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ABSTRACT

In this thesis, previous research on discontinuity geometry, in-situ block size
distribution (IBSD), blasted block size distribution (BBSD), and blastability of rock
mass is discussed. The IBSD with special reference to discontinuities with a fractal
spacing distribution is investigated using computer simulation, from which a set of
empirical equations is derived for predicting the IBSD of a rock mass with
discontinuities of fractal spacing distributions. The goodness-of-fit of theoretical as
compared with real spacing distributions is discussed and a grey correlation analysis
technique is introduced into the goodness-of-fit.

An estimation of mean trace length of discontinuities with lognormal and fractal
distributions is derived. A numerical algorithm and associated computer program for
estimating the discontinuity size distribution is developed from which empirical
equations for estimating the mean size of discontinuities with negative exponential,
lognormal and fractal trace length distributions have been derived. A factor which
accounts for the discontinuity impersistence is incorporated into the estimation of
IBSD.

Combining both Ross-Ram and Schuhmann models, a reasonably accurate and
user-friendly "photo-scanline” technique is devised for the estimation of BBSD of
the blastpile.

Blasting results, as a function of both the intact rock properties and the
discontinuity structures are investigated, and an energy-block-transition model
characterising the blastability of rock masses is developed. It is argued that the
blastability of rock mass is governed by a comprehensive range of both intact rock
properties and discontinuity parameters, and that the fractal dimension of the IBSD of
arock mass could be an indicator of blastability. Taking into account that blastability
is a complex property, a methodology of assessing blastability of rock masses is
introduced using a Rock Engineering Systems method.

Published data from the literature has been used wherever possible to support the
validation of the new techniques of analysis and two case histories in which
applications of the developed methodologies and techniques are presented.
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NOTATION

Rock factor in the Kuznetsov equation; Constant

Burden

Energy-Block-Transition coefficient in Energy-Block-Transition model
Blastability designation

Subscript, signifying blastpile

In-situ block size coefficients

Fractal dimension

Relative weight strength of the explosive

Bond's work index in the Bond model

Required energy for fragmentation in the Bond model and the Energy-
Block-Transition model

Relative impersistance factor

Subscript, signifying in-situ

Discontinuity trace length

Lower and upper values of discontinuity trace length

Indices of uniformity in Schuhmann equation, v for block volume and s
for block sieve size

Mean discontinuity diameter

Mean discontinuity trace length

Indexes of uniformity in Ros-Ram equation, v for block volume and s for
block sieve size

Amount of explosive per blasthole

Discontinuity diameter

Rock quality designation

Block sieve size; Discontinuity spacing

Average block size

Sc(S63.2) Characteristic size in Ros-Ram equation



Specific charge or powder factor

Blastpile block sieve size

50% passing of the in-situ block sieve size
80% passing of the in-situ block sieve size
100% passing of the in-situ block sieve size
50% passing of the sieve size of the blastpile
80% passing of the sieve size of the blastpile
100% passing of the sieve size of the blastpile
Lower and upper values of block sizes

Mean discontinuity spacing

Lower value of discontinuity spacing

Upper value of discontinuity spacing
Principal discontinuity spacing

Principal mean discontinuity spacing
Volume of rock mass or rock blocks

Weight of rock

Bond's work index

Average value of a parameter

The transformation area

Density of the rock mass in t/m3
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1. INTRODUCTION

1.1 BACKGROUND

Maritime defence structures such as breakwaters and seawalls are built to protect
shoreline, coastal and other harbour facilities. Quarried rock has been widely used in
these coastal defence structures and can be employed in a wide rang of structure types
(CIRIA/CUR, UK & The Netherlands, 1991). Rock armour can, in many cases, offer
considerable benefits, and is an attractive option in many circumstance, in forming a
secure, cost effective and environmentally accepted defence (Thomas, 1992). For
example, in the United Kingdom, approximately 750,000 tonnes of armour was used
in 1989, and the annual figure in 1994 is believed to have doubled. Combined with the
concerns about rising sea level, the increasing market requirement for rock armour
will impose considerable demands on the quarry resources around the world (Simm et
al., 1992). Until recently, very little expertise in armourstone production had been
available and the key research topic was identified to be the in-situ block size
distribution (IBSD) (Latham & Wang, 1992).

In mining, the sizes of the rock fragments after blasting exerts a major influence on
the downstream processing. Oversize rock has to be reduced to a size which can be
handled by excavating, transporting, crushing and milling machinery. The loading rate
of a drawpoint is directly governed by block size. Internal mine transport, crushing and
milling can be adversely influenced by poor fragmentation. Poor fragmentation with
excess fines or oversize blocks in the blasted block size distribution (BBSD) can affect
costs by more than twice the cost of the blast itself (Scott et al., 1993). The prediction
of IBSD and BBSD has been one of main pursuits of mining operations although it is
notoriously difficult.

A considerable amount of research on both the IBSD and the BBSD has been
conducted in several fields; the main ones being mining engineering and quarrying.
Significant contribution have also come from research into armourstone production
and highway cutting. The need for a forum of research on this aspect of excavations
helped the initiation of the following international symposia on rock fragmentation:
Lulea (Holmberg & Rustan, 1983), Keystone (Fourney & Dick, 1987), Brisbane
(AusIMM, 1990), and Vienna (Rossmanith, 1993) and Advanced Blasting Technology
(Julius Kruttschnitt Mineral Research Centre (JKMRC), Australia, 1991). Research on
the use of rock in coastal defence structures that was highlighted in the Manual on the
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use of rock in coastal and shoreline engineering (CIRIA/CUR, 1991) provides a
wealth of geological and scientific background as well as practical engineering
guidance on block sizes of armourstone for coast protection.

Amongst the many research teams, the Geomaterials Unit of Queen Mary and
Westfield College has made significant contributions (Wang et al. 1990, 1991a;
CIRIA/CUR, 1991; Latham, 1992; Latham et al., 1994). Although obvious to some, a
valuable observation was made: to ensure the production of sufficient proportions of
large blocks for armourstone, the in-situ block size prior to blasting is one of the most
important geological factors. Based on this recognition, a computer program was
written which sorts out the problem of block sizes and shapes formed by the dissecting

discontinuities in the rock mass (Wang, 1992).

A continuous research effort into blasting technology at JKMRC also recognised
that it is the in-situ rock mass rather than the rock properties measured in the
laboratory that are important in the control of blasting (JKMRC, 1991). They
developed an estimation technique for the IBSD based on a three dimensional model
of rock structure and a comminution-based model of blast fragmentation for estimation
of the BBSD (Kleine & Villaescusa, 1990; JKMRC, 1991). The research effort into
highway cutting has also highlighted the significance of in-situ rock mass properties in
control of blasting in highway cutting operations (Matheson, 1995).

To build a deeper insight into in-situ block size, a deep understanding of the
statistical nature of spacing and trace length data from discontinuity surveying has to
be provided. This understanding usually involves describing statistically the
probability distribution functions. For example, discontinuity spacing distributions
have often been considered to be fitted adequately by negative exponential
distributions (Priest & Hudson, 1976, 1981).

A fractal - a special concept for describing the geometric properties of irregular
patterns or fragments devised by Mandelbrot (1983) has been increasingly applied in
geoscience and geological engineering. Discontinuity spacing, reported from many
rock exposures, could be described using a fractal distribution (Gillespie et al., 1993;
Boadu & Long 1994); so too could discontinuity trace length (Segall & Pollard, 1983;
Ranalli & Hardy, 1989). Take characterisation of the discontinuity pattern as an
example. If the pattern is a fractal, the information obtained about the pattern at any
scale might be statistically similar to that at another scale (Ghosh & Daemen, 1993).
This has great significance as it implies that information about large scale behaviour
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can be obtained from small scale observations and vice versa. It has been recognised
that the power law distribution often observed in the fragmentation of geomaterials is a
consequence of the scale invariance of the fragmentation mechanism. The scale
invariance is a basic property possessed by a fractal distribution. These characteristics
have encouraged a further examination into whether discontinuity patterns can be
better described using fractal concepts on the occasions when using other descriptive
distributions prove unsatisfactory. Moreover, it invites the questions, what is the IBSD
resulting from a fractal discontinuity pattern, and, what influence will it exert on the
BBSD during rock fragmentation by blasting. A particular form of the fractal relation,
known as the Schuhmann equation (Schuhmann, 1940), has often provided a good fit
to the BBSD assessed directly from blastpiles (Turcotte, 1986; Clarke, 1987).
Unfortunately, analyses of block size distributions of rock masses intersected by
discontinuities with fractal spacing distribution are not available, although fractal
concepts have found their way into increasing numbers of applications in engineering

practice and fracture modelling.

Obtaining a functional relationship which closely describes or nearly fits a
distribution of discretely observed geometrical or geological data that is quantifying a
geometric parameter important in rock engineering (e.g. discontinuity spacing) is
helpful to an understanding of the nature and applications arising from the variations
of this parameter. In many cases, therefore, the examination of goodness-of-fit is
necessary to obtain a better description of a parameter. There have been a few
conventional statistical methods for this, but the conventional statistical methods for
evaluating goodness-of-fit and selecting a preferable fitted result have some
shortcomings (Benjamin & Cornell, 1972). Thanks to the development of grey
correlation analysis in Grey Systems Theory (Den, 1985), which concerns the analysis,
handling, and interpretation of uncertain or indeterminate information, the author is
able to propose the use of grey correlation analysis as an alternative means of
examining goodness-of-fit, and, selecting a preferable fitted result.

To date there is little scientific understanding of the ease with which a rock can be
fragmented by blasting. Selecting one or more parameters of rock properties reflecting
the resistance of the rock mass to being fragmented by blasting has been a major
obstacle to the description of the ease of fragmentation. The effect, until recent times,
has been that blasting design has relied on rules of thumb (Scott et al., 1993) obtained
by precedent practice. The failure to promote blast design tools beyond rules of thumb
might have resulted from the fact that the influence of in-situ rock properties,
discontinuity structures and their interactions are often too difficult to be quantitatively
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isolated and determined. Rock Engineering Systems recently developed by Hudson
(1992), aims at providing both a useful checklist for technical factors of rock
engineering projects and a logical framework for the complete design procedure. It
clearly has potential for coping with complex rock engineering problems (e.g. Lu &
Hudson, 1992). By means of this innovative methodology, it is now considered
possible to tackle the complexity of rock blasting design systematically and to propose
a classification system for the ease of fragmentation of rock by blasting.

1.2 DISCONTINUITIES AND BLOCK SIZE IN QUARRYING AND MINING

The natural i.e. in-situ block size plays an important role in many rock engineering
projects. It is examined in mining and quarrying blast operations (Coates, 1970;
Cunningham, 1983; Ord & Cheung, 1991; Wang et al.,, 1991b), in rock mass
characterisation (Franklin, 1974, 1986; ISRM, 1978; Hoek et al., 1992), stability
analysis of excavations in jointed rock masses (Hoek & Bray, 1981; Goodman & Shi,
1986), and, fracture network flow properties (Rives et al. 1992; Long, 1993).

The formation of different sizes and shapes of individual blocks of intact rock
results from the mutual intersection of discontinuity sets with different spacing and
orientation. Among all the kinds of discontinuities, joints and bedding planes exert
most control on the size and shape of the in-situ block size. Both the spacing and the
persistence of discontinuities greatly influence the size of individual blocks of intact
rock. The mutual orientation of joints determines the shape of the individual blocks
comprising the rock mass. The number of discontinuity sets also influences the
appearance of the rock mass. It is common in engineering practice to group joint sets
according to the clustering of orientations of discontinuities as seen on a stereographic
projection. It is therefore suggested that the in-situ block sizes are mainly affected by
the spacing and the persistence of discontinuities, and, the number of discontinuity sets
(ISRM 1978).

Several estimation methods of IBSD have been proposed, such as the Block Size
Index method (Franklin, 1974; ISRM, 1978), a simulation method (Hudson & Priest,
1979) and a computational method (Da Gama, 1977; Stewart, 1986; Wang & Latham,
1991). Impressive developments in the estimation of IBSD are the work carried out by
Wang and his co-workers (Wang et al, 1990, 1991a; Wang & Latham, 1991; Wang
1992), who developed two techniques of predicting the in-situ block size and shape

parameters. The first is the so-called the Dissection Method, which uses a computer
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program to determine the sizes and shapes of all blocks produced by intersecting
discontinuities within a boundary block formed by six planes. The second is the so-
called Equation Method, which uses a set of empirical equations to estimate the IBSD.

In his work, Wang investigated discontinuities with uniform, negative exponential,
as well as lognormal spacing distributions. In developing the above two prediction
methods, an assumption that all discontinuities within the rock mass are persistent was
made. This assumption is probably acceptable for a small volume of rock with highly
persistent discontinuities, but the errors related to this assumption will inevitably
increase with the increase of both the volume of rock mass and the impersistent

discontinuities in question.

One of most important aims of any blasting investigation related to quarrying and
mining is to predict the degree of fragmentation (Hagan & Just, 1974; Singh & Sastry,
1987). For mining, the degree of fragmentation is one of the basic measures of relative
efficiency for different blasting designs (Just, 1979; Scott et al., 1993). For quarries
producing armourstone, both the production rate and a sufficient quantity of
armourstone or aggregate in a given size range are among the major concerns for
which the predicted BBSD is vital information (Latham & Wang, 1992). To assess
whether a blasting operation is optimal requires an appraisal of the actual blastpile's
block size distribution. Thus, the development of methods of assessing the BBSD has
been an important topic in both quarrying and mining, whether measured directly from
the blastpile itself or predicted from application of blast design models.

Direct sieving and measuring is the most reliable method to obtain the blastpile size
distribution. However, at full scale, it is expensive and tedious, generally being used
only in scaled down trial blasts or model studies (Yang & Rustan, 1983; Singh &
Sarma, 1983; Singh & Sastry, 1987). Photographic and image analysis techniques (Nie
& Rustan, 1987; Franklin & Maerz, 1988; Hunter et al., 1990; Ord & Chueng 1991,
Farmer et al., 1991) and prediction methods based on empirical blast design models
such as Kuz-Ram (Cunningham, 1983) and Bond-Ram (Da Gama, 1983; Wang et al,
1992) have been proposed to help tailor the explosive and geometric parameters of the
blast towards a desired BBSD for full scale production.

An ideal technique for the estimate of BBSD should be reasonably accurate, cost-
competitive and user-friendly. The exclusive and expensive methods reported above,
appear not to meet all these requirements. The direct photographic and image analysis
techniques usually need complex equipment and/or software. The indirect prediction
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models do not have their governing parameters determined with sufficient reliability.
However, in combining parts of the prediction models with a simple photographic
method, a technique which may meet all the above requirements can be developed.

1.3 THE EASE OF FRAGMENTATION OF ROCK MASSES BY BLASTING

Ease with which a rock can be fragmented by blasting should be a kind of intrinsic
property of rock. This property is referred to as Blastability. The necessary energy
input in a blast and the BBSD are clearly influenced by blastability.

The influence of properties of a rock mass on blasting operations has long been
studied. Their influence has been mentioned and incorporated in various ways, such as
Bond's work index (Bond, 1952), Hino's Blastability Coefficient (see Just, 1974), Rock
Factor (Kuznetsov, 1973), and Blastability index (Lilly, 1986). However, little attempt
has been made to develop a quantitative parameter or system to define the ease of
fragmentation of rock by blasting, in spite of the fact that this kind of development was
suggested long ago by Hagan and Just (1974). The advice to concentrate research
effort towards the study of blastability models was given by Scott et al. (1993), and
this research study has taken his advice on board.

Turcotte (1986) suggested that in many cases, fragmentation assumes a fractal
distribution or power law form. Also a theoretical study (Nagahama, 1993) has
indicated that the fractal dimension of fragments can be related to the energy density
for the fragmentation. These make the investigation into the possible relationship
between blastability of a rock mass and the fractal dimension of IBSD an attractive
research topic.
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2. REVIEW OF PREVIOUS RESEARCH ON DISCONTINUITY
GEOMETRY, IBSD, BBSD AND BLASTABILITY

2.1 DISCONTINUITY GEOMETRY

In the rock engineering fields dealing with excavation and construction on and
within rock masses such as quarrying, mining, hydraulic power projects, the term
"discontinuity" as a general collective name has become accepted and is now widely
used. A discontinuity can be any type of weak plane within a rock mass across which
the rock is structurally and/or mechanically discontinuous and has zero or low tensile
strength. Discontinuities include all weak planes of geological origin, such as joints,
bedding planes, cleavages, planes and faults.

The ISRM (1978) refers to the use of ten parameters for the characterisation of
discontinuities and these include three geometric parameters: spacing, persistence, and
orientation. Each of these ten parameters can have a significant influence on the rock
properties that control the success or otherwise of an engineering project. However,
three geometric parameters in particular, and their spatial distributions, are most
important in the estimation of both the IBSD and the BBSD: spacing distributions,
trace length distributions and orientation distributions (ISRM, 1978; Hudson & Priest,
1979; Priest & Hudson, 1981; CIRIA/CUR, 1991; Wang, 1992; Latham et al., 1994).

2.1.1 Discontinuity Measurement

There are a variety of methods for collecting, analysing and using discontinuity
data. In many cases it is only necessary to estimate the most important features of the
major discontinuity sets. These might be obtained readily from a simple visual
inspection of rock exposures. Other forms of analysis will require detailed information
and will take longer time to complete. Measurements and analyses of rock structures
could range from rough estimation of the mean spacing of three major discontinuity
sets, to complicated modelling of parameters describing the three dimensional
discontinuity pattern. The more complex models will take account of the variability of
discontinuity shape, size, orientation and clustering.
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Discontinuity data acquisition is achieved by mapping. The mapping methods
developed can be grouped into two types. One is by direct survey and another is by
indirect measurement. The indirect methods are based initially on measurements of
physical parameters of the rock mass such as seismic velocity and the discontinuity
parameters are then estimated from the physical parameters (e.g. Grainger et al.,
1973). The direct methods use visual measurement of each discontinuity. Such
measurements of lengths or angles are made directly on rock outcrops, bench faces,
boreholes (Piteau, 1970, ISRM, 1978) as well as from photographs of rock exposures
(Franklin & Maerz, 1988; Farmer et al., 1991). The direct measurement on rock
exposures can be carried out using either area mapping or line mapping techniques.

Area mapping techniques have been adopted by some researchers in collecting the
discontinuity trace length as well as spacing information (Mathis, 1987; Kikuchi et al,
1988). The mapping technique uses such measurements as spacing and trace length
exposed in a chosen area on an exposure. The exposure should be sufficiently large in
area so that the discontinuities measured are representative. This is often limited by

the accessibility and availability of rock exposures.

Line mapping, often referred to as the scanline technique, is widely used nowadays.
The principles are shown in Fig. 2.1. The line mapping technique was originally
proposed by Jennings (1968) and further extended and described by Piteau (1970) and
Hudson and Priest (1979). Wang (1992) described the technique in detail and further
grouped it into "detailed scanline" and "quick scanline" techniques. These techniques

are examined further below.

Discontimuties Discontinuity set

Fig. 2.1 Schematic illustration of scanline mapping of discontinuity characteristics
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Detailed scanline technique

The detailed scanline technique measures discontinuity orientation, trace length,
position, roughness, and aperture of each discontinuity intersecting the scanline in
question. The measurements can be collected from outcrops, excavation walls,
boreholes or photographs. Where the objective is the analysis of IBSDs, the
measurement can be reduced to orientation, spacing and trace length.

The basic equipment used for the detailed scanline is a compass clinometer, a
measuring tape of approximately 30 m length calibrated in centimetre divisions, a
customised pro-forma data entry sheet, pencil and notebook. Two chisels may also be
useful for setting out the tape where it is difficult to secure the tape ends.

The detailed scanline technique can provide the information needed to yield a
detailed discontinuity pattern. However, it is usually time-consuming and may be
restricted and unsuitable because of such factors as the inaccessibility of exposed
surfaces. Thus, a quick scanline technique has also been proposed.

Quick scanline technique

The quick scanline measures only the intercepts of discontinuities with the tape.
However, persistence data is often gathered at the same time. This surveying
technique can be conducted on outcrops and tunnel walls, along boreholes or directly
on photographs provided care is taken with possible distortion.

Using the quick scanline technique it is possible to obtain the mean spacing value
relevant to the scanline orientation and location, but impossible to group
discontinuities into sets, which limits its application in practice. A simple
development by Karzulovic and Goodman (1985) was put to use by Wang (1992) and
has given quick scanline techniques greater potential for exploitation. From this
development, it is possible to estimate the principal mean spacings (see section 2.1.2)
by combining data from several quick scanline surveys and this is explained below.

Hudson and Priest (1979) have shown that the discontinuity frequency along a
scanline is given by

l=zn:l, cos@,, (2-1)
1

32



where A; is the frequency of the ith discontinuity set along the normal to the ith set,
i.e. the reciprocal of the ith principal mean spacing, 0; is the acute angle between the
scanline and the normal to the ith set, and, N is the number of discontinuity sets,

which is selected as three in this example.

According to Karzulovic and Goodman (1985), for a group of three sets of
discontinuities, there is the following relation if there are n scanlines (n 23 ).

AA AB AC)(S,.| (LA
AB BB BC[S,.,t=1{LB}, (2-2)
ACc BC ccl|s,.| |Lc

where Sppy, is the principal mean discontinuity spacing, and,

AA=2C0891]' COSOlj
AB=ZcosGlj cos 6,
AC=2C0891]- cos 63

etc.

LA:ZSmj COSBU
LB=2S,,,J- cos 6,
LC= ZS,,,J- cos 03

j=1,...n,

where, j represents the number of the scanlines, Sy; is the mean spacing value of
discontinuity along the jth scanline, and, 0}; is the acute angle between the jth
scanline and the first discontinuity set. It is important to point out that it is critical to
know the discontinuity set orientations that enable substitution of the values of 6;;.
The discontinuity set orientations can be estimated by reconnaissance mapping,
plotting and contouring.

Eqn. 2-2 provides the estimate of the principal mean spacings from the general
mean spacing values measured by the quick scanline technique, for the case where the
detailed scanline is considered inappropriate. The greater the number of scanlines
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measured (the minimum is three), the more reliable are the estimates. This method is
of significance in providing estimation of the principal mean spacing values, even
though its wide application may be restricted by the uncertainty in the accuracy of the
results provided.

2.1.2 Discontinuity Spacing and its Terminology
2.1.2.1 Terminology of Spacing Distributions

ISRM (1981) described discontinuity spacing as the perpendicular distance
between adjacent discontinuities. To give more precision, Priest & Hudson (1981)
defined discontinuity spacing as the distance between an adjacent pair of
discontinuities measured along a straight line of a given orientation within or on the
surface of a rock mass. According to this definition, the discontinuity spacing is
affected by both orientation and location of the scanline measuring it.

The mean discontinuity spacing (S,,) is the algorithm average value of n
discontinuity spacing measurements S§; (i=1,..,n) along a scanline, where n

measurements can be generated from » discontinuities.

5,==3's,. (2-3)
n-,

In the case of using detailed scanlines, the mean spacing value S,,, of each scanline
can be obtained using the above definitions, and the distribution of the discontinuity
spacings can then be discussed. It is worth pointing out that S,,, as well as relevant
distributions are usually influenced by all sets of discontinuities in the rock mass and
related to the scanline's orientation (Hudson & Priest, 1979). For this reason, it is
helpful to follow Wang (1992) and introduce spacing parameters for each set of
discontinuities: the principal spacing Sp and the principal mean discontinuity spacing
Spm and the principle spacing distribution.

Under the condition of parallel discontinuities, the spacing measured along a
scanline will be the shortest when the scanline is perpendicular to discontinuities. For
this perpendicular condition, the spacing value is called the principal spacing Sp- The
concept can be further extended to include the spacing between two adjacent
discontinuities in one set where the scanline is parallel to the pole of mean orientation

of the set. The two adjacent discontinuities may be subparallel or parallel. When the



principal spacing Sp of a particular set of discontinuities is used to calculate and
generate the mean discontinuity spacing for this set, this mean discontinuity spacing is
named the principal mean discontinuity spacing Spm or briefly, the principal mean
spacing (Wang, 1992) , which is as follows.

1 n
Spm = ;Zsp. (2-4)
1

Methods of obtaining the principal mean spacing

The discontinuity frequency (A) is defined as the number of discontinuities per unit

length of scanline, and is therefore the reciprocal of the discontinuity mean spacing.

1
A=—. 2-5
5 (2-5)
4 Z (Vertical)
/ Discontinuity plane
Y (North)
L \—& >
X (East)

Fig. 2.2 Schematic illustration of the generic relationship between a discontinuity
and the tape (scanline) in a reference frame (X Y Z)

Using the detailed scanline, both the principal spacings and the principal mean
spacings can be obtained. There are two methods, with a little difference, for
calculating the principal mean spacing and these are described as follows.
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1) First, a plane function describing the spatial position and orientation of each
discontinuity is defined. To implement this, the raw survey data: dip angle, dip
direction and intercept with the oriented tape, have to be transformed into five
parameters: the dip angle and the dip direction of the discontinuities, and the three co-
ordinates (x, y, z) of any point on the discontinuity plane in an orthogonal Cartesian
co-ordinate reference frame as illustrated in Fig. 2.2. The intercept of the first

discontinuity with the tape is usually set out to be the origin of this reference frame.

The intercept of the discontinuity with the oriented tape defines a location on the
discontinuity plane and this location is therefore used to calculate the required co-

ordinate point (x, y, z) of that discontinuity plane,

x=1 Cos(8,)Sin(¢,)
y=1 Cos(6,)Cos(¢,), (2-6)
z=1,8in(6,)

where I; is the intercept of discontinuity, 8; is the plunge angle of the tape with a
positive sign (if the tape is downwards) or negative sign (if the tape is upwards), ¢ is

the azimuth of the tape.

An artificial scanline can be drawn along the mean orientation of a set of
discontinuities (i.e. the mean normal direction of this discontinuity set) determined for
example using the stereographic method. All discontinuities within the set will
intersect the artificial scanline, and, the intercepts can be determined by their
trigonometric relationships between: the orientation of the tape; the orientation of the
artificial line; and the orientation and intercept of the discontinuity. The principal
spacing between two adjacent discontinuities in the set is the distance between two

intersections along this artificial scanline (Fig. 2.3).

The advantage of this method is that it is not necessary that discontinuities in each
set are all parallel. However, the principal mean spacing value will be influenced by
possible variation in the relative location of the artificial scanline though the effect
could be reduced by increasing the numbers of discontinuities in a set.

2) When two adjacent discontinuities in a set are parallel, the principal mean

spacing, can be obtained from illustration in Fig. 2.3, as follows:

S, = §xcosa =§ X (cos 6, cos 6, cos(9, — ¢,) +sin6,sinf,), (2-7)
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where S is the spacing value from the original scanline of any orientation and o is the
intersection angle between the orientation of the scanline and the artificial scanline
(i.e. the mean normal direction of the set of discontinuities). The angles 0 and ¢ are
the plunge and the azimuth of the oriented lines respectively. Subscript / indicates the

scanline and m is the normal direction of the set of discontinuities.

Fig. 2.3 The relationship between the principal mean spacing from the known
spacing and orientation of the scanline and the mean orientation of the discontinuity
set. (D1 and D2 are two adjacent parallel discontinuities)

While the second method is simpler than the first it may introduce errors when
discontinuities are not parallel. After the principal spacing value in each set is
determined, the principal mean spacing value of each set of discontinuity can be
worked out using Eqn. 2-4.
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The data for the above two methods of calculating the principal mean spacing is
provided by the detailed scanline surveys. When using quick scanline surveys, we can
use the techniques proposed by Karzulovic and Goodman (1985) (see Eqn. 2.2) to
estimate the principal mean spacings.

2.1.2.2 Characterisation of Discontinuity Spacing

The spacing of discontinuities is one of the most influential parameters for the in-
situ block size. Thus, numerous research studies on the characterisation of
discontinuity spacing have been conducted.

Priest and Hudson (1976, 1981), Hudson and Priest (1979, 1983), and, Priest
(1993a) carried out in-depth studies and discussions which have effectively provided
the basis for our correct understanding of discontinuity geometry. They gave a non-
mechanical but more mathematical treatment of the tendency to produce negative

exponential spacing distributions.

Call et al. (1976) investigated the possibility of deriving reasonable estimates of
discontinuity spacing distributions from surface mapping data. Baecher and co-
workers (Baecher et al., 1977, Baecher, 1983) discussed and summarised the
stochastic description and statistical design of discontinuity spacing surveys. Einstein
and Baecher (1983) examined the probable distributions of discontinuity spacings
using the Chi-square (xz) test. Assuming that visual inspection of the histograms of
spacings is not enough to prove whether a proposed theoretical spacing distribution
gives the goodness-of-fit to the measurements, Rouleau and Gale (1985) used the
Kolmogorov-Smirnov test to examine the goodness-of-fit of spacing distributions to
the negative exponential, lognormal and Weibull distributions. They found that the
lognormal distribution was the best among them. This type of work has only received
a little attention and is a topic to be discussed later in this research study.

Dershowitz and Einstein (1988) discussed possible reasons for different spacing
distributions, pointing out that discontinuity location is the results of different
mechanical processes, and thus, different discontinuity spacing distributions would be
expected in terrain exposed to different deformation histories.

Discontinuity spacing distribution has recently been studied by Harris et al. (1991),
Barton and Zoback (1992), Gillespie et al. (1993), and, Boadu and Long (1994) with
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the motive in common. Their investigations have been concerned with an interesting
possibility that the spacing of discontinuities and discontinuity patterns could be scale
invariant in general or in certain aspects, i.e. the spacing distribution of discontinuities
could exhibit fractal characteristics. The fractal concept has found an increasing
number of applications in geoscience and geological engineering (Allegre et al., 1982;
Aviles & Scholz 1987; La Pointe 1988, 1993; Ghosh et al., 1990; Poulton et al., 1990;
Genske et al., 1992; Nagahama, 1993; Hobbs, 1993). If the discontinuity pattern
generation in a rock mass is self-similar then the information obtained about the
pattern at any scale would be statistically similar to that at other scales (Ghosh &
Daemen, 1993). The advantage of characterising discontinuity with fractal tools is that
in a given rock mass, only one small size interval needs to be measured to determine a
much wider range of characteristics. Whereas Hudson and Priest (1976) showed how
superposition of separate discontinuity spacing patterns would tend to produce an
overall spacing of negative exponential distribution, Hobbs (1993) has suggested that
rock masses would show a tendency towards fractal spacing frequency distribution.
The fractal spacing distribution has therefore been selected for detailed examination in

this research study.

The distribution law of discontinuity spacings along a scanline in line mapping is
often represented by an available probability distribution function (PDF). Nowadays,
this is usually done in the following way. First, the spacing values are grouped into a
certain, say, ten intervals in an order of increasing spacing. Then, the frequency of
spacing data within each interval is computed and plotted as a histogram. The most
likely theoretical distribution to give a good description of the histogram is assessed
visually. To get more reliable results, it is necessary to fit the frequency-spacing data
to some theoretical distributions and to examine the goodness-of-fit. Many researchers
have looked into the possible spacing distributions practically and theoretically. These

are summarised in Table 2.1.

The ability to identify the form of discontinuity spacing distributions is a basic
requirement for any study of discontinuity spacing analysis. Gillespie et al. (1993) have
shown how synthetic fracture logs can be created for uniform, lognormal, negative
exponential and fractal discontinuity spacing distributions by the following processes.

(1) a bisection process, giving a fairly regular distribution with constant spacing;

(2) a Poisson process, or a random point process, giving a negative exponential
spacing distribution;

39



Table 2.1 Summary of discontinuity spacing distributions

Distributions Sources Theory/Application/Case study
Negative Priest & Hudson (1976) Theoretical approach /Discontinuities in sandstone,
exponential limestone, and chalk (UK)
Call et al. (1976) Theoretical approach/Joints (USA)
Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks(USA)
Hudson & Priest (1979) Theoretical approach /Discontinuities in sandstone,
limestone, mudstone, and dolerite (UK)
Priest & Hudson (1981) Discontinuities in sandstone and mudstone (UK)
Einstein & Baecher (1983) [Theoretical approach/joints
Sen (1984) Theoretical approach
Sen & Kazi (1984) Theoretical approach / joints in schists (Saudi Arabia)
Rouleau & Gale (1985) Joints in the Stripa granite (Sweden)
La Pointe & Hudson (1985) |Theoretical approach/Joints in dolomites (USA)
Kikuchi et al. (1987) Joints in granite (Japan)
Villaescusa & Brown (1990) |Joints in rock from different mines (Australia)
Kulatilake et al. (1990) Theoretical approach/joints
Wang (1992) Theoretical approach/joints in granite gneiss (Norway)
and limestone (UK)
Rives et al. (1992) Theoretical approach
Kulatilake et al. (1993) Theoretical approach/joints (Sweden)
Lognormal |Bridges (1975) Joints
Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks (USA)
Sen (1984) Theoretical approach
Sen & Kazi (1984) Theoretical approach / joints in schists (Saudi Arabia)
Rouleau & Gale (1985) Joints in the Stripa granite (Sweden)
Wang (1992) Theoretical approach/joints in granite gneiss (Norway)
and limestone (UK)
Rives et al. (1992) Theoretical approach
Fractal Harris et al. (1991) Theoretical approach
Barton & Zoback (1992) Theoretical approach
Gillespie et al. (1993) Theoretical approach/Discontinuities in sandstones and
shales, UK
Hobbs (1993) Theoretical approach / examination of joints in the Stripa
granite (Sweden)
Boadu & Long (1994) Theoretical approach/Discontinuities in several
different locations (UK)
Uniform Hudson & Priest (1979) Theoretical approach
Wang (1992) Theoretical approach
Normal Hudson & Priest (1979) Theoretical approach
Rives et al. (1992) Theoretical approach
Weibull Rouleau & Gale (1985) Joints in the Stripa granite (Sweden)
Sen (1993) Theoretical approach
Gamma Sen (1984) Theoretical approach

Kulatilake et al. (1993)

Theoretical approach/joints (Sweden)
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(3) a Kolmogorov process, giving a lognormal frequency distributions of spacing;

and,

(4) a fractal clustering i.e. a scale invariant process, resulting in a power-law
spacing distribution.

a) Bisection
; b}‘

QEHEROE R

0 100 200 300 400 500 800 700 800 9090 1000

LR

0 100 200 300 400 §G0 600 700 . 800 900 1000

i
I

|
1

I

t
)

¢) Kolmogorov

L KYTI'I'IH L] ]Il L} rfflllﬂm] Ill'imlﬁlﬁwl

0 100 200 300 400 500 600 700 800 900 1000
d) Fractal
M_V '"rfllllﬂ llllllfl‘lfTIll"l LI II'ITIIDII l
0 100 200 300 400 5§00 800 700 800 900 1000
Distance

Fig. 2.4 Fracture logs for four kinds of theoretical distributions of discontinuity
spacings, each log has a sample line length of 1000 units and 256 fractures (after
Gillespie et al., 1993).

The random point distribution is simply generated by randomly distributing
fractures along a sample line. A Kolmogorov process is generated by an iterative



process of random bisection, in which each iteration randomly places an additional
fracture in every space between adjacent fractures. The Cantor Dust model
(Mandelbrot, 1983) can be used to produce the fractal data set. The fracture logs for
these four kinds of theoretical distributions of discontinuity spacings are illustrated in
Fig. 2.4.

Frequency, f(x)

Spacing (m)

Fig. 2.5 Three theoretical distributions (all three distributions have the same value
of mean spacing, 0.45 m)
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Fig. 2.6 Log-log plot for three distributions (The mean spacing for all three
distributions is the same: 0.45 m)
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The frequency distribution of spacing is conveniently represented on a frequency-
spacing plot of spacing x vs. frequency f{x). The three types of theoretical distributions
of discontinuity spacings are illustrated in Fig 2.5.

For the analysis of fractal spacing distributions, the spacing is usually represented
on a double-logarithm plot of spacing, x versus cumulative number N(x), where N(x) is
the number of discontinuity spacing values = x. On the log-log plot of spacing versus
cumulative number N(x), a fractal distribution will be a straight line. After obtaining
N(x) the related fractal dimension can be determined. On the log-log plot of spacing x
vs. f{x), the fractal distribution also plots as a straight line, as illustrated in Fig. 2.6,
which is distinct from the curves of the other spacing frequency distributions.
Whereas on the log-log plot of f{x)-x, a negative exponential frequency distribution
will be a distinct convex upwards curve, a log normal frequency distribution forms a
gentle curve and can resemble those of fractal distributions for the range representing
the large spacing values. The uniform frequency distribution of spacing, with all
spacing almost equal, are easily isolated from other types of distributions. This
technique is helpful to distinguishing between the four population types, and is

specially useful for examining fractal distribution.

The probability density functions, the cumulative probability functions, the mean
and standard deviations for four types of theoretical distributions are given in Table
2.2. They can be used in the analysis of both the discontinuity spacing data and the
discontinuity trace length data.

2.1.3 Discontinuity Persistence and Size

Discontinuity persistence is defined as the discontinuity trace length as observed in
an exposure, and is a measure of the extent to which discontinuities persist before

terminating in rock or against other discontinuities (ISRM, 1978; Einstein et al., 1983).

A discontinuity with a given trace length may be treated as persistent by one
worker with an objective of, for example, predicting block sizes; whereas another with
an objective of predicting the permeability of rock might not consider it to be
persistent. Thus, the persistence is related to scale of concern and the study objectives,

i.e. it is a relative term.
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Table 2.3 Summary of discontinuity trace length distributions

Distributions Sources Theory/Application/Case study
Negative Robertson (1970) Theoretical approach /joints
exponential [Call et al. (1976) Theoretical approach/Joints (USA)
Cruden (1977) Theoretical approach
Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks (USA)
Priest & Hudson (1981) Discontinuities in sandstone and mudstone (UK)
Panek (1985) |imestone, mudstone, and dolerite (UK)
La Pointe & Hudson (1985) [Theoretical approach/Joints in dolomite (USA)
Rouleau & Gale (1985) Joints in the Stripa granite (Sweden)
Kikuchi et al. (1987) Joints in granite (Japan)
Ranalli & Hardy (1989) Faults in world-wide, local or region
Zhang & Liao (1990) Joints in mudstone and sandstone (China)
[Kulatilake et al. (1993) [Theoretical approach/joints
Lognormal E;teau (1973) Joints, openpit, Zambia
cMahon (1974) Discontinuity in rock slope
Bridges (1976) Joints associated with caving mining
Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks (USA)
[Warburton (1980) Theoretical consideration
LBaecher (1983) Theoretical approach/joints
Rouleau & Gale (1985) Joints in the Stripa granite (Sweden)
Barton & Larsen (1985) Theoretical approach
Ranalli & Hardy (1989) Fau]ts in world-wide, local or region
Villaescusa & Brown (1990) [Theoretical approach
Kulatilake et al. (1993) Joints in the Stripa granite (Sweden)
Fractal Stone (1980, cf. Bahat, 1988)[Theoretical approach
Segall & Pollard (1983) Joints in granite rocks (USA)
Barton & Larsen (1985) h‘heoretical approach/fractures (USA)
Ranalli & Hardy (1988) Faults in world-wide, local or region
Bahat (1988) Theoretical consideration
Davy et al. (1990) Laboratory simulation/theoretical consideration(France)
Sornette et al. (1990) Laboratory simulation/theoretical consideration(France)
Uniform Hudson & Priest (1979) Theoretical approach
.a Pointe & Hudson (1985) [Theoretical approach/Joints in Niagaran dolomite
Normal Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks (USA)
Hudson & Priest (1979) Theoretical approach
La Pointe & Hudson (1985) [Theoretical approach/Joints in Niagaran dolomite
Gamma Baecher et al. (1977) Joints in shale, siltstone, and igneous rocks (USA)
[Kulatilake et al. (1993) [Theoretical approach/joints (Sweden)
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While the size of a discontinuity is one of the most important rock mass
parameters, it is one of the most difficult to quantify in anything but crude terms
(ISRM, 1978; Priest, 1993a). Discontinuity size is generally represented by trace



length on a two-dimensional surface or, the surface area of the individual discontinuity
which in practice is rarely observed. Trace length as observed in an exposure is both
objective and measurable. Discontinuity trace length may give a crude measure of the
area extent or penetration length of a discontinuity. Thus, the persistence or the size of
discontinuities can be quantified by measuring the discontinuity trace lengths on the

exposures.

Discontinuity trace lengths can range from centimetres to hundreds of meters.
Persistence mapping techniques vary with scale and targeted problem. Scanline
surveying, which samples the traces intersecting a line drawn on the exposure (see Fig.
2.1), is an ideal procedure from which to sample trace lengths.

In measuring the trace length of discontinuities, measuring errors are inevitably
introduced and a measuring bias is usually carried in the measurements. There are
essentially four biases: size bias, orientation bias, truncation bias and censoring bias.
The biases involved in the surveying of trace lengths have been discussed by Baecher
(1983). Among these biases, contributions from truncation bias could be made
negligible by selection of a low cut-off (Baecher & Lanney, 1978). Correction of
remaining biases has been discussed by Priest and Hudson (1981), Kulatilake and Wu
(1984a), and, La Pointe and Hudson (1985).

The statistical characterisation of discontinuity trace lengths is analogous to the
characterisation of discontinuity spacing. Einstein and Baecher (1983), for example,
believed that the discontinuity trace lengths could be well described by a lognormal

distribution.

A number of distributions describing discontinuity trace lengths have been
proposed. So far, the existing PDFs used for idealisation of discontinuity trace length
distributions are the negative exponential, the lognormal, and, the fractal or power-law
distributions, as summarised in Table 2.3. Consideration of which one is applicable is
necessary when drawing inferences from discontinuity mapping measurements. The
uniform and normal distributions have sometimes been used to investigate the trace
length distribution. However, the applicability in practice of these two trace length
distributions remains uncertain and is in need of further investigation. The Gamma
distribution has its advantage of including the negative exponential distribution as a
special case, but is mathematically much more sophisticated than the negative
exponential distribution. The fractal or power-law distributions have been reported for
several years (Stone, 1980 (cf. Bahat, 1988); Segall & Pollard, 1983). Recently, Davy
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et al.(1990), and Sornette et al (1990) in their experiments on the formation of faults in
a laboratory observed that the distributions of fault lengths exhibited a fractal
dependence over a certain significant range.

Various authors have provided geological evidence for dominance of particular
distributions. In most cases these authors collected data and then determined the best
of several theoretical distributions. Sometimes, the fitted distributions would be
subjected to a goodness-of-fit test (Einstein & Baecher, 1983; Rouleau & Gale, 1985;
Villaescusa & Brown, 1990). The variety of observed distributions can be produced
from different models describing the mechanical process and the geometric effects
owing to the fact that surface traces and not actual discontinuity sizes are observed
(Dershowitz & Einstein 1988).

Mean trace length is one of most important parameters to characterise discontinuity
persistence and size. Thus, many efforts have been made to estimate the mean trace
length.

Cruden (1977) described a method for estimating the mean trace lengths and the
potential longest trace length using line sampling while studying slope stability
problems. Pahl (1981) proposed a technique of estimating the mean trace length of
discontinuities observed in mine drive walls by assuming that the midpoints of traces
are uniformly distributed. The method appears, in a sense, distribution-free, since the
only parameter required for each discontinuity is whether it is censored (at one or both
ends) or not, and no information of the actual lengths of observed traces is needed. The
method, however, is limited by the assumption that the traces should be parallel.

The estimation of the mean trace length using scanline mapping was described in
detail by Priest and Hudson (1981). They proposed an analytical technique of
estimating mean trace length from measurements of semi-trace length of joints on a
finite-sized exposure using scanline surveying. Using the analytical technique, the
mean trace length, for a large sample, can be estimated by simply counting the number
of discontinuities with semi-trace length less than a range of censored levels and the
total number in a sample. This technique is of significance in the estimation of mean
trace length, and will be used for considering the influence of impersistent
discontinuities on the prediction of IBSD in this research study.

Kulatilake and Wu (1984a) described a technique for estimating the mean trace
length on infinite vertical sections from the observations made on finite rectangular
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vertical exposures. This technique followed the same basic steps as proposed by Pahl
to discontinuities whose orientations are described by a probability distribution
function. In addition, it was assumed that both trace length and orientation are

independent of each other.

After defining the distribution of trace lengths and thereby the mean trace length,
discontinuity size cannot be determined unless assumptions about discontinuity shape
and the nature of their size distributions have been made. Under special assumptions,
the underlying discontinuity size can be estimated from trace length measurements on

exposures.

Robertson (1970) has found that the lengths of joints in both the strike and the dip
direction are approximately equal, from which circular discs were proposed as models
for joints although other models, such as Poisson planes, were proposed for
discontinuity models (Baecher et al., 1977; Dershowitz & Einstein, 1988).

On the basis that the sizes of discontinuities have a statistical distribution related to
the distribution of trace length, Warburton (1980) derived an analytical relationship
between trace length and discontinuity size, using mathematical stereology and
geometric probability methods. This would appear to be of great significance for the
research objective which is to determine the invisible discontinuity size information
from visible and measurable trace lengths. Therefore, further study of its practical
applicability would seem important. Based on Warburton's work, Kulatilake et al.
(1990) found that diameter distributions for all discontinuity clusters will tend to be
gamma type assuming that joints are finite circular discs. In an effort to investigate the
influence of non-persistent discontinuities on the IBSD in this research, Warburton's
relationship will be used to develop a numerical solution for the determination of

discontinuity sizes.

It is seen from Table 2.3 that negative exponential, lognormal, and fractal trace
length distributions are often encountered. Thus, the research emphasis will be put on
these three trace length distributions. It is worth noting that so far, little study of the
persistence of discontinuities with fractal distributions has been done. Characterising
persistence and size parameters of discontinuities with fractal distributions will
therefore be highlighted in this research study.

The discussion of discontinuity trace length distribution laws and identification
techniques is similar to the discussion of discontinuity spacing distributions made in
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the last section, and is therefore not described here. Just as with discontinuity spacing
distributions, to identify the quantity of fit to ideal lognormal, negative exponential and
fractal discontinuity trace length distributions is also important in the study of
discontinuity persistent analysis.

2.1.4 Discontinuity Orientation and Sets

For discontinuity geometry, the orientation of the most important discontinuity sets
is another of the main factors to be considered. In the modelling of discontinuity
geometry, delineation of the discontinuity sets is a first step to creating discontinuity
geometry patterns (Dershowitz & Einstein, 1988). Discontinuities in rock masses are
not uniformly distributed in all directions, but are often formed in sets (Piteau, 1970;
Pollard & Aydin, 1988). There are several analytical functions available to describe the
discontinuity orientation distribution, such as the Fisher and the Bingham distributions
(Baecher, 1983; Dershowitz & Einstein, 1988; Priest, 1993b).

Grouping discontinuities within rock masses into sets usually consists of three
phases: mapping and logging the data, defining the criteria for membership of a set,
and assigning individual discontinuities into each of the sets. In practice, the
stereographic projection method has traditionally been used for a basic approach to
identification and assignment of the discontinuity sets. Poles of discontinuity planes
are plotted to produce a scatter plot which can be contoured to give orientation
densities. Certain criteria are then applied to the contoured plot which allows the
discontinuities to be grouped into several discontinuity sets with a distinct clustering
around one particular set. The mean orientation and dispersion of each set are then
estimated. With the help of computers, this graphical method may be objectively

implemented.

A goodness-of-fit test is often used to examine whether a proposed form of
theoretical distribution can reasonably describe the scatter of orientation data from site
surveys. For example, Baecher (1983) carried out the goodness-of-fit tests using %2

examination.

The discontinuity orientation distribution will be subject to error from sampling
bias arising from the mapping. A series of techniques for error reduction have been
suggested and used in practice (e.g. Einstein & Baecher, 1983; Kulatilake & Wu,
1984b; La Pointe & Hudson, 1985; Priest, 1993b).

BIBL
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The discontinuity orientations of the dominant sets play a significant role in most
rock engineering applications. A detailed survey of discontinuity orientations and a
careful grouping of discontinuity orientations into different sets are therefore
necessary. However, for certain applications and practical reasons, for example, the

prediction of IBSD, some simplifications have often been made.

The IBSD and the shape of the in-situ blocks and similarly their equivalent sizes
and shapes after blasting are a function of orientation distribution and nature of the
main discontinuity sets. In most cases, the in-situ and blasted block size and shape are
greatly influenced by three main sets of discontinuities. The other discontinuity sets
and random discontinuities influencing the in-situ and blasted block size could be
included, but they have often little effect on the results (ISRM, 1978; Wang et al,,
1990).

In fact, according to Costa and Baker (1981) and many other structural geologists,
discontinuities are closely associated with both the geological structure and the region
deformation history which are dependent upon the stress fields within a rock mass. A
region earth stress field is always revealed through three principal stresses. So, it may
be reasonable to assume that there will be three main sets of discontinuities for many
situations where the principal stresses have not rotated significantly. In addition, to
develop a procedure for tackling more than three sets of discontinuities will be much
more complex than that for dealing with three sets. Therefore, a simplified assumption
that there are three sets of main discontinuities will be sustained in this research study
for the prediction of IBSD.

2.2 IN-SITU BLOCK SIZE DISTRIBUTION

Both the Ros-Ram (Rosin & Rammler, 1933) and the Schuhmann equations
(Schuhmann, 1940) have been widely used for representing block size distributions.

The Ros-Ram equation is given by

P=l-e 5 (2-8a)

or
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Vm
—(V—)
P=1-e Y (2-8b)

where, P is the proportion of the blocks smaller than the sieve size S or volume V (%);
S¢ (V) is characteristic sieve size (volume), given by the point on the size distribution
curve when 63.2% of blocks have a sieve size (volume) finer than S, (V) ng (ny) is
the index of uniformity given by the steepness of the curve of the block size
distribution. Theoretically, lower values of ng (n,) mean more fines, more oversized

blocks and less blocks in middle sizes.

The Schuhmann equation is given by

S

P = (=, (2-9a)
SIOO

or

P = (™, (2-9b)
Vioo

where S]0p or V]gp is the 100% passing block sieve size S or volume V; mg or m,, is
the index of uniformity in the Schuhmann equation and the rest of the terms are the
same as those for the Ros-Ram equation.

2.2.1 Developments in IBSD Prediction

The earliest work related to quantitative description of in-situ block sizes was the
development of Rock Quality Designation (RQD) (Deere, 1964). Originally, RQD was
the proportion of borehole core that consists of 0.1 m or longer intact length. Priest and
Hudson (1976) extended RQD to scanline survey data, based on which an analytical
relation between RQD and the discontinuity frequency derived from the scanline
survey was proposed (Hudson & Priest 1979). Either a borehole or a scanline is by
nature one dimensional so that the RQD value obtained from a borehole or a scanline
will be influenced by the direction in which the measurements are taken.

To overcome the disadvantage of dependence of RQD upon direction, Kazi and Sen
(1985) suggested the use of the Volumetric Rock Quality Designation (V. RQD) . The
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V. RQD is a three-dimensional parameter. It is defined as the proportion of the volume
of intact matrix rock blocks equal to or exceeding 0.001 m3 in size, which can be
related to the average volume of a matrix block and the number of matrix blocks per
m3. However, the proposal of V. RQD is limited to the estimation of the average block
volume rather than the IBSD.

Apart from RQD, Franklin (1974) proposed a simple "size-strength" classification,
in which a fracture spacing index I the diameter of a "typical block" was
recommended for the use of description of block size. Ir was estimated by visually
selecting typical sizes of core or outcrop material and recording their average
dimension. The ISRM (1978) suggested a Block Size Index I and the Volumetric
Discontinuity Count J,,, which could be an indication of the in-situ block size, where
Ip is similar to Ir and estimated by selecting by eye several typical block sizes and
taking their average dimensions, and J, is the sum of the number of discontinuities per
meter for each discontinuity set present. Obviously, both If and I are semi-
quantitative and have limited use in practice.

Palmstrom (1985) suggested several empirical equations to link J,,, RQD and linear
fracture frequency A, and proposed a correlation between the in-situ block size and J,,
which was represented in a figure incorporating the influence of block shape. From the
figure the block size can be estimated from J,. This method could only estimate a
rough upper and lower range of block sizes and thus has restricted application.

Sen and Eissa (1992) derived analytical expressions relating J,, RQD, and block
volumes of different shapes such as bars, plates, or prisms, the result of which were
presented in the form of charts. These charts provided a simple tool for practising rock
engineers without the need for recourse to theoretical calculations. Unfortunately, the
block volume was also given in terms of average block size, and was thereby of
limited use in describing the block size distribution.

Another means of tackling the prediction of IBSD is computer modelling. Using
analytical geometry, Da Gama (1977) developed a computer simulation program to
implement the IBSD analysis, assuming that the orientations of discontinuities in space
have been derived from field measurements of the orientations and positions of
discontinuities. A significant contribution to simulation of discontinuity geometry was
made by Hudson and Priest (1979) who introduced Monte Carlo simulation procedures
into the study of discontinuity spacing distributions which were also related to the rock
block lengths. These ideas in the study of discontinuity spacing distributions were
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further extended to both studies of block area distributions in a plane and block
volume distribution of a particular rock mass. Stewart (1986) reported a simulation of
IBSD conducted by the Climax Molybdenum Company. The algorithm and computer
programme was considered to give a direct simulation of fractured rock blocks using
discontinuity set statistics, Monte Carlo techniques, analytical geometry, and, scanline
mapping data and therefore had much in common with Da Gama's work. Xu and
Cojean (1990) developed a model which was based on the algorithm developed by Lin
et al. (1987) for simulating three-dimensional rock mass granulometry. An important
advance in this model is that the connectivity of fractures, which is usually difficult to

characterise, was taken into account.

Ghosh et al. (1990) reported one procedure to estimate the IBSD. In the procedure,
the core logging, largest block, RQD and the percentage of larger than 25 mm, are
collectively used to estimate the IBSD assuming that the length distribution of the core
fragments is representative of the IBSD. However the IBSD derived from drill hole
data could often be considerably underestimated since the maximum dimensions of the
blocks are not often in the vertical direction when cores are taken. Thus the IBSD has

to be corrected.

Assuming that intact blocks in a volume of naturally jointed rock occur with the
same frequency as simulated discontinuity spacings of that size, a three-dimensional
rock model has been developed by Kleine and Villaescusa (1990), which takes into
account the finite extension, location and orientation of the discontinuities within a
rock mass. The most likely distributions of discontinuity extension, location and
orientation were derived from line mapping, which were then used to compute the
IBSD. However, an assumption was made whereby intact blocks of a certain size will
occur with the same frequency as the measured or calculated discontinuity spacing

associated with that size.

