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ABSTRACT 

Most of the tissue substitute materials currently used in- 

clinical radiation dosimetry are designed to simulate muscle or 

bone when irradiated with photons A few materials have been 

developed for neutron dosimetry, but substitutes speci fically 

designed for beams of high energy charged particles are not to be 

found in the literature. 

This thesis deals with the formulation and manufacture of, 

tissue substitutes for particulate radiations and the subsequent 

application of these substitutes in dlectron, pion, proton and 

neutron dosimetry. The method of "elemental equivalence" was 

used and over 80 solid, gel and liquid substitutes have been 

produced2 which simulate the most important tissues (adipose, 

blood, bone, muscle, etc), body organs (brain, lungj etc) and 

tissue components (fat, protein, water). Most of these materials 

are "tissue equivalent" and are useful for all types of radiations. 

The compilation of selected chemical compounds (compound 

library) used for the formulatign; and the computer programs 

written for the theoretical evaluation of the new materials are 
described and discussed. The experimental comparison of some 

selected substitutes with the corresponding real tissues, using 

fast neutrons, high energy protons, cobalt-60 gamma rays and 

120 kVP X-rays., verified the high precision of the simulation 

procedures. The results of depth dose measurements in various 

tissue substitutes ý as well as water, using 7.5 MeV neutrons 

150 MeV protons, 70 MeV negative pions , 10 MeV electrons and 

cobalt-60 gamma rays are presented. The effect of tissue 

heterogeneities on the dose distributions from thesý radiations was 
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investigated. Isodose shift factors for air, lung, fat and bone 

were derived for all the above radiation modalities and detailed 

lung correction factors were measured for 7.5 MeV neutrons and 

cobalt-60 gamma rays. 

In view of the proposed use of the 160 MeV proton beam of 

the Atomic Energy Research Establishment (Harwell, JJ. K) for 

patient treatment, a complete series of pre-therapeutic measure- 

ments was performed with this proton beam facility using the new 

materials, and the results are presented and discussed in detail. 

Finally, the applications of the new substitutes in other 

practical clinical aspects are described and some examples of 

such applications given. 
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CHAPTER 1 

AN INTRODUCTION TO THE THESIS 

The distribution of absorbed dose in the boky of a patient 

undergoing radiotherapy can be obtained either by calculation or by 

measurement in tissue substitute materials under simulated 

irradiation conditions. If it were possible to design materials 

with elemental composition and density identical to that of various 

human tissues, then "body pbaitoms " could be manufactured which 

would absorb and scatter radiation in the same way as the human 

body. Such body phantoms would be useful not only for photons and 

electrons but also for heavy particle s"such, as protons, neutrons, 

pions and alpha particles. Many of the so-called "TISSUE 

EQUIVALENT" materials used in dosimetric studies with X-rays, 

gamma rays and electrons in the past, give poor simulation of the 

corresponding real tissues. 
", 

This thesis-deals with the -general- problem of tissue simulation 

for particulate radiations, used in radiotherapy. Themethodof. 

'elemental equivalenC6ýis employed to formulate a family of new 

tissue substitutes which simulate- the important tissues and body 

organs, in the liquid, gel and solid states. Most of these systems 

have the same elemental composition and density as that of the 

corresponding real tissues. Consequently they are useful for all 

types of radiations. 

The formulation and manufacture of the new tissue substitutes is 

described in Chapters 2 and 3 and the theoretical and experimental 

verification of their "tissue equivalencei is presented in Chapter 4. 

Some of these materials were'selected and used in dosimetric studies 

with protons negative pions, electrons ) 
fast neutro! is as well as 
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cobalt-60 gamma rays. The effect'of tissue heterogeneities such' 

as lung, fat and bone on the dose distributions of the above types of 

radiations was investigat, ed and the results are discussed in, 

Chapters 5 and 6. Some I applications of the new tissue substitutes 

are given in Chapter 7. - 

THE MEANING OF "EQUIVALENCE" AND THE NEED FOR 
TISSUE SUBSTITUTES SUITABLE FOR PARTICULATE 
RADIATIONS 

With the use of neutrons and charged particles such as electron's v 

protons, negative pions and heavy ions in radiotherapy, it is becoming 

increasingly important to establish depth dose, and beam prohle data 

acceptable for radiotherapy, and to understand the influence of 

tissue heterogeneities on the dose distribution sobtained, when these 

radiation modalities are used. In order to facilitate these 

investigations "TISSUE EQUIVALENT", materials are needed for 

the construction of both radiation detectors and realistic body 

phantoms. 

The term "TISSUE EQUIVALENT" is often misused and, 

materials which have acceptable physical density but unknown 

composition are frequentlýr. referred to as tissue equivalent. A 

typical example is the use of pressdwood as tissue equivalent 

material. Reports of measurements using cork to represent lung 

tissue and aluminium to represent bone, continue to be published, 

even to the present day (e. g. SONTAG and CUNNINGHAM 1' 1977). 

Several authors have indicated that such materials should not be calied 

"TISSUE EQUIVALENT" , -, but often no attention has been paid to 

the advice given. (ROSSI and FAILLA'q 1956; SHONKA et al,, 

1958; FRIGERIO et al. 1 1972). 
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In-his'detailed study WHITE-(1974), stressed this point further 

and suggested that for matcrials -that approximate tissue in their 

absorption of energy, from all or some of the directly and indirectly 

ionising radiations, the term "TISSUE SUBSTITUTE" should be 

used. In this respect,, he produced phantom materials which 

simulate the corresponding tissues very accurately for photons of 

energies from 10 keV to 100 MeV and for low energy electrons I 

These materials, however, have no resemblance to tissue as far as 

elemental composition is concerned and could give large errors if 

used in neutron and high energy charged particle dosimetry. - - This' 

is also the case for most of the phantom materials used in the past; 

most of them were designed forphotons and very few for neutron 

interactions. Materials designed specifically for heavy charged 

particle dosimetry are not to be found in the literature. 

CRITERIA FOR TISSUE E2, UIVALENCE 

A material is said to simulate accurately another material, 
kI 

if the two absorb and- scatter radiation' in exactly the same, way. 

The following quantities must be identical for the phantom 

material and the tissue that it simulates, if the two are to absorb 

and scatter any type of radiation in'the same *way: 

Photon mass attenuation and mass energy absorption 

coefficient. 

(n) Electron mass stopping power and mass angular scattering 

power, 

(iii) Mass stopping power and mass angular scattering power 

for heavy charged particles and heavy ions. 
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(iv) Neutron'interaction cross section's or kerma factors. 

(v) If equal masses of two materials are to have the same 

volume, then the, mass densities of the two must also be 

the, same. 

It is obvious that the above can only be achieved if the material 

is made to have the same elemental constituents and in the same 

proportion by weight as the real tissue; it is only for such materials 

that the term "'TISSUE EQUIVALENT" should be used. 

The new substitutes developed during this study were formulated 

so that. 9 wherever possible, their elemental composition and relative 

density is exactly the same as that of the tissue which they were 

designed to sinlulate. - This was easier to achieve with liquid 

substitutes and water-based gels than with solids., especially when 

epoxy resins and polymers were used, due to the fact that these 

materials are very rich in carbon and poor in oxygen. 

SOME GENERAL PROBLEMS - CRITICAL TISSUE 
ELEMENTS 

It'was realised, 'at an early stage of this'wOrk, that partial 

replacement of oxygen by carbon had to be accepted in the case of 

solid substitutes and the mechanisms with ýrhich various par I ticulate 

radiations interact with matter were considerecll'in order to find- 

which of the elements present in various tissues are the most 

critical for each type of radiation. As fast neutrons are already 

used in radiotherapy on aroutine basis, their interactions with 

matter are of great interest. 

Neutrons interact primarily with nuclei and tissue equivalence 

in a phantom requires the right nuclei to be present in the right 

proportions; the achievement of the correct effective atomic number,, 
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an adequate criterion for X-ray phantoms, is not adequate for 

neutron phantoms. 

Since the interactions of fast neutrons with hydrogen account 

for 70-90% of the total dose in soft tissue (JONES, 1974), the 

prime consideration is to have the right proportion of hydrogen; 

for slow neutrons both the hydrogen and nitrogen content are 
1 important, due to the absorption reactions H(n )2 H and 

14N(n, 
p)14c. - 

Hydrogen is also the most critical element for 

the interactions of heavy charged, particles with matter; these 

will. be dis, cussed in a following section. 

The relative proportion of carbon and oxygen in tissue was found 

to be less critical and the replacement of part of oxygen by carbon in 

most of the solid epoxy resin-based su bstituteS was found not to affect 

the neutron attenuation significantly. Trace elements were also 

found, both by experiment and by calculation, to play no significant 

role in the absorption of fast neutrons. high energy protons or 

negative pions. 

For those substitutes in which all elements are correct except 

for carbon (C) and oxygen (0) , but with the sum (C + 0) the same as 

that of the real tissue, the term "QUASI-EQUIVALENT" could be 

used. The term "TISSUE SUBSTITUTE" will be gen*erally used 

to cover both those materials which are tissue equivalent and those 

materials which are claimed to approximate a tissue in their response 

to radiation. It should be mentioned here that the elemental 

composition of many biological tissues is either not precisely known 

or it varies with age and this makes the task of simulation more 

difficult. If the composition is known to vary over a given range, 

then a family of substitutes should be formulated to cover this range. 
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, Another problem arises from the fact, that physical, phase effects 

and differences in molecular binding between solids and liquids, or 

vapours of the same chemical composition I may affect the stopping 

powers of the substitutes for the various charged particles through 

which energy is deposited in tissue. There is fragmentary and, at 

times, conflicting evidence for such phase effects in organic 

materials., TWAITE S and WATT (1978) reviewed the available 

data and concluded that there is a definite phase effect in the 

stopping of low energy charged particles, decreasing their stopping 

power in condensed state'media as compared to their corresponding 

gasýs or'vapours (e. g. polyethylene -ethylene), ' but lack of extensive 

data makes the evaluation of the-'errors involved difficult. 

Frequently 'the 'Bragg additivity rule' . (BRAGG and XLEEMAN, 

1905) is usea to derive the radiation characteristics of a compound 

or a mixture from. those of its components. . BOURLAND and 

POWERS (1971), and more recently PALMER (1973) , experimented 

with alpha particles of energies'up to 8 MeV and they'found no major 

differences in m olecular stopping powers due to -chemical binding; 

they also showed that the "Bragg rule is obeyed In'gases for all 

molecules 'except those containing a triple bond. Accordingto 

BICHSEL (1977), '& application of thp Bragg rule in the 

calculation_ of stopping powers for protons, ... is. valid only with 

an uncertainty, which could exceed 3*1o 

It is -conceivable that'the mol*cc-alar binding in real tissues is 

much more complex than in the liquids, resins, polymers and 

inorgan . ic compounds used to manufacture the tissue 'substitutes- 

and it can be argued that it is futile to simulate to better than ± 2*/o 

a tissue whose composition varies considerably from one set of 

published tissue data to another. 
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Nearly 80 different formulations had been published before 1974 

which were claimed to simulate muscle, lung, fat and bone., 'All 

too frequently- these materials gave large errors in the energy 

ranges for-which they were designed. However, the family of 

substitutes for photon interactions recently produced by WHITE 

(1974) j- were found to give errors smaller than 4- 50% for all photon 

energies from 10 keV up to 100 MeV. 

Few'liquid substitutes were developed specifically for neutron 

dosimetry in the past. In 1956 ROSSI and FAILLA introduced 

their liquid system comprising a mixture of water /glycerol /urea 

sucrose, 
which 

represented elementally an approximate formula 

for soft tissue C5H 40 01 1N This was later improved by 

GOODMAN (1969) who. removed sucrose. . More -recently, 
FRIGERIO, et al., (1972) , produced liquid systems closely 

simulating the formula of muscle given by ICRIJ (N BS1 19 64). 

Solids developed for neutron studies include the conducting 

plastics of SHONKk, 
'et al., (1958), and an epoxy resin substitute 

(WILSON and WHITE, 1974). The components and elemental 

composition of the most important- substitutes developed in the past 

are given in Appendix 4. 

Figures 1.. 1 and 1.2 show the central-axis depth dose curves of 

different radiation modalities, namelyq 7.5 MeV neutrons, 150 MeV 

10 protons, 10 MeV electrons, 70 MeV negative. pi ns and cobalt-60 

gamma rays, measured (luring the course of this study in water and 

in muscle equivalent liquid (MS /L1). (For coding see next section). 

Although it is claiine(I'that with respect to dose cI omposition in the 

BRAGG peak there are no great differences between water and soft 

tissue (DUTRANOIS ct al., 1972), Figu . res 1.1 an4 1.2 show that 
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the depth of the B ragg peak is not the same and this is important 

in precision radiotherapy. Bearing in mind, however, that the 

choice of substitute for a particular investigation is frequently 

governed by finance and availability and looking at the poor 

characteristics of some of the existing substitutes, it is fortunate 

that water had remained the most popular substitute in the past. In 

the case of 7.5 MeV neutrons, the depth doses that were measured 

in water, were found to be closer to those measured in the muscle 

equivalent liquid MS/L1 than are the datalin unit density musclei 

reported in B. J. R. Supplement 11, for the same neutron beam. 

Obviously,, the higher hydrogen content of water almost compensates 
for the higher density of muscle. 
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1.1 (iii) TERMINOLOGY 

The symbols and nomenclature referred to in this thesis 

are summarised in Appendix 1. 

The term "S'UBSTI'rLUTE" will be used to describe any material 

which has been or could be used to simulate a tissue. 

The word "COEFFICIENT" will be used in a general sense to 

describe both the total and partial photon interactions. Similarly, 

the term "POWER" will be taken to generally mean collision and 

radiation stopping powers and mass angular scattering powers Of 

a material for charged particles. 

The new substitutes will be coded and numbered for easy 
I reference and their phase will be indicated: /SR-= solid rigidt 

I 
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/SF - -solid 
flexible, /G --' Gel and /L - liquid. MS/SR1', for 

example, mean's the muscle substitute number 1, which is solid 

- rigid. BRN/L6'is the'brain substitute number 6 which is liquid. 

The following termswill also be used and their definition will be 

given in the text: Linear Energy Transfer (LET), Relative 

Biological Effectiveness" (RBE) , Oxygen Enhancement Ratio (OER) 

Therapeutic Ratio (TR) , KERMA (K) , KERMA'FACTOR (KF) , etc. 

1.2 , PHYSICAL ASPECTS 

In order to design tissue substitutes for particulate radiations 

it is important to understand the interaction mechanisms followed when 

these radiations'interact with matter. Obviously these mechanisms 

differ between charged particles and neutrons. ' For this reason a 
'** 7, 

brief review of the'theory of interaction of charged particles and 

neutrons with matter will follow. Protons are treated as representative 

of heavy_, charged particles and electrons aslight ones. 

The type of interaction that takes place when a medium, is 

irradiated, depends on the type and-energy of the radiation and on 

the composition of the medlU*m. 'Energies up to 1000 MeV will be 

considered for protons., up to 100. MeV for electrons and up to 

30 MeV for neutrons. 

INTERACTIONS OF CHARGED PARTICLES WITH MATTER 

At very low energies (below 0.1 MeV for protons and below a 

few eV for. electrons), the incident particle interacts with the atom 

as a whole, in contrast to the situation at higher energies where 

the transfer of energy is not affected appreciably by the coupling 

between the atomic electrons and the nucleus. - 
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In the Intermediate energy region (up to the rest mass energy.. 

MC2 of the particle, i. e. for proton kinetic 
_energies 

below about 

1000 MeV and for electron kinetic energies below 0. *5 MeV), 

the principal interaction is between the incident particle and the 

atomic electrons of the stopping medium. Unlike protons which are 

deflected through very small angles and lose only a small fraction 

of their energy in each such interaction, incident electrons can 

lose a large fraction of their energy in a single event and- can be 

deflected through large angles'. 

As the energy of the particles increases v interactions with the 

nuclei Of tlýe target'become m"ore, and more important; 'for proton .s" 

of 1000 MeVj only"a fraction of less than 1% would reach the end 

of their range without having' a nuclear interaction. 

In the case of electrons, interactions with the nuclei of the 

stopping medium lead to radiative, loss of energy (Brems strahlung) 
4- 

which becomes important at higher energies; a critical energy Tc 

can be defined, at which the energy loss due to collisions with 

atomic electrons is equal to the radiative loss: 

Tc 700 
-MeV 

Z+1.2 

where Z is the atomic number of the stopping medium. For human 

tissuel Tc is about 85 MeV. 

With protons, Bremsstrahlung becomes, important at energies 

well above their rest mass energy (T>MP2). At these high energies, 

the bulk properties of the medium (dielectric. constant etc. ), influence 

the stopping of the particles, so as to decrease thexate of energy 

loss (stopping. power). This phenomenon is called the "density 
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effect" and is taken into account by adding the correction term -8 ' 

in the Bethe fundamental stopping power formula (equation 1.2 for 

protons and 1.4 for electrons). With electrons the density effect 

becomes important at energies above 0.5 MeV but protons of even 

1000 MeV are not significantly influenced'by it. (BICHSEL, 1968). 

The major uncertainty in equation (1.2) is the mean excitation 

energy I of the atoms of the target. The oscillator strengths fi 

are not well known and I is determined from- stopping power 

measurements. 

Ci The term in equation (1.2) represents the "shell corrections', 

which are necessary due to the fac-fth'a't the at omic electrons 

contribute less -to the stopping power of the medium if the velocity 

of the incident particle is comparable to their velocities in their 

orbits. These corrections are important for low-energy particles 

but little is known about them. For protons of I MeV in aluminium, 

shell corrections amount to about Olo. In medium and high Z elements, 

shell corrections are even more substantial (about 10%) for 4 MeV 

protons in lead). 

In the case of electrons of energy above 0.1 MeV, shell corrections 

amount to less than 1% and the term is often omitted from the stopping. 

power formula. 

As electrons show relativistic effects at energies above about 

0.5 MeV, the collision mass stopping powers for electrons 
))Coll 

ýP 

which were needed for the comparison of -tissue substitutes to the 

corresponding real tissues (see Chapter 4), were calculated using 

the relativistic formula 1.4. (BERGER and SELTZER, 1964; 

WHITE, 1974). ' In the case of compounds, the values of -3ý and A 
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MASS STOPPING POWER- - HEAVY CHARGED PARTICLES 

The mass stopping power -ý! of a material with atomic number Z 
P 

and atomic weight A for a charged particle containinj z protons 

is given by the Bethe equation: 

S 4Trz2e4 NAZ 2Mev2 2 Ci 
8- 

MeV. CM2 
rne V2A 

- In, 
1(1_p2) 

Pz-9 (1.2) 

23 
where : NA , 6oO225 x 10 atoms/mole (Avogadro number) 

P= v/c, v- velocity of the particle 

Me = mass of e. lectron, II 

density of material in g. cm-j 

mean excitation energy of the atom defined by: 

Zlnl f. In E. 

where f oscillator strength for the transition with 

excitation energy 'E 

is the term for "shell corrections" z 
is the term for the 

_"density 
effect" 

(1.3) 

Figure 1.3 Principal formulae for proton stopping powers 
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MASS STOPPING POWERS - ELECTRONS 

(S 2T'TNAre2mec2 Z 
In T(T + 2')' 

2+ F( 
,T (1.4) 

-IP)COll p2 A 2(, /me C2) 

where F- T) =, l 
2+T 2-(2T 

+1). ln2](T +, )-2 

[T 
T *+ 2) 

1`020 
T+ velocity 

c 

2 
meC= rest energy 0.510976 MeV 

T, = kinetic energy in units of mc2 e 

A atomic weight 

p density 

mean excitation e nerg Iy Z(9-76 58.8 Z-1.19 eV 

density effect' correction 

NA -'Avogadroý 
.s 

number 

2- 2 
c2)2 7.9403 x, 10 

26 
cm 

2 
re 

(e 
/me 

< -K ,* . 4F, W i(z. 
). '' , - A> =-. A1 (1.5) 

ln<I> W In I 
(A)j 

rad rad (1 7 
(P 

iP 

1 element. where w' i is the proportion by weight of the Ith 

Figure 1.4 Formulae used for electron mass 
stopping powers 
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In1 were replaced by < ýZ > and In <I> calculated from elemental 
.A 

data using equations 1.5 and 1.6. The density effect corrections 

were derived using the procedures suggested by KIM (1973). 

R adiati On stopping powers for electrons were calculated from the 

elemental data of BERGER and SELTZER (1964), and PAGES et 

al. j (1970) and applying the Bragg acIditivity rule (equation 1.7). 

The multiple scattering of electrons travelling a path length 

in amaterial of density p is described by the mean square 

scattering angle, (3 2 The elemental mass angular scattering 

powers were derived from equations 1.8 and 1.9 as suggested, 
P 

by ICRU (1972). The choice of equation depends on the elemental 

atomic weight AI and the momentum pe of the electron. The mass 

angular scattering powers for compounds'were calculated from 

elemental data and the additivity rule (equation 1.10). 

1.2(ii) INTERACTIONS OF NEUTRONS WITH MATTER 

Neutrons are uncharged particles and, like photons, are 

indirectly ionising particles. While photons are attenuated by 

photoelectric, Compton and pair production processes, neutrons 

are attenuated by, inmractions with atomic nuclei of the medium, 

giving rise to a complex spectrum of secondary charged particles 

through which energy is deposited in the medium. 

In the case of biological tissues, the most important nuclear 

interactions for neutron energies up to 3 30 MeV have been summarised 

in ICRU report 26 (1977). Their characteristics had previously, been 

reviewed by AUXIER, et al. , (1968) who listed over 30 possible 

processes. These interactions include: 
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MASS ANGULAR SCATTERING"POWERS '-' ELECTRONS 

(a) ELEMENTS 

280 me C2 

A 1/3 PC c 

z ec2 
2 

e2 2ý 
167TN W. r2 

p 
In 196f3 6 

Ae PC 
(1.8) 

I 
A) pf e 

2 2 80 MCC 
AW 1/3, PC c 

1/2 

(D2 z2 137p c- 
16 TTN - r. 2 In e (1-9) 

pAA Pec Z1/3 Me C2 

(b) COMPOUNDS 

E) 2 (1.10) 
p pl 

Figure 1.5 Principal formulae. 'used for electron 
mass angular scattering powers (symbols 
defined in Appendix 1) 
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a) Capture processes, b) Elastic scattering, c) Inelastic 

scattering (in which the neutron is, re-emitted accompanied by a 

nuclear de-excitation gamma ray), d) Nonelastic scattering 
I 

(interaction with a nucleus resulting in the emission of particles 

other than a single neutron) and e) Spallation (the nucleus is'). ' 

fragmented ejecting several particles and nuclear fragments). 

The type of interaction which takes place depends on the neutron 

energy, the elastic -scattering with hydrogen being by far the most 

important for all-energies useful in radiotherapy. For energies up 

to 14 MeV, recoil protons deliver about 70*/o-90% of the absorbed dose, 

with the contribution decreasing with increasing neutron energy. 

(BEWLEY, 1963). 

The capture processes 1 H(n, y) 
2H 

and 
14 N(n, P) 14 C are of 

particular importance at low and thermal neutron energies; the 

first gives a 2.2 MeV gamma 
-ray and the second gives a 0.58 MeV 

proton which is absorbed, at the capture site., 

12 12. - 16 16 At higher energies the elastic C(n, n) C, O(nn) Oandthe 

nonelasticl 
60 (n 

'a)13C processes become very important in tissue. 

One problem that complicates the derivation of the absorbed 

dose and its spatial distribution in tissue arises from the fact that' 

neutrons transfer their energy to charged particles in the first 

step and these particles dissipate their kinetic energy at some point 

further away in the second step. Part of this energy, howeverp can', 

escape from the irradiated medium. ý. -III-. -ý 

The Liternational Commission on Radiological Units and 

Measurements in tro cluced the concept of kerma in order to treat the 

above problem in an approximation which does not take into account 
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the energy transport, by the charged particles. The kerma K 

is defined as the quotient dEtr by dm, where dEtr is the sum of 

the initial kinetic energies of all charged particles, liberated by 

indirectly ionising particles in a volume element of the specified 

material, and dm is the mass of the matter in that volume element. 

dEtr 
dm 

Under conditions of charged particle equilibrium the kerma is equal 

in magnitWe to the absorbed dose. 

Tissue substitutes used in neutron dosimetry should be elementally, 

correct so that they absorb and scatter both. the neutron an(! the gamma 

ray* component I which is present in all fast neutron beams I in the 

sameway as the real tissue. 

ý. 2 (iii) BASIC ELEMENTAL DAT AUSED IN THIS WORK 

In the case of photons (X - and gamma rays) interaction, 

cross sections, attenuation and absorption coefficients and other 

requirements exist in tabulated form and are readily available. 

The elementatcross sections of HUBBELL (1969Yand STORM'"' 

and'ISRAEL'(1970) compiled'by WHITE (1974) on magnetic tape were 

u'Scd to calculate the total'mass attenuation and ener&'absorption 

., 
for coefficients at 33 energy points in the range 10 keV-100 MeV. 

both the substitutes and the, real, tissues. 

Electron collision mas's stopping power's, radiation stopping 

powers, and mass angular scattering'powers for the same 33 energy 

points Were calculat-ed using elemental data and the formulae' 1.4 

to 1.10 as described in the previous section. 
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Stopping powers for protons were compiled and stored on magnetic 

tape 38 energy points were considered in the energy range from 

0.01 to 1000 MeV. For energies below 2 MeV, the values given 

by OLDENBURG and BOOZ (1972) were used. In the energy 

range from 2 to 1000 MeV the data were taken from BARKAS and 

BERGER (1964), and BERGER et al. , (1966). 17 elements were 

considered in all, namely, 
1H 

26C 9 
7N 

18O, 
9F, "Na, 12 Mgt 13AI 

I 
14Sij15pj16Sf17Clq19 K9 20 Ca 126 Fe, 32 Cu and 

581. For those 

elements for which no mass stopping powers existed readily availableg 

the two-variable tables given by BARKAS and BERGER (1964) were 

used to obtain the proton mass stopping powers. The powers are 

given in these tables as a function of the proton kinetic energy and 

the mean excitation energy 1. For this application it was necessary 

to know the correct I value for each element. ladj - values, 

adjusted to take into account shell corrections were obtained from 

TURNER (1964), who gives Iadj/Z as a function of the atomic number 

Z, and averaged with the corresponding values given by BICHSEL 

(1968). Since only the logarithm of I enters the theory directlyl 

(equation 1.2) a large uncertainty in the value of 1, introduced 

only a small uncertainty in the value of the stopping powers. Based 

on the accuracy claimed for the data in the above z; eferences , the 

stopping powers obtained by using tlxem will be accurate to within 

2*/o. 

Figures 1.6 and 1.7 show the electron and proton mass stopping 

powers respectively, for hydrogen, carbon and nitrogenj plotted 

as a function of energy. It is evident that while the data for 

carbon and oxygen are very similar, the data for hydrogen are 
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Figure 1.7, Mass stopping powers for protons 
in hydrogen, carb6n, and oxygen 

much higher due to the fact that z for hydrogen is twice the _Z AA 
for other elements (equations 1.2 and 1-ý4). - This supports'the' 

previous arguments on the significance of the hydrogen content of' 

the substitutes, 

The difference in the neutron interaction cross sections of 

carbon, nitrogen, oxygen and hydrogen was'also investigated. 

Neutron ýross sections were obtained from the Neutron Data 

Compilation Centre'(CCDN '9 1 _GIF -SUR -YVETTE, B. P. No. 9, 

FRýANCE), on magnctic'tape. Data from the Evaluated Neutron 

Data File (ENDF/B-IV) and from the Lawrence Livermore Evaluatcd 
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Neutron Pata Library (ENDL 1 1970) were used., The. ENDF /B-IV 

can be used as a self -cons istent. s ource of cross sections, but 

unfortunately the crýoss, sections in the resonance region are not 

explicitly given, but a set of parameters is listed from which the 

cross sections can be calculated by a rather time consuming computer 

program. In the resonance region the data fro'm' the ENDL`wCre used 

and the curves for the neutron cross sections'for H,, C, N', O versus 

energy are'given'in Figure 1.8. For enýrgies below 20 MeV, 'the 

data are based on a combination of experimental and theoretical 

results., Above 20 MeV, there'are experimental data'available to 

describe neutron-hydrogen collisions, but the available data on 

other nuclei are scant and the', data are based on theoretical models. 

Its 

so 

H 

N 
16, ---------------- . 10 
5.0 c 

2.6 
0 

to 
-C 06 

34 
Is3 104 144 

NEUTRON IN I toy 
. *V 

Figure 1.8 Neutron cross sections (CIt ) for 
HIC IN 10 as a function of energy' 

Apart from the resonance region (0-3-9 MeV for oxygen, 

2-9 MeV for carbon) where oxygen has some resonance peaks not 

present in the cross section ( Crt ) of carbon, the total cross sections 

of C' and 0 are very close to-one another(4-5 bArns at 0.01 eV and 
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about I barn, at 10 Mev); so, when C replaces 0' in the plastic 

substitutes, the absence of some peaks will be compe nsated for 

by the slightly higher cit of C at lower energies and the neutron 

dose will not be affected significantly. 

1, CRU(report26,1977) us ed the ENDF /B-IV total neutron 

cross sections and calculated the keima factors from 10 eV up to 

30 MeV for 19 elements most of which appear in various tissues. 

(116 values of kerma factors for each element). 

, The kerma factor is defined as the quotient of the kerma (K) 'I 

., 
by the particle fluence (P (E), and for a given energy it is equal 

to the -product of the mass energy transfer, coefficient 11 tr P) 
and the neutron energy En. (ICRU i report 26). 

KV tr 
(P (E) F-En 

The use, of the kerma factors in neutron dosimetry requires 

some comment . The walls of the detectors usedi , do not have, 

exactly the same composition as the real tissue';. it is ne cessary, 

therefore, to 'Multiply the response of the dosimeter by the ratio of 

kerma factor. in tissue to kerma factor in the instrument, averaged 

over the neutron spectrum at the point of measurement, if accurate 

values of the kerma or the absorbed dose in tissue are to be obtained. 

It is obvious that if the accuracy aimed is a few percent., it is 

important to take into account the exact composition of the tissue 

(or substitute) in which the dose is estimated. 

Kerma factor ratios (substitute /real tissue) have been calculated- 

for all the substitutes produced in this work and tlýbse for the 

recommended materials . are given in Chapter 
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THE ADVANTAGES OF VARIOUS TYPES OF RADIATIONS 
IN RADIOTHERAPY 

cancerous tissue i*s formed of body cells growing out of control. 

While surgery aims to. remove these cells, the aim in radiotherapy is 

to kill them by inflicting as, much damage to the tumour as possible 

and at the same time minimising the dose delivered to the surrounding 

healthy tissues and, 
-thus 

sparing them. Sparing normal tissues is 

the feature that makes radiotherapy preferable to surgery in some 

cases. 

What matters most in each case is the Therapeutic Ratio (T. R. ) j 

which'is defined as the ratio of the normal tissue tolerance dose 

(N. T. T. D. ) to the tumour lethal dose (T. L'qD'*). Above N. T. T. D. 

necrosis of the normal. tissue starts to increase rapidly while above 

T. L. D. almost all the tumours are destroyed. (JOHNS and 

CUNNINGHAM (1969). 

The ratio of tumour kill to normal tissue damage, can be improved 

either through better spatial dose distribution or through using a 

radiation with a larger Relative Biological Effectiveness at the 

tumour volume (RBE tumour) and a lower Oxygen Enhancement 

Ratio (OER), or through both. 
_These 

concepts will be discussed 

in the following section. 

