HIlt + () fHIlt + HIlt + Wt+Ilt (26) 

L-R- US factor model: 

---",L L L RfEl ()usfUs ---
YHIlt = a + () f HIlt + () HIlt + HIlt + WHIl t (27) 

L-RL-R- US factor model: 
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----",L _ (}LjL (}RLjRL (}RjR IlUSjUs , -;---
Yt+Ilt - a + t+Ilt + t+Ilt + HIlt + U HIlt + '""-'HIlt (28) 

3.3 Forecasting with Orthogonal GARCH model 

In the orthogonal GARCH model, comovements in a dataset of stock returns 

is approximated by K principal components and each principal component is 

assumed to follow an univariate GARCH(l,l). Conditional variance of principal 

components can then be computed easily by using the univariate GARCH(L1). 

One-step ahead GARCH(l,l) volatility forecast for each principal component 

is computed as 

(29) 

According to equation (20), volatility forecast is approximated by 

(30) 

where j\~lt is the matrix of the one-step ahead forecasts of the covariance 

matrix of all I{ principal components. ~t is the matrix of one-step ahead 

forecasts of conditional volatilities of the dataset of stock returns. In other 

words, volatility forecast is calculated as the GARCH(l,l) volatility forecast of 

principal components multiplied by the squared of factor weights. 

\Ve call see that a forecast for the idiosyncratic volatilit~·. ,~, in equation 

(19) does not exist in equation (30). Therefore, the accuracy of the forecast 

depends 011 a good approximation as shuwn in equation (20). 
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4 Forecast Evaluation 

In order to compare volatility forecasting performance using the various models 

discussed in section 2, we compute several forecast evaluation statistics. Let 

y;,;0lt be the one-step ahead volatility forecast for stock i by a particular fore­

casting model at time t, Yi,t+1 be the volatility realisation at time t. T denotes 

the last period in the estimation sample, and S denotes the last period in the 

entire sampling period. So, S - T = m is the number of periods in the forecast 

evaluation sample. We compute the following evaluation criteria. 

Mean Absolute Error (MAE) 

1 m ___ 

MAE = - L IYi,T+j - Yi,T+jIT+j-11 
m 

j=l 

Mean Absolute Percentage Error (MAPE) 

1 m 
"~1 AP E = - L Yi,T+j - Yi,T+jIT+j-1 

m Yi,T+J" j=l 

Mean Square Error (MSE) 

m 

.~lSE = ~ L (Yi,T+j - Yi,TW+j_1)2 
j=l 

Root Mean Squared Error (RMSE) 
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(32) 

(33) 

(3--1) 



V-Coefficient (Theil Inequality Coefficient) 

u= 

Theil-Coefficient 

m 

! L (Yi,T+j - Yi,T+7r+j-1)
2 

j=l 
m 

1 '" 2 m ~ Yi,T+j 
j=l 

m 

! L (Yi,T+j - Yi,T+7r+j-1)
2 

j=l 
THE I L = -----,:-======--_r======== 

m 

1 '" 2 m ~ Yi,T+j + 
j=l 

m 
1", -- 2 
m ~ Yi,T+jIT+j-1 

j=l 

(35) 

(36) 

The above criteria are commonly used statistics for forecast evaluation. 

~IAE, MSE, RMSE and V-coefficients are not bounded and the values of the 

RMSE, MSE and MAE depends on the values of the scale of the dependent 

variable. U-coefficient is also known as the standardised root mean squared 

forecasting error, as we can see from equation (35) that the mean squared error 

in the denominator is standardised by the sum of the squared actual realisation. 

The larger the values of these 4 statistics, the worse is the forecasting perfor-

mall(,(~ of a model. \;vhereas small values of them indicate good performance 

with \'alues equal to zero meaning perfect forecast. ~lAPE and Theil-coefficient 

are scale invariant. The values of Theil-coefficient lies between zero and one. 

5 Empirical Results 

In our forecasting exercise, we produce one-step ahead stock \'olatility furecasts 

for the constituents of two Asian indexes. Dailv returns on constituent stocks 
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of NIKKEI 225 of Japan (::';:IK225) and Korean Stock Exchange Composite 

Index 200 of South Korea (KOS200) are obtained from Datastream. \Ye also 

use data on constituent stocks of Standard and Poor 500 (SP500) from the U.S. 

to produce the US factor for the analysis using multi-factor stochastic ,"olatility 

factor model. The entire sample covers the period 3 January 1995 to 30 July 

2004, leading to 2498 daily observations of stock return. There is a need to 

have the same number of observations on daily return in all datasets for the 

analysis using the multi-factor models. Due to the fact that the two markets 

have different closed market periods, we therefore interpolate returns for the 

closed market periods by approximating it with the arithmetic mean of the 

returns on the previous and next trading days. J\10reover, we only include the 

stocks that have data available throughout the entire sample period. This has 

lead to 136 stocks, 211 stocks and 428 stocks to be included in the KOS200, 

NIK225 and SP500 datasets, respectively. 

5.1 In-sample Analysis using Stochastic Volatility Fac­

tor Models 

Estimation sample starts on 3 January 1995 and ends on 6 June 2003. This 

constitutes 2198 daily return observations. The remaining 300 periods are 

takell as the forecast evaluation sample and this is corresponding to the period 

9 June 2003 to 30 July 2004. Let pri,t denotes daily stock price of stock i at 

time t, daily return is computed as In(pri,t) - In(pri,t-l). \Ye start off by first 

demeaning the daily returns of the constituents and name it as Yd. For the 

aIlalysis using the single local-factor model and the multi-factor model, daily 

184 



return is transformed by standard logarithmic transformation, that is, In(Y;'t). 