Ord and Cheung (1991) described an automatic mapping system in which a video
camera was used to record images produced from multiple scans of a rock exposure.
The information included in the images was used to establish the complete three
dimensional shape of the scanned exposure. Using this system, instantaneous outputs
such as the in-situ block size could be obtained in the field. This technique was based
on image analysis. Therefore, the relevant equipment and a suitable field working
environment have to be provided, which is considered likely that this will limit its
application in practice until its accuracy has been proven to be acceptable in many

working environment.
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Dershowitz (1992) has devised a stochastic simulation procedure based on forward
modelling. It repeatedly simulates a three-dimensional fracture system until the trace
length statistics for simulated sampling planes, which were the same as the surface on
which the original data was collected, match sufficiently with the trace statistics of
measured data. It was claimed that this method worked well for complex fracture
geometry where analytical methods prove difficult to cope with. This simulation
method usually needs large exposures. Small natural exposures are common, which
makes it difficult to evaluate fracture size in small exposures reliably. However, it is a

substantial advance as it deals with finite size discontinuities.

Only discontinuities with either uniform, negative exponential or lognormal spacing
and/or trace length distribution were considered in all the methods or techniques
mentioned above. Turcotte (1986) showed that the power-law distribution is equivalent
to the fractal distribution and that the distribution of fragment sizes produced by
blasting is likely to be related to the distribution of discontinuities in the rock. In
addition, he has gone as far as to suggest discontinuity distributions may determine the
distributions of fragment sizes by dynamic breakage. Poulton et al. (1990) suggested
that both massive and fragmented rock masses have scale invariant behaviour, i.e., the
fractal characteristic. They also suggested that fracture spacing and block size might
show similar fractal dimensions for a given rock mass if the scale invariance could be
applied to in-situ, i.e. geological rock breakage. Genske et al. (1992) stated that fractal
geometry may serve as a tool to build models for jointed rock masses, and that
complicated structures can be reduced to simple fractal models, thereby accelerating
the analytical work, although they acknowledged that most phenomena in
geomechanics may not be fractal in terms of strict mathematics. Hobbs (1993)
proposed that the distributions of rock discontinuity patterns are not random, but

deterministic and as such may be described by a fractal dimension.

2.2.2 Wang's Methods

Wang and his co-workers (Wang et al., 1990, 1991a; Wang & Latham, 1991; Wang,
1992) illustrated the development of two different techniques which use either
orientation and location data from individual discontinuities or, only location data of
the discontinuities mapped combined with a knowledge of the main discontinuity set
orientations. Both of them are incorporated in a computer program and these are called

respectively the Dissection Method and the Equation Method.
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Dissection Method

The Dissection Method uses a computer program to determine the sizes and shapes
of all blocks produced by intersecting discontinuities within a boundary block formed
by six persistent planes. The algorithm developed in this computer program takes
advantage of the block theory by Goodman and Shi (1985). The data set required to
run the program is discontinuity orientation parameters and intercepts with reference
to an oriented scanline, all of which can be provided from detailed scanline surveying.
Six discontinuities are chosen to form an executable six-sided block called the
boundary block for which the IBSD is to be computed. This boundary block is first
dissected into two blocks of varying shape by a discontinuity which is read from the
discontinuity data file (refer to Fig. 2.2). These two may be further dissected into three
or four blocks by another discontinuity. This dissection process is carried out until the
last discontinuity in the working data file is executed, yielding an intermediate file of
co-ordinates of corners of all natural blocks existing in the boundary block formed by
the dissecting discontinuities. The sizes of these blocks are given in terms of volume,
maximum length, and nominal diameter. Shape in terms of number of facets, ratio of
maximum length over nominal diameter are then defined. Accordingly, the block size
distribution is given. The geometrical pattern of discontinuities intersected with the
boundary block can be viewed in three dimensions from the computer program.

Equation Method

The Equation Method uses a set of empirical equations to estimate the IBSD. This
set of empirical equations relates the IBSD to the principal mean spacings and the
mean orientations of the three principal sets of discontinuities defined to best
characterise the rock mass. The equations are ones derived from computer modelling
results of the block sizes distributions obtained from the dissection method described
above. To calibrate the equations, input data was introduced from artificial
discontinuities having a given distribution but with a random sequence of generation.
Depending upon which specific spacing distribution is chosen, different sets of
empirical equations are offered. These equations are all given by the general equation:

— C“P X (Sl’m‘ xSPmZ ><Spm‘_;)
cos@ cosp cosax
i=10, 20, ..., 100,

(2-10)

Lp

55



where, V; , and Cj p G =10,20,...100) are respectively block sizes of percentage passing
and empirical coefficients; i are percentages; Spm ], Spm2 and Sp, 3 represent the three
principal mean spacings; and 6, ¢ and « are the angles between the mean orientations
of the three discontinuity sets. The C;jp in Eqn. 2-10 for discontinuity sets with
negative exponential and uniform distribution and a certain lognormal distribution
spacing law have been given elsewhere (Wang, 1992) as simple look-up tables.

In the dissection method, it is very important to select the six boundary planes
carefully in order to form an "executable boundary block" capable of yielding
meaningful and reliable block size distributions. In addition, the execution of the
computer programme is often very time-consuming owing to problems with the
dissection method in terms of user-friendliness and user access. The equation method
which evolved from the dissection method, in certain respects, is preferable since it is
simpler and more time-saving than the dissection method. But, the equation method is
less versatile in the sense that the dissection method can solve precisely the problem
posed whatever the number and quantity of discontinuity sets to be included.

Although Wang advanced our knowledge, the prediction of the IBSD of rock with
discontinuities described by a fractal spacing distribution was not included in his
study. Just as with almost all existing methods to estimate the IBSD, the techniques
developed by Wang assume that all discontinuities to be included in the analysis of a
rock mass are persistent. Certainly, a rock mass with impersistent discontinuities is the
normal, indeed, the universal case. This suggests that incorporation of the influence of
impersistence on the IBSD into existing approaches is a much needed research topic.

2.3. BLASTED BLOCK SIZE DISTRIBUTION

To assess whether a blasting operation is optimal requires an appraisal of the
BBSD. Thus, assessment of the BBSD has been an important topic in quarrying and
mining. The tools used for the assessment include simple prediction using empirical
blast design models, image analysis and prediction involving numerical modelling.

The simple prediction approaches are employed to help tailor the explosive and
geometric parameters of the blast towards a desired BBSD for full scale production
and they use empirical blast design models such as Kuz-Ram (Cunningham, 1983),
Bond-Ram (Da Gama, 1983; Wang et al, 1992). These models which are based on the
_ classical Ros-Ram and Schuhmann equations can give a good fit to the BBSD
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(Gilvarry, 1966; Just, 1979; Da Gama, 1983; Cunningham, 1983, 1987; Gozen et al,
1986; Turcotte, 1986; Clarke, 1987; Grady & Kipp, 1987; Wang, 1992).

Image analyses are the approaches to determination of the blasted block size
distribution by direct measurements from blastpile images, which are often
implemented by means of computers (Noren & Porter, 1974; Carlsson & Nyberg,
1983; Van Aswegen & Cunningham, 1986; Cunningham, 1987; Franklin & Maerz,
1988; Hunter et al, 1990; Farmer et al., 1991; Cheung & Ord, 1991; Wang, 1992).

Prediction involving numerical modelling has usually incorporated parameters such
as explosive properties, blasting pattern and in-situ rock properties (Harries & Hengst,
1977; Lownds, 1983; JKMRC, 1991; Owen et al., 1992).

Other pragmatic approaches, for example, the "analogous model method" (JKMRC,
1991) and the boulder count (Johansson & Persson, 1974; Rustan & Vutukuri, 1983)

have occasionally been used in practice.

Among the above approaches, the prediction approaches and image analyses remain
the most promising in the near future while numerical simulation using a computer
will be still used as an auxiliary tool of understanding the fracturing mechanism. Thus,

the following discussion will focus on both prediction approaches and image analyse.

2.3.1 Prediction Approaches
The Kuz-Ram model

Kuznetsov (1973) studied different materials with widely varying types of blasting
scales ranging from normal openpit mining to a nuclear blast. Based on the
measurements of fragmentation from the studies, he proposed an empirical equation

used to estimate the 50% passing block size of a blastpile, which is given by:

v, 2 1152
Sps0 = A(E”)5 Q° () (2-11)

where Sp50 represents a sieve size (in cm) through which 50% of the blastpile will
pass; Q equals the weight of explosives (in kg), and, V}, is the volume of rock mass per
blasthole (in m3); E is relative weight strength of the explosive, taking E=100 for
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ANFO; A is a rock factor which is dependent on the description of the rock mass in
terms of discontinuity structure, rock density and rock hardness. Originally, Kuznetsov
suggested that A take one of the following values: (i) 7 for medium rocks; (ii) 10 for
hard, highly fissured rocks; and (iii) 13 for very hard, weekly fissured rocks.

Combining the Ros-Ram equation (see Eqn. 2-8) with Kuznetsov's equation,
Cunningham (1982, 1983) suggested an empirical approach to estimating
fragmentation. This approach has been called the "Kuz-Ram" model. In the Kuz-Ram
model, the characteristic size in the Ros-Ram equation is derived from Sp 50 obtained
by the Kuznetsov equation, the uniformity index n characterising the steepness of the
Ros-Ram curve is estimated by

n=(2.2- 143)(%(1 + %))0.5 a-W\BCL-ccl

0.1
B )

01 L
—, 2-12
a (2-12)
where d is blasthole diameter (mm), B is burden (m), S is spacing (m), BCL (m) and

CCL (m) are respectively bottom and column charge length, L is total charge length
(m), Wis the standard deviation of drilling accuracy (m), and H is bench height (m).

Cunningham (1987) developed an algorithm for the value of A with reference to the
research of Lilly (1986). It attempts to improve the values of A originally suggested by
Kuznetsov and is given by,

A = 0.06 (RMD + JF + RDI + HF), (2-13)
JF = (JCF x JPS) + JPA,

where RMD is the description of rock mass, JF is the discontinuity factor, RDI is the
rock density influence, HF is hardness factor, JCF represents discontinuity condition,
JPS is the vertical discontinuity spacing, and JPA is the discontinuity plane angle. The
value of A estimated by this algorithm falls in the range from nearly 1 to 13. The new
algorithm promoted the application of the Kuz-Ram model in practice.

The Kuz-Ram model is the most widely used published approach for predicting the
BBSD. This approach has several particular advantages: familiar parameters, simple
calculation and good adaptability to different blasting situation. But, it gives emphasis
to the details of the explosives and the blast design geometry and arguably does not
take good account of the geological conditions of the in-situ rock mass.
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The Bond-Ram Model

Bond (1952, 1959) proposed an equation used to relate the blasted block size, the
in-situ block size and energy input, which has been called Bond's third comminution

theory. It has the following form:

E,=10E, (—————), (2-14)

b80 StBO

where, Ej is the required energy for fragmentation in kwh per ton of processing rock
material; E, is Bond's work index; Spg0 and S;gp are the blastpile and in-situ block
size for this application rather than product and feed sizes that are used in milling.
Subscript 80 means that the block size is equivalent to the sieve opening (in microns)
through which 80% of the rock materials pass. Eg can be taken as input energy, which
is determined from the specific charge and the type of explosive (see Da Gama, 1983;
CIRIA/CUR, 1991) as follows.

_ 0.00365E,P,

p

(2-15)

where E, is the weight strength of the chosen explosive in weight (%); Py is the
specific charge or powder factor in kg/m3; and, p is the density of the rock mass in
t/m3. E_ can be estimated using an empirical equation suggested by Da Gama (1983)
as:

E. = 15.42+27.35S’%, (2-16)

where S;50 is 50% passing in-situ block size and B is the burden used in the blasting.

Combining the Bond's theory, the Ros-Ram model and Eqn. 2-16, Wang et al.
(1992) have suggested an approach to the estimation of BBSD, referred to as the
Bond-Ram model, which gives greater emphasis to the initial geological controls, by
providing a detailed analysis of the discontinuity spacing data and thereby obtaining
the IBSD in the rock mass prior to blasting (IBSD). A major but reasonable
assumption of the Bond-Ram model is that given an approximately constant blast
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design, wide variations in the IBSD from different locations and depths within a rock

mass will to a large extent govern the variation in BBSD that will be obtained.

2.3.2 Direct Measurement from Blastpile Images

Image analysis approaches are both safe and thorough, and thereby promise to be a
useful tool for measuring rock fragmentation (Franklin & Maerz, 1988).

As an early example, Noren and Porter (1974) used the photographic method to
assess blasting results in open pit operations. A series of tests at the operation mine
were conducted to assess surface fragment distribution versus blastpile fragment
distribution. The cross sectional view of the blastpile was successively evaluated and
compared with the results from surface views. The results suggested that surface
measurements are a reasonable representation of the blastpile fragmentation, which

greatly encouraged the further application of photographic methods.

Carlsson and Nyberg (1983) proposed a method for estimation of fragment size
distribution with automatic image processing. This study marked an advance in the

analysis of fragmentation by means of computer techniques.

Van Aswegen and Cunningham (1986) proposed a "standard photograph” method.
Using some standard fragmentation photographs of blastpiles with known distribution
as references, the BBSD of a new blastpile could be estimated by means of the
photographs taken of blastpiles. The accuracy of this method, to a great extent,

depends upon the subjective judgement of operators, however it is a useful tool.

Nie and Rustan (1987) used the digitising technique and a so-called radial lines
sampling procedure for analysing fragmentation. In their study, the validity of
assumptions generally used by photographic methods were discussed and the errors in
image analysis methods were outlined. Their study also indicated that the accuracy of
the proposed technique was reasonable in terms of practical and economical need for
accuracy although more detailed work needed to be performed.

Franklin and Maerz (1988) developed a method of measuring fragmentation by
digital photo analysis. The photographs of fragmented rock in the backs of dumper
trucks were taken as the input of photo analysis. The blocks were traced and the image
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analysis was conducted. An important development in this technique was claimed to
be that the overlapping is taken into account using a relevant "unfolding function".

Grainger and Paine (1990) described a photographic fragmentation assessment
technique and the comparisons of the photographic technique with manual
measurements in several mine applications. Two problems encountered were: the
scaling of rock fragments on the photographs to actual size and, the overestimate of
fragmentation measurements using photographic techniques. These were discussed and

possible solutions were suggested.

Cheung and Ord (1991), and, Ord and Cheung (1991) developed an on line, non-
contact fragment size monitoring and image analysis system. The system was based on
a stereo imaging technique using a laser, a video camera and a computer. It determined
the size distribution from rapid sampling of the visible rock fragments on the surface
of the burden travelling on a conveyor belt. The technique appears to have
considerable quarrying and mining potential, but the general application of this

technique might be limited by its specific equipment and operational needs.

Farmer et al. (1991) developed techniques of digital processing to determine the
three-dimensional block size distributions from images taken of the surface of a
blastpile. A set of tests, deriving the relationship between the surface distribution and
the interior volume distribution, were carried out to verify the key assumptions of
block shape that must be made in most image processing analyses. A similar technique
was also reported by Stephansson et al. (1992).

Singh et al (1991) focused on the development of a photographic technique for
assessing fragmentation in an underground environment. Due to the only moderate
quality of underground photographs, it is usually difficult to trace small particles. The
solution used was to fit the fines portion of the distribution to a Ros-Ram curve. The
percentage of fines was determined by measuring the percentage area of the
photograph covered by the fines. An associated computer programme for this purpose
was developed.

Wang (1992) devised a simple technique to estimate the median sieve size or 50%
passing block volume using a photographic method. This technique was combined
with the direct measurements of oversized blocks in a quarry giving an estimation of
the BBSD and the yields of armourstone sized blocks. However, this technique appears

to be oversimplified and is in need of further refinement.
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The above discussions have shown that the main concerns in the applicability of
results from photographic approaches usually derive from three sources: (1) the
sampling representativity, (2) the shape assumption of fragments, and (3) the
correction of image analysis. The sampling representativity includes whether the
surface fragment distribution is representative of the blastpile, and, whether the
random sampling e.g. from dumper trucks is representative of the over-all distribution.
The shape assumption is centred on how the three dimension information is derived
from the one and/or two dimensional data measured. The correction is to refine the
analysis results. The most probable source of error would result from the assumption
that the surface fragment distribution is representative of the blastpile, which has been
found to be reasonably accurate (Noren & Porter, 1974; Van Aswegen & Cunningham,
1986; Nie & Rustan, 1987; Ord & Cheung, 1991; Hunter et al., 1990; Farmer et al.,
1991), thereby permitting it to be applied to the image analysis of the BBSD.

24  BLASTABILITY OF ROCK MASSES

In recent years, there has been a series of investigations into diggability, drillability,
rippability and excavability of rock materials (e.g. Scoble & Muftuoglu, 1984; Kirstern
et al., 1988; Karpuz et al., 1990; Haines, 1993). However, in spite of these, blasting is
the most frequently used means for quarrying, mining and other excavating operations,
and there remains an insufficient scientific understanding to quantify the ease with
which a rock mass can be fragmented by blasting. There appears to be a wide gap
between the level of blasting technology in laboratories and the technology applied to
quarrying and mining sites. One of the main reasons for this has probably been the
failure of existing empirical models to provide satisfactory solutions to blasting
operations (Scott et al., 1993).

A blasting operation can be comprehensively described by: rock mass properties,
explosive properties, blasting geometry or pattern, and, initiation sequences. A number
of studies on how these factors influence a blasting operation for quarrying and mining
have been discussed elsewhere (for example, Hagan & Just, 1974; Da Gama, 1983;
Atlas Powder Company, 1987; Wang et al., 1991b; Scott et al., 1993). Since this
research study mainly concerns the influence of rock properties and discontinuity
structures on blasting operations, the wider considerations arising from the explosive

design of a blasting operation in a quarry or a mine is beyond the scope of this
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research. Thus, the review below focuses attention on the influence of rock mass
properties and discontinuity structures on fragmentation.

2.4.1 Previous Attempts

In either the Ros-Ram or the Schuhmann model, there is an index which
characterises the steepness of the fragmentation curve (ng and mg, see Section 2.2).
The index is generally considered to be primarily a function of the "nature" of rock
material rather than the blasting design.

Belland, (1966) carried out a series of blasts to examine the influence of rock mass
structure on rock fragmentation. He found that the range of patterns of discontinuities
exerted a greater influence on fragmentation than the range of practical blast design
and explosive. He therefore suggested that a blast design be based on a discontinuity
survey to take advantage of their influence. Others recognised the likely importance of
rock mass structure. Coates (1970) pointed out that there were indications that in most
formations the fragmentation was primarily determined by the geological structure, i.e.
the rock blocks had already been created, the blast merely loosened them and threw
them into the blastpile. Therefore, an increase in the powder factor was not likely to
have a proportional influence on the degree of fragmentation because the basic
element, the geologic block, was not affected.

A rather simple description related to rock properties is probably Hino's blastability
coefficient (see Just, 1973) which is the ratio of both compression and tensile strength

of arock.

The linking of rock properties to rock fragmentation, as expressed by the
Kuznetsov's equation (1973), was a major advance in the study of blasting. The
equation made possible the estimation of the mean block size and lead to the
development of the Kuz-Ram model. In Kuznetsov's equation, the parameter "Rock
Factor" A, which essentially depends on the hardness and jointing of the rock, is
required to account comprehensively for the influence of the rock properties on the
blast result. However, there are rarely any experimental results available to establish
the rock factor in advance of a blast, and this parameter has to be either estimated or
determined with time-consuming and expensive trial blasts and block size assessment

performed under conditions encountered in actual blasting operations.
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Khanukayev (1974) urged that special attention should be paid to the classification
of rock mass regarding its fracturing because the degree of fracturing considerably
influences the specific consumption of explosives and the fragmentation ability of
rocks. Hagan and Just (1974) believed that optimum selection and application of an
explosive for a given operation would not be achieved until the influence of rock
properties on the nature and extent of fracture mechanisms was fully understood. They
therefore advised that a kind of quantitative classification system which defines the
ease of fragmentation of rock would be needed. Bellairs (1986) stated that both
experiments and practice had indicated that blasting results were influenced by rock
properties more than explosive properties. He went on to describe a classification
system for blasting, including physical hardness, mineralogical and genetic
characteristics of ore for fine-tuning blast pattern design at Mt Whaleback Mine.

Langefors and Kihlstrom (1978) developed an empirical formula to calculate the
maximum burden. It incorporated a blastability factor which indicates the explosive
needed to break but not throw the rock (see Rustan, 1992; Kou & Rustan, 1992).

Another approach to the modelling of blasting is to consider the process as one of
explosive energy input in order to achieve a certain amount of work which is expressed
by the reduction from in-situ to blasted block sizes. This is the basis of the Bond-Ram
model describes in Section 2.3.1. A significant step towards the establishment of
correlation between input energy, the size distribution before and after blasting has
arisen from the Bond's third theory of comminution. Considering a compromise
between the first theory of comminution (Rittinger, 1867, see Da Gama, 1983) and the
second theory of comminution (Kick, 1885, see Da Gama, 1983), Bond (1952)
proposed the third theory of comminution (see Eqn. 2-14). In the theory, there is a key
parameter, called the work index which is defined as the energy required to crush a
solid of infinite size to a product of which 80% will pass a sieve size of 100 microns.
The work index reflects the resistance of a rock to crushing, grinding and breaking by
blasting (Bond & Whitney, 1959). The remarkable advantage of Bond's theory when
applied to blasting is that the estimation of the fragmentation of a blast (i.e. the BBSD)
is related to the in-situ block size and the input energy of explosives. Putting Bond's
theory into practice, Da Gama (1983) suggested an empirical equation for estimating
this index especially suitable for rock bench blasting, which related to the 50% passing
in-situ block size Vp50 and the burden used in blasting (see Eqn. 2-16). Not
surprisingly, however, the equation presented by Da Gama suffers the usual limitations
of an empirical formula with a relatively low correlation coefficient and a far from
comprehensive set of rock masses tested.



Studies by Singh and Sarma (1983), and Yang and Rustan (1983) used a series of
small scale physical tests to evaluate the influence of the discontinuities present in a
rock mass on the blasting results. According to Yang and Rustan, different blast
designs did not change Sp5¢ significantly, which suggested to them that Sp50 was
largely governed by S;50. A similar suggestion was also made by Wang (1992).

Lilly (1986) suggested an approach to assessing the blastability of a rock mass
which is essentially a procedure linked to the blastability classification system. Taking
a pragmatic viewpoint and extending the concepts of empirical rock mass
classifications to blasting, Lilly proposed an empirical rating index for blastability of a
rock. He selected a few easily obtained rock parameters which contributed
significantly to blasting performance and assigned weighted ratings. These parameters
included the hardness, the specific gravity, the structural characteristics, and the
jointing situation of the rock mass. Lilly claimed the Index to be a measure of the

overall blastability of the rock mass.

In 1987, Cunningham produced a review on applications of the Kuz-Ram model in
fragmentation estimation. He outlined the three problem areas in any blasting model
which were: (1) definition of the relevant rock properties, (2) selection of the
appropriate explosives performance indices, (3) determination of the actual blasting
fragmentation. Furthermore, he predicted that a meaningful explosive/rock
performance index was likely to emerge from further research.

The investigations of influence of the intact rock properties and the rock mass
structure on the blast were also reported by other researchers (e.g. Clarke, 1987; Kleine
& Villaescusa, 1990; Wang et al., 1991b; Scott et al., 1993). These investigations are
similar to the suggestion that the blast results would depend largely on the geological
properties of the rock mass. Particularly, Scott et al. suggested that emphasis need to
put on the development of a more accurate fragmentation model.

It appears obvious from the foregoing review that there is a fundamental
dependence of blasting results on the rock mass properties and that these are
significantly governed by the discontinuity structures. A serious effort has been made
to uncover the relationships between the rock properties and discontinuity structures
and the blasting results but it remains a challenge. Thus, uncovering the relationships

through further investigations will be one of main aims of this research study.

65



2.4.2 Fractal Dimension, Blastability and Fragmentation

The Schuhmann equation has been one of the most widely used models to
statistically describe the size distribution that is used to quantify the fragmentation.
This equation can be transformed to give the fractal distribution (Turcotte, 1986).

A number of researchers have been devoted to the fractal characterisation of
fragmentation (Turcotte, 1986; Poulton et al. 1990; Xie, 1990; Crum, 1990; Ghosh et
al., 1990; Turcotte, 1992). The proposition that rock fragmented by an explosion often
satisfies a power law size-frequency or fractal distribution over a wide range of scales
has been supported by a variety of data (Hartmann, 1968; Turcotte, 1986; Clarke,
1987).

By means of renormalization studies, Turcotte (1986) shown that a more fragile
material when subjected to a fragmentation process might be associated with a smaller
fractal dimension. Provided that scale invariance (an important characteristic of a
fractal) can be applied to rock breakage, Poulton et al. (1990) proposed that the fractal
dimension of a rock mass before blasting could be indicative of the BBSD.

It would appear then, that the fractal dimension could be a sensitive parameter to
consider in seeking the dependence of the breakage resistance of the rock mass during
the process causing fragmentation. The possible role of fractal concepts in developing
a description of blastability will therefore be explored in this research study.

2.5 SUMMARY AND CONCLUSIONS
2.5.1 Outstanding Problems
From the foregoing discussion, several outstanding problems can be identified.

First, there has been an impressive development in the prediction of the IBSD.
However, as yet there has been no investigation into the IBSD of rock masses with
fractal spacing distributions. The fractal spacing distribution has been found to be a
distribution potentially encountered in rock masses and is being increasingly
recognised in geological engineering. Thus, there is a need to provide insight into the
IBSD of a rock with fractal spacing distributions.
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Second, discontinuities that are impersistent are to be found in natural rock masses
in practice. The consideration of the influence of discontinuity impersistence on the
IBSD in existing prediction methods of the IBSD is unsatisfactory. Research should
therefore be pursued to consider the contributions of impersistence of discontinuities to
the IBSD. Based on this consideration, the existing prediction methods of the IBSD
could be updated and founded on a more rigorous basis.

Third, both the Ros-Ram and the Schuhmann equations have had, and will still have
their wide applicability in representing the BBSD, and the photographic method
promises to be a simply practical tool for measuring rock fragmentation in the
blastpile. However, the exclusive and expensive approaches reported above, appear not
to meet all possible user requirements which typically include: reasonable accuracy,
cost-competitiveness and user-friendliness. The direct photographic and image analysis
techniques usually need complex equipment and/or software. The indirect empirical
prediction models do not have their governing parameters determined with sufficient
reliability to form the basis of assessing the fragmentation in a blastpile. In combining
parts of the empirical prediction models with a simple but comprehensively calibrated
photographic method, the development of a technique which may meet many user
requirements would appear to be an achievable aim for this research study.

Fourth, to date there is neither sufficient understanding of the blastability of rock
nor a systematic method to characterise the blastability. The fragmentation achieved is
the most fundamental economic variable in a blasting operation. It is governed by the
geomechanical and geometric nature of the in-situ rock mass. There is a functional link
between the energy input, the IBSD and the resulting fragmentation. Consequently, a
research study should set out to attack the problems of adequately characterising the
dependence between them. A promising approach would appear to be to introduce a
blastability model and a relevant rock mass classification system; one which will relate
blasting results to the most relevant rock mass parameters.

Lastly, existing techniques of selecting a theoretical function that best fits the
discontinuity distribution parameters have often been found to be unsatisfactory (see
Section 3.5). Thus, an attempt to introduce a technique to help obtain a better fitted
curve from given measured data is seen as an important step in advancing this field of
research which is so dependent upon accurate descriptions of distributions.
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2.5.2 Objectives of this Research Study

Faced by the above problems, this research study will focus upon the following

objectives.

1. To investigate the IBSD produced by discontinuity networks with fractal
spacing distributions using numerical simulations and Wang's dissection method, and
to derive a set of empirical relationships for estimating the IBSD of rock masses with
discontinuity spacings that have fractal distributions, in order to improve our
understanding of the influence of different discontinuity patterns on the IBSD.

2. To introduce an approach to the selection of the best distribution function for
the representation of the observed discontinuity spacing and trace length data, using
both grey correlation analysis methods and classical goodness-of-fit tests, in order that
the characterisation of discontinuity parameters and size distribution laws can be on a

more effective footing.

3. To develop a quantitative description of the influence of the impersistence of
discontinuities on the IBSD and thereby update and improve the existing prediction
methods of the IBSD.

4. To derive a model which will be able to reflect the relationship between the
blastability, the energy input, the IBSD and the BBSD and to investigate the potential
relationship between the blastability and the fractal dimension characterising the IBSD.
Furthermore, in the light of Rock Engineering Systems, to develop a blastability
classification system which will embrace the key parameters influencing the
blastability of a rock mass, helping to direct a blasting operation towards an optimal

result.

5. To develop a pragmatic and reasonably accurate approach to the estimation of
the BBSD using photographs of the blastpile and to combine their analysis with both
the Ros-Ram and the Schuhmann equations which are the ones often used with
predictive methods.
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3 IBSD ASSESSMENT WITH SPECIAL REFERENCE TO
DISCONTINUITIES WITH FRACTAL SPACING DISTRIBUTIONS

3.1 INTRODUCTION

The spacing of discontinuity greatly dominates the size of individual blocks and is
therefore one of the most important parameters concerning in-situ block size. Possibly,
the fractal distribution is among the most common distributions of discontinuity
spacings (see Table 2.1) and researchers have shown increasing interest in the
implications of such distributions (Allegre et al., 1982; La Pointe, 1988, 1993; Hobbs,
1993; Boadu & Long, 1994).

Applying the dissection method developed by Wang (1992) to the discontinuity
data surveyed by detailed scanlines, it should be possible to identify all blocks formed
by intersections of discontinuities with a fractal spacing distribution. However, as
described in Chapter 2, implementation of the dissection method on the computer
usually takes a relatively long time, particularly for discontinuities with a fractal
spacing distribution (typically, such a single run of the implementation takes more
than 2 hours using 80486 IBM-PC with 66 MHz CPU speed, sometimes is up to 10
hours), and execution of the computer procedure of the dissection method needs
experience and computer system resources. Moreover, the detailed scanline mapping is
often time-consuming, and may be restricted by the availability of rock mass
exposures. These factors, including software availability, will discourage the
widespread application of the dissection method to the estimation of the IBSD of rock
masses, particularly ones with fractal spacing distributions. Therefore, the aim here is
to develop a user-friendly technique for estimating the IBSD from discontinuity data,
whether it is provided by detailed or quick scanline method, a technique that will
embrace discontinuities with fractal spacing distributions. So, for precisely the same
reasons that Wang (1992) developed the equation method and calibrated its
coefficients for negative exponential and uniform distributions, this chapter reports
research leading to coefficients for fractal distributions, also to be used with the
equation method.

The basic aim of this chapter is to study the IBSD of rock masses intersected by
discontinuities with fractal spacing distributions. Section 3.2 is a description of block
size parameters. This section is followed by an introduction to fractal dimension and a
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presentation of the evidence of fractal spacing distributions. Section 3.4 briefly
presents the technique for deriving the fractal dimension from spacing data. After this,
assigning a preferable spacing distribution function to spacing data is discussed in the
context of both the goodness-of-fit test and the grey correlation analysis. Section 3.6
consists of a detailed investigation of the estimation of the IBSD with fractal spacing
distributions using a combination of random simulation of pre-defined distributions of
discontinuity spacings. A comparison between IBSDs arising from different spacing

distributions is then given.

3.2 TERMINOLOGY, PARAMETERS AND THEORETICAL BLOCK SIZE
DISTRIBUTIONS

Terminology and Parameters

Rock block size can be represented by many parameters such as: equivalent sphere's
diameter, nominal diameter or equivalent cube's side length, maximum length, and
sieve dimension measured in one dimension; or equivalent spherical volume and
apparent volume in three dimensions. In the context of quarrying and mining, the most
widely used ones are the sieve dimension and the block volume. The following size
parameters have been used in this research study.

(1) Maximum length (/): the distance between two extreme points on the block that
are furthest apart;

(2) Thickness or minimum breadth (d): the distance between two parallel bars
(strictly speaking, lines) through which the block can just pass;

(3) Sieve size (S): the aperture of a square hole through which a block can just pass;

(4) Maximum, intermediate and minimum dimensions (X, Y, Z): dimensions of a
rectanguloid which can just contain a block, where, X > Y > Z. When a block is
convex, the minimum dimension Z will be equal to the thickness d. They are different
when the block is concave:

(5) Apparent volume (V,): V,=X Y Z:

(6) Actual volume (V,,): determined by the ratio of the block weight to its density;
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(7) Nominal diameter (dy,): d, = %/W

Ti ical block size distributi

Research on size distributions of comminuted materials has been going on for
several decades. In practice, two most widely used distributions are respectively the
Ros-Ram distribution and the Schuhmann distribution (see Section 2.2). In addition, a
log-linear distribution (CIRIA/CUR, 1991) is also often used to approximate narrow
gradings of coastal engineering materials such as armourstone and granular filters.

The log-linear equation may be expressed as follows.

LnV,,—LnV (3-1)

P=1- ,
2(L"V|oo _anso)

where, P is the proportion of the blocks less than volumes V (%); V50 is 50% passing
block volume (i.e. the median volume); and Vg is 100% passing block volume.
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Fig. 3.1 Ilustration of comparison of the Ros-Ram, the Schuhmann and the log-
linear equations for fragmentation (n,=m,=2.1; V50=1.0 m3, V3 2=1.19 m3 for Ros-
Ram, V](g=1.40 m3 for Schuhmann and log-linear)

A comparison between the Ros-Ram distribution, the Schuhmann distribution and
the log-linear distribution is illustrated in Fig. 3.1. The overall steepness indicating the



grading width for each distribution is respectively characterised by #n,, for the Ros-Ram
equation and m,, for the Schuhmann equation. The log-linear distribution is a straight
line when presented on the log-linear plot as shown. The Ros-Ram distribution gives
an S-shaped curve on the log-linear plot which is often observed for both the IBSD
and the BBSD. However, this distribution implies that the largest block can be an
unlimited size in the context of mathematics, which is impossible in practice. The
Schuhmann distribution produces a one-tail curve and approaches a straight line on the
log-linear plot towards the end of the coarse blocks, becoming very similar to the log-
linear distribution for the coarse blocks. The Schuhmann distribution is a type of
power law. As such, it will reveal self-similarity or fractal features if the distribution is
describing geometric relationships, which in this case, it is. It can be considered to be a
fractal distribution. The Schuhmann and the Ros-Ram, as well as the log-linear
distributions, in due course, will be used in this thesis for describing both the IBSDs
and the BBSDs. The subscripts i and b respectively indicate in-situ and blasted block

size distribution and are used hereafter.

3.3 INTRODUCTION TO FRACTAL DIMENSION AND EVIDENCE OF
FRACTAL SPACING DISTRIBUTIONS

3.3.1 Introduction to Fractal Concepts

The term "fractal” is perhaps best described as a general concept which is relevant
in describing the geometry of irregular objects or patterns. The fractal concept was
originally introduced by Mandelbrot (1967). Noting that the length of a coastline
increased according to a power law, when the length of measuring rod decreased,
Mandelbrot related the power to a real number which he called the fractal dimension.

The length of rocky coastline has served as a classic example to illustrate the fractal
concept. If the measured perimeter length of the coastline P(Il) and the length of

measuring rod / varies as
P(l) = 1"?, (3-2)

then the coastline geometry is said to be self-similar, which describes fractal geometry
and D is then the fractal dimension for the coastline. Mandelbrot (1967) showed that
the west coast of Britain was a well-defined fractal with D of 1.25. Since then, the
fractal concept and its associated mathematical tools have been generalised for
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describing the geometric properties of irregular patterns or fragments (Mandelbrot,
1983, 1990).

If examination of geometric features such as cloud or jagged outlines and profiles
using different scales of observation shows the same form, the features are said to be
"self-similar”. This self-similarity is an important property and it is necessary if such a
feature is to be termed a fractal and for it to be mathematically described by fractal

geometry.

The fractal dimension is another important concept in fractal geometry. The higher
the value of a fractal dimension the more irregular a pattern. The introduction of
fractal dimensions is a relaxation or generalisation of Euclidean geometry that posits a
noninteger dimension for describing irregular and fragmented patterns. Mandelbrot
(1986) has offered a rather loose definition of a fractal as follows: a fractal is a shape
made of parts similar to the whole in some way. Thus, a fractal which can be a set (say
patterns or shapes or objects) looks the same from whatever scale it is observed. That
is, a fractal is self-similar at all scales between upper and lower fractal limits, such that

any part of this system is a scaled down version of the whole.

The fractal concept is therefore both attractive and important in that an irregular and
complex pattern might be simply described using the fractal dimension and that the
characteristics of the pattern can be investigated at a convenient scale and then
extrapolated to other larger or smaller scales.

For a feature with fractal geometry, the relative number of large and small elements
within it remains the same at different scales. The size-frequency distribution of parts
or elements is therefore power-law and this scaling relationship is characterised by its

fractal dimension, a parameter simply drawn from the power-law exponent.

The fractal concept has been applied to many aspects of nature and has brought
together under one umbrella a broad range of pre-existing concepts from pure
mathematics to the most empirical aspects of engineering (Mandelbrot, 1983). It is not
clear that a single mathematical definition can embrace all these applications, but one

can illustrate his quantitative discussion by following Turcotte (1992) and defining

N=cCs P, (3-3)
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where N is the number of objects (e.g. fragments) with a characteristic linear
dimension greater than §, C is a proportional constant, and D is the fractal dimension.
When objects forming a set, e.g. fragments in a blastpile, can be characterised using
Eqn. 3-3, then we say that the objects satisfy a fractal distribution with a fractal
dimension D. The fractal dimension D is generally not an integer but a fractional
dimension (which is the origin of the term fractal), although it might coincide with an
integer value where the D is equal to a Euclidean dimension. It is well known that the
Euclidean dimensions of a point, a line, a square, and a cube are respectively zero, one,

two, and three.

3.3.2 Fractal Patterns and the Determination of a Fractal Dimension

To discuss fractal patterns, let us review a fundamental feature of the concept of
dimension and to illustrate how it can be directed towards the consideration of fractal
dimensions, along with the arguments made by Mandelbrot (1967, 1983).

A Euclidean dimension is generally an integer. For every positive integer N, the

segment x (0 < x < X) for a straight line can be divided exactly into N non-overlapping

segments with length of form

(n—l)ls.x<n£. n=12..N (34)
N N

Each of these segments is deduced from the whole by a similarity of ratio with the

following form:

1
r(N) ¥ (3-5)

Likewise, for every perfect square N, the rectangle ' (I 0 <x< X, 0<y <Y) can

be also divided into N non-overlapping rectangles of the form:
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Again, each of these rectangles is deducible from the whole by a similarity of ratio,

1

r(N)= T
N2

(3-7

For a rectangular parallelepiped, the same argument brings the following similarity
of ratio:

r(N)= Ll (3-8)

N3

More generally, whenever NI/D s a positive integral, a D-dimensional rectangular
parallelepiped can be decomposed into N parallelepipeds deduced from the whole by a

similarity of ratio,

1
F(N)=— 3-9)
ND
As such the dimension D is characterised by the following relation:
LogN _ LogN (3-10)

~ “Logr(N) Log(l/r)’

Now let us move to non-standard shapes, in order for D, the exponent of self-
similarity to have a generalised but formal meaning. The only requirement is that the
shape is self-similar, i.e. that the whole can be decomposed into N parts, obtainable
from it by a similarity ratio r. It is seen that Eqn. 3-9 is equivalent to Eqn. 3-3. Thus,
when a pattern or a shape or a figure can be characterised by Eqn. 3-9 or Eqn. 3-10 it
can be referred to as a fractal.

In order to illustrate how mathematical relations can be used to generate fractal

patterns, let us take two examples which show the construction of fractal shapes.

In Fig. 3.2, at order one (i.e. the first separation) a line segment of unit length is
divided into an integer number of equal-sized smaller segments. A fraction of these
segments is retained. The construction is repeated at higher orders. The first two orders

are illustrated. For (a), a line segment is separated into two divisions and one is
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Fig. 3.3 The construction of a Menger Sponge, D= 2.727 (from Turcotte, 1992)

retained, N=1, and the similarity ratio r=1/2; according to Eqn. 3-10, D = Logl1/Log2
= 0, which is the fractal dimension of a point. For (b), a line segment is separated into
three divisions and one is retained, N=1, and the similarity ratio r=1/3; D =
Log1/Log3 = 0, which is the fractal dimension of a point, too. For (c), a line segment is
separated into two divisions and both are retained, N=2, and r=1/2; D = Log2/Log2 =
1, which is the fractal dimension of a line. For (d), a line segment is separated into
three divisions and all three are retained, N=3, and r=1/3; D = Log3/Log3 = 1, which
is the fractal dimension of a line. Note that both (c) and (d) suggest that a simple
distribution will have a fractal dimension D of ~ 1.0. For (e), a line segment is
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separated into three divisions and two are retained, N=2, and r=1/3; D = Log2/Log3 =
0.6309, which is a non-integer fractal dimension and is known as a Cantor set
(Mandelbrot, 1983). For (f), a line segment is separated into five divisions and three
are retained, N=3, and r=1/5; D = Log3/Log5 = 0.6826, which is also a non-integer
fractal dimension. Both (e) and (f) have fractal dimensions between the limiting cases
of zero and one. In the sense described above they therefore have fractional

dimensions.

In Fig. 3.3, a solid cube of unit dimension has square passages with dimensions
r=1/3 cut through the centres of the six sides. The six cubes in the centre of each side
are removed as well as the centre cube, i.e. the unit cube is divided into 27 equal-sized
smaller cubes with r=1/3, 20 cubes are retained. N=20, r=1/3, D= Log20/Log3=2.727.
This construction is known as the Menger Sponge (Turcotte, 1992).

Since self-similarity in nature is often found to apply within a range of scales of
observation defined by upper and lower bounds, one might expect practical application
of fractal tools within certain limits. However, a statistically satisfactory form of self-
similarity is often encountered, and the assigning of fractal dimensions to data or
patterns that are not perfectly fractal is a popular new development in natural sciences.
Thus it is not surprising that many geological and geophysical data sets are considered
to be fractals. A variety of quantitative observations can be rapidly reduced to enable
empirical correlation to be investigated and in this respect the fractal concept is
undoubtedly of great significance (Turcotte, 1992).

3.3.3 Evidence of Fractal Spacing Distributions

The fractal concept and its analysis techniques are quite new, but the empirical
applicability of power law dependence on the size was recognised long before the
concept of fractal was conceived (Turcotte, 1992). For example, the power law size
distribution - named the Schuhmann distribution when observed in the fragment size
distribution of geomaterials is a consequence of the scale invariance of the
fragmentation mechanism, and the pre-existing weak zones or planes where breakage
happens which exist on all scales (Allegre et al., 1982; Turcotte, 1986; Korvin, 1989).

Discontinuities with fractal spacing distributions tend to give clustered patterns (see
Fig. 2.4). Clustered discontinuities were treated as one type of distribution and
discussed together with a fairly evenly spaced distribution (normal distribution) and a
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random distribution (negative exponential distribution) by Priest and Hudson (1976).
Clustering, it was suggested, could either result from spalling near a free face or
around joints due to stress or weathering effects, or from cyclic variation in lithology,

say alternating layers of sandstone and highly fractured siltstone.
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Fig. 3.4 Spacing distributions of discontinuities within a rock mass at a highway
cutting site. (a) D=0.11 (SL-3); (b) D=0.10 (SL-5).

It is sometimes the case that the negative exponential or lognormal distributions fail
to fit field data adequately enough to characterise discontinuity occurrence,
particularly if there are clusters of discontinuities along a scanline (Sen, 1993). As for

discontinuities with a fractal spacing distribution, many discontinuities with low



spacing values will tend to occur within clusters while high spacing values will occur
sparsely between clusters. The fractal spacing distributions would seem ideal for

describing this clustered appearance often seen.
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In a recent investigation into the discontinuity structure of a rock mass at a highway
cutting site carried out by the author, six locations along the cutting faces were
surveyed using detailed scanline mapping. For each of the six, one out of the three sets
of discontinuities clearly exhibits the fractal characteristic of linearity on a log-log
plot, as shown in Fig. 3.4 (fitting discontinuity spacing data to a proposed distribution
will be discussed in Section 3.5). The fractal dimensions for the spacings of these
discontinuity sets in the six locations varied from 0.05 to 0.6.

Gillespie et al. (1993) used a variety of mapped data sets of faults and joints to
investigate the spatial distribution of fractures and to test the techniques of fractal
analysis. The results indicated that tectonic faults and/or joints frequently exhibited
power law spacing populations with fractal dimensions of between 0.4 and 1.0. Fig.
3.5 shows the population curves for line mapping data sets for discontinuity systems
from three field areas. The cumulative number N(r) vs. the characteristic value r of
spacing or throw on a fault is presented on a log-log plot.
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Fig 3.6 Power law fitting to joint sets 1-2, Stripa Granite, Sweden (from Hobbs,
1993) (a)-(d) Power law fit for Joint Sets 1-4
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Fig. 3.5 shows that the fractal distributions can be satisfied within the range of from
0.001 m to 100 m, indicating the prevalence of fractal geometry over several orders of
magnitude. Fig. 3.6 (from Hobbs, 1993) is the illustration of power law fitting to joint
set data, based on some of the results of Rouleau and Gale (1985) for joint spacings in
the Stripa Granite. Rouleau and Gale (1985) claimed that a log-normal distribution
was a good fit for the data. However, Hobbs used the figure to suggest that a fractal
distribution could be considered just as well. The suggestion made by Hobbs has been
supported by the study conducted in Section 3.5.

Boadu and Long (1994) investigated the fractal nature of discontinuity spacings for
several sites of exposed fractured rock in a 50 km study area located in the crystalline
Piedmont of Georgia and South Carolina. Their studies indicated that the discontinuity
spacings exhibited fractal characteristics with a fractal dimension of 0.55-0.63.

Harries et al.(1991) investigated a fractal fracture pattern consisting of two sets of
perpendicular fracture sets, with fractal dimensions of 0.75 and 0.25, using a spacing

population technique.

It is seen from the above that the contention that discontinuity spacing distributions
can often been described with satisfactory accuracy by a fractal relationship is
supported by field data from a number of researchers. In fact, Hobbs (1993) suggested
that any geometrical model of discontinuities in real rocks will show a tendency
towards fractal or log-normal frequency distributions for joint spacing, although
particular joint sets may show a tendency towards a negative exponential distribution
over a limited range. Therefore, we might see more evidence of discontinuities with
fractal characteristics reported with the increasing understanding of fractal dimension
and its application to practical engineering. This is one important motive for this part
of the research which is the investigation of IBSD with special reference to
discontinuities with fractal characteristics.

34  ANALYSIS TECHNIQUES FOR FRACTAL SPACING

To identify discontinuity spacing distributions is a basic requirement for a study of
discontinuity spacing analysis. It is of special relevance to this study since as shown by
Wang (1992) the IBSD can be given by a prediction that is a sensitive function of
mean spacings. We have learned that using the log-log plot of spacing vs. the

cumulative numbers of spacings greater than a given spacing value, the fractal
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distribution will be plotted as a straight line, a negative exponential frequency
distribution will be a distinct convex upwards curve, and a log normal frequency
distribution forms a gentle curve (see Fig. 2.6). Thus, by using the log-log plot, the
different frequency distributions of spacing, in particular fractal ones, might be
distinguished.

Harries et al. (1991) has suggested a simple technique for determining the fractal
dimension of discontinuity spacings which is similar to the scanline technique used in
geological surveying. This technique was used in the investigations into measurement
and characterisation of spatial distributions of discontinuities carried out by Gillespie
et al. (1993) who referred to this technique as the Spacing Population Technique.
Boadu and Long (1994) also used the technique to investigate the fractal
characteristics of discontinuity spacing and RQD.

The spacing population technique is a one-dimension fractal analysis technique.
The fracture pattern is first broken down into its constituent orientation sets by
grouping the discontinuities into sets according to their orientation clustering. Then
measurements are made on each set individually. The measurements refer to a scanline
which is perpendicular to the mean orientation of the set in question. The distance
between neighbouring points, i.e. the spacing is preferably measured to the highest
resolution in order to obtain satisfactory results. If a set of discontinuity spacings has a
fractal distribution, then the distribution will plot as a straight line on the log-log plot
of spacing S, vs. cumulative number, N(s). Thus a fractal distribution is described by
the relation:

N(s)eS?, (3-11)

where N(s) is the number of discontinuity spacing values > S , and D is the fractal
dimension which provides a measure of the degree of clustering of discontinuity
structure on a line sample. Lower fractal dimensions indicate larger gaps and tighter
clusters. Note that for this method, each individual spacing measured can be
represented by one data point.

In any study examining fractal or other spacing (or trace length) distributions, the
following conventional method can also be used which groups spacing data before it is
plotted. First the spacing values are grouped into certain intervals in an order of
increasing spacing. Then the frequency of spacing (or trace length) data within each
interval is computed and plotted as a histogram. The frequency-spacing (or frequency-
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trace length) shown in the histogram is then fitted to a theoretical distribution either
visually or mathematically using regression. This is the so called Regression Fitting
Technique which was used by Segall and Pollard (1983) to obtain the fractal
distribution of trace lengths in granitic rock of the Sierra Nevada.

The spacing population and the regression fitting techniques described above will
be used as tools for the analysis of fractal distributions in this research, although other
analysis techniques, such as the interval counting and the fracture number box-
counting techniques, (La Pointe, 1988; Turcotte, 1989; Davy et al., 1990; Harris et al.,
1991; Gillespie et al., 1993) have been used to study the spatial distributions of

discontinuities.

3.5 ASSIGNING SPACING DISTRIBUTION FUNCTIONS TO DATA USING
BOTH GREY CORRELATION ANALYSIS AND GOODNESS-OF-FIT
CRITERIA

Prior to an assessment of IBSD, particularly one based on Wang's equation method
(see Section 2.2.2), it is necessary to determine observed spacing data using a
mathematical function and to quantify how acceptable this selected characterisation is.
Furthermore, which theoretical distribution should be selected from among several
contending distributions when no single one is preferred on the basis of the physical
characteristics of the phenomena, must be correctly answered.

Visually inspecting the histograms of observed spacings is often not good enough to
assign confidently the most representative distribution to the data of spacing
distribution. When using either the population spacing or the regression fitting
technique in practice, the results obtained are not often so straightward that we can
choose one distribution among several presumed theoretical distributions. Frequently,
a classical goodness-of-fit analysis is therefore used to obtain a solution to this sort of
problem (Baecher et al., 1977; Einstein & Baecher, 1983; Rouleau & Gale, 1985;
Villaescusa & Brown, 1990)

3.5.1 Classical Goodness-of-fit Analysis

Goodness-of-fit analyses are designed to examine whether there is a significant

difference between the observed distribution (frequency or cumulative frequency) and
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the specific presumed distribution we would expect. Both Chi-squared (xz) and
Kolmogorov-Smirnov goodness-of-fit tests are two classic tests that are most often
used for this purpose (Siegel, 1956; Benjamin & Cornell, 1972).

Chi-squared test

The x2 technique is related to the deviation of the frequency histogram from the
predicted vales. It tests whether the observed frequency is sufficiently close to the
expected one to be likely to have occurred under a null hypothesis Hp, say,
discontinuity spacing is of a specific distribution.

The hypothesis may be tested by 2 statistics
k 2
x2=2(0i E;) , (3-12)
— E;
i=1 t

where O; is the observed number of cases categorised in the ith category and E; is the
expected number of cases in the ith category under Hp. Eqn. 3-12 leads one to sum
over k categories the squared differences between each observed and expected
frequency divided by the corresponding expected frequency. If the agreement between
the observed and expected frequencies is close, x2 will be small.

We can determine critical values x>, , associated with any desired significance

level o for any value of k-1 such that

P2y, l=a. (3-13)

After observing a sample of a variable, say discontinuity spacing, we can compute
the observed value of the 2 statistics and compare it to the critical values Xoiois

reporting the conclusion to accept or reject the presumed distribution according to the

following operating rule:

Accept Hp if x2 < xf,,,‘_.,
Reject Hy  ifx2> 2%, . (3-14)

For a continuous distribution hypothesised, it can be seen that x2 test compares the

degree of fitness between an observed histogram and a density function lumped into a



corresponding bar-form PDF. Since the x2 test is based on the proposition that a
sample is large enough to be approximated by x2 statistics, the %2 test should not be
used if more than 20% of the expected frequencies are smaller than 5 when k>2
(Siegel, 1956). It is commonly recommended for a valid goodness-of-fit test that the
smallest number of expected frequency is 5 (Benjamin & Comell, 1972). Expected
frequencies may be increased by combining adjacent categories if the combinations

can be meaningfully made.

There are several limitations on using the x2 test. The first lies in that quite a large
sample is needed, which is not always the case. The second is that classifying data into
discrete categories may cause the loss of information in a continuous distribution,
since lumping data may introduce artificial errors in the numbers actually observed in
each interval used in the test. The last is its sensitivity to the choice of intervals.
Adjacent categories may sometimes have to be combined in order to increase the
frequencies in each category to the recommended smallest number 5, which will
decrease the number of categories. The choice of intervals may be important in the x2
test since different divisions of intervals for the same data might lead to contradictory

conclusions. An example of this has been illustrated by Benjamin and Cornell (1972).

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is also concerned with the degree of agreement
between the distribution of a set of sample values and some specified theoretical
distribution. The test uses the deviations between the observed cumulative frequency
histogram and the hypothesised cumulative frequency distribution. This involves
specifying the cumulative frequency distribution which would occur under the
hypothesised theoretical distribution and comparing that with the observed cumulative
frequency distribution. The theoretical distribution represents what would be expected
by the hypothesis Hy. The point at which both theoretical and observed distributions
shows the greatest divergence is determined. The sampling distribution indicates
whether the deviation of magnitude observed would probably occur when the
observations are really a random sample taken from a population given by the
theoretical distribution.

Let Fp(X) be a specified cumulative frequency distribution function under Hy, and
Sp(X) (Sp(X)=k/N) the observed cumulative frequency distribution of a sample of N
observations. Where X is any possible score, k is the number of observations < X. The

Kolmogorov-Smirnov test focuses on the largest of the deviations represented by DS.
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N
DS = maxli—Fo(X)l. (3-15)
i=1 N

The sampling distribution of DS under Hp is known. From tables of this
distribution we can determine critical values. After observing a sample of a variable,
we can compute the observed value of the DS and compare it to the critical values in
the associated table (e.g. Siegel, 1956). As before, we may accept or reject the
hypothesised distribution through the following operating rule:

Accept Hp ifDS<V,,
Reject Hp if DS >V, (3-16)

where V, is the associated critical value.

The Kolmogorov-Smirnov test has an advantage over the Chi-square test in that it
dose not compare and cast the data into discrete categories, but compares all the data
in an unaltered form. However, the Kolmogorov-Smirnov test is strictly valid only for
a continuous distribution and only when the model is hypothesised completely
independent of the data (Benjamin and Cornell, 1972). In addition, a perfect table for
practical use including a comprehensive range of critical values seems to be difficult
to obtain. These may limit its application.

It can therefore be seen that the classical goodness-of-fit tests have certain
limitations of their own. However, keeping their limits in mind and using proper
judgements, there is value and convenience in the conventional application of these
tests to substantiate the model choice.