The rationale for using particulate radiatIons in radiotherapy, 

is to increase this therapeutic ratio, and the criterion for. the choice 

of the type of radiation to be used in each case, is the performance 

of each with regard to the above factors ; by op timising the dose' 

distribution, dose fractionations RBE and OERf it is hoped to 

inflict the greatest possible amount of damage to the cancerous 

cells. 
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1.3(i) PHYSICAL FACTORS 

Figure 1.9 shows the central ax is depth dose curves 

derived from our measurements in the muscle equivalent liquicIp 

MS/Llp with 5 different radiation modalities. (see also 

Figures 1.1 and 1.2). All the important physical characteristics 

of these radiations are clearly shown. Apart from adequate 

tissue penetration for a radiation modality, it is desirable to have 

controlled penetration and sharpness of dose distribution, so that 

sensitive healthy tissues near the tumour can be protected. 

Furthermore it is desirable to, have the entrance dose smaller than 

the dose at, any, depth if possible. 

100 In muscle/U 
1.10 MeV Electrons 

90 2.7.5. MeV Neutrons 
3.1.25 MeV Photons ICO-60) 

0 
'so 4.150 MeV Protons 

S. 70MeVW- Mesons 

0- 70 

60 z 12 345 

cc 50 
w 
9 40 
x 

30 
cr 
1- 20 z 
LU 

10 

0 

05 10 15 20 25 30 

DEPTH cm 

Figure 1.9. Central axis per cent depth doses in 
muscle, for various types of radiation 
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The above advantageous features are exactly what high energy 

beams of charged particles like protons, heavy ions'and negative 

pions have. The depth of the peak can be controlled by energy 

absorbers, the beam allows a significant reduction of the dose to 

the tissue outside the target volume and beam collimation is 

relatively easy. It is obvious that protons have a more definite 

range, a narrower peak and a much sharper cut off; by 

superimposing many such beams (of varying range), one can treat .j 

extended tumour volumes to a uniform dose. 

With pions the peak is wider and tails off resulting in some 

exit dose, due to the, presence-of, electrons and muous in the beam, 

Pions have a unique property that makes them promising in 

radiotherapy; at the end of their range, negative pions are 

captured by the host nuclei which then disintegrate (star, ', 

Iormation) emitting a number of, par ticlest such as neutrons, 

protons,, deuterons and other1eavier fragments with high Linear 

Energy, Transfer (LET). , LET -or LET., is defined as the energy 

transferred per unit length of track and is usually expressed in 

keV/pm); most of these secondary charged particles deposit their 

energy locallyl resulting in a lower oxygen enhancement ratio 

(OER). Consequently, the killing of hypoxic cells is more effective 

in the peak region of the pion beam. ý (see following section). 

With cobalt gamma rays and fast neutrons the dose falls off 

exponentially with depth, resulting in so I me exit (lose; the depth 

of maximum dose depends on the energy and %vlicn megavoltage 

photons a nd neutrons are used the desirable skin sparing effect is 

observed. (Cobalt gamma rays.,: depth of maximum buildup, 

0.5 cm; neutrons of energy = 7.5 -McV : depth of maximum buildup - 
0.2 cm). In practice, neutrons have no physical 4dvantages over 
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megavoltage X-and gamma rays, 

Electrons in the useful energy range are easily scattered and 

absorbed in the irradiated medium'. - Electron beams of energy 

3-10 MeV give such a dose distribution that allows the treatment 

of a superficial tumour to a nearly uniform dose while sparing 

the underlying deeper regions. The rapid fall off in the absorbed 

dose after the first few cm of tissue, however, is lost if higher 

I 

energy electrons are. used to treat deep seated. lesions. Lower 

energy electrons are also very useful for treating skin tumours. 

1.300 -BIOLOGICAL 
FACTORS 

The presence of hypoxi-a but viable cells in many tumours 

has always been a serious P'roblemin'racliotherapyl because, these, 

cells'are very resistant to X-rays. The sensitivity of cells to 

radiation was found to inc I rease in the presence of oxygen and 

this is known as Oxygen Effect. The Oxygen'Enhancement Ratio 

is defined asAhe ratio of doses under hypoxic and oxygenated 

conditions needed to produce the same biological effect% 

-It is also known that equal doses of two different types of 

radiations do'not always produce the same biolo'ýical'effect. 

The Relative Biological Effectiveness of radiation is defined 

by the relation: 

(RBE)A Dose of standard radiation for a biological effect 
Dose of radiation A needed for the same effect 

in most comparisons, the standard radiation is cobalt-60 gamma rays 

or 250 kVpX rays. 

RBE and OER depend on the LET of the radiation. In essence 

LET describes the quality of the radiation. Table 1-I summarises 
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the range of LET valueslor the various types'of radiaitions. 

TABLE 1-I 

', LET VALUES OF VARIOUS RADIATIONS 

Radiation, Range of LET, keV/Vm 

Electrons, X, y 
_ 

1 -'30 ' 

Protons 5- loo 

Pions, fast neutrons 3-900 

Alpha particles 40-250 

Heavy recoils 100 

As the., LET of a radiation increases, the OER is reduced 

and approaches unity at about'200 keV/pm, while the RBE Ancreases 

and. reaches a maximum at about 100 keV/Vm; with further increase 

in LET. the RBE decreases below its maximum because of dose 

saturation. 

The RBE of charged particles in the Bragg peak ionisation 

region is known to be greater than that of charged particles in the 

plateau regioul'because of the higher LET of the particles towards 

the end of their range., Thus the ratio RBEpeak/. RBF? Iateau is 

expected to be greater than unity. Consequently, if the Bragg 

peak region is made. to coincide with the tumour containing volume, the 

ratio RBEtumour/RBFliormal tissue will be greater for beams of 

heavy charged particles than for X-rayp gamma ray, electron or 

neutron beams. - -- 

it is desirable to have OER values as close to unity as possible. 

For radiations that have a wide LET spread, even a small fraction 
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of high LET component is effective in reducing the OER 

significantly. 

With the presence of more particles with higher -LET in the 

peak region of heavy charged particle beams than in the, plateau 

region, reduced OER and less -recovery from sublethal damage 

are to be expected in the tumour region compared to the 

surrouTiding healthy tissues (ELLIS , etý al. , 
i976). 

X-rays and electrons are considered generally as low-LET 

radiations; their mean LET values are very similar and 

consequently the biological effectiveness of electrons is not 

expected to be different from that of megavoltage X-rays. 

High-energy protons deposit an important part of their energy 

below 30 keV/Fn andso behave to some extent like low-LET 

radiation(i. e. X-rays). - (BEWLEY, 1971). 

The RBE of fast neutrons is generally larger than unity and 

depends on the neutron energy spectrum. BIANCHI et al. , (1978) 

used vicia faba roots (10-day growth) and found an RBE = 5.4 

for 14 MeV neutrons; for higher energies the RBE value was, 

found lower. RBE values derived from studies with mammalian 

cells, however, vary from 2.5-3.0. The OER of fast neutrons 

was investigated by a number of authors who report OER values 

ranging from 1.2 to 1.8 depending on the energy and on the 

biological system used; PARNELL, et al (1965) for example, 

used five mammalian systems and all their' results lie in the 

region 1.6-1.8 for the OER of the neutron beam of the Medical 

ý Research Council cyclotron. These figures are less than the 

values of X-rays by a factor of 1.6 tO. 1 (Gain factor). The 
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rationale for usingý fast neutrons in radiotherapy was cen . tcred 

originally almost exclusively on their reduced' OER , hence iheir 

effectiveness in killing hypoxic cells. 

In the case of negative pions 
. 
RBE values reported in the 

literature range from 2-3 and OER values range from 1, -5 to 

1.8. Table 1-11 summarises the RBE and OER values 

derived from studies with mammalian cells, for all types of 

radiations used for therapeutic purposes. (PARNELL , et al. , 
1965; RAJU and RICHMAN, 1972; ARCHAMBEAU,, et al., 1974; 

ELLIS, et al., 1976; RAJU and PHILLIPS. 1977). 

TABLE 1-11 

RBE & OER VALUES FOR VARIOUS TYPES OF-RADIATION 

Radiation RBE OER 

X-and gamma rays 
and electrons 1 3.0 

Protons (100-200 MM Plateau 1 Plateau 3.0 
Peak 1 Peak 2.5 

Neutrons (1-20 MeV) 2.5-3.0 

Negative pions (70 MeV) PI . ateau 1.0-1.5 Plateau 3.0 
,, Peak 1.9-2.1 Peak 1.8 

ELLIS, et al. , (1976), studied the distribution of high and low,, 

LET events in a perspex phantom irradiated with 70 MeV negative 

pions. Nuclear emulsions were placed at the surface of the 

phantom as well as in the plateau and peak position and the number, -ý 

length and thickness of the observed tracks was considered. This 

work confirmed the existence of high LET events in the plateau 

region caused by interactions with pions in flight. SimiIar work 

with nuclear emulsions(L' EMBER I at al., 1975) , showed that low 
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and medium LET events (clusters and light tracks) are uniformly 

distributed through the whole range of the stopping negative plons. 

Heavy tracks in the peak region, ' however, were about three times 

the number in the plateau region. Determinations of event size 

distributions using a lithium drifted silicon detector and a ROSSI 

spherical, "tissue equivalent" chamber showed a similar trend. 

The peak/plateau ratios for high LET events are between 4 and 

and are dependent on the position in the plateau region; by comparing 

these high LET peak/plateau ratios with the overall values of 

1.3-1.6, the effect of the low LET component is demonstrated', 

(ELLIS and PERRY, 1972, ELLIS, et al. , 1976). 

To conclude, the use of heavy charged particles is be-ing 

proposed for treatment of cancer -mainly for three reasons: 

1) StLperior depth dose distribution. 

2) Higher RBE in the region of the Bragg-peak. 

Lower OER and less recovery in the tumour. 

'Fast neutrons do not have the first advantage. Table 1-111 shows 

a comparison of the various types of radiations. The high cost of 

the installations producing high energy heavy charged particles. 

some difficulty in localising the peak and, with pions the low dose 

rates available at present are the main reasons why some people 

might argue against the use of high energy particle beams in 

radiotherapy. 
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COMPARISON OF VARIOUS RADIATION MODALITIES 

Type of 
radiation 

Spatial dose 
distribution 

RBE tumour 
RBE normal 

ý-tissue 

OER tumour 
OER normal 

tissue 

X-and Exponential 

gamma rays attenuation 

Electrons Good for 
(5-15. MeV) superficial 

tumours 

Fast neutrons Exponential 

(1-20 MeV) attenuation 

Protons Very good for 

(100-200 MeV) deep-seated 

''tumours 1.2 

Negative Good for deep- 

pions (70 MeV) seated tumours 1.4 1.6 

-A 

If the is made to coincide vrith the tumour area,, 

then: 
RBE ]2e RBE tumour and 

OER pe OER tumour 
RBE plateau RBE normal OER plateau OER normal 

tissue tissue 

i 
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CHAPTER 2 

SIMULATION PROCEDURES AND THE FAMILY 

-, OF NEW TISSUE SUBSTITUTES 

Various' procedures can be applied to the simulation of body 

tissues, such as the "effective atomic number method", the 

"basic data method" and the'method of "elemental equivalence". The 

effective' atomic number method is applicable only to photon 

interactions and is the techrfLque mostly employed before WHITE (1974) 

introduced the basic data method; the'latter is applicable to photons 

and electrons. 

A recent review of the literature (CONSTANTINOU and 

WHITE., 1977), has shown that some 80 tissue substitutes had been 

developed before 1974 and these simulate mainly muscle, lung and 

bone (46,14 and 13 substitutes respectively). WHITE (1974) extended 

the rangF of simulated tissues by producing substitutes for fat, breast, 

sking liver and thyroid as well as musclelung and bone. All these 

substitutes, howeverl were designed for photon and electron 

interactions. ' The number of 
'substitute 

materials suitable for 

particulate radiation dosimetry and in particular neutrons, was very 

limited, "- 

After a brief description of the first two simulation procedures, 

the application of the elemental equivalence method will be discussed and 

theyhole range of liquid,, gel and solid tissue substitutes produced 

in this work, most of which are TISSUE EQUIVALENT, will be 

presented. 
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2.1 THE EFFECTIVE ATOMIC NUMBER METHOD 

AND THE BASIC DATA METHOD 

The atomic cross section for a photon interaction (photo 

electric absorption r Compton scattering or pair production), 

generally depends on the photon energy and the elemental atomic 

number; the dependence on the atomic number Z can be expressed 

by the relationship 

atomic cross section cc Z' (2.1) 

where- the value of the power- x depends on the type of the process 

analysed; and is reported to vary from 1 to 5 (HUBBELL, 1969). 

A compound, may be regarded as a'single element with an effective, 

atomic number given -by 

iýx Zazx (2.2) 

where ai is the fractional electron content of the i th constituent 

element with atomic number Z. 

In the effective atomic number Z method, the composition 

of the substitute is adjusted so that the value of its isý as close as 

possible to that of the material being simulated. The mass 

attenuation coefficient 
11 

-for a compound, however, depends not P% 

only on the effective atomic number raised to a power x., but also 

on the electron density no , to which it ig directly proportional 

(SPIER S1 1946). 
x 

P cc no (2.3) 

The reasons for the large errors in the properties of the 

substitutes produced by applying the Z method in the past are the 

following: 
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a) The method was usually applied only for photoelectric 

absorption, 

b) The electron, density (no) was not always considered in 

the simulation; this introduced errors especially in the energy range 

where Compton scattering predominates. 

c) A single exponent is not en . ough to give adequate agreement 

between the substitute and the real tissue over a wide energy range. 

As the photon energy changes, different exponents are required. 

WHITE (1974) calculated values of the exponent x for the photoelectric 

process ranging from 3.5 at 10 keV to 3.9 at 100 keV instead of the 

popular 2.94. An exponent of 1.7 for coherent -scattering has been 

found (WEBER and van den BERGE, 1969) 'while the pair production 

exponent has always been taken to be unity, although it has been shown 

that- it decreases with energy (WHITE, 1977). 11ýI 

In the 21basic data" method, fundamental photon and electron 

interaction data are used to establish the proportions of the compounds 

which make up the substitute. Once a base material has'been chosen 

corrective additives are selected., which have coefficients (or powers) 

complementary to those of the base material ý when base material and 

additives are mixed in the correct proportions.. the radiation 

characteristics of the mixture will match those of the real tissue. 

The selection of the corrective additives is based on the slopes 

of the "coefficient versus energy" curves. These coefficients (or 

cross sections for elements) on a log-log plot against energy form 

linear parts over certain energy ranges. ' The slope of these graphs 

for a compound depends upon the slopes of the graphs of the elements 

that make'up the compound and the final slope for a substitute depends 

on the constituent compounds and their percentage weights. Figure 2.1 
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The agreement for other energies and other partial interactions 

will depend on the choice of materials. The limitations of the basic 

data method are: a) the additivity rule must be obeyed and b) the 

relationship between the coefficients (or stopping powers) and energy 

must be,, or closely approximate to a linear function on a log-16g 

scale. 

In an attempt to calculate exponents for proton and pion 
Sx 

interactions, the power law 
PZ was applied. The least 

squares method for Z'-Values from 1 to 20 was used and a linear 

relationship of the form In(mass stoppingpower) =Ina+ x In Z was 

fitted to the available data. This gave values of the exponent x 

from -0.26 to -0.75 for protons , and from -0.25'to -0 - 37 fo -r pions. 

The fitting, however. was not good (coefficient of correlation about 

0.75 for most energy levels). Consequently, the Z, method was 

considered not useful for the formulation of tissue substitutes for 
I 

particulate radiations. 

As the proton mass stopping, powers versus energy'show some 

linearity on a log-log scale for certain energy ranges, it should be, - 

feasible to use the "basic data" method to produce substitutes for 

protons. This method, however., is not useful for neutrons because 

of the resonances in the neutron cross sections. ý It became clear, 

early in this work, that the best method to be applied to the formulation 

of tissue substitutes for particulate radiations, is that of "elemental 

equivalence". This method is discussed in the following section of 

this chapter. 

0 
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2.2 ý, THE ELEMENTAL EQUIVALENCE METHOD 

The criteria for tissue equivalence have. already been 

discussed and it has been made clear that the only way in which tissue 

substitutes suitable for all types of particulate radiations and, photons 

. 
can. be formulated, is to make them have the same elemental composition 

and the same density as that of the real tissue. Consequently, the 

method of elemental equivalence was the simulation procedure of choice 

in the present work. 

-, If a substitute is elementally correct and has the correct 

dqnsity, the only source of error in the determination of the (lose 

absorbed in the real tissue will-be due to "phase" differences, i. e. 

differences in chemical binding, the effect of which is expected to be 

minimal. Despite this les s than 100% of the published substitutes 

have been formulated using the elemental equivalence method. 

2.2(i) APPLICATION OF THE ELEMENTAL EQUIVALENCE 
METHOD IN THE PAST 

ROS SI and F AIL LA (19 56)'were the first to apply the 

elemental equivalence method; in an attempt to reproduce an approximate 

formula for soft tissue (C H 016N), they formulated a liquid system 5 40 
comprising a mixture of water /glycerol /U rea / sucrose, which had 

the formula CH0N 5 37.5 18 0.97 The'method of arriving at thiS 

formula, however, was not explained in their publication., GOODMAN 
I 

(1969), improved that liquid by removing sucrose. 

The first solid tissue substitutes produced with the requirements 

of neutron dosimetry in mind were those formulated and manufactured 

by SHONKA at al. , (1958). 
ý 

The muscle substitute they produced 

consisted of polyethylene, nylon, carbonp calcium fluoride and silica, 

which were combined at temperatures of approximately 1800C in a 
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special mixer. A later variation - of, that product , in which the silica 

is excluded, is widely known, as plastic A-150 (see Appendix 4). 

The plastic substitutes produced by Shonka presented electrical 

conductivities of a suitable magnitude (i. e. resistivity <5x 10 

0-cm) and this is the main reason why A-150 is, up to the present 

dayl a popular material for the construction of ionisation chambers. 

The cOmpositio'n bf the'orig'-L'nal muscle'iubsiitute was -decided 

from a set of simultaneous equations derived to satisfy a) the hydrogen 

content., b) the nitrogen content , c) the electrical, conductivity 

d) Compton interactions and e) photoelectric interactions. The 

introduction offree carbon (13.5% by weight) for optimal conductivity 

resulted in an oxygen deficiency that was compensated for by the 

addition 
; 
of smaller amounts of calcium silicon, and fluorine., to match 

the radiation attenuation characteristics of the simulated tissues. 

FRIGERIO et al... (1972), used a simplified version of the 

GIBBSý 
I 
method of canonical components -(HUTCHINSON 1964) and 

produced liquid systems which, had the same elemental composition as 

the ICRU muscle. According to this method, the formula of each 

compound can be written as the sum of two or more components; for 

example i glycerol and urea can The written as C3 HSO 3" C3 H2(H20)3 

and NH 2 CONH 2 '-- CHýN2(H 20) respectively. In this way,. the, 

approximate soft tissue formula C5H 4-0 0,, N can be written as: 

C5 ýIýN (H 20)18* If urea is used to satisfy the needed one mole of 

nitrogenp then: 

C! ý1400 ýN = 0.5 C H2N 
-2(H20) 

C 4. ýH3 (H20)17.5 

0.5 moles 'Urea 
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But the component B 1.5 CP2(H 20)3 + 13(H 2 0) 

1.5 molýs glycerol + 13'moles water. 

Consequently, ' 

I mole 
I 

CýH 40018ýM 0.5 moles Urea + 1.5 moles glycerol 

+ 13 moles water. 

The formula weight is 402.378 so, to make onekilogram of mixture, 

1000/402-378 times as many moles of each component as indicated 

above, have to be used. , 

'The above two variations of the method of element , al equivalence, 

with slight modifications were used extensively during this work and 

as a result, over 80 substitutes were formulated, which simulate 

various tissues,, tissue components and body organs very closely. 

These formulations will be presented in the last section of this chapter. 

2.2(ii) THE ELEMENTAL EQUIVALENCE METHOD AS 

'APPLIED 
IN THIS WORK - SOME GENERAL COMMENTS 

The formulation of the new substitutes was based on the 

following general principles: 

a) The number of components should be kept to the minimum 

possible. 

b) The components which are suitable for addition to a specified 

base material should be chosen from a "compound library", i. e. a 

group of'chemical. compounds selected to meet certain criteria 

(acscribed in the next section). 

C) The 
I 
procedure should accurately establish the proportions (by 

weight) of the components of a tissue substitute. 
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d) The materials and techniques to be used shouldr be such that' 

the new substitutes can be manufactured in any ordinary workshop 

ýarith a minimum'requirement -of simple equipment. 

As it is not always possible to find a single rigorous solution 

in each case, the simulation procedure was'not fully automated,. ' A 

computer can be used interactively, saving time by doing calculations 

that are repetitive I in'this case solving sets of 'simultaneous equations, 

but leaving it to the operator to choose the right compounds on the basis 

of compatibility I's olubility I availability and likely cost'factors. 

The base materials used throughout this work were water for 

the liquid substitutes and epoxy resins for the solids, for reasons which 

are discussed in the following section. The viscosity and elemental 

composition of the resins, ', however, made the partial replacement of ' 

oxygen by carbon in the solid substitutes inevitable. 4 Apart from that, 

resins proved to. be. very good insulators. 
'A 

preliminary attempt to 

get conducting substitutes failed., Many samples of "resin + graphite" 

mixtures, with graphite up to 15% by weight, showed infinite resistance. 

The number of graphite grades is very large and for this reason the 

grade VULGAN XC - 72 used by-Shonka in his conducting plastics., 

was also'testecl. ' The resistivity of the resulting sample was 800 times 

larger than that of a similar sa'mple of A- 150 plastic (8 X, 104 cm 

as compared to 100 

The, application of the elemental e quivalenc e, method in the 

formulation of tissue substitutes during this work, followed a number 

of steps which are summarised here. Examples of the act tual 

calculations are given in Appendix 2. 
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STEP 1: From the given elemental composition of the tissue to be 

simulated., derive its empirical formula and/or the number of moles 

needed per kilogram of substitute, for each constituent element 
(HOLDERNESS and LAMBERT. 1977). 

STEP 2 Scan the compound library (procedure not computerised) 

to find if there is a single compound with the'same formula (or the same 

"percentage ±0.5% by weight" for each constituent element, considering 

hydrogen as the critical element). If such a compo1iril is found, use it 

as a "single component substitute with no trace elements in it". 

provided that its density does not differ from that of the real tissue 

by more than 2-3*/,,. 

STEP 3: Decide" on the com, pounds which will be used to satisfy the 

requirements for trace elements, i. e. elements whose proportion in the 

tissue is less than 0.5% by weight. 

STEP, 4 Subtract the quantity of C, H, N., 0 already introduced with 

the compounds selected in Step 3 from the number of moles/kg derived in 

Step 1 for each element. Derive the empirical formula for the remaining 

Cl H, N, 0.1 

STEP 5_: Write the formula derived in Step 4 as the sum of two- 

compound components (A and B). Consider water, gelatine, or the 

selected epoxy resin system as an obligatory component (part A) for 

a liquid, a gel or a solid substitute respectively. Again, scan the 

library to find compounds with CIHIN90 contents equal to or 

bracketing those of part B. If no, single compound having the same 

composition as part B is found, then the base material and the compounds 

with Cl Hl N, 0 contents bracketing those of part B are used in Step 
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STEP 6 Solve a set of simultaneous equations written to 'satisfy 

the requirements for C, H9 Nj 0 given in Step 4. Derive the exact 

proportions by weight of the various compound components. - 

STEP 7: Calculate'the density of the formulated substitute using 

equation 2.6, assuming that the volumes of pure substances are 

additive. This is an approximation which is partly responsible for 

the difference observed between calculated and measured density 

values. 

(F mi loo (2.6) 
P, 

where p- density of the mixture and 

m, = percentage by weight of the i th 
constituent compound 

whose density is PI 

The search of the compound library for a "single component" 

substitute usually produced a few interesting materials but rarely gave 

ideal systems. 

All the trace elements put together, usually account for less 

than 1% of the total weight, but they should be included if absolute 

completeness is desirable. As it was difficult to find many alternative 

salt systems equally soluble and stable to satisfy the trace elements of 

a particular tissue, the same set was used whenever more than one 

liquid substitutes were formulated for the same tissue. The compounds 

for traces in gel systems are different from those for the corresponding 

liquids because gelatinev used as the main gelling agent, has sulphur as 

an impurity. Similarly, one single set of compounds was calculated for 

all the solid substitutes which simulate the same tissue. 
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The problem of matching the density of the real tissue, proved 

not to be a difficult one. In the case of liquids it was almost always 

possible to find alternative combinations of -liquid components to 

formulate substitutes of lower, equal and higher density than that, of the' 

real tissue. In the case of epoxy resin based substitutes, the use of 

phenolic microspheres (PMS) with a relative density of approximately 

0.2, solved the problem. Relatively small, quantities of these hollow,, 

gas-filled microspheres added to the resins reduced the bulk relative 

densities to below unity. The percentage of PMS (by weight) 

needed in each case, was derived from equation 2.6. 

I 
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2.3 THE COMPOUND LIBRARY 

A comprehensive library of selected chemical compounds 

was compiled at the beginning of this study, to facilitate the 

formulation of new tissue substitutes. , I- I 

The following criteria were used in the selection of compounds 

for the library: 

A compound must not be carcinogenic (or suspected 

carcinogenic), corrosive,, toxic, explosive, volatilep deliquescent, 

or unpleasant to use. 

-A compound must not undergo internal reaction or, absorb 

C02 from the air. I 

A compound must be stable to radiation and with time, 

inert., commercially available and moderate in cost. 

Compounds with melting point below 750C were excluded 

from the list of solid compounds for use as additives in polymers and 

resins. Solids of lower M. P could be used either in wax-based 

substitutes or, if soluble in water, for the formulation of liquid 

substitutes. -Liquid compounds, with boiling point (B. P), -below 
650C 

were excluded. --ýI 

Advice was sought on the toxicity and carcinogenic properties 

of the selected compounds and those which had dubious properties were 

rejected (H. M. S. 01 1967; THE CHESTER BEATTY RESEARCH 

INSTITUTE, 1966; BROWNING, 1965). The compounds in the 

library were divided into five groups . namely , a) INORGANIC SOLIDS , 
b) ORGANIC SOLIDS, c) POLYMERS AND RESINS, d) LIQUIDS and 

e) SPECIAL AGENTS. High purity chemicals such as "Analar" grades 

were always used when these were available. 
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The list of inorganic compounds was compiled from the 

HANDBOOK OF CHEMISTRY AND PHYSICS (1971); the' 

catalogue of HOPKINS AND WILLIAMS and BDH chemicals were 

consulted to ensure availability and acceptable cost (not more than 
F-1 for 1g). 

The above references together with the catalogues "ORGANIC 

CHEMICALS" (EASTMAN KODAk. Co), were the main sources 

for the organic compounds in, the library. The compound library 

given by WHITE (1974) wai also considered. The group of polymers 

and resins in that library, compiled from commercial literature and 

advice of experts in the field, was used in the new library with only 

few additions. The majority of the rest of WHITE's compound 

library, 4owever, was rejected either, on cost grounds or because 

they included elements not present in the real tissues. 

A listing of the most useful compounds in the new library is 

given in Appendix 6. For, convenience. this tabulation was generated 

via a computer -lin ked microfilm plotter. 

The four epoxy resin systems CB1, CB2, CB3 and CB. 4 and 

the phenolic microspheres (PMS) used, have been described by 

)AMITE et al., (1977). The nature of some of the special agents used 

in this work, however, require some comment. 

The production of solid lung substitutes was made possible by 

the use of the liquid foaming agent DC1107'and the surfactant 

D690/50. 
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DC1107 is a polymethyl hydrosilane cross-linking agent 

of the following syntactic formula: 

CH 
1 

CH 3'- si 

CH 3 

CH 3, CH 3, 
II 

-0- ý- Si -, 0- Si - Cli 
II 

LHJ ný CH 3 
t 

reactive hydrogen 

where n= 40-45 typically. The hydrosilane groups Si - H) 

react with acids, bases andamines liberating hydrogen. The formula 

Iý of DCý00/50 is . similar,, . except that the reactive'hydrogen is replaced 

by a methyl group( CH 3)* 

Suppliers of the above products are listed in Table 2 of 

Appendix, 5. 

Water loaded polyester resins were not used because their 

composition is not stable, due to water loss. 

The gelling agent of choice for the manufacture'of gel substitutes 

was gelatine because its composition and density is very close to that 

of protein, a tissue component. Although gel substitutes usually find 

short-term applications., the addition oIf bacterioýtatic agents (e. g. * 

sodium azide) in tracer quantities, preserves them for longer periods. 

Other gelling ýgents like Agar (a sulfated polysaccaride) v Guar 

(another polysaccaride gelled with borax) etc. , were not used because 

of large uncertainties in their elemental composition. ' 
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2.4 ELEMENTAL COMPOSITION OF THE SIMULATED 
HUMAN BODY TISSUES 

Recent publications on the elemental composition of biological 

tissues have indicated that there are large differences in the 

elemental contents of the tissues found in the human body. The 

composition of each tissue is subject to changes from the day to day 

metabolism and also variations with ageing. Liver, for example, 

undergoes rapid changes in size and protein metabolism (glycogen 

in particular). The composition of bone also varies both within and 

between various age groups. The relative density and the calcium 

content of young bone are less than that of mature bone but with 

further ageing these change again. Values for the calcium : 

phosphorus molar ratio and for the relative density of bone., varying 

from 1.37 to 1.. 80 and from 1.6 to 2.04 respectively, have been found 

in the literature. These differences are of significance for particulate 

radiation dosimetry, especially with neutrons. 

Data for the most important human tissues and organs 

simulated in this work, were obtained from ICRU (NBS, '1964), 

KIM (1974), WOODARD (1964), and from the ICRP Reference Man 

document (ICRPp 1975). This document provides elemental data 

obtained from many sources on 81 organs, tissues and tissue 

components; it also gives their relative densities as well as their 

water : fat : protein contents. The ICRP task group had often, 

but not always, selected the average or the median of the available 

measurements. The percentage. s by weight of the constituents of 

some of the tissues given, however, total either more or less than 

100%. In such cases either the oxygen or the carbon content was 

modified to bring the total to 100%. 
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The above correction is justified since oxygen and carbon 

are the most prevalent elements and a small subtraction or addition 

to them will cause the least overall change in density and absorbed 

close. 

The formula for "inner bone" was calculated from data 

supplied by SPIERS (WHITE, 1974); it is based on the ratio 

22.4% hard bone to 77.6% red marrow, i. e. the average ratio of 

hard bone to red marrow in trabecular bone structures' *(percentages 

by weight). 

,- In the case of breast tissue.. a search for reliable formula 

showed that there are large variations in the composition of breast 

with age and subject. Apparently,, breast tissue varies between the 

f extremes of fat and muscle. In order to resolve the dilemma., 

WHITE (1974) considered a formula based on 5%. R-AT-50% WATER 

by weight and formulated solid substitutes useful, for low energy 

photon mammography measurements. A formula for breast tissue, 

howeverp should contain, at the very least, nitrogen, phosphorus 

and sodium. Bearing this and the great variability of breast tissue 

in mind., it was decided to consider three different groups, namely: 

AV. BR. 1 for young age : 25%FAT-75/o MUSCLE 

AV. BR. 11 for middle age : 50% FAT-50% MUSCLE 

AV. BR. 111, for old age : 75% FAT-25*/o MUSCLE 

The elemental composition of all the simulated human body tissues is 

given in Appendix 3. 
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2.5 THE RANGE OF TISSUE SUBSTITUTES 

DEVELOPED DURING THIS STUDY 

Five groups of tissue substitutes were producedl namely, 

substitutes for Principal soft tissues (adipose, blood., muscle), 

Principal skeletal tissues (hard bone, inner bone, red marrow),, 

Body organs (brain, kidney, liver., lung, thyroid), Average tissues 

(average breast, total soft tissue., total skeleton), and Tissue 

components (fat, protein., water). Tables 2-1 to 2-V(pp 65,75) give the 

constituents of these substitutes, together with the percentage 

weights bracketed after each compound. The compounds for trace 

elements in each group of substitutes are given immediately after 

the first substitute of the group. Although the presence of trace 

elements was not found to affect the results of the depth dose 

measurements significantly, they are given for completeness. if 

a substitute was formulated to be used without trace elements in it, 

this will be indicated with the words "no traces". 