We then demean the transformed returns and denote it as Yi,t. This is a proxy 

for stochastic volatility of stock i at time t. 

To carry out an in-sample analysis using stochastic volatility factor model, 

we estimate the common factors of stock volatilities via the principal compo-

nents. The Monte Carlo study by Ci pollini and Kapetanios (2005) shows that 

this estimation method performs well when applying to their model. Princi-

pal components method involves eigenvalue decomposition of sample variance-

covariance matrix. Computation is simple and the estimation method is asymp­

totically equivalent to maximum likelihood estimation. Several assumptions are 

required for consistent factor estimates. A thorough discussion can be found 

in Stock and Watson (2002b) (see also Cipollini and Kapetanios (2005)). Esti-

mation of factors and factor loadings by this method requires minimising the 

following objective function3 

N T 

V(j,8) = (NT)-l L L(Yi,t - ()~jt)2 (37) 
i=l t=l 

This is analogous to minimising the variance of idiosyncratic volatility Wi,t 

in equation (4). Estimation of the 10 largest factors requires extracting the 
I rv 

10 largest eigenvectors from the matrix YY , where Y is the T x N matrix of 

demeaned transformed constituent stock returns, that is, volatility proxies. Yi,t 
rv 

is the element in the tth row and ith column of matrix Y. The eigenvectors we 

3Minimising objective function (18) with respect to the factor is equivalent to maxmimis­
ing matrix trace of / (XX')!, subject to the restriction on r-1(/ 1) being orthogonal, where 
! = (II, ... , !T)' Several mild assumptions on the factors, factor loadings, and innovations are 
required for consistent estimates being produced. For details, see Stock and Watson (2002b) 
and Cipollini and Kapetanios (2005). 
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have extracted are the first 10 estimated factor series. 

Table 1 shows the cumulative R2 for the first 10 factors extracted from 

each dataset. These statistics are computed in the same manner as those 

ones on table 2 of chapter 2. They are the average coefficients of determination 

when K factors are included in the factor model. Factor-augmented regressions 

in the form of equation (16) without a set of other observable variables are 

formed for the computation of these statistics. That is, for each stock, we 

regress its volatility proxy on the factor estimates. We do this cumulatively 

for k = 1, . .. ,K. We then calculate the average R2 across all fit and report it 

cumulatively for the first K factors and again, we set K = 10 here. We can see 

that the first factors of both datasets explain most of the variation during the 

estimation period. The first factors from the two datasets are quite powerful 

which explain about 15% and 11 % of the total variation in KOS200 and NIK225 

stock volatilities, respectively. Additional factors only cause marginal increase 

in explanatory power. This has led us to conclude that the first factor estimates 

from each of the markets can be regarded as their local dominant factors. 

In order to determine which specifications of the multi-factor stochastic 

volatility factor model are 'appropriate for the KOS200 and NIK225 datasets, 

we carry out significance test using the factor augmented regression in the 

form of equation (16) based on the asymptotic results developed by Bai and 

Ng (2006). As we know from empirical experience that only the first few 

factors' are always powerful, we therefore focuses our tests on the first five local 

and overseas factors. We carry out significance tests at 10% level. In order to 

determine which factors should go into the multi-factor model of a local market, 
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we take the factors that are proved significant to explain the volatility of at least 

50% of the stocks in a local market (that is, 68 out of 136 stocks in KOS200 

and 105 out of 211 stocks in NIK225), and at the same time they are proved 

to be helpful in explaining the total variation in the dataset. Table 2 reports 

the number of times a factor show significance out of N factor-augmented 

regressions. Table 3 displays the average adjusted R2 of the factor-augmented 

regressions with only local factors, local and regional factors, and local and US 

factors. Notice that the regional factors in the table are the Japanese ones if 

South Korea is considered as the local market, and vice versa. 

We can see from table 2 that the first factor of both datasets is significant 

for all N factor-augmented regressions. Although the same does not apply for 

additional local factors, they are still significant for a subset of the stocks in 

the two datasets. For KOS200, local factors 2 to 5 are significant in explaining 

the volatility of more than 50% of the stocks. Whereas local factors 2 to 4, but 

not 5 are proved significant for accounting volatility in the majority of stocks in 

NIK225. One interesting finding is that none of the regional factor and the US 

factors are proved significant for at least 50% of the stocks for both datasets. 

This suggests that there seems to be no strong volatility transmission in general 

either from the US market to the two Asian markets, or between the two Asian 

markets throughout our estimation period. Comparing statistics of adjusted 

R2 in table 3, we can see that having additional local factors show improvement 

in accounting for total variation in both datasets, as an increase in the value of 

adjusted R2 by about 0.04 is observed for both datasets. However, we cannot 

benefit from having additional overseas factors. It indicates that the inclusion 
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of only the first 5 and 4 local factors of KOS200 and NIK225, respectively, 

in the factor-augmented regressions can help explaining more variation than 

the inclusion of overseas factors. Based on these statistics and test results, 

we conclude that multi-local factor specification with 5 and 4 local factors are 

chosen for KOS200 and NIK225 datasets, respectively. 

Figure 1 plots the first local factor of KOS200, and figure 2 plots the first 

local factors of NIK225. We can see that both estimated factor series revolve 

around zero. Notice that this factor summarises the majority of the comove­

ments in a dataset of stock volatilities. Figures 3 to 7 graph the sample au­

tocorrelations of the first five local factors of the Korean market up to 500 

lags. Whereas figures 8 to 11 display those of the first four local factors of the 

Japanese markets. Persistence and slow hyperbolic decay can be observed in 

sample auto correlations of the first 5 local factors of KOS200 up to 500 lags, 

except for factor 2, which shows alternating positive and negative autocorrela­

tions. It seems that long memory exists on all first 5 local factors of KOS200 

except the second local factor. Similar results are obtained for NIK225 factors. 