When using either the xz or the Kolmogorov-Smirnov test, a particular suggested
distribution for discontinuous spacings can therefore be tested by comparing the
observed spacing data with the predictions under the presumed distribution. It is
important to realise, however, that if one sets up a hypothesis that a variable is, say
gamma-distributed, or lognormally distributed, or any one of many other choices, the
conclusion might very well be the same for various different theoretical distributions:
that one should accept (or reject) the hypothesis (see Benjamin & Cornell, 1972). This
situation is also likely to be encountered in determining the discontinuity spacing
distribution.
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For example, using the Kolmogorov-Smirnov goodness-of-fit test, Rouleau and
Gale (1985) reported that both the lognormal and the Weibull distributions can be
accepted for the first set of data of joint spacings in the Stripa Granite, Sweden at the
same significance level. Let us now use the Kolmogorov-Smirnov goodness-of-fit test
to examine whether or not a fractal distribution can be accepted for the same spacing
data observed by Rouleau and Gale (see Table 3.1).

Table 3.1 indicates that the maximum value of DS is 0.073 which is emboldened in
the table. From the Table of critical values of the Kolmogorov-Smirnov test (Siegel,
1956), the corresponding critical value is 0.079 at the level of significance 0.15, the
same level set by Rouleau and Gale (1985). Therefore the hypothesis of fractal
spacing distribution could also be accepted, which is in agreement with the
suggestion, made by Hobbs (1993), that a fractal spacing distribution should not be
ruled out.

Table 3.1 Kolmogorov-Smirnov test for the fractal spacing distribution*

Spacing Observed | SN(X) | Fo(X) DS=
<X (m) Number IFo(X)-Sn(X)|
0.25 108 0.5192 | 0.4597 0.0595
0.25-0.5 42 0.7212 | 0.6586 0.0626
0.5-1.25 17 0.8029 | 0.7431 0.0597
1.25-1.75 10 0.851 | 0.7963 0.0547
1.75-2.25 9 0.8942 | 0.8347 0.0596
2.25-2.75 9 0.9375 | 0.8646 0.0730
2.75-3.25 4 0.9567 | 0.889 0.0678
3.25-3.75 2 0.9663 | 0.9095 0.0569
3.75-4.25 2 0.976 | 09272 0.0488
4.25-4.75 1 0.9808 | 0.9427 0.0381
4.75-5.25 1 0.9856 | 0.9565 0.0291
5.25-5.75 1 0.9904 | 0.9689 0.0215
5.75-6.75 1 0.9952 | 0.9905 0.0047
6.75-7.25 1 1 1 0

*The minimum and maximum spacing value are set as 0.03 m and 7.5 m.

In this case, the lognormal, the fractal, and the Weibull theoretical distributions can
all be accepted at the same significance level. The reason for this might be because
goodness-of-fit tests are not designed to discriminate among two or more models or to

87



help one select from among a number of contending distributions but rather to suggest

that a particularly proposed distribution should or should not be retained.

In engineering practice, we are not only to answer whether or not a proposed
distribution can be accepted but also to select a distribution from among a number of
contending distributions when no single one is preferred on the basis of the physical
characteristics of the phenomena. Statistical theory may not provide much quantitative
help for such a selection (Benjamin & Cornell, 1972).

It is therefore worthwhile to pursue a technique for choosing the most preferable
fitted distribution among several contending distributions since the classical statistical
approaches are not the only approaches available. The grey correlation analysis in
Grey Theory Systems (Den, 1985), used in conjunction with the classical goodness-of-
fit tests appears to offer an improved approach to the problem: to what extent a
proposed distribution is acceptable; and how to select a distribution from among

several contending distributions.

3.5.2 Introduction to Grey Systems Theory

The Grey Systems Theory (Den, 1982, 1985) is a new system methodology
developed recently. Early application of this systems theory were in the solution of
abstract system and non-technology systems. With its increasing development and
applications, it has been proposed for solving technological or engineering problems
(Cai 1991, Lu & Latham, 1994).

The darkness and lightness of colour is used to describe the quantity of information
in control theory. A system whose parameters, structure and characteristics are fully
known is described as a "white" system and a system whose parameters, structure and
characteristics are entirely unknown is described as a "black” system. However, most
systems are indeed neither completely unknown nor known. Therefore, "a system
containing knowns and unknowns is called a grey system” (Den, 1982). The basic
contents of Grey Systems Theory include: the systems analysis; the development of
systems models; the grey predicting or forecasting; the grey decision-making; and the
grey control. The grey correlation analysis is one of devices in the systems analysis.
An evaluation of the goodness-of-fit of discontinuity spacings to a proposed
theoretical distribution, using the grey correlation analysis is given in the following

section.
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3.5.3 Grey Correlation Analysis

The grey correlation analysis is the analysis of correlation between various
relationships influencing a system and the identification of which relationship will be
a dominate one. The technique and algorithm of grey correlation analysis is outlined

as follows:

Let the main data set of interest be the parent array X, and the influencing data sets
be sub-arrays, X;j, i=1,2,..,n, n is the number of influencing data sets, then

Xo=(Xp(1), X(2), ..., Xo(K) },
(3-17)

Xi=(Xi(1), Xi(2), ..., Xi(K) }.
The Correlation Coefficient of sub-array X; to the parent array Xy at time &, r(k), is
defined by the formula (Den, 1985, 1987) below:

= 6min +n6max
1 Xy (k)= X,(K)+78,,,

r,(k) (3-18)

where 7 is the recognition coefficient of the range between 0 and 1, and usually takes
on the value of 0.5; §,,;;, and §,,,,, are given by

Opmin = min (min!Xo (k)= X, (K)I)
i k

. 3-19
O =max(mfx|Xo(k)—X,(k)|) G-19)

The above correlation coefficient r;(k), characterises the deviation degree between
X; and X at time k. Summarising the deviation degrees between X; and Xy at all
times, given the correlation degree between X; and X as

R, =

; % r;,(k). (3-20)

gl

Den (1985) referred to R; as the Correlation Measure. Clearly, the correlation
coefficient of r;j(k) and the correlation measure R; satisfy the following relations:
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0<rifk)< 1 and O<R;<1. (3-21)

The closer the relationship between X; and X, or the more similar Xj is to Xy, the
greater will be the associated grey correlation measure; only when X; and Xy are
completely superimposed will the correlation measure be equal to 1. When the
bivariate data are expressed in a linearised form, the grey correlation measure appears,
to a great extent, as a measure similar to the traditional r2 correlation coefficient.

For arrays with different units and/or different original values, the original data can
be normalised through a process of original value transformation in which all the data
in an array are divided by the first datum of the array.

The main feature of grey correlation analysis is a comparative analysis between
several curves or relationships. In a simple case, this analysis may be visually made.
Situations in the real world are often complicated. For example, there are a large
number of data points, and the curve shapes are similar in some intervals but different
in other intervals. In the case where the situation is a complex one, the quantitative
grey correlation analysis provides a potential tool to obtain solutions to problems.

Compared to classical regression in which a correlation coefficient, typically r2, is
obtained after linearisation, grey correlation analysis has the following characteristics:
(1) there is no need for a large population, or a lot of sample data; (2) sample data
need not satisfy an explicit functional relation; and (3) calculation is simple and
convenient (particularly once the appropriate computer code is implemented, see
Appendix A.1).

Returning to the selection of a preferable distribution from among several
contending distributions. If we let the observed data of discontinuity spacings be
represented by the parent array Xp mentioned above, and let the values at
corresponding observing points for the ith contending distributions be represented by
X;, it 1s possible to use grey correlation analysis to compare and select a theoretical
spacing distribution from among several contending distributions.

3.5.4 Selecting a Theoretical Spacing Distribution Using Grey Correlation Analysis

In order to assess the blastability of rock materials at a highway cutting site, a
research study was carried out by the author (see Chapter 7). The prediction of the
IBSD of the rock mass at the site is one of the important topics in the study. Prior to
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the prediction, identification of the distribution of discontinuity spacing has to be
made. Detailed discontinuity mapping at 6 different exposures along the cutting faces
has been carried out. A best-fit the fractal, the negative exponential and the Weibull
distributions, compared with the actual measurements is illustrated in Fig. 3.7 (see
Fig. 3.4a for the Log-Log plot of N(s)~S of the first set of discontinuities from SL-3

mapping result).
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Fig. 3.7 Comparison between the actual measurement and three proposed

distributions

The following expressions fitted to the discontinuity spacing data are obtained

using a non-linear regression method (Press et al., 1986).
(i) fractal distribution:

f(x)=0.22635" 1110 (3-22)
(i1) negative exponential distribution:

f(x)=1.229¢"1-229% (3-23)

(ii1) Weibull distribution:
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It seems not easy to isolate a preferred distribution among these three proposed
distributions (shown in Fig. 3.7). Applying the grey correlation analysis to this case,
we obtain the grey correlation measures of these three theoretical distributions to the
observed spacing data, which are respectively 0.810 for the fractal distribution, 0.782
for the Weibull distribution, and, 0.718 for the negative exponential distribution. This
suggests that the fractal distribution is the most correlated with the observed data.
Using the Kolmogorov-Smirnov test, both the fractal and Weibull distributions can be
accepted at the level of significance of 0.15 while at this level the negative
exponential distribution should be rejected. As a result, the fractal distribution is
arguably the best choice for the spacing distribution of this set of discontinuities.

The following is another example, this time taken from the literature: the data is
again the joint spacings in the Stripa Granite, Sweden (Rouleau & Gale, 1985). At the
level of significance of 0.15, Rouleau and Gale (1985) showed that both the lognormal
and the Weibull distributions can be accepted whereas the negative exponential
distribution should be ruled out. At the same level of significance and using the same
Kolmogorov-Smirnov test, a reworking of the data presented in Section 3.5 showed

that the fractal spacing distribution can be accepted (see Table 3.1).

We use the grey correlation analysis to help make the selection of a preferable
spacing distribution. Nonlinear regression gives the following best-fit function for the

original data set:

(i) the fractal distribution:

f(x)=0.2261x" 1111 (3-25)

(i1) the lognormal distribution:

(Ln(x)+0.658)2

1 2
_ 2x1.317 3-2
F(x) J2r%1.317x ¢ ’ (3-26)

(iii) the Weibull distribution:
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Fig. 3.8 Comparison between the measured and best-fit curves for three
distributions

It is quite difficult to say from Fig. 3.8 which one among fractal, lognormal and
Weibull distributions is better than another.

Using grey correlation analysis, we obtain the grey correlation measures for these
three theoretical distributions when compared to the observed spacing data as follows:
0.90 for the lognormal distribution, 0.84 for the fractal distribution, and 0.81 for
Weibull distribution. This suggests that the lognormal distribution is the most
correlated with the observed data. We might choose to rule out the Weibull
distribution due to both the relatively smaller value of the grey correlation measure
and its complicated expression. However, the choice between both the lognormal and
the fractal distributions may be finely balanced when finally selecting the
representative distribution of the observed spacing data, if it is permitted to take into
account the simplicity of the fractal distribution and that the grey correlation measures
for the fractal distribution is not far from that for the lognormal. This particular data
set happens to be the one discussed by Hobbs (1993) from which he argued that a
fractal distribution should be considered in addition to the lognormal distribution
selected by Rouleau and Gale (1985).
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It is reasonable to conclude from the above discussion that the grey correlation
analysis can be used for selecting a preferred distribution from several contending
theoretical ones and that the selection will be more effective if the grey correlation
analysis is combined with the classical goodness-of-fit tests.

A computer programme for the grey correlation analysis, written in FORTRAN and
named GCA, has been developed and presented in Appendix A.1. Later in the thesis
the grey correlation analysis will be used together with classical goodness-of-fit test
for choosing a distribution from a number of proposed distributions, when analysing
spacing and trace length distributions.

3.6 DERIVATION OF IBSD OF DISCONTINUITIES WITH FRACTAL
SPACING DISTRIBUTIONS USING BOTH RANDOM SIMULATION AND
THE DISSECTION METHOD

Assuming that all the discontinuities are persistent and planar, the individual
blocks formed by these discontinuities can be determined analytically using computer
algorithms of the types developed by Da Gama (1977), Stewart (1986) and Wang
(1992). Wang (Wang & Latham, 1991; Wang, 1992) has applied his algorithm to the
development of the Equation Method for the prediction of IBSD of rock mass with
discontinuities with a uniform and/or negative expomential spacing distribution. A
brief description of how the simulation can be implemented is given in Section 2.2.2
and a detail description is presented in Wang's work (Wang & Latham, 1991; Wang,
1992). In this thesis, the algorithm and the associated computer program developed by
Wang (1992) will be used for the investigation of IBSD with fractal spacing
distributions. The investigation is based on the same simulation approach as that
carried out in the development of the equation method. The difference lies in that the
artificial discontinuities in this investigation are given a fractal rather than a negative
exponential spacing distribution. The simulation includes :

(1) Generation of three groups of artificial discontinuities governed by particular
spatial orientation distributions and fractal spacing distributions with known mean
orientations and principal mean spacings or fractal dimensions;

(2) Determination of the IBSD of the simulated groups of discontinuities using the
dissection method for 50 different combinations of input parameters (see Table 3.2);
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(3) Derivations of the relationships between the known fractal dimension and/or
principal mean spacing with the parameters of the IBSDs obtained in the 50
simulations.

In the simulation the assumptions and simplifications are similar to those made by
Wang (Wang & Latham, 1991; Wang 1992) in their simulation.

(1) Discontinuity spacing in each set has a fractal distribution defined with
reference to a specific fractal dimension and a specific range of spacing values. Note,
the principal mean spacing is fixed whenever both the fractal dimension and the range

is set;

(2) Discontinuities are persistent (the influence of impersistence of discontinuity
on the IBSD will be separately discussed in Chapter 4);

(3) Each group of data always consists of three orthogonal sets of discontinuities;

(4) Each discontinuity in a given set is constructed to be approximately evenly but
randomly distributed around the mean orientation of the set within a range of £10

degrees both in dip angle and dip direction;

(5) Each set usually contains 20 discontinuities, so there are usually 60
discontinuities in one group which are included in the boundary block. Outside of this
block, however, there may exist more discontinuities belonging to each set. When for
a particular simulation the volume of the boundary block is relatively small, which
often occurs for large fractal dimensions or small principal mean spacings, the number
of discontinuities chosen for the simulation in one or two or three sets may be more
than 20. The actual number of discontinuities may therefore be more than 60 in one
boundary block.

For detailed information about the dissection computer procedure and its use for

the purpose of simulation, refer to Wang's thesis (1992).

3.6.1 Range of Parameters Examined

It is important to identify the range of spacings and fractal dimensions likely to be
of interest before running the simulation.
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When taking field measurements, discontinuity spacing values below a known
threshold, say, the resolution on a2 measuring tape, will not be recorded. As such there
exists a lower cutoff associated with the effect of resolution of the human eye. On
other hand, both actual exposures and discontinuities are of finite size and spacing,
and scanlines are of limited length. Discontinuity spacings in an actual engineering
project will therefore have an upper cutoff. Thus, the spacing value measured will fall
within a range defined by the lower cutoff, S,,;;, and upper cutoff, S,,;x. The
resolution of measurement and the typical scale at which a rock engineering problem
is to be investigated will contribute to the definition of both the lower cutoff and
upper cutoff of discontinuity spacings. These consideration were also made elsewhere
(e.g. Wang, 1992). However, there are special reasons why setting S;,;, and Sy, is
particular important for fractal simulation.

The range of fractal dimension to be examined is governed by two considerations.
The first is the theoretically possible range. The second is the range of fractal
dimension values or discontinuity principal mean spacing values encountered in

practice.

According to Mandelbrot (1983), the theoretically possible fractal dimension D
defined by equation N=CS-D is between 0 and 1. In the author's site investigation on
the highway cutting project, the fractal dimension of discontinuity spacing was
between 0.05 and 0.6. In the research conducted by Harris et al. (1991), the fractal
dimension was between 0.25 and 0.75. Gillespie et al. (1993) showed that the
discontinuities were frequently with fractal dimension of between 0.4 and 1.0, and the
fractal dimensions derived from the measured data represented by Gillespie et
al.(1993) are between 0.4 and 0.7. The range of fractal dimensions of discontinuity
spacing measured by Boadu and Long (1994) was around 0.55-0.63.

The lower cutoffs are usually set out around 0.01 - 0.05 m. For example, Priest and
Hudson (1976) set it as low as 0.01 m. Wang (1992) suggested that the measuring tape
for scanline measurement be calibrated in cm divisions. Boadu and Long (1994) set
out the lower cutoff as 5 cm. The upper cutoff typical for quarrying and mining, can
be defined as 10 m. Since the scale of mining and quarrying operation is usually in the
range of one or several decades of metres, the discontinuity spacing values recorded in
practice will be Iess than this value. For example, most spacing values recorded by
Priest and Hudson (1976) were less than 5 m in several field sites. The greatest values
from six different field sites recorded by Gillespie et al. (1993) usually remained
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below 10 m. The discontinuity spacing values from two different quarry field sites
recorded by Wang (1992) were all below 10 m.

It may be recalled from Chapter 2 that if discontinuity spacings are defined by the
number-size relationship according to

N=csD, (3-28)

i.e. the discontinuity spacings are of a fractal distribution, then the probability density
function f{s) which introduces another coefficient, A, becomes

fiS)=A S-(D+1), Smin <S < Smax (3-29)

The following expression was obtained for the mean spacing in terms of the cutoffs
and the fractal dimension:

S, D
Smax — Smin ( max )
D Smln
S = < (3-30)
Smin
0.25
02
<
e 015
2
2
g
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005 +
0 } } -+ } } + +— f {
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 0.99
Fractal dimension, D

Fig. 3.9 Relation between the coefficient A and fractal dimension with different upper
cutoffs (Lower cutoff =0.05 m; B - upper cutoff, in m)
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In order to understand the influence of both lower and upper cutoffs and different
fractal dimensions on the characteristic parameters, such as the mean spacing and the
coefficient A of Eqn. 3-29, a sensitivity analysis has been carried out as given below.

Relationship between coefficient A, fractal dimension D and mean spacin

The influence of the upper cutoff on the coefficient A is shown in Fig. 3.9, which
indicates that its influence is not very strong, when fractal dimension D is a large
value. The expression for A (see Table 2.2) might therefore be simplified from

A=D/(@aP-b"P)to A=DaP.

Mean spacing (m)

0.01 0.1 0.2 0.3 04 0.5 0.6 0.7 038 09 099

Fractal dimension, D

Fig. 3.10 Relation between the mean spacing S,, and fractal dimension with
different upper cutoffs (Lower cutoff =0.05 m; B - upper cutoff, in m)

Fig 3.10 illustrates the influence of the upper cutoff on mean spacing. It can be
seen that different upper cutoff values can cause significant difference in the values of
mean spacing, indicating that the upper cutoff should be defined with caution in the
study of discontinuities with fractal characteristics. The influence of the lower cutoff
on the coefficient A is illustrated in Fig. 3.11, which shows that this influence is not
very significant.

It can be seen from Fig. 3.12 that the mean spacing is sensitive to both fractal
dimension and lower cutoff. However, the influence of lower cutoff on mean spacing
is not as significant as that of the upper cutoff (see Fig. 3.10).
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Fig. 3.11 Relation between the coefficient A and fractal dimension with different
lower cutoffs (upper cutoff=10 m, X0 - lower cutoff, in cm)
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Fig. 3.12 Relation between the mean spacing S,, and fractal dimension with
different lower cutoffs (upper cutoff=10 m, XO - lower cutoff, in cm)

The PDF curves for different fractal dimensions are illustrated in Fig. 3.13, which
is used to help understand the trend of the fractal spacing distribution varying with
fractal dimensions.



Frequency, f(x)

0 0.5 1 1.5 2 25 3 35 4
Spacing values, S (m)

Fig. 3.13 PDF curves with different fractal dimensions (lower cutoff S,,;,= 0.05
m; upper cutoff Sy, ;=10 m )

Consequently, the range of fractal dimensions in the simulation was set between 0.12
and 0.84, and the lower and upper cutoffs were defined as 0.05 m and 10 m in the
simulations.

3.6.2 Generation of Artificial Discontinuities with Fractal Spacings

Usually, computer generation of artificial discontinuities that have a prescribed
distribution of spacings involves a randomisation process. Since the concept of fractal
dimension and its analysis are relatively new, there is no algorithm and associated
computer programme available to directly obtain the necessary artificial
discontinuities with a fractal distribution.

The transformation method (Press et al, 1986) has been used here to derive the
generating algorithm for random numbers with a fractal probability distribution.
Based on the derivation of the algorithm a FORTRAN programme named RUNFRA
for generating the pseudo-random real number with fractal distribution has been
developed, which is described in Appendix B.2. By running the program RUNFRA,

we are able to produce artificial discontinuities that have a prescribed fractal

distribution of spacings.
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Fig. 3.14 Three-dimensional view of a simulated rock mass consisting of
discontinuities with fractal spacing distributions (D=0.36, the whole block volume
V=2163 m3; lower cutoff S,;,= 5 cm; upper cutoff Sy,;;,= 10 m)

Fig. 3.14 is an example of a three-dimensional view of the blocks produced by
intersection of 3 sets of discontinuities with fractal spacing distributions that were
generated artificially using the transforming method described above. The three
principal discontinuity sets have an orientation dispersion of £10°. It has been plotted
using the program 'BLOCKS' (Wang, 1992).

3.6.3 Simulation Results of Block Size Distributions

In accordance with the parameters set out in Table 3.2, a total of 60 groups of
separate simulations of the type illustrated in Fig. 3.14, were run using the programme
BLOCKS. For each simulation, referred to as having a run, the programme calculates
the IBSD, an example of which is shown in Fig. 3.15.

A typical simulation result of the IBSD for a group of discontinuities is illustrated
in Fig. 3.16. For this group discontinuities the fractal dimensions for three sets are
respectively 0.68, 0.36 and 0.44.
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Table 3.2 The parameters of the simulation of IBSD with fractal spacing distribution*

Fractal dimension Principal mean spacing (m)

No. Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
N1-1 0.12 0.12 0.12 1.52 1.52 1.52
-2 0.24 0.24 0.24 1.208 1.208 1.208

-3 0.36 0.36 0.36 0.948 0.948 0.948

-4 0.44 0.44 0.44 0.802 0.802 0.802

-5 0.5 0.5 0.5 0.707 0.707 0.707

-8 0.56 0.56 0.56 0.623 0.623 0.623

-7 0.6 0.6 0.6 0.573 0.573 0.573

-8 0.68 0.68 0.68 0.528 0.528 0.528

-9 0.76 0.76 0.76 0.414 0.414 0.414
-10 0.84 0.84 0.84 0.354 0.354 0.354
N2-1 0.12 0.12 0.24 1.52 1.52 1.208
-2 0.12 0.36 0.44 1.52 0.948 0.802

-3 0.12 0.5 0.56 1.52 0.707 0.623

-4 0.12 0.6 0.68 1.52 0.573 0.528

-5 0.12 0.76 0.84 1.52 0.414 0.354
N3-1 0.24 0.12 0.24 1.208 1.52 1.208
-2 0.24 0.36 0.44 1.208 0.948 0.802

-3 0.24 0.5 0.56 1.208 0.707 0.623

-4 0.24 0.6 0.68 1.208 0.573 0.528

-5 0.24 0.76 0.84 1.208 0.414 0.354
N4-1 0.36 0.12 0.24 0.948 1.52 1.208
-2 0.36 0.36 0.44 0.948 0.948 0.802

-3 0.36 0.5 0.56 0.948 0.707 0.623

-4 0.36 0.6 0.68 0.948 0.573 0.528

-5 0.36 0.76 0.84 0.948 0.414 0.354
N5-1 0.5 0.12 0.24 0.707 1.52 1.208
-2 0.5 0.36 0.44 0.707 0.948 0.802

-3 0.5 0.5 0.56 0.707 0.707 0.623

-4 0.5 0.6 0.68 0.707 0.573 0.528

-5 0.5 0.76 0.84 0.707 0.414 0.354
N6-1 0.6 0.12 0.24 0.573 1.52 1.208
-2 0.6 0.36 0.44 0.573 0.948 0.802

-3 0.6 0.5 0.56 0.573 0.707 0.623

-4 0.6 0.6 0.68 0.573 0.573 0.528

-5 0.6 0.76 0.84 0.573 0.414 0.354
N7-1 0.68 0.12 0.24 0.528 1.52 1.208
-2 0.68 0.36 0.44 0.528 0.948 0.802

-3 0.68 0.5 0.56 0.528 0.707 0.623

-4 0.68 0.6 0.68 0.528 0.573 0.528

-5 0.68 0.76 0.84 0.528 0.414 0.354
N8-1 0.76 0.12 0.24 0414 1.52 1.208
-2 0.76 0.36 0.44 0414 0.948 0.802

-3 0.76 0.5 0.56 0414 0.707 0.623

-4 0.76 0.6 0.68 0414 0.573 0.528

-5 0.76 0.76 0.84 0414 0.414 0.354
N9-1 0.84 0.12 0.24 0.354 1.52 1.208
-2 0.84 0.36 0.44 0.354 0.948 0.802

-3 0.84 0.5 0.56 0.354 0.707 0.623

-4 0.84 0.6 0.68 0.354 0.573 0.528

-5 0.84 0.76 0.84 0.354 0.414 0.354

*the lower and upper cutoffs were defined as 0.05 m and 10 m
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Fig. 3.15 The simulation result of the IBSD for fractal spacings (the whole
block volume = 950 m3; lower cutoff S, ;= 5 cm; upper cutoff Sy,5,= 10 m)
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Fig. 3.16 Fitting the theoretical distributions to the IBSD (D=0.24, the whole block
volume = 4125 m3; lower cutoff S,;,= 5 cm; upper cutoff Sy, ;= 10m)

The Ros-Ram, Schuhmann and log-linear equations have all been considered as a
means of describing simulation results of the IBSD. Visual examination of Fig. 3.16
suggests from that the Schuhmann equation may fit as well as the Ros-Ram equation,
and that the log-linear equation is basically unsuitable for the typical curvature with
the fine part of the IBSD. It is therefore proposed that both the Ros-Ram and the



Schuhmann equations are the two most ideal to be used for representing the IBSD of a
rock mass with discontinuities with fractal spacing distributions.

. Numerical

Ros-Ram

- Schu.

Percentage passing
oE5BB88333888

0.1 1 10 100 1000
Block volume (m*3)

Fig. 3.17 Comparison between simulation and Ros-Ram and Schuhmann
distribution fitting for "typical data" (D=0.24, the whole block volume = 4125 m3;
lower cutoff S;,;= 5 cm; upper cutoff Sy, ;,= 10 m).

The method of curve fitting to obtain best fits using given equations, when
summarising IBSD or BBSD, is not straight forward. With spacing data, considered in
Section 3.5, the raw data gives an appropriate weighting for each data point, but this
need not be the case for block size. The consideration of whether to and how to weight
the data prior to curve fitting should be made after taking into account practical
consideration. For example, the most economically significant part of the IBSD or
BBSD curve could be he fine end, the middle or the coarse end. An accurate fit at the
coarse end was more important in the Overseas Quarry case study concerned with
armourstone described in Chapter 7.

In the analysis of IBSD, the most reasonable approach and the one adopted here
appears to be by reassignment of the weighted simulated data to an unweighted
idealised set of data which in this case, is given at 5% intervals from 5% to 100%
passing size. This choice, a removal of the weighting of fines and replacement by 20
evenly weighted data points, is appropriate since the main purpose for the
mathematical summary of the IBSD is to give accurate input to the modelling of
BBSD.
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The influence of weighting is closely shown by a comparison of the best-fit curves
in Figs. 3.16 and 3.17 (the "typical data” refers to regularly picking up the point at 5%,
10%, ..., 100% passing). Whereas in Fig. 3.16, some 2000 of the data points alone,
account for less than 1% of the whole simulated volume, in Fig. 3.17, the first of 20
data points enters at 5% passing. The effect of removing the fines weighting is to
allow a much better Ros-Ram fit for the coarse sizes.

3.6.4 Relationships between Fractal Spacing Parameters and IBSD Parameters
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Fig. 3.18 Relationship between Vjp and V59 and Dj*Dy*D3
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Fig. 3.19 Relationship between V¢ and V50 and the Sppp, 1 xSpm2+Spm3

Before proceeding with a compilation of coefficients that enable the reader to apply
an equation method to fractal spacing data, there is one major difference between
these research results and those of Wang. Wang (1992) referred to a "proportional
property"” which results in a linear relationship between the IBSD and the products of
the three principal mean spacings applicable to the uniformly and negative
exponentially distributed spacings. For the case of fractal spacing distribution, this
property will not hold, as verified by the simulation results shown in Figs 3.18 and
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3.19. The reason that it no longer holds is that there is no longer a proportional
property for the generator which produces data with a fractal spacing distribution (see
Appendix B.2).

Fig. 3.18 is the relationship between typical (10% and 50%) volume percentage
passing values and the product of the three fractal dimensions, and Fig. 3.19 is the
relationship between these typical percentage passing values and the product of the
three principal mean spacing values. It can be seen from these two figures that there
are, indeed, some non-linear relationships between the volume percentage passing

values and the products.

Table 3.3 Coefficients C; ,, and b; p, for the relationship between V; 5, and the product
of fractal dimensions of discontinuities with fractal distributions (Eqn. 3-31)

Passing |Coefficient| Standard 90% confidence level

Cin Error Lower | Upper | Range | Ermor *(%)
10 0.0468 0.0033 | 0.0417 | 0.0526 | 0.0055 11.66
20 0.1440 0.0099 | 0.1284 | 0.1614 | 0.0165 11.47
30 0.3098 0.0218 | 0.2755 | 0.3485 | 0.0365 11.78
40 0.5642 0.0460 | 0.4926 | 0.6462 | 0.0768 13.62
50 0.8453 0.0660 | 0.7422 | 0.9628 | 0.1103 13.04
60 1.4447 0.1121 | 1.2695 | 1.644 | 0.1872 12.96
70 2.5625 0.2379 | 2.1959 | 2.9904 | 0.3973 15.5
80 4.4490 0.5492 | 3.6254 | 5.4598 | 0.9172 20.62
90 9.2825 1.2878 | 7.3777 | 11.6790] 2.1507 23.17
100 31.3330 | 3.5021 | 26.025 [37.7220] 5.8485 18.67
bip
10 0.5949 0.0250 [ 0.5529 [ 0.6368 | 0.0418 7.03
20 0.5423 0.0246 | 0.5010 | 0.5836 | 0.0411 7.59
30 0.5012 0.0253 | 0.4588 | 0.5436 | 0.0422 8.42
40 0.4711 0.0292 | 0.4220 | 0.5201 | 0.0488 10.36
50 0.4712 0.0280 | 0.4242 | 0.5181 | 0.0467 9.92
60 0.4404 0.0278 | 0.3938 | 0.4871 | 0.0465 10.55
70 0.4199 0.0332 [ 0.3642 | 0.4756 | 0.0555 13.22
80 0.4072 0.0441 | 0.3333 | 0.4811 | 0.0736 18.07
90 0.3609 0.0494 | 0.2780 | 0.4438 | 0.0825 22.87
100 0.3054 0.0399 | 0.2384 | 0.3724 | 0.0667 21.84

*Error is the ratio of the range over the corresponding coefficient expressed in %;
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Table 3.4 Coefficients C; p and b; p for the relationship of V; D and the product of
principal mean spacing values of discontinuities with fractal distributions (Eqn. 3-32)

Passing | Coefficient |Standard 90% confidence level

Cin Error | Lower | Upper | Range | Error (%)
10 0.4649 0.0077 | 0.4523 | 0.4779 | 0.0128 2.75
20 1.1685 0.0245 | 1.1283 | 1.2101 | 0.0409 3.50
30 2.1606 0.0448 | 2.0871 | 2.2367 | 0.0748 3.46
40 3.5458 0.0965 | 3.3882 | 3.7107 | 0.1612 4.55
50 5.3165 0.1150 | 5.1280 [ 5.5120 | 0.1920 3.61
60 8.0903 0.1855 | 7.7864 | 8.4061 | 0.3098 3.83
70 13.3920 | 0.5029 |12.5780(14.2580] 0.8398 6.27
80 22.6070 | 1.3562 [20.4550]24.9850| 2.2649 10.02
90 39.6660 | 3.0117 |34.9540{45.0130] 5.0295 12.68
100 108.9700 | 5.7909 ]99.7240(119.0700] 9.6708 8.88
bin
10 0.7882 0.0109 | 0.7700 ] 0.8060 | 0.0180 2.30
20 0.7200 0.0140 | 0.6970 | 0.7430 | 0.0230 3.21
30 0.6719 0.0137 | 0.6489 [ 0.6950 | 0.0228 3.40
40 0.6433 0.0179 | 0.6132 ] 0.6730 | 0.0300 4.66
50 0.6440 0.0140 | 0.6200 [ 0.6680 | 0.0240 3.70
60 0.6053 0.0151 | 0.5800 | 0.6310 | 0.0252 4.17
70 0.5874 0.0247 | 0.5459 ] 0.6290 | 0.0413 7.03
80 0.5900 0.0395 | 0.5237 | 0.6560 | 0.0659 11.18
90 0.5335 0.0499 | 0.4497 | 0.6170 | 0.0830 15.63
100 0.4675 0.0350 | 0.4088 | 0.5260 | 0.0580 12.50

For discontinuities with a fractal spacing distribution, the fractal dimension is an
important characteristic parameter, having significance for the IBSD. However, the
mean spacing value within the major discontinuity sets has traditionally been used to
give an average dimension of typical in-situ blocks (ISRM, 1978). Therefore, an
attempt has been made to present both the relationship between the IBSD and the
three principal mean spacing values and the relationship between the IBSD and the
three fractal dimensions.

With a careful examination of all of the simulation results using statistical analysis
and grey correlation analysis, a negative power law was found to be most suitable to
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describe the relationship between the IBSD and the product of three fractal
dimensions. It is given by

V. , =G, X (D x Dy x D,) ", (3-31)

where V; p (i=10, 20.,...,100) are block volumes of percentage passing (in m>3), and
Cip and b; ,, are empirical coefficients; i are percentages; D, D2 and D3 are the
fractal dimensions of the three sets of discontinuity spacing values. The coefficients
C; p and b; ;, together with the 90% confidence intervals are given in Table 3.3.

By analogy with the derivation of Eqn. 3-31, the power law is found suitable to
characterise the relationship between the IBSD and the three principal mean spacing
values, and is given by

b
Vi,p =Ci,p X(Spm1 XSpm2 X Spm3) 7, (3-32)

where, S pmi (i=1,2,3) are the principal mean spacing values of three set
discontinuities, C; , and b; , are the same as the above denotations. V; 5, Cj , and b; j,
in Eqn. 3-32 together with the 90% confidence intervals are illustrated in Table 3.4.

It seems reasonable to assume that the estimates of coefficients in Eqns. 3-31 and
3-32 have approximately normal distributions. Thus The goodness-of-fit examination
for Eqns. 3-31 and 3-32 has been carried out using the classical ¢ test. Also, a grey
correlation analysis was used. The results are listed in Table 3.5. The # test indicates a
significant dependence of the V; p on the mean principal spacing or the fractal
dimension. That is, the proposed empirical equations for relating the coefficients C; 5,
and b; ;, to the mean principal spacing or fractal dimension obtained from simulations
works well. This has been supported by the grey correlation analysis, since almost all
the values of the grey correlation coefficients are large. The visual comparison
between simulation results and the predictions from Eqns. 3-31 and 3-32 for V50 (see
Figs. 3.18b and 3-19b) indicates that the two equations fit reasonably well.

From the discussion above, it is found that the fractal dimension, which is the most
important spatial parameter of discontinuities with a fractal spacing distribution, is
also a measure of in-situ block sizes.

An important point to bear in mind is that both Eqn. 3-31 and Eqn. 3-32 have been
developed from simulation data based on a certain range of values of mean spacing or
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fractal dimension. It is therefore advised that one should use caution when
extrapolating the IBSD of a rock mass with the values of mean spacing or the fractal
dimension from outside the range examined by this study.

Table 3.5 Goodness-of-fit examination of Eqns. 3-31 and 3-32

Ean Vi,p=GCi,px(D1 XDy XD3)—bi’p Vi.p =Ci,p X(Spmi ><Spm2xspm3)b“""
Grey f test* Grey t test
Vi p |correlation|¢ statistics| ¢ at Confidence level | correlation |t statistics| ¢ at Confidence level
measure 90% 95% | measure 90% 95%
10 | 0.9781 | 72.507 | 1.677 2.01 0.9043 |-23.770| 1.677 2.01
20 | 0.9567 | 52.101 0.8932 |-22.010
30 | 0.9478 | 49.185 0.8739 |-19.820
40 | 0.9237 | 35.844 0.8552 |-16.120
50 | 0.9335 | 45.153 0.8574 |-16.830
60 | 0.9260 | 40.045 0.8561 |-15.830
70 | 0.8835 | 23.741 0.8228 |-12.640
80 | 0.8459 | 14.940 0.8080 | -9.242
90 [ 0.7890 | 10.684 0.7627 | -7.303
100 0.8179 | 13.360 0.7782 | -7.647

*where ¢ test proceeds as if the data were linearly related, so the transformed and not
the raw data have been used throughout this significance test.

3.7 BLOCK SIZE DISTRIBUTIONS WITH FRACTAL COMPARED OTHER
SPACING DISTRIBUTIONS

Having discussed the block size distribution arising from rock masses with
discontinuities with fractal spacings, it is interesting to compare these results with
those for other spacing distributions and to probe into how much difference exists in
the IBSDs produced from different spacing distributions.

In comparing Eqn. 3-32 with Eqn. 2-10, it can be found that the nonlinear form is
noted for the fractal spacing distribution whereas a linear form was found (Wang ,
1992) for the rock mass with negative exponential, lognormal and uniform spacing
distributions. Fig. 3.20 gives a comparison of IBSD curves for the special case that the
principal mean spacing value of each discontinuity set has been given the value 1.0 m
and that appropriate cutoffs have been drawn for the fractal curve.



Clearly, there is a significant difference between the IBSD of discontinuities with a
fractal spacing distribution and those with the other three spacing distributions. The
IBSD of a rock mass with discontinuities that have a fractal spacing distribution is
much larger than that with the other three spacing distributions at corresponding
percentage passing points. The fractal IBSD curve is less steep given blocks that are
more widely distributed. That is, more fine and more "mammoth" blocks will be
produced from the rock mass with discontinuities with fractal distributions. Among
the four different spacing distributions, the IBSD intersected by discontinuities with a
uniform spacing distribution will form the lower boundary IBSD curve (see. Fig.
3.20).
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Fig 3.20 Comparison among IBSDs with different spacing distributions, based on
the equation methods (all the mean spacings are 1.0 m)

3.8 DISCUSSION

Fig. 3.15 illustrates the case of the three dimension view for a discontinuity
network with a fractal distribution where all three sets of discontinuities have the
same fractal dimension of 0.36, corresponding to an approximate mean spacing value
of 0.95 m. The three dimensional views for both negative exponential and uniform
spacing distribution with principal mean spacing values of 1.0 m are presented in Figs.
3.21 and 3.22 respectively. In the case of the fractal spacing distribution, the whole
block volume is up to 2160 m3, and some discontinuities are sparsely distributed
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while others are closely clustered. In contrast, we can find from visual examination of
both Figs. 3.21 and 3.22 that both the negative exponential and the uniform spacing
distribution discontinuities are fairly evenly distributed. The same features can be
characterised by fracture logs illustrated in Fig. 2.4.

Fig 3.21 Three-dimensional view of blocks consisting of discontinuity sets with
negative exponential distributions (the principal mean spacing is 1.0 m; the whole
block volume is 6686 m3)

It is therefore significant to distinguish whether the type of spacing distribution of
discontinuities is clearly of a fractal form when the in-situ block size distribution is of
practical significance. This will certainly be the case in quarrying for armourstone,
aggregates and building stone, especially for operations of quarrying in which the
proportion of big blocks is essentially critical.

The IBSD of rock with discontinuities with fractal spacing distribution has been
investigated using a combination of random simulation and the dissection method. A
comparison of the IBSD with fractal spacing distribution with the IBSDs for negative
exponential, lognormal and uniform distributions has also been given. The results
have indicated that there is a significant difference between the IBSD with fractal
spacing distributions and the IBSDs with the other three spacing distributions. The
two sets of empirical equations developed and expressed in Eqn. 3-31 or Eqn. 3-32
can be used to estimate the IBSD when the discontinuities exhibit a statistically good
fit to a fractal spacing distribution.
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Fig. 3.22 Three-dimensional view of blocks consisting of discontinuity sets with
uniform distribution (the mean spacing is 1.0 m; and the block volume is 3900 m3)

The above investigations of IBSD are based on the assumption that all three sets of
discontinuities are with a fractal distribution. In practice, this assumption may seldom
be satisfied and the more typical situation is that between the various sets there are
two or more kinds of best-fit descriptions for the discontinuity spacing distributions.
In such cases we can reasonably predicate that the IBSD will fall in the range formed
by a lower boundary IBSD curve from discontinuities with a uniform spacing
distribution and an upper boundary IBSD curve from discontinuities with a fractal
spacing distribution (see Fig. 3.20), although further investigation should be made to
reveal the IBSD of rock with two or more kinds of discontinuity spacing distribution
laws. A preliminary examination of the prediction for a mixture of distribution laws
has been made in the case study presented in Section 7.1, in which one out of three
sets of discontinuities is with a fractal spacing distribution, the other two having either
negative exponential or uniform spacing distributions.

In the above simulation and analysis, a supposition that discontinuities are
persistent is imposed. As discussed in Chapter 2, this supposition may often not hold.
In the next chapter, the influence of impersistent discontinuities on the prediction of
IBSD will be investigated.
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4. INFLUENCE OF IMPERSISTENCE OF DISCONTINUITIES ON THE
IBSD OF ROCK MASSES

4.1 RATIONALE FOR THE CONSIDERATION OF DISCONTINUITY
IMPERSISTENCE IN THE PREDICTION OF IBSD

Whether or not a discontinuity can be regarded as persistent is to some extent
subjective. It will depend on the scale or resolution used to observe the discontinuities,
the area or volume of the rock mass of interest, and the nature of engineering
problems for which discontinuity survey data is sought. Of particular interest in this
research is the determination of the IBSD in bench blasting in a quarry. For this
application, one approach has been to regard discontinuities with traces on the bench
face longer than a given cutoff value as persistent and the rest as impersistent. For
example, Wang (1992) used a criterion of = 3 m for the trace length of discontinuities
that were to be coded as persistent. By treating the dissection of discontinuities that
are coded as impersistent together with those are coded as persistent, as if they all
extend infinitely he made an estimation of the lower bound for the BBSD, while the
dissection of only the persistent ones, he argued, would provide an upper bound
estimation for the IBSD. Obviously, the above cutoff criterion is inherently subjective,
in spite of its applicability for providing bounds for the IBSD.

A rock mass where all discontinuities extend to the margins of the rock volume of
interest is rarely found. However, most existing techniques of predicting the in situ
block size, including the techniques developed by Wang (1992) and in Chapter 3 of
this thesis, assume that all discontinuities within the rock mass are persistent (this will
be referred to as "all-persistent discontinuities” assumption). This assumption is
probably acceptable for a small volume of a rock mass or for a rock mass with
discontinuities having a large mean discontinuity size, but with the increase of the rock
mass in question the errors related to this assumption will increase.

The following case studies described by Wang (Wang et al., 1991a; Wang, 1992)
both give an insight into the extent to which impersistence affects the prediction of
IBSD (see Table 4.1 and Fig. 4.1). In the first case, V5 for the lower bound curve was
4.95 m3, whereas Vsp for upper bound curve was 7.69 m3 (Fig. 4.1). The two
different considerations on persistence resulted in a 50% volume increase. In the
second case, V3 for the lower bound curve was 0.477 m3, whereas Vs for upper
bound curve was 1.305 m3 which is nearly a three fold increase. On describing the
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above two cases, Wang argued that the IBSD could be considered to fall between both
lower and upper bounds. However, since the difference between these two bounds is
often large (see Table 4.1 and Fig. 4.1), it has been recognised that in cases where
trace length distribution data can be obtained, it may be possible to further constrain
the estimated IBSD.

100 1

Lower

Upper

discontinuities less than 3 m
were coded as impersistent
and were not included

Percentage passing
ccBEELLBIESE

0.01 0.1 1 10 100
Block volume (m”3)

Fig. 4.1 Illustration of influence of persistence of discontinuities on prediction of
IBSD (Data from Wang, 1992)

Table 4.1 The influence of impersistence of discontinuities on the prediction of
IBSD (50% passing block size, V5, m3)

Including all | Only including persistent
discontinuities discontinuities
Case 1 4.95 7.69
Case 2 0.477 1.305

The analytical treatment of discontinuities with impersistence is highly complex.
This might be one of main reasons that most existing techniques of prediction the
IBSD have assumed that discontinuities are all persistent. For the purpose of obtaining
estimation of IBSD, an indirect technique is therefore proposed for considering the
influence of impersistent discontinuities on the prediction of IBSD. Firstly, an IBSD
estimation is obtained using the assumption of all-persistent discontinuities, then the
estimate is corrected by introducing a factor reflecting the influence of the degree of
persistence of discontinuities.
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Persistence can be roughly quantified by measuring the discontinuity trace lengths
on the exposures. Furthermore, the underlying discontinuity size may be generated
from the measured trace lengths under certain assumptions about the nature and shape
of the discontinuities.

It is helpful to begin by revising the two definitions of persistence in current usage.

(1) The first is suggested by the ISRM (1978) where persistence is defined as "the
percentage of total area of a plane through the rock mass which is formed by
discontinuities co-planar with this reference plane”, so that the persistence Py is given
by:

2“0,
P =-—, 4-1
) A 4-1)

where Ap is the area of a region of the plane and ap; is the area of the ith
discontinuity in the Ap, the summation is over all discontinuity in the area, as shown
in Fig. 4.2.

Fig. 4.2 Schematic illustration of discontinuity persistence

(2) The second was given by Einstein et al. (1983) where persistence is defined as
the limit of the ratio expressed by Eqn. 4-1 as the size of the plane approaches infinity:
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2ap,
P = lim - , 4-2
;= Jim— (4-2)

Ap—=

or the limit of the length ratio along a given line on a joint plane, as given by:

P, = lim ; (4-3)

where Lg is the length of a straight line segment S and [g; is the length of the ith

discontinuity segment in S, the summation is over all joints in S.

It can be seen from the above equations that these definitions will lead to a scale-
dependent persistence value. In other words, the impersistence will depend on the
dimensions of the rock mass concerned. As a result, whether the assumption of all-
persistent discontinuities is good approximation or not is critically dependent upon
two factors: the first is the scale of the in-situ rock mass of interest, and the second is
the mean size of discontinuities. The greater the scale of the rock mass, the worse the

approximation; the larger the mean discontinuity size, the better the approximation.

Provided that an estimation of mean discontinuity size can be made, it is possible
that the influence of impersistence on in-situ block size can be elucidated by
comparing the mean discontinuity size to the scale of in-situ rock mass of interest. It
therefore seems probable that the determination of the mean size of discontinuities (or
an estimate of mean size) could provide a suitable means of accounting for the
influence of impersistent discontinuities with particular reference to the prediction of
IBSD. In the following sections, this has been shown to be so and the relationships
have been derived so as to incorporate the impersistent discontinuities into the
prediction of IBSD.

4.2 DISTRIBUTIONS OF TRACE LENGTH AND EVIDENCE OF FRACTAL
TRACE LENGTH DISTRIBUTIONS

4.2.1 Distributions of Trace Length and Identification of Distributions
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A survey of discontinuities is often made on a small exposure comprising a small
sample from which one infers the jointing in a much larger rock volume.
Mathematical techniques are usually applied to the survey measurements in order to
adjust the trace length distribution to be more representative. As described in Chapter
2, a number of different distributions describing the joint trace lengths have been
proposed to help draw inferences from discontinuity survey measurements. To date
the main probability density functions for expressing discontinuity trace lengths
include the negative exponential, the lognormal and the fractal distributions, as shown
in Table 2.3.

When there is a need for selecting a preferable distribution among several
contending theoretical distributions, the analysis technique described in Section 3.5
can be used.

The existence of both the negative exponential and the lognormal has been
frequently reported. However, the fractal distribution is quite a new one and, therefore
further discussion of the evidence supporting its existence follows.

4.2.2 Evidence of Fractal Trace Length Distributions

In the investigation made by Stone (1980, (see Bahat, 1988)) into the length
distribution of fractures in the coarse-grained granite of Atilokan, Ontario, he found
that joint lengths appeared to have fractal distribution.
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Fig. 4.3 Power law trace length distributions (from Segall & Pollard, 1983)
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Segall and Pollard (1983), in their study of joint formation in the granitic rock of the
Sierra Nevada, found that the length / of mapped joints from 1 or 2 m to approximately
70 m has the fractal form

fy = (4-4)

where f{l) is the probability density function of joint length and D is the fractal
dimension range from 0.2 to 0.8. The results from a mapped area has been shown in
Fig. 4.3. It can be seen that the fractal distribution fits the mapped data reasonably

well.

Barton and Larsen (1985), Ranalli and Hardy (1989), Sornette et al. (1990) and
Davy et al. (1990) have reportedly presented the fractal trace length distributions with
the range of fractal dimension from 0.1 to 0.75 respectively in their individual study of
trace length distributions of fracture networks.

Power law distributions seem to overpredict the number of joints having small trace
length or spacing values, which might be due to incomplete sampling of joints. Segall
and Pollard (1983) believed that there may be more joints having low values of trace
lengths present in the rock but that they were not able to map them on the outcrops
because of mapping resolution or inadequate sampling of joints, and, that one might
expect a continuous distribution of crack lengths ranging from the longest joints to
very small microcracks. Ranalli and Hardy (1989) suggested that a lognormal
distribution might be the result of superposition of fractal subpopulations with size
cutoffs. From the above cited literature a greater confidence has been obtained for the
validity of the fractal trace length distributions.

If the assumption is made that the measured distribution is indeed truncated and
that the shorter trace lengths are under-represented in the data due, for example, to
resolution problems, it might be possible to extrapolate the expected untruncated trace
lengths using a number of methods, such as the grey prediction approach (Den, 1985).

43  DISCONTINUITY SIZE ESTIMATION

Smaller sizes of discontinuities means less persistence and less persistent
discontinuities will lead to fewer intersections and thus larger in-situ blocks. Thus
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when considering the influence of discontinuity persistence on the estimation of IBSD,
the problem becomes one of finding the mean size of discontinuities in an opaque rock
mass. However, it is necessary to use distributions of trace lengths derived from
measurements of the trace lengths produced by their intersections with exposures.
Fortunately, it will be shown below that discontinuity sizes will have a statistical
distribution that is related to the distribution of their trace lengths. If the geometry and
spatial arrangement of the discontinuities is known or assumed, one is able, in
principle at least, to derive the relationship between discontinuity size and trace length
distribution by statistical analysis. In turn, this relationship can then be used for the
estimation of discontinuity size distribution from the trace length distribution sampled,
as shown by Warburton (1980).

4.3.1 The Relationship between Discontinuity Size and Trace Length

It is usually impossible to specify the size of a discontinuity because only by
thoroughly dismantling the rock mass can one find and measure its size. Therefore,
techniques for the estimation of discontinuity sizes have to be based upon both the
measurement of the trace lengths and certain assumptions about the shape of
discontinuities. Much impetus in this field of research has arisen through the need to
predict fluid flow through fractured rock masses and the assessment of potential
sliding planes with the largest size in rock slope stability problem. The site
investigation into igneous rock of de Beer Mine made by Robertson (1970) indicated
that the trace lengths in both strike and dip directions are approximately equal. Since
then, a simplifying assumption that discontinuities are circular discs has been widely
adopted (Baecher et al., 1977, Warburton, 1980; Kulatilake & Wu, 1986; Villaescusa
& Brown, 1992). Under this assumption, the sizes of discontinuities are completely
defined by their diameters. Determination of discontinuity size is therefore simplified

to a problem of defining the diameter distribution.

Assuming that discontinuities are circular discs of negligible thickness and the
centres of discontinuities hold a three-dimensional Possion process, Warburton (1980)
has made a valuable derivation of the distribution of trace lengths formed by the
intersections of parallel circular planar discs, which is given by

fiy=t r I g(R)dR

m_d i /Rz_lz ?

(4-6a)
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or

| (- g(R)R
fuy=—[ SRR (4-6b)
m,

R*-1?

where [ represents the trace length of a discontinuity, R is the diameter of the
discontinuity with the circular disc shape, my represents the mean diameter of
discontinuities, f{l) is the probability density distribution of the discontinuity trace
lengths, and g(R) represents the probability density distribution of the discontinuity
diameters.

This is the functional stereological relationship between trace length and diameter
distribution for line sampling of discontinuities. Theoretically, the distribution of
discontinuity diameter can be estimated for any continuous form of g(R) by applying
Warburton's derivation. However, difficulties in both mathematics and practical
sampling make it virtually impossible to determine g(R) and its control parameters
directly. Therefore, alternative methods of determining the discontinuity diameter
distribution and its governing parameters have to be sought, such as the techniques
described by Warburton (1980) and Villaescusa and Brown (1992). These two
attempts to relate trace length and diameter distribution will now be discussed.

Assuming that discontinuity diameters obey a lognormal distribution, Warburton
has examined, by means of a numerical scheme, the relationship between the average
discontinuity diameters and the average trace length. For lognormally distributed trace
lengths, he obtained the relationship for my; and mj, below :

1
(Ha +-02)
mg=e , 4-7)
and
s .
g (M4 +=03)
mj=—e 2 7, (4-8)
3n
as well as
(#d"’ —O%)
m,=—e 2 . (4-9)
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Hence

8 202.7 o2
: : =— — .1, 4-10
mj:mjg-mg 3”e 4e ( )

where, 14 and o4 are the parameters characterising the log-normal distribution of
discontinuity diameters; myj, and mj, are respectively the means of trace lengths from
line sampling and area sampling. In the numerical technique used by Warburton
(1980), the determination of the diameter distribution was implemented by varying pgq
and o4 systematically to find the combination that produced the best fit of sample data
of trace lengths to the corresponding theoretical distribution expected from the model.

Villaescusa and Brown (1992) proposed a method to estimate the mean diameter of
discontinuities based upon Warburton's work. The method, outlined below, helps to
illustrate difficulties so far encountered in linking trace lengths to diameters.

Under the assumption of discontinuity convexity and circularity, the expected
values of the observed joint trace length I and the discontinuity areas are related
through Crofton's theorem (see Villaescusa & Brown, 1992) by:

2 3
Et) _ mEQ) @i
E(w) 3 EW)

where E(n”) represents the n-th moment of the parameter, |, of interest, for example,
discontinuity area, such that E( uz ) is the second moment of the discontinuity area and

is given by:

E(W) = [7 (R g(R)dR. (4-12)

Using standard statistics it yields

, (4-13)
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where Bg(R") is the n-th moment of the underlying discontinuity diameter distribution,

E(?)
E()

Eqn. 4-13 and then selected a theoretical discontinuity diameter distribution, which

the right hand term, % , is named the Crofton ratio. The method firstly evaluated

best fitted the field data, from certain distributions which are often adopted in practice.