About 60% of all substitutes given in this chapter are 

TISSUE EQUIVALENT and the remaining are QUASI-EQUIVALENT, 

except for the solid water substitute WT/SR1 described in section 

2-5E. The elemental composition of these materials is given - in 

Appendix 3, with that of the corresponding real tissues. Nearly all 

have been manufactured. Those formulae for which no relative 

density is given have not been manufactured but, from the experience 

gained in this study, they are considered to be practically feasible. 
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2.5A PRINCIPAL SOFT TISSUES 

Sixteen new substitutes were produced to simulate. three 

principal, soft tissues, i. e. 4 for adipose, 3 for blood and 9 for 

muscle; they are grouped in Table 2-1. (see 
pages 65 -75 for Tables 2-1 to 2-V). 

The very lo-%,, r nitrogen and high hydrogen content of adipose 

tissue excluded the use of the epoxy systems CB1, CB2 and CB4 

in the formulation of solid substitutes for adipose. The epoxy system 

CB3, however., proved to be particularly good and, in fact, it was 

selected as an adipose substitute from a"single material" search. of the 

complete compound library (AP/SF2). Similarly, Ethoxyethanol and 

the epoxy system CB2 were selected as "single component" liquid 

adipose (AP/L1) and solid blood (BL/SRI) substitutes respectively. 

The attempt to produce two-component gel substitutes for 

muscle (i. e. water + gelatine) gave products in which some of the 

carbon was replaced by oxygen. The introduction of an alcohol as 

a third component (ethanol or propanol) resulted in gel substitutes for 

muscles both elementally correct and not subject to bacterial infection. 

(MSIGI and MS/G2). 

2.5B' PRINCIPAL SKELETAL TISSUES 
. 

Matching the low hydrogen and high calcium and phosphorus, 

contents of hard bone presented serious problems both in the liquid 

and solid phase. Formulae for liquid substitutes simulating hard 

bone (cortical) are not given because all of them suffered from the 

problem of insolubility of the best additives. The most soluble 

phosphate compound found in the compound library is di-potassium 
I 

hydrogen phosphate; -a solution of 160 grams ýf this compound per 

100 rnI of water is the best liquid substitute that could be manufactured 

to simulate hard bone. The 'K :P ratio is close to the Ca :P ratio 
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in bone (about 1.67), and the measured relative density of such a 

solution was found to be 1.68. This substitute was first proposed 

by WITT and CAMERON (1975), who used it as a general bone 

standard for the calibration and intercomparison of the systems : they 

developed for measuring the bone mineral in vivo. This solution is 

stable. at room temperature (200C),, Attempts to improve it by adding 

other soluble salts to satisfy the requirements for nitrogen., magnesiuni, 

sodium and sulphur, resulted in an oversaturated solution which, in 

less than a day, precipitated part of its solutes. 

For solid bone substitutes, the low hydrogen content meant 

that the percentage of base material (epoxy resin system) that could 

be used was lower than needed to hold the calculated quantity of fillers, 

and many formulaiions representing elementally correct bone substitutes, 

gave a dough rather than a pourable mixture and had to be rejected. 

By relaxing the limit for the hydrogen requirement, the formulae of nine 

hard bone substitutes were produced with hydrogen up to 4.9% by 

weight and relative densities ranging from 1.58 to 1.82. The formulae 

of these substitutes are given in Table 2-11. 

The use of Ca(NOý2 in HB/SR1 seems to catalyse the reaction 

between resin and hardener and the curing process is completed in 

about one hour. This should be noted if this formula is used. HB/SF3 

is very viscous but is pourable; HB/SR6 and HB/SR9 are so viscous 

that one should be careful when casting because the possibility of 

trapping air is high. The remaining hard bone substitutes are moderate 

in viscosity and present no problem in their manufacture; HB/SR4 seems 

to be'the best from this point of view and samples of it were used in most 

of the experimental work described in Chapter 5. 
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The ICRU formula for hard bone (with 6.0% by weight 

hydrogen) was easier to simulate. 

Table 2-11 also gives the formulae for three inner bone and 

nine red marrow substitutes, Inner bone substitutes need only be 

covered with an outer layer of hard bone to simulate real bones on 

a macroýCopic, scale. 

2.5C VARIOUS BODY, ORGANS I- 

The formulation and manufacture of tissue substitutes for 

various body organs was considered important for the construction 

of complete body phantoms for use in clinical dosimetry and other 

applications. E. leven substitutes were formulated for brain, two 

for kidney; two for liver, three for lung and three for thyroid 

(Table 2-111). All the liquid substitutes in this'group are "TISSUE 

EQUIVALENT" while the solids are "QUASI EQUIVALENT". 

The epoxy system CB2, on its own, was found to be acceptable 

for the simulation of kidney and liver in elemental composition but its 

relative density is higher than that of real kidney and liver (1.10 

as compared to 1.05 and 1.07 resPectively). 

2.51) ý AVERAGE TISS13ES 

Table 2-1V shows the formulae of materials dcsigned to simulate 

average tissues like "average breast", "total soft tissue"-and "total 

skeleton".. 

The four liquid substitutes coded AV. BR* were produced to 

simulate aWaverage breast formula based on 50% FAT-50%'WATER 

by weight. - Thc, formulation of the solid substitutes of average breast, 

howevcrl, was bascd on the three- combinations "of FAT-MUSCLE 'as 
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described in section 2.4. Four out of five of these substitutes are 

solid flexible, with the epoxy resin system' CB3 as base material. 

CB3, on its own, was selected as a substitute of average breast 

(WI. FAT-50%, MUSCLE) and is coded as AV. BRU/SF3. Its 

relative density is 1.02 instead of the required 0.99. 

I-, The human body can be considered as a combination of. "total 

soft tissue" and "total skeleton"; consequently a number of 

substitutes were formulated for each. The last two substitutes for 

total skeleton (T. SK /L3 and T. SK/ L4) are not clear liquid solutions 

but suspensions of calcium orthophosphate in a solution which 

contains the remaining components. 

2.5E TISSUE COMPONENTS 

The new ICRP document "Reference Man" shows that each 

tissue or organ is composed of WATER + FAT + PROTEIN + TRACE 

ELEMENTS. ' If it were possible to formulate protein and fat 

substitutes miscible with water, then, by mixing the three under the 

right proportions one would be able to produce substitutes for any 

tissue or organý 

Gelatine was found to have elemental composition and relative 

density very close to protein; furthermore it is soluble in warm water 

(70-800C). Unfortunately none of the formulated liquid substitutes for 

fat, is miscible with water. The use of gelatine as gelling agent., 

howeverp enables the formulation of gel systems which closely 

simulate real tissues (e. g. MS/Gl, RM/G1, IB/G1). 

The need for a solid material with the same photon 

attenuation characteristics as water) for various applications in 

diagnostic radiology, led to the formulation of an epo? cy resin base& 
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substitute for water (WT/SR1). This substitute was formulated 

using the "basic data method". 

A critical theoretical evaluation was carried out for all the 

new substitutes and for most of those developed in the past. Some 

of them were selected and tested experimentally in order to verify the 

accuracy with which they simulate the corresponding real tissues. 

This will be discussed in Chapter 4 where a list of the recommended 

substitutes new and old, will also be given. 
k 
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TABLE 2-1 SUBSTITUTES FOR PRINCIPAL SOFT TISSUES 

Relativc density 
No Code Constituents andpercentage weights Measured Calculated 

(i) ADIPOSE 

1 AP/SF1 Epoxy CB3(49-90); Polyethylene (38.47); 0.92 0.92 

Glucose(8.74); PMS(2.62); Traces(O. 27). 

Compounds for traces: Na2 -904(0-156); 
S(O-037); 'K2HP04(0.071); CaHP04(0.007) 

2 AP/SF2 Epoxy CB3(100) - no traces 1.02 1.02 

3 AP/L1 'ýthoxyethanol (100) no'traces 0.93 0.93 

4 AP/L2 H20(49.23); Tr 
, 
aces(O. 21); 0.92 0.93 

Prop anol(48.28); Urea(1-71); H ? 04(2*75) 
Compounds for traces: NaC1(0.13); 
KCI(O. 06); CaC12(0.006); MgC'2(oooo8)0 

BLOOD 

1 BL/SR1 Epoxy CB2(100) - no traces 1.10 1.10 

2 BL/L1 H20(70.96); Traces(1.44); Urea(5.99); 1.08 1.07 

Glycerol(9.02) ; Acetic acid(12.65)- 
Compounds for traces: NaCl(0.45); 
KH S04(0.48); N H4 CN 3 (0.20); 
Fe(NO, 3)3(0-19); H3PO4(0.098). 

3 BL/L2 H20(71,00); Traces(1.44); Urea(5.99); 1.06 1.05 
Ethanediol(6.08); Acetic acid(15.59). 

(iii) MUSCLE 

1 MS/SR1 Epoxy CB1(62.22); Polyethylene (28.55); 1.05 1.06 

Polyvinyl Acetate(7-74); Traces(1.635) 
Compounds for traces: K211PO4(0-87); 

S(O. 50); Na2HP04(0.22); MgO(0.03); 
Ca C03(0*02). 

2 MS/SR2 Epoxy CB2(65.0); Acrylics(g. 22); 1. o6 1.07 
Urea(3.28); Polyethylene (21.06)*; 
Traces(1.635) 

SR = solid rigid, SF = solid flexible.. L- liquid, G- gel 
PMS = phenolic microsphcres 
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TABLE 2-1- cont 

Relative density 
No Code Constituents and percentage weights Measured Calculated 

(iii) MUSCLE cont. 

3 MS /SF3 Epoxy CB3(58-00); Acrylics (26.14); 1.06 . 1.06 
Polyethylene (8.88); Urea(5.51); 
Traces(l. 635)- 

4 MS/SR4 Epoxy CB4(69.30); Polyethylene (25'. 51)*; 1.06 1.05 
PMS(O. 70); Traces(1.635) 

5 MS/SR5 Epoxy CB1(62.10); Polypropylene(32-36) 1.07 1.07 
Carbon(3-95); Traces(1.635) 

6 MS/G1 H20(73-90); Trades(l. 41); 1.06 1.04 
Gelatine(19.42); Ethanol(5,27) 

Compounds for traces: K2HP04(0-t37); 
N a. CI (0.15); NH4 H2, P04(0 - 12); 
Mg(NO3), -<0.16); NaH2'PO4(0.07) 
Ca(NO3)2(0.04) 

7 MS/G2 H20(74.60); Traces (1.41);, Urea(l . 30); 1.05 1.03 
Gelatine(14.11); Propanol (6.68) 

6 MS/L1 H20(62.53); Traces(2-43); Urea(7.43); 1.07 1.07 
Ethanediol(27-18); Acetic Acid(O. 43) 
Compounds for traces: NaCl(0.13); 

NaN03(0.07); KHS04(1.36); 
H P04(0.63); Ca(NO3) (0.03); 3 2 
Mg(NO, )q*6HqO(O. 20) 

9 MS/L1A HD(62-53); no traces; -UreK7.50) 1.06 1.06 
Ethanediol(27.91) 
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TABLE 2-Il SUBSTITUTES FOR PRINCIPAL SKELETAL TISSUES 

Relative density 
No Code Constituents and Percentage weights Measured Calculated 

(i) HARD BONE 
1 HB/SR1 Epoxy CB1(. 50.00); CafNO 3)2(14. M; 1.75 1.70 

CaO. (25.43); P(10.2); Traces(l. 22) 

Compounds for trace elements: 
MgS04(1.04); Na2SO4(09lt3) 

2 HB/SR2 Epoxy CB1(44.98)'; CaHI'04(43-93); 1.66 1.6o 

CaO(9.86); Traces(1.22) 

3 HB/SF3 Epoxy CB3(35.78); Urea(7.34); 1.69 1. '60 

CaHP04(43-91); CaO(7.44); 

CaC 03(, 4.31); 'T races (1.22) 

4 HB/SR4 'Epoxy CB2(39.21); Urea(5.77); 1.67 1.6o 

CaO(9.86); CaHP04(43.93); 

Traces(1.22) 

5 HB/SR15 Epoxy CB2(43-32); Ca. H P04(33.29); 1.6o 1.55 

P(2-42); Urea(5-50); CaO(14.24); 

Traces(1.22) 

6 HB/SR6 Epoxy CB4(47-91); Ca3(PO4)2(50.05); 1.76 1.71. 

CaO(0.82); Traces(1.22) 

7 HB/SR7 Epoxy CB4(52.54); CaO(21.48); 1.58 1.55 

TIM. 61); Ca3(PO4)2(11-93); 

'Urea(5.21); Traces(1.22) 

8 HB/SR8 Epoxy CB4(48.97); CaHP04(11-83); 1.64 1.59 

CaOC26.19); P(6-37); Traces(1.22) 

9 IIB/SR9 Epoxy CB4(38.9); Ca H P04(43-93); 1.82 1.74 

lJrea(6.08); CaO(9.86); Traces(1.22) 

10 HB/ Calcium glycerophosphate(45.09); 1.77 
POWDER1 Ca3(PO4)2(22.67); Ca(N03)2(23.25); 

Polyethylene(8.61); Traces(1.22) 

SR = solid rigid, SF - solid flexible, liquid, G- gel 
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TABLE 2-11 cont.... 

Relative density 
No - Code Constitucnts and Percentage weights Measured Calculated 

(i)' HARD BONE cont. 
11 11B/ Ca3(PO4)2(51,07); CaC03(5.02); 1.96 

POWDER 2 'Urea(8.51); Polyethylene (7.20); 

Traces(1.22) 

12 HB/ Glycerol (34.15); CaC03ý4.05); 1.88 

- -PASTE Urea(7.92) C"3(PO4)2(51.07); 

Ca S04 (1-35) Traces (1.22) 

ICRU BONE 

13 HB/SF. 1 Epoxy CB3(54-30); Ca3(PO41(34.73); 1.46 1.42 

C(4-32); CaO(1.725); Urea(3-93) 

14 HB/G1 H20(34-33); Glycerol (15.70); 1.4o 

K2HP04(31.94); NaH2PO4(12.80); 

Gelatine(15.17) 

(if) INNER BONE 

1 IB/SR. 1 Epoxy CB2(76-59); Polyethylene (8.44) 1.15 1.20 

Ca3(PO4)2(13.13); NaN03(o. 243) 

2 IB/G1 H20(68.98); Glucose(3,72); 1.13 

K2HP04(10-80); NaN03(0.08); 

Mg(NO3)2(0-51); KHS04(0.47) 

Gelatine(14.05) 

3 IB/L1 H20(36.64); Urea(5-45); 1.14 1.18 

Ethanediol(41.82) K2HP04(11.107); 

H3PO4(1.62); NaN03(0.24) 

(iii) RED MARROW - 
1 RM/SF1 Epoxy CB3(69.08); Polyvinyl 1.04 1.03 

Acetate(25.42); Polypropylene (1.92); 

Urea(2.27); PMS(O. 8); Traces(O. 05) 
Compounds for traces: K2H P04(0-16); 

K2SO4(0-18) Na2-904(0-02); 

MgS04(0-01); S(O-10) 
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TABLE 2-11 cont 

Relative density 
No Code Constituents and percentage weights Measured Calculated 

(iii) RED MARROW cont... 
2 kM , /SR2 Epoxy CB2(65.13); Polyethylene (27.10); 1.03 1.05 

C(6.52); -PMS(O. 75); Traces (0.50) 

3 RM/SF3 Epoxy CB3(59-4); Polyethylene (8.28); 1.03 1.03 
Urea(2.63); Polyvinyl Acetate(28.88) 
PMS(O. 6); Traces(O. 50) 

4 RM/SR4 `Epoxy CB4(63-7); Polyethylene (34.54) 1.03 1.03 
NH4NO3(0.74); PMS(O. 57); Traces(O. 50) 

5 RM/L1 H20(12.14); Glycerol(8.08); Urea(4-385) 1.01 
Pentanediol(75-33); Traces(1.34) 
Compounds for traces: NaCl (0.20); 
KCI(O. 11); KN03(0-30); H3P04(0-09) 

(NH4)2 S04(0.634) 

6 RM/L2 H20(43.46); Ethanediol(51.21); ' 
f 1.05, 1.07 

Urea. (4.38); Traces(1.34), 

7 RM/L3 H20(64.. 14); Glycerol(34-42); 1.04 1.08 

Urea(4-38); Traces(1.34) 

8 RM/G1 H20(79-10); Glucose(8.04); Trace. <l., 34) 1.07 1.06 
Gelatine (12.15) 

9 RM/G2 H20(7-51); Glycerol (24.28); 1.08 
Pentanediol(55.19); Traces(1.34); 
Gelatine(12.25) 

PMS = Phenolic microspheres 
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TABLE 2-111, -, VARIOUS-BODY ORGANS 

N C d C d h 
Relative density 

o o e onstituents an percentage weig ts Measured Calculated 

(i) BRAIN 
1 BRN/SR1 Epoxy CB2(42-32); Polyethylene (33.23); 1.01 1.03 

Acrylics (22. OS); PMS(O. 60); Traces(1.82) 
Compounds for trace elements: 
NaH2P04(0.93); K2HP04(0.67); S(O. 17); 
MgO(0.02); CaCO 3(0602) - 

2 BRN/SR2 Epoxy CB2(42-32); Polyethylene (33.82) 1.04 1.06 
Acrylics (27.05); Traces(1.82) 

3 BRN/SF3 Epoxy CB3(70.00); Polyethylene (8-38); 1-03 1.05 
1 Acrylics (19.85); Traces(1.82) 

4 BRNISF4 Epoxy CB3(70.00); Polyethylene (8.03); 1.00 1.03 
Acrylics (19.86); PMS(O-30); 
Traces(1.82) 

5 BRNjL1 ýj20(67.60); Traces(2.27); 1.03 1.02 
TJrea(2-77); Butanediol (27-36); 
Compounds for trace elements: 
KHS04(0-16); Na2SO4(0-56); ' 
KCI(O. 48); H3PO4(1-07) 

6 BRN/L2 H20(69.58); Traces(2.27); Urea(2-77); 1.02 1.01 
Pentanediol(25-38) 

7 BRN/L3 H20(56.87); Traces(2.27); Urea(2-77); 1.03 1.00 
Ethanediol(24.44); Methanol(13.65) 

8 BRN/L4 H20(60., 70); Traces(2.27); Urea(2-77); 1.04 1.01 
Ethanol(9.81); Ethanediol(24.45) 

9 BRN/L5 H2(? (55.11);,, Traces (2.27); 
- 
Urea(2-77); 03, 1000 

Glycerol (18.15); Methanol(21-70) 

10 BRN/L6 H20(62.45); Traces(2.27); Urea(2-77); 1.04 1.01 
Ethanol(14.35); Glycerol(18.15) 

11 BRN/L7* H20(69-95); Traces(2.27); Urea(2-77); 1.00 0.98 
Glycerol(1.96); Propanol(23-05) 

SR - solid rigidt SF = solid flexible,, L- liquid., G= gel, PMS = phenolic 
microspheres 
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TABLE 2-111 cont 

' 
Relative density 

No Code Constituents and percentage weight s Measured Calculated 

(ii) KIDNEY 

1 KD/L1 H20(63.60); NaCl(0.47); 1.05 1.04 

K2HP04(0-87); Urea(5.87);, 
Ethanediol(29.29), 

2 KD/SR1 Epoxy CB2(100) - no traces 1.10 1.10 

(iii) LIVER 

1 LV/SR1 Epoxy CB2(100) - no traces 1.10 1.10 

2. - LV/L1 H20(64-18); KH. S04(1.02); NaCl(0.29) 1.06 1.03 
Urea(6.06); Ethanol (15.87); 
Glycerol (12.57) 

(iv) LU NG 

1 LN/SR1 Epoxy CB1(64.39); Polyethylene (26.50); 0.30 0.30 
Polyvinyl Acetate(6-72); Traces(1.09); 
Foaming DC1107(l. 00); 
Surfactant DC200/50(0.30) 
Compounds for traces: K2SO4(0.42); 
S(O. 14) Na2HP04(0.50); MgO(0.02); 
Ca C03(0.02) 

2 LN/SF3 EpoxyCBX58.00); Acrylics (33-65); 0.29 0.30 
Urea(4.00); Traces(1.09); 
DC1107(1-0); DC200/50(0.30) 

3 LN/SR4 Epoxy CB4(63-51); Polyethylene (30-56); o. 29 0.30 
Traces(1.09); Urea(2.00); 

DC1107(1.0); DC200/50(0.3) 

I- I I 
--- 

I 
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TABLE 2-111 cont 

- 
Relative density 

No Code Constituents and percentage weights Measured Calculated 

(v) THYROID 
1 TH/L1 H20(62.90); Nal(O. 90); NaCl(0.23); 1.11 1.14 

1ý2"04(0-44); Urea(4.71); iSlycerol(31-00) 

2 TH/L2 H 20(62.10); Nal(O. 90); NaCl(0.23); 1.08 1.08 

K2HP04(0*44) ; Acetic Acid(11.46); 

Urea(4-71); Ethanediol(20.58) 

3 TH/1.3 H20(62.10); Nal(O. 90); Na. Cl(0.23); -ý 1.14 1.13 
Glucose(11.46); 'Urea(4.71); 
Ethanediol(20.58) 
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TABLE 2-IV AVERAGE, TISSUES 

Relative density . No Code Constituents and percentage weights Measured Calculated 

(i) AVERAGE BREAST 

1 AV. BR. I/ Epoxy CB3(70.80); 'Acrylics(23-09); 1.00 1.01 
SF3 Urea(3.23); PMS(1.85); Traces(1.02) 

Compounds'for traces: Na2HP04(0-16); 
K2HP04(0.65); S(O. 18); CaC03(0.01); 
MgO(0.02) 

2 AV. BR. Il/ Epoxy CB4(61.50); Polyethylene (36.24); 0.99 0.98 
SR1 PMS(1.60); Traces(O. 56) 

Compounds for traces: Na2HP04(0', 11), * 
K2HP04(0.43); MgO(0.01); 
CaC03(0"01) 

3 AV, BR-OII/ Epoxy CB3(68.61); 'Urea(l. 34); 0.99 0.99 
SF2 Acrylics(14.11); Polypropylene (14.23); 

Phenolic micro spheres (0.89); 
Traces(1.63) 

4 AV. BR. II/ Epoxy CB3(100); - no traces 1.02 1.02 
SF3 

5 AV. BR. 111) Epoxy CB3(54-70); Glucose(10.85); o. 95 0.94 
SF1 Polyehylene(31-93); PMS(2.11); 

Traces (0.40) 

Compounds for traces: Na2TIP04(0.05); 
K2HP04(0.22); MgO(0.01); S(O. 12), ' 

50% FAT-50% WATER 
6 AV. BR*/ H20(27.68); Ethoxyethanol(72.32) 0.97 0,96 

Ll 
7 AV. BR*/ H20(32.43); Ethanol(20-72); 0.96 0.94 

L2 Pentanediol(46.91) 
8 AV. Blý*/ H20(32.43); Propanol(27.03); 0,96 0.95 

L3 Butanediol(40.54) 
9 AY. BR*/ H20(29.72); Propanol(49.55); 0.93 0.93, 

L4 Glycerol(20.72) 
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TABLE 2-IV cont 

Relative density 
No Code Constituents and percentage weights Measured Calculated 

(ii) TOTAL SOFT TISSUE, 
, 

1 T. S. T/LI H20(42.06); Traces(l. 54); Urea(5.20); 1.03 
Ethanediol(39-97); Propanol(11.27) 

Compounds for traces: Na CI(O. 21); 

Na H S04(0-13); N H4 H2 P 04(0.48); 

K CN S(O. 49); Mg(NCý)2 6H20CO-13); 

Ca(NO3)2(0.08) 

2 T. S. T/L2 H20(43.27); Traces(1.54); Urea6.20) 1.02 1.01 
Ethanol (20 

*'38) - Glyc6rol(29.65) 

3 T. S. T/L3 H20(40.04); Traces(1.54); Urea(5.20) 1. '04 1 0"02, 
Ethanediol(39.96); Ethanol(12.96) 

(iii) TOTAL SKELETON 

I T. SK/SRI Epoxy CB2(64-79); Urea(1.29); 1.39 1.35 
CaH P04 (24.45); Ca 3(PO4)2 (7.29) 

Traces (2.15) 

Compounds for. trace elements: 
KN03(0-38); MgSO4(0.60); NaNO3(1*17) 

2 T. SK/SF2 Epoxy CB3(60.46); Urea(3-90); 1.40 1.36 
CaHP04(31-08); CaC03(2-39); 

Traces(2.17) 

3 T. SK/SF3 Epoxy CB3(52-56); Urea(4.27); 1.36 1.33 
CaHP04(24.44); Ca3(PO4)2(7.29); 

Acrylics(9.42); Traces(2.17) 

4 T'. SK/L1 H20(51-32); (NH4)2HP04(12.96); - 1.36. 1.32 
K2H P04(22.27); Glucose(11.60) 

5 T. SK/L2 H20 (27-31); (N H4)2 H P04(12.96); 1.40 
-1-36 

K2HP04(22.27); Glycerol(35.61) 

6 T. SK/L3 H20(55*39); (NH4)2H P04(7.83); 1.34 1.33 
N H4NO3(3.27); Glucose(6.19) 

Ca3(PO4)2(25.86) 
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TABLE, 2-IV cont 

Relative density 
No Code -Constituents and percentage weights Measured Calculated 

(iii) TOTAL SKELETON cont., 
7 T. SK/L4 H20(42.16); (NH4)2HP04(7.83); ^1.36 1.35 

-Urea(2.45); Glycerol (20.24); 
Ca3(PO4)2 (25.84) 

TABLE 2-V TISSUE COMPONENTS 

Relative density 
No Code Constituents and percentage weights Measured Calculated 

F AT 

1 FT/SF1 ELVAX 220(100) 0.92 0-93 

2 FT/SR2 Paraffin wax(68-57); 0.93 0.96 
Polyvinyl acetate (31.57)., 

-,,, -,. 
3 FT/SR3 Palmitic. acid(62.44); Borneol(37.56) 0.91 0.88 

4 FT/Ll t Ethýl ofeate(76. '6'1'); -Cyclohexanol(24.39) 0.89 0.89 

5 FT/1.2 Glycýrol triolate(100) 0.92 0.92 

(if) PROTEIN 

1 PR/SR1 Gelatine(100) 1.28 1.28 

(iii) WATER 

1 WT/SR1 Epoxy CB4(80.44). Ca CO 3(5.77); 1.00 1.00. 
Polyethylene (10.00); PMS(3-79) 
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CHAPTER 3 

MANUFACTURE AND' QUALITY TESTING 

OF THE'NEW TISSUE SUBSTITUTES 

In this chapter the various -methods used for manufacturing the new 

substitutes will be described first and then the methods used for 

testing their quality will be discussed. An account of some of the 

problems encountered during ýthe manufacture of these materials will 

also be given. 

3.1 MANUFACTURING PROCEDURES 

(i) EPOXY RESIN BASED SUBSTITUTES 

The manufacture of epoxy resin based tissue substitutes has 

been described in detail. by WHITE (1974 1977) and the necessary 

equipment is shown in Figure 3.1 One important improvement in the 

Stirrer 
(varioble 

speed) 
O-lAOO r. p. m. 

II 
To Vacuum 
Pump 4-: 

satirrer Gland 

4 Air Intake 
Control 

Resin 
Mixture 

Figure 3.1 'Equipment for manufacturing epoxy resin 
based substitutes 
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control of the homogeneity of the substitutes was achieved in the 
'k by the introduction and use of the vacuum degassing and present wor 

pouring unit shown in Figure 3.2. 

I 

Figure 3.2 A vacuum degassing and pouring unit for use 
with synthetic resins 
A to vacuum pump F rotating table (23cm-diameter) 
B air intake G pouring gantry 
C lever operated vacuum H dispenser 

valves I vacuum gauge 
D handwheels for pouring j bell jar(acrylics 45cin-diam., 

gantry and rotating table with rubber seals) 
E : -Vacuum seals X: steel base(2cm-thick 

L: Implosion shield 

The necessary steps will The summarised here. Accurately -- 

measured quantities of resin hardener and fillers are poured into a 

reaction vessel (500-5000 ml) and given a short manual mix. The 

system is then closed and the variable speed stirrer is used, with 

the blades of the rotor deep in the fluid to ensure a thorough mixing. 
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Once the desired mixing has been achieved, the blades are raised to 

just below t6 top surface of the fluid and the vacuum pump, to which 

the system is connected., is switched on while the stirring is 

continued. As the pressure is reduced the mixture rises in the 

vessel, due to trapped gases, but 
Isoon 

the rotating blades cause 

the foam to collapse (1-5 minutes depending on the quantity and the 

viscosity of the mixture). The blades are then lowered to their 

previous position and mixing under vacuum is continued for another 

15-20 minutes; after that the stirrer is stopped and the vacuum 

released. 

The mixture is now transferred into the dispenser of the vacuum 

degassing and pouring unit, the vacuum applied again (pressures 

below 5 mmHg achieved), and the mixture poured into the appropriate 

mould or tray. , 

a vacuum'pouring unit is not'available, aýs the mixture is 

generally air-free, it could be cast into the mould under atmospheric 

pressure; in such case. the mixture should be poured carefully at 

one point of -the wall of the mould and left to flow slowly and fill the 

mould so that no air is trapped, 

The time that these systems take to harden varies from 15 to 24 

hours; if the sample., after it has hardened, is placed in an oven and 

heated to 800C for 2-4 hours, the curing process is completed. When 

moulds of complex shape are used, it is better to leave the sample in 

the mould for at'least 48 hours to avoid damaging it during demoulding. 

As'the curing of the resins, is moderately exothermic the heat 

evolved could present problems when large objects have to be cast; 

these problems may be overcome by casting layers of suitably small 

thickness (2-3 cm) and allowing each layer to hardenbefore pouring 
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the next. If a fan is used to blow air over the sample in the mould, 

the shrinkaje, a function of the peak temperature attained, could 

be reduced to below 0.1% of the total volume. The use of moulds 

constructed of silicon rubber, PTFE, waxed aluminium, waxed 

perspex and melinex films, all with good "release" properties, 

ensures high quality end-products. 

The viscosities of the base resin systems used 
Nt. sec 

and their compatibility with some of the fillers were responsible for 

most of the problems encountered in the manufacture of solid 

substitutes. .- When the quantity of the filler was less than about'15*/o 

by weight, any difference between the densities of the filler and the 

resin resulted in separation, i. e. flotation or settlement accordingly. 

