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ABSTRACT

In this thesis, previous research on discontinuity geometry, in-situ block size

distribution (IBSD), blasted block size distribution (BBSD), and blastability of rock

mass is discussed. The IBSD with special reference to discontinuities with a fractal

spacing distribution is investigated using computer simulation, from which a set of

empirical equations is derived for predicting the IBSD of a rock mass with

discontinuities of fractal spacing distributions. The goodness-of-fit of theoretical as

compared with real spacing distributions is discussed and a grey correlation analysis

technique is introduced into the goodness-of-fit.

An estimation of mean trace length of discontinuities with lognormal and fractal

distributions is derived. A numerical algorithm and associated computer program for

estimating the discontinuity size distribution is developed from which empirical

equations for estimating the mean size of discontinuities with negative exponential,

lognormal and fractal trace length distributions have been derived. A factor which

accounts for the discontinuity impersistence is incorporated into the estimation of

IBSD.

Combining both Ross-Ram and Schuhmann models, a reasonably accurate and

user-friendly "photo-scanline" technique is devised for the estimation of BBSD of

the blastpile.

Blasting results, as a function of both the intact rock properties and the

discontinuity structures are investigated, and an energy-block-transition model

characterising the blastability of rock masses is developed. It is argued that the

blastability of rock mass is governed by a comprehensive range of both intact rock

properties and discontinuity parameters, and that the fractal dimension of the IBSD of

a rock mass could be an indicator of blastability. Taking into account that blastability

is a complex property, a methodology of assessing blastability of rock masses is

introduced using a Rock Engineering Systems method.

Published data from the literature has been used wherever possible to support the

validation of the new techniques of analysis and two case histories in which

applications of the developed methodologies and techniques are presented.
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NOTATION

A	 Rock factor in the Kuznetsov equation; Constant

B	 Burden

B1	 Energy-Block-Transition coefficient in Energy-Block-Transition model

BD	 Blastability designation

b	 Subscript, signifying blastpile

C,,	 In-situ block size coefficients

D	 Fractal dimension

Ee	 Relative weight strength of the explosive

E	 Bond's work index in the Bond model

E5	 Required energy for fragmentation in the Bond model and the Energy-

Block-Transition model

Fimp	 Relative impersistance factor

i	 Subscript, signifying in-situ

1	 Discontinuity trace length

i, l,	 Lower and upper values of discontinuity trace length

m5, m	 Indices of uniformity in Schuhmann equation, v for block volume and s

for block sieve size

mj	 Mean discontinuity diameter

mi	 Mean discontinuity trace length

n	 Indexes of uniformity in Ros-Ram equation, v for block volume and s for

block sieve size

Q	 Amount of explosive per blasthole

R	 Discontinuity diameter

RQD	 Rock quality designation

S	 Block sieve size; Discontinuity spacing

Sa	 Average block size

Sc(S632) Characteristic size in Ros-Ram equation



Si,p

Si50

Sj0

Silo0

Sb50

5b80

Sb]00

Su

Sm

5min

5max

Sp

Spm

V

w

Wi

xo

M

p
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Specific charge or powder factor

Blastpile block sieve size

50% passing of the in-situ block sieve size

80% passing of the in-situ block sieve size

100% passing of the in-situ block sieve size

50% passing of the sieve size of the blastpile

80% passing of the sieve size of the blastpile

100% passing of the sieve size of the blastpile

Lower and upper values of block sizes

Mean discontinuity spacing

Lower value of discontinuity spacing

Upper value of discontinuity spacing

Principal discontinuity spacing

Principal mean discontinuity spacing

Volume of rock mass or rock blocks

Weight of rock

Bonds work index

Average value of a parameter

The transformation area

Density of the rock mass in tim3
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1.	 INTRODUCTION

1.1 BACKGROUND

Maritime defence structures such as breakwaters and seawalls are built to protect

shoreline, coastal and other harbour facilities. Quarried rock has been widely used in

these coastal defence structures and can be employed in a wide rang of structure types

(CIRIA/CUR, UK & The Netherlands, 1991). Rock armour can, in many cases, offer

considerable benefits, and is an attractive option in many circumstance, in forming a

secure, cost effective and environmentally accepted defence (Thomas, 1992). For

example, in the United Kingdom, approximately 750,000 tonnes of armour was used

in 1989, and the annual figure in 1994 is believed to have doubled. Combined with the

concerns about rising sea level, the increasing market requirement for rock armour

will impose considerable demands on the quarry resources around the world (Simm et

al., 1992). Until recently, very little expertise in armourstone production had been

available and the key research topic was identified to be the in-situ block size

distribution (IBSD) (Latham & Wang, 1992).

In mining, the sizes of the rock fragments after blasting exerts a major influence on

the downstream processing. Oversize rock has to be reduced to a size which can be

handled by excavating, transporting, crushing and milling machinery. The loading rate

of a drawpoint is directly governed by block size. Internal mine transport, crushing and

milling can be adversely influenced by poor fragmentation. Poor fragmentation with

excess fines or oversize blocks in the blasted block size distribution (BBSD) can affect

costs by more than twice the cost of the blast itself (Scott et al., 1993). The prediction

of IBSD and BBSD has been one of main pursuits of mining operations although it is

notoriously difficult.

A considerable amount of research on both the IBSD and the BBSD has been

conducted in several fields; the main ones being mining engineering and quarrying.

Significant contribution have also come from research into armourstone production

and highway cutting. The need for a forum of research on this aspect of excavations

helped the initiation of the following international symposia on rock fragmentation:

Lulea (Holmberg & Rustan, 1983), Keystone (Fourney & Dick, 1987), Brisbane

(AusIMM, 1990), and Vienna (Rossmanith, 1993) and Advanced Blasting Technology

(Julius Kruttschnitt Mineral Research Centre (JKMRC), Australia, 1991). Research on

the use of rock in coastal defence structures that was highlighted in the Manual on the
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use of rock in coastal and shoreline engineering (CIRIA/CUR, 1991) provides a

wealth of geological and scientific background as well as practical engineering

guidance on block sizes of armourstone for coast protection.

Amongst the many research teams, the Geomaterials Unit of Queen Mary and

Westfield College has made significant contributions (Wang et al. 1990, 1991a;

CIRIA/CUR, 1991; Latham, 1992; Latham et al., 1994). Although obvious to some, a

valuable observation was made: to ensure the production of sufficient proportions of

large blocks for armourstone, the in-situ block size prior to blasting is one of the most

important geological factors. Based on this recognition, a computer program was

written which sorts out the problem of block sizes and shapes formed by the dissecting

discontinuities in the rock mass (Wang, 1992).

A continuous research effort into blasting technology at JKMRC also recognised

that it is the in-situ rock mass rather than the rock properties measured in the

laboratory that are important in the control of blasting (JKMRC, 1991). They

developed an estimation technique for the IBSD based on a three dimensional model

of rock structure and a comminution-based model of blast fragmentation for estimation

of the BBSD (Kleine & Villaescusa, 1990; JKMRC, 1991). The research effort into

highway cutting has also highlighted the significance of in-situ rock mass properties in

control of blasting in highway cutting operations (Matheson, 1995).

To build a deeper insight into in-situ block size, a deep understanding of the

statistical nature of spacing and trace length data from discontinuity surveying has to

be provided. This understanding usually involves describing statistically the

probability distribution functions. For example, discontinuity spacing distributions

have often been considered to be fitted adequately by negative exponential

distributions (Priest & Hudson, 1976, 1981).

A fractal - a special concept for describing the geometric properties of irregular

patterns or fragments devised by Mandelbrot (1983) has been increasingly applied in

geoscience and geological engineering. Discontinuity spacing, reported from many

rock exposures, could be described using a fractal distribution (Gillespie et al., 1993;

Boadu & Long 1994); so too could discontinuity trace length (Sega! & Pollard, 1983;

Ranalli & Hardy, 1989). Take characterisation of the discontinuity pattern as an

example. If the pattern is a fractal, the information obtained about the pattern at any

scale might be statistically similar to that at another scale (Ghosh & Daemen, 1993).

This has great significance as it implies that information about large scale behaviour
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can be obtained from small scale observations and vice versa. It has been recognised

that the power law distribution often observed in the fragmentation of geomaterials is a

consequence of the scale invariance of the fragmentation mechanism. The scale

invariance is a basic property possessed by a fractal distribution. These characteristics

have encouraged a further examination into whether discontinuity patterns can be

better described using fractal concepts on the occasions when using other descriptive

distributions prove unsatisfactory. Moreover, it invites the questions, what is the IBSD

resulting from a fractal discontinuity pattern, and, what influence will it exert on the

BBSD during rock fragmentation by blasting. A particular form of the fractal relation,

known as the Schuhmann equation (Schuhmann, 1940), has often provided a good fit

to the BBSD assessed directly from blastpiles (Turcotte, 1986; Clarke, 1987).

Unfortunately, analyses of block size distributions of rock masses intersected by

discontinuities with fractal spacing distribution are not available, although fractal

concepts have found their way into increasing numbers of applications in engineering

practice and fracture modelling.

Obtaining a functional relationship which closely describes or nearly fits a

distribution of discretely observed geometrical or geological data that is quantifying a

geometric parameter important in rock engineering (e.g. discontinuity spacing) is

helpful to an understanding of the nature and applications arising from the variations

of this parameter. In many cases, therefore, the examination of goodness-of-fit is

necessary to obtain a better description of a parameter. There have been a few

conventional statistical methods for this, but the conventional statistical methods for

evaluating goodness-of-fit and selecting a preferable fitted result have some

shortcomings (Benjamin & Cornell, 1972). Thanks to the development of grey

correlation analysis in Grey Systems Theory (Den, 1985), which concerns the analysis,

handling, and interpretation of uncertain or indeterminate information, the author is

able to propose the use of grey correlation analysis as an alternative means of

examining goodness-of-fit, and, selecting a preferable fitted result.

To date there is little scientific understanding of the ease with which a rock can be

fragmented by blasting. Selecting one or more parameters of rock properties reflecting

the resistance of the rock mass to being fragmented by blasting has been a major

obstacle to the description of the ease of fragmentation. The effect, until recent times,

has been that blasting design has relied on rules of thumb (Scott et al., 1993) obtained

by precedent practice. The failure to promote blast design tools beyond rules of thumb

might have resulted from the fact that the influence of in-situ rock properties,

discontinuity structures and their interactions are often too difficult to be quantitatively



27

isolated and determined. Rock Engineering Systems recently developed by Hudson

(1992), aims at providing both a useful checklist for technical factors of rock

engineering projects and a logical framework for the complete design procedure. It

clearly has potential for coping with complex rock engineering problems (e.g. Lu &

Hudson, 1992). By means of this innovative methodology, it is now considered

possible to tackle the complexity of rock blasting design systematically and to propose

a classification system for the ease of fragmentation of rock by blasting.

1.2 DISCONT1NUITIES AND BLOCK SIZE IN QUARRYING AND MINING

The natural i.e. in-situ block size plays an important role in many rock engineering

projects. It is examined in mining and quarrying blast operations (Coates, 1970;

Cunningham, 1983; Ord & Cheung, 1991; Wang et al., 1991b), in rock mass

characterisation (Franklin, 1974, 1986; ISRM, 1978; Hoek et al., 1992), stability

analysis of excavations in jointed rock masses (Hoek & Bray, 1981; Goodman & Shi,

1986), and, fracture network flow properties (Rives et a!. 1992; Long, 1993).

The formation of different sizes and shapes of individual blocks of intact rock

results from the mutual intersection of discontinuity sets with different spacing and

orientation. Among all the kinds of discontinuities, joints and bedding planes exert

most control on the size and shape of the in-situ block size. Both the spacing and the

persistence of discontinuities greatly influence the size of individual blocks of intact

rock. The mutual orientation of joints determines the shape of the individual blocks

comprising the rock mass. The number of discontinuity sets also influences the

appearance of the rock mass. It is common in engineering practice to group joint sets

according to the clustering of orientations of discontinuities as seen on a stereographic

projection. It is therefore suggested that the in-situ block sizes are mainly affected by

the spacing and the persistence of discontinuities, and, the number of discontinuity sets

(ISRM 1978).

Several estimation methods of 1BSD have been proposed, such as the Block Size

Index method (Franklin, 1974; ISRM, 1978), a simulation method (Hudson & Priest,

1979) and a computational method (Da Gama, 1977; Stewart, 1986; Wang & Latham,

1991). Impressive developments in the estimation of IBSD are the work carried out by

Wang and his co-workers (Wang et al, 1990, 1991 a; Wang & Latham, 1991; Wang

1992), who developed two techniques of predicting the in-situ block size and shape

parameters. The first is the so-called the Dissection Method, which uses a computer
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program to determine the sizes and shapes of all blocks produced by intersecting

discontinuities within a boundary block formed by six planes. The second is the so-

called Equation Method, which uses a set of empirical equations to estimate the IBSD.

In his work, Wang investigated discontinuities with uniform, negative exponential,

as well as lognormal spacing distributions. In developing the above two prediction

methods, an assumption that all discontinuities within the rock mass are persistent was

made. This assumption is probably acceptable for a small volume of rock with highly

persistent discontinuities, but the errors related to this assumption will inevitably

increase with the increase of both the volume of rock mass and the impersistent

discontinuities in question.

One of most important aims of any blasting investigation related to quarrying and

mining is to predict the degree of fragmentation (Hagan & Just, 1974; Singh & Sastry,

1987). For mining, the degree of fragmentation is one of the basic measures of relative

efficiency for different blasting designs (Just, 1979; Scott et al., 1993). For quarries

producing armourstone, both the production rate and a sufficient quantity of

armourstone or aggregate in a given size range are among the major concerns for

which the predicted BBSD is vital information (Latham & Wang, 1992). To assess

whether a blasting operation is optimal requires an appraisal of the actual blastpile's

block size distribution. Thus, the development of methods of assessing the BBSD has

been an important topic in both quarrying and mining, whether measured directly from

the blastpile itself or predicted from application of blast design models.

Direct sieving and measuring is the most reliable method to obtain the blastpile size

distribution. However, at full scale, it is expensive and tedious, generally being used

only in scaled down trial blasts or model studies (Yang & Rustan, 1983; Singh &

Sarma, 1983; Singh & Sastry, 1987). Photographic and image analysis techniques (Nie

& Rustan, 1987; Franklin & Maerz, 1988; Hunter et al., 1990; Ord & Chueng 1991;

Farmer et al., 1991) and prediction methods based on empirical blast design models

such as Kuz-Ram (Cunningham, 1983) and Bond-Ram (Da Gama, 1983; Wang et al,

1992) have been proposed to help tailor the explosive and geometric parameters of the

blast towards a desired BBSD for full scale production.

An ideal technique for the estimate of BBSD should be reasonably accurate, cost-

competitive and user-friendly. The exclusive and expensive methods reported above,

appear not to meet all these requirements. The direct photographic and image analysis

techniques usually need complex equipment and/or software. The indirect prediction
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models do not have their governing parameters determined with sufficient reliability.

However, in combining parts of the prediction models with a simple photographic

method, a technique which may meet all the above requirements can be developed.

1.3 THE EASE OF FRAGMENTATION OF ROCK MASSES BY BLASTING

Ease with which a rock can be fragmented by blasting should be a kind of intrinsic

property of rock. This property is referred to as Blastability. The necessaly energy

input in a blast and the BBSD are clearly influenced by blastability.

The influence of properties of a rock mass on blasting operations has long been

studied. Their influence has been mentioned and incorporated in various ways, such as

Bond's work index (Bond, 1952), Hino's Blastability Coefficient (see Just, 1974), Rock

Factor (Kuznetsov, 1973), and Blastability index (Lilly, 1986). However, little attempt

has been made to develop a quantitative parameter or system to define the ease of

fragmentation of rock by blasting, in spite of the fact that this kind of development was

suggested long ago by Hagan and Just (1974). The advice to concentrate research

effort towards the study of blastability models was given by Scott et a!. (1993), and

this research study has taken his advice on board.

Turcotte (1986) suggested that in many cases, fragmentation assumes a fractal

distribution or power law form. Also a theoretical study (Nagahama, 1993) has

indicated that the fractal dimension of fragments can be related to the energy density

for the fragmentation. These make the investigation into the possible relationship

between blastability of a rock mass and the fractal dimension of IBSD an attractive

research topic.
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2. REVIEW OF PREVIOUS RESEARCH ON DISCONTINUITY

GEOMETRY, IBSD, BBSD AND BLASTABILITY

2.1 DISCONTINUiTY GEOMETRY

In the rock engineering fields dealing with excavation and construction on and

within rock masses such as quarrying, mining, hydraulic power projects, the term

"discontinuity" as a general collective name has become accepted and is now widely

used. A discontinuity can be any type of weak plane within a rock mass across which

the rock is structurally and/or mechanically discontinuous and has zero or low tensile

strength. Discontinuities include all weak planes of geological origin, such as joints,

bedding planes, cleavages, planes and faults.

The ISRM (1978) refers to the use of ten parameters for the characterisation of

discontinuities and these include three geometric parameters: spacing, persistence, and

orientation. Each of these ten parameters can have a significant influence on the rock

properties that control the success or otherwise of an engineering project. However,

three geometric parameters in particular, and their spatial distributions, are most

important in the estimation of both the IBSD and the BBSD: spacing distributions,

trace length distributions and orientation distributions (ISRM, 1978; Hudson & Priest,

1979; Priest & Hudson, 1981; CIRIA/CUR, 1991; Wang, 1992; Latham et al., 1994).

2.1.1 Discontinuity Measurement

There are a variety of methods for collecting, analysing and using discontinuity

data. In many cases it is only necessary to estimate the most important features of the

major discontinuity sets. These might be obtained readily from a simple visual

inspection of rock exposures. Other forms of analysis will require detailed information

and will take longer time to complete. Measurements and analyses of rock structures

could range from rough estimation of the mean spacing of three major discontinuity

sets, to complicated modelling of parameters describing the three dimensional

discontinuity pattern. The more complex models will take account of the variability of

discontinuity shape, size, orientation and clustering.
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Discontinuity data acquisition is achieved by mapping. The mapping methods

developed can be grouped into two types. One is by direct survey and another is by

indirect measurement. The indirect methods are based initially on measurements of

physical parameters of the rock mass such as seismic velocity and the discontinuity

parameters are then estimated from the physical parameters (e.g. Grainger et al.,

1973). The direct methods use visual measurement of each discontinuity. Such

measurements of lengths or angles are made directly on rock outcrops, bench faces,

boreholes (Piteau, 1970, ISRM, 1978) as well as from photographs of rock exposures

(Franklin & Maerz, 1988; Farmer et al., 1991). The direct measurement on rock

exposures can be carried out using either area mapping or line mapping techniques.

Area mapping techniques have been adopted by some researchers in collecting the

discontinuity trace length as well as spacing information (Mathis, 1987; Kikuchi et al,

1988). The mapping technique uses such measurements as spacing and trace length

exposed in a chosen area on an exposure. The exposure should be sufficiently large in

area so that the discontinuities measured are representative. This is often limited by

the accessibility and availability of rock exposures.

Line mapping, often referred to as the scanline technique, is widely used nowadays.

The principles are shown in Fig. 2.1. The line mapping technique was originally

proposed by Jennings (1968) and further extended and described by Piteau (1970) and

Hudson and Priest (1979). Wang (1992) described the technique in detail and further

grouped it into "detailed scanline" and "quick scanline" techniques. These techniques

are examined further below.

Fig. 2.1 Schematic illustration of scanline mapping of discontinuity characteristics
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Detailed scanline technique

The detailed scanline technique measures discontinuity orientation, trace length,

position, roughness, and aperture of each discontinuity intersecting the scanline in

question. The measurements can be collected from outcrops, excavation walls,

boreholes or photographs. Where the objective is the analysis of IBSDs, the

measurement can be reduced to orientation, spacing and trace length.

The basic equipment used for the detailed scanline is a compass clinometer, a

measuring tape of approximately 30 m length calibrated in centimetre divisions, a

customised pro-forma data entry sheet, pencil and notebook. Two chisels may also be

useful for setting out the tape where it is difficult to secure the tape ends.

The detailed scanline technique can provide the information needed to yield a

detailed discontinuity pattern. However, it is usually time-consuming and may be

restricted and unsuitable because of such factors as the inaccessibility of exposed

surfaces. Thus, a quick scanline technique has also been proposed.

Quick scanline technique

The quick scanline measures only the intercepts of discontinuities with the tape.

However, persistence data is often gathered at the same time. This surveying

technique can be conducted on outcrops and tunnel walls, along boreholes or directly

on photographs provided care is taken with possible distortion.

Using the quick scanline technique it is possible to obtain the mean spacing value

relevant to the scanline orientation and location, but impossible to group

discontinuities into sets, which limits its application in practice. A simple

development by Karzulovic and Goodman (1985) was put to use by Wang (1992) and

has given quick scanline techniques greater potential for exploitation. From this

development, it is possible to estimate the principal mean spacings (see section 2.1.2)

by combining data from several quick scanline surveys and this is explained below.

Hudson and Priest (1979) have shown that the discontinuity frequency along a

scanline is given by

(2-1)
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where ? is the frequency of the ith discontinuity set along the nonnal to the ith set,

i.e. the reciprocal of the ith principal mean spacing, O is the acute angle between the

scanline and the normal to the ith set, and, N is the number of discontinuity sets,

which is selected as three in this example.

According to Karzulovic and Goodman (1985), for a group of three sets of

discontinuities, there is the following relation if there are n scanlines (n ^ 3).

AA AB AC Spmi	 LA

AB BB BC 5'pm2 = LB,	 (2-2)

AC BC CC Spm3	 LC

where Spm is the principal mean discontinuity spacing, and,

AA = cos91 cos

AB=cosOicos82,

AC=cos8icos93

etc.

LA = Smj COS

LB=Smjcos92j,

LC= Smj cosø3J

where, j represents the number of the scanlines, Smj is the mean spacing value of

discontinuity along the jth scanline, and, Ojf is the acute angle between the ft/i

scanline and the first discontinuity set. It is important to point out that it is critical to

know the discontinuity set orientations that enable substitution of the values of Oj.
The discontinuity set orientations can be estimated by reconnaissance mapping,

plotting and contouring.

Eqn. 2-2 provides the estimate of the principal mean spacings from the general

mean spacing values measured by the quick scanline technique, for the case where the

detailed scanline is considered inappropriate. The greater the number of scanlines
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measured (the minimum is three), the more reliable are the estimates. This method is

of significance in providing estimation of the principal mean spacing values, even

though its wide application may be restricted by the uncertainty in the accuracy of the

results provided.

2.1.2 Discontinuity Spacing and its Terminology

2.1.2.1 Terminology of Spacing Distributions

ISRM (1981) described discontinuity spacing as the perpendicular distance

between adjacent discontinuities. To give more precision, Priest & Hudson (1981)

defined discontinuity spacing as the distance between an adljacent pair of

discontinuities measured along a straight line of a given orientation within or on the

surface of a rock mass. According to this definition, the discontinuity spacing is

affected by both orientation and location of the scanline measuring it.

The mean discontinuity spacing (Sm) is the algorithm average value of n

discontinuity spacing measurements S (i=1,...,n) along a scanline, where n

measurements can be generated from n discontinuities.

(2-3)

In the case of using detailed scanlines, the mean spacing value Sm of each scanline

can be obtained using the above definitions, and the distribution of the discontinuity

spacings can then be discussed. It is worth pointing out that Sm as well as relevant

distributions are usually influenced by all sets of discontinuities in the rock mass and

related to the scanline's orientation (Hudson & Priest, 1979). For this reason, it is

helpful to follow Wang (1992) and introduce spacing parameters for each set of

discontinuities: the principal spacing S,,, and the principal mean discontinuity spacing

Spm and the principle spacing distribution.

Under the condition of parallel discontinuities, the spacing measured along a

scanline will be the shortest when the scanline is perpendicular to discontinuities. For

this perpendicular condition, the spacing value is called the principal spacing S. The

concept can be further extended to include the spacing between two adjacent

discontinuities in one set where the scanline is parallel to the pole of mean orientation

of the set. The two adjacent discontinuities may be subparallel or parallel. When the
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principal spacing S of a particular set of discontinuities is used to calculate and

generate the mean discontinuity spacing for this set, this mean discontinuity spacing is

named the principal mean discontinuity spacing Spm or briefly, the principal mean

spacing (Wang, 1992) , which is as follows.

Spm	 Sp.	 (2-4)

Methods of obtaining the principal mean spacing

The discontinuity frequency (X) is defined as the number of discontinuities per unit

length of scanline, and is therefore the reciprocal of the discontinuity mean spacing.

Sm
	 (2-5)

Fig. 2.2 Schematic illustration of the generic relationship between a discontinuity

and the tape (scanline) in a reference frame (X Y Z)

Using the detailed scanline, both the principal spacings and the principal mean

spacings can be obtained. There are two methods, with a little difference, for

calculating the principal mean spacing and these are described as follows.
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1) First, a plane function describing the spatial position and orientation of each

discontinuity is defined. To implement this, the raw survey data: dip angle, dip

direction and intercept with the oriented tape, have to be transformed into five

parameters: the dip angle and the dip direction of the discontinuities, and the three co-

ordinates (x, y, z) of any point on the discontinuity plane in an orthogonal Cartesian

co-ordinate reference frame as illustrated in Fig. 2.2. The intercept of the first

discontinuity with the tape is usually set out to be the origin of this reference frame.

The intercept of the discontinuity with the oriented tape defines a location on the

discontinuity plane and this location is therefore used to calculate the required co-

ordinate point (x, y, z) of that discontinuity plane,

x = I Cos( ) Sin( )

y = I Cos(0)Cos(Ø),	 (2-6)

z = i Sin(e)

where I is the intercept of discontinuity, 0,, is the plunge angle of the tape with a

positive sign (if the tape is downwards) or negative sign (if the tape is upwards), is

the azimuth of the tape.

An artificial scanline can be drawn along the mean orientation of a set of

discontinuities (i.e. the mean normal direction of this discontinuity set) determined for

example using the stereographic method. All discontinuities within the set will

intersect the artificial scanline, and, the intercepts can be determined by their

trigonometric relationships between: the orientation of the tape; the orientation of the

artificial line; and the orientation and intercept of the discontinuity. The principal

spacing between two adjacent discontinuities in the set is the distance between two

intersections along this artificial scanline (Fig. 2.3).

The advantage of this method is that it is not necessary that discontinuities in each

set are all parallel. However, the principal mean spacing value will be influenced by

possible variation in the relative location of the artificial scanline though the effect

could be reduced by increasing the numbers of discontinuities in a set.

2) When two adjacent discontinuities in a set are parallel, the principal mean

spacing, can be obtained from illustration in Fig. 2.3, as follows:

S = S x cos a = S x (cos O cos m cos ( 0, - Om) + sin 0 sin em) '	 (2-7)
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where S is the spacing value from the original scanline of any orientation and a is the

intersection angle between the orientation of the scanline and the artificial scanline

(i.e. the mean normal direction of the set of discontinuities). The angles 0 and are

the plunge and the azimuth of the oriented lines respectively. Subscript I indicates the

scanline and m is the normal direction of the set of discontinuities.

Fig. 2.3 The relationship between the principal mean spacing from the known

spacing and orientation of the scanline and the mean orientation of the discontinuity

set. (Dl and D2 are two adjacent parallel discontinuities)

While the second method is simpler than the first it may introduce errors when

discontinuities are not parallel. After the principal spacing value in each set is

determined, the principal mean spacing value of each set of discontinuity can be

worked out using Eqn. 2-4.
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The data for the above two methods of calculating the principal mean spacing is

provided by the detailed scanline surveys. When using quick scanhine surveys, we can

use the techniques proposed by Karzulovic and Goodman (1985) (see Eqn. 2.2) to

estimate the principal mean spacings.

2.1.2.2 Characterisation of Discontinuity Spacing

The spacing of discontinuities is one of the most influential parameters for the in-

situ block size. Thus, numerous research studies on the characterisation of

discontinuity spacing have been conducted.

Priest and Hudson (1976, 1981), Hudson and Priest (1979, 1983), and, Priest

(1993a) carried out in-depth studies and discussions which have effectively provided

the basis for our correct understanding of discontinuity geometly. They gave a non-

mechanical but more mathematical treatment of the tendency to produce negative

exponential spacing distributions.

Call et al. (1976) investigated the possibility of deriving reasonable estimates of

discontinuity spacing distributions from surface mapping data. Baecher and co-

workers (Baecher et al., 1977; Baecher, 1983) discussed and summarised the

stochastic description and statistical design of discontinuity spacing surveys. Einstein

and Baecher (1983) examined the probable distributions of discontinuity spacings

using the Chi-square (x2) test. Assuming that visual inspection of the histograms of

spacings is not enough to prove whether a proposed theoretical spacing distribution

gives the goodness-of-fit to the measurements, Rouleau and Gale (1985) used the

Kolmogorov-Smirnov test to examine the goodness-of-fit of spacing distributions to

the negative exponential, lognormal and Weibull distributions. They found that the

lognormal distribution was the best among them. This type of work has only received

a little attention and is a topic to be discussed later in this research study.

Dershowitz and Einstein (1988) discussed possible reasons for different spacing

distributions, pointing out that discontinuity location is the results of different

mechanical processes, and thus, different discontinuity spacing distributions would be

expected in terrain exposed to different deformation histories.

Discontinuity spacing distribution has recently been studied by Harris et a!. (1991),

Barton and Zoback (1992), Gillespie Ct a!. (1993), and, Boadu and Long (1994) with
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the motive in common. Their investigations have been concerned with an interesting

possibility that the spacing of discontinuities and discontinuity patterns could be scale

invariant in general or in certain aspects, i.e. the spacing distribution of discontinuities

could exhibit fractal characteristics. The fractal concept has found an increasing

number of applications in geoscience and geological engineering (Allegre et al., 1982;

Aviles & Scholz 1987; La Pointe 1988, 1993; Ghosh et a!., 1990; Poulton et al., 1990;

Genske et al., 1992; Nagahama, 1993; Hobbs, 1993). If the discontinuity pattern

generation in a rock mass is self-similar then the information obtained about the

pattern at any scale would be statistically similar to that at other scales (Ghosh &

Daemen, 1993). The advantage of characterising discontinuity with fractal tools is that

in a given rock mass, only one small size interval needs to be measured to determine a

much wider range of characteristics. Whereas Hudson and Priest (1976) showed how

superposition of separate discontinuity spacing patterns would tend to produce an

overall spacing of negative exponential distribution, Hobbs (1993) has suggested that

rock masses would show a tendency towards fractal spacing frequency distribution.

The fractal spacing distribution has therefore been selected for detailed examination in

this research study.

The distribution law of discontinuity spacings along a scanline in line mapping is

often represented by an available probability distribution function (PDF). Nowadays,

this is usually done in the following way. First, the spacing values are grouped into a

certain, say, ten intervals in an order of increasing spacing. Then, the frequency of

spacing data within each interval is computed and plotted as a histogram. The most

likely theoretical distribution to give a good description of the histogram is assessed

visually. To get more reliable results, it is necessary to fit the frequency-spacing data

to some theoretical distributions and to examine the goodness-of-fit. Many researchers

have looked into the possible spacing distributions practically and theoretically. These

are summarised in Table 2.1.

The ability to identify the form of discontinuity spacing distributions is a basic

requirement for any study of discontinuity spacing analysis. Gillespie et al. (1993) have

shown how synthetic fracture logs can be created for uniform, lognormal, negative

exponential and fractal discontinuity spacing distributions by the following processes.

(1) a bisection process, giving a fairly regular distribution with constant spacing;

(2) a Poisson process, or a random point process, giving a negative exponential

spacing distribution;
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Table 2.1 Su	 of disc
	

distributions

Distributions
	

Sources	 )lication/Case stud

Negative	 Priest & Hudson (1976)	 Theoretical approach IDiscontinuities in sandstone,

exponential	 limestone, and chalk (UK)

Call et al. (1976)	 Theoretical approach/Joints (USA)

Baecher et al. (1977)	 Joints in shale, siltstone, and igneous rocks(USA)

Hudson & Priest (1979)	 Theoretical approach IDiscontinuities in sandstone,

limestone, mudstone, and dolerite (UK)

Priest & Hudson (1981)	 Discontinuities in sandstone and mudstone (UK)

Einstein & Baecher (1983) Theoretical approach/joints

Sen (1984)	 Theoretical approach

Sen & Kazi (1984)	 Theoretical approach /joints in schists (Saudi Arabia)

Rouleau & Gale (1985)	 Joints in the Stripa granite (Sweden)

La Pointe & Hudson (1985) Theoretical approach/Joints in dolomites (USA)

Kikuchi et al. (1987)	 Joints in granite (Japan)

Villaescusa & Brown (1990) Joints in rock from different mines (Australia)

Kulatilake et al. (1990) 	 Theoretical approach/joints

Wang (1992)	 Theoretical approach/joints in granite gneiss (Norway)

and limestone (UK)

Rives et al. (1992)	 Theoretical approach

____________ Kulatilake et al. (1993)

Lognormal Bridges (1975)
	

oints

Baecher et al. (1977)
	

oints in shale, siltstone, and igneous rocks (USA)

Sen (1984)
	

heoretical approach

Sen & Kazi (1984)
	

leoretical approach /joints in schists (Saudi Arabia)

Rouleau & Gale (1985)
	

oints in the Stripa granite (Sweden)

Wang (1992)
	

heoretical approach/joints in granite gneiss (Norway)

nd limestone (UK)

__________ Rives et al. (1992)

Fractal	 Harris et al. (1991)
	

approach

Barton & Zoback (1992)
	

approach

Gillespie et a!. (1993)
	

approach/Discontinuities in sandstones and

Uniform

shales, UK

Hobbs (1993)	 Theoretical approach I examination of joints in the Stripa

granite (Sweden)

Boadu & Long (1994)	 Theoretical approach/Discontinuities in several

________________________ different locations (UK)

Hudson & Priest (1979)	 Theoretical approach

Wang (1 992	 Theoretical anoroach

Normal	 Hudson & Priest (1979)	 Theoretical approach

Rives et al. (1992) 	 Theoretical approach

Weibull	 Rouleau & Gale (1985)

Sen (1993)

Gamma	 Sen (1984)

Kulatilake et al. (1993)

Joints in the Stripa granite (Sweden)

Theoretical approach

Theoretical approach

Theoretical approach/joints (Sweder
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(3) a Kolmogorov process, giving a lognormal frequency distributions of spacing;

and,

(4) a fractal clustering i.e. a scale invariant process, resulting in a power-law

spacing distribution.

a) Bisection

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000

b) Poisson

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000

c) Kolmogorov

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000

d) Fractal

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000

Distance

Fig. 2.4 Fracture logs for four kinds of theoretical distributions of discontinuity

spacings, each log has a sample line length of 1000 units and 256 fractures (after

Gillespie et al., 1993).

The random point distribution is simply generated by randomly distributing

fractures along a sample line. A Kolmogorov process is generated by an iterative
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process of random bisection, in which each iteration randomly places an additional

fracture in every space between adjacent fractures. The Cantor Dust model

(Mandeibrot, 1983) can be used to produce the fractal data set. The fracture logs for

these four kinds of theoretical distributions of discontinuity spacings are illustrated in

Fig. 2.4.

Fig. 2.5 Three theoretical distributions (all three distributions have the same value

of mean spacing, 0.45 m)

Fig. 2.6 Log-log plot for three distributions (The mean spacing for all three

distributions is the same: 0.45 m)



43

(I,	 -	 I

.4-.

—I	 —
o	 I	 t

I—	 I.-'
CI,	 —	 r'ij

+I	 •	 ---	
II	 V	 VI	 I

I • x 	 _
I	 vI	 -

II	 I
c/i	

'	 VI	 I	 I
—

o	
I	 II	 -	 II

_	 II	 I
CI, C"

-	 I
1)
1	 ,II

lr-e	 -

—	 II
CI)

b-e

0

c/c	 -0.-- 4- —

r

; 0	 '-, c',1 	. 	
-e 	 Ib -e	 +

+	 --e	 • .)	 +
,	 Il	 Ac-	 II

lb	 ii°'	 l
I'-,-	 II
+
'-4

-	 II	 II

c)

M

—

8	 " 8

c	 -I	 -'I

II	 II

	

II	

1VI	 I	 bVI

><	 _l

c/i

-

VI	 VI	 +	 I I I —

	

—I	

III	

'
—	 II	 I

VI	 ''	 VI	 II

_____ kM _ b

II

'

ci	 -	 __c._	 .-.

CQ	 cC.)'-

-	 .c*-

-o	 -



44

The frequency distribution of spacing is conveniently represented on a frequency-

spacing plot of spacing x vs. frequencyf(x). The three types of theoretical distributions

of discontinuity spacings are illustrated in Fig 2.5.

For the analysis of fractal spacing distributions, the spacing is usually represented

on a double-logarithm plot of spacing, x versus cumulative number N(x), where N(x) is

the number of discontinuity spacing values ^ x. On the log-log plot of spacing versus

cumulative number N(x), a fractal distribution will be a straight line. After obtaining

N(x) the related fractal dimension can be determined. On the log-log plot of spacing x

vs. f(x), the fractal distribution also plots as a straight line, as illustrated in Fig. 2.6,

which is distinct from the curves of the other spacing frequency distributions.

Whereas on the log-log plot of f(x)-x, a negative exponential frequency distribution

will be a distinct convex upwards curve, a log normal frequency distribution forms a

gentle curve and can resemble those of fractal distributions for the range representing

the large spacing values. The uniform frequency distribution of spacing, with all

spacing almost equal, are easily isolated from other types of distributions. This

technique is helpful to distinguishing between the four population types, and is

specially useful for examining fractal distribution.

The probability density functions, the cumulative probability functions, the mean

and standard deviations for four types of theoretical distributions are given in Table

2.2. They can be used in the analysis of both the discontinuity spacing data and the

discontinuity trace length data.

2.1.3 Discontinuity Persistence and Size

Discontinuity persistence is defined as the discontinuity trace length as observed in

an exposure, and is a measure of the extent to which discontinuities persist before

terminating in rock or against other discontinuities (ISRM, 1978; Einstein et al., 1983).

A discontinuity with a given trace length may be treated as persistent by one

worker with an objective of, for example, predicting block sizes; whereas another with

an objective of predicting the permeability of rock might not consider it to be

persistent. Thus, the persistence is related to scale of concern and the study objectives,

i.e. it is a relative term.
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oints in Niagaran dolomite

in shale, siltstone, and igneous rocks (USA)

tical approach

oints in Niagaran dolomite
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Table 2.3
	

ry of discontinuity trace
	

distributions

	Distributions	 Sources	 I
	

A

Negative	 obertson (1970)

exponential	 all et al. (1976)

ruden (1977)

aecher et al. (1977)

jest & Hudson (1981)

anek (1985)

a Pointe & Hudson (1985)

ouleau & Gale (1985)

kuchi et al. (1987)

analli & Hardy (1989)

hang & Ljao (1990)

ulatilake et al. (1993)

Lognormal	 iteau (1973)

cMahon (1974)

ridges (1976)

aecher et al. (1977)

arburton (1980)

aecher (1983)

ouleau & Gale (1985)

arton & Larsen (1985)

analli & Hardy (1989)

illaescusa & Brown (1990)

Kulatilake et al. (1993)

Fractal	 tone (1980, cf. Bahat, 1988)

egall & Pollard (1983)

arton & Larsen (1985)

analli & Hardy (1988)

ahat (1988)

avy et al. (1990)

omette et al. (1990)

'heoretical approach /joints

leoretical approach/Joints (USA)

leoretical approach

oints in shale, siltstone, and igneous rocks (USA)

)iscontinuities in sandstone aiid mudstone (UK)

mestone, mudstone, and dolei-ite (UK)

'heoretical approach/Joints in dolomite (USA)

oints in the Stripa granite (Sweden)

oints in granite (Japan)

aults in world-wide, local or region

oints in mudstone and sandstone (China)

oints

oints, openpit, Zambia

)iscontinuity in rock slope

oints associated with caving mining

oints in shale, siltstone, and igneous rocks (USA)

tical consideration

tical approach/joints

in the Stripa granite (Sweden)

tical approach

in world-wide, local or region

tical approach

in the

ttical approach

in granite rocks (USA)

tical approach/fractures (USA)

in world-wide, local or region

tical consideration

itory simulation/theoretical consideration(France)

itory simulation/theoretical consideration(France)

Uniform	 IHudson & Priest (1979)

ILa Pointe & Hudson (1985

Normal	 IBaech et al. (1977)

IHudso & Priest (1979)

ILa Pointe & Hudson (1985

Gamma	 IBaecher et al. (1977)	 IJoints in shale, siltstone, and igneous rocks (USA)

IKulatilake et al. (1993) 	 ITheoretical approach/joints (Sweden)

While the size of a discontinuity is one of the most important rock mass

parameters, it is one of the most difficult to quantify in anything but crude tenns

(ISRM, 1978; Priest, 1993a). Discontinuity size is generally represented by trace
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length on a two-dimensional surface or, the surface area of the individual discontinuity

which in practice is rarely observed. Trace length as observed in an exposure is both

objective and measurable. Discontinuity trace length may give a crude measure of the

area extent or penetration length of a discontinuity. Thus, the persistence or the size of

discontinuities can be quantified by measuring the discontinuity trace lengths on the

exposures.

Discontinuity trace lengths can range from centimetres to hundreds of meters.

Persistence mapping techniques vary with scale and targeted problem. Scanline

surveying, which samples the traces intersecting a line drawn on the exposure (see Fig.

2.1), is an ideal procedure from which to sample trace lengths.

In measuring the trace length of discontinuities, measuring errors are inevitably

introduced and a measuring bias is usually carried in the measurements. There are

essentially four biases: size bias, orientation bias, truncation bias and censoring bias.

The biases involved in the surveying of trace lengths have been discussed by Baecher

(1983). Among these biases, contributions from truncation bias could be made

negligible by selection of a low cut-off (Baecher & Lanney, 1978). Correction of

remaining biases has been discussed by Priest and Hudson (1981), Kulatilake and Wu

(1984a), and, La Pointe and Hudson (1985).

The statistical characterisation of discontinuity trace lengths is analogous to the

characterisation of discontinuity spacing. Einstein and Baecher (1983), for example,

believed that the discontinuity trace lengths could be well described by a lognormal

distribution.

A number of distributions describing discontinuity trace lengths have been

proposed. So far, the existing PDFs used for idealisation of discontinuity trace length

distributions are the negative exponential, the lognormal, and, the fractal or power-law

distributions, as summarised in Table 2.3. Consideration of which one is applicable is

necessary when drawing inferences from discontinuity mapping measurements. The

uniform and normal distributions have sometimes been used to investigate the trace

length distribution. However, the applicability in practice of these two trace length

distributions remains uncertain and is in need of further investigation. The Gamma

distribution has its advantage of including the negative exponential distribution as a

special case, but is mathematically much more sophisticated than the negative

exponential distribution. The fractal or power-law distributions have been reported for

several years (Stone, 1980 (cf. Bahat, 1988); Segall & Pollard, 1983). Recently, Davy



47

et al.(1990), and Sornette et a! (1990) in their experiments on the formation of faults in

a laboratory observed that the distributions of fault lengths exhibited a fractal

dependence over a certain significant range.

Various authors have provided geological evidence for dominance of particular

distributions. In most cases these authors collected data and then determined the best

of several theoretical distributions. Sometimes, the fitted distributions would be

subjected to a goodness-of-fit test (Einstein & Baecher, 1983; Rouleau & Gale, 1985;

Villaescusa & Brown, 1990). The variety of observed distributions can be produced

from different models describing the mechanical process and the geometric effects

owing to the fact that surface traces and not actual discontinuity sizes are observed

(Dershowitz & Einstein 1988).

Mean trace length is one of most important parameters to characterise discontinuity

persistence and size. Thus, many efforts have been made to estimate the mean trace

length.

Cruden (1977) described a method for estimating the mean trace lengths and the

potential longest trace length using line sampling while studying slope stability

problems. Pahi (1981) proposed a technique of estimating the mean trace length of

discontinuities observed in mine drive walls by assuming that the midpoints of traces

are uniformly distributed. The method appears, in a sense, distribution-free, since the

only parameter required for each discontinuity is whether it is censored (at one or both

ends) or not, and no information of the actual lengths of observed traces is needed. The

method, however, is limited by the assumption that the traces should be parallel.

The estimation of the mean trace length using scanline mapping was described in

detail by Priest and Hudson (1981). They proposed an analytical technique of

estimating mean trace length from measurements of semi-trace length of joints on a

finite-sized exposure using scanline surveying. Using the analytical technique, the

mean trace length, for a large sample, can be estimated by simply counting the number

of discontinuities with semi-trace length less than a range of censored levels and the

total number in a sample. This technique is of significance in the estimation of mean

trace length, and will be used for considering the influence of impersistent

discontinuities on the prediction of IBSD in this research study.

Kulatilake and Wu (1984a) described a technique for estimating the mean trace

length on infinite vertical sections from the observations made on finite rectangular
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vertical exposures. This technique followed the same basic steps as proposed by Pahi

to discontinuities whose orientations are described by a probability distribution

function. In addition, it was assumed that both trace length and orientation are

independent of each other.

After defining the distribution of trace lengths and thereby the mean trace length,

discontinuity size cannot be determined unless assumptions about discontinuity shape

and the nature of their size distributions have been made. Under special assumptions,

the underlying discontinuity size can be estimated from trace length measurements on

exposures.

Robertson (1970) has found that the lengths of joints in both the strike and the dip

direction are approximately equal, from which circular discs were proposed as models

for joints although other models, such as Poisson planes, were proposed for

discontinuity models (Baecher et a!., 1977; Dershowitz & Einstein, 1988).

On the basis that the sizes of discontinuities have a statistical distribution related to

the distribution of trace length, Warburton (1980) derived an analytical relationship

between trace length and discontinuity size, using mathematical stereology and

geometric probability methods. This would appear to be of great significance for the

research objective which is to detennine the invisible discontinuity size information

from visible and measurable trace lengths. Therefore, further study of its practical

applicability would seem important. Based on Warburton's work, Kulatilake et a!.

(1990) found that diameter distributions for all discontinuity clusters will tend to be

gamma type assuming that joints are finite circular discs. In an effort to investigate the

influence of non-persistent discontinuities on the IBSD in this research, Warburton's

relationship will be used to develop a numerical solution for the determination of

discontinuity sizes.

It is seen from Table 2.3 that negative exponential, lognormal, and fractal trace

length distributions are often encountered. Thus, the research emphasis will be put on

these three trace length distributions. It is worth noting that so far, little study of the

persistence of discontinuities with fractal distributions has been done. Characterising

persistence and size parameters of discontinuities with fractal distributions will

therefore be highlighted in this research study.

The discussion of discontinuity trace length distribution laws and identification

techniques is similar to the discussion of discontinuity spacing distributions made in



49

the last section, and is therefore not described here. Just as with discontinuity spacing

distributions, to identify the quantity of fit to ideal lognormal, negative exponential and

fractal discontinuity trace length distributions is also important in the study of

discontinuity persistent analysis.

2.1.4 Discontinuity Orientation and Sets

For discontinuity geometry, the orientation of the most important discontinuity sets

is another of the main factors to be considered. In the modelling of discontinuity

geometry, delineation of the discontinuity sets is a first step to creating discontinuity

geometry patterns (Dershowitz & Einstein, 1988). Discontinuities in rock masses are

not uniformly distributed in all directions, but are often formed in sets (Piteau, 1970;

Pollard & Aydin, 1988). There are several analytical functions available to describe the

discontinuity orientation distribution, such as the Fisher and the Bingham distributions

(Baecher, 1983; Dershowitz & Einstein, 1988; Priest, 1993b).

Grouping discontinuities within rock masses into sets usually consists of three

phases: mapping and logging the data, defining the criteria for membership of a set,

and assigning individual discontinuities into each of the sets. In practice, the

stereographic projection method has traditionally been used for a basic approach to

identification and assignment of the discontinuity sets. Poles of discontinuity planes

are plotted to produce a scatter plot which can be contoured to give orientation

densities. Certain criteria are then applied to the contoured plot which allows the

discontinuities to be grouped into several discontinuity sets with a distinct clustering

around one particular set. The mean orientation and dispersion of each set are then

estimated. With the help of computers, this graphical method may be objectively

implemented.

A goodness-of-fit test is often used to examine whether a proposed form of

theoretical distribution can reasonably describe the scatter of orientation data from site

surveys. For example, Baecher (1983) carried out the goodness-of-fit tests using x2

examination.

The discontinuity orientation distribution will be subject to error from sampling

bias arising from the mapping. A series of techniques for error reduction have been

suggested and used in practice (e.g. Einstein & Baecher, 1983; Kulatilake & Wu,

1984b; La Pointe & Hudson, 1985; Priest, 1993b).



50

The discontinuity orientations of the dominant sets play a significant role in most

rock engineering applications. A detailed survey of discontinuity orientations and a

careful grouping of discontinuity orientations into different sets are therefore

necessary. However, for certain applications and practical reasons, for example, the

prediction of IBSD, some simplifications have often been made.

The IBSD and the shape of the in-situ blocks and similarly their equivalent sizes

and shapes after blasting are a function of orientation distribution and nature of the

main discontinuity sets. In most cases, the in-situ and blasted block size and shape are

greatly influenced by three main sets of discontinuities. The other discontinuity sets

and random discontinuities influencing the in-situ and blasted block size could be

included, but they have often little effect on the results (ISRM, 1978; Wang et al.,

1990).

In fact, according to Costa and Baker (1981) and many other structural geologists,

discontinuities are closely associated with both the geological structure and the region

deformation history which are dependent upon the stress fields within a rock mass. A

region earth stress field is always revealed through three principal stresses. So, it may

be reasonable to assume that there will be three main sets of discontinuities for many

situations where the principal stresses have not rotated significantly. In addition, to

develop a procedure for tackling more than three sets of discontinuities will be much

more complex than that for dealing with three sets. Therefore, a simplified assumption

that there are three sets of main discontinuities will be sustained in this research study

for the prediction of IBSD.

2.2 IN-SITU BLOCK SIZE DISTRIBUTION

Both the Ros-Ram (Rosin & Rammler, 1933) and the Schuhmann equations

(Schuhmann, 1940) have been widely used for representing block size distributions.

The Ros-Ram equation is given by

P=l—e
	

(2-8a)

or



p =
S100

(2-9a)

or

P=( V)
V100

(2-9b)
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P=1—e c	 (2-8b)

where, P is the proportion of the blocks smaller than the sieve size S or volume V (%);

Sc (Vc) is characteristic sieve size (volume), given by the point on the size distribution

curve when 63.2% of blocks have a sieve size (volume) finer than Sc (Va); n5 (nv) jS

the index of uniformity given by the steepness of the curve of the block size

distribution. Theoretically, lower values of n5 (nv) mean more fines, more oversized

blocks and less blocks in middle sizes.

The Schuhmann equation is given by

where S100 or V100 is the 100% passing block sieve size S or volume V; m or m is

the index of uniformity in the Schuhmann equation and the rest of the terms are the

same as those for the Ros-Ram equation.

2.2.1 Developments in IBSD Prediction

The earliest work related to quantitative description of in-situ block sizes was the

development of Rock Quality Designation (RQD) (Deere, 1964). Originally, RQD was

the proportion of borehole core that consists of 0.1 m or longer intact length. Priest and

Hudson (1976) extended RQD to scanline survey data, based on which an analytical

relation between RQD and the discontinuity frequency derived from the scanline

survey was proposed (Hudson & Priest 1979). Either a borehole or a scanline is by

nature one dimensional so that the RQD value obtained from a borehole or a scanline

will be influenced by the direction in which the measurements are taken.

To overcome the disadvantage of dependence of RQD upon direction, Kazi and Sen

(1985) suggested the use of the Volumetric Rock Quality Designation (V. RQD) . The
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V. RQD is a three-dimensional parameter. It is defined as the proportion of the volume

of intact matrix rock blocks equal to or exceeding 0.001 m3 in size, which can be

related to the average volume of a matrix block and the number of matrix blocks per

m3 . However, the proposal of V. RQD is limited to the estimation of the average block

volume rather than the IBSD.

Apart from RQD, Franklin (1974) proposed a simple "size-strength" classification,

in which a fracture spacing index I, the diameter of a "typical block" was

recommended for the use of description of block size. I was estimated by visually

selecting typical sizes of core or outcrop material and recording their average

dimension. The ISRM (1978) suggested a Block Size Index 1b and the Volumetric

Discontinuity Count J,, which could be an indication of the in-situ block size, where

'b is similar to and estimated by selecting by eye several typical block sizes and

taking their average dimensions, and Jv is the sum of the number of discontinuities per

meter for each discontinuity set present. Obviously, both If and 'b are semi-

quantitative and have limited use in practice.

Palmstrom (1985) suggested several empirical equations to link Jv RQD and linear

fracture frequency ?, and proposed a correlation between the in-situ block size and Jv

which was represented in a figure incorporating the influence of block shape. From the

figure the block size can be estimated from Jv. This method could only estimate a

rough upper and lower range of block sizes and thus has restricted application.

Sen and Eissa (1992) derived analytical expressions relating Jv RQD, and block

volumes of different shapes such as bars, plates, or prisms, the result of which were

presented in the form of charts. These charts provided a simple tool for practising rock

engineers without the need for recourse to theoretical calculations. Unfortunately, the

block volume was also given in terms of average block size, and was thereby of

limited use in describing the block size distribution.

Another means of tackling the prediction of IBSD is computer modelling. Using

analytical geometry, Da Gama (1977) developed a computer simulation program to

implement the IBSD analysis, assuming that the orientations of discontinuities in space

have been derived from field measurements of the orientations and positions of

discontinuities. A significant contribution to simulation of discontinuity geometry was

made by Hudson and Priest (1979) who introduced Monte Carlo simulation procedures

into the study of discontinuity spacing distributions which were also related to the rock

block lengths. These ideas in the study of discontinuity spacing distributions were
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further extended to both studies of block area distributions in a plane and block

volume distribution of a particular rock mass. Stewart (1986) reported a simulation of

IBSD conducted by the Climax Molybdenum Company. The algorithm and computer

programme was considered to give a direct simulation of fractured rock blocks using

discontinuity set statistics, Monte Carlo techniques, analytical geometry, and, scanline

mapping data and therefore had much in common with Da Gama's work. Xu and

Cojean (1990) developed a model which was based on the algorithm developed by Lin

et al. (1987) for simulating three-dimensional rock mass granulometry. An important

advance in this model is that the connectivity of fractures, which is usually difficult to

characterise, was taken into account.

Ghosh et a!. (1990) reported one procedure to estimate the IBSD. In the procedure,

the core logging, largest block, RQD and the percentage of larger than 25 mm, are

collectively used to estimate the IBSD assuming that the length distribution of the core

fragments is representative of the IBSD. However the IBSD derived from drill hole

data could often be considerably underestimated since the maximum dimensions of the

blocks are not often in the vertical direction when cores are taken. Thus the IBSD has

to be corrected.

Assuming that intact blocks in a volume of naturally jointed rock occur with the

same frequency as simulated discontinuity spacings of that size, a three-dimensional

rock model has been developed by Kleine and Villaescusa (1990), which takes into

account the finite extension, location and orientation of the discontinuities within a

rock mass. The most likely distributions of discontinuity extension, location and

orientation were derived from line mapping, which were then used to compute the

IBSD. However, an assumption was made whereby intact blocks of a certain size will

occur with the same frequency as the measured or calculated discontinuity spacing

associated with that size.

Ord and Cheung (1991) described an automatic mapping system in which a video

camera was used to record images produced from multiple scans of a rock exposure.

The information included in the images was used to establish the complete three

dimensional shape of the scanned exposure. Using this system, instantaneous outputs

such as the in-situ block size could be obtained in the field. This technique was based

on image analysis. Therefore, the relevant equipment and a suitable field working

environment have to be provided, which is considered likely that this will limit its

application in practice until its accuracy has been proven to be acceptable in many

working environment.
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Dershowitz (1992) has devised a stochastic simulation procedure based on forward

modelling, it repeatedly simulates a three-dimensional fracture system until the trace

length statistics for simulated sampling planes, which were the same as the surface on

which the original data was collected, match sufficiently with the trace statistics of

measured data. It was claimed that this method worked well for complex fracture

geometry where analytical methods prove difficult to cope with. This simulation

method usually needs large exposures. Small natural exposures are common, which

makes it difficult to evaluate fracture size in small exposures reliably. However, it is a

substantial advance as it deals with finite size discontinuities.

Only discontinuities with either uniform, negative exponential or lognormal spacing

and/or trace length distribution were considered in all the methods or techniques

mentioned above. Turcotte (1986) showed that the power-law distribution is equivalent

to the fractal distribution and that the distribution of fragment sizes produced by

blasting is likely to be related to the distribution of discontinuities in the rock. In

addition, he has gone as far as to suggest discontinuity distributions may determine the

distributions of fragment sizes by dynamic breakage. Poulton et al. (1990) suggested

that both massive and fragmented rock masses have scale invariant behaviour, i.e., the

fractal characteristic. They also suggested that fracture spacing and block size might

show similar fractal dimensions for a given rock mass if the scale invariance could be

applied to in-situ, i.e. geological rock breakage. Genske et al. (1992) stated that fractal

geometry may serve as a tool to build models for jointed rock masses, and that

complicated structures can be reduced to simple fractal models, thereby accelerating

the analytical work, although they acknowledged that most phenomena in

geomechanics may not be fractal in terms of strict mathematics. Hobbs (1993)

proposed that the distributions of rock discontinuity patterns are not random, but

deterministic and as such may be described by a fractal dimension.

2.2.2 Wang's Methods

Wang and his co-workers (Wang et al., 1990, 1991a; Wang & Latham, 1991; Wang,

1992) illustrated the development of two different techniques which use either

orientation and location data from individual discontinuities or, only location data of

the discontinuities mapped combined with a knowledge of the main discontinuity set

orientations. Both of them are incorporated in a computer program and these are called

respectively the Dissection Method and the Equation Method.
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Dissection Method

The Dissection Method uses a computer program to determine the sizes and shapes

of all blocks produced by intersecting discontinuities within a boundary block formed

by six persistent planes. The algorithm developed in this computer program takes

advantage of the block theory by Goodman and Shi (1985). The data set required to

run the program is discontinuity orientation parameters and intercepts with reference

to an oriented scanline, all of which can be provided from detailed scanline surveying.

Six discontinuities are chosen to form an executable six-sided block called the

boundary block for which the IBSD is to be computed. This boundary block is first

dissected into two blocks of varying shape by a discontinuity which is read from the

discontinuity data file (refer to Fig. 2.2). These two may be further dissected into three

or four blocks by another discontinuity. This dissection process is carried out until the

last discontinuity in the working data file is executed, yielding an intermediate file of

co-ordinates of corners of all natural blocks existing in the boundary block formed by

the dissecting discontinuities. The sizes of these blocks are given in terms of volume,

maximum length, and nominal diameter. Shape in terms of number of facets, ratio of

maximum length over nominal diameter are then defined. Accordingly, the block size

distribution is given. The geometrical pattern of discontinuities intersected with the

boundary block can be viewed in three dimensions from the computer program.