If, discontinuity diameter, g(R), is assumed to have a negative exponential
distribution, substitution of the necessary parameters into Eqn. 4-13 yields:

. _4 E(l’)'
‘3 EW)

(4-14)

Whereas, if g(R) has a log-normal distribution, developing Eqn. 4-13 yields

) _4E@)
4 (#d+36.21)— 3 E(l) .

(4-15)

Comparing the two Crofton ratios of observed trace lengths, f(I), calculated using
both Eqn. 4-14 and Eqn. 4-15, the nature of discontinuity diameter, i.e. either negative
exponential or lognormal distribution, can be determined. After determination of the
distribution, the mean diameter can be found using the equations below.

If g(R) is assumed to have a negative exponential distribution,

m, =gm,, (4-16)

If g(R) has a log-normal distribution

2y
m, = E(R) = 8 (4-17a)

(%@#+d»’

3mom, s

(T)

E(R?) = 3 , (4-17b)
%wﬁ+dw

123



where mj and (0’1)2 are respectively the mean and the variance of trace length, and both
Kq and 6 are related to my and E(R2) by

KL, = 2Ln(m,) — % Ln(E(R?)), (4-18)

o, = Ln(E(R")) ~ 2Ln(m,). (4-19)

It can be seen from the above discussion that there is a prerequisite that an
analytical form of discontinuity diameter distribution has to be set up in advance when
utilising the techniques used by Warburton (1980) and Villaescusa and Brown (1992).
It might be reasonable to assume that the diameters of discontinuities would be a
negative exponential, or lognormal or fractal form, etc. The impossibility of
dismantling a rock mass and difficulties raised in sampling have, however, so far made
it impossible to prove these assumptions. By contrast, it is possible and easy to
confirm assumptions about the distribution forms of trace lengths produced by
discontinuities. Consequently, imposing a distribution form of trace lengths is more
reasonable than doing that for discontinuity diameters. In the next section, an
algorithm for determination of discontinuity diameter distribution which is not based
on the assumption of the distribution of discontinuity diameters but on that of trace
lengths will be represented.

4.3.2 Derivation of a Numerical Approach to the Determination of the Distribution of
Discontinuity Diameters

It follows from Eqn. 4-6a that the probability that trace length [ is in the range of /
and /+d/ can be given by

| 1g(R)dR

I, 1 p=
e

)dl . (4-20)

On the same lines as the numerical scheme reported by Kulatilake and Wu (1986),
based upon Eqn. 4-20, the following approach to the determination of the distribution
of discontinuity diameters has been developed using a numerical technique.

Knowing the corrected (without truncation) distribution of trace lengths and
supposing F(l) represents the cumulative probability distribution function of trace
lengths, it is apparent from Eqn. 4-20 that the left hand side can be written as
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Pty = [ 0= FG) - FG,.), @-21)

where P(l;_j, I;) represents the probability that trace length [ is in the range of / and
[+dl. The Eqn. 4-20 can therefore be expressed as

P(_,1) =

) I lg(R) dR)dl . (4-22)

Reversing the order of integration in Eqn. 4-22, with the help of Fig. 4.4, we obtain
the following expression which transforms the right side of Eqn. 4-22 into two terms

as follows
1 ¢4 ¢r ldl
Pl,_ ,l)=— —)2(R)dR+— R)dR .(4-23

(Gossh) mdeLAJ;———”() J(a. ————=)g(R)dR .(4-23)
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Fig. 4.4 Exchanging the integration orders: () the order before exchanging; (b) the
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The Eqn. 4.23 can be further developed as

P(l,_,,l,.)=i ’ |-vr*-12 i )g(R)dR+l “-vrR2-1* ' )g(R)dR, (4-24)
m, 7 5L, my, <k 1N

ie.

P(l,_,,1)= mi(jl" WR? =12)8(R)dR+ [ (JR* =12, —\R* =17 )g(R)dR).
d (B i

(4-25)

The second term of the right hand side of Eqn. 4-25 can be written according to the
definition of integration as

1 ¢
o | R I R =gy

1 ¢ha
o MG TR P

1 ¢l
| R =12, =R~ 17 )g(RYAR

(23

+ml ) “ WRT=1 =R =1)g(R)dR (4-26)
d k

1 fha
o [ R R IR

According to the mean-value theorem in integration (Korn & Korn, 1968), it
follows that

1 e 1 I
EJ-" l ( R —142.1 )8(R)dR = ;d\/R,z - I:Z-IJ; 1 g(R)dR, (4-27)

where R; is a value in (;_}, /; ), here we choose the intermediate value of [ /;_y, [; ], i.e.
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R = 2* L (4-28)
Similarly,

1 lk+l
— [ R = = YR =1 ) g(R)R

¢ ) , , (4-29)

= ("/sz-H - 112-1 - 'JRIzZH - llz—l )J‘IM g(R)dR
m, &
where, R4 7 has a similar form to Eqn. 4-28

R, = atha, (4-30)

Now the expression J‘II' g(R)dR in Eqn. 4-27 represents the probability G(R;) that

11

discontinuity diameter, R, lies between [/;_, [;]

G(R) = [ g(R)dR, ' (431)

(]
I
l

and the expression j " g(R)dR in Eqn. 4-29 represents the probability G(Ry 4 ;) that

discontinuity diameter, R, lies between [If, lg4 ]

k+l

G(R,,) = I,Z g(R)dR. (4-32)

Substituting Eqns. 4-27, 4-29, 4-31 and 4-32 into Eqn. 4-25 yields

P(_. 1) =mi(«/1§2—lf.,)G(R)+ imi(\/Rf -2, - R -I)GR). (4-33)
d

J=+1%

i=12..,n

Eqn. 4-33 is a set of simultaneous equations including G(R;).(i=1,2...,n), totally n
unknown numbers. It can be solved using a standard numerical algorithm for solving
sets of simultaneous equations. Different value of mg would produce a different set of
G(R;), but only the combination of G(R;) (i=1,2,..,n) that holds the following
constraints is the correct solution to Eqn. 4-33.
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YG(R)=1 and G(R;)20. (4-34)

The different values of mean diameter, therefore, have to be tried to obtain the
correct solution.

44  IMPLEMENTATION OF NUMERICAL APPROACH

It can be seen that the implementation of the algorithm described in the last section

involves solving the following simultaneous linear equations.
AeX=B, (4-35)

where A is a square matrix, X and B are column vectors.

0 i>j
1

A=[ajilnxn, a‘.j=<m—(.\/(R,.+,)2—l,.2 ~J(R,) - i<j, (4-36)
d

1
m—(\/(R,-)z—l,-z_,) i=j
L d

X = (%) xi = G(Ry), (4-37)

B = (by), bi=P(l;1, Ij). (4-38)

The task for numerical calculation here is to assign a value of m  and solve Eqn. 4-
35 to obtain a set G(R;). The calculating routines are repeated for different mj until a
particular combination of G(R;) holds the constraint conditions described by Eqn.
4.34.

The implementation of the algorithm is illustrated in Fig. 4.5. A computer
procedure named DIATRACE for the implementation of the determination of the
discontinuity diameter distribution and its mean diameter, written in FORTRAN
language, is listed in Appendix A.2.
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Fig. 4.5 The flowchart of DIATRACE outlining the procedure for the determination of
the discontinuity diameter distribution



As described previously, the potential distribution for trace lengths can often be
one of three forms: negative exponential, lognormal and fractal. Hence these three
forms of trace length distributions are considered in the procedure. It can be noted
from the algorithm derived that the diameter distribution can be also established. If a
discrete distribution of trace length has been obtained, the procedure can still generate the
diameter distribution. Applying the program DIATRACE to Warburton's trace length
data (1980) yields results for the corresponding distribution of discontinuity diameters
and an estimation of its mean diameter. The results are compared with Warburton's
prediction, as shown in Fig. 4.6.

A Joint diameter, Warburton's prediction,

004 + ™\ A mean=16.1 cm
/AN Joint diameter estimated using the numerical

N
0.03 + / \Y technique, mean=15.8 cm
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Joint trace length / diameter (cm)

Fig. 4.6 Comparison of Probability density of joint diameter using the numerical
method to Warburton's prediction

Based on Warburton's derivation (see Eqn. 4.6) it is now possible using the
numerical algorithm in DIATRACE to relate discontinuity diameter distribution to the
distribution of measured trace lengths. This makes it possible to estimate the mean
diameter of a population of discontinuities. The method to estimate the discontinuity
size is still subject to the commonly applied constraint that discontinuities are
presumed to be circular discs. Nevertheless, it provides a tool to make an
approximation of the discontinuity size, which is of great significance for considering
the influence of impersistent discontinuities on the prediction of IBSD.

4.5  ESTIMATION OF THE MEAN SIZE FROM THE MEAN TRACE LENGTH
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In the procedure for determining the mean diameter presented above, the
distribution of trace lengths needs to be obtained from a detailed survey of trace length
measurements on exposures of rock masses. Unfortunately, direct and complete
measurements of discontinuity trace lengths on site are usually time-consuming and
painstaking jobs.

Recall that the mean diameter of a population of discontinuities is important when
considering the influence of impersistent discontinuities on the prediction of IBSD. A
number of techniques (Baecher et al., 1977; Cruden, 1977; Pahl, 1981; Priest &
Hudson, 1981; Kulatilake & Wu, 1984; Zhang & Liao, 1990; Priest, 1993) are
available for making estimations of the mean trace length. If a practical relationship
between both mean discontinuity size and mean trace length can be established, it will
provide a valuable tool for estimating mean discontinuity diameter from mean trace
length. So far there has been no such an analytical relationship available. Therefore a
numerical simulation approach to this solution has been proposed here, to explore an
empirical relationship between both mean discontinuity size and mean trace length
using the algorithm and procedure developed in the last section. The numerical
simulation stages using the computer program DIATRACE include:

(1) Assume a population of discontinuities defined only by trace lengths
governed by a known distribution law, therefore having a known mean trace length;

(2) Determine the mean diameter of this population of discontinuities by
execution of the program DIATRACE;

(3) Repeat (1) and (2) for a series of (c. 20) populations of discontinuities with
different mean values of trace lengths but the same trace length distribution law;

(4) Establish the numerically simulated relationship between mean

discontinuity size and mean trace length.

It is worth noting that the method for establishing the simulated relations are
subject to two assumptions. The first is that discontinuities are presumed to be circular
discs, the second is that the mean trace length is the corrected (without truncation)

estimate.
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Three continuous distributions of discontinuity trace lengths: the negative
exponential, the lognormal and the fractal distribution of discontinuity trace lengths

have been investigated.

For the negative exponential distribution of trace lengths, the simulated
relationship between mean discontinuity size and mean trace lengths yields

m, =0.719 m,. (4-39)
For the lognormal trace length distribution, the empirical relationship is given by
m, =0.737 m,. (4-40)
For the fractal distribution of trace lengths, the empirical relationship is

m, = 0.503 m,. (4-41)

The goodness-of-fit of the three simulated equations to the corresponding

numerical simulation results is illustrated in Fig. 4.7 to Fig. 4.9.
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Fig. 4.7 Relationship between means of discontinuity diameter and trace length for
a negative exponential trace length distribution
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It can be seen that the mean sizes of discontinuities for the above three trace length
distributions are all less than the corresponding mean trace lengths, which is in
accordance with the results reported by Warburton (1980), Villaescusa and Brown
(1992). This may at first seem a surprising result since the diameter must be the
maximum trace length possible. However the result is strongly influenced by all the
discontinuities that are present but not intersected at all by the sample plane of section
upon which the traces are seen.
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Fig. 4.8 Relationship between means of discontinuity diameter and trace length for
a lognormal trace length distribution
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Fig. 4.9 Relationship between means of discontinuity diameter and trace length for
a fractal trace length distribution)
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Baecher et al. (1977) reported an example in which they used an approximate
second-moment analysis statistical method to estimate the mean diameter. For their
case the mean trace length was 399.3 cm and the mean joint radius was estimated to
be as 163.7 cm for a data set where the trace lengths were lognormally distributed.
Using Eqn. 4-40, the mean trace length of 399.3 cm yields a mean radius of 147.2 cm,
which differs from the authors' prediction by 10.08%.

Having obtained the simulated relationship between the means of both diameter
and trace length, it is now appropriate to see how much difference in discontinuity
diameter there is between the three commonly assumed trace length distributions.
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g 100 ==
g gl
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Mean trace length (cm)

Fig. 4.10 Comparison between discontinuity diameter from three empirical trace
length distributions

Under the same mean trace length (Fig. 4.10), the discontinuity diameter with a
negative exponential trace length distribution appears the largest, the diameter with a
lognormal trace length distribution is slight smaller, and the diameter with a fractal
trace length distribution is clearly the shortest. It can be found, by comparing the three
theoretical distribution curves with the same mean trace length (see Fig. 4.11), that for
the discontinuities with longer trace lengths, both the negative exponential and
lognormal distribution curves have greater probability density values than the fractal
distribution curve, and that both the negative exponential and lognormal distributions
are quite close.
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Fig. 4.11 Graphical comparison of three trace length distributions (mean trace
length =100 cm; the parameters (see Table 2.2) for lognormal: A=4.2, B=0.9; for
fractal: D=0.5, 5<1< 1000 cm),

Before the simulated relationships shown in Fig. 4.10 can be used to give mean
diameter, it is necessary to obtain the mean trace length and the trace length
distribution itself - various techniques have been proposed, for example, those of
techniques proposed by Cruden (1977), or Pahl (1981), or Priest and Hudson (1981),
or Kulatilake and Wu (1984). Most of these techniques use directly surveyed
measurements of discontinuity trace lengths. It is interesting to note that the
estimation of the mean value of trace lengths can also be made from indirect
measurements of trace lengths, where truncation due to limited exposure is common
place. Such an indirect approach will be explored in the following section.

46  ESTIMATION OF THE MEAN TRACE LENGTH OF DISCONTINUITIES

Priest and Hudson (1981) proposed a technique for rapidly estimating the mean
trace length by simply counting » and r at a given exposure with censored trace length
at some censoring level c. Here, r represents the number of discontinuities with a
semi-trace length less than a censoring level ¢, n is the total number in the sample.
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Suppose f(1) represents the probability density distribution of discontinuity trace
lengths, A(I) is the probability density distribution of discontinuity semi-trace lengths,
F(l) and H(1) are the corresponding cumulative probability functions, then A(l) is given
by

W) = p jl " f(x)dx, (4-42)

or
h(l) = w(1-F(1)), (4-43)

where W is the mean trace termination frequency for the population, i.e. 1/u represents

the mean trace length.

Concealed Uppcr Iimif of exposure
Actual semi-trace
length > Cm
/ scanline
Concealed Conce aled
Lower limit of exposure

Fig. 4.12 Diagrammatic illustration of discontinuity traces intersecting a scanline
on a planar exposure of limited extent (after Priest & Hudson, 1981)

When on site, it is often found that the extent of the exposures and the orientation
of discontinuities limits the maximum observed semi-trace length to some censoring
level ¢y, (see Fig. 4.12). The c,, is unlikely to be a whole number and may vary from
one end of the exposure to another. It is usually desirable to set up one or more
censored semi-trace length levels ¢, which are less than c,,. The distribution i(l), of the
censored semi-trace lengths is directly proportion to the distribution h(l), of semi-trace
lengths. The mean trace length my;, estimated from a population of discontinuities
censored at some level c, according to Priest and Hudson (1981), is given by
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rlh(l)dl
m, =" (4-44)
H(c)

where H(c) is the numerical proportion of intersected discontinuities with trace
lengths less than ¢, which is given by

H(c) = _[0 h(Ddl = [ p(1 - F()dl. (4-45)

Eqn. 4-44 indicates that mj; will significantly depend upon the probability density
distribution of discontinuity trace lengths, for a given value of mean trace length my

for the entire population.

According to Priest and Hudson (1981), for a large sample of semi-trace lengths,

H(c) can be approximately expressed as

He) =L, (4-46)
n

where r is the number of discontinuities with a semi-trace length less than ¢ and n is
the total number in the sample.

The appropriate form f{l) of the probability density distribution of trace length for a
given field or geological domain may be assumed, or a preliminary survey or a
detailed local measurement on a quarry or a mine allows a first estimation of the f{I) to
be made. After defining or assuming the form of f{I), an estimation of m; by counting
n and r at a given exposure which censored semi-trace lengths at some censoring level
¢, can be made based upon both Eqn. 4-45 and Eqn. 4-46.

egative exponential distribution
When the probability density obeys a negative exponential distribution, i.e.
f)y=pe*, and F()=1-¢*, (4-47)

hence

H(c)= jo p(1=(1-e™*Ydl, (4-48)



and by integration
H(c)=1-¢*. (4-49)

Substituting for Eqn. 4-49 into Eqn. 4-46 yields

(4-50)

1-e# =1
n

This gives the mean trace length, mj, of the entire population of discontinuities as

1 c
= (4-51)
U Ln( n

m =

n-—r

This is an alternative of the result obtained in Equation 13 of Priest and Hudson
(1981). Priest and Hudson (1981) suggested that the method used for obtaining Eqn.
4-51 could be applied to any suitable f{I) to yield similar expression for rapidly
estimating mj, though they have not apparently done so. Expressions for both
lognormal and fractal distributions may be useful and are thereby derived below.
However, some considerable effort is necessary to simplify the mathematics to a more

useful form as shown below.

Lognormal distribution

In the case where f{) is a lognormal distribution

1 _(Lal-A)?
e e 8 . 4-52
1O Foxmi (452

The mean trace length, mj, of the entire population of discontinuities, and the
standard deviation ¢ are relate to the distribution parameters A and B as

m=e"7 (4-53)

o=y (" -1). (4-54)
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Because of the difficulty in direct mathematical derivation of H(c) for a lognormal
distribution, an attempt to avoid the complex integration involved for a lognormal
trace length distribution has been made. It is found that a lognormal distribution may
be approximated by the following simpler function expressed as

20k* 1

f =m,

(4-55)

where k is a parameter. The mean m; and the standard deviation ¢ of the approximate
probability distribution are given by

m, =E(l)=§k, : (4-56)
and
o’ = E(I*) -(E(]))? = %k’. (4-57)

The distribution parameters A and B of a lognormal distribution are related to the
parameter k of the approximate probability distribution through two conditions.
Firstly, both distributions have the same means, which yields

%k =e"'7, (4-58)

Having the same means may be the most important feature for determining the
mean trace length using an approximating function for lognormal distributions. For
the second condition, it may be possible to impose that both didtributions take their
maximum function values at the same value of trace length, or that both distributions
have the same standard deviations, etc. That both distributions take their maximum

function values at the same trace length yields

—=e*". (4-59)

Hence, the parameters A and B of the lognormal distribution can be found by
solving jointly Eqn. 4-58 and Eqn. 4-59.

In order to examine whether a function expressed by Eqn. 4-55 approximates well
to a perfect lognormal distribution, a comparison between the approximate probability
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distribution function expressed as Eqn. 4-55 and the lognormal distribution has been
made, and is illustrated in Fig. 4.13. In the figure, the discrepancy between the
distribution parameters for the perfect lognormal distribution and the approximate
probability distribution can be seen by plotting Eqns. 4-52 and 4-55 using Eqns. 4-58
and 4-59.

Fig. 4.13 suggests that the distribution expressed as Eqn. 4-55 approximates well to
the lognormal distribution. Using the approximate distribution, it allows an estimate

of mean trace length to be made more easily.

257
Approximating f(l)
g 27 Casel, mean trace length=0.5 m
£
4 1.5 -
@
-1
g’ 1A Approximating f{])
=
3 ase2, mean trace length=1.0 m
2 0.5 1
m 3y
0 + ; — 7 — - !
0 1 2 3 4 5 6 7
Trace length, (m)

Fig. 4.13 Graphical comparison of the approximate lognormal probability
distribution and the lognormal distribution. (Case 1, Lognormal distribution: A=-
1.0945, B=0.9; parameter for the approximating distribution, k=0.75. Case 2,
Lognormal distribution: A=0.0041, B=0.896; parameter for the approximating
distribution, k=2.25.)

Now, since f{l) of a lognormal distribution is approximately given by Eqn. 4-55, it
follows that h(l) will be given by

g 20k'x  K*(k+50) )
W = uf (k+x)°dx_” (k+ 1)’ (4-60)

hence

H(e) = [hdr = [(pEED gy 3 K p 3 K

= 4. 4-61
(k+1)° 2 k+c¢ 2 k+c) (a-61)
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Substituting for Eqn. 4-61 into Eqn. 4-46 yields

1_§(L)3 +§(L)4 =

2 k+c 2 k+c

r
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Fig.4.14 Relationship between mean trace length and r/n with different censored

level ¢

Eqn. 4-62 has been used to construct the curves illustrated in Fig. 4.14 which
allows us to make a rapid estimate of mean trace length for a large sample by counting

(4-62)
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r and n at a given rock face which censors at some level c. These figures, together
with Eqn. 4-58 and Eqn. 4-59, provide a tool for estimating the mean trace length as
well as the parameters of a lognormal distribution.

Fractal distribution
In the case where f{1) is a fractal distribution
f()=AI""D, y<i<) (4-63)

where [; and [, are the lower cutoff and upper cutoff, and A is a constant and given by

D

A = m, (4‘64)

The mean trace length, my, of the entire population of discontinuities is as follows

m, zl__‘%z;-vz,o. (4-65)

Now A(1) is given by

W)= [ fade = [ AxPdx = L1, (4-66)
hence

H(c) = [ h(hdi = J:p%l"’dl = ﬁ(c"” -1, 4-67)

Substituting Eqn. 4-64 into Eqn. 4-67 yields

H(e)= f‘D 1P, (4-68)

Substituting p=1/m; from Eqn. 4-65 into Eqn. 4-68 gives

_l €. 1p _
H(C)_D(l,) . (4-69)
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and hence it follows that
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Fig. 4.15 Relationship between fractal dimension D and r/n with different ¢/I,,
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Eqn. 4-70 has been used for constructing the curves illustrated in Fig. 4.15 which
provides us with a tool to estimate the fractal dimension of trace lengths for a large
sample by counting r and » at a given rock face and a given censored level c.

The fractal dimension D may also be approximately estimated using the following
expression when the value of D is small (say less than 0.5)

l
—4BhC 1,,7u
_ 1+J(1 4’_ I an)
2Lnli
c

D 4-71)

must be held.

o I:N

where the condition 1< 4%12 Ln

After determination of the fractal dimension, the mean trace length can then be
obtained by substituting the value of D into Eqn. 4-65.

A worked example is described as follows. Suppose that after carrying out a
measurement of trace lengths on an exposure, we obtain: the lower cutoff trace length
l; =0.05 (m), the assumed upper cutoff trace length /,=50 (m), when the censored
level c=2 (m) the ratio r/n=0.6. Hence ¢/1,,=0.04, which from Fig. 4.15 yields D=0.75,
and therefore the estimate of mean trace length m;=0.83 (m).

47 UPDATING OF THE IBSD PREDICTION

After examining discontinuity size, it is possible to incorporate the degree of

persistence of discontinuities into the prediction of IBSD.

As described at the beginning of this chapter, whether the prediction of IBSD based
upon the assumption of infinitely extending discontinuities is good or not is critically
dependent upon both the dimension of the in-situ rock mass of interest and the mean
size of the discontinuities. As such, it may be appropriate to introduce a factor to
characterise these properties. The factor is referred to as the "relative impersistence
factor". In other words, relative impersistence will include both the information about
discontinuity size and the dimension of observed discontinuities or the dimension of
the rock mass of interest. It is proposed that the relative impersistence factor Fjy,, can
be described as



E, = 2 5 <5 (4-72)
e =15 S, 28’

where Sp is mean discontinuity size which can be estimated using the techniques
developed in the foregoing sections, and S, represents the characteristic size of the
rock mass of interest (say, the cube root of the volume of the rock mass of interest), as
illustrated in Fig. 4.16.

- Sr'l

v

Sr
(a) (b)

Fig. 4.16 Schematic illustration of the relative impersistence factor

Consider now the influence of Fijy,p on the IBSD predictions developed in previous
chapters. Assuming that we obtain a result for IBSD for field data using the techniques
based on the all-persistent assumption, and that Sy and S, are those graphically
illustrated in Fig. 4.16a, we can accept this prediction of IBSD because the mean
discontinuity size is quite close to the dimensions of the rock mass of interest and the
all-persistent assumption is valid. However, if Sp and S, are as graphically illustrated
in Fig. 4.16b, the all-persistent assumption will be clearly violated and the
impersistence of discontinuities has to be considered. The IBSD prediction result
based on the all-persistent assumption will form the end member with smaller block
sizes, and the real IBSD is always larger than this prediction result.

Introducing the above relative impersistence factor Fimp, a prediction of IBSD
which incorporates the influence of impersistent discontinuities can be made such that
existing techniques for the prediction of IBSD, including those developed in Chapter 3
and by Wang (1992), can be employed.
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Suppose (V; p)o represents the prediction result of IBSD using the all-persistent
assumption and V; p is the corrected result incorporating the influence of impersistent
discontinuities on the result, then relationship proposed for V; p is as follows

1
Vo =
(F,,)*

(V. ,)os 4-73)

in which F imp 1is the relative persistence factor of the discontinuity population, and ¢
is a constant less than 1. A sensitivity analysis of Eqn. 4-73 suggests that g will take a
value of between 1/5 and 1/2, based on the authors experience and the analysis of the
data illustrated in Fig. 4.1.

Now the empirical equation, Eqn. 2-10 for predicting IBSD of discontinuities with
either a negative exponential or a uniform spacing distribution can be updated to give

= Cl,p Spml X Spm3
" (F,,)! cos@cos¢cosar’

i=10, 20, ..., 100

XS

pm2

(4-74)

The empirical equations, Eqns. 3-31 and 3-32 for predicting IBSD of
discontinuities with fractal spacing distributions can be updated to give

v =-Se (p xD, xD)y" 4-75
imp
Q.p bl.p
‘/i.p = (F )q (Spml xspm2 X Spm3) (4'76)
imp

A worked example

The above updated techniques are now applied to the case study reported by Wang
(Wang et al., 1991a; Wang, 1992).

The rock mass in the field was a massive sparsely jointed homogeneous "granite
gneiss" on the south west coast of Norway. On an exposure of nearly 2000 m2, 51
Jjoints were mapped. Of these, 8 joints were considered to be impersistent. The
censoring level c=3 m was used in defining whether or not a joint was persistent. In
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the first instance, all 51 joints were assumed to be persistent, which formed the lower
bound with smaller blocks. Using only 43 persistent discontinuities gave the upper
bound with larger blocks (see Fig. 4.1).

Suppose that the characteristic size of the rock mass of interest, S, = 5 m, and ¢
takes the value of 1/4, using the above updating technique for this example, the results
as listed in Table 4.2 are obtained.

Table 4.2 Comparison of the IBSD results updated to include the trace length data
correction for impersistence, e.g. from Norwegian rock mass

All Neg. exp. T. L.| Lognormal T. | Fractal T. L. | Excluding
persistent | Distribution | L. Distribution | Distribution* | impersistent

Mean trace length 1.619 1.625 0.735
my (m)

Mean size Sp (m) 1.261 1.198 0.370

Fimp 0.252 0.240 0.074

INFimp )1 1411 1.429 1.918

Vsp (m3) 4.950 6.985 7.076 9.493 7.690

*For fractal trace length distribution, /,, and [} are respectively 30 m and 0.05 m

2

Percentage passing
oo B88EL233ES8

0.01

Block wlume (m*3)

Fig. 4.17 Comparison between the updated IBSD using trace length censored data
(with g=1/4) to account for impersistence and the original IBSD results using the all-
persistent assumption for 51 (lower) and 43 (upper) discontinuities



The corrected IBSDs have been compared to the upper and the lower IBSD bounds
resulting from the dissection method using raw data for the two different
considerations of discontinuity persistence (see Fig. 4.1) and are illustrated in Fig.
4.17. It can be seen that the corrected results using the equation method for the cases
of negative exponential and lognormal trace length distributions, as expected, fall
within the zone defined by these upper and lower bounds. By contrast, the corrected
result for fractal trace length distribution is partly beyond the zone. This could be for a
number of reasons but the most likely is that field data for the discontinuity trace
lengths are not in fact well described by a fractal trace length distribution.

It is shown from the above example that using the information about trace lengths
(including: n, the total number of discontinuities; r, the number of discontinuities less
than ¢, a given censored level; and S, the characteristic size of rock mass of interest),
a reasoned estimation of the mean size of discontinuities and thus the Fjy,;, can be
determined. In turn, a prediction of IBSD accounting for the discontinuity
impersistence can be made by applying a correction to the existing techniques that are
based on the all-persistent assumption. Such a prediction is obviously an advantage
over one in which only lower and upper bounds are given. The technique devised
above will be applied to the practical IBSD prediction in a case study described in
Chapter 7, although it is acknowledged that the errors associated with the technique
are in need of further study.
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5. ESTIMATING THE BLOCK SIZE DISTRIBUTION OF A BLASTPILE
USING PHOTOGRAPHIC TECHNIQUES

Previous chapters have focused on the development and updating of techniques
which can be used to predict the IBSD. The most promising approaches for predicting
fragmentation in blasting will tend to use the IBSD as input data. However, as
discussed in Chapter 2, to assess whether a blasting operation is optimal or whether a
blast design model is working, requires an appraisal of the actual BBSD. Thus, the
methods of assessment of BBSD have been an important topic in quarrying and
mining. To some extent, advances in predicting the results of a given blast design in a
particular rock mass have been hampered by the poor accuracy and scarcity of BBSD
estimation methods. An ideal technique for the assessment of BBSD should be
reasonably accurate, cost-competitive and user-friendly. The exclusive and expensive
methods discussed in Chapter 2, appear not to meet all these requirements. The direct
photographic and image analysis techniques usually need complex equipment and
software. The indirect prediction approaches based on theoretical models do not have
their governing parameters determined with sufficient reliability. However, in
combining parts of the prediction models that give the general forms of the most
typical BBSDs with a simple photographic method, a technique which may meet all

the above requirements will be made in this chapter.

5.1 THE RATIONALE

It is recognised that surface measurements can give a reasonably representative
estimation of the blasting fragmentation (Noren & Porter, 1974, Nie & Rustan, 1987,
Franklin & Maerz, 1988). Assuming perfect mixing occurs, the information of block
size distribution exhibited on a blastpile surface, will reflect the underlying block size
distribution of the complete blastpile. Statistically, there exists a relationship between
the volumes of blocks in a blastpile and the one- or two-dimensional projecting
information (cf. Santalo, 1976; King, 1984), for instance, projecting length or area
represented on the blastpile. In other words, the greater is the value of the projecting
length of a block, the larger is its volume. That means there should be a relationship
between the underlying distribution and the surface distribution. This is the basis of all
existing photographic or image analysis methods of block size distribution. Once the
relationship between the distribution of block size on the surface of a blastpile and the
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underlying distribution is established, the underlying distribution can be derived from
the photographs taken of the blastpile surface. Taking this into consideration, a
technique of assessing the BBSD based on the surface information of a blastpile can
be developed.

5.2 PHOTO-SCANLINE TECHNIQUE

As discussed in Chapter 2, a great number of theoretical and experimental studies,
and, practical operations of quarrying and mining indicate that both the Rosin-
Rammler and the Schuhmann equations (see Eqns. 2-8 and 2-9) can often effectively
characterise the block size distribution of a blastpile.

It can be seen that both the Ros-Ram and the Schuhmann equations are
characterised by their two governing coefficients, one locating its position, another
characterising its slope on the accumulative plot. Once these two coefficients are
obtained, the corresponding equation giving the percentages of all fragment sizes is
determined. Based on the assumption that the BBSD will statistically be distributed
according to either the Ros-Ram or the Schuhmann equation, it is possible to estimate
the governing coefficients of either the Ros-Ram or the Schuhmann equation using the
geometric information obtained from a photograph taken of a blastpile. The
information needed is the distribution of surface sizes and as shown below, this can be
obtained from scanline block intersection lengths. What is interesting is that the
intersection length are found to also have a Ros-Ram or a Schuhmann form. It is
therefore logical that the underlying block size distribution can be estimated if the
following relationships can be established:

Zai =f(Zpi), (5-1)

where Z;; and Zp; are the coefficients for the actual distribution and for the
photographic measured distribution respectively. For example, Z,; and Zpj could be
S¢ (or n) in the Ros-Ram equation.

A technique referred to here as the "photo-scanline technique" is developed below
to enable the BBSD information of a blastpile to be assessed. This is a method similar
to the scanline technique used when mapping discontinuities on an exposure. As
illustrated in Fig. 5.1, on a properly scaled photograph of a blastpile (in the laboratory,
this blastpile is replaced by an artificial blastpile), several parallel straight lines (i.e.



scanlines) are aligned along representative directions and these intersect a sample of
exposed blocks. For each scanline aligned, the lengths of visible blocks exposed on
the surface and intersected by the line are recorded. All records from these scanlines
are combined into one record of block intersection lengths. It is assumed that the three
principal axes of each block lie with random orientation with respect to other blocks
on the surface so that the accumulated block length records represent the one-
dimension surface information of the BBSD of the blastpile. The parameters, S and n
(or S700 and m for the Schuhmann equation) for the blastpile can then be determined
using a relationship derived by comparing the length distribution information of the
one-dimensional surface intersection to the BBSD information determined by directly
sieving artificial blastpiles.

Fig. 5.1 Schematic illustration of the photo-scanline technique (the scale rod in the
centre of the photograph has a 50 cm division).

For an actual blastpile, several representative photographs are taken of the
blastpile, and the values of S, and n (or S7¢ and m) are determined using the above
technique. Taking the average of all photographic results for the blastpile, the
governing parameters S, and n (or Sjgg and m) are obtained. The method is
considered likely to be more accurate if it can be extended into a field scanline
technique. However, this will usually interrupt normal production.
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The success of the technique is largely due to the suspected and confirmed
observations that the length information of one-dimensional surface intersection tends
to have a Ros-Ram form and can thus be fitted by a Ros-Ram equation and that these
Ros-Ram coefficients are found to be closely related to the Ros-Ram coefficients of
the whole blastpile.

5.3  ERRORS IN USING PHOTOGRAPHIC TECHNIQUES

Ideally, the photographs should be taken perpendicular to the blastpile surface.
However, practical factors make this seldom possible. Even when a photograph is
taken perpendicular to the blastpile surface, wide-angle lens distortions can occur and
the blastpile surface may not be planar. As a result, a projecting error will be
introduced into the information of block sizes represented by a photograph and the use
of specialist or long focal length lenses will help decrease the source of error. In
addition, use of square frames or correction grids on the blastpile surface is to be

encouraged.

The influence of block overlap becomes more significant as the viewing angle
moves away from perpendicular to the surface. There are also two types of cut-off
errors: (i) the edge of photographs causes artificial effects on a scanline since block
termination are unknown; (ii) the photograph will only resolve down to a certain size
of fragment so that blocks of maybe < 5 cm trace length will remain undetected even
though these fines could be 20% or so. In fact, the new technique which uses the well
established Ros-Ram and Schuhmann equations will tend to compensate reasonably
well for the problem of unknown fines in the blastpile because they would have been
equally unresolved but accounted for in the calibration procedure.

The above error sources will reduce the accuracy of the photo-scanline technique.
Keeping these in mind and reducing these errors as much as possible, it is possible to

obtain reasonably accurate BBSD results.

5.4  DERIVING 3-D INFORMATION FROM 1-D MEASUREMENTS

Without going into detail, it is interesting to consider briefly the significance of the
one dimensional size parameter that is being sampled by the lengths intersected on the
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surface scanline, hereafter referred to as nominal length. Because blocks tend to lie
with their minimum axes vertically, they will tend to present a maximum rather than a
random (i.e. average) projection area upwards, thus tending to give longer line
segments than is representative of average projection or sieve diameters. However, the
overlap effect and segmenting effect of different faces appearing as separate particle
will both tend to reduce the nominal length below those of sieve diameters. The
overall value of nominal length being sampled may therefore be quite close to the
nominal diameter d,, which is the cubic root of the actual volume of a block and is
somewhat smaller than the sieve diameter (see below):

dy=kS, (5-2)

where, S is the sieve size (the aperture of a squared hole through which a block can
just pass); k is a shape factor. For 'prismatic’ aggregate-sized natural rock fragments
k=0.847 was used (Wang, 1992). For rounded blocks, Wang suggested k=0.913. For a
generally applicable value for larger and different shape blocks, k=0.84 is
recommended (CIRIA/CUR, 1991). The volume of a block can then be given by

_ 13
V=d,. (5-3)

5.5 RELATIONSHIP BETWEEN ACTUAL AND ESTIMATED PARAMETERS

As discussed above, the photo-scanline technique will yield, say for the Ros-Ram
equation, S.(p) and n(p). Here (p) represents the estimates of parameters from the
distribution of nominal lengths using the photo-scanline technique. Of course, sieving
blocks of a blastpile or a truckload will yield its actual block size distribution, but this
is not practical. A laboratory experiment using a set of artificial blastpiles with
different known block size distributions, which are characterised by their S, and n for
the Ros-Ram equation (or S;gp and m for the Schuhmann equation), was therefore
conducted with appropriate surface photographs being taken.

The experiment was prepared and carried out in the following steps:

(1) Approximately 100 kg of crushed limestone aggregate with sizes up to 150 mm
was collected. Coarse sand fractions were also obtained.
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Fig 5.2 The photographs of two artificial blastpiles consisting of aggregates used
in the experiment (No. P12: n=1.35, S,=55 mm; No. P47: n =0.9, §,=25 mm)



(2) The aggregates were then screened into 12 fractions using a series of sieves
from 1 mm to 125 mm. Each aggregate fraction was weighed and its median sieve size
was calculated (except for the first and last fractions).

(3) A range of pre-set values of S, and n were chosen to cover a wide range of
prototype distributions. The required fractions of each size range were calculated for a
specified (S., n) artificial blastpile. Then all fractions were prepared, weighed out,
mixed together and dumped onto a flat pan 71.5 by 41.5 cm, giving the required
artificial blastpile (S, n), as shown in Figure 5.2.

(4) A photograph was taken of the surface of the pile keeping the camera lens
perpendicular to the surface.

(5) The above photo-scanline technique was applied to the photographs to obtain
the nominal length distribution and the corresponding parameters, S(p) and n(p) were
determined using a statistical analytical technique. ’

100/.
Lol --meseing |00 i oL
o0 80 . . ....}/'/' . .
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Fig. 5.3 The block size distribution for an artificial-blastpile with fitted Ros-Ram
and Schuhmann equations (n=0.96, S=65 mm, m=0.84, S ;p0=120 mm).

In total, 30 artificial blastpiles were prepared, each one weighed about 35 kg. The
photographs of two artificial blastpiles are illustrated in Fig. 5.2. Each pile was
designated by a particular combination of S, and n. One of typical block size
distribution for the artificial blastpile is illustrated in Fig. 5.3. The 30 combinations
can be divided into 3 groups. The first group (of 12) had a constant n of 1.75 with S,
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varying from 10 mm to 80 mm. The second group (of 6) had a constant S, of 80 mm
with n varying from 0.5 to 1.75. The third group (of 12) included a range of S, from
10 mm to 80 mm and a range of » from 0.5 to 1.75.

80 T a
Sc=1.051Sc(p)+1.41 (mm)
60 + r"2=0.966
Ew
(%3
w
20 T
]
0 + 4 + —
0 20 40 60 80

Sc (p) (mm)

Fig. 5.4 Relationship between the values of S, from the sieving and the photo-
scanline technique (n=1.75, S,=10-80 mm) using the first group.
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Fig. 5.5 Relationship between the values of n from the sieving and the photo-
scanline technique (S,=80 mm, n=0.5-1.75) using the second group.

For the first group, the relationship between the values of S, and S.(p) is illustrated
in Fig. 5.4. For the second group, the relationship between the values of n and n(p) is
illustrated in Fig. 5.5. For the third group, the relationships between the values of S,
and S.(p), and between n and n(p) were examined and shown in Figs. 5.6 and 5.7.
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Fig. 5.6 Relationship between the values of S, from the sieving and the photo-
scanline technique with £95% significance levels (S;=10-80 mm, n=0.5-1.75)
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Fig. 5.7 Relationship between the values of n from the sieving and the photo-
scanline technique with +95% significance levels (S=10-80 mm, »=0.5-1.75)

It can be seen from Fig. 5.4 to Fig. 5.7 that all the results show good linear
relationships between the actual parameters obtained from sieving and those estimated
from the intersection lengths using the photo-scanline technique. Finally, the results
from the third group are utilised to derive the relationship between the actual
parameters and those obtained using the photo-scanline technique, since the variation
in both S, and n in the third group was included. The results are as follows.
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S, =1119S5.(p), (59
n =1.096n(p)-0.175, (5-5)
where S and n are the actual parameters in the Ros-Ram equation, and S,(p) and n(p)

are those estimated by the photo-scanline technique. The Pearson r-squared
correlation coefficients are 0.9503 for Eqn. 5-4 and 0.9680 for Eqn. 5-5 respectively.

2.000 T lower 95%
a m (p) (sieve) -
1.600 + e
Reg. Eqn. /,/"
1200 1] o - upper 95%
E .......
0.800 + -~
0.400 +
B8
0.000 + } + + 4 {
0.000 0.200 0.400 0.600 0.800 1.000 1.200
m (p)

Fig. 5.8 Relationship between the values of m from the sieving and the photo-
scanline technique with £95% significance levels (§799=59-152 mm, m=0.26-1.62)

When using the Schuhmann equation, the following relationships are obtained:
SIOO = 0.964S100(p), (5-6)
m=1.360m(p)—0.156, -7

where S700 and m are the actual parameters in the Schuhmann equation fitted from
the sieving results, and S;p0(p) and m(p) are those estimated by the photo-scanline
technique. The values of Sjgg varied between 59 and 152 mm, and the values of m
between 0.26 to 1.62. The correlation coefficients are 0.9252 for the Eqn. 5-6 and
0.9752 for Eqn. 5-7 respectively (see Figs. 5.8 and 5.9).

From consideration of estimated parameters within the 95% significance levels, the
above results suggest that the photo-scanline technique for assessing the block size



distribution of a well-mixed blastpile could have a reasonable accuracy. This is
encouraging for the application of this technique to the practical assessment of
blastpiles and to help calibrate better prediction methods for BBSD.

When applying the technique to prototype blastpile photographs, the distribution of
surface intersection lengths is presented as a percentage shorter passing plot and the
best fitted S (p) and n(p) parameters are found and then substituted into Eqns 5.4 and
3.5 to find the S, and n for the blastpile.
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Fig. 5.9 Relationship between the values of Sjpg from the sieving and the photo-
scanline technique with £95% significance levels (S700=59-152 mm, m=0.26-1.62)

After obtaining the S and n (or S7gg and m), the volume or weight parameters, V.
and Vg can be determined through Eqn. 5-3, and n,, and m,, can be obtained by

n,=3n, (5-8)
my,=3m. (5-9)

The whole block size distribution of a blastpile in terms of block volumes can
therefore be estimated.

The main advantages of the technique described above are that a reasonably
accurate assessment of the BBSD of a blastpile can be obtained and that it is simple
and does not need any image analysis software and sophisticated equipment.
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However, just as with the image analysis technique, the following consideration
should be taken into account when using the technique.

(1) Obtaining photographs is central to the application of this method. The quality
of photographs taken will play an important role in its practical application. As a
result, it is advised that photographs be taken as near as perpendicular to the blastpile
as possible. The use of long focal length zoom lenses may help reduce distortion and
the overlapping error to a minimum.

(2) The proper scaling is another key factor. It is recommended that at least one
scaling square (board) or pair of perpendicular scaling bars should be placed on each
blastpile prior to taking the photograph. One scaling reference should be ideally
placed on the central part of a photograph.

(3) The eventual blasted block sizes are typically distributed in the range from 1.0
mm (and down to dust) to over 1.0 m. The size range of aggregates of the artificial
blastpile used in the experiment varies from 1.0 mm to 150 mm. This range is
comparatively small and may be representatives of only one part of the fine or coarse
part of the actual block size range. This consideration may influence the applicability
of Eqn. 5-4 to Eqn. 5-7 when used for the practical assessment of BBSD in full scale
blastpiles.

(4) An actual blastpile might be different from an artificial one. The relationships
expressed by Eqn. 5-4 to Eqn. 5-7 are derived from a set of artificial blastpiles
consisting of crushed limestone and sand. These differences may effect the application
of these equations.

(5) The representativeness of the surface blocks has been an important issue of the
blast of employing image analyses technique. Using photographs taken from the back
of dump trucks has not been mentioned. However, such photographs might have
better representativeness than surfaces of blastpiles (Franklin & Maerz, 1988). Thus, it
is suggested that both photographs taken from a blastpile surface and from the back of
dump trucks should be used to improve the representativeness.

In Chapter 7 the technique developed in this chapter will be used for assessing the
BBSD of actual blastpiles.
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6. BLASTABILITY OF ROCK MASS AND ITS ASSESSMENT

In previous chapters, the estimations of both IBSD and BBSD were examined and
new techniques introduced. This chapter will focus on characterising the blastability
of a rock mass. It will also focus on the understanding of the relationship between the
blastability and the properties and discontinuity structure of the rock mass. Here,
blastability is considered to be a composite intrinsic property of the rock mass
describing the ease, in energy terms, with which it can be blasted.

It was noted from the discussion in Chapter 2 on the blastability of a rock mass that
in-situ rock mass properties are among the most important contributory factors in
fragmentation, and that the characterisation of the blastability has become a pressing
task for blasting operations. It was also found that a rigorous rock blastability system
which incorporates the mechanical properties of a rock mass, in-situ block size, and
the input energy, based on the current scientific understanding of fragmentation, has
not yet been achieved. Consequently, an attempt to develop a blastability
characterisation system will be made in this chapter, in order to help direct a blasting
operation towards a more optimal result. The development of the blastability system
will be on the basis of current understanding of the fragmentation process drawn from
the literature findings. Firstly, the development will focus on the characterisation of
blastability and its physical background. After that, the Rock Engineering Systems
approaches will be used to establish a blastability system.

6.1 CHARACTERISATION OF THE BLASTABILITY AND THE ENERGY-
BLOCK-TRANSITION MODEL

Two different rock masses, when subjected to identical blast geometry and energy
input from explosives, will produce quite different degrees of fragmentation. This is
because the rock masses have inherently different blastability.

The fragment size is a fundamental characteristic, and is governed by the
geomechanical nature of the host rock mass and the distribution of explosive energy
related to blast design (Singh et al, 1991). As shown in Fig. 6.1, blasting can be
looked upon as a transformation from the state with IBSD to the state with BBSD.
This transforming process is implemented by inputting a certain energy, i.e. a quantity
of explosive.
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Fig. 6.1 Illustration of the transformation of rock from the in-situ state with IBSD
into the blastpile state with BBSD by inputting a certain explosive energy
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Fig. 6.2 The concept of blastability: two different rock masses with the same IBSD
but with different blastability are transformed to two different BBSD curves

The transforming process might be very complicated, however, the transforming
result can be indicated by the resultant blastpile. Suppose that Eg represents the
explosive energy input per unit rock mass that is consumed in transforming the rock
mass with a given IBSD into a blastpile with a given BBSD and that AA, a property of
any fragmentation process is the area enclosed by the IBSD and BBSD curves and the
0 and 100% passing lines (see Fig. 6.2, for convenience, AA will be called the



transformation area), let us consider a possible relationship characterising the

blastability of a rock mass.

In Fig. 6.2, two different rock masses with the same IBSD are noted IBSD-C.
BBSD-1 and BBSD-2 are the BBSD:s of the first and the second rock masses obtained
by inputting an identical amount of explosive energy. The transformation areas for the
two different rock masses subject to identical blast design are represented by AA1 and
AAj. The second rock mass proves to be intrinsically more difficult to fragment by
blasting than the first one although their IBSDs are identical, since the second
blastpile contain many more large blocks than the first. For reasons that will become
clear later, the area bounded by the IBSD and BBSD curves (and the 0 and 100%
passing line), for a particular blasting operation, is considered to have special

significance.

Percentage passing

"Xol=Xo2 .
0.1 1

0.001 0.01 10

Block siewe size (m)

Fig. 6.3 Illustration of two different rock masses with different intrinsic resistance
to fragmentation subject to the same input of explosive energy and blast design: two
different rock masses with different IBSD curves (but with the same objective size
X,) are transformed to two blastpile with different BBSD curves. The difference
between AA1 and AAj indicates the difference in blastability between the two rock

mass

Further, consider another case where the enclosed areas for the two different rock
masses subject to identical input of explosive energy and blast design are as
represented by Fig. 6.3. Now AA» represents the very effective transformation of
relatively large in-situ blocks to a blastpile with a high fines content, whereas AAj is
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the less effective transformation for comparatively smaller in-situ blocks to a blastpile
with few fines. Notice that both transformations are with the same X, the
gravitational centre of the geometric shape of AA; the significance of X, will be
discussed below. Obviously, the transformation indicated by AAj has to overcome
more intrinsic resistance than the transformation indicated by AAj. AAj is clearly
much less than AA), and the possibility must exist that the different areas could be an
indicator of the blastability of these two rock masses.

Actually, the points discussed above on the relationship of blastability with the
energy, the in-situ block sizes of a rock mass and the blasted block sizes were
addressed by a number of previous researchers who used theoretical and empirical
equations to relate the input energy and the block sizes both before and after blasting,
Possibly, the best known is Bond's Third Theory (Bond, 1952) in which Bond's work
index, W; is believed to provide a good representation of the resistance of rock mass
to crushing, grinding, and breaking by blasting (Bond & Whitney, 1959).

In another case Schuhmann (1960) presented a relationship between energy input

from the process of comminution and the size distribution of particles as follows:

E=Cc—=2_x", (6-1)

where, E is energy input per unit volume of material; y is cumulative percent finer
than x; x is particle size; oo depends on the size distribution and C is a constant. Eqn.
6-1 states that the energy input is directly proportional to the cumulative percent finer
than any given size x. Meanwhile, the equation also provides a simple measure of
grindability (//C) as the volume of comminuted material finer than unit size produced
per unit of energy expended (Schuhmann, 1960)

The Kuznetsov equation (see Eqn. 2-11) also relates the resulting block size to the
input energy and the in-situ rock properties. This equation appears to give a measure
of blastability of a rock since the term Vp/Q and Q in the equation can be considered
to be a measure of input energy; Sp 50 represents the block size after blasting and the
rock factor A, to some extent, accounts for the influence of in-situ rock properties and
discontinuity structures upon blasting.

Coming back to the blasting problem here, let us consider a possible relationship
characterising the blastability of a rock mass. Based on the above discussion, a
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working hypothesis, that Ege<AA is now introduced. In addition, it is clear that a given
value of AA can be associated with any transformation. For example, the
transformation may be for relatively large in-situ blocks to slightly smaller blocks in a
blastpile or alternatively, a transformation with the same AA could be for relatively
small in-situ blocks to a blastpile resembling powdery fines (see Fig. 6.4). But,
because the latter case requires the generation of much more fracturing and surface
area, it is logical that it would consume more energy. For each transformation with a
certain value of AA, an effective size parameter, that can reflect this inverse size effect
associated with an increase in energy consumption, could be, X, the gravitational
centre of the geometric shape of AA. The empirical energy-size relation (Charles,
1957; Schuhmann, 1960, Nagahama & Yoshii, 1993) refers to an objective size
parameter that has a similar significance to this effective size parameter and indicates
that in general, the energy consumed in size reduction is inversely proportional to the
objective size raised to some power. Combining the above working hypothesis with
the definition of X,,, the following relationship is proposed,

E A4 (6-2)

Percentage passing

0.001 oo X°% i Xol, 10

Block sieve size (m)

Fig. 6.4 Illustration of the dependence of energy Eg on an objective size X, two
transformations of different rock masses with the same AA but different objective size
X0, X01>Xp2 and Egj<Eg), i.e. these two rock masses have a different blastability

By introducing a coefficient in the above relation, and substituting n=1/2 (the

justification for which is given later), it can be written as
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(6-3)

where Cp is a constant, relating the specific energy required to implement the

transform process, or as

1 1 AA
B, =E=ET.”2. (6-4)

It can be seen that the value of B; is an indicator of the ease with which the process
of transforming the rock mass with IBSD into the blasted blocks with BBSD is
implemented. The coefficient B; is herewith referred to as the Energy-Block-
Transition coefficient, and correspondingly, Eqn. 6-3 is hereafter referred to as the
Energy-Block-Transition model. The following sections will explore the extent to
which the model can describe the mechanism of fragmentation of a rock mass by
blasting.

6.2 DETERMINATION OF PARAMETERS IN THE ENERGY-BLOCK-
TRANSITION MODEL

6.2.1 Energy Input Eg

The energy in a blast is created by detonation of explosives. The energy released
can be grouped into useful and wasteful parts (Konya & Walter, 1990). Useful energy
is utilised in the fragmentation process in terms of both shock energy and gas energy.
Wasteful energy does not in itself lead to fragmentation and does no useful work
during a blasting process, and is finally expressed as acoustic energy, heat energy in

the fragmented mass and released gases, light energy and seismic energy.

Strictly, the energy input E discussed in Section 6.1 should be the useful part of
the energy released on detonation of explosives. The partition of the explosive energy
in a blasting operation is a significant subject of current research, but a widely
accepted process of energy utilisation in rock fragmentation by blasting seems still to
be lacking. As a result, the precise description of the amount of explosive energy that
is utilised as useful energy is limited. Thus, following Bond's model (Bond, 1952) and
applications of Bond's model (Bond & Whitney, 1959; Da Gama, 1983; and CIRIA,
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1991; Wang et al, 1992), E is broadly considered here to be the energy expended in
the blasting divided by the total volume of rock mass, and is given by Eqn. 2-15, i.e.

o _ O-00365EF

5 ’

p

(6-5)

the notation for Eqn. 6-5 is the same as Eqn. 2-15.

6.2.2 Transformation Area, AA

A general expression for the transformation area that is applicable to any form of
the in-situ or blasted block size distributions is derived and given in Appendix C1,
where, an insight into the physical interpretation of transformation area, AA, is also
given. The expression is:

AM=§5,-5,, (6-6)

where, S;; and S, are the mean sizes of both IBSD and BBSD respectively. They are
given by the following mathematical definition for the mean of a size distribution:

S, = jss S f(S)dS, 6-7)

where, f(S) represents the probability density function of block size; S; represents the
low boundary of block size, it may often be zero; and S, is the upper boundary of
block size.

It is instructive to compare S;, S50 and S, for a range of steepness in the
cumulative size curves. Fig. 6.5 shows the relationships for a practical range of n-
values in the Ros-Ram equation.