When the loading of fillers was high (e. g. hard bone), the removal of 

the air was rather difficult and this problem was overcome by using 

larger reaction ves. sels and so presenting a greater surface area 

for degassing; sometimes., however, adding the calculated quantity 

of fillers resulted in a dough rather than a pourable mixture. The 

quantity of a filler (additive) which can be dispersed into a known 

quantity of base material of a given viscosity, depends on the 

particle size of the filler; CB4, for example, can take up to 67% 

by weight of calcium carbonate OMYA BL (particle size about 50juni), 

but when "calcium carbonate BPI was used, with particle size of about 

5f1m, not more than 50% by weight could be used.. 

Compatibility of the resins and various fillers can also cause 

problems. It was noticed that nitrate compounds usually affected the 

curing process if used in quantities above 3-5*1o by weight. Ammonium 

nitratev for example., inhibited the curing of the base material CB3; 

on the other hand, calcium nitrifte seemed to catalyse the curing of 

CB1 and CB4; 10% of calcium nitrate in C131 would cause the 
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mixture to harden in less than one hour thus making the handling 

of the system difficult. 

Many formulae, otherwise ideal, were rejected on viscosity 

and compatibility grounds only. 

3.1 (ii) LUNG SUBSTITUTES 

The challenging problem of manufacturing solid, rigid or 

flexible, lung substitutes with correct elemental composition, porous 

nature and relative density if feasible, lead to the searchfor a 

suitable "blowing agent" which, when mixed with the epoxy resins 

would cause their volume to increase resulting in a foamed material 

of the required density. 

Neither the concept of using shavings of muscle substitute turned 

on a lathe, nor that of using cellulose sponge soaked with sodium 

chloride solution (SHONKA and McGINLEY, 1976) was considered 

satisfactory. Cork was also rejected because of its unknown 

composition. The lung material suggested by ROGERS (1970) 

included components which,, according to the author himself I are 

suspected carcinogenic (Moca) and- others which may contain traces 

of volatile products known to be strong irritants to the mucous 

membranes and the skin (e. g. Adiprene). 

The use of polyurethane foams was also avoided firstly because 

of the deleterious cyanate gases released during their manufacturep 

secondly because they must be contained and forced to overpack in 

strong metal moulds and thirdly because the maximum thickness 

that can be produced by this method is not more than 1 cm, if uniform 

density is to be achieved. 
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The aim, was to stay away from too complex techniques which 

involve high temperatures and pressures. The solution to the 

problem was found when it was realised that one of the liquids 

sold by the firm "Dow Corning Ltd" , namely DC 1107, and used 

mainly in the paper industry, had such chemical composition that 

it could react with acids, bases, amines , etc. , liberating hydrogen 

(see Section 2.3). The hydrosilane (S Si H) functional groups 

could, in theory, release up to 360 CM3 of hydrogen gas per gram 

of liquid. This meant that approximately 1 cm3 of this liquid would 

produce enough hydrogen to "blow" 100 grams of resin to more than 

3 times its original volume, thus giving a bulk relative density below 

0.3. By adjusting the amount of foaming agent it should be possible 

to produce lung substitutes of any required density. 

In order to establish the relationship between the relative 

density of the lung phantom produced versus percentage of'foaming 

agent, samples of muscle substitute MS/SR4 were made and different 

percentage by weight of DC1107 was added to each one of them (0.25%, 

0.5*/,,, 0.75%, etc). The experiment was repeated with the flexible 

muscle substitute MS/SF3. When the resulting lung substitutes 

cured, they were machined all to the same volume and weig'h ed so 

that their relative density could be measured. Figure 3.3 summarises 

the results. With the rigid MS/SR4 the minimum relative density 

achieved was 0.25 corresponding to 0.95-1.0% by weight of foaming 

agent; with larger concentration of foaming agent.. the sample 

originally rose and then collapsed. 
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'Figure 3.3 The lung substitute relative density as a 
function of the percentage (by weight) of 
Joaming agent 

The flexible product did not collapse even when the concentration of 

the foaming agent was increased up to 1.51/o at which a relative 

density of 0.22 was obtained, 

In order to control the size of the pores in the lung phantom, the 

liquid surfactant DC200/50 cs, was found to be the best among several 

tested The introduction of 0.25% by weight of surfactant was found 

to give acceptable results; if 1.0% by weight of foaming agent was 

used for example, the average diameter of the pores was about 

2 mm. 

82 - 



The technique of manufacturing lung substitutes was standardised 

and is as follows: 

First pre-calculated quantities of resin and fillers are 

thoroughly mixed in an open reaction vessel; then the surfactant 

is added and dispersed uniformly into the mixture by stirring at 

about 300-350 r. p. m; the stirrer is stopped when the mixing is 

considered thorough (5-10 minutes in all, depending on the quantity 

of the material) and the foaming agent is dispensed using a volumetric 

syringe or other precision dispenser (accuracy of 
4-0.01cm3desirable). 

As the reaction starts as soon as the resin and the foaming agent 

come in contact, stirring is started immediately and continued for 

30-40 sec. after which the mixture is poured into the open mould 

and left to rise under atmospheric pressure. 

The time available after the foaming agent is added is limited and 

evacuation'is precluded; consequenýly, a certain amount of air is 

always present, but its mass is so small that its effect on the chemical 

composition of the final product is negligible. 

The lung substitutes that result from the above procedure can 

easily be moulded to any desired shape and they can be removed from 

the mould 48 hours later. The rigid samples can also be machined to 

any desired shape. 

Using this procedure, reproducible results for densities over a 

wide range can be obtained. The question of uniformity of. density 

when considering large volumes was also investigated; a 30 cMx 30 cMx 

30 cm1ung phantom (LN/SR4) with the desired relative density of 0.3 

was made; when the density of several samples of it was measured., it 

was foun d to be 0.30 tO. 02. This result was considered satisfactory. 
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Figures 7.1 a and 7.1 b show some lung phantom materials produced 

and used for measurements in this study. 

3.1 (iii) L12'UIDS AND GELS 

The mixing of several liquid and solid compounds to make 

various liquid and gel substitutes did not present any serious problems 

once the formulae of these substitutes were produced and a number of 

rules derived from experience were f ollowed. The main difficulties 

encountered in this case resulted from the poor availability of 

solubility data for many compounds, especially organic liquids. 

All too often, formulae which represented elementally correct 

substitutes had to be rejected because the addition of one component . 

caused the precipitation of another compound. Consequently a 

certain amount of trial and error was inevitable. 

In an attempt to keep the total vapour pressure (to which the 

volatility of a solution is proportional) below that of waters liquids 

with vapour pressure above 23.7 mmHg at 250C, were avoided. 

Water was preferred as base material for many reasons; it is 

one of the best solvents, readily available and cheap. Apart from 

this, various organs and tissues appear to be composed basically 

of fat q protein, water and trace elements. By mixing fat and 

protein substitutes with water in the desired proportions I substitutes 

for many organs or tissues can be made. jk good step forward in 

this direction is due to the fact that gelatine, derived from bone by 

hydrolysis of collagen, has elemental composition close to that of' 

protein. Unfortunatelyp attempts to formulate fat substitutes 

miscible with water failed; the use of gelatine, however, facilitated 

the formulation of many gel substitutes useful for short term 

applications. 
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When manufacturing liquid substitutes, the calculatcd quantity 

of water should always be measured into a beaker first. Then 

the inorganic compounds required to introduce the trace elements 

should be transferred and stirred into solution one by one in the 

order given in the formulae. It is important to wait until one is 

completely dissolved before. the next is added; otherwise 

intermediate pretipitates may be formed which, sometimes, are 

difficult to bring back into solution. Urea, used in most liquid 

tissue substitutes to satisfy the nitrogen requirement, is transferred 

next; finally any other organic liquids are transferred and stirred 

into solution, 

in the case of gel substitutes., the water component with the 

trace elements already dissolved in i't should be heatedup, to about 

800C and then the calculated quantity of gelatine added and 

dissolved; once a clear uniform solution is obtained it should be 

left to cool and approach room temperature., when the remaining 

organic components and a bacteriostatic agent should be added. 

The whole mixture can then be transferred into the reaction vessel 

of the mixing unit and the vacuum applied. Stirring under vacuum 

ensures the release of any air trapped in the mixture. The 

substitute can then be poured in polythene bags heat-sealed and 

left to gel before use. Figure 7.2 shows some of the liquid and 

gel tissue substitutes produced and used in this work. 
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3.2 SOME- PHYSICAL INVESTIGATIONS FOR QUALITY TESTING 

(i) 'RELATIVE *DENSITY DETERMIN; MOIýS 

Relative density measurements were performed on the 

manufactured substitutes; these results are given with the calculated 

values in the Tables 2-1 to 2-V. The calculations of relative 

density were made assuming that the volumes of pure substances are 

additive both in solid and in liquid phase. This is not always correct, 

especially in the liquid phase, because of ionic and molecular 

interactions; "partial solution density" data, however, are sparse, 

Samples of each of the solid substitutes were accurately machined 

into cubes or parallelepipeds Of known dimensions and the relative 

density was measured by. a direct determination of mass and volume; 

the estimated error of measurement was 0.5%. The calculated 

values agreed with the measured ones to within 1% except in the case 

of the bone substitutes where disagreement up to 50% was observed. 

Samples of these bone substitutes were manufactured many times 

both in small quantities (100- 200 g) and larger quantities (1-2 kg) 

and the results were reproducible indicating that the disagreement 

was not due to dispensing errors. It is likely that the density of 

the various grades of calcium compounds used was not the same as 

that quoted in the literature. 

In the cases of liquid and gel substitutes, a 40 ml Hubbard 

Density Bottle was employed and occasionally the measurement was 

repeated with a 100 ml volumetric flask. The difference between 

calculated and measured density values here was about 2%. Most 

of this discrepancy is probably accounted for by the fact that the 

density of each component "in-soltition" is not the same as that of 

the pure substance. which is found in the literature and was used in 

the calculations. 
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3.2 (ii) HOMOGENEITY TESTS 

The homogeneity of the manufactured solid substitutes was 

investigated mainly by using conventional radiography. Xeroradiography, 

end-of-range proton radiography and computerised axial tomography 

were used only in a few occasions. The end- of -range proton 

radiography proved to be superior to all the other methods for 

indicating air volumes within the sample. (KOEHLER, 1968, STEWART 

and KOEHLER, 1974). 

Although most of the polymer fillers and the phenolic microspheres 

used were very fine powders with particle size of the order of 100 pm 

or less, some of the inorganic compounds used to introduce trace 

elements had to be ground and sieved; sieving to below 200 pm, 

however, . proved to be very time consuming and as the samples 

produced were not to be used in making test objects for diagnostic 

purposes., except for two occasions described in Chapter 7p 

sieving the fillers to 200 pm was considered acceptable. 

All the solid substitutes used in measurements during this work 

were tested radiographically, using 25-60 kVp ýC-rays. If bubbles 

of trapped air or pockets of undispersed high density filler were 

visible on a radiograph, the corresponding sample was rejected; 

air pockets of less than 50 pm, however, would not have been detected 

by this technique,, unless end-of-range proton radiography was used. 

If flotation or precipitation of a filler was suspected in a sample, a 

radiograph was taken and scanned on a densitometer; if the 

variation in optical density was more than 5%, the sample was 

rejected. 

A critical evaluation of the"tissue equivalence" of the manufactured 

tissue substitutes was considered to be very important and this is 

discussed in the next chapter. 
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CHAPTER 4, 

THEORETICAL AND EXPERIMENTAL EVALUATION 

OF THE VARIOUS TISSUE SUBSTITUTES 

4.1 THEORETICAL EVALUATION 

All the new tissue substitutes and most of those developed in 

the past have been evaluated theoretically by comparing the following 

radiation characteristics with similar data for the corresponding real 

tissues: 

Mass stopping powers for protons. 

Kerma fadtors. 

Electron mass stopping powers and mass angular 
scattering powers. 

Mass attenuation and energy absorption coefficients. 

The recommended substitutes for each type of tissue and the calculated 

properties of some of them will be presented after a brief description 

of the computer programs developed for this theoretical evaluation. 

COMPUTER PROGRAMS DEVELOPED DURING THIS STUDY 

Three programs were developed during this study, namely 

ELISTBq PROTON and KERMAF. These programs. were written in 

Fortran IV and run on the CDC computers of the University of London 

Computer Centre (U. L. C. Q. 

The program ELISTB is used to calculate the elemental 

composition (in terms of percentages by weight, w/o) and theyelative 

density (SG) of any mixture of compounds , provided the formulae or 

elemental composition, the proportion by weight and the densities of 

these compounds are known. Table 4-1 shows an example of the 

output of ELISTB., obtained in the form of microfilm. 
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TABLE 4-1 TYPICAL OUTPUT OF THE COMPUTER 

- PROGRAM ELISTB 

I MATERIAL BRM/LG ' (SG 1.01 

WER 62.45 C3H8O3 18.1s ETHANOL 14.35 Nk2CONW2 2.77 

KHS04 . 16 hA2SG4 . 56 KCL *48 H3P04 1.07 

SUBSTITUTE O-VO) REAL TISSUE GLOV RATIO (SUBSTAZEAL) 

N 10.6822 10.7000 . 9983 ) 

c 1S. 1308 15.3300 . 9876 ) 

h 1.2902 1.29W C 1.0002 ) 

a 71.6741 71.4000 ( 1.0038 ) 

hAl . 1813 . 1790 C 1.0127 ) 

p M76 . 3400 MM ) 

5 . 1652 . 1700 . 9717 ) 

CL . 2292 . 2290 ( 1.0009 

K . 3001 . 3000 ( 1.0003 

The program PROTON uses elemental proton mass stopping 

power data at 38 energy points in the region from 0.01 MeV io 

1000 MeV, the elemental or compound composition of the substitute 

and the Bragg additivity rule to compute the partial and total mass 

stopping powers of each substitute material. Stopping powers for 

the real tissue are then computed together with the ratio 
(1) 

subst/ 
(1) 

tissue * 
The elemental stopping power data 

PP 

were stored on magnetic disc for convenience. Two subroutines 

are called by the main program, namely MM and GRAFFX. The 

first is used to determine the minimum and the maximum of an array 

of numbers (stopping powers or stopping power ratios). It then 
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prints the results with the appropriate headings. The second 

subroutine interacts with a plotting package for the line printer, 

written by the staff of the University College Hospital, London. 

This subroutine is called twice per substitute material. The first 

for the total mass stopping power of the substitute and the second 

for the stopping power ratios. Once these graphs are plotted on 

a linear-log scale, the mean, standard deviation and variance are 

computed and printed together with the minimum, maximum and range 

of values for each set. 

The program KERMAF has a structure very similar to that 

of PROTON and uses the same subroutines. The 116 kerma factor 

values for each one of nineteen elements, including all of those which 

exist in real tissues, taken from ICRP report 26, were stored on 

magnetic disc and used to compute the total kerma factor values for 

each substitute in the energy range 10 eV to 30 MeV. - The total 

kerma factor ratios (substitute /real tissue) are also computed and 

plotted against energy on a linear-log scale. The mean and 

standard deviation of these ratio values are. also calculated and 

used to indicate how accurately each substitute simulates the 

corresponding real tissue for neutron interactions. 

Figures 4.1a and 4.1b show examples of the graphical output of 

the programs PROTON AND KERMAF. The basic flow chart 

for these programs is shown in Figure 4.2. The program TABLE 

used for the computation of the photon and electron data for real 

tissues and tissue substitutes was developed by WHITE (1974). 

The data and formulae used in this program have been discussed 

in Chapter 1 (section 1.2 (iii) ). 

90 



MIERIAL AP42 

TOTVVL SP RATIOS. 
PLOT hO. I 

PLOT VAR hO 

I 

1 100r. 

220 
22222222 2 22 22 

2 32 22 222 
. loom 2a 122 

2 
Z 

2 

. 95OOC400- 

. 9000E 

-2.0 -1.0 0.0 1.0 2.0 3.0 

LOGARIT" OF EMERM 

MAIMIAL APoLZ 

TOTAL KERHA rALIM RATIOS. 
PLOT fG. A 

PLOT VAR he 

I 
. 11.4011 

2 22 222 
222222222222 222 aa 

. 30=401 2 222 22 ; 222a 22 22 222 
x 22a 22 222 

222 88 
22 

22 2 2 22 
2 2 

a 

96=400- . 

-6.0 -4.0 -2.0 0.0 2.0 4.0 

ýa) 

( 

Figure 4.1. Graphical output of the proýrams PROTON and EERKff- 

(a) Proton mass stopping power ratio against energy. 
A 8( 

(b) Kerma factor ratios 
A-ý/M 

agal ergy. 
( 

Adipose 

) 

91 



2IA2T 
j 

A2T 

y SET I& TO XA+l 
nxww 11RAYS 
AND 1111TIALISS 
CTORA LOCATIONS is NO NO 

GfDAlru Tw Tw c 
13DOPTAL DATA 1 4 

- STORO ON DISC 

I 

in 

,, 
1DA 7 HZADnrGS WR IT ý OUT OUTPUT 

]- 

TO TEE LM P BEADINGS TO L? BEJUDGNGS TO L? 
Ls No. COMPOUNDS 

3N LIBRARY / TITIM FOR s ;; If PUITUT 
L Z AID7 2 TO DISC WJIT 3 TITLES 

WIPE: SPECIFIES DATA. COMPARES SUBST'rfUTE 
FORMAT WIM Kth COMPOUND 

is Is Is No so No IN x INPUT z 
L LF-IS u-S Tw S rRo ourm =STDP 

A 
55 55 ERROR 

MESSAGE 
4 

BY SETTING L-0 SLT NA TO L+l 
CAN RAVE A YES YES YES 
SPECIAL RUN FOR 

t 

I =I TISSUES olly SET LERO 
IA -I STORACE LOCATIONS 

!N XU=Ahb, 

XMAT XSENTS 10. ELEtMrn NEGATIVE 
IN COMPOUND CONDITION 

OF Nmg 

COMPIM& COMPOUND NAME 

POSITIm SET NSE'T ZqUAL - HODEs SPECIFIES DATA is YES W" AND SG 
FORMAT ISENT LESS EQUAL TO RlIOA(I) 

Tw 0? 

R=(I)j IENSTTY OF 
COMPOUND 

YES is 
NUM3% NO. SUBSTIT NTYI ii UNEQUAL 

<7': 
N> 

COMPONENTS TO ZERO 

INPUT COMPOUND 
OR SUBS DATA Ko Ko 

IVATs SUBSTITUTES CHECK FOR 
NAME VALID CM20M; DS 

C010M PýOPOIRTIONS 
or 

ELD=S LY COMUND 
ONLY TK9 MAIN 
EIM0INTs Mkirb 
ZEIM FACTORS OR 
STOPPING POWERS DWES 

ýýJ, E r ME, HAJE M19 SAIT 

TS YES 

37 Illm FACTOR =IpIrIM LF OR sp 
-. - FOR COMFOLMD FROK 

sp STOPPING Powzrt LM22. 'TAL mATA 

YES 
OMMIT 

ION 
CAUTIOU I-TSS ICE 

? as 

110 r- 

nTVALID CCVIPOG; XT)! ý 

wo 
CUTU. "s IMAIAL 

IF OR SP 

TZS 

is --,, ym IMM EVAL TO Z=F-IRO 
ozt 2 L? 

No 

TWISFE-a 
"LWOUM" ARPAYS 
IN "TOTAL" AILRAYS 

TE is 
rrTrE ETTAL 

TO 
. 
1? 

0 Vo 
---L -. 4 

2 

OUTPUT 
READINGS 

EtwM72AL C(X.! P 

Co 

-'- 
ýlandj 

II C(XVM RLTIOS I 

CALL CIV. %Ilx 
TO 

TOT 

CLM CROTX 
KR 

RATIO3 

Figure 4.2. Basic flowchart for the programs PROTON and Y3MW- 

92 



4.1 (ii) RECOMMENDED TISSUE SUBSTITUTES AND THEIR I 

CALCULATED RADIkTION CHARACTERISTICS 

The results of a comprehensive analysis of the radiation 

characteristics of all the new tissue substitutes, and of most of those 

published in the past (summarised in Appendix 4), for photons and 

electrons of 0.01 MeV 100 MeV, protons of 0.01 MeV 1000 MeV 

and neutrons of 11 eV 30 MeV, led to the classification of these 

materials according to the magnitude of the discrepancies in their 

radiation characteristics, when compared to those of the corresponding 

real tissues: 

CLASS A materials :. errors 5Y. 
CLASS B materials : errors from 5*1o to M/c, 

CLASS C materials : errors > 20% 

All those substitutes which are "Class A for all types of radiations" 

are recommended for use in clinical dosimetrv. Some of the 

"Class A" substitutes become Class B or even Class C when 

considered for photon energies below 0.1 MeV and such information 

is given in the classification. Similarly, some of the substitutes 

are Class A for one type of radiation but Class B or C for other 

radiation modalities. Tables 4-11 (A to E) summarise the results 

of this classification and show the recommended substitutes. The 

calculated coefficient ratios, power ratios and kerma factor ratios 

of some of the recommended tissue substitutes are given in 

Tables 4-111 and 4-IV. 

N 
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4.2 EXPERIMENTAL EVALUATION OF-THE "TISSUE 
EQUIVALENCE" OF THE NEW SUBSTITUTES 

The general objectives of the experimental work carried out 

during this study were two-fold, namely,, to determine how accurately 

the new tissue substitutes. simulate the corresponding real tissues 
II 

and then to use these materials to measure the dose distributions 

from beams of various radiation modalities in tissues like muscle, 

brain, etc. , and to investigate the effect of tissue heterogeneities 

on these dose distributions. 

The experimental verification of the tissue equivalence of 

the new substitutes is described in this section while the dosimetric 

investigations using the new substitutes are discussed in Chapter 5. - 

Comparative measurements were made for the follo, -Adng: 

a) Muscle equivalent liquid (MS/Ll) and solid muscle substitutes 

(MS/SR1 and MS/-SR4) versus human muscle, beef steak and 

pork; 

b) Brain equivalent liquid (BRN/L6) and brain solid substitute 

(BRN/SR2) versus human brain; 

c) Fat equivalent solid (FT/SF1) versus beef fat; 
I 

d) Solid and liquid bone substitutes versus human bone. 

The human tissues used in these comparisons were obtained from 

post-mortem investigations. 

The cells shown in Figure 4-3.. made of muscle or brain 

substitute accordingly, with cross sectional area 10 cm x 10 cm and 

variable thickness, were filled with the real tissues and immersed 

into the appropriate tissue equivalent liquid to displace an equal 

volume of that liquid; central axis depth doses and beam profiles 

were then measured in the liquid behind the cell and the results 
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compared with those obtained in the liquid alone and with those 

obtained when other solid substitutes were pro-sent in the liquid. 

The result will be discussed in the followi-ng sections of this 

chapter. 

Figure 4.3 Cells used in the comparison of 
substitutes versus real tissues 
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4.2(i) HIGH ENERGY PROTONS 

The 160 MeV proton beam from the synchrosyclotron of 

the Atomic Energy Research Establishment, U. K. v was 

s cattered with a0- 317 cm -thick copperplate. The resulting broad 

beam was about 5 cm, diameter at the front face of the phantom, 

1m away from the end of the beam pipe line. When liquids were 

used, they were contained in a 15 cm x 15 cm x 25 cm perspex tank 

whose front wall was 0.3 cm thick. 

A flat ionisation chamber (MC78), which is described later, 

was used to measure depth doses in MSILl. A5 cm-thick cell of 

human muscle was then immersed in the muscle liquid in the plateau 

region and, the depth dose measurements in the liquid behind the 

muscle cell were repeated; the human muscle was sequentially 

replaced by beef steak,... solid MS/SR1 and solid MS/SR4 muscle 

substitutes and each time the depth doses in the liquid behind them 

measured. The results are shown in Figure 4.4. The maximum 

difference in the position of the Bragg peak between any two of the 

above sets of measurements was less than 1 mm and if a correction 

for the slightly higher relative density of MS/Ll (1-07 instead 

of 1.06) was made, this difference was reduced to less than 0.270 of 

the peak depth. When MS/Ll with no trace elements in it was used 

(relative density 1.06), the results were identical with those obtained 

when the fixed human muscle sample was immersed in it. 
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Figure 4.5 shows similar. measurements for 5 cm-thick 

samples of beef fat and the solid fat -substitute FT/SFI placed., 

in turn, in the plateau region; the agreement between the two 

is good. The depth dose in MS/Ll is also plotted on this graph 

so that the displacement of the Bragg peak for fat, relative to muscle 

can be estimated. 

Another similar"cell, made of brain substitute (BRN/SR2). 

was filled with human formalin-fixed brain and immersed in brain 

equivalent liquid (BRN/L6). The central axis depth ionisation 

curves in tRN/L6, with and without the real brain in it, are 

shown in Figure 4.6.1 The two sets of measurements are nearly 

identical; when a5 cm-thick BRN/SR2 sample was immersed in 

BRN /L6, in the plateau region , however , the depth of the, Bragg 

peak was reduced by about 1 mm. 
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Figure 4.5 Fat substitute versus beef fat 
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Figure 4.6 Brain substitutes versus real human brain 

The slightly higher relative density (1.04 instead of 1.03) was found 

to be responsible for most of this displacement. 

A preliminary series of measurements with various bone 

substitutes and sections of an ox tibia, showed that a density 

correctiony when bone, was present in the beam, would give the 

required position of the Brdgg peak with an error not exceeding 

4-5*/,,. It was not possible to find areas of real bone to make absorbers 

of cross sections large enough to minimise experimental errors, so. the 

above finding was accepted. The effect of bone as well as the 

correction necessary when bone is present in a proton beam are 

discussed later in the thesis. 
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4.2 (ii) FAST NEUTRONS 

A series of measurements similar to those described in the 

previous section was carried out using the fast neutron beam of the 

Medical Research Council cyclotron at the Hammersmith Hospital., 

London. Central axis depth doses were measured in muscle- 

equivalent liquid (MS /41) and then 5 cm-thick samples of human 

musclcpbeef steak, pork and MS/SR4 were immersed in turn, and 

the depth doses measured each time. 

The total dose (Dn +Dy) was measured with a1 CM3 

spherical ionisation chamber (EG & G) whereas the gamma ray 

component of the dose was measured with a Geiger Muller counter 

covered with a6 Li foil *to absorb the slow neutrons. The total 

dose was norm. alised-to the dose at 1.5 cm depth and the, results., 

plotted versus depth, are given in Figure 4.7(a). Dose distributions' 

perpendicular to the beam 
-axis 

(beam profiles) were also measured 

in MS/L1 (at 9 cm. depth) and then repeated. with each of the above 

mentioned samples immersed in the liquidg in front of the dosemeter. 

The dose at points off the axis was normalised to the central axis 

dose which was taken as 100%. (Figure 4.7(b) ). 

The difference between any two measurements at the same 

point, but with different samples, was generally of the'order of tO. 5/. * 

and in no case greater than 2-0.8%. A statistical analysis of the 

differences observed in all, the above measurements was made and 

these differences were found not to. be significant; differences - 

resulting from the variability of the, machine itself (e. g. deuterons 

hitting the Be target off centre) , amount 1%; this aiso accounts' 

for the fact that beam profiles measured under identical conditions 

are not always symmetrical. 
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Brain substitutes were compared to human brain (both 

formalin fixed and unfixed), in the same way as above. The gamma 

ray component of the dose was also measured and subtracted from 

the total dose. The neutron depth doses, expressed as a percentage 

of the maximum neutron dose (at 2 mm depth for this neutron energy), 

are shown in Figure 4.8. Unfixed human brain and BRN/L6 gave 

nearly identical results whereas formalin fixed brain gave slightly 

higher and BRN/SR2 gave slightly-lower depth doses than unfixed 

brain. In general., however., the-neutron depth doses behind any- 

brain sample, substitute or real,. were found-not to differ by more 

than 1%, i. e. they were within experimental error, ýthe same. 

100 

70 
1100xDn 
Dn. man. 50 

V 
NEUTRONS 

30 9 IN BRAIN/L# 
0 WITH 4cm BRN/SR2 
6 WITH 4cm REAL HUMAN BRAIN 

20 

10 

5.0 
100xDy 
Dn, max. 

3.0 
GAMMA RAYS 

2.0 

0 
_2 

468 10 12 14 16 
. 
18 20 

Depth - cm 
Percentage neutron and gamma depth doses in Brain/L6. I In - 7.5M@V) 

lComparison with real human brain) 

11 1 

Figure 4.8 Brain substitutes versus real brain. 
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Figure 4.9 shows the ýcomparison of beef fat with FT/SFI with the 

same beam of neutrons. 

In this case the solid muscle substitute MS/SR4 was 

used as main phantom material and the fat samples placed infront of 

it, keeping the distance from the front surface of the composite 

phantom to the target unaltered (i. e. 120 cm). The neutron depth 

doses behind the beef fat sample are slightly higher (but not more 

than 1%) than those obtained, with, equal thickness of, FT/SF13 mainly 

because of the difference in, the-_width and height of the two samples 

(beef fav: 10 cm x 10 cm, x5 crn , FT /SF 1: 15. rm x 15 crn x5 cm), ý 
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jigure 4.9 -Fat si; bstitute -versus beef fat 
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This difference in geometry was cancelled out when the tissue cells 

were immersed in the'liquids in all the previous examples. 

It is evident that the higher hydrogen content of fat, 

although it may result in higher neutron absorbed dose in the fat 

itself. is, more than compensated by its lower density; the net 

effect is that the neutron doses behind it are higher than in muscle 

alone., without any fat present, 

Finally, a comparison between bone substitutes and real 

bones was attempted. For this, a cylindrical container with 5 cm, 

internal diameter and 0.5 cm-thick wall, made of MSISR4 was placed 

in the perspex tank touching its front wall and displacing muscle 

equivalent liquid (MS /Ll). Thi. s allowed the introduction of liquid 

bone substitutes into the muscle equivalent liquid (MS/Ll). The 

ionisation chamber could move behind'the cylinder, 'in th-A liquid', the 

movement being controlled remotely (Figure 4.10). 

ov .( 
, 
6L 
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Figure 4.10 Setup used for the comparison of real 
bones with bone substitutes 
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Three real bone samples and three cylinders of solid bone substitutes, 

(T. SK/SF3, HB/SF3 and HB/SR9) , machined to dimensions similar 

to those of the real -bones 
(femur, about., 3 cm diameter) were 

immersed, in turn,, into the cYlindert displacing the liquid bone 

substitute. The depth doses -were measured atl two depths,, namely 

9 Cm and 15 cm, with the cylinder containing TSK/Ll and then a 

hard bone liquid substitute (WITT and CAMERON 1975). 

The total doses measuredýat 9, cmdepth for the various 

liquid bone substitutes and the real bone samples were all lower than 

those measured in muscle equivalent liquid alone; the difference 

between the total doses behind any combination of two bone samples., 

real or substitutes, however, (lid not exceed 0.5% of the maximum 

dose. 

An attempt to verify whether the lower total dose was clue 

to lower nVitron or lower gamma ray components of the dose, did not- 

give conclusive res 
-ults. , 

Measurements with slabs of solid bone 

substitutes, however, indicatedp consistently, that the difference 

was due to a reduced gamma ray component of the dose; this will 

be discussed in Chapter 5. 

, 
4.2 (iii) COBALT-60 GAMMA RAYS 

Although the new substitutes were designed for particulate 

radiations they were also tested with cobalt-60 gamma rays. There 

was no doubt about the accuracy of simulation for the liquid substitutes 

which have both correct elemental composition and relative density. 

It is the effect of the partial 'replacement of oVgýn by carbon in the 

solid substitutes that had to be verified experimentally, 

Since Compton scattering is the predominant process at 

the energy of cobalt-60 gamma rays, it is the electron density 
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3 (electrons/cm )'that is imp, ortant inAis casý. Consequently, no 

greai difference was to be ex'pected:, for 6xample, ', between MS/L1 

which is elementally correct and MS/SR4 in'which three'quarter's 

of the 'oxygen content of muscle have been replaced by, an equal 

amount of carbon (oxygen - 15.55, '. ' , instead of 72 * 
89%, by'weight). 