We find that persistence is shown in the autocorrelations of the first 3 local 

NIK225 factors but not the 4th factor. These findings show that long memory 

is present in the first, second and third NIK225 factors, and also in the first, 

third, fourth and fifth KOS200 factors. It indicates that long memory process 

may be the appropriate specifications for these common factors. These findings 

also tell us that persistence exists in dominant factors. However, there mayor 

may not be persistence shown in factors with relatively less importance. Dom­

inant factors should embed most of the variance of the dataset, which is an 
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outcome of the principal component estimation. 

To confirm this proposition, we also estimate AR(p) models for each of 

these local factors from the two datasets and pick the order of lag based on 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

Our finding shows that first, second, third KOS200 factors, and the first, third, 

fourth and fifth NIK255 factors all support AR(p) representation with long lags 

(9 lags or more). However, the second KOS200 factor and the fourth NIK225 

factor only need AR(4) and AR(6), respectively. 

For the factors that exhibit persistence, we fit into each of them a long 

memory process, ARFIMA(p,d) process in equation (5), with the moving av-

erage terms dropped out for simplicity. Order of p is once again chosen by 

comparing AIC and BIC. Both information criteria suggest ARFI(l,d) is the 

most suitable model for those factors. We estimate the long memory process 

using AMLE, which bases on minimising the sum of squared naive residuals. 

ARFI(l,d) estimation results are shown in table 4 and 5. We can see from these 

tables that the 1st, 3rd, 4th and 5th KOS200 factors, together with the 1st, 

2nd, 3rd NIK225 factors all have estimated fractional differencing parameters, 
,... 

d, lie between 0 and 0.5. This is a dear evidence of long memory in those 

factors. Furthermore, since all estimated d also lie between -0.5 and 0.5, this 

indicates the processes are also covariance stationary. This has led us to con-

dude that the appropriate underlying processes for those Japanese and Korean 

factors are ARFI(l,d), except for 2nd KOS200 and 4th NIK225 factors. These 

two factors should be modelled by an AR(4) and an AR(6), respectively. 

Having analysed the dynamics of the conlnl0n factors, we move on to ex-
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amine the idiosyncratic stochastic volatilities. Both single local-factor model 

that contains only the local dominant factor, and multi-factor model that con-

tains the significant local factors are concerned. Idiosyncratic volatility for each 

stock, Wi,t in a dataset is obtained by removing the common component, e~ft 

from its stochastic volatility Yi t. , 

We fit a univariate state-space model as in equation (8) and (9) into Wi,t for 

every stock i. Hyperparameters, Ii' Ai, and qi are estimated via prediction error 

decomposition by maximum likelihood using Kalman filter. Since our datasets 

have large number of constituents, our analysis involves estimation and report-

ing results for more than a hundred univariate models. We report our findings 

using histograms. Figures 12 to 15 are the histograms of the hyperparameters 

of single local-factor and multi-factor models for KOS200 idiosyncratic state­

space models. Figures 16 to 19 are the histograms of the hyperparameters of 

single local-factor and multi-factor models for NIK225 idiosyncratic state-space 

models. It can be seen from the histograms that the majority of the idiosyn­

cratic volatilities in the two markets have estimated hyperparameters in the 

transition equation, Ai, between 0.8 and 1. These large values of estimated 

coefficient in the transition equation indicate persistence in the remaining idio-

syncratic volatilities of the constituents of our two indexes. 

We also check for remaining serial correlations in the measurement errors 

of idiosyncratic volatilities. This is done by first obtaining smoothed estimates 

of the states, 'TJi,t in equation (9), that is denoted as 77i,t. Then we subtract 77i,t 

from Wi,t to obtain measurement errors G,t. We perform Lagrange Multiplier 

(LM) test to test for serial correlation up to 5 lags in measurement errors at 1 % 
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significance level for every constituent stock volatility in KOS200 and NIK225 

indexes. The null hypothesis of no serial correlations up to 6 lags is rejected if 

the probability value corresponding to the computed LM test statistic is less 

than the size of the test equals 0.01. Due to the large number of stock volatility 

series in each dataset, we reports in table 6 the number of stocks that shows 

no signs in serial correlation of measurement errors and squared measurement 

errors when single local-factor and multi-factor models are used. 

For the single-local factor model, about 17% of the KOS200 stocks and 10% 

of NIK225 stocks are found to have no serial correlation in residuals. For the 

multi-factor model, no serial correlation is found in 15% of the KOS200 stocks 

and 21% of the NIK225 stocks. We also check for remaining serial correlation 

in squared measurement errors of idiosyncratic volatilities. LM test statistics 

tell us that about 77% of KOS200 stocks and 54% of NIK225 stocks show 

no sign of remaining correlation in squared residuals that is not explained by 

the single-local factor model. In the multi-factor model case, no remaining 

serial correlation in squared residuals is found in 80% and 67% of KOS200 

and NIK225 stocks, respectively. Two things can be seen from these results. 

First of all, the factor models do not seem to capture enough serial correlation 

in the measurement error for the majority of the stock volatilities. Secondly, 

there is hardly improvement by moving from single-local factor to multi-factor 

models for KOS200 stock volatilities. Although the multi-factor model seems 

to be able to capture more serial correlation in squared residual, the extra 

3% improvement only translates into 4 stocks. For NIK225 stock volatilities, 

it seems there is improvement in moving from single-local factor model to a 
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multi-factor model but there is still sign of serial correlation in the majority of 

the stocks in the multi-factor model case. 'Ye suspect that using a fixed number 

of local factors to model the volatilities of all stocks in the multi-factor case 

may not be appropriate. As we can see evidence from table 2 that individual 

stocks may need different number of local factors in modelling their volatility. 