The ratio of S,;/S50 was derived (see Appendix C.2) by direct substitution of the
Ros-Ram equation into Eqn. 6-7 as follows

S, T+

d

So  (In2)*

(6-8)
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where, I is the Gamma function, and is defined by

T'(a) = J'x“-'e-*dx, >0 (6-9)
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Fig. 6.5 Relationship between S,/S50, S,/Sc and n for a practical range of n-

values in the Ros-Ram equation

Thus, the mean blocks size S is different from the 50% passing size S5 although
they approach each other at higher n-values (see Fig. 6.5). However, S, might be
approximated by S5q (or S;) when n is comparatively large, (say, larger than 1.5). It is
considered advisable to use S5p to approximate S; when the block size distribution
can be described using the Ros-Ram equation and n is larger than 1.5.

Suppose that both IBSD and BBSD have a theoretical distribution, say either the
Schuhmann or the Ros-Ram distribution, let us look at the expression of AA.

Schuhmann Equation

Suppose that both the IBSD and the BBSD are the Schuhmann distributions, i.e.
they both have the form represented by Eqn. 2-9 as follows



P = (2o, (6-10a)
SlOOt
S, \mg

P = (s, (6-10b)
Sl(x)b

The transformation area AA can then be derived according to Eqn. 6-6 (see
Appendix C.1) as

SIOOi - SIOOb . (6‘ 11)

In practice, S} is rarely determined with accuracy and precision. It is therefore
advisable to make suitable substitution so that AA is derived from a more reliable size

parameter, say S50 or Sgp, located near the middle part of the distribution curve.

Ros-Ram distribution

If both the IBSD and the BBSD obey the Ros-Ram equation (see Eqn. 2-8), i.e.
have the following distribution forms,

-(_‘El_)"u

B=1-¢ % , (6-12a)
e

P=1-¢ % , (6-12b)

According to Eqn. 6-6, the transformation area AA for the Ros-Ram distribution is
as (see Appendix C.1)

AA = S F(1+L)—Scb F(1+L). (6-13)
Ngi ngh

where, I' is the Gamma function (see Eqn. 6-9).

It is worth noting that AA in both the Schuhmann and the Ros-Ram distributions is
related to both a characteristic size and a steepness coefficient which jointly govern a
block size distribution. This agrees with the commonly held view that it is not enough
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to describe the influence of in-situ block size distribution of a rock mass on blasting
using only one size parameter, say, S50 (or Sjgg in the Schuhmann equation or S, in
the Ros-Ram equation) Imagine that two rock masses with the same S;509 but
different IBSDs have been fragmented by blasting and that they yield two different
BBSDs but the same size S50 (see Fig. 6.6). It is reasonable to suggest a single size
parameter, whether for IBSD or BBSD or both, is not sufficient to express the
important variations in the blasting process that can occur. The inclusion of AA in the
proposed Energy-Block-Transition model accommodates this suggestion.

Percentage passing

Block sieve size (m)

Fig. 6.6 Illustration of the insufficiency of using only one size parameter to

describe blast process

6.2.3 Objective Size X,

It was proposed in Section 6.1 (see Fig. 6.4) that X,,, the gravitation centre of a
geometric shape AA could represent the inverse size effect associated with an increase
in energy consumption in a blast process. The transformation area AA characterises a
particular transformation of block sizes. This size location can be given the status of
objective size of a blasting process and is given by the symbol X,

By definition of the gravitation centre of a geometric shape, Xg, as shown in Fig.
6.7, is as follows:
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Fig. 6.7 Illustration of the gravitation centre of a geometric shape

Starting from Eqn. 6-14, we consider a simple case where both cumulative
distribution curves of IBSD and BBSD are linear (shown in Fig. 6.8), which
corresponds with the uniform probability density distribution. Now

P; = S/Sy;, and Py =S/Sup

100

P .

yg b A A Pl
50|

Xg
0 Sub Sui
Block size

Fig. 6.8 Illustration of the gravitation centre of linear distributions of block sizes

It can be seen that the gravitation centre of AA, X g in this case, is



41
X, =21 (S, +5,)], (6-15)

where, S;; and S,p are the mean sizes of both in-situ and blasted blocks.

If we consider another case where both cumulative distribution curves of IBSD and
BBSD hold the Schubmann distribution and assume that both m; and my, have the
same value of m, it can be shown that the gravitation centre of AA, X g is

1+m 1
X =——I[=(S5,+S )] 6-16a
4 2+m[2( ai ab)] ( )

Taking into account that the value of m is usually in the range of 1 to 3, it follows
that the value of X g s

2 4.1
X, = (G~ 5. +5,)] (6-16b)

The location of X, the gravitation centre of AA is thus determined. The foregoing
shows that X, may therefore be represented by both the mean of in-situ block sizes
and the mean of blasted block sizes where the mean size definition is given in Eqn. 6-
7. Since it has now been shown that X g is unlikely to vary above 4/3 or below 2/3 of
(Sqi*+Sab)/2, a reasonable choice of objective size is

x =SutSy (6-17)

6.2.4 Physical Interpretation of the Energy-Block-Transition Model

From the foregoing sections, both the expression of the transformation area AA for
the general case (Eqn. 6-6) and the approximation of the objective size X, (Eqn. 6-17)
have been obtained. Substituting Eqns. 6-6 and 6-17 into Eqn. 6-4, the Energy-Block-
Transition model can be then represented as

— Sm—sub
E=—¢35— (6-18)
B‘( ai ab)

2
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or

= Sai_Sab
TS+
E ai ab \05
,(—2 )

B, (6-19)

It can be seen that the Energy-Block-Transition model comprehensively relates the
energy input, the characteristic sizes before and after blasting, and the size
distributions of the in-situ and blasted blocks. The Energy-Block-Transition
coefficient B; represents the ease or resistance offered by the rock mass to the
transformation from the in-situ to blasted blocks when applying a certain amount of
explosive energy. To some extent, it reflects the effectiveness of the input energy in
breaking up the rock. Expressed more precisely in terms of the formula's variables, the
Energy-Block-Transition coefficient B; is a measure of the intensity of the
transformation of mean block size compared to the objective size X, associated with
the transformation process for a given input of energy. In the transformation process,
the in-situ rock mass with large block sizes characterised by the mean block size S; is
transformed into blasted blocks with small block sizes characterised by the mean
block size S;p, In other words, the ease with which a rock mass can be fragmented by
blasting can be measured using the coefficient B;.

The larger the Energy-Block-Transition coefficient of a rock mass, B;, the easier it
can be fragmented by a given energy input for blasting. Eqn. 6-19 reveals therefore
that the rock mass with the larger B; will be easier to break down to small blocks than
the rock with lower B;. In other words, the larger B; means the lower resistance of a

rock mass to blasting.

In his investigation of relationships between energy and size-reduction in
comminution, Charles (1957) described an empirical energy-size reduction
relationship which was expressed mathematically as

dE=-CZ, (6-20)
X

where dE is infinitesimal energy change, C is a constant, x is an object size, and n is a
constant. This relation is referred as to the Walker-Lewis relation (Nagahama &
Yoshii, 1993). From Eqn. 6-20, Rittinger's first comminution theory (where, the index
n is 2), Kick's second comminution theory (where, the index n is 1), and Bond's third
comminution theory (where, the index n is 1.5) can be derived. Eqn. 6-20 is a
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differential equation. It "stated that the energy required to make a small change in the
size of an object is proportional to the size change and inversely proportional to the
object size to some power n" (Charles, 1957). Since both Kick's and Rittinger's
hypotheses are reported to be poor ones for practical blasting operations, and Bond's
hypothesis, which is a compromise and an improvement on Kick's and Rittinger's
hypotheses, appears not to be significantly more in accordance with blasting results. It
is tentatively proposed to introduce a stipulation, n=0.5 on the value of the power n, in
this research. Substituting n=0.5, and approximating Eqn. 6-20 for a blasting process

using a difference form to the equation, we obtain

AE=C"=2 (6-21)

where AE is the energy consumed in the blasting process, C* is a constant, x,, is the
objective size summarising the block sizes before and after blasting, Ax is the size
change during the blasting process. It can be seen that the underlying physical
concepts in Eqn. 6-21 and Eqn. 6-3 are similar, if not identical, although Eqn. 6-3 is
derived from a different approach which considered the importance of the whole
IBSD and BBSD curves. In fact, an approximation to Eqn. 6-18 can be obtained from
Eqn. 6-20 by integration and by substitution of the value n=0.5,

E Sp dx
[aE= L, -C55 (6-22)
hence
E=2C(8" -8, (6-23)
or
— Si - Sb

It may be noted that the relationship between [(S°° + S7°)/ 2] and
[(S,+5,)/2]°°, when Sp/S; <1, is nearly a linear one (see Fig. 6.9). Eqn. 6-24 can

therefore be expressed approximately as
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Fig. 6.9 The approximate linear relationship between (S°° + S;°)/ 2 and
[(S, +S,)/ 2], when Sp/S; <1

Replacing E with Eg, C' with 1/B;, and § with S,, the approximate Eqn. 6-25
becomes identical to 6.19. Therefore Eqn. 6-19 appears to be a special case of the
Walker-Lewis empirical relation between energy and size reduction, along with
Rittinger’s first comminution theory, Kick's second comminution theory, and Bond's

third comminution theory.

6.3  VALIDATION OF THE ENERGY-BLOCK-TRANSITION MODEL

To determine whether the Energy-Block-Transition model proposed is an
improvement on existing models requires an analysis of results from practical blasting
operations. A set of model scale blasts, or preferably, a series of field blasts with
constant and given in-situ conditions, but with differences in both blasting patterns
and energy input, would be ideal for examination of the applicability of the model.
Only two main sources of practical data which include information about IBSD,
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BBSD and the energy input, were found in the literature. These are the case studies
reported by Wang (1992) and Aler et al. (1996a, 1996b), and they have been
considered in validating the model.

Case 1

The first case cited is the work reported by Wang (1992), in which five rounds of
full scale blast trials were carried out at the Sandside Limestone Quarry located in
Cumbria, Northern England. The information about IBSD, BBSD, explosive energy
input, and blasting patterns were either given or can be derived.

Table 6.1 The percentage passing of in-situ block volumes (from Wang, 1992)
P (%) 10 | 20 [ 30 | 40 | SO | 60 | 70 | 80 [ 90 100
Vi,p (m3)]0.146]0.297{0.448]0.650]0.891(1.218]1.674)2.367|3.689] 10.642

Table 6.2 Grey correlation analysis to IBSD

Passing \4 (m3) Correlation Coefficient

(%) |Calculated] Ros-Ram [Schuhmann| Ros-Ram |Schuhmann
10 0.146 0.1323 0.0673 0.998 0.997
20 0.297 0.2903 0.2396 1.00 0.984
30 0.448 0.4745 0.5036 0.994 0.984
40 0.65 0.6912 0.8529 0.989 0.94
50 0.891 0.9516 1.2835 0.983 0.888
60 1.218 1.2748 1.7923 0.984 0.843
70 1.674 1.6968 2.377 0.995 0.814
80 2.367 2.2997 3.0355 0.981 0.822
90 3.689 3.3466 3.7664 0.901 0.997
100 10.642 10.577 4.5596 0.981 0.334
Total correlation coefficient 0.98 0.86

Table 6.1 gives the percentage passing in-situ block volumes of Face 1 in this
quarry. A grey correlation analysis (see Section 3.5.3) was carried out to check the
best-fitting theoretical distribution for the data. The grey correlation coefficient
between the Ros-Ram equation and the results predicted is 0.980, and the correlation
coefficient between the Schuhmann equation and the results is 0.86 (see Table 6.2).
This result indicates that the IBSD can be fitted better by the Ros-Ram equation than
the Schuhmann equation. It is interesting to note from Table 6.2, how the grey
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correlation analysis can support a visual inspection of goodness-of-fit. In this
example, it can be seen from the correlation coefficients at the ten measuring data that
only at the tenth point, does the Schuhmann equation coefficient cause the significant
loss in correlation measure.

The IBSD for this quarry can therefore be represented most effectively, by the Ros-
Ram equation as

—( 14 109547
-e 1397 , (6-262)

P=1

or in the form of a sieve size

—( 5 28641
P=1- 132 X (6-26b)

Detailed blast design parameters used in four blast rounds out of the five rounds of
trail blasts have been summarised in Table 6.3 and Table 6.4 (see Wang, 1992)

Table 6.3 Drilled geometry and the volume of rock masses blasted

Blast |Burden [Spacing|Hole depth|Hole Dia. | Bench height|V/hole| Hole |Total V

Round| (m) | (m) (m) (mm) (m) (m3) | No. | (m3)
1 500 | 4.04 30.12 108 27.44 554.29] 13 |7205.7
2 502 | 4.35 30.12 108 27.44 599.21] 13 |7789.7
3 534 | 347 30.12 108 28.05 519.76] 13 |6756.9
4 430 | 4.21 30.12 108 28.35 513.22 14 |7313.4

Table 6.4 Charging in four blasted rounds and related charge and stemming*

[ED101]ED103|GRANEX]| Total |Specific|Bottom| Column charge [Stem] Sub—IBack
Blast [ANFO| Eq. | Eq. Eq. |expl. Eq. ming|drill| fill
round ANFOJANFO[ ANFO | ANFO |Charge | Charge |Height] Distribution
(kg) | (kg) | (kg) | (kg) (kg) |tkg/m3)| (m) | (m) | ofexpl. | (m)|(m)|(m)
1 ]1735]306.01172.5] 370 2583.5 1 0.359 | 2.74 |23.17]no decking | 3.66|2.13/0.61
837 448.5| 481 1766.5 | 0.227 | 5.49 |20.12|deck charge| 3.66]1.83/0.91
553 1280.5] 69.0 481 1383.0 | 0.205 | 2.74 |22.26[deck charge| 4.57]1.5210.91
885 1137511725 333 1528.2 | 0.217 | 2.74 |22.87|deck charge| 3.96 |0.91{0.91

2
3
4
* Detonation method was not included as a variable



The relative locations of five blast rounds are shown in Fig. 6.10. The BBSDs for
these four rounds together with the IBSD are listed in Table 6.5. The data in the table
was either taken directly or derived from results (Wang, 1992), the mean sizes are
determined through Eqn. 6-7.

/ Round 3 \

/ Round 2 \ Round § \
L Round 1 \ Round 4 \
Face 1

Fig. 6.10 A schematic illustration of the relative locations of the five blasts

Table 6.5 The characteristic size parameters for both IBSD and BBSD

Blast IBSD BBSD
ne | S 185018801 Sq | ne | Sc 18501880 | Sq4
Round (m) | (m) [ (m) | (m) (m) | (m) | (m) | (m)

1 |2.864[1.320(1.161{1.559|1.177|1.632]0.383]|0.306/0.513]0.343
2 1.54410.387]0.305]0.527]0.347
3 1.044(0.449]0.316]0.708|0.440
4 1.318/0.411]0.311]0.590]0.377

It can be seen from Table 6.3, Table 6.4 and Fig. 6.10 that the four blast rounds
provide a data set of full scale blasting parameters with approximately the same
geological in-situ conditions, but with differences in both blasting patterns and energy
input. In fact, as reported (Wang, 1992), these four blasts had the following common
features (Wang, 1992): similar bench heights of 27 to 28 m; the diameter of blastholes
were all 108 mm with an inclination of 5°; each round had one row of blastholes
except the fourth round blast which had a front of 10 holes and a back row of 4 holes;
four types of explosives had been used, with the same stemming material; the type of
primers were all Trojan of 140 g. Except for the above common features, each round
had its specific blast design characteristics. Firstly the drill geometry was quite
different since the ratio of burden to spacing varied from 1.02 to 1.54; secondly the
specific charge varied significantly from 0.205 to 0.359 kg/m3; thirdly there was a
difference between their stemming length, decking and the distribution of explosives
in the blastpile. In addition, there were differences in the bottom charge, the delay
sequence and the delay time.

178



179

Clearly, in practical terms this is a good case for examining the applicability of the
Energy-Block-Transition model but it is far from ideal for drawing conclusions. If the
relationship between energy input, the block size before and after blasting within a
blasting process obeys Eqn. 6-18, the Energy-Block-Transition coefficient, B; for a

rock mass should be a constant.

Table 6.6 Energy-block-transition coefficient, B; and Bond's Work Index, W; for four
blast rounds with analysis of spread of the four results* (Case 1)

Blast | Specific Input B; Bond' work
charge Pr | energy E, index W; ’
round | (kg/m3) | kwh/t) |(mO-5kwh/t) (kwh/t)
1 0.359 0.0492 19.449 8.269
2 0.227 0.0312 30.513 5.398
3 0.205 0.0281 29.142 7.263
4 0.217 0.0298 30.497 5.940
Average (X,) 27.390 6.717
Amax/X; (%) 40.38 42.73
6/X4 (%) 16.88 16.72
Y (X, -X,)

* Amax=Xmax-Xmin: and, 0= _[> N
J

Table 6.7 Energy-block-transition coefficient, B; and Bond's Work Index, W; for three
blast rounds with analysis of spread of the three results (excluding the first round of

blast, Case 1) -
Blast | Specific Input B; Bond' work

charge P¢| energy E, index W;

round | (kg/m3) | (kwhit) |(mO-5/kwh/t) (kwh/t)
2 0.227 0.0312 30.51 5.40
3 0.205 0.0281 29.14 7.26
4 0.217 0.0298 30.50 5.94
Average (X,) 30.05 6.20
Amax/X, (%) 4.56 30.08
6/X 4 (%) 2.14 12.63

Although there are only four blast rounds of data, and the other factors such as
detonation might have had a significant effect on the fragmentation, it appears that the
value of Amax/X, for B; is lower than for W; while 6/X,, sample coefficient of



variation, for B; is approximately identical for W; (see Table 6.6). It is interesting to
look at 6/X,; and Amax/X,; when excluding the first blast round. In this case both 6/X,
and Amax/X,; appears much lower than for W; (see Table 6.7). This suggests that the
Energy-Block-Transition model gives a closer fit to the blast data than the alternative

Bond's model.
Case 2

The second case cited is the work reported by Aler et al. (1996a, 1996b), in which
the data of IBSD, BBSD and explosive energy input from production blasts carried

out in several mines were provided.

Two groups of data, one from Bench 4 in ENUSA mine and another from BENCH
3 in Reocin Open Pit, are used for checking the validity of the Energy-Block-
Transition model. The characteristic size parameters of both IBSD and BBSD are
summarised in Table 6.8, in which the S50, Sgp and S, are derived from S; and ng
given by Aler et al. (1996a, 1996b).

Once again, whether the Energy-Block-Transition coefficient, B; for the rock mass
in the two sites keeps at constant is examined using the data available.

Table 6.8 The characteristic size parameters for both IBSD and BBSD (from Aler
et al. 1996a, 1996b)

IBSD BBSD
Blast ne Se Sso | S8o S, ne | S- | Ssp 1 S8 | S,
No. (m) | (m | (m) | (m) (m) | (m) | (m) | (m)

Site 1: ENUSA Mine, Bench 4
E3 2.680|1.081|0.943 | 1.291 | 0.961 2.870'0.377 0.33210.445] 0.336

ES 2.2600.542]0.461]0.669| 0.480
E7 2.2600.438]0.373/0.541{ 0.388
E8 2.5600.737]0.6390.888| 0.654
Ell 2.650(0.487]0.4240.583| 0.433

Site 2, Reocin Open Pit Mine, Bench 3
co |2.680(1.800] 1.570 | 2.150 | 1.600 [2.280]0.617]0.525]0.760] 0.547
C10 2.110[0.670]0.563(0.840] 0.593
Cit 2.28000.870]0.741]1.072] 0.771
c12 2.300[0.580{0.495/0.713| 0.514
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Table 6.9 Energy-block-transition coefficient, B; and Bond's Work Index, W; for the

two sites with spread analysis Case 2)

Blast | Specific| Input B; Bond' work
charge P4 energy E index W;
No. |kg/md)| kwht) |(mO-Sxwhi)| (kwhit)
Site 1: ENUSA Mine, Bench 4
E3 0.48 0.066 11.744 8.827
ES 0.48 0.066 8.570 13.828
E7 0.27 0.037 18.771 5.894
E8 0.331 0.046 7.492 15.997
Ell 0.364 0.05 12.623 9.069
Average (X,) 13.028 9.516
Amax/X, (%) 86.568 106.180
6/X4 (%) 32.715 47.062
Site 2, Reocin Open Pit Mine, Bench 3
C9 0.308 0.042 23.987 9.119
C10 0.299 0.041 23.320 10.070
Cl1 0.323 0.044 17.138 15.664
Cl12 0.35 0.048 21.932 9.598
Average (X,) 21.594 11.113
Amax/X, (%) 31.718 58.895
6/X, (%) 12.40 23.849

The Energy-Block-Transition coefficients B; and the Bond work indices W; are
calculated and the relative dispersions are analysed and summarised in Table 6.9. It is
seen from Table 6.9 that the value of Amax/X, for B; is significantly lower than for
W;, which also suggests that the Energy-Block-Transition model gives a closer fit to
the blast data than Bond's model.

Thus, although further examinations of the applicability of the Energy-Block-
Transition model to practical blasting operations are desirable, the attempted
validation of the model using the above two cases does encourage us to use the model

for characterising a blasting process.

6.4 RELATIONSHIP BETWEEN

BLASTABILITY

6.4.1 Introduction

Geological situations where fracture concentration alternates from high to low in

adjacent regions is relatively common. Taken together, these fracture distributions are

FRACTAL DIMENSION AND THE
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inhomogeneous and are often found to have a fractal from of spacing (Boadu & Long,
1994). Fractal concepts were introduced extensively in previous chapters. However,
this section opens another application of the fractal concept and this is with respect to
the mechanical property of a rock mass best described as its fragility. Poulton et al
(1990) argued that if scale invariance could be applied to rock breakage, then fracture
frequency and block size should all show similar fractal dimensions for a given rock
mass. They believed that the fractal dimension was potentially a key rock mechanics
index, and that it might be possible to define the characteristics of a rock mass with
much greater precision using fractal dimensions than using existing indices. Turcotte
(1986) also argued that fragmentation would, in many cases, result in a fractal
distribution of block sizes. Using a "renormalisation group" approach to fragmentation,
Turcotte suggested that the fractal dimension should be a measure of the fragility of
the fragmented materials, i.e. a measure of the fracture resistance of a rock mass
relative to the process causing fragmentation. He also predicted the trend would be for
a more fragile material to be associated with a block size distribution described by a

smaller fractal dimension.

In the section below, the rationale for the supposed relation between mechanical
fragility and fractal dimension is explored. The key work of Allegre et al. (1982) and
Turcotte (1986) is reconsidered so that the Energy-Block-Transition coefficient, B;,
can be considered in the light of fragility based on fractal concepts.

6.4.2 Relation between the Energy-Block-Transition Coefficient and the Fractal
Dimension of the IBSD

Either IBSD or BBSD is related to the distribution of pre-existing planes of
weakness in the rock and it was established earlier that these may exhibit fractal
characteristics. Turcotte (1986, 1989) showed that the fragmented rocks can often be
described, with a good measure of fit, by a power-law distribution which is equivalent

to the fractal distribution given in the follow equation:
N(s)=CS™®, (6-27)
where N(s) is the number of fragments with a linear dimension larger than S. Eqn. 6-27

describes a fractal relationship where D is the fractal dimension describing block sizes.
The values of the fractal dimensions vary considerably but most lie in the range of 2 to
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3 for fragmented geological materials such as jointed rock masses and blasted blocks
(Turcotte, 1986).

A relationship between the fractal dimension and the blastability based on the
Energy-Block-Transition model will be developed. Suppose that both IBSD and BBSD
hold the Schuhmann distributions, then the mean size of blocks (see Eqns. 6-7 and 6-

10) is given as:

m
S = S . 6-28
“m+1 ' ( )

s

Turcotte (1986) has shown that the distribution index mg governing the steepness of
the commutative curve can be related to the fractal dimension D as:

D = 3-mg (6-29)
Applying Eqn. 6.29 to both IBSD and BBSD yields:

D; = 3-mg;, (6-30a)

Dp = 3-mgp, (6-30b)
Substituting Eqns. 6-28 and 6-30 into Eqn. 6-19 gives the relationship between the

fractal dimensions of in-situ rock blocks and blasted blocks and the Energy-Block-

Transition coefficient B; as

B - V2[(3-D)(4 = D,)S,0; = 3— D,)(4 = D.)S, 0, ]
‘  ELJ(4-D)4-D,)(3-D)4-D,)Se0; + B—D,)(4—D)S;01

(6-31)

Consider now the relationship between the fractal dimension of in-situ rock blocks
and the blastability of a rock mass. It can be deduced from Eqn. 6-31 that B; increases
with decreasing D; of in-situ rock blocks when other parameters in Eqn. 6-31
remaining constant, a case of which is illustrated in Fig. 6.11. This indicates that a rock
with lower D and hence greater mg; will be more easily fragmented by blasting than a

rock with higher D hence lower my;.
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Fig. 6.11 A case to illustrate the relationship between the Energy-Block-Transition
coefficient B; and the fractal dimension of in-situ blocks, D;

6.4.3 Extension of Renormalisation Group Methods to the Relation between
Blastability and the Fractal Dimension of IBSD

Fragmentation is a catastrophic phenomenon which exhibits sudden or catastrophic
change, much as a system undergoing a phase change. The feature of a phase change is
a catastrophic change of macroscopic parameters of a system under a continuous
change of the state variables in a system. A renormalisation group method (see
Appendix C3) has been used to study scale invariant processes that exhibit
catastrophic change (Allegre et al. 1982; Turcotte, 1986, 1992). The renormalisation
group method often produces fractal statistics and explicitly uses scale invariance.

The discussion below follows closely the work of Allegre et al. (1982) and Turcotte
(1986) and leads to the application of the significance of the relationship between
breakage processes and fractal dimensions.

As shown in Appendix C3, using different specifications of the condition for the
fragile or soundness of a cell, different numbers of fragile cells can be obtained. The
criteria given in Appendix C3 described as "pillar of strength" (Allegre et al., 1982)
and "plane of weakness" (Turcotte, 1986) give an indication of how different fractal
dimension values can be related to rock masses with differing strength criteria, rock
masses that have different degrees of fragility. Using the "pillar of strength" criterion,
Allegre et al. concluded that the critical probability (the threshold for crack
percolation) that leads to a catastrophic fragmentation p. is 0.896 and that the related
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fractal dimension D is 2.84. Using the "plane of weakness" criterion, Turcotte obtained
that the probability p. is 0.49 and that the related fractal dimension D is 1.97.

Following along the same lines and using the renormalisation group concepts
outlined in Appendix C3, a "number of fragile elements” criterion is proposed by the
author as a further step of investigation into how different fractal dimension values
describing in-situ blocks of rock masses can be related to the rock masses that have
different degrees of blastability. Also, the renormalisation group model illustrated in
Fig. C.3 (hence the configurations for fragile or sound elements illustrated in Fig. C.4)
is adopted in this investigation. In terms of the "number of fragile elements" criterion,
a cell is considered as fragile if the number of fragile elements in the cell is greater
than a certain critical value.

(1) A cell is assumed to be fragile if the number of fragile elements in a cell is three
or greater. Using this criterion, the configurations numbered as from 3a to 8 in Fig. C.4
will be considered as fragile. Thus, the probability p,,, that a cell at order # is fragile as
a function of p,, , 1, that a cell at order n+1 is fragile is given by (see Appendix C.3)

Pn = @n+ DB+8@n+ 1) "11-0n+ DI+28®n4 NO11-Prs D12 +56(pp 4. 1) S11-(p 4 DI
+70(pp4 D [1-Pp4 D14 +56n4 13 [1-@pe DI (6-32)

By similarly applying catastrophic theory (see Appendix C.3) to the expression of
Eqn. 6-32, it can be deduced that the critical probability that leads to a catastrophic
fragmentation in this case, p. is 0.197 and the related fractal dimension D is 0.70.

(2) If the number of fragile elements in a cell is four or greater, the cell is
considered to be fragile. In which case the configurations numbered as from 4a to 8 in
Fig. C.4 will be fragile. In this case, the relation of p, and p, 4 ; is deduced as

Pn = Pn+1) 8+8@n+ 1) 11-0n+ D1¥28(Pp+ 1O -(p 4 DI
+56(0p41)° [1-On+ D1P+70@n4 D4 [1-(opg D14 (6-33)

Similarly, the critical probability that leads to a catastrophic fragmentation in this
case, p. is found to be 0.396, and the related fractal dimension D to be 1.662.

(3) A cell is assumed to be fragile if the number of fragile elements in a cell is five
or grater. Based on this stipulation of fragility, the configurations from 5a to 8 in Fig.
C.4 are fragile. It follows that the relationship between p,, and p,, . ; can be deduced as
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P = @On+ 1) 8480n4 D7 1-@nt DI#28@n+ DOL1-@nt P12456(pn4 1)3 [1-(n4+ D1
= (Pp+1)° [56 -140(pp4 PH+120(pp4 )2 -35(Pna 1)3 1. (6-34)

In this case, p. is found to be 0.605 and the related fractal dimension D is 2.274.

Table 6.10 The relationship between fractal dimension and blastability (and
fragility) of a rock mass

1 2 3 4 5
Criterion for the No. of fragile| No. of fragile| Plane of weak-| No. of fragile| Pillar of strength
fragility of a cell elements > 3| elements 24| ness criterion | elements 2 5 criterion
No. of fragile elements' 219 163 131 93 35
configurations of cells
Critical probability, p. 0.197 0.396 0.490 0.605 0.896
Fractal dimension, D 0.700 1.662 1.970 2.274 2.840
Fragility of rock mass more fragile — less fragile
Blastability of rock mass| more easily blasted — less easily blasted

The above crude renormalisation group model, allows us to consider the
relationship between fractal dimension and the blastability of a rock mass. When
examining the above five fractal dimensions from the five different criteria that specify
whether a cell is in a fragile or sound state, it can be seen that the greater number of
fragile configurations corresponds to a lower fractal dimension. A rock mass with a
lower fractal dimension can therefore be expected to be more easily fragmented by
blasting. This is summarised in Table 6.10.

Comparing the results in Table 6.10 to Fig. 6.11, it can be seen that blastability as
described by B; and fragility both increase monotonically as D increases. That is, a
lower fractal dimensions is always related to a rock mass which can be more easily
fragmented by blasting. The fragility criteria used above are of course simple.
However, they do reveal that there is an inherent relationship between fractal
dimension and the blastability of the rock, that is based on a reasonable mechanical
principle.

6.4.4 Insight into the Relation between Blastability, and the Fractal Dimension of
Blasted Rock Blocks
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The above development referred to the fractal dimension of the IBSD. Next, the
relationship between the blastability and the fractal dimension of blasted blocks will be
considered. It can be deduced from Eqn. 6-31 that B; goes down with the rise of the
index mgp of BBSD, so that the required input energy goes down with a decrease in
the fractal dimension of the BBSD, assuming other parameters are fixed. In other
words, for a given in-situ rock mass, it is more difficult to obtain the BBSD with
smaller mgy, (gentle curve) and thus a greater fractal dimension than that with a greater
mgp, (steeper curve) thus a lower fractal dimension. That is, more explosive energy is

needed to obtain the blasted rock blocks with greater fractal dimension.

35 - >
/
30 + nominal largest blasted -
block size = 101 m -
= 25 T //
5 —
Eny
S Es=0.0281 kwh/t
<E' 15 1
E 10 4 mean in-situ block size =1.217 m
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0 f ; t + |
24 25 26 27 2.8 29

Fractal dimension, Db (Db=3-msb)

Fig. 6.12 A case to illustrate the relationship between the Energy-Block-Transition
coefficient B; and the fractal dimension, Dp, of blasted blocks

Furthermore, a key concept in fracture mechanics is that the extension of a fracture
will occur once a critical crack extension force, G, has been reached or is exceeded.
In the terms of Irwin's fracture criterion, this proposition can be expressed as
(Atkinson, 1987; Xie, 1990)

Ge =2 w, (6-35)

where wg represents fracture surface energy per unit of apparent macroarea, and the
extension of fracture is deemed to be along a flat route which is not strictly what is
observed. A zig-zag path is more common. The fractal concept has been introduced to
obtain a better understanding of fracture extension when the dimension of particle and
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crack length is considered at the micro-scale. In this case, Eqn. 6-35 was formulated to
take more realistic crack path into account (Xie, 1990)

G = 20,0 , (6-36)
r

where, r is the similarity ratio (see Section 3.3.2) and Dy, is the fractal dimension of
fractured products (e.g. blasted rock blocks). It is seen from Eqn. 6-36 that the higher
is Dp, the higher is G, i.e. more energy has to be dissipated to produce blasted rock
blocks with a greater fractal dimension than those that were a small fractal dimension.
It can be deduced from Eqn. 6-18 that the Energy-Block-Transition coefficient, B;,
decreases with the rise of the index myy,, thus decreases with the decrease of the fractal
dimension, Dy, of blasted rock blocks (see Eqn. 6-31), a case of which is illustrated in
Fig. 6.12. Thus, the classical approach of fracture mechanics leading to Eqn. 6-36 is
compatible with the trend revealed in Fig. 6.12.

6.4.5 Summary of the Relation between Blastability and Fractal Dimensions

The aforementioned discussion has shown that coefficients mg; and mg, which
describe both IBSD and BBSD, and thus the fractal dimensions of both in-situ and
blasted blocks, could be useful indicators of blastability.

J00 T - = = = = r s e e e e e e e e e e gl
BBSD
801 IBSD-1(Di=1.0) LT
°f - IBSD-2(Di=1.4
'g 60 - -2(Di=14) | .
=%
§° — - = IBSD-3(Di=1.8)
L}
§ 07| —— —mBsapi22y [~ 7
£
7| I R I EEINES e Ry 4/ A

0.001 0.01 0.1 1 10
Block sieve size (m)

Fig. 6.13 Influence of fractal dimension, D;, on the transformation of a rock mass
from its in-situ state into a blastpile. All four cases have the same energy input but
different B; values
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Recall that from Fig. 6.11 a rock mass with a lower fractal dimension of IBSD is
easier to be blasted than a rock mass with a greater fractal dimension whereas Fig. 6.12
shows that a smaller fractal dimension in the blastpile is associated with a greater
energy consumption and more difficult blasting than a higher fractal dimension.
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Fig. 6.14 Illustration of the fractal dimension, Dp, on the transformation of a rock
mass from its in-situ state into a blastpile. All four cases have the same energy input
but different B; values

A further insight into the mechanism revealed in Fig. 6.10 is illustrated in Fig. 6.13,
which might not be encountered in practice but simply as an illustration of the
influence of D; on the transformation. Four rock masses with the same largest in-situ
block sizes but with different D; are assumed to be fragmented to blastpiles with the
same BBSD under the same energy input as shown in Fig. 6.13. It can be seen that a
rock with lower Dj; (relatively larger in-situ blocks) will be more easily fragmented by
blasting than a rock with higher D;, since the former consists of relatively larger in-situ
blocks whereas the latter consists of relatively smaller in-situ blocks. That is, the rock
masses are different in their degrees of blastability. The mechanism revealed in Fig.
6.12 that the fractal dimension, Dp, is the indication of blastability of a rock mass can
be further analysed by means of Fig. 6.14. Four blastpiles with the same largest blasted
block sizes but with different Dy, are assumed to be formed from four rock masses that
have the same IBSD. The blastpile with the highest values of Dy, is associated with the
rock mass that is blasted with greatest ease.
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The above discussion supports Turcotte's proposition (1986) that an in-situ rock
mass with a smaller fractal dimension can be expected to be more fragile. Furthermore,
this has been inclined to reinforce the argument that the Energy-Block-Transition
model is compatible with mechanical considerations of the blasting process and that
the fractal dimension of in-situ rock blocks can be a significant characteristic of
blastability.

The above arguments were developed under the assumption that both IBSD and
BBSD hold the Schuhmann equations. It has been shown, on occasions, that the Ros-
Ram distribution can be approximated by the Schuhmann distribution (Gilvarry, 1961;
Brown et al., 1983; Turcotte, 1986; Grady & Kipp, 1987; Crum, 1990). Consequently,
the discussion based on mg; and mygy, given above can be extended to ng; and ngp and
their respective fractal dimensions for cases where both IBSD and BBSD exhibit a
good statistical fit to the Ros-Ram equation.

6.5  ASSESSMENT OF BLASTABILITY

The previous studies in this chapter have shown that the Energy-Block-Transition
coefficient B;, is a quantitative measure of the blastability of a rock mass. Applying
the Energy-Block-Transition model to a practical blasting operation requires that the
B; coefficient for the rock mass of interest has been obtained. It will therefore be most
advantageous for the coefficient B; to be determined before rather than after blasting
in order to help with the blast design of an excavation operation. The development of
an assessment system for the blastability of rock masses is therefore of great

significance and is the purpose of the following sections of this chapter.

6.5.1 Factors Influencing Blastability

In reviewing the blasting practices and literature published (Franklin et al., 1971;
Just, 1973; Kuznetsov, 1973; Hagan & Just, 1974; Da Gama, 1983; Rustan et al.,
1983; Lilly, 1986; Bellairs, 1986; Cunningham, 1987; Roke, 1988; JKMRC, 1991;
Wang et al. 1991b; Stagg et al., 1992; Scott et al., 1993; Lizotte & Scobe, 1994;
Matheson, 1995), it is obvious that many factors will affect the blastability of rock
masses. These factors include intact rock properties such as strength, hardness,
elasticity, deformability, density of rock etc., and discontinuity structure features such
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as orientations and spacings of discontinuities and the in-situ block sizes. In addition,
interactions between these factors will make the problem more complicated. This
indicates that blastability probably involves several coupled variables that ultimately
describe this intrinsic property of the rock mass. Therefore, it is inappropriate to
characterise the blastability using only a single or a few separate rock parameters.
Whereas one parameter, such as uniaxial compression strength, might be an important
indicator of the blastability of rock, several others are perhaps even more important,
such as sonic velocity or joint spacing. The question then arises, of the many different
parameters thought to be important, how can duplication of similar parameters and the
over-influence of minor parameters be avoided.

6.5.2 Methodology of Blastability Assessment

6.5.2.1 Introduction to Rock Engineering Systems

In spite of the long-history of rock blasting (Atlas Powder Company, 1987) and the
advent of rock mass classification systems (Bieniawski, 1973; Barton, 1974), a
generic methodology for the appraisal of the blastability of a rock mass encountering a
standard blasting operation remains lacking. One of the reasons has been both the
diversity of factors influencing the blastability of rock and the complexity of the
associated representation of all the influences of the various factors and the interactive

mechanisms between them.

Rock Engineering Systems (RES), is a systems methodology developed by Hudson
(1992) in response to the need for an "all-encompassing” procedural technique to
approach increasingly complex rock engineering problems. This new methodology
aims at providing a useful checklist for a rock engineering project. More importantly,
it also provides a framework from which the complete design procedure can be
evaluated, leading a rock engineering project to an optimal result. It is proposed
therefore that an RES description of the overall interactive mechanisms in rock
blasting operations may be promising for the development of an approach to solving

the complex blastability assessment problems.

The RES approach (Hudson, 1992) contains a very useful procedure for devising a
rock mass classification scheme for any rock engineering project. In a rock mass
classification scheme, a single parameter is required to comprehensively characterise

the quality of any rock mass for a given engineering project that is to take place within
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the rock mass. According to the RES approach, all possible rock mass classification
schemes can be characterised simply as a function of the leading diagonal parameter
values of an interaction matrix. The selection of the parameters and the definition of
the weighting of each parameter in a classification system can be made through the
coding of the interaction matrix. This coding is crucial to the applicability of the
equation in the classification scheme. The RES approach has been applied to many
rock engineering fields, for example, the assessment of stability of underground
excavations (Lu & Hudson, 1993). The approach forms one key stage in establishing a
blastability system.

6.5.2.2 The Interaction Matrix and its Coding

In the RES approach to rock engineering, the interaction matrix device is both the
basic analytical tool and a presentational technique for characterising the important
parameters and the interaction mechanisms in a rock engineering system. In the
interaction matrix for a rock engineering system (e.g. a blastability system), all factors
(or parameters) influencing the system are arranged along the leading diagonal of the
matrix, called the diagonal terms. The influence of each individual factor (or
parameter) on any another factor (or parameter) is accounted for at the corresponding
off-diagonal position, and these are named the off-diagonal terms. The off-diagonal
terms, are assigned values which describes the degree of the influence of one factor
(or parameter) on the other factor (or parameter). Assigning these values is called
coding the matrix. A problem containing only two factors is the simplest example of

the interaction matrix, as shown in Fig. 6.15.

- )

Factor I ij
A H Influence
of AonB
Box ii Box ij
I ji
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of Bon A B
Box ji Box jj

\_ /

Fig. 6.15 Illustration of interaction matrix in RES (after Hudson, 1992)
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In principal, there is no limit to the number of factors {or parameters) that may be
included in an interaction matrix, although the number of factors (or parameters)
needed to solve a practical engineering problem are finite. A problem which includes
n factors (or parameters) will have an interaction matrix with n rows and n columns,
as shown in Fig. 6.16.

Main parameters P,

= 1
along leading diagonal :
g s Interaction 1 ij

in off-diagonal boxes

Column j:
Influence of
.t other
‘ parameters

onP .

| 2 1ij=C P,

. 1| . (cause)

ow i:
Influence of
Pi on other

parameters

7

7

2 1i=E p (Effect)
1

Fig. 6.16 General illustration of the coding of interaction matrix and the set-up of
the cause and effect co-ordinates (after Hudson, 1992)

The row passing through P; represents the influence of P; on all the other factors in
the system, while the column through P; represents the influence of the other factors,
or the rest of the system, on the P; Several procedures have been proposed for
numerically coding this matrix, for example, the O-1 binary and the expert semi-
quantitative (ESQ) method (Hudson, 1992), and the continuous quantitative coding
(CQC) method (Lu & Latham, 1994). After coding the matrix by inserting the
appropriate values for each cell of the matrix, the sum of each row and of each column
can be calculated. The sum of a row is termed the "cause" value and the sum of a
column is the "effect" value, designated as co-ordinates (C, E) for a particular factor.
C represents the way in which P; affects the rest of the system; and E represents the

193



194

effect that the rest of the system has on P;. The co-ordinate values for each factor can
be plotted in cause and effect space, forming a so-called C-E Plot (Hudson, 1992).
After obtaining the C-E plot for a system, an equation defining a classification index
that takes into account key contribution factors can be developed. These stages are
shown in Figs. 6.17 and 6.18.

Calculate the interactive infersity, The required Rock Classification
and formthe ordered histogram Index is then
Plot the interactive intensity RCI = aP2+bP4+cP1+dP6+....
401  foreach parameter in an
30 ordered histogram th t
= .g. the parameter i
S 0l m ‘/2 rder could be in coeiﬁcnel'lts a,b,cd paraneter values,
P4 this form determined from Pi, assigned from
107 PLl pg| scaled C+Evalues | .. onnts on
0 1 .
site
Paraneter
(a) (b)

Fig. 6.17 Developing a rock engineering classification system by means of the
interaction matrix (after Hudson, 1992). (a) forming the ordered histogram; (b)
formulating the Rock Classification Index

6.5.2.3 Formulating the blastability assessment

We now return to the development of a blastability system. Firstly, we select the
factors influencing the blastability. Identification of relevant factors can be obtained
from an extensive review of literature on blasting (e.g. references as listed in Section
6.5.1) combined with the author's experience. The following 12 factors (see the
"Factors affecting blastability" column in Table 6.11) were chosen as the basic ones to
be considered in establishing a blastability classification system for a general site, i.e.
these 12 factors were chosen as the diagonal terms in the interaction matrix used to
establish the blastability system. The matrix might be coded by means of subjective
judgement and experience or objective measurements, or both. However, relating to
each of these 12 factors, one (or two) measurable parameter(s) that can, to some
extent, depict the factor's influence at a given site, has been used as the diagonal term
to represent this factor in the interaction matrix (see the "depicting parameter" column

in Table 6.11). The factors and their depicting parameters are listed below:
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Fig. 6.18 Illustration of the interaction matrix coding results. (a) coding values, (b)
the C-E plot and (c) the ordered histogram (Case Study 1, see Chapter 7).

P ;- Strength, represented by uniaxial compression strength (UCS) of intact rock or
point-load strength index (PLI);
P> - Resistance to fracturing, represented by the uniaxial tensile strength (UTS);

P3 - Sturdiness, represented by density of rock (p);

P4 - Elasticity, represented by static or dynamic modulus of rock (E);

Ps - Resistance of rock to dynamic loading, represented by P-wave velocity (Vp);
Pg - Hardness of rock, represented by Schmidt hammer rebound value (SHV);
P7 - Deformability, represented by Possion's ratio ();



Pg - Resistance of rock to breaking, represented by fracture toughness of rock
(K1o);

Pg - In-situ block size of rock mass, represented by mean in-situ block size (MIBS)
or principal mean spacing (PMS);

P} - Fragility of rock mass, represented by fractal dimension of in-situ block sizes
(D);

P 1- Integrity of rock mass, represented by the elasticity wave velocity ratio, R,,
(the ratio of velocity of P-wave in field to that in laboratory), or by ROD;

P >- Discontinuity plane's strength, represented by cohesion, C or friction angle, ¢

of discontinuity plane.

Naturally, one can include more, such as the discontinuity orientation, water
content in the rock mass, etc. Having chosen the various factors to be included, it may
not be possible to find measurable parameters that fully quantify each factor.
However, to simplify the system to manageable and relatively easily obtained field

parameters, the set of depicting parameters above were chosen.

Using either the ESQ or the CQC coding method, the coding values, the C-E plot
and the ordered histogram, all of which reflect the interaction intensity for each of the
factors, can be obtained (see Fig. 6.18, which is the result of a case study that is
described in Chapter 7). It is important to bear in mind that the coding values would
probably vary according to different opinions from different researchers and ideally
several experts' opinion should be involved in the factor selection and coding process.
Then, the parameters with greatest interaction intensity and contribution to the
blastability of a rock mass can be calibrated, based on the geological information

before blasting.

Making use of the findings of blasting theory and practice, a quantitative list of
classes of blastability connected to individual factors and their depicting parameters
is suggested in Table 6.11. This table is the basis for both rating the influence of each
parameter on the blastability and obtaining the rating value used in Eqn. 6-37. With
reference to the above table, continuous rating charts corresponding to each single
factor can be created. They are helpful for borderline cases and also remove an
impression that abrupt changes in ratings occur between classes. Continuous rating
charts for uniaxial compressive strength and mean in-situ block size are illustrated in
Fig. 6.19, and the others are listed in Appendix D.
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Table 6.11 Suggested quantitative indications for the classification of blastability

of rock mass connected to individual factor

\Description of ease of blasting Very Easy| Easy |Moderate| Difficult| Very difficult
Blastability Class
Pi Factors affecting Depicting ! 2 3 4 3
blastability arameter
Strength Uniaxial compressive <25 25-60 | 60-100 | 100-180 >180
Pi strength (UCS) (MPa)
Point-load strength <1 1-2.5 2.5-4 4-9 >9
index (MPa)
P2 | Resistanceto [Uniaxial tensile strength| <1.5 153 3-6 6-12 >12
fracturing (UTS) (MPa)
P3| Sturdiness of Density, p (t/m3) <2.0 2.0-24 | 2.4-2.75 | 2.75-3.0 >3.0
rock
P4 |Elasticity of rock E(GPa) <25 25-50 | 50-100 | 100-150 >150
Ps | Resistance to |P-wave velocity (km/s)| <1.5 1.5-25 | 2.5-3.0 | 3.0-40 4.0
dynamic loading
Pg |Hardness of rock |Schmidt Hardness Value] <15 15-30 30-40 40-50 >50
P7 | Deformability Possion's ratio >0.35 ] 0.3-0.35 [0.25-0.30{0.25-0.20 <0.20
Pg | Resistance to | Fracture toughness of | <0.5 0.5-1.5 | 1.5-2.5 | 2.5-35 >3.5
breaking rock (MPa.m”z)
Pg |In-situ block sizes| Mean IBSD (m) <0.25 10.25-0.75] 0.75-1.5 | 1.5-2.5 >2.50
mass Mean spacing (m) <0.1 0.1-05 | 0.5-1.5 | 1.5-2.5 253
P1g| Fragility of Fractal dimension of | <1.50 [1.50-2.00]2.00-2.50|2.50-2.75 >2.75
rock mass in-situ rock mass, D
P11| Integrity of [Ratio of P-waveinfield| <0.35 [0.35-0.55{0.55-0.75]0.75-0.9 >0.90
rock mass to thatin lab, R,
RQD (%) <40 40-60 | 60-75 75-90 >90
P12]| Discontinuity Cohesion C (MPa) <0.05 [0.05-0.15[0.15-0.25]0.25-0.50 >0.50
planes' strength | Fraction angle ¢ (°) <7.5 7.5-15 15-20 20-30 >30

It is possible to include as many factors as might conceivably the blastability.
However, only factors which make major contributions to the blastability system will
be selected for the practical applications considered in this thesis, as this can probably

give a relatively good approximation and reduces the burden of collecting data. Based

on the associated C-E plot (for the significance of C-E plot in selecting the final
contributory factors, see Fig. 9.6b in Hudson's book, 1992) and the ordered histogram
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of the blastability system obtained, those factors contributing to most of the system,
say larger than 70% of the £(C+E) total in the ordered histogram, can be selected as

the factors to be used in assessing the blastability of the rock mass.
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Fig. 6.19 The rating charts (a)for uniaxial compression strength; (b) for mean in-situ

block size of rock mass

The assessment of blastability of the rock mass can then be made according to the

following formula

BD=3WR,

1=l

(6-37)



where BD is hereafter named Blastability Designation. BD is a designation which
comprehensively reflects the ease or otherwise with which a rock mass can be
fragmented by blasting. R; is the rating value of the jrh factor obtained from either
Table 6.11 or the corresponding continuous rating charts as shown in Fig 6.19 and
Appendix D according to values indirectly derived or measured from a site. W; is the
weighting coefficient determined from the jth factor according to its contribution to
the system, which can be calibrated from the ordered histogram. It is obvious that the
value of BD is in the range O to 1, and that the greater the BD is, the more difficult the
rock is to be blasted.

Table 6.12 Suggested relationship between BD and blastability description

Description of ease of blasting| Very Easy| Easy [Moderate| Difficult | Very difficult
Blastability Class 1 2 3 4 5
BD <0.25 [0.25-0.50{0.50-0.70|0.70-0.85 >0.85

Descriptive terms for the blastability classes and their respective range of BD

values are tentatively suggested in Table 6.12.

6.6 RELATIONSHIP BETWEEN BD, B;, AND KUZNETSOV'S ROCK FACTOR
IA ’

6.6.1 Relationship between BD and B;

As discussed above, BD is designed to give a comprehensive measure of the
blastability of a rock mass. The value of BD is in the range of 0 and 1, and the greater
is BD, the more difficult the rock is to be blasted. This contrasts with B; which is
lower for a rock that is more difficult to blast. However, both BD and B; have the
same physical significance. To progress with the application of the Energy-Block-
Transition model a relationship between them is required. Unfortunately, a database of
blasting operations with parameters from Table 6.11 is not available at present.
However, an examination of the possible range of the values of both B; and BD does
provide a hint of the preliminary relationship.

The values of specific charge are usually in the range 0.15-0.7 kg/m3, the ratio of
Sai/Sap is usually in the range 2-10 and the range of BD is usually 0.2-0.9, thus the
range of Bj; is estimated to be from 5 to 60 (m!/2/kwh/t). Combining these ranges with
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the experience and results from case studies (see Chapter 7), the following empirical
equation relating BD and B; is suggested, which is illustrated in Fig. 6.20.

p 10

= . 6-38
" BD ( )

Bi, (m*0.5/kwh/t)
coB88883383

0 0.2 04 0.6 0.8 1
Blastabhility Designation (BD)

Fig. 6.20 Suggested empirical relationship of BD and B;

6.6.2 Relationship between BD and the Rock Factor 'A’ in the Kuz-Ram Equation

The Kuz-Ram equation (Cunningham, 1983) has been widely used to predict
block sizes of blastpiles for a given blast design. One of the main challenges to
improve the method is to define the Rock Factor, A which is often roughly selected
by rules of thumb or marginal improvements using empirical formulae. Based on
Lilly's work (1986), Cunningham (1987) proposed an algorithm for calculating the
values of A. This algorithm took 4 factors into consideration and improved the
application of the Kuz-Ram equation. The Blastability Designation BD is developed
using systems approach and is based on a more comprehensive range of both intact
rock properties and discontinuity structures than Cunningham's algorithm. Thus, the
use of the BD methodology in determining a value for A, could provide an
improvement upon Cunningham'’s algorithm for use with the Kuz-Ram equation. A
tentatively empirical equation relating BD and A is suggested as follows

A = 13xBD. : (6-39)

The examination of Eqn. 6-39 will be described in the next chapter.
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7. APPLICATIONS OF METHODOLOGY AND TECHNIQUES
DEVELOPED: TWO CASE STUDIES

This chapter presents two case study examples from excavation sites showing the
application of methodologies and techniques developed in the previous chapters. One
concerns the blastability assessment of a rock mass for a road improvement scheme on
the A5 at Glyn Bends. The other is the prediction of the BBSD of the "Overseas
Quarry", a quarry that was opened in order to supply rock, including armourstone, for
Beirut Airport, Lebanon.

7.1 APPLICATION 1: ASSESSMENT OF THE BLASTABILITY OF THE ROCK
MASS FOR A NEW HIGHWAY CUTTING AT GLYN BENDS ON THE AS,
NORTH WALES

7.1.1 Background

The assessment of the blastability of the rock mass at Glyn Bends was the principal
aim of a wider study. These broader aims were to identify the reasons for the current
problems encountered by the blasting contractor which included: a high proportion of
blasting was producing unsatisfactory fragmentation (i.e. excess oversize), uneven toes
and tight blastpiles.

Two site visits were made (May 1995, and July - August 1995). The first visit was a
reconnaissance walk-over survey which enabled the author to become familiar with the
layout of the site and to plan the second visit from which site investigation and data
acquisition for blastability assessment was to follow. Data obtained from the author's
site investigation, together with data available from previous site investigations made
by others, was analysed. Reported below is the author's assessment of the blastability
of the excavated rock mass at the A5 Glyn Bends site. The analysis presented
incorporates the methodologies and techniques developed in the previous chapters.

7.1.2  Site Geology

7.1.2.1 The Site
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The site is located at National Grid reference SH 933444 (Ordance Survey, 1986),
as shown on the Fig. 7.1. It lies on the existing London-Holyhead A5 trunk road,
which passes through a gorge in a series of tight bends supported by masonry retaining
walls, at Glyn Bends, between the villages of Dinmael and Ty-Nant near Corwen,
Clwyd. The new route under construction, at the west end, leaves the existing road at a
garage and passes onto the edges of the river plain before recrossing the trunk road
south of the Ty-Nant. The new route then passes into a deep cutting through the high
ground to the north of the Afon Ceirw gorge. At the Tyn-y-Glyn the route emerges
from the cutting and again recrosses the trunk road on its southern side, rejoining it in
Dinmael.