The tissue equivalence of some of the new substitutes,, 

was tested with cobalt-60 gamma rays in the same way as with, protons 

and neutrons. The field size and SSD employed were 10 cm, x 10 cm 

and 75 cm. respectively. 

Figure 4" 11 shows the results of the comparison of MS/L1, 

MS/SR41 beef steak and human muscle. On the same graph the results 
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-of 
the comparison of FT/SF1 with bccf fat, are also given for the 

same 10 cm x- 10 cm. field size It was found that in no case did. 

the readings at the same depth differ by more than 1% which indicates 

that the simulation of thereal tis : sues at this photon energy is very 

accurate. However, when cylinders of hard bone substitutes (HB/SF3, 

HB/SR4) were compared to real human bones of approximately the same 

shape$ the depth dose measured behind the substitutes was 
I 
tip to 2% 

lower than the aose measured at the same point behind the real bones. 

The setup and method used in this comparison was the same as that 

already described in the comparison of bones using fast neutrons 

(Figure 4.10). The two' bon e su 
I bs tI itu , tes themselves were found to 

be within 0.5% of'cach other. 

4.2 (iv) 1201, -,. Vp X-RAYS 

The accuracY with which the various substitutes simulate 

the corresponding real tissues at photon energies below 100 keV 

(Diagnostic'range) was tested using the general purpose EMI 

CT50042085 scanner' of -the Middlesex Hospital, London, operating 

at 120 kVpt 33 mA (4.5 mm Al filiration). 

The, 
-CT-numbers obtained in computerised tomography 

(CT)., for a given photon energy., appear to have a linear relationship 

with the linear attenuation coefficient of the material which'I is 

rec6nstructea in each picture -element 
(pixel) (McCULLOUGH et al.,,. 

1976., WHITE and SPELLER, 1978). 

The derivation of the -value from the mea sured CT- 

number of the various tissues is needed if these data are to be used 

in dose calculations for radiotherapy treatment planning. In order 

to find the exact analytical expression for this relationship and 

subsequently derive the p -values from the CT-numbers measured 
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during a scan, it is necessary to know the effective energy (Eeff) 

of the X-ray. beam in use. 

The Eeff of the X-ray beam of the CT-5005 scanner used, 

was measured using the "KEVLIQUID" method proposed by WHITE and 

SPELLER (1978) and was found to-, be 67 10.5 keV. Each of the 

liquids used is a two-component solution (ethanol + carbon: 

tetrachloride) denoted by keV1. The relative volume of each 

component is calculated so'that the- -value of 'each KEVLIQUID 

equals that of water only at one specific energy (water is used as 

standard material). In this way,, several' KEVLýQUID S can be 

formulated and used as - "keV indicators". 

The actual Eeff of the X-ray beam can be found by scanning 

the keV indicators CKEV1/60, KEV1/62, KEV1/64 etc) sequentially 

and selecting the one that has the same CT-number as water. 

In, practicela 20 cm diameter solid phantom was used; the 

phantom was made of the water substitute WT/SR1.2.5 cm diameter 

polypropylene tubes, each filled with one KEVLIQUID, were inserted 

in a hole of the same diameter drilled at the centre of the phantom and 

scannedg one at a time, , 
Water was also scanned on its own. After. 

each scan, the mean CT-number and the standard deviation were 

determined within a circle of radius equal to 5 pixels. The measured 

CT-numbers were plotted against "indicated keV" and the value 

Eeff = (67 ±0.5)keV was derived from the graph using the CT-number 

for water; consequently the -value. at 67 keV , for each of the 

KEVLIQIJIDS was computed. Table 4-V shows the exact values. 
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TABLE 
-4-V 

MEASURED'AND COMPUTED DATA, 
FOR THE KEVLIQ'UIDS 

"Indicated keV" 
liquids 

Measured - CT-numbcr 
Standard 
deviation 

Computed p (cm-1) 

KEVI/60 -26.13 2.40 0.189 
KEV1/62 -21-50 2.36- 0.191 
KEV1/64 -16.80 2.53 0- 193' 
KEVI/66 -11-39 2-35 0.195 
KEV1/68 - 6.94 2.53 0.197 
KEV1/70 - 2.48 2.30 0.199 
KEV1/72 + 2.43 2.42 0.201 

WATER -10.77 2.30 o. 196 

A linear relationship of the form ao + al x (CT -numbpr) was 

fitted to the data of columns 2 and 4 of Table 4-V using the method 

oi least squares; the equation for the "best fit" straight line was 

found to be: 

0.1999 + 0. OOb42 x (CT -number) (4.1) 

It is evident that these KEVLIQUIDS can also be used to test the 

linearity of the scanner. 

Having established the Eeff of the machine and the exact relationship 

*between CT-numbers and -values. a series ol" tissue substitutes 

were scanned, in turn,, using the same phantom and the same machine 

working conditions; the p-values for these substitutes, derived from 

their measured CT-number using equation 4.1, were compared to those 

of the corresponding real tissues which were calculated from basic 

elemental data as suggested by WHITE and FITZGERALD (1977). 

Table 4-VI gives the -actual values and in the last column the values of 
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the coefficient ratios,. which indicate the accuracy of"simulation at 

thi s low energy, are given. 

TABLE 4. Vl MEASURED AND CALCULATED P-VALIJES 
FOR SUBSTITUTES AND REAL TISSUES 

Real tissue 
or substitute 

Measured 
CT -number 

Standard 
deviation 

PexperScnl- 
(67 keV 

(cm-1 Pcalc. 
(67 keV) 

Psubst. exp . er 
Ptissue calc. 

ICRU 
MUSCLE 01.198 

H20 -10.77 2.30 0.195 0.196 0.99 

MS/Ll 11.68 2.50 0.205 0.2P5 1.03 
MS/SR1 3.05 2.28 00201 

0.200 1.01, 
MS/SR4 -2-33 2.30 0.199 0.197 1.00 
BLOOD 

(WHOLE) 0.206 

BL/Ll 31-99 2.41. 0.213 0.201 1.03 

BRAIN 0.201 

BRN/1.3 5.23 2.23 0.202 0.198 1.00 

BRN/I. 6 9.51 2.23 0.204 0.199 1.01 

BRN /SR2 0.13 2.59 0.200 0.200 0.99; 

HARD BONE 0.497 

HB/SR4 557.68 4.76 o. 434 0.413 0.87- 

S134 625.95 5.83 0.463 0.478 0.93 

WITTýS 
LIQUID 578-75 4.52 o. 443 o. 474 0.89 

TOTAL 
SKELETON 0.321 

S. SK/Ll 257.60 2.60 0.308 0.292 0.96 

T. SK/SF3 . 
248.10 2.70 0.304 0.297 0.95 

FAT 0.174 

FT/Ll -79.43 2.50 o. 166 0.168 0.96 

TOTAL SOFT 
TISSUE 0.200 

TST/Ll 7.61 2.40 0.203 0.200 1.01 
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The difference between experimental and computed p-value, 
I 

for the same material is generally of the order of 1-2/., except in 

the case of hard bone substitutes where the maximum difference 

was 70/.. 

117 



N 

CHAPTER 

THE 'USE C)F THE NEW TISSUE SUBSTITUTES IN 
DOSIMETRIC INVESTIGATIONS RELEVANT 

To RADIOTHERAPY 

Beams of X-rays, gamma rays, electrons and neutrons are 

used in radiotherapy on a routine basis, while clinical trials mrith 
k 

high energy protons and negative pions are in progress in various 

countries. The formulation and manufacture of the new tissue 

substitutes for particulate, radiations., offered the opportunity for 

dosimetric measurements with these radiation modalities. It also 

made possible the investigation of the effect of air spaces, lung, fat 

and bone on the dose'distributions in composite phantoms. 

Dose distributions were measured in a muscle equivalent 

liquid (MS/L1) ,a solid muscle substitute (MSISR4) and a-brain.,: - 

equivalent liquid (BRN/L6).. Since water has been widely used as 

muscle substitute in the past, measurements were also made in water, 

so that the difference between muscle and water when the two are 

used under identical conditions could be investigated. ' In this 

chapter, the measurements carried out with beams of 150 MeV protons, 

7.5 MeV neutrons,, 10 MeV electrons, 70 MeV negative pions and 

alpha particle-s of energy up to 5 MeV will be discussed in turn. 

5.1 PRE-THERAPEUTIC MEASUREMENTS WITH HIGH 

ENERGY PROTONS 

The physical characteristics of high energy protons have -been 

reviewed by KOEHLER and PRESTON (1972); more recently, 

ARCHAMBEAU et al. , (1974) reviewed the clinical status of proton 

radiation therapy. The measurement of a number of parameters 

determining the depth dose, distribution of a high energy proton, beam 
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is a necessary pre-requisite of patient treatment. Such measurements 

would enable a credible and reproducible method of dose administration 

to be established. 

As plans to use the 160 MeV proton beam from the 

synchro cyclotron of the Atomic Energy Research establishment, 

U. K.., (A. E. R. E) for radiotherapy exist, all the relevant physical 

parameters of that proton beam were measured during this study. 

The central axis depth doses, the depth of the Bragg peak, the peak. 

width., peak/plateau ratio and beam_profiles in MS/Ll, 'BRN/L6 and 

water have been established. The effect of air spaces 'lung.. fat 

and bone on the depth doses was also investigated and a simulated 

patient treatment was attempted, with promising results. 

5.1 W MATERIALS AND METHODS 

Protons of (160 t 2)MeV were focussed onto a0 . 317 cm. '; 

thick copper scatterer , from which they emerged having, a roughly 

Gaussian intensity distribution with distance from the beam axis, -,, -, - 

with a mean energy of about 150 MeV. A transmission ionisation'ý', 

chamber'placed in the beam, 10 cm awak from the scatterer, 
_, 

was. 

used as beam monitor. The scatterer-phantom distance was 1 metre 

and the 500% level width of the beam profiles, measured with a silicon,, 

diode detector at 0.5 cm and 15.5 cm-depth in water, was 4.8 cm, 
'' 

and 6.0 cm rcspectively. 

The detectors used within the phantom could be moved by 

remote control along the horizontal axis of the beam as well as-. 

laterally and vertically in a plane normal to the beam direction. 

Figure 5.1 shows a photograph of the setup. The focussing magnets, 

scatterert traiýsmission monitor: chamber and the detector in the 

liquid phantom are clearly visible. The detector signals were fed 
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into a KEITHLEY 602 electrometer connected to a digital voltmeter. 
, -- I 'I -, Whenever týe detectors were used in a liquid phantom, they were 

inserted in special sleevcs made of th-e appropriate solid 

substitute (bone: HB/SR4, muscle: MSISR4 or MS/SR1 and 
brain: BRN/SR2), and machined to the exact shape of the detector. 

These are illustrated in Figure 5.2. The 0.2 CM3 cylindrical 

ionisation chamber was obtained from the Rutherford Laboratory. 

The plane parallel plate (flat) ionisation chamber (MC78) also 

illustrated in Figure 5.2, was made by painting the h. t. , guard and 

collector plates onto strips of a muscle substitute (MS/SR1), using 

colloidal graphite (dag). It was assembled using a1 mm-thick strip 

of Perspex as a spacer. The air-filled collecting volume was 

formed by removing a1 cm-diameter section of the spacer. The 

chamber followed the design used at the Medical College of 

St Bartholomew's Hospital and described by ELLIS and IZEAD (1969). 

The outer surface of the stem of this chamber had to be coated with 

dag which was grounded to eliminate fluctuations of the signal, 

arising from mains pick-up. A similar chamber made of Perspex 

(MC38)., gave results which agreed within t 1% with those of the 

chamber MC78 described above, provided a density correction was 

made for the presence of Perspex. 

A silicon diode (AERE) was also used at a later stage in this 

series of measurements; this diode has a surface of about 1 MM2 and 

a depletion zone of the order of 0.2 mm-thick and is encapsulated in 

a di sc of epoxy resin (diameter -I cm) at a depth of 0-5 mm. 

The polarizing voltage used was 250 Volts for the 0.2 CM3 

cylindrical chamber and 300 Volts for the flat chambers and the diode. 

The alignment of each detector in the beam was generally made 'by 

means of vertical and horizontal scans normal to the direction of the 
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beam, except in the case of measurements with_ the collimated beam, 

when a paraxial LASER beam was used Jn addition. 

5.1 (ii) MEASUREMENTS WITH A SCATTERED BUT 
UNCOLLIMATED PROTON BEAM 

Working with the 150 MeV proton beam described above, 

the ionisation produced along the central axis'of the beam'in water, 

brain equivalent liquid (BRN/L6) and muscle equivalqnt liquid (MS/Ll) 

was measured with the flat ionisation chamber (Perspex MC38). 

In practice, the signal from the chamber was integrated over the 

time needed for the "monitor" ionisation chamber to collect a preset 

electri 
Ic 

charge of 1x 10-7C (scale 1000 x 10-10C on the integrator). 

The results are summarised in Figure 5.3 and Table 5-r. 
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Figure 5.3 Central axis depth dose curves for 150 MeV protons. 
(Scattered but uncollimated beam) 
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TABLE 5-1 VARIOUS PHYSICAL PARAMETERS 
_OF 150McV PROTONS IN MUSCLE, BRAIN 

AND -WATER- (SCATTERED BUT 
UNCOLLIMATED BEAM) 

MATER IAL 
PARAMETER, MS/Ll BRN/L6 WATER 

Depth of peak (cm) 14-73 15.04 15.57 

Peak ý'height' 

(X 10-9c) -Iý 0.71 1 0.70 1 0.68 

Range to half 
maximum (cm) 

C 
15.06 15-37 15.92 

Extrapolated 
range (cm) 15*38 15-59 16.20 

Full width 
at 80% level (cm) 0.45 0.45 o. 45 

Full width at 
half maximum (cm) 1.50 1.53 ! A6 

Peak 
ratio 3.38 3.35 3.26 

entrance 

Peak 
ratio Plateau (5 cm) 

3.29 3.24 3.23 

Peak 
ratio Plateau (10 cm) 

2.90 2.91 2.93 

Drop 100 -. P- 20% 
(distance in cm) 0.45 0.46 9.47 

1. Correction for the presence of the Perspex wall of the 
tank applied. 

2. Entrance value obtained by extrapolation of the curve 
to "zero depth". 
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, The effect of hard bone and fat ý on, the depth of the -Bragg peak.. 

the peak height, the range and the other physical parameters was 

investigated by introducing various thicknesses of the tissue 

heterogeneity in muscle equivalent liquid. In order to investigate 

the effect of lung, a composite'-phantom-c'onsisting of 3 cm-thick 

solid muscle substitute (MS/SR4) and then various thicknesses, of 

lung followed by muscle equivalent- liquid (MS/Ll*. in the Perspex- 

tank), was used, as Figure 5.4 indicates (the effect of fat is shown 

in Figure 4.5). Table 5-If'-gives- a summary of the results,, 

/ 

80 . 123456 

. 70 

60 
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E . IXXXXXX1 
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50 ... * . xXxx 
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c . 40 
..................... 

.2 

30 
.2 . 

. 20 
: ýW, WiAUkLEmj 3Z,; LUNG I 
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Figure 5.4 Effect of hard bond and lung on the central 
axis depth dose curve of 150 MeV protons. 
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Because of the importance of the effect of skull bone on the 

depth of the' Bragg peak 'when'such a proton beam is used for the 

treatment of the pituitary gland or any brain tumours,, various 

thicknesses of hard bone and total. skelcton substitutes were immersed 

in brain equivalent liquid (BRN /L6), -touching the front wall of the' 

Perspex tank-(15 cm x 15 cm x25 cm) and the scans along the central 

axis of the beam in the brain liquid were'repeated. Figure 5.5 and 

Table 5-111 give the relevant data. 
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Table 5.5 The effect of bone on the central axis depth 
dose curve of '150 MeV protons in a brain 
equivalent liquid 
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TABLE 5-111 EFFECT OF BONE ON THE DOSE 
DISTRIBUTION FROM 150McV PROTONS 
IN BRAIN' 

MATERIALS - SETUP 
PARAMETER * 

BRN/L6 1 cm IIB/SR4 2 cni IIB/SR4 2 cM TSK/SFZ3 
BRN/L6 - BRN/L6 BRN/L6 

Depth of peak (cm) 15.04 14.59 14.14 14.59 

Peak height 
(X 10-9c) 0.70 'Iý0.71 0.72 0.71 

Range to half 
maximum (cm) 15-37 14.90 14.45 14.91 

Extrapolated 
range (cm) 15.59 15.11 14.69 15.19 

Full width at 
80% level (cm) o. 45 0.50 0.45 0.46 

FWHM (cm) J-53 1.54 1.6o 1.65 

Peak ratio 3.35 3.38 3.40 3.38 entrance . 
Peak 

ratio Plateau (5cm) 3.24 3.18 3.19 ý3.20 

Peak 
Plateau ( 10 cm) ratio 2 . 91 2.84 2.79 2.85 

Drop 100 -. P- 20*/. 
(distance in cm. ) 0.46 0.46 0.48 0.50 

Correction for the presence of Perspex ( front wall of t ank 
and front plate of chamber MC38) applied 

I 
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As the pituitary gland is sit'u"ateil in the bony structure of 

the pituitary fossa-(sella turk-ika), the'effect of bone being very 

close to the detector was investigated; a "bony sleeve" was made 

for the 0.2 cM3 cylindrical ion chamber which had a uniform 

thickness of 0.5'cm all round'the sensitive volume of the detector 

(see Figure 5.2). The depth of the peak in MS/Ll was found to 

be 1 mm less than it was with'the "muscle sleeve for the detector and 

0.5 cm-thick slab of the same, bone substitute (HBISR4) placed in the 

plateau region". It was. assumed that the extra 1 mm reduction of the 

peak depth observed was due to backscatter from the back half of the 

"bone" sleeve. . 
The measurement 

-was 
repeated with another sleeve 

I 
whose back half was HB/SR4 (hard bone) and the front half MS/SR4 

(muscle) Again the depth of the peak and the extrapolated range 

were found to be approximately 1 mm smaller than those in the 

"muscle only" situation, which indicated the presence of some 

backscatter from the 0.5 cm-thick bone behind the sensitive volume 

of, the ionisation chamber. The, observed reduction in peak, depth, 

is possibly due to a change of the effective measuring position in the 

cylindrical volume of the chamber. This is discussed later in this 

chapter. 

The presence of air pockets in the path of the proton beam 

causes a distal. shift of the Bragg pýak in a-phantom... Two 

polypropylene tubes., closed at both ends, with internal diameters 

1.6 cm and 2.5 cm respectively were introduced, in turn, in the 

plateau region so that their long akis was perpendicular to the axis 

of the. proton beam. On both occasions.. the scans along the central 

axis of the beam showed a distal movement of the peak by 0.9t 

diameter of air tube). The observed reduction in the peak height., 

was more than the inverse square law would predict by about 
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Urlo' of the'peak height in muscle. This is probably because'the '. 

muscle liquid ififront of the air'space acts as a second scatterer; 

this combined xvith thd presence of the air space (i. e. extra- 

distance to be travelled) result in a further spreading of the proton 

beam and so the number of protons per unit area in the peak region, 

on which the peak height depends, becomes smaller than it would 

have been without the presence of air in the beam. 

In order to study the effect of differences in chemical 

composition of the various tissue substitute materials, the depth of 

the Bragg'peak and! the e'xtrapolated range in water, BRN/L6 and 

MS /Ll were multiplied by the* density of each material, to obtain the -I 

"equivalent thickness" of both the peak depth and the extrapolated 

range in g/cm 
2. In this way, the effeci, of differences-in density 

between the various materials is eliminated (density correction). 

In the case of composite pha ntoms , the path length, in each type of 

substitute material was multiplied by the corresponding density to 
2 derive the. 'Iotal equivalent thickness" in g/cm The relevant data 

are given in Table 5-IV. 

TABLE 5-IV BRAGG -PEAK DEPTH AND EXTRAPOLATED 
RANGE -EQUIVALENT THICKNESS IN 
VARIOUS'MATERIALS 

Materials Equivalent thickness 
of peak depth(g/cm) 

Equivalent- thickness for 
extrapolated range(g/cm2) 

Water 15-57 16.20 
BRN/L6 15.64 16.22 
MS/L1 15-76 16.45 

3 cm MS/SR4 )- 
+8 cm LN/SR4) 15.88 16.55 
+ MS/L1 
5 cm FAT + MS/L1 

. 15.60 16.19 
4 cm HB/SR4 + MS/L1 16-38 16-97 
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The conclusion from this analysis is that, 'after correcting 

for density, only a very small variation in peak depth equivalent 

thickness remains to be accounted for. 'This variation could be 

attribuled to the differences in chemical composition'among'the tissue 

substitutes considered. 'Fat is probably the most effective in 

stopping protons,, on a gram for gram basis.. because of its higher' 

hydrogen content. The depth of the'Bragg peak (in'g/cmý in a 

"5 cm'fat + muscle" phantom is'about 1% smaller than that'in muscle 

alone . 

Whdn "4 cm-thick, hard bone + muscle" is consideredthe, peak 

depth 6quivalent thickness is found to be 0%, larger, than that in, "muscle 

alone"; in other words, despite its higher density, hard bone is less 

effective in stopping protons than muscle, on a gram for gram basis 

(low hydrogen content in hard bone). 

To summarise, a density correction is adequate for calculating 

the peak depth in a given phantom from measurements in water except, 

when lung or thick bones are present. 

The peak height is increased by about 0.5*/o per cm of bone 

present in'the'path of the protons, 'while it is reduced by"about 205%- 

3.0*/,, per cm of lung and by about 0.6%, per cm of fat'travýrsed., 

For clinical purposes one needs to have certain. measured 

data and a set of "isoclose shift" factors to correct the dose 

distribution for the presence of heterogeneities. Such correction 

factors have -been'derived during this work and are given in 

Table 6-I'Of next chapter. 

I- 
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5.1(iii) MEASUREMENTS WITH -A SCATTERED AND" 
COLLIMATED PROTON BEAM 

The advantage of proton beam therapy lies in the narrow 

well-defined beams which can be obtained by collimating the 

scattered beams. However, the plateau, shape, the width and height 

of the Bragg peak and the p, ýýak/plateau ratio are modified when the 

proton beam is collimated. These effects were m6asured using the 

150 MeV scattered proton beam described above but collimated with 

a 10 cm x 10 cm x 3.7 cm, block of brass which had a 0.7 cm diameter 

hole at its centre. This collimator w. as positioned between the 

beam monitor ion chamber and the phantom, and 3 cm in front of 

the latter. The intensity distribution of the collimated beam when 

it entered the phantom Was essentially uniform. 

Central axis depth doses, and beam profiles in a plane normal 

to the beam direction were measured at various depths in water, 

brain equiNlbdent liquid (BRN/L6) and muscle equivalent liquid (MS/Ll). 

Figure 5.6 shows the central axis "depth- ioni s ation" curves obtained 

from measurements in the above liquids, using the 0.2'cm3 cylindrical 

ionisation chamber. By using the appropriate calibration factor, the 

percentage depth doses can be derived from these curves. - Table 5-V 

gives the results of the above measurements. The results from 

scans. along the central axis of the beam in water and BRN/L6 using, 

the silicon diode of the AERE are also shown in this Table for 

comparison. 

Central axisl depth dose scans with mixed materials were also 

carried out in the collimated proton beam to-determine the effect of 

yarious thicknesses of bone on the depth dose distributions in 

muscle and brain. The results agreed with those obtained, 

with the uncollimated proton beam-of the same energyp i. e. a 

proximal displacement of the Iýragg peak by 4 mm per cm of hard 
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Figure 5.6 Central axis depth dose curves with a 
150 MeV scattered and collimated 
proton beam (0.2 cm3 cylindrical ion 
chamber 

bone traversed-in the case of muscle', equivalent liquid behind the 

bone, and 4.5 mm per cm of hard bone in the case of brain. - 

equivalent liquid behind the bone. 

FigUre 5.7- shows part of an isodose map of, the 7 mm diameter 

collimated beam used., derived from measurements with the 
10.2 

cM3 

cylindrical ionisation chamber in the brain equivalent liquid BRN/L6. 

Although the silicon diode was found to give better spatial 

resolution, as it is expected from its size, it was also found to have 

a response which changes withdepth in the phantom (i. e. with energy 

of the beam); for this reason the beam profiles obtained with the 
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3 ion chamber signal 0.2 cm, chamber were used. When the silicon diode signal 

was measured at ao'later stage, theýrýýdings from the silic on diode' .s 

transverse scan at a depth of 5 cm in BRN/L6 were corrected and 

expressed as a percektage of the maximum peak height. The full 

width of this corrected beam profile at the 20% level (= width of the 

20% isodose at -that depth), was about 1 mm smaller than the width 

obtained with the 0.2 cM3 ion chamber. 

100 
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60 H BEAM (DIAMETER -7 mm) 40 40 
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0246810 0246810 

Distance from axis Imm) Distance from axis (m-) 

Figure 5.7 Part of, the'isodose map of the, 150 MeY 
collimated (0.7 Cm diameter) proton 
beam of ýthe AERE, 'U. K. 

'The effect of the different chemical composition and 

density of various materials on the scattering, of the ýcollimated 

proton, bcam'%vasý also investigated. Figure 5.8 shows the beam 

profiles at the depth of the Bragg peak in -BRN JL6, measured with 
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4) 

rofiles of the collimated proton beam. 
In air, 7 cm from the collimator (silicon diode) 
In air, 18 cm from, the col limator (silicon diode) 
In BRN/L6, at the depth of the peak(silicon diode) 
In BRN/L6, at. the depth of the peak (0.2 cm3 
cylindrical ionisation chamber) 

the AERE silicon diode (3) and with the 0.2 cM3 cylindrical 

ionisation chamber (4). The profiles of the beam in air, at distances 

of 7 cm and 18 cm from the collimator (1 and 2 respectively), 

obtained with the diode,, are given for comparison. 

The silicon diode was used to measure the beam profiles 

behind various thicknesses of fat, muscle and bone substitutes. The 

diode was moved vertically (i. e. normal to the beam axis), in air,, 

2 cm behind the absorber. The results are summarised in Figures 
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5.9 and 5.10. Figure 5.9 shows the beam profiles behind 5 cm 

10 cm and 13 cm of MS/SR4 (muscle's relative density = 1.06) 

and 10 cm, HB/SR4 (relative density 1.67); the width of the beam 

profile (and particularly at the 6% level where the derivative is a 

maximum), is considered as a measure of the beam scattering and 

depends on the typeand the thickness of the material traversed by 

the proton beam. 

Figure 5.10 shows that as the absorberthickness is 

increased, the beam is broadened-but, the effect of the differences 

in chemical composition between the various materials is not evident. 
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Figure 5.9 Beam profiles behind samples of muscle 
and bone substitutes 
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By multiplying the thickness of each material by its density and 

looking at the beam width that corresponds to the same "equivalent 
2 

thickness" "bfeach material. ýý for. example, 10 g/cm 'one finds that 

muscle causes more scattering than any other Material (see Table 5-VI). 
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TABLE 5-VI BEAM PROFILE WIDTH AT THE 6001. " 
LEVEL FOR THE SAME EQUIVALENT 
THICKNESS. OF VARIOUS MATERIALS 

M aterial 
Profile width for 10 g/cm 

2 

of absorber (mm) 

MS/SR4 6.55, 

HB/SR4 6.35 

FT/SFI 6ý30 

Al 6.10 

From the results of the measurements presented in this 

section a comparison between the collimated and uncollimated 

150 MeV protoii beam used was miade'and revealed the following 

(in summary). ' 

a) By comparison with the uncollimated, proton beam, the peak 

height is. reduced when the beam is collimated. IJ sing the 
3 0.2, cm cylindrical ion chamber. for example, the peak 

height in, water was found 2.22 x 10-9C for the uncollimated, 

beam and 0.76 x 10-9C for the collimated beam. 

Peak b) The ratio in water is reduced from 1.85 for 
Plateau (10 cm) 

the uncollimated to 1.64 for the collimated proton beam 

(0.2 CM3 ion chamber). 

c) The width of the Bragg peak and-the slope of the post-peak 

part of the depth dose curve do not change significantly. 
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COMPARISON BETWEEN SILICON DIODES AND 
IONISATION CHAMBERS USED IN PROTON 
DOSIMETRY -EFFECTIVE �MEASURING POSITION 
FOR A CYLINDRICAL IONISATION CHAMBER 

Small silicon diodes can be used as detectors for particulate 

radiations but radiation damage limits their application to low 

intensity beams (a few nanoamperes). The plan to plot isodose 

curves of the proton beam used in this work in various tissue 

equivalent materials,, prompted a comparison between the silicon 

. diode available at the AERE and the three air-filled ionisation 

chambers described in section 5.1(i), namely two plane parallel 

plate ionisation chambers (MC38 and MC78) and a 0.2 cM3 cylindrical 

ionisation chamber. 

All four detectors were used, in turn, to measure the depth close 
distribution in a water phantom* `Beam profiles were measured in 

the plateau and the peak region anicifused foý the'alignm'en't-'of 'the' 

detector in each case. The agreement between the two flat 

ionisation chambers was, VeFy good; afier the necessary corrections 

for the presence of Perspex (of which the MC38 is made), the 

differences in the various parameters measured by the two chambers 

were smaller than 0.5%, of the corresponding average value. 

Figure 5.11 shows the "relative ionisation versus depth" curves, for 

the MC78 plane paral 
' 
lel plate (flat) ionisation chamber (1) , the 

0.2 CM3 cylindrical chamber (3), and the, silicon diode (2), obtained 

by scanning along the central axis of the uncollimated proton, beam, 

in water., The signal of, the 0.2 CM3 chamber was divided, by, 4 in 

order to read on the same. scale. 

A similar comparison was made between the'0.2 CM3, 

cylindrical chamber and the silicon'diode in water, using the 

0.7 cm-diarr. eter collimated beam. The relevant data are summarised 
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Figure 5.11 Central axis "relative ionisation versus 
depW curves for 150 MeV protons in water, 
measured with three different detectors. 

in Table 5-VII. These measurements indicated that the silicon 

diode has better spatial resolution than the ionisation chambers 

used in this work, but that its response varied with depth (hence 

proton energy). Secondly, the effective point of measurement in 

the cylindrical ionisation chamber is neither at the front face nor at 

the centre of the sensitive volume of the chamber but in between the 

two. Table 5-VII (and Figure 5.17) also, indicate that the depth of 

the peak and the extrapolated range of the collimated beam used, were 

about 2 mm smaller than those of the uncollimated beam. The above 

observations are discussed in turn. 
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The most probable. reason for the difference in the peak depth 

and, extrapolated range values, betweenAhe collimated and uncollimated 
beam, would be a small variation in the energy of the proton beam, 

The measurements with. the, collimated beam were made on a different 

day, with slightly modified "beam focus conditions". (fonsequently, 

a change of about 1 MeV in the energy of the proton beam, enough to 

account for the above discrepancy, would be possible. 

The improved spatial resolution of the silicon diode is due 
2 

to its smaller area (aboutj mm ); the ionisation chambers integrate 
2 3- their signal over a wider area (about 36 mm. for the 0.2 cm cylindrical 

chamber and about 80 mm 
2 for the two plane parallel plate ionisation 

chambers). No convincing explanation has been foundp however, for 

the variation of the diode's response with proton energy. Figure 5.12 

shows the variation of the ratio 
ion chamber signal for the three silicon diode signar- 

gnal detectors under discussion', ' '-(Note that the'ratio' 
MC78 chamber si. 
silicon diode signal 

was multiplied by, 2.5 in order, to read on the same scale). 