Equation Method

The Equation Method uses a set of empirical equations to estimate the IBSD. This

set of empirical equations relates the IBSD to the principal mean spacings and the

mean orientations of the three principal sets of discontinuities defined to best

characterise the rock mass. The equations are ones derived from computer modelling

results of the block sizes distributions obtained from the dissection method described

above. To calibrate the equations, input data was introduced from artificial

discontinuities having a given distribution but with a random sequence of generation.

Depending upon which specific spacing distribution is chosen, different sets of

empirical equations are offered. These equations are all given by the general equation:

v = ,, 
x (5pmi x Spm2 x Spm3)

cosOcosØcosa

i = 10, 20, ..., 100,

(2-10)
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where, and C1, (i=10,20,... 100) are respectively block sizes of percentage passing

and empirical coefficients; i are percentages; SpmJ. Spm2 and Spm3 represent the three

principal mean spacings; and 0, 4) and a are the angles between the mean orientations

of the three discontinuity sets. The C1 in Eqn. 2-10 for discontinuity sets with

negative exponential and uniform distribution and a certain lognormal distribution

spacing law have been given elsewhere (Wang, 1992) as simple look-up tables.

In the dissection method, it is very important to select the six boundary planes

carefully in order to form an "executable boundary block" capable of yielding

meaningful and reliable block size distributions. In addition, the execution of the

computer programme is often very time-consuming owing to problems with the

dissection method in terms of user-friendliness and user access. The equation method

which evolved from the dissection method, in certain respects, is preferable since it is

simpler and more time-saving than the dissection method. But, the equation method is

less versatile in the sense that the dissection method can solve precisely the problem

posed whatever the number and quantity of discontinuity sets to be included.

Although Wang advanced our knowledge, the prediction of the IBSD of rock with

discontinuities described by a fractal spacing distribution was not included in his

study. Just as with almost all existing methods to estimate the IBSD, the techniques

developed by Wang assume that all discontinuities to be included in the analysis of a

rock mass are persistent. Certainly, a rock mass with impersistent discontinuities is the

normal, indeed, the universal case. This suggests that incorporation of the influence of

impersistence on the IBSD into existing approaches is a much needed research topic.

2.3. BLASTED BLOCK SIZE DISTRIBUTION

To assess whether a blasting operation is optimal requires an appraisal of the

BBSD. Thus, assessment of the BBSD has been an important topic in quarrying and

mining. The tools used for the assessment include simple prediction using empirical

blast design models, image analysis and prediction involving numerical modelling.

The simple prediction approaches are employed to help tailor the explosive and

geometric parameters of the blast towards a desired BBSD for full scale production

and they use empirical blast design models such as Kuz-Ram (Cunningham, 1983),

Bond-Ram (Da Gama, 1983; Wang et al, 1992). These models which are based on the

classical Ros-Ram and Schuhmann equations can give a good fit to the BBSD
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(Gilvarry, 1966; Just, 1979; Da Gama, 1983; Cunningham, 1983, 1987; Gozen et a!,

1986; Turcotte, 1986; Clarke, 1987; Grady & Kipp, 1987; Wang, 1992).

Image analyses are the approaches to determination of the blasted block size

distribution by direct measurements from blastpile images, which are often

implemented by means of computers (Noren & Porter, 1974; Carlsson & Nyberg,

1983; Van Aswegen & Cunningham, 1986; Cunningham, 1987; Franklin & Maerz,

1988; Hunter et al, 1990; Farmer et a!., 1991; Cheung & Ord, 1991; Wang, 1992).

Prediction involving numerical modelling has usually incorporated parameters such

as explosive properties, blasting pattern and in-situ rock properties (Harries & Hengst,

1977; Lownds, 1983; JKMRC, 1991; Owen et al., 1992).

Other pragmatic approaches, for example, the "analogous model method" (JKMRC,

1991) and the boulder count (Johansson & Persson, 1974; Rustan & Vutukuri, 1983)

have occasionally been used in practice.

Among the above approaches, the prediction approaches and image analyses remain

the most promising in the near future while numerical simulation using a computer

will be still used as an auxiliary tool of understanding the fracturing mechanism. Thus,

the following discussion will focus on both prediction approaches and image analyse.

2.3.1 Prediction Approaches

The Kuz-Ram model

Kuznetsov (1973) studied different materials with widely varying types of blasting

scales ranging from normal openpit mining to a nuclear blast. Based on the

measurements of fragmentation from the studies, he proposed an empirical equation

used to estimate the 50% passing block size of a blastpile, which is given by:

v	 19

=	 (2-11)

where Sb50 represents a sieve size (in cm) through which 50% of the blastpile will

pass; Q equals the weight of explosives (in kg), and, Vj, is the volume of rock mass per

blasthole (in m3); E is relative weight strength of the explosive, taking E=100 for
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ANFO; A is a rock factor which is dependent on the description of the rock mass in

terms of discontinuity structure, rock density and rock hardness. Originally, Kuznetsov

suggested that A take one of the following values: (i) 7 for medium rocks; (ii) 10 for

hard, highly fissured rocks; and (iii) 13 for vety hard, weekly fissured rocks.

Combining the Ros-Ram equation (see Eqn. 2-8) with Kuznetsov's equation,

Cunningham (1982, 1983) suggested an empirical approach to estimating

fragmentation. This approach has been called the "Kuz-Ram" model. In the Kuz-Ram

model, the characteristic size in the Ros-Ram equation is derived from Sb50 obtained

by the Kuznetsov equation, the uniformity index n characterising the steepness of the

Ros-Ram curve is estimated by

n =(2.2_14 . )(! ( 1 + ))°(l W)(IBGLCfl +0.1)°'--,	 (2-12)
d2 B	 B	 L	 H

where d is blasthole diameter (mm), B is burden (m), S is spacing (m), BCL (m) and

CCL (m) are respectively bottom and column charge length, L is total charge length

(m), Wis the standard deviation of drilling accuracy (m), and H is bench height (m).

Cunningham (1987) developed an algorithm for the value of A with reference to the

research of Lilly (1986). It attempts to improve the values of A originally suggested by

Kuznetsov and is given by,

A =O.06(RMD+JF+RDI+HF), 	 (2-13)

JF = (JCF x JPS) + JPA,

where RMD is the description of rock mass, JF is the discontinuity factor, RDI is the

rock density influence, HF is hardness factor, JCF represents discontinuity condition,

JPS is the vertical discontinuity spacing, and JPA is the discontinuity plane angle. The

value of A estimated by this algorithm falls in the range from nearly 1 to 13. The new

algorithm promoted the application of the Kuz-Ram model in practice.

The Kuz-Ram model is the most widely used published approach for predicting the

BBSD. This approach has several particular advantages: familiar parameters, simple

calculation and good adaptability to different blasting situation. But, it gives emphasis

to the details of the explosives and the blast design geometly and arguably does not

take good account of the geological conditions of the in-situ rock mass.
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The Bond-Ram Model

Bond (1952, 1959) proposed an equation used to relate the blasted block size, the

in-situ block size and energy input, which has been called Bond's third comminution

theory. It has the following form:

E5 =1OE(,I_—__),	 (2-14)

where, E5 is the required energy for fragmentation in kwh per ton of processing rock

material; E is Bond's work index; Sb80 and S180 are the blastpile and in-situ block

size for this application rather than product and feed sizes that are used in milling.

Subscript 80 means that the block size is equivalent to the sieve opening (in microns)

through which 80% of the rock materials pass. E5 can be taken as input energy, which

is determined from the specific charge and the type of explosive (see Da Gama, 1983;

CIRIA/CUR, 1991) as follows.

0.00365 EePi
E =	 ,	 (2-15)

p

where Ee is the weight strength of the chosen explosive in weight (%); P1 is the

specific charge or powder factor in kg/rn 3; and, p is the density of the rock mass in

t/m3 . E can be estimated using an empirical equation suggested by Da Gama (1983)

as:

where Si50 is 50% passing in-situ block size and B is the burden used in the blasting.

Combining the Bond's theory, the Ros-Ram model and Eqn. 2-16, Wang et a!.

(1992) have suggested an approach to the estimation of BBSD, referred to as the

Bond-Ram model, which gives greater emphasis to the initial geological controls, by

providing a detailed analysis of the discontinuity spacing data and thereby obtaining

the IBSD in the rock mass prior to blasting (IBSD). A major but reasonable

assumption of the Bond-Ram model is that given an approximately constant blast
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design, wide variations in the IBSD from different locations and depths within a rock

mass will to a large extent govern the variation in BBSD that will be obtained.

2.3.2 Direct Measurement from Blastpile Images

Image analysis approaches are both safe and thorough, and thereby promise to be a

useful tool for measuring rock fragmentation (Franklin & Maerz, 1988).

As an early example, Noren and Porter (1974) used the photographic method to

assess blasting results in open pit operations. A series of tests at the operation mine

were conducted to assess surface fragment distribution versus blastpile fragment

distribution. The cross sectional view of the blastpile was successively evaluated and

compared with the results from surface views. The results suggested that surface

measurements are a reasonable representation of the blastpile fragmentation, which

greatly encouraged the further application of photographic methods.

Carlsson and Nyberg (1983) proposed a method for estimation of fragment size

distribution with automatic image processing. This study marked an advance in the

analysis of fragmentation by means of computer techniques.

Van Aswegen and Cunningham (1986) proposed a "standard photograph" method.

Using some standard fragmentation photographs of blastpiles with known distribution

as references, the BBSD of a new blastpile could be estimated by means of the

photographs taken of blastpiles. The accuracy of this method, to a great extent,

depends upon the subjective judgement of operators, however it is a useful tool.

Nie and Rustan (1987) used the digitising technique and a so-called radial lines

sampling procedure for analysing fragmentation. In their study, the validity of

assumptions generally used by photographic methods were discussed and the errors in

image analysis methods were outlined. Their study also indicated that the accuracy of

the proposed technique was reasonable in terms of practical and economical need for

accuracy although more detailed work needed to be performed.

Franklin and Maerz (1988) developed a method of measuring fragmentation by

digital photo analysis. The photographs of fragmented rock in the backs of dumper

trucks were taken as the input of photo analysis. The blocks were traced and the image
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analysis was conducted. An important development in this technique was claimed to

be that the overlapping is taken into account using a relevant "unfolding function".

Grainger and Paine (1990) described a photographic fragmentation assessment

technique and the comparisons of the photographic technique with manual

measurements in several mine applications. Two problems encountered were: the

scaling of rock fragments on the photographs to actual size and, the overestimate of

fragmentation measurements using photographic techniques. These were discussed and

possible solutions were suggested.

Cheung and Ord (1991), and, Ord and Cheung (1991) developed an on line, non-

contact fragment size monitoring and image analysis system. The system was based on

a stereo imaging technique using a laser, a video camera and a computer. It determined

the size distribution from rapid sampling of the visible rock fragments on the surface

of the burden travelling on a conveyor belt. The technique appears to have

considerable quarrying and mining potential, but the general application of this

technique might be limited by its specific equipment and operational needs.

Farmer et al. (1991) developed techniques of digital processing to determine the

three-dimensional block size distributions from images taken of the surface of a

blastpile. A set of tests, deriving the relationship between the surface distribution and

the interior volume distribution, were carried out to verify the key assumptions of

block shape that must be made in most image processing analyses. A similar technique

was also reported by Stephansson et al. (1992).

Singh et al (1991) focused on the development of a photographic technique for

assessing fragmentation in an underground environment. Due to the only moderate

quality of underground photographs, it is usually difficult to trace small particles. The

solution used was to fit the fines portion of the distribution to a Ros-Ram curve. The

percentage of fines was determined by measuring the percentage area of the

photograph covered by the fines. An associated computer programme for this purpose

was developed.

Wang (1992) devised a simple technique to estimate the median sieve size or 50%

passing block volume using a photographic method. This technique was combined

with the direct measurements of oversized blocks in a quarry giving an estimation of

the BBSD and the yields of armourstone sized blocks. However, this technique appears

to be oversimplified and is in need of further refinement.
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The above discussions have shown that the main concerns in the applicability of

results from photographic approaches usually derive from three sources: (1) the

sampling representativity, (2) the shape assumption of fragments, and (3) the

correction of image analysis. The sampling representativity includes whether the

surface fragment distribution is representative of the blastpile, and, whether the

random sampling e.g. from dumper trucks is representative of the over-all distribution.

The shape assumption is centred on how the three dimension information is derived

from the one and/or two dimensional data measured. The correction is to refine the

analysis results. The most probable source of error would result from the assumption

that the surface fragment distribution is representative of the blastpile, which has been

found to be reasonably accurate (Noren & Porter, 1974; Van Aswegen & Cunningham,

1986; Nie & Rustan, 1987; Ord & Cheung, 1991; Hunter et al., 1990; Farmer et al.,

1991), thereby permitting it to be applied to the image analysis of the BBSD.

2.4 BLASTABILITY OF ROCK MASSES

In recent years, there has been a series of investigations into diggability, drillability,

rippabiity and excavability of rock materials (e.g. Scoble & Muftuoglu, 1984; Kirstern

et al., 1988; Karpuz et a!., 1990; Haines, 1993). However, in spite of these, blasting is

the most frequently used means for quarrying, mining and other excavating operations,

and there remains an insufficient scientific understanding to quantify the ease with

which a rock mass can be fragmented by blasting. There appears to be a wide gap

between the level of blasting technology in laboratories and the technology applied to

quarrying and mining sites. One of the main reasons for this has probably been the

failure of existing empirical models to provide satisfactory solutions to blasting

operations (Scott et a!., 1993).

A blasting operation can be comprehensively described by: rock mass properties,

explosive properties, blasting geometry or pattern, and, initiation sequences. A number

of studies on how these factors influence a blasting operation for quarrying and mining

have been discussed elsewhere (for example, Hagan & Just, 1974; Da Gama, 1983;

Atlas Powder Company, 1987; Wang et aL, l99lb; Scott et a!., 1993). Since this

research study mainly concerns the influence of rock properties and discontinuity

structures on blasting operations, the wider considerations arising from the explosive

design of a blasting operation in a quarry or a mine is beyond the scope of this
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research. Thus, the review below focuses attention on the influence of rock mass

properties and discontinuity structures on fragmentation.

2.4.1 Previous Attempts

In either the Ros-Ram or the Schuhmann model, there is an index which

characterises the steepness of the fragmentation curve (n5 and m5, see Section 2.2).

The index is generally considered to be primarily a function of the "nature" of rock

material rather than the blasting design.

Belland, (1966) carried out a series of blasts to examine the influence of rock mass

structure on rock fragmentation. He found that the range of patterns of discontinuities

exerted a greater influence on fragmentation than the range of practical blast design

and explosive. He therefore suggested that a blast design be based on a discontinuity

survey to take advantage of their influence. Others recognised the likely importance of

rock mass structure. Coates (1970) pointed out that there were indications that in most

formations the fragmentation was primarily determined by the geological structure, i.e.

the rock blocks had already been created, the blast merely loosened them and threw

them into the blastpile. Therefore, an increase in the powder factor was not likely to

have a proportional influence on the degree of fragmentation because the basic

element, the geologic block, was not affected.

A rather simple description related to rock properties is probably Hino's blastability

coefficient (see Just, 1973) which is the ratio of both compression and tensile strength

of a rock.

The linking of rock properties to rock fragmentation, as expressed by the

Kuznetsov's equation (1973), was a major advance in the study of blasting. The

equation made possible the estimation of the mean block size and lead to the

development of the Kuz-Ram model. In Kuznetsov's equation, the parameter "Rock

Factor" A, which essentially depends on the hardness and jointing of the rock, is

required to account comprehensively for the influence of the rock properties on the

blast result. However, there are rarely any experimental results available to establish

the rock factor in advance of a blast, and this parameter has to be either estimated or

determined with time-consuming and expensive trial blasts and block size assessment

performed under conditions encountered in actual blasting operations.
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Khanukayev (1974) urged that special attention should be paid to the classification

of rock mass regarding its fracturing because the degree of fracturing considerably

influences the specific consumption of explosives and the fragmentation ability of

rocks. Hagan and Just (1974) believed that optimum selection and application of an

explosive for a given operation would not be achieved until the influence of rock

properties on the nature and extent of fracture mechanisms was fully understood. They

therefore advised that a kind of quantitative classification system which defines the

ease of fragmentation of rock would be needed. Bellairs (1986) stated that both

experiments and practice had indicated that blasting results were influenced by rock

properties more than explosive properties. He went on to describe a classification

system for blasting, including physical hardness, mineralogical and genetic

characteristics of ore for fine-tuning blast pattern design at Mt Whaleback Mine.

Langefors and Kihlstrom (1978) developed an empirical formula to calculate the

maximum burden. It incorporated a blastability factor which indicates the explosive

needed to break but not throw the rock (see Rustan, 1992; Kou & Rustan, 1992).

Another approach to the modelling of blasting is to consider the process as one of

explosive energy input in order to achieve a certain amount of work which is expressed

by the reduction from in-situ to blasted block sizes. This is the basis of the Bond-Ram

model describes in Section 2.3.1. A significant step towards the establishment of

correlation between input energy, the size distribution before and after blasting has

arisen from the Bond's third theory of comminution. Considering a compromise

between the first theory of coniminution (Rittinger, 1867, see Da Gama, 1983) and the

second theory of comminution (Kick, 1885, see Da Gama, 1983), Bond (1952)

proposed the third theory of comminution (see Eqn. 2-14). In the theory, there is a key

parameter, called the work index which is defined as the energy required to crush a

solid of infinite size to a product of which 80% will pass a sieve size of 100 microns.

The work index reflects the resistance of a rock to crushing, grinding and breaking by

blasting (Bond & Whitney, 1959). The remarkable advantage of Bond's theory when

applied to blasting is that the estimation of the fragmentation of a blast (i.e. the BBSD)

is related to the in-situ block size and the input energy of explosives. Putting Bond's

theory into practice, Da Gama (1983) suggested an empirical equation for estimating

this index especially suitable for rock bench blasting, which related to the 50% passing

in-situ block size Vb50 and the burden used in blasting (see Eqn. 2-16). Not

surprisingly, however, the equation presented by Da Gama suffers the usual limitations

of an empirical formula with a relatively low correlation coefficient and a far from

comprehensive set of rock masses tested.
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Studies by Singh and Sarma (1983), and Yang and Rustan (1983) used a series of

small scale physical tests to evaluate the influence of the discontinuities present in a

rock mass on the blasting results. According to Yang and Rustan, different blast

designs did not change 5b50 significantly, which suggested to them that Sb50 was

largely governed by S,50. A similar suggestion was also made by Wang (1992).

Lilly (1986) suggested an approach to assessing the blastability of a rock mass

which is essentially a procedure linked to the blastability classification system. Taking

a pragmatic viewpoint and extending the concepts of empirical rock mass

classifications to blasting, Lilly proposed an empirical rating index for blastability of a

rock. He selected a few easily obtained rock parameters which contributed

significantly to blasting performance and assigned weighted ratings. These parameters

included the hardness, the specific gravity, the structural characteristics, and the

jointing situation of the rock mass. Lilly claimed the Index to be a measure of the

overall blastability of the rock mass.

In 1987, Cunningham produced a review on applications of the Kuz-Ram model in

fragmentation estimation. He outlined the three problem areas in any blasting model

which were: (1) definition of the relevant rock properties, (2) selection of the

appropriate explosives performance indices, (3) determination of the actual blasting

fragmentation. Furthermore, he predicted that a meaningful explosive/rock

performance index was likely to emerge from further research.

The investigations of influence of the intact rock properties and the rock mass

structure on the blast were also reported by other researchers (e.g. Clarke, 1987; Kleine

& Villaescusa, 1990; Wang et al., 1991b; Scott et al., 1993). These investigations are

similar to the suggestion that the blast results would depend largely on the geological

properties of the rock mass. Particularly, Scott et al. suggested that emphasis need to

put on the development of a more accurate fragmentation model.

It appears obvious from the foregoing review that there is a fundamental

dependence of blasting results on the rock mass properties and that these are

significantly governed by the discontinuity structures. A serious effort has been made

to uncover the relationships between the rock properties and discontinuity structures

and the blasting results but it remains a challenge. Thus, uncovering the relationships

through further investigations will be one of main aims of this research study.
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2.4.2 Fractal Dimension, Blastability and Fragmentation

The Schuhmann equation has been one of the most widely used models to

statistically describe the size distribution that is used to quantify the fragmentation.

This equation can be transformed to give the fractal distribution (Turcotte, 1986).

A number of researchers have been devoted to the fractal characterisation of

fragmentation (Turcotte, 1986; Poulton et al. 1990; Xie, 1990; Crum, 1990; Ghosh et

al., 1990; Turcotte, 1992). The proposition that rock fragmented by an explosion often

satisfies a power law size-frequency or fractal distribution over a wide range of scales

has been supported by a variety of data (Hartmann, 1968; Turcotte, 1986; Clarke,

1987).

By means of renormalization studies, Turcotte (1986) shown that a more fragile

material when subjected to a fragmentation process might be associated with a smaller

fractal dimension. Provided that scale invariance (an important characteristic of a

fractal) can be applied to rock breakage, Poulton et al. (1990) proposed that the fractal

dimension of a rock mass before blasting could be indicative of the BBSD.

It would appear then, that the fractal dimension could be a sensitive parameter to

consider in seeking the dependence of the breakage resistance of the rock mass during

the process causing fragmentation. The possible role of fractal concepts in developing

a description of blastability will therefore be explored in this research study.

2.5 SUMMARY AND CONCLUSIONS

2.5.1 Outstanding Problems

From the foregoing discussion, several outstanding problems can be identified.

First, there has been an impressive development in the prediction of the IBSD.

However, as yet there has been no investigation into the IBSD of rock masses with

fractal spacing distributions. The fractal spacing distribution has been found to be a

distribution potentially encountered in rock masses and is being increasingly

recognised in geological engineering. Thus, there is a need to provide insight into the

IBSD of a rock with fractal spacing distributions.
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Second, discontinuities that are impersistent are to be found in natural rock masses

in practice. The consideration of the influence of discontinuity impersistence on the

IBSD in existing prediction methods of the IBSD is unsatisfactory. Research should

therefore be pursued to consider the contributions of impersistence of discontinuities to

the IBSD. Based on this consideration, the existing prediction methods of the IBSD

could be updated and founded on a more rigorous basis.

Third, both the Ros-Ram and the Schuhmann equations have had, and will still have

their wide applicability in representing the BBSD, and the photographic method

promises to be a simply practical tool for measuring rock fragmentation in the

blastpile. However, the exclusive and expensive approaches reported above, appear not

to meet all possible user requirements which typically include: reasonable accuracy,

cost-competitiveness and user-friendliness. The direct photographic and image analysis

techniques usually need complex equipment and/or software. The indirect empirical

prediction models do not have their governing parameters determined with sufficient

reliability to form the basis of assessing the fragmentation in a blastpile. In combining

parts of the empirical prediction models with a simple but comprehensively calibrated

photographic method, the development of a technique which may meet many user

requirements would appear to be an achievable aim for this research study.

Fourth, to date there is neither sufficient understanding of the blastability of rock

nor a systematic method to characterise the blastability. The fragmentation achieved is

the most fundamental economic variable in a blasting operation. It is governed by the

geomechanical and geometric nature of the in-situ rock mass. There is a functional link

between the energy input, the IBSD and the resulting fragmentation. Consequently, a

research study should set out to attack the problems of adequately characterising the

dependence between them. A promising approach would appear to be to introduce a

blastability model and a relevant rock mass classification system; one which will relate

blasting results to the most relevant rock mass parameters.

Lastly, existing techniques of selecting a theoretical function that best fits the

discontinuity distribution parameters have often been found to be unsatisfactory (see

Section 3.5). Thus, an attempt to introduce a technique to help obtain a better fitted

curve from given measured data is seen as an important step in advancing this field of

research which is so dependent upon accurate descriptions of distributions.
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2.5.2 Objectives of this Research Study

Faced by the above problems, this research study will focus upon the following

objectives.

1. To investigate the IBSD produced by discontinuity networks with fractal

spacing distributions using numerical simulations and Wang's dissection method, and

to derive a set of empirical relationships for estimating the IBSD of rock masses with

discontinuity spacings that have fractal distributions, in order to improve our

understanding of the influence of different discontinuity patterns on the lB SD.

2. To introduce an approach to the selection of the best distribution function for

the representation of the observed discontinuity spacing and trace length data, using

both grey correlation analysis methods and classical goodness-of-fit tests, in order that

the characterisation of discontinuity parameters and size distribution laws can be on a

more effective footing.

3. To develop a quantitative description of the influence of the impersistence of

discontinuities on the IBSD and thereby update and improve the existing prediction

methods of the IBSD.

4. To derive a model which will be able to reflect the relationship between the

blastability, the energy input, the IBSD and the BBSD and to investigate the potential

relationship between the blastability and the fractal dimension characterising the IBSD.

Furthermore, in the light of Rock Engineering Systems, to develop a blastability

classification system which will embrace the key parameters influencing the

blastability of a rock mass, helping to direct a blasting operation towards an optimal

result.

5. To develop a pragmatic and reasonably accurate approach to the estimation of

the BBSD using photographs of the blastpile and to combine their analysis with both

the Ros-Ram and the Schuhmann equations which are the ones often used with

predictive methods.
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3 IBSD ASSESSMENT WITH SPECIAL REFERENCE TO

DIS CONTINUITIES WITH FRACTAL SPACING DISTRIBUTIONS

3.1 INTRODUCTION

The spacing of discontinuity greatly dominates the size of individual blocks and is

therefore one of the most important parameters concerning in-Situ block size. Possibly,

the fractal distribution is among the most common distributions of discontinuity

spacings (see Table 2.1) and researchers have shown increasing interest in the

implications of such distributions (Allegre et al., 1982; La Pointe, 1988, 1993; Hobbs,

1993; Boadu & Long, 1994).

Applying the dissection method developed by Wang (1992) to the discontinuity

data surveyed by detailed scanlines, it should be possible to identify all blocks formed

by intersections of discontinuities with a fractal spacing distribution. However, as

described in Chapter 2, implementation of the dissection method on the computer

usually takes a relatively long time, particularly for discontinuities with a fractal

spacing distribution (typically, such a single run of the implementation takes more

than 2 hours using 80486 IBM-PC with 66 MHz CPU speed, sometimes is up to 10

hours), and execution of the computer procedure of the dissection method needs

experience and computer system resources. Moreover, the detailed scanline mapping is

often time-consuming, and may be restricted by the availability of rock mass

exposures. These factors, including software availability, will discourage the

widespread application of the dissection method to the estimation of the IBSD of rock

masses, particularly ones with fractal spacing distributions. Therefore, the aim here is

to develop a user-friendly technique for estimating the IBSD from discontinuity data,

whether it is provided by detailed or quick scanline method, a technique that will

embrace discontinuities with fractal spacing distributions. So, for precisely the same

reasons that Wang (1992) developed the equation method and calibrated its

coefficients for negative exponential and uniform distributions, this chapter reports

research leading to coefficients for fractal distributions, also to be used with the

equation method.

The basic aim of this chapter is to study the IBSD of rock masses intersected by

discontinuities with fractal spacing distributions. Section 3.2 is a description of block

size parameters. This section is followed by an introduction to fractal dimension and a
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presentation of the evidence of fractal spacing distributions. Section 3.4 briefly

presents the technique for deriving the fractal dimension from spacing data. After this,

assigning a preferable spacing distribution function to spacing data is discussed in the

context of both the goodness-of-fit test and the grey correlation analysis. Section 3.6

Consists of a detailed investigation of the estimation of the IBSD with fractal spacing

distributions using a combination of random simulation of pre-defined distributions of

discontinuity spacings. A comparison between IBSDs arising from different spacing

distributions is then given.

3.2 TERMINOLOGY, PARAMETERS AND THEORETICAL BLOCK SIZE

DISTRIBUTIONS

Terminology and Parameters

Rock block size can be represented by many parameters such as: equivalent sphere's

diameter, nominal diameter or equivalent cube's side length, maximum length, and

sieve dimension measured in one dimension; or equivalent spherical volume and

apparent volume in three dimensions. In the context of quarrying and mining, the most

widely used ones are the sieve dimension and the block volume. The following size

parameters have been used in this research study.

(1) Maximum length (1): the distance between two extreme points on the block that

are furthest apart;

(2) Thickness or minimum breadth (d): the distance between two parallel bars

(strictly speaking, lines) through which the block can just pass;

(3) Sieve size (S): the aperture of a square hole through which a block can just pass;

(4) Maximum, intermediate and minimum dimensions (X, Y, Z): dimensions of a

rectanguloid which can just contain a block, where, X > Y> Z. When a block is

convex, the minimum dimension Z will be equal to the thickness d. They are different

when the block is concave:

(5) Apparent volume (Va) Va= X Y Z:

(6) Actual volume (V): determined by the ratio of the block weight to its density;
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(7) Nominal diameter (d): d =

Theoretical block size distribution

Research on size distributions of comminuted materials has been going on for

several decades. In practice, two most widely used distributions are respectively the

Ros-Ram distribution and the Schuhmann distribution (see Section 2.2). In addition, a

log-linear distribution (CIRIA/CUR, 1991) is also often used to approximate narrow

gradings of coastal engineering materials such as armourstone and granular filters.

The log-linear equation may be expressed as follows.

=- 
_LnV—LnV

2(LnV—LnV)'

where, P is the proportion of the blocks less than volumes V (%); V50 is 50% passing

block volume (i.e. the median volume); and Vj is 100% passing block volume.

(3-1)

Fig. 3.1 illustration of comparison of the Ros-Ram, the Schuhmann and the log-

linear equations for fragmentation (nV=m%,=2.l; V50=1.0 m3, V 2=1.19 m3 for Ros-

Ram, V100= 1.40 m3 for Schuhmann and log-linear)

A comparison between the Ros-Ram distribution, the Schuhmann distribution and

the log-linear distribution is illustrated in Fig. 3.1. The overall steepness indicating the
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grading width for each distribution is respectively characterised by n, for the Ros-Ram

equation and m for the Schuhmann equation. The log-linear distribution is a straight

line when presented on the log-linear plot as shown. The Ros-Ram distribution gives

an S-shaped curve on the log-linear plot which is often observed for both the IBSD

and the BBSD. However, this distribution implies that the largest block can be an

unlimited size in the context of mathematics, which is impossible in practice. The

Schuhmann distribution produces a one-tail curve and approaches a straight line on the

log-linear plot towards the end of the coarse blocks, becoming very similar to the log-

linear distribution for the coarse blocks. The Schuhmann distribution is a type of

power law. As such, it will reveal self-similarity or fractal features if the distribution is

describing geometric relationships, which in this case, it is. It can be considered to be a

fractal distribution. The Schuhmann and the Ros-Ram, as well as the log-linear

distributions, in due course, will be used in this thesis for describing both the 1BSDs

and the BBSDs. The subscripts i and b respectively indicate in-situ and blasted block

size distribution and are used hereafter.

3.3 INTRODUCTION TO FRACTAL DIMENSION AND EVIDENCE OF

FRACTAL SPACING DISTRIBUTIONS

3.3.1 Introduction to Fractal Concepts

The term "fractal" is perhaps best described as a general concept which is relevant

in describing the geometry of irregular objects or patterns. The fractal concept was

originally introduced by Mandelbrot (1967). Noting that the length of a coastline

increased according to a power law, when the length of measuring rod decreased,

Mandeibrot related the power to a real number which he called the fractal dimension.

The length of rocky coastline has served as a classic example to illustrate the fractal

concept. If the measured perimeter length of the coastline P(l) and the length of

measuring rod 1 varies as

P(l) oc l''
	

(3-2)

then the coastline geometry is said to be self-similar, which describes fractal geometry

and D is then the fractal dimension for the coastline. Mandelbrot (1967) showed that

the west coast of Britain was a well-defined fractal with D of 1.25. Since then, the

fractal concept and its associated mathematical tools have been generalised for
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describing the geometric properties of irregular patterns or fragments (Mandeibrot,

1983, 1990).

If examination of geometric features such as cloud or jagged outlines and profiles

using different scales of observation shows the same form, the features are said to be

"self-similar". This self-similarity is an important property and it is necessary if such a

feature is to be termed a fractal and for it to be mathematically described by fractal

geometry.

The fractal dimension is another important concept in fractal geometry. The higher

the value of a fractal dimension the more irregular a pattern. The introduction of

fractal dimensions is a relaxation or generalisation of Euclidean geometry that posits a

noninteger dimension for describing irregular and fragmented patterns. Mandeibrot

(1986) has offered a rather loose definition of a fractal as follows: a fractal is a shape

made of parts similar to the whole in some way. Thus, a fractal which can be a set (say

patterns or shapes or objects) looks the same from whatever scale it is observed. That

is, a fractal is self-similar at all scales between upper and lower fractal limits, such that

any part of this system is a scaled down version of the whole.

The fractal concept is therefore both attractive and important in that an irregular and

complex pattern might be simply described using the fractal dimension and that the

characteristics of the pattern can be investigated at a convenient scale and then

extrapolated to other larger or smaller scales.

For a feature with fractal geometry, the relative number of large and small elements

within it remains the same at different scales. The size-frequency distribution of parts

or elements is therefore power-law and this scaling relationship is characterised by its

fractal dimension, a parameter simply drawn from the power-law exponent.

The fractal concept has been applied to many aspects of nature and has brought

together under one umbrella a broad range of pre-existing concepts from pure

mathematics to the most empirical aspects of engineering (Mandeibrot, 1983). It is not

clear that a single mathematical definition can embrace all these applications, but one

can illustrate his quantitative discussion by following Turcotte (1992) and defining

N=CS_',	 (3-3)



(3-4)
x	 x

(n–l)—^x<n—.
N	 N

n=1,2,...N.
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where N is the number of objects (e.g. fragments) with a characteristic linear

dimension greater than S. C is a proportional constant, and D is the fractal dimension.

When objects forming a set, e.g. fragments in a blastpile, can be characterised using

Eqn. 3-3, then we say that the objects satisfy a fractal distribution with a fractal

dimension D. The fractal dimension D is generally not an integer but a fractional

dimension (which is the origin of the term fractal), although it might coincide with an

integer value where the D is equal to a Euclidean dimension. It is well known that the

Euclidean dimensions of a point, a line, a square, and a cube are respectively zero, one,

two, and three.

3.3.2 Fractal Patterns and the Determination of a Fractal Dimension

To discuss fractal patterns, let us review a fundamental feature of the concept of

dimension and to illustrate how it can be directed towards the consideration of fractal

dimensions, along with the arguments made by Mandelbrot (1967, 1983).

A Euclidean dimension is generally an integer. For every positive integer N, the

segment x (0 ^ x ^ X) for a straight line can be divided exactly into N non-overlapping

segments with length of form

Each of these segments is deduced from the whole by a similarity of ratio with the

following form:

r(N)=—.
N

Likewise, for every perfect square N, the rectangle F (F: 0 ^ x ^ X, 0 ^ y ^ 1') can

be also divided into N non-overlapping rectangles of the form:

(3-5)

x	 x
(n-1)------1--^x<n----y

N	 N2

(m 
1) Y <	 Y'

- —_y<m--
N 2	N2

n = 1, 2, ... N1'2, m = 1, 2, ... Nl'2.	 (3-6)
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Again, each of these rectangles is deducible from the whole by a similarity of ratio,

(3-7)

N2

For a rectangular parallelepiped, the same argument brings the following similarity

of ratio:

r(N)=—-.	 (3-8)

N3

More generally, whenever N1ID is a positive integral, a D-dimensional rectangular

parallelepiped can be decomposed into N parallelepipeds deduced from the whole by a

similarity of ratio,

r(N)=

	

	 (3-9)
ND

As such the dimension D is characterised by the following relation:

D=—_
LogN =LogN	

(3-10)
Logr(N) Log(lIr)

Now let us move to non-standard shapes, in order for D, the exponent of self-

similarity to have a generalised but formal meaning. The only requirement is that the

shape is self-similar, i.e. that the whole can be decomposed into N parts, obtainable

from it by a similarity ratio r. It is seen that Eqn. 3-9 is equivalent to Eqn. 3-3. Thus,

when a pattern or a shape or a figure can be characterised by Eqn. 3-9 or Eqn. 3-10 it

can be referred to as a fractal.

In order to illustrate how mathematical relations can be used to generate fractal

patterns, let us take two examples which show the construction of fractal shapes.

In Fig. 3.2, at order one (i.e. the first separation) a line segment of unit length is

divided into an integer number of equal-sized smaller segments. A fraction of these

segments is retained. The construction is repeated at higher orders. The first two orders

are illustrated. For (a), a line segment is separated into two divisions and one is
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Fig. 3.2 Illustration of fractal pattern construction (from Turcotte, 1992)

Fig. 3.3 The construction of a Menger Sponge, D= 2.727 (from Turcotte, 1992)

retained, N=1, and the similarity ratio r=112; according to Eqn. 3-10, D = Log 1/Log2

= 0, which is the fractal dimension of a point. For (b), a line segment is separated into

three divisions and one is retained, N=1, and the similarity ratio r=1/3; D =

Log 1/Log3 = 0, which is the fractal dimension of a point, too. For (c), a line segment is

separated into two divisions and both are retained, N=2, and r=1t2; D = Log2/Log2 =

1, which is the fractal dimension of a line. For (d), a line segment is separated into

three divisions and all three are retained, N=3, and r=1/3; D = Log3/Log3 = 1, which

is the fractal dimension of a line. Note that both (c) and (d) suggest that a simple

distribution will have a fractal dimension D of - 1.0. For (e), a line segment is
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separated into three divisions and two are retained, N=2, and r=1/3; D = Log2ILog3 =

0.6309, which is a non-integer fractal dimension and is known as a Cantor set

(Mandelbrot, 1983). For (f), a line segment is separated into five divisions and three

are retained, N=3, and r=1/5; D = Log3/LogS = 0.6826, which is also a non-integer

fractal dimension. Both (e) and (1) have fractal dimensions between the limiting cases

of zero and one. In the sense described above they therefore have fractional

dimensions.

In Fig. 3.3, a solid cube of unit dimension has square passages with dimensions

r=1/3 cut through the centres of the six sides. The six cubes in the centre of each side

are removed as well as the centre cube, i.e. the unit cube is divided into 27 equal-sized

smaller cubes with r=1/3, 20 cubes are retained. N=20, r=l/3, D= Log2O/Log3=2.727.

This construction is known as the Menger Sponge (Turcotte, 1992).

Since self-similarity in nature is often found to apply within a range of scales of

observation defined by upper and lower bounds, one might expect practical application

of fractal tools within certain limits. However, a statistically satisfactory form of self-

similarity is often encountered, and the assigning of fractal dimensions to data or

patterns that are not perfectly fractal is a popular new development in natural sciences.

Thus it is not surprising that many geological and geophysical data sets are considered

to be fractals. A variety of quantitative observations can be rapidly reduced to enable

empirical correlation to be investigated and in this respect the fractal concept is

undoubtedly of great significance (Turcotte, 1992).

3.3.3 Evidence of Fractal Spacing Distributions

The fractal concept and its analysis techniques are quite new, but the empirical

applicability of power law dependence on the size was recognised long before the

concept of fractal was conceived (Turcotte, 1992). For example, the power law size

distribution - named the Schuhmann distribution when observed in the fragment size

distribution of geomaterials is a consequence of the scale invariance of the

fragmentation mechanism, and the pre-existing weak zones or planes where breakage

happens which exist on all scales (Allegre et al., 1982; Turcotte, 1986; Korvin, 1989).

Discontinuities with fractal spacing distributions tend to give clustered patterns (see

Fig. 2.4). Clustered discontinuities were treated as one type of distribution and

discussed together with a fairly evenly spaced distribution (normal distribution) and a



-0.6	 -0.4	 -0.2	 0	 0.2	 0.4	 0.6

Log spacing

1.4

1.2

1

0.6

0.4

0.2

0
-0.8

78

random distribution (negative exponential distribution) by Priest and Hudson (1976).

Clustering, it was suggested, could either result from spalling near a free face or

around joints due to stress or weathering effects, or from cyclic variation in lithology,

say alternating layers of sandstone and highly fractured siltstone.
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(a)

(b)

Fig. 3.4 Spacing distributions of discontinuities within a rock mass at a highway

cutting site. (a) D=O.1l (SL-3); (b) D=O.1O (SL-5).

It is sometimes the case that the negative exponential or lognormal distributions fail

to fit field data adequately enough to characterise discontinuity occurrence,

particularly if there are clusters of discontinuities along a scanline (Sen, 1993). As for

discontinuities with a fractal spacing distribution, many discontinuities with low
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spacing values will tend to occur within clusters while high spacing values will occur

sparsely between clusters. The fractal spacing distributions would seem ideal for

describing this clustered appearance often seen.
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Fig 3.5 Population curves for line sample data set for fault/joint systems (from

Gillespie et al., 1993) (: throw; +: spacing); (a) the Whitworth Quarry, Lancashire

(b) the Round 0 Quarry, Lancashire, (c) the Star Crossing Quarry, Clywd.
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In a recent investigation into the discontinuity structure of a rock mass at a highway

cutting site carried out by the author, six locations along the cutting faces were

surveyed using detailed scanline mapping. For each of the six, one out of the three sets

of discontinuities clearly exhibits the fractal characteristic of linearity on a log-log

plot, as shown in Fig. 3.4 (fitting discontinuity spacing data to a proposed distribution

will be discussed in Section 3.5). The fractal dimensions for the spacings of these

discontinuity sets in the six locations varied from 0.05 to 0.6.

Gillespie et al. (1993) used a variety of mapped data Sets of faults and joints to

investigate the spatial distribution of fractures and to test the techniques of fractal

analysis. The results indicated that tectonic faults and/or joints frequently exhibited

power law spacing populations with fractal dimensions of between 0.4 and 1.0. Fig.

3.5 shows the population curves for line mapping data sets for discontinuity systems

from three field areas. The cumulative number N(r) vs. the characteristic value r of

spacing or throw on a fault is presented on a log-log plot.

a.	 tb}

Fig 3.6 Power law fitting to joint sets 1-2, Stripa Granite, Sweden (from Hobbs,

1993) (a)-(d) Power law fit for Joint Sets 1-4
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Fig. 3.5 shows that the fractal distributions can be satisfied within the range of from

0.001 m to 100 m, indicating the prevalence of fractal geometry over several orders of

magnitude. Fig. 3.6 (from Hobbs, 1993) is the illustration of power law fitting to joint

set data, based on some of the results of Rouleau and Gale (1985) for joint spacings in

the Stripa Granite. Rouleau and Gale (1985) claimed that a log-normal distribution

was a good fit for the data. However, Hobbs used the figure to suggest that a fractal

distribution could be considered just as well. The suggestion made by Hobbs has been

supported by the study conducted in Section 3.5.

Boadu and Long (1994) investigated the fractal nature of discontinuity spacings for

several sites of exposed fractured rock in a 50 km study area located in the crystalline

Piedmont of Georgia and South Carolina. Their studies indicated that the discontinuity

spacings exhibited fractal characteristics with a fractal dimension of 0.55-0.63.

Harries et al.(1991) investigated a fractal fracture pattern consisting of two sets of

perpendicular fracture sets, with fractal dimensions of 0.75 and 0.25, using a spacing

population technique.

It is seen from the above that the contention that discontinuity spacing distributions

can often been described with satisfactory accuracy by a fractal relationship is

supported by field data from a number of researchers. In fact, Hobbs (1993) suggested

that any geometrical model of discontinuities in real rocks will show a tendency

towards fractal or log-normal frequency distributions for joint spacing, although

particular joint sets may show a tendency towards a negative exponential distribution

over a limited range. Therefore, we might see more evidence of discontinuities with

fractal characteristics reported with the increasing understanding of fractal dimension

and its application to practical engineering. This is one important motive for this part

of the research which is the investigation of IBSD with special reference to

discontinuities with fractal characteristics.

3.4 ANALYSIS TECHNIQUES FOR FRACTAL SPACING

To identify discontinuity spacing distributions is a basic requirement for a study of

discontinuity spacing analysis. It is of special relevance to this study since as shown by

Wang (1992) the IBSD can be given by a prediction that is a sensitive function of

mean spacings. We have learned that using the log-log plot of spacing vs. the

cumulative numbers of spacings greater than a given spacing value, the fractal
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distribution will be plotted as a straight line, a negative exponential frequency

distribution will be a distinct convex upwards curve, and a log normal frequency

distribution forms a gentle curve (see Fig. 2.6). Thus, by using the log-log plot, the

different frequency distributions of spacing, in particular fractal ones, might be

distinguished.

Harries et a!. (1991) has suggested a simple technique for determining the fractal

dimension of discontinuity spacings which is similar to the scanline technique used in

geological surveying. This technique was used in the investigations into measurement

and characterisation of spatial distributions of discontinuities carried out by Gillespie

et al. (1993) who referred to this technique as the Spacing Population Technique.

Boadu and Long (1994) also used the technique to investigate the fractal

characteristics of discontinuity spacing and RQD.

The spacing population technique is a one-dimension fractal analysis technique.

The fracture pattern is first broken down into its constituent orientation sets by

grouping the discontinuities into sets according to their orientation clustering. Then

measurements are made on each set individually. The measurements refer to a scanline

which is perpendicular to the mean orientation of the set in question. The distance

between neighbouring points, i.e. the spacing is preferably measured to the highest

resolution in order to obtain satisfactory results. If a set of discontinuity spacings has a

fractal distribution, then the distribution will plot as a straight line on the log-log plot

of spacing S, vs. cumulative number, N(s). Thus a fractal distribution is described by

the relation:

N(s)ocS,	 (3-11)

where N(s) is the number of discontinuity spacing values ^ S , and D is the fractal

dimension which provides a measure of the degree of clustering of discontinuity

structure on a line sample. Lower fractal dimensions indicate larger gaps and tighter

clusters. Note that for this method, each individual spacing measured can be

represented by one data point.

In any study examining fractal or other spacing (or trace length) distributions, the

following conventional method can also be used which groups spacing data before it is

plotted. First the spacing values are grouped into certain intervals in an order of

increasing spacing. Then the frequency of spacing (or trace length) data within each

interval is computed and plotted as a histogram. The frequency-spacing (or frequency-
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trace length) shown in the histogram is then fitted to a theoretical distribution either

visually or mathematically using regression. This is the so called Regression Fitting

Technique which was used by Segall and Pollard (1983) to obtain the fractal

distribution of trace lengths in granitic rock of the Sierra Nevada.

The spacing population and the regression fitting techniques described above will

be used as tools for the analysis of fractal distributions in this research, although other

analysis techniques, such as the interval counting and the fracture number box-

counting techniques, (La Pointe, 1988; Turcotte, 1989; Davy et al., 1990; Harris et al.,

1991; Gillespie et a!., 1993) have been used to study the spatial distributions of

discontinuities.

3.5 ASSIGNING SPACING DISTRIBUTION FUNCTIONS TO DATA USING

BOTH GREY CORRELATION ANALYSIS AND GOODNESS-OF-FiT

CRITERIA

Prior to an assessment of IBSD, particularly one based on Wang's equation method

(see Section 2.2.2), it is necessary to determine observed spacing data using a

mathematical function and to quantify how acceptable this selected characterisation is.

Furthermore, which theoretical distribution should be selected from among several

contending distributions when no single one is preferred on the basis of the physical

characteristics of the phenomena, must be correctly answered.

Visually inspecting the histograms of observed spacings is often not good enough to

assign confidently the most representative distribution to the data of spacing

distribution. When using either the population spacing or the regression fitting

technique in practice, the results obtained are not often so straightward that we can

choose one distribution among several presumed theoretical distributions. Frequently,

a classical goodness-of-fit analysis is therefore used to obtain a solution to this sort of

problem (Baecher et al., 1977; Einstein & Baecher, 1983; Rouleau & Gale, 1985;

Villaescusa & Brown, 1990)

3.5.1 Classical Goodness-of-fit Analysis

Goodness-of-fit analyses are designed to examine whether there is a significant

difference between the observed distribution (frequency or cumulative frequency) and
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the specific presumed distribution we would expect. Both Chi-squared (x2) and

Kolmogorov-Smirnov goodness-of-fit tests are two classic tests that are most often

used for this purpose (Siegel, 1956; Benjamin & Cornell, 1972).

Chi-squared test

The x2 technique is related to the deviation of the frequency histogram from the

predicted vales. It tests whether the observed frequency is sufficiently close to the

expected one to be likely to have occurred under a null hypothesis H0, say,

discontinuity spacing is of a specific distribution.

The hypothesis may be tested by x2 statistics

k(OE)2	
(3-12)

where O is the observed number of cases categorised in the ith category and E is the

expected number of cases in the ith category under H0. Eqn. 3-12 leads one to sum

over k categories the squared differences between each observed and expected

frequency divided by the corresponding expected frequency. If the agreement between

the observed and expected frequencies is close, x2 will be small.

We can determine critical values Xk_I associated with any desired significance

level a for any value of k-i such that

P[f ^%kI]_ a.	 (3-13)

After observing a sample of a variable, say discontinuity spacing, we can compute

the observed value of the x2 statistics and compare it to the critical values X,k.-I'

reporting the conclusion to accept or reject the presumed distribution according to the

following operating rule:

Accept H0	 if 2 Z,k-I'

Reject H0	 if x2 > X2akl.
	 (3-14)

For a continuous distribution hypothesised, it can be seen that X2 test compares the

degree of fitness between an observed histogram and a density function lumped into a
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corresponding bar-form PDF. Since the x2 test is based on the proposition that a

sample is large enough to be approximated by x2 statistics, the X2 test should not be

used if more than 20% of the expected frequencies are smailer than 5 when k>2

(Siegel, 1956). It is commonly recommended for a valid goodness-of-fit test that the

smallest number of expected frequency is 5 (Benjamin & Cornell, 1972). Expected

frequencies may be increased by combining adjacent categories if the combinations

can be meaningfully made.

There are several limitations on using the x2 test. The first lies in that quite a large

sample is needed, which is not always the case. The second is that classifying data into

discrete categories may cause the loss of information in a continuous distribution,

since lumping data may introduce artificial errors in the numbers actually observed in

each interval used in the test. The last is its sensitivity to the choice of intervals.

Adjacent categories may sometimes have to be combined in order to increase the

frequencies in each category to the recommended smallest number 5, which will

decrease the number of categories. The choice of intervals may be important in the x2
test since different divisions of intervals for the same data might lead to contradictory

conclusions. An example of this has been illustrated by Benjamin and Cornell (1972).

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is also concerned with the degree of agreement

between the distribution of a set of sample values and some specified theoretical

distribution. The test uses the deviations between the observed cumulative frequency

histogram and the hypothesised cumulative frequency distribution. This involves

specifying the cumulative frequency distribution which would occur under the

hypothesised theoretical distribution and comparing that with the observed cumulative

frequency distribution. The theoretical distribution represents what would be expected

by the hypothesis H0. The point at which both theoretical and observed distributions

shows the greatest divergence is determined. The sampling distribution indicates

whether the deviation of magnitude observed would probably occur when the

observations are really a random sample taken from a population given by the

theoretical distribution.

Let F0(X) be a specified cumulative frequency distribution function under H0, and

S(X) (S(X)=k/N) the observed cumulative frequency distribution of a sample of N
observations. Where X is any possible score, k is the number of observations ^ X. The

Kolmogorov-Smirnov test focuses on the largest of the deviations represented by DS.
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Nk
DSmaxI--F(X)I.	 (3-15)

i=1 N

The sampling distribution of DS under H0 is known. From tables of this

distribution we can determine critical values. After observing a sample of a variable,

we can compute the observed value of the DS and compare it to the critical values in

the associated table (e.g. Siegel, 1956). As before, we may accept or reject the

hypothesised distribution through the following operating rule:

Accept H0 if DS ^ V,

Reject H0	 if DS> V,	 (3-16)

where V is the associated critical value.

The Kolmogorov-Smirnov test has an advantage over the Chi-square test in that it

dose not compare and cast the data into discrete categories, but compares all the data

in an unaltered form. However, the Kolmogorov-Smirnov test is strictly valid only for

a continuous distribution and only when the model is hypothesised completely

independent of the data (Benjamin and Cornell, 1972). In addition, a perfect table for

practical use including a comprehensive range of critical values seems to be difficult

to obtain. These may limit its application.

It can therefore be seen that the classical goodness-of-fit tests have certain

limitations of their own. However, keeping their limits in mind and using proper

judgements, there is value and convenience in the conventional application of these

tests to substantiate the model choice.

When using either the x2 or the Kolmogorov-Smirnov test, a particular suggested

distribution for discontinuous spacings can therefore be tested by comparing the

observed spacing data with the predictions under the presumed distribution. It is

important to realise, however, that if one sets up a hypothesis that a variable is, say

gamma-distributed, or lognormally distributed, or any one of many other choices, the

conclusion might very well be the same for various different theoretical distributions:

that one should accept (or reject) the hypothesis (see Benjamin & Cornell, 1972). This

situation is also likely to be encountered in determining the discontinuity spacing

distribution.



87

For example, using the Kolmogorov-Smimov goodness-of-fit test, Rouleau and

Gale (1985) reported that both the lognormal and the Weibull distributions can be

accepted for the first set of data of joint spacings in the Stripa Granite, Sweden at the

same significance level. Let us now use the Kolmogorov-Smirnov goodness-of-fit test

to examine whether or not a fractal distribution can be accepted for the same spacing

data observed by Rouleau and Gale (see Table 3.1).

Table 3.1 indicates that the maximum value of DS is 0.073 which is emboldened in

the table. From the Table of critical values of the Kolmogorov-Smirnov test (Siegel,

1956), the corresponding critical value is 0.079 at the level of significance 0.15, the

same level set by Rouleau and Gale (1985). Therefore the hypothesis of fractal

spacing distribution could also be accepted, which is in agreement with the

suggestion, made by Hobbs (1993), that a fractal spacing distribution should not be

ruled out.

Table 3.1 Kolmogorov-Smirnov test for the fractal spacing disti

Spacing	 Observed Sp.j(X) F0(X)	 DS=

^X (m)	 Number ____ _____ IFjj(X)-S.j(X)I

0.25	 108	 0.5192 0.4597	 0.0595

0.25-0.5	 42	 0.7212 0.6586	 0.0626

0.5-1.25	 17	 0.8029 0.7431	 0.0597

1.25-1.75	 10	 0.851	 0.7963	 0.0547

1.75-2.25	 9	 0.8942 0.8347	 0.0596

2.25-2.75	 9	 0.9375 0.8646	 0.0 730

2.75-3.25	 4	 0.9567	 0.889	 0.0678

3.25-3.75	 2	 0.9663 0.9095	 0.0569

3.75-4.25	 2	 0.976 0.9272	 0.0488

4.25-4.75	 1	 0.9808 0.9427	 0.038 1

4.75-5.25	 1	 0.9856 0.9565	 0.0291

5.25-5.75	 1	 0.9904 0.9689	 0.0215

5.75-6.75	 1	 0.9952 0.9905	 0.0047

6.75-7.25	 1	 1	 1	 0

ibution*

*The minimum and maximum spacing value are set as 0.03 m and 7.5 m.

In this case, the lognormal, the fractal, and the Weibull theoretical distributions can

all be accepted at the same significance level. The reason for this might be because

goodness-of-fit tests are not designed to discriminate among two or more models or to
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help one select from among a number of contending distributions but rather to suggest

that a particularly proposed distribution should or should not be retained.

In engineering practice, we are not only to answer whether or not a proposed

distribution can be accepted but also to select a distribution from among a number of

contending distributions when no single one is preferred on the basis of the physical

characteristics of the phenomena. Statistical theory may not provide much quantitative

help for such a selection (Benjamin & Cornell, 1972).

It is therefore worthwhile to pursue a technique for choosing the most preferable

fitted distribution among several contending distributions since the classical statistical

approaches are not the only approaches available. The grey correlation analysis in

Grey Theory Systems (Den, 1985), used in conjunction with the classical goodness-of-

fit tests appears to offer an improved approach to the problem: to what extent a

proposed distribution is acceptable; and how to select a distribution from among

several contending distributions.

3.5.2 Introduction to Grey Systems Theory

The Grey Systems Theory (Den, 1982, 1985) is a new system methodology

developed recently. Early application of this systems theory were in the solution of

abstract system and non-technology systems. With its increasing development and

applications, it has been proposed for solving technological or engineering problems

(Cai 1991, Lu & Latham, 1994).

The darkness and lightness of colour is used to describe the quantity of information

in control theory. A system whose parameters, structure and characteristics are fully

known is described as a "white" system and a system whose parameters, structure and

characteristics are entirely unknown is described as a "black" system. However, most

systems are indeed neither completely unknown nor known. Therefore, "a system

containing knowns and unknowns is called a grey system (Den, 1982). The basic

contents of Grey Systems Theory include: the systems analysis; the development of

systems models; the grey predicting or forecasting; the grey decision-making; and the

grey control. The grey correlation analysis is one of devices in the systems analysis.

An evaluation of the goodness-of-fit of discontinuity spacings to a proposed

theoretical distribution, using the grey correlation analysis is given in the following

section.
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3.5.3 Grey Correlation Analysis

The grey correlation analysis is the analysis of correlation between various

relationships influencing a system and the identification of which relationship will be

a dominate one. The technique and algorithm of grey correlation analysis is outlined

as follows:

Let the main data set of interest be the parent array X0, and the influencing data sets

be sub-arrays, X, i=1,2,..,n, n is the number of influencing data sets, then

X0=(X0(1), X-j(2), ...,

(3-17)

X1 =[X1(1), X(2), ..., X1(K)].

The Correlation Coefficient of sub-array X 1 to the parent array X0 at time k, r(k), is

defined by the formula (Den, 1985, 1987) below:

mrn + fl 5max (3-18)r(k) =I	
IX0(k)–X1(k)I+i6'

where r is the recognition coefficient of the range between 0 and 1, and usually takes

on the value of 0.5; ömjfl and ömax are given by

mm min(minIXo(k)(1)
i	 k

max max(maxIXo(k)X(k)D

I	 k

(3-19)

The above correlation coefficient r(k), characterises the deviation degree between

X1 and X0 at time k. Summarising the deviation degrees between X1 and X0 at all

times, given the correlation degree between X 1 and X0 as

K

R1 =—(k).	 (3-20)
k =1

Den (1985) referred to R1 as the Correlation Measure. Clearly, the correlation

coefficient of r(k) and the correlation measure R1 satisfy the following relations:
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O^r(k)^ 1	 and	 O^R,^ 1.	 (3-21)

The closer the relationship between X and X0, or the more similar X1 is to X0, the

greater will be the associated grey correlation measure; only when X 1 and X0 are

completely superimposed will the correlation measure be equal to 1. When the

bivariate data are expressed in a linearised form, the grey correlation measure appears,

to a great extent, as a measure similar to the traditional r2 correlation coefficient.

For arrays with different units and/or different original values, the original data can

be normalised through a process of original value transformation in which all the data

in an array are divided by the first datum of the array.

The main feature of grey correlation analysis is a comparative analysis between

several curves or relationships. In a simple case, this analysis may be visually made.

Situations in the real world are often complicated. For example, there are a large

number of data points, and the curve shapes are similar in some intervals but different

in other intervals. In the case where the situation is a complex one, the quantitative

grey correlation analysis provides a potential tool to obtain solutions to problems.

Compared to classical regression in which a correlation coefficient, typically r2, is

obtained after linearisation, grey correlation analysis has the following characteristics:

(1) there is no need for a large population, or a lot of sample data; (2) sample data

need not satisfy an explicit functional relation; and (3) calculation is simple and

convenient (particularly once the appropriate computer code is implemented, see

Appendix A.l).