Fig. 7.1 Location of the A5 Glyn Bends Improvement Site , North Wales

The total length of the route that was under construction is approximately 2000
metres, nearly 600 metres of which are in a deep cutting. At the time of the study, the
cutting was in the process of being excavated by blasting. The rock mass that was
blasted was the subject of this case study. The road cutting was divided into benches,
the height of a bench is generally 4-6 metres (see Fig. 7.2).

7.1.2.2 Site Geology Revealed by Previous Geological Investigations
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Fig. 7.2 A view of the new rock cutting known as the A5 Glyn Bends Improvement
site

According to the published British Geological Survey sheet No. 120 (BGS, 1993),
the site geology consists of Allt Ddu Formation, Gelli-grin Calcareous Ash Formation,
and Maerdy Mudstone Formation, and the rock materials were described as including

siltstones, sandstones, tuffites, tuffs, and limestones.

Table 7.1 Geological data summarised from the previous site investigation (Mander,

Raikes & Mashall (MRM), 1985)*

Borehole| Chainage| Depth| Density] UCS | Shearing strength Discontinuity
No. (m) | wm3) |MPa)| C (MPa)] ¢(°) | RQD | Spacing (m)
B60 Ch550] 164 2.72 | 73.10
B63 Ch650 | 23.8} 2.68 |48.59
B66 Ch730 1 245| 2.72 |83.21}] 0.06 41.5 24 0.25
B70 Ch880 | 169 | 2.70 |70.84] 0.24 50.0 50 0.32
B83 Ch780 | 17.0] 2.71 |59.28] 0.05 48.0 60 0.56
B85 Ch800 | 19.6 ) 2.74 |78.03 41 0.75

* The value of UCS given is the maximum among all test pieces; other property values

are the average of all test results.
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The main early ground investigations were carried out by MRM (1985) through trial
pitting and trenching, which showed the site geology to consist of alluvium, glacial
deposits, and Ordovician strata. The alluvium is seen in trial pits and encountered
south of the Ty-Nant while the exploration holes passed through glacial deposits of
varying depth. The Ordovician strata are seen to mainly consist of a siltstone with
subsidiary sandstone, claystone and possibly volcanic horizons. The siltstone is faintly
calcareous in places. The geological data and the mechanical properties of rock masses
from laboratory tests presented by MRM in 1985 are summarised in Table 7.1.

7.1.2.3 Geological investigation and results of this study

+ Legend
§/ 700 — Chainage No.
ds AS5-3 — Scanline mapping job No.

*L2 - Point load test No.
#5 — Schmidt Hammer test No.

1000

AS Glen Bends /

Existing AS trunk road

Fig. 7.3 A sketch plan for the geological investigation at the AS site showing locations
of scanline mapping and intact rock samples

The available geological data from the previous geological investigations, are
limited by the poor exposures available, and appear to be an inadequate data set upon
which to provide a satisfactory explanation for the blasting problems (a high
proportion of blasts failed to give: satisfactory fragmentation, flat toes and loose
blastpiles). During the author's site visit, the blasting was being carried out in the
second bench. To provide a directly applicable set of geological data to assess the
blasting problems at the AS Glyn Bends site, further geological data acquisition was
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undertaken by the author. The investigation involved: mapping discontinuities at
various locations within the rock cutting; taking photos of blasting results immediately
after blasting; performing point load tests and Schmidt Hammer tests in the field;
collecting other associated geological data at each location and recording the blast

design data.

A sketch plan for the investigation, together with the positions of the scanline
mapping, the point load and Schmidt Hammer test samples, is illustrated in Fig. 7.3.
The geological investigation that has carried out and the corresponding results are

summarised as follows.
Discontinuities

Detailed discontinuity mapping was performed at 6 places including both the south
and north cutting faces with the objective of deriving data for the in-situ block size and
other mechanical parameters known to be important in predicting the outcome of
blasting. The results of these six discontinuity surveys are summarised in Table 7.2.
and the detailed discontinuity data mapped is listed in Appendix E.1.

Table 7.2 Summary data of detail scanline mapping

Mapping| Scanline Mapping place Tape layout Number | Scanline
jobNo.| No. Chainage Location | Azimuth| Plunge of Length
© (°® | Discontinuity|  (m)
AS5-1 | SL-1-1{ Ch910940 [ North, the 125 0 16 11.0
second bench
SL-1-2 bottom 100 0 23 17.0
AS5-2 | SL-2-1| Ch925950 | South, the 293 0 20 10.5
second bench
SL-2-2 bottom 300 0 16 14.5
AS5-3 | SL-3 | Ch730-750 | North, the first| 140 0 33 16.0
bench bottom
A5-4 | SL4 | Ch810-830 | South, the first| 290 -8 42 17.0
bench bottom
AS5-5 | SL-5 | (h620-650 | North, the first] 140 0 50 25.0
bench bottom
A5-6 | SL-6 | Ch890910| South, the 145 0 44 20.0
second bench
bottom
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For each of these 6 surveys, three sets of discontinuities can be isolated. Fig. 7.4
illustrates a typical output from an analysis of the mapped data. The spatial occurrence

of discontinuities in the selected mapping areas are summarised in Table 7.3.

& Mean orientations

Fig. 7.4 The pole plot of discontinuities mapped in Mapping site A5-1

Table 7.3 Discontinuity occurrence
Mapping Set 1 Set 2 Set 3

jobNo | Dip dir.| Dip | M.S. | Dipdir.| Dip | M.S. | Dipdir.| Dip | M.S.
A 1 Olm] OO m ® ® | m
AS5-1 330.0 [ 22.1f 140 91.0 | 885 228 | 1558 | 79.9| 0.97
AS5-2 3523 [37.8( 1.19| 83.1 | 85.6| 0.72 | 1678 | 644] 1.20
AS5-3 229 1299] 0831 1169] 60.2 ] 124 | 186.6 | 61.0| 0.62
AS5-4 209.5 | 242 0.04] 906 | 783 | 0.61 | 1424 | 70.8] 1.15
AS5-5 47.1 1222 1.52| 291.5| 8.0 1.48 | 190.3 | 76.2| 0.81
AS5-6 170.7 | 354| 049 | 2894 | 83.2| 198 | 1945 | 69.1] 0.33




It can be seen from the results of the six mapped regions that the discontinuities can

be divided into three sets. The first is sub-horizontal and the mean dip varies between

22 to 40° with a near east-west strike. This set of discontinuities consists mainly of

highly persistent bedding planes. The second and third sets of discontinuities are

steeply dipping, with near south-north and east-west strikes respectively. These two

sets of dipping discontinuities consist mainly of fractures, joints and cleavage planes,

and often exhibit impersistence.

Intact rock properties

Point load strength index tests (ISRM, 1985) were performed on samples obtained

from seven locations. The samples are taken either from the just finishing as-blasted

piles or from the resident muckpiles. The details are shown in Table 7.4 (for the raw

data, see Appendix .

Table 7.4 Details of point load tests and test results

Samplg Sampling place Rock Is(50)*] Nosof| o©
No. | Chainage Location description (MPa) SamplesL
LPT-1{Ch890-903 31/07/95 blasting [Dark, fine-grained siltstone, | 5.05 13 0.293
site natural state
LPT-2|Ch945-95§ South, Bench 1 |Dark, fine-grained calcareouy 4.42 10 0.180
bottom siltstone, natural state, air-
dried 2-3 weeks
LPT-3|Ch877-89( 01/08/95 blasting [Very dark, fine-grained 592 10 0413
site limestone and siltstone,
natural state
LPT4{Ch745-75§ North,Bench1 [Very dark, fine-grained 6.51 12 0.308
bottom calcareous siltstone, natural
state, about air-dried 2
months
LPT-5/Ch870-884 02/08/95 blasting [Dark, very fine-grained 4.70 11 0235
site siltstone, natural state, air-
dried 1 day
LPT-6/Ch867-883 03/08/95 blasting |Grey, fine-grained siltstone, | 4.41 11 0410
site natural state.
LPT-7{Ch850-86( 04/08/95 blasting |Grey, fine-grained siltstone, | 4.52 9 0.268
site natural state.

* The top and bottom outlier results are rejected in the calculation
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Schmidt Hammer test (ISRM, 1978) results were obtained from 14 locations and

were as listed in Table 7.5.

Table 7.5 Details of Schmidt Hammer test and results

Sample Sampling place Rock Type | SHV | Incline| UCS *| ucs#
No. | Chainage Location description (&) (MPa) | (MPa)
Sch-1 Ch950 |North, Bench §Grey to dark, fine-grained | In-situ| 47.8 40 150 137.5
cutting face  [calcareous siltstone,
natural state
Sch-2 | Ch935 [North, Bench AGrey to dark, fine-grained | In-situ| 48.8 10 155 | 141.8
cutting face |calcareous siltstone,
natural state
Sch-3 Ch915 |North, Bench AGrey to dark, fine-grained | In-situ| 43.6 15 120 119.5
cutting face _[siltstone, natural state
Sch-4 Ch600 |North, Bench JDark, fine-grained In-situ| 43.7 10 120 120
cutting face  [siltstone, natural state with
weathering
Sch-5 Ch625 |North, Bench §Very dark, fine-grained In-situ| 47.8 10 155 137.5
cutting face _|siltstone, natural state
Sch-6 Ch650 |North, Bench IDark, fine-grained In-situ| 46.7 10 135 132.8
cutting face  |limestone/siltstone,
natural state
Sch-7 Ch675 |North, Bench J|Dark, fine-grained In-situ| 47 10 135 134.1
cutting face |[siltstone, natural state with
weathering
Sch-8 Ch700 [North, Bench |Dark, fine-grained In-situ| 43.7 10 120 120
1 bottom siltstone, natural state
Sch-9 Ch950 |[South, Bench 4Grey to dark, fine-grained | In-situ| 41.2 15 98 109.2
cutting face  |siltstone, natural state
Sch-10] Ch820 |[South, Bench AWhite to grey fine-grained| In-situ]| 46.8 5 150 | 1333
cutting face  |limestone, natural state
Sch-11| Ch820 [South, Bench §White to grey fine-grained| In-situ| 41.9 5 105 | 112.2
cutting face  |limestone, natural state
Sch-12| Ch880 |South, Bench QWhite to grey, fine-grained In-situ| 39.7 15 88 102.8
cutting face _|limestone, natural state
Sch-13| Ch875 |South, Bench JDark, fine-grained In-situ| 44.6 10 118 123.8
cutting face _ |siltstone, natural state
Sch-14] Ch868 [South, Bench 3Dark, fine-grained Block | 45.1 20 120 126
cutting face |siltstone, natural state

* UCS is estimated according to Hoek & Bray (1981); #UCS 15 estimated according to Sachpazis (1990)

Other data collected
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The photographs of 4 blastpiles, resulting from the blasting carried out from July 31
to August 3, 1995 were taken. In addition, the photographs of cutting faces were taken,
and other data, including blasting parameters, were collected.

Summary

The rock mass data revealed from this geological investigation indicates that both
the geological structures and the mechanical properties of rock materials vary from one
place to another. The significance of the conclusion was apparently noted in previous
geological investigations, which might explain why the blasting results had proven
unpredictable and unsatisfactory. It would appear that blast designs were based on
previous geological data that did not highlight this variability.

7.1.3 Predictions of IBSD

7.1.3.1 Preliminary predictions using the dissection method

It was found from the analysis of discontinuity spacings that some sets could not be
fitted satisfactorily by a theoretical distribution and this was often because there were
too few data (see Fig. 7.5). When theoretical distribution could be fitted at a site, there
were no examples where the negative exponential or fractal distribution fitted all of the

discontinuity sets.

Table 7.6 Results of in-situ block size distributions based on the dissection

In-situ block size distribution parameters

Map- Raw data output Ros-Ram equation Schuhmann equation Fractal

ping from Dissection Dimen.

job | Venl Vazol Ven | Vimm | ny 1 Vs3] ne I Ssz2l my | Vien ] me | Syl Dr
No.| m3)| @md)| @) | md (m3) (m) (m3) (m)

A5-1] 5.47 | 8.04 |13.30) 39.27 |0.948] 8.05 |2.845] 2.37 10.505] 19.64 |1.515]| 3.19 | 1.486

A5-2[18.10] 26.00 | 41.70 | 151.90 | 1.008 [26.01 [3.024] 3.50 [0.534] 60.19 |1.602} 4.63 | 1.397

A5-3111.70] 19.45]37.50 ] 147.00 | 0.725]19.45[2.174] 3.18 |0.384] 62.51 |1.152| 4.69 | 1.848

AS5-41 1.10 | 2.15 | 5.02 | 22.27 |0.554] 2.14 ]1.663] 1.52 |0.296] 9.85 |0.888]2.53 ] 2.113

AS5-5[324 | 477 [ 790 | 79.61 |0.945] 4.77 |2.836] 2.00 |0.500] 11.68 }1.500] 2.68 | 1.499

A5-6] 5.05] 10.6 | 14.5 | 112.9010.938| 8.93 |2.813| 2.45 10.602] 22.81 |1.806] 3.35] 1.194
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Principal Discontinuity Spacinasing

Fig. 7.5 Distribution of principle discontinuity spacings (A5-1 Mapping site)

Fig. 7.6 Three dimensional view of discontinuity structure (A5-1 Mapping site)



Consequently, the IBSDs of these 6 mapping sites were derived using the dissection
technique which makes no assumption about the spacing distribution, in preference to
the equation method (Wang, 1992). The results of IBSDs are summarised in Table 7.6.
The fractal dimension of IBSD has been calculated using a best fit for the Schuhmann

equation.

In Table 7.6, V50, V3.2, V8o and Vjpg represent 50%, 63.2%, 80% and 100%
passing volume respectively; Sg3.2 and S;gg represent 63.2% and 100% passing size
respectively; ng (n)) is the index of uniformity in the Ros-Ram equation in terms of
size (volume), mg (m,) is the index of uniformity in the Schuhmann equation in terms
of size (volume), and the fractal dimension is obtained according to Eqn. 6.52.

The three-dimensional views of boundary block volumes intersected by
discontinuities for each of the 6 mapping sites were comstructed, assuming that all

discontinuities mapped are persistent. Fig. 7.6 is the three-dimension view
corresponding to the A5-1 Mapping site obtained using the program BLOCKS (Wang,
1992), and Fig. 7.7 is the photograph taken from the location near A5-1 Mapping site.
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Fig. 7.7 Discontinuity structure of a cutting exposure at the AS site.
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7.1.3.2 Prediction from the equation methods

Although the poor fit of the data to the theoretical distribution was noted in Fig. 7.5,
it is instructive to compare results obtained from the equation method with the dissect
method results. One proposition arising from work in Chapter 3 was that the best
estimate of the IBSD is likely to fall between that for the two extreme theoretical
distributions which are the uniform spacing and the fractal spacing. This can be
examined with results from the AS site investigation.

Il
+—

AS4

——— Uniform
—&— Log-nor.

—@&—— Dissection

Percentage passing
c3B888823888

—%—— Fractal
gc/x —8—— Neg. Exp.
0.01 0.1 1 10 100 1000
Block volume (m*3)
(@)
:ﬁ@/&
A55 —&— Uniform

—&— Log-nor.
/ X Fractal
—®—— Dissection

—®— Neg. Exp.

411y 1 N e L
T T

0.1 1 10 100 1000
Block wlume (m*3)
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Fig. 7.8 Comparison of IBSD predictions between the dissection and the equation
methods, (a) A5-4 site; (b) A5-5 site
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For each site, the principal mean spacing of each set of discontinuities, Spmo 18
weighted using the number of the discontinuity set, and then this weighted Spm is used
for the input to both Eqn. 2-10 and Eqn. 3-32 to get the approximate predictions of the
IBSDs. The prediction results are listed in Table 7.7.

Fig. 7.8 shows a comparison between the predicted results using both the equation
method and the dissection method. The comparison indicates clear discrepancy
between the results from both the equation and the dissect methods although for site
A5-4, the results obtained from the two methods are closed. The reason might be that
discontinuity spacing could be not well described by one of three proposed theoretical
distributions. In addition, the mean spacing subjectively weighted by the number of
each discontinuity set can also contribute to the discrepancy. These suggest that the
further investigation should be carried out to reveal the IBSD of a rock mass with
combinations of different spacing distribution types although the assumption of there
being only one distribution type for all sets can be used at present.

Table 7.7 The IBSD prediction results from the equation methods

Mean Spacing (m) Vs (m3)
Site Set 1 Set 2 Set 3 Weighted Equation method Dissec-
Value| No. | Value | No. | Value| No. Uni. |Neg.exp |log-nor| Frac. | tion

A5-11140]| 5 [228 (121097 | 15| 1528 [6.92] 9.66 | 1106 |12.06{ 5.47

A5-211.19] 5 [1.20114)0.72] 10 1.033 | 214 ] 2.99 342 | 5.66 | 18.08

A5-3({083] 2 | 1.24 06221 0727 |0.75] 1.04 1.19 | 2.87 | 11.73

A5-410.04 | 10 | 1.15 061116 0569 |0.36] 0.50 057 | 1.79 | 1.10

4
8

AS5-51152]119]148) 6 | 0.81| 13 1.271 398 | 5.56 6.36 | 845 | 3.24

A5-61049 ] 111198 9 | 033 15 0.805 1.01 1.41 1.62 | 3.50 | 5.00

7.1.3.3 Correction of the IBSD considering the impersistence of discontinuities

In Chapter 4, it has been pointed out that the impersistence of discontinuities should
be taken into consideration when predicting IBSD. Using the technique developed in
Chapter 4, the IBSDs at the AS sites listed in Table 7.7 have been corrected as set out
below. The trace length field measurements form the basic data from which the mean
trace length and mean diameter of discontinuities were estimated.
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As described above, the discontinuities in bedding plane sets are extremely
persistent whereas the discontinuities in joint sets usually exhibit impersistence at
outcrop scale. Thus the mean trace lengths of the joint sets were estimated using the
techniques developed in Chapter 4 while the bedding sets retain their original mean
trace length values. The mean diameters of discontinuity sets were then estimated
using Eqns. 4-39 and 4-40. A weighted mean diameter for each site was worked out.
Taking the scale of the road cutting and blasting operation into consideration, the scale
dimension of the rock mass of interest, S,, was set at 4 metre. The impersistence
influence factors for the six sites were derived and the corrected IBSDs were
determined. The estimates of mean trace lengths and mean diameters of
discontinuities, the weighted mean diameters, and the impersistence influence factors

are summarised in Table 7.8.

Table 7.8 Impersistence influence factor

Job Joint set Bedding set Weighted | Fjy.p)
No.| Mean | Assumed | Mean | Mean | Assumed [ Mean Dia.*
T. L. (m) | Distribution | Dia. (m)| T.L. (m) |Distribution| Dia (m) (m)

AS5-11 235 | Log-nor. | 1.732 [ 5.59 [Neg.exp.] 4.355 2.606 10.652
AS5-2) 3.10 | Neg.exp.| 2.415] 9.00 |[Neg.exp.| 7.011 3.947 [0.987
A5-31 1.30 | Log-nor. | 0.958 | 8.10 [Neg.exp.| 6.310 2.742 ]10.686
AS5-4f 140 | Log-nor. | 1.032 | 6.00 |Neg.exp.| 4.674 2.246 ]0.561
AS5-5| 2.30 | Log-nor. [ 1.695 [ 9.08 |Neg.exp.| 7.073 3.488 ]0.872
A5-6] 1.25 | Lognor. | 0921 | 4.64 |[Neg.exp.| 3.615 1.819 10.455

*Weighted diameter =(2/3)X mean diameter of joint set + (1/3)x mean diameter of bedding set

Table 7.9 Corrected IBSD considering influence of impersistent discontinuities

Map In-situ block size distribution parameters

ping Dissection Ros-Ram equation Schuhmann equation Fractal

Dimen.

Jjob | Ven| Vesol Ven | Vign | nmy | Vszol ne 1 Ss320 1 my | Viln| me | Synl Dy
No. | @) @) | md)| @3 (m3) (m) (m3) (m)

A5-11 6311 9.27 11534 | 45.30 |0.948] 9.28 |2.844| 2.48 |10.505] 22.65 [1.514]| 3.34 | 1.486

A5-2118.16] 26.12 1 41.89 1 152.62 | 1.008 {26.12|3.024 | 3.50 |0.534 [ 60.46 |1.603] 4.63 | 1.397

A5-3/13.30] 22.06 ] 42.53 ] 166.67 | 0.725]22.06/2.175] 3.31 ]0.384] 70.89 |1.152} 4.89 | 1.848

AS5-411.33 | 2.61 | 6.09 | 26.99 10.554]2.59 |1.662] 1.62 10.296] 11.93 ]0.887| 2.70 | 2.113

AS5-5[3.39] 499 | 8.27 | 83.33 [0.945| 500 |2.835 2.02 |0.501 | 12.23 [1.501] 2.72 | 1.499
AS-6] 6.57 | 13.78 | 18.86 | 146.80 1 0.93811.62|2.814] 2.67 |0.602] 29.66 |1.806] 3.65 | 1.194
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After selecting the index g in Eqn. 4-73 to be 1/3, the IBSDs of the rock mass at the A5
site determined by the dissection method were corrected as listed in Table 7.9.

7.1.4 Blastability Assessment

The methodology described in Chapter 6 has been employed to assess the
blastability of the rock mass at the A5 Glyn Bends Improvement site. The blastability
assessment has been made using both field data obtained by the author and previously
available site data, and a comparison has been made.

7.1.4.1 Blastability assessment based on new field data

Six sites have been selected, the details of these sites are listed in Table 7.10. Based
mainly on the information obtained from the site investigation carried out by the
author, the blastability assessments of the above six sites at the A5 Glyn Bends
Improvement have been made. Using the CQC approach (Lu & Latham, 1994) to
coding the interaction matrix described, the coding results were obtained as described
in Chapter 6 (see Fig. 6.17).

Table 7.10 Locations and details of the sites subjected blastability assessment

Site Mapping place

No. Chainage Location
S1 Ch910-940 |North cutting face, Bench 1 bottom, near 03/03/95 blasting site
S2 Ch925-950 |South cutting face, Bench 2 bottom, near 24/07/95 blasting site

S3 Ch730-750 |North cutting face, Bench 1 bottom, still existing ridge there

S4 Ch810-830 |South cutting face, Bench 1 bottom, near 03/08/95 blasting site
S5 Ch620-650 |North cutting face, Bench 1 bottom
S6 Ch890-910 |South cutting face, Bench 2 bottom, near 31/07/95

It is seen from Fig. 6.18 that the range in parameter interaction intensity is quite
wide (cf. Fig. 9.6b in Hudson, 1992). Thus, only those factors contributing to a total of
72.5% of the Z(C+E) in the ordered histogram, that is, the eight parameters, P}, P»,
P3, P4, Ps, Pg, Pg, Pjp have been chosen as the main contributory factors of the
blastability of the rock masses at the AS site. The corresponding weights of the eight
factors were derived using the method illustrated in Fig. 6.17, and they are listed in
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Table 7.11. Having completed the first stage, which is concerned with the matrix
coding and thus the parameter weighting, the second stage is to obtain the actual
results for each parameter using field samples, tests, and experience.

The assessment results of blastability are shown in Table 7.11. Due to a lack of a
complete sets of test results, a number of empirical formulae based on published
correlation studies have been used to derive missing parameters and these correlation
equations are briefly explained below.

Where possible, a check on the validity of the correlation equations have been made
since there is a considerable interdependence of test parameters. In Table 7.11, the
densities of rock are the values obtained in the site investigation carried out by MRM

(1985). The UTS values are estimated from the PLI values (or estimated from UCS
values) according to the following empirical formula suggested by ISRM (1985).

UTS = 1.25 PLI, (7-1)
where, both PLI and UTS are in MPa.

The values of P-wave velocity, V), are estimated from the average obtained from

the following two empirical formulae suggested by Karpuz et al. (1990).

V, =1549.9UTs %%, (7-2)
V, =993.4+1467p, (7-3)

where UTS is in MPa, p in t/m3, and Vp is in m/s. The results from the above two

formulae examined using an empirical equation (Soedibjo, 1990) as follows.

Vp =112PLI+0.237, (74)

where Vp is in km/s, and PLI is in MPa.

The values of elasticity modulus, E, are estimated according to the following
formulae suggested by Beverly et al (1979, see Xu et al., 1990).

E=0.192(SHV xp*)—-12.71, (7-5)
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where E is in GPa and p is in m3. The estimates of E are also examined using the

following empirical equations suggested by Sachpazis (1990).

SHV =0.5155E +17.488,

E =0.3752UCS +4.479,

where E is in GPa and UCS is in MPa.

Table 7.11 Blastability assessment of rock masses at the A5 Glyn Bends Improvement

(7-6)

(7-7)

Parameter Weight Blastability assessment
No.| Description Wi S1 S2 S3
P; Unit Value| Rating| Wi*R{ Value| Rating| Wi*R{ Valug Rating| Wi*Ri
1| Is(50)] MPa [0.1475 442 | 065 |0.09616.51| 0.8 |0.118
UCS | MPa 120 | 0.680 |0.100
2| UTS | MPa [0.1344| 6.82 | 0.670 [0.090] 5.53 | 0.580 |0.078] 8.14 | 0.700 | 0.094
4 E GPa |0.127348.80] 0.495 |0.050|45.13 | 0.380 |0.048]52.39] 0.410 [0.052
3 vm3 10.1249(2.710 0.675 | 0.084|2.704 | 0.680 |0.085[2.715] 0.720 | 0.09
6 | SHV 0.1225] 43.6 | 0.710 |0.087] 41.2 | 0.660 [0.081] 46 | 0.750 {0.092
5| Vp m/s 10.1208] 4901 | 0.920 |0.111] 4784 | 0.900 |0.109]4996] 0.930 |0.112
10 D m_ ]0.1131]1.486] 0.440 | 0.05 ]1.397] 0.420 {0.048 1.848| 0.590 | 0.067
9 |[MBSD| m_|0.1095] 2.18 { 0.830 |0.091} 3.10 | 0.935 {0.102] 2.80 | 0.915 }0.100
Blastability Designation 0.664 0.647 0.725
Parameter Weight Blastability assessment
No.] Description Wi S4 S5 S6
P Unit Value| Rating] Wi*R{ Value| Rating| Wi*R{ Valug Rating] Wi*R
1| Is(50)] MPa [0.1475{ 445 | 0.65 [0.096 5.05] 0.69 [0.102
UCS | MPa 135 | 0.730 |0.108
2] UTS| MPa [0.1344]5.563] 0.590 {0.079] 7.67 | 0.710 }0.095] 6.31 | 0.680 ]0.091
4 E GPa ]0.1273}50.07 | 0.400 [0.051]48 47 0.400 [0.050] 42.9 | 0.330 | 0.042
3 t/m3 10.1249 2.70 [ 0.675 |0.084| 263 | 0.610 |0.076] 2.70 | 0.680 | 0.084
6 ] SHV 0.1225]44.85] 0.725 | 0.08946.07 | 0.740 [0.091] 39.7 | 0.550 | 0.067
5] Vp m/s_[0.1208 | 4785 ] 0.900 | 0.109] 4908 | 0.920 [0.111]4852] 0.910 |0.110
10 D m_ |0.1131]2.113 | 0.690 |0.078] 1.499 | 0.450 |0.051]1.194| 0.370 |0.042
9 |MBSD| m_[0.1095] 1.31 | 0.690 [0.076] 1.78 | 0.790 |0.087] 2.22 | 0.830 |0.091
Blastability Designation 0.662 0.669 0.631
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The data taken from the author's site investigation and sampling based on 6 field
locations along the cutting, when subjected to the blastability analysis, yielded value of
the Blastability Designation from 0.631 to is 0.725, as shown in Table 7.11. That is,
the rock masses in the highway cutting area belong basically to the border range
between Class 4 (difficult blasting) and Class 3 (moderate blasting) (see Table 6.12).
Applying the description terms to the BD results, this means that the rock masses are,

in general, difficult or moderate to blast.

7.1.4.2 Blastability assessment based on previously available site data

The blastability of the rock masses at the site are assessed at three places based on
the previous geological information presented in Table 7.1, and is shown in Table
7.12. The locations of Site OS1, Site OS2 and Site OS3 correspond roughly to the
location of Site S3, Site S6 and Site S4 in Table 7.11 respectively. From the three field
locations, where the previous geological information was available, the values of the
Blastability Designation were from 0.498 to 0.569 (see Table 7.12). This indicates that
the rock masses would belong to the border range between Class 2 (easy blasting) and
Class 3 (see Table 6.12). That is, the rock masses would be assessed as easy or

moderate to blast.

Table 7.12 Blastability assessment of rock masses at AS Glyn Bends Improvement

based on the previous geological information*

Parameter Weight OS1 0S2 083
No. | Description| Wi | Value|Ratingl Wi*Ri| Value| Rating] Wi*Ri| Value | Rating] Wi*Ri

P Unit
UCS | MPa| 0.1475 | 83.21 [ 0.540| 0.08 |70.84]|0.480 ) 0.071 | 78.03 | 0520 ]| 0.077
2 | UTS | MPa| 0.1344 | 4.728 1 0.520 ] 0.07 |4.025] 0.500 | 0.067 | 4.434 | 0510 | 0.069
4 E | GPa|0.1273]37.15[/0.290| 0.04 }32.39]0.250 ] 0.032 | 35.10 | 0.270 | 0.034
3 p_|vm3]0.1249| 2.72 [0.750 | 0.09 | 2.70 | 0.740 | 0.092 | 2.71 | 0.745 | 0.093
6

5

SHV 0.1225135.10{0.550] 0.07 ]32.22]0.450 | 0.055 | 33.89 | 0.470 {0.058

Vp m/s | 0.1208 | 4716 [0.890| 0.11 | 4621|0880 | 0.106 | 4676 | 0.880 | 0.106

10 D m |0.1131] 1.848 |0.590| 0.07 [1.194]10370] 0.042 | 2.113 | 0690 | 0.078

9 | PMS| m |0.1095] 0.25 |0.250| 0.03 | 0.32 ] 0.310] 0.033 | 0.75 | 0.505 ] 0.055

Blastability Designation 0.549 0.498 0.569

* PMS from logs of the report (MRM, 1985); the values of fractal dimension D are the same
as those listed in Table 7.11.
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7.1.5 Estimation of BBSD

Blastability assessment results obtained above should reflect in the blasting results
which can be indicated by the BBSD. To examine the BBSD at the site, four
approaches will be used and compared. These are (i) direct assessment of the BBSD by
the photo-scanline method as described in Chapter 5; (ii) estimation using the
previously published blast design Kuz-Ram model with no IBSD information needed,;
(iii) estimation using the previously published Bond-Ram model which can take
advantage of the new IBSD estimation procedure and (iv) estimation using the new
Energy-Block-Transition model and blastability assessment (see Chapter 6) .

In addition, a prediction of the BBSD primarily based on the Kuz-Ram model but
with a correction such that the rock factor in the Kuz-Ram model, A, is determined not
by Eqn. 2-13 but by Eqn. 6-39 which is based on the blastability assessment. The Kuz-
Ram model with the corrected A based on the blastability assessment will be called the
corrected Kuz-Ram model.

Table 7.13 Parameters associated with the predictions of BBSD

Blasting pattern parameters Rock mass parameters
Blasting site | 31/07/95] 03/08/95 | Blasting site |31/07/95 | 03/08/95
Q (kg) 1430 605 Is(50) (MPa) 5.05 4.45
q (kg/m3) 0.65 0.62 UCS (MPa) | 111.10 | 97.90
Bench Height (m) 7 UTS (MPa) 6.31 5.56
Hole depth (m) 8 E (GPa) 46.10 50.10
Subdrill (m) 1 SHV 39.70 44.85
Hole No.s 55 22 [Mean IBSD (m)] 2.20 1.30
Hole Dia. (mm) 105 p (t/m3) 2.70 2.70
Explosive PG800/900 Vs (m3) 6.57 1.33
Burden (m) 2.5 Vg3 o (m3) | 13.78 2.61
Spacing (m) 2.5 Ny 0.938 0.554
Bottom Charge (m) 1 S50 (m) 2.21 1.30
Column Charge (m) 3 S63 2 (m) 2.83 1.63
Stemming (m) 3 N¢ 2.813 1.663

The blast pattern data, the borehole parameters, and the explosive details are
summarised in Table 7.13, where the data has been obtained from the site
investigations and a number of blast designs carried out on site, as provided by CAB.
The BBSD results were estimated using the photo-scanline technique and have been
listed in Table 7.14. Fig. 7.9 is one of several typical blastpile photographs.
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Fig. 7.9 A typical blastpile photograph, B1-1 taken from the A5 site (scale bar: 50 cm
division; note, the scale bars form a right angle and this enable a correction to be
applied to the photographic data)

Table 7.14 The BBSDs estimated using the photo-scanline technique

Photo Ros-Ram Schuhmann Blastin
No. S (m) ne S100(m)| mq site
Bl-1 0.354 0.769 0.746 0.641 }31/07/95
-2 0.325 1.079 0.653 0.83
-3 0419 1.275 0.67 1.148
- -4 0.476 1.004 1.076 0.681

Average 0.394 1.032 0.786 0.825
B2-1 0.541 1.0863 | 1.029 0.861 |01/08/95
-2 0.572 1.123 1.071 0.641
-3 0.527 0.73 1.174 0.594

Average 0.547 0.980 1.091 0.699
B3-1 0.221 1.2625 | 0.4111 | 0.9498 |02/08/95
-3 0.5548 | 1.088 1.528 | 0.9462
-4 0.6875 | 0.7107 | 1.555 0.575

Average | 0488 1.020 1.165 0.824
B4-1 0.2633 | 0.7869 | 0.5894 | 0.6063 |03/08/95
B4-4 0.4149 | 1.0556 | 0.8373 | 0.7803

Average | 0.339 0.921 0.713 0.693
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Fig. 7.10 Comparison of BBSDs from different prediction models and from the
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Fig. 7.11 Comparison of BBSDs from different prediction models and from the

photo-scanline technique (03/08/95 blast)

A comparison of the BBSD results of two blasts, one carried out on July 31 and
another on August 3, 1995, which also consider the different prediction models and the
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photo-assessments is illustrated in Figs. 7.10 and 7.11. The comparison of the
characteristic BBSD size parameters are shown in Table 7.15.

Table 7.15 Characteristic BBSD size parameters from different predictions

BBSD parameters

Blasting site 31/07/1995 03/08/1995

ng | S50 [S63.21 Sgo [ Soo | ng | S50 [S63.2] Sg0 | S90

Model (m) (m)

Kuz-Ram 0.892/0.142]0.214]0.365]0.545] 0.892 {0.144/0.217]0.370]0.553
Photo 1.032[0.276]0.394]0.625/0.884] 0.921 |0.228]0.339]0.568|0.838
Corrected Kuz-Ram [0.892/0.234{0.353[0.601[0.899] 0.892 [0.237]0.357]0.609/0.910
EBT 0.892/0.569]0.858|1.463[2.186] 0.892 [0.202/0.304]0.518]0.774
Bond-Ram 0.892/0.677]0.949|1.619(2.417| 0.892 |0.393[0.631|1.076|1.607

From Figs. 7.10, 7.11, and Table 7.15 the following important observations can be
made. First, for each of the two blasts, the estimate of the blastpile's BBSD from the
photo-scanline technique appears to lie near the average of the predictions from the
Kuz-Ram, the Bond-Ram, the Energy-Block-Transition model and the corrected Kuz-
Ram model. This suggests that the photo-scanline technique could provide a
reasonable tool, although further research and direct sieving of blastpiles may be
required to examine the technique and establish whether it can compete with other

analysis methods.

Second, the BBSD predictions from the Kuz-Ram and Bond-Ram models form the
far upper and far lower boundaries while that from either the newly developed Energy-
Block-Transition model or the corrected Kuz-Ram model based on the blastability
assessment is approximately in the middle of the range formed by BBSDs from the
Kuz-Ram and the Bond-Ram models. The BBSD result from either the Energy-Block-
Transition model or the corrected Kuz-Ram model appears to be a refinement and
improvement on the Bond-Ram and the Kuz-Ram models.

Third, the BBSD from the Energy-Block-Transition model and the corrected Kuz-
Ram model are close to the BBSD assessed using the photo-scanline technique.

7.1.6 Discussion



The results from the site investigation carried out by the author show the degree to
which both mechanical properties and discontinuity structures change from one place
to another. As a result, the blastability of rock masses will exhibit these differences.
Different fragmentation would be expected if no modification of blasting pattern is
undertaken to tailor it to variations in the different blastability of an area. Not taking
account of this variability could be one reason why the previous blasting results were
unsatisfactory in various places.

It seems reasonable to assume that early blasting operations at the site began by
taking account of the historical geological data. This study has shown that a more
representative and comprehensive data set suggests, from the above comprehensive
analysis, that the resistance to blasting would be greater than that likely to be estimated
from the initial data set. Furthermore, the variability of resistance to blasting was not
previously recognised, since the difference between Blastability Designation of 0.631
(Site S6) and 0.725 (Site S3) (see Table 7.11) represents a clear increase in specific
charge required (cf. Eqns. 6.18 and 6.38).

At Site S3, for example, there remained a hard ridge of more than 1 metre in
height. This site is located near Chainage 740 and the blasting happened in February.
The specific charge (or powder factor) is around 0.4 kg/m3. Based on the previous
geological data where in particular, the intact strength sampled seemed to be rather
lower than representative, its value of Blastability Designation is assessed to be 0.569
(see Site OS3 in Table 7.12). This means that the rock material should be 'moderately
blasted' (see Table 6.12), whereas the remaining hard ridge is evidence to the contrary.
Based on the geological data obtained by the author, the value of Blastability
Designation was 0.725 (Table 7.11), which indicates that the rock material at this site
location is difficult to blast.

It is therefore suggested that some adjustment to blasting design should be made
according to the geological data as revealed in the new site investigation in order to
achieve a satisfactory blasting result - one that could reduce oversize and by

implication, improve the loosening of the blastpile.

Although -outside the scope of this study, in practice, the blast design was
constrained by environmental factors and a limitation on maximum instantaneous
charge was imposed. Since the powder factor was up to 0.6 kg/m3, it seems unlikely
that a decrease in burden and spacing would have eliminated the rough toes and

minimised big boulders. However, it was suggested that increasing the length of
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subdrilling a little, say from the present 1.0 metre to 1.2 metres, could have helped in
producing better fragmentation and a looser blastpile. It is reasonable to expect that
where subhorizontal discontinuities are widely spaced, the chance location of such
discontinuities near the base of the boreholes can have a strong influence on the
position and evenness of the toe.

7.2 APPLICATION 2: PREDICTION OF BBSD OF AN OVERSEAS QUARRY
SUPPLYING ARMOURSTONE

7.2.1 Background

The opportunity for the second case study arose from an investigation into the
future potential of a quarry that had just been opened. This quarry was to provide the
rock materials for a massive reclamation structure upon which a new overseas airport
was to be built. In the early development of this quarry which was to be dedicated to
the supply of rock fill and armourstone, some doubts were raised as to whether the
overseas quarry would be able to produce sufficient volumes of rock blocks in the
armourstone size range. The case study reported here did not involve a field site visit
by the author (although the author suggested the procedure of field discontinuity
mapping survey on the site), but is based on a detailed analysis of geological and
geotechnical data including results of a blast obtained from the engineers involved in
developing the overseas quarry site. The analysis tools employed were those described
in this thesis and the aim was to provide an analysis that would help in decision
making regarding the need for further site investigation to target areas of greater
armourstone potential and the need to consider alternative quarry sources of

armourstone for the airport project.

It will be clear from the foregoing chapters that the prediction of quarry BBSD
curves, i.e. fragmentation curves, is notoriously difficult, but of extremely high
economic significance. Therefore all reasonable researched and commercially
available prediction methodologies, including the Energy-Block-Transition model
developed in Chapter 6, and their results should be considered carefully and evaluated.
Measurements of block sizes from trial blasts can be used as the input of back-
analysis to fine-tune the coefficients used in the prediction methodology and thereby
to improve accuracy of initial estimates of quarry yields at a given site. Confidence in

a prediction methodology can be gained once its relative success in predicting the
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outcome of blasting in different geological conditions (over which the blast engineer
has no control) have been demonstrated. However, it is not often that a calibrated
methodology is the applied and checked with photo-assessments of BBSDs from
different areas and unfortunately this was also not possible in the case history reported

here.

It was suggested in the first road cutting case study that the Energy-Block-
Transition model makes an improvement on both the Kuz-Ram and the Bond-Ram
model. However, this model has also not yet been extensively calibrated and therefore
it is of interest to adopt the common development procedure often used in quarries
and mines which is to rely on the fine-tuning of predictive models from back analysis
of trial blasts in areas of differing IBSD. Thus, this case study aims to further examine
the Energy-Block-Transition model through comparing the model to the Kuz-Ram and
the Bond-Ram models while providing predictions of the BBSD.

7.2.2. Geological Data

7.2.2.1 Physical and Mechanical Property Test Data

Reports of the early quarry site investigation work containing logs of the variation
with depth of physical and mechanical properties have been examined briefly for all
the boreholes (OVERSEAS QUARRY Item-1, Item-2, via. J. Simm in H. R.
Wallingford). A general location diagram of boreholes on a contoured base map of the
overseas quarry site was also available (OVERSEAS QUARRY Item-3, Item-9, via. J.
Simm), as shown in Fig 7.12. The information accumulated from the above data
suggests that this sedimentary sequence of limestone is difficult to cross-correlate
between boreholes and that variations in degree of cementation, weathering and
alteration both laterally and with depth occur over relatively short distances. Of
greater significance with respect to predicting armourstone yields are the data relating
to discontinuity spacings between joints and bedding planes.
7.2.2.2 Discontinuity Spacing and Other Relevant Data

Available discontinuity and other relevant data includes:

(1) General photographic record of surface exposures (OVERSEAS QUARRY
Item-4);
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(ii) Detailed logs of discontinuity spacings from retrieved cores of sub-vertical
boreholes (OVERSEAS QUARRY Item-5);

(iii) Discontinuity spacings from sub-horizontal scanlines within surface exposures,
set up on three different elevations (OVERSEAS QUARRY Item-6)

(iv) Approximate position of scanlines were recorded with respect to the base map;

(v) Results of sieve analysis of the blast-pile from the trial blast near BH4
(OVERSEAS QUARRY Item-7).

The details of discontinuity spacings from retrieved cores of sub-vertical boreholes
and the sub-horizontal scanline mapping are listed in Appendix E.2.

7.2.3 Prediction Methodologies

As described previously, the IBSD of the rock mass imposes a critical influence on
the blast outcome. Thus the IBSD of rock mass at the overseas quarry should be firstly
estimated. It will be apparent that there is a great significance to be attached to the
average in-situ block size distribution, IBSD and how it varies from place to place in
the quarry. It is the quick scanline technique used on rock exposures with horizontally
stretched scanlines and on recovered borehole cores that have been exploited in the
case study. As such only the equation method has been applied to the available data,
as the quick scanline data seemed appropriate for early analysis when considering the
types of discontinuities found in the quarry.

A brief analysis of the initial borehole investigations of the rock quality and
spacing between bedding planes and fractures have shown very little systematic
variation. Not only is there no easily discernible increase of discontinuity spacing with
depth below the weathered surface topography, there is also little borehole evidence
that specific more thickly bedded series of sub-horizontal horizons can be traced
laterally to any great extent and this is apparently not untypical of reef limestones of
the type described in the site investigation report. However, photographs of outcrops
do indicate certain locations with bedding that appears substantially more favourable
for armourstone production than others. There therefore seems to be some potential
for sampling the spatial variation of that one factor (i.e. the in-situ block sizes) which
exerts most control over the BBSD. The average IBSD of the whole area to be
exploited could then be predicted down to a moderate depth of some 15 metres. More
important perhaps, those specific areas and depths that have higher armourstone
potential could be identified and perhaps quarried with special techniques to enhance
large block production (e.g. see Wang et al, 1991b).
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Fig. 7.12 Illustration of both the elevations and boreholes at the overseas quarry



There are three different types of available data: (i) Good quality data is available
from 10 boreholes in many areas and all elevations. These assess the spacing of sub-
horizontal joints and bedding planes. (ii) Moderately good quality data is available
from scanlines on elevations in areas including BH4 which can be combined with the
nearest borehole data at the same elevation. Taken together (i) and (ii), these data
assess the spacing of sub-horizontal and sub-vertical discontinuities in three
dimensions. (iii) Excellent blastpile sieve size results from Elevation 248 in the area

near BH4 are also available.

Methodologies for predicting the yield curves can utilise several blast design
models if they incorporate IBSD information from fracture spacings along horizontal
scanlines as well from the borehole data. They are likely to give better estimates than
methodologies based on borehole data without scanlines in the other two directions
provided the scanline data quality is satisfactory when compared with good quality
core recovery data, which seems be a reasonable condition in this case.

The methodologies presented below will utilise the discontinuity spacings in 3-D in
such a way that the prediction methods are first presented and then fine tuned using
coefficients which fit the trial blast data. The fine-tuned methods are then set for
further predictions and are used to present the final BBSD prediction at all three
elevations for which scanlines and borehole data were obtained.

7.2.4 Prediction of IBSD for three Elevations at the Overseas Quarry

At the time of gathering field data from scanlines, there were three benches in the
quarry, which were at Elevation 248, Elevation 231 and Elevation 214 (see Fig. 7.10).
For each bench, two scanlines were set out for discontinuity mapping measurements.
When using the equation method to derive the IBSD, discontinuity data input is
usually from a combination of at least three scanlines and borehole logging. For the
quarry, the data input is from a combination of both horizontal scanlines (mainly sub-
vertical joints and planes) and the borehole logs. Note that only the spacings from the
top 12 metres of each borehole are considered when deriving data sets for a given
elevation, as shown in Fig. 7.10.

When applying the equation method to the quick scanline data for the IBSD
estimation, it is always assumed that the mean orientations of three discontinuity sets
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are already known. The appropriate estimates of the mean orientations of the three sets
of discontinuities, according to the information available, were obtained as follows:

Discontinuity Set Dip Dip direction
1 10-15 80
2 85-90 35-55
3 85-90 115-175

7.2.4.1 IBSD Prediction Result

In the analysis of the IBSD of the rock masses at the quarry, the measurements
from two scanlines and one borehole log were first combined to form a group of input
data for the IBSD analysis. The IBSD curves for the rock masses at the quarry are
illustrated in Fig. 7.13. In the figure, the IBSD curve for Elevation 248 was obtained
using the average values of IBSD of B1, B3, B4 and BS5, where the data input for Bl
was from the combination of Borehole 1 and the quick scanline measurements carried
out on Elevation 248, and the data input for B3, B4 and B5 were combined in an
equivalent manner. The IBSD curve for Elevation 231 was obtained using the average
values of IBSD of B7, B9 and B11, where the data input for B7 was from the
combination of Borehole 7 and the quick scanline measurements carried out on
Elevation 231, and likewise for B9 and B11. The IBSD curve for Elevation 214 was
obtained using the average values of IBSD of B8, B9 and B10, where the data input
for B8 was from the combination of Borehole 8 and the quick scanline measurements

carried out on Elevation 214, and likewise for B9 and B10.

As a comparison, another kind of input data which is only based on the data from
vertical borehole logging, i.e. sub-horizontal joints and bedding planes was also taken
into consideration. In the case where only the borehole logging is used, the other two
sets of discontinuities were assumed to have the same principal mean spacings as that

of the sub-horizontal discontinuity set taken from the borehole logs.

The IBSD results of three elevations from the data only supplied by borehole
surveying are illustrated in Fig. 7.14. Comparison of Fig. 7.13 and Fig. 7.14 indicates
that the in-situ block sizes resulting from the combination of scanline measurement
and borehole logging is larger than that using borehole logging data alone. This is
because the sub-horizontal discontinuity spacings formed in the recovered cores are

quite significantly smaller than the sub-vertical discontinuity spacing indicated by
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scanline data (with the possible exception of Elevation 214). When the principal mean
spacings of the two sets of sub-vertical discontinuities are assumed to have the same
values as that of the sub-horizontal discontinuity set taken from the borehole logs, the
concluding results seem to command less confidence than those derived from the
scanline measurements, thus the analysis hereafter will only be based on the IBSD
information predicted from the combination of both scanline measurements and

borehole logging.

Because of the lack of discontinuity trace length information, the correction of the
influence of impersistent discontinuities could not be included.

7.2.5 Prediction of BBSD for Elevation 248 at the Overseas Quarry

7.2.5.1 Input Parameters

Since only one trial blast near Borehole 4 has been made, the blast design
information was rather limited. However, an estimation of the BBSD in the locality of
this trial blast could be based on available and partly assumed data on the rock
mechanical properties, discontinuity geometry and the blasting conditions
(OVERSEAS QUARRY Item-1, Item-2, Item-3, Item-8) as follows:

Discontinuity Structures and Rock Properties

1) Rock mass description Powdery/Friable
2) Density of rock (kg/m3): 2.59

3) UCS of rock material (MPa) 71.43

6) Point Load Index ((MPa) 549

4) Young's Modulus (GPa) 30.67 (estimated)
5) Schmidt Hammer Value 33.2
Geometrical Pattern

1) Bench height (m): 4.5

2) Burden (m): 3.0

3) Spacing (m): 3.0

4) No.s of holes in a row: 10

5) No.s of rows in a blast: 1

6) Diameter of blasthole (mm): 64

7) Subdrill (m): 03
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8) Drilling accuracy (m): 0.1

Explosive harge structur

1) Explosive type: ANFO

3) Relative strength (%): 100

4) Specific charge (kg/m3): 0.29

5) Bottom charge (m): 0.5

6) Column charge height (m): 35

7) Stemming length (m) : 0.8
Kuz-Ram model

Using the above data, the model yields A = 2.1, ng = 1.305, and the equation for the
BBSD is given by

~ S 1308
P=1-¢ 0.123° | (7-8)

Bond-Ram Model

Using the above rock mechanical properties, discontinuity geometry and blasting
conditions, the following results were obtained: E. = 20.25, Spgp = 0.5393 m, and
the equation for the BBSD is as follows.

~( S 1305
P=1-¢ 0.3745 , (7-9)

Energy-block transition model

Using the above information about rock mechanical properties, discontinuity
structures and blasting conditions, the blastability was assessed for the rock mass at
the quarry using the methodology presented in Chapter 6. Because of only based on
the author's experience but not a couple of experts' judgement, the Expert Semi-
quantitative (ESQ) coding method was therefore used to code the blastability
interaction matrix. The coding values, the cause vs. effect plot and the ordered
histogram, all of which reflect the interaction intensity for each factor, are illustrated
in Fig. 7.15. It is worth pointing that these coding values can be altered according to
different experts’ judgement.
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Similar to the first case study, the parameters Pj, P, P3, P4, Ps, Pg, P9, Pjj (see
Fig. 7.15), are finally chosen as the factors in assessing the blastability of rock masses.
W; (i =1, 2, ..., 8), the weighting coefficients in Eqn. 6.-64, correspond to the
weighting coefficients of eight parameters of Pj, Pp, P3, P4, Ps, Pg, Pg and P}, are
determined from scaled C+E values (Fig. 7.15) and are respectively 0.144, 0.133,
0.112,0.124,0.131, 0.122,0.116, and 0.118.

Pi{2]3]3[|3[|3[1[3]22]1]2 P - Strength;
3|P2| 222|223 |3|2(|1]2 P> - Resistance to fracturing;
413 IP3|3|2{3|2|2)1]1]1]1 P3 - Sturdiness;
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Fig. 7.15 Coding the interaction matrix of the blastability system of the quarry. (a)
Coding values, (b) The associated C-E plot, and (c) The ordered histogram

The following results were derived: Blastability Designation BD = 0.576, Energy-
block-transition coefficient B;/=17.36 (m0-5/ kwh/t), and the equation for the BBSD is
as follows.
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The characteristic size parameters for the BBSD from the three models are listed in
Table 7.16, and the corresponding BBSD curves are illustrated in Fig. 7.16.

Table 7.16 Characteristic size parameters for the BBSD predicted

Model Kuz-Ram | Bond-Ram E-B-T Direct Sieving
ng 1.305 0.672
Sh50 (M) 0.093 0.285 0.124 0.153
She3 2 (m)f 0.123 0.375 0.165 0.277
Spro(m) 0.177 0.539 0.237 0.539
W | &
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Fig. 7.16 Comparison of predicted BBSD from Kuz-Ram, Bond-Ram and Energy-
block transition models respectively

7.2.6 Actual BBSD from Full Scale Sieving Analysis of Trial Blast near Borehole 4

The BBSD result of the trial blast carried out near borehole 4 has been directly
sieved, and a sample of 1340 tonnes was obtained from the blastpile (OVERSEAS
QUARRY Item-7). The sieve size distribution resulting from sie.ving was fitted with
the two most widely used equations: the Ros-Ram and the Schuhmann equations, and
the fitted results are illustrated in Fig. 7.17. The figure indicates in terms of goodness-
of-fit, there may be little to choose between them. The fitted equations are as follows:
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For the Ros-Ram equation:

S
)06714

—(
—e 0.1971 , (7-11)

P=1

and for the Schuhmann equation

S 03767
P=(—) . 7-12
(1.2052) ( )

It should be noted just how well the Ros-Ram equation fits the raw data for the
largest 10% of blocks but how it slightly underestimate the 50% passing size.
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Fig. 7.17 Raw sieving data and best fit analysis of the block size distribution after
blasting for the area around Borehole 4, using two widely used empirical equations:

Ros-Ram and Schuhmann models.

7.2.7 Calibration of BBSD Prediction Models Using the Sieving Result

Using the data from direct sieving of the trial blastpile, a calibration of the
prediction models can be made. The comparison between the BBSD result from the
direct sieving data supplied from Borehole 4 and the results predicted from the above



three prediction models, using the IBSD information derived, is illustrated in Fig.
7.18.