Thus, further improvement can be achieved if individual stock volatilities are 

modelled using the appropriate number of factors that are proved significant 

in explaining them. 

5.2 In-sample Analysis using Orthogonal GARCH Model 

In-sample analysis is also performed in the context of orthogonal GARCH 

model. The first principal component extracted from KOS200 and that from 

NIK225 datasets of normalised return series are shown to have explained 31% 

and 29% of total variation, respectively. This amount of explained variation 

is even more than the amount of variation explained by the chosen number 

of local volatility factors in the multi-factor stochastic volatility factor models 

for both datasets. Our orthogonal GARCH analysis will then only use the 

first principal component for both datasets. A GARCH(l,l) specification as 

in equation (21) is used for modelling the first principal components extracted 

from the two datasets of returns. In the conditional mean equation, we regress 

t he principal component on a constant, 0'0, only. In-sample estimation of a 

GAHCH(l,l) is presented in table 7. 

31 measures the market reaction, it tells how intellsely ,·olatilitv at current 
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period reacts to unexpected market returns in the last period. Whereas (32 

measures the persistence in volatility. Both parameters must have sum up to 

a value less than one in order to ensure a finite unconditional variance, and 

f30 must be larger than zero. We can see that all parameter estimates in the 

conditional variance equations for the principal components of both datasets 

are significant at 5 % significance level. All (30 > 0 and (31 + /32 sum to less than 

one for both markets. Notice that this sum is quite close to one and this is 

what usually observed in high frequency financial data. We can also see from 

the values of (32 that principal components from the two markets appear to 

have quite high volatility persistence, with the South Korean stock volatilities 

to be more persist than the Japanese ones in general. From the values of /31' 

the Japanese stock volatilities seem to response to unexpected return in the 

last period more intensely than the South Korean market as it has higher value 

of the market reaction parameter. 

A T x N normalised stock return matrix is computed for both datasets, 

that is, matrix X in equation (18). Diagnostic tests are carried out on return 

residuals, that is matrix B in equation (18) when the return series are mod­

elled by using only the first principal component. Table 8 reports the results 

of Breusch-Godfrey LM test for serial correlation and ARCH LM test. 6 lags 

are included in the auxiliary equations of both tests and level of significance 

is chosen to be 1%. With reference to the large number of stock return se­

ries in each dataset, we report the number of stocks that shows no significant 

serial correlation and no significant ARCH effect in their returns. Evidence 

of misspecification in general can be seen clearly from the results as less than 
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1O(;{ of stock returns have residuals that have no sign of ARCH effect for both 

indexes. I'\o signs of serial correlation only found in 23% and 32o/c of stocks 

return residuals in KOS200 and NIK225, respectively. 

5.3 Out-of-sample Forecasting 

Our forecasting exercise is performed for the last 300 periods of the ,yhole sam­

ple to produce I-step ahead point forecasts using the single local-factor and 

multi-factor stochastic volatility factor models, and the orthogonal CAReH 

model. Recursive forecasting procedure is adopted for which our models are 

estimated with more data as forecasting move forward in time. Following the 

procedure and using the forecasting equations explained in section 3, we con----
struct volatility forecast Yi,t+llt for every period in the forecast evaluation sam­

ple. For both single local-factor and multi-factor models, an overall I-step 

ahead volatility forecast for each stock is formed by combining the I-step ahead 

factor forecast(s) and the I-step ahead idiosyncratic volatility forecast. How­

ever, attention should be paid in computing the final forecasts. Since the data 

we use for estimation and forecasting are demeaned, we therefore, need to add 

t he removed mean back to the demeaned volatility forecast to obtain the final --- ---
volatility forecast, Yi,t+llt . So, Yi,t+llt is forecasted volatility with the removed 

mean added back to it. The forecasting exercise is performed for every period 

in the foreca:-;t sample until a vector of volatility forecasts is achieved for each 

of stock. 

Since "'c han: large da tas('ts that contains more than a hundred stocks 

with more than a thousand observations. Thus there is a huge the number 
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of univariate state-space models for idiosyncratic volatilities need to be re­

estimated along the forecast evaluation period. There are 40800 individual 

state-space models for KOS200 dataset and 63300 models for NIK225 dataset. 

We aware there may be a possibility that maximum likelihood estimation does 

not converge for some of the idiosyncratic models. And if this happens, the 

relevant periods will be excluded from the final results. However, we do not 

find such case in our analysis.4 

Orthogonal GARCH forecasts are obtained by first performing a one-step 

ahead forecasts of a GARCH(l,l) of principal component extracted from the 

normalised dataset of stock returns. Then, we multiply this one-step ahead 

forecast by the squared of the factor weights to obtain the one-step ahead out 

of sample forecast of the volatility of each series. As described in equation (29) 

and (30). 

To forecast the Asian volatilities using the stochastic volatility factor mod-

els, we consider two specifications, the single local-factor model for both datasets 

and the multi-factor models with 5 and 4 local factors for KOS200 and NIK225, 

respectively. However, considering the large number of stocks included in our 

datasets, it will involve enormous amount of work if we compute forecast for 

each individual stocks with different number of local factors in its multi-factor 

model. We believe although the overall forecast on volatility of all stocks are 

computed by using the multi-factor models with the same number of local fac­

tors, our results can still provide enough insight into how good overall forecast 

.IIt is not surprising to find all idiosyncratic models converge in our analysis for all three 
datasets. The analysis of Cipolini and Kapetanios (2005) involves estimation of 43800 indi­
vidual state-space model and they find only 8 models that do not converge. 
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performance can be achieved by using the single-factor and multi-factor models. 