Returning to the selection of a preferable distribution from among several

contending distributions. If we let the observed data of discontinuity spacings be

represented by the parent array X0 mentioned above, and let the values at

corresponding observing points for the ith contending distributions be represented by

X, it is possible to use grey correlation analysis to compare and select a theoretical

spacing distribution from among several contending distributions.

3.5.4 Selecting a Theoretical Spacing Distribution Using Grey Correlation Analysis

In order to assess the blastability of rock materials at a highway cutting site, a

research study was carried out by the author (see Chapter 7). The prediction of the

1BSD of the rock mass at the site is one of the important topics in the study. Prior to
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the prediction, identification of the distribution of discontinuity spacing has to be

made. Detailed discontinuity mapping at 6 different exposures along the cutting faces

has been carried out. A best-fit the fractal, the negative exponential and the Weibull

distributions, compared with the actual measurements is illustrated in Fig. 3.7 (see

Fig. 3.4a for the Log-Log plot of N(s)-S of the first set of discontinuities from SL-3

mapping result).

1 f(x) (act.)

A	 Negexp.

U	 Fractal

•	 Weibuti

in	 'n	 In	 in	 'n	 In	 ino	 cr	 '.0	 0	 ri	 In	 00	 —
— — — —

Principai spacing (m)

Fig. 3.7 Comparison between the actual measurement and three proposed

distributions

The following expressions fitted to the discontinuity spacing data are obtained

using a non-linear regression method (Press et al., 1986).

(i) fractal distribution:

f(x) = 0.2263x	 10,	 (3-22)

(ii) negative exponential distribution:

f(x) = 1.229e229X,	 (3-23)

(iii) Weibull distribution:
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It seems not easy to isolate a preferred distribution among these three proposed

distributions (shown in Fig. 3.7). Applying the grey correlation analysis to this case,

we obtain the grey correlation measures of these three theoretical distributions to the

observed spacing data, which are respectively 0.8 10 for the fractal distribution, 0.782

for the Weibull distribution, and, 0.7 18 for the negative exponential distribution. This

suggests that the fractal distribution is the most correlated with the observed data.

Using the Kolmogorov-Smirnov test, both the fractal and Weibull distributions can be

accepted at the level of significance of 0.15 while at this level the negative

exponential distribution should be rejected. As a result, the fractal distribution is

arguably the best choice for the spacing distribution of this set of discontinuities.

The following is another example, this time taken from the literature: the data is

again the joint spacings in the Stripa Granite, Sweden (Rouleau & Gale, 1985). At the

level of significance of 0.15, Rouleau and Gale (1985) showed that both the lognormal

and the Weibull distributions can be accepted whereas the negative exponential

distribution should be ruled out. At the same level of significance and using the same

Kolmogorov-Smirnov test, a reworking of the data presented in Section 3.5 showed

that the fractal spacing distribution can be accepted (see Table 3.1).

We use the grey correlation analysis to help make the selection of a preferable

spacing distribution. Nonlinear regression gives the following best-fit function for the

original data set:

(i) the fractal distribution:

f(x) = 0.226lx11 1,	 (3-25)

(ii) the lognormal distribution:

(iii) the Weibull distribution:
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Fig. 3.8 Comparison between the measured and best-fit curves for three

distributions

It is quite difficult to say from Fig. 3.8 which one among fractal, lognormal and

Weibull distributions is better than another.

Using grey correlation analysis, we obtain the grey correlation measures for these

three theoretical distributions when compared to the observed spacing data as follows:

0.90 for the lognormal distribution, 0.84 for the fractal distribution, and 0.81 for

Weibull distribution. This suggests that the lognormal distribution is the most

correlated with the observed data. We might choose to rule out the Weibull

distribution due to both the relatively smaller value of the grey correlation measure

and its complicated expression. However, the choice between both the lognormal and

the fractal distributions may be finely balanced when finally selecting the

representative distribution of the observed spacing data, if it is permitted to take into

account the simplicity of the fractal distribution and that the grey correlation measures

for the fractal distribution is not far from that for the lognormal. This particular data

set happens to be the one discussed by Hobbs (1993) from which he argued that a

fractal distribution should be considered in addition to the lognormal distribution

selected by Rouleau and Gale (1985).
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It is reasonable to conclude from the above discussion that the grey correlation

analysis can be used for selecting a preferred distribution from several contending

theoretical ones and that the selection will be more effective if the grey correlation

analysis is combined with the classical goodness-of-fit tests.

A computer programme for the grey correlation analysis, written in FORTRAN and

named GCA, has been developed and presented in Appendix A. 1. Later in the thesis

the grey correlation analysis will be used together with classical goodness-of-fit test

for choosing a distribution from a number of proposedi distributions, when analysing

spacing and trace length distributions.

3.6 DERIVATiON OF IBSD OF DISCONTINUITIES WiTH FRACTAL

SPACING DISTRIBUTIONS USING BOTH RANDOM SIMULATION AND

THE DISSECTION METHOD

Assuming that all the discontinuities are persistent and planar, the individual

blocks formed by these discontinuities can be determined analytically using computer

algorithms of the types developed by Da Gama (1977), Stewart (1986) and Wang

(1992). Wang (Wang & Latham, 1991; Wang, 1992) has applied his algorithm to the

development of the Equation Method for the prediction of IBSD of rock mass with

discontinuities with a uniform and/or negative exporential spacing distribution. A

brief description of how the simulation can be implemented is given in Section 2.2.2

and a detail description is presented in Wang's work (Wang & Latham, 1991; Wang,

1992). In this thesis, the algorithm and the associated computer program developed by

Wang (1992) will be used for the investigation of IBSD with fractal spacing

distributions. The investigation is based on the same simulation approach as that

carried out in the development of the equation method. The difference lies in that the

artificial discontinuities in this investigation are given a fractal rather than a negative

exponential spacing distribution. The simulation includes:

(1) Generation of three groups of artificial discontinuities governed by particular

spatial orientation distributions and fractal spacing distributions with known mean

orientations and principal mean spacings or fractal dimensions;

(2) Determination of the IBSD of the simulated groups of discontinuities using the

dissection method for 50 different combinations of input parameters (see Table 3.2);
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(3) Derivations of the relationships between the known fractal dimension and/or

principal mean spacing with the parameters of the JBSDs obtained in the 50

simulations.

In the simulation the assumptions and simplifications are similar to those made by

Wang (Wang & Latham, 1991; Wang 1992) in their simulation.

(1) Discontinuity spacing in each set has a fractal distribution defined with

reference to a specific fractal dimension and a specific range of spacing values. Note,

the principal mean spacing is fixed whenever both the fractal dimension and the range

is set;

(2) Discontinuities are persistent (the influence of impersistence of discontinuity

on the IBSD will be separately discussed in Chapter 4);

(3) Each group of data always consists of three orthogonal sets of discontinuities;

(4) Each discontinuity in a given set is constructed to be approximately evenly but

randomly distributed around the mean orientation of the set within a range of ±10

degrees both in dip angle and dip direction;

(5) Each set usually contains 20 discontinuities, so there are usually 60

discontinuities in one group which are included in the boundary block. Outside of this

block, however, there may exist more discontinuities belonging to each set. When for

a particular simulation the volume of the boundary block is relatively small, which

often occurs for large fractal dimensions or small principal mean spacings, the number

of discontinuities chosen for the simulation in one or two or three sets may be more

than 20. The actual number of discontinuities may therefore be more than 60 in one

boundary block.

For detailed information about the dissection computer procedure and its use for

the purpose of simulation, refer to Wang's thesis (1992).

3.6.1 Range of Parameters Examined

It is important to identify the range of spacings and fractal dimensions likely to be

of interest before running the simulation.
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When taking field measurements, discontinuity spacing values below a known

threshold, say, the resolution on a measuring tape, will not be recorded. As such there

exists a lower cutoff associated with the effect of resolution of the human eye. On

other hand, both actual exposures and discontinuities are of finite size and spacing,

and scanlines are of limited length. Discontinuity spacings in an actual engineering

project will therefore have an upper cutoff. Thus, the spacing value measured will fall

within a range defined by the lower cutoff, Smin and upper cutoff, S,,. The

resolution of measurement and the typical scale at which a rock engineering problem

is to be investigated will contribute to the definition of both the lower cutoff and

upper cutoff of discontinuity spacings. These consideration were also made elsewhere

(e.g. Wang, 1992). However, there are special reasons why setting Smjn and Smax is

particular important for fractal simulation.

The range of fractal dimension to be examined is governed by two considerations.

The first is the theoretically possible range. The second is the range of fractal

dimension values or discontinuity principal mean spacing values encountered in

practice.

According to Mandelbrot (1983), the theoretically possible fractal dimension D

defined by equation N=CS D is between 0 and 1. In the author's site investigation on

the highway cutting project, the fractal dimension of discontinuity spacing was

between 0.05 and 0.6. In the research conducted by Harris et al. (1991), the fractal

dimension was between 0.25 and 0.75. Gillespie et a!. (1993) showed that the

discontinuities were frequently with fractal dimension of between 0.4 and 1.0, and the

fractal dimensions derived from the measured data represented by Gillespie et

al.(1993) are between 0.4 and 0.7. The range of fractal dimensions of discontinuity

spacing measured by Boadu and Long (1994) was around 0.55-0.63.

The lower cutoffs are usually set out around 0.01 - 0.05 m. For example, Priest and

Hudson (1976) set it as low as 0.01 m. Wang (1992) suggested that the measuring tape

for scanline measurement be calibrated in cm divisions. Boadu and Long (1994) set

out the lower cutoff as 5 cm. The upper cutoff typical for quarrying and mining, can

be defined as 10 m. Since the scale of mining and quanying operation is usually in the

range of one or several decades of metres, the discontinuity spacing values recorded in

practice will be less than this value. For example, most spacing values recorded by

Priest and Hudson (1976) were less than 5 m in several field sites. The greatest values

from six different field sites recorded by Gillespie et a!. (1993) usually remained
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below 10 m. The discontinuity spacing values from two different quarry field sites

recorded by Wang (1992) were all below 10 m.

It may be recalled from Chapter 2 that if discontinuity spacings are defined by the

number-size relationship according to

N=CS_ D ,	 (3-28)

i.e. the discontinuity spacings are of a fractal distribution, then the probability density

functionfts) which introduces another coefficient, A, becomes

f(S)= A -(D+1), 	 Smjn < < 5max	 (3-29)

The following expression was obtained for the mean spacing in terms of the cutoffs

and the fractal dimension:

S	 "	 Smax)D
max min(D	 Smjfl

(Smax)D1
Smln

(3-30)
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Fig. 3.9 Relation between the coefficient A and fractal dimension with different upper

cutoffs (Lower cutoff =0.05 m; B - upper cutoff, in m)
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In order to understand the influence of both lower and upper cutoffs and different

fractal dimensions on the characteristic parameters, such as the mean spacing and the

coefficient A of Eqn. 3-29, a sensitivity analysis has been carried out as given below.

Relationship between coefficient A. fractal dimension D and mean spacing Sm

The influence of the upper cutoff on the coefficient A is shown in Fig. 3.9, which

indicates that its influence is not very strong, when fractal dimension D is a large

value. The expression for A (see Table 2.2) might therefore be simplified from

A = DI(a_ D _b_D ) to A=DaD.

Fig. 3.10 Relation between the mean spacing 5m and fractal dimension with

different upper cutoffs (Lower cutoff =0.05 m; B - upper cutoff, in m)

Fig 3.10 illustrates the influence of the upper cutoff on mean spacing. It can be

seen that different upper cutoff values can cause significant difference in the values of

mean spacing, indicating that the upper cutoff should be defmed with caution in the

study of discontinuities with fractal characteristics. The influence of the lower cutoff

on the coefficient A is illustrated in Fig. 3.11, which shows that this influence is not

very significant.

It can be seen from Fig. 3.12 that the mean spacing is sensitive to both fractal

dimension and lower cutoff. However, the influence of lower cutoff on mean spacing

is not as significant as that of the upper cutoff (see Fig. 3.10).
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Fig. 3.11 Relation between the coefficient A and tractal dimension with ditterent

lower cutoffs (upper cutoff=1O m, XO - lower cutoff, in cm)

different lower cutoffs (upper cutoff=1O m, XO - lower cutoff, in cm)

The PDF curves for different fractal dimensions are illustrated in Fig. 3.13, which

is used to help understand the trend of the fractal spacing distribution varying with

fractal dimensions.
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Fig. 3.13 PDF curves with different fractal dimensions (lower cutotif Smin 0.05

m; upper cutoff S,,= 10 m)

Consequently, the range of fractal dimensions in the simulation was set between 0.12
and 0.84, and the lower and upper cutoffs were defmed as 0.05 m and 10 m in the
simulations.

3.6.2 Generation of Artificial Discontinuities with Fractal Spacings

Usually, computer generation of artificial discontinuities that have a prescribed
distribution of spacings involves a randomisation process. Since the concept of fractal
dimension and its analysis are relatively new, there is no algorithm and associated

computer programme available to directly obtain the necessary artificial
discontinuities with a fractal distribution.

The transformation method (Press et al, 1986) has been used here to derive the
generating algorithm for random numbers with a fractal probability distribution.

Based on the derivation of the algorithm a FORTRAN programme named RUNFRA
for generating the pseudo-random real number with fractal distribution has been
developed, which is described in Appendix B.2. By running the program RUNFRA,

we are able to produce artificial discontinuities that have a prescribed fractal
distribution of spacings.
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Fig. 3.14 Three-dimensional view of a simulated rock mass consisting of

discontinuities with fractal spacing distributions (D=0.36, the whole block volume

V=2 163 m3 ; lower cutoff Smjn= 5 cm; upper cutoff S,,- 10 m)

Fig. 3.14 is an example of a three-dimensional view of the blocks produced by

intersection of 3 sets of discontinuities with fractal spacing distributions that were

generated artificially using the transforming method described above. The three

principal discontinuity sets have an orientation dispersion of ± 100. It has been plotted

using the program 'BLOCKS' (Wang, 1992).

3.6.3 Simulation Results of Block Size Distributions

In accordance with the parameters set out in Table 3.2, a total of 60 groups of

separate simulations of the type illustrated in Fig. 3.14, were run using the programme

BLOCKS. For each simulation, referred to as having a run, the programme calculates

the IBSD, an example of which is shown in Fig. 3.15.

A typical simulation result of the IBSD for a group of discontinuities is illustrated

in Fig. 3.16. For this group discontinuities the fractal dimensions for three sets are

respectively 0.68, 0.36 and 0.44.
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'able 3.2 The parameters of the simulation of IBSD with fractal spacing Iistribution*
Fractal dimension	 Principal mean spacing (m)

No.	 Set 1	 Set 2	 Set 3	 Set 1	 Set 2	 Set 3

	

Ni-I	 0.12	 0.12	 0.12	 1.52	 1.52	 1.52
	-2	 0.24	 0.24	 0.24	 1.208	 1.208	 1.208

	

-3	 0.36	 0.36	 0.36	 0.948	 0.948	 0.948

	

-4	 0.44	 0.44	 0.44	 0.802	 0.802	 0.802

	

-5	 0.5	 0.5	 0.5	 0.707	 0.707	 0.707

	

-8	 0.56	 0.56	 0.56	 0.623	 0.623	 0.623

	

-7	 0.6	 0.6	 0.6	 0.573	 0.573	 0.573
	-8	 0.68	 0.68	 0.68	 0.528	 0.528	 0.528
	-9	 0.76	 0.76	 0.76	 0.414	 0.414	 0.414

	

-10	 0.84	 0.84	 0.84	 0.354	 0.354	 0.354

	

N2-1	 0.12	 0.12	 0.24	 1.52	 1.52	 1.208

	

-2	 0.12	 0.36	 0.44	 1.52	 0.948	 0.802

	

-3	 0.12	 0.5	 0.56	 1.52	 0.707	 0.623

	

-4	 0.12	 0.6	 0.68	 1.52	 0.573	 0.528

	

-5	 0.12	 0.76	 0.84	 1.52	 0.414	 0.354

	

N3-1	 0.24	 0.12	 0.24	 1.208	 1.52	 1.208

	

-2	 0.24	 0.36	 0.44	 1.208	 0.948	 0.802

	

-3	 0.24	 0.5	 0.56	 1.208	 0.707	 0.623

	

-4	 0.24	 0.6	 0.68	 1.208	 0.573	 0.528

	

-5	 0.24	 0.76	 0.84	 1.208	 0.414	 0.354

	

N4-I	 0.36	 0.12	 0.24	 0.948	 1.52	 1.208

	

-2	 0.36	 0.36	 0.44	 0.948	 0.948	 0.802

	

-3	 0.36	 0.5	 0.56	 0.948	 0.707	 0.623

	

-4	 0.36	 0.6	 0.68	 0.948	 0.573	 0.528

	

-5	 0.36	 0.76	 0.84	 0.948	 0.414	 0.354

	

N5-1	 0.5	 0.12	 0.24	 0.707	 1.52	 1.208

	

-2	 0.5	 0.36	 0.44	 0.707	 0.948	 0.802

	

-3	 0.5	 0.5	 0.56	 0.707	 0.707	 0.623

	

-4	 0.5	 0.6	 0.68	 0.707	 0.573	 0.528

	

-5	 0.5	 0.76	 0.84	 0.707	 0.414	 0.354

	

N6-i	 0.6	 0.12	 0.24	 0.573	 1.52	 1.208

	

-2	 0.6	 0.36	 0.44	 0.573	 0.948	 0.802

	

-3	 0.6	 0.5	 0.56	 0.573	 0.707	 0.623

	

-4	 0.6	 0.6	 0.68	 0.573	 0.573	 0.528

	

-5	 0.6	 0.76	 0.84	 0.573	 0.414	 0.354

	

N7-1	 0.68	 0.12	 0.24	 0.528	 1.52	 1.208

	

-2	 0.68	 0.36	 0.44	 0.528	 0.948	 0.802

	

-3	 0.68	 0.5	 0.56	 0.528	 0.707	 0.623

	

-4	 0.68	 0.6	 0.68	 0.528	 0.573	 0.528

	

-5	 0.68	 0.76	 0.84	 0.528	 0.414	 0.354

	

N8-1	 0.76	 0.12	 0.24	 0.414	 1.52	 1.208

	

-2	 0.76	 0.36	 0.44	 0.414	 0.948	 0.802

	

-3	 0.76	 0.5	 0.56	 0.414	 0.707	 0.623

	

-4	 0.76	 0.6	 0.68	 0.414	 0.573	 0.528

	

-5	 0.76	 0.76	 0.84	 0.414	 0.414	 0.354

	

N9-1	 0.84	 0.12	 0.24	 0.354	 1.52	 1.208

	

-2	 0.84	 0.36	 0.44	 0.354	 0.948	 0.802

	

-3	 0.84	 0.5	 0.56	 0.354	 0.707	 0.623

	

-4	 0.84	 0.6	 0.68	 0.354	 0.573	 0.528

	

-5	 0.84	 0.76	 0.84	 0.354	 0.414	 0.354
*the lower and upper cutoffs were defmed as 0.05 m and 10 m
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Fig. 3.15	 The simulation result of the IBSD for fractal spacings (the whole

block volume = 950 m3; lower cutoff 5mjiz= 5 cm; upper cutoff S,,— 10 m)

Fig. 3.16 Fitting the theoretical distributions to the IBSD (D=O.24, the whole block

volume =4125 m3; lower cutoff Smin=5 cm; upper cutoff S,,= 10 m)

The Ros-Ram, Schuhmann and log-linear equations have all been considered as a

means of describing simulation results of the IBSD. Visual examination of Fig. 3.16

suggests from that the Schuhmann equation may fit as well as the Ros-Ram equation,

and that the log-linear equation is basica1y unsuitable for the typical curvature with
the fine part of the IBSD. It is therefore proposed that both the Ros-Ram and the
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Schuhmann equations are the two most ideal to be used for representing the IBSD of a

rock mass with discontinuities with fractal spacing distributions.
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Fig. 3.17 Comparison between simulation and Ros-Ram and Schuhmann

distribution fitting for "typical data" (D=0.24, the whole block volume = 4125 m3;

lower cutoff Smjn= 5 cm; upper cutoff S,,,= 10 m).

The method of curve fitting to obtain best fits using given equations, when

summarising IBSD or BBSD, is not straight forward. With spacing data, considered in

Section 3.5, the raw data gives an appropriate weighting for each data point, but this

need not be the case for block size. The consideration of whether to and how to weight

the data prior to curve fitting should be made after taking into account practical

consideration. For example, the most economically significant part of the IBSD or

BBSD curve could be he fine end, the middle or the coarse end. An accurate fit at the

coarse end was more important in the Overseas Quariy case study concerned with

armourstone described in Chapter 7.

In the analysis of lB SD, the most reasonable approach and the one adopted here

appears to be by reassignment of the weighted simulated data to an unweighted

idealised set of data which in this case, is given at 5% intervals from 5% to 100%

passing size. This choice, a removal of the weighting of fines and replacement by 20

evenly weighted data points, is appropriate since the main purpose for the

mathematical summary of the IBSD is to give accurate input to the modelling of

BBSD.
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The influence of weighting is closely shown by a comparison of the best-fit curves
in Figs. 3.16 and 3.17 (the "typical data" refers to regularly picking up the point at 5%,

10%, ..., 100% passing). Whereas in Fig. 3.16, some 2000 of the data points alone,
account for less than 1% of the whole simulated volume, in Fig. 3.17, the first of 20
data points enters at 5% passing. The effect of removing the fines weighting is to
allow a much better Ros-Rani fit for the coarse sizes.

3.6.4 Relationships between Fractal Spacing Parameters and IBSD Parameters
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Fig. 3.19 Relationship between V10 and V50 and the Spmjpm2*Spm3

Before proceeding with a compilation of coefficients that enable the reader to apply

an equation method to fractal spacing data, there is one major difference between

these research results and those of Wang. Wang (1992) referred to a "proportional

property" which results in a linear relationship between the IBSD and the products of

the three principal mean spacings applicable to the uniformly and negative

exponentially distributed spacings. For the case of fractal spacing distribution, this

property will not hold, as verified by the simulation results shown in Figs 3.18 and
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3.19. The reason that it no longer holds is that there is no longer a proportional

property for the generator which produces data with a fractal spacing distribution (see

Appendix B.2).

Fig. 3.18 is the relationship between typical (10% and 50%) volume percentage

passing values and the product of the three fractal dimensions, and Fig. 3.19 is the

relationship between these typical percentage passing values and the product of the

three principal mean spacing values. It can be seen from these two figures that there

are, indeed, some non-linear relationships between the volume percentage passing

values and the products.

Table 3.3 Coefficients	 and	 for the relationship between	 and the product

of fractal dimensions of discontinuities with fractal distributions (Egn. 3-31)

Passing Coefficient Standard _______ 90% confidence level

_______	 C, ,	 Error	 Lower Upper Range Error *(%)

10	 0.0468	 0.0033	 0.0417 0.0526 0.0055	 11.66

20	 0.1440	 0.0099	 0.1284 0.1614 0.0165	 11.47

30	 0.3098	 0.0218	 0.2755 0.3485 0.0365	 11.78

40	 0.5642	 0.0460 0.4926 0.6462 0.0768 	 13.62

50	 0.8453	 0.0660 0.7422 0.9628 0.1103 	 13.04

60	 1.4447	 0.1121	 1.2695	 1.644	 0.1872	 12.96

70	 2.5625	 0.2379	 2. 1959 2.9904 0.3973	 15.5

80	 4.4490	 0.5492 3.6254 5.4598 0.9172	 20.62

90	 9.2825	 1.2878	 7.3777 11.6790 2.1507	 23.17

100	 31.3330	 3.5021	 26.025 37.7220 5.8485	 18.67

10	 0.5949	 0.0250 0.5529 0.6368 0.0418 	 7.03

20	 0.5423	 0.0246 0.5010 0.5836 0.0411	 7.59

30	 0.5012	 0.0253 0.4588 0.5436 0.0422	 8.42

40	 0.4711	 0.0292	 0.4220 0.5201 0.0488	 10.36

50	 0.4712	 0.0280 0.4242 0.5181 0.0467 	 9.92

60	 0.4404	 0.0278 0.3938 0.4871 0.0465 	 10.55

70	 0.4199	 0.0332 0.3642 0.4756 0.0555	 13.22

80	 0.4072	 0.0441	 0.3333 0.4811 0.0736	 18.07

90	 0.3609	 0.0494 0.2780 0.4438 0.0825 	 22.87

100	 0.3054	 0.0399 0.2384 0.3724 0.0667 	 21.84

*Enor is the ratio of the range over the corresponding coefficient expressed in %;
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Table 3.4 Coefficients C,, and b, for the relationship of V,, and the product of

principal mean spacin values of discontinuities with fractal distributions (Eqn. 3-32)

Passing Coefficient Standard ______ 90% confidence level

______	 Error Lower Upper Range Error (%)

10	 0.4649	 0.0077 0.4523 0.4779 0.0128	 2.75

20	 1.1685	 0.0245 1.1283 1.2101 0.0409	 3.50

30	 2.1606	 0.0448 2.0871 2.2367 0.0748 	 3.46

40	 3.5458	 0.0965 3.3882 3.7107 0.1612	 4.55

50	 5.3165	 0.1150 5.1280 5.5120 0.1920	 3.61

60	 8.0903	 0.1855 7.7864 8.4061 0.3098	 3.83

70	 13.3920	 0.5029 12.5780 14.2580 0.8398	 6.27

80	 22.6070	 1.3562 20.4550 24.9850 2.2649 	 10.02

90	 39.6660	 3.0117 34.9540 45.0130 5.0295	 12.68

100	 108.9700 5.7909 99.7240 119.0700 9.6708	 8.88

10	 0.7882	 0.0109 0.7700 0.8060 0.0180	 2.30

20	 0.7200	 0.0140 0.6970 0.7430 0.0230	 3.21

30	 0.6719	 0.0137 0.6489 0.6950 0.0228 	 3.40

40	 0.6433	 0.0179 0.6132 0.6730 0.0300	 4.66

50	 0.6440	 0.0140 0.6200 0.6680 0.0240	 3.70

60	 0.6053	 0.0151 0.5800 0.6310 0.0252 	 4.17

70	 0.5874	 0.0247 0.5459 0.6290 0.0413	 7.03

80	 0.5900	 0.0395 0.5237 0.6560 0.0659	 11.18

90	 0.5335	 0.0499 0.4497 0.6170 0.0830	 15.63

100	 0.4675	 0.0350 0.4088 0.5260 0.0580	 12.50

For discontinuities with a fractal spacing distribution, the fractal dimension is an

important characteristic parameter, having significance for the IBSD. However, the

mean spacing value within the major discontinuity sets has traditionally been used to

give an average dimension of typical in-situ blocks (ISRM, 1978). Therefore, an

attempt has been made to present both the relationship between the IBSD and the

three principal mean spacing values and the relationship between the IBSD and the

three fractal dimensions.

With a careful examination of all of the simulation results using statistical analysis

and grey correlation analysis, a negative power law was found to be most suitable to
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describe the relationship between the IBSD and the product of three fractal

dimensions. It is given by

where	 (i=10, 20,...,100) are block volumes of percentage passing (in m 3), and

C1, and	 are empirical coefficients; i are percentages; D1, D2 and D3 are the

fractal dimensions of the three sets of discontinuity spacing values. The coefficients

C1, and	 together with the 90% confidence intervals are given in Table 3.3.

By analogy with the derivation of Eqn. 3-31, the power law is found suitable to

characterise the relationship between the IBSD and the three principal mean spacing

values, and is given by

b
Vj	 Cj,pX(Spml XSpm2XSpm3) i,p (3-32)

where, Spmj (i=1,2,3) are the principal mean spacing values of three set

discontinuities, C1, and b1, are the same as the above denotations. 	 and

in Eqn. 3-32 together with the 90% confidence intervals are illustrated in Table 3.4.

It seems reasonable to assume that the estimates of coefficients in Eqns. 3-31 and

3-32 have approximately normal distributions. Thus The goodness-of-fit examination

for Eqns. 3-31 and 3-32 has been carried out using the classical t test. Also, a grey

correlation analysis was used. The results are listed in Table 3.5. The t test indicates a

significant dependence of the V1 on the mean principal spacing or the fractal

dimension. That is, the proposed empirical equations for relating the coefficients C1

and b1,1, to the mean principal spacing or fractal dimension obtained from simulations

works well. This has been supported by the grey correlation analysis, since almost all

the values of the grey correlation coefficients are large. The visual comparison

between simulation results and the predictions from Eqns. 3-31 and 3-32 for V50 (see

Figs. 3.18b and 3-19b) indicates that the two equations fit reasonably well.

From the discussion above, it is found that the fractal dimension, which is the most

important spatial parameter of discontinuities with a fractal spacing distribution, is

also a measure of in-situ block sizes.

An important point to bear in mind is that both Eqn. 3-31 and Eqn. 3-32 have been

developed from simulation data based on a certain range of values of mean spacing or
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fractal dimension. It is therefore advised that one should use caution when

extrapolating the IBSD of a rock mass with the values of mean spacing or the fractal

dimension from outside the range examined by this study.

Table3.5 Goodness-of-fit examination of Egns. 3-31 and 3-32

Eqn.

	

	 —b.	 b.
Vi , = C , x(Di XD2 xD3) 'p1' Vj,p =Ci,pX(SpmlXSpm2XSpm3) "

	Grey________ t test	 Grey	 ________ t test

VI P correlation t statistics t at Confidence level correlation t statistics tat Confidence level

	

measure ______ 90%	 95% measure ______ 90%	 95%

	10 0.9781 72.507	 1.677	 2.01	 0.9043 -23.770 1.677	 2.01

	

20 0.9567 52.101	 0.8932 -22.010

	

30 0.9478 49.185	 0.8739 -19.820

	

40 0.9237 35.844	 0.8552 -16.120

	

50 0.9335 45.153	 0.8574 -16.830

	

60 0.9260 40.045	 0.8561 -15.830

	70 0.8835 23.741	 0.8228 -12.640

	

80 0.8459 14.940	 0.8080	 -9.242

	

90 0.7890 10.684	 0.7627	 -7.303

100 0.8179 13.360 ______ ______ 0.7782 -7.647 ______ ______

*where t test proceeds as if the data were linearly related, so the transformed and not

the raw data have been used throughout this significance test.

3.7 BLOCK SIZE DISTRIBUTIONS WITH FRACTAL COMPARED OTHER
SPACING DISTRIBUTIONS

Having discussed the block size distribution arising from rock masses with

discontinuities with fractal spacings, it is interesting to compare these results with

those for other spacing distributions and to probe into how much difference exists in

the IBSDs produced from different spacing distributions.

In comparing Eqn. 3-32 with Eqn. 2-10, it can be found that the nonlinear form is

noted for the fractal spacing distribution whereas a linear form was found (Wang

1992) for the rock mass with negative exponential, lognormal and uniform spacing

distributions. Fig. 3.20 gives a comparison of JBSD curves for the special case that the

principal mean spacing value of each discontinuity set has been given the value 1.0 m

and that appropriate cutoffs have been drawn for the fractal curve.
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Clearly, there is a significant difference between the IBSD of discontinuities with a

fractal spacing distribution and those with the other three spacing distributions. The

IBSD of a rock mass with discontinuities that have a fractal spacing distribution is

much larger than that with the other three spacing distributions at corresponding

percentage passing points. The fractal IBSD curve is less steep given blocks that are

more widely distributed. That is, more fine and more "mammoth" blocks will be

produced from the rock mass with discontinuities with fractal distributions. Among

the four different spacing distributions, the IBSD intersected by discontinuities with a

uniform spacing distribution will form the lower boundary IBSD curve (see. Fig.

3.20).
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Fig 3.20 Comparison among IBSDs with different spacing distributions, based on

the equation methods (all the mean spacings are 1.0 m)

3.8 DISCUSSION

Fig. 3.15 illustrates the case of the three dimension view for a discontinuity

network with a fractal distribution where all three sets of discontinuities have the

same fractal dimension of 0.36, corresponding to an approximate mean spacing value

of 0.95 m. The three dimensional views for both negative exponential and uniform

spacing distribution with principal mean spacing values of 1.0 m are presented in Figs.

3.21 and 3.22 respectively. In the case of the fractal spacing distribution, the whole

block volume is up to 2160 m3, and some discontinuities are sparsely distributed
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while others are closely clustered. In contrast, we can find from visual examination of
both Figs. 3.21 and 3.22 that both the negative exponential and the uniform spacing
distribution discontinuities are fairly evenly distributed. The same features can be
characterised by fracture logs illustrated in Fig. 2.4.

Fig 3.21 Three-dimensional view of blocks consisting of discontinuity sets with
negative exponential distributions (the principal mean spacing is 1.0 m; the whole
block volume is 6686 m3)

It is therefore significant to distinguish whether the type of spacing distribution of
discontinuities is clearly of a fractal form when the in-situ block size distribution is of

practical significance. This will certainly be the case in quarrying for armourstone,

aggregates and building stone, especially for operations of quarrying in which the
proportion of big blocks is essentially critical.

The IBSD of rock with discontinuities with fractal spacing disbribution has been
investigated using a combination of random simulation and the dissection method. A

comparison of the IBSD with fractal spacing distribution with the IBSDs for negative
exponential, lognormal and uniform distributions has also been given. The results

have indicated that there is a significant difference between the IBSD with fractal
spacing distributions and the IBSDs with the other three spacing distributions. The

two sets of empirical equations developed and expressed in Eqn. 3-31 or Eqn. 3-32
can be used to estimate the IBSD when the discontinuities exhibit a statistically good
fit to a fractal spacing distribution.
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Fig. 3.22 Three-dimensional view of blocks consisting of discontinuity sets with
uniform distribution (the mean spacing is 1.0 m; and the block volume is 3900 m3)

The above investigations of IBSD are based on the assumption that all three sets of
discontinuities are with a fractal distribution. In practice, this assumption may seldom
be satisfied and the more typical situation is that between the various sets there are

two or more kinds of best-fit descriptions for the discontinuity spacing distributions.
In such cases we can reasonably predicate that the IBSD will fall in the range formed
by a lower boundary IBSD curve from discontinuities with a uniform spacing
distribution and an upper boundary IBSD curve from discontinuities with a fractal

spacing distribution (see Fig. 3.20), although further investigation should be made to
reveal the IBSD of rock with two or more kinds of discontinuity spacing distribution
laws. A preliminary examination of the prediction for a mixture of distribution laws
has been made in the case study presented in Section 7.1, in which one out of three

sets of discontinuities is with a fractal spacing distribution, the other two having either
negative exponential or uniform spacing distributions.

In the above simulation and analysis, a supposition that discontinuities are
persistent is imposed. As discussed in Chapter 2, this supposition may often not hold.
In the next chapter, the influence of impersistent discontinuities on the prediction of
IBSD will be investigated.
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4. INFLUENCE OF IMPERSISTENCE OF DISCONTINUITIES ON THE

IBSD OF ROCK MASSES

4.1 RATIONALE FOR THE CONSIDERATION OF DISCONTINUITY

IMPERSISTENCE IN THE PREDICTION OF IBSD

Whether or not a discontinuity can be regarded as persistent is to some extent

subjective. It will depend on the scale or resolution used to observe the discontinuities,

the area or volume of the rock mass of interest, and the nature of engineering

problems for which discontinuity survey data is sought. Of particular interest in this

research is the determination of the IBSD in bench blasting in a quarry. For this

application, one approach has been to regard discontinuities with traces on the bench

face longer than a given cutoff value as persistent and the rest as impersistent. For

example, Wang (1992) used a criterion of ^ 3 m for the trace length of discontinuities

that were to be coded as persistent. By treating the dissection of discontinuities that

are coded as impersistent together with those are coded as persistent, as if they all

extend infinitely he made an estimation of the lower bound for the BBSD, while the

dissection of only the persistent ones, he argued, would provide an upper bound

estimation for the IBSD. Obviously, the above cutoff criterion is inherently subjective,

in spite of its applicability for providing bounds for the IBSD.

A rock mass where all discontinuities extend to the margins of the rock volume of

interest is rarely found. However, most existing techniques of predicting the in situ

block size, including the techniques developed by Wang (1992) and in Chapter 3 of

this thesis, assume that all discontinuities within the rock mass are persistent (this will

be referred to as "all-persistent discontinuities" assumption). This assumption is

probably acceptable for a small volume of a rock mass or for a rock mass with

discontinuities having a large mean discontinuity size, but with the increase of the rock

mass in question the errors related to this assumption will increase.

The following case studies described by Wang (Wang et al., 199la; Wang, 1992)

both give an insight into the extent to which impersistence affects the prediction of

IBSD (see Table 4.1 and Fig. 4.1). In the first case, V50 for the lower bound curve was

4.95 m3, whereas V50 for upper bound curve was 7.69 m3 (Fig. 4.1). The two

different considerations on persistence resulted in a 50% volume increase. In the

second case, V50 for the lower bound curve was 0.477 m 3, whereas V50 for upper

bound curve was 1.305 m3 which is nearly a three fold increase. On describing the
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above two cases, Wang argued that the IBSD could be considered to fall between both
lower and upper bounds. However, since the difference between these two bounds is

often large (see Table 4.1 and Fig. 4.1), it has been recognised that in cases where
trace length distribution data can be obtained, it may be possible to further constrain
the estimated IBSD.

_, ,- ,
Lower	 7 /

//

____	 alidiscontinuities were coded as! //
Upper	 /_ ,'______________ persistent and mcluded	 /

,/",/discontinuities less than 3 n
were coded as krpexsistent
and were not included

0.1	 1
	

10	 100

Block dunie (m'3)

Fig. 4.1 illustration of influence of persistence of discontinuities on prediction of
IBSD (Data from Wang, 1992)

Table 4.1 The influence of impersistence of discontinuities on the prediction of
IBSD (50% passing block size. V

Including all Only including persistent
discontinuities	 discontinuities

Case 1
	

4.95
	

7.69

Case 2
	

0.477
	

1.305

The analytical treatment of discontinuities with impersistence is highly complex.

This might be one of main reasons that most existing techniques of prediction the
IBSD have assumed that discontinuities are all persistent. For the purpose of obtaining
estimation of lB SD, an indirect technique is therefore proposed for considering the

influence of impersistent discontinuities on the prediction of IBSD. Firstly, an IBSD
estimation is obtained using the assumption of all-persistent discontinuities, then the

estimate is corrected by introducing a factor reflecting the influence of the degree of
persistence of discontinuities.
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Persistence can be roughly quantified by measuring the discontinuity trace lengths

on the exposures. Furthermore, the underlying discontinuity size may be generated

from the measured trace lengths under certain assumptions about the nature and shape

of the discontinuities.

It is helpful to begin by revising the two definitions of persistence in current usage.

(1) The first is suggested by the ISRM (1978) where persistence is defined as "the

percentage of total area of a plane through the rock mass which is formed by

discontinuities co-planar with this reference plane", so that the persistence P1 is given

by:

Jj = 
AD
	 (4-1)

where AD is the area of a region of the plane and aDi is the area of the ith
discontinuity in the AD, the summation is over all discontinuity in the area, as shown

in Fig. 4.2.

Fig. 4.2 Schematic illustration of discontinuity persistence

(2) The second was given by Einstein et at. (1983) where persistence is defined as

the limit of the ratio expressed by Eqn. 4-1 as the size of the plane approaches infinity:
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aD

P, = urnAD-.- AD

or the limit of the length ratio along a given line on a joint plane, as given by:

ls.
P, = urnLS-.- L5

where LS is the length of a straight line segment S and l is the length of the it/i

discontinuity segment in S, the summation is over all joints in S.

It can be seen from the above equations that these definitions will lead to a scale-

dependent persistence value. In other words, the impersistence will depend on the

dimensions of the rock mass concerned. As a result, whether the assumption of all-

persistent discontinuities is good approximation or not is critically dependent upon

two factors: the first is the scale of the in-situ rock mass of interest, and the second is

the mean size of discontinuities. The greater the scale of the rock mass, the worse the

approximation; the larger the mean discontinuity size, the better the approximation.

Provided that an estimation of mean discontinuity size can be made, it is possible

that the influence of impersistence on in-situ block size can be elucidated by

comparing the mean discontinuity size to the scale of in-situ rock mass of interest. It

therefore seems probable that the determination of the mean size of discontinuities (or

an estimate of mean size) could provide a suitable means of accounting for the

influence of impersistent discontinuities with particular reference to the prediction of

IBSD. In the following sections, this has been shown to be so and the relationships

have been derived so as to incorporate the impersistent discontinuities into the

prediction of IBSD.

4.2 DISTRIBUTIONS OF TRACE LENGTH AND EVIDENCE OF FRACTAL

TRACE LENGTH DISTRIBUTIONS

(4-2)

(4-3)

4.2.1 Distributions of Trace Length and Identification of Distributions
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A survey of discontinuities is often made on a small exposure comprising a small

sample from which one infers the jointing in a much larger rock volume.

Mathematical techniques are usually applied to the survey measurements in order to

adjust the trace length distribution to be more representative. As described in Chapter

2, a number of different distributions describing the joint trace lengths have been

proposed to help draw inferences from discontinuity survey measurements. To date

the main probability density functions for expressing discontinuity trace lengths

include the negative exponential, the lognormal and the fractal distributions, as shown

in Table 2.3.

When there is a need for selecting a preferable distribution among several

contending theoretical distributions, the analysis technique described in Section 3.5
can be used.

The existence of both the negative exponential and the lognormal has been

frequently reported. However, the fractal distribution is quite a new one and, therefore

further discussion of the evidence supporting its existence follows.

4.2.2 Evidence of Fractal Trace Length Distributions

In the investigation made by Stone (1980, (see Bahat, 1988)) into the length

distribution of fractures in the coarse-grained granite of Atilokan, Ontario, he found

that joint lengths appeared to have fractal distribution.

0 11111	 I III 1--,	 -	 I

0	 20	 30	 40	 50	 60	 70

JOINT LENGTH (mtteri)

Fig. 4.3 Power law trace length distributions (from Segall & Pollard, 1983)
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Segall and Pollard (1983), in their study of joint formation in the granitic rock of the

Sierra Nevada, found that the length 1 of mapped joints from 1 or 2 m to approximately

70 m has the fractal form

-(I+D)
f(1) cc!

where f(l) is the probability density function of joint length and D is the fractal

dimension range from 0.2 to 0.8. The results from a mapped area has been shown in

Fig. 4.3. It can be seen that the fractal distribution fits the mapped data reasonably

well.

Barton and Larsen (1985), Ranalli and Hardy (1989), Sornette et al. (1990) and

Davy et al. (1990) have reportedly presented the fractal trace length distributions with

the range of fractal dimension from 0.1 to 0.75 respectively in their individual study of

trace length distributions of fracture networks.

Power law distributions seem to overpredict the number of joints having small trace

length or spacing values, which might be due to incomplete sampling of joints. Segall

and Pollard (1983) believed that there may be more joints having low values of trace

lengths present in the rock but that they were not able to map them on the outcrops

because of mapping resolution or inadequate sampling of joints, and, that one might

expect a continuous distribution of crack lengths ranging from the longest joints to

very small microcracks. Ranalli and Hardy (1989) suggested that a lognormal

distribution might be the result of superposition of fractal subpopulations with size

cutoffs. From the above cited literature a greater confidence has been obtained for the

validity of the fractal trace length distributions.

if the assumption is made that the measured distribution is indeed truncated and

that the shorter trace lengths are under-represented in the data due, for example, to

resolution problems, it might be possible to extrapolate the expected untruncated trace

lengths using a number of methods, such as the grey prediction approach (Den, 1985).

4.3 DISCONTINUITY SIZE ESTIMATION

Smaller sizes of discontinuities means less persistence and less persistent

discontinuities will lead to fewer intersections and thus larger in-situ blocks. Thus

(4-4)
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when considering the influence of discontinuity persistence on the estimation of JBSD,

the problem becomes one of finding the mean size of discontinuities in an opaque rock

mass. However, it is necessary to use distributions of trace lengths derived from

measurements of the trace lengths produced by their intersections with exposures.

Fortunately, it will be shown below that discontinuity sizes will have a statistical

distribution that is related to the distribution of their trace lengths. If the geometry and

spatial arrangement of the discontinuities is known or assumed, one is able, in

principle at least, to derive the relationship between discontinuity size and trace length

distribution by statistical analysis. In turn, this relationship can then be used for the

estimation of discontinuity size distribution from the trace length distribution sampled,

as shown by Warburton (1980).

4.3.1 The Relationship between Discontinuity Size and Trace Length

It is usually impossible to specify the size of a discontinuity because only by

thoroughly dismantling the rock mass can one find and measure its size. Therefore,

techniques for the estimation of discontinuity sizes have to be based upon both the

measurement of the trace lengths and certain assumptions about the shape of

discontinuities. Much impetus in this field of research has arisen through the need to

predict fluid flow through fractured rock masses and the assessment of potential

sliding planes with the largest size in rock slope stability problem. The site

investigation into igneous rock of de Beer Mine made by Robertson (1970) indicated

that the trace lengths in both strike and dip directions are approximately equal. Since

then, a simplifying assumption that discontinuities are circular discs has been widely

adopted (Baecher et al., 1977; Warburton, 1980; Kulatilake & Wu, 1986; Villaescusa

& Brown, 1992). Under this assumption, the sizes of discontinuities are completely

defined by their diameters. Determination of discontinuity size is therefore simplified

to a problem of defining the diameter distribution.

Assuming that discontinuities are circular discs of negligible thickness and the

centres of discontinuities hold a three-dimensional Possion process, Warburton (1980)

has made a valuable derivation of the distribution of trace lengths formed by the

intersections of parallel circular planar discs, which is given by

1	 lg(R)dR
f(l) =	

i.E .IR2 - j2 '

	 (4-6a)
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or

I	 g(R)dRf(1)=_5 
JR2_I2

(4-6b)

where I represents the trace length of a discontinuity, R is the diameter of the

discontinuity with the circular disc shape, m represents the mean diameter of

discontinuities, f(I) is the probability density distribution of the discontinuity trace

lengths, and g(R) represents the probability density distribution of the discontinuity

diameters.

This is the functional stereological relationship between trace length and diameter

distribution for line sampling of discontinuities. Theoretically, the distribution of

discontinuity diameter can be estimated for any continuous form of g(R) by applying

Warburton's derivation. However, difficulties in both mathematics and practical

sampling make it virtually impossible to determine g(R) and its control parameters

directly. Therefore, alternative methods of determining the discontinuity diameter

distribution and its governing parameters have to be sought, such as the techniques

described by Warburton (1980) and Villaescusa and Brown (1992). These two

attempts to relate trace length and diameter distribution will now be discussed.

Assuming that discontinuity diameters obey a lognormal distribution, Warburton

has examined, by means of a numerical scheme, the relationship between the average

discontinuity diameters and the average trace length. For lognormally distributed trace

lengths, he obtained the relationship for mu and mia below:

1
CUd +o)

md=e

and

8
mll=—e3,r

as well as

(id
m = — e



E(ji2 )	 ,rE(13)

E(/i) - 3 E(1)
(4-11)
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Hence

mll:mla:md =e20e0:i,	 (4-10)

where, Pd and (T are the parameters characterising the log-normal distribution of

discontinuity diameters; mi and mia are respectively the means of trace lengths from

line sampling and area sampling. In the numerical technique used by Warburton

(1980), the determination of the diameter distribution was implemented by varying Pd

and a systematically to find the combination that produced the best fit of sample data

of trace lengths to the corresponding theoretical distribution expected from the model.

Villaescusa and Brown (1992) proposed a method to estimate the mean diameter of

discontinuities based upon Warburton's work. The method, outlined below, helps to

illustrate difficulties so far encountered in linking trace lengths to diameters.

Under the assumption of discontinuity convexity and circularity, the expected

values of the observed joint trace length 1 and the discontinuity areas are related

through Crofton's theorem (see Villaescusa & Brown, 1992) by:

where E(ji) represents the n-th moment of the parameter, t, of interest, for example,

discontinuity area, such that E(j.t2) is the second moment of the discontinuity area and

is given by:

E(u2) = 5 (R2)2g(R)dR.	 (4-12)

Using standard statistics it yields

Og (R4 )	 4E(13)

Og (R 2 ) - 3 E(l)
(4-13)



12m 
4E(13)

3 E(1)
(4-14)

e2(/id+3c)_±E
3 E(l)

(4-15)
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where Og(R'2) is the n-th moment of the underlying discontinuity diameter distribution,

4 E(l)
is named the Crofton ratio. The method firstly evaluatedthe right hand term,

3E(l)'

Eqn. 4-13 and then selected a theoretical discontinuity diameter distribution, which

best fitted the field data, from certain distributions which are often adopted in practice.

If, discontinuity diameter, g(R), is assumed to have a negative exponential

distribution, substitution of the necessary parameters into Eqn. 4-13 yields:

Whereas, if g(R) has a log-normal distribution, developing Eqn. 4-13 yields

Comparing the two Crofton ratios of observed trace lengths, f(1), calculated using

both Eqn. 4-14 and Eqn. 4-15, the nature of discontinuity diameter, i.e. either negative

exponential or lognormal distribution, can be determined. After determination of the

distribution, the mean diameter can be found using the equations below.

If g(R) is assumed to have a negative exponential distribution,

(4-16)m

if g(R) has a log-normal distribution

(3JrJnI )5

8
md=E(R)= 4

( — (m? + c2))2
(4- 17a)

(37D111)8

E(R2) =	 8	 (4-17b)4 +
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where mi and (1)2 are respectively the mean and the variance of trace length, and both

Pd and cYd are related to m and E(R2) by

= 2Ln(md)_Ln(E(R2)),	 (4-18)

= Ln(E(R2 )) - 2Ln(md).	 (4-19)

It can be seen from the above discussion that there is a prerequisite that an

analytical form of discontinuity diameter distribution has to be set up in advance when

utilising the techniques used by Warburton (1980) and Villaescusa and Brown (1992).

It might be reasonable to assume that the diameters of discontinuities would be a

negative exponential, or lognormal or fractal form, etc. The impossibility of

dismantling a rock mass and difficulties raised in sampling have, however, so far made

it impossible to prove these assumptions. By contrast, it is possible and easy to

confirm assumptions about the distribution forms of trace lengths produced by

discontinuities. Consequently, imposing a distribution form of trace lengths is more

reasonable than doing that for discontinuity diameters. In the next section, an

algorithm for determination of discontinuity diameter distribution which is not based

on the assumption of the distribution of discontinuity diameters but on that of trace

lengths will be represented.

4.3.2 Derivation of a Numerical Approach to the Determination of the Distribution of
Discontinuity Diameters

It follows from Eqn. 4-6a that the probability that trace length 1 is in the range of 1

and l^dl can be given by

f(l)dl 
= 

j,	 lg(R)dR )dl.
	 (4-20)

On the same lines as the numerical scheme reported by Kulatilake and Wu (1986),

based upon Eqn. 4-20, the following approach to the determination of the distribution

of discontinuity diameters has been developed using a numerical technique.

Knowing the corrected (without truncation) distribution of trace lengths and

supposing F(l) represents the cumulative probability distribution function of trace

lengths, it is apparent from Eqn. 4-20 that the left hand side can be written as
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P(11_ 1 , l) = 5' ' f(l)dl = F(l,) - F(l,_ 1 ),	 (4-2 1)

where P(l1, l) represents the probability that trace length I is in the range of 1 and

l+dl. The Eqn. 4-20 can therefore be expressed as

lg(R)
P(111,11)=_L 5" (5 IR 2 _12 

dR)dl. (4-22)

Reversing the order of integration in Eqn. 4-22, with the help of Fig. 4.4, we obtain

the following expression which transforms the right side of Eqn. 4-22 into two terms

as follows

1	 1,	 R	 idi	 1	 1,	 idi
P(l,_ 1 ,l) = _5, (5,, 

iIR 2 _12 
)g(R)dR^-_-_f (f 

%JR 2 _l2 
)g(R)dR .(4-23)

00
C

Li-i

ergratiig R first	 .
0

Li-i L	 Discontinuity diameter R
	

(a)

e Discontinuity diameter R	
(b)

Fig. 4.4 Exchanging the integration orders: (a) the order before exchanging; (b) the

order after exchanging
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The Eqn. 4.23 can be further developed as

11	 i
P(l1 _ 1 , l1 )=—f ([_R2 _12 I )g(R)dR+— (I_,1R 2 _1 2 1" )g(R)dR,(4-24)

il, 1 	 m,	 .JIiI

i.e.

1	 1,

il-I ii-'P(11_ 1 ,1 1 )=—(5, (R2 _ 12 )g(R)dR+J, (JR 2 _1 2 _R2_l,2)g(R)dR).

(4-25)

The second term of the right hand side of Eqn. 4-25 can be written according to the

definition of integration as

	

--f(R2	 –JR _l2 )g(R)dR
m

1JI*' (/R
2 _1 2 _.JR 2 _12 )g(R)dRt-1

md

1	 +2	 I

+-5 (-JR2–i2 _jR2_l,2)g(R)dR
i-I

m

1 J6+
+	 (JR –1 _/R 2 _l,2 )g(R)dR	 (426)

md

1 
f+ '+—	 (4R 2 –' 2 _jR2_l12)g(R)dR.

ii I

md

According to the mean-value theorem in integration (Korn & Korn, 1968), it

follows that

1	 i

-j 
(JR2 - l )g(R)dR =	 - 42 J' g(R)dR,	 (4-27)

md

where R, is a value in (li-i, 1, ), here we choose the intermediate value of [lj.j, ii], i.e.
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ii I +

2
(4-28)

'k + k+I
Rk+I =

2
(4-30)

plk+I

G(Rk+I) = J, g(R)dR. (4-32)

Similarly,

md	

_fR2_42i)g(R)dR-	 Il_I

________ ________	 (4-29)
2=	 (\IR2 - 

2 -
	 - 1, )J g(R)dRk+I

md

where, Rk+1 has a similar form to Eqn. 4-28

Now the expression 5" g ( R ) dR in Eqn. 4-27 represents the probability G(R) that

discontinuity diameter, R, lies between [lj..j, l]

G(R) = 5" g(R)dR,	 (4-3 1)

and the expression 5' g ( R ) dR in Eqn. 4-29 represents the probability G(Rk+J) that

discontinuity diameter, R, lies between [lj, lk+j]

Substituting Eqns. 4-27, 4-29, 4-31 and 4-32 into Eqn. 4-25 yields

P(l,_1,11) .--(J2 —1,.1)G(I)^	 --(%jR -	 — 1JR —i2 )G(R).	 (4-33)
m	 J=,+Imd

i= 1, 2, ..., n

Eqn. 4-33 is a set of simultaneous equations including G(R1). (i=1,2...,n), totally n

unknown numbers. It can be solved using a standard numerical algorithm for solving

sets of simultaneous equations. Different value of m would produce a different set of

G(R1), but only the combination of G(R1) (i=1,2,...,n) that holds the following

constraints is the correct solution to Eqn. 4-33.
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G(R,) = 1	 and	 G(R1) ^ 0.	 (4-34)

The different values of mean diameter, therefore, have to be tried to obtain the

correct solution.

4.4 IMPLEMENTATION OF NUMERICAL APPROACH

It can be seen that the implementation of the algorithm described in the last section

involves solving the following simultaneous linear equations.

A.X=B,	 (4-35)

where A is a square matrix, X and B are column vectors.

A =[ajj]n.

0	 i>j
11	 '	 2 -	

- (R11 )2 - l2)	 i < j,	 (4-36)a,1 = - (J(R1)
Imd ______
I 1 (J(R)2_l11)

md
i=j

X = (xi),	 = G(R),	 (4-37)

B = (by),	 = P(l_j, ii).	 (4-38)

The task for numerical calculation here is to assign a value of mj and solve Eqn. 4-

35 to obtain a set G(R1). The calculating routines are repeated for different m,j until a

particular combination of G(R) holds the constraint conditions described by Eqn.

4.34.

The implementation of the algorithm is illustrated in Fig. 4.5. A computer

procedure named DIATRACE for the implementation of the determination of the

discontinuity diameter distribution and its mean diameter, written in FORTRAN

language, is listed in Appendix A.2.
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L START

Input running control IC; trace length distribution
control ID; interval boundary values of trace
length li (i =l,2,...,n+1)

ID=1	 II

Input P('li-i,4);
and the mean
trace length mi

Call FUNEXP
to determine
P ai-i,l) of
negative
exponential

Call FUNLN	 Call FUNFRA
to determine	 to determine
P (l-i,l) of	 P (li-i,li) of
lognormal	 fractal
distribution	 distribution

Input a mean diameter mr, and form the
coefficient matrix A.

Call LUDCMP, LUBKSB to solve equation AX=B.
Call PROVE to improve the solution to the equation

No	 —G(Rz)>or=O?
and

Yes

Write the result: mean diameter m and G(R,)

1

Fig. 4.5 The flowchart of DIATRACE outlining the procedure for the determination of

the discontinuity diameter distribution



130

As described previously, the potential distribution for trace lengths can often be

one of three forms: negative exponential, lognormal and fractal. Hence these three

forms of trace length distributions are considered in the procedure. It can be noted

from the algorithm derived that the diameter distribution can be also established. If a

discrete distribution of trace length has been obtained, the procedure can still generate the

diameter distribution. Applying the program DIATRACE to Warburton's trace length

data (1980) yields results for the corresponding distribution of discontinuity diameters

and an estimation of its mean diameter. The results are compared with Warburton's

prediction, as shown in Fig. 4.6.

0.04

n 0.03

O.Q2

0.01

0

Joint dianter, Warburton's prediction,
nean=16.1 cm

j\\	 Joint dianter estirmted using the nunrica1
technique, nan=15.8 cm

- /	 \,	 Observed trace lengths

0	 20	 40	 60	 80	 100

Joint trace length I (lameter (cm)

Fig. 4.6 Comparison of Probability density of joint diameter using the numerical

method to Warburton's prediction

Based on Warburton's derivation (see Eqn. 4.6) it is now possible using the

numerical algorithm in DIATRACE to relate discontinuity diameter distribution to the

distribution of measured trace lengths. This makes it possible to estimate the mean

diameter of a population of discontinuities. The method to estimate the discontinuity

size is still subject to the commonly applied constraint that discontinuities are

presumed to be circular discs. Nevertheless, it provides a tool to make an

approximation of the discontinuity size, which is of great significance for considering

the influence of impersistent discontinuities on the prediction of lB SD.

4.5 ESTIMATION OF THE MEAN SIZE FROM THE MEAN TRACE LENGTH



131

In the procedure for determining the mean diameter presented above, the

distribution of trace lengths needs to be obtained from a detailed survey of trace length

measurements on exposures of rock masses. Unfortunately, direct and complete

measurements of discontinuity trace lengths on site are usually time-consuming and

painstaking jobs.

