
Applicability of HCI Techniques to Systems Interface Design
Bellotti, Victoria Mary Elizabeth

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1518

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1518

Applicability of HCI Techniques
to Systems Interface Design

Victoria Mary Elizabeth Bellotti

1990

Thesis Submitted for Examination
for the Degree of Doctor of Philosophy

Registered at
Queen Mary and Westfield College, London

Applicability of HCI Techniques to Systems Interface Design

Abstract

This thesis seeks to identify reasons why HCI techniques are unsuitable for applica-

tion in real world design projects. User-oriented systems design and evaluation re-

quire that many considerations such as the psychology of users, the applications and

target tasks be born in mind simultaneously. A selection of influential HCI design

and evaluative techniques from HCI research literature are reviewed and character-

ised in terms of their analytic scope.

Two studies of systems designers' approaches to user-oriented design and evalua-

tion were carried out in order to gain a clearer picture of the design process as it oc-

curs in applied and commercial projects. It was found that designers frequently lack

adequate information about users, carrying Out, at best, informal user-evaluations of

prototypes. Most notably HCI design and evaluative techniques, of the type com-

mon in the literature, are not being used in applied and commercial design practice.

They seem to be complex, often limited in scope, and possessed of inadequate or

unrepresentative views of the design process within which they might be applied. It

was noted that design practice is highly varied with only a small number of com-

mon goal directed classes of activity being identified. These together with observed

user-oriented information sources and design constraints provide a useful schema

for viewing applied and commercial design practice.

A further study of HCI specialists' practice in commercial environments was under-

taken, in order to identify particular user-oriented design approaches and HCI tech-

niques suitable for application in practice. The specialists were able to describe

desirable, and undesirable properties of the techniques they used which made it pos-

sible to identify a list of specific desirable features for HCI techniques. A frame-

work for assessing applicability of HCI techniques was developed from the findings

of the thesis. This is demonstrated using an example project from the design studies

and may prove valuable in supporting design, evaluation, critiquing and selection of

HCI techniques.

-2-

Applicability of HCI Techniques to Systems Interface Design

Contents

Page No.s

Acknowledgements
	

17

18
Executive Summary

Chapter 1
	

22
Evaluating Usability With Respect to HCI
Principles

1.1 System Usability and Evaluation Within 	 22
Design and Not in a Vacuum

1.2 Evaluation Factors and Principles of Usability	 26

1.2.1 Evaluation Factors
	

26
1.22 Incorporating Principles of Usability in HG!

	
30

Approaches
1.23 Compromising Principles

	
36

1.3 HCI Models
	

38

1.3.1 HCI Design and Evaluative Techniques
	

39
1.32 Psychological and Interaction models

	
40

1.3.3 Competence and Performance Models
	

41

1.4 Questions of Appropriateness and
	

43
Applicability for HCI Approaches

1.4.1 The system user(s); An Individual or
	

45
a Population

1.4.2 The Nature of the System Application(s)
	

46
1.43 The System Interface

	
47

-3-

1.4.4 Target Task(s)
	

48
1.45 Acceptable Interactive Peiformance

	
49

1.5 Summary	 50

Chapter 2	 52
A Review of HCI Design and Evaluative Techniques

2.1 Introduction	 52

2.1.1 Overview
	

52
2.1.2 Classifying and Characterising the Scope

	
53

of HCI Techniques
2.1.3 Usability Principles With Respect to

	
55

Evaluation Factors

2.2 HCI Models
	

67

2.2.1 The Block Interaction Model (BIM);
	

68
A Model of Models

2.2.2 Reisner's Formal Interactive Grammar
	

73
2.23 Task Action Grammar

	
79

2.2 .4 ACT*
	

87
2.25 Goals Operators Methods and

	
93

Selection-Rules (GOMS)

2.2.6 Cognitive Complexity Theory
	

104
2.2.7 Interacting Cognitive Subsystems

	
119

2.2.8 Command Language Grammar
	

129

2.3 Summary
	

144

Chapter 3	 147
HCI Techniques in UI Design and Evaluation:
The Theorist's View and The Practitioner's
View

3.1 Introduction	 147

-4-

3.1.1 Overview
	

147
3.1.2 Systems Design in General

	
147

3.2 Theoretical HCI Views of UI Design and
	

149
Evaluation

3.2.1 The GOMS View of the Design Process
	

151
3.22 The CCT View of the Design Process

	
158

3.23 The CLG View of the Design Process
	

166
3.2.4 Overview of HCI DETs Design Views

	
173

3.3 Alternative User-Oriented Design
	

177
Processes

3.3.1 Principles and Guidelines
	

178
3.32 Iterative Design and Protoryping

	
180

3.33 Overview
	

183

3.4 Practitioners' Views of UI Design and
	

183
Evaluation

3.4.1 Comparative Studies of Design and
	

184
Evaluation Approaches

3.42 Studies of HCI Principles Applied in
	

186
Practice

3.4.3 Studies of UI Design Practice In General
	

188
3.4.4 Overview
	

193

3.5 Discrepancies Between Theoretical Design
	

195
Views and Design Views Based on
Studies of Practice

3.6 Summary
	

197

3.6.1 Questions Raised by Varied Design Views
	

198

-5-

Chapter 4
	

201
A Features Analysis of Design Projects:
Designing Systems for Users

4.1 Introduction and Rationale
	

201

4.2 Questionnaire Structure and Methodology
	

202

4.2.1 Structure of the Questionnaire
	

203
4.22 Distribution of the Questionnaire

	
204

4.2.3 Analysis
	

206

4.3 Basic Findings from Descriptive Responses
	

207
to Part I

4.3.1 Grouping Projects According to Host
	

207
Organisarion

4.3.2 Project Size
	

208
4.33 Familiarity with HCI

	
211

4.3.4 Product Functions and the Type of UI
	

213
Involved

4.3.5 The Prospective Users
	

214
4.3.6 Organisations involved

	
216

4.3.7 Information from Requirements, and
	

217
Design Speczfications,Task
Descriptions and Users

4.3.8 Structured Specification Techniques and
	

222
Descriptive Methodologies Used for
Requirements, Design and Evaluation

4.3.9 Generation and Evaluation
	

223
4.3.10 Problems and Modifications

	
225

4.3.11 Finalisation of the Project
	

230
4.3.12 Lessons Learned
	

232
4.3.13 Constraints on Design Activity

	
233

4.3.14 Information Sources
	

240
4.3.15 Subjective Evaluations of Good and Bad

	
250

Design Features

4.4 Discussion of Results	 251

-6-

4.4.1 Grouping Projects According to Host
	

251
Organisation

4.42 Project Size
	

253
4.4.3 Familiarity with HCI

	
253

4.4.4 Product Functions and the Type of UI
	

254
Involved

4.4.5 The Prospective Users
	

254
4.4.6 Organisations Involved

	
255

4.4.7 Information from Specifications, Task
	

256
Descriptions and Users
	

257
4.4.8 Specifications and Methodologies Used

	
257

4.4.9 Generation and Evaluation
	

258
4.4.10 Problems and ModUications

	
258

4.4.11 Finalisation of the Project
	

259
4.4.12 Lessons Learned
	

260
4.4.13 Constraints on Design Activity

	
260

4.4.14 Information Sources
	

261
4.4.15 Subjective Evaluations of Good and Bad

	
263

Design Features

4.5 General Discussion
	

264

4.6 Conclusions
	

269

Chapter 5
	

270
An Interview-Based Investigation of Applied
and Commercial Design Practice Activities
and Problems

5.1 Introduction and Rationale
	

270

5.2 Interview Structure and Methodology
	

275

5.3 Findings
	

276

5.3.1 Eight Design Scenarios
	

277
5.32 Projects Summary
	

286
5.33 Categories of Design and Development

	
289

Activity
5.3.4 Commercial Design Problems

	
295

-7-

5.4 Discussion of Interview Findings With
	

301
Respect to Questionnaire Findings

5.4.1 Characterising Design Cycle Activities
	

301
and Organisation

5.42 Problems as Manifestations of, or Results
	

301
of Design Constraints

5.43 Exploitation of User-Oriented Information
	

311
Sources

5.4.4 Characteristics of Commercial Interface
	

316
Design Practice and the Non-Use of
HCI DETs

5.5 Conclusions
	

318

Chapter 6	 322
An Investigation of HCI Specialists' Roles
and Techniques in Design Practice: How They
Tackle UI Design Activities and Problems

6.1 Introduction and Rationale
	

322

6.2 Interview Structure and Methodology
	

325

6.3 Findings
	

327

6.3.1 Background and Experience of
	

327
Interviewees

6.32 Current Host Organisations
	

328
6.33 Team Structures
	

329
6.3.4 HCI Specialists in Commercial Working

	
331

Environments
6.35 General Summary of Working Regimes, 	 349

Activities and Roles

6.5 HCI Techniques Applied by Specialists
	

352

in Commercial Environments

6.4.1 Experimental User Evaluation of
	

354

-8-

Prototypes and or Products
6.42 Technology Transfer

	
362

6.43 Reactive System State and Dynamic
	

366

Behaviour Modelling
6.4.4 Task A nalysis for Knowledge Based

	
374

Descriptions
6.45 Command Language Grammar

	
382

6.4.6 Summary
	

388

6.5 General Discussion
	

389

6.5.1 Working Regimes, Activities and Roles
	

389
6.52 Important Features of Applied HC! and

	
392

User-Oriented Design and Evaluation

Techniques

6.6 Conclusions
	

404

Chapter 7	 409
Systems UI Design and HCI Techniques:
Presenting a View of Current Design Practice
as it Relates to IICI

7.1 Overview and Introduction
	

409

7.2 Resume and Application Requirements
	

410

of HCI DETs from Chapters 2 and 3

7.2.1 Block Interaction Models
	

410

7.2.2 Reisner's Formal Interactive Grammar (FG)
	

411
7.23 Task Action Grammar (TAG)

	
413

7.2.4 ACT
	

414

7.25 Goals Operators Methods and
	

415

Selection-Rules (GOMS)
7.2.6 Cognitive Complexity Theory

	
417

7.2.7 Interacting Cognitive Subsystems
	

418
72.8 Command Language Grammar

	
420

7.2.9 Common Attributes of HC! DETs
	

421

7.2.10 General Application Requirements
	

424

of BC! DETs

-9-

7.3 Review of Main Findings from the	 429
Design Studies in Chapters 4 and 5

and their Implications for HCI DETs

7.3.1 The Features Analysis of Design
	

429
Practice

7.3.2 The Supplementary Qualitative
	

438
Study of Design Practice

7.33 Contrasting Design Evidence with
	

441
Application Requirements

7.3.4 Summary of Implications of Design
	

451
Practice for HCI Techniques

7.4 Conclusions	 455

7.4.1 Problems of Inapplicability
	

455
7.42 Problems with Confidence	 456
7.4.3 Assessing Applicability	 456

Chapter 8
	

458
Discussion of the Use of HCI Approaches
in Design Practice and a Framework for
Assessment of HCI DETs for Application
to Design Practice

8.1 Overview and Introduction
	

458

8.1.1 Design Practice With or Without HG!
	

459
8.12 Acting upon the Failure of HCIDETs

	
460

to Penetrate Commercial Design

8.2 Implications of the Study of Commercial
	

461
HCI Practice for Current HCI DETs

8.2.1 Overview of Findings: General
	

46
Observations of HG! Practice

822 Overview of Findings: Reasons for Use
	

464
and Non-Use of HC! DETs

-10-

8.3 Ideal Properties Required of Applicable
	

469
HCI Techniques.

8.3.1 Limited Investment or Major Pay-Offs
	

470
8.32 Accuracy
	

471

8.3.3 Expressiveness, Clarity and
	

472

Communicability
8.3.4 High Generality and Broad Scope

	 474
8.3.5 Successful Exploitation of Information

	
475

8.3.6 Integratability
	

476
8.3.7 Support for Analyst

	
477

8.3.8 Some General Points
	

478

8.4 A Classification of Specific Desirable
	

479
Features of HCI DETs

8.5 AF: An "Application Framework" for
	

490
Assessment of the Applicability
of HCI DETs

8.5.1 The AF Empirically Based Commercial
	

491

Design Schema
8.52 The AF Usability Scoping Matrix

	 495
8.53 The AF HCI Roles and Activities Matrix

	
499

8.5.4 The AF Desirable Features List
	

502
8.55 Possible Roles of the Application

	
502

Framework

8.6 Illustration of Application Framework's
	

506
Descriptive Power

8.6.1 An Example of Application Framework:
	

506
CCT and the Workstation Window
Manager

8.62 Summary of the Application Framework
	

518
for Assessing HCJ DETs

8.7 Summary
	

523

Chapter 9	 526

- 11 -

General Summary and Conclusions

9.1 Overview
	

526

9.1.1 Sum,naiy of Chapters 1 to 8	 526
9.1.2 Summarj of Contributions of the Research	 529

to HG!
9.13 Shortcomings of the Research	 531

9.1.4 Related Work on Scoping of HC!DETs	 531a

9.2 Summary of Implications for HCI DETs 	 532

9.3 Recommended Further Research	 537

References
	

539

Appendix 1
	

554

Appendix 2
	

568

Appendix 3
	

578

Appendix 4
	

585

Appendix 5
	

589

-12-

Applicability of HCI Techniques to Systems Interface Design

List of Tables and Figures

Table or Figure and Heading

Table 2.1: Scoping Matrix of Classes of Usability

Principle Over Evaluation factors

Figure 2.1: A Generic Block Interaction Model

Table 2.2: Usability Scoping Matrix for BIM

Table 2.3: Usability Scoping Matrix for Reisner's

Action Language

Table 2.4: Usability Scoping Matrix for Task Action

Grammar

Figure 2.2: A General Framework for the ACT Production

System, Identifying the Major

Structural Components and their

Interlinking Processes

Table 2.5: Usability Scoping Matrix for Anderson's ACT*

Figure 2.3: The Basic Architecture for the MIHP from

Card, Moran and Newell (1983)

Table 2.6: Usability Scoping Matrix for GOMS

Figure 2.4: Example of Selection Rules in a Job

Representation for Editing a Manuscript

Figure 2.5: Goal Structure for a Secretary Slecting

Device for Editing a Manuscript

Figure 2.6: Goal Structure for Deleting a String of Text

Figure 2.7: State Transition Network for a Delete String

Function

Figure 2.8: Example of a Task-io-Device Mapping between

the Device Hierarchy and the User's

Goal Hierarchy for Delete String

Table 2.7: Usability Scoping Matrix for CCT

Figure 2.9: An Architecture for Perception, Cognition and

Action (from Barnard 1985)

Page No.

56

70

71

77

85

91

94

97

103

107

108

109

113

114

117

122

- 13 -

Figure 2.10: A Structure for cognitive Subsystems
	

124

Table 2.8: Usability Scoping Matrix for ICS
	

128

Figure 2.11: Components of CLG Description and Levels
	

131

Within Each Component

Figure 2.12: Levels of Description of CLG with Elements at
	

134

Each Level

Table 2.9: Usability Scoping Matrix for CLG
	

142

Figure 3.1: Waterfall Model of Software Life-Cycle:
	

149

a Minimal Outline

Figure 3.2: Design Activities Undertaken using the
	

156

GOMS Approach

Figure 3.3: Simplified Framework for Sequence of Design
	

189

Steps From Hammond et al (1983)

Table 4.1: Classification of Design Teams' Organisations
	

208

Table 4.2: The Sample of Twenty-Four Design Team Sizes
	

209

Table 4.3: Twenty-Four Project Lengths in Person Months
	

210

Table 4.4: Application Types for Twenty-Five Projects
	

212

Table 4.5: Potential Users Described by Respondents
	

216

Table 4.6: Structured Specification Techniques and
	

220

Descriptive Methodologies Used for

Requirements, Design and Evaluation

Table 4.7: Keywords used to describe Generation and
	

224

Testing Methods

Table 4.8: Varied Methods of Evaluation in Projects
	

225

Studied

Table 4.9: Notable Problems and Modifications
	

226

Experienced by Respondents

Table 4.10: Classification of 25 Design Teams
	

231

According to Host Organisation and

Incidence of Types of Design Problem

Table 4.11: Finalisation of Project
	

232

Table 4.12: Projects Where Different Approaches
	

233

Were Indicated With the Benefit

of Hindsight

-14-

Table 4.13: Incidence of Constraints Experienced
	

237

by Respondents

Table 4.14: Ranked Importance of Constraints
	

238

Experienced by Respondents

Table 4.15: Incidence of Information Sources
	

242

Exploited by Respondents

Table 4.16: Ranked Importance of Information
	

244

Sources Exploited by Respondents

Table 4.17: Good and Bad Features of UI Designs
	

252

Described by Respondents

Table 5.1: Problems Experienced in Interface Design
	

298

and Projects Where They Were More

Apparent

Figure 5.1: Framework for Common User-Oriented
	

303

Design-Cycle Activities Based Upon

Interviews with Designers

Table 5.2: The Ten Most Important Design Constraints
	

306

Identified in the Features Analysis

of Design Practice

Table 5.3: Design Constraints and Problems Combined
	

310

from the Features Analysis and the

Designer Interviews

Table 5.4: The Ten Most Important Information Sources
	

313

Identified in the Features Analysis

of Design Practice

Figure 5.2: Schema for User-Oriented Design Practice:
	

319

Organisation, Constraints and

Information Sources Based Upon Findings

of Two Empirical Studies

Table : 6.1 HCI Relevant Higher Educational
	

328

Qualifications of HCI Specialists

Figure 6.1: HCI Skills Within a Group Structure
	

330

Table 6.2: Characterisation of Variation in Working
	

339

Regimes of Organisations in the Study

- 15-

Table 6.3: Summary of Activities and Roles
	

340

Table 6.4: Qualities of Activities Involved in the
	

344

Various Roles of HCI Specialists

in the Study

Table 6.5: Roles of HCI Specialists in the Four
	

350

Organisations in the Study

Table 6.6: Usability Scoping Matrix for Experimental
	

357

User Evaluation

Table 6.7: Usability Scoping Matrix for the
	

362

Technology Transfer Technique

Figure 6.2: A Very Simple Statechart
	

367

Table 6.8: Usability Scoping Matrix for Statecharts 	 369

Table 6.9: Usability Scoping Matrix for TAKD
	

377

Table 6.10: Usability Scoping Matrix for CLG
	

384

Table 6.11: Support of Scientific Techniques Identified
	

400

for Various Activities of HCI

Specialists in the Study

Table 7.1: The Eight Projects Included in the
	

440

Qualitative Design Practice Study

Table 7.2: Scoping Matrix of CCT Contrasted with
	

444

Analytical requirements of Project 5

from the Designer Interview Study

Table 8.1: Overview of the Application Framework for
	

490

Assessment of Practical HCI DETs (AF)

Figure 8.1: Schema for User-Oriented Design Practice
	

492

Organisation, Constraints and

Information Sources Based Upon the

Findings of Two Empirical Studies

Table 8.2: Expanded Scoping Matrix of Classes of
	

496

Usability Principle Over Evaluation

Table 8.3: Matrix of Support Requirements for
	

500

Activities Involved in the Various

Roles of HCI Specialists

in the Study

- 16 -

Table 8.4: Desirable Features of Applicable HCI DETs 	 503

Figure 8.2: EX Schema for Design Practice Organisation, 	 507

Constraints and Information Sources

Based Upon Project 5 from the

Designer Interview Study

Table 8.5: Expanded Scoping Matrix of Classes of 	 512

Usability Principle Over

Evaluation Factors

Table 8.6: List of HCI-Oriented Applied and	 514

Commercial Design Practice

Activities from Chapter 6

Table 8.7: Matrix of Support Requirements for 	 515

Activities Involved in the Various

Roles of the Designers in EX

Including Assessment of CCT Support

-17-

Acknowledgements

The author wishes to thank the following people whose contributions have been

welcomed:

Dr Peter Johnson, her supervisor for his time and for the guidance he has given in

the conduction of the research reported in this thesis, and for his further efforts dur-

ing its preparation.

Dr Allan Maclean for his generosity during the period of writing-up the thesis, and

for his useful advice in its final stages.

Dr Steve Sommerville for his assistance and support throughout and also for clarify-

ing a number of problematic issues.

Dr Paul Walsh for his inspirational encouragement.

Eliot Miranda for support, advice and tolerance.

-18-

Executive Summary

This thesis seeks to address the utility of some influential HCI design and evaluative

techniques for design practice in applied and commercial environments. It outlines

the nature and scope of eight techniques and their relationship with other views of

UI or user-oriented design practice. It should be noted that Chapter 2 which

reviews these techniques need not be read in detail by those familiar with them.

Three studies, one based on questionnaires, and two based on interviews with

designers and HCI practitioners, are reported which provide evidence which sug-

gests that there are many problems with existing HCI techniques which make them

difficult or impossible to apply in practice. The findings from the studies suggest a

number of features which are required of ideal techniques. These features are

developed within a framework for assessing the applicability of HCI techniques

which may be used to support improvement in future techniques and to suggest

where such techniques might be applied by systems designers or HCI practitioners.

Chapter 1

This chapter introduces the basic themes of the thesis which are to consider what

the market for HCI is, and what perspectives (termed evaluation factors) need to be

born in mind when designing and evaluating for usability of computer systems. It

introduces a number of usability principles and describes types of HCI approaches

which attempt to ensure that they are present in UI designs. Finally the implications

of the various evaluation factors for systems designers are illustrated since they are

likely to dictate what considerations are important for the UI, and hence will tend to

suggest the types of issues which an HCI design or evaluation technique with

appropriate scope would have to address.

Chapter 2

This chapter reviews eight influential HCI design and evaluative techniques from a

largely theoretical point of view in order to give a clear general picture of their type,

the methods they employ and the scope of the issues they address. Their scope is

characterised using a "scoping matrix" which is based upon the discussions in the

preceding chapter, and which gives a useful summary of the principles of usability

-19-

which they address and the evaluation factors which they account for.

Chapter 3

This chapter considers and criticises design views presented by HCI design and

evaluative and how these compare with other user-oriented approaches to design.

Empirical evidence relating to the application of HCI in systems design practice is

also reviewed. The discrepancies between the various design views raise a number

of serious questions relating to the applicability of HCI techniques of the type

reviewed in Chapter 2. These questions are the main basis for the three studies

reported in the following chapters.

Chapter 4

A questionnaire based study of applied and commercial design practice is reported

in this chapter. Respondents were asked to describe design activities they carried

out and various impressions they had of the design process for a single project

which they had participated in, concentrating on the user-interface. They were also

asked to describe problems they had experienced. Lists of possible design con-

straints and design activities were presented, and respondents were asked to rank

those which they had experienced in approximate order of importance.

The study yielded a great deal of quantitative information which tended to suggest

that the design process is varied, typically problematic and subject to a number of

constraints. It also showed that informal approaches to UI design and evaluation are

preferred, and that HCI DETs of the type described in Chapter 2 do not seem to be

used in applied and commercial projects.

Chapter 5

This chapter describes a supplementary interview-based design study which was

carried out in the light of the questionnaire-based study in order to provide a

broader more contextualised view of user-oriented design practice in applied and

commercial projects. The interviews, each focusing upon a single design project

revealed some commonalities between design projects in the goals toward which

design activities appeared to be directed, and a number of problems experienced by

- 20 -

designers which obstructed attempts to ensure usability of interfaces.

The findings elaborate on and tend to agree with those of the features analysis of

design practice. The two studies together combine to provide a schematic view of

typical applied and commercial design practice which involves certain types of

activities, user-oriented information sources and design constraints.

Chapter 6

A third study is reported in this chapter which contrasts with the previous two stu-

dies in that it focuses upon the practices of, and techniques applied, by six HCI spe-

cialists from four commercial organisations. The data collection method was again

interviews, but this time each one focused upon techniques applied across any

number of projects rather than what happened during a single project.

The HCI practitioners provided a great deal of detailed information about the condi-

tions under which they worked, and about the techniques they used. They were also

able to describe the good and bad features of these techniques which suggest why

they were used by the specialists and what their problems and limitations are. Not-

able amongst the findings was the fact that two HQ techniques of the type reviewed

in Chapter 2 were being applied by the HCI specialists in one organisation.

Chapter 7

This chapter provides an overview of the HCI DETs reviewed in Chapter 2 in terms

of the application requirements which they have. These requirements have to be met

by design projects in order that the HCI DETs be applicable. The findings from the

questionnaire- and interview-based design studies reported in chapters 4 and 5 are

discussed in terms of the implications they have for the applicability of HCI DETs.

The questions raised in Chapter 3 regarding the applicability of HCI DETs are

answered on the basis of the empirical findings of these two studies.

Chapter 8

The findings of the HCI practitioners' interviews reported in Chapter 6 are over-

viewed here and, in the light of the findings from the two user-oriented systems

-21-

design practice studies, used as the basis for a set of features which seem to be

required of applicable HCI DETs. These features are included within an empiri-

cally based "Application Framework" for assessing the applicability of HU DETs.

The framework contains three other components; an empirically based applied and

commercial design schema (based upon the studies reported in chapters 4 and 5); a

usability scoping matrix which is an extension of the matrix introduced in Chapter

2; an HCI roles and activities matrix which is drawn from the HQ practitioners

study in Chapter 6.

The Application Framework is demonstrated on an example project from the

designers' interview study in Chapter 5 and a number of possible roles for the

framework are outlined.

Chapter 9

This chapter summarises the contents of the preceding chapters and their contribu-

tion to HCI. It also summarises some shortcomings of the research. Some general

implications of the research for HCI DETs are discussed and, finally, further

research in the area of applicability of HCI DETs is recommended.

- 22 -

Applicability of HCI Techniques to Systems Interface Design

Chapter 1

Evaluating Usability With Respect to HCI Principles:

In this chapter the problem of application of HCI to design practice is introduced.

Design practice represents a context within which HCI techniques must work,

which means that these techniques must be adapted to the demands of that context.

Furthermore the techniques themselves must also consider a number of different

factors which are introduced in this chapter, and which have important bearing on

the usability of a system. These factors, which are derived from considerations

which impact usability, define the context of interactions between users and systems

and any evaluation of usability which does not consider them risks being meaning-

less.

A number of usability principles are also introduced which can be viewed as ideal

properties of Uls which are desirable regardless of the context of interaction or the

nature of the particular system in question. A variety of types of HCI technique

have been developed to address these properties in design and evaluation. How-

ever, for the system designer the evaluation factors are likely to suggest that

analysis supported by some types of technique might be more crucial than that sup-

ported by others since issues which are related to these factors (such as training, and

the nature of tasks supported) vary widely between systems.

1.1 System Usability and Evaluation
Within Design and Not in a Vacuum.

Human-Computer Interaction (HCI) is a relatively applied science, devoted to

studying the communication between people and computers. It tackles both physi-

cal and behavioural properties of humans and computer systems, and is multi-

disciplinary, incorporating, amongst other things, ergonomics, psychology, and

psycholinguistics. It is assumed that study of the nature of interaction between

users and computers will lead to a better understanding of how to make computers

easy to use.

-23 -

Human interaction with computers is mediated by the user interface (UI) which can

be thought of as the software and hardware aspects of the system that govern its

observable behaviour and interpret inputs to the system. When we refer to system

usability, we are generally talking about the physical and behavioural properties of

the UI, such as the screen lay-out, the names of commands and the legal command

sequences. Usability is also strongly related to the functionality of the system; that

is the user's tasks which the application takes over (the term application is used to

refer to the underlying software of the system, as opposed to the UI software; for

example the application software would deal with creation, manipulation and dele-

tion of data whereas the UI software would deal with how to accept input or display

data). It is extremely difficult to provide a definition of the UI which specifies

where the UI ends and where the rest of the system begins. In some sense, all

aspects of the functionality of the system affect the UI. For the purpose of our dis-

cussion, it is assumed here that the necessary functionality of the system may be

predetermined and largely outside the influence of those wishing to improve its usa-

bility. The UI is assumed to be something which mediated between that functional-

ity and the user which can be improved with respect to usability, without affecting

the overall system functionality. However this is not to say that altering functional-

ity does not affect usability.

Maher & Bell (1977) speak of the UI as representing the virtual machine for the

system user. Pylyshyn, (1984) states that the description of the virtual behaviour of

a system can be thought of as distinct from descriptions of its underlying properties,

whether the machine is a brain or a computer. This implies that we need not con-

cern ourselves too heavily with the structure of the software when studying the UI,

just as a biologist need not understand much chemistry to describe the physiology of

animals. A further distinction can be made between necessary and interactive UI-

behaviour. Necessary UI behaviour may be strongly dictated by its system applica-

tion and hardware. It might manifest itself as delays in response times; the number

(dictated by the user) and the resolution (dictated by the pixels of the screen) of

characters used in text being edited in a word processing package. These aspects of

the UI are not essentially designed as part of the UI itself. Interactive UI-behaviour

is, hopefully, explicitly designed to mediate communication to and from the user,

given the constraints imposed by the necessary behaviour, for example; a graph

showing the levels of fluid in a tank over a period of time; highlighting of current

selections; icons representing files or functionality. In the following, the term

-24 -

usability is assumed to relate, on the whole, to the efficiency of interactive UI-

behaviour, as opposed to business effectiveness or enjoyability which are perhaps

outside the main focus of HCI at present.

Given, that much of HCI concentrates upon the UI and a single user's relationship

with a system, and that it is reasonable to do so, then work in the field can be

expected to yield focused and useful information about the properties of system Uls

which make them easier to use... or can it? There have been a number of recent

publications suggesting that the philosophy and techniques of HCI do not seem to

be having the impact which HCI's claimed benefits would suggest it should (e.g.

Hammond et al 1983, Gould & Lewis 1985, Grimes et a! 1986, Rosson et al 1987).

Although many techniques seem to have been developed, according to the claims of

their authors, explicitly for the purpose of evaluating Uls and even designing them

(e.g. Moran 1981, Card et al 1983, Kieras & Poison 1985, & Payne & Green 1986),

there are sparse, if any reports of their actual use in design practice (Bellotti 1988).

It is interesting to note that this problem of the penetration by theoretically based

approaches into actual practice, is not peculiar to HCI. For example, a very similar

attack has been made on Information Systems (IS) design approaches by Lyytinen

(1987):

"One reason for the abundance of IS design approaches is that it is quite easy

to develop a method, but dfficulr to get it accepted.

"We argue, however, that the claim of a fundamental deficiency of systems

development methodologies has not been taken sufficiently seriously to lead to

a thorough and critical investigation of the basis on which current develop-

ment methodologies build. There are few, if any convincing studies that verify

the efficacy of proposed approaches. In fact we shall argue that proposed

development approaches may even add to the crisis of IS failure. The reason

for this is that they focus on a limited spectrwn of development issues. Further

their assumptions about the nature of systems development conflict with

several empiricalfindings of its true nature."

Lyytinen goes on to argue that there are a number of specific weaknesses in IS

development approaches which make them unacceptable or inapplicable. This

-25-

thesis represents an attempt to do a similar job for HCI approaches, but given the

specialist nature of HCI as opposed to overall systems development, the demands

upon such approaches are rather different to the demands for IS design approaches.

For the latter, according to Lyytinen , the pressures are towards synergy with other

approaches, greater scope, a wider conceptual base, broader theoretical foundations,

and greater awareness of the philosophical underpinnings of systems development.

Perhaps such pressures have led to the development of IS techniques with a broader

set of perspectives, such as Multiview (\Vood-Harper et al 1985) and SSADM (e.g.

Downes et al 1988). However the generality of these approaches means that it is

difficult to cover each aspect of the design in as much detail as specialist approaches

recommend.

On the other hand, the scope of many HCI approaches is unlikely to extend beyond

the design of the virtual machine and how that is mediated to the user, so the pres-

sures on these approaches are different. Therefore such concerns as data abstraction,

data encapsulation, core process design, parameterisation, and many other software

issues are not considered here. However there are certainly some aspects of the

software which do impact upon users (i.e. necessary interactive behaviour) even if

they are not specifically designed to do so. It would seem unrealistic to suggest that

specialist HCI approaches to design do not have to address the type of problems

encountered by other systems design approaches, both specialist and general. Even

if their scope is limited, they must address the fact that they will have to work in

practice with approaches which deal with other areas of design.

A central theme in this thesis is therefore the need for HCI researchers to consider

the market for HQ and its potential users, as systems designers must for their sys-

tem. At present an inadequate view seems to be presented by HCI techniques of the

scope of important system properties and factors which temper their assessment, or

evaluation (e.g. Green et al 1987, Grudin 1989). An even less adequate view of the

design process within which these techniques might be applied is provided with

many techniques suggesting unusual and complicated activities be carried Out (e.g.

Kieras and Polson 1985) or providing no view of an appropriate design approach at

all (Payne and Green 1986).

In this chapter a set of perspectives on Uls which may be termed evaluation factors

and usability principles are presented. These are desirable properties which a system

- 26 -

design may possess, and factors which temper evaluation (and therefore must be

design considerations themselves). The description of these perspectives is neces-

sary since, in the following chapter, an attempt is made to outline the scope of a

number of influential HCI techniques which are reviewed.

1.2 Evaluation Factors and Principles of Usability

1.2.1 Evaluation Factors

The concept of usability cannot be captured by appealing to features of a (UI)

irrespective of the environment within which it exists (Cockton 1987a, Goransson et

al 1987). It is necessary to appeal to "features of the device, tasks, interaction

medium, and user knowledge that are important in determining the ease of use of a

support environment" (Green et al 1987). An interface to a system has to be sensi-

tive to the needs of its users who may be a special group with particular require-

ments. It must have appropriate behaviour in order to represent the information the

user requires about the behaviour of the application and must accept appropriate

input (such as mouse movements or menu selections) for the task in question. It

must also be within the price range of the purchaser and the limits of hardware and

software sophistication possible in the circumstances; in other words it is unlikely to

be the best UI available and compromises and optimisation will be necessary.

An ever widening variety of users (O.A.Ps to school children) interact with a

diverse range of computers (in the video recorder, and in the CAD workstation) via

an enormous range of Uls (from the automatic bank teller machine push-button UI,

via more stereotypical keypad-and-mouse-and screen through to the simulation of a

Boeing 757 cockpit).

The definition of system application(s) is made to provide a clear distinction

between the nature of the computer and the uses to which it is put which may or

may not be catered for by the applications. The system application or applications

may not be fully exploited by the users, and they may be abused by being used to

support tasks that they were not intended to originally. It is therefore important to

have a clear picture of both the application(s) and the intended uses required of a

design.

-27 -

In a meaningful evaluation of a UI design at least three initial factors (putting aside

cost for the time being) must be crucial in determining whether any given feature of

the interface is to be judged usable. Without considering each of these factors to

some extent, design could well turn Out to be misguided and an evaluation is likely

to be uninformative. The term evaluation factor which will be used from here on to

refer to these, is assumed to have equal import for perspectives on design and

evaluation. The three factors so far mentioned are:

(1) The system user(s) with their particular experience, or lack of it, and their

variability; an individual or a population = U(s)

(2) The nature and function of the system application(s); the virtual machine,

or the structures and behaviour which the system manifests, depending upon its

hardware and software. = SApp

(3) The system interface itself; which comprises the interaction medium = UI

From the above, usability may be said to be a system feature when:

U(s) x SApp x UI ---> Acc(1Ts)

Where two further evaluation factors have to be considered:

(4) 1'Ts = target task(s); the set of target tasks which the user has to carry out,

and which the system must support (a subset of the real world of possible

manipulations of objects).

(5) Acc = acceptable interactive performance (metrics may be time, errors,

learning, successfully accomplished tasks, etc); matching or exceeding

some performance criterion or criteria.

The above factors (1 to 5) may be considered as UI evaluation factors (EFs). Any

attempt at evaluating an interface without considering these will be at best inade-

quate and at worst meaningless. They are introduced here to highlight the context

within which interactions between users and systems take place. Even if only one

of these is ignored, such as the application, the results of design or evaluation may

be useless. For example the complaint that users would find a push-button UI to a

large computer system very constraining, ignores the fact that for bank service tills

such a UI has proved very successful. It must therefore be assumed that any realis-

tic evaluation technique which does not, at least implicitly, deal with these issues,

- 28 -

must rely on the application of another technique which does, in order to yield valid

results.