Due to the large number of stocks in the two Asian datasets, we compute 

the average of the statistics explained in section 4 for forecast performance 

comparison. Volatility forecasts by univariate GARCH(l,l) is also performed 

as a benchmark comparison. Moreover, the realisation of the volatility proxy 

computed as In(Yi;). We take logarithm of the forecasts computed by the or­

thogonal GARCH and the GARCH models to compare them with this proxy. 

Our result is reported in Table 9.5 First of all, we can see that overall per­

formance of univariate GARCH(l,l) forecasts are the worst. This is not a 

surprising finding as it is well-known that univariate GARCH does not capture 

some complex temporal features commonly found in financial time series. 

We can see for KOS200, both single local-factor and multi-factor stochastic 

volatility factor models outperform the orthogonal GARCH model in fore-

casting volatility when comparing all evaluation statistics, except for average 

MAPE, that shows the multi-factor model is comparable to the orthogonal 

GARCH model. However, the majority of these average statistics still tell us 

that the multi-factor model is performing slightly better than the orthogonal 

GARCH model. For NIK225, 4 out of 6 reported evaluation statistics suggest 

that the orthogonal GARCH model does not provide better volatility forecast 

than the single local-factor and multi-factor stochastic volatility factor models 

5Tests on predictive ability can also be carried out to evaluate the accuracy of forecasts 
produced by the orthogonal GARCH model and the stochastic volatility factor models. For 
example, the asymptotic tests of Diebold and Mariano (1995) can be applied to allow pairwise 
comparison of the forecasting models we concerned here and to see if stronger predictive 
power of a model found is statistical significant. See also Cipollini and Kapetanios (2005) 
for an application of this test to factor volatility models. 
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on average. 

Interesting results can be seen when comparing only the single local-factor 

and multi-factor models for both datasets. The statistics show that there are 

no improvement in forecasting volatility by moving from a single-factor to a 

multi-factor model. Except for volatility forecasts of the NIK225 stocks we can 

see from the average MAPE and average Theil coefficient that the two models 

are comparable. We suspect that the failure in obtaining an improvement in 

forecasting performance by moving from a single local-factor model to a multi­

factor model is due to the fact that the forecasting performance of the model 

will be worsen when an additional insignificant factor is used for modelling 

volatility of a stock. We can see from table 2 that not all additional local 

factors are significant for all stocks in the two datasets need. However, the first 

local factor always shows significance for all stocks in both datasets. Adding 

extra insignificant factors to the stocks that needs only one local factor will 

bring down the goodness of fit of the model and in turn worsen its predictive 

power. When we use the multi-factor model for modelling, we model volatility 

of all stocks in a dataset with the same number of local factors, despite the 

fact that for some stocks but not all, their volatility can be better modelled 

by one local factor. However, if we take into account of this situation and 

allow individual stock volatilities from the same dataset to be modelled with 

different number of local factors according to its need, the overall forecasting 

performance may be improved. 

Individual stocks have their own idiosyncratic characteristics and may ex­

pose to different exogenous market factors. Empirically, it can be observed that 
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although the overall trend of the entire stock market may respond to the same 

direction when there are changes in market condition, global and local economic 

environments, individual stocks from the very same market have different de­

gree of reaction to those changes. When modelling and forecasting individual 

stocks in practice, it is sensible to treat each stock individually by considering 

their unique characteristics. Stochastic volatility factor models have already 

allowed the unique characteristics of volatility to be captured by the idiosyn­

cratic part of the model. However, when determining upon the number of 

factors ~hat should be included in the model, it is more appropriate to consider 

each stock individually. With this understanding in mind, we advocate the use 

of a mixed forecasts when using the stochastic volatility factor models to the 

forecast volatilities of a portfolio of stocks in practice. 

In order to get an idea of whether using a mixed forecast can improve 

forecasting performance of the stochastic volatility factor models in forecast­

ing volatilities of a portfolio of stocks, we carry out an experiment. For each 

of the stock in the dataset, we look at whether it is better forecasted by the 

single-factor model or the multi-factor model by comparing the corresponding 

forecast evaluation statistics, we then pick the smaller value of the two statis­

tics. We do this for every single stock in the dataset, to get an N x 1 vector 

of forecast evaluation statistics, averaging this vector gives us the average fore­

cast evaluation statistic. These statistics are also reported in table 9. We can 

see from the table that these average statistics have lower values than those 

average forecast evaluation statistics of the the single local-factor and of the 

multi-factor models. This may suggest that overall forecasting performance 
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can be improved if a mixture of forecasts via single-factor and multi-factor 

models are used for a portfolio of stocks. However, one should notice that this 

experiment is not a feasible forecasting procedure. It is because the choice of 

forecasting model should be made prior to the forecasting exercise being car­

ried out. Therefore, our results here reveal the lower bound of how well our 

factor models can do in forecasting a bunch of Asian volatilities and thus can 

somehow provide empirical evidence to show how overall prediction of volatili­

ties in all stocks can be improved by taking into account the number of factors 

needed for each individual stock in empirical factor modelling. 

To conclude, we think the failure of the orthogonal GARCH model to pro­

vide better overall performance in our study can be explained by its deficiency 

in dealing with less correlated system of data. Orthogonal GARCH model 

works better for highly correlated system of financial time series. This can be 

seen by comparing the explanatory power of the principal components extracted 

from our datasets of returns with the findings in the empirical application in the 

Alexander (2001a) paper. In her study, principal components extracted from 

highly correlated system such as term structure and crude oil futures and the 

first few principal components can always explain around 90% of total variation 

in a dataset. However, our analysis concern stock returns and it can be seen 

from the analysis in chapter 1 that they are not as highly correlated in general. 