Recall that the mean diameter of a population of discontinuities is important when

considering the influence of impersistent discontinuities on the prediction of IBSD. A

number of techniques (Baecher et al., 1977; Cruden, 1977; Pahi, 1981; Priest &

Hudson, 1981; Kulatilake & Wu, 1984; Zhang & Liao, 1990; Priest, 1993) are

available for making estimations of the mean trace length. If a practical relationship

between both mean discontinuity size and mean trace length can be established, it will

provide a valuable tool for estimating mean discontinuity diameter from mean trace

length. So far there has been no such an analytical relationship available. Therefore a

numerical simulation approach to this solution has been proposed here, to explore an

empirical relationship between both mean discontinuity size and mean trace length

using the algorithm and procedure developed in the last section. The numerical

simulation stages using the computer program DIATRACE include:

(1) Assume a population of discontinuities defined only by trace lengths

governed by a known distribution law, therefore having a known mean trace length;

(2) Determine the mean diameter of this population of discontinuities by

execution of the program DIATRACE;

(3) Repeat (1) and (2) for a series of (c. 20) populations of discontinuities with

different mean values of trace lengths but the same trace length distribution law;

(4) Establish the numerically simulated relationship between mean

discontinuity size and mean trace length.

It is worth noting that the method for establishing the simulated relations are

subject to two assumptions. The first is that discontinuities are presumed to be circular

discs, the second is that the mean trace length is the corrected (without truncation)

estimate.
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Three continuous distributions of discontinuity trace lengths: the negative

exponential, the lognormal and the fractal distribution of discontinuity trace lengths

have been investigated.

For the negative exponential distribution of trace lengths, the simulated

relationship between mean discontinuity size and mean trace lengths yields

m =0.779m,.	 (4-39)

For the lognormal trace length distribution, the empirical relationship is given by

md =0.737m1.	 (4-40)

For the fractal distribution of trace lengths, the empirical relationship is

md =0.503m1.	 (4-41)

The goodness-of-fit of the three simulated equations to the corresponding

numerical simulation results is illustrated in Fig. 4.7 to Fig. 4.9.
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Fig. 4.7 Relationship between means of discontinuity diameter and trace length for

a negative exponential trace length distribution
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It can be seen that the mean sizes of discontinuities for the above three trace length

distributions are all less than the corresponding mean trace lengths, which is in

accordance with the results reported by Warburton (1980), Villaescusa and Brown

(1992). This may at first seem a surprising result since the diameter must be the

maximum trace length possible. However the result is strongly influenced by all the

discontinuities that are present but not intersectedi at all by the sample plane of section

upon which the traces are seen.
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Fig. 4.8 Relationship between means of discontinuity diameter and trace length for

a lognormal trace length distribution
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Baecher et al. (1977) reported an example in which they used an approximate

second-moment analysis statistical method to estimate the mean diameter. For their

case the mean trace length was 399.3 cm and the mean joint radius was estimated to

be as 163.7 cm for a data set where the trace lengths were lognormally distributed.

Using Eqn. 4-40, the mean trace length of 399.3 cm yields a mean radius of 147.2 cm,

which differs from the authors' prediction by 10.08%.

Having obtained the simulated relationship between the means of both diameter

and trace length, it is now appropriate to see how much difference in discontinuity

diameter there is between the three commonly assumed trace length distributions.

Fig. 4.10 Comparison between discontinuity diameter from three empirical trace

length distributions

Under the same mean trace length (Fig. 4.10), the discontinuity diameter with a

negative exponential trace length distribution appears the largest, the diameter with a

lognormal trace length distribution is slight smaller, and the diameter with a fractal

trace length distribution is clearly the shortest. It can be found, by comparing the three

theoretical distribution curves with the same mean trace length (see Fig. 4.11), that for

the discontinuities with longer trace lengths, both the negative exponential and

lognormal distribution curves have greater probability density values than the fractal

distribution curve, and that both the negative exponential and lognormal distributions

are quite close.
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Fig. 4.11 Graphical comparison of three trace length distributions (mean trace

length =100 cm; the parameters (see Table 2.2) for lognormal: A=4.2, B=0.9; for

fractal: D=0.5, 5 ^ 1 ^ 1000 cm),

Before the simulated relationships shown in Fig. 4.10 can be used to give mean

diameter, it is necessary to obtain the mean trace length and the trace length

distribution itself - various techniques have been proposed, for example, those of

techniques proposed by Cruden (1977), or Pahi (1981), or Priest and Hudson (1981),

or Kulatilake and Wu (1984). Most of these techniques use directly surveyed

measurements of discontinuity trace lengths. It is interesting to note that the

estimation of the mean value of trace lengths can also be made from indirect

measurements of trace lengths, where truncation due to limited exposure is common

place. Such an indirect approach will be explored in the following section.

4.6 ESTIMATION OF THE MEAN TRACE LENGTH OF DISCONT1NU1TIES

Priest and Hudson (1981) proposed a technique for rapidly estimating the mean

trace length by simply counting n and r at a given exposure with censored trace length

at some censoring level c. Here, r represents the number of discontinuities with a

semi-trace length less than a censoring level c, n is the total number in the sample.
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Suppose f(l) represents the probability density distribution of discontinuity trace

lengths, h(1) is the probability density distribution of discontinuity semi-trace lengths,

F(l) and H(l) are the corresponding cumulative probability functions, then h(l) is given

by

h(l) = uff(x)dx,	 (4-42)

or

h(l) =
	

(4-43)

where jt is the mean trace termination frequency for the population, i.e. 1/p represents

the mean trace length.

Fig. 4.12 Diagrammatic illustration of discontinuity traces intersecting a scanline

on a planar exposure of limited extent (after Priest & Hudson, 1981)

When on site, it is often found that the extent of the exposures and the orientation

of discontinuities limits the maximum observed semi-trace length to some censoring

level Cm (see Fig. 4.12). The Cm is unlikely to be a whole number and may vary from

one end of the exposure to another. It is usually desirable to set up one or more

censored semi-trace length levels c, which are less than Cm. The distribution i(l), of the

censored semi-trace lengths is directly proportion to the distribution h(1), of semi-trace

lengths. The mean trace length mu, estimated from a population of discontinuities

censored at some level c, according to Priest and Hudson (1981), is given by
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where H(c) is the numerical proportion of intersected discontinuities with trace

lengths less than c, which is given by

H(c) = s: h(1)dl = 5: 4u(1 - F(l))dl.	 (4-45)

Eqn. 4-44 indicates that mu will significantly depend upon the probability density

distribution of discontinuity trace lengths, for a given value of mean trace length mi

for the entire population.

According to Priest and Hudson (1981), for a large sample of semi-trace lengths,

H(c) can be approximately expressed as

H(c)=-,	 (4-46)

where r is the number of discontinuities with a semi-trace length less than c and n is

the total number in the sample.

The appropriate formf(l) of the probability density distribution of trace length for a

given field or geological domain may be assumed, or a preliminary survey or a

detailed local measurement on a quarry or a mine allows a first estimation of thef(l) to

be made. After defining or assuming the form of f(l), an estimation of mi by counting

n and r at a given exposure which censored semi-trace lengths at some censoring level

c, can be made based upon both Eqn. 4-45 and Eqn. 4-46.

Negative exponential distribution

When the probability density obeys a negative exponential distribution, i.e.

f(l) =/Le',	 and	 F(l)=1—e,	 (4-47)

hence

Lt (1—(1—e"))dl,	 (4-48)
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and by integration

H(c) = 1—e"
	

(4-49)

Substituting for Eqn. 4-49 into Eqn. 4-46 yields

l—e	 =.':•	 (4-50)
n

This gives the mean trace length, ml, of the entire population of discontinuities as

This is an alternative of the result obtained in Equation 13 of Priest and Hudson

(1981). Priest and Hudson (1981) suggested that the method used for obtaining Eqn.

4-51 could be applied to any suitable f(l) to yield similar expression for rapidly

estimating ml, though they have not apparently done so. Expressions for both

lognormal and fractal distributions may be useful and are thereby derived below.

However, some considerable effort is necessary to simplify the mathematics to a more

useful form as shown below.

Lognormal distribution

In the case wheref(l) is a lognormal distribution

The mean trace length, ml, of the entire population of discontinuities, and the

standard deviation a are relate to the distribution parameters A and B as

a Ve2+2 (e 2 —1).
	 (4-54)
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Because of the difficulty in direct mathematical derivation of H(c) for a lognormal

distribution, an attempt to avoid the complex integration involved for a lognormal

trace length distribution has been made. It is found that a lognormal distribution may

be approximated by the following simpler function expressed as

20k 4 1
f(1)=	 (4-55)

(k+l)6'

where k is a parameter. The mean mi and the standard deviation a of the approximate

probability distribution are given by

m,E(l)=-k,	 (4-56)

and

The distribution parameters A and B of a lognormal distribution are related to the

parameter k of the approximate probability distribution through two conditions.

Firstly, both distributions have the same means, which yields

2	 A+-
-k=e 2	 (4-58)

Having the same means may be the most important feature for determining the

mean trace length using an approximating function for lognormal distributions. For

the second condition, it may be possible to impose that both ditributions take their

maximum function values at the same value of trace length, or that both distributions

have the same standard deviations, etc. That both distributions take their maximum

function values at the same trace length yields

5 
=	 (4-59)

Hence, the parameters A and B of the lognormal distribution can be found by

solving jointly Eqn. 4-58 and Eqn. 4-59.

In order to examine whether a function expressed by Eqn. 4-55 approximates well

to a perfect lognormal distribution, a comparison between the approximate probability
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distribution function expressed as Eqn. 4-55 and the lognormal distribution has been

made, and is illustrated in Fig. 4.13. In the figure, the discrepancy between the

distribution parameters for the perfect lognormal distribution and the approximate

probability distribution can be seen by plotting Eqns. 4-52 and 4-55 using Eqns. 4-58

and 4-59.

Fig. 4.13 suggests that the distribution expressed as Eqn. 4-55 approximates well to

the lognormal distribution. Using the approximate distribution, it allows an estimate

of mean trace length to be made more easily.

2.5
Approximating f(1)

II-
Case 1, mean trace length=0.5 m

1.5

i jj \	 Approximating f('I)

J	
/case2 mean trace length=1.0 m

0.5

0
0	 1	 2	 3	 4	 5	 6	 7

Trace length, (m)

Fig. 4.13 Graphical comparison of the approximate lognormal probability

distribution and the lognormal distribution. (Case 1, Lognormal distribution: A=-

1.0945, B=0.9; parameter for the approximating distribution, k=0.75. Case 2,

Lognormal distribution: A=O.0041, B=O.896; parameter for the approximating

distribution, k=2.25.)

Now, since flu) of a lognormal distribution is approximately given by Eqn. 4-55, it
follows that h(l) will be given by

h(l) =	
20k4 x	 = k4 (k + 5!)

	

(k + x)6 	(k + 1)	
(4-60)

hence

k4(kf5l)dul5	 k	 3	 k	
(4-61)H(c)=Jh(l)dl=5p (k-i-i)

5	2k+c	 2 k+c
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Substituting for Eqn. 4-61 into Eqn. 4-46 yields

1 5
( k )3 3	 k	 r

+—(	 )=-.
2 k+c	 2 k+c	 n

(4-62)
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Fig. 4.14 Relationship between mean trace length and nfl with different censored

level c

Eqn. 4-62 has been used to construct the curves illustrated in Fig. 4.14 which

allows us to make a rapid estimate of mean trace length for a large sample by counting
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r and n at a given rock face which censors at some level c. These figures, together

with Eqn. 4-58 and Eqn. 4-59, provide a tool for estimating the mean trace length as

well as the parameters of a lognormal distribution.

Fractal distribution

In the case where fin) is a fractal distribution

f(l) = Al°'",	 (li^ l^ i)
	

(4-63)

where i and l are the lower cutoff and upper cutoff, and A is a constant and given by

A= (l-l)'	
(4-64)

The mean trace length, ml, of the entire population of discontinuities is as follows

D
m	 11-D1D

I.

Now h(l) is given by

h(l) = lU f(x)dx =	
-(1+D) =

hence

A l_Ddl =	 M (cD -H(c) =5 h(l)dl 
= ,,	 D(1 - D)

Substituting Eqn. 4-64 into Eqn. 4-67 yields

H(c)	 l cI_Dl.
1—D

(4-65)

(4-66)

(4-67)

(4-68)

Substituting ,.L=1/mi from Eqn. 4-65 into Eqn. 4-68 gives

H(c)= 
1 c 1-0	 (4-69)
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and hence it follows that
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Fig. 4.15 Relationship between fractal dimension D and nfl with different cIl
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Eqn. 4-70 has been used for constructing the curves illustrated in Fig. 4.15 which

provides us with a tool to estimate the fractal dimension of trace lengths for a large

sample by counting r and n at a given rock face and a given censored level c.

The fractal dimension D may also be approximately estimated using the following

expression when the value of D is small (say less than 0.5)

1+
D=	

r1	
(4-71)

1
2Ln--

C

where the condition 1 ^ 4 - Ln must be held.
rlu	 C

After determination of the fractal dimension, the mean trace length can then be

obtained by substituting the value of D into Eqn. 4-65.

A worked example is described as follows. Suppose that after carrying out a

measurement of trace lengths on an exposure, we obtain: the lower cutoff trace length

ii =0.05 (m), the assumed upper cutoff trace length l=S0 (m), when the censored

level c=2 (m) the ratio r/n=0.6. Hence c/l=0.04, which from Fig. 4.15 yields D0.75,

and therefore the estimate of mean trace length m=O.83 (m).

4.7 UPDATING OF THE IBSD PREDICTION

After examining discontinuity size, it is possible to incorporate the degree of

persistence of discontinuities into the prediction of IBSD.

As described at the beginning of this chapter, whether the prediction of IBSD based

upon the assumption of infinitely extending discontinuities is good or not is critically

dependent upon both the dimension of the in-situ rock mass of interest and the mean

size of the discontinuities. As such, it may be appropriate to introduce a factor to

characterise these properties. The factor is referred to as the "relative impersistence

factor". In other words, relative impersistence will include both the information about

discontinuity size and the dimension of observed discontinuities or the dimension of

the rock mass of interest. It is proposed that the relative impersistence factor Fimp can

be described as
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(4-72)

	

11	 SD^Sr'

where SD is mean discontinuity size which can be estimated using the techniques
developed in the foregoing sections, and 5,. represents the characteristic size of the
rock mass of interest (say, the cube root of the volume of the rock mass of interest), as
illustrated in Fig. 4.16.

ri

St2

(a)	 (b)
Fig. 4.16 Schematic illustration of the relative impersistence factor

Consider now the influence of Fimp on the IBSD predictions developed in previous
chapters. Assuming that we obtain a result for IBSD for field data using the techniques
based on the all-persistent assumption, and that SD and 5,. are those graphically
illustrated in Fig. 4.16a, we can accept this prediction of IBSD because the mean
discontinuity size is quite close to the dimensions of the rock mass of interest and the
all-persistent assumption is valid. However, if 5D and Sr are as graphically illustrated
in Fig. 4.16b, the all-persistent assumption will be clearly violated and the
impersistence of discontinuities has to be considered. The IBSD prediction result
based on the all-persistent assumption will form the end member with smaller block
sizes, and the real IBSD is always larger than this prediction result.

Introducing the above relative impersistence factor Fimp a prediction of IBSD
which incorporates the influence of impersistent discontinuities can be made such that

existing techniques for the prediction of IBSD, including those developed in Chapter 3
and by Wang (1992), can be employed.



146

Suppose (V , )0 represents the prediction result of IBSD using the all-persistent

assumption and V1, is the corrected result incorporating the influence of impersistent

discontinuities on the result, then relationship proposed for V1 is as follows

= F q	
(4-73)

(imp)

in which Fjmp is the relative persistence factor of the discontinuity population, and q

is a constant less than 1. A sensitivity analysis of Eqn. 4-73 suggests that q will take a

value of between 1/5 and 1/2, based on the authors experience and the analysis of the

data illustrated in Fig. 4.1.

Now the empirical equation, Eqn. 2-10 for predicting IBSD of discontinuities with

either a negative exponential or a uniform spacing distribution can be updated to give

v 
=	 SpmiXSpm2XSpm3

" (F q cosOcoscosa'' ira,,1

i=10, 20, ..., 100

(4-74)

The empirical equations, Eqns. 3-31 and 3-32 for predicting IBSD of

discontinuities with fractal spacing distributions can be updated to give

V =	 (D x D2 x 
D3 )bIP

(F )imp

(S
= (F )	

pml XSpm2XSpm3)b•P

unp

(4-75)

(4-76)

A worked example

The above updated techniques are now applied to the case study reported by Wang

(Wang et aL, 1991a; Wang, 1992).

The rock mass in the field was a massive sparsely jointed homogeneous "granite

gneiss" on the south west coast of Norway. On an exposure of nearly 2000 m2, 51

joints were mapped. Of these, 8 joints were considered to be impersistent. The

censoring level c=3 m was used in defining whether or not a joint was persistent. In
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the first instance, all 51 joints were assumed to be persistent, which formed the lower

bound with smaller blocks. Using only 43 persistent discontinuities gave the upper

bound with larger blocks (see Fig. 4.1).

Suppose that the characteristic size of the rock mass of interest, Sr = 5 m, and q

takes the value of 1/4, using the above updating technique for this example, the results

as listed in Table 4.2 are obtained.

Table 4.2 Comparison of the IBSD results updated to include the trace length data

correction for impersistence, e.g. from Norwegian rock mass 	 __________

All	 Neg. exp. T. L. Lognormal T. Fractal T. L. Excluding

________________ persistent Distribution L. Distribution Distribution* impersistent

Mean trace length	 1.6 19	 1.625	 0.735

mi(m)	 ________ ________ _______

Mean size SD (m)	 1.261	 1.198	 0.370

Fjmy	 0.252	 0.240	 0.074

1/(Fjmp)1 "4 	 1.411	 1.429	 1.918

V50 (m3)	 4.950	 6.985	 7.076	 9.493	 7.690

*For fractal trace length distribution, l and ii are respectively 30 m and 0.05 m
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Fig. 4.17 Comparison between the updated IBSD using trace length censored data

(with q=1/4) to account for impersistence and the original IBSD results using the all-

persistent assumption for 51 (lower) and 43 (upper) discontinuities
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The corrected IBSDs have been compared to the upper and the lower IBSD bounds

resulting from the dissection method using raw data for the two different

considerations of discontinuity persistence (see Fig. 4.1) and are illustrated in Fig.

4.17. It can be seen that the corrected results using the equation method for the cases

of negative exponential and Iognormal trace length distributions, as expected, fall

within the zone defined by these upper and lower bounds. By contrast, the corrected

result for fractal trace length distribution is partly beyond the zone. This could be for a

number of reasons but the most likely is that field data for the discontinuity trace

lengths are not in fact well described by a fractal trace length distribution.

It is shown from the above example that using the information about trace lengths

(including: n, the total number of discontinuities; r, the number of discontinuities less

than c, a given censored level; and Sr, the characteristic size of rock mass of interest),

a reasoned estimation of the mean size of discontinuities and thus the Fimp can be

determined. In turn, a prediction of JBSD accounting for the discontinuity

impersistence can be made by applying a correction to the existing techniques that are

based on the all-persistent assumption. Such a prediction is obviously an advantage

over one in which only lower and upper bounds are given. The technique devised

above will be applied to the practical IBSD prediction in a case study described in

Chapter 7, although it is acknowledged that the errors associated with the technique

are in need of further study.
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5. ESTIMATING THE BLOCK SIZE DISTRIBUTION OF A BLASTPILE

USING PHOTOGRAPHIC TECHNIQUES

Previous chapters have focused on the development and updating of techniques

which can be used to predict the IBSD. The most promising approaches for predicting

fragmentation in blasting will tend to use the IBSD as input data. However, as

discussed in Chapter 2, to assess whether a blasting operation is optimal or whether a

blast design model is working, requires an appraisal of the actual BBSD. Thus, the

methods of assessment of BBSD have been an important topic in quarrying and

mining. To some extent, advances in predicting the results of a given blast design in a

particular rock mass have been hampered by the poor accuracy and scarcity of BBSD

estimation methods. An ideal technique for the assessment of BBSD should be

reasonably accurate, cost-competitive and user-friendly. The exclusive and expensive

methods discussed in Chapter 2, appear not to meet all these requirements. The direct

photographic and image analysis techniques usually need complex equipment and

software. The indirect prediction approaches based on theoretical models do not have

their governing parameters determined with sufficient reliability. However, in

combining parts of the prediction models that give the general forms of the most

typical BBSDs with a simple photographic method, a technique which may meet all

the above requirements will be made in this chapter.

5.1 THE RATIONALE

It is recognised that surface measurements can give a reasonably representative

estimation of the blasting fragmentation (Noren & Porter, 1974, Nie & Rustan, 1987;

Franklin & Maerz, 1988). Assuming perfect mixing occurs, the information of block

size distribution exhibited on a blastpile surface, will reflect the underlying block size

distribution of the complete blastpile. Statistically, there exists a relationship between

the volumes of blocks in a blastpile and the one- or two-dimensional projecting

information (cf. Santalo, 1976; King, 1984), for instance, projecting length or area

represented on the blastpile. In other words, the greater is the value of the projecting

length of a block, the larger is its volume. That means there should be a relationship

between the underlying distribution and the surface distribution. This is the basis of all

existing photographic or image analysis methods of block size distribution. Once the

relationship between the distribution of block size on the surface of a blastpile and the
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underlying distribution is established, the underlying distribution can be derived from

the photographs taken of the blastpile surface. Taking this into consideration, a

technique of assessing the BBSD based on the surface information of a blastpile can

be developed.

5.2 PHOTO-SCANLINE TECHNIQUE

As discussed in Chapter 2, a great number of theoretical and experimental studies,

and, practical operations of quarrying and mining indicate that both the Rosin-

Rammier and the Schuhmann equations (see Eqns. 2-8 and 2-9) can often effectively

characterise the block size distribution of a blastpile.

It can be seen that both the Ros-Ram and the Schuhmann equations are

characterised by their two governing coefficients, one locating its position, another

characterising its slope on the accumulative plot. Once these two coefficients are

obtained, the corresponding equation giving the percentages of all fragment sizes is

determined. Based on the assumption that the BBSD will statistically be distributed

according to either the Ros-Ram or the Schuhmann equation, it is possible to estimate

the governing coefficients of either the Ros-Ram or the Schuhmann equation using the

geometric information obtained from a photograph taken of a blastpile. The

information needed is the distribution of surface sizes and as shown below, this can be

obtained from scanline block intersection lengths. What is interesting is that the

intersection length are found to also have a Ros-Ram or a Schuhmann form. It is

therefore logical that the underlying block size distribution can be estimated if the

following relationships can be established:

Zajf(Zp,)	 (5-1)

where Zaj and Z 1 are the coefficients for the actual distribution and for the

photographic measured distribution respectively. For example, Zaj and Z 1 could be

S (or n) in the Ros-Ram equation.

A technique referred to here as the 'photo-scanline technique" is developed below

to enable the BBSD information of a blastpile to be assessed. This is a method similar

to the scanline technique used when mapping discontinuities on an exposure. As

illustrated in Fig. 5.1, on a properly scaled photograph of a blastpile (in the laboratory,

this blastpile is replaced by an artificial blastpile), several parallel straight lines (i.e.
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scanlines) are aligned along representative directions and these intersect a sample of
exposed blocks. For each scanline aligned, the lengths of visible blocks exposed on
the surface and intersected by the line are recorded. All records from these scanlines

are combined into one record of block intersection lengths. It is assumed that the three
principal axes of each block lie with random orientation with respect to other blocks
on the surface so that the accumulated block length records represent the one-

dimension surface information of the BBSD of the blastpile. The parameters, Sc and n

(or Sjyj and m for the Schuhmann equation) for the blastpile can then be determined
using a relationship derived by comparing the length distribution information of the
one-dimensional surface intersection to the BBSD information determined by directly

sieving artificial blastpiles.
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Fig. 5.1 Schematic illustration of the photo-scanline technique (the scale rod in the

centre of the photograph has a 50 cm division).

For an actual blastpile, several representative photographs are taken of the

blastpile, and the values of S and n (or Sjy and m) are detennined using the above

technique. Taking the average of all photographic results for the blastpile, the

governing parameters Sc and ii (or Sj-yj and m) are obtained. The method is

considered likely to be more accurate if it can be extended into a field scanline

technique. However, this will usually interrupt normal production.
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The success of the technique is largely due to the suspected and confirmed

observations that the length information of one-dimensional surface intersection tends

to have a Ros-Ram form and can thus be fitted by a Ros-Ram equation and that these

Ros-Ram coefficients are found to be closely related to the Ros-Ram coefficients of

the whole blastpile.

5.3 ERRORS IN USING PHOTOGRAPHIC TECHNIQUES

Ideally, the photographs should be taken perpendicular to the blastpile surface.

However, practical factors make this seldom possible. Even when a photograph is

taken perpendicular to the blastpile surface, wide-angle lens distortions can occur and

the blastpile surface may not be planar. As a result, a projecting error will be

introduced into the information of block sizes represented by a photograph and the use

of specialist or long focal length lenses will help decrease the source of error. In

addition, use of square frames or correction grids on the blastpile surface is to be

encouraged.

The influence of block overlap becomes more significant as the viewing angle

moves away from perpendicular to the surface. There are also two types of cut-off

errors: (i) the edge of photographs causes artificial effects on a scanline since block

termination are unknown; (ii) the photograph will only resolve down to a certain size

of fragment so that blocks of maybe < 5 cm trace length will remain undetected even

though these fines could be 20% or so. In fact, the new technique whidh uses the well

established Ros-Ram and Schuhmann equations will tend to compensate reasonably

well for the problem of unknown fines in the blastpile because they would have been

equally unresolved but accounted for in the calibration procedure.

The above error sources will reduce the accuracy of the photo-scariffine technique.

Keeping these in mind and reducing these errors as much as possible, it is possible to

obtain reasonably accurate BBSD results.

5.4 DERIVING 3-D INFORMATION FROM 1-D MEASUREMENTS

Without going into detail, it is interesting to consider briefly the significance of the

one dimensional size parameter that is being sampled by the lengths intersected on the
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surface scanline, hereafter referred to as nominal length. Because blocks tend to lie

with their minimum axes vertically, they will tend to present a maximum rather than a

random (i.e. average) projection area upwards, thus tending to give longer line

segments than is representative of average projection or sieve diameters. However, the

overlap effect and segmenting effect of different faces appearing as separate particle

will both tend to reduce the nominal length below those of sieve diameters. The

overall value of nominal length being sampled may therefore be quite close to the

nominal diameter d which is the cubic root of the actual volume of a block and is

somewhat smaller than the sieve diameter (see below):

d=kS,	 (5-2)

where, S is the sieve size (the aperture of a squared hole through which a block can

just pass); k is a shape factor. For 'prismatic' aggregate-sized natural rock fragments

k=O.847 was used (Wang, 1992). For rounded blocks, Wang suggested k=0.913. For a

generally applicable value for larger and different shape blocks, k=0.84 is

recommended (CIRIA/CUR, 1991). The volume of a block can then be given by

V = d,.	 (5-3)

5.5 RELATIONSHIP BETWEEN ACTUAL AND ESTIMATED PARAMETERS

As discussed above, the photo-scanline technique will yield, say for the Ros-Ram

equation, S(p) and n(p). Here (p) represents the estimates of parameters from the

distribution of nominal lengths using the photo-scanline technique. Of course, sieving

blocks of a blastpile or a truckload will yield its actual block size distribution, but this

is not practical. A laboratory experiment using a set of artificial blastpiles with

different known block size distributions, which are characterised by their S and n for

the Ros-Ram equation (or S100 and m for the Schuhmann equation), was therefore

conducted with appropriate surface photographs being taken.

The experiment was prepared and carried out in the following steps:

(1) Approximately 100 kg of crushed limestone aggregate with sizes up to 150 mm

was collected. Coarse sand fractions were also obtained.
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Fig 5.2 The photographs of two artificial blastpiles consisting of aggregates used

in the experiment (No. P12: n=l.35, S.-55 mm; No. P47: n =0.9, S=25 mm)
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(2) The aggregates were then screened into 12 fractions using a series of sieves

from 1 mm to 125 mm. Each aggregate fraction was weighed and its median sieve size

was calculated (except for the first and last fractions).

(3) A range of pre-set values of S, and n were chosen to cover a wide range of

prototype distributions. The required fractions of each size range were calculated for a

specified (S n) artificial blastpile. Then all fractions were prepared, weighed out,

mixed together and dumped onto a flat pan 71.5 by 41.5 cm, giving the required

artificial blastpile (Se, n), as shown in Figure 5.2.

(4) A photograph was taken of the surface of the pile keeping the camera lens

perpendicular to the surface.

(5) The above photo-scanline technique was applied to the photographs to obtain

the nominal length distribution and the corresponding parameters, S(p) and n(p) were

determined using a statistical analytical technique.

10O :::::*--:::

-	 - Sieving	 -	 -	 -.....................
E	 Ros Ram	 ,f

60 -

_______ ...
40	 ---j--'-.>,,.,

20

0
1	 10	 100	 1000

Blasted Nock size (m)

Fig. 5.3 The block size distribution for an artificial-blastpile with fitted Ros-Ram

and Schuhmann equations (n=0.96, S=65 mm, rn=O.84, SJ(yJ=120 mm).

In total, 30 artificial blastpiles were prepared, each one weighed about 35 kg. The

photographs of two artificial blastpiles are illustrated in Fig. 5.2. Each pile was

designated by a particular combination of S and n. One of typical block size

distribution for the artificial blastpile is illustrated in Fig. 5.3. The 30 combinations

can be divided into 3 groups. The first group (of 12) had a constant n of 1.75 with S
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varying from 10 mm to 80 mm. The second group (of 6) had a constant S of 80 mm

with n varying from 0.5 to 1.75. The third group (of 12) included a range of 5c from

10 mm to 80 mm and a range of n from 0.5 to 1.75.

80
	 .

Sc=1 .051 Sc(p)+1

60
	 r"2 0 966

20

U

0
0
	

20	 40	 60	 80

Sc (p) (mm)

Fig. 5.4 Relationship between the values of 5c from the sieving and the photo-

scanline technique (n=l.75, Sc=l°8° mm) using the first group.

fi (p)

Fig. 5.5 Relationship between the values of n from the sieving and the photo-

scanline technique (S=8O mm, n=0.5- 1.75) using the second group.

For the first group, the relationship between the values of Sc and S(p) is illustrated

in Fig. 5.4. For the second group, the relationship between the values of n and n(p) is

illustrated in Fig. 5.5. For the third group, the relationships between the values of 5c

and S(j4, and between n and n(p) were examined and shown in Figs. 5.6 and 5.7.
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Fig. 5.6 Relationship between the values of S from the sieving and the photo-
scanline technique with ±95% significance levels (S=lO-8O mm, n—().5-1.75)
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Fig. 5.7 Relationship between the values of n from the sieving and the photo-
scanline technique with ±95% significance levels (S=lO-8O mm, n=O.5-1.75)

It can be seen from Fig. 5.4 to Fig. 5.7 that all the results show good linear
relationships between the actual parameters obtained from sieving and those estimated

from the intersection lengths using the photo-scanline technique. Finally, the results
from the third group are utilised to derive the relationship between the actual

parameters and those obtained using the photo-scanline technique, since the variation
in both S and n in the third group was included. The results are as follows.
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Sc = 1.1 19S(p),	 (5-4)

n = 1.096n(p)-0. 175,	 (5-5)

where S and n are the actual parameters in the Ros-Rain equation, and S(p) and n(p)
are those estimated by the photo-scanline technique. The Pearson r-squared
correlation coefficients are 0.9503 for Eqn. 5-4 and 0.9680 for Eqn. 5-5 respectively.

Fig. 5.8 Relationship between the values of m from the sieving and the photo-
scanline technique with ±95% significance levels (Sjij=59-152 mm, m=0.26-1.62)

When using the Schuhmann equation, the following relationships are obtained:

S100 =O.964S1çyj(p),	 (5-6)

m= 1.360m(p)-0.156,	 (5-7)

where Sj and m are the actual parameters in the Schuhmann equation fitted from
the sieving results, and Sjy(p) and m(p) are those estimated by the photo-scanline
technique. The values of Sj-y varied between 59 and 152 mm, and the values of m
between 0.26 to 1.62. The correlation coefficients are 0.9252 for the Eqn. 5-6 and
0.9752 for Eqn. 5-7 respectively (see Figs. 5.8 and 5.9).

From consideration of estimated parameters within the 95% significance levels, the

above results suggest that the photo-scanline technique for assessing the block size
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distribution of a well-mixed blastpile could have a reasonable accuracy. This is

encouraging for the application of this technique to the practical assessment of

blastpiles and to help calibrate better prediction methods for BBSD.

When applying the technique to prototype blastpile photographs, the distribution of

surface intersection lengths is presented as a percentage shorter passing plot and the

best fitted S(p) and n(p) parameters are found and then substituted into Eqns 5.4 and

5.5 to find the S and n for the blastpile.
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Fig. 5.9 Relationship between the values of Sjyj from the sieving and the photo-

scanline technique with ±95% significance levels (Sjij=59-152 mm, m=O.26-1.62)

After obtaining the S and n (or SJ(yJ and rn), the volume or weight parameters, V

and Vj(yJ can be determined through Eqn. 5-3, and n and m can be obtained by

fly = 3 fl,	 (5-8)

rn1, = 3 m.	 (5-9)

The whole block size distribution of a blastpile in terms of block volumes can

therefore be estimated.

The main advantages of the technique described above are that a reasonably

accurate assessment of the BBSD of a blastpile can be obtained and that it is simple

and does not need any image analysis software and sophisticated equipment.
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However, just as with the image analysis technique, the following consideration

should be taken into account when using the technique.

(1) Obtaining photographs is central to the application of this method. The quality

of photographs taken will play an important role in its practical application. As a

result, it is advised that photographs be taken as near as perpendicular to the blastpile

as possible. The use of long focal length zoom lenses may help reduce distortion and

the overlapping enor to a minimum.

(2) The proper scaling is another key factor. It is recommended that at least one

scaling square (board) or pair of perpendicular scaling bars should be placed on each

blastpile prior to taking the photograph. One scaling reference should be ideally

placed on the central part of a photograph.

(3) The eventual blasted block sizes are typically distributed in the range from 1.0

mm (and down to dust) to over 1.0 m. The size range of aggregates of the artificial

blastpile used in the experiment varies from 1.0 mm to 150 mm. This range is

comparatively small and may be representatives of only one part of the fine or coarse

part of the actual block size range. This consideration may influence the applicability

of Eqn. 5-4 to Eqn. 5-7 when used for the practical assessment of BBSD in full scale

blastpiles.

(4) An actual blastpile might be different from an artificial one. The relationships

expressed by Eqn. 5-4 to Eqn. 5-7 are derived from a set of artificial blastpiles

consisting of crushed limestone and sand. These differences may effect the application

of these equations.

(5) The representativeness of the surface blocks has been an important issue of the

blast of employing image analyses technique. Using photographs taken from the back

of dump trucks has not been mentioned. However, such photographs might have

better representativeness than surfaces of blastpiles (Franldin & Maerz, 1988). Thus, it

is suggested that both photographs taken from a blastpile surface and from the back of

dump trucks should be used to improve the representativeness.

In Chapter 7 the technique developed in this chapter will be used for assessing the

BBSD of actual blastpiles.
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6. BLASTABILITY OF ROCK MASS AND ITS ASSESSMENT

In previous chapters, the estimations of both IBSD and BBSD were examined and

new techniques introduced. This chapter will focus on characterising the blastability

of a rock mass. It will also focus on the understanding of the relationship between the

blastability and the properties and discontinuity structure of the rock mass. Here,

blastability is considered to be a composite intrinsic property of the rock mass

describing the ease, in energy terms, with which it can be blasted.

It was noted from the discussion in Chapter 2 on the blastability of a rock mass that

in-situ rock mass properties are among the most important contributory factors in

fragmentation, and that the characterisation of the blastability has become a pressing

task for blasting operations. It was also found that a rigorous rock blastability system

which incorporates the mechanical properties of a rock mass, in-situ block size, and

the input energy, based on the current scientific understanding of fragmentation, has

not yet been achieved. Consequently, an attempt to develop a blastability

characterisation system will be made in this chapter, in order to help direct a blasting

operation towards a more optimal result. The development of the blastability system

will be on the basis of current understanding of the fragmentation process drawn from

the literature findings. Firstly, the development will focus on the characterisation of

blastability and its physical background. After that, the Rock Engineering Systems

approaches will be used to establish a blastability system.

6.1 CHARACTERESATION OF THE BLASTABILITY AND THE ENERGY-
BLOCK-TRANSmON MODEL

Two different rock masses, when subjected to identical blast geometry and energy

input from explosives, will produce quite different degrees of fragmentation. This is

because the rock masses have inherently different blastability.

The fragment size is a fundamental characteristic, and is governed by the

geomechanical nature of the host rock mass and the distribution of explosive energy

related to blast design (Singh et al, 1991). As shown in Fig. 6.1, blasting can be

looked upon as a transformation from the state with IBSD to the state with BBSD.

This transforming process is implemented by inputting a certain energy, i.e. a quantity

of explosive.
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Fig. 6.1 Illustration of the transformation of rock from the in-situ state with IBSD

into the blastpile state with BBSD by inputting a certain explosive energy

IBSD-C

- - BBSD-1

BBSD-2

0.001	 0.01	 0.1

Block siew size (m)

Fig. 6.2 The concept of blastability: two different rock masses with the same IBSD

but with different blastability are transformed to two different BBSD curves

The transforming process might be very complicated, however, the transforming

result can be indicated by the resultant blastpile. Suppose that E represents the

explosive energy input per unit rock mass that is consumed in transforming the rock

mass with a given IBSD into a blastpile with a given BBSD and that A, a property of

any fragmentation process is the area enclosed by the IBSD and BBSD curves and the

0 and 100% passing lines (see Fig. 6.2, for convenience, 1A will be called the
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transformation area), let us consider a possible relationship characterising the

blastability of a rock mass.

In Fig. 6.2, two different rock masses with the same IBSD are noted JBSD-C.

BBSD-1 and BBSD-2 are the BBSDs of the first and the second rock masses obtained

by inputting an identical amount of explosive energy. The transformation areas for the

two different rock masses subject to identical blast design are represented by AA1 and

The second rock mass proves to be intrinsically more difficult to fragment by

blasting than the first one although their IBSDs are identical, since the second

blastpile contain many more large blocks than the first. For reasons that will become

clear later, the area bounded by the IBSD and BBSD curves (and the 0 and 100%

passing line), for a particular blasting operation, is considered to have special

significance.

Block siew size (m)

Fig. 6.3 Illustration of two different rock masses with different intrinsic resistance

to fragmentation subject to the same input of explosive energy and blast design: two

different rock masses with different IBSD curves (but with the same objective size

X0) are transformed to two blastpile with different BBSD curves. The difference

between iA1 and A2 indicates the difference in blastability between the two rock

mass

Further, consider another case where the enclosed areas for the two different rock

masses subject to identical input of explosive energy and blast design are as

represented by Fig. 6.3. Now A2 represents the very effective transformation of

relatively large in-situ blocks to a blastpile with a high fines content, whereas AA1 is
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the less effective transformation for comparatively smaller in-situ blocks to a blastpile

with few fines. Notice that both transformations are with the same X0, the

gravitational centre of the geometric shape of A; the significance of X 0 will be

discussed below. Obviously, the transformation indicated by AA2 has to overcome

more intrinsic resistance than the transformation indicated by A . AA is clearly

much less than AA2, and the possibility must exist that the different areas could be an

indicator of the blastability of these two rock masses.

Actually, the points discussed above on the relationship of blastability with the

energy, the in-situ block sizes of a rock mass and the blasted block sizes were

addressed by a number of previous researchers who used theoretical and empirical

equations to relate the input energy and the block sizes both before and after blasting,

Possibly, the best known is Bond's Third Theory (Bond, 1952) in which Bond's work

index, W is believed to provide a good representation of the resistance of rock mass

to crushing, grinding, and breaking by blasting (Bond & Whitney, 1959).

In another case Schuhmann (1960) presented a relationship between energy input

from the process of conmiinution and the size distribution of particles as follows:

E=C--. x',	 (6-1)
100

where, E is energy input per unit volume of material; y is cumulative percent finer

than x; x is particle size; cx depends on the size distribution and C is a constant. Eqn.

6-1 states that the energy input is directly proportional to the cumulative percent finer

than any given size x. Meanwhile, the equation also provides a simple measure of

grindability (1/C) as the volume of comminuted material finer than unit size produced

per unit of energy expended (Schuhmann, 1960)

The Kuznetsov equation (see Eqn. 2-11) also relates the resulting block size to the

input energy and the in-situ rock properties. This equation appears to give a measure

of blastability of a rock since the term Vfr/Q and Q in the equation can be considered

to be a measure of input energy; Sb50 represents the block size after blasting and the

rock factor A, to some extent, accounts for the influence of in-situ rock properties and

discontinuity structures upon blasting.

Coming back to the blasting problem here, let us consider a possible relationship

characterising the blastability of a rock mass. Based on the above discussion, a
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working hypothesis, that E5ocIXA is now introduced. In addition, it is clear that a given

value of AA can be associated with any transformation. For example, the

transformation may be for relatively large in-situ blocks to slightly smaller blocks in a

blastpile or alternatively, a transformation with the same AA could be for relatively

small in-situ blocks to a blastpile resembling powdery fines (see Fig. 6.4). But,

because the latter case requires the generation of much more fracturing and surface

area, it is logical that it would consume more energy. For each transformation with a

certain value of AA, an effective size parameter, that can reflect this inverse size effect

associated with an increase in energy consumption, could be, X0, the gravitational

centre of the geometric shape of A. The empirical energy-size relation (Charles,

1957; Schuhmann, 1960, Nagahama & Yoshii, 1993) refers to an objective size

parameter that has a similar significance to this effective size parameter and indicates

that in general, the energy consumed in size reduction is inversely proportional to the

objective size raised to some power. Combining the above working hypothesis with

the definition of X0, the following relationship is proposed,

M
Eoc—,
S yn

0

(6-2)

Block siew size (m)

Fig. 6.4 illustration of the dependence of energy E on an objective size X0: two
transformations of different rock masses with the same AA but different objective size

X0, X0p'X02 and Es1<Es2, i.e. these two rock masses have a different blastability

By introducing a coefficient in the above relation, and substituting n=1/2 (the
justification for which is given later), it can be written as
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M
(6-3)ES=Cb—,

where Cj, is a constant, relating the specific energy required to implement the

transform process, or as

11 M
Bj_C_EXI,2.

It can be seen that the value of B is an indicator of the ease with which the process

of transforming the rock mass with IBSD into the blasted blocks with BBSD is

implemented. The coefficient B1 is herewith referred to as the Energy-Block-

Transition coefficient, and correspondingly, Eqn. 6-3 is hereafter referred to as the

Energy-Block-Transition model. The following sections will explore the extent to

which the model can describe the mechanism of fragmentation of a rock mass by

blasting.

6.2 DETERMINATION OF PARAMETERS IN THE ENERGY-BLOCK-
TRANSiTION MODEL

6.2.1 Energy Input E5

The energy in a blast is created by detonation of explosives. The energy released

can be grouped into useful and wasteful parts (Konya & Walter, 1990). Useful energy

is utilised in the fragmentation process in terms of both shock energy and gas energy.

Wasteful energy does not in itself lead to fragmentation and does no useful work

during a blasting process, and is finally expressed as acoustic energy, heat energy in

the fragmented mass and released gases, light energy and seismic energy.

Strictly, the energy input E5 discussed in Section 6.1 should be the useful part of

the energy released on detonation of explosives. The partition of the explosive energy

in a blasting operation is a significant subject of current research, but a widely

accepted process of energy utilisation in rock fragmentation by blasting seems still to

be lacking. As a result, the precise description of the amount of explosive energy that

is utilised as useful energy is limited. Thus, following Bond's model (Bond, 1952) and

applications of Bond's model (Bond & Whitney, 1959; Da Gama, 1983; and CIRIA,

(6-4)
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1991; Wang et a!, 1992), E5 is broadly considered here to be the energy expended in

the blasting divided by the total volume of rock mass, and is given by Eqn. 2-15, i.e.

O.00365EPeJ	 (6-5)
p

the notation for Eqn. 6-5 is the same as Eqn. 2-15.

6.2.2 Transformation Area, A

A general expression for the transformation area that is applicable to any form of

the in-situ or blasted block size distributions is derived and given in Appendix Cl,

where, an insight into the physical interpretation of transformation area, z\A, is also

given. The expression is:

z.A = S01 - Sab
	 (6-6)

where, Saj and Sab are the mean sizes of both IBSD and BBSD respectively. They are

given by the following mathematical definition for the mean of a size distribution:

Sa =fSf(S)dS,	 (6-7)

where, f(S) represents the probability density function of block size; S1 represents the

low boundary of block size, it may often be zero; and S is the upper boundary of

block size.

It is instructive to compare S, 5O and Sa for a range of steepness in the

cumulative size curves. Fig. 6.5 shows the relationships for a practical range of n-

values in the Ros-Ram equation.

The ratio of SaIS5O was derived (see Appendix C.2) by direct substitution of the

Ros-Ram equation into Eqn. 6-7 as follows

T(1+)

S50	 (1n2)* '
	 (6-8)
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where, F is the Gamma function, and is defined by

rca) = f f'e'dx,	 (6-9)

Fig. 6.5 Relationship between Sa/S50, Sa/Sc and n for a practical range of n-

values in the Ros-Ram equation

Thus, the mean blocks size Sa is different from the 50% passing size S50 although

they approach each other at higher n-values (see Fig. 6.5). However, Sa might be

approximated by S50 (or Sc) when n is comparatively large, (say, larger than 1.5). It is

considered advisable to use 5O to approximate Sa when the block size distribution

can be described using the Ros-Ram equation and n is larger than 1.5.

Suppose that both IBSD and BBSD have a theoretical distribution, say either the

Schuhmann or the Ros-Ram distribution, let us look at the expression of LA.

Schuhmann Equation

Suppose that both the IBSD and the BBSD are the Schuhmann distributions, i.e.

they both have the form represented by Eqn. 2-9 as follows
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= (5)ms
SI00,

= (_5b_)msb

S100,,

(6-lOa)

(6-lob)

The transformation area AA can then be derived according to Eqn. 6-6 (see

Appendix C. 1) as

EA = m ,	 - mSb 
S,00b.

m5,+1	 mSb+l
(6-11)

In practice, Sjyj is rarely determined with accuracy and precision. It is therefore

advisable to make suitable substitution so that M is derived from a more reliable size

parameter, say Sj or S80, located near the middle part of the distribution curve.

Ros-Ram distribution

If both the IBSD and the BBSD obey the Ros-Ram equation (see Eqn. 2-8), i.e.

have the following distribution forms,

I=1-e
	

(6-12a)

_(L)'th

(6-12b)

According to Eqn. 6-6, the transformation area A for the Ros-Ram distribution is

as (see Appendix C. 1)

M = Sci r(l^-i--)-Sb r'(1^!_).	 (6-13)
nsi	 sb

where, r is the Gamma function (see Eqn. 6-9).

It is worth noting that A in both the Schuhmann and the Ros-Ram distributions is

related to both a characteristic size and a steepness coefficient which jointly govern a

block size distribution. This agrees with the commonly held view that it is not enough
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to describe the influence of in-situ block size distribution of a rock mass on blasting
using only one size parameter, say, S50 (or S1yj in the Sclauhmann equation or S in
the Ros-Ram equation) Imagine that two rock masses with the same 5i50 but
different IBSDs have been fragmented by blasting and that they yield two different
BBSDs but the same size Sb50 (see Fig. 6.6). It is reasonable to suggest a single size
parameter, whether for IBSD or BBSD or both, is not sufficient to express the
important variations in the blasting process that can occur. The inclusion of iA in the

proposed Energy-Block-Transition model accommodates this suggestion.

IBSD-2 ---------------------f
'7

---BBSD-1	 /i
I/ ------------- - - -BBSD-2	 1'

I------- -

/

Block siew size (m)

Fig. 6.6 illustration of the insufficiency of using only one size parameter to
describe blast process

6.2.3 Objective Size X0

It was proposed in Section 6.1 (see Fig. 6.4) that X0, the gravitation centre of a
geometric shape A could represent the inverse size effect associated with an increase
in energy consumption in a blast process. The transformation area AA characterises a

particular transformation of block sizes. This size location can be given the status of
objective size of a blasting process and is given by the symbol X0.

By definition of the gravitation centre of a geometric shape, Xg. as shown in Fig.
6.7, is as follows:



s'

x[1,(x)—J(x)]dx
g	 S,

L [F,(x)—J(x)]dx
(6-14)
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5C

100

U Sib Su	 Xg	 Sub (Sw)
Block size

Fig. 6.7 Illustration of the gravitation centre of a geometric shape

Starting from Eqn. 6-14, we consider a simple case where both cumulative

distribution curves of IBSD and BBSD are linear (shown in Fig. 6.8), which

corresponds with the uniform probability density distribution. Now

P1 = S/S14 ,	 and	 b = S/Sub.

100

Block size
Fig. 6.8 Illustration of the gravitation centre of linear distributions of block sizes

It can be seen that the gravitation centre of 1A, Xg in this case, is



X = [--(S +Sth)],g	 3 2 ai (6-15)
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x l+m[l(SS)l
2+m 2

(6-16a)

where, Saj and Sab are the mean sizes of both in-situ and blasted blocks.

If we consider another case where both cumulative distribution curves of 1BSD and

BBSD hold the Schuhmann distribution and assume that both m 1 and mj, have the
same value of m, it can be shown that the gravitation centre of A, Xg is

Taking into account that the value of m is usually in the range of 1 to 3, it follows

that the value of Xg iS

x =	 - .)[!(S +Sab)]•g	
352

(6-16b)

The location of Xg the gravitation centre of AA is thus determined. The foregoing

shows that X0 may therefore be represented by both the mean of in-situ block sizes

and the mean of blasted block sizes where the mean size definition is given in Eqn. 6-

7. Since it has now been shown that Xg is unlikely to vary above 4/3 or below 2/3 of

(Sai+Sab)'2, a reasonable choice of objective size is

°	 2
	 (6-17)

6.2.4 Physical Interpretation of the Energy-Block-Transition Model

From the foregoing sections, both the expression of the transformation area AA for

the general case (Eqn. 6-6) and the approximation of the objective size X0 (Eqn. 6-17)

have been obtained. Substituting Eqns. 6-6 and 6-17 into Eqn. 6-4, the Energy-Block-

Transition model can be then represented as

E=	
SaISab
S

B( 
aI+Sab)O5	

(6-18)

2



B =
	 Sai

ES(SO +Sab)05

2

(6-19)

and size-reduction in

energy-size reduction
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or

It can be seen that the Energy-Block-Transition model comprehensively relates the

energy input, the characteristic sizes before and after blasting, and the size

distributions of the in-situ and blasted blocks. The Energy-Block-Transition

coefficient B1 represents the ease or resistance offered by the rock mass to the

transformation from the in-situ to blasted blocks when applying a certain amount of

explosive energy. To some extent, it reflects the effectiveness of the input energy in

breaking up the rock. Expressed more precisely in terms of the formula's variables, the

Energy-Block-Transition coefficient B1 is a measure of the intensity of the

transformation of mean block size compared to the objective size X 0 associated with

the transformation process for a given input of energy. In the transformation process,

the in-situ rock mass with large block sizes characterised by the mean block size Saj S

transformed into blasted blocks with small block sizes characterised by the mean

block size Sj, In other words, the ease with which a rock mass can be fragmented by

blasting can be measured using the coefficient B1.

The larger the Energy-Block-Transition coefficient of a rock mass, B1 , the easier it

can be fragmented by a given energy input for blasting. Eqn. 6-19 reveals therefore

that the rock mass with the larger B1 will be easier to break down to small blocks than

the rock with lower B1 . In other words, the larger B1 means the lower resistance of a

rock mass to blasting.

In his investigation of relationships between energy

comminution, Charles (1957) described an empirical

relationship which was expressed mathematically as

dE=—C,
xn

(6-20)

where dE is infinitesimal energy change, C is a constant, x is an object size, and n is a

constant. This relation is referred as to the Walker-Lewis relation (Nagahama &

Yoshii, 1993). From Eqn. 6-20, Rittinger's first comminution theory (where, the index

n is 2), Kick's second comminution theory (where, the index n is 1), and Bond's third

comminution theory (where, the index n is 1.5) can be derived. Eqn. 6-20 is a



E=C_Si—Sb
(S°5+Sb°5)

2

(6-24)
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differential equation. It "stated that the energy required to make a small change in the

size of an object is proportional to the size change and inversely proportional to the

object size to some power n" (Charles, 1957). Since both Kick's and Rittinger's

hypotheses are reported to be poor ones for practical blasting operations, and Bond's

hypothesis, which is a compromise and an improvement on Kick's and Rittinger's

hypotheses, appears not to be significantly more in accordance with blasting results. It

is tentatively proposed to introduce a stipulation, n=0.5 on the value of the power n, in

this research. Substituting n=0.5, and approximating Eqn. 6-20 for a blasting process

using a difference form to the equation, we obtain

(6-21)
xo.

where AE is the energy consumed in the blasting process, CK is a constant, x0 is the

objective size summarising the block sizes before and after blasting, Ex is the size

change during the blasting process. It can be seen that the underlying physical

concepts in Eqn. 6-21 and Eqn. 6-3 are similar, if not identical, although Eqn. 6-3 is

derived from a different approach which considered the importance of the whole

IBSD and BBSD curves. In fact, an approximation to Eqn. 6-18 can be obtained from

Eqn. 6-20 by integration and by substitution of the value n=0.5,

.E	 PSb	 dx
IdE=I —C--,
Jo	 Js,	 x°5

hence

E = 2C(S103 Sb),

(6-22)

(6-23)

It may be noted that the relationship between [(S° + Sb° 
5)/ 2] and

[(5, +Sb )/2]° 5 , when Sj,./S1 <1, is nearly a linear one (see Fig. 6.9). Eqn. 6-24 can

therefore be expressed approximately as



E=C' SI—Sb
( SI +Sb)o5

2

(6-25)
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(S+S)/2

Fig. 6.9 The approximate linear relationship between S° 5 + Sb°5 ) I 2 and

[( SI + Sb) / 2]05, when S1/S <1

Replacing E with E5, C' with l/B, and S with 5a' the approximate Eqn. 6-25

becomes identical to 6.19. Therefore Eqn. 6-19 appears to be a special case of the

Walker-Lewis empirical relation between energy and size reduction, along with

Rittinger's first comminution theory, Kick's second comminution theory, and Bond's

third comminution theory.

6.3 VALIDATION OF THE ENERGY-BLOCK-TRANSITION MODEL

To determine whether the Energy-Block-Transition model proposed is an

improvement on existing models requires an analysis of results from practical blasting

operations. A set of model scale blasts, or preferably, a series of field blasts with

constant and given in-situ conditions, but with differences in both blasting patterns

and energy input, would be ideal for examination of the applicability of the model.

Only two main sources of practical data which include information about IBSD,
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BBSD and the energy input, were found in the literature. These are the case studies

reported by Wang (1992) and Aler et al. (1996a, 1996b), and they have been

considered in validating the model.

Case 1

The first case cited is the work reported by Wang (1992), in which five rounds of

full scale blast trials were carried out at the Sandside Limestone Quarry located in

Cumbria, Northern England. The infonnation about IBSD, BBSD, explosive energy

input, and blasting patterns were either given or can be derived.

Table 6.1 The percentage passing of in-situ block volumes (from Wang, 1

P(%) I 10 I 20 I 30 I 40 I 50 I 60 I 70 I 80 I 90 I 100

Vj.p (m3) I0.14610.29710.44810.65010.891 11.21811.67412.36713.6891 10.642

Table 6.2 Grey correlation analysis to IBSD _____________________

Passing ________ V (m3) __________ Correlation Coefficient

(%) Calculated Ros-Ram Schuhmann Ros-Ram Schuhmann

10	 0.146	 0.1323	 0.0673	 0.998	 0.997

20	 0.297	 0.2903	 0.2396	 1.00	 0.984

30	 0448	 0.4745	 0.5036	 0.994	 0.984

40	 0.65	 0.6912	 0.8529	 0.989	 0.94

50	 0.891	 0.9516	 1.2835	 0.983	 0.888

60	 1.218	 1.2748	 1.7923	 0.984	 0.843

70	 1.674	 1.6968	 2.377	 0.995	 0.8 14

80	 2.367	 2.2997	 3.0355	 0.981	 0.822

90	 3.689	 3.3466	 3.7664	 0.901	 0.997

100	 10.642	 10.577	 4.5596	 0.981	 0.334

Total correlation coefficient 	 0.98	 0.86

Table 6.1 gives the percentage passing in-situ block volumes of Face 1 in this

quarry. A grey correlation analysis (see Section 3.5.3) was carried out to check the

best-fitting theoretical distribution for the data. The grey correlation coefficient

between the Ros-Ram equation and the results predicted is 0.980, and the correlation

coefficient between the Schuhmann equation and the results is 0.86 (see Table 6.2).

This result indicates that the IBSD can be fitted better by the Ros-Ram equation than

the Schuhmann equation. It is interesting to note from Table 6.2, how the grey
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correlation analysis can support a visual inspection of goodness-of-fit. In this

example, it can be seen from the correlation coefficients at the ten measuring data that

only at the tenth point, does the Schuhmann equation coefficient cause the significant

loss in correlation measure.

The IBSD for this quarry can therefore be represented most effectively, by the Ros-

Ram equation as

-(_V__)Ø9547

P=1-e 1.397

or in the form of a sieve size

( 
S )2.8641

P=1-e 1.32

(6-26a)

(6-26b)

Detailed blast design parameters used in four blast rounds out of the five rounds of

trail blasts have been summarised in Table 6.3 and Table 6.4 (see Wang, 1992)

Table 6.3 Drilled

Blast Burden Spa

Round (m	 (r

	

j_ 5.00	 4.04

	

a_ 5.02	 4.35

	

- 5.34	 3.47

4	 4.30	 4.21

netry and the volume of rock masses blasted _____ ______

Hole depth Hole Dia. Bench height V/hole Hole Total V

	

(m)	 (mm)	 (m)	 (ms) No. (3)

	

30.12	 108	 27.44	 554.29 13 7205.7

	30.12	 108	 27.44	 599.21 13	 7789.7

	

30.12	 108	 28.05	 519.76 13	 6756.9

	

30.12	 108	 28.35	 513.22 14	 7313.4

Table 6.4_Charging in four blasted rounds_andrelated charge and stemmin -

D101 ED 103 GRANE) Total Specific Bottom Column charge Stem- Sub- lack

Blast ANFC Eq. Eq. Eq. expl. Eq. - ________ ming drill fill

round - ANFO ANFO ANFO ANFO Charge Charge Heigt Distribution - - -

	

- Qg (kg) (kg)	 (kg)	 (kg) (kg/rn3) (m) Q	 of expi.	 ii2 .In2.

1	 1735 306.0 172.5	 370	 2583.5 0.359	 2.74 23.17 nodecking 3.66 2.13 0.61

2	 837 ____ 448.5	 481	 1766.5 0.227 5.49 20.12 deck charge 3.66 1.83 0.91

3	 553 280.5 69.0	 481	 1383.0 0.205	 2.74 22.26 deck charge 4.57 1.52 0.91

4	 885 137.5 172.5	 333	 1528.2 0.217 2.74 22.87 deck charge 3.96 0.91 0.91

* Detonation method was not included as a variable
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The relative locations of five blast rounds are shown in Fig. 6.10. The BBSDs for

these four rounds together with the IBSD are listed in Table 6.5. The data in the table

was either taken directly or derived from results (Wang, 1992), the mean sizes are

determined through Eqn. 6-7.