It can be seen from Fig. 7.18 that the result from the Energy-Block-Transition
model is closest to the direct sieving result for the important characteristic size
parameter Sp 50, whereas the Bond-Ram Model is closest to the direct sieving result in
terms of the large sizes and the Kuz-Ram Model is closest to the direct sieving result
in terms of smaller sizes. To examine the goodness of fit to the sieve sizes of each of
the three model predictions, a grey correlation analysis (see Section 3.5) was
performed. The grey correlation measures were 0.806, 0.786 and 0.755 for the Bond-
Ram, the Energy-Block-Transition model and the Kuz-Ram models respectively,
suggesting that the Bond-Ram model may be the best one if a whole curve prediction

is required.
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Fig. 7.18 Comparison between the BBSD result from the direct sieving data
supplied from Borehole 4 and that from the three prediction models

Further consideration of Fig. 7.18 suggests that the difference between the
predicted BBSD and direct sieving could be caused by the deviation of the ng value,
determined by the algorithm devised by Cunningham (1987), from that determined by
the direct sieving result. It appears that Cunningham's algorithm needs to be further
calibrated perhaps because it includes only geometric parameters of blast design
pattern. Note, also that Yang and Rustan (1983), Aler et al. (1996b) showed that a
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rock mass and its structures would influence ng. This suggests that it is appropriate at
this stage to take the ng value determined from the direct sieving result as the nominal

value of ng for the quarry.
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Fig. 7.19 Comparison between the BBSD result from the direct sieving data
supplied from Borehole 4 and that from the three calibrated prediction models

After replacing ng based on the Cunningham's algorithm with ng from the sieve
analysis and thereby calibrating the value of ng to be fixed for this part of quarry, we
can compare the BBSDs from the above three prediction models in a more meaningful
way. The BBSD predictions based on this calibration were derived and a comparison
between these calibrated BBSD results and the direct sieving results is illustrated in
Fig. 7.19 and in Table 7.17.

It can be seen that the prediction of the BBSD curve from the Bond-Ram model
appears the best one among the three models in terms of the overall size range.
However, Fig. 7.19 does suggest that this approach is capable of overestimating the
amount of large blocks, giving greatest accuracy below the 500 mm sizes and that the
Energy-Block-Transition model appears nearly as good as the Bond-Ram, particularly
in the range of larger than 80% passing block sizes. This is supported by the grey
correlation analysis, in which the grey correlation measures comparing direct sieving
with the results from the Bond-Ram, the energy-block-transition and the Kuz-Ram
models are 0.867, 0.820 and 0.722 respectively. With such little data available, it
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seems reasonable to take ng from the direct sieving of the blastpile near Borehole 4
rather than ng from the Cunningham’s algorithm as the average value of ng for the
quarry. Without further research, it is suggested that the BBSD from different domains
of the quarry can best be predicted using the sieve analysis ng throughout the quarry
and applying the Bond-Ram model with the Energy-Block-Transition model as a
back-up prediction for comparison.

Table 7.17 Calibrated characteristic sizes of blasted blocks

Model Kuz-Ram | Bond-Ram |Transition| Direct Sieving
ng 0.6714
Shs50 (m) 0.093 0.154 0.124 0.153
Spe3 2 (m)| 0.161 0.266 0.215 0.277
Speo(m) 0.326 0.539 0.436 0.539
Spo0(m) 0.556 0.919 0.742 0.705
Spo5(m) 0.823 1.361 1.098 0.951

7.2.8 Preliminary Prediction of BBSD for Three Different Areas and Elevations
from the Overseas Quarry

From the above calibration, it was argued that the both the Bond-Ram and the
Energy-Block-Transition models might be suitable and that an average ng for the
overseas quarry can be taken as 0.6714. Thus we can now make predictions of the
BBSD at the three elevations of the overseas quarry.

Using the IBSD information from the combination of scanline measurement and
borehole logging and the blasting conditions applied and assumed for the trial blasting
carried out near Borehole 4, the values of E, (see Eqn. 2-16) obtained for Elevations
248, 231, 214 are 20.25, 19.30, 19.04. The BBSD curves for these three elevations are
illustrated in Fig. 7.20.

Table 7.18 Characteristic size for the BBSD
Parameter |EL248| EL231 | EL214 [ Direct sieving
ne 0.6714
Sps0 (m) [0.1538{0.1257| 0.118 0.153
Shg3.2 (m)[0.2655[0.2170]0.2036 0.277
Spgg (m) (0.5393]0.4408 | 0.4137 0.539
Spo5 (m) [1.3607]1.11211.0436 0.950
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Fig. 7.20 Prediction of the BBSD curves ©of the overseas quarry using the Bond-
Ram model

The characteristic sizes for the BBSDs for the three elevations are summarised in
Table 7.18, but recall that the 95% size is likely to be an overestimate (see Fig. 7.19).

The distribution of block masses corresponding to the BBSD curve can be obtained
using the following formula, where 0.847 is an empirically derived shape factor that
relates sieve size to the size of the equivalent cube (CIRIA, 1991; Wang, 1992).

W, = p(0.847S)°, (7-13)

where, W; is the weight of a block with sieve size S, and p is the density of rock. For
instance, the Spgs for EL 248 in Table 7.18 is 1.3607 and p is 2.59 t/m3, so the 95%

passing rock weight is as follows

Wos =2.59x(0.847x1.3607)> = 3.965(¢)

7.2.9 Discussion
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The lack of data relating to the exact orientation of the sets of discontinuities,
however unsystematic they may at first appear, might restrict accuracy of analysis
predictions. Since the back analysis of the blast results is only based on the single trial
blast near borehole 4, this might significantly reduce the potential improvements in

-

accuracy offered by the analysis .

Table 7.19 Expected percentage yields based on the trial blast alone

Block mass |Block sieve size [Trial blast percentage
(Tonnes) (m) exceeding (%)
0.5 0.682 10.00
1 0.860 6.80
2 1.083 4.33
3 1.240 3.21
4 1.365 2.56
5 1.470 2.12

If the sieve analysis of the trial blast near BH4 was to be typical of the whole
quarry area, examination of Fig. 7.17 for the largest blocks suggests that the
percentage yields would be roughly as given in Table 7.19. These have been worked
out using the best-fit Eqn. 7-11 and Eqn. 7-13. The table suggests that approximately
2% would be greater than 5 tonnes and 4.3% greater than 2 tonnes, with about 10%
greater than 500 kg.

However, the RQD value, which is an indicator of sub-horizontal bedding fracture
spacing, found in Borehole 4 at around Elevation 248 (to 12 metres depth) where the
blast was carried out equalled 71% and is greater than that for the quarry's average
RQD value from all borehole logs taken to considerable depth which was 40%. An
average yield curve for the whole quarry would on this basis give a less favourable
proportion of armour-sized blocks.

The best prediction of block yields can be discussed with reference to Table 7.20.
Once the variation in spacings of sub-vertical fractures are taking into account, further
confirmation that the direct results of the trial blast will over-estimate the proportion
of large blocks is given. For a best prediction up to the 90% passing size, reference
should be made to curves in Fig. 7.18. However, as pointed out in the previous
discussion, with respect to armourstone-sized blocks, the Energy-Block-Transition
model has appeared nearly as good as the Bond-Ram, particularly in the range of
largest blocks and this Energy-Block-Transition model will therefore be considered



here. The Energy-Block-Transition model has predicted the 95% blasted block size
result to be slightly less than that from the Bond-Ram model (see Fig. 7.19) which is
also reflected by the BBSD using the Bond-Ram model and the IBSD information
only based on the borehole logging. Thus, the overall prediction for the upper
elevation of the overseas quarry is as highlighted in bold figures in Table 7.20.

Table 7.20 Summary of block weight yields based on the Bond-Ram model shown

in Fig. 7.18 and two alternative results

Wi EL248 EL231 EL214 | Average | Direct sieving
BH1,3,4,5/BH7,9,11 | BHS, 9, 10 EL248, BH4
Wsq (kg) 5.73 3.13 2.59 3.81 5.64
Wgq (kg) 246.90 134.80 111.40 | 164.44 246.40
Woj5 (tonnes) 3.965 2.165 1.789 2.639 1.349
Wos* (tonnes) 1.118 0.731 1.194 1.014
Wqs** (tonnes) 2.083 0.401 0.270 0.918

*assuming BBSD based on the IBSD information acquired from the borehole logging;
**based on the Energy-Block-Transition model.

Evidence that the block sizes yielded from depth in the overseas quarry will be
greater was considered to be far from conclusive at the stage reached during this

investigation.

7.2.10 Conclusion and Recommendation

The best initial estimate for yields in the whole quarry was:

50% less than 4 kg
80% less than 164 kg
95% less than 1 tonne

The analysis results together with the analysis tools and methodology have been
elaborated upon. The results indicate that the Energy-Block-Transition model has
exhibited a prediction capability worthy of equal status with previous models. The
suite of methodologies were able to provide operators of the quarry with valuable
information about the block yields. Quarry operators were advised that further work
and detailed surveying of discontinuities within specific areas of interest should be
carried out in order to greatly improve the confidence in the initial predictions
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reported to them. One striking conclusion was that the curve fitting criteria need to be
geared towards the part of the curve that has most influence on the economic
objective. For example, if it is crucial to establish the capability of producing
armourstone, the emphasis should be given to matching trail blast results with
functions that fit this upper part of the curve and possibly at the expense of a less good
fit for most of the smaller part of the curve. In mining, other criteria would apply.
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8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 TECHNIQUES AND METHODOLOGIES - CONCLUSIONS

8.1.1 Discontinuity Spacing and Trace Length Distributions

A systematic study of research data reported in the literature leads to the
conclusion that discontinuity spacing distributions, measured from scanlines from a
wide range of rock masses can be described adequately by a great many mathematical
distributions. The best distribution model will usually be one of the following:
negative exponential, lognormal or fractal. A similar systematic study of the
literature for trace lengths measured along scanline suggests the best distribution
model will usually be one of the above three distributions.

The goodness-of-fit of any theoretical distribution compared with real
discontinuity spacing or trace length data can be assessed using classic statistical
methods, but grey correlation analysis technique provides a powerful additional tool
for selecting the best theoretical distribution out of a number of proposed
alternatives. An analytical procedure for applying the grey correlation analysis to this
problem has been presented.

The study of fractal spacing distributions using simulation techniques requires the
numerical generation of spacings with a fractal distribution. Such a random generator

was developed in this research study.

8.1.2 In-situ Block Size Distribution of Rock Masses with Fractal Discontinuity
Spacing Distributions

For this investigation into the IBSD, discontinuities with a fractal spacing
distribution are investigated using a computer simulation of randomly produced
artificial discontinuities. The investigation indicates that the IBSDs of rock masses
with fractal spacing distributions are quite different from those with negative
exponential, lognormal and uniform spacing distributions when identical mean
spacings are considered. The relationship between the product of three principal mean
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spacing values and the IBSD for a rock mass with a fractal discontinuity spacing
distribution is not linear, which is in contrast to the result of Wang (1992) obtained for a
rock mass with negative exponential, uniform and lognormal spacing distributions. To
distinguish the types of spacing distribution of discontinuities has important implications
for predicting the IBSD, and its numerous applications concerning quarry production of
aggregates, armourstone and building stone, not to mention mining.

Two sets of empirical equations, have been derived from Monte Carlo simulations
of a dissected volume of rock, for predicting the IBSD of a rock mass with
discontinuities of fractal spacing distributions. They are given by

_b.
V:,p = Ci.p X(D,xD,xDy) **, 8-1)
and
Vip = Cip X (Spmy X Spmy X S,p3)”. (8-2)

where V; p (i=10, 20....,100) are block volumes of percentage passing (in m3), and,
Cip and b; , are empirical coefficients; i are percentages; Dj, D and D3 are the
fractal dimensions of the three sets of discontinuity spacing values, and Spy, 1, Spm2
and Spm3 are the principal mean spacing values of three sets of discontinuities.

These two equations, together with the coefficients given in Tables 3.3 and 3.4
provide us with a tool for predicting the IBSD of a rock mass for which the three sets
of discontinuities have fractal spacing distributions.

This study indicates that for a given mean spacing the IBSD curve, derived from
the assumption that all three sets of discontinuities have a fractal spacing distribution,
will give an IBSD with the largest block sizes. Furthermore, the real IBSD should fall
within the envelope formed by the lower boundary IBSD curve created with the
uniform spacing distribution assumption and the upper boundary IBSD curve created
from the fractal spacing distribution assumption. In the case study carried out at the
A5 Glyn Bends Improvement site, only one of the three sets was best described by a
fractal spacing distribution and the direct assessment of IBSD using the dissect
method showed the IBSD to fall within the envelope defined by upper and lower

boundaries based on the equation method and described above.
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8.1.3 The Influence of Impersistent Discontinuities on the Prediction of IBSD

From a simple counting survey of an exposure with discontinuities censored at
different given levels, initial estimates of mean trace length of discontinuities with
fractal and lognormal distributions have been established. They have been expressed
in the form of sets of charts.

Based on the theoretical relationship between trace length and size of
discontinuity derived by Warburton, a numerical algorithm for estimating the
discontinuity size distribution, has been developed. The procedure handles
discontinuities with negative exponential, lognormal and fractal trace length
distributions, i.e. those most often encountered in practice. A set of equations for the
estimation of discontinuity size distributions corresponding to the above three trace
length distributions has been derived.

A '"relative impersistence factor" is proposed for describing the influence of the
impersistence of discontinuities. It compares the mean size of discontinuities and the
dimension of the rock mass of interest. This factor can then be incorporated into the
estimation of IBSD, an improvement on the pre-existing approaches to prediction of
the IBSD which neglect the influence of impersistence of discontinuities. A
preliminary application of the proposed new technique for improving the estimate of
natural block size distributions of a rock mass has been presented in a case history in
Chapter 7.

8.1.4 Assessment of Block Size Distributions in Blastpiles and the Energy-Block-
Transition Model

A "photo-scanline” technique of assessing the BBSD of a blastpile directly from
photographs has been devised in Chapter 5. The technique assumes that the BBSD of
a blastpile can be represented by either the Res-Ram or the Schuhmann equation
which are the two most widely used equations for representing the BBSD. The
calibrated relationship between the size distribution obtained from the photograph of
a blastpile surface and the true underlying distribution has been derived by an
analysis of fully quantified artificial blastpiles prepared in laboratory. The calibration
has then be used to derive the governing distribution parameters S, and n for the Ros-
Ram equation (or Sjgp and m for the Schuhmann equation) of the blastpile. Data
acquisition from photographs is based on information of lengths of visible blocks



exposed on the surface and intersected by survey lines on properly scaled
photographs of the blastpile. The application of the technique to actual blastpiles has
been illustrated in the highway cutting case study presented in Chapter 7. The
technique appears 10 be reasonably accurate, simple and user-friendly, but field
results using the technique have not yet been compared with results from other direct

assessment techniques.

A blast design model called the Energy-Block-Transition model developed from
the concept of blastability has been proposed in Chapter 6. The model characterises
the ease with which a rock mass can be transformed by blasting from the state with
IBSD into that with BBSD and is represented by the following rel.ationship:

E, = ‘; — :Z:"' : (8-3)
Bi( ai > ab )0,5

where, E represents the explosive energy input per unit rock mass that is used in
transforming the rock mass with a given IBSD into a blastpile with a given BBSD; B;
is the Energy-Block-Transition coefficient; and S;; and S; are the mean sizes of
both IBSD and BBSD respectively.

The Rock Factor A in the Kuz-Ram equation developed by Cunningham can also
be calculated using an assessment of blastability of rock masses proposed in this
research. The calculation of A is based on a more comprehensive range of in-situ
rock properties and discontinuity structures than Cunningham's algorithm. Using A
based on blastability assessment instead of Cunningham's A appears to give an
improvement in the accuracy of the Kuz-Ram equation when applied to case study
BBSD analysis of blastpiles assessed with direct sieving and the photo-scanline

methods.

The Energy-Block-Transition model, the corrected Kuz-Ram equation, together
with the Kuz-Ram and the Bond-Ram models can all be used for estimating the
BBSD of a rock mass provided that the discontinuity structure, intact rock properties
and blast conditions are all given. Applications of these equations to both the A5
Glyn Bends Improvement site and the Overseas Quarry have been described in
Chapter 7. The upper and lower borders for the envelope defining the range of model
predictions of BBSD for the two case studies were found to be the Bond-Ram and the
Kuz-Ram models respectively. For these case studies, the new models give BBSD
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predictions within this envelope such that the blastability corrected Kuz-Ram model
and the Energy-Block-Transition model give a decrease in sizes from those predicted
by the Bond-Ram model. This apparent narrowing of the uncertainty envelope for the
predicted BBSD may not be a general result since both the new models are very
sensitive to the determination of the Blastability Designation.

8.1.5 Characterisation and Assessment of Blastability of Rock Masses

Looking upon blasting as a transformation from the in-situ state to the as-blasted
state, the blastability of a rock mass has been, in this research study, defined as the
ease with which the rock mass can be fragmented by the blasting process causing the
transformation. The proposed Energy-Block-Transition model is based on the
consideration of the blastability of the rock mass.

The Energy-Block-Transition model and its associated coefficient B; have been
devised to characterise the blasting process and the rock mass blastability
respectively. The coefficient B; is defined by its role in the equation describing the
Energy-Block-Transition model (Eqn. 8-3). It represents the explosive energy
consumed per unit volume of rock mass with a given object size, required to transfer
the in-situ rock mass with a mean block size S,; into blasted blocks with a mean size
Sab- The Energy-Block-Transition model is a special case of the empirical energy-
size reduction relationship known as the Walker-Lewis relation in comminution,
although it evolved from the Energy-Block-Transition concept. A sample of available
data sets from the literature suggest that the Energy-Block-Transition model will
generally give an improvement in BBSD prediction compared with the Bond-Ram
model. The case studies give further confidence to the potential value of the model.

The "renormalisation group” approach has been exploited to further investigate the
relationship between the blastability and the fractal dimensions characterising both
the IBSD and the BBSD. The "number of fragile elements" criterion was introduced
into the discussion together with the pre-existing "plane of weakness" and "pillar of
strength”" criteria. An investigation based on developments of these three criteria
using the renormalisation group approach indicates that the larger the fractal
dimension characterising the IBSD, the more difficult it is to fragment the rock mass
by blasting; and that the larger the fractal dimension characterising the BBSD, the
easier it will have been to fragment the rock mass by blasting. It was agreed that these

conclusions are in conformity with the process revealed by the Energy-Block-
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Transition model while being supported by the concept of fracturing in fracture
mechanics.

Taking into account that blastability is a complex property, a methodology for the
assessment of blastability of rock masses using the Rock Engineering Systems
method has been proposed in Chapter 6. The methodology has systematically taken
into account twelve factors which a review suggested would give a comprehensive
set of factors that influence the blastability of a rock mass. The contribution of each
of these factors to the blastability of the rock mass is identified using interaction
matrix analysis, which is implemented by deriving a weighting for each factor.
Combining the results from the interaction matrix analysis and the rating charts
proposed in this research, the blastability of the rock mass may be represented
quantitatively using the Blastability Designation. A preliminary classification for
blastability of rock masses according to the Energy-Block-Transition coefficient has

therefore been suggested as follows.

Table 8.1 Blastability classification according to the Energy-Block-Transition
coefficient B; and BD

Description of ease of blasting| Very Easy| Easy | Moderate| Difficult |Very difficult
Blastability Class 1 2 3 4 5
B; (m0-3/kwh/t) >40 20-40 | 13-20 8-13 <8
BD <0.25 ]0.25-0.50{ 0.50-0.70 | 0.70-0.85 >0.85

The methodology has been successfully applied to the assessment of the
blastability of rock materials at the A5 Glyn Bends Improvement site and to the
prediction of armourstone production of the Overseas Quarry, both presented in
Chapter 7.

8.1.6 Further Conclusions from Case Studies
The A5 Glyn Bends Improvement site:

Both the geological structures and the mechanical properties of rock materials vary
significantly from one place to another. As a result, the blastability of the rock mass

exhibits differences. These differences could be one reason that the blasting results

prior to this study were on certain occasions unsatisfactory.



The new field data set obtained from this case study, when compared with a
previous available geological data set, suggests that the resistance to blasting had
previously been underestimated. This could be why the previous blasting results

experienced tight blastpiles and a significant oversize fraction.

The variability of blastability of the rock materials at the site should ideally have
been taken into account, since the increase between Blastability Designation of 0.631
(Site S4) and 0.725 (Site S3) may represent an obvious increase of specific charge

required.
The Overseas Quarry.

It was concluded from the data available, that 95% of blasted blocks in the quarry
would be less than 1 tonne. This result indicated that the quarry might not able to
produce the sufficient quantity of large blocks that was needed for the armourstone
contract. It was suggested that a further quarry site investigation and analysis should
be carried out in order to improve the confidence of these initial predictions of the

BBSD in the quarry.

It has found that Cunningham's algorithm for calculating the value n, representing
the steepness of BBSD, should be further calibrated since there was an obvious large
difference in the values of n between the sieving result and the derivation from

Cunningham's algorithm.

8.2  TOPICS SUGGESTED FOR FURTHER RESEARCH

8.2.1 Investigations into IBSDs of Rock Masses with more than Two Spacing
Distributions

So far, and with the exception of direct block dissection methods using raw data, all
the investigations of the IBSD of rock masses have been limited to the prediction of IBSD
with one type of spacing distribution for all discontinuity sets, although preliminary
discussion of the possible outcome of IBSD from two or more types of discontinuity
spacing distributions was included in this research. In practice, it is common for two or
more kinds of discontinuity spacing distributions to be encountered. This research has
deduced that the IBSD of a rock mass with two or more of the most common kinds of
discontinuity spacing distributions would fall into the envelope formed by the lower

249



boundary IBSD curve from discontinuities with uniform spacing distributions and an
upper boundary IBSD curve from discontinuities with fractal spacing distributions.
Whilst this preliminary deduction was supported by the case study of the A5 Glyn Bends
site, there is scope to explore combined distributions so as to narrow the IBSD range.
This could be realised using similar procedures to those reported in Chapter 3 by
including two or more different discontinuity spacing distributions. Through such an
investigation, it might be possible to improve significantly our understanding of the
influence of discontinuity pattern on engineering properties of rock masses.

8.2.2 Influence of Impersistent Discontinuities on Prediction of IBSD

In Chapter 4 the following equation

v, = —
' (Fnp)!

(Vipdo (8-4)

has been developed for adjusting the prediction of IBSD based on the assumption of
all-persistent discontinuities, where (Vip)o represents the predicted result of IBSD
from the all-persistent assumption, Vip is the corrected result incorporating the
influence of impersistent discontinuities on the result. Fjn, is the relative
impersistence factor. It has been suggested that the index g in Eqn. 8-4 should take
the value of 1/5-1/2, which has been supported by the case studies. It is obvious that
the adjusted result will be quite sensitive to the value of ¢q. As such, its calibration
from a much wider source of field case studies should be carried out.

8.2.3 Improvement on the Photo-scanline Technique for Estimating BBSDs of
Blastpiles

The photo-scanline technique used for directly assessing the BBSD of a blastpile
devised in this research has been developed from artificial blastpiles. The sizes of
aggregates in the artificial blastpiles are not more than 150 mm, far from 1.0 m - a
typical upper size of a real blastpile. This might affect the application of the
equations although the BBSD blast design predictions from the A5 Glyn Bends' case
study has given support to the validity of the direct photo-scanline BBSD technique.
The errors related to the technique encountered require further investigation although

a preliminary discussion of these has been given. Investigations of the influence of
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the number and directions of surveying lines laid on a photographs and further case
studies with direct sieving results of BBSD will be necessary to help improve the
technique and to advance its applications along-side development in image analysis

software for measurement of blast fragmentation.

8.2.4 Validation of the Energy-Block-Transition Model

The proposed Energy-Block-Transition model has been the subject of examination
in the two case studies carried out in this research and the data cited from published
literature. A well-developed model should, however, be exposed to a variety of case
study examinations with different geological conditions in order to use it with
sufficient confidence in practice. This could be most efficiently implemented by the
setting up of a database with the full record of different in-situ geological conditions,
blast patterns, explosive energy inputs and the directly assessed BBSD results, e.g. by
sieving, photo-scanline, image analysis etc. Thus, a series of trial model or full-scale
blasts could be necessary for this purpose.

In the present Energy-Block-Transition model, the energy input has only been
related to uncontrollable factors consisting of in-situ rock mass properties and
geological structures, represented by the Energy-Block-Transition coefficient. It is
known that in a practical blast, the energy input will be partly affected by many
factors controlled by the blast design, such as burden, spacing, timing, decoupling,
etc. An improvement on the present Energy-Block-Transition model which includes
such controllable factors could be expressed as follows:

E =t SuSu (8-5)

where f. represents a coefficient which includes the influence of the controllable
factors on the energy input needed. A detailed investigation based on an examination
of Eqn. 8-5, using a database of blasting results would be of great interest for blast
design.

8.2.5 The Classification of Blastability
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The classification of blastability presented in Chapter 6 and suggested in Table 8.1
has been based on the blastability assessment of rock masses. The assessment
includes a significant account of subjective criteria through the matrix coding
procedure that was undertaken by the author. Systems approaches such as the Rock
Engineering Systems and the Grey Systems have been exploited in this research to
reduce the subjectivity. Further investigations into how to more effectively select the
key representative factors in the interaction matrix of the blastability system, how to
more reasonably represent them by objectively measurable parameters and how to
more accurately code the interaction mechanisms in the matrix are necessary
questions to answer for improvement in the blastability assessment. The setting up of
a research programme of purpose-designed blasts and the setting-up of a database
collected from these blasts would be one of most important steps towards
improvement in blasting models. The introduction of expert systems analysis and
neural network analysis could provide assistance in the realisation of improvement in

predicting the output of blasting.

In the Chapter 6, Eqn. 6-38 for the relationship between the Energy-Block-
Transition coefficient and the Blastability Designation, and Eqn. 6-39 for estimating
the Rock Factor A according to the Blastability Designation are both poorly
constrained empirical equations with low confidence levels. They need to be re-

calibrated using further blast results.
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APPENDIX A. PROGRAM LISTINGS FOR GCA AND DIATRACE

Al

oNoNoNe)

129

109

119

429

419

55

99

230

210

299

290

PROGRAM LISTIN FOR GREY CORRELATION ANALYSIS, GCA

* *okk ok e Ak ok ke ok o ok e e o ke 20 2 3 2 3 3 ok e ke 2k ke e ok ok ok

* PROGRAM OF CALCULATING THE CORRELATION MEASURE
* COMPILED IN QMWC BY P. LU, IN MAY 1994

e 3 ok ok ok ok ok ok Xk Sk e 3 3 k¢ 2k ok 3 ok 3k sFekkok

DIMENSION X0(14),X(4,14),PSI(4,14),RM(4)
DIMENSION SUBV(14),DMI(4),DMA(4),XX(14)
OPEN(3,STATUS='OLD',FILE='"GCA-d-1.DAT)
OPEN(4,STATUS=NEW',FILE="GCA-D-O.DAT)
READ(3,*) NILLNK,NC,COFP
WRITE (4,129)NI,NK,NC,COFP
READQ3,*) (X0()),(X(1,J),I=1,NI),J=1,NK)
FORMAT(/1x,*****Grey correlation analysis output*******x+*' //
"**%%xx*Control data is¥***'//3x,315,F8.3)
WRITE (4,109)
FORMAT(IX"********OﬁginaI data*******'//)
WRITE (4,119) (3,X0()),(X{1,J),I=1,NI),J=1,NK)
FORMAT(1X,14,5F12.4)

**INITIALIZING DATA**
IF (NC .EQ. 0) GOTO 55
CALL INTI(X0,X,NINK)
WRITE (4,429)
FORMAT(/1X,"********]nitialized Data*******'/)
WRITE (4,419) (3,X0(),(X(1,J),I=1,NI),J=1,NK)
FORMAT(1X,14,5F12.4)

**ENDING OF INITIALIZING DATA**
DO 210 1I=1,NI
DO 99 J=1,NK
XX(1=0.0
CONTINUE
DO 230 J=1,NK
XXDH=XL))
CONTINUE
CALL VSUB(X0,XX ,NK,SUBV)
CALL COMPMI(SUBV,NK,DMI(I))
CALL COMPMA(SUBV,NK,DMA(I))
CONTINUE
DO 250 I=1,NI
DO 299 J=1,NK
XX(1)=0.0
CONTINUE
CALL COMPMI(DMI,NI,DDMI)
CALL COMPMA(DMA,NI,.DDMA)
DO 290 J=1,NK
X0K=ABS(X0(1)-X({1,)))
CALL COEFF(DDMI,DDMA,COFP,X0K,PPSI)
PSI(1,J)=PPSI
XX(N=PSK1,J)
CONTINUE
CALL CORMEA(XX,NK,RR)
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C
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110

C
c
C

120
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100
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RM(I)=RR

CONTINUE

WRITE(4,149)

WRITE (4,159) (J,(PSI(1,]),I=1,NI),J=1,NK)
FORMAT(1X,14,4F12.4)

FORMAT(/1X,'****The correlation coefficients of Xi-X0 at time k ***'/)
WRITE (4,179)

WRITE (4,199) RM

FORMAT (/1X,***The correlation measure of Xi--X0 ****")
FORMAT (/1X,4F12.4)

STOP

END

SUB-PROGRAM OF CALCULATING THE COEFF. OF CORRELATION AT POINT

SUBROUTINE COEFF(DMIN,DMAX,P,DIK,EIK)
EIK=(DMIN+P*DMAX)/(DIK+P*DMAX)
RETURN

END

SUB-PROGAMME OF CALCULATING THE MINUS VALUE

SUBROUTINE VSUB(X0,X1,N,CAL)
DIMENSION XO0(N), X1(N),CAL(N)
DO 1101=1,N
CAL(I)=ABS(XXD-X1(I))
CONTINUE

RETURN

END

SUB-PROGRAM FOR CALCULATING THE CORRELATION MEASURE

SUBROUTINE CORMEA(COFLN,R)
DIMENSION COFI(N)

SUM=0.0

DO 120 I=1,N

SUM=SUM+COFI(I)

CONTINUE

R=1.0/N*SUM

RETURN

END

SUB-PROGRAM OF COMPARING THE Xk.
COMPARING THE Xk AND IDENTIFYING THE MINIMUM VALUE

SUBROUTINE COMPMI(R,K,VMI)
DIMENSION R(K)

VMI=R(1)

DO 1001=2,K

IF (VMLLE. R(I)) GOTO 100
VMI=R(D)

CONTINUE

RETURN

END

C COMPARING THE Xk AND IDENTIFYING THE MAXMUM VALUE

C



SUBROUTINE COMPMA(R,K,VMA)
DIMENSION R(K)

VMA=R(1)

DO 100 I=2,K

IF (VMA.GE.R(I)) GOTO 100
VMA=R(I)

100 CONTINUE

RETURN
END

SUB-PROGRAM FOR INITIALIZING THE DATA

SUBROUTINE INTI(X0,X,NL,NK)
DIMENSION XO0(NK),X(NI,NK)
DX01=X0(1)

DO 5101=1,NK
X0(I)=X0(I)/DX01

510 CONTINUE

DO 410 I=1,NI
DX1=X(,1)

DO 430 J=1,NK
X(L1)=X(L,J)/DX1

430 CONTINUE
410 CONTINUE

RETURN
END

A2 PROGRAM LISTING FOR ESTIMATION OF DISCONTINUITY

DIAMETER, DIATRACE

DETERMINE THE MEAN DIAMETER FROM TRACE LENGTH DISTRIBUTION, USING

Warburton's EQUATION THROUGH NUMERICAL SOLUTION
PARAMETER (N=21,NP=21)
DIMENSION X0(N+1),DIA(N),PX(N),PD(N),A(N,N),B(N),INDX(N),VV(100)
DIMENSION A1(N,N),B1(N),PFD(N),PDX(N),SSUM(500),CC(500)
OPEN(9,FILE="POT.DAT,STATUS=NEW')
READ RUNNING-CONTROL ID
WRITE(*,5)
FORMAT(/1X,'INPUT TRACE LENGTH DISTRIBUTION CONTROL ID: 0,1,2,3.",
&1x,'TD=0, no assumption on distribution of trace length;',1x,
&'1ID=1,2,3 are respectively negative exponential, lognormal and’,
&1x,'fractal trace length distribution /)
READ (*,)ID
READ RUNNING-CONTROL,IC
WRITE(*,7)
FORMAT(/1X,'INPUT RUNNING-CONTROL NUMBER: 0/1. IC=1, LOOP-',
& SEARCHING; IC=0, POINT-SEARCHING')))
READ (*,IC
WRITE (9,9)
FORMAT (//1X,NUMERICAL SOLUTION TO DIAMETER DISTRIBUTION WHEN',
& ASSUMING OR DETERMINING THE TRACE LENGTH DISTRIBUTIONY)
READ THE VALUES ARRAY X0
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C READ (*,*)X0
C FINDING THE VALUES OF DIA(N)
DO 201=1,N
DIA(D=(X0(D)+X0(I+1))/2
20 CONTINUE
C FINDING THE ACCUMULATIVE PROBABILITY OF TRACE LENGTH DISTRIBUTION
IF (ID.EQ.0) THEN
WRITE (*,22)
22  FORMAT (/1X,'no assumption on dis. trace length, INPUT ITS',1x,
*' ACCUM. PROB. FOR ITS DISTRIBUTION & ITS MEAN TRACE LENGTHY)
C READ(,*)AMEAN, PX
GOTO 5555
ELSE IF (ID.EQ.1) THEN
GOTO 1111
ELSE IF (ID.EQ.2) THEN
GOTO 2222
ELSE IF (ID.EQ.3) THEN
GOTO 3333
END IF
1111  WRITE(*,1112)
1112 FORMAT(1X,EXP-NEG. DIS, INPUT MEAN ITS LENGTH VALUE',))
READ (*,*) AMEAN
WRITE(9,1114)AMEAN
1114 FORMAT(1X, MEAN TRACE LENGTH IS' F12.4)
WRITE (*,1114)AMEAN
DO 1117 I=1,N
CALL FUNEXP(X0I),X0(I+1),AMEAN,PXLU)
PX(D)=PXLU
PDX(I)=PXX)/(X0(I1+1)-X0(I))
1117 CONTINUE
GOTO 5555
2222 WRITE(*,2212)
2212 FORMAT(1X, INPUT CONTROL VALUES FOR MEAN LENGTH, u, Sigma',/)
READ (*,*) XU,XSIGM
AMEAN=EXP(XU+XSIGM*XSIGM/2.)
WRITE(9,2214)XU,XSIGM,AMEAN
2214 FORMAT(1X,’XU='F8.4,3X,'XSIGM="F11.4,3X, X(MEAN)="F12.4)
WRITE (*,2216)AMEAN
2216 FORMAT(/1X,;MEAN TRACE LENGTH FOR LOG-NOR. DIS. IS',F10.4/)
DO 2218 I=1,N
CALL FUNLN((X0(I),X0(I+1),40,XU,XSIGM,PX1L.U)
PX()=PXLU
PDX(D=PX(I)/(X0(1+1)-X0(I))
2218 CONTINUE
GOTO 5555
3333 WRITE(*,3312)
3312 FORMAT(1X,INPUT CONTROL FOR FRACTAL MEAN LENGTH,L-X,U-x,D',/))
READ (*,*) AD,BD,DD
AMEAN=DD/(1.0-DD)*(BD-AD*(BD/AD)**DD)/((BD/AD)**DD-1.0)
WRITE(9,3314)AD,BD,DD,AMEAN
3314 FORMAT(1X,X(L)="F8.4,3X,X(U)="F11.4,3X,'D(FRAC.)="F8.3,3X,
&'X(MEAN)="F12.4)
WRITE (*,3316)AMEAN
3316 FORMAT(/1X,'MEAN TRACE LENGTH FOR FRAC. DIS. IS ,F10.4/)
DO 3318 I=1,N
CALL FUNFRA(X0(I),X0(I+1),AD,BD,DD,PX1L.U)
PX()=PXLU
PDX(1)=PX(I)/(X0(I+1)-X0(I))
3318 CONTINUE
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C NORMOLISING PX(I)
5555 SSM=0.0
DO 451=1,N
SSM=SSM+PX(I)
45 CONTINUE
WRITE (*,*) SSM
DO 411=1,N
PX()=PX(I)/SSM
41 CONTINUE
C
WRITE (9,44)
WRITE (9,33) (I,X0(I), DIA(I),PX(I),PDX(I),I=1,N)
44  FORMAT (/SX,*T* 3X, **X()**' 2X, **DIA.(I)*' 2X, *PDF(I)****
&**PDX(I)***/)
33  FORMAT (1X,14,2F12.4,2F12.6)
WRITE (9,55) N+1,X0(N+1)
55 FORMAT (1X,14,F12.4)
C ARRANGING THE ELEMENTS BELOW DIAGONAL AS 0
DO 80 I=2,N
DO 60 J=1,I-1
A(ID=0.0
60 CONTINUE
80 CONTINUE
C FINDING THE VALUES OF DIAGONAL ELEMENTS
DO 120 I=1,N
A(LD=SQRT(DIA(I)**2-X0(I)**2)
120 CONTINUE
C FINDING THE VALUES OF ELEMENTS ABOVE DIAGONAL
DO 160 I=1,N-1
DO 140 J=I+1, N
A(LJ)=SQRT(DIA(J)**2-X0(J-1)**2)-SQRT(DIA(J)**2-X0(J)**2)
140 CONTINUE
160 CONTINUE
C COPY ORIGINAL A(N,N)
DO 175 I=1,N
DO 165 J=1,N
ALLD)=A))
165 CONTINUE
175 CONTINUE
C  WRITE (*,199) ((A(I)),J=1,N),]=1,N)
199 FORMAT(1X,14F5.3)
C CALL LUDCMP TO GET THE BASIC MATRIX FOR
C  SOLVING THE LINEAR EQUATION SET
CALL LUDCMP(A N,NP,INDX,D)
C INPUT OR ADJUSTED TO THE MEAN TRACE LENGTH
IF (IC.NE.0) GOTO 222
200 WRITE(*211)
211 FORMAT(1X,INPUT A NEW VALUE OF THE JOINT DIAMETER',/)
READ (*,*)C
GOTO 244
222 IAIM=ANINT(0.25*AMEAN)
IA2M=ANINT(0.9*AMEAN)
IA3M=IA2M-IA IM
DO 500 1A=1,4*IA3M
C=0.25*IA+IAIM
244  IF (C.EQ.0.0) GOTO 999
DO 220 I=1,N
B(I)=PX(I)*C
C COPY ORIGINAL B(l)



B1()=PX(I)*C
220 CONTINUE
C CALL SUB-ROUTINE to SOLVE THE LINEAR EQUATION SET
CALL LUBKSB(A,N,NP,INDX,B)
c examing if PD(i)> or =0
do 230i=1,n
if (b(i).GE.0) goto 230
write (*,232)
232 format (/1x,'there is some P(i)<0, please adjust X(i)/)
goto 999
230 continue
C  WRITE (*,*)B
C CALL SUB-ROUTINE TO IMPROVE THE SOLUTION
C DO240I=1,5
CALL PROVE(A1,A,N,NP,INDX,B1,B)
C240 CONTINUE
DO 260 I=1,N
PD(1)=B(I)
260 CONTINUE
C EXAMINING WHETHER SUM OF PD(I) EQUAL TO 1
SUM=0.0
DO 280 I=1,N
SUM=SUM+PD(I)
280 CONTINUE
IF(IC.EQ.0) GOTO 299
CCaA)=C
SSUM(IA)=SUM
IF (IC.NE.0) GOTO 290
299 IF (ABS(SUM-1).LE.0.005) GOTO 555
write (*,*) B
GOTO 200
290 IF (ABS(SUM-1).LE.0.005) GOTO 555
500 CONTINUE
GOTO 666
555 WRITE (9,311)C,SUM
WRITE(*,*) B
311 FORMAT(//1X,MEAN DIAMETER='F10.4,5X,'SUM OF ACCU. PROB.=F10.5)
C COMPUTING THE PROBABILITY DENSITY OF DIAMETER
DO 300 I=1,N-1
PFD(1)=PD(I)/(DIA(I+1)-DIA(I))
300 CONTINUE
C PFD(1)=PD(1)/(DIA(1)/2+(DIA(2)-DIA(1))/2)
PFD(N)=PD(N)/(DIA(N)-DIA(N-1))
WRITE (9,355)
WRITE(9,333)(1,DIA(I),PD(I),PFD(1),I=1,N)
355 FORMAT(/1X,*I****DIA (I)***ACCUM. P(D)*****PROB.DENS. g(d)****/)
333 FORMAT (1X,14,3F12.5)
GOTO 999
666 WRITE(9,688)
WRITE(*,*)B
WRITE(*,*)C,SUM
WRITE (9,677) (I,CC(I),SSUM(I),I=1,4*IA3M)
688 FORMAT(lX"**I*********C******SIJ’M******‘/)
677 FORMAT (1X,14,2F12.5)
DATA X0/0.5,75,130,195,265,335,435,525,635,750,875,1000,1140,1250,
&1445,1675,1900,2200,2450,2675,3000,3400/
999 STOP
END
C
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MAIN PROGROMME END

FINDING THE ACCU. PROBABILITY OF NEG-EXP TRACE LENGHT DISTRIBUTION
NEGTIVE-EXPONENTIAL DISTRIBUTION
SUBROUTINE FUNEXP(XL,XU,AM,PX)
PX=(1-EXP(-XU/AM))-(1-EXP(-XL/AM))
RETURN
END

naonOna

FINDING THE ACCU. PROBABILITY OF LOGNORMAL TRACE
LENGTH DISTRIBUTION USING MUNERICAL INTEGRATION
SUBROUTINE FUNLN(XL,XU,NH,BU,BSIGM,PX)

X=XL

H=(XU-XL)/NH

X1=(LOG(X)-BU)/BSIGM
FX=1./(SQRT(2*3.142)*BSIGM*X)*EXP(-0.5*X 1%*2)

$=0.0

DO 10 I=1,NH

SI=FX*H

S=S+SI

X=X+H

X1=(LOG(X)-BUY/BSIGM
FX=1./(SQRT(2*3.142)*BSIGM*X)*EXP(-0.5%X1%*2)

10 CONTINUE

PX=S

RETURN

END

aanan

FINDING THE ACCU. PROBABILITY OF FRACTAL TRACE LENGHT DISTRIBUTION
SUBROUTINE FUNFRA(XL,XU,AD,BD,DD,PX)

o0 a0

FRACTAL DISTRIBUTION
PX1=(1-(AD/XL)Y**DD)/(1-(AD/BD)**DD)
PX2=(1-(AD/XU)**DD)/(1-(AD/BD)**DD)
PX=PX2-PX1
RETURN
END

oNoNe

C GIVEN AN N*N MATRIX A, WITH PHYSICAL DIMENSION NP, THIS SUBROUTINE
C REPLACEIT BYTHE LU DECOMPOSITION OF A ROWWISE PERMUTATION OF ITSELF
SUBROUTINE LUDCMP(A,N,NP,INDX,D)
PARAMETER (NMAX=100,TINY=1.0E-20)
DIMENSION A(NP,NP),INDX(N),VV(NMAX)
D=1.
DO 121=1,N
AAMAX=0.
DO 11J=1,N
IF (ABS(A(1,J)).GT.AAMAX) AAMAX=ABS(A(L)))
11 CONTINUE
IF (AAMAX.EQ.0 ) PAUSE 'Singular matix.’
VV(I)=1/AAMAX
12 CONTINUE
DO 19 J=1,N
IF (J.GT.1) THEN



13

14

15

16

17

18

19

aaonon

DO 14 1=1,J-1
SUM=A(,J)
IF (I.GT.1) THEN
DO 13 K=1,I-1

SUM=SUM-A(LK)*A(K.J)

CONTINUE
A(L)=SUM
ENDIF
CONTINUE
ENDIF
AAMAX=0.
DO 16 I=I,N
SUM=A(LJ)
IF (J.GT.1) THEN
DO 15 K=1,J-1
SUM=SUM-A(LK)*A(K.J)
CONTINUE
AILT)=SUM
ENDIF
DUM=VV(I)*ABS(SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=I
AAMAX=DUM
ENDIF
CONTINUE
IF (J.NE.IMAX) THEN
DO 17 K=IN
DUM=A(IMAX K)
AIMAX,K)=A(J,K)
A(J,K)=DUM
CONTINUE
D=D
VV(IMAX)=VV(J)
ENDIF
INDX(J)=IMAX
IF(J.NE.N) THEN
IF (A(J,).EQ.0.) A(J,J)=TINY
DUM=1/A(J.J)
DO 18 I=J+1,N
A(LT)=A(LJ)*DUM
CONTINUE
ENDIF
CONTINUE
IF(A(N,N).EQ.0.) A(N,N)=TINY
RETURN
END

SOLVES THE SET OF N LINEAR EQUATIONS A*X=B. HERE A IS THE MATRIX A
RATHER ASITS LU DECOMPOSITION , DETERMINED BY THE SUBROUTINE LUDCMP
SUBROUTINE LUBKSB(A,N,NP,INDX,B)

DIMENSION A(NP,NP),INDX(N),B(N)
11=0
DO 12 I=IN

LL=INDX(I)

SUM=B(LL)

B(LL)=B(I)

IF (I.NE.O) THEN

DO 11 J=ILI-1
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SUM=SUM-A(LJ)*B(J)
11  CONTINUE
ELSE IF (SUM.NE.0.) THEN
II=I
ENDIF
B(D=SUM
12 CONTINUE
DO 14 I=N,1,-1
SUM=B(I)
IF (LLT.N) THEN
DO 13 I=I+1,N
SUM=SUM-A(,J)*B(J)
13 CONTINUE
ENDIF
BM)=SUM/ACLI)
14 CONTINUE
RETURN
END

anan

IMPROVE THE SOLUTION
SUBROUTINE PROVE(A,ALUD,N,NP,INDX,B,X)
PARAMETER (NMAX=100)

DIMENSION A(NP,NP),ALUD(NP,NP),INDX(N),B(N),X(N),R(NMAX)
REAL*8 SDP
DO 12 =1 N
SDP=-B(I)
DO 11J=I,N
SDP=SDP+DBLE(A(I,J)*DBLE(X(J)))
11  CONTINUE
R(I)=SDP
12 CONTINUE
CALL LUBKSB(ALUD,N,NP,INDX,R)
DO 13 I=1N
X(M=X{D-RA)
13 CONTINUE
RETURN
END
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APPENDIX B GENERATING RANDOM NUMBERS AND COMPILING
GROUPS OF INPUT DATA

B.1 GENERATION OF RANDOM NUMBERS WITH UNIFORM
DISTRIBUTION

A random number generator, named GOSCAF, for producing random numbers with
uniform distribution is called by RANFRA. The program RANFRA (see Appendix
B.2) is for generating the real numbers with fractal distribution for simulating natural
discontinuities in rock masses. The generator GOSCAF for producing random numbers
with uniform distribution has also been used to generate the data files of dip direction
and dip of discontinuities in the simulations. This generator is a standard NAG routine
available on the mainframe at QMWC (Numerical Algorithms Group, 1984).

The routine GOSCAF returns the next pseudo-random number from the basic
uniform [0,1] generator. The basic generator uses a multiplicative congruential

algorithm:
biy 1=1313xb; mod 259. (B-1)
The integer b; 4 is divided by 259 to yield a real value y in the range of 0 and 1.

The value of b; is preserved internally in the code. The initial value of, is set by
default to 123456789x(232+1).

If a pseudo-random real number from a uniform distribution between a,,;, and
Amax (@min<amax) rather than 0.0 and 1.0 is required, a call to Nag GOSDAF has to

be made, which returns a pseudo-random number s taken from a uniform distribution

over the interval (a5, Amax)

S=amaxt(Amax-9min)y: (B-2)

where, y is a random number from a uniform distribution over (0,1), generated by
GO5CAF.

The following are two examples of them.

(1) Random numbers varying in the range of 170 and 190
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185.9025
174.5143
177.4256
174.5007
187.5749

(2) Random numbers varying in the range of 80 and 110

87.4256
84.5007
97.5749
80.9495
83.6114

B.2 GENERATION OF ARTIFICIAL DISCONTINUITIES WITH FRACTAL
SPACINGS AND THE PROGRAM RANFRA

To generate a uniform probability distribution (see Appendix B.1), we know the
probability of generating a number between x and x+dx, denoted p(x)dx, is given by

(x)dx dx O<x<l1 (B-3)
x)dx = . -
P 0 otherwise

The probability distribution p(x) is normalised, so that

1

[ pxyax =1. (B-4)
0

Suppose that we generate a uniform variable x and then take some prescribed
function of it, y(x), the probability distribution of y, denoted p(y)dy, is defined by the
following basic transformation law of probabilities, which is simply given by

Ip(y)dyl=Ip(x)dx), (B-5)

or
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p(y)=p(x)
y

dx
d—|. (B-6)

F)

Uniform ¢ -
variable in

P(y)

A 4

0 Transformed variable out

y

Fig. B.1 Generation of desired distribution from uniform variable using

transformation (after Press et al., 1986)

Let us see what is involved in using the above transformation method to generate a
desired distribution of y, say one with p(y)=f(y) for a positive function whose integral
is 1 (see Fig B.1).

According to Eqn. B-6, we need to solve the differential equation

;ﬂ - ). B-7)
Y

The solution to Eqn. B-7 is just x=F(y), where, F(y) is the indefinite integral of f{y).
The desired transformation which takes a uniform variable into a distribution as f{y) is

therefore
y(x)=F-1(x), (B-8)

where F-I is the inverse function to F. Eqn. B-8 has an immediate geometric
explanation (see Fig. B.1). Since F(y) is the area under the probability curve to the left



of y, Eqn. B-8 is just the prescription: select a uniform random x, then find the value y
that has that fraction x of probability area to its left, and return the value y. In other
words, for a continuous random variable, if the cumulative distribution function is
F(x) then for a uniform (0, 1) random variable, u, y=F'1 (u) will have the cumulative

distribution function F(x).

Whether the transform method will work is dependent upon whether it is feasible
to compute the inverse function F -1 (x). Sometimes, it is, and sometimes it is not. For

a fractal distribution

F(x)=—%x_D. (B-9)

F-1 (x) , the inverse function to F(x) is therefore as follows

F‘l(x) = (—%x) -WDy (B-10)

We are therefore able to generate a value distributed fractally by firstly creating a
pseudo-random real number y from a uniform distribution between 0 and 1, then
changing y to the value u by u =F-1(y) defined by Eqn. B-10. A FORTRAN
programme named RUNFRA for generating the pseudo-random real number with
fractal distribution has been developed.

The random number generator, i.e. the programme RANFRA has been used to
generate real numbers with fractal distribution for simulating natural discontinuities in
rock masses. The generator has to be jointly used with the generator for producing real
numbers with uniform distribution, which is a standard NAG routine available on the
mainframe at QMWC.

Running the programme RANFRA in the mainframe, the real numbers with fractal
distribution for simulating natural discontinuities in rock masses can be obtained. The
program of this generator is listed below. The numbers obtained have been used to
form the spacing data files of a fractal distribution with given fractal dimensions or
principal mean spacings.
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The program listing for RANFRA

3 e e e e o o e ke ke sk e o Sl Sk S ok ok o ke 3k e 3 ke sk ok s s o e ke e e e s ok sk ke ke ke e sk S 3k s sk ok e ok sk ok e ok e ok o sk ok sk 3k ok ok ok ok ok e ok ok

* Generator of random number distributed fractally (f(x)=Ax‘(1+D),
* where D is the fractal dimension defined by number-frequency relationship
* N(x)=CxD, compiled by P. Lu, in QMWC, London Univ. in May, 1994
e e ok 2 3 o e ke 3k sl s 3 3k e ke 3k o ol 3k e ke ok sk ok ok ok k- e s she e sk dfe e % ok e ik ke ok
* RUNFRA Program Text
* .. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)
* .. Local Scalars ..

DOUBLE PRECISION X, Y(100), A, X0, BM,XMEAN, D

INTEGER I
* .. External Functions ..

DOUBLE PRECISION RUNFRA

EXTERNAL RUNFRA
* .. External Subroutines ..

EXTERNAL GO5CBF
* .. Executable Statements ..

WRITE (*,*) INPUT VALUES OF Xmin,Xmax,D'
OPEN (NOUT, STATUS="NEW', FILE="of .dat")
WRITE (NOUT,*) 'Fractal Rundom Generation Program Results'

READ (*,*)X0,BM,D
c X0=0.05
c BM=10.0
c D=0.50

A=D*X0**D/(1-(X0/BM)**D)
XMEAN=A/(1-D)*(BM**(1-D)-X0**(1-D))
WRITE (NOUT,99) X0,BM,XMEAN,A,D
99 FORMAT(//1X,Low Cut-off X0="F6.3, 2X,'Upper cut-off B=', F8.3,2X
*'Average Spacing S=',F10.4,1X//'Coefficient A="F12.6,5X,
*'Fractal Dimension D='F10.3)
WRITE(NOUT,*)
CALL GO5CBF(0)
DO201=1,100

*

X = RUNFRA(A,D,X0)

* Y(D=X
WRITE (NOUT,99999) X
20 CONTINUE
c WRITE (NOUT,99999)Y
STOP
*
99999 FORMAT (1x,F12.4)
END

FUNCTION RUNFRA(A,D,X0)

* .. External Functions ..
DOUBLE PRECISION A,D,GO5CAF,X,X0
EXTERNAL GOSCAF
DOUBLE PRECISION RUNFRA

RUNFRA=(X0**(-D)-GO5CAF(X)*D/A)**(-(1/D))

RETURN
END
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An example of random numbers with fractal distribution has been represented as
follows, where the lower cut-off is 5 cm, upper cutoff is 10 m; the fractal dimension is
0.24, and the average spacing is 1.20 m; only the first 20 numbers have been listed.

1.720
0.105
0.183
0.104
3.234
0.058
0.089
0.237
0.056
0.463
6.318
0.600
0.651
0.863
0.096
3.294
0.166
0.312
0.139
0.069

B.3 GENERATING GROUPS OF DISCONTINUITIES AND COMPILING DATA

Using the generated random numbers described in B.1 and B.2, we can compile
input data files for running the programme BLOCKS (Wang, 1992) according to the
assumptions and simplifications made in Section 3.6. Among these data files, one
kind is orientation data files which are formed by uniformly distributed random
numbers, another is the spacing data files which are formed by random numbers with
fractal distributions.
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The mean orientations of three sets of discontinuities are assumed to be (1) north-
south striking and vertical (N-S vertical set); (2) east-west striking and vertical (E-W
vertical set); and (3) horizontal (H set). The ranges of the random variation of the dips

and dip directions for them are illustrated in Table B.1

Table B.1 Orientation parameters in the three sets of discontinuities simulated

Set Mean orientation Range of dip Range of dip
No. description (°) direction (°)
1 Horizontal 0-10 0 - 360
E-W vertical 80 - 100 170 - 190
3 N-S vertical 80 - 100 80 - 100

Note the convention used to describe the dip. Dip is usually recorded as 0 - 90°.
Here we used the convention out of this range. This is for expressing conveniently the
direction sense of a plane. Using this convention, a discontinuity having a dip
direction 170° and a dip 95° or -85° will be recorded to be 350°/85°.

In order to form a group of discontinuities, not less than nine data files are
requested. Among them, three are the orientation data files for dips, three are the
orientation data files for dip directions, and the last three are the spacing data files.
More than sixty groups of such data files have been generated.