The natures of user, application and UI EPs can only be approximated to. Typically

models of users and of the UI perhaps with some application behaviour also are

built by HCI researchers, as these, for a number of reasons, are usually simpler and

easier to study or evaluate. For example, Anderson (1983) has produced a model of

the human information processing processes which has enabled him to simulate

language learning, but which has also been used to support CCT (Kieras and Poison

1885) which is a technique for assessing the complexity of a UI for its human users.

Similarly, RAPID-USE (Wasserman 1985) and Trillium (Henderson 1986) use

State Transition Diagram based systems for simulating UI interactive behaviour in

UI design approaches which facilitate early evaluations.

The target-tasks and acceptability of performance EFs are variables which can be

specified, with respect to users, applications, and Uls, by the person(s) making the

judgements as to whether the system is usable or not (for the sake of argument we

will call the judge the analyst). However the threshold of acceptability and the set

of target tasks may vary depending upon circumstances and the values of the

analyst.

The conundrum of usability is then that it is often difficult to quantify. It is depen-

dent on its context and the priorities of the analyst. In other words; whilst one

analyst may judge an interface to be usable, another may find it less so, and if any

factor(s) are manipulated, then both may change their mind. This makes the prac-

tice of improving this ill defined concept of usability extremely complicated in

some circumstances.

We must always bear in mind that, with respect to usability, there is more to con-

sider than simply the standard human cognitive architecture and the UI behaviour.

Users' experience and background may be important, and the nature of the applica-

tion and target tasks also have some bearing on evaluation, and therefore all of these

should be considered in design also. The evaluation factors referred to above are

intended to be used to preserve this breadth of scope of a viewpoint in any approach

to design, be it oriented towards design or evaluation. By doing so it may be easier

to avoid the type of narrow perspective which leads some researchers to focus upon

- 29 -

one aspect of the system to the extent that their methods fail to address obvious

problems with that aspect, for example consistency; a popular HU focus, has been

shown by Grudin (1989) to interfere with usability when it is pursued whilst the

users, their experience, their tasks, the nature of the UI and so on, have not been

given proper consideration.

We need some consistent ideas about what the attainment of usability involves. It is

attractive to go direct to representative potential users and carry out trials of the UI,

but this approach entails several setbacks. Firstly the UI has to be in a state where

users can actually get the look and feel of it, or at least see pictures of the proposed

screen sequences and layouts. By this time many of the important decisions about

the design probably will have been irreversibly finalised. Another problem is that

user trials are often expensive, and the results they produce tend to mean more

expense on making alterations. This is not to say that the expense is not worth it, in

fact many studies (e,g, Gould and Lewis 1983, Mantei and Teory 1988, Rosson et a!

1987) suggest that the cost of such trials is amply justified. However, most

manufacturers and software developers may not be convinced by the evidence that

the initial expense will be recouped later on.

Designers need to be guided in their designs by a reasonably precise set of ideas

about what features of Uls are desirable within given contexts. Given that almost

every design project involves new untested ideas and the problems arising are likely

to be different for each project, what appears to be required are some consistent

principles which can be successfully applied across user populations, applications

and UI types to improve the UI design.

Given that usability is neither a certain, nor an easily defined property of a system,

we shall assume that increased usability is a quantitative improvement in human

performance with the UI, in terms of approximation to AccçlTs), which can be

approached through the application of certain principles. These principles are

empirically supported, explicit hypotheses about what specific features characterise

a more usable system. The disciplines of Human Computer Interaction (HCI) and

Ergonomics both attempt to define such principles. These principles may be

derived from psychological theories relating to possible system characteristics or

properties, or descriptions of ideal design practice. They may be used as design

goals or as standards for evaluation.

- 30 -

Landauer (1987) reviews some of the empirical, psychological research which has

led to the generation of such principles. He discusses the difficulties of understand-

ing "what matters in realistic contexts" which is where most Uls tend to have to

prove themselves. Empirical psychological research yields only a fragmentory pic-

ture, in terms of the factors which underlie a user's ability to successfully interact

with a system. Many different theoretical principles may have to be brought to bear

upon any one aspect of performance in a given context. This means that the job of

evaluating a UI (i.e. predicting the performance of a user) requires the analyst to

successfully integrate a large number of principles. Such integration results in what

is typically referred to as a model of some aspect of the interactive behaviour or the

rules that govern it.

Thimbleby (1985) describes how principles should not be confused with slogans,

guidelines and prejudices:

* Guidelines are applied principles, that is, principles worked out for a particu-

lar context.

* Principles are highly specific in the sense that, for slightly different cir-

cumsrances, they may indicate slightly different approaches.

* Principles which are applied retrospectively (for kudos) are slogans.

* Prejudices (sometimes called "design features") are overgeneralised princi-

ples.

* Slogans are used for selling.

1.2.2 Incorporating Principles of Usability in HCI Approaches

Principles are constant, application and UI independent, and may be embodied in

design guidelines. On the other hand, they may also be implicitly or explicitly

embodied within models. A model may represent the system-user, the set of rules

the user builds in order to interact with the system, the set of rules the system

requires the user to learn for system interaction, and so on. HU and psychological

models are concerned, for the main part, with the behavioural properties of the sys-

tem and its user. This thesis concentrates on those principles which are embodied in

-31-

such HCI models as have been developed to date.

There are a great many design and evaluation principles advocated by researchers

and practitioners in HCI. These principles may be quite detailed but broadly speak-

ing they can be grouped under the following more general categories of principles

(The issue of modelling raised in the following section will be addressed further

on).

Simplicity Principles

Compatibility Principles

User Centred Task Dynamics (UCTDs) Principles

Consistency Principles

Observability Principles

Retrievability Principles

The principles of simplicity, consistency, observability and retrievability are

based upon extensive research by Dix and Harrison (1985), Monk and Dix (1987),

Thimbleby (1984), and others which examined aspects of UI design which could be

formally specified and which when embodied in a system yielded better usability.

These principles when embodied in a UI have been shown to improve user perfor-

mance by, amongst other things, reducing the amount of learning and remembering

a user has to do, and improving feedback and error retrieval. Since these desirable

properties could be formally defined they can, in theory, be embodied and evaluated

in early system specifications without having to resort to expensive user testing and

rewriting of software.

The principles of compatibility and user-centred task dynamics (UCTDs) are

based upon research carried out by Barnard (1987), Carroll & Mack (1985), Moran

(1981), Payne & Green (1986), Wilson et al (1988), Young (1983), and many others

which has shown that ease of use of a UI depends to a great extent on the degree to

which the concepts and rules required by users to operate it map onto their existing

knowledge. In other words, at a number of levels of analysis, it has been shown that

users' experience and expectations have an important role to play in determining

their success or difficulty in using or learning to use a system. Uls which embody

the principles of compatibility and UCTDs will be less likely to cause their users

difficulty because the symbols, concepts, and rules they embody will permit people

- 32 -

to transfer existing knowledge to the new system.

Woods and Roth (1988) state; cognitive engineering must address the contents or

semantics of a domain, since purely syntactic and exclusively tool-driven

approaches to develop support systems are vulnerable to attempting to solve the

wrong problem. Compatibility and UCTDs deal with semantics in that they address

the relationship between the concepts and behaviour of the system and the represen-

tations held by the user. If these principles are embodied in the design of a UI, the

user should find less difficulty with the terminology, concepts, and mental and phy-

sical operations required to complete tasks using the system.

In the following, a more detailed definition of each of these principles is given.

1. Simplicity

Simplicity is used here to refer to the number of operations, rules, (Anderson 1982b,

1983) and "families of rules" (Payne, 1984) that a user would have to represent in

order to interact successfully with a system. Systems which have apparently com-

plex behaviour and rules, but are easy to learn, may in fact be capitalising upon

users' existing knowledge. Specific principles which might be included within the

class of simplicity relate to such things such things as shortness of command-strings

and using as small a number of operations as is possible to interact with and control

the required functionality. UI simplicity might be improved, at the same time as

ensuring a more flexible, modifiable design, by following suggestions made by di

Sessa (1985). di Sessa speaks of "detuning of structures" which means reorganising

specific system structures into more general ones which are always available; and

"diffusion of functionality" which means breaking down constructs so that, instead

of having one complex construct to achieve a particular goal, several more basic

ones (which can be re-used more easily) should be used. Together these two heuris-

tics are aimed at improving the simplicity of a system by reducing the variety of

specialised (context dependent), compound commands.

Metrics which may prove successful in determining if simplicity has been improved

deal with such aspects as the number of legal commands, the length of command

strings, number of syntactic rules required by the user to issue the appropriate corn-

mands, and so on (Reisner 1981; Payne 1984). Assessing simplicity of a UI

- 33-

requires the analyst to build some model of the system which captures the amount

of knowledge required by the system user, in order to complete a given set of target

tasks.

Simplicity can be specified as both a formal property (when some syntactic

specification language can capture it) and a psychological property of a UI (when it

is clear that formal complexity is of the type which users have already represented

or can represent easily). However, formal and psychological simplicity are two dif-

ferent things and an HCI technique has to be explicit about whether it has a formal

or a psychological view of simplicity. Reisner's BNF Action Language (eisner

1981) is an HCI UI modelling technique which has a formal view and thus loses

out on some of the ways in which humans are able to economise on representation

of rules (largely in a heuristic fashion). On the other hand Task Action Grammar

(Payne & Green, 1986) uses devices to capture human knowledge representation

characteristics which compromise the formal power of the grammar whilst aug-

menting its predictive accuracy for human behaviour.

2. Compatibility

Compatibility means that the labels (terms or symbols), and the syntax of the

interaction grammar do not conflict with users' previous experience. Compatibility

and "external consistency" (i.e. consistency with the real world, or some other dev-

ice; Grudin 1989) are two terms used to mean the same thing; the term "compatibil-

ity" is used here as it is less confusing than having several different meanings for

consistency. That is to say that the names and grammatical rules that users have

already internalised do not interfere with the user's learning, and application, of the

rules required to interact with the system (Barnard 1985). The domain of possible

real world knowledge to which any principles in this class must appeal has proved

to be impossible to characterise in the formal sense. Representations built up by

users are difficult to interrogate and are bound to vary, based upon individual

experience. Such representations can only be approximated to on the basis of empir-

ical observation and analysis, they are not formally specifiable because they depend

upon what exists in the user's head.

Dealing with cémpatibility means that the systems analyst will have to carry out,

and/or refer to results from, research into the nature of the user population and its

- 34 -

background. A combination of human information-processing models and the

results of empirical psychological, linguistic and applied research, together with

analysis of system characteristics, are all required to come to some understanding of

what might be compatible for a particular group of users in any given situation.

3. User-centred task-dynamics (UCTDs)

UCTDs is a term used by Wilson et al (1988) to refer to the way in which UI

behaviour relates to the user's representation of task goals and sequences of sub-

tasks which the user will apply in attempting to achieve goals. This is another kind

of compatibility which operates at a more coarse or general grain of detail than the

syntactic/linguistic compatibility defined above. As such the existence of UCTDs

also cannot be formally proved because it depends upon what task representations

exist in the human head.

Principles in this category are any which refer to task structures represented by

users perhaps by appealing to use of analogy (Carroll & Mack 1985) or to psycho-

logical models of the representation of plans (Schank & Abelson, 1977; Rumelhart

& Norman, 1978) as a means of predicting usability. For the purposes of both

design and evaluation, the systems analyst will require information from task ana-

lyses (based upon system independent and system dependent task execution) to

model the characteristics of users' tasks, with respect to system interaction.

4. Observability

This term refers to the visibility of the virtual behaviour of the system with which

the user interacts. Observability, otherwise defined as predictability (Monk & Dix

1987), is formally characterisable, but its validity may be strongly contested if it is

not used in tandem with a good understanding of human perceptual and information

processing characteristics. It is used here to describe how reliably a system's states

and behaviour are represented to the user. If the system provides the user with the

necessary information to make decisions which depend upon certain conditions,

then the user is less likely to have misconceptions about both whether those condi-

tions are true and about what the consequences of an action will be.

Principles which deal with the issues of feedback, association in learning and so

-35-

forth are included in this class. In designing a UI which embodies principles of

observability, the analyst will have to adopt an approach which ensures that each

aspect of virtual machine behaviour has a UI counterpart which permits discrimina-

tion where necessary and which is appropriate to the underlying action. In evalua-

tion, the analyst must discern whether users will be able to build up an adequate

representation of system states in order to carry out their tasks. To ensure that this

principle is embodied in a system, the designer must evaluate an independent

behavioural model of the device, as opposed to a model of the user's device

representation.

5. Consistency

Consistency is a term which is frequently used to mean different things in HCI, such

as compatible with expectations, or the use of similar structures for similar com-

mand expressions, whereas its meaning in Systems Engineering (SE) approaches is

more constant and precise. In SE consistency refers to the degree to which opera-

tions always have the same effect, regardless of what state the system happens to be

in when they are executed (Monk & Dix 1987). In this thesis the SE definition will

be used, since the various concepts embodied in the HCI definitions (e.g. Payne &

Green 1986, Grudin 1989) are captured by the other types of principle described

here.

The class of principles included under consistency covers the avoidance of modality

and redundancy in systems design, and the analysis of the degree of existing

(psychological) complexity in evaluation. It is difficult to capture consistency

without delving into the formal aspects of system specification which can be

extremely time consuming and difficult to demonstrate. As with observability, an

independent device model (preferably of a mathematically formal nature) is

required to capture this property of the UI.

6. Retrievability

Retrievability is used here to mean the ability of the system to permit the user to

undo any previous action and to get from any state of the system to any other,

without incurring penalties (i.e. unwanted side effects) on the way. This concept

includes the functions of "undoing" and "aborting". These functions are essential

- 36 -

because users should not be forced into troublesome or "fatal" situations simply

because they accidentally typed in an inappropriate command at the wrong moment.

Structured design and programming and formal (in the mathematical sense) analysis

of system states and behaviour are the most reliable ways of ensuring that this kind

of principle is adhered to, although they are not easy approaches to take. Yet again,

the only way to be sure that this principle is embodied in a system, is to build an

independent formal device model for the purposes of evaluation.

The above are considered to be classes of principle because they are not dependent

on specific circumstances for their validity. However it is fair to say that as, princi-

ples with their various implications, they will interact in particular circumstances,

and some may have to be traded off against others (Maclean et al 1985, Gould et a!

1987). Even in a satisfactory UI it may appear in some circumstances that a given

principle has been ignored. It may have been expedient to sacrifice it in favour of

other principles, in other words principles may conflict, or become less important in

certain cases.

1.2.3 Compromising Principles

In this thesis it is assumed that principles of usability will hold true regardless of

EFs. As Thimbleby (1985) states, principles which cannot be generalised are

unlikely to be valid or useful. This is not to say that, in UI design, the pursuit of

them all simultaneously is possible and will always yield a better interface. In fact,

as we shall see, these principles may make what turn out to be conflicting demands

on the character of the interface being developed. For example the principle of sim-

plicity, if pursued to its extreme, would render an interface capable of only one

state and one action. Such a system would, in fact, not be usable because other

principles such as user-centred task dynamics (the system would not support any

feasible task a user might wish to undertake, since the one action would have no

effect) would be compromised to the extreme. Therefore, these principles can only

be applied within the bounds of practicality, according to the "law" of diminishing

returns. When the benefits accrued from the application of one principle are found

to be outweighed by the losses in terms of others, then it may be foolish to attempt

to continue with it.

A requirement for simplicity (say, for example, when errors are to be avoided at all

-37-

costs), compromises UCTDs. Put another way, simpler Uls will permit less flexibil-

ity and less functionality to support interaction. An example of such a compromise

is described by Gould et al (1987) in a design case history where it was impossible

to provide adequate and reliable help for system users, so errors had to be avoided

by simplifying the UI at the cost of functionality, (although the system itself would

have been perfectly capable of supplying extra functionality).

Consistency and compatibility are also often hard to reconcile. Human information

processing and behaviour is heavily context dependent, and this fact is compounded

by the fact that skilled, contextually influenced behaviour is automatic (Anderson,

1983; Fodor, 1983). This means that, for the system user, a name, or a sequence of

behaviour, may have one or more different representations depending upon the con-

text within which the user encounters or elicits it. If the user is behaving in a skilled

(automatic) way, he or she may not always behave appropriately within a particular

context. Skilled behaviour can be triggered by contextual cues as a result of nega-

tive transfer, a concept which refers to the undesirable generalisation of learning.

This is particularly likely if that context requires a new representation, or if it

closely resembles the context that relates to the inappropriate one (Anderson 1983).

If the system is to be compatible with a user's representations, then it, like the user,

must have multiple, context-dependent representations; it may, as a result, become

inconsistent in the Software Engineering sense. For example, the command "move"

might be used in a text editor to move text to another part of the screen, but the

same command in the "shell" might be used to change the name of a file. The user

might see these two as similar operations, although to the system they are very dif-

ferent. This problem would be less troublesome were it not for the fact that users

vary tremendously in the way they represent things. It is often extremely difficult to

decide whether to sacrifice consistency or compatibility in the design of the UI.

Whatever the decision is, there will always be some users who confuse the meaning

of names or sequences of actions. The designer has to weigh up the consequences

of his or her decisions in the light of such factors as the cost of errors and the likeli-

hood of users being able to learn the correct meanings of things.

Often principles interact in a positive way, for example; achieving consistency

makes a user interface more simple (there are less rules for the user to learn when a

system is consistent), and observability enhances compatibility and UCTDs

- 38 -

because it increases the available contextual information upon which users can base

their representations and plans (Hammond et a!, 1983).

1.3 HCI Models

There are many different approaches to achieving usability including application of

relevant empirical findings (relating to such things as character size, colour contrast,

selection speeds etc) which can provide fragmentory input to design, also use of the

specialist's personal experience (not easily communicated, and therefore not likely

to advance the discipline of HCI). These approaches may prove useful in applied

practice for familiar situations where the physical properties of the interface are

focused upon, and where concrete experience has shown which solutions work.

However such approaches leave a great deal to be explained in terms of what makes

a system usable, beyond physical properties such as character size.

Over the past ten years or so the discipline of HCI has seen the development of a

number of task analysis notations, descriptive interaction grammars, and models of

the human information processor as tools to improve the design and evaluation of

system interfaces. These techniques are all models of the behaviour of the UT

and/or the user, which enable us to study interaction without having to contend with

all of the problems of variability of the real behaviour itself. Payne and Green

(1986), for example use a simple, generative competence grammar to represent the

system rules which reduces the problems of analysing real users' representational

complexity considerably.

As simplifications of the properties of user- and system-behaviour, HCI and related

models are all incomplete, in that they only attempt to capture a small sub-set of the

EFs and the usability principles which may determine the character of the interac-

tion between user and system.

In the following, some distinctions are made between types of model on the basis of

what approach they take and what aspects of the user or system they focus on.

- 39 -

1.3.1 HCI Design and Evaluative Techniques

The improvement of usability has been approached by the development of two

types of UI description. The first, and far less common, type of description involves

the generation of an abstract spec jfi cation, of the UI during design. The second is

applied to the evaluation of an existing UI specification with respect to the extent to

which it embodies certain usability principles.

The arguments relating to the relative values of altering or improving system design

practice versus applying usability evaluation methods as means of improving usa-

bility have been fuelled by the fact that each approach has its inherent weaknesses

as well as strengths. Design approaches are by nature prescriptive and may conflict

with the individual needs of a particular designer on a particular project. CLG

(Moran, 1981), which is the most influential, complete HCI dialogue design

specification method, recommends a top-down specification of the complete dialo-

gue. The levels of specification map onto successive stages in the design process

and each level is a description of the whole system, each being more detailed and

less abstract than the preceding one. Unfortunately, it is never possible to be sure

that early decisions are correct, and the greatest care has to be taken to ensure that

invalid assumptions are not made. So early assumptions driving top-down complete

system specifications may be misplaced and, because earlier decisions have more

profound impact, they can lead to a later requirement for complete re-design which

is extremely expensive (Gould & Lewis 1985; Gould et al, 1987; Mantei & Teory

1988).

The HCI alternative is to evaluate specifications or running software of an early pro-

totype, if possible. Descriptions of specified or existing UI software are analysed for

their embodiment of usability principles, and qualitative (e.g. Payne 1984, Payne &

Green 1986) or quantitative (e.g. Kieras & Poison 1985) predictions about iearnabil-

ity, errors, and other aspects of user performance can be made. The inherent weak-

ness of this type of approach is that by the time specifications of the dialogue struc-

ture have been made, or UI software has been written, the design of the system has

already become fixed, to a certain extent. The more clearly it has been specified,

the less likely it is that the system can be radically changed, since the time and

effort needed to make changes are expensive. Furthermore, the earlier an evalua-

tion is made, the less reliable its predictions may be, so an irreconcilable difficulty

-40 -

could exist.

In the following discussion some distinctions are made between the different

focuses of the various models employed by HCI approaches. In Chapter 2 the

approaches and their models will be classified according to what they aim to address

and the theoretical issues associated with them. In Chapter 3 further issues will be

raised relating to their applicability in real (non-research situations) design practice.

1.3.2 Psychological and Interaction models

There are a number of psychological models of human information processing

which are not strictly related to HCI, but which are very relevant to the study of usa-

bility (e.g. Anderson, 1982, 1983; Barnard 1985; Holland, 1986, and others). These

models attempt to capture human knowledge representation and/or processing,

learning and association and enable predictions to made about the ways in which

processing will affect observable behaviour.

Interaction models are directly concerned with the ways in which humans behave

when engaged in interaction with computers. HCI approaches employing such

models may only appeal to psychological properties of users in an implicit manner

(e.g. Reisner, 1981; Payne & Green 1986).

Other HQ approaches employ models of both cognition and interactive behaviour

(e.g. Card et al 1983, Kieras & Poison 1985) with which they can predict perfor-

mance of users engaged in such behaviour. The CCT approach of Kieras & Poison

(1985), for example, qualifies as both a psychological and an interaction modelling

technique because it applies cognitive mechanisms to simulate the control of the

user representations of the device. These representations are based upon observed

interactions with a UI which are then mapped onto a model of the device in a simu-

lation of interaction. There is really no clear cut distinction between a psychologi-

cal and an interaction model. The degree to which a model can be said to belong to

either category depends upon its purpose or scope, and the strength of its theoretical

and empirical bases.

Psychological models can exist at a number of levels of detail. They may deal with
high levels of representation such as natural categories (Rosch 1973), the use of

-41 -

metaphor (e.g. Holyoak, 1984) and so on, or they may deal with low level, neuro-

logically plausible processing behaviour (which has the emergent properties of

recognition, recall, association and so on (Anderson, 1982, 1983; Pylyshyn, 1980,

1985; Kosslyn, 1977, 1985), and they may be more multi-level in character (Bar-

nard 1985).

In the same way, models of interaction deal with different grains of detail or levels

of analysis (Moran, 1978). The need for different levels of description arises

because low level models become too complicated when attempting to demonstrate

emergent, or high level properties of behaviour, in much the same way that a quan-

tum mechanics model of the beating of a heart would be.

Psychological and interaction models tend to vary in both scope and grain of

analysis. There is no single model that has been successfully applied to explain all

of the aspects of HCI (Barnard 1986), even dealing strictly in terms of human infor-

mation processing, let alone considering social, emotional and motivational factors

influencing cognition. This problem is identical to that observed in Information

Systems development methodologies where "no one methodology is likely to fit all

their [organisations requiring new computer systems] current needs or always be the

preferred approach." (Earl 1987).

1.33 Competence and Performance Models

We can call the rules that users need to represent, in order to construct legal com-

mand sentences for a computer system, the grammar of the language of interaction

between the user and computer. These rules may be more or less complex and can

be analysed with respect to usability principles.

Similar analysis of structure has long been carried out in the field of linguistics;

Lees (1957) defined a grammar as being "a maximally general set of statements

which accounts for not only utterances in the corpus [of speech examined by the

linguist], but all possible utterances ... Grammar must generate all and only the

grammatical sentences of the language".

The rules which a user represents regarding the grammar of the interaction language

may be incomplete due to inexperience (Hammond et a!, 1982), or incorrect due to

-42 -

inappropriate generalisation (Moran, 1983, Carroll & Mack, 1985). So studying

communication between humans and computers requires that we understand not

only the words and what they denote for the user, but also how the user represents

the grammar of the communication language.

Both competence and performance models actually describe the structure of com-

munication between the user and system, but competence models aim only to cap-

ture a (parsimonious) set of rules that are sufficient to describe the communication.

Performance models may apply such rules to represent legal interaction sequences

between a user and a UI (usually directed at achieving representative target task

goals) using empirically based predictions of unit-action times or error rates as a

gross estimate, and possibly applying cognitive processing constraints.

Chomsky (1957, 1965) provides a clear definition of performance models stating

that generative (competence) grammars are atemporal, adynamic characterisations

of the ideal speaker's knowledge which cannot be evaluated against performance

data. Ideal speakers and hearers are defined in such a way that their performance is

ignored. On the other hand performance models treat the communicator as a pro-

cessor, with dynamic properties and constraints, which actively applies the gram-

matical rules in behaviour.

A competence model of a grammar is only one idealised set of many possible rules

which might adequately generate the correct sentences in a language. Acceptance

Grammars may be generated by adding alternative rules to a competence model

(Payne & Green 1986). A full acceptance grammar would contain all the permissi-

ble rules which might be applied successfully to accomplish target tasks. In doing

so, such a grammar would be able to capture possible variations between different

users.

Competence and Performance models for different systems can be compared with

respect to complexity in evaluation. Greater numbers of rules and longer command

sentences indicate greater complexity for the human learning the language. On this

basis it is safe to assume that with increases in complexity there will be concomitant

increases in learning times and error rates.

Also with an explicit specification of the rules required to interact with each system

-43 -

it will be possible to predict problems for users of one system moving onto another.

Use of grammatical models of the respective interaction languages can enable the

analyst to identify mismatches between the sets of rules which would indicate

sources of difficulty and confusion for users due to negative transfer of knowledge

from one system to another.

It should be noted that the kinds of grammars used in HCI competence and perfor-

mance models are largely context free (Fountain & Norman, 1985). This means that

they do not easily (if at all) capture the influence that context has upon the represen-

tation of rules. Furthermore they lack scope in terms of the human behaviour which

they are able to address; for example perceptual processing and semantics are given

little attention by Card et a! (1983) and Kieras & Poison (1985). For this reason,

usability principles such as compatibility and observability are difficult to address

using these techniques.

1.4 Questions of Appropriateness and Applicability
for HCI Approaches

In the following sections, considerations which may have to be born in mind by an

HCI analytic approach are illustrated. Regardless of its nature, be it a design or an

evaluative approach, incorporating a psychological or an interaction model address-

ing competence or performance issues, a global view of the context of the design or

evaluation must be maintained.

The above discussions serve to illustrate that there are many different perspectives

on and approaches to the design and evaluation of usable Uls to choose from.

These include the EFs which are taken into account for the purposes of judging usa-

bility, the suitability of improved design techniques versus rigorous evaluation tech-

niques, application of more complete, psychologically valid human information pro-

cessing models versus simpler, pragmatic models of processing and representation,

and competence versus performance models which differ in many ways such as the

nature and value of predictions yielded, and prediction of user's learning difficulty

and errors. There are so many factors and approaches, which could influence ease

of use, that the task of choosing and applying an appropriate approach to design and

evaluation, which will highlight the important properties of a UI, is daunting to say

the least. The designer may believe that any particular approach will take time to

-44-

apply properly and that there is only enough time for one. How might a designer

choose one of the approaches?

No single approach yields all the answers, but applying even one of the above types

of methodology will very probably require a considerable amount of time and care

as will be demonstrated by the approaches discussed in the following chapter.

These approaches require the analyst to devote a great deal of effort to analysing

tasks, specifying task structures, or system and UI behaviour and possibly modelling

the user's representations of any of these things. All of these activities will natur-

ally take up valuable time, so it is unlikely that systems designers will have enough

time and resources to ensure that every aspect of usability is adequately dealt with.

In other words it would seem that a question of compromise is at stake whereby it is

necessary to detennine what aspects of a UI deserve the most attention in a given UI

design.

In order to assess what aspects of a UI might be most important for the design in

hand, the designer will need to determine what features of the system and its users

might play a major role in constraining the options available. A prioritisation exer-

cise may well be necessary. It is true to say that different computer systems have

different demands placed upon them, and require different types of UI. What prin-

ciples of usability turn out to be most important for a given interface may vary

depending upon the nature of the EFs defined earlier, for example if users are highly

trained, then compatibility of command names may not be as important as UCTDs

which ensure maximum efficiency in task execution. These EFs will be crucial in

determining the parsimony of adopting any particular design or evaluation

approach as opposed to others which might be available (for example, an

approach which does not account for the behaviour of the application, may not be

capable of showing whether the user's representation of tasks is well supported;

Kieras and Poison (1985) have shown that representation of device behaviour, as

well as user task representations, can enable a simulation to predict areas of task

difficulty).

The EFs introduced towards the beginning of this chapter are elaborated here, rather

than earlier because they impact upon the interpretation of the importance of usabil-

ity principles described later on. Having considered both usability principles and

different types of HCI approach which attempt to embody them it is useful to

-45 -

reconsider the meaning of the different factors with respect to possible design

issues. These factors have to be considered by systems designers, and any HCI

approach which they might use should attempt to support them in their efforts to do

so. A number of influential approaches which might be candidates for such pur-

poses are described in the following chapter.

Recalling the earlier assumption:

Usability may be said to be a system feature when:

U(s) x SApp x UI --> Acc(TTs)

These EFs essentially determine the value of any design solution and the type of

analysis applied to the usability of a UI. In the following subsections, some exam-

ples of how EFs impact upon both design (because all design practice must be

exposed to evaluation itself) and evaluation of Us are discussed.

1.4.1 The system user(s);
An Individual or a Population U(s)

It is usually the case that systems are designed to be used by a population of users.

Different people can have vastly different requirements from a system, this is

because they are all individuals. They may vaiy in the kinds of tasks they want to

do; some users may only use the system for one type of task, others for a wide range

of tasks. They may differ in their experience with similar or different applications

and with other Us, consequently compatibility and UCTDs are principles which

require empirical investigation if they are to be satisfied. Users will very probably

vary in the length and frequency of their sessions with the system and the amount of

training they will have had. They will also have different attitudes to (and aptitudes

for) use of the system. In these and many other ways users prove to be unpredict-

able. Furthermore, in some cases the variability of users will be greater than in oth-

ers. The system designer will have to build an extzmely sophisticated system if

everyone is to be satisfied. Otherwise some users' requirements will have to be

compromised for those of others, and this is almost always what will in fact happen.

The best design solution is likely to be one which satisfies most of its users most of

-46-

the time. Making a system so simple for the sake of naive users that experts have to

go to a great deal of trouble to carry out more complex tasks may not be acceptable.

Consequently naive users may have to devote some effort to learning a system that

has been designed more explicitly to support relatively expert users with more

powerful commands. The more variable the user population, the more difficult it is

to come to a simple compromise.

Some examples of the issues that the UI designer will have to address with respect

to a variety of users will include:

Experience and expectations.

Training.

Learning opportunities and forgetfulness.

Attitudes and social aspects.

1.4.2 The Nature of the System Application(s) SApp

This is taken to mean the structures and behaviour which the virtual system mani-

fests once implemented, being a function of hardware, and software.

A complete computer system may incorporate multiple integrated applications (an

application is essentially a package of software and the jobs it does with and for a

user. It may be a whole system in itself, or merely a sub-system such as a drawing

tool or a database) and these and their Uls vary immensely along with the uses to

which they are put. Applications are generally classified by systems analysts into

types, the largest two being data processing and real-time. Data processing applica-

tions are largely concerned with the manipulation and transformation of data which

may relate to structure and operation of an organisation, records kept on business

transactions, stock control, and so on. Real-time applications are those which have

to respond within tolerance limits to external events, such as process-control sys-

tems, navigation systems and so on. In these cases there are external inputs to the

behaviour which the virtual machine exhibits, and users are expected to direct the

system to interact with some aspect(s) of the external environment. There are also

other types of application such as the paper substituting text-editing systems and
office systems which are used to store and organise the kind of information which

otherwise fills filing cabinets, diaries, in- and out-trays etc.

-47 -

The functionality of the system is of course strongly influenced by its application(s).

The behaviour and performance of the UI for a given system has to be evaluated in

terms of its suitability for the many kinds of tasks which it is meant to enable the

user to execute. Its success in so doing can only be determined with respect to the

system functionality within each of its applications. There may be little to be

gained from criticising the UI for failing to support tasks which the application

would be incapable of handling.

The different functional requirements of applications mean that Uls will be also

subject to different design constraints and performance requirements. Very dif-

ferent error tolerances are allowed for text-editing applications and for air traffic

control systems. It may be acceptable for a manager to delete a file accidentally

from time to time, but it is not acceptable for an ATC operator to fail to notice an

impending head-on air collision. So the UI must be designed to ensure that the

application is appropriately represented to enable users to complete their tasks with

acceptable reliability. In order to do so the following issues amongst others have to

be considered:

System Scope (the extent of allocation of functionality to the system as opposed to

the user).

Nature offuncrion.s the system must accomplish.

Nature of the user's job.

Reliability of user-system performance (with respect to risks and perfor,nance

requirements).

Feedback (when necessary).

1.43 The System Interface UI

This is defined as the type or style of UI or its various characteristics.

The previous two EFs (U)and SApp)discussed partially pre-determine some of the

necessary features of the UI however, there is still a requirement for designers to

choose between certain options. Such a choice may depend upon the sophistication

of the available, and affordable, system hardware and software with which the UI

designer is working. Familiar types of interface currently available include;

command-driven; menu-driven; window based; direct-manipulation; WYSIWYG;

-48-

and others. Each type of UI has a different impact on what is possible in terms of

functionality for the user, and with the possibilities come new design problems. For

example, once the user has been provided with the opportunity to run several

processes on a system simultaneously, the designer must consider what the usability

implications might be such as forgetting to terminate background processes or

confusing one environment with another. Issues which might arise during design

and evaluation are:

Forms of information presentation, and how much information.

Functionality of the available tools, packages.

Potentially hazardous or difficult states users can get into.

Additional functionality such as help to enhance usability.

1.4.4 Target Task(s) TTs

This is defined as; a set of target tasks which the system must support.

Systems, whatever their user population, applications or type, are normally designed

to support some agreed minimum set of target tasks; this may determine the scope

of the system application. The scope of the system application in design provides a

specification of the extent of its functionality. However, the users' target tasks

themselves are a more precise definition of the system functionality than the scope

because they will impose more structure, in terms of sequence and interdependency

between operations. For example, the scope of a system may include both database

management and editing functionality, but only an explicit specification of the

user's target tasks will clarify the fact that it may or may not be absolutely neces-

sary for the two.

The target tasks may be explicitly stated, in some business contract between a

design team and a client, or they may be a more informal collection, perhaps with a

view to expanding the set as far as possible. The difficulty in deciding whether to

support any given task, or set of tasks, is in deciding what is necessary, what is only

desirable, and what is actually counterproductive. In the study referred to earlier by

Gould et al (1987), an example of the design of a messaging system was given

where certain desirable tasks, which users might have wished to carry out, would

have rendered the system more error prone.

-49 -

In many circumstances there may be a conflict of interests between users, pur-

chasers (e.g. client management) and designers as to what tasks ought to be sup-

ported. Users want a system to support whatever they want to do with it. Managers

want the system to increase productivity. Designers want their job of producing an

efficient system, which successfully supports users' requirements, to be as easy as

possible (which it will not be if substantial requirements drift occurs, as it often

does, particularly in large projects (Appleton 1986). Examples of issues which may

be important with respect to decisions about target tasks, which the designer may

have to account for, include:

Validity of set of to-be-supported tasks specified by clients/users.

Necessity, desirability and counterproductivity of tasks.

Psychological and organisational implications of target tasks.

Feasibility of system support for tasks.

Allocation offunctionality (requirements for system support).

Likelihood of task errors (the user carries out the wrong, but legal step, as opposed

to illegal user actions)

1.4.5 Acceptable Interactive Peiformance Acc

This is defined as performance matching or exceeding some performance criterion

or criteria.