/ 
Round 3

/Round 5 

\
Round 4Round 1

Face 1

Fig. 6.10 A schematic illustration of the relative locations of the five blasts

Table ô.5 The characteristic size parameters for both IBSD and BBSD

	

Blast___ ____ IBSD	 ___ ___ ___ BBSD ___ ___

fl	 S. Sc0	 Sq	 flç	 S	 So S8() S

Round ____ (m) (m) (m) (m) ____ (m) (m) (m) (m)

1	 2.864 1.320 1.161 1.559 1.177 1.632 0.383 0.306 0.513 0.343

2	 1.544 0.387 0.305 0.527 0.347

3	 1.044 0449 0.316 0.708 0.440

4 ____ ____ ____	 ____ 1.318 0.411 0.311 0.590 0.377

It can be seen from Table 6.3, Table 6.4 and Fig. 6.10 that the four blast rounds

provide a data set of full scale blasting parameters with approximately the same

geological in-situ conditions, but with differences in both blasting patterns and energy

input. In fact, as reported (Wang, 1992), these four blasts had the following common

features (Wang, 1992): similar bench heights of 27 to 28 m; the diameter of blastholes

were all 108 mm with an inclination of 50; each round had one row of blastholes

except the fourth round blast which had a front of 10 holes and a back row of 4 holes;

four types of explosives had been used, with the same stemming material; the type of

primers were all Trojan of 140 g. Except for the above common features, each round

had its specific blast design characteristics. Firstly the drill geometry was quite

different since the ratio of burden to spacing varied from 1.02 to 1.54; secondly the

specific charge varied significantly from 0.205 to 0.359 kg/m 3 ; thirdly there was a

difference between their stemming length, decking and the distribution of explosives

in the blastpile. In addition, there were differences in the bottom charge, the delay

sequence and the delay time.
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Clearly, in practical terms this is a good case for examining the applicability of the

Energy-Block-Transition model but it is far from ideal for drawing conclusions. If the

relationship between energy input, the block size before and after blasting within a

blasting process obeys Eqn. 6-18, the Energy-Block-Transition coefficient, B 1 for a

rock mass should be a constant.

Table 6.6 Energy-block-transition coefficient, B1 and Bond's Work Index, W, for four
blast rounds with analysis of s pread of the four results* (Case 1)

Blast	 Specific	 Input	 B	 Bond' work

charge Pf energy Eç __________ index W1

round (kg/rn3)	 (kwh/t) (m° 5/kwh/t) (kwh/t)

1	 0.359	 0.0492	 19.449	 8.269

2	 0.227	 0.0312	 30.513	 5.398

3	 0.205	 0.028 1	 29.142	 7.263

4	 0.217	 0.0298	 30.497	 5.940

Average (Xa)	 27.390	 6.717

Amax/Xp (%)	 40.38	 42.73

T/Xa (%)	 16.88	 16.72

'N

max_mXmin and, a= 
1(X1 Xa)2*A _'	 ________

N

Table 6.7 Energy-block-transition coefficient, B, and Bond's Work Index, W for three
blast rounds with analysis of spread of the three results (excluding the first round of
blast, Case 1)	 ___________ ____________ _____________

Blast Specific	 Input	 B1	 Bond' work

charge Pf energy Eç __________ index W

round (kg/rn3)	 (kwh/t) (m° 5/kwh/t) (kwhlt)

2	 0.227	 0.03 12	 30.51	 5.40

3	 0.205	 0.0281	 29.14	 7.26

4	 0.217	 0.0298	 30.50	 5.94

Average (Xp)	 30.05	 6.20

Amax/Xp (%)	 4.56	 30.08

T/Xp (%)	 2.14	 12.63

Although there are only four blast rounds of data, and the other factors such as

detonation might have had a significant effect on the fragmentation, it appears that the

value of &na.tfXa for B, is lower than for W1 while WXa, sample coefficient of
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variation, for B is approximately identical for W1 (see Table 6.6). It is interesting to

look at c/Xa afld &flaxiXa when excluding the first blast round. In this case both a/Xa

and &nax/Xa appears much lower than for W, (see Table 6.7). This suggests that the

Energy-Block-Transition model gives a closer fit to the blast data than the alternative

Bonds model.

Case 2

The second case cited is the work reported by Aler et al. (1996a, 1996b), in which

the data of IBSD, BBSD and explosive energy input from production blasts carried

out in several mines were provided.

Two groups of data, one from Bench 4 in ENUSA mine and another from BENCH

3 in Reocin Open Pit, are used for checking the validity of the Energy-Block-

Transition model. The characteristic size parameters of both IBSD and BBSD are

summarised in Table 6.8, in which the 	 8O and Sa are derived from S and n

given by Aler et al. (1996a, 1996b).

Once again, whether the Energy-Block-Transition coefficient, B for the rock mass

in the two sites keeps at constant is examined using the data available.

Table 6.8 The characteristic size parameters for both IBSD and BBSD (from Aler

tal. 1996a, 1996b) 	 __________________________

____ ___ IBSD ____ ____ ___	 BBSD ____

Blast	 flç	 S	 S1() S8()	 S	 n	 S1Q	 Q Sq

No. _____ (m) (m) (m)	 (m) ____ (m) (m) (m) (m)

______ _____ ____	 Site 1: ENUSA Mine, Bench 4 ____ 	 _____

E3	 2.680 1.081 0.943 1.291 0.961 2.870 0.377 0.332 0.445 0.336

E5	 2.260 042 0.461 0669 0.480

E7	 2.260 0.438 0.373 0.541 0.388

E8	 2.560 0.737 0.639 0.888 0.654

El1 _____ ____ _____ _____ _____ 2.650 0.487 0.424 0.583 0.433

_______ _____ _____ Site 2 Reocin Open Pit Mine, Bench 3 	 ______

C9	 2.680 1.800 1.570 2.150 1.600 2.2800617 0.525 0.760 0.547

ClO	 2.110i670 0.563 0840 0.593

Cli	 2.2800.8700.741 1.072 0.771

C12____ ____ ____ ____ ____ 2.300080 0.495 0.713 0.514
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Table 6.9 Energy-block-transition coefficient, B1 and Bond's Work Index, W, for the
two sites with spread analysis Case 2) 	 __________

Blast Specific	 Input	 B1	 Bond' work
charge P energy Eç __________ index W1

	No.	 (kg/rn3) (kwh/t) (m° 5/kwh/t) (kwh/t)
_______	 Site 1: ENUSA Mine, Bench 4

	

E3	 0.48	 0.066	 11.744	 8.827

	

E5	 0.48	 0.066	 8.570	 13.828

	

E7	 0.27	 0.037	 18.77 1	 5.894
	E8	 0.331	 0.046	 7.492	 15.997
	Eli	 0.364	 0.05	 12.623	 9.069

	

Average (Xp)	 13.028	 9.5 16

	

AmaxlXp (%)	 86.568	 106.180
_______	 cY/Xp (%)	 32.7 15	 47.062
________	 Site 2, Reocin 0 en Pit Mine, Bench 3

	

C9	 0.308	 0.042	 23.987	 9.119

	

ClO	 0.299	 0.041	 23.320	 10.070

	

Cli	 0.323	 0.044	 17.138	 15.664

	

C12	 0.35	 0.048	 21.932	 9.598
Average(Xp)	 21.594	 11.113

	

Amax/Xp(%)	 31.718	 58.895
a/Xp(%)	 12.40	 23.849

The Energy-Block-Transition coefficients B, and the Bond work indices Wj are

calculated and the relative dispersions are analysed and summarised in Table 6.9. It is

seen from Table 6.9 that the value of &nax/Xa for B, is significantly lower than for

W, which also suggests that the Energy-Block-Transition model gives a closer fit to

the blast data than Bond's model.

Thus, although further examinations of the applicability of the Energy-Block-

Transition model to practical blasting operations are desirable, the attempted

validation of the model using the above two cases does encourage us to use the model

for characterising a blasting process.

6.4 RELATIONSHIP BETWEEN FRACTAL DIMENSION AND THE
BLASTABIUTY

6.4.1 Introduction

Geological situations where fracture concentration alternates from high to low in

adjacent regions is relatively common. Taken together, these fracture distributions are
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inhomogeneous and are often found to have a fractal from of spacing (Boadu & Long,

1994). Fractal concepts were introduced extensively in previous chapters. However,

this section opens another application of the fractal concept and this is with respect to

the mechanical property of a rock mass best described as its fragility. Poulton et al

(1990) argued that if scale invariance could be applied to rock breakage, then fracture

frequency and block size should all show similar fractal dimensions for a given rock

mass. They believed that the fractal dimension was potentially a key rock mechanics

index, and that it might be possible to define the characteristics of a rock mass with

much greater precision using fractal dimensions than using existing indices. Turcotte

(1986) also argued that fragmentation would, in many cases, result in a fractal

distribution of block sizes. Using a "renormalisation group" approach to fragmentation,

Turcotte suggested that the fractal dimension should be a measure of the fragility of

the fragmented materials, i.e. a measure of the fracture resistance of a rock mass

relative to the process causing fragmentation. He also predicted the trend would be for

a more fragile material to be associated with a block size distribution described by a

smaller fractal dimension.

In the section below, the rationale for the supposed relation between mechanical

fragility and fractal dimension is explored. The key work of Allegre et al. (1982) and

Turcotte (1986) is reconsidered so that the Energy-Block-Transition coefficient, B1,

can be considered in the light of fragility based on fractal concepts.

6.4.2 Relation between the Energy-Block-Transition Coefficient and the Fractal
Dimension of the IBSD

Either IBSD or BBSD is related to the distribution of pre-existing planes of

weakness in the rock and it was established earlier that these may exhibit fractal

characteristics. Turcotte (1986, 1989) showed that the fragmented rocks can often be

described, with a good measure of fit, by a power-law distribution which is equivalent

to the fractal distribution given in the follow equation:

N(s) = CS_D,	 (6-27)

where N(s) is the number of fragments with a linear dimension larger than S. Eqn. 6-27

describes a fractal relationship where D is the fractal dimension describing block sizes.

The values of the fractal dimensions vary considerably but most lie in the range of 2 to



10) is given as:

- rn
a	 100rn5 +1

(6-28)

-.15[(3—D,)(4—Db)	 —(3— Db )(4 -

ESJ(4—D)(4—Db)[(3—D)(4—Db)SII+(3—Db)(4—D)SIb]
(6-3 1)
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3 for fragmented geological materials such as jointed rock masses and blasted blocks

(Turcotte, 1986).

A relationship between the fractal dimension and the blastability based on the

Energy-Block-Transition model will be developed. Suppose that both IBSD and BBSD

hold the Schuhmann distributions, then the mean size of blocks (see Eqns. 6-7 and 6-

Turcotte (1986) has shown that the distribution index m5 governing the steepness of

the commutative curve can be related to the fractal dimension D as:

D = 3-rn5
	 (6-29)

Applying Eqn. 6.29 to both IBSD and BBSD yields:

= 3-rn,
	 (6-30a)

Db = 3-msb.	 (6-30b)

Substituting Eqns. 6-28 and 6-30 into Eqn. 6-19 gives the relationship between the

fractal dimensions of in-situ rock blocks and blasted blocks and the Energy-Block-

Transition coefficient B1 as

Consider now the relationship between the fractal dimension of in-situ rock blocks

and the blastability of a rock mass. It can be deduced from Eqn. 6-31 that B increases

with decreasing D1 of in-situ rock blocks when other parameters in Eqn. 6-31

remaining constant, a case of which is illustrated in Fig. 6.11. This indicates that a rock

with lower D and hence greater m51 will be more easily fragmented by blasting than a

rock with higher D hence lower rn51.
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Fig. 6.11 A case to illustrate the relationship between the Energy-Block-Transition
coefficient B1 and the fractal dimension of in-situ blocks, D,

6.4.3 Extension of Renormalisation Group Methods to the Relation between
Blastability and the Fractal Dimension of IBSD

Fragmentation is a catastrophic phenomenon which exhibits sudden or catastrophic

change, much as a system undergoing a phase change. The feature of a phase change is
a catastrophic change of macroscopic parameters of a system under a continuous
change of the state variables in a system. A renormalisation group method (see

Appendix C3) has been used to study scale invariant processes that exhibit
catastrophic change (Allegre et al. 1982; Turcotte, 1986, 1992). The renormalisation
group method often produces fractal statistics and explicitly uses scale invariance.

The discussion below follows closely the work of Allegre et al. (1982) and Turcotte

(1986) and leads to the application of the significance of the relationship between
breakage processes and fractal dimensions.

As shown in Appendix C3, using different specifications of the condition for the
fragile or soundness of a cell, different numbers of fragile cells can be obtained. The

criteria given in Appendix C3 described as "pillar of strength" (Allegre et a!., 1982)
and "plane of weakness" (Turcotte, 1986) give an indication of how different fractal

dimension values can be related to rock masses with differing strength criteria, rock
masses that have different degrees of fragility. Using the "pillar of strength" criterion,

Allegre et a!. concluded that the critical probability (the threshold for crack
percolation) that leads to a catastrophic fragmentation P is 0.896 and that the related
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fractal dimension D is 2.84. Using the "plane of weakness" criterion, Turcotte obtained

that the probability Pc is 0.49 and that the related fractal dimension D is 1.97.

Following along the same lines and using the renormalisation group concepts

outlined in Appendix C3, a "number of fragile elements" criterion is proposed by the

author as a further step of investigation into how different fractal dimension values

describing in-situ blocks of rock masses can be related to the rock masses that have

different degrees of blastability. Also, the renormalisation group model illustrated in

Fig. C.3 (hence the configurations for fragile or sound elements illustrated in Fig. C.4)

is adopted in this investigation. In terms of the "number of fragile elements" criterion,

a cell is considered as fragile if the number of fragile elements in the cell is greater

than a certain critical value.

(1) A cell is assumed to be fragile if the number of fragile elements in a cell is three

or greater. Using this criterion, the configurations numbered as from 3a to 8 in Fig. C.4

will be considered as fragile. Thus, the probability P, that a cell at order n is fragile as

a function of	 that a cell at order n+1 is fragile is given by (see Appendix C.3)

= (P+i)8+8(p+i) 7[ 1-(p+j)]+28(p^1)6[1 -(pjj J)]2 +56(p,j) 5[ 1-(p+i)]3

-I-70(pj)4 [1-(pj)]4 +56(p^)3 [1-(pj)]5 .	 (6-32)

By similarly applying catastrophic theory (see Appendix C.3) to the expression of

Eqn. 6-32, it can be deduced that the critical probability that leads to a catastrophic

fragmentation in this case, Pc is 0.197 and the related fractal dimension D is 0.70.

(2) If the number of fragile elements in a cell is four or greater, the cell is

considered to be fragile. In which case the configurations numbered as from 4a to 8 in

Fig. C.4 will be fragile. In this case, the relation of p and p,..j is deduced as

= (Pn+1) 8^84 .,,,1)7 -(pj)]+28(pj)6[ l-(pj)J2

+56(pj)5 [1	 [l-(pj)]4.	 (6-33)

Similarly, the critical probability that leads to a catastrophic fragmentation in this

case, P is found to be 0.396, and the related fractal dimension D to be 1.662.

(3) A cell is assumed to be fragile if the number of fragile elements in a cell is five

or grater. Based on this stipulation of fragility, the configurations from 5a to 8 in Fig.

C.4 are fragile. It follows that the relationship between p, and Pn+1 can be deduced as
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= (Pn+1) 8+8(pj)7 [ 11pn+i)1+28(pn+i)6[1 -(pj)]2+56(pj)5 [1 -(pn+1)13

= (Pn+1)5 [56 -140(p+i)+120(p+j)2 -35(pj)3 ].	 (6-34)

In this case, Pc is found to be 0.605 and the related fractal dimension D is 2.274.

Table 6.10 The relationship between fractal dimension and blastability (and

fragility) of a rock mass 	 _________ ___________ _________ ____________

________	 1	 2	 3	 4	 5

Criterion for the	 No. of fragib No. of fragile Plane of weak- No. of fragil Pillar of strength

fragility of a cell 	 elements ^ 3 elements ^ 4 ness criterion elements ^ 5	 criterion

No. of fragile elements' 	 219	 163	 131	 93	 35

configurations of cells ___________ ___________ _____________ ___________ ______________

Critical probability, Pc	 0.197	 0.396	 0.490	 0.605	 0.896

Fractal dimension, D	 0.700	 1.662	 1.970	 2.274	 2.840

Fragility of rock mass 	 more fragile	 -* less fragile

Blastability of rock mass 	 more easily blasted	 -* less easily blasted

The above crude renormalisation group model, allows us to consider the

relationship between fractal dimension and the blastability of a rock mass. When

examining the above five fractal dimensions from the five different criteria that specify

whether a cell is in a fragile or sound state, it can be seen that the greater number of

fragile configurations corresponds to a lower fractal dimension. A rock mass with a

lower fractal dimension can therefore be expected to be more easily fragmented by

blasting. This is summarised in Table 6.10.

Comparing the results in Table 6.10 to Fig. 6.11, it can be seen that blastability as

described by B and fragility both increase monotonically as D increases. That is, a

lower fractal dimensions is always related to a rock mass which can be more easily

fragmented by blasting. The fragility criteria used above are of course simple.

However, they do reveal that there is an inherent relationship between fractal

dimension and the blastability of the rock, that is based on a reasonable mechanical

principle.

6.4.4 Insight into the Relation between Blastability, and the Fractal Dimension of
Blasted Rock Blocks



187

The above development referred to the fractal dimension of the IBSD. Next, the

relationship between the blastability and the fractal dimension of blasted blocks will be

considered. It can be deduced from Eqn. 6-31 that B1 goes down with the rise of the

index m5j, of BBSD, so that the required input energy goes down with a decrease in

the fractal dimension of the BBSD, assuming other parameters are fixed. In other

words, for a given in-situ rock mass, it is more difficult to obtain the BBSD with

smaller msb (gentle curve) and thus a greater fractal dimension than that with a greater

m5j, (steeper curve) thus a lower fractal dimension. That is, more explosive energy is

needed to obtain the blasted rock blocks with greater fractal dimension.

35

30	 noninal largest blasted
blocksize = 1.01 m

20

Es=0.0281 kwhlt
E

to	 nean in-situ block size =1.217 m

5

0

24	 2.5	 2.6	 27	 2.8	 2.9

Fractal 1mens ion, Db (Db=3-nisb)

Fig. 6.12 A case to illustrate the relationship between the Energy-Block-Transition

coefficient B1 and the fractal dimension, Db, of blasted blocks

Furthermore, a key concept in fracture mechanics is that the extension of a fracture

will occur once a critical crack extension force, G, has been reached or is exceeded.

In the terms of Irwin's fracture criterion, this proposition can be expressed as

(Atkinson, 1987; Xie, 1990)

G = 2 co,
	 (6-35)

where w5 represents fracture surface energy per unit of apparent macroarea, and the

extension of fracture is deemed to be along a flat route which is not strictly what is

observed. A zig-zag path is more common. The fractal concept has been introduced to

obtain a better understanding of fracture extension when the dimension of particle and
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crack length is considered at the micro-scale. In this case, Eqn. 6-35 was formulated to
take more realistic crack path into account (Xie, 1990)

G = 2	 ,	 (6-36)

where, r is the similarity ratio (see Section 3.3.2) and Db is the fractal dimension of
fractured products (e.g. blasted rock blocks). It is seen from Eqn. 6-36 that the higher
is Db, the higher is G, i.e. more energy has to be dissipated to produce blasted rock
blocks with a greater fractal dimension than those that were a small fractal dimension.

It can be deduced from Eqn. 6-18 that the Energy-Block-Transition coefficient, B1,

decreases with the rise of the index msb, thus decreases with the decrease of the fractal
dimension, Db, of blasted rock blocks (see Eqn. 6-31), a case of which is illustrated in
Fig. 6.12. Thus, the classical approach of fracture mechanics leading to Eqn. 6-36 is
compatible with the trend revealed in Fig. 6.12.

6.4.5 Summary of the Relation between Blastability and Fractal Dimensions

The aforementioned discussion has shown that coefficients and m5j, which
describe both IBSD and BBSD, and thus the fractal dimensions of both in-situ and
blasted blocks, could be useful indicators of blastability.

0.001
	

0.01	 0.1
	

10

Block sieve size (m)

Fig. 6.13 Influence of fractal dimension, D, on the transformation of a rock mass
from its in-situ state into a blastpile. All four cases have the same energy input but
different B values
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Recall that from Fig. 6.11 a rock mass with a lower fractal dimension of IBSD is
easier to be blasted than a rock mass with a greater fractal dimension whereas Fig. 6.12
shows that a smaller fractal dimension in the blastpile is associated with a greater
energy consumption and more difficult blasting than a higher fractal dimension.
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Block siew size (m)

Fig. 6.14 illustration of the fractal dimension, Db, on the transformation of a rock
mass from its in-situ state into a blastpile. All four cases have the same energy input

but different B1 values

A further insight into the mechanism revealed in Fig. 6.10 is illustrated in Fig. 6.13,
which might not be encountered in practice but simply as an illustration of the
influence of D on the transformation. Four rock masses with the same largest in-situ
block sizes but with different D are assumed to be fragmented to blastpiles with the
same BBSD under the same energy input as shown in Fig. 6.13. It can be seen that a
rock with lower D (relatively larger in-situ blocks) will be more easily fragmented by
blasting than a rock with higher Dj,, since the former consists of relatively larger in-situ
blocks whereas the latter consists of relatively smaller in-situ blocks. That is, the rock

masses are different in their degrees of blastability. The mechanism revealed in Fig.
6.12 that the fractal dimension, Db, is the indication of blastability of a rock mass can
be further analysed by means of Fig. 6.14. Four blastpiles with the same largest blasted
block sizes but with different Dj, are assumed to be formed from four rock masses that
have the same IBSD. The blastpile with the highest values of Db is associated with the
rock mass that is blasted with greatest ease.
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The above discussion supports Turcotte's proposition (1986) that an in-situ rock

mass with a smaller fractal dimension can be expected to be more fragile. Furthermore,

this has been inclined to reinforce the argument that the Energy-Block-Transition

model is compatible with mechanical considerations of the blasting process and that

the fractal dimension of in-situ rock blocks can be a significant characteristic of

blastability.

The above arguments were developed under the assumption that both IBSD and

BBSD hold the Schuhmann equations. It has been shown, on occasions, that the Ros-

Ram distribution can be approximated by the Schuhmann distribution (Gilvarry, 1961;

Brown et al., 1983; Turcotte, 1986; Grady & Kipp, 1987; Crum, 1990). Consequently,

the discussion based on m1 and mSj, given above can be extended to n51 and sb and

their respective fractal dimensions for cases where both IBSD and BBSD exhibit a

good statistical fit to the Ros-Ram equation.

6.5 ASSESSMENT OF BLASTABILITY

The previous studies in this chapter have shown that the Energy-Block-Transition

coefficient B, is a quantitative measure of the bla.stability of a rock mass. Applying

the Energy-Block-Transition model to a practical blasting operation requires that the

B1 coefficient for the rock mass of interest has been obtained. It will therefore be most

advantageous for the coefficient B1 to be determined before rather than after blasting

in order to help with the blast design of an excavation operation. The development of

an assessment system for the blastability of rock masses is therefore of great

significance and is the purpose of the following sections of this chapter.

6.5.1 Factors Influencing Blastability

In reviewing the blasting practices and literature published (Franklin Ct al., 1971;

Just, 1973; Kuznetsov, 1973; Hagan & Just, 1974; Da Gama, 1983; Rustan et a!.,

1983; Lilly, 1986; Bellairs, 1986; Cunningham, 1987; Roke, 1988; JKMRC, 1991;

Wang et al. 1991b; Stagg et a!., 1992; Scott et al., 1993; Lizotte & Scobe, 1994;

Matheson, 1995), it is obvious that many factors will affect the blastability of rock

masses. These factors include intact rock properties such as strength, hardness,

elasticity, deformability, density of rock etc., and discontinuity structure features such
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as orientations and spacings of discontinuities and the in-situ block sizes. In addition,

interactions between these factors will make the problem more complicated. This

indicates that blastability probably involves several coupled variables that ultimately

describe this intrinsic property of the rock mass. Therefore, it is inappropriate to

characterise the blastability using only a single or a few separate rock parameters.

Whereas one parameter, such as uniaxial compression strength, might be an important

indicator of the blastability of rock, several others are perhaps even more important,

such as sonic velocity or joint spacing. The question then arises, of the many different

parameters thought to be important, how can duplication of similar parameters and the

over-influence of minor parameters be avoided.

6.5.2 Methodology of Blastability Assessment

6.5.2.1 Introduction to Rock Engineering Systems

In spite of the long-history of rock blasting (Atlas Powder Company, 1987) and the

advent of rock mass classification systems (Bieniawski, 1973; Barton, 1974), a

generic methodology for the appraisal of the blastability of a rock mass encountering a

standard blasting operation remains lacking. One of the reasons has been both the

diversity of factors influencing the blastability of rock and the complexity of the

associated representation of all the influences of the various factors and the interactive

mechanisms between them.

Rock Engineering Systems (RES), is a systems methodology developed by Hudson

(1992) in response to the need for an "all-encompassing" procedural technique to

approach increasingly complex rock engineering problems. This new methodology

aims at providing a useful checklist for a rock engineering project. More importantly,

it also provides a framework from which the complete design procedure can be

evaluated, leading a rock engineering project to an optimal result. It is proposed

therefore that an RES description of the overall interactive mechanisms in rock

blasting operations may be promising for the development of an approach to solving

the complex blastability assessment problems.

The RES approach (Hudson, 1992) contains a very useful procedure for devising a

rock mass classification scheme for any rock engineering project. In a rock mass

classification scheme, a single parameter is required to comprehensively characterise

the quality of any rock mass for a given engineering project that is to take place within
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the rock mass. According to the RES approach, all possible rock mass classification

schemes can be characterised simply as a function of the leading diagonal parameter

values of an interaction matrix. The selection of the parameters and the definition of

the weighting of each parameter in a classification system can be made through the

coding of the interaction matrix. This coding is crucial to the applicability of the

equation in the classification scheme. The RES approach has been applied to many

rock engineering fields, for example, the assessment of stability of underground

excavations (Lu & Hudson, 1993). The approach forms one key stage in establishing a

blastability system.

6.5.2.2 The Interaction Matrix and its Coding

In the RES approach to rock engineering, the interaction matrix device is both the

basic analytical tool and a presentational technique for characterising the important

parameters and the interaction mechanisms in a rock engineering system. In the

interaction matrix for a rock engineering system (e.g. a blastability system), all factors

(or parameters) influencing the system are arranged along the leading diagonal of the

matrix, called the diagonal terms. The influence of each individual factor (or

parameter) on any another factor (or parameter) is accounted for at the corresponding

off-diagonal position, and these are named the off-diagonal terms. The off-diagonal

terms, are assigned values which describes the degree of the influence of one factor

(or parameter) on the other factor (or parameter). Assigning these values is called

coding the matrix. A problem containing only two factors is the simplest example of

the interaction matrix, as shown in Fig. 6.15.

I..I	 Factor	 I	 I
I	 A	 I >	

J 
Influence
ofAonB

Boxii	 Boxij

Iii
Influence
of B on A

Boxji

rL
/	

Factor

B

Box jj

Fig. 6.15 Illustration of interaction matrix in RES (after Hudson, 1992)
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In principal, there is no limit to the number of factors (or parameters) that may be
included in an interaction matrix, although the number of factors (or parameters)
needed to solve a practical engineering problem are fmite.. A problem which includes

n factors (or parameters) will have an interaction matrix with n rows and n columns,
as shown in Fig. 6.16.

Ni ai ii parainctcr P
along leading diagotal Interaction I ij

in off-diagonal boxes

F p	 (llftct)

Fig. 6.16 General illustration of the coding of interaction matrix and the set-up of
the cause and effect co-ordinates (after Hudson, 1992)

The row passing through P, represents the influence of P, on all the other factors in
the system, while the column through P1 represents the influence of the other factors,
or the rest of the system, on the P. Several procedures have been proposed for
numerically coding this matrix, for example, the 0- . ! binaiy and the expert semi-
quantitative (ESQ) method (Hudson, 1992), and the continuous quantitative coding
(CQC) method (Lu & Latham, 1994). After coding the matrix by inserting the

appropriate values for each cell of the matrix, the sum of each row and of each column

can be calculated. The sum of a row is termed the "cause" value and the sum of a
column is the "effect" value, designated as co-ordinates (C, E) for a particular factor.
C represents the way in which P1 affects the rest of the system; and E represents the

Iij=c p

(cause)
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effect that the rest of the system has on P1 . The co-ordinate values for each factor can

be plotted in cause and effect space, forming a so-called C-E Plot (Hudson, 1992).

After obtaining the C-E plot for a system, an equation defining a classification index

that takes into account key contribution factors can be developed. These stages are

shown in Figs. 6.17 and 6.18.

Cahikite t1 nleracthe ii1eiity,
	 11 reqired Rock Classification

aiil !brm tie ordeid histogram
	 lalex is then

Plot the interactive intensity
for each pamneter in an

—1 ordeied histogram .g. the paraneter

p2	 onlercould be in
P4	 this form

El	 1

Paraimter

(a)	 (b)

Fig. 6.17 Developing a rock engineering classification system by means of the

interaction matrix (after Hudson, 1992). (a) forming the ordered histogram; (b)

formulating the Rock Classification Index

6.5.2.3 Formulating the blastability assessment

We now return to the development of a blastability system. Firstly, we select the

factors influencing the blastability. Identification of relevant factors can be obtained

from an extensive review of literature on blasting (e.g. references as listed in Section

6.5.1) combined with the author's experience. The following 12 factors (see the

"Factors affecting blastability" colunm in Table 6.11) were chosen as the basic ones to

be considered in establishing a blastability classification system for a general site, i.e.

these 12 factors were chosen as the diagonal terms in the interaction matrix used to

establish the blastability system. The matrix might be coded by means of subjective

judgement and experience or objective measurements, or both. However, relating to

each of these 12 factors, one (or two) measurable parameter(s) that can, to some

extent, depict the factor's influence at a given site, has been used as the diagonal term

to represent this factor in the interaction matrix (see the "depicting parameter" column

in Table 6.11). The factors and their depicting parameters are listed below:
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Pj- Strength;
- Resistance to fracturing;

P3 - Sturdiness;
P4 - Elasticity;
P5 - Resistance to dynamic

loading;
P6 - Hardness of rock;
P7 - Deformability;

- Resistance to breaking;
P9 - IBSD or PMS;

P10 - Fragility of rock mass;
Pjj- Integrity of rock mass;

P12- Discontinuity plane's strength.

(b)	 (c)

Fig. 6.18 illustration of the interaction matrix coding results. (a) coding values, (b)

the C-E plot and (c) the ordered histogram (Case Study 1, see Chapter 7).

Pj- Strength, represented by uniaxial compression strength (UCS) of intact rock or

point-load strength index (PU);

- Resistance to fracturing, represented by the uniaxial tensile strength (UTS);

P3 - Sturdiness, represented by density of rock (p);

P4 - Elasticity, represented by static or dynamic modulus of rock (E);

P5 - Resistance of rock to dynamic loading, represented by P-wave velocity (Vp);

- Hardness of rock, represented by Schmidt hammer rebound value (SHy);

P7 - Deformability, represented by Possion's ratio (JI);
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- Resistance of rock to breaking, represented by fracture toughness of rock

(Kic);
P9 - In-situ block size of rock mass, represented by mean in-situ block size (MIBS)

or principal mean spacing (PMS);

P10 - Fragility of rock mass, represented by fractal dimension of in-situ block sizes

(D);

Pjj- Integrity of rock mass, represented by the elasticity wave velocity ratio, R

(the ratio of velocity of P-wave in field to that in laboratory), or by RQD;

i2- Discontinuity plane's strength, represented by cohesion, C or friction angle, 4)

of discontinuity plane.

Naturally, one can include more, such as the discontinuity orientation, water

content in the rock mass, etc. Having chosen the various factors to be included, it may

not be possible to find measurable parameters that fully quantify each factor.

However, to simplify the system to manageable and relatively easily obtained field

parameters, the set of depicting parameters above were chosen.

Using either the ESQ or the CQC coding method, the coding values, the C-E plot

and the ordered histogram, all of which reflect the interaction intensity for each of the

factors, can be obtained (see Fig. 6.18, which is the result of a case study that is

described in Chapter 7). It is important to bear in mind that the coding values would

probably vary according to different opinions from different researchers and ideally

several experts' opinion should be involved in the factor selection and coding process.

Then, the parameters with greatest interaction intensity and contribution to the

blastability of a rock mass can be calibrated, based on the geological information

before blasting.

Making use of the findings of blasting theory and practice, a quantitative list of

classes of blastability connected to individual factors and their depicting parameters

is suggested in Table 6.11. This table is the basis for both rating the influence of each

parameter on the blastability and obtaining the rating value used in Eqn. 6-37. With

reference to the above table, continuous rating charts corresponding to each single

factor can be created. They are helpful for borderline cases and also remove an

impression that abrupt changes in ratings occur between classes. Continuous rating

charts for uniaxial compressive strength and mean in-situ block size are illustrated in

Fig. 6.19, and the others are listed in Appendix D.
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Table 6.11 Suggested quantitative indications for the classification of blastability

of rock mass connected to individual factor

' "-'...Pe cription of ease of blasting	 Very Easy Easy Moderate Difficult Very difficult

Blastability Class

P1	 .	 •'.-.	 1	 2	 3	 4	 5
Factors affecting

- blastability	 parameter	 ________ _______ ________ ________ ____________

	

Strength	 Uniaxial compressive 	 <25	 25-60	 60-100 100-180	 >180

P1strength (UCS) (MPa) ________ _______ ________ ________ ____________

Point-load strength	 <1	 1-2.5	 2.5-4	 4-9	 >9

_______________	 index_(MPa)	 ________ ________ ________ ________ _____________

P2	 Resistance to Uniaxialtensile strength	 <1.5	 1.5-3	 3-6	 6-12	 >12

-	 fracturing	 (151'S) (MPa)	 ________ _______ ________ ________ ____________

P3	 Sturdiness of	 Density, p (tim3 )	 <2.0	 2.0-2.4 2.4-2.75 2.75-3.0	 >3.0

rock___________________ ________ _______ ________ ________ ____________

Elasticity of rock	 E(GPa)	 <25	 25-50	 50-100 100-150	 >150

P5	 Resistance to P-wave velocity (kmls) 	 <1.5	 1.5-2.5	 2.5-3.0 3.0-4.0	 4.0

- dynamic loading ____________________ ________ ________ ________ ________ _____________

Hardness of rock Schmidt Hardness Value <15	 15-30	 30-40	 40-50	 >50

b... Deforrnability	 Possion's ratio	 >0.35	 0.3-0.35 0.25-0.30 0.25-0.20	 <0.20

P8	 Resistance to	 Fracture toughness of 	 <0.5	 0.5-1.5	 1.5-2.5	 2.5-3.5	 >3.5

-	 breaking	 rock (MPa . m U2 ) ________ _______ ________ ________ ____________

P9 In-situ block sizes	 Mean IBSD(m)	 <0.25 0.25-0.75 0.75-1.5 1.5-2.5 	 >2.50

-	 mass	 Meanspacing(m)	 <0.1	 0.1-0.5	 0.5-1.5	 1.5-2.5	 2.5.3

P 10	 Fragility of	 Fractal dimension of	 <1.50 1.50-2.00 2.00-2.50 2.50-2.75 	>2.75

-	 rock mass	 in-situ rock mass. D ________ ________ ________ ________ _____________

P11	 Integrity of	 Ratio of P-wave in field <0.35 0.35-0.55 0.55-0.75 0.75-0.9 	 >0.90

	

rockmass	 to that in lab, R,	 _________ ________ ________ ________ ______________

- ____________	 RQD (%)	 <40	 40-60 60-75 75-90	 >90

P12 Discontinuity	 Cohesion C (MPa)	 <0.05 0.05-0.15 0.15-0.25 0.25-0.50 	 >0.50

- planes' strength Fraction angle p (°)	 <7.5	 7.5-15	 15-20	 20-30	 >30

It is possible to include as many factors as might conceivably the blastability.

However, only factors which make major contributions to the blastability system will

be selected for the practical applications considered in this thesis, as this can probably

give a relatively good approximation and reduces the burden of collecting data. Based

on the associated C-E plot (for the significance of C-E plot in selecting the final

contributory factors, see Fig. 9.6b in Hudson's book, 1992) and the ordered histogram
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of the blastability system obtained, those factors contributing to most of the system,

say larger than 70% of the (C+E) total in the ordered histogram, can be selected as

the factors to be used in assessing the blastability of the rock mass.

Rating in terms of strength of mck

0.2

0
0
	

25	 50 75 100 125 150 175 200 225 250

IJS (MPa)

(a)

Rating in tenns of mean IBSD

0.5	 1	 1.5	 2	 2.5	 3	 3.5

1'kan in-situ Mock size (m)

I	 ]	 (b)

Fig. 6.19 The rating charts (a)for uniaxial compression strength; (b) for mean in-situ

block size of rock mass

The assessment of blastability of the rock mass can then be made according to the

following formula

I

0.8

0.6

0.4

0.2

0
0

BD=WR3 ,	 (6-37)
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where BD is hereafter named Blastability Designation. BD is a designation which

comprehensively reflects the ease or otherwise with which a rock mass can be

fragmented by blasting. R is the rating value of the jth factor obtained from either

Table 6.11 or the corresponding continuous rating charts as shown in Fig 6.19 and

Appendix D according to values indirectly derived or measured from a site. Wj is the

weighting coefficient determined from the jth factor according to its contribution to

the system, which can be calibrated from the ordered histogram. It is obvious that the

value of BD is in the range 0 to 1, and that the greater the BD is, the more difficult the

rock is to be blasted.

Table 6.12 Suggested relatic
	

between BD and
	

)ility description

scription of ease of blasting V
	

Difficult Very difficult

Blastability Class
	

1	 1213
	

4	 5

BD
	

<0.25 I0.25-0.5010.50-0.7010.70-0.851	 >0.85

Descriptive terms for the blastability classes and their respective range of BD

values are tentatively suggested in Table 6.12.

6.6 RELATIONSHIP BETWEEN BD, B, AND KUZNETSOV'S ROCK FACTOR
'A'

6.6.1 Relationship between BD and B1

As discussed above, BD is designed to give a comprehensive measure of the

blastability of a rock mass. The value of BD is in the range of 0 and 1, and the greater

is BD, the more difficult the rock is to be blasted. This contrasts with B1 which is

lower for a rock that is more difficult to blast. However, both BD and B1 have the

same physical significance. To progress with the application of the Energy-Block-

Transition model a relationship between them is required. Unfortunately, a database of

blasting operations with parameters from Table 6.11 is not available at present.

However, an examination of the possible range of the values of both B1 and BD does

provide a hint of the preliminary relationship.

The values of specific charge are usually in the range 0.15-0.7 kg/rn3, the ratio of

SailSab is usually in the range 2-10 and the range of BD is usually 0.2-0.9, thus the

range of B is estimated to be from 5 to 60 (m 112/kwhlt). Combining these ranges with
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the experience and results from case studies (see Chapter 7), the following empirical

equation relating BD and B1 is suggested, which is illustrated in Fig. 6.20.

B =--.	 (6-38)
l BD

Fig. 6.20 Suggested empirical relationship of BD and B,

6.6.2 Relationship between BD and the Rock Factor 'A' in the Kuz-Ram Equation

The Kuz-Ram equation (Cunningham, 1983) has been widely used to predict

block sizes of blastpiles for a given blast design. One of the main challenges to

improve the method is to define the Rock Factor, A which is often roughly selected

by rules of thumb or marginal improvements using empirical formulae. Based on

Lilly's work (1986), Cunningham (1987) proposed an algorithm for calculating the

values of A. This algorithm took 4 factors into consideration and improved the

application of the Kuz-Ram equation. The Blastability Designation BD is developed

using systems approach and is based on a more comprehensive range of both intact

rock properties and discontinuity structures than Cunningham's algorithm. Thus, the

use of the BD methodology in determining a value for A, could provide an

improvement upon Cunningham's algorithm for use with the Kuz-Ram equation. A

tentatively empirical equation relating BD and A is suggested as follows

A = I3xBD.	 S	 (6-39)

The examination of Eqn. 6-39 will be described in the next chapter.
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7. APPLICATIONS OF METHODOLOGY AND TECHNIQUES

DEVELOPED: TWO CASE STUDIES

This chapter presents two case study examples from excavation sites showing the

application of methodologies and techniques developed in the previous chapters. One

concerns the blastability assessment of a rock mass for a road improvement scheme on

the A5 at Glyn Bends. The other is the prediction of the BBSD of the "Overseas

Quarry", a quarry that was opened in order to supply rock, including armourstone, for

Beirut Airport, Lebanon.

7.1 APPLICATION 1: ASSESSMENT OF THE BLASTABILITY OF THE ROCK

MASS FOR A NEW HIGHWAY CUTTING AT GLYN BENDS ON THE A5,

NORTH WALES

7.1.1 Background

The assessment of the blastability of the rock mass at Glyn Bends was the principal

aim of a wider study. These broader aims were to identify the reasons for the current

problems encountered by the blasting contractor which included: a high proportion of

blasting was producing unsatisfactory fragmentation (i.e. excess oversize), uneven toes

and tight blastpiles.

Two site visits were made (May 1995, and July - August 1995). The first visit was a

reconnaissance walk-over survey which enabled the author to become familiar with the

layout of the site and to plan the second visit from which site investigation and data

acquisition for blastability assessment was to follow. Data obtained from the author's

site investigation, together with data available from previous site investigations made

by others, was analysed. Reported below is the author's assessment of the blastability

of the excavated rock mass at the AS Glyn Bends site. The analysis presented

incorporates the methodologies and techniques developed in the previous chapters.

7.1.2 Site Geology

7.1.2.1 The Site
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The site is located at National Grid reference SH 933444 (Ordance Survey, 1986),
as shown on the Fig. 7.1. It lies on the existing London-Holyhead A5 trunk road,
which passes through a gorge in a series of tight bends supported by masonry retaining
walls, at Glyn Bends, between the villages of Dinmael and Ty-Nant near Corwen,

Ciwyd. The new route under construction, at the west end, leaves the existing road at a
garage and passes onto the edges of the river plain before recrossing the trunk road
south of the Ty-Nant. The new route then passes into a deep cutting through the high

ground to the north of the Mon Ceirw gorge. At the Tyn-y-Glyn the route emerges
from the cutting and again recrosses the trunk road on its southern side, rejoining it in
Dinmael.

Fig. 7.1 Location of the A5 Glyn Bends Improvement Site , North Wales

The total length of the route that was under construction is approximately 2000
metres, nearly 600 metres of which are in a deep cutting. At the time of the study, the
cutting was in the process of being excavated by blasting. The rock mass that was
blasted was the subject of this case study. The road cutting was divided into benches,
the height of a bench is generally 4-6 metres (see Fig. 7.2).

7.1.2.2 Site Geology Revealed by Previous Geological Investigations
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Fig. 7.2 A view of the new rock cutting known as the A5 Glyn Bends Improvement

site

According to the published British Geological Survey sheet No. 120 (BGS, 1993),
the site geology consists of Alit Ddu Formation, Gelli-grin Calcareous Ash Formation,
and Maerdy Mudstone Formation, and the rock materials were described as including
siltstones, sandstones, tuffites, tuffs, and lixnestones.

Table 7.1 Geological data summarised from the previous site investigation (Mander,

Raikes& Mashall (MRI 1985)* ____ ____________ ______________

Borehole Chainage Depth Density UCS 	 strength	 Discontinuity

No. ______ (m) (t/m3) (MPa) C (MPa) $ (°) RQD Spacing (m)

B60Ch550 16.4 2.72 73.10 ______ _____ _____ ________

B63 Ch650 23.8 2.68 48.59 ______ _____ _____ _________

B66	 Ch730 24.5 2.72 83.21 0.06	 41.5	 24	 0.25

B70	 Ch880 16.9 2.70 70.84 0.24	 50.0	 50	 0.32

B83	 Ch780 17.0 2.71 59.28 0.05	 48.0	 60	 0.56

B85	 Ch800 19.6 2.74 78.03 ______ _____	 41	 0.75

* The value of UCS given is the maximum among all test pieces; other property values

are the average of all test results.
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The main early ground investigations were carried out by MRM (1985) through trial

pitting and trenching, which showed the site geology to consist of alluvium, glacial

deposits, and Ordovician strata. The alluvium is seen in trial pits and encountered

south of the Ty-Nant while the exploration holes passed through glacial deposits of

varying depth. The Ordovician strata are seen to mainly consist of a siltstone with

subsidiary sandstone, claystone and possibly volcanic horizons. The siltstone is faintly

calcareous in places. The geological data and the mechanical properties of rock masses

from laboratory tests presented by MRM in 1985 are summarised in Table 7.1.

7.1.2.3 Geological investigation and results of this study

Fig. 7.3 A sketch plan for the geological investigation at the A5 site showing locations
of scanline mapping and intact rock samples

The available geological data from the previous geological investigations, are

limited by the poor exposures available, and appear to be an inadequate data set upon

which to provide a satisfactory explanation for the blasting problems (a high

proportion of blasts failed to give: satisfactory fragmentation, flat toes and loose

blastpiles). During the author's site visit, the blasting was being carried out in the

second bench. To provide a directly applicable set of geological data to assess the

blasting problems at the A5 Glyn Bends site, further geological data acquisition was
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undertaken by the author. The investigation involved: mapping discontinuities at

various locations within the rock cutting; taking photos of blasting results immediately

alter blasting; performing point load tests and Schmidt Hammer tests in the field;

collecting other associated geological data at each location and recording the blast

design data.

A sketch plan for the investigation, together with the positions of the scanline

mapping, the point load and Schmidt Hanimer test samples, is illustrated in Fig. 7.3.

The geological investigation that has carried out and the corresponding results are

summarised as follows.

Discontinuities

Detailed discontinuity mapping was performed at 6 places including both the south

and north cutting faces with the objective of deriving data for the in-situ block size and

other mechanical parameters known to be important in predicting the outcome of

blasting. The results of these six discontinuity surveys are summarised in Table 7.2.

and the detailed discontinuity data mapped is listed in Appendix E. 1.

	

Table 7.2 Summary data of detail scanline mapping 	 __________ _______

Mapping Scanline	 Map ing place	 Tape layout	 Number Scanline

job No. No.	 Chainage	 Location	 Azimuth Plunge	 of	 Length

	

_____ _____ _______ ________ (°) 	 (°) Discontinuity (m)

A5-1 SL-l-1 cl9lo-94o	 North, the	 125	 0	 16	 11.0

______ _________ second bench ______ _____ _________

______ SL-1-2 ________	 bottom	 100	 0	 23	 17.0

A5-2 SL-2-1 (1925-950	 South, the	 293	 0	 20	 10.5

______ _________ second bench ______

______ SL-2-2 _________ 	 bottom	 300	 0	 16	 14.5

A5-3	 SL-3 (1730-750 North,thefjrst 140	 0	 33	 16.0

_____ _____ ________ bench bottom _____ ____ ________

	

A5-4 SL-4 (1810-830 South, the first 290	 -8	 42	 17.0

_____ _____ ________ bench bottom _____ ____ ________

	

A5-5 SL-5 (1620-650 North , the first 140	 0	 50	 25.0

_____ _____ ________ bench bottom _____ _____ ________

A5-6 SL-6 (1890-910 South, the 	 145	 0	 44	 20.0

second bench

______ ______ _________	 bottom ______ _____ _________
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For each of these 6 surveys, three sets of discontinuities can be isolated. Fig. 7.4

illustrates a typical output from an analysis of the mapped data. The spatial occurrence

of discontinuities in the selected mapping areas are summarised in Table 7.3.

N

• Mean orientations

Fig. 7.4 The pole plot of discontinuities mapped in Mapping site A5- 1

Table 7.3 Discontinuity occurrence 	 ___________________

MappingSet I _____ ______ Set 2 ______ _______ Set 3 _____

job No Dip dir. Dip M.S. Dip dir. Dip M.S. Dip dir. Dip M.S.

___________	 (°)	 (°)	 (m)	 (°)	 (°)	 (m)	 (°)	 (°)	 (m)

	

A5-1	 330.0 22.1 1.40	 91.0	 88.5	 2.28	 155.8 79.9 0.97

	

A5-2	 352.3 37.8 1.19	 83.1	 85.6	 0.72	 167.8 64.4 1.20

	

A5-3	 22.9	 29.9 0.83 116.9 60.2	 1.24	 186.6 61.0 0.62

	

A5-4	 209.5 24.2 0.04	 90.6	 78.3	 0.61	 142.4 70.8 1.15

	

A5-5	 47.1	 22.2 1.52 291.5 86.0	 1.48	 190.3	 76.2 0.81

	

A5-6	 170.7 35.4 0.49 289.4 83.2	 1.98	 194.5	 69.1 0.33
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It can be seen from the results of the six mapped regions that the discontinuities can

be divided into three sets. The first is sub-horizontal and the mean dip varies between

22 to 400 with a near east-west strike. This set of discontinuities consists mainly of

highly persistent bedding planes. The second and third sets of discontinuities are

steeply dipping, with near south-north and east-west strikes respectively. These two

sets of dipping discontinuities consist mainly of fractures, joints and cleavage planes,

and often exhibit impersistence.

Intact rock properties

Point load strength index tests (ISRM, 1985) were performed on samples obtained

from seven locations. The samples are taken either from the just finishing as-blasted

piles or from the resident muckpiles. The details are shown in Table 7.4 (for the raw

data, see Appendix.

[able 1.4 Details ot point load tests and test results 	 ______ _______ _______

Sampl	 Sampling place	 Rock	 Is(50)* No.s of	 a

No. Chainage	 Location	 description	 (MPa) Sample ______

LPT-1 Ch890-90: 31/07/95 blasting Dark, fme-grained siltstone, 5.05	 13	 0.293

_____ ________	 site	 natural state	 ______ ______ ______

LVF-2 Ch945-95 South, Bench 1 Dark, fine-grained calcareou 4.42 	 10	 0.180

bottom	 siltstone, natural state, air-

___ _____ __________ dried 2-3 weeks	 ____ ____ ____

LPT-3 Ch877-89( 01/08/95 blasting Very dark, fme-grained 	 5.92	 10	 0.413

	

site	 limestone and siltstone,

____ ________	 natural state

LVT-4 Ch745-75 North, Bench 1 Very dark, fine-grained 	 6.51	 12	 0.308

bottom	 ;alcareous siltstone, natural

state, about air-dried 2

_____ ________	 months

LPr-5 (1870-88: 02108/95 blasting )ark, veiy fine-grained 	 4.70	 11	 0.235

	

site	 siltstone, natural state, air-

_____ ________ ______________ dried 1 day 	 _____ ______ ______

LPT-6 Ch867-88: 03/08/95 blasting Grey, fine-grained siltstone, 4.41 	 11	 0.410

_____ ________	 site	 natural state.	 ______ _______ _______

LPT-7 Ch850-86 &4108/95 blasting Grey, fme-grained siltstone, 4.52 	 9	 0.268

_____ _________	 site	 natural state.	 ______ _______

* The top and bottom outlier results are rejected in the calculation
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Schmidt Hammer test (ISRM, 1978) results were obtained from 14 locations and

were as listed in Table 7.5.

Table 7.5 Details of Schmidt Hammer test and results
Sample	 Sampling place	 Rock	 Type SHy Incline UCS * UCS#

No.	 Chainage	 Location	 description	 ______ -	 (°)	 (MPa) (MPa)

Sch-1	 Ch950 North, Bench Grey to dark, fine-grained In-situ 47.8 	 40	 150	 137.5

	cutting face	 calcareous siltstone,

_______	 natural state

Sch-2	 Ch935 North, Bench Grey to dark, fine-grained In-situ 48.8	 10	 155	 141.8

	

cutting face	 calcareous siltstone,
_______ _________ ____________ natural state 	 ______

Sch-3	 Ch915 North, Bench Grey to dark, fine-grained In-situ 43.6	 15	 120	 119.5
________ __________ cutting face	 siltstone, natural state 	 _______

Sch-4	 Ch600 North, Bench Dark, fine-grained	 In-situ 43.7	 10	 120	 120

	

cutting face	 siltstone, natural state wit

_______ _________ ____________ weathering	 ______	 ______ ______ ______

Sch-5	 Ch625 North, Bench Very dark, fine-grained	 In-situ 47.8	 10	 155	 137.5
_______ _________ cutting face siltstone, natural state	 ______

Sch-6	 Ch650 North, Bench Dark, fine-grained	 In-situ 46.7	 10	 135	 132.8

	

cutting face	 limestone/siltstone,

_______ _________ ____________ natural state 	 ______

Sch-7	 Ch675 North, Bench Dark, fine-grained	 In-situ 47	 10	 135	 134.1

	

cutting face	 siltstone, natural state wit

_______ _________ ____________ weathering	 ______ _____ _______ _______ _______

Sch-8	 Ch700 North, Bench Dark, fine-grained	 In-situ 43.7	 10	 120	 120

______ _________ 1 bottom	 siltstone, natural state 	 ______ _____ ______ ______

Sch-9	 Ch950 South, Bench Grey to dark, fine-grained In-situ 41.2 	 15	 98	 109.2
_______ __________ cutting face 	 siltstone, natural state	 ______

Sch-10 Ch820 South, Bench: White to grey fine-grained In-situ 46.8 	 5	 150	 133.3

_______ _________ cutting face limestone, natural state

Sch-11	 Ch820 South, Bench Whitetogreyfine-grained In-situ 41.9 	 5	 105	 112.2

_______ __________ cutting face limestone, natural state

Sch-12	 Ch880 South, Bench White to grey, fine-graine In-situ 39.7	 15	 88	 102.8
_______ __________ cutting face limestone, natural state 	 ______

Sch-13	 Ch875 South, Bench Dark, fine-grained	 In-situ 44.6	 10	 118	 123.8

	

________ ___________ cutting face	 siltstone, natural state

Sch-14 Ch868 South, Bench Dark, fine-grained 	 Block 45.1	 20	 120	 126

________ __________ cutting face siltstone, natural state 	 ______

* UCS is estimated according to Hock & Bray (1981); 	 is estimated according to Sachpazis (1990)

Other data collected
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The photographs of 4 blastpiles, resulting from the blasting carried out from July 31

to August 3, 1995 were taken. In addition, the photographs of cutting faces were taken,

and other data, including blasting parameters, were collected.

Summary

The rock mass data revealed from this geological investigation indicates that both

the geological structures and the mechanical properties of rock materials vary from one

place to another. The significance of the conclusion was apparently noted in previous

geological investigations, which might explain why the blasting results had proven

unpredictable and unsatisfactory. It would appear that blast designs were based on

previous geological data that did not highlight this variability.

7.1.3 Predictions of IBSD

7.1.3.1 Preliminary predictions using the dissection method

It was found from the analysis of discontinuity spacings that some sets could not be

fitted satisfactorily by a theoretical distribution and this was often because there were

too few data (see Fig. 7.5). When theoretical distribution could be fitted at a site, there

were no examples where the negative exponential or fractal distribution fitted all of the

discontinuity sets.

Table 7.6 Results of in-situ block size distributions based on the dissection

In-situ block size distribution parameters 	 ______

Map-	 Raw data output	 Ros-Ram equation	 Schuhmann equation	 Fractal

ping - from Dissection	 ______ - - Dimen.

j j	 V63 Vpj VJ(y)	 Vjj j	 Df

No.	 (ms) (ms) (ms)	 (m3)	 (m)	 (ms) -	 ___

AS-I 5.47 8.04 13.30 39.27 0.948 8.05 2.845 2.37 0.505 19.64 1.515 3.19 1.486

A5-2 18.10 26.00 41.70 151.90 1.008 26.01 3.024 3.50 0.534 60.19 1.602 4.63 1.397

A5-3 11.70 19.45 37.50 147.00 0.725 19.45 2.174 3.18 0.384 62.51 1.152 4.69 1.848

A5-4 1.10 2.15 5.02 22.27 0.554 2.14 1.663 1.52 0.296 9.85 0.888 2.53 2.113

A5-5 3.24 4.77 7.90 79.61 0.945 4.77 2.836 2.00 0.500 11.68 1.500 2.68 1.499

A5-6 5.05 10.6 14.5 112.90 0.938 8.93 2.813 2.45 0.602 22.81 1.806 3.35 1.194
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Consequently, the IBSDs of these 6 mapping sites were derived using the dissection

technique which makes no assumption about the spacing distribution, in preference to

the equation method (Wang, 1992). The results of IBSDs are summarised in Table 7.6.

The fractal dimension of IBSD has been calculated using a best fit for the Schuhmann

equation.

In Table 7.6, V5 V632, V80 and Vj represent 50%, 63.2%, 80% and 100%

passing volume respectively; S632 and Sjyj represent 63.2% and 100% passing size

respectively; s (fly) is the index of uniformity in the Rots-Ram equation in terms of

size (volume), ms (my) is the index of uniformity in the Schuhmann equation in terms

of size (volume), and the fractal dimension is obtained according to Eqn. 6.52.

The three-dimensional views of boundary block volumes intersected by

discontinuities for each of the 6 mapping sites were constructed, assuming that all

discontinuities mapped are persistent. Fig. 7.6 is the three-dimension view

corresponding to the A5-1 Mapping site obtained using the program BLOCKS (Wang,

1992), and Fig. 7.7 is the photograph taken from the location near AS-i Mapping site.
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Fig. 7.7 Discontinuity structure of a cutting exposure at the AS site.
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7.1.3.2 Prediction from the equation methods

Although the poor fit of the data to the theoretical distribution was noted in Fig. 7.5,

it is instructive to compare results obtained from the equation method with the dissect

method results. One proposition arising from work in Chapter 3 was that the best

estimate of the IBSD is likely to fall between that for the two extreme theoretical

distributions which are the uniform spacing and the fractal spacing. This can be

examined with results from the A5 site investigation.

(b)

Fig. 7.8 Comparison of IBSD predictions between the dissection and the equation

methods, (a) A5-4 site; (b) A5-5 site
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For each site, the principal mean spacing of each set of discontinuities, Spm jS

weighted using the number of the discontinuity set, and then this weighted Spm is used

for the input to both Eqn. 2-10 and Eqn. 3-32 to get the approximate predictions of the

IBSDs. The prediction results are listed in Table 7.7.

Fig. 7.8 shows a comparison between the predicted results using both the equation

method and the dissection method. The comparison indicates clear discrepancy

between the results from both the equation and the dissect methods although for site

A5-4, the results obtained from the two methods are closed. The reason might be that

discontinuity spacing could be not well described by one of three proposed theoretical

distributions. In addition, the mean spacing subjectively weighted by the number of

each discontinuity set can also contribute to the discrepancy. These suggest that the

further investigation should be carried out to reveal the IBSD of a rock mass with

combinations of different spacing distribution types although the assumption of there

being only one distribution type for all sets can be used at present.