Large number of principal components are not recommended to use for orthog­

onal GARCH modelling not only for the ease of analysis and computation and 

for the aim of reduction in dimensionality, it is also for avoiding extra noise 

that is embedded in some additional and insignificant principal components to 
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enter the model. This extra noise can increase the size of the error, causing 

weak approximation of the variance-covariance matrix, and thus worsen the 

overall performance of the model. In the case when the large variation is cap­

tured by the principal components included in the orthogonal GARCH model, 

the 3 term in equation (18) is small. Orthogonal GARCH modelling can be 

appealing in this situation. 

In the case of a less correlated system of data, the first few principal com­

ponents may not capture enough total variation. If a researcher is to use a 

large number of the principal components for modelling, he will be worried 

about having extra noise being included in the model. Using large number of 

principal components may lead to less stable correlation and less robust volatil­

ity estimates. Therefore, in the case of low correlations within a dataset :=: in 

equation (18) is larger, approximation in equation (20) is weaker. Consider 

that in orthogonal GARCH modelling the return residuals are left out for the 

computation of volatilities and covariance in the dataset. This may result in 

a weak performance of the model in facing low correlation datasets. This can 

be proved by our in-sample results that the first principal component used for 

approximating the comovements in the dataset cannot capture enough dynam­

ics of the system of data. The out-of-sample overall volatility forecast is not 

better than the stochastic volatility factor model. In contrast to the orthogonal 

GARCH model, stochastic volatility factor models do not have such deficiency 

in failing to capture idiosyncratic part of the series in a dataset. As we can see 

from equations (4) and (22) that the idiosyncratic volatilities also make con­

tributions to volatility modelling and forecasting. This flexibility in modelling 
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both the common component and idiosyncratic component in the series of a 

dataset has made the stochastic volatility factor model more desirable than the 

orthogonal GARCH model for an analysis involving less correlated system of 

data. 

6 Concluding Remarks 

In this chapter, we analyse and compare the two factor volatility models that 

can be applied to large datasets with more than a hundred cross-sectional series. 

We have discussed an extension of the stochastic volatility factor model from 

a single local-factor specification to multi-factor specifications. We also look 

at how common factor and idiosyncratic volatility are modelled in the factor 

models. Testing of factor significance via a factor augmented regression is 

performed. Moreover, examination of and comparison between in-sample and 

out-of-sample performance of the factor models and the orthogonal GARCH 

model have been carried out. The use of mixed forecasts by the single-factor 

and multi-factor models for a datasets of stock volatilities is suggested. 

Our findings suggest weak significance of the US factors for explaining both 

Korean and Japanese stock volatilities. There seem to be weak volatility trans­

mission in general between the two Asian markets throughout the sample pe­

riod. Evidence of misspecification is found in most of the stock returns in the 

in-sample analysis for both the Korean and Japanese datasets when returns 

are modelled by an orthogonal GARCH model with only the first principal 

component. Out-of-sample forecasting shows that the factor models hm"e out-
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performed the orthogonal GARCH model in general. Whereas the use of mixed 

overall forecasts produced by the factor models may be able to further improve 

forecasting performance. This has lead us to conclude that prediction can be 

improved by taking into account the idiosyncratic characteristics of individual 

stocks in empirical modelling. 

Weak in-sample and out-of-sample performance of orthogonal GARCH model 

may imply the model has failed to capture some significance temporal features 

of Asian stock volatilities. When comparing the orthogonal GARCH model 

with the stochastic volatility factor models, we can see that the latter are 

a more flexible specification than the former on dealing with datasets with 

low correlations as they allow idiosyncratic part of stock volatility to be mod­

elled. Moreover, the common factor is represented by a specification that best 

describe their temporal features, such as long memory. Further analysis in 

related topic, may consider a forecasting exercise using an improved version 

of orthogonal GARCH model. For example, to consider the inclusion of over­

seas principal components in the model. Moreover, inclusion of long memory 

in orthogonal GARCH, for example, to allow principal components to have 

Fractionally Integrated GARCH representation may also make the model more 

realistic for modelling financial data. 

Furthermore, our examination of the idiosyncratic volatilities has shown 

persistence in their dynamics. This may imply remaining unexplained long 

memory not captured by the common factors. Further investigation of remain­

ing long memory can be carried out. In particular, if evidence of remaining 

long memory is found in the idiosyncratic volatility, attention should be paid 
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to the improvement of the idiosyncratic models that accounts for the remaining 

long memory_ 

In addition, the multi-factor models have been applied to Japanese and 

South Korean volatilities only. Although we fail to provide evidence to show 

strong volatility transmission during the sampling period, it may be the case 

that overseas factors are useful in explaining local market volatility in some 

particular period, for example, in the case of extreme events. Further research 

work on the multi-factor models can be carried out for some periods when 

extreme events have happened. Volatility transmission among markets during 

the period of extreme event can be carried out in the context of factor analysis. 