All systems have associated likelihoods of failure, either in their functionality or in

their interaction with users. When the interface misleads a user, or permits the user

to make a mistake, it is often the user that is blamed for making that error. It is true

that humans can be negligent, but even if they are not, errors sometimes occur. In

other words interactive performance can hardly ever be expected to be ideal, and

ideal performance can never be guaranteed. Clients for systems often stipulate per-

formance requirements for a system in terms of what is acceptable in terms of some

measurable criterion such as speed and/or reliability. The minimum requirements

may depend upon a number of issues the most important being costs of the conse-

quences of failure. When lives, or very high costs are at steak, then significant risks

of errors occurring are not to be accepted. However when the consequences of poor

performance are not great, then other considerations, such as speed, may take prior-

ity, and high error rates may be tolerated.

SIIt

LON ?&

UNIV

-50-

The client and the designer may negotiate over the performance criteria, especially

if the client makes demands which require a more expensive project or product than

the client can afford. The UI designer should consider, amongst other things:

Costs of meeting performance targets.

Necessary trade-offs in system functionality.

Evaluation of interactive perfor,nance.

Reliability of evaluations.

1.5 Summary

The importance of maintaining a broad scope of perspectives in system design and

evaluation cannot be over-emphasised. Researchers in HCI are beginning to accept

the importance of breadth as a necessary quality of approaches which can be

expected to produce realistic assessments of the usability of of Uls (e.g. Barnard,

1986; Green et al, 1987; Grudin, 1989). The preceding sub-sections attempt to

illustrate the diversity of considerations which impact upon the usability of a sys-

tem. Five evaluation factors (EFs) were introduced which aim to provide a view of

the breadth of important issues which exist in the context within which interactions

take place between users and systems. An crucial question is whether this breadth

is apparent in HCI approaches to design and evaluation. If it is not then it raises

serious concerns about their applicability to or usefulness for actual design practice.

Chapter 2 aims to examine a number of current techniques in terms of their type,

scope and character in some detail. This review is necessary before we can assess

the usefulness of each technique or the methods it offers for improving system usa-

bility in a real design situation. Amongst other things it is necessary to determine

its ability to account for the above EFs, either in the design or in the evaluation of a

UT, and what principles of usability it focuses on. In later chapters we will be

attempting to determine how well each technique might work in a more practical

sense, in order to decide whether it is appropriate for application in a commercial

design project. Chapter 2 will therefore be restricted to an analysis of these tech-

niques from a mainly theoretical point of view.

The rationale for addressing the theoretical and the pragmatics of these techniques

separately is that, to date, there has been a dearth of research on the use of such

-51-

techniques in real design environments. In these situations the nature of the UI

being designed may be different from that which a given technique was tested on,

the UI designers may have no psychological expertise, and resources may be inade-

quate. Also the technique will have to integrate with the rest of design activity both

in terms of other techniques carried out and in terms of sequence and timing. Since

most of the available literature on these techniques is based upon controlled

research, little is known about how these issues affect the techniques, and how they

may need to be modified for practical use. The aim of this research is to address

precisely this question. So issues of application will be raised throughout the dis-

cussion following Chapter 2.

-52-

Applicability of HCI Techniques to Systems Interface Design

Chapter 2

A Review of HCI Design and Evaluative Techniques

2.1 Introduction

2.1.1 Overview

The HCI analytic techniques discussed in this chapter are:

Block Interaction Models

Reisner's Formal Interactive Grammar

Task Action Granunar
ACT*

GOMS

Cognitive Complexity Theory

Interacting Cognitive Subsystems

Command Language Grammar

These analytic techniques are called design and evaluative techniques because they

are intended, or can be used to analyse user interface designs in terms of their usa-

bility. Some of them are intended more as research tools, but some authors claim

direct utility for their techniques in actual design practice. It seems reasonable

therefore to take the view that they may be criticised as proposed design and evalua-

tion tools since one or both of these purposes are their main focus.

However, this chapter seeks merely to summarise the main features of these tech-

niques as scientific analytical approaches without tackling further issues concerning

their actual applicability to design practice as it occurs in the "real world". The rea-

son for clarifying the approach and scope of each one is to provide a clear basis for

consideration of the implications of use of these techniques within applied and com-

mercial design practice. Such considerations are restricted to later chapters.

- 53 -

The eight models (or modelling approaches) reviewed in this chapter are a small

selection of some of the most influential HCI descriptive or predictive techniques

which have been developed for the purpose of designing or evaluating Uls. Some

are pure research tools, others are claimed to have direct value for the design of

more usable systems. The techniques under consideration all share the characteris-

tic of the embodiment of some property of a user's knowledge representation or

processing properties within a specification or model of the user or grammar for

representing dialogues or interaction rules for some UI. They are by no means a

complete set, but are representative of an important class of design and evaluative

techniques currently available and based on work carried out in the field of HCI.

2.1.2 Classifying and Characterising the Scope of HCI Techniques

The above approaches will be discussed in terms of the structure outlined in the fol-

lowing section. Each model will be classified with respect to whether it is an expli-

cit or potential Design Technique or an Evaluative Technique; whether it models

Psychological aspects of the user and/or Interaction between the user and system;

and whether it is a Competence model or a Performance model. The scope of each

model (both in terms of what the model aims to address and in terms of how it does

so) will be described along with the devices used to capture the various aspects of

interactive behaviour. The models will also be characterised according to the

evaluation factors and usability principles they address. This characterisation is

essentially a concise means of representing the aspects of a UI and the evaluation

factors addressed by each model. The characterisation takes the form of a scoping

matrix with a number of possible cells which the model may tackle. This permits a

clearer comparison between the different models.

The Usability Scoping Matrix in table 2.1 illustrates all of the ways in which classes

of the usability principle and evaluation factors described in the previous chapter

can intersect. As stated above this matrix attempts to characterise the possible

scope of any HCI Design or Evaluative technique in terms of what aspects of usabil-

ity and what evaluation factors it captures, however it makes no statement about the

methods and devices involved in each model. In the following discussion, each

principle (represented as a column of cells) will be discussed with reference to how

the evaluation factors might impinge upon it's analysis. The last row of cells (the

intersection of each usability principle with acceptability of performance) is the

-54 -

most critical for any model which seeks to influence system design. Models which

do not address the qualitative and/or quantitative performance aspects of HCI can

only be considered as research tools which perhaps further our understanding of the

relevant questions which need to be addressed by further work in the field.

A Brief overview of the implications of table 2.1 follows.

Models which capture:

(a) Simplicity must model (and present metrics for) complexity of representations

or specifications.

(b) Compatibility must capture the relationships between external (real world, and

other systems) knowledge and the knowledge required to use the system.

(c) UCTDs must present system or device independent task analyses and goal struc-

tures which reflect the needs and characteristics of the user.

(d) (e) & (f) Observability, Consistency and Retrievability must present user in-

dependent representations of the appropriate system properties.

Models which account for:

(g) Users must employ empirically based psychological theory or preferably expli-

cit models of human information processing.

(h) System Applications must entail representations of system functionality and

behaviour.

(i) UI Type must be sensitive to static and dynamic representation and behaviour in

interaction (e.g. command versus menu driven).

(j) Target Tasks must specify a coherent (or perhaps representative) set of basic or

composite tasks the system is designed to support.

(k) Acceptability of Performance must generate testable predictions about qualita-

tive or quantitative aspects of user behaviour.

- 55 -

The way in which the principles of usability might be addressed in terms of each of

the evaluation factors is elaborated in the following discussion. Approaches must

meet certain requirements if they are to succeed in addressing each cell in the Usa-

bility S coping Matrix.

2.1.3 Usability Principles With Respect to Evaluation Factors

The Principle of Simplicity with respect to:

Users

Simplicity as defined in Chapter 1 can be described and evaluated in terms of the

complexity of the rules required in models of the representations which users might

build of a system. Such a model may be more or less realistic depending upon the

extent to which it accounts for users' existing knowledge structures and cognitive

strengths and weaknesses. Real users representations may or may not reflect the

reality of virtual system structure and states, depending upon how the system

presents itself, and upon their previous experience. The approach covering this

cell must embody a psychologically plausible, empirically supported model of

the user which can capture complexity

System Application

Some applications are, by necessity, more complex than others regardless of the na-

ture of the UI. Additional complexity can be caused by poor UI design, but each

application imposes a limit to how much improvement of UI simplicity can result in

a system which is overall simple to use. The more functionality a system has, the

more rules a psychologically valid UI model which attempts to capture simplicity

may be expected to require. However this complexity may not be sufficient grounds

for dismissing a system with greater functionality. Therefore an approach

represented in this cell must capture necessary UI behaviour (that which is

determined by the nature of the application's behaviour), as distinct from in-

teractive UI behaviour (that which serves merely to mediate between the user

and the application). To do this it must have an objective device representa-

tion.

- 56-

-

—'

•.L

N

- j

— —
-

-a

—

fl

cI

C.)

=

--
V

-
.
—

C.)

cn

-4
0

CL.

—	 —	 0. 1..
CcI

- 57 -

UI

The UI itself may impose complexity on an HCI model. Uls and their dialogues

may be designed in such a way that each representation and command sentence is

differently structured and there is no coherent scheme or grammar which can enable

the user to capture generalities. Consequently more rules are required to interact

with the system.

The UT can also impose complexity through its style. Direct manipulation menu

based systems take the onus of memory retrieval of available options and entities

away from the user who simply has to recognise the required command name in a

menu or icon on the screen. The approach must be sensitive to differences in

operation of, behaviour of and presentational characteristics of the device.

Target Tasks

The target task set may be large or small, and the actual tasks and sub-tasks a user

may be expected to be able to carry out using the system may themselves vary in

complexity. For example, an editing system may only be used for very simple tasks

such as typing in text and basic editing operations such as DELETE, INSERT,

COPY, MOVE, and so on, or it might be used for more complex tasks such as

"search for a string and substitute with another at every occurrence", or "draw a

figure with labels". The approach must be able to capture the complexity of

task structures

Acceptability of Performance

Whether a model is capable of addressing performance, as it is affected by the sim-

plicity of a UI, depends upon how the above cells in the simplicity column are ad-

dressed. It may be possible for a model to produce predictions without addressing

all of the above, however it may be unwise to base assessments of simplicity on a

UI description alone, for example, since one then has no knowledge of the charac-

teristics of the prospective users who may or may not have all of the necessary

knowledge required to operate the system in question.

A technique which addresses the first four cells in this column may still not fully ad-

- 58 -

dress the last cell if it makes no quantitative or qualitative performance predictions

such as increased errors or speed of task completion which can be compared with

performance criteria which are judged acceptable by some analyst or commercial

client of a system design team. The approach must make testable predictions

which would be suitable for assessing acceptability of user performance

The Principle of Compatibility with respect to:

Users

In some senses compatibility is strongly related to the simplicity-users cell in the

usability scoping matrix. Compatibility of a system may make it much easier to

learn because fewer new rules need to be acquired by the user. User compatibility

of a UI is one of the most difficult of all of the usability principles to characterise

because it depends on the huge domain of all knowledge which the user brings to

the system. This knowledge is highly variable and involves semantic, as well as

procedural knowledge (Anderson 1983). The approach must be able to map UI

behaviour and semantics onto users' processing and representations and show

mismatches between the two.

System Application

Modelling UI compatibility with the system application dependent UI features may

be a more simple affair because systems are easier to model than users are. Compa-

tibility between the objects, dialogue and behaviour of the UI and the objects and

behaviour of the application (where the behaviour of the one is reflected in the

behaviour of the other, also termed congruence and semantic-syntactic alignment by

Payne & Green (1986)) relies on mapping common terms, operations and behaviour

from the actual context or the traditional domain of the application, to the UI. For

example, it is a simple affair to represent temperature using height in a graph (this

maps well onto traditional temperature representations in thermometers), and icons

representing the application's pre-computerisation devices are commonly exploited

(e.g. file holders, bins etc). The approach must show that system application

behaviour maps well or poorly onto UI representations

- 59 -

UI

The nature of the UI may heavily influence the degree to which compatibility can be

achieved, so evaluations have to take into account the constraints or advantages

presented by the system characteristics. For example, the system graphics may be

inadequate to represent familiar (compatible) icons clearly, input devices may be

poorly suited to the kinds of manipulative skills users already possess, multi-tasking

facilities may or may not exploit the human capacity to work in a heavily context

dependent fashion (as demonstrated in much of the literature on processing,

representation and metaphor, Anderson (1982), Anderson and Ortony (1975), Car-

roll and Mack (1985), Holyoak (1984). The approach must be sensitive to opera-

tional and perceptual system differences and be able to show incompatibilities

with user characteristics.

Target Tasks

Compatibility of target tasks is in fact a usability principle in its own right. So the

third column in the Usability Scoping Matrix is really an expansion of this cell, and

any model which tackles intersections in the UCTDs column will be represented in

this one. The issue of compatibility of target tasks may be best addressed by focus-

ing on the goal structures users have, and possibly identifying those structures

which are a result of the constraints imposed by the traditional practices of the

domain and those which have a more fundamental root in the logical order in which

the stages of a task must proceed.

Unfortunately there is a dearth of research on this kind of task analysis. The

research is usually controlled in such a way that users are trained to perform tasks

according to an imposed goal structure, perhaps from a manual (e.g. Kieras & Poi-

son, 1985), or it is assumed that users goal structures can be derived from the con-

straints imposed by the traditional domain or by alternative applications expressed

as perhaps a set of external task structures (e.g. Moran 1983).

The approach must be capable of mapping the target tasks' goals and struc-

tures onto users' representations of the target tasks, in order to pinpoint areas

of mismatch

-60-

Acceptability of Peiformance

Predicting the acceptability of performance may be heavily tempered by an under-

standing of the compatibility issues arising in design. This would require a model

of the semantic as well as procedural or syntactic aspects of user processing,

perhaps based upon a task analysis or other empirical research. Understanding

representation and meaning for users and mapping it to representation and meaning

in the UI would facilitate identification of incompatibility between the two

representations.

An approach which has the power to model performance differences between recog-

nition tasks, skilled activities, novel problem solving or decision making and so on

will have the ability to generate performance predictions with respect to compatibil-

ity versus incompatibility of UI designs. The approach must generate testable

performance predictions based upon degree of, or differences in, compatibility.

The Principle of User Centred Task Dynamics (UCTDs)

with respect to:

Users

When considering UCTDs it is of course the users and target tasks which are the

focus. Goals and methods in the UI, designed for the system-supported task execu-

tions, must be modelled. So must users' goals and task representations on the basis

of empirically or theoretically derived information about how users process,

represent and employ task related knowledge. The approach must be capable of

capturing possible users' task representations and in such a way that it can

show mismatches between users' actual and ideal task representations for use

of an application (i.e. required for error free performance) which should indi-

cate sources of difficulty in interaction.

System Application

Again, the analysis is tempered by considerations of the constraints imposed by the

system application which may be inherently problematic, calling for complex mani-

pulations of data, or parallel activities (at which humans are notoriously poor).

-61-

Some of these may be related more to the system application than to inherent

characteristics of users and tasks. As with compatibility, it is important to avoid

confusion between system application-independent and -dependent factors. The

approach must be able to distinguish system application dependent task struc-

tures and show how these do or do not map onto users' representations of task

structures.

UI

There are also the limitations of the UI design (independent of application depen-

dent enforced task structures) which may be poorly suited to the kinds of task activi-

ty necessary. Consider the problems of displaying large chemical-plant systems on

a relatively small computer screen with poor resolution (even with two dimensional

scrolling facilities) as opposed to a large hard wired display mounted on a wall.

The task of locating a blocked valve on the computer version of the plant represen-

tation in response to an alarm would be much more complicated than with the hard

wired version, involving identifying and calling up the appropriate screen, as op-

posed to looking for a flashing light on the wall. The approach must be sensitive

to and show how UI task representations might be well or poorly suited to user

task structures.

Acceptability of Performance

The ability to predict acceptability of performance will require a model to predict

how tasks will be accomplished on the system given the difficulties of the applica-

tion, the limitations of the UI and the way in which users will represent knowledge

required to carry out tasks. The approach will have to produce testable perfor-

mance predictions with respect to task structures.

The Principle of Observability with respect to:

Users

Representation and feedback are two of the important issues which arise in UI

design. To determine whether system users are actually presented with, and suc-

cessfully perceive, the necessary information to successfully achieve their tasks has

- 62-

been a major aim of both ergonomics and HCI, and may be a relatively easily

characterised aspect of a UI. Having said this, there are, as always, problems. It is

not so much the matter of presenting the relevant information when it is required,

but how that information is presented which gives rise to questions of usability

(there can be too much at once, or it can be in an inappropriate form).

There is a potential dilemma for observability in that it is not always easy to distin-

guish between necessary information and additional relevant information. The

designer will always be aiming to provide enough information about system states

and options for the user, without swamping the entire screen with information that a

user might need. Perhaps the best way to ensure this is to user-test a prototype of

the system, but if this is not possible then a performance model which can represent

the user's information requirements for task execution, together with processing

constraints, might be able to predict whether user performance might be acceptable

given that certain specified system states and options are observable, and others

not.The approach must show that information presented to users is both

sufficient for their goal and task requirements and perceived reliably and not

misinterpreted.

System Application

If we assume that when it is presented, information is usefully interpreted by the

user, then we still have to be sure that the behaviour of the system application,

where it is relevant to users' requirements, is always represented (obviously this im-

plies a need to consider the UI cell for this column also). The approach must

show that device states which users need to know about are always matched by

unique interface states, or at least that this is the case for all the states a user is

likely to get into in normal use.

UI

Observabiity must be achieved within the limitations of the UI type which can

greatly compromise observability, as, for example, anyone who has ever used a

non-WYWIWYG text formatting package will know. For example, some UIs may

have to represent function selections with labels only whilst others may be capable

of presenting icons, or labelled icons. We need to know what is best given the limi-

- 63 -

tations of the UI and whatever style of presentation is adopted, and we can only do

so if we can identify the salient aspects of these representations for the user (in other

words although we can prove that something is observable and even discriminable

in a formal sense, we cannot guarantee that it will be so for users, and we need some

constructs which might enable us to address perceivability). The approach must

be sensitive to presentation characteristics of the UI type and how these impact

upon users' ability to distinguish one representational option from another

Target Tasks

The analysis must be able to determine if all of the information required to accom-

plish target tasks is really presented by the UI. If it can be shown that necessary or

desirable information is not presented to the user by a UI design, then it is safe to

assume that there is a real probability that performance will be compromised. The

approach must specify what the states of the system, and the user's representa-

tion are with respect to the task in progress and show that all requisite infor-

mation is passed to the user by the UI

Acceptability of Performance

In order to determine how performance is affected by presentation, we need to be

able to model both perceptual processing, salient (relevant to the user's tasks) sys-

tem behaviour, and how this behaviour is represented at the UI. In other words

perhaps all the cells in this column are crucial to being able to address performance

adequately. The approach must be able to predict some variation in perfor-

mance characteristics, based upon the presence or degree of clarity or redun-

dancy, and nature of, observable events in response to application behaviour

The Principle of Consistency with respect to:

Users

The simple definition of UI consistency given in Chapter 1 has rather complicated

repercussions in HCI modelling. Users do not have consistent representations for

labels and procedures. Humans are notoriously context dependent in their process-

ing and interpretation of events they perceive (Fodor 1983), as has been noted, but

-64-

the nature of the moderation of behaviour by context is not the same for all users as

there tends to be a great deal of individual variation in this respect (for example, at

first glance a fly-fisherman might interpret the word "bank" somewhat differently to

the way in which a financier would). The approach must be able to show that the

system is indeed consistent, but, to appear in this cell, it must also be able to

determine where this will conflict with users' representations in order to deter-

mine whether one or the other needs to be changed

System Application

The same is true for system applications as is for users, where the same action can

have radically different effects depending upon its state or context. For example, in

a real-time, process control system, the act of adding a chemical to a batch process

may produce a desired reaction in some circumstances (if the other chemicals in the

batch and the temperature are appropriate) or an explosion in others. The approach

must be able to determine whether there are features of the application which

force inconsistency on the UI. This can then be dealt with by adding information

about states which will enable users to distinguish states.

UI

If a UI is not able to represent certain system states then some commands may result

in apparently inexplicable inconsistency. For example, if a file has been protected so

that it is not alterable, and the UI is one that cannot show a status bar, then user

commands that would normally cause the file to be edited, or deleted, would inex-

plicably result in no action. Another example of UI inconsistency is that of the ef-

fect of pressing different mouse buttons in text-editing tool windows or in command

windows on a Sun workstation, where each of the three mouse buttons may be used

for a different effect. The approach must be able to identify UI characteristics

which will force inconsistency in the effects of operations between different sys-

tem states which may not be perceived as such by the user.

Target Tasks

Certain target tasks may enforce changes to the system application state which will

affect the consistency of the effect of carrying out target tasks with a system. For

- 65 -

example if a user has to format discs before using them, and formatting a disc des-

troys files, if there are any on it, then the effect of the task of formatting a disc is, as

far as the user is concerned, inconsistent depending on whether he or she attempts to

format a new or an old disc (although the application, and the UI may well be

behaving in a completely consistent manner). The approach must identify the ef-
fects on the system states of target task actions with respect to users' task goals

and determine which tasks will have inconsistent effects depending upon sys-

tern states.

Acceptability of Performance

Models characterising system consistency may assess acceptability of performance

if they can formally describe the UI behavioural properties for all states (Dix et al

1986). Sadly, adding the user and the application to this equation complicates the

matter astronomically because users do not perceive consistency in a manner which

is regular (all individuals are different) nor are they free from context effects. The

approach must at least be capable of determining what the most probable sys-

tem states will be and address consistency of operations within these. It must

be able to predict variations in performance based upon changes in the con-

sistency of the device. However, consistency considered independently of other

usability principles may well be a misleading or false indicator of usability (Grudin

1989).

The Principle of Retrievability with respect to:

Users

Assuming users often wish to undo mistakes, or find their way back to a previous

state, or to another part of the system, retrievability is an essential property of a us-

able system. It should be possible to model the kinds of system states users are like-

ly to get into (which may involve moving around a system whilst in the middle of

some task such as editing or running programs). Having done so a model might

suggest that given likely user behaviour, a system will allow undoing, interrupts and

parallel processes to be run to the extent that a user will not be constrained by irre-

trievability. The approach must be capable of formally proving that at least the

states which users are likely to enter can always be safely exited, and that all

-66-

parts of the system the user might want to get to are reachable from any state
the user is likely to be in.

System Application

If the system application is such that users are likely to make irreversible changes to

states, for example deletion of files and directories, or addition of some chemical to

a batch process, then this clearly has implications for the degree of retrievability

possible. The approach should be capable of distinguishing reversible from ir-

reversible actions, by modelling actual system states, as opposed to task struc-

tures, UI states or user representations

UI

The UI may permit the user to see more clearly the irreversible consequences of

commands or tasks. It may display information which helps the user to find a way

out of a state, or a way of reversing the effects of commands. For example, the ap-

plication type may be such that it is not possible to provide all of the functionality

that would be required to ensure retrievability. The application might involve des-

truction or processing of data or things which cannot be reversed. It may lack func-

tionality such as buffers for storing data which has been deleted, but which might

need to be un-deleted. Designers might wish to respond to such problems by adding

confirmation steps in command sequences at the UI for such actions, thus reducing

the likelihood of users unintentionally entering states with irreversible conse-

quences. The approach appearing in this cell should be able to determine

whether entry into desirable or undesirable system states is made more or less

possible and probable by features peculiar to the UI involved

Target Tasks

Retrievability may be assessed simply by formally describing all of the possible

states a system can be in. However, the size of such a description for a real system

application with one of the more modem graphical types of UI tends to be consider-

able and it is probably more realistic in applied design to prioritise analysis accord-

ing to which actions in which states are more likely as Monk and Dix (1987) have

done, or where the consequences of being in such states are very serious. The ap-

-67-

proach must be capable of representing the retrievability of actions required

within the target tasks, particularly if they imply irreversible actions and if

they have serious consequences

Acceptability of Performance

Evaluation or prediction of human performance with a UI, with respect to retrieva-

bility may depend on a partial analysis driven by the nature of users, the tasks they

will need to carry out, the necessity of irreversibility and its seriousness, and so

forth. With the introduction of cheap automated systems analysis tools it should be-

come possible to design systems which really are, formally speaking, foolproof

without spending an intolerable amount of time (and money) on the exercise, how-

ever this seems an unrealistic goal at present and such an effort is likely to be both

expensive and time consuming. A combined human performance and system

state model would be required to predict the occurrence and costs of errors

enabling a designer to choose between constrained relatively human-error

proof UJs and more flexible, faster but more human-error prone Uls.

We have now considered examples of what it might mean for an HCI technique to

address each of the cells in the usability scoping matrix. In the following sub-

sections each of the HU techniques dicussed is characterised in terms of the matrix

which gives an impression of the principles it addresses, and from what perspectives

it does so.

2.2 HCI Models

HCI Design and Evaluative Techniques (DETs), are approaches to providing useful,

descriptive and possibly predictive models of human-computer interaction (or of

some aspects of this). They represent a substantial component in current research

efforts, and are aimed at providing some theoretically based approach to the job of

design or analysis of more usable Uls. Furthermore, they may act as a guide for

practitioners who might be interested in applying a rigorous approach to user-

oriented design or evaluation, but who do not have the time or expertise to work

from first principles.

The eight techniques reviewed here are varied in their approach and aims. The

-68 -

thing that they all have in common is their ability to represent and/or predict

knowledge required to interact with a computer system or the behaviour of the user

or system interface in a form which highlights interesting properties of users or Uls

which have some bearing on the usability of a device. The purpose of this review is

to provide a flavour of the nature of HU DETs for the purpose of assessing their

impact upon applied and commercial design practice. Where the models are

characterised (see each of the usability scoping matrices; tables 2.2 to 2.9) the as-

sumptions about their scope are generally drawn from statements and claims made

by the authors rather than from empirical evidence in applied design since such evi-

dence is scarce or non-existant in most cases.

The order in which these models are presented is based upon sophistication and his-

torical dependency. It is therefore appropriate to begin briefly with a general model

which attempts to characterise the breadth of user knowledge which might poten-

tially be accounted for by any HCI descriptive approach. The Block Interaction

Model (Morton et al, 1979) presents a useful framework for representing the sources

of a user's knowledge relating to a particular task or problem.

2.2.1 The Block Interaction Model (BIM); A Model of Models

Classfi cation of the tIodel

The BIM cannot really be classed as a design or evaluative technique because it

suggests little in the way of its practical applications for either of these purposes. It

is more descriptive than prescriptive and might be used in either design or evalua-

tion as a way of viewing a space of possible design or evaluation measures which

might be appropriate for some system in a particular context. A BIM is not

sufficiently detailed to qualify either as a competence or a performance model since

it only represents the sources, and not the content of knowledge. It does qualify as a

psychological model, rather than as an interaction model, because it is based upon

an analysis of what sources of information contribute to a user's representation of a

system, and some of the interactions which might occur between these sources.

-69-

Scope of the Model

Figure 2.1 shows the generic BIM which describes some of the different kinds of

knowledge which might influence a system user's representation of a current prob-

lem or task (for any given example it should be possible to include more specific in-

formation about the nature of such knowledge). These knowledge sources interact

with one another in such a way that it is not possible to say that a user will represent

a given procedure or input in an immediately obvious way.

Users bring knowledge that will enable them to predict system behaviour and guess

certain things correctly, but they also bring knowledge that will cause them to make

mistakes due to erroneous assumptions or beliefs. What users have is a mixture of

interdependent ideal and non-ideal knowledge which they will tend to generalize

consciously or otherwise to their interactions with the system. This process of gen-

eralization is known as transfer of learning, and it acts in both positive and negative

ways on user performance.

In the BIM double bounded boxes connected by double lines are used to represent

the primary information sources and interactions between them in an ideal user.

The real user also utilises what is represented by the other boxes and lines, and it is

these extra knowledge sources which (s well as embodying some useful and help-

ful information) are the sources of negative transfer of knowledge.

This model provides a useful general framework for representing the knowledge

sources influencing the (task-oriented) user. As such, the properties and content of

the knowledge a system user represents, may be regarded as a complex evaluation

factor for an interface, which must take into account what the user will and will not

know, and how that knowledge will affect interaction with the system. The

knowledge sources are shown as exerting influence upon one another in the user's

system representation, although the nature of their interaction is not illuminated.

Characterisation of the Model

In the remainder of the discussion on BIM we need to characterise the model in

terms of the principles of usability it addresses, and the evaluation factors accounted

for in relation to each principle. In table 2.2 a BIM is represented as capable of ad-

-70-

Figure 2.1

A Generic Block Interaction Model

Knowledge of
	

Knowledg. of
the domain
	 physical

interface

Knowledge of the
	

Knowledge
	

Knowledge of
computer version
	 of the
	 other machines

of the domain
	 problem

	 ond procedures

Knowledge of
	

Knowledge	 Knowledge of
workbase version
	 of system	 interface

of the domain	 operations	 dialogue

Knowledge of
natural language

dressing compatibility and UCTDs with respect to the first four evaluation factors,

however, its generality and simplicity do not permit it to provide a foundation for

addressing performance since it does not cover quantitative or specific qualitative

performance metrics. Therefore, without being specific as to the precise form, and

content of representations of the user, the application, UI and target tasks, BIMs

does allude to such representations as idealised knowledge sources. It assumes that

the more "double bounded" knowledge a user has of a UI (either from experience

with the system or as a result of good user-centred design), the better a user's per-

formance with the system will be. The model is purely a representation of

knowledge sources that might then be addressed by further models of users that

would include evaluation or performance metrics.

For the above reasons, this model is not a general model of the user, it focuses only

-71-

cI

U

:12

J2

.
:12

.
C

a

:12

.-
-	 -	 :12

-0

12
4.1

>.	 ;-.	 >

0

U

ii	 ii

______ ____ ;f ____ E ____

- 72 -

on one part of the user, that is what the user's knowledge sources are, and how the

knowledge, from there various sources, represented by the user might be interrelat-

ed. The actual form of this knowledge and how it is utilised with respect to task ex-

ecution are not addressed. It can be argued that a specific BIM may not be a model

of a user's knowledge at all, but simply an elucidation of the possible knowledge

sources a user might be exposed to together with a weak indication of negative

transfer or interference between knowledge sources based upon the differences

between the concepts and structures they embody.

Simplicity of the user's representation, or of the UI itself, is therefore not covered by

the BIM, since a model that addresses this kind of principle must in some way eluci-

date the amount and structure of the knowledge coming from the various sources.

Consistency, observabilizy and retrievability, which are all principles which require

an independent, objective (non-user-) model of the device (as indicated in Chapter

1) are not really addressed by BIMs, since no system modelling techniques, formal

or otherwise, are advocated within this framework which might allow us to observe

system characteristics that indicate these properties.

The BIM is thus only a reference point from which to begin when addressing what

it is that HCI design and evaluative techniques address. The issues that it raises are

important to all models which seek to give a complete picture of user knowledge

representation. Models which seek to give a comprehensive treatment of the

representation of knowledge based upon different kinds of experience must be able

to characterise the nature of the differently acquired types of knowledge (represent-

ed by the knowledge sources in the BIM) and also show how influence between

types expresses itself both in processing and in behaviour (Barnard 1987). The

BIMs Framework is by no means a complete framework, and only elaborates a rela-

tively small portion of the Usability Scoping Matrix in table 2.2. Most importantly,

it does not address performance aspects which means that it is essentially a research

tool which identifies some of the important issues which other more applied models

will need to address.

- 73 -

2.2.2 Reisner's Formal Interactive Grammar

Classification of the Model

Reisner's Formal Grammar (1981, 1982) was an early attempt to apply a "formal"

grammar to the language required to interact with a system (including key presses,

mouse movements etc). Referring back to the distinctions between types of HCI

models made in Chapter 1; this model belongs to the class of HCI evaluation tech-

niques. It is not a design model because it does not prescribe a method for design-

ing better systems, it only suggests metrics which can be applied to the formal

representations of existing design specifications in evaluation. It does not qualify as

a performance model because it has no method to associate performance metrics

with the measures of complexity which it incorporates so it may only be applied as

a comparison technique. It could qualify as a valid competence model because it

can describe a set of rules sufficient to generate legal command strings.

The Formal Grammar aims to capture cognitive factors involved in users' represen-

tations of interaction grammars. However the notation is only loosely based upon

valid psychological principles. It fits more easily into the category of interaction

models as opposed to psychological models because the form that the grammar

takes is a BNF (Backus-Naur Form) expression. This notation is typically used for

system behavioural specifications. It is not based upon what we know about users

representations of rules required to use some device.

The Formal Grammar also avoids semantic restrictions wherever possible, in order

to maintain simplicity of the interpretation of the grammar. On the other hand this

means that the general structures (i.e. resemblances) applicable over similar related

types of task which are apparent in a language, and which would be exploited by

users, cannot be captured. So that although it succeeds in presenting a production

system which might satisfy the competence requirements of the system, any psycho-

logical validity claimed for this production system is dubious (Green et al 1985).

Scope of the Model

The focus of the model is what Reisner describes as the action language which is

the sequences of button presses, joystick motions, typing actions, etc which the user

- 74 -

performs. Of particular interest in her description are the cognitive factors which

are what the user has to learn and remember, rather than physical actions.

Action languages are described in terms of a production rule grammar in BNF nota-

tional form; a set of rules of the form (f the goal is) CONDITION (then) AC-

TION. BNF can be used to describe generative context free grammars. It unambi-

guously expresses syntax, but does not readily capture semantics and cannot predict

performance quantitatively.

The rules are expressed at a number of levels of detail, beginning with a starting

rule, which can be broken down into greater levels of detail until the rules embody

the actual terminal symbols (as a notational convention, the terminal symbols are al-

ways written in capital letters in the Grammar); these are the 'words' of the interac-

tive language, or the physical actions a user must carry out. Initially Reisner only

specified what she called the cognitive terminals. She later enhanced the model to

distinguish and model physical terminals (device features utilised), visual terminals

(what the user looks at), and action terminals (the physical actions required; which

are especially important when modelling repetitive tasks). The general features for

the production rule grammar are as follows:

1.) A set of terminal symbols (the words in the language, represented by capital

letters);

2.) A set of non terminal symbols (invented constructs representing sets of similar

actions that can be grouped together, used to show the structure of the language,

e.g. "noun phrase");

3.) A starting symbol (e.g. "S", for sentence);

4.) The metasymbols "+", "I", "::=" (accepted meanings for these are "and" (imply-

ing sequence), "or", and "is composed of' respectively);

5.) Rules constructed from the above (e.g., S ::= noun phrase + verb phrase).

Some examples of action language rules described in the Formal Grammar

(from Reisner 1981) would be:

picture ::= coloured shape picture + coloured shape

shape ::= discrete shape
I
continuous shape I

text shape

-75 -

discrete shape ::= separate discrete shape I connected discrete shape

separate discrete shape ::= select separate discrete shape +

describe separate discrete shape

The model is structured so as to give an indication of the psychological complexity

of an action language. In the first version it uses length of sentence strings and

number of rules involved in a BNF model of a language. Two predictions this

model makes for an interactive language are:

i) The longer the sentence strings are, the harder it will be to learn and the more

errors will be made in using it.

ii) The more rules involved in a language, the more difficult it will be to use.

The action language was tested in an analysis of two graphics systems (Reisner

1981). The model predicted that the more complex device would entail longer

learning times and a greater incidence of errors, and it was indeed successful in in-

dicating areas of complexity which were confirmed by empirical observation of

users' performance. The model was later augmented to incorporate further metrics

(Reisner 1982); the number of terminal symbols of various kinds (e.g. cognitive;

action; etc), and total number of rules needed to describe some sub-set of the

language. Reisner states that the main advantages of Formal Grammar as an ana-

lytic tool are that it encourages precision in evaluation, it generates testable hy-

potheses about quantifiable, general and intrinsic properties of usable systems, it

can be automatically manipulated, and it can provide explanation of user errors.