Table 7.7 The IBSD prediction results from the equation methods

________ Mean Spacing (m) _______ 	 V50 (m3 )	 _____

Site	 Set 1	 Set 2	 Set 3	 Weighted ____ Equation method _____ Dissec-

	

Value No. Value No. Value No.	 Uni. Neg.exp log-nor Frac. tion

AS-i 1.40 5 2.28 12 0.97 15	 1.528	 6.92	 9.66	 11 06 12.06 5.47

A5-2 1.19 5	 1.20 14 0.72 10	 1.033	 2.14	 2.99	 3.42	 5.66 18.08

A5-3 0.83 2	 1.24 4 0.62 21	 0.727	 0.75	 1.04	 1.19	 2.87 11.73

A5-4 0.04 10 1.15 8 0.61 16	 0.569	 0.36	 0.50	 0.57	 1.79	 1.10

AS-S 1.52 19 1.48 6 0.81 13	 1.271	 3.98	 5.56	 6.36	 8.45	 3.24

A5-6 0.49 11 1.98 9 0.33 15	 0.805	 1.01	 1.41	 1.62	 3.50 5.00

7.1.3.3 Correction of the IBSD considering the impersistence of discontinuities

In Chapter 4, it has been pointed out that the impersistence of discontinuities should

be taken into consideration when predicting IBSD. Using the technique developed in

Chapter 4, the IBSDs at the AS sites listed in Table 7.7 have been corrected as set out

below. The trace length field measurements form the basic data from which the mean

trace length and mean diameter of discontinuities were estimated.
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As described above, the discontinuities in bedding plane sets are extremely

persistent whereas the discontinuities in joint sets usually exhibit impersistence at

outcrop scale. Thus the mean trace lengths of the joint sets were estimated using the

techniques developed in Chapter 4 while the bedding sets retain their original mean

trace length values. The mean diameters of discontinuity sets were then estimated

using Eqns. 4-39 and 4-40. A weighted mean diameter for each site was worked out.

Taking the scale of the road cutting and blasting operation into consideration, the scale

dimension of the rock mass of interest, Sr, was set at 4 metre. The impersistence

influence factors for the six sites were derived and the corrected IBSDs were

determined. The estimates of mean trace lengths and mean diameters of

discontinuities, the weighted mean diameters, and the impersistence influence factors

are summarised in Table 7.8.

Table 7.8 Impersistence influence factor

Job ______ Joint set ______	 Bedding set _______ Weighted Fimp

No. Mean Assumed Mean Mean Assumed Mean 	 Dia.*

T. L. (m) Distribution Dia. (m) T. L. (m) Distribution Tha (m)	 (m)	 _____

AS-i 2.35	 Log-nor. 1.732	 5.59 Neg. exp. 4.355	 2.606	 0.652

A5-2 3.10 Neg. exp. 2.4 15 	 9.00 Neg. exp. 7.011	 3.947	 0.987

A5-3 1.30	 Log-nor. 0.958	 8.10 Neg. exp. 6.3 10	 2.742	 0.686

A5-4 1.40	 Log-nor. 1.032	 6.00 Neg. exp. 4.674	 2.246	 0.56 1

AS-S 2.30	 Log-nor. 1.695	 9.08 Neg. exp. 7.073	 3.488	 0.872

A5-6 1.25	 Log-nor. 0.921	 4.64 Neg. exp. 3.615	 1.8 19	 0.455

*weighted diameter =(213)x mean diameter of joint set + (113)x mean diameter of bedding set

Table 7.9 Corrected IBSD considering influence of impersistent discontinuities

Mac	 In-situ block size distribution parameters 	 ______

ping	 Dissection	 Ros-Ram equation	 Schuhmann equation	 Fractal

_____	 ______	 ______	 Dimen.

job jj	 j	 Vjj -	 V62	 V1 j Sirn Df

N	 (ms) J	 (ms)	 (m3)	 -	 (ms)	 (m) ____

AS-i 6.31 9.27 15.34 45.30 0.948 9.28 2.844 2.48 0.505 22.65 1.514 3.34 1.486

A5-2 18.16 26.12 41.89 152.62 1.008 26.12 3.024 3.50 0.534 60.46 1.603 4.63 1.397

A5-3 13.30 22.06 42.53 166.67 0.725 22.06 2.175 3.31 0.384 70.89 1.152 4.89 1.848

A5-4 1.33 2.61 6.09 26.99 0.554 2.59 1.662 1.62 0.296 11.93 0.887 2.70 2.113

A5-5 3.39 4.99 8.27 83.33 0.945 5 00 2.835 2.02 0.501 12.23 1.501 2.72 1.499

A5-6 6.57 13.78 18.86 146.80 0.938 11.62 2.814 2.67 0.602 29.66 1.806 3.65 1.194
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After selecting the index q in Eqn. 4-73 to be 1/3, the IBSDs of the rock mass at the A5

site determined by the dissection method were corrected as listed in Table 7.9.

7.1.4 Blastability Assessment

The methodology described in Chapter 6 has been employed to assess the

blastability of the rock mass at the A5 Glyn Bends Improvement site. The blastability

assessment has been made using both field data obtained by the author and previously

available site data, and a comparison has been made.

7.1.4.1 Blastability assessment based on new field data

Six sites have been selected, the details of these sites are listed in Table 7.10. Based

mainly on the information obtained from the site investigation carried out by the

author, the blastability assessments of the above six sites at the A5 Glyn Bends

Improvement have been made. Using the CQC approach (Lu & Latham, 1994) to

coding the interaction matrix described, the coding results were obtained as described

in Chapter 6 (see Fig. 6.17).

Table 7.10 Locations and details of the sites subjected blastability assessment

Site __________	 Mapping place

No.	 Chainage	 Location

Si	 Ch910-940 North cutting face, Bench 1 bottom, near 03/03/95 blasting site

S2	 Ch925-950 South cutting face, Bench 2 bottom, near 24/07/95 blasting site

S3	 Ch730-750 North cutting face, Bench 1 bottom, still existing ridge there

S4	 Ch810-830 South cutting face, Bench 1 bottom, near 03/08/95 blasting site

S5	 Ch620-650 North cutting face, Bench I bottom

S6	 Ch890-910 South cutting face, Bench 2 bottom, near 3 1/07/95

It is seen from Fig. 6.18 that the range in parameter interaction intensity is quite

wide (cf. Fig. 9.6b in Hudson, 1992). Thus, only those factors contributing to a total of

72.5% of the (C+E) in the ordered histogram, that is, the eight parameters, Pj. P2,

3, 4, s, P9 P10 have been chosen as the main contributory factors of the

blastability of the rock masses at the A5 site. The corresponding weights of the eight

factors were derived using the method illustrated in Fig. 6.17, and they are listed in
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Table 7.11. Having completed the first stage, which is concerned with the matrix

coding and thus the parameter weighting, the second stage is to obtain the actual

results for each parameter using field samples, tests, and experience.

The assessment results of blastability are shown in Table 7.11. Due to a lack of a

complete sets of test results, a number of empirical formulae based on published

correlation studies have been used to derive missing parameters and these correlation

equations are briefly explained below.

Where possible, a check on the validity of the correlation equations have been made

since there is a considerable interdependence of test parameters. lEn Table 7.11, the

densities of rock are the values obtained in the site investigation carried out by MRM

(1985). The UTS values are estimated from the PU values (or estimated from UCS

values) according to the following empirical formula suggested by ISRM (1985).

UTS = 1.25 PU,	 (7-1)

where, both PU and UTS are in MPa.

The values of P-wave velocity,	 are estimated from the average obtained from

the following two empirical formulae suggested by Karpuz et a!. (1990).

= 1549.9UTS0227,	 (7-2)

1',, =993.4+1467p,	 (7-3)

where UTS is in MPa, p in t/m3, and V is in rn/s. The results from the above two

formulae examined using an empirical equation (Soedibjo, 1990) as follows.

V =1.12PUI+0.237, 	 (7-4)

where V is in km/s. and PU is in MPa.

The values of elasticity modulus, E, are estimated according to the following

formulae suggested by Beverly et al (1979, see Xu et a!., 1990).

E=O.192(SHVxp2 )-12.71,	 (7-5)
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where E is in GPa and p is in tim3 . The estimates of E are also examined using the

following empirical equations suggested by Sachpazis (1990).

SHV =0.5155E+17.488,	 (7-6)

E = 0.3752UCS+4.479,	 (7-7)

where E is in GPa and UCS is in MPa.

Table 7.11 Blastability assessment of rock masses at the A5 Glyn Bends Improveme

- Parameter	 Weight _________________ Blastability assessment ________________

No. Description Wi - Si	 S2 -	 S3 -

jj _____ Unit _____ Value Rating Wi*R Value Rating Wi*R Valu Rating Wi*R

1 Is(50) MPa 0.1475	 _____	 4.42 0.65 0.096 6.51	 0.8 0.118

UCSMPa _____ 120 0.680 0.100 	 _____	 _____

2 UTS	 MPa 0.1344 6.82 0.670 0.090 5.53 0.580 0.078 8.14 0.700 0.094

4	 E	 GPa 0.1273 48.80 0.495 0.050 45.13 0.380 0.048 52.39 0.410 0.052

3	 p	 t/m3 0.1249 2.710 0.675 0.084 2.704 0.680 0.085 2.715 0.720 0.09

6 SHV ______ 0.1225 43.6 0.710 0.087 41.2 0.660 0.081 46 0.750 0.092

5	 Vp	 m/s 0.1208 4901 0.920 0.111 4784 0.900 0.109 4996 0.930 0.112

10	 D	 m	 0.1131 1.486 0.440 0.05 1.397 0.420 0.048 1.848 0.590 0.067

9 MBSD	 m	 0.1095 2.18 0.830 0.091 3.10 0.935 0.102 2.80 0.915 0.100

	

Blastability Designation 	 0.664	 0.647	 0.725

- Parameter	 Weight __________________ Blastability_assessment _________________

No. Description	 Wi	 S4	 S5	 S6

_____ Unit _____ Value Rating Wi*R Value Rating Wi*R Valu Rating Wi*R

1 Is(50) MPa 0.1475 4.45 0.65 0.096 - _____ - 5.05 0.69 0.102

UCSMPa _____	 ____	 135 0.730 0.108	 ____

2 UTS	 MPa 0.1344 5.563 0.590 0.079 7.67 0.710 0.095 6.31 0.680 0.091

4	 E	 GPa 0.1273 50.07 0.400 0.05 1 4847 0.400 0.050 42.9 0.330 0.042

3	 p	 t/m3 0.1249 2.70 0.675 0.084 263 0.610 0.076 2.70 0.680 0.084

6 SHV ______ 0.1225 44.85 0.725 0.089 46.07 0.740 0.091 39.7 0.550 0.067

5	 Vp	 rn/s 0.1208 4785 0.900 0.109 4908 0.920 0.111 4852 0.910 0.110

10	 D	 rn	 0.1131 2.113 0.690 0.078 1.499 0.450 0.051 1.194 0.370 0042

9 MBSD	 m	 0.1095 1.31 0.690 0.076 1.78 0.790 0.087 2.22 0.830 0.091

Blastability Designation	 0.662	 0.669	 0.631

nt
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The data taken from the author's site investigation and sampling based on 6 field

locations along the cutting, when subjected to the blastability analysis, yielded value of

the Blastability Designation from 0.631 to is 0.725, as shown in Table 7.11. That is,

the rock masses in the highway cutting area belong basically to the border range

between Class 4 (difficult blasting) and Class 3 (moderate blasting) (see Table 6.12).

Applying the description terms to the BD results, this means that the rock masses are,

in general, difficult or moderate to blast.

7.1.4.2 Blastability assessment based on previously available site data

The blastability of the rock masses at the site are assessed at three places based on

the previous geological information presented in Table 7.1, and is shown in Table

7.12. The locations of Site OS1, Site 0S2 and Site 0S3 correspond roughly to the

location of Site S3, Site S6 and Site S4 in Table 7.11 respectively. From the three field

locations, where the previous geological information was available, the values of the

Blastability Designation were from 0.498 to 0.569 (see Table 7.12). This indicates that

the rock masses would belong to the border range between Class 2 (easy blasting) and

Class 3 (see Table 6.12). That is, the rock masses would be assessed as easy or

moderate to blast.

Table 7.12 Blastability assessment of rock masses at AS Glyn Bends Improvement

based on the previous geological information*

ParameterWeight _____ OS1 _____ _____ 0S2 _____ ______ 0S3 _____

No. Descri ,tion Wi Value	 Wi*Ri Value Rating Wi*Ri Value Rating Wi*R

_ Urnt___ _______

- UCS MPa 0.1475 83.21 0.540 0.08 70.84 0.480 0.071 78.03 0520 0.077

2	 UTS MPa 0.1344 4.728 0.520 0.07 4.025 0.500 0.067 4.434 0510 0.069

4	 E	 GPa 0.1273 37.15 0.290 0.04 32.39 0.250 0.032 35.10 0.270 0.034

3	 p	 t/m3 0.1249 2.72 0.750 0.09 2.70 0.740 0.092 2.71 0.745 0.093

6

	

	 SHy - 0.1225 35.10 0.550 0.07 32.22 0.450 0.055 33.89 0.470 0.058

Vp m/s 0.1208 4716 0.890 0.11 4621 0880 0.106 4676 0.880 0.106

10	 D	 rn 0.1131 1.848 0.590 0.07 1.194 0370 0.042 2.113 0690 0.078

9	 PMS	 in 0.1095 0.25 0.250 0.03 0.32 0.310 0.033 0.75 0.505 0.055

Blastability Designation	 0.549	 0.498	 0.569

* PMS from logs of the report (MRM, 1985); the values of fractal dimension D are the same

as those listed in Table 7.11.
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7.1.5 Estimation of BBSD

Blastability assessment results obtained above should reflect in the blasting results

which can be indicated by the BBSD. To examine the BBSD at the site, four

approaches will be used and compared. These are (i) direct assessment of the BBSD by

the photo-scanline method as described in Chapter 5; (ii) estimation using the

previously published blast design Kuz-Ram model with no IBSD information needed;

(iii) estimation using the previously published Bond-Ram model which can take

advantage of the new IBSD estimation procedure and (iv) estimation using the new

Energy-Block-Transition model and blastability assessment (see Chapter 6).

In addition, a prediction of the BBSD primarily based on the Kuz-Ram model but

with a correction such that the rock factor in the Kuz-Ram model, A, is determined not

by Eqn. 2-13 but by Eqn. 6-39 which is based on the blastability assessment. The Kuz-

Ram model with the corrected A based on the blastability assessment will be called the

corrected Kuz-Ram model.

Table 7.13 Parameters associated with the predictions of BBSD

Blasting pattern parameters 	 Rock mass parameters

	

Blasting site	 31/07/95 03/08/95 Blasting site 31/07/95 03/08/95

Q (kg)	 1430	 605	 Is(50) (MPa)	 5.05	 4.45

q (kg/rn3)	 0.65	 0.62	 UCS (MPa)	 111.10	 97.90
Bench Height (m)	 7	 UTS (MPa)	 6.31	 5.56

Hole depth (m)	 8	 E (GPa)	 46.10	 50.10

	

Subdrill (m)	 1	 SHV	 39.70	 44.85

Hole No.s	 55 I 22	 Mean IBSD (m) 2.20	 1.30
Hole Dia. (mm)	 105	 p (tIm3)	 2.70	 2.70

Explosive	 PG800/900	 V50 (m3)	 6.57	 1.33

	

Burden (m)	 2.5	 V612 (m3)	 13.78	 2.61

	

Spacing (m)	 2.5	 n,	 0.938	 0.554

Bottom Charge (m) 	 1	 S50 (m)	 2.21	 1.30
Column Charge (m)	 3	 S612 (m)	 2.83	 1.63

	

Stemming (m)	 3	 n	 2.8 13	 1.663

The blast pattern data, the borehole parameters, and the explosive details are

summarised in Table 7.13, where the data has been obtained from the site

investigations and a number of blast designs carried out on site, as provided by CAB.

The BBSD results were estimated using the photo-scanline technique and have been

listed in Table 7.14. Fig. 7.9 is one of several typical blastpile photographs.
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Fig. 7.9 A typical blastpile photograph, B!-! taken from the A5 site (scale bar: 50 cm
division; note, the scale bars form a right angle and this enable a correction to be
applied to the photographic data)

Table 7.14 The BBSDs estimated using the photo-scanline techn
Photo	 Ros-Ram	 Schuhmann	 Blasting
No.	 Sr (m)	 ny	 Sj (m)	 my	 site

B1-1	 0.354	 0.769	 0.746	 0.641 31/07/95
-2	 0.325	 1.079	 0.653	 0.83
-3	 0.419	 1.275	 0.67	 1.148
-4	 0.476	 1.004	 1.076	 0.681

Average	 0.394	 1.032	 0.786	 0.825 _______
B2-1	 0.541	 1.0863	 1.029	 0.861 01/08/95

-2	 0.572	 1.123	 1.071	 0.641
-3	 0.527	 0.73	 1.174	 0.594

Average	 0.547	 0.980	 1.091	 0.699 _______
B3-1	 0.22 1	 1.2625 0.4111 0.9498 02/08/95

-3	 0.5548	 1.088	 1.528	 0.9462
-4	 0.6875 0.7 107	 1.555	 0.575

Average	 0.488	 1.020	 1.165	 0.824 ______
B4.-1	 0.2633 0.7869 0.5894 0.6063 03/08/95
B4-4	 0.4149 1.0556 0.8373 0.7803

Average	 0.339	 0.921	 0.713	 0.693 ______

ique
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Fig. 7.10 Comparison of BBSDs from different prediction models and from the

photo-scanline technique (31/07/95 blast)
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Fig. 7.11 Comparison of BBSDs from different prediction models and from the

photo-scanline technique (03/08/95 blast)

A comparison of the BBSD results of two blasts, one carried out on July 31 and

another on August 3, 1995, which also consider the different prediction models and the
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photo-assessments is illustrated in Figs. 7.10 and 7.11. The comparison of the

characteristic BBSD size parameters are shown in Table 7.15.

Table 7.15 Characteristic BBSD size parameters from different predictions

BBSD parameters

3lasting site	 3 1/07/1995	 03/08/1995

Sp Is62l s 0 I s90	 n	 S50 1s 63.2 1 sxp I s90

Model____	 (m)	 ____ _____ ____ (m) ____ ____

Kuz-Ram	 0.892 0.142 0.214 0.365 0.545 0.892 0.144 0.217 0.370 0.553

Photo	 1.032 0.276 0.394 0.625 0.884 0.921 0.228 0.339 0.568 0.838

ConectedKuz-Ram 092 0.234 0.353 0.601 0.899 0.892 0.237 0.357 0.609 0.9 10

BT	 0.892 0.569 0.858 1.463 2.186 0.892 0.202 0.304 0.5 18 0.774

3ond-Ram	 0.892 0.677 0.949 1.619 2.417 0.892 0.393 0.631 1.076 1.607

From Figs. 7.10, 7.11, and Table 7.15 the following important observations can be

made. First, for each of the two blasts, the estimate of the blastpile's BBSD from the

photo-scanline technique appears to lie near the average of the predictions from the

Kuz-Ram, the Bond-Ram, the Energy-Block-Transition model and the corrected Kuz-

Ram model. This suggests that the photo-scanline technique could provide a

reasonable tool, although further research and direct sieving of blastpiles may be

required to examine the technique and establish whether it can compete with other

analysis methods.

Second, the BBSD predictions from the Kuz-Ram and Bond-Ram models form the

far upper and far lower boundaries while that from either the newly developed Energy-

Block-Transition model or the corrected Kuz-Ram model based on the blastability

assessment is approximately in the middle of the range formed by BBSDs from the

Kuz-Ram and the Bond-Ram models. The BBSD result from either the Energy-Block-

Transition model or the corrected Kuz-Ram model appears to be a refinement and

improvement on the Bond-Ram and the Kuz-Ram models.

Third, the BBSD from the Energy-Block-Transition model and the corrected Kuz-

Ram model are close to the BBSD assessed using the photo-scanline technique.

7.1.6 Discussion
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The results from the site investigation carried out by the author show the degree to

which both mechanical properties and discontinuity structures change from one place

to another. As a result, the blastability of rock masses will exhibit these differences.

Different fragmentation would be expected if no modification of blasting pattern is

undertaken to tailor it to variations in the different blastability of an area. Not taking

account of this variability could be one reason why the previous blasting results were

unsatisfactory in various places.

It seems reasonable to assume that early blasting operations at the site began by

taking account of the historical geological data. This study has shown that a more

representative and comprehensive data set suggests, from the above comprehensive

analysis, that the resistance to blasting would be greater than that likely to be estimated

from the initial data set. Furthermore, the variability of resistance to blasting was not

previously recognised, since the difference between Blastability Designation of 0.631

(Site S6) and 0.725 (Site S3) (see Table 7.11) represents a clear increase in specific

charge required (cf. Eqns. 6.18 and 6.38).

At Site S3, for example, there remained a hard ridge of more than 1 metre in

height. This site is located near Chainage 740 and the blasting happened in February.

The specific charge (or powder factor) is around 0.4 kg/rn3 . Based on the previous

geological data where in particular, the intact strength sampled seemed to be rather

lower than representative, its value of Blastability Designation is assessed to be 0.569

(see Site 0S3 in Table 7.12). This means that the rock material should be 'moderately

blasted' (see Table 6.12), whereas the remaining hard ridge is evidence to the contrary.

Based on the geological data obtained by the author, the value of Blastability

Designation was 0.725 (Table 7.11), which indicates that the rock material at this site

location is difficult to blast.

It is therefore suggested that some adjustment to blasting design should be made

according to the geological data as revealed in the new site investigation in order to

achieve a satisfactory blasting result - one that could reduce oversize and by

implication, improve the loosening of the blastpile.

Although outside the scope of this study, in practice, the blast design was

constrained by environmental factors and a limitation on maximum instantaneous

charge was imposed. Since the powder factor was up to 0.6 kg/rn3 , it seems unlikely

that a decrease in burden and spacing would have eliminated the rough toes and

minimised big boulders. However, it was suggested that increasing the length of
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subdrilling a little, say from the present 1.0 metre to 1.2 metres, could have helped in

producing better fragmentation and a looser blastpile. It is reasonable to expect that

where subhorizontal discontinuities are widely spaced, the chance location of such

discontinuities near the base of the boreholes can have a strong influence on the

position and evenness of the toe.

7.2 APPLICATION 2: PREDICTION OF BBSD OF AN OVERSEAS QUARRY

SUPPLYING ARMOURSTONE

7.2.1 Background

The opportunity for the second case study arose from an investigation into the

future potential of a quarry that had just been opened. This quarry was to provide the

rock materials for a massive reclamation structure upon which a new overseas airport

was to be built. In the early development of this quarry which was to be dedicated to

the supply of rock fill and armourstone, some doubts were raised as to whether the

overseas quarry would be able to produce sufficient volumes of rock blocks in the

arrnourstone size range. The case study reported here did not involve a field site visit

by the author (although the author suggested the procedure of field discontinuity

mapping survey on the site), but is based on a detailed analysis of geological and

geotechnical data including results of a blast obtained from the engineers involved in

developing the overseas quarry site. The analysis tools employed were those described

in this thesis and the aim was to provide an analysis that would help in decision

making regarding the need for further site investigation to target areas of greater

armourstone potential and the need to consider alternative quarry sources of

armourstone for the airport project.

It will be clear from the foregoing chapters that the prediction of quarry BBSD

curves, i.e. fragmentation curves, is notoriously difficult, but of extremely high

economic significance. Therefore all reasonable researched and commercially

available prediction methodologies, including the Energy-Block-Transition model

developed in Chapter 6, and their results should be considered carefully and evaluated.

Measurements of block sizes from trial blasts can be used as the input of back-

analysis to fine-tune the coefficients used in the prediction methodology and thereby

to improve accuracy of initial estimates of quarry yields at a given site. Confidence in

a prediction methodology can be gained once its relative success in predicting the
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outcome of blasting in different geological conditions (over which the blast engineer

has no control) have been demonstrated. However, it is not often that a calibrated

methodology is the applied and checked with photo-assessments of BBSDs from

different areas and unfortunately this was also not possible in the case history reported

here.

It was suggested in the first road cutting case study that the Energy-Block-

Transition model makes an improvement on both the Kuz-Ram and the Bond-Ram

model. However, this model has also not yet been extensively calibrated and therefore

it is of interest to adopt the common development procedure often used in quarries

and mines which is to rely on the fine-tuning of predictive models from back analysis

of trial blasts in areas of differing IBSD. Thus, this case study aims to further examine

the Energy-Block-Transition model through comparing the model to the Kuz-Ram and

the Bond-Ram models while providing predictions of the BBSD.

7.2.2. Geological Data

7.2.2.1 Physical and Mechanical Property Test Data

Reports of the early quarry site investigation work containing logs of the variation

with depth of physical and mechanical properties have been examined briefly for all

the boreholes (OVERSEAS QUARRY Item-i, Item-2, via. J. Simm in H. R.

Wallingford). A general location diagram of boreholes on a contoured base map of the

overseas quarry site was also available (OVERSEAS QUARRY Item-3, Item-9, via. J.

Simm), as shown in Fig 7.12. The information accumulated from the above data

suggests that this sedimentary sequence of limestone is difficult to cross-correlate

between boreholes and that variations in degree of cementation, weathering and

alteration both laterally and with depth occur over relatively short distances. Of

greater significance with respect to predicting armourstone yields are the data relating

to discontinuity spacings between joints and bedding planes.

7.2.2.2 Discontinuity Spacing and Other Relevant Data

Available discontinuity and other relevant data includes:

(i) General photographic record of surface exposures (OVERSEAS QUARRY

Item-4);
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(ii) Detailed logs of discontinuity spacings from retrieved cores of sub-vertical

boreholes (OVERSEAS QUARRY Item-5);

(iii) Discontinuity spacings from sub-horizontal scanlines within surface exposures,

set up on three different elevations (OVERSEAS QUARRY Item-6)

(iv) Approximate position of scanlines were recorded with respect to the base map;

(v) Results of sieve analysis of the blast-pile from the trial blast near BH4

(OVERSEAS QUARRY Item-7).

The details of discontinuity spacings from retrieved cores of sub-vertical boreholes

and the sub-horizontal scanline mapping are listed in Appendix E.2.

7.2.3 Prediction Methodologies

As described previously, the IBSD of the rock mass imposes a critical influence on

the blast outcome. Thus the IBSD of rock mass at the overseas quany should be firstly

estimated. It will be apparent that there is a great significance to be attached to the

average in-situ block size distribution, IBSD and how it varies from place to place in

the quarry. It is the quick scanline technique used on rock exposures with horizontally

stretched scanlines and on recovered borehole cores that have been exploited in the

case study. As such only the equation method has been applied to the available data,

as the quick scanline data seemed appropriate for early analysis when considering the

types of discontinuities found in the quarry.

A brief analysis of the initial borehole investigations of the rock quality and

spacing between bedding planes and fractures have shown very little systematic

variation. Not only is there no easily discernible increase of discontinuity spacing with

depth below the weathered surface topography, there is also little borehole evidence

that specific more thickly bedded series of sub-horizontal horizons can be traced

laterally to any great extent and this is apparently not untypical of reef limestones of

the type described in the site investigation report. However, photographs of outcrops

do indicate certain locations with bedding that appears substantially more favourable

for armourstone production than others. There therefore seems to be some potential

for sampling the spatial variation of that one factor (i.e. the in-situ block sizes) which

exerts most control over the BBSD. The average IBSD of the whole area to be

exploited could then be predicted down to a moderate depth of some 15 metres. More

important perhaps, those specific areas and depths that have higher armourstone

potential could be identified and perhaps quarried with special techniques to enhance

large block production (e.g. see Wang et al, 1991b).
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There are three different types of available data: (i) Good quality data is available

from 10 boreholes in many areas and all elevations. These assess the spacing of sub-

horizontal joints and bedding planes. (ii) Moderately good quality data is available

from scanlines on elevations in areas including BH4 which can be combined with the

nearest borehole data at the same elevation. Taken together (i) and (ii), these data

assess the spacing of sub-horizontal and sub-vertical discontinuities in three

dimensions. (iii) Excellent blastpile sieve size results from Elevation 248 in the area

near BH4 are also available.

Methodologies for predicting the yield curves can utilise several blast design

models if they incorporate IBSD information from fracture spacings along horizontal

scanlines as well from the borehole data. They are likely to give better estimates than

methodologies based on borehole data without scanlines in the other two directions

provided the scanline data quality is satisfactory when compared with good quality

core recovery data, which seems be a reasonable condition in this case.

The methodologies presented below will utilise the discontinuity spacings in 3-D in

such a way that the prediction methods are first presented and then fine tuned using

coefficients which fit the trial blast data. The fine-tuned methods are then set for

further predictions and are used to present the final BBSD prediction at all three

elevations for which scanlines and borehole data were obtained.

7.2.4 Prediction of IBSD for three Elevations at the Overseas Quarry

At the time of gathering field data from scanlines, there were three benches in the

quarry, which were at Elevation 248, Elevation 231 and Elevation 214 (see Fig. 7.10).

For each bench, two scanlines were set out for discontinuity mapping measurements.

When using the equation method to derive the IBSD, discontinuity data input is

usually from a combination of at least three scanlines and borehole logging. For the

quarry, the data input is from a combination of both horizontal scanlines (mainly sub-

vertical joints and planes) and the borehole logs. Note that only the spacings from the

top 12 metres of each borehole are considered when deriving data sets for a given

elevation, as shown in Fig. 7.10.

When applying the equation method to the quick scanline data for the IBSD

estimation, it is always assumed that the mean orientations of three discontinuity sets
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are already known. The appropriate estimates of the mean orientations of the three sets

of discontinuities, according to the information available, were obtained as follows:

Discontinuity Set
	

Dip
	

Dip direction

1
	

10-15
	

80

2
	

85-90
	

3 5-55

3
	

85-90
	

115-175

7.2.4.1 IBSD Prediction Result

In the analysis of the IBSD of the rock masses at the quarry, the measurements

from two scanlines and one borehole log were first combined to form a group of input

data for the IBSD analysis. The IBSD curves for the rock masses at the quarry are

illustrated in Fig. 7.13. In the figure, the IBSD curve for Elevation 248 was obtained

using the average values of IBSD of B!, B3, B4 and B5, where the data input for B!

was from the combination of Borehole 1 and the quick scanline measurements carried

out on Elevation 248, and the data input for B3, B4 and B5 were combined in an

equivalent manner. The IBSD curve for Elevation 231 was obtained using the average

values of IBSD of B7, B9 and B 11, where the data input for B7 was from the

combination of Borehole 7 and the quick scanline measurements carried out on

Elevation 231, and likewise for B9 and B 11. The IBSD curve for Elevation 214 was

obtained using the average values of IBSD of B8, B9 and B 10, where the data input

for B8 was from the combination of Borehole 8 and the quick scanline measurements

carried out on Elevation 214, and likewise for B9 and BlO.

As a comparison, another kind of input data which is only based on the data from

vertical borehole logging, i.e. sub-horizontal joints and bedding planes was also taken

into consideration. In the case where only the borehole logging is used, the other two

sets of discontinuities were assumed to have the same principal mean spacings as that

of the sub-horizontal discontinuity set taken from the borehole logs.

The IBSD results of three elevations from the data only supplied by borehole

surveying are illustrated in Fig. 7.14. Comparison of Fig. 7.13 and Fig. 7.14 indicates

that the in-situ block sizes resulting from the combination of scanline measurement

and borehole logging is larger than that using borehole logging data alone. This is

because the sub-horizontal discontinuity spacings formed in the recovered cores are

quite significantly smaller than the sub-vertical discontinuity spacing indicated by
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scanline data (with the possible exception of Elevation 214). When the principal mean

spacings of the two sets of sub-vertical discontinuities are assumed to have the same

values as that of the sub-horizontal discontinuity set taken from the borehole logs, the

concluding results seem to command less confidence than those derived from the

scanline measurements, thus the analysis hereafter will only be based on the IBSD

information predicted from the combination of both scanline measurements and

borehole logging.

Because of the lack of discontinuity trace length information, the correction of the

influence of impersistent discontinuities could not be included.

7.2.5 Prediction of BBSD for Elevation 248 at the Overseas Quarry

7.2.5.1 Input Parameters

Since only one trial blast near Borehole 4 has been made, the blast design

information was rather limited. However, an estimation of the BBSD in the locality of

this trial blast could be based on available and partly assumed data on the rock

mechanical properties, discontinuity geometry and the blasting conditions

(OVERSEAS QUARRY Item-i, Item-2, Item-3, Item-8) as follows:

Discontinuity Structures and Rock Properties

1) Rock mass description 	 Powdery/Friable

2) Density of rock (kg/rn3 ):	 2.59

3) UCS of rock material (MPa) 	 71.43

6) Point Load Index ((MPa) 	 5.49

4) Young's Modulus (GPa) 	 30.67 (estimated)

5) Schmidt Hammer Value 	 33.2

Geometrical Pattern

1) Bench height (m):	 4.5

2) Burden (m):	 3.0

3) Spacing Cm):	 3.0

4) No.s of holes in a row:	 10

5) No.s of rows in a blast:	 1

6) Diameter of blasthole (mm):	 64

7) Subdrill (m):	 0.3
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8) Drilling accuracy (m):	 0.1

Explosive and charge structure

1) Explosive type:	 ANFO

3) Relative strength (%): 	 100

4) Specific charge (kg/rn3 ):	 0.29

5) Bottom charge (m):	 0.5

6) Column charge height (m):	 3.5

7) Stemming length (rn):	 0.8

Kuz-Ram model

Using the above data, the model yields A = 2.1, n5 = 1.305, and the equation for the

BBSD is given by

S

P = i_e0123,	 (7-8)

Bond-Ram Model

Using the above rock mechanical properties, discontinuity geometry and blasting

conditions, the following results were obtained: E = 20.25, Sb80 = 0.5393 m, and

the equation for the BBSD is as follows.

S
-(	 ')1.305

P=1—e 0.3745' ,

Energy-block transition model

Using the above information about rock mechanical properties, discontinuity

structures and blasting conditions, the blastability was assessed for the rock mass at

the quany using the methodology presented in Chapter 6. Because of only based on

the author's experience but not a couple of experts' judgement, the Expert Semi-

quantitative (ESQ) coding method was therefore used to code the blastability

interaction matrix. The coding values, the cause vs. effect plot and the ordered

histogram, all of which reflect the interaction intensity for each factor, are illustrated

in Fig. 7.15. It is worth pointing that these coding values can be altered according to

different experts' judgement.

(7-9)
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Similar to the first case study, the parameters Pj, P2, P3. P4. P5, P6. P9. P11 (see

Fig. 7.15), are finally chosen as the factors in assessing the blastability of rock masses.

W, (i =1, 2, ..., 8), the weighting coefficients in Eqn. 6.-64, correspond to the

weighting coefficients of eight parameters of Pj. P2. P3, P4, P5, P6. P9 and Pjj. are

determined from scaled C+E values (Fig. 7.15) and are respectively 0.144, 0.133,

0.112, 0.124, 0.131, 0.122, 0.116, and 0.118.

P1 2 3 3 3 3 1 3 2 2 1 2
3 P2 2 2 2 2 2 3 3 2 1 2
4 3 P3 3 2 3 2 2 1	 1	 1	 1
4 1 2 P4 3 3 2 1	 1	 1	 2	 1
2 3 4 2 P5 2 1 2 3 2 2 2
3 2 2 2 2 P6 1 2 2 1 2 2
1 1231 2P72 1 0	 1	 0
2 3	 1 1	 1 2 1 P8 2	 1	 1	 2
1	 1 0 2 1	 1	 1 0 P9 4 4 2
3 3 0 1	 1	 1 0 1 3 P10 3	 1
2 3 1 3 3 2 1 1 3 2 P11 1
1 3 0 1 2 1 1 2 3 2 2 P12

Pj- Strength;

"2 - Resistance to fracturing;
P3 - Sturdiness;
P4 - Elasticity;
P5 - Resistance to dynamic loading;

"6 - Hardness of rock;
P7 - Deformability;

"8 - Resistance to breaking;
P9 - IBSD or PMS;
P10 - Fragility of rock mass;
P11-Integrity of rock mass;
P12-Discontinuity plane's strength.

(a)

40

- 30
.Ip•

20

10

0	 I	 I
0	 10 20 30 40

Cause

—o—onoor--

ParanIer

(b)	 (c)

Fig. 7.15 Coding the interaction matrix of the blastability system of the quarry. (a)

Coding values, (b) The associated C-E plot, and (c) The ordered histogram

The following results were derived: Blastability Designation BD = 0.576, Energy-

block-transition coefficient B,=17.36 (m° 51 kwh/t), and the equation for the BBSD is

as follows.
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S	 1.305

o.164P=l—e	 ,	 (7-10)

The characteristic size parameters for the BBSD from the three models are listed in

Table 7.16, and the corresponding BBSD curves are illustrated inFig. 7.16.

Table 7.16 Characteristic size parai

Model	 Kuz-Ram I Bond-Ram

1.305

	

ShSp (m)	 0.093	 0.285

	

h62 (m)	 0.123	 0.375

	ShRn(m)	 0.177	 0.539

s for the BBSD predicte

E-B-T	 Direct Sievin

________	 0.672

0.124	 0.153

0.165	 0.277

0.237	 0.539

Fig. 7.16 Comparison of predicted BBSD from Kuz-Ram, Bond-Ram and Energy-

block transition models respectively

7.2.6 Actual BBSD from Full Scale Sieving Analysis of Trial Blast near Borehole 4

The BBSD result of the trial blast carried out near borehole 4 has been directly

sieved, and a sample of 1340 tonnes was obtained from the blastpile (OVERSEAS

QUARRY Item-7). The sieve size distribution resulting from sieving was fitted with

the two most widely used equations: the Ros-Ram and the Schuhmann equations, and

the fitted results are illustrated in Fig. 7.17. The figure indicates in terms of goodness-

of-fit, there may be little to choose between them. The fitted equations are as follows:
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For the Ros-Ram equation:

—( 
S )06714

P=1—e 0.1971

and for the Schuhmann equation

P = (_ )0.3767

1.2052

(7-il)

(7-12)

It should be noted just how well the Ros-Ram equation fits the raw data for the

largest 10% of blocks but how it slightly underestimate the 50% passing size.

100

90

80

.5
4o

,.,,

•	 Direct sieving	 / / _________________

Schuhmann Eqn. 	 / /. ./,/ ____- - - Ros-Ram Eqn.	 7
•	 •:J/.	 ____

.•	 -,-.---

1	 10	 100
	

1000	 10000

Block siew size (mm)

Fig. 7.17 Raw sieving data and best fit analysis of the block size distribution after

blasting for the area around Borehole 4, using two widely used empirical equations:

Ros-Ram and Schuhmann models.

7.2.7 Calibration of BBSD Prediction Models Using the Sieving Result

Using the data from direct sieving of the trial blastpile, a calibration of the

prediction models can be made. The comparison between the BBSD result from the

direct sieving data supplied from Borehole 4 and the results predicted from the above
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three prediction models, using the IBSD information derived, is illustrated in Fig.

7.18.

It can be seen from Fig. 7.18 that the result from the Energy-Block-Transition

model is closest to the direct sieving result for the important characteristic size

parameter Sb50, whereas the Bond-Ram Model is closest to the direct sieving result in

terms of the large sizes and the Kuz-Ram Model is closest to the direct sieving result

in terms of smaller sizes. To examine the goodness of fit to the sieve sizes of each of

the three model predictions, a grey correlation analysis (see Section 3.5) was

performed. The grey correlation measures were 0.806, 0.786 and 0.755 for the Bond-

Ram, the Energy-Block-Transition model and the Kuz-Ram models respectively,

suggesting that the Bond-Ram model may be the best one if a whole curve prediction

is required.

1	 10	 100	 1000	 10000

BIted Iock slew size (mm

Fig. 7.18 Comparison between the BBSD result from the direct sieving data

supplied from Borehole 4 and that from the three prediction models

Further consideration of Fig. 7.18 suggests that the difference between the

predicted BBSD and direct sieving could be caused by the deviation of the ns value,

determined by the algorithm devised by Cunningham (1987), from that determined by

the direct sieving result. It appears that Cunningham's algorithm needs to be further

calibrated perhaps because it includes only geometric parameters of blast design

pattern. Note, also that Yang and Rustan (1983), Aler et al. (1996b) showed that a
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rock mass and its structures would influence n. This suggests that it is appropriate at

this stage to take the n5 value determined from the direct sieving result as the nominal

value of n5 for the quarry.

100

90

80
s70

60

3

20

10

0

1	 10	 100	 1000	 10000

Blasted Nock siew size (mm)

Fig. 7.19 Comparison between the BBSD result from the direct sieving data

supplied from Borehole 4 and that from the three calibrated prediction models

After replacing n based on the Cunningham's algorithm with n from the sieve

analysis and thereby calibrating the value of ns to be fixed for this part of quarry, we

can compare the BBSDs from the above three prediction models in a more meaningful

way. The BBSD predictions based on this calibration were derived and a comparison

between these calibrated BBSD results and the direct sieving results is illustrated in

Fig. 7.19 and in Table 7.17.

It can be seen that the prediction of the BBSD curve from the Bond-Ram model

appears the best one among the three models in terms of the overall size range.

However, Fig. 7.19 does suggest that this approach is capable of overestimating the

amount of large blocks, giving greatest accuracy below the 500 mm sizes and that the

Energy-Block-Transition model appears nearly as good as the Bond-Ram, particularly

in the range of larger than 80% passing block sizes. This is supported by the grey

correlation analysis, in which the grey correlation measures comparing direct sieving

with the results from the Bond-Ram, the energy-block-transition and the Kuz-Ram

models are 0.867, 0.820 and 0.722 respectively. With such little data available, it
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seems reasonable to take n5 from the direct sieving of the blastpile near Borehole 4
rather than n from the Cunningham's algorithm as the average value of n for the
quarry. Without further research, it is suggested that the BBSD from different domains
of the quarry can best be predicted using the sieve analysis n5 throughout the quarry
and applying the Bond-Ram model with the Energy-Block-Transition model as a
back-up prediction for comparison.

Table 7.17 Calibrated characteristic sizes of blasted blocks

Model	 Kuz-Ram I Bond-Ram ITransitioni Direct Sieving

________ ________ 0.6714 _______ ___________

ShSp (m)	 0.093	 0.154	 0.124	 0.153

Sb6.2(m)	 0.161	 0.266	 0.215	 0.277

	

_________ 0.326	 0.539	 0.436	 0.539

J)9p(rn)	 0.556	 0.919	 0.742	 0.705

J)95(m)	 0.823	 1.361	 1.098	 0.951

7.2.8 Preliminary Prediction of BBSD for Three Different Areas and Elevations
from the Overseas Quarry

From the above calibration, it was argued that the both the Bond-Ram and the
Energy-Block-Transition models might be suitable and that an average n for the
overseas quarry can be taken as 0.67 14. Thus we can now make predictions of the
BBSD at the three elevations of the overseas quarry.

Using the IBSD information from the combination of scanline measurement and
borehole logging and the blasting conditions applied and assumed for the trial blasting
carried out near Borehole 4, the values of E (see Eqn. 2-16) obtained for Elevations
248, 231, 214 are 20.25, 19.30, 19.04. The BBSD curves for these three elevations are
illustrated in Fig. 7.20.

Table 7.18 Characteristic size for the BBSD

Parameter EL248 I EL23 1 EL2 14 I Direct sieving

n5_____ 0.6714 ______ ___________

	

ShSp (m) 0.1538 0.1257 0.118	 0.153

	

Sb632 (m) 0.2655 0.2 170 0.2036 	 0.277

	

ShXp (m) 0.5393 0.4408 0.4137	 0.539

	

Sh95(m) 1.3607 1.1121 1.0436	 0.950
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Fig. 7.20 Prediction of the BBSD curves (of the overseas quarry using the Bond-
Ram model

The characteristic sizes for the BBSDs for the three elevations are summarised in
Table 7.18, but recall that the 95% size is likely to be an overestimate (see Fig. 7.19).

The distribution of block masses corresponding to the BBSD curve can be obtained

using the following formula, where 0.847 is an empirically derived shape factor that
relates sieve size to the size of the equivalent cube (CIRIA, 1991; Wang, 1992).

W =p(0.847S)3 ,	 (7-13)

where, W is the weight of a block with sieve size S. and p is the density of rock. For
instance, the Sb95 for EL 248 in Table 7.18 is 1.3607 and p is 2.59 t/m3, so the 95%

passing rock weight is as follows

W95 = 2.59 x (0.847 xl. 3607) = 3.965(r)

7.2.9 Discussion
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The lack of data relating to the exact orientation of the sets of discontinuities,

however unsystematic they may at first appear, might restrict accuracy of analysis

predictions. Since the back analysis of the blast results is only based on the single trial

blast near borehole 4, this might significantly reduce the potential improvements in

accuracy offered by the analysis.

Table 7.19 Expected percentage yields based on th

Block mass Block sieve size Trial blast percentage

(Tonnes)	 (m)	 exceeding (%)

0.5	 0.682	 10.00

1	 0.860	 6.80

2	 1.083	 4.33

3	 1.240	 3.21

4	 1.365	 2.56

5	 1.470	 2.12

trial blast alone

If the sieve analysis of the trial blast near BH4 was to be typical of the whole

quarry area, examination of Fig. 7.17 for the largest blocks suggests that the

percentage yields would be roughly as given in Table 7.19. These have been worked

out using the best-fit Eqn. 7-11 and Eqn. 7-13. The table suggests that approximately

2% would be greater than 5 tonnes and 4.3% greater than 2 tonnes, with about 10%

greater than 500 kg.

However, the RQD value, which is an indicator of sub-horizontal bedding fracture

spacing, found in Borehole 4 at around Elevation 248 (to 12 metres depth) where the

blast was carried out equalled 71% and is greater than that for the quarry's average

RQD value from all borehole logs taken to considerable depth which was 40%. An

average yield curve for the whole quarry would on this basis give a less favourable

proportion of armour-sized blocks.

The best prediction of block yields can be discussed with reference to Table 7.20.

Once the variation in spacings of sub-vertical fractures are taking into account, further

confirmation that the direct results of the trial blast will over-estimate the proportion

of large blocks is given. For a best prediction up to the 90% passing size, reference

should be made to curves in Fig. 7.18. However, as pointed out in the previous

discussion, with respect to annourstone-sized blocks, the Energy-Block-Transition

model has appeared nearly as good as the Bond-Ram, particularly in the range of

largest blocks and this Energy-Block-Transition model will therefore be considered
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here. The Energy-Block-Transition model has predicted the 95% blasted block size

result to be slightly less than that from the Bond-Ram model (see Fig. 7.19) which is

also reflected by the BBSD using the Bond-Ram model and the IBSD information

only based on the borehole logging. Thus, the overall prediction for the upper

elevation of the overseas quarry is as highlighted in bold figures in Table 7.20.

Table 7.20 Summary of block weight yields based on the Bond-Ram model shown

inFig. 7.18 and two alternative results 	 __________ _______ ____________

Wi	EL248	 EL231	 EL214 Average Direct sieving

__________ BH1,3,4,5 BH7,9, 11 BH8,9, 10 ______ EL248,BH4

W50 (kg)	 5.73	 3.13	 2.59	 3.81	 5.64

W8p (kg)	 246.90	 134.80	 111.40	 164A4	 246.40

W95 (tonnes)	 3.965	 2.165	 1.789	 2.639	 1.349

Wg (tonnes)	 1.118	 0.731	 1.194	 1.014

Wc** (tonnes)	 2.083	 0.401	 0.270	 0.918

*assurp.ing BBSD based on the IBSD information acquired from the borehole logging;

**based on the Energy-Block-Transition model.

Evidence that the block sizes yielded from depth in the overseas quarry will be

greater was considered to be far from conclusive at the stage reached during this

investigation.

7.2.10 Conclusion and Recommendation

The best initial estimate for yields in the whole quarry was:

50% less than 4 kg

80% less than 164 kg

95% less than 1 tonne

The analysis results together with the analysis tools and methodology have been

elaborated upon. The results indicate that the Energy-Block-Transition model has

exhibited a prediction capability worthy of equal status with previous models. The

suite of methodologies were able to provide operators of the quarry with valuable

information about the block yields. Quarry operators were advised that further work

and detailed surveying of discontinuities within specific areas of interest should be

carried out in order to greatly improve the confidence in the initial predictions
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reported to them. One striking conclusion was that the curve fitting criteria need to be

geared towards the part of the curve that has most influence on the economic

objective. For example, if it is crucial to establish the capability of producing

armourstone, the emphasis should be given to matching trail blast results with

functions that fit this upper part of the curve and possibly at the expense of a less good

fit for most of the smaller part of the curve. In mining, other criteria would apply.
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8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 TECHNIQUES AND METHODOLOGIES - CONCLUSIONS

8.1.1 Discontinuity Spacing and Trace Length Distributions

A systematic study of research data reported in the literature leads to the

conclusion that discontinuity spacing distributions, measured from scanlines from a

wide range of rock masses can be described adequately by a great many mathematical

distributions. The best distribution model will usually be one of the following:

negative exponential, lognormal or fractal. A similar systematic study of the

literature for trace lengths measured along scanline suggests the best distribution

model will usually be one of the above three distributions.

The goodness-of-fit of any theoretical distribution compared with real

discontinuity spacing or trace length data can be assessed using classic statistical

methods, but grey correlation analysis technique provides a powerful additional tool

for selecting the best theoretical distribution out of a number of proposed

alternatives. An analytical procedure for applying the grey correlation analysis to this

problem has been presented.

The study of fractal spacing distributions using simulation techniques requires the

numerical generation of spacings with a fractal distribution. Such a random generator

was developed in this research study.

8.1.2 In-situ Block Size Distribution of Rock Masses with Fractal Discontinuity

Spacing Distributions

For this investigation into the IBSD, discontinuities with a fractal spacing

distribution are investigated using a computer simulation of randomly produced

artificial discontinuities. The investigation indicates that the IBSDs of rock masses

with fractal spacing distributions are quite different from those with negative

exponential, lognormal and uniform spacing distributions when identical mean

spacings are considered. The itlationship between the product of three principal mean
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spacing values and the IBSD for a rock mass with a fractal discontinuity spacing

distribution is not linear, which is in contrast to the result of Wang (1992) obtained for a

rock mass with negative exponential, uniform and lognorinal spacing distributions. To

distinguish the types of spacing distribution of discontinuities has important implications

for predicting the IBSD, and its numerous applications concerning quany production of

aggregates, armourstone and building stone, not to mention mining.

Two sets of empirical equations, have been derived from Monte Carlo simulations

of a dissected volume of rock, for predicting the IBSD of a rock mass with

discontinuities of fractal spacing distributions. They are given by

=	 x(D1 xD2 xD3),	 (8-1)

and

= C p X ( Spi XSpm2 x Spm3)•
	 (8-2)

where (i=1O, 20,...,100) are block volumes of percentage passing (in m3), and,

C, , and b ,(, are empirical coefficients; i are percentages; D1, D2 and D3 are the

fractal dimensions of the three sets of discontinuity spacing values, and Spmj Spm2

and Spm3 are the principal mean spacing values of three sets of discontinuities.

These two equations, together with the coefficients given in Tables 3.3 and 3.4

provide us with a tool for predicting the IBSD of a rock mass for which the three sets

of discontinuities have fractal spacing distributions.

This study indicates that for a given mean spacing the IBSD curve, derived from

the assumption that all three sets of discontinuities have a fractal spacing distribution,

will give an IBSD with the largest block sizes. Furthermore, the real IBSD should fall

within the envelope formed by the lower boundary IBSD curve created with the

uniform spacing distribution assumption and the upper boundary IBSD curve created

from the fractal spacing distribution assumption. In the case study carried out at the

AS Glyn Bends Improvement site, only one of the three sets was best described by a

fractal spacing distribution and the direct assessment of IBSD using the dissect

method showed the IBSD to fall within the envelope defined by upper and lower

boundaries based on the equation method and described above.
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8.1.3 The Influence of Impersistent Discontinuities on the Prediction of IBSD

From a simple counting survey of an exposure with discontinuities censored at

different given levels, initial estimates of mean trace length of discontinuities with

fractal and lognormal distributions have been established. They have been expressed

in the form of sets of charts.

Based on the theoretical relationship between trace length and size of

discontinuity derived by Warburton, a numerical algorithm for estimating the

discontinuity size distribution, has been developed. The procedure handles

discontinuities with negative exponential, lognormal and fractal trace length

distributions, i.e. those most often encountered in practice. A set of equations for the

estimation of discontinuity size distributions corresponding to the above three trace

length distributions has been derived.

A "relative impersistence factor" is proposed for describing the influence of the

impersistence of discontinuities. It compares the mean size of discontinuities and the

dimension of the rock mass of interest. This factor can then be incorporated into the

estimation of IBSD, an improvement on the pre-existing approaches to prediction of

the IBSD which neglect the influence of impersistence of discontinuities. A

preliminary application of the proposed new technique for improving the estimate of

natural block size distributions of a rock mass has been presented in a case history in

Chapter 7.

8.1.4 Assessment of Block Size Distributions in Blastpiles and the Energy-Block-

Transition Model

A "photo-scanline" technique of assessing the BBSD of a blastpile directly from

photographs has been devised in Chapter 5. The technique assumes that the BBSD of

a blastpile can be represented by either the Ros-Ram or the Schuhmann equation

which are the two most widely used equations for representing the BBSD. The

calibrated relationship between the size distribution obtained from the photograph of

a blastpile surface and the true underlying distribution has been derived by an

analysis of fully quantified artificial blastpiles prepared in laboratory. The calibration

has then be used to derive the governing distribution parameters S and n for the Ros-

Ram equation (or S100 and m for the Schuhmann equation) of the blastpile. Data

acquisition from photographs is based on information of lengths of visible blocks
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exposed on the surface and intersected by survey lines on properly scaled

photographs of the blastpile. The application of the technique to actual blastpiles has

been illustrated in the highway cutting case study presented in Chapter 7. The

technique appears to be reasonably accurate, simple and user-friendly, but field

results using the technique have not yet been compared with results from other direct

assessment techniques.

A blast design model called the Energy-Block-Transition model developed from

the concept of blastability has been proposed in Chapter 6. The model characterises

the ease with which a rock mass can be transformed by blasting from the state with

IBSD into that with BBSD and is represented by the following relationship:

-	 SaiSab

E - B (
Sai + Sab )O.5

2

where, E5 represents the explosive energy input per unit rock mass that is used in

transforming the rock mass with a given IBSD into a blastpile with a given BBSD; B1

is the Energy-Block-Transition coefficient; and Sa, and Sj, are the mean sizes of

both IBSD and BBSD respectively.

The Rock Factor A in the Kuz-Ram equation developed by Cunningham can also

be calculated using an assessment of blastability of rock masses proposed in this

research. The calculation of A is based on a more comprehensive range of in-situ

rock properties and discontinuity structures than Cunningham's algorithm. Using A

based on blastability assessment instead of Cunningham's A appears to give an

improvement in the accuracy of the Kuz-Ram equation when applied to case study

BBSD analysis of blastpiles assessed with direct sieving and the photo-scanline

methods.

The Energy-Block-Transition model, the corrected Kuz-Ram equation, together

with the Kuz-Ram and the Bond-Ram models can all be used for estimating the

BBSD of a rock mass provided that the discontinuity structure, intact rock properties

and blast conditions are all given. Applications of these equations to both the A5

Glyn Bends Improvement site and the Overseas Quarry have been described in

Chapter 7. The upper and lower borders for the envelope defining the range of model

predictions of BBSD for the two case studies were found to be the Bond-Ram and the

Kuz-Ram models respectively. For these case studies, the new models give BBSD

(8-3)



247

predictions within this envelope such that the blastability corrected Kuz-Ram model

and the Energy-Block-Transition model give a decrease in sizes from those predicted

by the Bond-Ram model. This apparent narrowing of the uncertainty envelope for the

predicted BBSD may not be a general result since both the new models are very

sensitive to the determination of the Blastability Designation.

8.1.5 Characterisation and Assessment of Blastability of Rock Masses

Looking upon blasting as a transformation from the in-situ state to the as-blasted

state, the blastability of a rock mass has been, in this research study, defined as the

ease with which the rock mass can be fragmented by the blasting process causing the

transformation. The proposed Energy-Block-Transition model is based on the

consideration of the blastability of the rock mass.

The Energy-Block-Transition model and its associated coefficient B1 have been

devised to characterise the blasting process and the rock mass blastability

respectively. The coefficient B1 is defined by its role in the equation describing the

Energy-Block-Transition model (Eqn. 8-3). It represents the explosive energy

consumed per unit volume of rock mass with a given object size, required to transfer

the in-situ rock mass with a mean block size Saj into blasted blocks with a mean size

Sab. The Energy-Block-Transition model is a special case of the empirical energy-

size reduction relationship known as the Walker-Lewis relation in comminution,

although it evolved from the Energy-Block-Transition concept. A sample of available

data sets from the literature suggest that the Energy-Block-Transition model will

generally give an improvement in BBSD prediction compared with the Bond-Ram

model. The case studies give further confidence to the potential value of the model.

The "renormalisation group" approach has been exploited to further investigate the

relationship between the blastability and the fractal dimensions characterising both

the IBSD and the BBSD. The "number of fragile elements" criterion was introduced

into the discussion together with the pre-existing "plane of weakness" and "pillar of

strength" criteria. An investigation based on developments of these three criteria

using the renormalisation group approach indicates that the larger the fractal

dimension characterising the IBSD, the more difficult it is to fragment the rock mass

by blasting; and that the larger the fractal dimension characterising the BBSD, the

easier it will have been to fragment the rock mass by blasting. It was agreed that these

conclusions are in conformity with the process revealed by the Energy-Block-
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Transition model while being supported by the concept of fracturing in fracture

mechanics.

Taking into account that blastability is a complex property, a methodology for the

assessment of blastability of rock masses using the Rock Engineering Systems

method has been proposed in Chapter 6. The methodology has systematically taken

into account twelve factors which a review suggested would give a comprehensive

set of factors that influence the blastability of a rock mass. The contribution of each

of these factors to the blastability of the rock mass is identified using interaction

matrix analysis, which is implemented by deriving a weighting for each factor.

Combining the results from the interaction matrix analysis and the rating charts

proposed in this research, the blastability of the rock mass may be represented

quantitatively using the Blastability Designation. A preliminary classification for

blastability of rock masses according to the Energy-Block-Transition coefficient has

therefore been suggested as follows.

Table 8.1 Blastability classification according to the Energy-Block-Transition

coefficient B; and BD

of ease of blastinI V
	

Moderate Difficult V

Blastability Class	 1	 2
	

3	 4
	

5

B; (m°5/kwh/t'
	

>40	 20-40
	

13-20	 8-13	 <8

BD
	

<0.25 10.25-0.501 0.50-0.70 I 0.70-0.85 I 	 >0.85

The methodology has been successfully applied to the assessment of the

blastability of rock materials at the A5 Glyn Bends Improvement site and to the

prediction of armourstone production of the Overseas Quarry, both presented in

Chapter 7.

8.1.6 Further Conclusions from Case Studies

The AS Glyn Bends Improvement site:

Both the geological structures and the mechanical properties of rock materials vary

significantly from one place to another. As a result, the blastability of the rock mass

exhibits differences. These differences could be one reason that the blasting results

prior to this study were on certain occasions unsatisfactory.
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The new field data set obtained from this case study, when compared with a

previous available geological data set, suggests that the resistance to blasting had

previously been underestimated. This could be why the previous blasting results

experienced tight blastpiles and a significant oversize fraction.