KOEHLER (1967) also worked with ionisation chambers and 

silicon detectors and investigated the possibility of columnar 

recombination in-the ion chamber by varying the bias voltage. He 

concluded that recorpbination in the ion chamber is not the cause 

of the variation in the signal ratio. He also found that pre- 
6 

exposing the diodes to massive doses (- 10 rads) of radiation, 

reduces the change in their sensitivity during subsequent use at 

low beam intensities. 

Other reasons which could be partly responsible for the 

above effect are a change in the energy needed per ion pair in the 

diode (W-value for silicon =3.6cV), or excitation of the crystal 

lattice or nuclear interactions, the possibility of ývhich increases 
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Figure 5.12 Variation of the ratio 

ion chamber signal 
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as the protonsslow down. Whatever the reason, the sensitivity 

of the silicon diode is reduced in the plateau region where the energy 

of the protons is higher. 

Figure-s5.13 and 5.14 illustrate our measurements with the 

silicon diode of the AERE in water and BRN/L6 respectively. 

The beam profiles show the progressive broadening of the beam as 

the depth in the phantom increases. At the depth of the Bragg peak 

the beam profile approximates in shape to a Gaussian (noiýmal) 

distribution. 

0.30 - At IL25 em 
0.30 - 

DEPTH 

z 0.25 - 0.25 - 
0 

0.20 - 0.20 - 9 
At 5 em z 

2 At 10 ern 

uj 
0.15 - AtlL55gm --0.15 - 

0.10 - 0.10 - COLLIMATED PROTON BEAM 

(150MOV) Ui 

0.05 - 
BEAM PROFILES 0.05 - IN WATER, 

ol IIIoI1 
-1. 

10 864202468 10 0 -5 10 15 

DISTANCE OF SILICON DIODE FROM AXIS (mm) DEPTH IN WATER -0- cm 

20 1 

Figure 5.13 Variation of beam width and diode 
signal with depth in water 
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Figure 5.14 Variation of beam width and diode 
signal with depth in a brain equivalent 
liquid 

3 The effective measuring position for the 0.2 cm ion chamber 

was found to be different in the collimated and. uncollimated proton 

beam. The diameter of the cylindrical cavity of the chamber is 6 mni 

and Figure 5.15 shows that the depth of the peak and the extrapolated 

range for the collimated beam, measured with the cylindrical ion 

chamber are greater than those measured with the silicon diode by' 

2.0-2.5 mm, i. e. about 0.7 to 0.8 times the radius of the chamberi's' 

sensitive volume. Thexelationship is illustrated in the schematic 

diagram of Figure 5.16. 
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scale indicating the position 
of the centre of each detector It 
in the phantom 

detector movement 

0.2 cM3 ionisation chamber 
protons 

OP silicon diode 
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depth cm 

Figure, 5.16 The silicon diode gives the true position 
of the Bragg peak. When "maximum signal" 
is recorded with the 0.2 cm3 cylindrical 
chamber, its centre is at a depth greater 
than the depth of the peak 

With the uncollimated beam, the difference in the peak depth and the 

extrapolated range, derived from measurements with the cylindrical 

and the flat ion chambers (as well as the diode) is about 1.5 mm; 

i. e. the effective measuring point for the cylindrical ion chamber lies 

approximately 0.5 x Radius in front of its centre; the difference from 

the collimated beam situation is probably due to the presence of extra 

scatter* when the beam is not collimated. In the case of the plane, 

parallel platelonisation. chamber., the effective plane of measurement 

is at the front face of.. the sensitive-volurne, as the proton fluence is the 

same through the volume. 
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The values of "range to half maximum" and "extrapolated 

range" derived with the flat ion chamber in water, using the uncollimated 

beamt are about 2.5% and 4% respectively larger than the calculated 

range values given by BICHSEL (1960) and BARKAS and BERGER 

(1964) for the same proton energy (150 MeV). When thd values 

measured with the collimated, beam are considered., however, the 

above differences are reduced to 1.0% and 2.5% respectively. 

Figure 5.17 shows the results of'measuiements with the silicon diode 

in water, with the uncollimated (1) and w-ith the collimated beam (2). 

The experimental error in the measurement of the correct position of 

the diode -was'less than 0.5 mm as repeat experiments showed. 
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Figure 5.17 Central axis "ionisation versus depth" 
curves for 150 MeV protons, in water 
1. Broad beam 
2. Collimated beam 
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5.1 (v) -A SIMULATED PATIENT 'TREATMENT 

The Bragg peak of a high energy proton beam is narrow 

and has a sharp cutoff; by suýerimpo sing many such beams, , 

extended tumour volumes can be treated to a uniform dose. The 

dose distribution obtainable with parallel opposed field irradiation 

is shown schematically in Figure 5.18. Plans designed to irradiate 

a2 cm-thick tumour centered in a 20 cm slab of tissue a) with 

cobalt-60 gamma rays and b) with 150 MeV protons are compared. 

By the use of bolus material the proton Bragg peak can be made to 

coincidý with the tumour area. The advantage of protons over 

photons in this respect is obvious; in the photon isodose distribution., 

the normal tissues outside the tumour volume receive about. the same 

or even more dose than the tumour while with protons the normal 

tissue dose is greatly reduced. 

In view of the proposedU"Se of the AERE symchrocyclotron 

for pituitary proton radiotherapy, an experiment- was carried out to 

discover how accurately the Bragg peak can be p0sitioned"'on target" 

in practice. A Perspex tank, with 1 cm-thick front wall was filled 

3 
with brain equivalent, liquid (BRN /L6) and the 0.2 cm cylindrical 

ion chamber was used to scan along the central axis of the collimated 

proton beam (0.7 cm diameter). At the position of the maximum 

signal (Bragg peak) the dial indicated a depth of 14.90 cm. A real 

skully with average thickness of the temporal bone at the level of the' 

pituitary equal to 3 mm, was mounted'on a Perspex circular base so' 

that it could be rotated round a vertical axis through the centre of the 

pituitary fossa. 
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Figure 5.18 Dose distributions with parallel opposed 
fields. Comparison of 150 MeV protons 
to cobalt-60 gamma rays 

Our previous measurements' indicated that a3 mm-thick bone 

in front of brain tissue would reduce the depth of the Bragg peak by 

1.5 mm (4.5 mm per cm of bone in front of BRN /L6). Consequently., 

the skull was immersed in the brain equivalent liquid., with the centre 

of the pituitary fossa at 14.90 cm -0.15 cm = 14-75 cm from the entry 
3 

face of the tank (Figure 5.19). The 0.2 cm chamber was then 

clamped so that its sensitive volume was "sitting" in the pituitary 

depression. The presence of the anterior and posterior clinoid bony 

processes allowed 3-4 mm movement of the ion chamber on either side 

of the centre, but this was enough to find the pre-pýak$ peak and 

i 
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Figure 5.19 Setup for test of "positioning the Bragg 
peak on target" 

post-peak positions. Wien the proton beam was turned on, the remotely 

controlled movement of the ion chamber along the axis of the beam 

indicated that the iordsation was maximum when the detector was at 

a depth of 14.75 cm, i. e. exactly as planned. The close to the 

pituitary, for a preset 1x 10-7C on the transmission chamber used 

as boam monitor., was calculated from the measured peak height and 

the calibration factor of the 0.2 cm3 ion chamber. . 
It was found 

equal to 10.87 rad. With the available beam intensities, howevery 

doses of 10,000 rad could be administered in a few minutes. For 

a 15 cm wide skull, the skin dose would be about 64.0% of the peak 

dose as F igure 5.15 indicates (i. e. 6.96 rad in this case). 

The above exercise was repeated 4 times, but each time the 

skull was rotated by 10 0 clock-ývise. The maximum displacerýent of 

tbc Bragg peak obsorvod was 0.5 mm and this was mainly due to a 

small varizil ion in the thickness of the skullbone. Based on the 
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above results, the skin dose for a tumour dose of 5000 rads was 

calculated. Table 5-VIII gives the results for the case of 1,4" 

8 and 12-portal treatments; & inherent advantage of the multi- 

portal treatment with high energy proton beams is obvious. 

TABLE 5-VIII YUMOUR AND SKIN DOSES FOR A 
MULTIPORTAL PITUITARY TREATMENT 
WITH 150 MeV PROTONS 

Number of 
portals 

Tumour 
dose 
(r4ds) 

Skin dose 
(rads) 

Skin dose as 
a percentage 
of tumour close 

5000 3200 64. o 

4 5000 800 16.00 

8 5000 400 8.00 

12 5000 
1 

266 
1 

5.33 

In practice, a plastic bag stuck on to a thin Perspex plate 

and filled with brain equivalent liquid could be used as a variable- 

length energy degrader for the adjustment of the position of the 

Bragg peak. The mechanics of the proposed patient treatment on 

the AERE synchro cyclotron have been described by WHITEHEAD 

(1974). 

15ý3 



5.2 FASTNEUTRON DEPTH DOSES IN VARIOUSTISSUE 
SUBSTITUTES AND IN COMPOSITE PHANTOMS 

In view of the current use of fast neutrons in cancer' therapy, 

it is desirable to know the depth dose characteristics oý fast'neutron 

beams in various tissues. , The new tissue substitutes were used to 

study the physical characteristics of the fast neutron beam produced 

by the cyclotron of the Medical Research Council (MRC) at the 

Hammersmith Hospital, London. 

5.2(i) DOSIMETRY ANDEQUIPMENT 

The contamination of fast neutron beams ,,,, -ith gamma 
I 

radiation and the complex manner in which neutrons. interact with 

tissue makes neutron dosimetry more difficult than the dosimetry 

of photons and electrons. Gamma rays result from neutron production 

processes in the target, from interactions of neutrons with the 

collimators and from interactions in the tissue being irradiated 

(probably mainly 2.2 MeV gamma rays from thermal neutron capture 1, ý 
in hydrogen). 

The measurement of the total dose (neutrons + gamma rays) 

is usually made with a "tissue equivalent" chamber. Uncertainties 

in the knowledge of the Wn value, the energy required. tIo produce an 

ion pair in the gas of the chamber, and the replacement of most of the 

oxygen content- of the plastic from which the ion chamber is made by 

ciLrbon, may result in errors of up to 10%, in. the neutron component -of 

the total, close. 

The gamma ray component of the total dose varies with field 

size and. -tvith depth in the phantom and. is usually measured with 

detectors of low sensitiv-fty to neutrons. For examplev ionisation 

chambers constructed from non- hydrogenous., matexials, specially 
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designed Geiger counters and photographic films may be used. 

Whenever relative dose measurements are required, activation 

methods can be used for neutron dosimet'ry, for example, 
32S (nlp)32 P, 

in which the product is a beta-emitter with a half life of 14.3 days. 

The dose in the patient during treatment can be measured by using 

activation of aluminium pellets or by exposing thermolumines cent 

dosimeters in lead and polythene to record the neutron dose and the 

gamma-ray close separately. 

(The product in the 27AI(np) 27Mg 
reaction has a half life of '9.5 minutes 

4nd emits a gamma ray of 0.83 MeV). 

The M. R. C. cyclotron accelerates deuterons up to 16.7 MeV 

and these hit a 0.8 mm-thick beryllium target backed by copper. The 

fast neutron beam produced, has a spectrum extending from zero to 

about 17 MeV with a mean energy of 7.5 MeV. The dose rate at 

120 cm from the target is 40-50 rad per minute (BEWLEY and 

PARNELL, 1969, PARNELL, 1971). The total dose was measured 

with a1 CM3 spherical ionisation chamber (EG&G 
, Wellesley, Mass). 

A tissue equivalent gas was flowing through the chamber during the 

measurements (64.0% methane; 32.4% carbon dioxide; 3.2% nitrogen; 

percentages by volume). The signal from the ionisation chamber was 

integrated using a Keithley 61OR electrometer for a preset number of 

divisions on the beam monitor. The ionisation chamber was operated 

at a bias voltage of -300 volts. 

When used in a solid phantom, this ion chamber was first 

covered with a sleeve specifically made from the same material as 

the phantom and then inserted in the appropriate hole of a 20 cm x 

20 cm x3 cm slab of that material (see Figure 5.20). The chamber 

was moved back through the phantom by changing the position of the 

slab (in which it was inserted) in the stack. When used in a liquid 
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phantom, the chamber (without build-up cap) was enclosed in a water 

tight Perspex cylinder and moved along the central axis of the beam 

by a remote control mechanism, readings being taken at discrete 

depths. The total dose (Dn +Dy) at each point was obtained by 

multiplying the integrated signal (nC) with the factor 3.049 rad/nC, 

obtained from a calibration of the chamber with caesium gamma rays 

(BEWLEY and PARNELL, 1978). 

The gamma-ray component of the dose was measured with a 

Geiger counter (Mullard GM D6) which was covered with a2 mm- 

thick 
6 Li foil to absorb the slow and thermal neutrons. The setup 

was the same as above except that when the counter was used in 

liquids it was protected with a plastic tube cover. The number of 

counts for a preset 1 division on the beam monitor was measured 

with an Ortec dual counter-timer, corrected for the resolving time 

of the counter (dead time = 15 y sec) and, after subtraction of the 

background counts, converted into rads /division using the calibration 
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Figure 5.20 Sleeves and plates for the 1 cm3 EG&G 
spherical ion chamber 



1.26 x 10 6 
counts/rad. (BEWLEY and PARNELL, 1'978). The bias 

used for the Geiger counter was +50OV. ' 

5.2(ii) NEUTRON DEPTH DOSES IN MUSCLE, BRAIN, 
AND WATER, 

The penetration of the neutron beam in tissue is the most , 
important physical parameter for radiation beam therapy. In 

Figure 1.9, ý among others, the central axis percent neutron depth 

close from the MRC cyclotron is compared to that of cobalt-60 

radiation (our measurements). The neutron depth dose ýurve 

(9.5 cm x 9.5 cm field, at a target-skin distance of 120 cm) shows 

that the 50*/. dose is at 8.5 cm depth and on this account the range 

of tumours which can be treated with this machine is limited to head 

and neck or superficial and breast tumours. In order to match the 
t 

penetration of cobalt-60 gamma rays, it is necessary to use either 

14 MeV neutrons from the T(d, n) 
4 He reaction(but unfortunately 

dose rates of only few rads per minute have been achieved with this 

reaction so far), or neutrons generated by deuterons of at least 

30 MeV energy on beryllium. " To, match the skin sparing given by 

cobalt-60 radiation it is necessar - deuterons of at least Y, to use 

50 MeV energy on beryllium (BEWLEY, 1971). 

The effect of field size-on the percentage neutron depth closes 

was studied using a 20 cm x 20 cm x 20 cm phantom 
- 
made, of. solid 

muscle substitute (MS/SR4). The smallest depth at which measurements 

were made in this phantom was 1.5 cm and'the neutron dose at this 

depth., for a 9.5 cm x 9.5 cm field, was estimated to be 93.5% of the 

maximum neutron dose (Dn. max at 0.2 cm, BEWLEY and PARNELL, 

1969). Consequently, - all readings obtained with a 9.5 cm x 9.5 cm 

fields were normalised to 93.5% at 1.5 cm deep. The neutron dose 
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was derived by subtracting the gamma -ray dose (D from the total 

dose On +D Figure 5.21 shows the results of these measurements 

for three field sizes; the gamma ray dose expressed as a percentage 

of Dn maximum is also given, while Figure 5.22 shows the gamma-dose 

as iL percentage of the local neutron dose. The percentage rises 

steadily with depth. As the RBE of photons relative to neutrons is 

about one-third, a 12-15% gamma-dose at 15 cm-depth represents 

4-5*/o of the biologically effective dose. 
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Figure 5.21 Central axis neutron and gamma ray depth 
doses as a percent of the maximum neutron 
dose (P-n - 7.5 MeV, TSD = 120 cm). 

I : - Closed circles : in MS/SR4 
Open circles : in MS/L1 
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Figure 5.22 - Dose due to gamma. -rays . as a-percentage 
of the local neutron dose in muscle 
(En = 7.5 MeV, TSD - 120 cm) 

Measurements of the neutron dose repeated in the same phantom 

on different days gave an average difference of 0.51/o of the maX 'imum 

neutron (lose and in no case did the difference between any two sets 

of measurements at the same depth differ by more than 1%. The 

calibration of the cyclotron output on 7 diff erent days gave a mean 

value of 0.98 neutron-rad per division, with a standard deviation of 

0.019 i. e. the variability of the machine output is about 1% (calibration 

at 120 cm TSD, in air,, at 22 0C and 760 mmHg, for a 9.5 cm x 9.5 cm 

field). 

Beam profiles''in muscle for a 9.5 cm x 9.5cm field obtained 

by scanning transversely at 9 cm depthp- have already been given in 

Chapter 4 (Figure 4.7). 

Ii 
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A comparison between muscle and brain equivalent liquids 

(MS/L1, BRN/L6) and water was, made and the- corresponding 

neutron depth dose curves. measured with a 9.5 cm x 9.5 cm field 

at. 120, cm TSD, are' given -in Figure 5.23. The curves show that 

muscle, despite its lower hydrogen content attenuatO-s neutrons 

more, effectively thanwater because its higher relative density more 

than compensates for the difference in hydrogen. The curve for 

brain equivalent liquid lies between the two. The difference between 

MS/L1 and water at 15 cm depth is 1.5% of the maximum neutron dose 

while the difference between MS/Ll and BRN/L6 at the same depth is 

0.71o of the maximum neutron dose. Table 5-IX gives the measured 

neutron depth doses in water and in muscle and brain equivalent 

liquids. 
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Figure 5.23, Comparison of'muscle, brain and water 
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TABLE 5-IX CENTRAL AXIS PERCENTAGE 
NEUTRON DEPTH DOSES IN MUSCLE, 
BRAIN -ANI) WATER 
(iEn = 7.5 MeV, 10 cm x 10 cm, TSD - 120-cm) 

DEPTH 
(cm) 

MUSCLE 
(MS/Ll) 

BRAIN 
(BRN/L6) 

WATER 

0.2 100.0 100.0 100.0 

1.0 96.0 96.0 96.0 

2.0 90.8 90.9 91.0 

3.0 84.5 84.8 85.0 

4.0 77.5 77.8 78.0 

5.0 71.9 72.3 '8 720 

6. o 65.0 65.5 66.2 

7.0 58.5 59.1 60.0 

8.0 52.5 53.1 54. o 

9.0 47.0 47.6., 48.5, 

10.0 '42.0 42.7 43.5 

12. o 33.5 34.2 35.0- 

14.0 - 26.5 27.2 28.0 

16.0 21.0 21.7 22.4 

18.0 16.8 17.3 18.0 

20.0 13.3 13.8 
. 
14.5 
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In an attempt to compare water with "unit density" muscle, 

the measurements in MS/L1 were used. * In order to derive the 

neutron percentage depth dose. in "unit density" muscle, the actual 

depth of the'chamber wa's multiplied by the density of the muscle 

substitute and the corirespondifig neutron dose was reduc'ed by .a 

factor (f + d) 21 (f + 1.06 cl)' 
2, 

to allow for the inverse'square law' 

effect between'the'true and the "corrected" depths (f = TSD, 

d-= true depth in MS/LI). ' Tfiýe-results are shown in Figure 5. '24. 

The neutron depth doses in "unit'density" muscle quoted in 

supplement 11 of the British journal of Radiology and used at the 

Hammersmith Hospital, are also shoW'"n. The neutron depth doses 

in"water are -closer to those in muscle equivalent liquid than the 

corresponding -doses in unit density muscle. 
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Figure 5.24 Muscle, unit density muscle and water 
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5.2(iii) NEUTRON DEPTH DOSE CURVES IN COMPOSITE 
PHANTOMS 

The effect of various ihicknesses of lung, fat and bone on the 

neutron depth doses in ph-antoms consisting of muscle + heterogeneity 

+ muscle, was investigated using the MRC cyclotron neutron beam. 

Isodose shift factors derived from these measurements for use ih manual 

and computerised treatment planning., are presented and discussed in 

Chapter 6. The presence of lung may result in neutron doses in the 

tissues behind it higher by a factor of up to 2 or even more than the dose 

at the same depth, in '-muscle alone". depending on the thickness of lung 

traversed by the beam and the distance of the point behind the lung 

(see. Figure 6.1, and Table 6-ID. 

The effect of fat is much less pronounced. The neutron 
depth doses in muscle behind a. 5 cm-thick fat sample have been given 

in Figure 4.9. As far as bone is concerned, our measurements 

showed that the total dose in muscle behind various thicknesses of 

"hard bone" and "total skeleton" substitutes is slightly reduced. 

4 cm of TSK /SF3 or 3 cm-thick slabs of HB/SR4 (10 cm x 10 cm) 

caused a reduction in the total dose behind them, in MS/SR4 of about 

1% of the maximum dose. (see Figure, 5.25). Repeated measurements 

of both the total and the gamma-dose indicated that the above reduction 

was due to a lower gamma-dose while the'neutron depth doses were not 

affected by the presence of bone (s ee Figure 5.26) Similar results 

were obtained when the depth doses in brain and "bone + brain" were 

measured. McGINLEY and McLAREN (1975), however, used the 

Naval Research Laboratory cyclotron (35 MeV deuterons on a thick 

beryllium target) and from their measurements they concluded that 

bone (B100 plastic) attenuates neutron's of that energy (about 16 Mev) 

more effectively than muscle and therefore produce a shadowing 

effect (up to 15% reduction in the total dose at S. '6cm behind the 4.8 cm- 
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thick bone samples used). 

The absorption of energy per gram of bone is only about 

half that in soft tissue but as the density of bone is higher the 

energy absorbed per unit volume in bone relative to soft tissue is 

about 0.85, while in fatty tissue it4s about 1.15 (BEWLEY.. 1963, 

1975). 
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Figure 5.25 Total dose normalised to the close at 
1* 5 cm depth. 
(En = 7.5 MeV. TSD = 120 cm) 
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I 

5.3 DOSE- DISTRIBUTIONS FROM 
-A 

lb'MeVELE&RON 
BEAM -IN VARIOUS TISSUE SUBSTITUTES 

AND METHOD OF MEASUREMENT 

The electron beam of the - MEL SL75 linear accelerator 

of the London Hospital. was mainly used for this series of measurements e 

The only detector used here was a flat ionisation chamber made of 

Perspex, as described by NAYLOR and WILLIAMS (1972). The 
II 

air-filled disc shaped cavity of this "electron chamber" has 1 cm 

diameter and 3 mm depth. The holder on which the electron chamber 

was mounted was bent so that the front flat surface of the chamber's 

cavity is at right angles to the axis of the electron beam. This 

holder was clamped on a system which allowed remote control of - 

the horizontal movement of the electron chamber, both along the', 

central axis of the beam and normal to it. The 45 cm x 45 cm x 45 cm 
Perspex tank-used was filled with water and theelectron'chamber was 

immersed in it. - -At the-beginning of'each measurement, the chamber , 

was touching the inner surface of the tankýs front wall, which was 

machined to a thickness at the centre of 2.5 mm. As the'thickness 

of the front wall of the chamber itself is 1 mm, 'the first measurement 

in each set corresponded to a depth of 3.5 mm. The -front face of the 

I 

phantom was in'contact with the -end of the collimator in use. 

A built-in transmission chamber was used to monitor the 

electron. beam. - The signals from the monitor and the electron 

chamber were fed into an ionisation current comýarator (ratiometer, 

circuit). - The ratio of the signal, of ýthe electron chamber to that'of 

the monitor, was taken from the output of the comparator and used 

to control the Y-axis movement of an X-Y plotter. In the X 

direction, the plotter moved as a slave of the corresponding movement 

of the electron chamber in the water tank, i. e. alo, 19 the central axis 
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of the beam for depth dose measurements and transversely to it when 

beam profiles were taken. The plotter was adjusted to, 100% where 

the signal 'ratio' was maximum in each case. 

The electron beam from the linear accelerator of the Medical 

College of St Bartholomew's Hospital was also used and the depth 

doses from this beam in muscle were measured with thermolumines cent 

dosimeters (TLD chips). The results'will be presented and discýssed 

in the next section. 

5.3(ii) DOSE DISTRIBUTIONS IN WATER, MUSCLE 
AND BONE 

The central axis depth dose curve from the 10 MeV electron 
beam was measured first in water -for a 10 cm x 10 cm field. Then the 

central axis depth dose curve for the same field in water was measured 

using the 8 MeV electron beam of the same accelerator (MEL SL75). 

The results are shown inFigure 5.27 in which the data given by Jones 

in supplement No. 11 of. the -British journal of -Radiology (1972) for 

15 MeV and 20 MeV are given in addition. The discrepancy 

between the data given in the above reference for 10 MeV electrons 

and our measurements for the same energy, expressed as "depths 

of percentiles", was less than 1 mm. I 

Figure 5.28 shows the isodose distributions for 10 MeV 

electrons and cobalt-60 gamma rays (SSD = 75 cm) derived from our 

measurements in water. Figures 5.27 and 5.28 make the advantage 

of electron beams up to 10 MeV in the treatmentof superficial 

'tumours obvious. 

I 
The effect of field size was investigated by using various 

applicators from 3 cm x3 cm up to 12.5 cm x 12.5 cm. The central 

axis percentage depth dose curves changed slightlý by increasing the 
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field size from 3 cm x3 cm to 7 cm x7 cm but were nearly identical 

for field sizes larger than 7 cm x7 cm. Tigure 5.29 sý-hows the 
I 

central axis depth dose curves for two applicator sizes., namely 

3cmx3cmandl0cmxlOcm. This "saturation" in the effect of 

field size on the depth doses would be expected from the finite 

range of 10 MeV electrons in water. The measurement of central 

axis percentage depth closes in muscle was made by adding, se quentially 

0.5 cm-thick slabs of muscle substitute MS/SR1 in front of the tank 

and taking readings with the electron chamber immersed in water and 

kept in contact witli the inner surface of the front wall of the Perspex 

tank. The measurement of the percentage depth doses in bone was 

carried out in a similar way. Figure 5.30 shows the results. In 

Table 5-X the percentage'depth do s-'es from 10 MeV electrons in- water, 

muscle and bone are expressed as depths of percentiles. In order to 

find out what the effect of the different chemical composition of the 

above materials on the depth doses is, the 5% percentile depth and 

the extrapolated range were multiplied by the density of the corresponding 

material and the results are given in Table 5-XI. The depth at which 
2 

the dose is 50*/* of the maximum, when expressed in g/cm . differs 

bctweenýwater and bone by only 4% of the value in water, while the 

difference between water and muscle is less than 1%. 

Figure 5.31 shows the central axis depth dose curve in muscle 

(MS /SR4) derived from measurements in the pulsed electron beam of 

the linear accelerator at the Medical College of St Bartholomew's 

Hospitalv Londong using thermolumines cent dosimeters (TLD chips). 

The dose rate obtainable from this machine is in, the Krad/sec range . 
The data for 15 MeV electrons., 10 cm x 10 cm field, given by 

JONES (1972) are plotted on the same graph for comparison. The 

differences between ýthe two curves -Could be due to. the following reasons: 
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TABLE 5-X ''CENTRAL AXIS PERCENTAGE DEPTII'DOSES 
EXPRESSED AS DEPTHS OF -PERCENTILES',. 
10 MeV ELECTRONS (10 cm x lo cm) 

PERCENTILE DEPTHS OF PERCE NTILES(cm) 
IN WATER IN MUSCLE IN HARD BONE 

100 2.0 1.7 1.4 

90 3.0 2.8 1.9 

3.4 3.1 2.1 

'70 3.6 . 3.4 2.3 

60 3.8' 3.6 2.4 

50 '4.0 3.8 2.5 

40 4.2 3.9 2.6 

30 4.4 
. 
4.1 2.7 

20 4.6 4.3 2.9 

10 4.9 4.6 3.2 

TABLE 5-XI DEPTHS OF THE 50% DOSE AND EXTRAPOLATED 
RANGES IN WATER, MUSCLE, BONE. 
1OMeV ELECTRONS (10cmxlOcm) 

MATERIAL 
DEPTHOF, 

cm 

50%DOSE 

g/CM2 

EXTRAPOLATED RANGE 

cm g/CM2 

Water 
. 
4. '00 4.00 5.00 

Muscle 3.80 4.03 4.70 5.03 

Hard Bone 2.50 4.17 3.10 5.15 
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i) The distance from the scatterer to the front surface of the phantom 

was about 5m and no beam defining applicator was used. The scatterer- 

phantom distance for the data given by JONES (1972) was much smaller, 

hence the divergence of the beam was more pronounced, resulting in the 

maximum being at a smaller depth. 

ii) The average energy of the pulsed electron beam used at the 

position of the phantom was (15.3 ± 0.4) MeV instead of 15 MeV 

(LOVELL and SHEN, 1976) 

iii) The dimensions of the. phantom used were only 10 cm x 10 cm 

x 10 cm. 
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Figure 5.31 Central axis percentage depth doses from 
15 MeV electrons 

Data from supplement 11 of British journal 
of Radiology (1972) 

2. Measured in muscle (MS/SR4) at 5m 
distance from the scatterer , 
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,, 5.3(iii) DOSE DISTRIBUTIONS, IN COMPOSITE PHANTOMS 

Central axis percentage depth (lose measurements with 10 MeV 

electrons were made in composite phantoms consisting of various thicknesses 

of bone + water., fat + water, muscle + lung + water, muscle + air + water 

and finally muscle + bone + lung. The resulting depth dose curves were 

used to derive the "isodose shift factors" discussed in the next Chapter 

(Table 6-1). Figures 5.32 to 5.36 illustrate the results of these 

measurements. The solid curves were plotted by the X-Y plotter, 

and give the percentage depth doses at various depths in water with 

different thicknesses of "overlying tissue heterogeneity",., From 

Figure 5.32 it is evident that the dose in water immediately behind 

0.5crnorl cm -thick bone is, slightly higher than the dose in" water 
I 

-only" 
but this increase in dose, is sufficiently small to be neglected 

under most clinical conditions. The isodose shift factor for lung was 

found to depend on the thickness of the lung traversed but, it was found 

to be the same irrespectivi-- of the position of the lung in the composite 

phantom. Figure 5.34 shows the case of 2 cm muscle followed by 

various thicknesses of lung and this followed by water. SiMllarly 

Figure 5.35 shows the effect of I cm, 2 cm and 4 cm air gap in the 

composite phantom. Again, the*position, of the air gap in the phantom 

was not found to have any influence on the "shift" of the depth dose 

curve. - 
Finally, Figure 5.36 shows a comparison of ýthe depth dose 

curve in water with that obtained when 1.3 cm of muscle is followed by 

1 cm, of hard bone and this followed by lung.: It is obvious that unless 
I 

corrections are made for the presence of tissue heterogeneities , the 

dose distributions obtained from measurements in a water phantom alone 

are not satisfactory for accurate patient dosimetry. 
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5.4 DEPTH DOSE DISTRIBUTIONS OF A 70 MeV 

_Tr- 
MESON BEAM IN VARIOUS TISSUE 

SUBSTITUTES 

(i) EQUIPMENT AND METHODS 

The depth dose distributions of negative pions in various 

tissue substitutes were measured on the IT 11 beam line of the 

proton synchrotron NIMROD (Rutherford High Energy Laboratory, 

IJ. K). NIMROD was used to accelerate protons to 7 GeV; a6 x6x 10 cm 

copper target was placed in the proton beam and the negative pions 

produced were extracted at an angle 940 1 with an average momentum 

160 MeV/c, corresponding to a kinetic energy of 70 MeV. Figure 

5.37 illustrates the beam line used. (PERRY and HYNES, 1971). 