Reisner admits that better notational schemes than BNF must be found or devised

in order to 'reveal both structure and legal strings' although she proposes that

BNF can be useful in her view as she says it can fulfill the role of an analytical tool

giving early warning of design flaws. It forces the evaluator to be precise about

the description of the interface. It allows the generation of testable hypotheses and

makes it possible to identify the intrinsic properties of a language which make it

easy to learn and use. Also she claims that user errors can be explained on the

basis of this formalism. However the level of explanation must, by necessity, be

restricted to common sense inferences based upon what the user's known back-

ground and understanding of the system are, since cognitive processes are not

- 76 -

modeled or explained. Such inferences may only turn out to be common sense for

a psychologist.

Characrerisation of the Model

Table 2.3 restricts the scope of this model to the principle of simplicity. The non-

appearance of the model under compatibility in the table is not surprising, since it

does not appeal to user representations of labels, and actions, which might exist

prior to experience with the UI. It cannot therefore tackle issues relating to natur-

alness of UI representations and behaviour. In fact even going so far as to address

semantics of the interpretation of the grammar meant that additional specification

of certain restrictions on the acceptable tasks was necessary. For example if the

model was to account for the impossibility of describing a circle when box mode

had been selected, a semantic restriction was necessary (i.e. an extra production

rule was required to stipulate that the shapes selected and described had to be the

same).

The Formal Grammar does not explicitly tackle the principles of obseri'abiliry,

consistency and retrievability. The model restricts itself to representations of an

idealised set of interaction rules, without contemplating the issues of how the dev-

ice behaviour might influence the user's ability to achieve this ideal state of affairs.

When Reisner speaks of "consistency", she means it in a different sense to that

defined here. Her definition relates to the number of rules required to carry out

tasks with the system, with greater consistency occurring where general rules can

be used over a number of tasks. This definition is informal, depending on user or

task related factors such as knowledge of expected user goal structures, irrelevant

or redundant (but legal) possible rules. This definition of consistency can be inter-

preted here as simplicity which the model is shown as capturing in table 2.3 and

which is accepted in this thesis as having both formal (e.g. countable numbers of

terminal strings) and informal (e.g. arbitrarily incorporated meta-rules which

reduce complexity) components.

Reisner's Formal Grammar does not tackle UC7Ds. The BNF notation is not used

to express users' pre-system experience task procedures, although there is no rea-

son why it cannot be used for this purpose. Were the model extended, within its

limitations, to map pre-system experience task representations onto the system task

-77 -

.-

4) .- 0
—-	 -

0

-n

0
C.)

)
—

.-
C)

L.

—

C.)
rJ

0.

E
0

C.)

	

-	 in
-a

E
0

C.)

0	
in	 >

0
0

-
-	 0	 -	 S,_••	 0.1.

• C)	 0.	 -	 bO in
—	 1.

	

0.	

9••	 u_<
ci<	 E

- 78 -

specifications, (instead of restricting itself to representations posited for users

trained to use either of two graphics tools) it may enhance its power of to predict

user difficulties with Uls.

Looking at the evaluation factors in table 2.3, the Reisner's approach is seen as

only partially dealing with users in the strict sense, since it restricts its analysis to a

competence grammar capable of describing all and only the legal strings required

to carry out the target tasks. Issues relating to the system application and output

from the UI type are not really dealt with, there is no independent description of

the system functionality, states and behaviour. It may be possible to claim that UI

behaviour is captured in terms of the input required to cause certain events to oc-

cur, since basic actions required are represented by the BNF terminal rules (see the

"Maybe" entry in the UI row of table 2.1).

Reisner's approach does not fully address the acceptability of peiformance cell

since it is only possible to predict relative acceptability of two or more Uls using

the Formal Grammar (Reisner 1981). However the lack of inclusion of explicit

human processing characteristics, prevents the model from being able to predict

absolute performance. Table 2.3 shows the acceptability of user performance can

only be assessed from a competence point of view; in other words performance

predictions are derived from an informal assssment of how difficult it would be

for users to acquire and apply the competence rules specified as necessary for the

UI in question.

Reisner admits that the BNF notation cannot capture psychologically valid

representations with any ease or elegance for the reason that the Formal Grammar

is not well suited to dealing with semantics. She states "we could describe all and

only the legal strings by a very lengthy grammar which listed each shape, and by

then redundantly having a rule for selecting and describing each one. But such a

description would lose the general structure - that most shapes are constructed in

similar ways. On the other hand we could write a more terse grammar than the

one we have presented, showing more of the general structure, but at the expense

of more semantic restrictions." There is a trade off between formal precision and

semantic interpretation which is a problem with generative grammars which take

account of other aspects of linguistic representation and performance than the syn-

tactic rules.

-79 -

Reisner's Formal Grammar was one of the earlier attempts at modelling interac-

tion, and as such it may be considered crude as a user-representative competence

model when compared with later approaches (e.g. Payne & Green 1986). She her-

self states "in the long run better notational schemes need to be found or devised

which reveal both structure and legal strings. Formal Grammar is included here

because it raises some of the problems which later techniques have attempted to

solve; especially problems with the psychological validity of the grammar, inclu-

sion of cognitive constraints on processing, and representation of device behaviour

independently from the user's device representation.

2.23 Task Action Grammar

TAG (Payne 1984; Green et al 1985; Payne & Green 1986) is a later and some-

what more sophisticated model than Reisner's Formal Grammar but, in a sense,

Payne and Green can be said to standing upon Reisner's shoulders. TAG attempts

to extend the powers of 'formal' descriptive approaches beyond those of the For-

mal Grammar to capture more convincingly the psychological aspects of interac-

tion including general structures which users would capitalise on.

Task Action Grammar (TAG) is a "metalanguage" based upon an earlier linguistic,

grammatical representation set grammar. Set grammar was so named because it
described rewrite rules which operated on sets of grammatical objects rather than

individual nonterininal or terminal symbols. In this respect it chose to trade formal

rigour for psychological validity generalizing features of the UI on the basis of

similarities between rules. The set grammar and the TAG developed from it gen-

erate a representation of a UI action language assumed to be held by the user.

Classification of the Model

TAG is clearly an evaluation technique since it proposes no method for generating

the UI it describes. It should be possible to use this model to evaluate existing Uls

or detailed specifications, and this is one of the claims that is made for it. It is also

claimed that TAG is an improvement on the Reisner's Formal Grammar because it

does model users' representations of interactive tasks. In other words TAG aims

to represent psychological aspects of interaction. However, there is scant evidence

to suggest that users do in fact represent tasks and grammars in the way TAG does.

- 80 -

Furthermore there are no explicit mechanisms in the TAG model to deal with cog-

nitive aspects of processing. The authors state quite clearly "Although we have

not specified a learning mechanism, we simply assume one with the appropriate

properties", although they do not elaborate what exactly these are. It is probably

safer, therefore, to assume that TAG fits more comfortably into the class of in-

teraction models, despite its authors' aim for it to represent a "grammar in the

head" of the system user. The fact that TAG does not include any human process-

ing components together with performance constraints means that it is restricted to

the class of competence models and as such can only be used, like Reisner's For-

mal Grammar, for qualitative or comparative evaluations. There is no way of

determining absolute levels of performance using this model.

Scope of the Model

A TAG description consists of a simple task dictionary in which simple tasks are

identified and defined by their semantic components. A feature grammar in which

the dimensions of semantic components serve as features (e.g. dimensions of

direction would be perhaps up, down, left and right). For more complex examples

an explicit list of all the possible features and their values is used possibly to act as

a memory aid.

TAG generates action specifications from simple tasks based upon the hypothesis

that, in problem solving, complex tasks are organised into a sequence of sub-tasks

(Newell and Simon 1972). It uses two levels of description; concepts and rule

schemata. A dictionary of concepts is used to model the mental representation of

the grammatical objects and simple tasks in the task language. A simple task is

defined as one that a user can routinely perform (there is no requirement for a cog-

nitive control structure to modulate its execution). Simple tasks may be very basic

or low level) or they may be relatively complex, depending upon the skill of the

user. The rule schemata model the mental representation of mappings from task

descriptions to action specifications. In addition schemata are required for map-

ping commands onto their names (in a command language) and for capturing the

syntactic rules of the language.

Payne and Green attempt to capture generalizations about the consistency or regu-

larity of a language in a psychologically valid manner (their definition of con-

-81-

sistency is similar to Reisner's). Although they find it difficult to be precise in

their definition of consistency as noted earlier in this chapter, Payne & Green

(1986) present a list of examples of types of consistency which TAG might cap-

ture. These include:

* Syntactic Consistency: termed family resemblance is the consistent use of one

expression as a common element in another expression.

* Lexical Consistency: congruence is the matching of lexical (external to the com-

mand language) and semantic (internal) relations.

* Semantic-Syntactic Alignment: commonality of organising principles is the con-

sistent mapping of task semantics onto language syntax (this definition overlaps

with consistency as defined in this thesis).

* Semantic Consistency: or completeness is the consistency of the extensional se-

mantics of the language, such that types of language and system structure with

similar properties (such as real identifiers and Boolean identifiers in Pascal)

behave, and can be manipulated, in similar ways.

For a fuller description of these examples see Payne & Green (1986).

The advantage claimed for the TAG technique is that it can be applied to any

task-action interface between person and machine, (including lexical command

languages, direct manipulation interfaces and knobs-and-dials control panels) and

it has mechanisms for relating the syntax of a language to its semantics. Basically

what is being claimed is that the structure that this model highlights (by specifying

a grammar for the basic tasks and rules on how to carry them Out using the system)

is the structure that the user might plausibly have in his or her cognitive organisa-

tion of the language as he or she learns it.

A Task Action Grammar has three parts; (a) an optional list of features, used only

to help categorise the simple tasks; (b) a dictionary of simple tasks; and (c) a set of

rule schemas which represent the rewriting of a task into a sequence of actions. A

brief example of the form of TAG for a list of commands (from Payne & Green

1986) follows:

List of Commands

Move cursor one character forwardctrl-C

Move cursor one character backward meta-C

-82-

More cursor one word forward	 . ctrl-W

Movecursor one word backward meta-W

TAG Definition

LIST OF FEATURES (or Feature Sets)

Direction ... forward, backward, right, left

Unitcharacter, word

DICTIONARY OF SIMPLE TASKS

Move cursor one character forward (Direction = forward, Unit = char)

Move cursor one character backward (Direction = backward, Unit = char)

Move cursor one word forward (Direction = forward, Unit = word)

Move cursor one word backward (Direction = backward, Unit = word)

TASK ACTION RULE SCHEMAS ("T " denotes Task)

T [Direction, Unit] -> symbol[Direction] + letterlUnitj (1)

Symbol [Direction = forward] -> "ctrl" (2)

Symbol [Direction = backward] -> "meta" (3)

Symbol [Unit = word] -> "W" (4)

Symbol [Unit = word] -> "C" (5)

AN EXAMPLE OF A SINGLE LEVEL REWRITE RULE (Using Rules 2 &

4)

T [Direction=forward, Unit=word] -> symbol [Direction=forward] + letter

[Unit=word]

The list of commands here involve the control of cursor movement. The simple-

task dictionary for this small example represents all the routine tasks that the user

can perform. The numbers in brackets after each task action rule schema are rule

numbers. The rule-schemas generate action specifications from simple-tasks.

- 83 -

Rule (1) is a general task-action rule schema for simple-tasks and is expanded by

assigning values to all the features in the square brackets (a feature must be as-

signed the same value wherever it appears in the rule).

This simple example demonstrates the way in which TAG can describe the task

language independently from its actual symbol names. The description models the

number and nature of simple tasks available to the user and the rewrite rules which

allow the implementation of these tasks using the appropriate symbols.

The example of a rewrite rule, or rule schema, above shows the power of the

grammar to generate task sequences from the components of the language without

resorting to the actual physical lexemes. This means that one general task-action

rule-schema description can capture a set, or family, of tasks with identical or

similar structures, capitalising on the psychologically plausible assumption that a

generative grammar does not have to have a separate representation for each

member of the set of similar tasks as suggested by Reisner (1981, 1982).

TAG formulates a representation of interaction rules to illustrate complexity (or

what Payne and Green refer to as consistency) which the user will have to master

in the achievement of competence which is what the model focuses on. The main

metric of complexity is the number of simple-task rule schemas, discounting the

number of rules that are captured by world knowledge schemas mentioned below.

Unfortunately there is some debate as to the exact nature of a simple task. When

Payne and Green describe such an operation as one that the user can routinely per-

form, they mean that the definition depends upon the skill of the user. Experts

may routinely perform quite complex tasks which would take novices some time

to execute, compare the concert pianist's execution of a scale in a key with many

sharps or flats with that of a beginner. However, there is no clear guiding principle

as to how to determine what constitutes a simple task for a particular user, and it is

certainly not clear from the definition referring to routineness.

The focus on simple tasks is based upon the assumption that these comprise the

main determinant of novice user performance. The main advantage of TAG's

metrics over those of the Formal Grammar is the inclusion of family resemblances

between the rules as a predictor of increased ease of learning.

-84-

The TAG metalanguage is claimed to have other advantages over its predecessors

in the form of extra mechanisms for relating the syntax of a language to its seman-

tics. World knowledge and goals represented within rule schemata (in subrules)

enable simpler schema to capture wider generalizations on the assumption that cer-

tain aspects of the user's representation are independent of the action language and

its complexity. Congruence can be expressed by incorporation feature sets related

to concepts, such that the model describes how users can generate different names

for related concepts on the basis of common features. For example, ADVANCE

shares many features with RETREAT, so in the context of having learnt that the

command ADVANCE means go forward, the user will assume that the reverse ef-

fect will be achieved by specifying REVERSE.

Task structure is dealt with by using subrules, rather like subroutines in programs.

The problem with a competence model which specifies task structures for systems

where there are more than one way of achieving tasks is that one cannot be sure

that the model adequately represents this possible diversity. Competence models

are thus distinguished from acceptance models on the basis that acceptance models

specify every accepted method, whereas a competence model must constrain itself

to the most efficient set of methods for accomplishing tasks in order to model con-

sistency (complexity) even if this representation is not actually held by a user. The

hypothesis is that a more consistent action language can in an ideal representation

be described with fewer TAG rules than a less consistent one.

TAG is thus a generative grammar modelling the lower bound of complexity of a

possible user representation. Presumably, the more unconstrained a UI environ-

ment is, the less predictive power such a model can be expected to achieve. In

such circumstances acceptance grammars will be required to highlight possible

user representations of parts of the action language which can lead to problems.

Payne and Green argue that this problem is no less apparent in other models and

cite Kieras and Poison's (1985) adoption of task representations defined in a manu-

al, which are only a subset of those users might have.

Characterisation of the Model

From the Usability Scoping Matrix it can be seen that TAG is viewed as a much

more extensive technique than Reisner's Formal Grammar. TAG does not incor-

- 85 -

Li

.-
Li

Nç

p

I-

0

(n	 :
?-

.—	 I..

•-	 .
Li	 •

V
-	 -	 Co

V	 >	 >1 	 V0

0

-	 0)

V	 V
-	 -	 Co

V	 >	 V
>.	 -• E

0
o	 0

V
C.,

V	 V
Co	 -	 -	 Co
V	 V

>..

0
0

o	 Co

Co	 --
Co

V

— .J V.....
0	 L.	 CO	 V V
0•	 I-.

	

.i	 '4:
<o'..

- 86-

porate a method for independently specifying system characteristics, and thus can-

not be said to capture Observability, Consistency (by the definition given for the

matrix) and Retrievability. However there is an implicit assumption that TAG's

could be used to express and compare models of users' system-independent task

representations with models of system-dependent representations, although this

has yet to be empirically verified.

The "Maybe" entries in the SApp and UI rows of table 2.4 suggest that the TAG

grammar is capable of capturing some objective properties of both the application

behaviour and of the UI, since it is sensitive to notions of the semantics of system

objects and behaviour such as lexical consistency, semantic syntactic alignment

and semantic consistency (see above). However this sensitivity is extremely limit-

ed (to the effects of simple tasks, rather than whole sequences of tasks) since no in-

dependent representation of state behaviour of the system is provided by the ap-

proach.

Simplicity which Payne and Green refer to as Consistency is thoroughly dealt with

by TAG. An explicit model of a user representation of a competence grammar for

an explicit set of Target Tasks can be generated by TAG. TAG attempts to

demonstrate the properties of action languages which make them easier or harder

to learn, and to provide predictions and explanation of errors. Since there are no

cognitive components in the framework that deal with processing characteristics

and constraints, TAG cannot model quantitative aspects of user behaviour.

System Applications are implicitly tackled by devices capturing Semantic-Syntactic

Alignment, where the semantics of the system are related to the syntax of the gram-

mar (this notion overlaps with the definition of consistency assumed in this thesis).

The UI is dealt with on roughly the same level as it is in Reisner's approach.

Characteristics such as presentation, physical actions and so forth are not not dis-

cussed by the authors, although it is fair to say that TAG is currently being extend-

ed in this direction (Payne & Howes 1989).

Compatibility is partially expressed in TAG by generation of fragmentary world

knowledge subrules, within simple task schemata, by appealing to common seman-

tic definitions (assumed to be held by most users) for lexemes appearing in the ac-

tion language. However there is no integrated model of world knowledge which

- 87 -

might generate such representations. Anyone using the TAG methodology would

require a certain amount of intuition and psychological expertise to generate the

world knowledge rules, and so the matrix suggests only partial treatment of this

type of principle.

UCTDs (User Centred Task Dynamics) are dealt with by the ability of TAG to ex-

press more complex task hierarchies and how they may be represented differently

by users (and implicitly by the system) tzying to achieve a particular goal. By us-

ing a hierarchical structuring device, which involves breaking larger tasks into

subtasks which can be organised in different ways (rather like subroutining), Payne

and Green (1986) are able to highlight 'organisational consistency and conflict'.

This means that TAG has the power to capture UCTDs with respect to users'

representations, system application behaviour, and with respect to the target tasks

users may be expected to perform with the system.

Since TAG generates competence models only, it can only claim to achieve partial

success in addressing acceptability of peiformance.

Payne and Green (1986) claim that the grammar fits well with performance models

because it defines mapping from tasks to actions. It is true that the task rules could

have performance factors assigned to their components (e.g. time estimates associ-

ated with different types of simple task). However this aspect of TAG has not yet

been exploited, there are as yet no components of TAG relating to performance

which could be tested and render the model in its totality open to falsification.

2.2 .4 ACT*

Anderson's ACT* (1982, 1983) is a special case amongst the models discussed

here as it has been developed primarily to explain and predict human natural

language acquisition and performance. It is however equally valid as a model of

the system user's interaction language representation because it embodies mechan-

isms and cognitive processing constraints which suffice to deal with all of the main

processing phenomena associated with language comprehension and generation, to

the extent that it has been used to drive computer simulations of language acquisi-

tion and use (Anderson 1983). The most obvious distinction between this and the

preceding two models is that, whereas Reisner's Formal Grammar and TAG are

- 88 -

both generative grammars, AC1'* is clearly a process model, since it proposes

mechanisms for representing, storing and processing the information required to

interact with a system.

The main reason for including this model here is because it is an important com-

ponent of one of the few HCI performance models in existence which is the User-

Device Model (UDM) and Cognitive Complexity Theory (CCT) (Kieras & Poison

1985) which will be discussed later. The complexity of ACT* itself, and its gen-

eral validity for other performance models suggest that a fairly detailed description

of its nature is best presented separately. However, some of the applications sug-

gested for ACT* are only realised in CCT and are not those proposed by Anderson

himself.

Classification of the Model

ACT* is not a design model because it proposes no methods for integrating the

characteristics of the user as an information processer into design specifications.

However, ACT* is satisfactory as an evaluation model because it can take pro-

posed user task structures, expressed by production rules and, given an appropriate

mapping process, highlight areas of user difficulty (such as complex rule structures

or decision points) and also predict performance characteristics.

ACT* is categorically a psychological model, however the expressive notation it is

based upon (i.e. production rules) can be used to express, amongst other things, the

interaction with a computer system. What makes ACT* more than just a notation

for writing down the rules applied by human problem solvers and task executors is

that it incorporates a model of the behaviour of the different cognitive components

which are involved in controlling human information processing; these will be dis-

cussed in more detail below.

The nature of the cognitive components of ACT* and of the architectural and

behavioural assumptions, which are based upon extensive empirical evidence

described by Anderson (1983), gives the model strong predictive power. This

power extends to qualitative and quantitative aspects of human language learning

and behaviour. ACT* is capable of generating competence rules in the same way

that Reisner's Formal Grammar can with its production notation, but it is primarily

- 89 -

designed to be a perfor,nance model.

Scope of the Model

Anderson's ACT* is an advanced Human Associative Memory model (HAM)

which can be applied to any kind of human information processing. Anderson, res-

tricts his discussion to language processing because it is assumed to be more

representative of general processing faculties (which may not be the case for speci-

alised faculties such as those of visual processing)and it is readily open to the scru-

tiny of analysis techniques which are typically used to verify or falsify hypotheses

about the nature of the architecture of the human mind.

The processing characteristics of the model are based upon the idea that cognition

is the result of spreading activation from excited nodes. The nodes may represent

perceptual stimuli or internally generated excitatory influences. For the purposes

of prediction and explanation of behaviour it is not necessary to posit the exact

physiological structures that underlie this principle (Pylyshyn, 1984). However it

is implied that the nodes are generally neurons or groups of neurons and that they

are linked by synapses and other neurons which can determine whether the effect

one node has on another is excitatory or inhibitory.

Leaving aside the physical architecture, the functional architecture described by

ACT* is surprisingly simple. The whole cognitive system is considered as operat-

ing on the principles of production rules. In other words these incorporate pro-

cedural knowledge to deal automatically and efficiently with a given set of condi-

tions. Production systems are basically condition/action rules. The number of

conditions is not limited and increases with the specificity of the rule. However,

the number of actions leading from a single production does tend to be limited as

productions have automatic control over behaviour and multiple actions leading

from one production would tend to result in rigid or unnecessarily elaborate

behaviour patterns.

I

- 90 -

A typical production rule might be of the form:

IF it is raining

and I am going out

THEN take an umbrella

A more specific production rule might be:

IF it is raining

and I am going out

and the weather forecast says it will stop raining soon

and I don't want to cany my umbrella

THEN do not take an umbrella

Of course, these examples are of conscious decisions one might make. Production

rules in AC'F* are considered as operating at the unconscious level in, for example,

word recognition. However the structure is the same at what ever level the rule

applies.

The way in which production systems are applied must be controlled since they

must be stored somehow and only a certain number can apply at any one time. A

general framework is proposed by Anderson which identifies the major structural

components of ACT* and their interlinking processes. This framework is illustrat-

ed in figure 2.2.

The framework proposed by Anderson provides a testable, theoretical basis for

ACT*. The basic architecture of ACI'* (which it shares with other production sys-

tems) is as follows:

The Production Memory contains the procedural knowledge of the productions

which can be organised in many ways, for example, according to internal or

external conditions or to goals.

The Declarative Memory stores declarative items of information, such as "a ter-

rier is a type of dog. Items in declarative memory are semantically related to

one another so that, if a subject heard the word 'terrier' in an experiment, he or

she would be likely to be primed (able to respond more rapidly) to the word

'dog'. The Working Memory is a database of symbols or conditions to which

-91-

Figure 2.2

A General Framework for the ACT Production System,

Identifying the Major Structural Components

and their Interlinking Processes

APPLICATION

DECLARATIVE
MEMORY	 MEMORY

STORAGE \	 / MATCH

RETRLEV
	

CUTION

WORKING
MEMORY

ENCODING I	 I PERFORMANCES

OUTSIDE WORLD

productions may apply. The Activation Rules associate the appropriate produc-

tion with the condition symbols in working memory. The Conflict Resolution

Rules decide between competing productions which could equally apply. In

other words, they can specify priorities of different goals that might be satisfied

by each production. There are a number of ways of resolving conflict, some

rules which can be applied are:

The Recency Rule: Choose the production rule that applies to the most recently

entered contents of working memory. The Specfi city Rule: Choose the produc-

tion with the most specific conditions that are satisfied by the situation. The Re-

fractoriness Rule: Do not choose a production that has just fired even though the

- 92 -

conditions are still appropriate.

This architecture together with a number of processing assumptions is described in

some detail by Anderson (1983). The main advantage of this model is that,

although it is broad in the issues it addresses, it also has depth whilst remaining re-

latively simple. The model does not attempt to describe the effects of emotional

state or background noise which may have important effects on the processes it

does cover. Although in it might be useful to include these as general error factors

in a predictive simulation to achieve realistic results, these other psychological fac-

tors are not actually part of the processes that control and carry out cognitive pro-

cessing. To include these factors in a human processing model would consider-

ably increase the complexity of building it. Instead, as Anderson found, it is possi-

ble to observe these phenomena and then, knowing a certain amount about their ef-

fects, to predict how they would interfere with or enhance the performance of the

modelled processes.

One reservation about the processing considerations of ACT* should be included

here. It has been a matter of considerable debate (Kosslyn & Pomerantz, 1977;

Anderson, 1979; Pylyshyn, 1984; Briscoe, 1987; and others) whether it is neces-

sary to posit a variety of types of representation such as declarative, spatial etc (as

Anderson does) in order to model human cognition. Computational models e.g.

Briscoe (1987) do not require these additional constructs and there is no neurophy-

siological evidence for them (Oatley, 1978). In spite of this, Anderson has

presented empirical support for the ACT* predictions of language acquisition and

so the theoretical disputes can be ignored for the purposes of discussion in this

thesis.

Characterisation of the Model

Table 2.5 shows ACT* as being capable of addressing only Simplicity, Compati-

bility and UCTDs amongst the usability principles. On the other hand it lacks any

devices for representing system states so it cannot deal with the other three princi-

ples. However it is interesting to note that in this respect ACT* has greater scope

than Reisner's Formal Grammar and the same power as TAG, even though it is not

explicitly a model for HCI.

-93-

The "Maybe" entries in the UI row of table 2.5 refer to the fact that ACT* pro-

ductions may be used to model the behaviour of the UI itself as well as that of the

user.

The problem with all of these models if they are to be applied to Uls is that they

implicitly rely upon some other specification of the behaviour of the device which

might indicate what the inputs supplied to the model of the user might be and what

the effects of user actions in a given system state might be. If such a specification

is not available then the analysis must assume that the UI is well designed in terms

of what infonnation it gives the user in terms of prompts, error messages, ap-

propriate options, and how it responds to commands in terms of modelessness, un-

doability, and so on. if such features are not well thought out, then carrying out

user modelling would be rather like carrying out a valuation survey on a heap of

rubble.

The model only tackles users, target tasks, and acceptability of performance

amongst the five evaluation factors. Since there are no explicit mechanisms for

representing system applications, such as Payne and Green's (1986) semantic-

syntactic alignment, ACT* will have to be considered inadequate for HCI model-

ling in this area. There is also no direct discussion in the ACT* literature on the

processing and operating advantages, and disadvantages, of the features of dif-

ferent Uls. However ACT* as a generally applicable and detailed model would be

very well suited to making behavioural and performance predictions distinguishing

between different types of interactive style if only they could be suitably represent-

ed for mapping onto the production rule architecture used.

The value of ACT* as an HCI model, when integrated with more purpose built

task (Card et al's GOMS)and device representations will be demonstrated by

Kieras and Poison's (1985) Cognitive Complexity Theory, discussed later in this

chapter.

2.2.5 Goals Operators Methods and Selection-Rules (GOMS)

Card Moran and Newell (1983) produced some seminal work on performance

modelling in HCI. The GOMS family of models is based upon earlier work by the

authors called the Keystroke Level Model (Card et al, 1980) which is based upon

- 94 -

Li

N
.-

.-

.-

U

c12

C.)

C,,

—

I.

.-
'I

=

-	 E-	 -
0	 >..ci)

I-

>

U

-

>1

1

0

U

-

C-

U
fl

I.i U

-

>i -<
	 -'	 -	

U

-I - .	 <C'—'

-95 -

Fitts' Law to predict the speed of error-free performance. The keystroke model

was aimed at predicting performance times of experts carrying Out routine tasks.

The work on GOMS was an advance in sophistication on the simpler keystroke

model, overcoming some of its limitations. It was used to build simulations of

users performing tasks with an interactive system. The GOMS interaction simula-

tions were run in the InterLisp-D environment which is well adapted to simulation

purposes.

Card et a! were amongst the first researchers to attempt to combine observational

data (on how system users carry out tasks with the UI) with an explicit theoretical

model; the Model Human Processor (MHP), which is a process model of human

cognition which, like ACT*, includes performance constraints on processing. The

GOMS family of models (family because there can be in infinite variety of indivi-

dual models which can be expressed at a number of grains of analysis), are

methods for describing the operation of an interface in terms of a state space

which is represented by a goal-stack (goals, subgoals and basic operators or simple

actions to achieve those goals). The combination of the MIHP and a GOMS model

of a UI allows predictive human performance estimates to be derived from a sys-

tem specification. The GOMS family of models is important because of its ability

to make concrete performance predictions, and is relevant, like ACT*, to the work

of Kieras & Polson on CCT.

Classfi cation of the Model

The MHP and the GOMS family of models of system users task execution require

a significant amount of empirical observation of comparable tasks upon which to

base performance estimates for task operators of the UI in question (operators are

equivalent to Payne & Green's (1986) "simple tasks"). They also need a fairly de-

tailed specification of the system functionality from which to derive the goal struc-

tures required to generate an idealised task execution structure. These require-

ments mean that GOMS cannot easily be used to drive design and belongs in the

category of evaluation techniques.

Although GOMS does contain a human information processing model, the MHP,

which accounts for performance characteristics of perception, memory, cognition

and the motor system, the architecture of this model is relatively unsophisticated

-96 -

when compared to those of Anderson (1983) and Barnard (1986). GOMS does

acknowledge the processes of compilation and tuning which occur as skill in-

creases, and the different levels of rules required for competence, but these are not

explicitly accounted for by the model. Consequently GOMS is restricted to ideal-

ised skilled-user modelling and is more an interaction model than a general

psychological model.

The performance predictions derived from applying the processing assumptions to

the specified goal structures are time estimates, with associated error factors,

which account for variability in real-user performance. The fact that the model

generates such predictions means that it can be classed as a perfor,nance model.

But, when a set of tasks has been described, the notation, which in GOMS

represents goal-stacks, can be said to express a pragmatic competence model

which a successful system user might plausibly acquire as part of his or her

representation of how to use the device.

Scope of the Model

The two main components of a predictive GOMS analysis are the MHP and the

empirically based GOMS family of models of task execution with a device. We

will begin our discussion of the scope of the GOMS modelling technique with an

overview of the cognitive processing assumptions made. Figure 2.3 is an outline

of the basic architecture for human information processing assumed by the HMP

which, like ACT* has a number of processing assumptions called "principles of

operation" (see Card et al 1983).

The formulae and parameter values for the cognitive processing mechanisms are

not included in figure 2.3 as there is not space to give them thorough consideration

in this discussion. For more detail on the exact values of the parameters used in

the functions for calculating processing times the reader should refer to Card et al

(1983). These values are not of prime concern here and it will suffice to say that

the predictions generated from the processing functions have been empirically sup-

ported by the research described by the authors. What is of interest here is the

scope of the model with respect to designing and evaluating Uls in general (the

research conducted to verify the predictive power of the GOMS modelling tech-

nique has been, for the most part, directed at text editing activities such as

-97 -

reaching-to-target operations, typing in and replacing text, drawing boxes, getting

in and out of files and file handling).

Figure 2.3
The Basic Architecture for the MHP

From Card, Moran and Newell (1983)

LONG-TERM MEMORY

WORKING MEMORY

VISUAL IMAGE AUDITORY IMAGE
STORE	 STORE

I COGNITWE \

PERCEPTUAL	

PROCESSORSSOR

PROCESSOR

Sensory information flows into Working Memory through the Perceptual Processor.

Working Memory consists of activated chunks in Long-Term Memory. The basic prin-

ciple of operation of the Model Human Processor is the Recognise-Act Cycle of the cogni-

tive Processor. The Motor Processor is set in motion through activation of chunks in

Working Memory.

-98-

The MHIP focuses upon the input and output aspects of processing, reflecting its

concern with performance times which are heavily influenced by input processing

and effector processing. Like the ACT* model, the GOMS architecture distin-

guishes between long- and short-term memories since empirical research has pro-

vided a great deal of evidence on the different roles these play in cognition. How-

ever, the MHP does not differentiate between declarative and production memory

since such a distinction is outside the scope of the GOMS approach and is not

necessary to achieve accurate performance predictions in the laboratory.

The principles of operation described in figure 2.3 are roughly equivalent in their

general function to those of ACT*, but they are not as extensive, they operate at a

higher level of description, and they do not account for the more detailed charac-

teristics of learning such as reinforcement and weakening of different representa-

tions for actions and the compilation and tuning of representations which give rise

to more fluid skilled performance. These differences reflect the aims of the GOMS

modelling technique which is primarily to predict idealised task performance (of

the skilled user) and is not concerned with predicting the areas of performance

where errors axe likely to occur, nor what the nature of those errors will be.

The GOMS family of models are concerned with the execution of task goals in a

hierarchical sequence without accounting for how the alternative competing

methods for achieving them might influence performance. GOMS models assume

that the correct or most suitable method is always selected. This means that users'

mistakes are accounted for only by error factors in the performance predictions.

Inefficient users who fail to choose optimal methods are not effectively dealt with

at all (Grudin & Maclean 1984).

As mentioned above, the GOMS models can be formulated at different levels of

grain of analysis. Card et al (1983) assigned different GOMS models to four lev-

els, although the distinctions between these must be viewed as pragmatic rather

than as a reflection of discrete levels of behavioural organisation. The levels are

referred to, in increasing order of detail, (or decreasing amount of time it takes to

complete operators) as:

(I) The Unit-Task Level

(II) The Functional Level

(III) The Argument Level

-99 -

(IV) The Keystroke Level

Regardless of levels of detail, all GOMS models share the four key components;

Goals, Operators, Methods, and Selection Rules; descriptive features which may

be mediated by different cognitive components depending upon the level of

analysis (for example, a goal at the keystroke level may be procedurally represent-

ed, whereas at the unit-task level it may be conscious and more complex, but the

MHP does not distinguish between the two). The following is an outline of the

definitions given for these four main components of the model by Card et al

(1983):

Goals. (e.g. GOAL: EDIT-MANUSCRIPT): A goal is a symbolic structure that

defines a state of affairs to be achieved, and determines a set of possible methods

by which it can be accomplished. The dynamic function of a goal is to provide a

memory point to which the system (the MHP) can return on failure or error, and

from which information can be obtained about what is desired, what methods are

available and what has already been tried.

Operators. (e.g. GET-NEXT-PAGE) : Operators are elementary perceptual, motor

or cognitive acts whose execution is necessary to change any aspect of the user's

mental state or to affect the task environment. The user's behaviour is ultimately

recordable as a sequence of these operators. A GOMS model does not deal with

any fine structure of concurrent actions. Behaviour is assumed to consist of the

serial execution of these operators. An operator is defined by a specific effect (out-

put) and a specific duration. The operator may take inputs and its output and dura-

tion may be a function of its inputs.

For a specific model, the operators define a grain of analysis (going down to a

more detailed grain of analysis might mean that the operator will be represented as

a goal). In general they embody a mixture of psychological mechanisms and

learned, organised behaviour, the mixture depending upon the level at which the

model is cast. The finer the grain of detail, the more operators embody basic

psychological mechanisms. Coarser grain analysis gives operators reflecting more

the specifics of the task environment, (e.g. keyboard, layout etc).

-100-

Methods (e.g. GOAL: EXECUTE-UNIT-TASK

LOCATE-LINE ...if task

not on current line

MODIFY-TEXT

VERIFY-EDIT)

A method describes a procedure for accomplishing a goal, and is a way for users to

store knowledge about a task. In a GOMS model a method is a conditional se-

quence of goals and operators with conditional tests on contents of immediate

memory and on the state of the task environment Methods are always associated

with a goal, as in the example, and the operators within the method may have tests

associated with them (written in italics as above) so that the sequence above may

involve the LOCATE-LINE operator if the current task requires a move to another

line. Methods become less likely to succeed, the less knowledge or appreciation of

the task environment the user has. This uncertainty is a prime contributor to the

problem solving character of the task; its absence is a characteristic of cognitive

skill.