The variability of blastability of the rock materials at the site should ideally have

been taken into account, since the increase between Blastability Designation of 0.631

(Site S4) and 0.725 (Site S3) may represent an obvious increase of specific charge

required.

The Overseas Quarry.

It was concluded from the data available, that 95% of blasted blocks in the quarry

would be less than 1 tonne. This result indicated that the quarry might not able to

produce the sufficient quantity of large blocks that was needed for the annourstone

contract. It was suggested that a further quarry site investigation and analysis should

be carried out in order to improve the confidence of these initial predictions of the

BBSD in the quarry.

It has found that Cunningham's algorithm for calculating the value n, representing

the steepness of BBSD, should be further calibrated since there was an obvious large

difference in the values of n between the sieving result and the derivation from

Cunningham's algorithm.

8.2 TOPICS SUGGESTED FOR FURTHER RESEARCH

8.2.1 Investigations into IBSDs of Rock Masses with more than Two Spacing

Distributions

So far, and with the exception of direct block dissection methods using raw data, all

the investigations of the IBSD of rock masses have been limited to the prediction of IBSD

with one type of spacing distribution for all discontinuity sets, although preliminary

discussion of the possible outcome of IBSD from two or more types of discontinuity

spacing distributions was included in this research. In practice, it is common for two or

more kinds of discontinuity spacing distributions to be encountered. This research has

deduced that the IBSD of a rock mass with two or more of the most common kinds of

discontinuity spacing distributions would fall into the envelope formed by the lower
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boundary IBSD curve from discontinuities with uniform spacing distributions and an

upper boundary IBSD curve from discontinuities with fractal spacing distributions.

Whilst this preliminary deduction was supported by the case study of the A5 Glyn Bends

site, there is scope to explore combined distributions so as to narrow the IBSD range.

This could be realised using similar procedures to those reported in Chapter 3 by

including two or more different discontinuity spacing distributions. Through such an

investigation, it might be possible to improve significantly our understanding of the

influence of discontinuity pattern on engineering properties of rock masses.

8.2.2 Influence of Impersistent Discontinuities on Prediction of IBSD

In Chapter 4 the following equation

1

= 'F ) (%',)
"'nip

has been developed for adjusting the prediction of IBSD based on the assumption of

all-persistent discontinuities, where (V)o represents the predicted result of IBSD

from the all-persistent assumption, V, is the corrected result incorporating the

influence of impersistent discontinuities on the result. Fjmp is the relative

impersistence factor. It has been suggested that the index q in Eqn. 8-4 should take

the value of 1/5-1/2, which has been supported by the case studies. It is obvious that

the adjusted result will be quite sensitive to the value of q. As such, its calibration

from a much wider source of field case studies should be carried out.

8.2.3 Improvement on the Photo-scanline Technique for Estimating BBSDs of

Blastpiles

The photo-scanline technique used for directly assessing the BBSD of a blastpile

devised in this research has been developed from artificial blastpiles. The sizes of

aggregates in the artificial blastpiles are not more than 150 mm, far from 1.0 m - a

typical upper size of a real blastpile. This might affect the application of the

equations although the BBSD blast design predictions from the A5 Glyn Bends' case

study has given support to the validity of the direct photo-scanline BBSD technique.

The errors related to the technique encountered require further investigation although

a preliminary discussion of these has been given. Investigations of the influence of

(8-4)
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the number and directions of surveying lines laid on a photographs and further case

studies with direct sieving results of BBSD will be necessary to help improve the

technique and to advance its applications along-side development in image analysis

software for measurement of blast fragmentation.

8.2.4 Validation of the Energy-Block-Transition Model

The proposed Energy-Block-Transition model has been the subject of examination

in the two case studies carried out in this research and the data cited from published

literature. A well-developed model should, however, be exposed to a variety of case

study examinations with different geological conditions in order to use it with

sufficient confidence in practice. This could be most efficiently implemented by the

setting up of a database with the full record of different in-situ geological conditions,

blast patterns, explosive energy inputs and the directly assessed BBSD results, e.g. by

sieving, photo-scanline, image analysis etc. Thus, a series of trial model or full-scale

blasts could be necessary for this purpose.

In the present Energy-Block-Transition model, the energy input has only been

related to uncontrollable factors consisting of in-situ rock mass properties and

geological structures, represented by the Energy-Block-Transition coefficient. It is

known that in a practical blast, the energy input will be partly affected by many

factors controlled by the blast design, such as burden, spacing, timing, decoupling,

etc. An improvement on the present Energy-Block-Transition model which includes

such controllable factors could be expressed as follows:

E	
SUISab

B, (Sal_+_Sb)o5'

2

where f represents a coefficient which includes the influence of the controllable

factors on the energy input needed. A detailed investigation based on an examination

of Eqn. 8-5, using a database of blasting results would be of great interest for blast

design.

(8-5)

8.2.5 The Classification of Blastability
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The classification of blastability presented in Chapter 6 and suggested in Table 8.1

has been based on the blastability assessment of rock masses. The assessment

includes a significant account of subjective criteria through the matrix coding

procedure that was undertaken by the author. Systems approaches such as the Rock

Engineering Systems and the Grey Systems have been exploited in this research to

reduce the subjectivity. Further investigations into how to more effectively select the

key representative factors in the interaction matrix of the blastability system, how to

more reasonably represent them by objectively measurable parameters and how to

more accurately code the interaction mechanisms in the matrix are necessary

questions to answer for improvement in the blastability assessment. The setting up of

a research programme of purpose-designed blasts and the setting-up of a database

collected from these blasts would be one of most important steps towards

improvement in blasting models. The introduction of expert systems analysis and

neural network analysis could provide assistance in the realisation of improvement in

predicting the output of blasting.

In the Chapter 6, Eqn. 6-38 for the relationship between the Energy-Block-

Transition coefficient and the Blastability Designation, and Eqn. 6-39 for estimating

the Rock Factor A according to the Blastability Designation are both poorly

constrained empirical equations with low confidence levels. They need to be re-

calibrated using further blast results.
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APPENDIX A. PROGRAM LISTINGS FOR GCA AND DIATRACE

A.! PROGRAM LISTJN FOR GREY CORRELATION ANALYSiS, GCA

C * ********** ** ******** ** ****** ******** * * ****** ** ****************** * ***
C * PROGRAM OF CALCULATING THE CORRELATION MEASURE
C * COMPILED IN QMWC BY P. LU, IN MAY 1994
C

DIMENSION X0(14),X(4, 14),PSI(4, 14),RM(4)
DIMENSION SUBV(1 4),DMI(4),DMA(4),XX(14)
OPEN(3,STATUS='OLD',FILE='GCA-d-LDAT)
OPEN(4,STATUS=NEW',FThE=GCA-D-O.DAr)
READ(3,*) NI,NK,NC,COFP
WRITE (4,1 29)NLNK,NC,COFP
READ(3,*) (X0(J),(X(I,J),I=1 ,NI),J=1 ,NK)

129
	

FORMAT(/1 x,'*****Grey correlation analysis output**********,//
+
	

'******Conol data is****'/13x,315,F8.3)

WRITE (4,109)
109
	

FORMAT(IX,'********Original data*******'I/)
WRITE (4,119) (J,X0(J),(X(I,J),I1,NI),J=1,NK)

119
	

FORMAT( 1X,14,5F 12.4)
C **ThflflLNG DATA**

IF (NC .EQ. 0) GOTO 55
CALL INTI(X0,X,NI,NK)
WRiTE (4,429)

429
	

FORMAT(//1X,'********Initialized Data*******'/)
WRITE (4,419) (J,X0(J),(X(I,J),I= 1 ,NI),J=1 ,NK)

419
	

FORMAT( 1X,14,5F 12.4)
C **ENUING OF IMTIALIZING DATA**
55
	

DO21OI=1,NI
DO 99 J=1,NK
XX(J)=0.0

99
	

CONTINUE
DO 230 J=l,NK
XX(J)=X(I,J)

230 CONTINUE
CALL VSUB(X0,XX,NK,SUBV)
CALL COMPMI(SUBV,NK,DMI(I))
CALL COMPMA(SUBV,NK,DMA(I))

210 CONTINUE
DO 250 I=I,NI
DO 299 J=1,NK
XX(J)=0.0

299 CONTINUE
CALL COMPMI(DMI,NI,DDMI)
CALL COMPMA(DMA,N[,DDMA)
DO 290 J=1,NK
XOK=ABS(X0(J)-XçI,J))
CALL COEFF(DDMI,DDMA,COFp,xoIçppsJ)
PSI(I,J)=PPSI
XX(J)=PSI(I,J)

290 CONTINUE
CALL CORMEA(XX,NK,RR)
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RM(I)=RR
250 CONTINUE

WRITE(4, 149)
'WRITE (4,159) (J,(PSI(I,J),I= 1 ,NI),J= 1 ,NK)

159	 FORMAT(IX,14,4F1 2.4)
149	 FORMAT(/IX,'****The correlation coefficients of Xi-X0 at time k "'/)

WRITE (4,179)
WRITE (4,199) RM

179	 FORMAT (//1X,***The correlation measure of Xi--X0 ****')
199	 FORMAT (/1X,4F12.4)

STOP
END

C
C
C
C SUB-PROGRAM OF CALCULATING THE COEFF. OF CORRELATION AT POINT

SUBROUTINE COEFF(DMIN,DMAX,P,DIK,EIK)
EIK=(DMIN+P*DMAX)/(DIK+P*DMAX)
RETURN
END

C
C SUB-PROGAMME OF CALCULATING THE MINUS VALUE
C

SUBROUTINE VSUB(X0,X1 ,N,CAL)
DIMENSION X0(N), X1(N),CAL(N)
DO 110 I=I,N
CAL(I)=ABS(X0(I)-X 1(I))

110 CONTINUE
RETURN
END

C
c SUB-PROGRAM FOR CALCULATING THE CORRELATION MEASURE
C

SUBROUTINE CORMEA(COFI,N,R)
DIMENSION COFI(N)
SUM=0.O
DO 120 I=1,N
SUM=SUM+COFI(I)

120 CONTINUE
R=1 .OIN*SUM
RETURN
END

C
C
c SUB-PROGRAM OF COMPARING THE Xk.
C COMPARING THE Xk AND IDENTIFYING THE MINIMUM VALUE
C

SUBROUTINE COMPMI(R,K,VMI)
DIMENSION R(K)
VMI=R(1)
DO 100 I=2,K
IF (VMI.LE. R(I)) GOTO 100
VMI=R(I)

100 CONTINUE
RETURN
END

C COMPARING THE Xk AND IDENTIFYING THE MAXMUM VALUE
C
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SUBROUTINE COMPMA(R,K,VMA)
DIMENSION R(K)
VMA=R( 1)
DO 100 I=2,K
IF (VMA.GE.R(I)) GOTO 100
VMA=R(I)

100 CONTINUE
RETURN
END

C
C
C
C SUB-PROGRAM FOR INITIALIZING THE DATA

SUBROUTINE INTI(X0,X,NI,NK)
DIMENSION X0(NK),X(M,NK)
DXO1=X0(1)
DO 510 I=1,NK
X0(I)=X0(I)IDXO 1

510 CONTINUE
DO 410 I=1,NT
DX1=X(I, 1)
DO 430 J=1,NK
X(I,J)=X(I,J)IDX1

430 CONTINUE
410 CONTINUE

RETURN
END

A.2 PROGRAM LISTING FOR ESTIMATION OF DISCONTINUITY
DIAMETER, DIATRACE

C DETERMINE THE MEAN DIAMETER FROM TRACE LENGTh DISTRIBUTION, USING
C Warburton's EQUATION THROUGH NUMERICAL SOLUTION

PARAMETER (N=21 ,NP=2 1)
DIMENSION X0(N+ 1 ),DIA(N),PX(N),PD(N),A(N,N),B(N),INDX(N),VV( 100)
DIMENSION A1(N,N),B 1(N),PFI)(N),PDX(N),SSUM(500),CC(500)

OPEN(9,FTLE='POT.DAT,STATUS='NEW')
C READ RUNNING-CONTROL ID

WRITE(*,5)
5 FORMAT(/1X,'JNPUT TRACE LENGTH DISTRIBUTION CONTROL ID: 0,1,2,3.',

&lx,'ID=O, no assumption on distribution of trace length;',lx,
&ID= 1,2,3 are respectively negative exponential, lognormal and',
& I x,'fractal trace length distribution 'I)

READ (*,*)ll)
C READ RUNNING-CONTROL,IC

WRITE(*,7)
7 FORMAT(/1X,'INPUT RUNNING-CONTROL NUMBER: 0/1. IC=1, LOOP-',

& SEARCHING; IC=0, POINT-SEARCHING',!)
READ (*,*)IC
WRITE (9,9)

9 FORMAT (111 X,NUMERICAL SOLUTION TO DIAMETER DISTRIBUTION WHEN',
& ASSUMING OR DETERMINING THE TRACE LENGTH DISTRIBUTION'!)

C READ THE VALUES ARRAY X0
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C READ (*,*)XO
C FINDING THE VALUES OF DIA(N)

DO 20 I=1,N
DIA(I)=(X0(I)+X0(I+ I ))/2

20 CONTINUE
C FINDING THE ACCUMULATIVE PROBABILITY OF TRACE LENGTH DISTRIBUTION

IF (ID.EQ.0) THEN
WRITE (*,22)

22 FORMAT (/IX,'no assumption on dis. trace length, INPUT ITS',lx,
" ACCUM. PROB. FOR ITS DISTRIBUTION & ITS MEAN TRACE LENGTH'/)

C READ(8,*)AMEAN, PX
GOTO 5555

ELSE IF (ID.EQ.1) THEN
GOTO 1111

ELSE IF (ID.EQ.2) THEN
GOTO 2222

ELSE IF (ID.EQ.3) THEN
GOTO 3333

END IF
1111	 WRITE(*,1112)
1112 FORMAT(1X,EXP-NEG. DIS, INPUT MEAN ITS LENGTH VALUE',/)

READ (*,*) AMEAN
WRITE(9,1 1 14)AMEAN

1114 FORMAT(1X,'MEAN TRACE LENGTH IS,F12.4)
WRITE (*,1 1 14)AMEAN

DO 1117 I=1,N
CALL FUNEXP(X0(I),X0(I+ 1 ),AMEAN,PXLU)
PX(I)=PXLU

PDX(I)=PX(I)/(X0(I+1)-X0(I))
1117 CONTINUE

GOTO 5555
2222 WRITE(*,2212)
2212 FORMAT(1X,'INPI.JT CONTROL VALUES FOR MEAN LENGTH, u, Sigma,!)

READ (*,*) XU,XSIGM
AMEAN=EXP(XU^XSIGM*XSIGM/2.)
WRITE(9,2214)XU,XSIGM,AMEAN

2214 FORMAT(1X,'XU=',F8.4,3X,'XSIGM=',F1 1 .4,3X,X(MEAN)=,F12.4)
WRITE (*,22 1 6)AMEAN

2216 FORMAT(/1X,'MEAN TRACE LENGTH FOR LOG-NOR. DIS. IS',F1O.4/)
DO 2218 I=1,N

CALL FUNLN(X0(I),X0(I+ I ),40,XU,XSIGM,PXLU)
PX(I)=PXLU

PDX(I)=PX(I)/(X0(I+1)-X0(I))
2218 CONTINUE

GOTO 5555
3333 WRITE(*,33I2)
3312 FORMAT(1X,1NPUT CONTROL FOR FRACTAL MEAN LENGTH,L-X,U-x,D'))

READ (*,*) AD,BD,DD
AMEAN=DD/( 1 .0DD)*(BDAD*(BD/AD)**DD)/((BD/AD)**DD 1.0)
WRITE(9,33 14)AD,BD,DD,AMEAN

3314 FORMAT( I X,'X(L)=',F8.4,3X,'X(U)=',F1 I .4,3X,'D(FRAC.)=',F8.3,3X,
&'X(MEAN)=',F12.4)

'WR1TE (*,33 I 6)AMEAN
3316 FORMAT(/1X,MEAN TRACE LENGTH FOR FRAC. DIS. IS ,F10.41)

DO 3318 I=1,N
CALL FIJNFRA(X0(I),X0(I^ I ),AD,BD,DD,PXLU)
PX(I)=PXLU

PDX(I)=PX(I)I(X0(I+1 )-X0(I))
3318 CONTINUE
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C NORMOLISING PX(I)
5555 SSM=0.0

DO 45 I=1,N
SSM=SSM^PX(I)

45 CONTINUE
WRITE (*,*) SSM
D041 I=1,N
PX(I)=PX(I)/SSM

41 CONTINUE
C

WRITE (9,44)
WRITE (9,33) (I,X0(I),DIA(I),PX(I),PDX(I),I=1 ,N)

44 FORMAT (/5X,*I*,3X,**X(I)**,2X,'**DIA.(I)*',2X,'*PDF(I)****
&**PDX(I)***'i)

33 FORMAT (1X,14,2F12.4,2F12.6)
WRITE (9,55) N+l,X0(N+1)

55 FORMAT (IX,14,F12.4)
C ARRANGING THE ELEMENTS BELOW DIAGONAL AS 0

DO 80 I=2,N
DO 60 J=1,I-1
A(I,J)=0.0

60 CONTINUE
80 CONTINUE
C FINDING THE VALUES OF DIAGONAL ELEMENTS

DO 120 I=1,N
A(I ,I)=SQRT(DIA(I)* *2x0(I)**2)

120 CONTINUE
C FINDING THE VALUES OF ELEMENTS ABOVE DIAGONAL

DO 160 I=1,N-1
DO 140 J=I+l, N
A(I,J)=SQRT(DIA(J)**2X0(J 1 )**2)SQRT(DIA(J)* *2X0(J)**2)

140 CONTINUE
160 CONTINUE
C COPY ORIGINAL A(N,N)

DO 175 I=1,N
DO 165 J=1,N

Al (I,J)=A(I,J)
165 CONTINUE
175 CONTINUE
C WRITE (*, 199) ((A(I,J),J= 1 ,N),I= 1 ,N)
199 FORMAT(1X,14F5.3)
C CALL LUDCMP TO GET THE BASIC MATRIX FOR
C SOLVING THE LINEAR EQUATION SET

CALL LUDCMP(A,N,NP,INDX,D)
C INPUT OR ADJUSTED TO THE MEAN TRACE LENGTH

IF (IC.NE.0) GOTO 222
200 WRITE(*,211)
211 FORMAT(IX,'INPUT A NEW VALUE OF THE JOINT DIAMETER'))

READ (*,*)C
GOTO 244

222 IA 1 M=ANINT(0.25*AMEAN)
IA2M=ANINT(0.9*AMEAN)
IA3M=IA2M-IA 1M
DO 500 IA=l,4*IA3M
C=0.25*IA+IA IM

244 IF (C.EQ.0.0) GOTO 999
DO 220 I=1,N
B(I)=PX(I)*C

C COPY ORIGINAL B(I)
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B I (I)=PX(I)*C
220 CONTINUE
C CALL SUB-ROUTINE to SOLVE THE LINEAR EQUATION SET

CALL LUBKSB(A,N,NP,INDX,B)
c examing if PD(i)> or =0

do 230 i=1,n
if (b(i).GE.0) goto 230
write (*,232)

232 format (/lx,'there is some P(i)<0, please adjust X(i)'/)
goto 999

230 continue
C WRITE (*,*)B
C CALL SUB-ROUTINE TO IMPROVE THE SOLUTION
C DO2401=1,5

CALL PRO VE(A 1 ,A,N,NP,INDX,B I ,B)
C240 CONTINUE

DO 260 I=1,N
PD(I)=B(I)

260 CONTINUE
C EXAMINING WHETHER SUM OF PD(I) EQUAL TO 1

SUM=0.0
DO 280 I=1,N
SUM=SUM+PD(I)

280 CONTINUE
IF(IC.EQ.0) GOTO 299
CC(IA)=C
SSUM(IA)=SUM

IF (IC.NE.0) GOTO 290
299 IF (ABS(SUM-1).LE.0.005) GOTO 555

write (*,*) B
GOTO 200

290 IF (ABS(SUM-I).LE.0.005) GOTO 555
500 CONTINUE

GOTO 666
555 WRITE (9,3 1 1)C,SUM

WPJFE(*,*) B
311 FORMAT(//1X,MEAN DIAMETER=,F10.4,5X,'SUM OF ACCU. PROB.=',F10.5)
C COMPUTING THE PROBABILITY DENSITY OF DIAMETER

DO 300 I=1,N-1
PFD(I)=PD(I)/(DIA(I+1 )-DIA(I))

300 CONTINUE
C PFD( 1 )=PD(I )/(DIA( 1 )/2+(DIA(2)-DIA( 1))/2)

PFD(N)=PD(N)/(DIA(N)-DIA(N- 1))
WRI1'E (9,355)
WRITE(9,333)(I,DIA(I),PD(I),PFD(I),I= 1 ,N)

355 FORMAT(/1X,'*I* ***DIA.(I)***ACCUM. P(D)*****PROB.DENS. g(d)****/)
333 FORMAT (1X,14,3F12.5)

GOTO 999
666 WRITE(9,688)

WRITE(*,*)B
WR1TE(*,*)C,SUM
WRiTE (9,677) U,CC(I),SSUM(I),I= 1 ,4*IA3M)

688 FORMAT(1X,'**I*********C******SUM******,)
677 FORMAT (1X,14,2F12.5)

DATA X0I0.5 ,75, 130,195,265,335,435,525,635,750,875,1000,1140,1250,
& 1445,1675,1900,2200,2450,2675,3000,3400/

999 STOP
END

C
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C MAIN PROGROMME END
C
C
C FINDING THE ACCU. PROBABILITY OF NEG-EXP TRACE LENGHT DISTRIBUTION
C NEGTIVE-EXPONENTIAL DISTRIBUTION

SUBROUTINE FUNEXP(XL,XU,AM,PX)
PX=( I -EXP(-XU/AM))-(1 -EXP(-XIJAM))
RETURN
END

C
C
C FINDING THE ACCU. PROBABILITY OF LOGNORMAL TRACE
C LENGTH DISTRIBUTION USING MUNERICAL INTEGRATION

SUBROUTINE FUNLN(XL,XU,NH,BU,BSIGM,PX)
X=XL
H=(XU-XL)/NH
X 1=(LOG(X)-BU)IB SIGM
FX=1 ./(SQRT(2*3. 142)*BSIGM*X)*EXP(0.5*X1 **2)
S=0.0
DO 10I=l,NH
SI=FX*H
S=S+SI
X=X+H
X1=(LOG(X)-BU)IBSIGM
FX=1 .I(SQRT(2*3. 142)*BSIGM*X)*EXP(0.5 *)( **2)

10 CONTINUE
PX=S
RETURN
END

C
C
C FINDING THE ACCU. PROBABILITY OF FRACTAL TRACE LENGHT DISTRIBUTION

SUBROUTINE FUNFRA(XL,XU,AD,BD,DD,PX)
C
C FRACTAL DISTRIBUTION

PX1=( 1(AD/XL)**DD)I( 1 (ADfBD)**DD)
PX2=( I (AD/XU)**DD)/( 1(ADIBD)**DD)
PX=PX2-PX1
RETURN
END

C
C
C
C GIVEN AN N*N MATRIX A, WITH PHYSICAL DIMENSION NP, THIS SUBROUTINE
C REPLACE IT BYTHE LU DECOMPOSITION OF A ROWWISE PERMUTATION OF ITSELF

SUBROUTINE LIJDCMP(A,N,NP,INDX,D)
PARAMETER (NMAX= 100,TINY= 1 .OE-20)
DIMENSION A(NP,NP),INDX(N),VV(NMAX)
D=1.
DO 121=1,N
AAMAX=O.
DO 11 J=1,N
IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(Ij))

11	 CONTINUE
IF (AAMAX.EQ.0 ) PAUSE 'Singular matix.'
VV(I)=I JAAMAX

12 CONTINUE
DO 19J=1,N

IF (J.GT.1) THEN
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DO 14 I=1,J-1
SUM=A(I,J)
IF (I.GT.1) THEN

DO 13 K=1,I-1
SUM=SUMA(I,K)*A(K,J)

13	 CONTINUE
A(I,J)=SUM

ENDIF
14 CONTINUE

ENDIF
AAMAX=O.
DO 16 I=J,N

SUM=A(I,J)
IF (J.GT.1) THEN

DO 15 K=1,J-1
SUM=SUMA(I,K)*A(K,J)

15	 CONTINUE
A(I,J)=SUM

ENDIF
DUM=VV(I)*ABS(SIJM)
IF (DUM.GE.AAMAX) THEN

IMAX=I
AAMAX=DUM

ENDIF
16 CONTINUE

IF (J.NE.IMAX) THEN
DO 17 K=1,N
DUM=A(IMAX,K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM

17 CONTINUE
D=-D
VV(IMAX)=VV(J)

ENDIF
INDX(J)=IMAX
IF(J.NE.N) THEN

IF (A(J,J).EQ.O.) A(J,J)=TINY
DUM=1 JA(J,J)
DO 18 I=J+1,N
A(I,J)=A(I,J)*DUM

18 CONTINUE
ENDIF

19 CONTINUE
IF(A(N,N).EQ.O.) A(N,N)=TINY
RETURN
END

C
C
C SOLVES THE SET OF N LINEAR EQUATIONS A*X=B. HERE A IS THE MATRIX A
C RATHER ASITS LU DECOMPOSITION, DETERMINED BY THE SUBROUTINE LUDCMP

SUBROUTINE LUBKSB(A,N,NP,INDX,B)
DIMENSION A(NP,NP),INDX(N),B(N)
11=0
DO 12 I=1,N

LL=INDX(I)
SUM=B(LL)
B(LL)=B(I)
IF (ll.NE.0) THEN

DO 11 J=fl,I- 1
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SUM=SUMA(I,J)*B(J)
CONTINUE

ELSE IF (SUM.NE.0.) THEN
11=1

ENDIF
B(I)=SUM

12 CONTINUE
DO 141=N,1,-1

SUM=B(I)
IF (I.LT.N) THEN
DO 13 J=I^1, N
SUM=SUMA(I,J)*B(J)

13 CONTINUE
ENDIF
B(I)=SUMJA(I,I)

14 CONTINUE
RETURN
END

C
C
C IMPROVE THE SOLUTION

SUBROUTINE PRO VE(A,ALUD,N,NP,INDX,B ,X)
PARAMETER (NMAX=1 00)
DIMENSION A(NP,NP),ALUD(NP,NP),INDX(N),B(N),X(N),R(NMAX)
REAL*8 SDP
DO 12 I=1,N

SDP=-B(I)
D011 J=1,N

SDP=SDP+DBLE(A(I,J)*DBLE(X(J)))
11 CONTINUE

R(I)=SDP
12 CONTINUE

CALL LUBKSB(ALUD,N,NP,INDX,R)
DO 13 I=1,N

X(I)=X(I)-R(I)
13 CONTINUE

RETURN
END
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APPENDIX B GENERATING RANDOM NUMBERS AND COMPILING

GROUPS OF INPUT DATA

B.l GENERATION OF RANDOM NUMBERS WITH UNIFORM

DISTRIBUTION

A random number generator, named GO5CAF, for producing random numbers with

uniform distribution is called by RANFRA. The program RANFRA (see Appendix

B.2) is for generating the real numbers with fractal distribution for simulating natural

discontinuities in rock masses. The generator GO5CAF for producing random numbers

with uniform distribution has also been used to generate the data files of dip direction

and dip of discontinuities in the simulations. This generator is a standard NAG routine

available on the mainframe at QMWC (Numerical Algorithms Group, 1984).

The routine GO5CAF returns the next pseudo-random number from the basic

uniform [0,1] generator. The basic generator uses a multiplicative congruential

algorithm:

bj=1313xb, mod
	

(B-i)

The integer b,^j is divided by to yield a real value y in the range of 0 and 1.

The value of b1 is preserved internally in the code. The initial value of, is set by

default to 123456789x(232+i).

If a pseudo-random real number from a uniform distribution between amin and

a77 (amjn<a,,) rather than 0.0 and 1.0 is required, a call to Nag GO5DAF has to

be made, which returns a pseudo-random number s taken from a uniform distribution

over the interval (amin, am)

s=amax+(am-amjn)y,	 (B-2)

where, y is a random number from a uniform distribution over (0,1), generated by

GO5CAF.

The following are two examples of them.

(1) Random numbers varying in the range of 170 and 190
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185.9025

174.5143

177.4256

174.5007

187.5749

(2) Random numbers varying in the range of 80 and 110

87.4256

84.5007

97.5749

80.9495

83.6114

B.2 GENERATION OF ARTIFICIAL DISCONTINUITIES WiTH FRACTAL
SPACINGS AND THE PROGRAM RANFRA

To generate a uniform probability distribution (see Appendix B.1), we know the

probability of generating a number between x and x+dr, denoted p(x)dx, is given by

1dx	 0<x<1
p(x)dx =
	 otherwise	

(B-3)

The probability distribution p(x) is normalised, so that

S p(x)dr = 1.	 (B-4)

Suppose that we generate a uniform variable x and then take some prescribed

function of it, y(x), the probability distribution of y, denoted p(y)dy, is defined by the

following basic transformation law of probabilities, which is simply given by

Ip(y)dyl = Ip(x)dx) I, 	 (B-5)

or



dx
p(y)=p(x)—.

dy
(B-6)
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dx
—=f(y).
dy

(B-7)

1

Uniform
variable in

x

0	 Transformed variable out

Fig. B. 1 Generation of desired distribution from uniform variable using

transformation (after Press et al., 1986)

Let us see what is involved in using the above transformation method to generate a

desired distribution of y, say one with p(y)=f(y) for a positive function whose integral

is 1 (see Fig B.1 ).

According to Eqn. B-6, we need to solve the differential equation

The solution to Eqn. B-7 is just x=F(y), where, F(y) is the indefinite integral off(y).

The desired transformation which takes a uniform variable into a distribution asf(y) is

therefore

y(x)=F'(x),	 (B-8)

where F 1 is the inverse function to F. Eqn. B-8 has an immediate geometric

explanation (see Fig. B.!). Since F(y) is the area under the probability curve to the left
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of y, Eqn. B-8 is just the prescription: select a uniform random x, then find the value y

that has that fraction x of probability area to its left, and return the value y. In other

words, for a continuous random variable, if the cumulative distribution function is

F(x) then for a uniform (0, 1) random variable, u, y=F 1(u) will have the cumulative

distribution function F(x).

Whether the transform method will work is dependent upon whether it is feasible

to compute the inverse function F 1 (x). Sometimes, it is, and sometimes it is not. For

a fractal distribution

F(x) = _–D
D

F'(x) , the inverse function to F(x) is therefore as follows

F1 (X)...( D	 -(1/D)—x)
A

(B-9)

(B-1O)

We are therefore able to generate a value distributed fractally by firstly creating a

pseudo-random real number y from a uniform distribution between 0 and 1, then

changing y to the value u by u =F 1(y) defined by Eqn. B-1O. A FORTRAN

programme named RUNFRA for generating the pseudo-random real number with

fractal distribution has been developed.

The random number generator, i.e. the programme RANFRA has been used to

generate real numbers with fractal distribution for simulating natural discontinuities in

rock masses. The generator has to be jointly used with the generator for producing real

numbers with uniform distribution, which is a standard NAG routine available on the

mainframe at QMWC.

Running the programme RANFRA in the mainframe, the real numbers with fractal

distribution for simulating natural discontinuities in rock masses can be obtained. The

program of this generator is listed below. The numbers obtained have been used to

form the spacing data files of a fractal distribution with given fractal dimensions or

principal mean spacings.
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The program listing for RANFRA

* Generator of random number distributed fractally (f(x)=AxCl4D),
* where D is the fractal dimension defined by number-frequency relationship
* N(x)=Cx4 , compiled by P. Lu, in QMWC, London Univ. in May, 1994

* RUNFRA Program Text
* .. Parameters..

INTEGER	 NOUT
PARAMETER (NOUT=6)

*	 .. Local Scalars..
DOUBLE PRECISION X, Y(100), A, X0, BM,XMEAN, D
INTEGER	 I

* .. External Functions..
DOUBLE PRECISION RUNFRA
EXTERNAL RUNFRA

* .. External Subroutines..
EXTERNAL GO5CBF

* .. Executable Statements..
WRJTE (*,*) 'INPUT VALUES OF Xmin,Xmax,D'
OPEN (NOUT, STATUS=NEW, FILE='of.dat')

WRITE (NOUT,*) 'Fractal Rundom Generation Program Results'
READ (*,*)X0,BM,D

c	 X0=0.05
c	 BM=10.0

D=0.50
A=D*X0**D/( 1 (X0/BM)* *D)
XMEAN=A/(1 _D)*(BM**( 1 D)_X0**( 1 -D))
WRITE (NOUT,99) X0,BM,XMEAN,A,D

99	 FORMAT(//1X,'Low Cut-off X0=',F6.3, 2X,'Upper cut-off B=', F8.3,2X
*'Average Spacing S=',F10.4, 1 X//'Coefficient A=',Fl 2.6,5X,
*'Fractal Dimension D=',F10.3)

WRITE(NOUT,*)
CALL GO5CBF(0)

DO 201=1, 100

X = RUNFRA(A,D,X0)

*	 Y(I)=X
WRITE (NOUT,99999) X

20 CONTINUE
c	 WRITE (NOUT,99999)Y

STOP

99999 FORMAT (lx,F12.4)
END

FUNCTION RUNFRA(A,D,X0)
External Functions..

DOUBLE PRECISION A,D,GO5CAF,X,X0
EXTERNAL GO5CAF
DOUBLE PRECISION RUNFRA

RUNFRA=(X0**(D)G05CAF(X)*DIA)**((1/D))
RETURN
END
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An example of random numbers with fractal distribution has been represented as

follows, where the lower cut-off is 5 cm, upper cutoff is 10 m; the fractal dimension is

0.24, and the average spacing is 1.20 m; only the first 20 numbers have been listed.

1.720

0.105

0.183

0.104

3.234

0.058

0.089

0.237

0.056

0.463

6.3 18

0.600

0.651

0.863

0.096

3.294

0.166

0.3 12

0.139

0.069

B.3 GENERATING GROUPS OF DISCONTINU1TIES AND COMPILING DATA

Using the generated random numbers described in B. 1 and B.2, we can compile

input data files for running the programme BLOCKS (Wang, 1992) according to the

assumptions and simplifications made in Section 3.6. Among these data files, one

kind is orientation data files which are formed by uniformly distributed random

numbers, another is the spacing data files which are formed by random numbers with

fractal distributions.
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The mean orientations of three sets of discontinuities are assumed to be (1) north-

south striking and vertical (N-S vertical set); (2) east-west striking and vertical (E-W

vertical set); and (3) horizontal (H set). The ranges of the random variation of the dips

and dip directions for them are illustrated in Table B. 1

Table B. 1 Orientation paramet

Set	 Mean orientation

No.	 description

1	 Horizontal

2	 E-W vertical

3	 N-S vertical

in the three sets of discontinuities simulated

Range of dip	 Range of dip
(0)	 direction (°)

	

0-10	 0-360

	

80-100	 170-190

	

80-100	 80-100

Note the convention used to describe the dip. Dip is usually recorded as 0 - 900.

Here we used the convention out of this range. This is for expressing conveniently the

direction sense of a plane. Using this convention, a discontinuity having a dip

direction 170° and a dip 95° or -85° will be recorded to be 3500/850.

In order to form a group of discontinuities, not less than nine data files are

requested. Among them, three are the orientation data files for dips, three are the

orientation data files for dip directions, and the last three are the spacing data files.

More than sixty groups of such data files have been generated.

TableB.2 Samp

Discontinuity

No.

1

2

3

4

5

of input data of simulated discontinuities for one set

Intercepts	 Dip direction	 Dip

(m)	 (0)	 (0)

	1.720	 185.9025	 87.4256

	

1.824	 174.5 143	 84.5007

	2.007	 177.4256	 97.5749

	

2.111	 174.5007	 80.9495

	

5.345	 187.5749	 83.6114

To compile a group of data files of simulated discontinuities, the first discontinuity

in a set is formed by selecting one data starting at any point from each of three

selected data files (i.e. the intercept,dip direction and dip files). Selecting sequentially

another three data from these three data files respectively generates the second

discontinuity. Repeating this procedure until the needed number of discontinuities in
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each set has been obtained, the input file for this group of discontinuities is compiled.

For example, the combination of the two example data for orientation listed in B. 1,

and the first 5 data listed as the example data in B.2, gives five discontinuities. The

spacing of these discontinuities is actually an example of one which holds a fractal

statistical distribution with a fractal dimension of 0.24 (the mean principal spacing is

about 1.2 m). Their orientations randomly distributed with the dip direction from 170°
1900 , and the dip from 80 - 110°, as shown in Table B.2.
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APPENDIX C DERIVATION OF THE TRANSFORMATION AREA A,

EXAMINATION OF THE MEAN/MEDIAN RELATION

SaIS5O, AND THE RENORMALISATION GROUP METHOD

C. 1 DERIVATION OF THE TRANSFORMATION AREA AA

Generally, suppose that both IBSD and BBSD hold a theoretical distribution and

their cumulative curves are respectively represented by both functions P1(s) and Pb(s),
as illustrated in Fig. C.1. It follows that AA can be obtained through the following

equations.

M=5Pb (S)dS+(S, —S,,)—rl(S)dS,	 (C-i)

where, Sub and Sib are respectively the upper and lower boundaries of BBSD curve;

Sui and Sj are respectively the upper and lower boundaries of IBSD curve.

Fig. C. 1 General illustration of determination of AA

Now let us consider the physical significance implied by the following integration.

I 
fPp	 (C-2)
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Suppose that f(x) represents the distribution function of block size, i.e. the

probability density function, and P(x) is the cumulative probability. It follows that the

corresponding cumulative distribution can be written as

P(x) = P(x ^ X) =ff(t)dt,	 (C-3)

where, xi is the lower boundaiy of block size which may be zero. Hence

5 P(x)dx 
= 5:: z f(t)dt) dx,	 (C-4)

where, X is the upper boundary of block size. The laws governing definite integration

allow for the integrating order to be exchanged provided the integration limits of

variables are correspondingly changed (see Fig. C.2). Changing the integration order

often turns intractable problems into solvable ones.

Fig. C.2 illustration of change of integration order

As for the integration represented by Eqn. C-4, the definite integration of integrated

f(t) is over [xi, x], i.e. t varies between [x x]; and the integration of integrated

(5 f(t)dt) is over [xb x], i.e. x varies between [xi, xv]. The integration region is a

triangle of the t-x co-ordinate plane, so that when the integration of variable x is

advanced over t, the corresponding change of limits of integration has to be made, as

illustrated in Fig. C.2. Thus, Eqn. C-4 is developed into:
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5X JX 

f(t)dt) dx = 5 s:" 
f(t) dx) dt = 5" (f(t)f" dx) dt

=JX(xu —x)f(x)dx =f"xf(x)dx-5"xf(x)dx
	 (C-5)

According to both definitions of the probability density function and the mean

value Xa, we know that

Xa =5xf(x)dx,

and

fXf dx =1.

Then, having

px"

J P(x)dx=x—X0
XI

(C-6)

(C-7)

(C-8)

It is seen from the aforementioned derivation that integration of I = 5 P ( x ) dx

is a kind of indicator of the mean size of the blocks. Substitution of Eqn. C-8 into

Eqn. C-i yields

M = Z s)d5 + (S 1 - Sn,,) - 5F(S)dS

= (SUb - S) + (S - Sn,,) -	 - Sag)	 (C-9)

= 5a1 - Sab

Therefore, it becomes clear that the A, in fact, represents the differencde of mean

block sizes before and after blasting.

In the derivation to Eqn. C-9, there is no constraint on the form of either Ps(S) or

b(5); it thus follows that the above derivation can be applicable to any form of the in-

situ or blasted block size distributions.



=
Sloe,	 '

(C-iOa)

JL, = (_
Sb

Sloe,,

(C-lOb)

1
pl ( SI ) =

(
'm	 I

1001 /

(C-i la)

1
p1 (S,,) =

(S 	
\mth

lOOb I

(C-i ib)
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The form of AA when both IBSD and BBSD hold either the Schuhmann or the

Ros-Ram distribution can be derived as follows.

Schuhmann Equation

Suppose that both the IBSD and the BBSD hold the Schuhmann distribution, i.e.

both have the forms as follows

Now, the probability density function for the Schuhmann distribution is given by

the following equations

According to Eqn. C-9, the A is given by the following equation

M = a:

	

.IOOj	 5IOOb

= J	 S,[p,(S,)]dS, - Jo	 Sb[Pb(Sb)]db	 ' (C-i2)

1_________	 __________ (m,—I) ]dS,,

	

5SiOO	 1	 5(m_I) 
]dS, - J0
	

kS'b [( ç'	 b- 0	 (5)mth i
'l00b /

i.e.

1PSI00

	

LA = I	 S[( 1 m S(m_I)]dS - J0
	 Sb [	 mth 

c(mth_l)]ds
.10 S1001)	 (S100,,)

(C-13)
____________	 mSb

	

m5,	
-	 Sloeb

m11 +1	 mSb+l



- (L )"b
5',

1(S,) = 1—e (C- 14a)

_(!fr..)"th

F,(Sb ) = 1—e Sb (C- 14b)
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Ros-Ram distribution

II both the IBSD and the BBSD exhibit a statistical dependence according to the

Ros-Ram equation, i.e. having the following distribution forms,

The probability density function for the Ros-Ram distribution is then given by

_(L. )"l

p,(S,) 
=	 SI	 S

(S)"\ ci

"th

Pb(''b) 
=	 sb	 S'e

(SCb)flth b

(C-15a)

(C-15b)

In contrast to the previous Schuhmann case, the upper and lower integration

boundaries in Eqn. C-15 are the same, i.e. S1 and Sib are zero and S or 5ub are °°.

Thus, the AA is given by.

L\A = ai	 ab

= fs1[ p1(s1)]ds, - J Sb [ pb ( Sb )] dS,,	 ,(C-17)

S )U	 L)'th

= IS.[	 ]dS, -	
' sb Sb th_) e	 ]dSb

JO ' S i"C'	 (Scb)flth

i.e.

_(L)'th

=	 [Se " }dS, -	 [5	 Srô }IS
b	 (C-18)

0 (S)'	 0 (Scb)flth

With making a substitution of the type (-f- )" = t, and following the definition of

the F function (see Eqn. 6-9), it yields
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=	 t	 e ]dt - Sth J t	 e_t ]dtISA	 sc,I (-+I)
1	 1	 (C-19)

= S, T(l + -) - SCb F(1 + -)
si	 sb

C.2 EXAMINATION OF THE MEAN/MEDIAN RELATION Sa/S50

The transformation area ISA, as illustrated in Appendix C.! (see Eqns. C-13 and C-

19), is related to both characteristic size and the steepness coefficient which jointly

govern a block size distribution. This implies that only using a size parameter, say,

S50 to describe the influence of in-situ block size distribution of a rock mass on blast

result is insufficient.

The physical significance of the difference between the mean blocks size Sa and

the 50% passing size S50 is given below despite their convergence in many cases.

The mean blocks size Sa is defined (see Eqn. 6-7) by

= 5'Sf(S)dS
	

(C-20)

whereas the S50 is the 50% passing size corresponding to 50% passing size on a

percentage passing-size curve. Taking block sizes with the Ros-Ram distribution as an

example, their difference is examined as follows.

Now
_(L)'¼

P(S)=1—e S,

and the probability density function is then given by

s "p(S) = e

hence

(C-21)

(C-22)

S
___________	 1Sa = JS[_ 5 

S'e	 IdS = Saf(1 +	 ).	 (C-23)°	 (S)'	 ns



s	 r(1^)

S50	 (1n2)
(C-25)

295

For the Ros-Ram distribution, the 50% passing size is given by

S50 = s(ln2),	 (C-24)

hence for the Ros-Ram distribution case, the difference between the mean blocks size

Sa and the 50% passing size S50 is given by

C.3 RENORMALISATION GROUP METHODS

Fragmentation is a catastrophic phenomenon which exhibits sudden or catastrophic

change, much as a system undergoing a phase change. The feature of a phase change is

a catastrophic change of macroscopic parameters of a system under a continuous

change of the state variables in a system. A renormalisation group method has been

used to study scale invariant processes that exhibit catastrophic change (Allegre et al.

1982; Turcotte, 1986, 1992). The renormalisation group method often produces fractal

statistics and explicitly utilises scale invariance. The method is implemented in such a

way that a relatively simple system is considered at the smallest order, the problem is

then renormalised to utilise the same system at the next larger order; the process is

iterated at larger and larger orders.

The rock mass is assumed to develop microfracturing under applied external force,

i.e. explosive energy. For simplicity, a cube of rock mass with a linear length of h is

considered, as shown in Fig. C.3. This cube is called a cell, which is divided into eight

smaller cubic elements each with a linear length of h,2. Now the attention is paid to

one of eight cubic elements. It becomes a cell of dimension h12 at order 1, and then

this cell is divided into eight first-order elements each with a length of h14, and so on,

as shown in Fig. C.3. This process is repeated at successively higher orders.

The essential assumption of the renormalisation group method is that the

probability Pc that a cell will break into 8 elements is the same at all orders. Pc is



Nm+i 2D

Nm
(C-28)

D= Ln8p

Ln2
(C-29)
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therefore referred to as the critical probability that leads to a catastrophic

fragmentation. If we consider the mth stage of fragmentation, the total number of

particles is

Nm (i -Pc)!' +(8pc)+(8pc)2 +(8p c)3	+(8PcY].	 (C-26)

Similarly, the total number of particles with the (m+i)th stage of fragmentation is

Nm+ J = (1 Pc)[ 1 +(8p c) +(8pc)2+(8p c)3 + ±(8pc)m +(8P/ ].	 (C-27)

From Eqns. 6-27, we can write

Combining Eqns. C-26, C-27 and C-28 and supposing rn>> 1 and 8Pc>1 , we have

approximately

It can be seen that in order to define a fractal dimension, the range allowed for the

probability of fragmentation is l/8<Pc<l. Once Pc for a fragment process is obtained,

the correspond fractal dimension D can be determined.

The division into 8 cells is not unique, for example, a cubic cell with dimension h

can also be divided into 64 cubic elements each with dimension h14. However, it has

been shown that the values of D are independent of the renormalisation configuration

chosen (Turcotte, 1986).

Return now to the model illustrated in Fig. C.3. Following Allegre et al. (1982) and

Turcotte (1986), each element in a cell is assumed to be either fragile if it is permeated

with microfractures or sound if it is not. It is necessary to specify a condition for the

fragility (or soundness) of the cell in terms of the fragility (or soundness) of the

elements. In each cell, there can be zero to eight fragile elements and therefore there

are 28=256 possible combinations. Excluding multiplicities, there are 22 topologically

different configurations, as illustrated in Fig. C.4. The fragile elements are indicated by

the solid dots at the corners. Two states can be defined: when the local microfracture
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density in a cell is greater than a certain critical value, it is considered as fragile; when

it is less than that critical value, it is considered sound.

Fig. C.3 illustration of the renormalisation group approach to fragmentation (from

Turcotte, 1986)

ri
k	 iv .	 L	 .'

)	 1(S	 2a2	 2t•2;	 2Z;	 33'2	 3b(24	 3cS)

, 4
.)

4o(6)	 4t5.	 4c 24.	 4(24) 4e6J 4f(2)

r1	 r9J 1 r91
;24)	 5t:24)	 5cE	 6o i2	 Gb(12)	 6c(4)	 7(8)	 8(1)

Fig C.4 illustration of the topologically different configurations for fragile/sound

elements (Using "pillar of strength" condition, the fragile cells are underlined with a

solid line; using "plane of weakness" condition, the fragile cells are underlined with a
dashed line) (from Turcotte, 1986)
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Using different specifications of the condition for the fragility or soundness of a

cell, we can obtain different numbers of fragile cells. Clearly, the greater the number of

fragile configurations, the more fragile the rock mass, which in turn means the rock

mass can be more easily fragmented by blasting. If p represents the probability that a

cell at order n is fragile and Pn+1 represents the probability that a cell at order n+1 is

fragile. Then it can be shown (see Allegre et aL, 1982; Turcotte, 1986) that the

probability for a configuration with m fragile elements and k multiplicities is given by:

k(p ^i )" (1on+i )8-m

5b	 5c

Fig C.5 Fragile and sound cell using the "pillar of strength" condition (Allegre et

al., 1982)

Pr,

05

Co	
05

pn+1

Fig C.6 Relationship between probability of fragility Pn at order n, and probability

of fragility Pn+1 at order n+1 (from Turcotte, 1986)
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Allegre et al. (1982) considered the fragility at different scales and the related

fractal dimension by means of a "pillar of strength" criterion proposed. Under the

criterion of "pillar of strength", a cell will be considered as sound whenever there is a

"pillar" of sound elements that links two opposite faces, otherwise, it is considered to

be fragile. Examples of sound and fragile cells are shown in Fig. C.5 in which 5b is a

sound cell and 5c is fragile. As such the cells configured by 4f, 5c, 6b, 7 and 8 are

fragile and indicated by solid underlining in Fig. C.4.

In the above case, the probability, p,, a cell at order n being fragile can be

expressed as a function of the probability, Pn+1' a cell at order n+1 being fragile

(Allegre et al., 1982; Turcotte, 1986) by

.vn= (Pn+1)8+8(pn+1)7[1-(Pn+1)]+16(Pn+1)6[1-(pn+1)12
+8(pj)5[

=(Pn^i)4(3(Pn+1)48(Pn+i)314(Pn+i)2+2)
	

(C-30)

Subsequent orders in the hierarchy of the renormalisation group method are

obtained by considering elements of order n as cells of order n+1 The characteristic

dimension of the nth-order cell is h/2', and the characteristic dimension of the

(n+1)th-order element is h'2n+l . On the basis of the assumption of self-similarity in

the statistical distribution of microcracks, it follows that Eqn. C-30 will be valid at all

orders. The relationship of p, and Pn+1 is illustrated in Fig. C.6. The critical

probability that leads to a catastrophic fragmentation, Pc=O•896' can be derived

according to catastrophic theory (Allegre et al., 1982; Turcotte, 1986). As shown in

Fig. C.6, the points 0 and 1 are stable fixed points of the system; the iterative relation

crosses the line = Pn+1 at Pc=0896' which is a bifurcation that separates the region

of stable behaviour from the region of unstable behaviour. Substituting the value of

Pc°•896 into Eqn. C-29, it yields D=2.84 for the "pillar of strength" fragmentation

model.

Turcotte (1986) proposed an alternative "plane of weakness" criterion and

considered the fragility at different scales and the related fractal dimension. In the

"plane of weakness" model, the sides of a fragile element are assumed to form planes

of weakness. A cell is assumed as fragile if the sides of fragile elements from an

internal plane through the cell, and a cell is considered as sound if there is no plane of

weakness through the cell. As such the cells configured by 4a, 4d, 4e, 4f, 5a, 5b, 5c,

6a, 6b, 6c, 7 and 8 in Fig. C.4 are fragile and underlined by dashed lines (Turcotte,
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1986). Examples of sound and fragile cells are shown in Fig. C.7 in which 4c is a

sound cell and 4e is fragile.

4c	 4e

Fig C.7 Fragile and sound cell using the "weakness plane" criterion (Turcotte,

1986)

The "plane of weakness" fragmentation model is a more fragile one than the "pillar

of strength" model, since there are more failure configurations in the former model

than in the latter. This in turn means the rock represented by the plane of weakness

fragmentation model will be more easily fragmented by blasting. Now let us consider

the fragility at different scales and their fractal dimension. In this case, the probability

of fragile cells of order n, p, as a function of the probability of fragile cells of order

n-i-i p,..i-j is given (Turcotte, 1986) by

Pn = (Pn+i)8+8(Pn.i1)7
+56(,pj)5 [1-(,pj)]3 +38(pj)4 [l-(p^j)]4

= (Pn-i-1)4	 +88(,pj)2 -96 (pJ)+38]	 (C-31)

Similarly, it can be found that the critical probability that leads to a catastrophic

fragmentation, p_-O.49 and the related fractal dimension D is 1.97 (Turcotite, 1986).