Table B.2 Sample of input data of simulated discontinuities for one set

Discontinuity Intercepts Dip direction Dip
No. (m) (®) °®)

1 1.720 185.9025 87.4256

2 1.824 174.5143 84.5007

3 2.007 177.4256 97.5749

4 2.111 174.5007 80.9495

5 5.345 187.5749 83.6114

To compile a group of data files of simulated discontinuities, the first discontinuity
in a set is formed by selecting one data starting at any point from each of three
selected data files (i.e. the intercept,dip direction and dip files). Selecting sequentially
another three data from these three data files respectively generates the second
discontinuity. Repeating this procedure until the needed number of discontinuities in



each set has been obtained, the input file for this group of discontinuities is compiled.
For example, the combination of the two example data for orientation listed in B.1,
and the first 5 data listed as the example data in B.2, gives five discontinuities. The
spacing of these discontinuities is actually an example of one which holds a fractal
statistical distribution with a fractal dimension of 0.24 (the mean principal spacing is
about 1.2 m). Their orientations randomly distributed with the dip direction from 170°
-190°, and the dip from 80 - 110°, as shown in Table B.2.
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APPENDIX C DERIVATION OF THE TRANSFORMATION AREA AA,
EXAMINATION OF THE MEANMEDIAN RELATION
Sa/S50, AND THE RENORMALISATION GROUP METHOD

C.1  DERIVATION OF THE TRANSFORMATION AREA AA

Generally, suppose that both IBSD and BBSD hold a theoretical distribution and
their cumulative curves are respectively represented by both functions Py(s) and Py(s),
as illustrated in Fig. C.1. It follows that AA can be obtained through the following

equations.

S 5.
A= [* B(S)AS +(S, = Su) = [ R(S)ds, 1)

where, S,} and Syp, are respectively the upper and lower boundaries of BBSD curve;
Sy; and Sy; are respectively the upper and lower boundaries of IBSD curve.

100 N\

Persentage passing
3

Siy S Sub Sui

Block size (m)

Fig. C.1 General illustration of determination of AA

Now let us consider the physical significance implied by the following integration.

I= j:"P(x)dx. (C-2)
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Suppose that f{x) represents the distribution function of block size, i.e. the
probability density function, and P(x) is the cumulative probability. It follows that the

corresponding cumulative distribution can be written as

P()=P(xsX)=] fvt, (C-3)

where, x; is the lower boundary of block size which may be zero. Hence

[ Pwax=[" ([ fwan s, (C4)

where, x,, is the upper boundary of block size. The laws governing definite integration
allow for the integrating order to be exchanged provided the integration limits of
variables are correspondingly changed (see Fig. C.2). Changing the integration order
often turns intractable problems into solvable ones.

X

Fig. C.2 Illustration of change of integration order

As for the integration represented by Eqn. C-4, the definite integration of integrated
fit) is over [x, x], i.e. t varies between [x; x]; and the integration of integrated

(J.x f(dt) is over [x}, x,], i.e. x varies between [x, x,]. The integration region is a

triangle of the t-x co-ordinate plane, so that when the integration of variable x is
advanced over ¢, the corresponding change of limits of integration has to be made, as
illustrated in Fig. C.2. Thus, Eqn. C-4 is developed into:
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[ rwanas=[" (|7 r@yax) ar= [ (s dx) a
= [" - nfa = [C 5 foode - [T xfoae

(C-5)

According to both definitions of the probability density function and the mean

value X;, we know that

X, = ["x fxdx, (C-6)
and
j f(x)dx =1. C-7)

Then, having

J': P(x)dx =x, - X, (C-8)

x“
It is seen from the aforementioned derivation that integration of I = I P(x)dx
Xy

is a kind of indicator of the mean size of the blocks. Substitution of Eqn. C-8 into
Eqn. C-1 yields

Sus St
AA = [“B(S)dS + (S, - 5,) - ["R(s)as
= (Sub - Sab) + (Sui - Sub) - (Sul' - Sal) (C-9)
= Si — Su

Therefore, it becomes clear that the AA, in fact, represents the differencde of mean

block sizes before and after blasting.

In the derivation to Eqn. C-9, there is no constraint on the form of either Py(S) or
Pp(S); it thus follows that the above derivation can be applicable to any form of the in-
situ or blasted block size distributions.
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The form of AA when both IBSD and BBSD hold either the Schuhmann or the
Ros-Ram distribution can be derived as follows.

Schuhmann Equation

Suppose that both the IBSD and the BBSD hold the Schuhmann distribution, i.e.
both have the forms as follows

B = (S, (C-10a)
SlOOl
S, \m,

B = (bym. (C-10b)
S100b

Now, the probability density function for the Schuhmann distribution is given by
the following equations

1
p(S) = ———S§"m", (C-11a)
(SIOOi) g
P(S,) = e 57D, (C-11b)
i b (Slmb )m_'b b
According to Eqn. C-9, the AA is given by the following equation
AA = Sai - Sab
Si00 S0
= [ sp(s)1ds, - [ 5,1p,(S,)1ds, , (C12)
Si00: 1 Sioos 1
= S[——— S™"]ds, - S, [———— S, 145,
J.O (SIOOI ) * I ’ ’ ’

0 (Sio0s )™

ie.

100 1 e — S1006 1 ey —
aa = 7 Sl S - [ S g s,
_ 100i ~ 1005 (C-13)
— st S - sb S
m,+1 ' m, +1 "

L1}
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Ros-Ram distributio

If both the IBSD and the BBSD exhibit a statistical dependence according to the
Ros-Ram equation, i.e. having the following distribution forms,

_(_SL)":b

P(S)=1-¢ % , (C-14a)
_(;gL)":b

B(S,) =1-¢ > (C-14b)

The probability density function for the Ros-Ram distribution is then given by

S

—(=+ Red

n.
(8) = —si__ gD, ' § C-15a
pl( 1) (Sa_)n" i b ( )
n (S yns
§) = —2_g@g S | C-15b
P, (S,) (5. ( )

In contrast to the previous Schuhmann case, the upper and lower integration
boundaries in Eqn. C-15 are the same, i.e. Sj; and Sy, are zero and §,;; or S, are eo.
Thus, the AA is given by.

M =S5,-3S5,
= [s.tp.(s)1ds, - [[s,1p,(S,)1dS, (C-17)
S N
_r ng; (ng-1) _(S_c,)" [ ny (ng-1) _(E:)M
= Ios‘[—(sc,. S e 1ds, jos,,[(sd, TR 1ds,
ie.
S, S,
n _(._')": oo n _(_L)"t

AA = $_[Se S ]dS - b_[Se S C-18

J:'(Sci)".[‘ ] ] J.O (Scb)nﬁlb ub ( )

S
S,

c

With making a substitution of the type (

)" = t, and following the definition of

the I function (see Eqn. 6-9), it yields



_ = L+ _ = (L4
A =8, [T e de - 8, [T e at
{ | (C-19)
=S, Tl+—)-5, T(1+—)

n:b

st

C.2 EXAMINATION OF THE MEAN/MEDIAN RELATION S,/S50

The transformation area AA, as illustrated in Appendix C.1 (see Eqns. C-13 and C-
19), is related to both characteristic size and the steepness coefficient which jointly
govern a block size distribution. This implies that only using a size parameter, say,
S50 to describe the influence of in-situ block size distribution of a rock mass on blast

result is insufficient.

The physical significance of the difference between the mean blocks size S; and

the 50% passing size S50 is given below despite their convergence in many cases.

The mean blocks size S, is defined (see Eqn. 6-7) by

a

S, = [ Sf(8)ds (C-20)

whereas the S50 is the 50% passing size corresponding to 50% passing size on a
percentage passing-size curve. Taking block sizes with the Ros-Ram distribution as an
example, their difference is examined as follows.

Now

—(ZHm

P(S)=1-e * , (C-21)

and the probability density function is then given by

_(_s_)"x

n
§) = —=_§" Ve % C-22
P = T , (C-22)
hence
[ 5125 " s = ST(1 + 2 C-23
= — g e = + —). -
o= St st e F ) T+ ) (C-23)
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For the Ros-Ram distribution, the 50% passing size is given by

S50 = s, (In2)/", (C-24)

hence for the Ros-Ram distribution case, the difference between the mean blocks size

S, and the 50% passing size S50 is given by

S, T+

a

= C-25
So  (In2)* (©23)

C.3 RENORMALISATION GROUP METHODS

Fragmentation is a catastrophic phenomenon which exhibits sudden or catastrophic
change, much as a system undergoing a phase change. The feature of a phase change is
a catastrophic change of macroscopic parameters of a system under a continuous
change of the state variables in a system. A renormalisation group method has been
used to study scale invariant processes that exhibit catastrophic change (Allegre et al.
1982; Turcotte, 1986, 1992). The renormalisation group method often produces fractal
statistics and explicitly utilises scale invariance. The method is implemented in such a
way that a relatively simple system is considered at the smallest order, the problem is
then renormalised to utilise the same system at the next larger order; the process is
iterated at larger and larger orders.

The rock mass is assumed to develop microfracturing under applied external force,
i.e. explosive energy. For simplicity, a cube of rock mass with a linear length of # is
considered, as shown in Fig. C.3. This cube is called a cell, which is divided into eight
smaller cubic elements each with a linear length of A/22. Now the attention is paid to
one of eight cubic elements. It becomes a cell of dimension A/ at order 1, and then
this cell is divided into eight first-order elements each with a length of h/4, and so on,
as shown in Fig. C.3. This process is repeated at successively higher orders.

The essential assumption of the renormalisation group method is that the
probability p. that a cell will break into 8 elements is the same at all orders. p, is
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therefore referred to as the critical probability that leads to a catastrophic
fragmentation. If we consider the mth stage of fragmentation, the total number of
particles is

No= (1-p)[1+(8p)+(8pc)2+(8pc ) +---+(8pc)™. (C-26)
Similarly, the total number of particles with the (m+1)th stage of fragmentation is
N 1= (1-p I 1+(8D)+(8Dc 2 +(8pc)3+---+(8p )™ +(8pcymt ). (C-27)

From Eqns. 6-27, we can write

N b
Nuw _op C-28
N C28)

m -

Combining Eqns. C-26, C-27 and C-28 and supposing m >> 1 and 8p->1 , we have

approximately
p=1r8p. , (C-29)
Ln2

It can be seen that in order to define a fractal dimension, the range allowed for the
probability of fragmentation is 1/8<p.<1. Once p, for a fragment process is obtained,
the correspond fractal dimension D can be determined.

The division into 8 cells is not unique, for example, a cubic cell with dimension A
can also be divided into 64 cubic elements each with dimension #/4. However, it has
been shown that the values of D are independent of the renormalisation configuration
chosen (Turcotte, 1986).

Return now to the model illustrated in Fig. C.3. Following Allegre et al. (1982) and
Turcotte (1986), each element in a cell is assumed to be either fragile if it is permeated
with microfractures or sound if it is not. It is necessary to specify a condition for the
fragility (or soundness) of the cell in terms of the fragility (or soundness) of the
elements. In each cell, there can be zero to eight fragile elements and therefore there
are 28=256 possible combinations. Excluding multiplicities, there are 22 topologically
different configurations, as illustrated in Fig. C.4. The fragile elements are indicated by
the solid dots at the corners. Two states can be defined: when the local microfracture
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density in a cell is greater than a certain critical value, it is considered as fragile; when
itis less than that critical value, it is considered sound.

/ /

' 241
2R

i 1‘%— /l//
’? ~h-~|
| 7
| o -
i
a— ) —

2

Fig. C.3 Dlustration of the renormalisation group approach to fragmentation (from
Turcotte, 1986)
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Fig C.4 Illustration of the topologically different configurations for fragile/sound
elements (Using "pillar of strength” condition, the fragile cells are underlined with a

solid line; using "plane of weakness" condition, the fragile cells are underlined with a
dashed line) (from Turcotte, 1986)



Using different specifications of the condition for the fragility or soundness of a
cell, we can obtain different numbers of fragile cells. Clearly, the greater the number of
fragile configurations, the more fragile the rock mass, which in turn means the rock
mass can be more easily fragmented by blasting. If p, represents the probability that a
cell at order n is fragile and p,, 4 j represents the probability that a cell at order n+1 is
fragile. Then it can be shown (see Allegre et al., 1982; Turcotte, 1986) that the
probabulity for a configuration with m fragile elements and k multiplicities is given by:

k(ppy1 P (1-ppyg )5

Fig C.5 Fragile and sound cell using the "pillar of strength" condition (Allegre et
al., 1982)
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Fig C.6 Relationship between probability of fragility p,, at order n, and probability
of fragility p,, 4 1 at order n+1 (from Turcotte, 1986)
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Allegre et al. (1982) considered the fragility at different scales and the related
fractal dimension by means of a "pillar of strength" criterion proposed. Under the
criterion of "pillar of strength”, a cell will be considered as sound whenever there is a
"pillar” of sound elements that links two opposite faces, otherwise, it is considered to
be fragile. Examples of sound and fragile cells are shown in Fig. C.5 in which 5b is a
sound cell and Sc is fragile. As such the cells configured by 4f, Sc, 6b, 7 and 8 are
fragile and indicated by solid underlining in Fig. C.4.

In the above case, the probability, p,, a cell at order n being fragile can be
expressed as a function of the probability, p, 47, a cell at order n+1 being fragile
(Allegre et al., 1982; Turcotte, 1986) by

Pr= (Pn+1)348(n+ 1) 11-@ra DH16(p4 DOU-(Pr 4 D12
8P+ 114 DP+2@n+ PHIPp+ D14
=On+ YOO+ 1) -80n+ 13+ Ope 2 +2) (C-30)

Subsequent orders in the hierarchy of the renormalisation group method are
obtained by considering elements of order n as cells of order n+1. The characteristic
dimension of the nth-order cell is A/2", and the characteristic dimension of the
(n+1)th-order element is i/27+1, On the basis of the assumption of self-similarity in
the statistical distribution of microcracks, it follows that Eqn. C-30 will be valid at all
orders. The relationship of p, and pj,,; is illustrated in Fig. C.6. The critical
probability that leads to a catastrophic fragmentation, p.=0.896, can be derived
according to catastrophic theory (Allegre et al., 1982; Turcotte, 1986). As shown in
Fig. C.6, the points 0 and 1 are stable fixed points of the system; the iterative relation
crosses the line p;,, = p, 41 at p=0.896, which is a bifurcation that separates the region
of stable behaviour from the region of unstable behaviour. Substituting the value of
pc=0.896 into Eqn. C-29, it yields D=2.84 for the "pillar of strength" fragmentation
model.

Turcotte (1986) proposed an alternative "plane of weakness" criterion and
considered the fragility at different scales and the related fractal dimension. In the
"plane of weakness" model, the sides of a fragile element are assumed to form planes
of weakness. A cell is assumed as fragile if the sides of fragile elements from an
internal plane through the cell, and a cell is considered as sound if there is no plane of
weakness through the cell. As such the cells configured by 4a, 4d, 4e, 4f, 5a, 5b, 5c,
6a, 6b, 6¢, 7 and 8 in Fig. C.4 are fragile and underlined by dashed lines (Turcotte,
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1986). Examples of sound and fragile cells are shown in Fig. C.7 in which 4c is a
sound cell and 4e is fragile.

Fig C.7 Fragile and sound cell using the "weakness plane" criterion (Turcotte,
1986)

The "plane of weakness" fragmentation model is a more fragile one than the "pillar
of strength" model, since there are more failure configurations in the former model
than in the latter. This in turn means the rock represented by the plane of weakness
fragmentation model will be more easily fragmented by blasting. Now let us consider
the fragility at different scales and their fractal dimension. In this case, the probability
of fragile cells of order n, p, as a function of the probability of fragile cells of order

n+1 pp4 1 is given (Turcotte, 1986) by

Pn= @n+ 18+8(n+ 17 [1-(op+ D128 p+ DOLL-(p 4 D12
+56(Pp+1)° [1-(r4 D13 +38(p+ N3 (1-(p 4 P14
= Pn+ D% BOn+ 1D¥-320n+ 13 +88(p+ )2 -96 (P )+38]  (C-31)

Similarly, it can be found that the critical probability that leads to a catastrophic
fragmentation, p=0.49 and the related fractal dimension D is 1.97 (Turcotte, 1986).
It can be seen that the difference in fragility, and by inference the difference in
blastability, might be sensitive to the particular model of fragmentation that is
hypothesised, which can be represented by the difference of fractal dimensions.
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ASSESSMENT

APPENDIX D CONTINUOUS RATING CHARTS FOR BLASTABILITY

Rating in terms of Point Load Strength Index
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Fig. D.1 Rating chart of the point load strength index of rock
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Fig. D.2 Rating chart of the uniaxial tensile strength of rock
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Rating in terms of density of rock
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Fig. D.3 Rating chart of the density of rock
Rating in terms of elasticity of rock
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Fig. D.4 Rating chart of the elasticity of rock
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Rating in terms of P-w velocity
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Fig. D.5 Rating chart of the P-w velocity of rock masses
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Rating in terms of Schmidt hardness value
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Fig. D.6 Rating chart of the Schmidt hammer value of rock masses



Rating in terms of Possion's ratio
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Fig. D.8 Rating chart of the fracture toughness of rock
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Rating in terms of mean discontinuity spacing
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Fig. D.9 Rating chart of the mean discontinuity spacing of rock masses

Rating in terms of the fractal dimension of IBSD
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Fig. D.10 Rating chart of the fractal dimension of the IBSD of rock masses
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Rating in terms of the ratio of in-situ to laboratory P-w
velocity
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Fig. D.11 Rating chart of the ratio of P-w velocity of the in-situ rock mass to P-w

velocity of rock sample in laboratory

Rating in terms of RQD of rock mass
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Fig. D.12 Rating chart of the RQD value of rock mass
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Rating in terms of the cohesion of discontinuities
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Fig. D.13 Rating chart of the cohesion of discontinuity of rock mass
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Fig. D.14 Rating chart of the friction angle for the shear strength of discontinuities

of rock masses



APPENDIX E DISCONTINUITY DATA

E.l DISCONTINUITY DATA FROM A5 GLEN BENDS IMPROVMENT SITE
Discontinuity Mapping Data Sheet
General Information
Job Number: AS-1 / Site Name: / GlenBends/  Rock Type / Siltstone /
No. of Tape: / 1 / Tape Azimuth: / 125 / Tape Plunge(+/-) / O /
Sheet Number: /1 /of/ 1/ Operator(s) / P.LU/ Date / 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7

1 0.10 280 70 5.00
2 1.15 330 18 3.00
3 1.75 350 10 1.50
4 2.30 40 14 2.00
5 B 3.50 105 40 5.50
6 4.40 280 80 5.00
7 4.70 280 75 2.00
8 4.90 290 24 1.80
9 5.20 300 82 0.50
10 7.20 350 65 5.00
11 F 7.75 150 70 6.00
12 B 8.00 315 50 6.00
13 9.00 328 72 5.00
14 9.60 190 68 2.00
15 10.55 290 90 2.00
16 11.00 330 85 5.00
17 C 12.20 350 85 1.50
18 12.40 330 75 2.00
19 13.20 15 60 6.00
20 14.35 265 85 3.50
21 15.20 325 30 4.50
22 15.60 245 85 4.80
23 16.70 245 70 5.00
24 17.00 240 85 1.50
25 C 17.40 242 86 2.50
26 B 17.70 150 82 6.50
27 F 18.10 150 52 6.50
28 F 18.70 150 50 6.00
29 19.00 100 55 3.00
30 19.40 145 65 3.50
31 19.70 155 70 3.35
32 20.80 150 53 5.00
33 20.90 140 50 3.00
34 21.70 100 70 1.00
35 22.50 340 75 7.00
36 23.40 340 18 1.50
37 25.70 155 20 0.80
38 B 27.40 145 64 4.00
39 F 28.60 110 70 5.00

* Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet

General Information

Job Number: / AS-2 / Site Name: / GlenBends/  Rock Type / Siltstone /
No. of Tape: / 1 /  Tape Azimuth: / 293 / Tape Plunge(+/-) / 0 /

Sheet Number: /1 /of/ 1/ Operator(s) / P.LU/ Date / 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length| Notes
(m) | Dip Direction| Dip Angle (m)
1 2% 3 4 5 6 7
1 C 0.45 100 85 1.00
2 B 1.45 50 75 5.00
3 1.65 270 70 5.30
4 1.70 270 80 4.00
S B 2.00 130 90 1.00
6 2.40 230 60 2.50
7 2.95 70 75 1.50
8 B 3.10 340 65 7.00
9 3.60 260 74 8.00
10 F 4.10 60 80 6.00
11 F 5.60 100 85 3.00
12 5.90 110 70 6.00
13 6.90 50 65 4.70
14 C 7.00 270 70 1.50
15 7.35 135 60 1.00
16 8.25 90 85 2.50
17 B 8.60 110 55 6.00
18 10.30 320 60 4.50
19 F 10.40 170 55 8.00
20 F 11.50 30 45 5.50
21 F 12.90 100 40 3.00
22 14.55 190 70 1.50
23 15.00 150 52 1.50
24 16.10 160 58 1.50
25 C 16.90 330 85 1.00
26 F 17.60 190 80 10.00
27 18.00 190 70 10.00
28 F 18.60 190 70 10.00
29 19.05 190 70 10.00
30 19.40 185 22 3.50
31 20.00 170 40 2.50
32 21.40 140 60 2.50
33 22.50 180 50 3.00
34 23.40 170 52 5.00
35 25.20 10 55 1.00
36 C 25.80 310 55 2.20

* Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet
General Information

Job Number: / AS-3 / Site Name: / Glen Bends / Rock Type  /Silt-/lime-stone/
No. of Tape: / 1 / Tape Azimuth: / 145 / Tape Plunge(+/-) / 0 /

Sheet Number: /1 /of/1 / Operator(s) / P.LU/ Date / 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
] F 040 180 85 600
2 C 1.60 205 55 0.75
3 C 1.70 200 55 0.75
4 C 2.00 208 55 075
5 C 2.10 208 50 0.75
6 2.20 210 52 075
7 2.30 200 55 075
8 2.50 195 52 1.00
9 2.70 195 55 1.00
10 2.90 195 56 1.00
1] B 3.10 270 25 1.50
12 3.40 180 28 3.00
13 3.70 175 50 6.00
14 4.10 172 40 900
15 4.40 170 70 2.00
16 4.60 170 70 200
17 4.70 190 72 2.00
18 5.10 310 65 050
19 5.40 145 80 080
20 570 5 55 10.00
21 5.90 5 54 150
22 6.35 130 50 100
23 6.80 280 52 8 00
24 7.20 170 70 0.80
25 8.30 140 56 8.00
26 8.80 200 90 2.50
27 10.65 160 70 5.00
28 12.60 150 55 1.50
29 12.70 170 65 3.00
30 13.40 100 72 500
31 14.00 160 82 600
32 14.80 235 56 10.00
33 B 15.80 235 56 10.00

* Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet
General Information

JobNumber: / AS-4 / Site Name: / Glen Bends / Rock Type  /Silt-/lime-stone /
No. of Tape: /I 1/ Tape Azimuth: / 290 ! Tape Plunge(+/-) / 8 /

Sheet Number: / 1 /of/ 1/  Operator(s) / P.LU/ Date / 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
1 C 2.30 135 80 2.00
2 B 2.80 210 40 >6.00
3 B 3.40 210 40 >6.00
4 C 3.50 80 80 2.00
S 3.90 340 80 2.00
6 B 4.00 30 15 >6.00
7 B 4.50 30 15 >6.00
8 4.60 340 80 2.00
9 B 4.90 30 15 >6.00
10 5.30 110 65 1.50
11 B 5.50 35 20 >6.00
12 5.60 120 60 1.50
13 B 5.80 210 22 >6.00
14 5.95 120 60 2.50
15 C 6.10 120 60 2.00
16 6.50 120 60 1.50
17 6 65 120 62 180
18 B 7.00 210 22 >6.00
19 7.10 125 55 2.00
20 7.30 125 55 1.50
21 7.55 125 55 1.50
22 7.90 100 60 2.00
23 B 8.00 210 22 >6.00
24 8.20 100 60 2.00
25 8.30 150 60 >6.00
26 B 8.70 210 22 >6.00
27 9.40 90 85 1.00
28 9.65 90 85 1.00
29 10.05 90 85 1.00
30 10.15 90 85 1.00
31 10.25 125 40 1.75
32 10.45 120 42 1.00
33 B 11.00 210 22 2.00
34 11.30 120 42 >6.00
35 11.80 95 80 2.00
36 B 12.10 200 25 >6.00
37 13.00 85 70 1.50
38 13.75 90 70 1.00
39 14.65 90 75 2.00
40 15.50 100 75 2.00
41 16.20 150 70 2.00
42 C 16.45 70 80 1.00

* Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet
General Information

Job Number: / A5-5 |/ Site Name: /Glen Bends/  Rock Type /Silt-/lime-stone /
No. of Tape: /17 Tape Azimuth: / 140 / Tape Plunge(+/-) / 0o 7/

Sheet Number: / 1 /of/ 2 / Operator(s) / P.LU / Date ! 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length| Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
1 B 1.50 40 35 10.00
2 2.00 190 70 1.00
3 2.90 190 55 10.00
4 C 3.80 170 60 3.00
5 4.60 170 60 2.00
6 5.05 210 60 7.00
7 5.40 180 75 3.00
8 5.70 180 60 1.00
9 B 6.00 195 60 10.00
10 7.10 290 60 5.00
11 7.25 190 80 1.50
12 7.70 190 70 0.80
13 7.85 205 80 1.20
14 C 8.60 10 75 2.00
15 9.25 300 75 6.00
16 9.45 210 50 1.50
17 10.20 150 52 1.00
18 10.50 120 90 2.00
19 11.20 190 55 3.00
20 11.95 190 48 2.00
21 12.40 200 90 2.00
22 13.00 200 85 2.00
23 13.30 200 85 2.00
24 B 14.00 295 85 2.00
25 14.20 315 65 5.00
26 B 15.00 195 50 1.50
27 15.20 315 55 3.00
28 15.40 350 58 2.50
29 B 16.30 340 50 7.00
30 16.40 155 25 7.00
31 16.55 140 60 5.00
32 B 17.30 150 25 8.00
33 18.20 155 68 4.00
34 18.60 130 90 10.00
35 18.70 140 90 2.00
36 18.90 150 90 3.00
37 18.95 150 90 1.00
38 19.10 185 90 1.00
39 19.40 285 90 10.00
40 B 19.65 315 25 4.00
41 19.75 170 90 3.00
42 19.95 150 90 2.00
43 20.10 190 70 10.00

* Blank - joint; C - cleavage; F - fault; B - bedding continuous
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-continued
Discontinuity Mapping Data Sheet
General Information
Job Number: / AS-5 / Site Name: / Glen Bends / Rock Type  /Silt-/lime-stone /
No. of Tape: / 1/ Tape Azimuth: / 140/  Tape Plunge(+/-) / o /
Sheet Number: / 2 /of/ 2/  Operator(s) / P.LU/ Date 1 2/8/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2% 3 4 5 6 7
1 B 20.40 155 30 6 00
2 21.50 300 80 2.00
3 21.80 130 72 1.00
4 22.20 185 80 0.80
5 B 22.60 180 20 1.00
6 22.70 270 75 1.00
7 23.00 280 85 0.80
8 23.20 320 80 5.00
9 23.30 315 50 3.00
10 24.10 130 65 4.00
11 24.90 310 65 10.00
12 25.50 135 60 3.00
13 26.60 290 70 4.00
14 B 26.90 300 28 10.00
15 27.00 205 70 2.00
16 27.05 205 70 2.00
17 27.10 205 70 2.00
18 C 27.20 205 70 2.00
19 27.50 200 70 2.00
20 C 27.85 200 70 2.00
21 27.90 200 75 1.00
22 28.15 285 75 1.50

* Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet
General Information

Job Number: / AS5-6 / Site Name: / Glen Bends / Rock Type  /Silt-/lime-stone /
No. of Tape: /1 / Tape Azimuth: / 290 / Tape Plunge(+/-) / 0 /

Sheet Number: / 1 /of/ 1/ Operator(s) / P.LU/ Date / 2/8/95 /
Discontinuity Data

No. Type Intercept Attitude Semi-Trace length Notes

(m) Dip Direction] Dip Angle (m)
1 2% 3 4 5 6 7

1 0.20 290 80 3.50
2 1.00 265 70 2.80
3 B 1.30 350 35 5.00
4 B 1.70 175 35 5.00
5 B 2.40 170 36 4.50
6 3.40 205 65 2.00
7 3.90 210 55 0.80
8 4.90 165 35 4.50
9 5.40 30 65 3.00
10 6.20 285 90 1.50
1] B 6.80 170 35 4.00
12 F 7.20 165 38 4.50
13 7.70 105 75 0.80
14 B 8.30 190 35 4.00
15 B 8.80 175 38 4.00
16 9.00 280 75 1.20
17 C 9.60 205 68 1.00
18 B 10.20 170 38 4.00
19 B 10.50 160 38 4.00
20 11.00 275 75 1.50
21 11.70 200 72 3.00
22 F 12.00 175 36 6.00
23 12.40 295 80 4.00
24 12.70 290 85 3.00
25 C 13.00 185 70 0.65
26 B 13.20 180 25 6.50
27 13.50 195 65 2.00
28 14.00 15 85 1.50
29 14.20 305 80 1.50
30 14.40 20 75 5.00
31 15.20 190 80 1.50
32 B 15.90 165 35 5.00
33 16.10 315 85 0.80
34 16.70 295 80 1.00
35 17.10 10 85 1.50
36 17.30 175 82 1.80
37 B 17.60 160 40 4.00
38 18.00 110 85 0.60
39 18.80 10 60 0.40
40 19.30 10 65 0.80
41 19.50 20 40 4.50
42 19.90 180 65 1.20
43 B 20.40 175 35 5.00

* Blank - joint; C - cleavage; F - fault; B - bedding



315

E2 DISCONTINUITY DATA FROM THE OVERSEAS QUARRY"

E2.1 Discontinuity Data from Scanline Mapping Survey

Discontinuity Mapping Data Sheet
General Information

Job Number: / E214-1 / Site Name: /Overseas Quarry/  Rock Type / Limetone /

No. of Tape: /I 1/ Tape Azimuth: / 264 / TapePlunge(+/-) / 0 /
Sheet Number: /1 /of/ 2/  Operator(s) / J. Simm / Date 1 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length|  Notes
(m) Dip Direction| Dip Angle (m)

1 2* 3 4 5 6 7

1 0.07

2 0.19

3 0.26

4 0.42

5 0.66

6 0.80

7 1.20

8 1.33

9 1.48

10 1.57

11 1.74

12 1.89

13 2.04

14 2.15

15 2.24

16 2.46

17 2.53

18 2.75

19 2.90

20 3.10

21 3.32

22 423

23 4.72

24 5.05

25 5.45

26 5.56

27 5.96

28 6.02

29 6.26

30 6.44

31 6.89

32 7.09

33 7.45

34 7.65

35 7.67

36 8.05

Continued

*The scanline mapping was done by Mr. J. Simm, and the borehole logging data was obtained via Mr.
Simm from the quarry. Both types of data have been sorted out by the author.



-continued
Discontinuity Mapping Data Sheet
General Information
Job Number: / E214-1 / Site Name: /Overseas Quarry/  Rock Type / Limetone /
No. of Tape: / 1/ Tape Azimuth: / 264 / TapePlunge(+/-) / 0 /
Sheet Number: / 2 /of/ 2/  Operator(s) / J. Simm / Date / 12/1095 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2% 3 4 5 6 7
1 8.10
2 8.89
3 9.13
4 9.99
5 10.10
6 10.15
7 10.46
8 10.60
9 10.70
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Discontinuity Mapping Data Sheet

General Information
Job Number: / E214-2 / Site Name: /Overseas Quarry/  Rock Type / Limetone /
No. of Tape: /17 Tape Azimuth: / 238/ Tape Plunge(+/-) / 0 /
Sheet Number: /1 /of/ 2/ Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length|  Notes
(m) Dip Direction| Dip Angle (m)
1 2> 3 4 5 6 7
1 0.76
2 0.85
3 0.91
4 1.08
5 1.21
6 1.28
7 1.44
8 1.75
9 1.79
10 2.05
11 2.24
12 2.36
13 2.93
14 3.03
15 3.10
16 3.20
17 3.34
18 3.73
19 3.81
20 4.15
21 4.49
22 4.61
23 5.00
24 5.28
25 5.61
26 5.66
27 5.76
28 5.84
29 5.99
30 6.05
31 6.15
32 6.25
33 6.40
34 6.50
35 6.60
36 6.74
37 6.99

Continued
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-continued

Discontinuity Mapping Data Sheet

General Information

Job Number:
No. of Tape:

Sheet Number:

/ E214-2 /

Site Name:  /Overseas Quarry/

/17 Tape Azimuth:

/21/off 2 /

Operator(s)

/ 238 /
/ J. Simm /

Discontinuity Data

Rock Type
Tape Plunge(+/-)

/ Limetone /
/0 7

Date / 12/10/95 /

S

Type

Intercept

Attitude

Semi-Trace length

Notes

(m)

Dip Direction

Dip Angle

(m)

2*

3

4

5

6

7

7.04

7.12

7.25

7.29

7.53

7.62

7.71

7.83

OO IN[AN [N |K W[N]~ ]~

8.00

8.08

8.38

8.45

8.54

8.74
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Discontinuity Mapping Data Sheet

General Information
Job Number: / E231-1 / Site Name: /Overseas Quarry/ Rock Type  /Limetone/
No. of Tape: /1 7/ Tape Azimuth: / 216 /  TapePlunge(+/-) [/ 6 [/
Sheet Number: /1 /of/ 1/ Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length| Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
1 0.23
2 0.48
3 0.57
4 0.72
S 0.85
6 1.00
7 1.19
8 1.25
9 1.40
10 1.61
11 2.03
12 2.18
13 2.35
14 3.13
15 3.46
16 3.80
17 3.88
18 3.98
19 4.16
20 4.30
21 4.38
22 443
23 4.57
24 5.07
25 5.13
26 5.45
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Discontinuity Mapping Data Sheet

General Information
Job Number: / E231-2 / Site Name: /Overseas Quarry/  Rock Type / Limetone /
No. of Tape: /17 Tape Azimuth: / 216 /  TapePlunge(+/-) [ 8 [/
Sheet Number: /1 /of/ 1/ Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
1 0.20
2 0.37
3 0.51
4 0.59
5 0.68
6 0.71
7 0.78
8 0.89
9 1.25
10 1.31
11 1.34
12 1.45
13 1.50
14 1.72
15 1.82
16 2.03
17 2.16
18 2.23
19 2.43
20 2.48
21 2.57
22 2.85
23 3.46
24 3.75
25 3.81
26 4.56
27 4.75
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Discontinuity Mapping Data Sheet

General Information
Job Number: / E248-1 / Site Name: /Overseas Quarry/  Rock Type / Limetone /
No. of Tape: / 1/ Tape Azimuth: / 348 / Tape Plunge(+/-) / 8 /
Sheet Number: / 1 /of/ 2 / Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2% 3 4 5 6 7
1 0.10
2 0.16
3 0.22
4 0.31
5 0.41
6 0.50
7 0.69
8 0.81
9 0.98
10 1.06
11 1.17
12 1.32
13 1.53
14 1.60
15 1.70
16 1.77
17 1.96
18 2.06
19 2.58
20 3.34
21 3.42
22 3.86
23 3.96
24 4.06
25 4.19
26 442
27 4.52
28 4.67
29 4.80
30 4.87
31 4.92
32 5.08
33 5.13
34 5.20
35 5.24
36

Continued
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-continued
Discontinuity Mapping Data Sheet
General Information
Job Number: / E248-1 / Site Name: /Overseas Quarry/  Rock Type / Limetone /
No. of Tape: / 1/ Tape Azimuth: / 348 / Tape Plunge(+/-) / 8 /
Sheet Number: / 2 /of/ 2 /  Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length|  Notes
(m) Dip Direction| Dip Angle (m)
1 2% 3 4 5 6 7
1 5.57
2 5.71
3 5.83
4 6.43
5 6.55
6 6.90
7 6.95
8 7.58
9 8.40
10 8.55
11 9.00
12 9.16
13 9.60
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Discontinuity Mapping Data Sheet

General Information
Job Number: / E248-2 / Site Name: /Overseas Quarry/ Rock Type  / Limetone /
No. of Tape: /17 Tape Azimuth: / 338 / Tape Plunge(+/-) / 0 /
Sheet Number: /1 /of/ 1 /  Operator(s) / J. Simm / Date / 12/10/95 /
Discontinuity Data
No. Type Intercept Attitude Semi-Trace length Notes
(m) Dip Direction| Dip Angle (m)
1 2* 3 4 5 6 7
1 0.09
2 0.15
3 0.20
4 0.58
5 0.85
6 0.93
7 1.11
8 1.26
9 1.90
10 2.08
11 2.28
12 2.45
13 2.70
14 2.83
15 3.27
16 3.66
17 4.42
18 4.67
19 4.77
20 4.93
21 5.01
22 5.24
23 5.39
24 5.50
25 5.58
26 5.81
27 6.15
28 6.36
29 6.51
30 6.60
31 6.70
32 6.80
33 6.90
34 7.06
35 7.15
36 7.46
37 7.65
38 7.86
39 8.25
40 830
41 8.73
42 8.96
43 9.18
44 9.38
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E.2.2 Discontinuity Data from Borehole Logging

Hole No.| BHI1 BH3 BH4 BHS BH7 BHS8 BH9 BHI0 | BHI11
Depth (m)| 16.5-24 | 6.0-18 | 0-10.5 0-12 0-135 | 0-135 9-18 0-13.5 0-12
Elevation| 251-241 | 252-240 | 252-242 | 248-236 | 242-229 | 224-211 | 216-207 | 221-209 | 231-219
No. Discontinuity intercept (m)
1 0.05 0.03 0.40 0.17 0.10 0.50 0.14 0.25 0.16
2 0.11 0.13 0.52 0.33 0.30 0.57 0.35 0.42 0.26
3 0.17 0.23 0.68 0.46 0.35 0.80 0.52 0.57 047
4 0.23 0.36 0.77 0.73 0.48 0.90 0.62 0.60 0.53
5 0.33 0.42 0.97 0.80 0.55 1.06 0.82 0.66 0.77
6 0.47 0.47 1.13 0.85 0.60 1.10 1.14 0.72 1.00
7 0.59 0.55 1.73 0.98 0.66 1.30 1.51 0.76 1.10
8 0.63 0.62 1.93 1.06 0.83 1.40 1.99 0.88 1.29
9 0.70 0.68 2.16 1.12 0.95 1.63 2.67 1.32 1.60
10 1.32 0.78 2.25 1.31 1.10 1.72 2.717 1.47 1.76
11 1.37 0.90 248 1.37 1.37 207 2.82 1.62 1.84
12 1.44 0.93 3.01 143 1.52 2.17 3.10 1.89 2.16
13 1.58 0.97 3.38 1.45 1.59 2.24 3.14 1.92 2.36
14 1.63 1.01 3.75 1.53 1.68 2.37 3.38 1.97 2.58
15 1.71 1.15 422 1.58 1.80 3.18 3.47 2.08 271
16 1.79 1.43 4.38 2.27 1.85 3.39 3.52 2.19 2.88
17 1.87 1.51 4.62 2.37 2.01 3.57 3.73 225 2.96
18 1.96 1.80 472 2.99 2.23 3.68 4.17 2.38 2.98
19 2.01 1.88 478 3.45 2.28 3.79 4.36 245 3.04
20 2.23 1.97 4.93 3.62 2.38 4.37 4.48 251 3.26
21 2.36 2.03 5.17 3.66 2.47 4.53 4.57 2.55 3.38
22 2.39 2.23 5.31 4.06 2.80 4.84 4.66 2.60 3.44
23 2.51 2.28 5.65 4.18 2.99 493 5.27 2.75 3.54
24 2.59 2.61 5.68 4.29 3.25 5.39 5.91 2.85 3.59
25 271 2.96 5.75 440 3.38 5.43 6.06 3.02 3.73
26 2.83 3.06 5.84 4.56 3.48 5.66 6.16 3.07 3.84
27 293 3.61 595 4.79 358 | 5.83 6.44 3.21 4.03
28 3.02 3.73 6.12 4.95 3.74 6.06 6.54 3.29 4.07
29 3.35 3.88 6.16 523 3.85 6.77 6.71 3.61 4.34
30 342 4.05 6.23 5.50 3.94 7.30 3.76 4.38
31 3.56 4.23 6.37 5.62 4.01 7.61 3.81 4.49
32 3.79 433 6.70 6.32 4.11 7.68 4.20 4.77
33 383 4.38 7.38 6.45 4.15 7.88 4.29 5.05
34 3.88 448 7.60 6.59 4.22 7.94 4.59 5.20
35 3.98 4.54 7.70 6.71 4.26 8.27 4.67 5.27
36 4.03 4.79 7.71 7.13 4.34 8.46 4.83 5.32
37 4.08 4.84 7.84 7.19 4.45 8.53 498 5.45
38 4.15 4.89 8.13 7.26 4.83 8.67 5.14 5.61
39 4.22 5.14 8.28 1.76 5.38 8.94 5.20 6.07
40 431 5.49 8.38 8.09 5.47 9.80 5.77 6.19
41 441 5.62 8.79 8.38 5.58 10.07 5.84 6.26
42 4.64 5.79 8.90 8.56 5.76 10.72 5.96 6.32

Continued
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-continued
Hole No.| BHI BH3 BH4 BHS5 BH7 BHS8 BH9 BHI10 | BHII
Depth (m)| 16.5-24 | 6.0-18 | 0-10.5 | 0-12 0-13.5 | 0-13.5 9-18 0-13.5 0-12
Elevation| 251-241 | 252-240 | 252-242 | 248-236 | 242-229 | 224-211 | 216-207 { 221-209 | 231-219
No. Discontinuity intercept (m)
43 4.68 5.86 9.20 8.70 5.80 11.11 6.20 6.40
44 4.90 5.99 9.39 8.85 6.00 11.22 6.34 6.43
45 4.93 6.11 9.40 9.28 6.28 11.33 6.48 6.48
46 5.16 6.25 9.53 10.52 6.68 11.93 6.60 6.60
47 543 6.34 9.79 11.97 6.76 12.35 6.69 6.81
48 5.66 6.64 9.85 6.81 12.51 6.93 6.91
49 5.74 7.07 10.02 7.00 12.66 7.08 6.98
50 5.86 7.22 10.10 7.11 12.79 7.20 7.17
51 5.96 7.49 10.15 7.32 7.95 7.33
52 6.13 7.61 10.36 7.43 8.05 7.46
53 6.80 7.80 10.55 7.64 8.19 7.62
54 6.86 7.86 10.62 7.76 8.55 7.72
55 6.93 8.16 7.82 8.69 8.05
56 6.96 8.59 8.07 9.01 8.27
57 7.06 8.74 8.26 9.15 8.50
58 7.12 9.01 8.61 9.23
59 7.26 9.13 8.81 9.88
60 7.54 9.32 9.01 10.12
61 7.76 9.38 9.41 10.23
62 7.84 9.67 10.41
63 8.12 9.96 10.52
64 8.28 10.09 10.94
65 8.43 10.13 11.15
66 9.10 10.34 11.52
67 9.32 11.09 12.00
68 9.43 11.17 12.32
69 9.78 11.24
70 9.88 11.34
71 9.94 11.38
72 10.01 11.45
73 10.13 11.53
74 10.30 11.58
75 10.35 11.63
76 10.40 11.69
77 10.85
78 11.07
79 11.21




APPENDIX F RAW DATA OF POINT LOAD STRENGTH TEST

Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement. )

Sheet No.

1

Data:

Aug. 1, 1995

Operator:

PL

Place:

31/7 blasting site

Rock description:

Dark, fine-grained siltstone, fresh blasting blocks, taken from blasting site, natural state

Air-dried one day, in-situ tested

No. | Type | Wmm) | D(mm)| P(kN) | De (mm) | De2(mm?2) |1sMPa [ F | I1s(50)(MPa)
1 Block | 65 44 18 | 60.341 | 3640.993 | 4.944 | 1.088 5.38
2 Block | 55 51 | 182 | 59.758 | 3570.974 | 5.097 | 1.084 5.52
3 Block| 85 | 505 | 22.5 | 73.923 | 5464.672 | 4.117 | 1.192 4.91
4 Block | 725 | 52 | 152 | 69.278 | 4799.491 | 3.167 | 1.158 3.67
5 Block | 625 | 45 | 65 | 59.837 | 3580522 | 1.815 | 1.084 1.97
6 Block | 55 46 | 9.5 | 56.753 | 3220.878 | 2.950 | 1.059 3.12
7 Block | 73 64 25 | 77.122 | 5947.804 | 4.203 | 1.215 5.11
8 Block [ 60 49 23 | 61.179 | 3742.839 | 6.145 | 1.095 6.73
9 Block | 675 | 55 21 | 68.748 | 4726.289 | 4.443 | 1.154 5.13
10 | Block | 55 45 14 | 56.133 | 3150.859 | 4.443 | 1.053 4.68
11 |Block| 60 | 425 | 18 | 56977 | 3246.340 | 5.545 | 1.061 5.88
12 |Block| 57.5 | 41 15 | 54.784 | 3001.273 | 4.998 | 1.042 5.21
13 |Block | 50 25 9 | 39.892 | 1591.343 | 5.656 | 0.903 5.11
14 | Block | 80 48 22 | 69.919 | 4888.606 | 4.500 | 1.163 5.23
15 | Block | 40 28 13 | 37.760 | 1425843 | 9.117 | 0.881 8.04
Mean 5.05
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Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement. )

Sheet No. 2 Data: Aug. 3, 1995 | Operator: PL
Place: Ch950, the bottom of the first berm, south side face.
Rock description:
Dark, fine-grained siltstone (limestone?), natural state, air-dried 2-3 weeks, in-situ tested
No. Type | W(mm) | D(mm) | P(kN) | De (mm) Dez(mmz) Is(MPa) F Is(50)(MPa)
1 Block 62 42 15.5 | 57.577 | 3315.086 | 4.676 | 1.066 4.98
2 Block 70 42 145 | 61.179 | 3742.839 | 3.874 | 1.095 424
3 Block 61 40 8.5 55.734 | 3106.302 | 2.736 | 1.050 2.87
4 Block 80 45 155 | 67.698 | 4583.068 | 3.382 | 1.146 3.88
5 Block 70 60 19.5 | 73.123 | 5346913 | 3.647 | 1.187 4.33
6 Block 55 48 13.5 | 57973 | 3360917 | 4.017 | 1.069 4.29
7 Block 72 36 10 57.444 | 3299.809 | 3.030 | 1.064 3.23
8 Block 72 38 16.5 | 59.018 | 3483.132 | 4.737 | 1.077 5.10
9 Block 60 36 12 52439 | 2749.841 4.364 | 1.022 4.46
10 Block 95 35 18.5 | 65.061 4232973 | 4.370 | 1.126 4.92
11 Block 72 48 18.5 | 66.331 4399.745 | 4.205 | 1.136 4.78
12 Block 62 40 20 56.189 | 3157.225 | 6.335 | 1054 6 68
Mean 4.42
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Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement. )

Sheet No.

3 Data: Aug. 3, 1995 | Operator: PL

Place:

Aug. Ist blasting site

Rock description:

Fine-grained siltstone , natural state, air-dried 2 days, in-situ tested

No. Type | W(mm) | D(mm) [ P(kN) | De (mm) | De2(mm?) IstMPa)| F | Is(50)(MPa)
1 Block 60 45 26.2 | 58.629 | 3437.301 7.622 | 1.074 8.19
2 Block 65 43 16 59.651 | 3558.243 | 4.497 | 1.083 4.87
3 Block 62 40 10.5 | 56.189 | 3157.225 | 3.326 | 1.054 3.51
4 Block 72 40 14.5 | 60.551 [ 3666.454 | 3.955 | 1.090 4.31
5 Block 65 45 23.5 | 61.022 | 3723.743 { 6.311 | 1.094 6.90
6 Block 63 38 18.2 | 55.206 | 3047.740 | 5.972 | 1.046 6.24
7 Block 65 50 24 64.323 | 4137492 | 5.801 | 1.120 6.50
8 Block 80 42 11 65.403 | 4277.530 | 2.572 | 1.128 2.90
9 Block 60 36 19.5 | 52.439 | 2749.841 7.091 | 1.022 7.24
10 Block 56 40 19.5 | 53.401 | 2851.687 | 6.838 | 1.030 7.04
11 Block 75 45 21 65.549 | 4296.626 | 4888 | 1130 552
12 Block 55 42 20 54229 | 2940.802 | 6.801 | 1.037 7.05

Mean 5.92
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Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement. )

Sheet No. 4 Data: Aug. 3, 1995 | Operator: PL
Place: 'Ch750, the bottom of first berm, north side face.
Rock description:
Very dark, fine-grained siltstone, natural state, about air-dried 2 months
it is in the zone where existed a ridge, in-situ tested
No. | Type | W(mm)|D(mm)| P(kN) | De (mm) | De2(mm?2) [1sMPa)| F |1s(50)(MPa)

1 Block | 63 43 11 58.726 | 3448.759 | 3.190 | 1.075 343
2 Block 81 35.5 20 60.504 | 3660.726 | 5.463 | 1.090 5.95
3 Block | 92 50 16 76525 | 5856143 | 2732 | 1211 3.31
4 Block | 64 38 19.8 | 55.643 3096.117 | 6.395 | 1.049 6.71
5 Block | 67 475 | 22.8 | 63.652 | 4051.560 | 5.627 | 1.115 6.27
6 Block | 65 45 26 61.022 | 3723.743 | 6.982 | 1.094 7.64
7 Block | 52 40 21.2 | 51459 | 2647.995 8.006 | 1.013 8.11
8 Block | 60 42 19.5 | 56.641 3208.148 | 6.078 | 1.058 6.43
9 Block | 55 34 14 48.792 | 2380.649 | 5.881 | 0.989 5.82
10 Block | 68.5 51 242 | 66.689 | 4447.486 | 5.441 | 1.138 6.19
11 Block | 75 35 16.5 | 57.808 | 3341.820 | 4.937 | 1.067 5.27
12 Block | 75 45 26.5 | 65.549 | 4296.626 | 6.168 | 1.130 6.97
13 Block [ 80 47 22 69.186 | 4786.760 | 4.596 | 1.157 5.32
14 Block | 60 48 22.5 | 60.551 3666.454 | 6.137 | 1.090 6.69

Mean 6.06
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Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement. )

Sheet No.

5

Data:

Aug. 3, 1995

Operator:

PL

Place:

Aug. 2nd blasting site

Rock description:

Dark,very fine-grained siltstone, natural state, air-dried 1 day

Well-developed joints and clevage, in-situ tested

No. Type | W(mm) | D(mm) | P(kN) | De (mm) Dez(mmz) Is(MPa) F Is(50)(MPa)

1 Block 58 35 9.5 50.836 | 2584.341 3.676 | 1.007 370
2 Block 64 46 16.5 | 61.220 | 3747.931 4.402 | 1.095 4.82
3 Block 68 52 15 67.094 | 4501.591 3.332 | 1.141 3.80
4 Block 70 47 9 64.718 | 4188415 2.149 | 1.123 2.41
5 Block 72 57 22.5 | 72.282 | 5224.698 4.306 | 1.180 5.08
6 Block 58 38 20.5 | 52.970 | 2805.856 | 7.306 | 1.026 7.50
7 Block 52 42 13 52.729 | 2780.395 4.676 | 1.024 4.79
8 Block 75 52 25.5 | 70463 | 4964.990 5.136 | 1.167 5.99
9 Block 85 36 14 62.415 | 3895.608 3594 | 1.105 3.97
10 Block 70 45 13.5 | 63.326 | 4010.185 3366 | 1.112 3.74
11 Block 80 70 28.5 | 84.435 | 7129.217 3.998 | 1.266 5.06
12 Block 75 62 26 76.940 | 5919.796 | 4.392 | 1.214 5.33
13 Block 90 75 35 92.700 | 8593.253 | 4.073 | 1.320 5.38

Mean 4.70
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Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement. )

Sheet No. 6 Data: | Aug. 3, 1995 |Operator: PL
Place: Aug. 3rd blasting site
Rock description:
Grey, fine-grained siltstone, natural state.
No. Type | W(mm) | D(mm) | P(kN) | De (mm) Dez(mmz) Is(MPa) F Is(50)(MPa)

1 Block 59 34 14 50.535 | 2553.787 | 5.482 | 1.005 5.51
2 Block 59 35 165 | 51.273 | 2628.899 | 6.276 | 1.011 6.35
3 Block 75 37 225 | 59.437 | 3532.782 | 6.369 | 1.081 6.88
4 Block 85 54 12.5 | 76442 | 5843.412 | 2.139 | 1.210 2.59
5 Block 74 38 13 59.832 | 3579.885 | 3.631 | 1.084 3.94
6 Block 75 50 17 69.094 | 4774.029 | 3.561 | 1.157 4.12
7 Block 62 39 142 | 55482 | 3078.294 | 4.613 [ 1.048 4.83
8 Block 85 40 7 65.791 | 4328.453 1.617 | 1.131 1.83
9 Block 75 45 10 65.549 | 4296.626 | 2.327 | 1.130 2.63
10 Block 90 28 17 56.641 3208.148 | 5.299 | 1.058 5.60
11 Block 55 33 14.5 | 48.069 | 2310.630 | 6.275 [ 0.982 617
12 Block 72 55 142 | 71.003 | 5041.375 | 2.817 | 1.171 3.30
13 Block 55 45 10.5 | 56.133 | 3150.859 | 3.332 [ 1.053 3.51

Mean 441
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Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement. )

Sheet No.

7

Data:

Aug. 3, 1995

Operator:

PL

Place:

Ch850, the bottom of the first berm, near south side (Aug. 4th blasting site)

Rock description:

Dark, fine-grained siltstone, natural state, air-dried 2 days, in-situ test

No. | Type | W(mm) [ D(mm)| P(kN) | De (mm) | De?2(mm?) [IsMPa)| F |Is(50)MPa)
1 Block | 59 36 | 152 | 52.000 | 2704.010 | 5621 | 1.018 5.72
2 Block | 86 53 | 145 [ 76.175 | 5802.673 | 2.499 | 1.209 3.02
3 Block | 73 39 16 | 60.203 | 3624.443 | 4.414 | 1.087 4.80
4 Block | 55 36 | 10.8 | 50.206 | 2520.687 | 4.285 | 1.002 4.29
5 Block | 63 38 | 152 [ 55206 [ 3047.740 | 4.987 | 1.046 521
6 Block | 59 33 | 155 | 49.786 | 2478.676 | 6.253 | 0.998 6.24
7 Block | 70 39 | 135 | 58953 | 3475493 | 3.884 | 1.077 4.18
8 Block | 63 38 | 14.3 | 55206 | 3047.740 | 4.692 | 1.046 4.91
9 Block | 80 38 9 | 62211 | 3870.146 | 2325 | 1.103 2.57
10 | Block [ 70 40 | 124 [ 59704 | 3564609 | 3.479 | 1.083 3.77
11 Block | 64 | 395 | 145 [ 56.730 | 3218.332 | 4.505 | 1.058 4.77
Mean 4.52
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