Methods are learned procedures which the user already has at performance time;

they are not plans that are created during task performance. They constitute one of

the major ways in which familiarity (skill) expresses itself. The particular methods

a user builds up from prior experience, analysis, and instruction, reflect the de-

tailed structure of the task environment. In manuscript editing tasks they reflect

knowledge of the exact sequence of steps required by the editor to accomplish

specific tasks.

Control Structure: Selection Rules (e.g. if the number of lines to the next

modification is less than three, then use the LF-METHOD; else use the QS-

METHOD). Selection rules are all of the form "if X is true of the current task Si-

tuation, then use method M". Selection rules can be derived individually for given

users and for populations of users on the basis of the most common choices in

given circumstances. Style rules can be applied to selection rules to produce varia-

tions in behaviour which will simulate novice or expert styles (however the error

behaviour or failure to complete tasks by novices are not simulated). Selection

rules may be written in the goal stacks or listed separately. Their purpose is to en-

sure that the most appropriate available method to achieve the current goal is

smoothly selected without the occurrence of problem solving activity.

- 101 -

The GOMS goal-stack task descriptions are therefore composed of Goals with as-

sociated Methods which are made up of a series of Operators. Selection Rules can

be used to determine which method should apply if there is more than one, and a

probability of a given method being applied can be incorporated in the simulation

to match the variability of real users' choices of equally valid (if not equally

efficient) methods. The notation itself is rather LISP like, and this is a reflection of

the InterLisp software environment within which the GOMS models were experi-

mentally derived and developed.

From their experiments the authors found that, on the whole, the GOMS technique

predicted users' choice of methods correctly about 80% 90% of the time; and

predicted the actual operators in sequence around 80% 100% of the time. How-

ever the Keystroke Level model was only 50% accurate for operator occurrences.

The GOMS/MHP model made what the authors considered to be reasonably good

time predictions for text modifications; its estimates were within 35% of actual

times achieved by users. In general the evidence suggested that accuracy of the

GOMS technique reduces as the grain of analysis becomes finer.

As stated above, the GUMS technique is not designed to capture the processes and

conditions which give rise to errors, but the GUMS model can be extended to ac-

count for errors causing variations in performance times (which is the main GUMS

prediction which errors effect). The analyst has to calculate the sequences of goals

which will be elicited upon commission of an error and estimate the time taken to

execute them.

With routine errors it should be possible to add a time factor to accommodate their

occurrence, however for non-routine errors such as might occur with less than ex-

pert system users, GOMS formulations tend to become highly inaccurate.

Weaknesses of GUMS include the poor treatment of user errors which are not

qualitatively anticipated by the analysis. There is a great deal of confusion as to

how the appropriate level of model can be determined prior to an evaluation.

There is also uncertainty as to what a unit-task really is (i.e. how does one arrive at

a sensible set of equally complex units of behaviour when they might all be dif-

ferently composed). Selection rules are a poor attempt at modelling the user's or-

ganisation of behaviour, they do not display the elegance of Anderson's competing

productions mechanism, nor do they have the explanatory clarity of the task rules

-102-

of Payne & Green's competence grammar.

Characrerisation of the Model

The Usability Scoping Matrix for GOMS suggests that, for all its detail, the scope

of the GOMS technique is rather limited when compared to others. The only usa-

bility principle it captures is simplicity. Since GOMS does not account for the

knowledge which users may have compatibility is not addressed. However, it is

possible that selection rules for the actual task methods may be empirically derived

from observations of real users, in which case GOMS may be capable of address-

ing UCTDs (hence the "Maybe" entry in the UCTDs column). The only evalua-

tion factors GOMS accounts for are UI, target tasks and acceptability of perfor-

mance. The system application itself is not simulated, nor are the possible states

imperfect users could get into, since only skilled performance is modelled. It is

worth pointing out that the GUMS specifications of users tasks can be seen as

strictly formal in the logical/algebraic sense because it can be run as a computer

simulation.

The GOMS technique only accounts for the cumulative time taken to execute tasks

with system Uls and the operators which will be selected in order to do this. In

this sense it can be said to address simplicity; a more simple system should permit

a given set of tasks to be executed more rapidly, using fewer operations than a

more complex one. The other usability principles are not tackled so adeptly by the

technique. Observability, Consistency and Retrievability principles would only be

addressable via some objective representation of the UI, independent of the user's

view (rule based or task oriented). Such a representation is not part of the GOMS

technique.

The limited scope of GOMS is partly a result of a trade off problem between gen-

erality and specificity which is common to many formalisms. The more precise a

model becomes, the greater its size and complexity, hence the less time there usu-

ally is to cover all of the ground that might be desirable. GOMS is indeed very

precise (regardless of how correct it might be) about the processing characteristics

which underlie skilled performance. However the performance which is being

modelled is not realistic in the sense that it is idealised and error free, and there is

no representation of the actual structures in the users head which might give rise to

-103-

.-

C.,

0

Cl	 =

—

.-

.—

;4_)	 C.,
—
.:

.	 E	 -	 -	 -

2	 2	 2

1

.1

0

U

zI

L

>

--

U

Ccfl

-104-

goal accomplishment. Only the goal hierarchies requiring achievement, together

with the necessary operators, are specified. This approach gives the analyst no

power to determine human learning and error characteristics likely for a given UI

design.

The nature of the system application which underlies necessary features of the UI,

such as response delays, parallel activities, etc, is not accounted for by GOMS.

The empirical evaluations of the models were carried out on editing systems which

have very little application based necessary behaviour, and the GOMS models re-

gard all human actions as sequential, so they could not necessarily account for cer-

tain types of application such as monitoring where users may be able to carry out

more than one task at a time. Since GOMS does not include a model of system

states and show how what the user does affects these states, it cannot be said to ad-

dress application issues.

The MIHP does account for different time characteristics of various types of opera-

tor. A keystroke level GOMS model can differentiate between mouse clicks, typed

commands, pointing actions, looking, and so on. This means that GOMS has the

power to differentiate between systems with different types of UI which may have

different input and output styles.

Target tasks are what GOMS focuses upon; in fact it assumes that these are ideally

performed by a user, so in a sense GOMS addresses the best possible performance

for a given UI. If users can be trained and motivated to some criterion time and

error-rate standard, then a GOMS analysis can be a very powerful and accurate

tool if it can be applied to a specification which is accurate enough and for which

comparable operators can be found from which to derive the basic performance

parameters. once these requirements have been satisfied, it should be possible for

an analyst to derive relatively reliable time predictions for specified tasks and to

determine whether these are acceptable for the system host's purposes. Unfor-

tunately this set of circumstances is quite rare outside the military forces.

2.2.6 Cognitive Complexity Theory

Cognitive Complexity Theory (CCI') (Kieras & Polson, 1985; and Poison &

Kieras, 1984, 1985) is a multi method UI analysis technique. The authors describe

-105-

it as "an approach to the formal analysis of user complexity".

Their approach includes specifications of the user's job-task representation, the
user's goal structure, and the device representation (an extended form of state

transition diagrams, e.g. Arbib, 1969; Parnas, 1969) which is an explicit,

specification of the system behaviour which the user manipulates. The other main

features of this approach are a human information processing model which is

Anderson's ACT production systems model as described in Anderson (1982)

which is used to constrain the user's how-to-do-it knowledge; and procedures for

generating models of the user's goal structure knowledge and mapping this onto a
device hierarchy representation (derived from the transition networks) to highlight

complexity of the representation a user would require to operate the device.

Classification of the Model

The authors of CCF claim that it can "provide a powerful design methodology for

new devices" (Kieras & Poison, 1985) by allowing designers to "develop simulat-

ed prototypes of the device, and a specification of the knowledge required to

operate it, before going on to the development of actual hardware and software

prototypes". This claim is too strong, since CCT does not actually include any

methods for reducing system complexity (e.g. procedures for, reducing the number

of different user-operations; reducing command string length; improving reusabili-

ty with detuning and diffusion of UI functional components).

CCT has components that model both psychological aspects of system user

behaviour and interaction aspects, it also includes the additional system behaviour-

al component. It is probably safer to say that CCT is more targetted at interaction

than at users processing behaviour, however its inclusion of ACT* production sys-

tems processing and cognitive architecture make it a much broader approach than

others described in this chapter. In addition CCT is clearly a performance model

which includes cognitive processing in its scope. It is better able to deal with

representation and learning than GOMS because it uses ACF* instead of the

cruder MHP of Card et al(1983).

-106-

Scope of the Model

The four main components of the CCT approach are, in logical order of applica-

tion, as follows:

(1) A human information processing architecture based upon the ACT* produc-

tion systems model with appropriate theoretical performance assumptions.

(2) A GOMS representation of the production system model of the user's how-

to-do-it knowledge of the task- and device-specific aspects it embodies.

This specification includes goal structures, operators, methods, and selection

rules whose performance is constrained by (1); this is defined as the user's

job-task knowledge representation.

(3) A Generalized State Transition network representation of the device.

(4) A mapping between the device hierarchy derived from (3) and the user's

goal hierarchy derived from (2).

Each of these components will be discussed in order to demonstrate how the CCT

approach works.

(1) Production systems architecture of human information processing

The advantage of using the ACT architecture is its adaptability to all linguistic and

communication tasks, which means that the applicability for CCT will not be con-

strained by inadequacies in its cognitive processing model. This may not be the

true of GOMS (for example the MHP will not deal with naive users because it can-

not predict or explain most learning phenomena).

As with all production systems, CCT uses IF (condition) THEN (action) rules to

describe the appropriate behaviour for all conditions included in the task

specification. This is assumed to model the knowledge that the user has of how to

do the tasks with a device.

(2) Notation for describing user's job-task representation

The GOMS notation, used to represent the user's production rules for job-task

knowledge, has many LISP-like features and expresses production rules easily.

Each production rule includes five terms which are, in order, a name for the rule;

the word IF, the condition(s); the word THEN; and the action(s). An AND func-

-107-

lion is used to specify that all elementary conditions must be satisfied for the pro-

duction to fire. Conditions can be tests for patterns in memory or for states of the

task environment which can be specified in the individual simulation. Variables in

conditions and actions can also be specified in individual simulations.

This notation is used to express both device-dependent and device-independent

knowledge because the user would need both to complete the tasks using the sys-

tem.

Figure 2.4

Examples of Selection Rules in a Job Representation

for Editing a Manuscript

(Journal-article

IF (AND (TEST-MSS manuscript is a new journal article)

(TEST-GOAL type manuscript)

(TEST-GOAL select equipment))

THEN ((ADD-NOTE many revisions will be done)))

(Use-Displaywriter

IF (AND (TEST-GOAL type manuscript)

(TEST-GOAL select equipment)

(TEST-NOTE Many revisions will be done)

(TEST-MSS manuscript is long))

THEN ((ADD-GOAL use Displaywriter)

(ADD-GOAL type new manuscript into Displaywriter)

(DELETE-GOAL select equipment)))

An example of the notation is described in figure 2.4 (from Kieras & Poison, 1985)

which describes the production rules required by a secretary with the task of typing

a clean first draft of a manuscript of a journal article in order to select the

"Displaywriter" editor. The example shows how conditions can be tests for goals

- 108 -

as well as other states, and how actions can be to add or delete goals which will

then be acted upon by other production rules. The notation also includes NOT

conditions (where the production only fires if the specified state is not the case),

and special control productions which ensure that productions do not repeat

indefinitely. For more detail on the nature of the GOMS representation of the pro-

duction system in CCT the reader should refer to Kieras & Poison (1985)

The resulting user's job-task representation, together with an appropriate device

specification, can be run as a computer simulation controlled by the architectural

and processing constraints of the ACT* style human cognitive model. Poison

(1987) reports research on a number of simulations of CCT in which the perfor-

mance, learning and transfer assumptions of the model are experimentally tested.

Although certain processing performance functional assumptions may not be as

good as they could be, the model is, according to its authors, satisfactorily accurate

in all of its areas of prediction.

Figure 2.5

Goal Structure for Secretary

Selecting Device for Editing a Manuscript

EDIT MANUSCRIPT

NEW JOURNAL-
ARTICLE

TYPE MANUSCRIPT

SELECT EQUIPMENT

-109-

Essentially CCT has been shown to yield reliable metrics which "provide a definite

and quantitative characterisation of the user complexity of the device", along with

predicting quantitative aspects of performance. The actual complexity of the

representation is clarified by extracting goal structures for users tasks with the sys-

tem. The goal structure for the Journal-article rule example above might be as il-

lustrated in figure 2.5:

The goal structure for deleting a text string string X using the IBM Displaywriter

might be as shown in figure 2.6:

Figure 2.6

Goal Structure for

Deleting a String of Text

DELETE-STRING X

POSITION CURSOR) 	 (SELECT RANGE

MOVE CURSOR

Kieras and Polson derive such goal structures by examining the GOMS production

rules and noting where goals are asserted, deleted, or tested. The structures are

processed in a depth-first, left-to-right order so that in the delete-string structure

the order of goal fulfilment is; POSITION CURSOR MOVE CURSOR; SELECT

RANGE; DELETE-STRING.

It is possible to evaluate the completed goal structures for their complexity; in-

-110-

creased numbers of goals indicate more production rules which will involve more

processing steps; and increased depth of goal hierarchies means that working

memory, which must hold the currently unsatisfied goals, will be more loaded.

The authors also note that, using the assumptions of the ACT model, the automa-

tion of processing as skill increases will be characterised by increased speed and

ability to deal with more complex goal structures. This is predicted by the model

due to the lessening of working memory involvement as a result of automation,

which means that working memory constraints have a variable effect on perfor-

mance, becoming less severe as skill increases.

The notation described also generates testable predictions about the character of

learning with respect to alternative goal structures and production rules for a given

set of tasks. For example, according to the processing model, a general procedure

learnt by system users for deleting strings on a particular system would be more

difficult to learn, if it required several production rules, than an equivalence of

specific procedures which only required one or two rules each (totalling less than

the general procedure). It would also not lead to high levels of performance as

quickly as the specific rules.

The production rules used in the user task representation model may be written in

many alternative forms in order to produce similar output. Kieras and Polson use

style rules (as do Card et a! 1983) in order to model variations in task approach

between types of individual, particularly for novices who are assumed to go

through steps such as testing goals in working memory, explicitly attending to

feedback, verifying execution each step, and executing only a single control action

in each production.

So the production based user knowledge representation is intended to model the

complexity of the knowledge required to execute some set of tasks using some sort

of device. Kieras and Polson claim that CCT is able to predict learning times, the

generality of knowledge (i.e. how similar it is to device independent knowledge

that a user would have) and actual performance times.

Their work has been criticised however by Foss and De Ridder (1987) on the basis

that they do not adequately capture the structure of knowledge in their assessments

of learning and transfer. The similarities between hierarchies of production rules

- 111 -

which make up goal structures, and which themselves are transferable knowledge,

are not captured by CCT. It merely counts number of new productions required by

a device user rather than the goal and sub-goal structures within which they are

embedded, and how well these reflect existing structures within the user's head. A

new production associated with a high level goal may be more difficult to learn, or

have wider impact upon performance than a low level production.

(3) Representation of device behaviour

The behaviour of a UI can be represented implicitly through the GOMS notation

specification of how to accomplish tasks using the device; the authors call this

how-to-use-it knowledge. Unfortunately having only this type of knowledge

prevents a user from generalizing what is learnt to new situations, and will not per-

mit the user to reconstruct anything which has been learnt and then forgotten, but

system users obviously do generalize and reconstruct what they have learnt, which

implies that they have a how-it-works representation of the device. Norman (1982)

distinguishes such users' representations from ideal representations of how a dev-

ice works. The user's conceptual model of a device is purely a user's meaningful

explanation of the behaviour of the device which may, or may not, be an accurate

representation.

Kieras and Polson use an idealised formal how-it-works representation of the dev-

ice which might be presented to users to improve their understanding of how to use

it. They stipulate that this representation must only include information which is

relevant to the user's task(s). How such information can reliably be identified is

not made clear

The representation can be viewed as a hierarchy of descriptions with each level in

the hierarchy elaborating on the level above. The aspects of the UI that actually

require elaboration may be determined by relating the to-be-explained device

behaviour to the user's goal hierarchies. If the user already has a goal as part of

his or her task representation then no explanation will be necessary (i.e. for

device-independent or previous-device-dependent task knowledge). If the goal is

new or only specific to the new device, then that goal must be described by a

corresponding level in the device hierarchy. If a possible description does not

correspond to a user's goal then it must be omitted.

-112-

Device behaviour is captured by Generalized State Transition Networks (GTNs)

which are graphic representations for finite state machines (finite state machines

are a general formal way of describing systems) and are the selected device

representation notation for CCT. It is from these that suitable device hierarchies

for device behaviour explanation are generated. The device hierarchies are also

used for mappings from the user's goal hierarchies to predict and explain user

difficulties with the device.

GTNs have several advantages over simple transition networks and augmented

transition networks (ATNs) for the purpose of modelling how-it-works

knowledge. Notably, although GTNs are equivalent in power to ATNs (Woods

1970), they include extensions which allow them to simplify representations such

as parameterizable recursion, and use of nested subnetworks (Cockton 1988) and

always ensure that the system is able to make a successful transition, whatever the

conditions that prevail. Nesting, which can occur within actions, conditions and

states of the device, is a particularly useful concept for the how-it-works represen-

tation required by CCT as it permits states and actions that do not concern the user

(i.e. being more concerned with application behaviour) to be ascribed to some

nested subroutine which does not rely on user input. Nesting is also useful for

representing modes of the system which frequently impinge on its behaviour as

perceived by the user.

The components of a GTN are labelled nodes connected by directed arcs which

may be labelled with conditions (usually above) and actions (usually below the

arc). The nodes represent states and the arcs represent transitions between states

(transitions require the conditions, if there are any, to be satisfied ad if they are,

or if there are no conditions, then any actions (there may be none) under the arc

will fire.

Figure 2.7 shows a transition network for deleting a string using the same method

as represented by the goal hierarchy above (POSITION CURSOR; MOVE CUR-

SOR; SELECT RANGE; DELETE-STRING)

The nodes may be expanded if necessary, for example the SELECT START node

may be expanded to show movement and a mouse click if further explanation is

required. As can be seen in the network, the system safely exits from delete mode,

- 113 -

Figure 2.7

State Transition Network for a Delete String Function

Null Target

DELETE
	 Del Key

MODE	
What?
	 START	 What?	

END	
Delete target

even if the target range selected is empty. It should be noted that the GTNs used

by Kieras and Poison are, in fact selective models of UI behaviour, rather than

underlying application state behaviour, and as such have been criticised as inade-

quate simulations of true device behaviour (Green et a! 1988); this point will be

raised again later.

The GTNs derived from a formal analysis of the UI can be simplified, as were the

GOMS production representations, into a device hierarchy, or structure graph.

This graph extracts the "hierarchy of network embeddings" or states and substates

that the system is in while it waits for user input. This hierarchy is the counterpart

of the user's goal hierarchy with the system represented as an available sequence

of options within some task oriented mode.

(4) Mapping between the user's goal hierarchy and the device hierarchy

The final part of the CCT analysis involves mapping between the device hierarchy

and the user's goal hierarchy for each task. This procedure involves drawing arcs

connecting isomorphic nodes in the two hierarchies.

Figure 2.8 shows a mapping between a device hierarchy and a user's goal hierar-

chy for a delete string function (from Kieras & PoIson 1985). The authors claim

RINGX

SELECT RANGE

MOVE CURSOR

[TASK

- 114-

Figure 2.8

Example of a Task-to-Device Mapping Between the Device Hierarchy

and the User's Goal Hierarchy for Delete String

USEWS GOAL HIERARCHY

REVISE DOCUMENT

GET NEXT TASK

DEVICE HIERARCHY

-115-

that the mapping is able to clarify mismatches between the two hierarchies which

would be a source of difficulty for the user. The task-to-device mapping shown in

figure 2.8 is not good because the user's DELETE STRING goal does not map

onto the part of the device structure that one enters upon pressing the delete key.

As the authors point out, from the hierarchies it is demonstrated that, if the user

has the goal of deleting a string, the first subgoal is to move the cursor to the be-

ginning of the string. Then the user can press the DELETE key to enter the delete

mode of the device.

This means that if we accept the goal- and device hierarchies and the mapping pro-

cedure we can accept the authors claim that pressing the DELETE key does not

correspond to the assertion of a deletion goal. Instead this key-press is deferred

until until the user has positioned the cursor. There would be extra strain on work-

ing memory, which would have to process the cursor moving activity before the

delete goal could be satisfied. This would be sufficient to allow the model to

predict more user difficulties with this structure than with a system which avoided

this problem.

General Utility of CCT

The CCI' analysis produces cognitive complexity assessments based upon the

specifications built up of the user's knowledge and the device behaviour. Kieras &

Polson (1982) state that the complexity of a device is determined by the complexi-

ty of the knowledge required to operate the device. They state that the complexity

of a device is given by:

(1) The complexity of the user's task representation, and the learning, memory

and processing capacity demands implied by the task representation.

(2) The number of device-dependent functions, which are not part of a user's

initial task representation, and the difficulty of acquiring them.

-

(3) The ease with which a user can acquire how-it -works knowledge.

These aspects of knowledge and behaviour are what CCT aims to model and

predict for the designer. Novice and expert users can be modelled with appropri-

ate empirically based assumptions about their processing characteristics which will

allow the areas of complexity of a prototype UI to be identified. The prototype can

then be altered to reduce the complexity of its operating rules.

-116-

The device-to-task mappings generated by the approach mean that CCT may fulfil

three different roles for the UT designer. Kieras and Poison claim that it can pro-

vide quantitative performance predictions for training time, transfer, and produc-

tivity which can be used as early feedback into the design prototyping. They also

claim that it can identify and explain problems arising because of poor mappings

between users' goal structures and the device behaviour, and finally, if the device

cannot be redesigned, the CCT device hierarchy representations can be used as a

basis for training material to enhance users' how-it-works knowledge of the device

which should improve their ability to learn and use the device.

Characterisation of the Model

Since the CC'F approach is a synthesis of three modelling approaches, it is not

surprising that it addresses more issues than any of the other techniques discussed

in this chapter. The breadth of the approach means that, particularly for the AC'F*

based processing architecture and the GTN representations, there are still consider-

able refinements to be made both in terms of theoretical assumptions (such as the

characteristics of working memory) and in terms of methods used to apply CCT

(such as the method for nesting GTN device representations). However, these

types of problems are less criticisms of the approach than indications of require-

ments for further work.

The table shows that, although CCT may claim to incorporate a device model, it

does not in fact qualify as dealing with application issues. This is because the dev-

ice model is based on GTNs which are selective representations of the UI or virtual

machine behaviour(Green et al 1988). Kieras and Poison make no attempt to en-

sure that their device model is an accurate and formally correct representation of

the whole application's behaviour; this would involve a great deal of additional ef-

fort and they are not interested in the formal properties of the whole system. How-

ever this means that the model is never capable of accurately predicting the

system's behaviour, and perhaps deals only approximately with UT behaviour.

CCT deals with all the evaluation factors relating to simplicity except the system

application, although this does not imply that it does so perfectly. It models the

simplicity of user representations, system UI behaviour, target tasks, and makes

performance predictions which could be compared with specifications of accepta-

Li

-117—

13,

>4	 >4	 >4.

U

13,
-	 133	 133

131
>4	 >4	 >4

c,
'-
i

133	 133

13,	 >	 >4

.-

Li

13,

13,	
U

-	 ..-'
-

E	 :13

0	 4)	 4)	 4)-

>	 >1	 >4
I-
4)

>

132
13)

>

a
0

0

4,
U

:13	 133
13)	 4)	 43	 4)-

.!	

>	 >	 >4

crj	 I..
13)

4)
U

:1,

12	 --
132	 0

4,	 :-	 -

-

1	 I-
13)	 I4

-118-

bility. The simplicity of the UI is implicitly dealt with, as in GOMS, because the

physical actions required to operate the device are accounted for in the simulation

time predictions (so, for example, the model could predict that pointing at a menu

item would be simpler than typing in a command string).

Compatibility with respect to users could be addressed by the production system

which can (in theory) simulate characteristics resulting from lack of experience

with concepts and procedures. However this aspect of knowledge is not explicitly

dealt with by CCT which does not account for the effects of users' having or lack-

ing certain concepts or their knowledge and understanding of interaction command

names. CCT concentrates more on the structure of tasks in terms of goal hierar-

chies and deals much more closely with UCTDs. UCTDs are captured by the

user's representation of target tasks (which is the user's goal-hierarchy) and the

mappings between this and the device-structure.

CCI' does rather better than the other HCI techniques on the more formalizable

usability principles. It can show whether the information required to perform a

target task is observable by including it in the GTN state representation in the form

of a component of a state node and a user's production condition. Unfortunately it

does not address whether the information really is the kind that the user needs

since there is no way of telling this from a user simulation which always assumes

that processing is sensitive to the conditions arbitrarily included in the productions.

In other words, since the look and feel of the system are not captured by the model,

it is difficult to simulate the true conditions which the user relies upon in process-

ing. Furthermore the GTN nesting may hide important information about system

behaviour which could ultimately influence user behaviour. True observability of

the application would be very difficult to determine without having more rigorous

procedures for deciding what aspects of the device do and do not concern the user.

It would be unlikely that valid performance predictions based upon assumptions

about the visibility of data could be generated without augmenting the perceptual

processing components of the human information model to deal with the relation-

ship between information presentation on screen and human perceptual processes.

Consistency of the UI with respect to the target tasks can be captured easily by the

user production system by the rules for acting with the device. If a condition

which represents a command name appears with other conditions and different ac-

-119-

tions in other production rules, then the commands are clearly inconsistent the

consequence would be predicted increases in user learning and performance times.

State transition networks in CCT are not used to model application consistency be-

cause they only relate to the UI.

The use of the GTNs allows CCT to model the UI states and the actions possible

within them. This means that it should be able to address to some extent whether

the virtual system really behaves in the manner that the command names suggest it

will, however such issues would be difficult to tackle without having more exten-

sive GTNs modelling more than a simplified task oriented UI behaviour of the

device. Therefore the treatment of consistency is perhaps partial, but it is certainly

possible with CCT.

Finally, with respect to retrievability, CCI' does have the potential to show that

the interaction simulation can in the course of the target tasks can get the device

into undesirable states from which it is difficult to exit. This can be shown using

the mappings between the device structure and the user's goal hierarchy. This is

not a reliable feature of CCT since the incomplete device specifications advocated

would be likely to miss potential irretrievability which may relate more to the na-

ture of the application's necessary functionality than to UI software. Since CCT

only addresses idealised task executions, irretrievability could not be simulated as

part of a non-perfect or naive users' performance with the device.

2.2.7 Interacting Cognitive Subsystems

Barnard (1986) States that there is a trade off between the depth and breadth with

which user models are generally expanded. Consequently models tend to concen-

trate on certain aspects of the human processor, leaning either towards the cogni-

tive, general problem solving aspects of behaviour or towards the more rigid facul-

ties of memoly, perception, attention and so on. Further, many models are restrict-

ed to the controlled conditions of the Iaboratoiy. "Move outside the scope of the

defined paradigm and predictive power is lost - either because the theory is inaccu-

rate or because it is unclear how a prediction should be arrived at in the novel con-

text." This is a common complaint about theories that are based upon the objec-

tive rule structure of the system. Barnard criticises this selectiveness and his

model, Interacting Cognitive Subsystems (ICS), is an attempt at unifying the dif-

-120-

ferent strands of empirical evidence with a theory that takes a holistic view of the

brain as an information processor.

This model is not intended to take over from all the other different types of ap-

proaches. Rather it is designed to guide the selection of an appropriate type of

model to apply in any particular task situation. As Barnard states, it is commonly

thought that different tasks place different demands on the system user. Hence dif-

ferent mental processes will be important in these situations. The problem is de-

ciding what kind of model is most appropriate, or which model concentrates on

those aspects of the user which are most involved in the task in question. In addi-

tion the model chosen should be capable of taking into account the "knowledge-

based processes which construct and manipulate the content of mental representa-

tions of meaningful material". The goals set by Barnard are ambitious. Thus, it is

implied that a great deal of future work remains to satisfy them.

Research so far has uncovered a great deal of information regarding the quantita-

tive and qualitative differences in user performance in different situations. To try

to capture this richness of observed behaviour, Barnard has tried to adopt a broader

approach, sacrificing specification in depth and concentrating on a framework to

guide selection or design of more specific models which might be applicable. ICS

specifies a "distributed processing architecture for human perception, cognition,

and action". The nature and properties of the mental representations are specified

together with the actual processes that transform one kind of mental representation

into another.

Classification of the Model

Like the BIM (Morton et al 1979) Barnard's (1986) ICS reflects growing concern

about the potential problem of not knowing what will be the most appropriate

analytical HCI approach for a given design situation. ICS is intended to provide

"some principled basis for knowing which model is likely to be the most appropri-

ate for which set of circumstances". Therefore ICS cannot be classed as a design

or an evaluative technique, although it is intended to support design and evaluation

of Uls. ICS, like ACT* is presented as a model that could have implications in

fields other than HCI, such as foreign language learning.

- 121 -

ICS is primarily a sophisticated psychological model of a production system archi-

tecture and as such aims to simulate the same processes as do the ACT* architec-

ture and the MHP architecture represented in figures 2.2 and 2.3. However Bar-

nard adds further organisation to the model by assuming that all human informa-

tion processing, for all faculties, comes about as the result of the interplay between

a number of processing "functionally independent subsystems" which cover per-

ception, cognition and action, and which communicate over a data network. This

psychological model was used to predict some of the problems users had with a

specified computer dialogue language (Barnard 1985).

The model is clearly a process model which is capable of generating qualitative

performance predictions together with detailed predictions about the characteris-

tics of learning and behaviour of system users. For this reason it is different from

the other performance models discussed in this chapter because the focus is not on

predicting idealised performance characteristics only. At present there exist no

models which give a satisfactory account of all aspects of performance. However

ICS would be a contender for such status if it were augmented to include explicit

processing parameters for the mechanisms involved in the architecture.

Scope of the Model

The framework proposed by Barnard consists of a collection of functionally in-

dependent subsystems. Each of these has constituent secondary processes that

operate within what Barnard describes as larger configurations of cognitive

resources. Each subsystem deals with a different type of representation of infor-

mation, e.g. acoustic, propositional or limbic, enabling the overall system to en-

code input, make sense of it, and generate a response to it. The processes must

operate in a co-ordinated manner within these configurations. Co-ordination is

achieved by communication via the data network which allows the transmission of

codes of output from the subsystems. Each subsystem is able to accept certain

codes only and can recode information received so that it will be communicable to

other subsystems. In this way sensory information can be translated via a series of

subsystems into semantic information, and semantic processing can lead to motor

(physical) output.

Figure 2.9 gives an overview of the architecture proposed in the ICS framework.

LIM—i. MOT (HANC
LIM—, MOT (ARM)
Copy LIM

;L)-

VIS OBI
VIS - IMPLIC
Copy VIS

-122-

Figure 2.9

An Architecture for Perception, Cognition and Action

(from Barnard 1985)

AccwUc iu*d

Copy AC
AC -. MPI.
AC -. IMPLIC

MPL image record

ThAT TUE ThEORY CLkTh4ED WAS WRONG I
' L .'

Copy MPL
MPL -, ART
MPL - PROP

AriWa	 rord
or claimed was I.

Copy ART
ART -+ MOT(SP)
ART - MOTYP)

Propositional image record

(P2 & P1)(T'4 & P5)) (P6(1'7 & P

PROP -+ MPI.
PROP -+ IMPLIC
PROP - OBI

network

Limb rord
Iconic record

Figure 2.10 is a more detailed picture of the structure of an individual subsystem.

-123-

A brief description of this subsystem architecture is as follows: Each subsystem

incorporates secondary processes that transform the input information in a mental

representation into an output representation. These processes embody procedural

knowledge, as do the hypothesised processes in the ACT* and MHP architectures

described earlier. Procedural knowledge enables a system to carry out useful

transformations in information processing, and Barnard points out that it can gen-

erally only be expressed by its application, being automatic and fixed in nature. In

addition each subsystem includes an image record. An episodic trace of represen-

tations input to that subsystem is created in this record via a primary copy process.

The actual data undergoing recoding by the secondary processes may be from

direct input to the subsystem or from information held in its image record. Bar-

nard does not include a general purpose working memory, shared by the different

resources, and this is one of the major differences between this and other architec-

tures (Anderson is committed to general purpose structures and processes; Ander-

son 1983 pp 3 - 5). Barnard also rejects any requirement for a central executive

controlling the pattern of activity. The subsystem framework is self controlling by

virtue of the data network which allows communication and coordination to take

place between the different subsystems. However he does contemplate the possi-

bility of the existence of some general purpose faculties for higher level processing

such as planning.

The features common to all subsystems are shown in figure 2.10. The image

record is an episodic memory structure which has its main input from the primary

copy. The primary copy creates a record of all input to the subsystem from the

data network which is then represented in the image record. The secondary

processes can then act upon either the data stored in the image record or on direct

input from the data network. This arrangement allows the subsystem to be flexible

in its processing because the image record acts as a buffer store of data on which it

can operate.

The record code I represents the particular code to which the subsystem is sensi-

tive. The information encoded in it can be recoded by the secondary processes

into codes which will be picked up by other subsystems. The secondary processes

can be thought of as "functionally independent production systems" (a production

system is a set of rules of the IF, THEN variety).

-124-

Figure 2.10
A Structure for Cognitive Subsystems

IMAGE RECORD (Code I)

Recovery from Record Code I 	
Code I

p-I

-c
0

L)
4-

Li
GJ

PRIMARY
COPY i

SECONDARY

Code I —'Code J

Code r —'-Code K
Code I —'Code L

Code I —a.-Code M

Code J

Code K

Code L
Code M

Information processing principles are applied to constrain the operation of a sub-

system. Secondary processes can, for example, only process one data stream at a

time. This inflexibility can be compensated for somewhat by the buffer arrange-

ment of the image record, but the model would assert, therefore, that in a dichotic

listening task, a listener would only be able to represent the lexical content of one

of the speeches.

The outcome of having the primary copy produce a record (the image record) of

all input to a particular subsystem is that the secondary processes may operate on

either direct input or in information in the image record. This parallelism gives the

ICS three significant processing properties:

1. Two modes of processing (i) secondary processes directly recode input to the

subsystem (ii) buffered processing, in which a secondary process operates in
series with the primary copy process.

Buffered processing is more robust and is associated with conscious attention

to processing activity in the relevant domain.

2. Memory retrieval from the image record permits recoding, by the same pro-

cess resources, from past input as well as from one of the forms of immediate

processing.

3. Learning can be explained by the model. Since the primary copy process is

-125-

organised in parallel with (instead of after) the secondary copy processes, it is

able to represent an image record for which there are as yet no appropriate

recoding procedures. The main function of this episodic memory record is to

provide the basic data from which the appropriate procedures develop.

Once the secondary processes have recoded the information it is passed back out

into the data network. Any data that passes into the overall system is thus pro-

cessed in different ways to varying degrees of abstraction by a set of modular sys-

tems which are functionally independent of each other but which share a commun-

ication network and have many features in common.

The ICS framework has been shown by Barnard to predict various difficulties

which users experience in HCL ICS does not generate quantitative predictions be-

cause it does not contain any processing parameters at present. Instead it predicts

qualitative characteristics in behaviour and differences between behaviour given

different processing demands in learning and using interaction languages. The

general implication is that the nature of the errors made by users reflects that of the

subsystems from which they originate. Various experiments were designed by

Barnard to highlight failures in particular subsystems and the predictions made by

the model were validated. There is not space here to go into detail on the addition-

al assumptions which give the model some of its strength. These are described at

some length in Barnard (1987).

The ICS framework does assume the existence of certain general resources such as

long term memory which can be drawn upon by the subsystems in this framework,

particularly in the processes that translate back and forth between the propositional

and the implicational subsystems. These general resources are assumed to be ca-

pable of planning and organising high level information. This arrangement

perhaps leaves something to be desired. The model does not adequately describe

or explain the precise nature of the organising mechanisms which involve proposi-

tional complexes which can be manipulated in the light of prior experience.