Sending Quadrupole 
magnet triplet 

Target Quadrupole 
pair 

A. rradiation area 

LI 

Figure 5.37 The Tr 11 beam line at the Rutherford Laboratory 

Quadrupole pair Initial collimation and 
focussing of the pion beam. 

Quadrupole triplet Final focussing on the 
irradiation position at 1m 
from the last element of the 
triplet 
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The 0.2 CM3 air-filled cylindrical ionisation chamber (made 

of A-150 plastic) of the Rutherford Laboiýatory was used and its 

signal was fed into aK eithley 602 electrometer. Central axis 

measurements were carried out in various tissue substitutes., with 

at least two readings being taken at each depth. The average ratio 

(TE 
where TE is the charge collected, bythe cylindrical 

TC 

)AV. 

ionisation chamber and TC is the charge collected simultaneously 

by the monitor transmission chambers was plotted against depth in 

each material. 

MEASUREMENTS 

Figure 5.38 shows the central axis depth close curves 

from the 70 MeV pion beam in Perspex, in a muscle substitute 

(MS/SR4) and in water. Measurements were also ,,, carried out in a 

muscle equivalent liquid (MS/Ll) and then repeated in a liquid which' 

has approximately the same C, H, N, O contents as MS/L1 but includes 

no trace elements (MS/L1A). The effect of the trace elements was 

found to be insignificant2 since the two sets of measurements werewithin 

experimental error, the same. 

The effect of hard bone, lung and an air gap placed in the 

plateau region were investigated and are shown in Figure 5.39,5.40 

and 5.41 respectively. Table 5-XII summarises the results. 

expressing the peak depth in g/cm 
2 (i. e. by correcting for J:; Iy 

density), the difference in "equivalent thickness" between water and 

muscle was found to be less than 30%. When bone is present in the 

muscle phantom, however, the peak depth-equivalent thickness is 

larger than that in "muscle only" by about 6% for -a 4 cm-thick hard 
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Figure 5.38 Central axis depth dose curves from 
70 MeV negative pions in Perspex, 
muscle (MS/SR4 and MS/L1), and 
water 

bone slab (HB/SR1) placed in the plateau. This is because bone 

with low hydrogen content, and hence lower electron density, is 

less effective than muscle in stopping pions on a gram for gram basis. 

Howeverl the peak was found to be lower when bone was present. This 

could be due either to increased stopping of pions in bone (per cm of 

path) or increased scattering in bone. 

1. PERSPEX 

2. MUSCLE 

179 



I 

I, 

1.0 

08 

0-6 

0-4 

0-2 

.b 

1. MUSCLE 

2.2 CM BONE 
IN PLATEAU 

3.4CM BONE 

48 12 16 20 - 24 

DEPTH CM 

28 

Figure 5.39 Effect of bone on the central axis depth 
doses of 70 MeV negative pions in muscle 

In the case of lung and air gap, increased transmission 

and inverse square law effect result in an overall reduction of the peak 

height and the peak/entrance ratio. A density correction for lung 

would give the depth of the peak in muscle with less than 1% error. 

If the heterogeneity is in the pre-peak region, the effect is more 

pronounced. The. corresponding shift of the peak position is given 

in Table 6-1, Chapter 6. 

In summary, the peak/plateau ratio was found to be reduced: 

a) by about ZY., per cm of lung 

b) by about 5*,,. ' per *cm of air gap, 

c) by 1.5-2.0% per cm of hard bone 
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Figure 5.40 Effect of lung on the central axis depth 
doses of 70 MeV negative pions in muscle. 

1) In muscle 
2) 3 cm, lung in plateau 
3) 6 cm lung in plateau 
4) 10 cm lung in plateau 

81 



1.0 

0.8 

0-6 

04 

0-2 

0- 
.. 0 

IN MUSCLE 

2. ICM AIR 

IN PLATEAU 

12 CM AIR 
IN PLATEAU 

8 12 16 20 24 

DEPTH CM 

28 

Figure 5.41 The effect of air spaces on the. pion depth dose curves 

The full width of the Bragg peak af the 801% level in MS/SR4, 

in the direction of the central axis of the beam was found to be 3.6 cm. 

A lateral scan of the pion beam at the depth of the peak, gave a beam 

profile with full width, at the 80% level, equal to 2.2 cm. Consequpntly, 

the volume enclosed by the 80% isodose surface, (assuming symmetry 

in the vertical and lateral directions), would be 3.6 cm x 2.2 cm x 

2.2 cm. The volume given by ELLIS. et al. , (1976) for the 80% 

dose contour of the same pion beam, is 4.0 cm x 2.3 cm x 2.3 cm. 
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TABLE 5-Xii PHYSICAL DATA FOR 70McV NEGATIVE PIONS 
TISSUE SUBSTITUTES - 

Material Peak depth 
. 

Peak height Peak Full width 

cm g/cm 
2 (TE/TC)AV Plateau at80%level 

(cm) 

Muscle i5.0 15.90 0.73 1.59 3.6 

Perspex 13.0 15.50 0.71 1.55 3.2 

Water 15.5 15.50 0.70 1.62 3.5 

Muscle with: 

a) 4 cm hard 13.0 16.54 0.69 1.47 3.9 
bone in plateau 

b) 6 cm lung 19.5 15.87 o. 65 1.39 3.6 
in plateau 

c) 2 cm air 16.8 15.90 0.67 1.44 3.2 
in plateau 

* Relative density of lung used-0.26 

**Materials used: LN/SR4 for lung, MS/SR4 and MS/L1 for 
muscle, HB/SRI for bone. 
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5.5 LOSS BY ALPHA PARTICLES TRAVERSING 
VARIOUS LIQUID TISSUE SUBSTITUTES 

The charged particles which contribute to the ionisation in 

the gas of ionisation chambers frequently used in neutronproton and 

pion dosimetry, are mainly protons, pions , alpha particles and ions 

of carbon, nitrogen and oxygen. It is through the stopping of these 

particles that energy is deposited when heavy charged particles and 

neutrons interact with matter. A series of measurements using 

alpha particles emitted from an Americium-241 source was performed 

during this work, with the purpose of establishing the residual energy 

of these particles when they traverse known thicknesses of various 

liquids simulating different biological tissues. Such information 

can be used to determine the stopping powers of real tissues for alpha 

particles in the energy range from I MeV to 5 MeV. There are few 

published results of experimental measurements of the stopping power 

of liquids for alpha particles. and these were restricted mainly to 

hydrocarbon liquids., ethanol, carbon tetrachloride and water 

(PALMER and SIMONS, 1959; PALMER.. 1973 and 1978). 

5.5(i) EXPERIMENTAL PROCEDURE AND MEASUREMENTS 

An alpha particle source consisting of 
24'Am deposited in a 

thin layer on a 0.317 cm diameter platinum disc., was positioned on 

top of a multihole collimator consisting of 26 holes of 0.35 mm diameter 

and 2.2 mm depth (see Figure 5.42). This collimator lay above. a 

silicon detector (Dý and could be moved vertically vrith the help of a 

micrometer system. As the detector was cemented in position in the 

base of the cell containing the liquid under'investigationt the thickness 

of the liquid layer between the detector and the lower end of the 

collimator could be varied in increments of Ipm. A more detailed 

description of the system used, which is the property of the City 
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University, London, was given by PALMER (1973). 

1 M Mi 

ro tttr 
icromtttr 

Magnet shaft Magnet 

Ot-active 
source 

Collimator P-n junction 
detector 

Pulse to 
pre-amp 

Figure 5.42 Apparatus used for the measurement of 
the energy loss by alpha particles 
traversing various liquids (PALMER, 1973) 

The lower surface of the collimator was covered with a 

1-2 pm-thick Melinex film, in order to prevent liquid from rising 

into the collimator holes by capillary action. The pulses produced 

in the detector by alpha particles traversing a liquid layer, were 

fed through a charge sensitive pre-amplifier to a calibrated 400 

channel Laben pulse height analyser (PHA) and so their residual 

energy could be derived. Allowance was made for the initial energy 

loss of the particles in the air path in the collimator., in the Melinex 

film covering the collimator and in the window of the detector. The 

initial energy of the alpha particles was 5.48 MeV but their energy 

just before they entered the liquid was Ea=5 MeV (PALMER 1978). 

The channel number corresponding to the peak of the spectrum on the 

pulse height analyser indicated the residual energy of the particles 

and could be found within t2 channels. This meant an uncertainty 

in the measurement of the residual energy of tO. 02-MeV. 
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With the liquid under investigation in the cell, the micrometer 

was first set as close to the "zcro liquid path" position as practicable, 

and the residual energy of the dlpha, particles measured. Then the 

liquid path was increased in 2m increments, the residual energy 

being measured each time. A list of the liquid substitutes used and 

the energy loss AE. in. a 20 pm-thick layer of each, are given in 

Table 5-XHI. 

An attempt to measure the same energy loss AEa with 

20 pm-thick sections of human fat, brain and muscle, for 

comparison purposes.. failed. The real tissues were frozen with 

"carbon dioxide ice" and a microtome in a freezing cabinet was used 

to cut sections from the real tissues. All these sections had too 

many pinholes for the resulting spectrum on the pulse height analyser 

to have a clearly. defined peak. An estimated position of a broad 

peak corresponded to the energy of the alpha particles passing 

through the pinholes rather than the solid material. 

5.5(ii) RESULTS AND DISCUSSION 

The energy loss A ECL suffered by the alpha particles 

in 20 p m-thick layer of each of the liquids used, is given in Table 5-XIII. 

In the last column, the value of AEa, divided bj, the relative 

density of each liquid, i. e. normalised to "unit density material" is 

given. The maximum difference between any two of the normalised 

valucs of A ECL is 1.36% of the energy of the alpha particles just 

before they enter the liquid (E 5 MeV). However, if. 'the 
a 

measured values are comparedi the most significant differences are 

between FAT and MUSCLE (8.20/. of Ea). WATER and MUSCLE 

(2.50/. of Ea) and TOTAL SKELETON and MUSCLE (15.32% of E 
a) * 
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TABLE 5-XIII ENERGY LOSS AEaIN 20 jim 
OF SUBSTITUTE 

TISSUE SUBSTITUTE EXPERIMENT 
A EcL(MeV) 

INUNIT DENSITY 
MATERIAL 

A EcL (McV) 

FAT FT/Ll 2.248 2.498 

WATER H2 0 2.535 2.535 

MUSCLE MS/Ll*, 2.656 2o506 

BLOOD BL/L2 2.603 2.479 

BRAIN BRN/1.6 2.566 2.467 

TOTAL SOFT 
TISSUE TST/Ll 2.575 2.500 

TOTAL 
SKELETON TSK/Ll 3.422 2.516 

Measurements in two muscle substitutes, namely MSILI - 

I 

and MS/LlAj the first with and the second withput trace elements, 

showed that the effect of trace elements is negligible. It appears 

that the difference in density and not in chemical composition among 

the various tissues is mostly responsible for their different effectiveness 

as far as stopping alplia particles from radioactive ýources is concerned. 

Using the same method and apparatus., PALMER (1978) measured the 

stopping powers of water and a muscle equivalent liquid (FRIGERIO, 

1972).. for alpha particles of energies 0.5 MeV to 8 MeV and found 

similar results; the maximum difference between the stopping powers 

of water and "unit density muscle,, was about 5*/,, at 0.75 McV. 'For 

measurements below 1.0 MeV., however, the data analysis may not 

have been accurate. At these low energies, the residual range is 

less than 10% of the total range and statistical fluctuations and noise 

affect tile resolution of tile system and reduce the accuracy. 
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Figure 5.43 shows the variation of the alpha particles' 

residual energy with thickness of liquid layer traversed, for four of 

the - liquids used. - , By using the slopes of these curves, the values of 

the stopping powers given in Table 5-XIV were derived. (Forthe 

stopping power at 2 MeV. for example, the average of the slopes at 

1.8t 2.0 and 2.2 MeVI was considered). 
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2.0 3.0 4.0 

Alpha particle . residual energy - MeV 

1. FAT /LI 

2. WATER 
3. MS/L I 
kT SK/Ll 

Figure 5.43 Relation of alpha particle residual energy 
with thickness of liquid traversed. 

The stopping power values for water and MS/L1 are within + 
. 20,,. ' 

of those measured by PALMER (1978) but both sets are lower in 

general than calculated values given by OLDENBURG and BOOZ (1972) 

and by BARKAS and BERGER (1964). The difference between the 

calculated and measured stopping power of water for alpha particles 

of 4 MeV, for example, is 5%/. 
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TABLE 5-XIV STOPPING POWERS Or-, VARIOUS TISSUE 
SUBSTITUTES FOR . ALPHA . PARTICLES OF 1-4 M ev 

ENERGY STOPPING POWER (McV/ pm 
MeV FAT WATER MUSCLE TOTAL SKELETON 

1.0 0.193 0.218 0.230 o. 296 

2.0 0.151' 0.169 0.179 0.230 

0.115 0.128 0.137 0.175 

ý, 4.0 0.086 0.103 0.108 0.136 

Such measured data are sparse and because of the complexity of 

the interactions and processes involved (shell corrections, charge 

exchange etc) 'it is difficult to calculate them with acceptable 

accuracy. Now that suitable TISSUE EQUIVALENT liquids exist, 

further experimental measurements should be carried out using the 

most important of them, in order to establish their stopping'power 

for alpha particles of energies- encountered in neutron, proton and 

pion therapy. 
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, CHAPTER 

THE EFFECT OF TISSUE HETEROGENEITIES ON 
THE DOSE DISTRIBUTIONS -IN RADIOTHERAPY 

6.1 SOME GENERAL COMMENTS 

The standard isodose curves and depth dose tables apply to 

beams of radiation entering a homogeneous unit density piiantom. 

The presence of tissue heterogeneities, however, can alter the close 

distribution. Body heterogeneities may be defined as those tissues 

whose interactions with radiation differ from that of muscle. 

If a beam has passed through a heterogeneity, the absorbed 

dose at any point beyond it, is modified. Apart from that, the energy 

deposited at points within the heterogeneity itself, for a given exposure, 

is not the'same as in muscle. tI 

It is sufficient in practical dosimetry to take into account 

only the heterogeneities of lung, air spaces, bone tissue and fat. 

In lung tissue, owing to its lower density and, therefore, 

lower absorption, there is greater transmission of radiation than 

in soft tissue of the same thickness. Although the amount of radiation 

scattered by-the lung is smaller, for points beyond it, the increase in 

dose due to extra transmission is always greater than the loss in 

scattered radiation dose. 

In the case of air cavities, there is a further effect to note; 

the removal of virtually all the absorbing material results in a loss of 

complete charged particle equilibrium for narrow beams. This 

means that., in spite of the increased transmission of radiation, 'the 

dose at a point just beyond an air cavity can be less than the dose at 

a corresponding point in a complete phantom. MAýSEY (1962) found 
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that with 4 MeV X-rays, the loss of dose does not exceed 10% at the 

most, but unfortunately occurs just where the tumour may bc. At 

1 cm beyond the air cavity, however., the small increase due to extra 

transmission of radiation'is observed. 

If the heterogeneity in the irradiated tissue is bone, the depth 

dose at points lying in its "shadow" will be different from whatAt 

would have been, had the bone not been present. The change depends 

mainly on the thickness of the bone and the type and energy of the 

radiation beam. With X and gamma rays the dose at points behind the 

bone is reduced and this reduction is more pronounced in the case of 
I 

soft X-rays. In the case of electrons, due to the strong dependence 

of scattering on the atomic number, there is increased scattering in 

bone relative to its mass and this results in a slightly elevated dose 

in bone and at points lying in the tissue close to the distal interface 

of the bone. With fast neutrons , the low hydrogen content of bone 

counterbalances its higher density and so the effect of the presence 

of bone on the depth doses beyond it, is greatly reduced. 

A set of "i'sodose shift factors" for different types of radiation 

as well as lung correction factors for clinical use with 7.5 MeV neutrons 

and cobalt-60 gamma rays, derived from measurements during this study, 

will. noxv be presented. 
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6.2 MEASURED ISODOSY SHIFT FACTORS FOR THE 

, EFFECT OF. AIR, 
__ 

LUNG, FAT* AND BONE ON THE 
DOSE- DISTRIBUTIONS, WITH VARIOUS RADIATION 
MODALITIES 

It is usual in radiotherapy to estimate the close at various 

points by first assuming that the body consists of homogeneous soft 

- -tissue and then -to ýcorrectýthc dose distribution thus obtained, -for the 

presence of heterogeneities. 

When such corrections are carried out either manually or by 

means of a computer, the volume and composition of the heterogeneities 

must'be known as accurately as possible. The' accuracy with which 

this information is obtained, affects the overall accuracy'of the isodose 

plan. 

An empirical method of correcting for the effect of heterogeneities 

consists in merely displacing the isodose curves by a fraction of the 

thickness of the heterogeneity traversed by the beam, according to 

the rules given in Table 6-1. Thie'value's given in this'Table were 

derived by comparing the depth dose curve -in muscle substitute- alone, 

to those obtained when part of the. homogeneous substitute was replaced 

with various thicknesses of the heterogeneity. The displacement of 

the depth dose curve was divided by the thickness of the heterogeneity. 

used.. to give the corresponding isodose shift factor. 

The muscle substitutes used for the measurements'with fast 

neutrons, high energy protons-and pions, -were MS/SR4 and MS/Ll. 

In the case of cobalt-60 gamma rays and electrons , water was used as 

the muscle substitute. The lung, substitute (LN/SR4) used for the 

measurements with 1T-ý me'sons had a relative density of 0.26, wher .e as 

the lung sample'used for all the other measurements had a relative 

density of 0.30. Most of the experimental depth dose data used for the 
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I 

-derivation of the isodose shift factors, have already been given* in 

the previous chapter. ' 

TABLE'6'1 ISODOSE' SHIFT' FACTORS FOR VARIOUS 
TYPES OF RADIATION AND VARIOUS BODY 
HETEROGENEITIES 

Type of Position of point Isodose shift 
Direction of 
movement 

radiation Heterogene#y with respect to (t=thickness of ofisodose 
and energy heterogeneity heterogeneity) 

curve 

Air Behind 0.60t Distal 

Lung Behind'd <5 cm 0.35t Distal. 
Cobalt -60 d>5cm 0.45t Distal 
gamma rays 

Fat Behind 0.10t Distal 

Average skeleton Behind 0.25t' Proximal 
Cortical bone Behind 0.40t Proximal 

Air Behind 0.75t Distal 
Within(first half) 0.10t Proximal 

Lung (second tr) 0.20t Distal 
Neutrons Behind d<5 cm 0.50t Distal 

E=7.5 MeV 
n 

d>5cm . , 
0.60t Distal. 

Fat Behind no shift 
Cortical Bone Behind no shift 

Air Behind 1.00 t Distal 

Electrons Lung Behind 0.70t Distal 

10 MeV Fat Behind 0.10t Distal 
Cortical Bone Behind o. 6o t -Proximal 

Air Behind 0.90t Distal 

7T - Mesons, Lung Behind 0.75 t Distal 

70 Mev Fat Behind 0.10t Distal 

Cortical Bone Behind 0.50t Proximal 

Air Behind 0.90 t Distal 
Lung Behind 0.75t Distal 

Protons Fat Behind 0.10t Distal 
150 MeV Total Skeleton Behind 0.25ý Proximal 

I Cortical Bone Behind 0.40t Proximal 

Tor points behind the lung, a single isodosc shift factor of 0-4t for Cobalt 
&mm 

'a 
rays would give the true doses with an crro'r of the order of ± 2percent 

With 7.5 McV neutrons, a single distal shift of 0.5t, would give doses 
behind. the lung within 2 percent. 
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When the effect of air spaces present in, the phantom,, on, 

the dose distributiom from high energy, protons, fast'neutrons and 

cobalt-60'gamma rays was investigated, polypropylene -tubes 

with 1 mm-thick walls. and diameters of 1 cm to 4 cmwere used,, 

covering onlypart of the beam cross section. All the other experiments 

. were made with the heterogeneity covering the. entire cross section of 

the radiation beam. 

,, z. SUNDBOM (1965),, experimented with cobalt-60 gamma rays 

and suggested a 0.5t distal displacement of the isodose curves for 

lung (t=thickness of heterogeneity traversed). GREEN and 

STEWART (1965), suggested a 0.4t distal shift for lung and a 0.5t 

proximal shift for bone; the substitutes they used, however, were 

cork of unknown composition for lung and aluminium which is 

considerably denser thanýbone. 

With'& use"of 
'computers' in treatment planning, it is possible 

to produce accurate isodose distributions provided that a set of 

correction factors is available for each type of heterogeneity and 

that the shape, location and density of the internal organs is 

accurately known; information about the shape and position of the 

internal organs'is now'easily obtained'with computerised tomography 

scannerse 

The lung correction factors for 7.5 MeV neutrons and cobalt-60 

gamma rays measured during this work will be given in the next 

section. 
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6.3 LUNG CORRECTION FACTORS FOR- USE -IN 
COMPUTERISED ISODOSE PLANNING 

It was not until the beginning of the past decade that computers 

have really been used to obtain dose distributions corrected for tissue 

heterogeneities., Today the problem can be approached bý. using 

either a set of measuiýed correction factors or mathematical models. 

If no correc: tion is made, errors well in excess of t 5% Of the 

average tumour dose, considered as clinically acceptable, could result. 

The new lung and muscle'substitutes were used to'meas-4re lung 

I correction factors' and to'investigate the effect of field size and position 

of the lung in the phantom on-these correction -factors in the cases of I 

cobalt-60 gamma rays and 7.5 MeV neutrons. 

Unlike cork and other materials used to approximate lung in 

the I past, the porous nature and elemental composition of the lung 

substitute formulated and used in this work, are very close to'those 

of real lung. 'III, I" ý- . 1,1 ý 

6-3(i) - LUNG CORRECTION FACTORS FOR FAST NEUTRONS 
I 

The measurement's for the derivation of the lung correction 
fc, I, - f6ý 

fa tors r fast neutrons were made in a 20 cm-cube phantom made'6f 1 cm 

and 2 cm-thick slabs of a solid'muscle substitute (MS/SR4), using the 

neutron beam of the Medical Res6arch Council cyclotron, at Hammersmith., 

London. The slabs of the solid lung substitute (LNG/SR4) used, were 
I 

flat and had. lateral dimensions larger than the largest field size. 

Readinas were taken at each depth with and without the presence of ýO 

_lungj 
first in the muscle in front of the lung, then within the lung 

itself and finally in the muscle behind the lung. The gamma ray 

component of the d6se was subtracted from the total dose at each depthy 
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to give the neutron dose. At each point, the neutron dose with the 

lung present was dividccl. 'tý the neutron dose without the lung, to 

give the correction factor. ', - 
Lung thicknesses from 1 cm to 10 cm 

11 
were used and the measurements were repeated for three field sizes, 

namely 4.5 cm xS cm, 9.5 cm x 9.5 cm and 14 cm. x 14 cm. 

Figure 6.1 shows the central axis neutron depth dose curve 

in muscle for a 9.5 cm x 9.5 cm field, as well as the effect of 5 cm 

'and 8 cm-thick lung on the depth doses. 
w 

The correction factors for the 9.5 cm X 9.5 cm field are 

given in Table 6-11 and plotted for 3 cm, 5 cm and, 8 cm-thick lung 

in Figure 6.2 , where the field- size effect for 8'Cm-thick'l-Lin'g- is also 

shown. - 
0 

The neutron dose in the muscle tissue lying in front of the 

lung is reduced by 2-3 percent at the most; for the first few 

centimeters within the lung, the correctim factor fell below 1.00, 

indicating that the neutron dose in lung can be lower than the neutron 

close for the same point in muscle. For points deeper in lung, the 

increased transmission of the primary beam more than compensates for 

the reduced scattered radiationand the net result is an increas ,e of 

the neutron close with increasing depth in lung. ' The close to a point 

13-ing in an 8 cm-thick lung, just 1 cm from the distal interface, would 

be larger than the dose at the-same point in muscle, by about 25 percent. 

The correction factor continues to increase in the muscle behind the 

lung nearly linearly and towards the back of the phantom it tends to 

level off, possibly duc to reduced backscatter at the end of the phantom. 

It is notable* that at a point 10, cm behind an 8 cm.; -thick- lung, the 

ncutron dose could be as much. as 100% larger than the dose that normal 

depth doýc curves would indicate. 
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TABLE 
,6- 

ii 

LUNG CORBECTION FACTORS FOR FAST NEUTRONS 

in 
= 7.5 MeV, 

, 
9-5cm x 9-5cm FIELD T. S. D. 120=). 

ioinýt ki muscle 
., Wcknes3 tissue before Point within the lung 
of lung the 1=g ý I - -1 ý 
traversed Distance from Distance from first interface (cm) 
CM interface (cm) 

1 .2 3 1 3 4 5 6 789 

0.991 0.993 0.995 

2 0.989 , 0.991 0.993 1.00 

3 0.987 0-989" 0.991 0.980 

4 0.985 O-9S7 0.990 o. 96o 1.00 1.040 

5 0.982 0.985 0.989 0.940 0.980' 1.035 1.080 

6 0.979 0.993 0.988 0-933 0-970 1.015 1 . 070 1.185, 

7 0-976 0.531 0.987 0.924 0.960 1.00 1.050 1-115 1-185 

8 0.972 0.978' 0.986 0.920 0-958 0.999 1.050 1.115 1-184 1.260 

9 0.968 "0-97-5 0.98 .5 0.918 '0-944 0.980' 1.025 1.100 1'. 180 1.26o' 1.330 

10, 0.964 0.972 0.984 0.916 0.940 0.978 1-015 1.080 1.165 1.245 1.320 1.390 

-- 

Thickness Point in muscle -tissue 
behind -the lung 

of lung 
tr,,, rsea Distance from second interface (cm) 
cm 

1 2 3 4 5 6 7 9 10 

1 1.040 i. o6o 1.070 1.080 1.090 1.095 I. I(p 1.105 1-11? 
- 2 1.075 -1-100 1-110 1.020 1.130. 1.140 1-150 1.160 1-165 1.179. 

3 1.135 1.150. 1.165 1.175 1.190 1.205 1-215 1.225 1.235 1.240 
4 1.190 1.210 1.230 1.260 1.200 1.300 1-310 1.320 1-330 1.340 
5 1.250 1.290 1.330 1.360 1.3,90 1.415 1-440 1.460 1.. 470 1.480 
6 1.320 '1.375 1.415 1 . '460 1.490 1.525 1.555 1.585' 1.610 1.635 
7 1.415 -1.460 1.510 1.560 i. 6w i. 66o 1.700 '1-735' 1.765 1490 

1-510 1.560 1.610 1.670 1-720 1.780 1.640 1.680 1-905 1.925 
9 1.590 1.650 1.710 1.770 1.830 1.890 1.980 2.000 2.050 2.070 

10 10690' 1.760 1.830 1.900' 10960 2.020 2.080 2.140 2.180 2.210 

relative density = 0-30 
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The gamma ray component of the total dose was found to be 

smaller in front of and within the lung, but it becomes larger than the 

corresponding dose in muscle just 1-2 cm behind the second interface. 

It should be mentioned that, the neutron and gamma ray doses 

were measured at points whose distance from the nearest interface 

was not less than 1 cm, because of the size of the detectors used, r 
e. g. the I cm3spherical , 

EG & G.. ionisation chwnbor. These curves. 

therefore, give no information albout transition effects at interfaces in 

the phantom. 

Table 6-111 gives the correction factors for lung as a function 

of field size. For a given depth.. the correction factor is larger for 

the smaller field size'. If one applied the 9.5 cm x 9.5 cm correction 

factors for the other field sizes, the error would be about 3 percent 

near the interface, but not more than 1 percent at distances larger 

than 6 cm behind the lung. 

TABLE 6-111 VARIATION, OF LUNG CORRECTION 
FACTORS WITH FIELD SIZE 7.5 MeV) 

Lung Field Distance from interface 
thickness size point behind the lung 

cm cm x cm 1 cm 4 cm 7 cm 10 cm 
4.5 x 6.0 1.155 1.200 1.240 1.265 

3 9.5 x 9.5 1.135 1.175 1.215 1.240 
14.0 x 14.0: 1.130, '1.170' '1.210 1.235 

I- 4.5 x, 6.0 1.310 1.400 -1.470 1.5051 
5 9.5 x 9.5 1.250 1.360 1.440 1.480 

14.0 x 14.0 1.245 -1-340 - 1.410 1.460 
4.5 x 6.0 1.580 1.740 1.870 1.950 

8 9.5 x, 9.5, 1.510 1.670 1.840 1.925 
14.0 x 14.0 1.485 1.650 1.820 1.920 

"By 
applying the, correction factors given in this sectionj neutron 

depth dose distributions with errors of less than 12 percent can be 

obtained. 
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6.300. LUNG CORRECTION FACTORS'FOR COBALT GAMMA-RAYS 

BATHO (1964) used for the first time Tissue-Air Ratios 

(TARs) to - calculate corrections for the ý effect of lung.. The Tissue- 

Air Ratio (TAR), defined as the ratio of the dose -to a small mass of 

tissue in the medium to the dose at the, same, point in air, is frequently 

used in the computationof dose distributions. - The correction factor, 

as Batho suggested, can be calculated from the equation, i 

CF TAR (A, d2) 
TAR (A, dl) (6.1) 

where p is the electron- density of the heterogeneity relative 
C 

to soft tissue and d, d2' are the distances from the point of interest 

to the two surfaces of the'overlying heterogeneity. This method, 

allowed only for the case of pointslying behind the inhomogeneity and 
I the above equation is valid only in the energy range where absorption 

and. scattering of the photons'is determined solely by the number"of 

electrons per cm3 of the medium, i. e. where the attenuation is due 

almost entirely to the Compton process. Batho assumed'the average 
3 density of lung tissue to be 0.35 g cm- and calculated lung correction 

factors using equation (6.1 ). 

YOUNG'and GAYLORD (1970), carried out experiments with. ' 

cobalt-60 radiation to test the validity of equation 6J. They used 

aluminium., carbon., Perspexl, and air., and found that the calculated 

correction factors c6uld be used with an error of about 3 percent. 

SONTAG- and C13NNINGIIAM (1977), gave a, gencralized formula 

for this correction factor, that allowed for correction of the "close to 

points within the heterogeneity asýwell, and accounted for the differences 

in atomic number between the heterogeneity and the tissue-like material. 
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PP Pen 
CF'- TAR (A) di ) a- b 

VP )a 

(6.2) 
TAR (A, C12)1 - Pb Pe 

P 
)b' 

where P is the density of the material in which the point of a 
interest lies at a depth d, and P is the densit of the overlvine y b 
material of thickness (d2 - d, They used cork- for lung and 

aluminium for bone and found that the agreement between-values 

measured within the aluminium and, those predicted by, the generalized 

formula was not quite as good, with differences of 4-5 percent being 

observed. 

Figure 6.3 shows the correction factors obtained with a 

phantom consisting of 4 cm-thick muscle substitute (MS/SR4) 

followed bY3 cm, 5 cm or 8 cm of lung substitute (LNG/SR4) and 

this followed by a 30 cm x'30 crn x 40 cm tank full of water. 

Measurements were repeated with 2 cm of muscle in front of the 

lung, in order to see how the thickness of overlying tissue affects 

the correction factors. The two sets of correction factors were 

within 1 per cent of each other'and it was concluded that the correction 

is independent of the thickness of the overlying I, tissue. 

The dotted lines in Figure 6.3 show the values predicted 

by the Batho 
* 
formula (equation 6.1); the maximum difference, for the 

8 cm-thick lung, is 2 percent. 