Moreover, it may be interesting to look at the relationship between volatility 

and some other factors that have an effect on it. For example, Kim, Kartsaklas 

and Karanasos (2006) study the relationship between volume and volatility in 

the Korean market in relation to the 1997 financial crisis. Similar kind of study 

may be carried out in the context of factor analysis by modifying the factor 

models. Furthermore, the study can be extended to cover the entire Asian 

region to see if the inclusion of more significant overseas factor can improve the 

practical performance of the multi-factor model. 
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7 Tables and Figures 

Abbreviation used: 

SSVF - Single local-factor stochastic volatility factor model 

MSVF - Multi-factor stochastic volatility factor model 

GARCH - Generalised Autoregressive Conditional Heteroscedasticity model 

OGARCH - Orthogonal GARCH model 

FAR - Factor-augmented regression 

ARFI - Fractionally Integrated Autoregressive process 

Table 1: Cumulative R2 

of KOS200 and NIK225 factors 

No. of factors KOS200 NIK225 

1 0.1473 0.1097 

2 0.1558 0.1271 

3 0.1647 0.1364 

4 0.1819 0.1453 

5 0.1906 0.1513 

6 0.1992 0.1574 

7 0.2072 0.1657 

8 0.2153 0.1725 

9 0.2230 0.1790 

10 0.2304 0.1851 
Key: StatIstICS reported III thIS table IS computed \'ia FAR in the form of equation 

(16) without a set of other observable explanatory variables. They are the average 

coefficients of determination when K factors are included in the model. 
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Table 2: No. of times (out of total no. of stocks 

a factor is proved significant 

Parameters in FAR KOS200 NIK225 

constant 0 0 

local factor 1 136 211 I 
, 

local factor 2 76 159 

local factor 3 69 148 

local factor 4 119 147 

local factor 5 71 97 

regional factor 1 36 62 

regional factor 2 40 22 
I 
I 

I 

regional factor 3 31 37 

regional factor 4 20 54 
I 

regional factor 5 14 28 I 

US factor 1 35 50 

US factor 2 48 54 
I 

US factor 3 33 29 

US factor 4 25 34 
I 

US factor 5 24 38 I 
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Table 3: Average adjusted R2 of FARs including different factors 

FAR specification KOS200 NIK225 

with only 1 local factor 0.1469 0.1092 

with 5 local factors 0.1888 0.1493 

with 5 local and regional factors 0.1816 0.1449 

with 5 local and US factors 0.1824 0.1450 I 
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Table 4: In-sample ARFI(l,d) estimation results for KOS200 factors 

1st factor 3rd factor 4th factor 5th factor 

'" d 0.16 0.08 0.18 0.12 

AR coefficient 0.61 0.43 0.59 0.36 

'" 95% CI for d (0.107, 0.204) (0.03, 0.13) (0.127, 0.228) (0.069, 0.172) 

Table 5: In-sample ARFI(l,d) estimation results of NIK225 factors 

1st factor 2nd factor 3rd factor 

'" d 0.16 0.14 0.06 

AR coefficient 0.67 0.45 0.23 

'" 95% CI for d (0.118, 0.211) (0.094, 0.193) (0.01, 0.121) 
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Table 6: Serial correlation test on measurement errors 

of idiosyncratic volatilities (significance level = 1 %) 

SSVF 

No serial correlation No serial correlation 

in residuals in squared residuals 

KOS200 24 105 

NIK225 22 114 

MSVF 

No serial correlation No serial correlation 

in residuals in squared residuals 

KOS200 21 109 

NIK225 45 142 

Note: The above figure represents number of stocks. 
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Table 7: In-sample GARCH(l,l) estimation of 

first principal component 

ao 130 13 1 132 

KOS200 coefficient -0.012 0.28 0.074 0.92 

(0.09) (0.10) (0.01) (0.01) 

z-statistic -0.13 2.82 5.11 64.0 

{0.89} {0.004} {O.OO} {O.OO} 

NIK225 coefficient 0.04 3.01 0.11 0.83 

(0.14) (1.05) (0.02) (0.03) 

z-statistic 0.29 2.85 4.96 25.2 

{0.76} {0.004} {O.OO} {O.OO} 

Note: std. errors are reported in parentheses, p-values are reported 

in curly brackets 
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Table 8: Diagnostic test results on return residuals of 

OGARCH with only the first principal component 

(significance level = 1 % ) 

No serial correlation No ARCH effect 

KOS200 32 6 

NIK225 69 16 

Note: The above figure represents number of stocks. 
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Table 9: Forecast performance comparison 

SSVF ~1SVF SSVF & GARCH OGARCH 

MSVF mixed 

KOS200 

Average MAE 2.105 2.113 2.100 2.461 2.157 

Average MAPE 0.233 0.234 0.232 0.226 0.234 

Average MSE 8.908 9.00 8.892 13.571 9.731 

Average RMSE 2.864 2.878 2.862 3.542 2.983 

Average U-coef. 0.293 0.295 0.290 0.362 0.305 

Average Theil coef. 0.000107 0.000108 0.000107 0.00017 0.000115 

NIK225 

Average MAE 1.939 1.944 1.931 2.092 1.902 

Average MAPE 0.208 0.208 0.206 0.192 0.194 

Average MSE 7.564 7.596 7.541 10.112 7.976 

Average RMSE 2.709 2.715 2.705 3.133 2.770 

Average U-coef. 0.278 0.279 0.278 0.322 0.284 

A verage Theil coef. 0.0001 0.0001 0.0001 0.00014 0.000108 
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Figure1: In-sample KOS200 dominant factor 
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Figure 2: In-sample NIK225 dominant factor 
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Autocorrelations of in·sample KOS200 dominant 
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Figure 3: Autocorrelations of in-sample KOS200 dominant factor 
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In-sample KOS200 2nd factor autocorrelations 
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Figure 4:Autocorrelations of in-sample KOS200 second factor 
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In-sample KOS200 3rd factor autocorrelations 