The implicational subsystem is the most abstract and refined data processor and is

required to process information in a much more flexible manner than the other sub-

systems as it must govern the flexible goal directed behaviour of the whole system.

Long term memory is used to draw similarities between past and present situa-

-126-

tions, problem solving heuristics are applied, goals are held in mind and behaviour

is planned and structured. This arrangement is necessary for the simplicity of the

model. It is difficult to conceive of a modular implicational system being capable

of carrying out all of these functions whilst maintaining the simple structure of all

subsystems as shown in figure 2.9.

ICS refers to the interplay between the propositional and implicational subsystems.

This is proposed as being the means by which the overall system can organise the

processed data available to it. However no formal structure for this mechanism is

offered as it could imply the existence of a control structure of some sort, which is

precisely what ICS seeks to avoid. In fact ICS is not committed to any particular

theory of speech perception, parsing or inference. It is more concerned with the

organisation of processing resources than with the actual nature of the mechanisms

involved.

The non-specificity (and non-formal character) of ICS means that mechanisms

which determine how procedures are generated from buffered episodic memory

are generated. It can be assumed that production composition, proceduralisation

and tuning processes act to bring about learning. ICS does not seek to address the

basic mechanistic properties of the cognitive systems. It is targetted at explaining

the qualitative aspects of human information processing which underlie learning

and processing difficulty such as often occur with computer users.

On the other hand, requirements for higher level explanation of information input

and output processing seem to be satisfied by ICS. The more task oriented view of

the characteristics of behaviour which reflect more generalized processing faculties

(as described by Fodor 1983) are not accounted for in any detail.

The limitation of ICS is that, as a framework, it cannot do more than indicate the

level at which the information input and output processing problems are likely to

occur. In this sense it has achieved what it set out to do and, as Barnard admits,

more detailed models are required to sort out the precise nature of processing and

the way in which it is coordinated and how precisely learning is thought to occur,

and what effects this has on performance.

-127-

Characterisation of the Model

Since ICS involves only one component; an architecture for human processing, as

opposed to the multi component modelling approach of CCT, it is not surprising

that it covers only a small part of the Usability Scoping Matrix. It does not ac-

count for features of the device or the type of UI which will affect users.

For the above reason, ICS does not tackle the principles of observability, con-

sistency or retrievability. Nor does it address the evaluation factor system applica-

tion The model is further restricted in that the ICS architecture does not elucidate

the more generalized aspects of processing involved in such activities as planning

and organisation. This means that task related behaviour of users cannot be prop-

erly addressed, without extending the architecture to deal with higher level

behavioural organisation such as plans, goals, schemas and so on, so that the prin-

ciple of UC7'Ds and the evaluation factor target tasks are not dealt with.

UI type is dealt with to a certain extent. ICS tackles performance characteristics

which would be altered by use of menus as opposed to commands. ICS model

processes are also sensitive to input and required output features, which would be

different depending upon the Type of UI being used. Other characteristics such as

direct manipulation, multi-tasking and so on could be addressed because the

framework is not constrained by performance assumptions based upon a limited

set of cognitive and behavioural components (other process models are constrained

by such assumptions, for example CC!' would be unable to deal with multi-tasking

because its processing parameters are based upon single contexts, ICS does not as-

sume any parameters, so its non specificity gives it greater generality).

As an evaluation tool, then, the ICS framework can only tackle the qualitative as-

pects of peiformance relating to the principles of simplicity and compatibility. It

can represent the complexity of the rules required to interpret incoming informa-

tion to the cognitive system, and of the rules required to produce competent output.

It also contains mapping procedures to predict mismatches between users' existing

knowledge and the U's presentation of output or expectations for input.

The explicit aim of Barnard is not to produce an account of some specific com-

ponent of mental life such as short-term-memory, nor is it to produce predictions

. rJ:j

—

-128-

•1..

U

-I

)	 .-
-

—

-S
.-
-

0
I)

—
.-

	

fl	 cn

3.

>

CI

>5.

0•

U

--•,n

	

V	 —t..

.I.
I-'.--

-129-

relating to performance under special and artificial circumstances. ICS is meant to

be completely general; a basis for any kind of future model, be it for HCI or other

applications. It is assumed that ICS should be integrated with or used to select oth-

er models for whatever application is appropriate.

The architecture's treatment of the human characteristics which underlie perfor-

mance is meant to be generalizable, so that the principles of simplicity and con-

sistency would be equally well dealt with by the model whatever the type of user,

system application, UI type, and target tasks involved. ICS predicts what charac-

teristics of an interaction language make it simple for users and compatible with

their existing linguistic knowledge. It generates qualitative predictions about per-

ception, cognition and action in learning and performance, unlike other process

models which always assume special circumstances, such as training, or error free

performance, and the model is clearly open to augmentation.

The mathx characterisation implies that ICS would have to rely on other models or

specifications if it were to be applicable as a design or evaluation aid in its present

state. This implication has, in fact, received some support since Barnard et al

(1986) built and evaluated an expert system design aid based upon ICS. They

found that although the system generated useful predictions, it appeared to be hard

to use without considerable psychological expertise. The problem was that the ES

required a great deal of information requiring judgements based upon "implicit ap-

proximation" to be made by the system designer about certain characteristics of

the device upon which to base the ICS predictions. The information requests were

formulated in such a way that it was hard to see how a non psychologist would be

able to give valid responses. An improvement would be to have the designer use a

more straight forward device specification and augment the ICS model to include

procedures which would enable it to derive its required input from that

specification.

2.2.8 Command Language Grammar

The Command Language Grammar (CLG) is used to specify the dialogue corn-

ponent and screen layout of Uls from a top-down perspective. It grew out of early

work on the GOMS modelling approach (Card Moran & Newell 1976) which takes

-130-

a similar approach to the task of user modelling. CLG uses a task description to

convey Goals, it describes both operators and methods but omits selection rules,

though Moran admits these should be included.

CLG is based upon the linguistic view of system architectures of which Coutaz

(1989) provides a useful review, where dialogue is separated from application ena-

bling the interaction part of a system to deal, as it were with an abstract system,

without the dialogue being committed to a particular view of the application

software underlying the interface. This feature has interesting implications for its

scope.

GOMS models can be described at different levels on the basis of what are taken

to be the basic units of analysis. Similarly, CLG has a notion of levels such that it

redescribes the interaction in terms of the tasks, semantics, syntax and interactions,

each level aimed at highlighting different aspects of the structure of dialogue. The

GOMS levels can be thought of as differing in the time-span of their average

operators. However there are certain aspects of CLG which cannot be described in

terms of timing (e.g.the Semantic Level). So that, in fact CLG and GOMS have

rather different concepts in mind when they talk of levels. Indeed the term 'level'

should always be used with caution when referring to user modelling. Finally,

there is no conceptual model in GOMS, it is a pure performance model, only

representing the knowledge required to execute tasks. CLG may be an improve-

ment in this sense since, although it is strongly performance oriented, it does try to

provide a limited semantic analysis to rationalise the performance.

Classification of the Model

CLG is a UI design technique (Moran actually refers to it as a "design representa-

tion" which can assist UI designers) which takes a top-down approach. In this

sense it resembles functional systems design methods such as Yourdon and

Constantine's Structured Design (1978) which rely throughout the design cycle on

complete and increasingly detailed, specifications of the system. The early

specifications are very high level with detail about possible implementations left

unspecified this approach affords the designer freedom to organise general struc-

ture before going on to work out sub-structures functionality and implementation

solutions.

- 131 -

In the same way CLG first focuses on what tasks the UI must support and then

goes on to address how these tasks will be organised and in detail in the UI. How-

ever the focus of CLG means that implementation issues are not explicitly dealt

with. The method focuses on UI functionality, but not on how that functionality

will be supplied by the software.

The approach does not incorporate an explicit psychological model of the user,

rather the structure of interaction being designed for the UI is modelled in a

number of ways which would be salient to a user, reflecting the different ways and

levels in which the author assumes human knowledge is organised. This makes

CLG a psychologically sensitive interaction model of the UI which expresses

features of a user representation of the interaction.

Figure 2.11

Components of CLG Description

and Levels Within Each Component

Conceptual Component:
	

Task Level

Semantic Level

Communication Component:
	

Syntactic Level

Interaction Level

Physical Component:
	

(Spatial Layout Level)

(Device Level)

CLG has no process model of the user, so it cannot be considered to be a perfor-

mance model as can GOMS. On the other hand it can be seen as a competence

grammar but one which focuses on the UI rather than the user. This may appear to

be an odd concept, but Moran (1981) explicitly states that as a design tool CLG

must be "extensive enough to cover all existing command languages, plus all con-

ceivable extensions to them". In other words CLG aims to fulfil the role of a corn-

petence grammar which will constrain all possible interaction languages which a

-132-

designer may generate for the UI; hence its name Command Language Grammar.

Scope of the Model

CLG is notable for its exhaustive approach to the problem of tackling aspects of

the structure of the interaction. As stated above, the approach requires a complete

UI specification at every stage of the design cycle, starting with the most general

and working down to the most detailed level. The system interface is described in

terms of three distinct components each having two associated levels of descrip-

tion as shown in figure 2.11.

The levels of interest here are the Task, Semantic, Syntactic and Interaction levels.

The last two levels are more concerned with the physical, ergonomic aspects of the

interface, and are not fully described by Moran (1981). In this discussion, there-

fore, we focus on the psychological, cognitive and knowledge structuring aspects

of the interface.

The purpose of the Level structure of CLG is to separate out the conceptual model
of a system from its command language and to show the relationship between

them.

Thus Moran hopes that, using this analysis, it should be a fairly straightforward

task to generate a conceptual user model from task analysis specifications. The

levels of analysis then map onto each other using a set of more or less explicit

rules (see Moran 1981). In the case of mapping between the Syntactic Level and

the Interaction Level these rules are quite formal and precise. The process of map-

ping from one level to another in sequence results in a non-random approach to the

specification of the command language and dialogue conventions, with respect to

human factors considerations.

In his paper Moran (1978) then goes on to give an example of the application of

CLG to a "toy" message-file handling system called EG. Although the system

itself is extremely simple, the description using CLG is very lengthy, as a result of

its redescription at four different levels. This example is a good indication of the

need for models that can be developed into computer supported toolldts. The

amount of data generated by the analysis of even a very simple system is large. A

-133-

full-scale CLG analysis of a real, more complex system would require an amount

of effort beyond the capabilities of unassisted human analysts. A brief overview of

the steps in the procedure for applying a CLG approach to UI design is as follows.

1. Moran recommends that the best method of approach is to begin by writing infor-

mal descriptions initially and then to formalize the parts of the descriptions as

necessary. He also states that symbols should be generated on demand as the

description requires them rather than trying to anticipate their need.

2. CLG tackles formalization by categorising the elements at each level according to

their nature as described in figure 2.12. The elements of interaction are specified

using a LISP-like pseudo-code, the idea being that this encourages the analyst to

specify things precisely and unambiguously. All levels are described using this

code which Moran claims has formal specification powers. However the code is

curious because, when describing operations and methods, it mixes both declara-

tive and imperative statements (the former type generally preceding the latter).

Entities are the elements upon which the rules at each level of description operate,

for example, at the task level a file is an entity, and at the semantic level, where the

system with which the task is to be executed is considered, the system, messages,

directories, etc are all entities. In addition, each level includes descriptions of the

organised activities required to achieve certain goals or results. Operations, com-

mands and rules are specified before describing the methods, which are comprised

of sequences of specified operations, at each level (except the task level) for the

purpose of specifying the meaning of symbols for more detailed action descrip-

tions. The Task Level is not required to specify methods as these are not part of

the task itself. Nor does the Task Level make any assumptions about the specific

features of the system.

Examples of notated task elements relating to the "EG system" specification

(Moran 1981) are as follows:

-134-

Figure 2.12

Levels of Description of CLG

with Elements at Each Level

Task Level Description

Semantic Level Description

Syntactic Level Description

Interaction Level Description

Entities

Tasks

Conceptual Entities

Conceptual Operations

Conceptual Methods

Entities

Commands to Enter EG CONTEXT

Commands in EG CONTEXT

Methods

Rules for Commands

Rules for Arguments

Methods

An Entity

MESSAGE = (AN ENTITY

REPRESENTS (A SEND-MESSAGE)

NAME = "Message"

AGE = (ONE-OF: OLD, NEW)

(* A MESSAGE has a Header and a Body.

The Header contains the fields To, From, Date, Time,

and Subject.

The Body contains arbitrary text.)

(* The AGE is a time-dependent mark: see MAILBOX))

-135-

An Operation

DELETE = (A SYSTEM OPERATION

OBJECT = (A PARAMETER

VALUE = (A MESSAGE))

(* The OBJECT is removed from MAILBOX and its

SUMMARY is removed from DIRECTORY

A Method (from the semantic level)

SEM-M4a = A SEMANTIC-METhOD

FOR GET-INFORMATION

DO (SEQ: (START EG-SYSTEM)

(SHOW DIRECTORY)

(LOOK AT DIRECTORY FOR (A MESSAGE))

(SHOW (THE RESULT OF LOOK))

(DELETE (THE RESULT OF LOOK))

(STOP EG-SYSTEM)

In addition to the LISP-like specifications of entities operations and methods the

description makes use of hierarchies of tasks and of syntax to clarify the structure

of the procedures used in the interaction. Such hierarchies are rather like the goal

structures used in GOMS (Card et a11983). Each node in the tree represents the

goal of some activity or operation, and the graph is processed bottom first left-to-

right. Also, the interaction constituents are composed into interaction trees in

order to describe interactions. Using these methods the interface of EG can be

examined from many perspectives, each on having the capacity to reveal incon-

sistencies and complexity.

The rationale for having four levels of description is that the designer is being

encouraged to base the UI design around a user's conceptual model of the tasks (as

opposed to the designer's model). The initial task level specification is reformu-

lated through a number of explicit levels because the user's conceptual model is

assumed to be multi level also. Moran states that users organise knowledge about

tasks at a number of levels which may be general task structures, right down to

detailed representations of orders of key presses. They need knowledge at all these

-136-

levels before they can complete tasks using a device such as EG, so the UT must

support and reflect this knowledge. The best way of ensuring that this is what hap-

pens is to maintain the user conceptual model right from the high-level early

specification through to the detailed specification of the actual command-name and

structure specification.

3. The purpose of each level of description is as follows:

The Task Level represents the purpose of a system by enumerating the tasks it is

supposed to do. It is more than an abstract task analysis as it is dependent on the

system and shows how the system fits into the task environment. Tasks are organ-

ised in hierarchies with base tasks being at the lowest level. Base tasks involve

automatic short bursts of activity in general. Moran states that when the other lev-

els refer back to the Task Level for a set of criterion tasks (which must include the

whole task structure) the most likely level, in the task hierarchy, to be useful will

be the base task level since more commonalities between tasks will be highlighted.

Prior to this stage in the design a task allocation and task support analysis would

be carried out.

The Semantic Level adds to the conceptual model that the user brings to the sys-

tem those concepts embodied in the system. It defines, in an abstract way, the

functional capability of the system and explains them in the simplest way possible.

Once the concepts have been enumerated at this level, the analyst then has a set of

semantic "primitives" that can be used to define the meaning of objects at the Syn-

tactic LeveL The purpose of the Semantic Level is to explain the functions of the

system in as simple a way as possible. Complexity here refers to how closely the

Semantic Level concepts are matched to the user's prior concepts (to determine

complexity would require some empirical analysis of potential user's concepts).

The Syntactic Level is concerned with how the system operations get evoked. It

focuses on the relationship between what the system does and what the user must

do, or say to get it done. The purpose here is to examine the efficacy of the user's

control of the system.

The elements at this level are, according to Moran, the building blocks from which

all command languages can be built. Generative rules are applied to the

-137-

specification to produce valid interaction structures. The communication dialogue

between user and system is structured in such a way as to specify "what operators

can be evoked when (commands and contexts; contexts are used to capture the

kind of state dependent information represented in the GTNs used by Kieras and

Poison in CCT), when and how entities are to be referred to (arguments and

descriptors), what information will be remembered during the course of the dialo-

gue (state variables), and what information the system will make available to the

user and when (display areas). The Syntactic Level also specifies how the system

operations axe to be packaged for the user".

The syntactic level preserves the logic of the semantic methods and enables the

analyst to structure interactions, system responses and side effects in such a way as

to capitalise on the structure of the users tasks, for example if a particular action A

in a semantic method is always followed by another action B, the analyst can

specify a command at the syntactic level which elicits A then B, without the user

having to type in a second command.

The notion of command context is used at this level to represent implicit modality

of a system, and the effects and side effects of commands can also be captured.

Moran claims that these devices give CLG the ability to deal with device

behaviour and the effects of states. Unfortunately this claim is not substantiated

by any attempts at proving the variety and consistency of the specification.

The Interaction Level has the aim of identifying which procedures enable syntac-

tic elemnts to be interpreted by the the system but not the order in which the vari-

ous parts of commands are specified; this is done at the Syntactic LeveL The basic

Interaction Level constituent is the specification of a syntactic element. The pre-

cise actions required to specify commands and arguments are identified.

The interaction level is structured in terms of the syntactic hierarchy which is a

tree made up of those syntactic elements that the user specifies to the system (con-

texts, commands, arguments and descriptors). Each element of the hierarchy is

redescribed in terms of how it will be specified and when it will be interpreted.

This process elaborates the syntactic hierarchy into an interaction tree.

Consistency and simplicity can be described at the syntactic and interaction levels

- 138 -

using the CLG notation to capture effects of commands and special rules to

represent similar interactions. Command rules and argument rules which capture

commonalities between various parts of the dialogue and impose relational order-

ing constraints upon the components of dialogues are used at the interaction level

to clearly describe nature of the specific components at this level. This feature very

much resembles the use of rewrite rules in the TAG notation. By using these rules

the dialogue can be described in such a way that redundancy, complexity, and

inconsistency should be easier to identify.

The main problem in CLG is translation from one level description down to the

next or from one description within one level to another within that level (e.g. task

entities to task structures). This is achieved using what Moran refers to as "map-

ping rules" which help to transform one level description down to the next; for

example Task Level descriptions of tasks are mapped to the Semantic Level by

redescribing them using the Semantic Level entities and operations to construct

methods which will achieve the same goals. These rules help to ensure that the

logic and structure of the CLG representation is consistent. Consistency is highly

important to the design as it is one of the features of the UI which can improve the

user's ability to predict its behaviour. Unfortunately, as Moran points out, the

Task and Semantic Levels are themselves informal, so mappings between them

cannot be precise, and there are only informal rules for dealing with the transfor-

mation from the Semantic to the Syntactic Level. This could mean that designers

will have some difficulty in carrying out this mapping process successfully.

Moran states that CLG can be looked at from three angles:

The Linguistic View which sees CLG as an analysis of the structure of corn-

mand language systems.

The Design View which sees CLG as a representation for different systems as

they are being designed.

The Psychological View which sees CLG as a model of the different kinds of

knowledge that users have about systems.

The linguistic view of CLG attempts to specify the structure inherent in all possible

command languages for a given UI design. This requires that the specification

-139-

covers all existing command languages, as well as extensions to them, and that it

rejects systems that cannot function as command languages.

Moran claims that CLG has advantages over state transition diagrams because it is

more restrictive and will generate fewer different command languages. In essence

it is the user conceptual model and the task orientedness of the approach that

ensure that CLG is capable of avoiding the absurdities possible in state transition

network specifications.

From the psychological view, many of the features of CLG are quite plausible, but

they need to be validated. CLG suggests that the user's knowledge of the system

is layered and highly redundant, and that this means that although the user may

know what he or she wants to do and how to do it at certain levels, he or she may

not have the knowledge required to do that task using a particular system (i.e. does

not have the interaction level knowledge). This feature could be tested by getting

users to describe how to do various tasks using various systems for which they

have varying degrees of knowledge and observing their performance.

Another feature of CLG is that it predicts that systems requiring fewer rules to

describe will be faster to learn and will result in fewer errors by the user. In more

detail, similar rules will interfere with each other, the observable result of this will

be that users will confuse similar rules and make errors of generalization. When

rules are completely consistent generalization will be less error prone. Moran adds

that CLG should allow time and other performance measure predictions to be

made for tasks of varying difficulty. All that is required are some processing

assumptions as in GOMS or CCT, however these are not explicitly incorporated in

the model at present. This means that behaviour such as error handling and learn-

ing are not readily captured by the current CLG formalism.

The design view of CLG is that it forces the designer to create a conceptual model

of the system to guide the design. Such a design may be easier for the user to

integrate with existing knowledge than would a design which left the user to

induce from, various fragmentary clues, what was going on. Moran (1981) gives

various examples of how a well formed conceptual model presented to the user can

improve understanding of the device behaviour and improve learning.

-140-

Moran himself provides a summary of his own perceptions of the limitations of

this analysis, (for more details see Moran 1983). The criticisms which he makes

which are of most interest here are brought out in the following discussion.

CLG is strongly concerned with how a user uses his or her knowledge. However

Moran admits that this model is weak in the sense that there is no characterisation

of the user's background knowledge, that is, any experience of the system, or tech-

niques for learning about the system, are not considered by the model. This is, of

course a reflection on the fact that general human knowledge is extremely difficult

to describe. Further CLG shows how the user uses knowledge about the system to

accomplish tasks, but does not show how to use this knowledge when the user

makes an error or whether his or her knowledge is adequate for dealing with error

situations. There is no control structure for using knowledge in CLG (except for

its procedure interpreter which contains the rules which determine how procedures

are implemented). This means that CLG requires extension before it can fully

model the user, with respect to knowledge, from a psychological point of view.

Other criticisms of CLG to which Moran himself admits include the fact that CLG

only describes concepts at the Semantic Level, it does not analyze them and there-

fore cannot tell us anything about their nature and how this will affect perfor-

mance. Also there is no rationalisation of the procedures, particularly at the Task

and Semantic Levels which prevents the analyst from determining whether a given

procedure is easy or difficult for a user to understand.

There is no description of a Syntactic Task, which would look at how the user

organises the task in terms of the system specific characteristics. This means that

the true nature of the user's interaction efficiency cannot be brought out by the for-

malization. A similar point about the incompleteness of certain levels is that there

is no conceptual model of the interaction process at the Interaction Level, which

the user is sure to have. Finally, the use of rules in CLG should be extended

beyond the Interaction Level because a basic goal of CLG is that the system's

simplicity should be predicted by the simplicity of its description. Expression of

the characteristics of the system at different levels in terms of rules would

highlight redundancy of knowledge and inconsistencies in the task structure within

and between levels.

- 141 -

Characterisation of the Model

CLG promises many things without actually demonstrating them. This explains

the number of possible aspects addressed by the technique. The notion of a user's

conceptual model of a system and its multi-level properties is not sufficient to

enable the grammar to claim psychological validity if the contents of the multi-

level representations and their structure are not also empirically based.

Although CLG makes explicit statements about the behaviour of the application as

it affects (prompts or displays) or reacts (responds or interprets) to interaction,

these statements are not presented within a coherent model of the system as a

finite-state machine. In other words they represent an even less complete view of

the application than do the Generalized Transition Networks of CCT. The selec-

tivity which results means that the representation is probably inadequate for cap-

turing the properties of the system application and its behaviour.

This may seem rather finicky as a criticism, but the notation is presented as having

similar properties in terms of formal power to Augmented Transition Networks

(which are similar to the Generalized Transition Networks described in Chapter 2

in the description of CCT). However the CLG notation is very poorly suited to

dealing with state behaviour of a system because of its inherent multi-level nature

which distributes information about contexts, actions, and effects between the syn-

tactic and interaction levels, and as a model of the virtual machine it suffers from

all of the shortcomings of the GTNs used by Kieras and Poison (1985) and criti-

cised by Green et al (1988) in terms of selectiveness of what is explicitly modelled

and what is not (i.e. what is not modelled could have important consequences in

the implementation). However it is probably safe to say that CLG does address the

more formal principles of usability with respect to the behaviour of the UI and the

target tasks which are more directly captured by the notation.

CLG, like Reisner's Action Language, does not clearly elucidate psychological

properties of task representations, but by the same token CLG is able to address

the simplicity (if not from a truly psychologically real perspective) of the UI dialo-

gue and target tasks. It clearly aims to capture UCTDs of the UT specification with

respect to the UI and target tasks; in fact this is its main aim. Simplicity can be

ascertained from a CLG specification by counting its rules, assessing their

.142-

>

U

>

c-)

ci)	 =

-	 -

•

:

•	 fl

-	 -,

0
M

-
-

0

U

I.

U

0 •
Cl)	 -

Cl)

-I-
U	 -

-	 Cl)	 •- -

Cl) -	 -	 U U

- 143 -

confusability and naturalness, and assessing the overall size of the specification;

more complex systems will involve larger numbers of command and argument

rules as a proportion of the total size of the specification than will more simple

ones. UC'IDs are preserved by the CLG specification but would require some

separate scientific analysis or empirical support from the analyst about the charac-

teristics of prospective system users in order to derive an idea of their existing task

knowledge with which the system should be compatible.

Moran claims that CLO will not generate absurd interaction languages, and that

they will be appropriate to the meaning of the tasks with respect to the users and

the required tasks. The inclusion of an explicit task level description of the con-

ceptual model of the device is perhaps the central feature of CLG which aims to

ensure that the system will indeed embody the principles of simplicity and UCTDs

which non-user-oriented UI specifications of a purely formal character would fail

to capture.

Compatibility is not addressed because the approach has no explicit component to

deal with the content of users' knowledge representations. The appropriateness of

one set of command names rather than another would not be explained by a CLG

description.

Observabiliry, consistency and retrievability are only partially dealt with by CLG

if at all. Observabiity is captured with respect to the UI and ITs at the Semantic

and Syntactic levels where the responses and activities of the system are described,

including what it displays and where on the screen. Consistency is captured within

the application by looking at the interpretations of commands at the Interaction

Level, and for the interface and Ti's by looking at the effects and side effects of

commands at the Syntactic Level. Retrievability may possibly be captured by

making assertions within Syntactic Level command and context descriptions; for

example that the effects of each command within a context are reversible, that

each command has an opposite, and that it does not invalidate commands which

allow the user to exit or enter any other state.

However, the difficulty of using the unsupported CLG specification approach to

capture all of these formal properties would require a great deal of work, and given

the lack of an account for the underlying application behaviour, it is improbable

-144-

that the approach would ever be used for analysing these properties because the

scope of the analysis would not extend beyond the states involved in error free per-

formance. Were users to deviate from the methods outlined in the specification,

the resulting application states could still prove to be catastrophic in terms of

unrepresented but important information inconsistent effects of commands and

inability to exit from particular states.

Strictly speaking, in its current form, CLG has not been proved to generate predic-

tions about users performance which would be sufficient to determine whether a

UI is acceptable. However, given its similarity to the tested GOMS formalisms, it

may be safe to assume that certain performance predictions could be derived from

the model for simplicity and UCTDs (Moran 1981). As discussed earlier, the

Interaction Level specification can be used in much the same way as a GOMS

model (at the keystroke level) as a basis for predicting performance times.

2.3 Summary

Eight HCI Design and Evaluative Techniques (HCI DETs) have been reviewed

and characterised according to their ability to address usability of Uls with respect

to certain important evaluation factors. It would appear that none of the tech-

niques is capable of addressing all of the possible issues which might concern a

designer and that there are certain areas which these techniques are unable to

address. The most notable reason for this being the weak treatment given to dev-

ice characteristics which could alter the value of an assessment of usability in an

unpredictable way if not properly specified and accounted for by the technique.

There is also a major problem of the complexity of approaches themselves; their

attempts to achieve formal power and predictive precision mean that, for some

approaches, much effort needs to be invested in their construction. This factor

means that for realistically applicable approaches there is a breadth depth tradeoff

in power, otherwise the approaches risk becoming too difficult and unwieldy to

use. Whether depth (accuracy and predictive precision) or breadth (generality) is

more appropriate for a useful model may be a question for serious debate. Barnard

(1987, p115) states "it is now ... becoming widely accepted that predictive needs

for design purposes are best served by approximate models rather than by theories

that are necessarily formally adequate". In other words he believes that the holism

-145-

of an evaluation or design approach is more important than its precision. Qualita-

tive aspects of a device and its specification or user's model may have more

impact on its ultimate usability than precise quantitative aspects.

Reisner (1982) raises two points about application of HCI DETs as tools for assist-

ing designers. She states that the tool should make predictions about ease of use

and that the tool itself must be easy to use. Many of the models discussed in this

chapter satisfy the first requirement, but none of them seems to have been proved

to be easy to use. Further questions are raised by the lack of evidence available on

the applicability of these techniques to real design situations. We have seen what

it is that these techniques aim to do for UI designers and analysts; their descriptive

and predictive scope have been tackled together with how, in theoiy they approach

their aims. What we have not seen is how the techniques deal with real design

problems and constraints, for example few of the techniques address the problem

of how the results of evaluations would feed back into, and usefully alter the

design of a UI. What are the design cycles envisaged by these models which

would allow them to be effectively integrated. This is a question which has not

been addressed explicitly by many of the authors.

The main aim of the following chapters in this thesis is not to question the theoreti-

cal bases for HCI DETs of the type described in this chapter. Instead, assuming

that the claims for descriptive and predictive power are largely valid, we shall con-

centrate on how such techniques might actually be applied outside the research

environment. In this area the literature appears to be particularly scant, and it is

disturbing to contemplate that, for an applied science such as HCI surely is, there

seem to be few case studies or demonstrations of MCI modelling techniques in

actual UI design projects.

The next four chapters will address the nature of UI design in applied and commer-

cial practice and will attempt to answer the following questions:

1. Are HU DETs generally applied by UI designers?

2. Do HCI DETs address, or allow for some of the problems in design which

could affect their implementation?

3. Are there certain conditions and practices in real design situations which can

altogether prevent certain HCI DETs from being applied?

-146-

A further issue that will be addressed is whether there are requirements which UI

designers have which have not, as yet been tackled by HCI DETs. It may be that

some of the supposed design issues addressed by these techniques are of secondary

importance in the real design situation, or that such issues are being superceded by

newer issues with which HCI techniques have not yet caught up.

-147-

Applicability of HCI Techniques to Systems Interface Design

Chapter 3

HCI Techniques in UI Design and Evaluation:
The Theorist's View and The Practitioner's View

3.1 Introduction

3.1.1 Overview

This chapter seeks to place the techniques reviewed in the previous chapter in some

perspective with respect to their relevance to UI design and evaluation. In some

senses it is a practical discussion of the implications raised by the nature of HCI

DETs for their applicability which must be viewed as an important determinant of

their validity aside from theoretical considerations.

The purpose of this chapter is to provide a wider view of user-oriented design and

its implications for HCI DETs than was presented in the previous chapters. The

design views of the techniques reviewed in Chapter 2 are considered and criticised.

They are contrasted with other user-oriented views of design and with evidence pro-

vided by studies of HCI practice, or the lack of it in systems design. A number of

questions are raised by the discrepancies between the design views of HCI tech-

niques of the type reviewed in Chapter 2 and alternative design views.

3.1.2 Systems Design in General

The process of system design or development (development is viewed here as

meaning a subset of design activities) frequently referred to as the software life-

cycle (Sommervile 1989) can span a period of up to several years or more. This

period covers the conception, building, implementation, adaptation, right up to ob-

solescence of the system. What the term software life-cycle may refer to could in-

clude a large number of diverse activities such as planning, market segmentation,

requirements specification, scoping, modelling (of users, businesses, data, functions,

systems), prototyping, solution generation, evaluation; which may include valida-

-148-

tion ("Are we building the right product 7"), verification ("Are we building the pro-

duct right ?"), and user testing ("alpha" and "beta" testing; initial controlled testing

and in-situ testing respectively). Many of these will be iterated and used later in

evolution of an existing system. They are but a few examples of activities that

spring readily to mind.

The diversity and number of different software engineering activities means that it

is almost impossible to provide a realistic definition of what is actually meant by the

term system design. Many or all of the above activities may play a role in UI

design. The manner in which software design of all parts of the system proceeds

may be as varied as the people who carry it out. However there are certainly some

commonalities between different design approaches, and this is probably more true

of successful approaches. It is these successful commonalities which theoreticians

attempt to embody as features in their methodologies and guidelines. The principles

described in the preceding chapters are examples of such features. They represent

UI design goals as opposed to design activities. However in this chapter we focus

on UI design activities or 'practice', both ideal and observed.

Typically models of the software life-cycle are built, just as models of system users

and machine behaviour are. Software life-cycle models are designed to clarify the

problem of deciding what activities should be carried out and how they relate to one

another in terms of precedence, inclusion, dependency and so on. One of the earli-

est such models was the "waterfall model" developed from Royce (1970). It is

essentially a general specification of necessary, but not necessarily sufficient, design

activities with a tentative structure which describes their sequential relationship in a

design process. Figure 3.1 shows the waterfall model with possible iteration cycles;

the name "waterfall" clearly comes from the sequential order of the stages.

This example is so trivial as to be almost meaningless as a model of a design

method, however it serves to illustrate the bare minimum of a system design process

which might result in a UI. What is important about this illustration is that it does

not explicitly specify any activity related to ensuring that the system is really what

HCI specialists might call a usable one. All that is strictly necessary for the system

is that it is accepted (by someone) as a solution to some requirements specification.

This may seem a rather obscure point to make, but it is a sobering one; there is, in

- 149 -

many cases where life and limb are not at stake, no actual obligation on the part of a

system designer to ensure that the UI really is satisfactory, beyond trying it out him

or herself (to make sure it can be used). When the system is implemented, and

users cannot easily carry out their tasks with the system, the blame is not necessarily

laid at the designer's feet. It is possibly more likely that users will feel intimidated

by the system than that they will complain that the system is poorly designed.

Figure 3.1

Waterfall Model of Software Life-Cycle:

A Minimal Outline

Requirements___________
Analysis and

Definition

System and

Implementation ___________
andUnit
Testing_________________

System Testing

In this chapter two different views of UI design will be discussed. The first is em-

bodied in attempts at specifying idealised or improved design and evaluation ap-

proaches; these are referred to as the HG! Theorist's View. The second comes from

evidence relating to what actually happens in UI design; the Practitioner's View.

3.2 Theoretical HCI Views of UI Design and Evaluation

The HCI theorist's view of UI design can be seen as an idealised process, or a plan

which, if successfully implemented, should produce better interfaces than would

have been possible without it. The kind of plan we are talking about here is one

which specifies what activities should be carried out and how they should be organ-

ised in order to reach the target goals or specification for the UL

-150-

In the following sub-sections alternative theoretical views will be examined; these

are the design approaches assumed by the HCI DETs discussed in the previous

chapter. These will be contrasted in the following section with other design ap-

proaches recommended by researchers for generating more usable interfaces (User-

Oriented approaches).

The eight approaches to modelling systems and users, seven of these with a view to

improving the usability of Uls, described in Chapter 2, may be taken either as pure

research exercises or as directly applicable techniques. A clear distinction can be

drawn between those which claim to be directly applicable to UI design and evalua-

tion, and those which do not.

Some of the approaches reviewed in Chapter 2; BIMs (Morton et a! 1979), Formal

Grammar (Reisner 1981, 1982), ACT* (Anderson 1983), and ICS (Barnard 1985)

are specified, by their authors as being research tools, or possibly, in the case of

BIMs and ICS, as tools that could be used to decide between appropriate (but

perhaps not applicable) evaluative approaches on the basis of their scope. That is

not to say that these tools could not be used to improve UT design by some method,

but that they do not attempt to meet the criterion of direct applicability.

On the other hand, TAG (Payne & Green 1986), GOMS (Card et a! 1983), CCT

(Kieras & Polson 1985) and CLG (Moran 1981) do make explicit claims about their

applicability to UI design or evaluation, it is these claims that we will be addressing

here. These claims can be illustrated by a series of quotes from the authors (my ital-

ics).

"Task-action grammars ... provide designers with an analytic tool for exposing the

configural properties of task languages." (Payne & Green 1986; pp 93)

"Our implicit advice to the system designer has been to use these [GOMS] models

in design."