The lung correction factors derived in this 'way seem to 

vary linearly with depth; the fact that the phantom was rather 

extended behind the heterogeneity may be responsible for this 

because no measurements- were made near the exit of the phantom 

where the backscatter is gradually reduced; this reduced backscatter 

is probably responsible for the levelling off observed with the lung 

correction factors for neutrons. 
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Figure 6.3 Lung correction factors for cobalt-60 
gamma rays, (10 cm x 10 cm field, 
SSD = 75 cm). Dotted lines : values 
predicted from equation 6.1 

The effect of field size on the lung correction factors was 

also investigated by repeating the measurements for three field 

sizes, namely 5 cm x5 cm., 10 cm x 10 cm and 15 cm x 15 cm. 

Figure 6.4 shows the correction factors for the above three field 

sizes in the case of 8 cm-thick lung. Table 6-IV gives correction 

factor values for points behind 3 cm, 5 cm and 8 cm-thick lung, for 

the three field sizes. It can be seen that for a point lying 5 cm-behind 

an 8 cm-thick lung, for example, the correction factor for the 5 cm x 

5 cm field is about 3 percent larger than that of the 10 cm x 10 cm field, 

while the correction factor for the 15 cm x 15 cm field is about 2 percent 

lower. 

A single set of correction factors for each thickness of lung 

traversedq based on an average field size could probably be used. 
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Figure 6.4 Effect of field size on the lung correction 
factors for cobalt-60 gamma rays 
(Lung thickness =S cm) 

TABLE 6-IV LUNG CORRECTION FACTORS AS A FUNCTION 

OF LUNG THICKNESS, FIELD SIZE AND DISTANCE 
OF POINT FROM THE LUNG 

Cobalt-60 radiation 
Lung Field Distance of point from lung 
thickness 

cm 
size 

(cm x cm) 1 cm 5 cm 10 cm, 
5x5 I. o64 1.089 1 104 

3 10 x 10 1.059 1.800 1-o95 
15 X 15 1.055 1.074 1.087 
5x5 1.125 1.160 1.210 

10 X 10 1.110 1.144 1.193 
15xl5 1.095 1.128 1.175 
5x5 1.209 1.285 1.380 

lox 10 1.19i 1.247 1.311 
15 x 15 1.180 1.218 1.273 

, 
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Table 6-V gives the lung correction factors for cobalt-60 

gamma rays, for points lying in the tissue in front of the lung, for 

points within the lung and finally in the soft tissue behind the lung. 

The use of such correction factors in'computerised isodose planning 

would. improve the accuracy of the dose distributions thus obtained. 
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TABT, n. 

CORRECTION FACTORS FOR LMIG* 

(10 cm x 10 cm) 
COBALT-60 GAMU'RAYS 

Point in tissue Point within the lung 
before lung 

Thickness Distance from Distance from first interface 
of lung Interface(cm) (cm) 

cm 

1 2 3 1 2 3 4 5 6 7 8 9 

1 0.951 0.958 0.975 

2 0.951 0.953 0.972 0.955 

3 0.950 0.957 0.969 0.942 0.972 

4 0.950 0.957 0.966 0.935 0.965 0.904 

5 0.950 0.956 0.964 0.935 0.95S 0.984 1.009 

6 0.949 0.955 0.062 0.931 0.957 0.983 1.009 1.035 

7 0.949 0.954 0.960 0.930 0.956 0.982 1.009 1.034 1.060 

8 0.948 0.953 0.959 0.929 0.955 0.982 1.008 1.034 1.059 

9 0.948 0.952 0.958 0.928 0.954 0.981 1.008 1.034 1.059 1. OSG 1.118 

10 0.947 0.951 0.957 0.927 0.953 0.980 1.007 1.033 1.059 1.066 1.118 1.143 

Point In tissue behind the lung 

Thickness Distance from second interface (cm) 

of lung 
cm I 

1 2 3 4 5 6 7 8 9 10 11 -12 

1 1.014 1.015 1.019 1.023 1.025 1.027 1.030 1.033 1.035 1.040 1.043 1.045 

2 1.030 1.035 1.039 1.043 1.046 1.050 1.053 1.056 1.060 1.064 1.068 1.072 

3 2.059 1.061 1.063 1.065 1.068 1.072 1.076 1.080 1.084 1.089 1.094 1.098 

4 1.082 1.090 1.098 1.105 1.112 1.118 1.125 1.132 1.139 1.146 1.152 1.160 

5 1.110 1.118 1.128 1.139 1.148 1.158 lol68 1.177 1.187 1.196 1.207 1.215 

6 1.240 1.150 1.161 1.173 1.185 1.195 1.206 1.216 1.227 1.238 1.250 1.2G2 

7 1.164 1.177 1.190 1.204 1.216 1.229 1.242 1.255 1.268 1.281 1.294 1.307 

8 1.191 1.205 1.221 1.234 1.247 1.258 1.270 1.285 -1.300 
1.311 1.3 

, 
25 1.340 

9 1.233 1.250 1.265 1.280 1.295 1.308 1.320 1.335 1.350 1.364 1.378 1.392 

10 1.278 1.293 1.308 1.323 1.337 1.351 1.366 1.381 1.395 L. 410 1.425 1.440 

--A 

* relative density = 0.30 
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CHAPTER-7 

SOME kPPLICkTION S OF THE NEW TISSUE SUBSTITUTES 

Tissue substitutes 'are needed for several purposes in 

radiation dosimetry, radiotherapy, radiological protection and 

radiodiagnosis. Tor example, ionisation chambers, organ or body 

phantoms and radiographic test objects are some of theltems that 

can be manufactured using the new substitutes. Some of these 

applications will be described here briefly. 

7.1 MACROSCOPIC, MICROSCOPIC AND INTERFACE DOSIMETRY 

The experimental work carried out during this study illustrates 

the usefulness of the new substitutes in both particulate and photon 

radiation dosimetry. 'Figures 7.1 (ial and ibý) show samples of 

solid substitutes for lung, muscle and hard bone, while Figure 7.2 

shows some liquid and gel tissue substitutes produced in this work. 

Although non-conducting electrically, the new solid tissue 

substitutes can be used in the manufacture of ionisation chambers for 

use in particulate and photon radiation dosimetry, provided their 

electrodes are coated with a layer of graphite thin enough not to 

disturb the particle fluence (a few microns-thick). 

The new substitites can also facilitate interface dosimetry and 

microdosimetry. For example, small size thermolumine scent 

dosimeters (TLD chips or discs) can be placed very close to the' 

tissue interface to measure the dose distribution in this region of 

interest. Nuclear emulsions can be sandwiched between slabs of 

solid tissue substitutes and exposed to particulate radiation beams 

in order to investigate the type and the yields of charged particles 

produced in tissue by these radiations. Similarly film dosemeters 
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(a) 

au P4 t 

________________ 

b) 

Figure 7.1 Sonic, of the now solid tissue substit-Litos 
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>f 

Figure 7.2 Some new liquid, gel and solid tissue 
substitute materials 

can be used in conjunction with central axis depth dose measurements 

to plot the isodose curves from radiation beams in various tissues 

like muscle, brain or bone. The use of the liquid tissue substitutes 

to measure the stopping powers of various tissues for alpha particles 

emitted from naturally radioactive substances is another application 

of the new materials. 

Samples of lung and bone substitutes (LN/SR1 and HB/SR4) 

have been made for the Churchill Hospital Physics group (Oxford), 

at their request, in order to investigate the transmission and. back 

scattering of 4 to 40 MeV electrons from these materials. Muscle 

anJ bone substitutes have also been used to study the yields of 

charged particle--, and the corresponding dose : LET distributions 

in the reg gion of the peak of the 70 Mo-V pion beam of the Rutherford 

Laboratory, 'U. K. (PERRIS, et al., 1978). 
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7.2 RADIOGRAPTITC TEST OBJECTS 

The new materials are also suitable for radiographic studies 

in diagnostic radiology. Lung phantoms, for example, can be used 

for the construction of realistic chest phantoms. If a number of 

lungs with the same shape, composition and density are manufactured$ 

then different types of objects (e. g. calcifications, meshes etc) can 

be incorporated in each one of them for the purpose of testing 

imaging systems such as diagnostic X-ray machines and computerised 

tomography scanners. When the same test object is radiographed on. 

different X-ray machines set to the same mAs and kVp, the amount of 

information obtained from the different radiographs can be compared. 

A radiographic test object designed and manufactured for 

comparing resolution, detail and contrast on different imaging systems 

in an objective way, is shown in Figure 7.3. Various items have 

been embedded in the base material which is the epoxy system CBI. 

Figure 7.3 A radiographic test object (diniension, s : 15 cm x 20 cin x3 cm) 
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These items include step wedges made of tissue substitutes ranging 

from fat to hard bone, aluminium oxide spheres-ranging from 0.4mm 

to 4 mm diameter, a1 cm-thick section of real bone and air spaces 

with fine wires of copper thre aded, through polyethylene tubes, the 

smallest diameter of the wires being 0.05. mm. The section of the 

head of the femur was impregnated with resin before being embedded 

so that, by excluding air, its trabecular structure could act as a 

test object for resolution and detail determinations. 

Figure 7.4 shows radiographs of this test object taken withX rays, fast 

neutrons and with high energy protons. The techniques and methods 

used in proton scattering and end-of -range proton radiography have 

been described by WEST (1974) and STEWART and KOEHLER (1974). 

It is seen that the end of -range proton radiograph (D) is the only 

one which provides information for both soft and skeletil tissues. 

It also shows bubbles of trapped air, not visualised on any of the 

other radiographs. The conventional X-ray radiograph (A) gives 

better detail of the structure of the real bone but the soft tissues 

are not visualised on it. On the neutrogram (B), apart from the air 

volumes, nothing else is visualised. 

Another test object which was designed and manufactured at the 

request of the Diagnostic X-ray Department of St Bartholomew's 

Hospitals Londonp is shown in Figure 7.5. The requirement was 

to have a solid material -which would be "invisible" on radiographs 

taken'when a rack made of this material was immersed in water. 

The purpose was to -study the changes observed on the radiographs 

when different con cent rations of contrast media were used. As it 

was not feasible to formulate an elementally correct solid water 

substitute, the Basic Data method was employed and the substitute 
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A B 

FT/SF 1 

EB/SF3 

TSK/SF3 

NS20 

ms/sRl 

APISF1 

CD 
Figure 7.4 Different radiographs of the same test object. 

A: Conventional radiograph (60 kV. X-rays, 20 mAs). p 
B: Neutrogram 7.5 MeV). 

C: Proton scattering radiograph (160 MeV protons, 3cm thick aluminium absorber). 

D: End-of-range proton radiograph (160 MeV protons, 9-85cm thick perspex absorber). 
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Figure 7.5 Object made of a solid water substitute 

WT/SR1 was formulated and manufactured. Samples of this 

substitute were immersed in water and. radiographed, but they were 

not visible on the radiographs. By using test tubes of different 

diameters the visualisation of dilated bile ducts fitled with contrast 

media could be stLidied. 

Radiographic test objects for CT scanners can also be 

manufactured using the new tissue substitutes, especially the 

liquids and gels. If epoxy resin based systems are to be used, 

then the powders added as fillers must be sieved to below 100 Jim 

if the homogeneity required for this application is to be achieved. 

However., the solid substitutes prodLICed by WHITE (1974), are 

better for this purpose bo-cause they are all class A (errors < 5%) 

for photon energies below 0.1 MeV. 

^1 r) 4-- 



7.3 BODY PHANTOMS, 

The new tissue substitutes are -suitable for the manufacture 

of organ and body phantoms for depth dose studies, for the 

assessment of the doses given to the irradiated areas of patients 

undergoing radiotherapy and for the- comparison of different' 

dosemeters. The manufacture of anatomically correct body 

phantoms (in slices) with the correct tissue substitutes, allows the 

dose distribution from the various fields used within the body to 

be accurately measured using dosemeters at different points in the 

phantom. Depending on the experimental requirements, the 

phantom employed could be either a complex reproduction of the human 

body or a simple homogeneous material. 

An application that is currently being considered is the use 

of the gel substitutes for muscle as bolus material in both photon 

and particulate radiation therapy. These gel substitutes have low 

cost and when kept in sealed polythene bags can be used for several 

months. 

The determination of the radiological hazard to patients who are 

administered racliopharmaceuticals, requires an assessment of the 

doses absorbed in various organs from a radioactive material 

deposited in another organ. For suc h applications, 2 mm-thick 

perspex. sheets can be used to produce shell replicas of the various 

organs (kidneys, liver, thyroid, etc). These models can be filled 

with the appropriate liquid substitutes and placed in a man-sized 

shell phantom which in turn, is filled with "total soft tissu&" 

liquid substitute, If a soluble radioactive material is mixed with 

one of the organ substitutes, then dosemeters placed at defined 

points within the phantom will permit the dose distribution to be 

plotted. 
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The addition of radionuclides in epoxy resin'based substitutes 

during their manufacture' and tyeir subsequent use as counting 

standards is being investigated. 
_ 

If compartmented models are used, 

the effect of non-uniform distribution of radioactive materials on 

the counting efficiency of various detectors may be studied (for 

example, plutonium in lung substitutes). 
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CHAPTER 

CONCLUSIONS AND SUGGESTED FUTURE WORK 

The radiation physicist has a large number of tissue substitutes 

available for dosimetric studies. Some of the phantom materials 

used in the past, however, should not be used any longer because 

they have unknown composition and variable density and their 

radiation absorption and scattering characteristics probably differ 

from those of the real tissues by more than 20%. Tressdwood and 

paraffin wax. -still used as muscle substitutes I sulphur and 

aluminium still used to represent bone. and sawdust, cork and 

sponge still used as lung substitutes are some typical examples of 

unacceptable materials, 

The present study had two main aims. The first was to 

formulate new tissue substitutes with the same elemental 

composition and density as the corresponding real tissues. The 

second aim was to use these systems for dosimetric studies with 

those types of radiation which are used or are likely to. be used 

for patient treatment, in order to establish their depth dose 

characteristics in various tissues andin particularto investigate 

the effect of tissue, heterogeneities on the, dose di-stributions ine 

the paticntýs boay. 

A wide range of tissue substitutes in the liquid, gel and solid 

phases have been produced as a result of this work. Most of these 

materials are "TISSUE EQUIVALENT" particularly the liquid 

and gel substitutes. In the case of epoxy resin based substitutes, 

partial replacement of oxygen by carbon had to be accepted aue to 

the fact that epoxy resins and polymers are rich in carbon and 

poor in oxygen. A similar problem exists when rubbers are 
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considered. Not only are rubbers poor, in oxygen but they normally 

require high temperatures and'pressures and elaborate equipment 

for their mixing. Until polymers 'or other base materials rich in 

oxygen are developed, no improvement is expected as far as this 

problem is concerned. However, this replacement of oxygen by 

carbon in the new tissue substitutes does not introduce significant 

errors when these, materials are used with photons of energy 

above 0.1 MeV., high energy charged particles or fast neutrons* 

The extensive series of measurements performed with, 

cobalt-60 gammaý rays , 7.5 MeV neutrons , '10 MeV electrons , 
70 MeV pions and 150 MeV protons using a selection of the -new 
tissue substitutes, resulted in-the establishment of the depth dose 

characteristics of. these radiations in muscle, brain, bone and water. 

The effect of tissue heterogeneities on the dose distributions was 

investigated and isodose shift factors for use in the planning of 

the treatment of patients undergoing radiotherapy, were derived. 

Detailed lung correction factors for cobalt-60 gamma rays and for 

neutrons of average energy E -1 7.5 MeV were also derived and 
In 

these are readily available for computerised isodose planning. 

The comparative information accumulated during the course 

of this study has added significantly to the sparse data on electron,, 

negative pion, proton and neutron depth dose distributions in 

various tissues. The measurements performed on the 160 MeV 

proton beam of the ktomic Energy Research Establishment were 

a necessary pre-requisite for the proposed proton radiotherapy I 

program using that proton beam facility. Experience has been 

gained in positioning the Bragg-peak "on target" and this problemt 

considered before as one of the main obstacles to the clinical use 
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of protons, is no longer a limiting factor. The collimator system 

of the above proton beam facility, however, should be improved so 

that scatter towards the patient is reduced. 

It is hoped that a clinical study will be undertaken in the 
. 

near future, to compare protons to megavoltage X-rays in the 

treatment of tumours for which it appears most likely that an 

improved: dose distribution will be advantageous. Silch a clinical 

trial should include enough cases to assure statistically significant 

results. The capacity to decrease the normal tissue dose relative 

to the tumour dose with proton treatment, should have merit in 

reducing the morbidity or in increasing local tumour control. 

The usefulness of the measured i. 5oclose shift factors for all 

radiations and lung correction factors for photons and neutrons 

over a wider energy range, should be established by further 

measurements. Measurements should also be performed very 

close to the tissue interfaces (distances 0-1 cm from interface) 

because the dose gradient in this region is more pronounced and 

it is in this region that the maximum errors in the estimation of 

dose usually occur. 

It is hoped that this study will stimulate more interest in the 

use of tissue substitute materials and that the experimental results 

will contribute to improvements in clinical dosimetry. 

GOD 
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APPENDIX 1 

SYMBOLS, PHYSICAL CONSTANTS AND 

ELEMENTAL DATA USED IN THE STUDY 

I 
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A (M) Atomic weight (Molecular weight) 

ai Fractional Electron content of the ith element or compound 
P v/C 
c Velocity of light 
CF Correction factor 

CT Computerised tomography 
6 Density effect correction 

e Charge on electron (1.6 x 10- 19 C) 

Eeff Effective energy 
En Neutron energy 

E)2 Electron mean square scattering angle 
O(E) Particle fluence 

FWHM Full Width at half maximum 
Kerma 
Mean excitation energy 

Me 
Path length 
Rest mass of electron 

( 
MeC2- 0.510976 MeV 

m Percentage by weight of the i th compound in a mixture i 
2 

C17PI) Mass angular scattering power 
S/P Mass stopping power 

S/P )CO, Collision mass stopping power 

S/ P 
)rad Radiation mass stopping power 

'Narrow beam' linear attenuation coefficient 
P/P Mass attenuation 'Coefficient 

Pen/P Mass energy absorption coefficient 

I'tr/P Mass energy transfer coefficient 

11 T/ p Photoelectric mass attenuation coefficient 
NA Avogadro's number (6.02252 x 10 26 kmol- 1 

no Electron density 

Pe Momentum of electron 
Tr Constant : 3.14159 

TT - Negative pions 
-15, re Electron radius (2.81777 x 10 M) 

p Mass density 
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Pe Electron density of a heterogeneity relative to soft tissue 
CF t Total neutron cross section 
SG Relative density (specific gravity) 
T Kinetic energy of a particle 
T Kinetic energy in units of me c2 

v Velocity 

W The energy required to form an ion pair in the 
sensitive volume of a radiation detector 

W/O Percentage by weight 

x 2-exponent 

z Atomic number 

z Number of protons in a charged particle 
< Z/ > Mean ratio Z/A for compound 

Z(X) Effective atomic number 
Ci 
z The term for shell corrections (equation 1.2) 

Ohm 
Weight proportion 

ELEMENTAL DATA 

I ELEMEMT AT13MIC WT. Iz ELEMENT ATOMIC WT. 

A HYDROGEN CH ý 1.00797 37 RUBIDIUM (Re) OS. 47 
2 HELIUM (HE) 4.0026 30 STRONTIUM (SR) 07.52 
3 LITHIUM 4L 1) 6.939 32 YTTRIUM CY ) Se. 90S 
4 BERYLLIUM (BE) 9.0122 40 ZIRCONIUM CZR) 01.22 
S BORON (a ) 10.011 41 "105lum (MB) 92.906 
9 CARBON CC ) 12.01SIS 42 MOLYBDENUM (MO) 95.94 
7 NITROGEN (M ) 14.0067 47 SILVER (AG) 107 70 6 
6 GXYGEM to ) IS. 0994 40 CADMIUM (CO) 112: 1 10 
9 rLUORIME (F ) J6.9904 So TIN (SH) Ile . Go 

10 NCO" (ME) 20.303 51 ANTIMONY (Sb) 7s 121 
it SODIUM (NA) 22.9098 52 TELLURIUM CTEI 

: 
121 GO 

32 MAGNESIUM (MG) 24.312 53 IODINE (I ) 126.9044 
13 ALUMINIUM CAL) 26.981S ss CAESIUM (CS) 132.90S 
14 SILIC014 (SI) 28.086 So BARIUM (BA) 137.34 
is PHOSPHORUS (P 3 30.9736 57 LA"THAHUM (LA) 138.91 
le SULPHUR (S ) 32.064 So CERIUM (CE) 140.12 
17 C14LORINE (CL) 35.4S3 62 SAMARIUM (SM) 150.35 
All ARGON CAR) 39.940 63 EUROPIUM (EU) 151.96 
39 POTASSIUM (K ) 39.102 64 GADDLIMIUM (GO) 157.25 
20 CALCIUM (CA) 40.00 Iss TERBIUM (T5) ISO 4 :2 
21 SC. AhOlUM (SC) 44.956 67 HOLMIUM (me) 1 4: 6 30 
22 TITANIUM CTI) 47.90 Go ERBIUM (ER) 167.26 
23 VANADIUM (V ) SO. 942 Go THULIUM (TM) 160.934 
24 CHROMIUM (CR) S1.995 70 YTTERBXUM (YO) S73.04 
2S MANGANESE (m) S4.9380 71 LUTETIUM (LU) 174.97 
26 IRON (rE) SS. 647 74 TUNGSTEN (W ) 283.05 
27 COBALT (CO) 56.9332 77 IRIDIUM CIR) 192.2 
26 NICKEL CHI) 68.71 70 PLATINUM CPT) los. 09 
29 COPPER (CU) 63. S4 79 G13LO CAL) 196.967 
30 limc CZH) 65.37 ao MERCURY (MG) 200.50 
31 GALLIUM (GA) 69.72 82 LEAD (PS) 207.19 

32 GERMANIUM (GE) 72. S9 03 BISMUTH 45D 200.200 
33 ARSENIC CAW 74.9216 a4 POLOMIUM (Po) 210) 
34 SELENIUM (SE) 76.96 as RADIUM CPA) 226) 
3S BROMINE (BR) 79.909 90 THORIUM (TH) 232.030 

AVOGADROS NUMBER I 5. 02252X, 026XMDL-1 
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APPENDIX 2 

EXAMPLES OF FORMULATING TISSUE I 

- SUBSTITUTES USING THE "ELEMENTAL 

EQUIVALENCE" METHOD 
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The two examples included in this appendix, show the 

application of the Elemental Equivalence method in the formulation 

of the new tissue substitutes, as outlined in Chapter 2. 

EXAMPLE 1 

TISSUE : MUSCLE, relative density = 1.06. 

'Elemental composition (percentages by weight): 

C (12.3); H (10.2); N (3-50); 0 (72.89); Na (0.08); Mg (0.02) 

P(O. 20); S(O. 50Y; Cl(0.08); K(O-30); Ca(0.01) 

STEP 1: Derive the number of moles of each element per kilogram of 

substitute. 

C- 10.2415; H= 101.9000; N=2.4986; 0= 45.5625; Na = 0.0304; 
. Mg - 0.0080; P=0.0646; S=0.1562-, Cl = 0.0220; X=0.3900; 

Ca - 0.200. 

STEP 2: Scan the compound library to find if there is a single compound 

with the above composition: no isingle component' muscle 

substitute was found. 

STEP 3 *. Derive a set of compounds which will introduce the trace 

elements in a water-based substitute. 

For 1 kg of substitute: 

Na CI ..:. 0.0220 moles - 1.288 g 

Na*N03 : 0.0044 mole s=0.714 

KHS04 : 0.1000 moles = 13.617g 

Mg(NO., 1)2.6H 0: 0.0080 moles - 2.051 g 

Ca(NO3)2 : 0.0020 moles = 0.328g 

H31'04 : 0.0646 moles = 6.270g 

, Total mass : 24.268 g 
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STEP 4 -' Subtract the number of mole s of CfHIN10, etc, 

already introduced with 
& 

above compounds from the 

number of moles of each element derived in STEP 1. 

What remains to be satisfied (for 1-kg of substitute).. is: 

C- 10.1415 moles; H- 100.80 moles; N=2.4742 moles; 

44-7829 moles. 
The formula of the remaining C, H9 Ns 0 can be written as: 

c 10.1415 H100.8000 1ý2.4742 044-7829 

STEP 5: The above formula can be written as the sum of two (or 

more) components with water being one of them: 

CIO. 141511100.80 N2.4742 044-7829 -** C10.1415 HI 1.2342 N2.4742(H20)44.7829 

If Urea [NH2CONH2 
ý CH2N2(H20)]" used to satisfy the nitrogen 

2.4742 
requirement, then 2=1.2371 moles of Urea(74.23g) will be 

needed. Consequently: 

CIO. 14151111.2342 N2.4742(1120)44,7829 = 1.2371 CH2N2(H20) + 
C8.9044H8.760(H 2 0)43-5458 Urea 

B 
The C: H ratio in the first part of the component B is 1.016. Two 

compounds, namely, ethanediol = C2H2(1120)2 and acetic acid C2%0)2ý 

with C: H ratios bracketing 1.016, are selected from the library. 

Component B can now be written as: 

C8.9044H8.760(1120)43.5458 = 4.38 [ CD2(H20)2] + 0.0722 
[C2(H20)2] 

+ 
34*706(H 

Ethanediol, A. cetic acid 20) 
water 

3 But: 4.380 moles Ethanediol 271.86g. (242'cm ) 

0.0722 moles Acetic acid 4.34 g (4. o CM3 ) 

34-706 moles Water = 625-30 
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Summary: The formulated MUSCLE EQUIVALENT liquid 

(MS/Ll) will have the following constituents (percentages by weight): 

MS/Ll: Water(62.53); Traces(2.42); Urea(7.42); 
Ethanediol(27-19); Acetic acid(O. 43) 

Note: After the formula in Step 4 is derived and a decision is made 

on the compounds to be used, the calculation can proceed as follows: 

STEP 6: Set up four simultaneous equations to satisfy the C, HvN90 

requirements using Water(W) + Urea(U) + Ethanediol(E) 

+ Acetic acid(A) 
[H20 

+N H2 C0N H2 + C2 H6 02 + C2 H4 02 

for H: 2W + 4IJ + 6E + 4A = 100.8000 

for C: OW+ IU+ 2E + 2A = 10.1415 

for N: OW + TU + OE + OA = 2.4742 

for 0: IW + lU + 2E + 2A = 44-7829 

The solution of the above system of equations gives exactly the same 

number of moles for the constituents of the substitute MS/L1, as the 

values derived with the previous method. 

STEP 7- Apply equation 2.6 and derive the dcnsity of the formulated 

substitute, using the known density and percentage by weight 

of each component. 

Calculated density of MS/L1 : 1.07 g/cM3 
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EXAMPLE 2 

TISSUE : ADIPOSE, relative density = 0.92 

Elemental composition (percentages by weight): 

C(64.00); H(12.00); N(O. 80); 0(22.90); Na(0.05); P(O. 02); 

S(O. 07); CI(O. 12); K(O. 03) 

STEP 1: Derive the number of moles of. each element per kg of 

substitute: 

C= 53.2844; H= 119.0476; N=0.5711; 0= 14-3146; Na-0-0221; 

P-0.0052; 5=0.0227; Cl = 0.0338; K=0.0082 

STEP 2' Scan the compound library to find if there is a single 

compound with the above composition: no "single component" 

adipose substitute was found. 

STEP 3: Derive a set of compounds which will introduce the trace 

elements in an epoxy resin based solid substitute* 

For 1 kg of substitute: 

Na2 S04 : 0.0110 moles = 1.562 g 

S 0.0116 moles = 0-373g 

K2H P 04: - 0.0041 moles= 0.714 g 
Ca H P04 *- 0.0005 mole s=0.068 g 

Total mass = 2.717 9 

STEP 4: From the initial number of moles per kilogramme, for each 

element, subtract the quantity introduced with the compounds 

for trace elements; remaining number of moles per kilogramme: 

C- 53.2844; H- 119.043; N=0.5711; 0= 14.2522 
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STEP 5 4. Decide on the type and quantity of epoxy resin to be used: 

The low nitrogen and high hydrogen content ents make the epoxy 

resin CB3 the system of choice while at the same time it excludes 

the use of CB1., CB2 or CB4 because, due to their composition 

(see Appendix 5), less than 30% by weight of these should be used if 

the nitrogen content is not to be exceeded; such low percentage of 

base material, however, would certainly present. viscosity problems. 

The empirical formula of CB3, derived from its elemental 

composition is: 

CB3= 
[ 

C6.1776 1111.2103 No. 1142 0 0.750 CIO. 0253 
In 

0.5711 In order to satisfy the 0.5711 moles of nitrogent 0 . 5.008 
. JJZ7 

moles of CB3 are needed, i. e. 500.08g'. of CB3,, a quantity in which 

an cqual mass of any filler can be dispersed without any viscosity 

problems. Now subtract the quantity of C, Hj Nj 0 introduced with 

the base material (PART A), from the number of moles per kilogramme 

derived in Step 4. The following remain to be satisfied (PART B): 

C- 22.39 moles; H= 62.98 moles; 0- 10.50 moles 

The C: H: 0 ratio here necessitates the use of compounds with high 

hydrogen and high oxygen content. Since no single compound was found 

with this C: H: 0 ratio, the compound library was rescanned, for two 

compounds with high hydrogen and, at least one of them, with high 

oxygen content; the two compounds selected were Glucose (G) and 

polyethylene (PE) but again, although it was possible to satisfy the 

hydrogen content exactlyp this was not so for carbon and oxygen. 
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STEP 6 Setup two simultaneous equations and solve the system 

to find the quantities of G and PE which would give 

correct H and* (C + 0): 

C6H12O6 ' (C2H4)n'- P '22.39 1162.98 01 10.50 
Glucose(G) Polyethylene (P E) 

for H: 12G + 4PE 62.98 

for(C+O): (6xl2.01+6xl6.0)G + (2xl2.01)PE = 22.39xl2.01+10.5xl6.0 

The solution of these two equations give 

G-0.61 moles - 109.8g Glucose 

PE = 13-81 moles = 387-39 g Polyethylene 

STEP 7 *. Find the quantity of phenolic microspheres (PMS) needed to 

adjust the relative density of the mixture to the required value 

of 0.92. 

The application of equation 2.6 showed that the mixture 
4 

50.008 g (resin CB3 + PMS) + 38-739 g Glucose + 10.98 g Polyethylene 

would have a resultant density of 0.92 if the relative density of the 

component (resin CB3 +PMS) had a relative. density of 0.84. Equation 

2.6 applied to the mixture of epoxy system CB3 (relative density = 1.02): 

and PMS (relative density = 0.2), indicated that 501o by weight of PMS 

should be used, (i. e. 5g PMS in 95g of CB3). Consequently a 

total of 26.20 g of PMS was considered, their composition taken into 

account and the mass of each of the above components recalculated. 

The final composition of the substitute, which is coded AP/SF1 is: 

For I kg of substitute: I 

Epoxy system CB3 (499-00-0,; Glucose (87.40"g); Polyctliylene(384-72g); 

PMS (26.20 g); Traces (2.717g). 
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APPENDIX 

SUPPLIERS OF RESINS AND 
TABLE 11 : OTHER IMPORTANT COMPOUNDS 

MkTERIAL SUPPLIER 

Araldide MY750 

XD555 Ciba-Geigy Ltd 

XD716 

Synolide 960 Cray Valley Products Ltd 

Epoxide No. 7 Proctor & Gamble Ltd 

EpVr, ote 871 Shell Chemicals (U, K) Ltd 

PMS (BJO 0930) Bakelite Xylonite Ltd 

DC1107 Dow Corning Ltdz 
DC200/50 
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