0.4 ...,..,--.~::;-

0.3 

0.2 

0.1 

o 

-0.1 

I Q kosfac3 autocorl 

No. of lags 

Figure 5: Autocorrelations of in-sample KOS200 third factor 
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In-sample KOS200 4th factor autocorrelations 
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Figure 6: Autocorrelations of in-sample KOS200 fourth factor 
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In-sample KOS200 5th factors autocorrelations 
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Figure 7: Autocorrelations of in-sample KOS200 fifth factor 
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Figure 8: Autocorrelations of in-sample NIK225 dominant factor 
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In-sample NIK225 2nd factor autocorrelations 
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Figure 9: Autocorrelat ions of in-sample T\TJK225 second factor 
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In-sample NIK225 3rd factor autocorrelations 
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Figure 10: Autocorrelations of in-sample NIK225 third factor 
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In-sample NIK225 4th factor autocorrelations 
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Figure 11: Autocorrelations of in-sample NIK225 fourth factor 
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Figure 12: Histogram of hyperparameters in measurement equations 

of KOS200 idiosyncratic volatilities in SSVF 
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Figure 13: Histogram of hyperparameters in transit ion equat ions of 

KOS200 idiosyncratic volatilit ies in SSVF 
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Figure 14: Histogram of hyperparameters in measurement equations 

of KOS200 idiosyncratic volatilities in MSVF 
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Figure 15: Histogram of hyperparameters in transition equations of 

idiosyncratic volatilities of KOS200 in MSVF 
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Figure 16: Histogram of hyperparameters in measurement equations 

of NIK225 idiosyncratic volatilities in SSVF 
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Figure 17: Histogram of hyperparameters in transition equations of 

NIK225 idiosyncratic volatilities in SSVF 
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Figure 18: Histogram of hyperparameters in measurement equations 

of NIK225 idiosyncratic volatilities in MSVF 
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Figure 19: Histogram of hyperparameters in transition equat ions of 

NIK225 idiosyncratic volatility in MSVF 
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Conclusion 

This thesis is a study of stock volatility using two comparable factor volatil­

ity models for large datasets, the orthogonal GARCR model and the stochastic 

volatility factor model. We have made an application to the constituent stocks 

of five Asian indexes. Analysis in the first chapter is carried out using the 

orthogonal GARCR model. Our empirical results confirm that higher correla­

tion among stock return series contribute to stronger explanatory power of the 

principal components. We also provide a proof to show that a factor that is 

capable to represent a large amount of comovements in the dataset of returns 

can mimic the behaviour of the mean returns. Moreover, a factor extracted 

from a dataset of returns also exhibit the same distributional characteristics 

commonly observed in stock returns. We have also given an example to show. 

how GARCR analysis of the entire dataset of returns can be summarised by a 

univariate GARCR(l,l) analysis of the first principal component. Diagnostic 

tests on the idiosyncratic returns reveal the fact that more principal compo­

nents for modelling may not guarantee an improvement in capturing dynamics 

of the datasets due to extra noise embedded in the relatively less important 

principal components being introduced into the model. 

In the second chapter, our factor analysis is carried out using the :-;tocha.'-i-
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tic volatility factor model. Factors are extracted from the constituent stock 

volatilities of the Asian indexes. Our correlation analysis and the examination 

of explanatory power of factors have shown similar results to that of the first 

chapter when analysis is carried out on the principal components extracted 

from dataset of returns. We have found evidence to confirm larger datasets 

with more data series from the same category may not always be desirable for 

factor analysis. Investigation of the dynamics of factor estimate has shown 

that dominant factors from datasets of volatilities that has strong explanatory 

power exhibit long memory. ' 

An evaluation of the practical performance of the orthogonal CAReR model 

and the stochastic volatility factor models is implemented in the last chapter 

of this thesis via a volatility forecasting exercise. We discuss the extension 

of the original single local-factor model of Cipollini and Kapetanios (2005) 

into several multi-factor specifications. We test for factor significance using 

the statistical inference of principal component factor estimate by Bai and 

Ng (2006). Our results show no stronger volatility transmission in general 

throughout our sampling period. Our volatility forecasting exercise show that 

the factor models outperform the orthogonal CAReR models in forecasting 

the Japanese and South Korean stock volatilities. We argue this finding may 

be due to the shortcoming of the orthogonal CAReR model in working wit h 

system of data series that has low correlations. We also discussed how volatility 

forecasts for a portfolio of stocks can be improved by using a mixture of single­

factor and multi-factor model so that individual characteristics of each stocks 

call be considered. Our experiment gives indication that improvement may be 
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achieved by adopting such a procedure. 

Throughout our discussion in this thesis, we have made concerns on further 

improvement of our research work. First of all, in view of empirical studies of 

the long memory and structural breaks, we believe it will be interested to fur­

ther examine whether long memory found in the dominant factors of the Asian 

stock volatilities is caused by some neglected structural breaks. Testing for 

breaks in factor estimates can be carried out. Secondly, evidence of persistence 

found in the idiosyncratic volatilities in the stochastic volatility factor models 

may imply unexplained long memory in this idiosyncratic components. Further 

examination of remaining long memory and whether idiosyncratic models with 

long memory can improve the forecasting performance of the factor models 

may be implemented. Comparison can be made with the orthogonal GARCH 

model when the principal component is modelled by an univariate long memory 

GARCH process. 

As mentioned in the introductory chapter of this thesis, Asian stock mar­

kets have significant roles in international investments and a close linkages with 

stock markets around the world. Study financial contagion in the case of ex­

treme events in the context of factor volatility models will be an interesting 

topic to look at. Our study in this thesis does not focus on the impact of 

extreme events on Asian volatilities and the volatility transmission during pe­

riod of those events using factor analysis. However, the fact that the sampling 

periods used by our forecasting exercise is long enough to cover the peric)( b 

of 1997 financial crisis the Dot-com bubble and the September 11 terrorist::; , 

attacks will allow us to further our research into looking at t hose sub-sampling 
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periods and allow us to gain insight into the modelling and forecasting of Asian 

stock volatilities in the context of factor volatility models. 'Ve hope follow-on 

research work for this thesis can contribute to the progression of the factor 

volatility models for large datasets and improve their power in explaining em­

pirical phenomena. 
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