"We have expressed some of the results in this book as a set of design principles to

aid in the design of systems for human-computer interaction." (Card et al 1983; pps

417 & 424)

"[CC!'] ...wouldpennit the detailed evaluation of the relative complexity of altema-

- 151 -

tive designs of a device"

"...the formal representations that have been represented in this paper provide the

tools necessary to explore the psychological aspects of the complexity of a device,

and provide the quantitative metrics for user complexity that are necessary for ap-

plications of these theoretical ideas for the design of actual products." (Kieras &

Polson 1985; pps 392 & 393)

"CLG guides the designer by ordering the decisions he must make."

"Several...evaluation measures could be derived from CLG descriptions to guide the

designer..." (Moran 1981; pps 45 & 47)

What these quotes demonstrate is that these techniques are meant to be applied by

systems designers to their Uls. How they are meant to be applied is addressed with

varying degrees of clarity. To begin with TAG does not appear to come with any

firm view of how it might be applied in a real design situation. It's theoretical ana-

lytic aims and power are clearly described by the authors but the more practical is-

sues are left to the reader to consider.

GOMS, CCT, and CLG on the other hand all come with fairly explicit assumptions

about the nature of the design process, and the methods which will be involved in

carrying out the analysis. A description of each set of assumptions will be given in

the following.

3.2.1 The GOMS View of the Design Process

Procedural Aspects of Design

GOMS provides explicit advice for the designer attempting to apply the approach in

practice. The authors present ten principles which should guide the designer to-

wards a better UI:

1. Early in the design process consider the psychology of the user and the design of

the user interface.

2. Specify the performance requirements.

-152-

3. Specify the user population.

4. Specify the tasks.

5. Specify the methods to do the tasks.

6. Match the method analysis to the level of commitment in the design process.

7. To reduce the performance rime of a task by an expert, eliminate operators from

the method for doing the task. This can be done at any level of analysis.

8. Design the set of alternative methods for a task so that the rule for selecting each

alternative is clear to the user and easy to apply.

9. Design a set of error recovery methods.

10. Analyse the sensitivity of performance predictions to assumptions.

These principles of practice are aimed at improving the designers exploitation of the

information which is required to design a usable interface. They also stipulate cer-

tain design activities which themselves should improve the probability that the UI

will be satisfactory. These principles aim to foster good design practice, rather than

characterising good design features.

The design process is viewed in GOMS as proceeding in a complex, iterative

fashion in which various parts of the design are incrementally generated, evaluated

and integrated. The process is seen as a set of different design functions each at-

tending to a specific design subproblem:

Design Process = a set of Design Functions

No attempt is made to describe a taxonomy of design functions but some examples

are provided, and the functions are categorised by Card et al (1983) into structural,
evaluative and parametric design functions.

1. Structural design is where the system, or system part, is actually configured or

-153-

restructured to satisfy requirements specifications. Examples of

functions in this category would be; identification of an opportuni-

ty, problem diagnosis, improvement generation, and generation of

a new structure.

2. Evaluation is where the system (or part) has been built or specified and requires

an analysis of its performance, perhaps for the purpose of making

improvements in performance. Examples of functions in this

category would be, analytical modelling (such as TAG), user-

system simulation (such as GOMS or CCT), and user-trials.

3. Parametric design refers to situations where the structure of the system (or part)

has been fixed and quantitative performance parameters, or ranges

of parameters, need to be defined as part of the final system perfor-

mance specification. Examples of functions in this category would

be performance modelling (such as GOMS or CCT) and perfor-

mance trials.

GOMS is assumed to be applicable to evaluation and parametric design functions

but not necessarily to structural design, although the authors suggest that "partial

inversions of more formal performance models [e.g. GOMS] can ... be used (e.g. to

diagnose the causes of performance deficits)" (Card et al p407). What is implied

here is that GOMS performance models could be analysed to detect design prob-

lems in the specifications from which they have been derived, and indicate improve-

ments which would be beneficial for performance. Performance is characterised by

the authors in the following formula containing relevant types of structural vari-

ables:

Task + User + Computer ---> System Perfor,nance

The application of an appropriate predictive model such as GOMS is characterised:

Model (Task, User, Computer) ---> Performance Prediction

The structural variables of the human-computer system - the task, the user, and the

computer determine its performance variables. In the formulae, "task" variables are

-154-

roughly equivalent to the system application (S App) factor in the evaluation formu-

la in Chapter 1, referring to the nature of the tasks the system is designed to perform

and support (i.e. its functionality), but in this case also covering the nature of the

model used to describe that performance. "Computer" variables are roughly

equivalent to the UI type factor (UT) in Chapter 1 referring to the style of interac-

tion, conventions, and layout. "User" (Us) variables are, of course, the same. Card

et al give examples of instances of such variables, such as, for task variables; text-

editing or graphics, for user variables; cognitive style or perceptual-motor skill, and

for computer variables; dialogue style or naming conventions. They also describe

types of performance variable, such as basic performance metrics including func-

tionality, learning, time and errors, also subjective measures, extreme conditions,

and memory variables.

Scope of Design Issues Addressed

Card et al (1983) admit that the research they carried out left a great deal to be done

with respect to investigating structural variables. For example only one type of task

domain was investigated, users were crudely characterised, although they are

known to be more complex than the MHP and related GOMS models are. Only a

limited number of different types of UI were investigated for which the model was

shown to be sensitive to their differences. With respect to evaluative metrics, the

authors state that they have only concentrated on performance time, but that this is

not necessarily the most important metric.

This limited scope of GOMS means that it would be unlikely to capture all, and

would possibly miss the most important of the system design weaknesses if it were

inverted to diagnose causes of performance deficits. Even applying the model the

normal way for predicting performance times might turn out to be a secondary con-

sideration for certain applications. Furthermore, the aspects of human behaviour

which GOMS represents might, in themselves, be of lesser importance. If the appli-

cation in question happens to be a training and explanation system then a model of

error free performance would be of no help in predicting where learning difficulties

and errors would occur. In brief the limited scope of GOMS could mean that it will

only be applicable to a small subset of system desgns.

A more detailed view of the scope of the GOMS formalism Within the three design

-155-

functions from Card et a! (1983) is shown in figure 3.2. The specific activities in-

cluded for each function are in fact activities which were carried out with the

GUMS approach to test its utility for a number of possible design or evaluation

functions (structural, evaluation and parametric functions; see earlier discussion).

The evaluation function of GOMS may be put to use in two ways; it may be used to

predict that user performance on one system will be superior to performance on

another, or it may be used to predict that some set of performance standards re-

quired of the system will be met. For parametric (specification) GOMS evaluations

GUMS performance predictions can be based on the most acceptable (the fastest,

the most representative performance, the poorest performance, etc) parameter

values, and they can show how basic operator performance can relate to overall task

performance of comparable tasks, and which parameters are likely to be the most

reliable. For structural design GOMS analyses can highlight the aspect of the sys-

tem which has to be improved, they might possibly indicate what the actual cause of

user problems is, however Card et al state that it is less certain that GUMS analyses

would support generation and synthesis of improvements.

If we accept the findings of Card et a!, we can assume that this represents the exper-

imentally verified design scope of the GUMS formalism in the laboratory. Evidence

from actual systems design studies is lacking.

Pragmatic Design Issues

Apart from the procedural design view that GOMS has and its modelling scope,

there are a number of more pragmatic considerations. GUMS is a complex ap-

proach which involves a cognitive model of the human processor, and a

production-style task analysis. These components would appear to require a certain

amount of expertise both to understand and apply, and for real system design pro-

jects a GUMS specification could turn Out tO be large and time consuming to pro-

duce, particularly for a non-psychologist.

GUMS is assumed to be applicable in a design situation where iteration will take

place. However the way in which GOMS specifications used in applied design

should be altered is not exemplified by its authors. Consequently it is hard to tell

what kinds of alterations might be necessary and how much work making adaptions

to GOMS model might involve. If changing one part of a specification means

-156-

changing many other parts that depend upon it, then the whole iterative process

could be very time consuming.

Figure 3.2

Design Activities Undertaken Using the GOMS Approach

DESIGN FUNCTION

EVALUATION

Compare systems

Evaluate system

PARAMETRIC DESIGN

Optimise Parameter

Analyse sensitivity

STRUCTURAL DESIGN

Identify opportunity

Specific Activities

Compare on given
performance variables

Compare against
some standard

Find best value on given
performance variables

Relate parameter value
to performance

Find place where the
system can be improved

Diagnose problem
	

Pinpoint structural
component causing problem

Generate improvement Find structural change

Synthesise structure 	 Create new structure

-157-

To compound the problems of the analyst's experience with psychological and HCI

theory and techniques, there is the uncertainty of not knowing in advance the most

appropriate level at which to describe and model tasks. Modelling at several levels

would be very time consuming, but there is no guarantee that for any application a

particular model will be the best. Card et al found that the unit task level was most

accurate for predicting sequences of actions with text editors, but this could be due

to features of editors or similar systems, rather than features of users or GOMS

itself.

In addition GOMS requires that the analyst carries Out some empirical studies to

determine the skill, style and typical operator times for prospective system users.

Skill is important to the GOMS formalism because it will dictate the kinds of pro-

duction rules that users might be expected to apply. Style is important because it

will dictate the selection rules applied to alternative methods. Operator times are

crucial because they underpin the time estimates for the units of action at whatever

level of description the model is applied.

Synopsis

No organisation is provided as to how to determine the relationships between the

structural functions of the envisaged design process, for example the authors do not

state whether parametric design is strictly dependent on, or subsequent to, structural

design. One would think that the interdependency of these activities in a system

life-cycle might be just as crucial to the design outcome as their actual nature.

GOMS does not take into account the possibility that analysts will not be able to use

the approach as effectively and accurately as its authors. Nor does it provide gui-

dance on how to determine appropriate levels of analysis a priori to applying them.

Furthermore the design environment would have to be supportive of detailed empir-

ical pilot studies from which to formulate a particular model for the design in ques-

tion.

GOMS assumes, without justification from design practice, that time will be

sufficient for its application, and that the specifications upon which to base the pred-

ictions will be available early enough in the system life-cycle to permit those pred-

ictions to have a useful impact upon the design. Unfortunately GOMS (like other

-158-

HCI techniques) has not been thoroughly tested in applied design projects. This

means that such assumptions may be ill founded. The approach has only been

tested on text-editors in the laboratory, and even more seriously it has not been

compared with other approaches in design which might be more effective.

3.2.2 The CCT View of the Design Process

Procedural Aspects of Design

An analyst using CCT to evaluate a design must be able to build a GTN device

representation as well as a GOMS style user's job-task representation. This would

imply that CCT will be more time consuming and difficult to apply than GOMS

because more modelling work would have to be done. As with GOMS the system

in question must already be specified to the extent that its behaviour can reasonably

be simulated to a degree that will not seriously invalidate the model's predictions.

Poison (1987) provides a summary of the design process into which he believes

CCT will be integrated. The top-down, stepwise-refinement design methodology

assumed is not presented as being typical of all top-down approaches. It differs

from traditional approaches in that it includes concurrent development of both the

hardware and the software specifications as well as the user's representation of tasks

performed by the system. It also involves iteration of the complete design process.

As Gould & Lewis (1985) have demonstrated, several iterations of each of the

stages involved in any design process will be necessary to develop a highly usable

interface.

The four phases of the design process envisaged by CCT are

1. System Definition Phase: Specify the functional requirements of the system.

2. Task Analysis Phase: Specify the user's decomposition of each task performed

by the system.

3. Detailed Design Phase: Specify the details of the user interface, including

methods, menus, commands, etc.

- 159 -

4. Evaluation Phase: Evaluate the design using simulation methods.

The System Definition Phase is viewed as the specification of user requirements,

implementation environment, basic UI structure, and system functionality. CCT

assumes that these activities will all be dealt with by appropriate methods which are

not described further by the authors.

The Task Analysis Phase involves specification of the top- and middle-levels of a

user's goal structure for each task identified in the previous phase. Poison states

that the levels are defined by a user's decomposition of a task into subtasks and, if

necessary, sub-subtasks. The design team then develops the methods which will

efficiently accomplish these tasks. The method suggests that specialists be engaged

to conduct the task analysis which would presumably take place separately from the

rest of the design process. No firm guidelines are given as to what actually charac-

tenses a top- or middle-level goal, or indeed a task. It must be assumed therefore

that CCT relies on expertise of specialists in order to determine appropriate levels of

description for the purpose of modelling the user's job-task knowledge.

The Detailed Design Phase includes the completion of the detailed specifications

of the UI and sequences of user actions necessary for accomplishing each task from

the previous phase. The design team must also develop a test suite. This specifies a

set of tasks and the characteristics of each task to be involved in the usability

evaluation of the design. The test Suite must exercise each method necessary for

completing the various tasks specified during the system definition phase. This pro-

cess will inevitably demand valuable time and resources.

The Evaluation Phase covers the writing of the system model (using GTNs) and

the production system models for each task. These tasks require considerable care

and expertise with the representation methods. It is no easy task to generate a GTN

of a complex UI, and specification of the production rules. If the production model-

ling is done without consideration of empirically based psychological theory relat-

ing to how humans organise knowledge about tasks, it may yield an arbitrary and

unrepresentative model of the user. Bennett et a! (1987) propose a special support

tool based around a task modelling language (1'ML) which can be used to describe

tasks and then translated by computer into production rules. The problem with this

is that the tool is not generalizable to any set of tasks, and the degree to which an

-160-

analyst's style influences the nature of the TML specification makes it necessary

that the same person carry out all TML descriptions (which could hold a project up

significantly).

The design team then simulates execution of all the tasks in the test suite, deriving

static and dynamic measures from the production system model for each task.

These measures can then be used to formulate predictions about training time and

productivity. The results can then be used to evaluate the design and plan changes,

which will be implemented on the next iteration of the system design. Poison con-

siders that this level of specificity of the design can be achieved in the early stages

of the process of system design. He states "Cognitive Complexity Theory provides

methods for generating quantitative predictions for training time and productivity

early in the design cycle." (Poison, 1987, pp 228; my italics again). However, the

degree to which this can actually work in practice has not been demonstrated.

CCT makes stringent demands upon the kind of design process it may be applied in.

The assumption is that the facilities will exist; to make precise early specifications

of detailed UI functionality; to integrate a LISP based simulation tool with a state-

transition network specification of the device (i.e. requiring that a valid state-

transition network representing the UI software be available, which might have to

be supplied by a tool such as Wasserman's Rapid-USE (Wasserman, 1985; Wasser-

man et al, 1986)to be available). There is a further assumption that it will be possi-

ble to determine certain user performance parameters from which to generate the

full predictive model. Given these claims that CCT represents an early evaluation

technique, the design cycle described by Poison for application of CC is not

empirically demonstrated, it may not be representative and may not be integratable

with certain systems analysis and design techniques. At worst, in practice CCT may

only be applicable as a late evaluation technique in certain situations.

Bennett et a! (1987) claim that, with the TML program supporting production gen-

eration, CCT is capable of assisting a development team in their decisions about

which of two competing designs to choose. However they based most of their work

on existing systems (table drawing tasks on two interactive document formatters,

one being WYSIWYG and the other not). The suggestions they came up with on

the basis of their analysis, for a new table formatter design were not clearly superior

to subjective judgements, and their improved design was largely based upon the use

- 161 -

of defaults which severely restricted its flexibility and would have meant that it

could only be used for a narrow range of circumstances.

Scope of Design Issues Addressed

Poison proposes that UI style does not significantly influence usability quoting

research carried out by Whiteside et a! (1985) as support. However this support is

based upon a very limited file manipulation "benchmark task" designed by Magers

(1983) to compare help systems. This hardly constitutes strong support for the idea

that "the details of a given design, not the interface style, determine a system's usa-

bility". On the other hand Card et at (1983) demonstrated that performance using a

mouse was superior to joystick or cursor-control keys, and Foley et at (1987) state

that functionally equivalent designs may vary in their usability.

CC'!' does not concern itself too heavily with stylistic aspects of the device which

cannot be captured by GTNs. Different types of UI may actually lead to different

predictions if the GOMS model constructed is sensitive to alternative physical

actions required by different Uls to accomplish a particular task. In other words,

CC'!' may actually be capable of predicting that one UI type or style may be supe-

nor, in terms of user performance, to another. The claim that different styles of UI

do not influence usability is not necessary to justify the utility of CCT and may

require more empirical support than has been given, or a very restricted definition of

the meaning of the term "style" as opposed to "details of design".

On the other hand, CC'F like GOMS is not capable of modelling "look and feel"

aspects of the UI or predicting that these can strongly influence user performance.

This may be the reason why UI styles as a factor are not considered by Polson as

important. By ignoring such aspects of the system in the simulations, and in valida-

tion studies of these simulations, it is easy to deny their importance for the predic-

tive power of an evaluative approach.

There are a number of other reservations one would wish to make about the

approach. First, as Wilson et a! (1988) point out, the assumptions made about the

performance characteristics of naive and expert users may require a considerable

degree of refinement if the model is to be truly generalizable for application in

design. Working memory in the production systems architecture, for example, is

-162-

not subject to decay which would significantly affect the predictions about naive

users whom the model describes as being heavily dependent upon conscious

appraisal of feedback from each step they take.

Also the style of different users (the probability of their selecting one out of a

number of possible procedures as modelled in GOMS) may not be captured well by

the model without a great deal of empirical study before building simulations. This

would be extremely time consuming, and in a real design situation the simulation

implementor might be tempted to write the rules, and to assign probabilities, on a

purely intuitive basis, thus losing the representative value of the model.

There are some significant problems with the how-it-works representation of the

device. The decisions made to nest certain aspects of the GTN simulation because

the analyst intuitively feels they do not impinge on the user are essentially arbitrary

and may be ill founded. An explicit procedure is required for deciding what aspects

are and are not nested in the device model. The importance of this criticism relates

to the fact that alternative, but equally valid device representations could lead to dif-

ferent predictions from the user processing simulation because it would be respond-

ing to different sets of system states.

With respect to the design potential of CCT, GTNs are only abstract representations

of the system's UI states. They do not provide any information about how the sys-

tem looks to the user (are menus vertical or horizontal, are icons distinguishable and

so on). Also the approach does not really encourage the designer to improve the

device with respect to complexity, for example the IBM Displaywriter editor's

structures for selecting edit functions are highly inefficient since they expect the

user to select the mode (e.g. DELETE, MOVE etc) before selecting string length,

the word, or the character to be edited. This modality is a poor design feature and

requires a more complex set of task representations (text selection sub-tasks for

every edit task) than if the edit verb came after the text selection (perhaps a general

edit text selection procedure, and single-mouse-click-or-key-press tasks for all edit

functions), which is now more common in modem Uls. Kieras & Polson (1985)

modelled the editing features of the Displaywriter with CCT but the analysis failed

to identify this problem. So although CCI' claims to represent complexity, it may

no be a very useful tool for suggesting how to reduce it.

-163-

One of the most interesting characteristics of CCT is that it is proposed that the

representation of the device should be modular "so that as much or as little of the

device can be represented as desired" (Kieras & Poison 1985). This modular aspect

means that the problems of complexity of the model itself can be partly avoided

because the specification and simulation problems can be broken down into smaller

simpler parts. One of the main problems with HCI modelling techniques is their

complexity which makes them difficult to use and understand. The idea of impos-

ing modularity on the device model in the simulation is a useful one permitting

designers to evaluate only new or unusual features of a UI rather than the whole,

which could save a great deal of time and effort.

The approach has not been tested on UTs in general. Most of the reported research

was carried out on text editors or formatters (e.g. Kieras & Poison, 1985; Poison,

1987; Bennett et al 1987) The special nature of text-editors which are relatively

straightforward to characterise using formal descriptions, and which are almost all

UI oriented with relatively little other functionality, means that they are not a good

testing ground for approaches which seek to be generalizable. This criticism is one

which can probably be applied to most of the HCI modelling techniques, but is par-

ticularly relevant here because CCT does rely on formalizable specifications for the

simulations and attempts to model the virtual machine states without addressing cer-

tain aspects of its behaviour. Text-editors therefore happen to be the most suitable,

large group of systems which fit the requirements of CCT. Other system Uls may

turn out to be extremely difficult to evaluate with CCT, for example Knowles

(1988) provides evidence which suggests that CCT is very poor at capturing various

qualities of certain types of UI (namely CAD tools) which strongly influence their

complexity.

CCT like GOMS is a reactive rather than a generative design tool, in that it does not

drive the design decisions which are to be evaluated. During the task analysis phase

no guidance is given by the approach as to how to select efficient methods for task

execution. Without some explicit design principles such as ensuring reusability of

UI components to maintain simplicity, designers may have to go through many,

expensive iterations before a highly usable interface results. This criticism follows

through to the production system modelling and G1'N modelling which the

approach requires. Few clear guidelines are given as to how to determine the

psychological validity of a production system, or how to determine what aspects of

-164-

the system to represent in the GTN. This means that analysts without appropriate

skills risk generating unrepresentative and inaccurate models.

Pragmatic Design Issues

Kieras and Poison (1985) state that the "device and job-task formalisms.., have been

chosen for their ease of use in the computer simulation techniques...' Unfortunately

this ease of use does not seem to have been evaluated for complexity as the

approach suggests UTs ought to be. l'his seems to be a rather cynical comment to

make, but the authors are making an explicit claim about the nature of CCT which

should be evaluated by user-testing in the same way that a UI might be.

Even given the unsubstantiated claim that CCT is easy to use, Poison suggests that

specialists be allocated the task of specifying tasks and deciding the grain of

analysis of the simulations. As there are no clear principles for determining in

advance what an appropriate grain of analysis might be, it is not clear exactly what

kind of expertise is required by the specialists undertaking such a task.

Card et al had the same problem in being unable to determine in advance, what

level might be the most accurate for the task of text-editing. They had to determine

this by implementing different models, at several levels of analysis, of one user car-

rying out one set of tasks on one application. There are no guarantees that the best

level will not vary unpredictably for each different set of users, tasks and applica-

tions which might be simulated. What is missing is a more explicit statement of the

factors which might determine the level at which performance might be most accu-

rately simulated. For example if the low level components of interaction vary

widely in a direct manipulation UI, they might not in a command driven UI. CCT

would not supply any method for ascertaining that modelling basic operations of the

direct manipulation UI would yield far less accurate predictions than modelling the

command driven one would.

Another pragmatic difficulty of CCT is that it could add considerably to the time

taken to pass through the four design phases, but since it cannot drive design itself,

it may not reduce the total time taken to reach a state where the UI is actually

usable. A stringent requirement of this and any other technique is that the diagnos-

tic utility of the approach (i.e. the time and cost that is saved by the simulation's

-165-

identification of problem areas and performance predictions) must outweigh the

time and cost of building the simulations in the first place.

This requirement might not be so important if there were no other methods for diag-

nosing sources of potential user difficulty, however CCI' will be competing in

applied design projects with alternative evaluation methods such as user testing of

prototypes, UI demonstrations and mock ups. These may capture aspects of the UI

influencing usability that CCT would miss, such as compatibility with user's expec-

tations. If these methods provide more information, are cheaper, and can be applied

earlier on then they will be selected in preference to CC'!'.

Synopsis

Although the CCT view of design does impose a procedural organisation on the

process of development and explicitly states that iteration will be necessary. It is

vague about the precise nature of the procedures which will yield the required infor-

mation for the modelling and also about the way in which solutions to problems

might be generated from the model.

It places demands for expertise in fields of task analysis, production systems model-

ling, and G1'N specification which would be difficult to satisfy with a small design

team. Like GOMS it does not account for the possibility that analysts other than the

authors might be unable to construct such accurate simulations of real user perfor-

mance. Nor does it address what advantages it might have over alternative methods

of evaluation in terms of overall time and cost savings in the design process.

It is assumed that the time taken to build and run the simulations and modify them

for each iteration will not be prohibitive, and that the advantages gained will

outweigh the investment. However, it is clear that CCT leaves certain issues, such

as style of interaction, and compatibility unaddressed. This would mean that a truly

conscientious, well equipped design team (such as might apply CC'!) would prob-

ably have to conduct user trials to determine the influence of these issues as early as

possible, perhaps using mock ups or prototypes. CCI' must therefore prove itself

capable of addressing issues which competing methods cannot, before it will be

viewed as a favoured design tool.

-166-

A final and important point is that CCT, like GOMS, has only been tested on text-

editing systems. Although such systems are common, approaches which work with

them may not be generalizable to other common systems.

3.2.3 The CLG View of the Design Process

Procedural Aspects of Design

CLG (Moran 1981) takes the view that a system UT can be designed by creating

increasingly specific descriptions of it. It is assumed that the first abstract descrip-

tion captures the entire system's roles, but in such a way that the proposed user's

conceptual model at this level can be specified at the next level. This user's concep-

tual model (UCM) will then be used to constrain the design throughout, the idea

being that systems designed to reflect the UCM will be easier to reason about and to

learn to use.

CLG does not claim to be a design methodology in that it does not specify the

activities which will bring about the required CLG representations. However it is

clear that for each level to be accomplished according to the model, certain goals

must be achieved by the designer.

The Task Level requires that the following goals are satisfied:

A system scoping where tasks to be addressed by the system are specified.

A task analysis in which the designer must decide what parts of each task the

system will support. The decisions must be based upon properties of the user

and of the system.

The Semantic Level involves:

Deciding on a set of conceptual entities and operations which will cover all of

the target tasks.

Ensuring that simplicity is achieved by using familiar concepts, as few concepts

as possible, and methods which are as simple as possible.

-167-

The Syntactic Level involves:

Deciding how to package conceptual operations into commands; whether com-

mands should be simple, or complex and functionally extensive, should they be

specific or general, multi-parameter or parameterless, and so on. Simplicity

must be maintained above all.

Deciding upon other syntactic devices such as command context structure, nota-

tions for designating objects, defaults, state variables, and command side-

effects.

The Interaction Level is the level at which:

Loose ends are tied up from the Syntactic Level; the designer decides how syn-

tactic elements are ordered, and when they are interpreted. The aim is to pro-

duce an efficient, consistent and mnemonic set of interaction conventions for the

user.

The Spatial Layout Level:

Describes the arrangement of the input/output devices and the display graphics.

The Device Level:

Describes all the remaining physical features of the UI.

Moran (1978, 1981) provides very little detail on the precise character of the last

two levels. Therefore, these levels will not be considered further.

Within and between each level, CLG aims to guide the designer in maintaining the

specification with mapping rules (guidelines or precise formalisms which enable

one description to be transformed in an unambiguous fashion into another) in order

to avoid inconsistency in the logic and structure of the design representation. The

mapping rules should enable the designer to transform one description into an iso--

morphic description taldng another view (within levels) or using another representa-

tion between levels. In this way tasks can be mapped to Semantic Level methods,

-168-

Syntactic Level Entities and Commands can be mapped to Syntactic Methods, and

so on. However many of these mapping rules, particularly between the Task,

Semantic, and Syntactic Levels are poorly defined, and will require skill and intui-

tion to determine.

CLG does not provide clear procedural guidelines as to how the designer should

gather the information required to compose a valid user's conceptual model and

multi-level specification. At the Interaction Level rules rather like those of

Reisner's Formal Grammar and Payne and Green's TAG are used to express simpli-

city and consistency, but at the other levels such rules are not included so that the

designer has no guidance with respect to the embodiment of these principles in the

design.

Further problems seem likely because there are no clues as to how to determine the

appropriate level at which to describe entities, and the designer is not given help in

determining what amount of detail is appropriate at any given level.

CLG provides a framework for ordering design decisions and "stratifying them into

Levels". This means that the conceptual model of the system precedes the design of

the interaction language. However the issue of what to do if the initial model leads

to a final system that is somehow unworkable is not well addressed by CLG. This is

because the methodology does not solve any of the software specification problems

which tend to lead to early design decisions rapidly becoming fixed, and later, better

informed decisions having little impact.

So CLG imposes a top-down step-wise refinement approach on the design of the UI

which is regarded as being specifiable independently of the rest of the system.

However no indication is given of how the UI specification might be integrated, and

at what stage, with the rest of the system design.

Moran claims that the top-down approach to specification has the advantage of ena-

bling each level to be evaluated before the designer goes onto the next. For the

higher levels it may be difficult to determine what exactly represent good and bad

features. Some features are suggested by Moran including those which represent

deviations from the user conceptual model.

-169-

As for evaluation of the design as it proceeds, Moran proposes a number of possible

metrics which could be applied to a CLG specification. Unfortunately these rely to a

great extent on the system's already having been specified to the Syntactic or

Interaction Level. Efficiency or speed of interactions could be judged from adding

up the times of the number of physical actions users would have to perform in order

to accomplish tasks. The Syntactic Level description can be evaluated for its

optimality or redundancy. Syntactic methods would give an indication of the user's

memory load during tasks. The overall length of the CLG description might be an

indicator of the difficulty with which the system might be learnt by its users.

CLG descriptions cannot be user-tested until the final specification is available

because the representations generated are not designed to be approved by users.

Even simulations of the nature of CCT will be impossible in the Task, Semantic and

Syntactic Levels because detailed information about the actual behaviour of the sys-

tem is not available.

Scope of Design Issues Addressed

CLG addresses the conceptual model which a user might have of a system required

to support a set of tasks. It is designed to provide a grammatical framework for

specifying a satisfactory command language for the functions which will be carried

out by the user with the system. The author claims that it provides a greater degree

of restriction for the designer than do state transition networks because it avoids

absurdity.

The main advantage that the approach is meant to provide is that it is intended to

support attempts to model the user's knowledge of the system by forcing an explicit

task representation to be provided, which may be based upon a task analysis. In

doing so it constrains the designer to provide a system which preserved the features

of the users existing or idealised task domain in the behaviour of the specified sys-

tem and its UI. For example, in a well worked CLO design, the system will have a

multi-layered structure which can be exploited by its users for the purpose of gen-

eralisation of rules or reminding of things which have been forgotten. The

specification will represent the meanings of system commands as Semantic Level

procedures which map well onto the user's conceptual model. Fewer rules will be

designed into the system at the Interaction Level, so users will have less to learn.

-170-

Moran outlines a number of ways in which the CLG specification might be

evaluated before implementation. The Task Level which expresses the scope of the

system can be considered open to debate by interested parties, for example users,

management and the system design team might all discuss the appropriateness of

the task specification. The Semantic Level can be analysed with respect to the possi-

ble difficulty that users might have grasping the concepts involved. However at

these higher levels there are no concrete methods as yet for evaluation.

A number of possible later evaluation metrics are proposed by Moran, given that the

Syntactic and Interaction Levels have much in common with GOMS specifications

(Moran 1981). Metrics could include speed of tasks, optimality of the language

syntax, potential user memory load and overall complexity of the system (i.e. the

size of its specification). Unfortunately the approach does not easily predict error

sites as the user's cognitive processing characteristics (such as memory decay) are

not explicitly captured in the descriptions. The same can be said of its ability to

give a clear picture of what will and will not be easy to learn, beyond a simple rule

count indicating general system complexity. Moran does not discuss what might be

done to ensure that the metrics which CLG does supply are available early enough

for designers to benefit from them. Given that evaluation of the early specifications

(Task and Semantic Levels) is not well guided, CLG may only allow for late

evaluation which may provide results which cannot be exploited by the design.

Furthermore, the derivation of evaluation metrics from CLG specifications has not

been demonstrated clearly as it has for GOMS and CCT, this makes it all the more

difficult for another analyst to attempt to do so.

Another issue which needs to be dealt with is that of responding to requirements for

change should some part of the system appear to be unsatisfactory. Moran admits

that iteration is an unavoidable process in design but does not clarify how problems

which emerge at one level might be traced back to earlier specifications. He does

describe certain features which might indicate user problems as above, but does not

clearly describe how these are to be dealt with during iteration from late detailed

specifications going back to early high level specifications.

- 171 -

Pragmatic Design Issues

There is some wonying evidence (Sharratt 1987) to suggest that CLO may be rather

difficult and time consuming to use. The main problems seem to stem from the

application of mapping and consistency checking rules which were hard to apply

correctly. Consequently the subjects in the study described made many errors such

as missing mappings between related sets of entities, operations or methods. A

further problem was that errors were easily propagated through to the next level in

the specification. The effect of the difficulty experienced by the subjects in

Sharratt's study was that they concentrated more attention on the complexities of

CLG than they did on the design itself.

The very nature of CLG; its multi-level character, makes it a highly repetitive and

time consuming method to apply. Considering what might actually take place in a

design scenario involving CLG, it is likely that a complete CLG description would

have to be generated before the first UI iteration could be produced. If this, for

whatever reasons, turns out to be unacceptable then the whole process, or a

significant part of it might have to be repeated in order to maintain the integrity of

the user conceptual model.

Producing a CLG specification probably requires considerable painstaking care and

effort because it has inherited the problem of confusing nested brackets from LISP

which it resembles in notation. The nature of its notation and the concepts it con-

veys make it difficult to understand, and therefore not amenable to discussion with

potential users or individuals who do not have the time to familiarise themselves

with it. On the other hand, since it is not a simulation tool, the only way it can con-

vey information is through being read - very carefully.

The approach assumes other unspecified methodologies will define user require-

ments, system scope and device behaviour which the designer would need to incor-

porate into the descriptions. Moran also assumes that the Syntactic and Interaction

Level descriptions can dictate the ultimate syntax and interaction behaviour of the

device, however systems are never so amenable that the designer has complete free-

dom in this respect. This problem is likely to be greatly exacerbated by the recent

introduction of such tools as UIMSs, applications generators, rapid prototyping

tools which exist in great numbers. Although these packages save time in

-172.

generating UTs, they can considerably constrain the freedom of the designer to build

the system which ever way he or she sees fit. There will be parts of the developing

UI which require that the CLG descriptions are violated. This possibility and how

to deal with it is not accounted for by the approach.

There are a number of uncertainties within the approach such as the familiar prob-

lem of its not clarifying exactly what determines what level something ought to be

described at. The Task and Semantic Levels are extremely informal and will prob-

ably demand psychological expertise from the designer. There is no clear method

for mapping from the Informal Semantic Level to the more formal Syntactic Level.

There is also uncertainty due to the lack of rules which could be used to represent

knowledge at levels above the Interaction Level. All of these problems mean that a

designer applying the technique might waste more time than the approach saved

simply trying to understand or guess what the best way to tackle these issues might

be.

Synopsis

CLG suffers from a number of problems which suggest that it might be extremely

difficult to apply without the right background and expertise in HCI and psychol-

ogy. The repetition of specifications in more and more detail will necessarily be

more time consuming than an approach which only requires one specification to be

generated. Even the very simple example EG Mail System description is very

lengthy, real applications would be exponentially more complex to describe.

The other methods which will supply the information CLG uses are not described,

and some of the methods within CLG itself are left unclarified, such as mapping

from the Semantic to the Syntactic Level. This means that it is difficult to be certain

that the technique is being applied properly even when the designer has grasped

most of the concepts involved.

How the approach fits in with other design methods for the rest of the system is not

easy to guess. The specification of the interaction characteristics is described

without consideration of the possibility that the designer might not be able to find or

develop a system flexible enough to permit their implementation. The metrics

which could indicate potential design faults could emerge too late in the design to

-173-

prove useful. By the time the metrics were provided, it might be possible and safer

for the non-HQ experienced designer to test the system on real users.

Apart from the many problems it appears to have, the sentiment behind CLG seems

to be a laudable one in that it seeks to constrain the design space to solutions which

will result in more usable interfaces. In other words the approach is intended to

reduce the requirement for alterations to designs by guiding the designer in the right

direction. This may partially excuse the approach's weakness with respect to deal-

ing with evaluation and iteration. The approach is clearly in need of a set of guide-

lines which would help the designer to generate valid design solutions in order to

ensure that the UI was well suited to the knowledge and task representations which

its users would have. Moran (1978, 1981) originally intended that such guidelines

(design principles, design operations and design rules) should be supplied, but as yet

they have not been made explicit.

3.2.4 Overview of HCI DETs Design Views

The three approaches described above embody theoretical views of HCI design, in

that their views are not based upon application of the approaches in real design pro-

jects. The GUMS view is procedural, in that it provides design activity principles

and describes the functions of each of the design activities it expects, and the

specification's ability to fulfil these functions is tested in the laboratory. Despite its

detailed account of how GUMS can be applied to design and evaluation, the organi-

sational structure of a design approach is not accounted for. The order of, and rela-

tionships between, the various activities are not clarified.