It can be seen that the difference in fragility, and by inference the difference in

blastability, might be sensitive to the particular model of fragmentation that is

hypothesised, which can be represented by the difference of fractal dimensions.
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APPENDIX D CONTINUOUS RATING CHARTS FOR BLASTABILITY

ASSESSMENT

Rating in tenns of Point Load Strength Index

0.8

0.6

c 0.4

0.2

0

0 1	 2	 3	 4	 5	 6	 7	 8	 9	 10 11	 12

Point load strength index (MPa)

Fig. D. 1 Rating chart of the point load strength index of rock

Rating in terms of UTS

2	 4	 6	 8	 10	 12	 14	 16	 18	 20

UI'S (MPa)

Fig. D.2 Rating chart of the uniaxial tensile strength of rock
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Rating in terms of density of rock

o I—	 I	 I

1.5	 2	 2.5	 3	 3.5

Density of rock (t/mA3)

Fig. D.3 Rating chart of the density of rock

Rating in terms of elasticity of rock

I

0.8

0.6

0.4

0.2

o-K--	 I	 I

0	 40	 80	 120	 160	 200

E (GPa)

Fig. D.4 Rating chart of the elasticity of rock
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Rating in tenns of P-w velocity

1.5	 2	 2.5	 3	 3.5	 4	 4.5	 5	 5.5

P-wwlocity (knils)

Fig. D.5 Rating chart of the P-w velocity of rock masses

Rating in temis of Schmidt hardness value
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Schnik har&iess aIue

I
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O.6
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0
0.5

1

0.8
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0.2

0
0

Fig. D.6 Rating chart of the Schmidt hammer value of rock masses
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Rating in terms of Possion's ratio

0	 I	 I	 I	 I

0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45

Possion's ratio

Fig. D.7 Rating chart of the Poission's ratio of rock

Rating in temis of fracture toughness

	or	 I	 I	 I

	

0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4

Fracture toughness (MPa*mOS)

Fig. D.8 Rating chart of the fracture toughness of rock
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Rating in terms of mean discontinuity spacing

0.5	 1	 1.5	 2	 2.5	 3	 3.5

1s'kan scontinuity spacing (m)

Fig. D.9 Rating chart of the mean discontinuity spacing of rock masses

Rating in terms of the fractal dimension of IBSD
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Fractal imen.sion

Fig. D. 10 Rating chart of the fractal dimension of the IBSD of rock masses
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Rating in tenus of the ratio of in-situ to laboratoty P-w
velocity

0.8

0.6

0.4

0.2

0

0	 0.2	 0.4	 0.6	 0.8

Ratio of in-situ to laboratory P-wwlocity

Fig. D. 11 Rating chart of the ratio of P-w velocity of the in-situ rock mass to P-w

velocity of rock sample in laboratory

Rating in tenns of RQD of rock mass

0	 20	 40	 60	 80	 100

RQDof rock ns (%)

Fig. D. 12 Rating chart of the RQD value of rock mass
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Rating in terms of the cohesion of discontinuities

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9

Cthesion of hscontinuity (MPa)

Fig. D.13 Rating chart of the cohesion of discontinuity of rock mass

Rating in terms of the cohesion of discontinuities
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Cohesion of scontinuity (MPa)

Fig. D. 14 Rating chart of the friction angle for the shear strength of discontinuities

of rock masses
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APPENDIX E DISCONTINUITY DATA

E. 1 DISCONTINUITY DATA FROM A5 GLEN BENDS IMPROVMENT SITE

Discontinuity Mapping Data Sheet
General information

Job Number:	 / AS-i
	

Site Name:	 I Glen Bends /	 Rock Type	 / Siltstone
No. ofTape:	 /	 I /

	
Tape Azimuth: I	 125	 / Tape Plunge(+/-) /	 0

Sheet Number:	 / 1 / oft 1/
	

Operator(s)	 / P. LU /	 Date	 I 2/8/95 I

_____ __________ __________ Discontinuity Data	 ____________ ________
No.	 Type	 Intercept	 Attitude	 ____________ Semi-Trace	 length	 Notes

______ ____________ 	 (m)	 Dip Direction Dip Angle 	 (m)	 __________
1	 2*	 3	 4	 5	 6	 7
1 __________	 0.10	 280	 70	 5.00	 ________
2	 ___________	 1.15	 330	 18	 3.00	 _________
3 ___________	 1.75	 350	 10	 1.50	 _________
4 __________	 2.30	 40	 14	 2.00	 ________
5	 B	 3.50	 105	 40	 5.50	 ________
6 ___________	 4.40	 280	 80	 5.00	 _________
7 ___________	 4.70	 280	 75	 2.00	 _________
8 __________	 4.90	 290	 24	 1.80	 ________
9 ___________	 5.20	 300	 82	 0.50	 _________
10 ___________	 7.20	 350	 65	 5.00	 _________
11	 F	 7.75	 150	 70	 6.00	 _________
12	 B	 8.00	 315	 50	 6.00	 _________
13 ___________	 9.00	 328	 72	 5.00	 _________
14 __________	 9.60	 190	 68	 2.00	 _________
15 ___________	 10.55	 290	 90	 2.00	 _________
16 __________	 11.00	 330	 85	 5.00	 _________
17	 C	 12.20	 350	 85	 1.50	 _________
18 ___________	 12.40	 330	 75	 2.00	 _________
19 ___________	 13.20	 15	 60	 6.00	 _________
20 ___________	 14.35	 265	 85	 3.50	 _________
21 ___________	 15.20	 325	 30	 4.50	 _________
22 ___________	 15.60	 245	 85	 4.80	 _________
23 ___________	 16.70	 245	 70	 5.00	 _________
24 ___________	 17.00	 240	 85	 1.50	 _________
25	 C	 17.40	 242	 86	 2.50	 _________
26	 B	 17.70	 150	 82	 6.50	 _________
27	 F	 18.10	 150	 52	 6.50	 _________
28	 F	 18.70	 150	 50	 6.00	 _________
29 ___________	 19.00	 100	 55	 3.00	 _________
30 ___________	 19.40	 145	 65	 3.50	 _________
31 ____________	 19.70	 155	 70	 3.35	 _________
32 ___________	 20.80	 150	 53	 5.00	 _________
33 ___________	 20.90	 140	 50	 3.00	 _________
34 __________	 21.70	 100	 70	 1.00	 ________
35 ____________	 22.50	 340	 75	 7.00	 _________
36 ___________	 23.40	 340	 18	 1.50	 _________
37 ___________	 25.70	 155	 20	 0.80	 _________
38	 B	 27.40	 145	 64	 4.00	 _________
39 -	 F	 28.60	 110	 70	 5.00	 ________

- WflK - joint; L - cleavage; 1 - fault; - beaaing
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 / A5-2	 /	 Site Name:	 / Glen Bends / 	 Rock Type	 / Siltstone
No. of Tape:	 /	 I I	 Tape Azimuth: /	 293	 / Tape Plunge(+/-) /	 0

Sheet Number: / I / of / I /	 Operator(s)	 / P. LU I	 Date	 I 2/8/95 I

_____ _________ _________ Discontinuity Data	 ____________ ________
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace	 length	 Notes

______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7
1	 C	 0.45	 100	 85	 1.00	 _________
2	 B	 1.45	 50	 75	 5.00	 _________
3 ___________	 1.65	 270	 70	 5.30	 _________
4 __________	 1.70	 270	 80	 4.00	 ________
5	 B	 2.00	 130	 90	 1.00	 ________
6 ___________	 2.40	 230	 60	 2.50	 _________
7 __________	 2.95	 70	 75	 1.50	 _________
8	 B	 3.10	 340	 65	 7.00	 ________
9 __________	 3.60	 260	 74	 8.00	 _________
10	 F	 4.10	 60	 80	 6.00	 ________
11	 F	 5.60	 100	 85	 3.00	 _________
12 _________	 5.90	 110	 70	 6.00	 ________
13 ___________	 6.90	 50	 65	 4.70	 _________
14	 C	 7.00	 270	 70	 1.50	 ________
15 ___________	 7.35	 135	 60	 1.00	 _________
16 ___________	 8.25	 90	 85	 2.50	 _________
17	 B	 8.60	 110	 55	 6.00	 ________
18 ___________	 10.30	 320	 60	 4.50	 _________
19	 F	 10.40	 170	 55	 8.00	 _________
20	 F	 11.50	 30	 45	 5.50	 ________
21	 F	 12.90	 100	 40	 3.00	 ________
22 __________	 14.55	 190	 70	 1.50	 ________
23 __________	 15.00	 150	 52	 1.50	 ________
24 __________	 16.10	 160	 58	 1.50	 ________
25	 C	 16.90	 330	 85	 1.00	 _________
26	 F	 17.60	 190	 80	 10.00	 ________
27 __________	 18.00	 190	 70	 10.00	 ________
28	 F	 18.60	 190	 70	 10.00	 ________
29 ___________	 19.05	 190	 70	 10.00	 _________
30 ___________	 19.40	 185	 22	 3.50	 _________
31 ___________	 20.00	 170	 40	 2.50	 _________
32 __________	 21.40	 140	 60	 2.50	 ________
33 __________	 22.50	 180	 50	 3.00	 _________
34 __________	 23.40	 170	 52	 5.00	 ________
35 __________	 25.20	 10	 55	 1.00	 ________
36	 C	 25.80	 310	 55	 2.20	 ________

Iflank - joint; U - cleavage; t -fault; B - bedding
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Discontinuity Mapping Data Sheet

General Information

Job Number: / A5-3 / 	 Site Name:	 I Glen Bends /	 Rock Type	 /SiIt-/Iime-stone/
No. of Tape:	 /	 1 /	 Tape Azimuth: / 	 145	 / Tape Plunge(i-/-) /	 0

Sheet Number: / 1 / oft 1 / 	 Operator(s)	 I P. LU /	 Date	 / 2/8/95 I

_____ _________ _________ Discontinuity Data	 ___________ ________
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length	 Notes

______ ____________	 (m)	 Dip Direction Dip Angle	 (m)	 __________
1	 2*	 3	 4	 5	 6	 7
1	 F	 040	 180	 85	 600	 ________
2	 C	 1.60	 205	 55	 0.75	 _________
3	 C	 1.70	 200	 55	 0.75	 _________
4	 C	 2.00	 208	 55	 075	 ________
5	 C	 2.10	 208	 50	 0.75	 _________
6 __________	 2.20	 210	 52	 075	 ________
7 __________	 2.30	 200	 55	 075	 ________
8 __________	 2.50	 195	 52	 100	 _________
9 __________	 2.70	 195	 55	 1.00	 _________
10 __________	 2.90	 195	 56	 1.00	 _________
11	 B	 3.10	 270	 25	 1.50	 _________
12 __________	 3.40	 180	 28	 3.00	 _________
13 ___________	 3.70	 175	 50	 6.00	 _________
14 _________	 4.10	 172	 40	 900	 ________
15 __________	 4.40	 170	 70	 2.00	 ________
16 _________	 4.60	 170	 70	 200	 _______
17 __________	 4.70	 190	 72	 2.00	 _________
18 __________	 5.10	 310	 65	 050	 ________
19 _________	 5.40	 145	 80	 080	 _______
20 _________	 570	 5	 55	 10.00	 _______
21 _________	 5.90	 5	 54	 150	 _______
22 _________	 6.35	 130	 50	 100	 ________
23 _________	 6.80	 280	 52	 800	 ________
24 __________	 7.20	 170	 70	 0.80	 _________
25 ___________	 8.30	 140	 56	 8.00	 __________
26 ___________	 8.80	 200	 90	 2.50	 _________
27 __________	 10.65	 160	 70	 5.00	 _________
28 __________	 12.60	 150	 55	 1.50	 _________
29 ___________	 12.70	 170	 65	 3.00	 _________
30 _________	 13.40	 100	 72	 500	 ________
31 __________	 14.00	 160	 82	 600	 _________
32 ___________	 14.80	 235	 56	 10.00	 _________
33	 B	 15.80	 235	 56	 10.00	 _________

Blank - joint; C - cleavage; F - fault; B - bedding
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Discontinuity Mapping Data Sheet

General Information

Job Number: / A5-4
	

Site Name:	 / Glen Bends /	 Rock Type /Silt-/lime-stone /
No. of Tape:	 /	 1 /

	
Tape Azimuth: / 	 290	 / Tape Plunge(+/-) / 	 8

Sheet Number: / 1/of/i /
	

Operator(s)	 / P. LU I	 Date	 I 2/8/95 I

_____ _________ _________ Discontinuity Data	 ____________ _______
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace	 length	 Notes

______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7
1	 C	 2.30	 135	 80	 2.00	 ________
2	 B	 2.80	 210	 40	 >6.00	 ________
3	 B	 3.40	 210	 40	 >6.00	 ________
4	 C	 3.50	 80	 80	 2.00	 ________
5 ___________	 3.90	 340	 80	 2.00	 _________
6	 B	 4.00	 30	 15	 >6.00	 _________
7	 B	 4.50	 30	 15	 >6.00	 _________
8 __________	 4.60	 340	 80	 2.00	 _________
9	 B	 4.90	 30	 15	 >6.00	 _________
10 __________	 5.30	 110	 65	 1.50	 _________
11	 B	 5.50	 35	 20	 >6.00	 ________
12 __________	 5.60	 120	 60	 1.50	 ________
13	 B	 5.80	 210	 22	 >6.00	 _________
14 ___________	 5.95	 120	 60	 2.50	 _________
15	 C	 6.10	 120	 60	 2.00	 ________
16 __________	 6.50	 120	 60	 1.50	 ________
17 _________	 665	 120	 62	 180	 _______
18	 B	 7.00	 210	 22	 >6.00	 ________
19 ___________	 7.10	 125	 55	 2.00	 _________
20 ___________	 7.30	 125	 55	 1.50	 _________
21 ___________	 7.55	 125	 55	 1.50	 _________
22 ___________	 7.90	 100	 60	 2.00	 _________
23	 B	 8.00	 210	 22	 >6.00	 ________
24 ___________	 8.20	 100	 60	 2.00	 _________
25 __________	 8.30	 150	 60	 >6.00	 ________
26	 B	 8.70	 210	 22	 >6.00	 ________
27 __________	 9.40	 90	 85	 1.00	 ________
28 __________	 9.65	 90	 85	 1.00	 ________
29 __________	 10.05	 90	 85	 1.00	 ________
30 ___________	 10.15	 90	 85	 1.00	 _________
31 ___________	 10.25	 125	 40	 1.75	 _________
32 ___________	 10.45	 120	 42	 1.00	 _________
33	 B	 11.00	 210	 22	 2.00	 ________
34 __________	 11.30	 120	 42	 >6.00	 ________
35 _________	 11.80	 95	 80	 2.00	 _______
36	 B	 12.10	 200	 25	 >6.00	 _________
37 ___________	 13.00	 85	 70	 1.50	 _________
38 __________	 13.75	 90	 70	 1.00	 ________
39 ___________	 14.65	 90	 75	 2.00	 _________
40 __________	 15.50	 100	 75	 2.00	 ________
41 __________	 16.20	 190	 70	 2.00	 ________
42	 C	 16.45	 70	 80	 1.00	 ________

nianic - joint; C - cleavage; t - fault; B - bedding



General infornation

Job Number:	 / A5-5
No. of Tape:	 / 1

Sheet Number: / I / of /

312

Discontinuity Mapping Data Sheet

/	 Site Name:	 / Glen Bends /	 Rock Type /Silt-/lime-stone /
/	 Tape Azimuth: / 140 / Tape Plunge(+/-) I	 0	 /
2 / Operator(s)	 / P. LU /	 Date	 / 2/8/95 /

_____ _________ _________ Discontinuity Data	 ____________ _______
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace 	 length	 Notes

______ ____________ 	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7
I	 B	 1.50	 40	 35	 10.00	 ________
2 __________	 2.00	 190	 70	 1.00	 ________
3 ___________	 2.90	 190	 55	 10.00	 ________
4	 C	 3.80	 170	 60	 3.00	 ________
5 _________	 4.60	 170	 60	 2.00	 _______
6 __________	 5.05	 210	 60	 7.00	 ________
7 __________	 5.40	 180	 75	 3.00	 ________
8 __________	 5.70	 180	 60	 1.00	 ________
9	 B	 6.00	 195	 60	 10.00	 ________
10 __________	 7.10	 290	 60	 5.00	 ________
II ___________	 7.25	 190	 80	 1.50	 ________
12 __________	 7.70	 190	 70	 0.80	 ________
13 __________	 7.85	 205	 80	 1.20	 ________
14	 C	 8.60	 10	 75	 2.00	 ________
15 ___________	 9.25	 300	 75	 6.00	 _________
16 __________	 9.45	 210	 50	 1.50	 ________
17 __________	 10.20	 150	 52	 1.00	 ________
18 __________	 10.50	 120	 90	 2.00	 ________
19 __________	 11.20	 190	 55	 3.00	 ________
20 __________	 11.95	 190	 48	 2.00	 ________
21 ___________	 12.40	 200	 90	 2.00	 ________
22 ___________	 13.00	 200	 85	 2.00	 ________
23 ___________	 13.30	 200	 85	 2.00	 ________
24	 B	 14.00	 295	 85	 2.00	 _________
25 __________	 14.20	 315	 65	 5.00	 ________
26	 B	 15.00	 195	 50	 1.50	 _________
27 __________	 15.20	 315	 55	 3.00	 ________
28 ___________	 15.40	 350	 58	 2.50	 ________
29	 B	 16.30	 340	 50	 7.00	 ________
30 ___________	 16.40	 155	 25	 7.00	 ________
31 ___________	 16.55	 140	 60	 5.00	 ________
32	 B	 17.30	 150	 25	 8.00	 ________
33 __________	 18.20	 155	 68	 4.00	 ________
34 ___________	 18.60	 130	 90	 10.00	 ________
35 __________	 18.70	 140	 90	 2.00	 ________
36 ___________	 18.90	 150	 90	 3.00	 ________
37 ___________	 18.95	 150	 90	 1.00	 ________
38 __________	 19.10	 185	 90	 1.00	 ________
39 ___________	 19.40	 285	 90	 10.00	 ________
40	 B	 19.65	 315	 25	 4.00	 ________
41 __________	 19.75	 170	 90	 3.00	 ________
42 ___________	 19.95	 150	 90	 2.00	 _________
43 __________	 20.10	 190	 70	 10.00	 ________

Blank -jouzt; C - cleavage; t -fault; B - beading	 continuous
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-continued
Discontinuity Mapping Data Sheet

General Infor,nation

Job Number:	 / A5-5	 /	 Site Name:	 I Glen Bends /	 Rock Type /Silt-/lime-stone /
No. of Tape:	 /	 I /	 Tape Azimuth:	 / 140 /	 Tape Plunge(+/-) /	 0

Sheet Number: / 2 / oft 2 I	 Operator(s)	 / P. LU /	 Date	 / 2/8/95 /

______ __________ __________ Discontinuity Data 	 ______________ __________
No.	 Type	 Intercept	 Attitude _____________ Semi-Trace length 	 Notes

______ ___________	 (m)	 Dip Direction Dtp Angle 	 (m)	 ___________
1	 2*	 3	 4	 5	 6	 7
1	 B	 20.40	 155	 30	 600	 _________
2 __________	 21.50	 300	 80	 2.00	 __________
3 __________	 21.80	 130	 72	 1.00	 __________
4 __________	 22.20	 185	 80	 0.80	 __________
5	 B	 22.60	 180	 20	 1.00	 _________
6 ___________	 22.70	 270	 75	 1.00	 ___________
7 ___________	 23.00	 280	 85	 0.80	 ___________
8 __________	 23.20	 320	 80	 5.00	 __________
9 __________	 23.30	 315	 50	 3.00	 __________
10 __________	 24.10	 130	 65	 4.00	 __________
11 __________	 24.90	 310	 65	 10.00	 __________
12 ___________	 25.50	 135	 60	 3.00	 ___________
13 ___________	 26.60	 290	 70	 4.00	 ___________
14	 B	 26.90	 300	 28	 10.00	 ___________
15 ___________	 27.00	 205	 70	 2.00	 ___________
16 ___________	 27.05	 205	 70	 2.00	 ___________
17 __________	 27.10	 205	 70	 2.00	 __________
18	 C	 27.20	 205	 70	 2.00	 ___________
19 ___________	 27.50	 200	 70	 2.00	 ___________
20	 C	 27.85	 200	 70	 2.00	 __________
21 ___________	 27.90	 200	 75	 1.00	 ___________
22 __________	 28.15	 285	 75	 1.50	 __________

* blank - Joint; C - cleavage; Ji - fault; B - bedding
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Discontinuity Mapping Data Sheet

General Information

Job Number: / A5-6 /	 Site Name:	 / Glen Bends /	 Rock Type /SiIt-/lime-stone /
No. of Tape:	 / 1 /	 Tape Azimuth: /	 290 I Tape Plunge(+/-) /	 0

Sheet Number: / 1 I of / 1 I 	 Operator(s)	 / P. LU /	 Date	 / 218/95 I

_____ _________ _________ Discontinuity Data 	 ____________ ________
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length	 Notes

	

______ ___________	 (m)	 Dip Direction Dip Angle 	 (m)	 __________
1	 2*	 3	 4	 5	 6	 7
1	 ___________	 0.20	 290	 80	 3.50	 __________
2	 __________	 1.00	 265	 70	 2.80	 _________
3	 B	 1.30	 350	 35'	 5.00	 __________
4	 B	 1.70	 175	 35	 5.00	 _________
5	 B	 2.40	 170	 36	 4.50	 __________
6 ___________	 3.40	 205	 65	 2.00	 __________

	

7 ___________	 3.90	 210	 55	 0.80	 __________
8	 ___________	 4.90	 165	 35	 4.50	 __________
9 ___________	 5.40	 30	 65	 3.00	 __________
10 ___________	 6.20	 285	 90	 1.50	 __________
11	 B	 6.80	 170	 35	 4.00	 __________
12	 F	 7.20	 165	 38	 4.50	 __________
13 __________	 7.70	 105	 75	 0.80	 __________
14	 B	 8.30	 190	 35	 4.00	 __________
15	 B	 8.80	 175	 38	 4.00	 __________
16 __________	 9.00	 280	 75	 1.20	 __________
17	 C	 9.60	 205	 68	 1.00	 _________
18	 B	 10.20	 170	 38	 4.00	 _________
19	 B	 10.50	 160	 38	 4.00	 _________
20 ___________	 11.00	 275	 75	 1.50	 _________
21 __________	 11.70	 200	 72	 3.00	 _________
22	 F	 12.00	 175	 36	 6.00	 _________
23 ___________	 12.40	 295	 80	 4.00	 __________
24 __________	 12.70	 290	 85	 3.00	 _________
25	 C	 13.00	 185	 70	 0.65	 __________
26	 B	 13.20	 180	 25	 6.50	 _________
27 __________	 13.50	 195	 65	 2.00	 _________
28 ___________	 14.00	 15	 85	 1.50	 _________
29 ___________	 14.20	 305	 80	 1.50	 __________
30 ___________	 14.40	 20	 75	 5.00	 _________
31 ___________	 15.20	 190	 80	 1.50	 _________
32	 B	 15.90	 165	 35	 5.00	 _________
33 ___________	 16.10	 315	 85	 0.80	 _________
34 __________	 16.70	 295	 80	 1.00	 _________
35 ___________	 17.10	 10	 85	 1.50	 _________
36 ___________	 17.30	 175	 82	 1.80	 __________
37	 B	 17.60	 160	 40	 4.00	 _________
38 __________	 18.00	 110	 85	 0.60	 _________
39 ___________	 18.80	 10	 60	 0.40	 __________
40 __________	 19.30	 10	 65	 0.80	 _________
41 ___________	 19.50	 20	 40	 4.50	 __________
42 ___________	 19.90	 180	 65	 1.20	 __________
43	 B	 20.40	 175	 35	 5.00	 __________

* Blank - joint; C - cleavage; F - fault; B - bedding
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E.2 DISCONTINUiTY DATA FROM THE OVERSEAS QUARRY*

E2. 1 Discontinuity Data from Scanline Mapping Survey

Discontinuity Mapping Data Sheet
General Information

Job Number:	 / E214-1 I	 Site Name: /Overseas Quarry/ Rock Type	 I Limetone /
No. of Tape:	 / I /	 Tape Azimuth:	 /	 264 I Tape Plunge(+/-) / 	 0 /

Sheet Number: / 1 / of! 2 /	 Operator(s)	 I J. Simm /	 Date	 / 12/10/95 I

	______ __________	 __________ Discontinuity Data	 _____________ ________
No.	 Type	 Intercept	 Attitude	 ____________ Semi-Trace length	 Notes

	______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7

	

1 ___________	 0.07	 ___________ ___________ ______________ _________

	

2 __________	 0.19	 __________ __________ _____________ ________

	

3 ___________	 0.26	 ___________ ___________ ______________ _________

	

4 ___________	 0.42	 ___________ ___________ ______________ _________

	

5 __________	 0.66	 __________ __________ _____________ ________

	

6 ___________	 0.80	 ___________ ___________ ______________ _________

	

7 __________	 1.20	 __________ __________ _____________ ________

	

8 ___________	 1.33	 ___________ ___________ ______________ _________

	

9 __________	 1.48	 __________ __________ _____________ ________

	

10 ___________	 1.57	 ___________ ___________ ______________ _________

	

11 ___________	 1.74	 ___________ ___________ ______________ _________

	

12 ___________	 1.89	 ___________ ___________ ______________ _________

	

13 ___________	 2.04	 ___________ ___________ ______________ _________

	

14 __________	 2.15	 __________ __________ _____________ ________

	

15 ___________	 2.24	 ___________ ___________ ______________ _________

	

16 ___________	 2.46	 ___________ ___________ ______________ _________

	

17 ___________	 2.53	 ___________ ___________ ______________ _________

	

18 ____________	 2.75	 ____________ ____________ _______________ __________

	

19 __________	 2.90	 __________ __________ _____________ ________

	

20 __________	 3.10	 __________ __________ _____________ ________

	

21 ___________	 3.32	 ___________ ___________ ______________ _________

	

22 ___________	 4.23	 ___________ ___________ ______________ _________

	

23 ___________	 4.72	 ___________ ___________ ______________ _________

	

24 __________	 5.05	 __________ __________ _____________ ________

	

25 ___________	 5.45	 ___________ ___________ ______________ _________

	

26 ___________	 5.56	 ___________ ___________ _____________ _________

	

27 ___________	 5.96	 ___________ ___________ ______________ _________

	

28 ___________	 6.02	 ___________ ___________ ______________ _________

	

29 ___________	 6.26	 ___________ ___________ ______________ _________

	

30 ___________	 6.44	 ___________ ___________ ______________ _________

	

31 ___________	 6.89	 ___________ ___________ ______________ _________

	

32 ___________	 7.09	 ___________ ___________ ______________ _________

	

33 ___________	 7.45	 ___________ ___________ ______________ _________

	

34 ___________	 7.65	 ___________ ___________ ______________ _________

	

35 ___________	 7.67	 ___________ ___________ ______________ _________

	

36 ___________	 8.05	 ___________ ___________ ______________ _________
Continued

*The scanline mapping was done by Mr. J. Simm, and the borehole logging data was obtained via Mr.
Simm from the quarry. Both types of data have been sorted out by the author.
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-continued

Discontinuity Mapping Data Sheet

General Information

Job Number:	 I E214-1 /	 Site Name: /Overseas Quarry! Rock Type	 I Limetone /
No. of Tape:	 I 1 /	 Tape Azimuth:	 I	 264 / Tape Plunge(+/-) /	 0 /

Sheet Number: / 2 / of/ 2 I	 Operator(s)	 / J. Simm I	 Date	 / 12/10/95 /

	

_____ _________	 ________ Discontinuity Data	 ___________ _______
	No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length 	 Notes

	

______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________

	

1	 2*	 3	 4	 5	 6	 7
	1 ___________	 8.10	 ___________ ___________ ______________ _________

	

2 ___________	 8.89	 ___________ ___________ ______________ _________

	

3 __________	 9.13	 __________ __________ _____________ ________

	

4 ___________	 9.99	 ___________ ___________ ______________ _________

	

5 __________	 10.10	 __________ __________ _____________ ________

	

6 __________	 10.15	 __________ __________ _____________ ________

	

7 __________	 10.46 __________ __________ _____________ _________

	

8 __________	 10.60 __________ __________ _____________ _________

	

9 __________	 10.70 __________ __________ _____________ _________
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 I E214-2 /	 Site Name: /Overseas Quarry/ Rock Type 	 / Limetone /
No. of Tape:	 / 1 /	 Tape Azimuth: 	 / 238 /	 Tape Plunge(+/-) / 	 0 /

Sheet Number: I 1 / of/ 2 /	 Operator(s)	 / J. Simm I	 Date	 / 12/10/95 I

	_____ __________	 __________ Discontinuity Data 	 _____________ ________
No.	 Type	 Intercept	 Attitude	 _____________ Semi-Trace length 	 Notes

	_____ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7

	1 ___________	 0.76	 ___________ ___________ ______________ _________

	

2 ___________	 0.85	 ___________ ___________ ______________ _________

	

3 __________	 0.91	 __________ __________ _____________ ________

	

4 _________	 1.08	 _________ __________ ____________ ________

	

5 __________	 1.21	 __________ __________ _____________ ________

	

6 __________	 1.28	 __________ __________ _____________ ________

	

7 __________	 1.44	 __________ __________ _____________ ________

	

8 __________	 1.75	 __________ __________ _____________ ________

	

9 __________	 1.79	 __________ __________ _____________ ________

	

10 __________	 2.05	 __________ __________ _____________ ________

	

11 ___________	 2.24	 __________ ___________ ______________ ________

	

12 ___________	 2.36	 ___________ ___________ ______________ _________

	

13 ___________	 2.93	 ___________ ___________ ______________ _________

	

14 __________	 3.03	 __________ __________ _____________ ________

	

15 __________	 3.10	 _________ __________ _____________ ________

	

16 __________	 3.20	 __________ __________ _____________ ________

	

17 ___________	 3.34	 ___________ ___________ ______________ _________

	

18 ___________	 3.73	 ___________ ___________ ______________ _________

	

19 ___________	 3.81	 ___________ ___________ ______________ _________

	

20 __________	 4.15	 __________ __________ _____________ ________

	

21 ___________	 4.49	 ___________ ___________ ______________ _________

	

22 ___________	 4.61	 ___________ ___________ ______________ _________

	

23 __________	 5.00	 __________ __________ _____________ ________

	

24 ___________	 5.28	 ___________ ___________ ______________ _________

	

25 ___________	 5.61	 ___________ ___________ ______________ _________

	

26 ___________	 5.66	 ___________ ___________ ______________ _________

	

27 __________	 5.76	 __________ __________ _____________ ________

	

28 ___________	 5.84	 ___________ ___________ ______________ _________

	

29 ___________	 5.99	 ___________ ___________ ______________ _________

	

30 ___________	 6.05	 ___________ ___________ ______________ _________

	

31 __________	 6.15	 __________ __________ _____________ ________

	

32 ___________	 6.25	 ___________ ___________ ______________ _________

	

33 ___________	 6.40	 ___________ ___________ ______________ _________

	

34 ___________	 6.50	 ___________ ___________ ______________ _________

	

35 __________	 6.60	 __________ __________ ______________ ________

	

36 ___________	 6.74	 ___________ ___________ ______________ _________

	

37 ___________	 6.99	 ___________ ___________ ______________ _________
Continued
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-continued

Discontinuity Mapping Data Sheet

General Information

Job Number:	 I E214-2 I	 Site Name: IOverseas Quarryl Rock Type	 I Limetorie I
No. of Tape:	 / I /	 Tape Azimuth:	 I 238 I

	
Tape Plunge(+/-) /	 0 I

Sheet Number: / 2 / of/ 2 I Operator(s)	 / J. Simm	 /
	

Date	 / 12/10/95 I

	

_____ __________ 	__________ Discontinuity Data	 ____________ ________
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length	 Notes

	

______ ___________	 (m)	 Dip Drrection Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7

	

1 ___________	 7.04	 ___________ ___________ ______________ _________

	

2 __________	 7.12	 __________ __________ _____________ ________

	

3 ___________	 7.25	 ___________ ___________ ______________ _________

	

4 __________	 7.29	 __________ __________ _____________ ________

	

5 ___________	 7.53	 ___________ ___________ ______________ ________

	

6 ___________	 7.62	 ___________ ___________ _______________ _________

	

7 __________	 7.71	 __________ __________ ______________ ________

	

8 ___________	 7.83	 ___________ ___________ _______________ _________

	

9 __________	 8.00	 __________ __________ ______________ ________

	

______ ___________	 8.08	 ___________ ___________ _______________ _________

	

______ _____________	 8.38	 ____________ _____________ ________________ __________

	

______ ___________	 8.45	 ___________ ___________ _______________ _________

	

______ ___________	 8.54	 ___________ ___________ _______________ _________

	

_____ ___________	 8.74	 ___________ ___________ ______________ _________
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 I E231-1
	

Site Name: /Overseas Quarry! Rock Type	 / Limetone /
No. of Tape:	 / 1 /

	
Tape Azimuth:	 / 216 /	 Tape Plunge(+/-) / 6 /

Sheet Number: / I / of! I
	

Operator(s)	 / J. Simm I	 Date	 I 12/10/95 I

	____ ________	 ________ Discontinuity Data	 ___________ _______

	

No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length	 Notes

	

______ ____________ 	 (m)	 Dip Direction Dip Angle	 (m)	 __________

	

1	 2*	 3	 4	 5	 6	 7
	1 ___________	 0.23	 ___________ ___________ _______________ _________

	

2 ___________	 0.48	 ___________ ___________ _______________ _________

	

3 ___________	 0.57	 ___________ ___________ ______________ _________

	

4 ___________	 0.72	 ___________ ___________ ______________ _________

	

5 __________	 0.85	 __________ __________ ______________ ________

	

6 __________	 1.00	 __________ __________ _____________ ________

	

7 __________	 1.19	 __________ __________ ______________ ________

	

8 __________	 1.25	 __________ __________ _____________ ________

	

9 _________	 1.40	 _________ __________ ____________ ________

	

10 __________	 1.61	 __________ __________ _____________ ________

	

11 __________	 2.03	 __________ __________ _____________ ________

	

12 ___________	 2.18	 ___________ ___________ ______________ ________

	

13 ___________	 2.35	 __________ ___________ ______________ ________

	

14 ___________	 3.13	 ___________ ___________ ______________ _________

	

15 __________	 3.46	 __________ __________ _____________ ________

	

16 __________	 3.80	 __________ __________ _____________ ________

	

17 ____________	 3.88	 ___________ ____________ _______________ _________

	

18 ___________	 3.98	 ___________ ___________ ______________ ________

	

19 __________	 4.16	 __________ __________ _____________ ________

	

20 ___________	 4.30	 ___________ ___________ ______________ ________

	

21 ___________	 4.38	 ___________ ___________ ______________ _________

	

22 ___________	 4.43	 ___________ ___________ ______________ ________

	

23 ___________	 4.57	 ___________ ___________ ______________ _________

	

24 __________	 5.07	 __________ __________ _____________ ________

	

25 __________	 5.13	 __________ __________ _____________ ________

	

26 ___________	 5.45	 ___________ ___________ ______________ ________
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 / E231-2
	

Site Name: /Overseas Quarry/ Rock Type	 / Limetone I
No. of Tape:	 I 1 I

	
Tape Azimuth:	 I 216 /	 Tape Plunge(+/-) / 8 /

Sheet Number: / 1 / of/ I
	

Operator(s)	 / J. Simm /	 Date	 / 12/10/95 I

	_____ __________	 __________ Discontinuity Data	 ______________ ________
No.	 Type	 Intercept	 Attitude	 ____________ Semi-Trace length	 Notes

	______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________

1	 2*	 3	 4	 5	 6	 7

	

1 __________	 0.20	 __________ __________ ______________ ________

	

2 ___________	 0.37	 ___________ ___________ ______________ _________

	

3 __________	 0.51	 __________ _________ ____________ ________

	

4 ___________	 0.59	 ___________ ___________ ______________ _________

	

5 ___________	 0.68	 ___________ ___________ ______________ _________

	

6 __________	 0.71	 __________ __________ _____________ ________

	

7 __________	 0.78	 __________ __________ ______________ ________

	

8 __________	 0.89	 __________ __________ ______________ ________

	

9 __________	 1.25	 __________ __________ ______________ ________

	

10 ___________	 1.31	 ___________ ___________ _______________ _________

	

11 ___________	 1.34	 ___________ ___________ _______________ _________

	

12 __________	 1.45	 __________ __________ ______________ ________

	

13 __________	 1.50	 __________ __________ _____________ ________

	

14 ___________	 1.72	 ___________ ___________ ______________ _________

	

15 ___________	 1.82	 ___________ ___________ ______________ _________

	

16 __________	 2.03	 __________ __________ _____________ ________

	

17 __________	 2.16	 __________ __________ ______________ ________

	

18 __________	 2.23	 __________ __________ ______________ ________

	

19 __________	 2.43	 __________ __________ ______________ _________

	

20 ___________	 2.48	 ___________ ___________ _______________ _________

	

21 ___________	 2.57	 ___________ ___________ _______________ _________

	

22 ___________	 2.85	 ___________ ___________ _______________ _________

	

23 __________	 3.46	 __________ __________ ______________ _________

	

24 ___________	 3.75	 ___________ ___________ _______________ _________

	

25 ___________	 3.81	 ___________ ___________ _______________ _________

	

26 ___________	 4.56	 ___________ ___________ _______________ _________

	

27 __________	 4.75	 __________ __________ ______________ _________
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 I E248-1 I	 Site Name: /Overseas Quarry! Rock Type	 I Limetone /
No. of Tape:	 / 1 /	 Tape Azimuth:	 I 348 I	 Tape Plunge(+/-) /	 8 /

Sheet Number: I 1/oft 2 / Operator(s) 	 / J. Simm	 /	 Date	 / 12110/95 I

_____ _________ _________ Discontinuity Data	 _____________ ________
No.	 Type	 Intercept	 Attitude ___________ Semi-Trace length	 Notes

______ ____________ 	 (m)	 Dip Direction Dip Angle	 (m)	 __________
1	 2*	 3	 4	 5	 6	 7
1 __________	 0.10	 __________ __________ _____________ ________
2 __________	 0.16	 __________ __________ ______________ _________
3 ___________	 0.22	 ___________ ___________ _______________ _________
4 __________	 0.31	 __________ __________ _____________ ________
5 __________	 0.41	 __________ __________ _____________ ________
6 ___________	 0.50	 ___________ ___________ _______________ _________
7 ___________	 0.69	 ___________ ___________ _______________ _________
8 __________	 0.81	 __________ __________ _____________ ________
9 ___________	 0.98	 ___________ ___________ _______________ _________
10 __________	 1.06	 __________ __________ _____________ ________
11 ____________	 1.17	 ____________ ____________ ________________ __________
12 __________	 1.32	 __________ __________ ______________ ________
13 ___________	 1.53	 ___________ ___________ _______________ _________
14 __________	 1.60	 __________ __________ _____________ ________
15 __________	 1.70	 __________ __________ _____________ ________
16 __________	 1.77	 __________ __________ ______________ ________
17 __________	 1.96	 __________ __________ ______________ _________
18 __________	 2.06	 __________ __________ ______________ _________
19 ___________	 2.58	 ___________ ___________ _______________ _________
20 __________	 3.34	 __________ __________ ______________ _________
21 ___________	 3.42	 ___________ ___________ _______________ _________
22 ___________	 3.86	 ___________ ___________ _______________ _________
23 __________	 3.96	 __________ __________ ______________ _________
24 __________	 4.06	 __________ __________ ______________ _________
25 __________	 4.19	 __________ __________ ______________ ________
26 ___________	 4.42	 ___________ ___________ _______________ _________
27 ___________	 4.52	 ___________ ___________ _______________ _________
28 __________	 4.67	 __________ __________ ______________ _________
29 ___________	 4.80	 ___________ ___________ _______________ _________
30 __________	 4.87	 __________ __________ ______________ _________
31 ___________	 4.92	 ___________ ___________ _______________ _________
32 ___________	 5.08	 ___________ ___________ _______________ _________
33 __________	 5.13	 __________ __________ _____________ ________
34 __________	 5.20	 __________ __________ _____________ ________
35 __________	 5.24	 __________ __________ ______________ _________
36 ____________ ____________ ____________ ____________ ________________

Continued
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-continued

Discontinuity Mapping Data Sheet

General Information

Job Number:	 / E248-1 I	 Site Name: /Overseas Quarry! Rock Type 	 / Limetone /
No. of Tape:	 / I /	 Tape Azimuth:	 / 348 /	 Tape Plunge(+/-) / 8 I

Sheet Number: / 2 / of! 2 / Operator(s)	 / J. Simm I	 Date	 I 12/10/95 I

	

_____ __________ 	__________ Discontinuity Data	 _____________ ________
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length	 Notes

	

______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 5	 7

	

1 ___________	 5.57	 ___________ ___________ ______________ _________

	

2 __________	 5.71	 __________ __________ _____________ ________

	

3 ___________	 5.83	 ___________ ___________ ______________ _________

	

4 __________	 6.43	 __________ __________ _____________ ________

	

5 ___________	 6.55	 ___________ ___________ ______________ _________

	

6 __________	 6.90	 __________ __________ _____________ ________

	

7 ___________	 6.95	 ___________ ___________ ______________ _________

	

8 ___________	 7.58	 ___________ ___________ ______________ _________

	

9 __________	 8.40	 __________ __________ _____________ ________

	

10 ___________	 8.55	 ___________ ___________ ______________ _________

	

11 __________	 9.00	 __________ __________ _____________ ________

	

12 __________	 9.16	 __________ __________ _____________ ________

	

13 ___________	 9.60	 ___________ ___________ ______________ _________
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Discontinuity Mapping Data Sheet

General Information

Job Number:	 / E248-2 I	 Site Name: /Overseas Quarry! Rock Type	 I Limetone /
No. of Tape:	 / 1 I	 Tape Azimuth:	 / 338 /	 Tape Plunge(+/-) / 0 I

Sheet Number: / 1 / of! I / 	 Operator(s)	 I J. Simm	 /	 Date	 / 12/10/95 I

_____ _________ _________ Discontinuity Data	 ____________ _______
No.	 Type	 Intercept	 Attitude ____________ Semi-Trace length 	 Notes

______ ___________	 (m)	 Dip Direction Dip Angle	 (m)	 _________
1	 2*	 3	 4	 5	 6	 7
1 ___________	 0.09	 ___________ ___________ ______________ _________
2 __________	 0.15	 __________ __________ _____________ _________
3 ___________	 0.20	 ___________ ___________ ______________ _________
4 __________	 0.58	 __________ __________ ______________ _________
5 __________	 0.85	 __________ __________ ______________ _________
6 ___________	 0.93	 ___________ ___________ ______________ _________
7 _________ 1.11	 _________ _________ ____________ _______
8 __________	 1.26	 __________ __________ ______________ _________
9 __________	 1.90	 __________ __________ _____________ ________
10 ___________	 2.08	 ___________ ___________ ______________ _________
11 ___________	 2.28	 ___________ ___________ _______________ _________
12 ___________	 2.45	 ___________ ___________ _______________ _________
13 ___________	 2.70	 ___________ ___________ _______________ __________
14 ___________	 2.83	 ___________ ___________ _______________ __________
15 ___________	 3.27	 ___________ ___________ ______________ _________
16 ___________	 3.66	 ___________ __________ ______________ _________
17 __________	 4.42	 __________ __________ ______________ _________
18 ___________	 4.67	 ___________ __________ ______________ _________
19 ___________	 4.77	 ___________ __________ ______________ _________
20 ___________	 4.93	 ___________ ___________ _______________ _________
21 ___________	 5.01	 ___________ __________ ______________ _________
22 ___________	 5.24	 ___________ __________ ______________ _________
23 __________	 5.39	 __________ __________ ______________ _________
24 __________	 5.50	 __________ __________ ______________ _________
25 ___________	 5.58	 ___________ ___________ ______________ _________
26 __________	 5.81	 __________ __________ ______________ _________
27 ___________	 6.15	 ___________ ___________ ______________ _________
28 ___________	 6.36	 ___________ ___________ ______________ _________
29 __________	 6.51	 __________ __________ _____________ _________
30 ___________	 6.60	 ___________ ___________ ______________ _________
31 ___________	 6.70	 ___________ ___________ ______________ _________
32 __________	 6.80	 __________ __________ ______________ _________
33 ___________	 6.90	 ___________ ___________ ______________ _________
34 __________	 7.06	 __________ __________ _____________ ________
35 __________	 7.15	 __________ __________ _____________ ________
36 ___________	 7.46	 ___________ ___________ ______________ _________
37 ___________	 7.65	 ___________ ___________ ______________ _________
38 __________	 7.86	 __________ __________ ______________ _________
39 ___________	 8.25	 ___________ ___________ ______________ _________
40 ________	 830	 ________ ________ ___________ _______
41 ___________	 8.73	 ___________ ___________ _______________ _________
42 __________	 8.96	 __________ __________ ______________ _________
43 __________	 9.18	 __________ __________ ______________ _________
44 __________	 9.38	 __________ __________ ______________
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E.2.2 Discontinuity Data from Borehole Logging

	Hole No. BHI	 BH3	 BH4	 BH5	 BH7	 BH8	 BH9	 BH1O BH11

	

Depth(m) 16.5-24 6.0-18	 0-10.5	 0-12	 0-135	 0-13.5	 9-18	 0-13.5	 0-12
Elevation 25 1-241 252-240 252-242 248-236 242-229 224-211 216-207 221-209 231-219

No.	 Discont nuity intercept (m) ________ _______ _______
1	 0.05	 0.03	 0.40	 0.17	 0.10	 0.50	 0.14	 0.25	 0.16
2	 0.11	 0.13	 0.52	 0.33	 0.30	 0.57	 0.35	 0.42	 0.26
3	 0.17	 0.23	 0.68	 0.46	 0.35	 0.80	 0.52	 0.57	 0.47
4	 0.23	 0.36	 0.77	 0.73	 0.48	 0.90	 0.62	 0.60	 0.53
5	 0.33	 0.42	 0.97	 0.80	 0.55	 1.06	 0.82	 0.66	 0.77
6	 0.47	 0.47	 1.13	 0.85	 0.60	 1.10	 1.14	 0.72	 1.00
7	 0.59	 0.55	 1.73	 0.98	 0.66	 1.30	 1.51	 0.76	 1.10
8	 0.63	 0.62	 1.93	 1.06	 0.83	 1.40	 1.99	 0.88	 1.29
9	 0.70	 0.68	 2.16	 1.12	 0.95	 1.63	 2.67	 1.32	 1.60
10	 1.32	 0.78	 2.25	 1.31	 1.10	 1.72	 2.77	 1.47	 1.76
11	 1.37	 0.90	 2.48	 1.37	 - 1.37	 2.07	 2.82	 1.62	 1.84
12	 144	 0.93	 3.01	 143	 1.52	 2.17	 3.10	 1.89	 2.16
13	 - .58	 0.97	 3.38	 145	 1.59	 2.24	 3.14	 1.92	 2.36
14	 - .63	 1.01	 3.75	 1.53	 1.68	 2.37	 3.38	 1.97	 2.58
15	 - .71	 1.15	 4.22	 1.58	 1.80	 3.18	 3.47	 2.08	 2.71
16	 1.79	 1.43	 4.38	 2.27	 1.85	 3.39	 3.52	 2.19	 2.88
17	 1.87	 1.51	 4.62	 2.37	 2.01	 3.57	 3.73	 2.25	 2.96
18	 1.96	 1.80	 4.72	 2.99	 2.23	 3.68	 4.17	 2.38	 2.98
19	 2.01	 1.88	 4.78	 3.45	 2.28	 3.79	 4.36	 2.45	 3.04
20	 2.23	 1.97	 4.93	 3.62	 2.38	 4.37	 4.48	 2.51	 3.26
21	 2.36	 2.03	 5.17	 3.66	 2.47	 4.53	 4.57	 2.55	 3.38
22	 2.39	 2.23	 5.31	 4.06	 2.80	 4.84	 4.66	 2.60	 3.44
23	 2.51	 2.28	 5.65	 4.18	 2.99	 4.93	 5.27	 2.75	 3.54
24	 2.59	 2.61	 5.68	 4.29	 3.25	 5.39	 5.91	 2.85	 3.59
25	 2.71	 2.96	 5.75	 4.40	 3.38	 5.43	 6.06	 3.02	 3.73
26	 2.83	 3.06	 5.84	 4.56	 3.48	 5.66	 6.16	 3.07	 3.84
27	 2.93	 3.61	 5.95	 4.79	 3.58	 5.83	 6.44	 3.21	 4.03
28	 3.02	 3.73	 6.12	 4.95	 3.74	 6.06	 6.54	 3.29	 4.07
29	 3.35	 3.88	 6.16	 5.23	 3.85	 6.77	 6.71	 3.61	 4.34
30	 3.42	 4.05	 6.23	 5.50	 3.94	 7.30 _______ 3.76	 4.38
31	 3.56	 4.23	 6.37	 5.62	 4.01	 7.61	 _______	 3.81	 4.49
32	 3.79	 4.33	 6.70	 6.32	 4.11	 7.68	 _______ 4.20	 4.77
33	 3.83	 4.38	 7.38	 6.45	 4.15	 7.88	 _______ 4.29	 5.05
34	 3.88	 4.48	 7.60	 6.59	 4.22	 7.94 _______ 4.59	 5.20
35	 3.98	 4.54	 7.70	 6.71	 4.26	 8.27	 _______ 4.67	 5.27
36	 4.03	 4.79	 7.71	 7.13	 4.34	 8.46	 _______ 4.83	 5.32
37	 4.08	 4.84	 7.84	 7.19	 4.45	 8.53	 _______	 4.98	 5.45
38	 4.15	 4.89	 8.13	 7.26	 4.83	 8.67	 _______	 5.14	 5.61

	

5.14	 8.28	 7.76	 5.38	 8.94	 _______ 5.20	 6.07
40	 4.31	 5.49	 8.38	 8.09	 5.47	 9.80	 _______ 5.77	 6.19
41	 4.41	 5.62	 8.79	 8.38	 5.58	 10.07 _______ 5.84	 6.26
42	 4.64	 5.79	 8.90	 8.56	 5.76	 10.72 _______ 5.96	 6.32

Continued
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-continued

Hole No. BH1	 BH3	 BH4	 BH5	 BH7	 BH8	 BH9	 BHIO BHI 1
Depth(m) 16.5-24	 6.0-18	 0-10.5	 0-12	 0-13.5	 0-13.5	 9-18	 0-13.5	 0-12
Elevation 251-241 252-240 252-242 248-236 242-229 224-211 216-207 221-209 231-219

No.________ ________ ________ Discontinuityintercept (m) ________ ________ ________
43	 4.68	 5.86	 9.20	 8.70	 5.80	 11.11 ______	 6.20	 6.40
44	 4.90	 5.99	 9.39	 8.85	 6.00	 11.22 ______	 6.34	 6.43
45	 4.93	 6.11	 9.40	 9.28	 6.28	 11.33	 6.48	 6.48
46	 5.16	 6.25	 9.53	 10.52	 6.68	 11.93 ______	 6.60	 6.60
47	 5.43	 6.34	 9.79	 11.97	 6.76	 12.35	 6.69	 6.81
48	 5.66	 6.64	 9.85 ______	 6.81	 12.51 _______ 6.93	 6.91
49	 5.74	 7.07	 10.02 ______	 7.00	 12.66	 7.08	 6.98
50	 5.86	 7.22	 10.10 ______ 7.11	 12.79 ______	 7.20	 7.17
51	 5.96	 7.49	 10.15	 7.32	 _______ _______ 7.95	 7.33
52	 6.13	 7.61	 10.36 _______ 7.43 _______ _______ 8.05	 7.46
53	 6.80	 7.80	 10.55 _______ 7.64 _______ _______ 8.19 	 7.62
54	 6.86	 7.86	 10.62 _______ 7.76 _______ _______ 8.55 	 7.72
55	 6.93	 8.16 _______ _______ 7.82 _______ _______ 8.69	 8.05
56	 6.96	 8.59 _______ _______ 8.07 _______ _______ 9.01 	 8.27
57	 7.06	 8.74 ______ ______ 8.26 _______ _______ 9.15 	 8.50
58	 7.12	 9.01 _______ _______ 8.61 _______ _______ 9.23
59	 7.26	 9.13 _______ _______ 8.81 _______ _______ 9.88 _______
60	 7.54	 9.32 _______ _______ 9.01 _______ _______ 10.12 _______
61	 7.76	 9.38 _______ _______ 9.41 _______ _______ 10.23 _______
62	 7.84 _______ _______ _______ 9.67 _______ _______ 10.41
63	 8.12 _______ _______ _______ 9.96 _______ _______ 10.52 _______
64	 8.28 ______ ______ ______ 10.09 _______ _______ 10.94 ______
65	 8.43 ______ ______ ______ 10.13 ______ _______ 11.15 ______
66	 9.10 ______ ______	 1	 ______ ______ 11.52
67	 9.32 _______ _______ _______	 _______ _______ 12.00 _______
68	 9.43 _______ _______ _______ 11.17 _______ ________ 12.32
69	 9.78 ______ ______ ______ 11.24 ______ _______ ______
70	 9.88 ______ ______ ______ 11.34 ______
71	 9.94 ______ ______ ______ 11.38 ______ _______
72	 10.01 ______ ______ ______ 1145 ______
73	 10.13 _______	 1153
74	 10.30 ______ ______ ______ 11.58 ______ ______
75	 10.35 ______ _______ ______ 11.63 _______ _______
76	 10.40 ______ ______ ______ 11.69 _______ ______
77	 10.85 _______ _______
78	 11.07 ______
79	 11.21
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APPENDIX F RAW DATA OF POINT LOAD STRENGTH TEST

Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement.)

Sheet No.	 I	 I Data: I Aug. 1,1995 1Operator: IPL	 I
	Place:	 31/7 blasting site

Rock description:

Dark, fine-grained siltstone, fresh blasting blocks, taken from blasting site, natural state

Air-dried one day, in-situ tested

	

No.	 Type W(mm) D(nini) P(kN) De (mm) De 2(mm2) Is(MPa	 F	 Is(50)(MPa)

	

1	 Block	 65	 44	 18	 60.341	 3640.993	 4.944	 1.088	 5.38

	2 	 Block	 55	 51	 18.2	 59.758	 3570.974	 5.097 1.084	 5.52

	3 	 Block	 85	 50.5	 22.5	 73.923	 5464.672	 4.117	 1.192	 4.91

	

4	 Block	 72.5	 52	 15.2	 69.278	 4799.491	 3.167	 1.158	 3.67

	

5	 Block	 62.5	 45	 6.5	 59.837	 3580.522	 1.815	 1.084	 1.97

	6 	 Block	 55	 46	 9.5	 56.753	 3220.878	 2.950 1.059	 3.12

	

7	 Block	 73	 64	 25	 77.122	 5947.804	 4.203 1.215	 5.11

	

8	 Block	 60	 49	 23	 61.179	 3742.839	 6.145 1.095	 6.73

	

9	 Block 67.5	 55	 21	 68.748	 4726.289	 4.443 1.154	 5.13

	

10	 Block	 55	 45	 14	 56.133	 3150.859	 4.443	 1.053	 4.68

	

11	 Block	 60	 42.5	 18	 56.977	 3246.340	 5.545	 1.061	 5.88

	12	 Block	 57.5	 41	 15	 54.784	 3001.273	 4.998	 1.042	 5.21

	

13	 Block	 50	 25	 9	 39.892	 1591.343	 5.656 0.903	 5.11

	

14	 Block	 80	 48	 22	 69.919	 4888.606	 4.500 1.163	 5.23

	

15	 Block	 40	 28	 13	 37.760	 1425.843	 9.117 0.881	 8.04

	Mean	 5.05
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________	 Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement.)

	

Sheet	 No.	 2 I Data: I Aug. 3, 1995 I Operator: I	 PL	 I
	Place:	 Ch950, the bottom of the first berm, south side face.

Rock description:

Dark, fine-grained siltstone (limestone?), natural state, air-dried 2-3 weeks, in-situ tested

	

No.	 Type W(mm) D(mm) P(kN) Dc (mm) De 2(mm2) Is(MPa)	 F	 Is(50)(MPa)

	

1	 Block	 62	 42	 15.5	 57.577	 3315.086	 4.676	 1.066	 4.98

	

2	 Block	 70	 42	 14.5	 61.179	 3742.839	 3.874	 1.095	 424

	

3	 Block	 61	 40	 8.5	 55.734	 3106.302	 2.736	 1.050	 2.87

	4 	 Block	 80	 45	 15.5	 67.698	 4583.068	 3.382	 1.146	 3.88

	

5	 Block	 70	 60	 19.5	 73.123	 5346.913	 3.647	 1.187	 4.33

	

6	 Block	 55	 48	 13.5	 57.973	 3360.917	 4.017	 1.069	 4.29

	

7	 Block	 72	 36	 10	 57.444	 3299.809	 3.030	 1.064	 3.23

	

8	 Block	 72	 38	 16.5	 59.018	 3483.132	 4.737	 1.077	 5.10

	

9	 Block	 60	 36	 12	 52.439	 2749.841	 4.364	 1.022	 4.46

	

10	 Block	 95	 35	 18.5	 65.061	 4232.973	 4.370	 1.126	 4.92

	

11	 Block	 72	 48	 18.5	 66.331	 4399.745	 4.205	 1.136	 4.78

	

12	 Block	 62	 40	 20	 56.189	 3157.225	 6.335 1 054	 668

	Mean	 4.42
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________	 Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement.)

	

Sheet	 No.	 3 I Data: I Aug. 3, 1995 I Operator: I	 PL	 I

	Place:	 Aug. 1st blasting site

________	 Rock description:

_________	 Fine-grained siltstone, natural state, air-dried 2 days, in-situ tested

	

No.	 Type W(mm) D(mm) P(kN) Dc (mm) De2(mm2) Is(MPa)	 F	 Is(50)(MPa)

	

1	 Block	 60	 45	 26.2	 58.629	 3437.301	 7.622	 1.074	 8.19

	2 	 Block	 65	 43	 16	 59.651	 3558.243	 4.497	 1.083	 4.87

	

3	 Block	 62	 40	 10.5	 56.189	 3157.225	 3.326	 1.054	 3.51

	

4	 Block	 72	 40	 14.5	 60.551	 3666.454	 3.955	 1.090	 4.31

	

5	 Block	 65	 45	 23.5	 61.022	 3723.743	 6.311	 1.094	 6.90

	

6	 Block	 63	 38	 18.2	 55.206	 3047.740	 5.972 1.046	 6.24

	

7	 Block	 65	 50	 24	 64.323	 4137.492	 5.801	 1.120	 6.50

	

8	 Block	 80	 42	 11	 65.403	 4277.530	 2.572	 1.128	 2.90

	9 	 Block	 60	 36	 19.5	 52.439	 2749.841	 7.091	 1.022	 7.24

	

10	 Block	 56	 40	 19.5	 53.401	 2851.687	 6.838	 1.030	 7.04

	

11	 Block	 75	 45	 21	 65.549	 4296.626	 4888 1130	 552

	

12	 Block	 55	 42	 20	 54.229	 2940.802	 6.801	 1.037	 7.05

	

Mean	 5.92
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________	 Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement.)

Sheet No.	 4 I Data: I Aug. 3, 1995 I Operator: I	 PL	 I
Place:	 Ch750, the bottom of first berm, north side face.

________	 Rock description:

Very dark, fine-grained siltstone, natural state, about air-dried 2 months

________ ______	 it is in the zone where existed a ridge, in-situ tested	 ______ __________

No.	 Type W(mm) D(mm) P(kN) De (mm) De2(mm2) Is(MPa) F Is(50)(MPa)

1	 Block	 63	 43	 11	 58.726	 3448.759	 3.190	 1.075	 3.43

2	 Block	 81	 35.5	 20	 60.504	 3660.726	 5.463 1.090	 5.95

3	 Block	 92	 50	 16	 76525	 5856143	 2732 1211	 3.31

4	 Block	 64	 38	 19.8	 55.643	 3096.117	 6.395	 1.049	 6.71

5	 Block	 67	 47.5	 22.8	 63.652	 4051.560	 5.627	 1.115	 6.27

6	 Block	 65	 45	 26	 61.022	 3723.743	 6.982	 1.094	 7.64

7	 Block	 52	 40	 21.2	 51 459	 2647.995	 8.006 1.013	 8.11

8	 Block	 60	 42	 19.5	 56.641	 3208.148	 6.078	 1.058	 6.43

9	 Block	 55	 34	 14	 48.792	 2380.649	 5.881 0.989	 5.82

10	 Block 68.5	 51	 24.2	 66.689	 4447.486	 5.441	 1.138	 6.19

11	 Block	 75	 35	 16.5	 57.808	 3341.820	 4.937	 1.067	 5.27

12	 Block	 75	 45	 26.5	 65.549	 4296.626	 6.168 1.130	 6.97

13	 Block	 80	 47	 22	 69.186	 4786.760	 4.596 1.157	 5.32

14	 Block	 60	 48	 22.5	 60.551	 3666.454	 6.137 1.090	 6.69

	

Mean	 6.06
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________	 Point Load Test Sheet (Highway cutting, AS Glyn Bends Improvement.)

Sheet No.	 5 I Data: I Aug. 3, 1995 I Operator: I	 PL	 I
Place:	 Aug. 2nd blasting site

________	 Rock description:

Dark,very fine-grained siltstone, natural state, air-dried 1 day

Well-developed joints and clevage. in-situ tested	 __________ _______ ______ ___________

No.	 Type W(mm) D(mm) P(kN) De (mm) De2(mm2) Is(MPa)	 F Is(50)(MPa)

1	 Block	 58	 35	 9.5	 50.836	 2584.341	 3.676	 1.007	 370

2	 Block	 64	 46	 16.5	 61.220	 3747.931	 4.402	 1.095	 4.82

3	 Block	 68	 52	 15	 67.094	 4501.591	 3.332	 1.141	 3.80

4	 Block	 70	 47	 9	 64.718	 4188.415	 2.149	 1.123	 2.41

5	 Block	 72	 57	 22.5	 72.282	 5224.698	 4.306	 1.180	 5.08

6	 Block	 58	 38	 20.5	 52.970	 2805.856	 7.306	 1.026	 7.50

7	 Block	 52	 42	 13	 52.729	 2780.395	 4.676 1.024	 4.79

8	 Block	 75	 52	 25.5	 70.463	 4964.990	 5.136 1.167	 5.99

9	 Block	 85	 36	 14	 62.415	 3895.608	 3.594	 1.105	 3.97

10	 Block	 70	 45	 13.5	 63.326	 4010.185	 3.366	 1.112	 3.74

11	 Block	 80	 70	 28.5	 84.435	 7129.217	 3.998	 1.266	 5.06

12	 Block	 75	 62	 26	 76.940	 5919.796	 4.392 1.214	 5.33

13	 Block	 90	 75	 35	 92.700	 8593.253	 4.073 1.320	 5.38

	

Mean	 4.70
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________	 Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement.)

Sheet No.	 6 I Data: I Aug.	 3, 1995 I Operator: I	 PL	 I
Place:	 Aug. 3rd blasting site

Rock description:

Grey, fine-grained siltstone, natural state.

No.	 Type W(mm) D(mm) P(kN) De (mm) De 2(mm2) Is(MPa)	 F Is(50)(MPa)

I	 Block	 59	 34	 14	 50.535	 2553.787	 5.482	 1.005	 5.51

2	 Block	 59	 35	 16.5	 51.273	 2628.899	 6.276	 1.011	 6.35

3	 Block	 75	 37	 22.5	 59.437	 3532.782	 6.369	 1.081	 6.88

4	 Block	 85	 54	 12.5	 76.442	 5843.412	 2.139	 1.210	 2.59

5	 Block	 74	 38	 13	 59.832	 3579.885	 3.631	 1.084	 3.94

6	 Block	 75	 50	 17	 69.094	 4774.029	 3.561	 1.157	 4.12

7	 Block	 62	 39	 14.2	 55.482	 3078.294	 4.613	 1.048	 4.83

8	 Block	 85	 40	 7	 65.791	 4328.453	 1.617	 1.131	 1.83

9	 Block	 75	 45	 10	 65.549	 4296.626	 2.327	 1.130	 2.63

10	 Block	 90	 28	 17	 56.641	 3208.148	 5.299	 1.058	 5.60

11	 Block	 55	 33	 14.5	 48.069	 2310.630	 6.275 0.982	 6 17

12	 Block	 72	 55	 14.2	 71.003	 5041.375	 2.817	 1.171	 3.30

13	 Block	 55	 45	 10.5	 56.133	 3150.859	 3.332	 1.053	 3.51

	

Mean	 4.41
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________	 Point Load Test Sheet (Highway cutting, A5 Glyn Bends Improvement.)

Sheet No.	 7	 I Data: I Aug. 3, 1995 I Operator: I	 PL	 I	 I	 I
Place:	 Ch850, the bottom of the first berm, near south side (Aug. 4th blasting site)

Rock description:

Dark fine-grained siltstone, natural state, air-dried 2 days, in-situ test

No.	 Type W(mm) D(mm) P(kN) De (mm) De 2(mni2) Is(MPa)	 F	 Is(50)(MPa)

1	 Block	 59	 36	 15.2	 52.000	 2704.010	 5.621	 1.018	 5.72

2	 Block	 86	 53	 14.5	 76.175	 5802.673	 2.499	 1.209	 3.02

3	 Block	 73	 39	 16	 60.203	 3624.443	 4.414	 1.087	 4.80

4	 Block	 55	 36	 10.8	 50.206	 2520.687	 4.285	 1.002	 4.29

5	 Block	 63	 38	 15.2	 55.206	 3047.740	 4.987	 1.046	 5.21

^	 Block	 59	 33	 15.5	 49.786	 2478.676	 6.253 0.998	 6.24

7	 Block	 70	 39	 13.5	 58.953	 3475.493	 3.884	 1.077	 4.18

8	 Block	 63	 38	 14.3	 55.206	 3047.740	 4.692	 1.046	 4.91

9	 Block	 80	 38	 9	 62.211	 3870.146	 2.325	 1.103	 2.57

10	 Block	 70	 40	 12.4	 59.704	 3564609	 3.479 1.083	 3.77

11	 Block	 64	 39.5	 14.5	 56.730	 3218.332	 4.505	 1.058	 4.77

	

Mean	 4.52

(i)
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