CCT provides a highly structured account of the design process admitting sequence

and iteration which contrasts with the GOMS approach. However, both GOMs and

CCT axe weak on how exactly the designer applies their methods, particularly when

it comes to defining appropriate levels of description for tasks and writing produc-

tion systems which are psychologically representative of users. CCT is also impre-

cise in determining what aspects of the device are to be nested in the GTNs. Furth-

ermore CC!' unlike GOMS and CLG does not account for generative support for UI

designers. It is implied that mismatches between user- and device-representations

indicate a need for redesign or training material but does not provide an explicit

method for reaching solutions. Notably Kieras and Poison suggest that the

174 -

approach is an early evaluation tool but do not clearly support this claim.

CLG also provides a structured account of iterative design but like CCT fails to be

specific about many crucial activities which the designer would be required to carry

out. In spite of admitting iteration as a necessary part of design, CLG does not clar-

ify how the approach deals with it, for example, if a problem is noticed at the

Interaction Level, how can it be traced back, and what are the implications for the

rest of the specification. Although CLG covers early design, it does not suggest any

real metrics for evaluation until the later, detailed phases; for this reason it could be

impotent in evaluation.

There are a number of characteristics shared by the three approaches discussed

above (these characteristics apply to most of the approaches discussed in Chapter 2)

which could prove prohibitive to their successful application in real design projects.

The approaches are complex and time consuming to app'y: they require the

analyst to re-specify the design in a way which is purely oriented to its usability (not

its logic, reliability, efficiency, or security). Because there are other system require-

ments apart from ease of use, designers may not consider the effort of applying an

unfamiliar, difficult, and unproven methodology is worth the risk of missing dead-

lines or running over budget.

Particularly important in view of the complexity of these approaches is the fact that

none of them appears to have been evaluated by its authors for usability, nor for

reliability when applied by non-HCI experts. Sharratt (1987) has confirmed this

view with respect to CLG by demonstrating that MSc. students using the technique

had considerable difficulty with the mapping rules, and maintaining consistency

between the multiple representations, and that the use of CLG shifted their attention

away from the experimental design problem they were given.

The approaches provide abstract specifications or behavioural representations

which do not convey the look and feel of the system to the designer or user.

Although, in some senses, they are designed as substitutes for informal user evalua-

tions, they lose out on potentially valuable real-user input. This is because they are

written in such a way that users would be unlikely to be able to contribute to the

design specification before a prototype was available. The notations which describe

- 175 -

the system and interactive tasks are not familiar or simple and may prove quite

cryptic to the inexperienced.

The value of user input to design is considered by many (Glasson 1984, Jorgensen

1984, Gould & Lewis 1985, and others) to be enormous. Many of the benefits pro-

vided by this involvement of users are not diminished by use of HCI DETs because

the kind of input users can provide, although less scientifically precise, may be

much richer. It seems to be a waste of an opportunity to specify tasks and device

behaviour in such a way that users cannot comment upon it, although CCI' does

claim, albeit without substantiation, that the device representations they provide are

comprehensible to users.

All of the multi-level specification approaches seem to be unclear about the pre-

cise nature of the levels of description they provide. The problem may be partly

a factor of what the levels represent to the analyst. The levels may be reflections of

human cognitive organisation which cannot be easily proved to be valid, or they

may be representative of different levels of detail with which a system may be

specified.

The essence of this argument is that most of the approaches which describe

representations as being multi-level take the latter position, with the possible excep-

tion of ICS (Barnard 1986), in that they do not rigorously validate the structure of

their representations. For this reason, it is never clear what features of tasks, con-

cepts, operations, and so on, make them suitable for description at any particular

level.

Payne & Green (1986) refer to routineness of simple tasks (terminal actions in an

analysis) as being dependent upon the user's level of skill, which is difficult for the

designer to predict. GOMS merely uses operator times to distinguish levels of

descriptions. This seems particularly inappropriate coming from a model which

acknowledges that time taken to accomplish some simple actions such as pointing a

mouse is heavily dependent on the characteristics of that task. For example Fitts

law (1954) states that mean movement time is a function of the log of distance (d)

over width (w). Should a pointing task be described at a higher level simply

because the size of the target in relation to distance becomes smaller ? GOMS

surely requires a clearer statement of what is meant by a level of description than is

-176-

presently given.

CCT implicitly assumes levels of knowledge in goal structures and production sys-

tems without clarifying what they actually mean, and CLG uses a pragmatic

design-oriented justification for its use of levels, again without clarifying what they

entail. As has been stated earlier with respect to CCT, all of these approaches need

more explicit statements of the factors which might determine the level at which

human representational structures and performance might be most accurately simu-

lated or represented.

The vagueness of definitions of levels of analysis or description could be a source of

confusion to designers. Methods that rely upon the intuition of the analyst may not

be adequate for individuals who have little psychological experience. Moreover if

designers are not convinced that they understand and can properly apply a tech-

nique, they axe unlikely to experiment with it and risk making mistakes in an

applied project under commercial pressures.

Whether these techniques can really be generalised to other systems than text

editors remains in question. Further research is required on the applicability of

HCI DETs to such systems as process control, data processing, CAD, and so on.

Green et al (1987) point out that there are a wide variety of applications which prob-

ably behave very differently from text editors (and similar systems such as drafting

programs, spreadsheets and music editors) which may not be amenable to existing

HCI DETs which tend to concentrate on "formal" models of requirements in partic-

ular limited domains.

It remains to be proved that the metrics for evaluation supplied by HCI DETs

can be made available early enough in design to influence its course. So far all

of the evaluations and claims made with respect to these techniques seem to be

based upon rather artificial application situations. More analysis of HCI approaches

in practice seems to be required before these claims can be accepted.

It is not clear how HCI DETs are to be integrated in applied design given that

there are other design activities involved and that various activities are interdepen-

dent. Three of the techniques described in Chapter 2 do present explicit views of

the system design process into which they assume they will be incorporated. These

- 177 -

views are incomplete as we have seen, leaving much that might be relevant to the

initiative of the analyst/designer. In some instances, these views may even be mis-

taken; for example CLG's assumption that metrics which are only available late in

the system specification process can be valuable.

In addition a poor view is given of the nature of the supporting activities which

DETs rely on for their basis. Who carries these out, when, and how is not clearly

established.

Currently available HCI DETs suffer from a lack of proven benefits for design

practice. Designers need to know whether these techniques actually work as their

authors say they should in applied design. We need to know whether systems

designers and analysts can actually use them successfully, whether they do actually

improve UI design and can speed up the process or save costs. We also need to

know how they fare in comparison with other techniques, particularly prototyping

and user-evaluation.

What is required is a better picture of what really goes on in UI design practice. It

is all very well to look at HCI theory of design, and Systems Engineering design

approaches in order to judge the applicability of HCI DETs, however such a judge-

ment must be founded upon a clear picture of how real UI design corresponds to the

ideal assumed by HU Approaches. In the following sections other approaches to

design, both ideal and actual will be compared with HCI DETs design views dis-

cussed above. Knowing more about the reality, we can say more about the prob-

lems which must be overcome by any design technique, be it user-oriented, or oth-

erwise. Of course the focus here is the UI, which is typically the poor relation in

structured design methods (Summersgill & Browne 1989). Most well known

SADTs such as SD (Yourdon & Constantine 1978), and JSD (Jackson 1983), give

little consideration to the UI, so they do not feature amongst the user-oriented

design approaches described below.

33 Alternative User-Oriented Design Processes

In this section a number of alternative approaches to user-oriented design are

described which explicitly aim to get more Human Factors into actual design prac-

tice. Although by no means an exhaustive survey, the following discussion serves

- 178 -

to illustrate a number of user-oriented approaches which, attempt to address the

design process in particular. In other words, the main distinction drawn in this

thesis between the HCI DETs described above and user-oriented design approaches

is that the former have been developed in response to the need to describe and

evaluate usability of interactive dialogues, whereas the latter have been developed

in response to the need to improve the UI design process itself with respect to users.

Jorgensen (1989) distinguishes two other approaches to design apart from formal

modelling (in the procedural sense used by HCI specialists) which is the basis of the

HCI DETs. He identifies guidelines and prototyping approaches as alternative ways

of addressing the problem of building more usable Uls. These types of approach

are illustrated in the following discussion. They should be contrasted with the

approaches described in Chapter 2 and the earlier part of this chapter, however

space does not permit such a detailed description of these other approaches, the

intention is simply to give a flavour of alternative user-oriented design approaches

for the purpose of comparison with the HCI DETs which concentrate on the use of

specifications of knowledge and procedures for interaction.

The contrast suggests that various groups in the field of HCI appear to be respond-

ing to different pressures. In the case of the HCI DETs the pressure seems to be one

of achieving powerful and predictive techniques which describe users' knowledge

representation or processing properties, and how UI designs impact on these. In the

case of the other user-oriented approaches the pressure seems to be one of impact-

ing the design process directly, since as empirical studies appear to suggest, HCI

seems to have had little effect on current design practice.

3.3.1 Principles and Guidelines

A number of researchers have concentrated on the application of principles or

guidelines which are intended to ensure that UI designs take heed of important user

issues. A general distinction between a principle and a guideline can be made

(Thimbleby 1985) which is that guidelines are applied principles, worked out for a

particular context. Smith (1986) distinguishes between guidelines and standards

which must be complied with. Guidelines offer more flexible and detailed guidance

towards user-oriented design and establishment of agreed design objectives.

-179-

Gould & Lewis (1985) propose three principles of practice for user-oriented design

which are early focus on users and tasks, empirical measurement and iterative

design. These might be considered obvious and rather simplistic but Gould &

Lewis provide empirical evidence which suggests that they are not actually obvious

to designers.

Thimbleby (1984), Harrison & Thimbleby (1985) outline an approach to design

which focuses upon the use of Generative User Engineering Principles (GUEPs)

which are formally expressible and are constructive rather than descriptive. GUEPs

are distinct from straightforward user-oriented principles such as desk-top modelling

and WYSIWYG because they are more directly based upon user characteristics

whereas some other principles are more heuristic (based upon ideas that seem to

have helped in the past). A GUEP would take the form "you never have to do it all

again" (implying that recovery should be possible with some 'undo', or 'again'

facility).

Gardner et al (1984) began developing a handbook of Human Factors design guide-

lines, some of which are now available from the HUSAT Research Centre. They

are intended to include detailed guidelines which address specific kinds of UI func-

tionality and documentation for the system.

The documentation guidelines, for example, include identification of areas for docu-

mentation, a description of how the documentation design process proceeds, a glos-

sary of terminology for the UI, and detailed guidelines together with explanations

and good and bad examples of documentation design solutions. It is interesting to

note that the guidelines themselves are written according to their own recommenda-

tions.

Glasson (1984) presents a method for deriving a set of guidelines for user participa-

tion in the system design cycle. He notes that the variability of different design pro-

jects would make it difficult to propose a standard set of guidelines for user partici-

pation in all projects. He proposes instead that models for user participation should

be derived from the system developers' model of the system development process.

Having defined the tasks required by a systems development methodology the

designer is required to build a user model of the design process using a three step

-180-

process. The steps involved are; define user actors or user roles required, define the

tasks of the actors for each stage of development, and define and develop appropri-

ate procedures, methods, and tools which may be manual or automated, to be used

in carrying out the tasks.

3.3.2 Iterative Design and Protosyping

One of the principles of Gould & Lewis (1985) is to incorporate iteration in design

as this, they suggest, will significantly improve the design of the UI. Supportive

evidence for this hypothesis has been presented by Boehm et al (1984) in an experi-

mental comparison of Prototyping and specifying. However there are a multiplicity

of different ways of prototyping systems, and only a small subset of examples can

be included here.

Rosson et a! (1987) distinguish evolutionary prototyping where the prototype is the

evolving system, and simulation or throw-it-away prototyping where the prototype

is a disposable simulation used for exploration of possible solutions. Hekmatpour

& Ince (1987) also distinguish between two types of non-disposable prototyping

evolutionary and incremental. Evolutionary prototyping requires that the whole

system is prototyped early on and then increasingly refined into the final product.

Incremental prototyping involves building the system section by section.

Christensen & Kreplin (1984) adopt a half-way approach in their attempt to produce

an applicable method for software developers in the real world. Their approach,

which allows them to specify the dynamics and lay-out of the UI in a largely formal

manner, enables them to build prototypes directly from the specifications. The

authors admit that their specification language is too low level to be satisfactory and

requires an abstraction mechanism to improve specification of the dynamics and

lay-out more efficiently. However they claim that their aims of easing communica-

tion between designers and users, and improving the user's ability to evaluate

designs before they are fixed seem to be satisfied by the approach.

Wasserman (1985), and Wasserman et a! (1986) have developed a sophisticated

interactive information systems (uS) development approach called user software

engineering (USE). The USE methodology involves simulation prototyping rather

than evolutionary prototyping, however tools are provided which significantly speed

- 181 -

up actual system implementation based upon the simulation. This methodology

combines executable UI specifications based upon a more extended state transition

network (STN) approach than typically used in software engineering with the

RAPID/USE prototyping system which contains a transition diagram interpreter

which permits the specifications to be run as dynamic UI mock-ups. Users are then

able to interact with what essentially amounts to a dynamic specification of the UI

(they do not see the state transition diagrams themselves). In this way it is possible

for real users to take the place of Kieras & Polson's GOMS model in evaluation of a

system, as long as the approach to design follows the USE methodology.

The main problem with the RAPID/USE prototyping toolldt seems to be that the

simulations are rather primitive as they do not deal with WIMPS interfaces. This

means that the UI simulations may not be able to represent more modern styles of

interaction at present.

It is tools such as those in the RAPID/USE toolkit, which appear to be lacking in

HCI DETs, which ensure the utility of the approach. Wasserman et al claim that the

USE methodology supported by the RAPID prototyping tools is widely used, and

provides a highly valuable means for involving users in the UI design process to

great effect. He maintains that the methodology would be of little utility without

the simulation and implementation tools which considerably reduce the problems of

determining usability and the time taken to implement the actual system.

Hekmatpour & Ince (1987) are also advocates of the prototyping approach. They

are particularly interested in evolutionaiy prototyping which generates complete

system designs early on in the life-cycle and which they believe to be the most suit-

able approach for dealing with UI because it aids requirements clarification and per-

mits the design team to deal more easily with inevitable requirements drift. Hek-

matpour & Ince present 'Evolutionary Prototyping Language' (EPROL) which is a

wide-spectrum executable specification language which can be used for

specificatIons throughout the system life-cycle.

An advantage claimed for EPROL over the USE approach is that it is more adapted

to handling WIMPS interfaces. The other main advantage is that it can improve

communication between experts with various specialisations. It contains notational

devices which enable it to specify the entire system (hence the term wide-spectrum

-182-

language) throughout its life-cycle, and can represent the UI from early stages,

using executable specifications based upon STNs. These are refined later on to

adapt the UI to a WIMPS style of interaction.

Separation of the UI from the application in prototyping as well as executable

specifications are ideas which are becoming increasingly attractive as means of

speeding up the prototyping process (Adhami et al 1987, Cockton 1987b, Alexander

1987). As support tools such as those described by Wasserman et al become more

commonly and affordably available, so the process of prototyping will become

more and more efficient and less time consuming. It should soon be possible to test

most systems quickly and easily before the functionality is fixed, given that it is

possible to get prospective users to try out the prototype. This may not remove the

need for analytic HCI DETs but it will surely help to corroborate metrics generated

or design solutions adopted through their application.

Jorgensen (1984, 1989) identifies an informal approach used spontaneously by some

designers to develop UI prototypes which can be tested by users doing plausible

tasks and thinking aloud as they go. The approach was used by designers who each

used approximately three subjects for each round of testing of their designs. The

thinking-aloud approach appears to be a very useful tool for designers, providing

valuable and detailed feedback which enables the designer to a1ter the system in

response.

From the study he conducted Jorgensen supplies a number of recommendations for

the approach which include; applying it to mock-ups early in design, as well as to

prototypes later using logging, audio or video recording devices; using about three

users (singly or two together for each test round); and conducting interviews after

each test round. Although Jorgensen warns that this approach is by no means a sub-

stitute for techniques such as task analysis, alpha- and beta-tests etc, it has the value

of being easy for systems designers, who are able to prototype their system, to use

and the approach is able to be applied at any stage in the development of the system.

User participation in design prototyping is also recommended by Tesler (1983) but

he also suggests that users be involved in making design decisions. In addition he

emphasizes that the users involved in testing Uls should be 'novice users who are

prospective end-users of the system'.

-183-

User-oriented design approaches are beginning to gain acceptance amongst certain

designers, although these may be the exception, rather than the rule. Recommenda-

tions which support the use of guidelines, principles and iterative procedures cer-

tainly have their supporters as we have just seen, but the user-oriented views of

design discussed above may not reflect design practice in general. Aiming to design

new HCI DETs in accordance with user-oriented approaches may still be invalid as

a research goal unless we have a clear picture of the reality within which such tech-

niques will be expected to work.

3.33 Overview

User-oriented design activities are considered as an integrated part of an overall

design process. Their input and output are related to the rest of design as a whole.

Most concentrate on pragmatic issues such as simplicity, time and cost, how design

itself is driven, and they appear to be more general in scope, concentrating less on

precision over a smaller range of issues as do the HCI DETs discussed.

Many of the problematic characteristics of MCI DETs are avoided by the avoidance

of complexity of user-oriented design approaches, such as that of Jorgensen (1989)

are explicitly kept simple to ensure that most designers will be able to apply them.

Others, such as that of Wasserman et al (1986) rely heavily on the use of automated

tools which considerably lessen the workload on the design team.

Rather than relying on simulations of user representations of interaction rules, such

as the grammars supplied by HCI DETs, user-oriented design approaches tend more

to rely on direct user feedback, or user involvement in the design process itself (e.g.

Gould & Lewis 1985).

3.4 Practitioners' Views of UI Design and Evaluation

There is a small but growing body of research into the practice of UI design in

applied environments. These studies have a number of aims which include

identification of activities involved in real world design practice, identification of

inadequacies in UI design, analysis of problems which commonly occur, validation

of hypotheses about good design practice, and, rarely, comparison of alternative

methods of design. The value of this research is that it can help to direct the efforts

-184-

of those building new tools and techniques towards areas where they are most

needed. It can also show what kinds of problems these tools and techniques need to

address, both in terms of the focus of the analysis they support and the nature of the

analysis itself. In the following sub-sections a number of such studies are described,

and their implications related to some of the issues raised earlier in this chapter and

in the preceding chapter.

3.4.1 Comparative Studies of Design and Evaluation Approaches

Boehm et al (1984) were one of the few groups to conduct a comparative study

between alternative design approaches. They compared two approaches; specifying,

and protoryping in order to see what were the strengths and weaknesses of each.

Although neither approach involved the use of HCI DETs, the specification versus

prototyping comparison perhaps suggests that a similar effort might be relevant for

HCI techniques. The subjects in the Boehm et al experiment were asked to design

and implement an interactive software cost estimation tool. The specifying teams

had to produce requirements and design specifications, whereas the prototyping

teams built prototype demo's of the system instead. Although the study suffers

from the usual representativeness problems of experimental studies, it does provide

some welcome comparative information regarding these competing approaches.

The final product of each of the teams in both groups was evaluated by the experi-

menters according to a number of criteria such as person-hours spent on the product,

maintainability of the code, and so on. Prototyped products were rated to be lower

in overall functionality and tolerance of erroneous input, but correspondingly higher

in their ease of learning and ease of use. Prototyped products were also rated as

markedly more maintainable than specified products. What is important with

respect to the discussion here is that prototyped systems had interfaces which were

rated as significantly better than the specified systems. This suggests that, discount-

ing inclusion of HCI DETs, prototyping may be superior to specifying as a method

of developing Uls. It would appear that such a comparative study might be very

useful for determining the value of using an HCI DET as opposed to some other

approach such as prototyping. No such study seems to have been carried out for

any of the techniques discussed in Chapter 2.

An interesting by product of this study was that smaller teams seemed to be

-185-

significantly more productive in terms of delivered source instructions (DSI) per

person-hour (even after the results of a particularly productive prototyping team

were discounted). This finding implies that activities such as communication and

coordination which will be required to an increasing degree as the size of a team

increases, take up time in themselves. We should not criticise designers in large

teams for being unproductive if the activities associated with ensuring shared goals

and common concepts are necessarily taking up time (for instance communicating

results of a task analysis to a systems analyst). However there may be something to

be said for avoiding unnecessarily large design teams, and poor communication

channels.

Maclean et al. (1985) compared the use of two different empirical metrics of usabil-

ity; the time taken to complete tasks (as is used by GOMS) with the method users

choose to accomplish tasks (where the assumption is unlike that of the GOMS

approach; i.e. that users do not always choose the optimal method). Although this is

not a comparison of full approaches it addresses the application of metrics which

many performance modelling approaches claim may be used as indicators of usabil-

ity. It was found that the subject system users often used slower, less efficient

methods although they believed they were actually using the fastest methods.

Although the study was aimed primarily at analysing why users choose a given

method when another might be more efficient, it highlights a very important issue

for HCI DETs, namely that assumptions about users' behaviour made by models of

their task execution may be ill founded and unrepresentative. The selection rules,

applied by users when there is more than one way of accomplishing a task, may be

none ideal. This finding is most relevant to performance models such as GOMS and

CC!' which, although they incorporate selection rules, are not sensitive to qualita-

tive features of UTs which may cause users to choose particular non-optimal

methods for accomplishing tasks. The findings are also relevant to competence

models such as Reisner's Action Language and TAG since they assume competence

in their models, rather than identifying realistic users' task methods which may be

less than ideal. In fact Maclean et al produced a useful technique for helping an

analyst to predict the methods users might select on the basis of features of the task

environment. Such a technique might be a valuable component of future HCI

approaches.

-186-

3.4.2 Studies of HC! Principles Applied in Practice

Gould & Lewis (1985) state that in the 1970's they began recommending what the

refer to as three principles relating to methods for UI design (as opposed to the ideal

UI-property oriented principles described in Chapter 1). These design principles

were:

Early Focus on Users and Tasks

Empirical Measurement

Iterative Design

When presented with these principles, people seemed to think that they were rather

obvious, so the authors carried out a survey in which they asked designers to write

down a sequence of about five steps one should go through when developing and

evaluating a new computer system for end users.

There were 447 participating designers in the study who were attending a human

factors talk, so one would have expected them to be at least as aware of user

requirements as average. However only 16% mentioned all three principles in their

steps, 24% mentioned two, 35% mentioned one, and 26% none. Early focus on

users was mentioned by 62 participants out of the total, empirical measurement by

40 and iterative design by only 20 of the participants.

Some designers were given credit for including principles when in fact they did not

really have what the authors considered to be a good idea of what the activities

specified by the principles really involved. Gould and Lewis argue that designers

appear to have a number of misconceptions about good design practice, the value of

user involvement as opposed to other approaches, the amount of time taken and cost

required to ensure usability, and so on.

In a later study Gould et a! (1987) report the attempt to apply the three principles of

design in practice on the 1984 Olympic Messaging System (OMS). They found, as

they expected, that it was never easy to get things right first time. Extensive and

careful evaluation was necessary with early demonstrations, and simulations having

to be built. A number of compromises, such as simplicity at the expense of func-

tionality, had to be made. However, at the end of the project, the success of the

product convinced the team that the principles did work; they found that they had a

robust, reliable and usable system.

-187-

Based upon the project, a fourth principle was instantiated: Integrated Usability
Design which demands that all usability factors should evolve together, and that all

aspects of usability should be under one control, rather than groups trying to deal

with them autonomously, and possibly in a different fashion. Usability factors were

seen to interact in the OMS design project, so it was impossible to develop and

evaluate them in isolation. The need for integration imposes the requirement that

one person or group takes overall responsibility because it is then easier to ensure

that what needs to be done does indeed get done properly.

Another study covering human factors principles in general was carried out by

Grimes et al (1986) to discover whether these principles are well or poorly

integrated into design. Systems designers completed a survey questionnaire issued

by the researchers at a SIGCHI conference. The questionnaire required the respon-

dent to describe their position, background, and experience with system design, and

how human factors issues were integrated into the UI design process.

The authors found that the companies of these designers varied widely in the degree

to which they were rated as integrating human factors with systems design. How-

ever the results suggested that human factors is generally poorly integrated in the

majority of companies at present. As might be expected the researchers found that

only a few of the designers had a psychology background (which many of the HCI

DETs discussed in Chapter 2 seem to expect), with the majority being pure com-

puter scientists.

The implications from Gould & Lewis's work and that of Grimes et al, is that

designers, possibly due to their lack of experience with psychological and HCI per-

spectives on design, generally have a poor understanding of HCI issues and that

they tend to underestimate the importance of human factors in their practice. This

bodes ill for HCI DETs which could be perceived as difficult and time consuming

by designers. If the potential users of HCI DETs do not value the targets of these

techniques (i.e. detailed analysis of the UI with respect to various user characteris-

tics which could affect interactive performance) they may not be prepared to invest

the time and effort required to carry them out.

Mosier & Smith (1986) carried out a survey of the users of a "comprehensive com-

pilation of design guidelines"; the Smith and Aucella guidelines (Smith & Aucella

-188-

1983) which are provided in a report containing some 580 guidelines. They found

that managers and software designers were far less likely to read guidelines

thoroughly than HCI specialists, and software designers seemed to find the guide-

lines less helpful than HCI specialists and others involved in some aspect of design

(such as teachers of methods, and systems analysts). It may be that a lack of incen-

live and psychological experience prevents designers from understanding the actual

meaning of guidelines, or that designers do not appreciate the importance of guide-

lines and their relevance to the success of the end-product. The lack of use may

also have been because of the difficulty of application of guidelines to software

design practice.

The main problems with guidelines were that they were often found to be not

relevant to the system in question, inapplicable for practical reasons, or too general

to be useful. It would appear that guidelines must be carefully designed to strike a

balance between generality and precision. These problems almost undoubtedly will

be relevant to HCI DETs if and when they are applied by designers. Since most

DETs have not been tested in practice as have guidelines, it would be unwise to

assume that they do not share many of the same problems.

3.4.3 Studies of UI Design Practice In General

Dagwell & Weber (1983) carried out an international investigation of systems

designers' models (assumptions) of their prospective using a questionnaire survey.

They viewed the responses they received as being indicative of the fact that

designers' models of prospective users of their systems are possibly inadequate; the

designers in the study did not consider how great an impact they have in terms of

changing people's work, both on the individual and on the organisational level, and

some of their methodologies were outdated and naive. They considered that better,

context sensitive user models would be of great value in design, perhaps being con-

veyed through education and experience. Studies such as this indicate that

designers do need supporting tools to help them improve their sensitivity to their

prospective users needs, beyond simplifying their systems to the extent that users

jobs are completely deskilled.

Hammond et al (1983) note that much needed HCI literature runs the risk of being

inapplicable for systems design, with overgeneralisation of recommendations based

DESIGN CONSTRAINTS TASK DEFINITION

e.g. * Historical
* Organisational
* System
* Personal

Formalisation of user
tasks into suitable
functions and objects

-189-

upon artificial experimentation. The authors identified a need to find out more

about the decision maldng processes which influence the design of a UT. For this

reason they interviewed five designers in a very large systems design company.

From the interviews Hammond et a! were able to outline a framework, shown in

figure 3.3, which the interviews suggested was typical of the design process. They

also used the designers' comments to illustrate ways in which the designers con-

sidered users and their tasks.

Figure 3.3

Simplified Framework for Sequence of

Design Steps From Hammond et at (1983)

INITIAL SYSTEM SPECIFICATION

* Functionality and performance
* System 'internals"
* System "externals" and

interface image

SYSTEM IMPLEMENTATION

FURTHER SYSTEM SPECIFICATION

e.g. * Modification of initial specification
* Specification of undefined aspects
* Prorotyping and testing

Although aware that user requirements had to be given consideration, the designers

-190-

tended to base their task designs around the architectures of their designs and the

logical substance of the tasks involved rather than on users' natural methods or the

most efficient methods for the user. Compatibility as a system feature was also

problematic for designers. Compatibility with previous systems the user might have

experience with could have been an excuse for maintaining outmoded UI com-

ponents. Sometimes this concept seemed to be used as an excuse for imposing

unusable features of the UI on the design.

Typically designers theories about users were not sensitive to task and user vari-

ables which could have strongly influenced performance. They were based upon

general experience or "common sense" rather than any formalised body of

knowledge. Designers views of human factors were based upon very little

knowledge and no small amount of disrespect which could have been due to poor

company organisation of its human factors input to design.

Hammond et a! state that expressions of dissatisfaction with human factors and HCI

practitioners were probably due to "organisational and resource constraints". As

stated earlier HCI DETs require considerable expertise and time to apply. It would

appear unlikely that such techniques would be applied in the circumstances of the

company studied by these researchers.

Smith & Mosier (1984) reported a survey which revealed that Human Factors

engineers in mainly industrial settings estimated that between only a fifth and a third

of system development projects adequately considered USI requirements at various

stages of the development process. Together with this finding a significant (approx-

imately 7%) of the Uls in question were not given any consideration at all in the

system specifications. This finding supports the relevance of the warning given at

the beginning of this chapter that in some circumstances a designer may not be

obliged or motivated to take any steps to ensure usability of the system.

Over half of the survey respondents to the appropriate questions considered that UI

documentation was inadequate, and most of the respondents did not use guidelines.

The authors suggest that the blame for poor UI design approaches may lie at the

door of HCI specialists who lack the knowledge and tools, and consequently the

influence, to deal effectively with design. This criticism must also apply to HCI

DETs which must embody knowledge about design practice and tools to support

- 191 -

time consuming activities required.

More recently Rosson et al (1987) conducted an interview study based upon the

idea that, if specialists are ever to provide useful UI design tools, they have to look

at design practice. Twenty-three systems designers, with a very wide variety of

backgrounds (but mainly from one organisation) were interviewed and derived a

great deal of qualitative data from this study. The projects involved a number of

types of application including office support systems, tracking systems, information

or function access, and software development support. The products would run on

mainframes or in intelligent workstation environments.

They noticed that the projects they studied were split almost half and half between

phased development in which there was a design phase followed by an implementa-

tion phase (10 projects) and incremental development with design and implementa-

tion proceeding in parallel in an iterative fashion (12 projects) more commercial

projects used the more tightly controlled phased development design approach,

whereas research projects tended to use incremental prototyping. Each approach

had its drawbacks, notably phased development was seen to limit iteration to the

early stages of design, whereas incremental prototyping involved less certainty

about the form of the potential end product.

User testing was mostly informal, ranging from active user involvement, to belated

user testing, however no special effort seemed to be made to ensure that representa-

tive users and tasks were selected for evaluations. Design was assisted by demons-

trations and prototype testing but lack of user feedback early in design was a com-

mon complaint of designers. This was blamed on lack of adequate information

about prospective users' needs, lack of prototyping tools, lack of resources, product

confidentiality, and test administration group problems. Prototypers did not always

exploit their prototype claiming that user testing would force them to waste time

improving robustness of the system too early on. This indicates that simulation

tools could be helpful. Separation of the UI design from the application was

adopted by some teams a few working from the outside in, starting with the UI, as

Wasserman recommends.

Surprisingly designers using incremental, prototyping approaches were not more

likely to offer an early interactive prototype for user than were designers using

-192-

testing phased development approaches. This seems to be attributable to the lack of

robustness of early prototypes.

Amongst the recommendations derived from their study Rosson et a! state that UI

designers require a rich, modular prototyping environment (which would be highly

modifiable) for evolving a final product. This will enable them to deal with require-

ments drift and unforeseen changes which are often unavoidable in design.

Hannigan & Herring (1987) report on a study of the experience of designers from

five major manufacturers. They compared design practice with generic design cycle

models both from research and from the companies themselves and found that

extreme deviation from these models was the rule rather than the exception.

This extreme variation is viewed as being characterised by multiple views of the

design by different stakeholders in the process. The authors of the report state that

it is unlikely that this state of affairs will change and that HCI input will have to

adapt to the design process rather than vice verca. The current state of affairs seems

to be that, although UI design advice is available, it is not used because its form is

not directly applicable. The same may be likely for HCI tools and the authors sup-

port a view expressed earlier in this chapter, stating that "if the cost in terms of

access, time to use, up front learning effort etc, outstrips any perceived benefit they

will not get used".

The study revealed that task analysis methodologies were never stated as a major

designer requirement (unlike advice). On the other hand more detailed analysis

showed that designers did acknowledge that they needed realistic task scenarios or

simple methodologies. Hannigan & Herring warn that such methodologies will be

subject to the same constraints as other human factors inputs to the design cycle

noting external factors such as markets and internal factors to do with organisational

culture.

User representation in the design process itself was widely accepted but not well

understood by designers. Users requirements in specifications were not given for-

mal consideration as were other design aspects. Also the focus of attention was

directed towards evaluation, instead of design with casual ad hoc approaches being

adopted.

-193-

The evidence from the studies in the preceding discussion suggests that, in spite of

the amount of knowledge which already exists in the field of HCI, designers do not

generally approach UI design in an ideal manner. Guidelines are sometimes used,

but in some cases even these tailor made, simple design aids are ignored and no

consideration is given to user requirements in design.

As has been noted, Uls can evolve from systems without having been designed, that

is to say without restriction on what might be considered acceptable. However the

evidence suggests that this is rare. On the other hand it is far more common to find

that designs are not influenced by the kinds of restrictions which HCI research and

techniques could provide. When users are considered, it appears that designers

adopt a casual, ad hoc approach placing more emphasis on evaluation than on

design for users.

It is not surprising that Gould and Lewis (1985) found that designers thought they

were applying user-oriented design principles when, in fact, they were not. It

appears that there is a common attitude that as long as users have been considered

then their needs have been addressed. This belief must sureiy be wrong because

there can be no sensible basis for assuming that designers' intuitions about users are

always correct. What is clear above all from the literature is that there is certainly

scope for improvement.

3.4.4 Overview

The evidence supplied by existing design practice studies gives rise to a number of

interesting implications regarding actualities of design practice. The first is that

prototyping may represent a good way of improving usability of a UI over what can

be achieved using design specification techniques (Boehm et al 1984), if only prob-

lems relating to lack of adequate prototyping tools which are both robust and

modifiable can be solved. The value of prototypes seems to be that users who know

most about their own requirements and limitations can see actually what the system

is like, make suggestions, and provide valuable feedback into the design process

(Gould & Lewis 1985, Gould et a! 1987).

Evidence from Maclean et a! suggests that attempts to model interaction based upon

idealised user behaviour of the sort assumed by GOMS models may be misguided.

-194-

Their findings suggest that users often believe that they are using the fastest most

efficient methods for achieving their tasks, when, in fact, they are not. If this is the

case, then only intensive procedural training, such as might occur in the armed

forces, is likely to achieve idealised efficient performance.

The findings from Gould and Lewis (1985) and Mosier & Smith (1986) suggest that

attitudes of designers may be problematic for the application of HCI DETs. Gould

& Lewis show that designers assume that they are adopting user-centred design

approaches, when in fact they are not. Mosier & Smith reveal that software

designers and managers are far less likely to read design guidelines than HCI spe-

cialists. Smith & Mosier (1984) show that user considerations are often neglected

or ignored altogether.

Grimes et al (1986) demonstrate that most system designers lack experience with

HCI which may make it all the more difficult for them to assimilate and apply HCI

guidelines, principles and techniques. Mosier & Smith's study and that of Ham-

mond et al (1983) point some of the blame for poor integration of HCI into design at

irrelevant unpractical or overgeneral guidelines and HCI specialists who are poorly

educated about systems design.

This is not to say that HCI tools cannot be useful and will not be useful for more

commercial projects if appropriately designed. Evidence from Dagwell & Weber

(1983) and Hannigan & Herring (1987) suggests that they can be. However, as

Ratcliffe (1987) points out "All projects are subject to constraints of various kinds -

temporal, financial, technological, and legal amongst others." Such constraints will

have to be overcome, and attitudes to acceptability of "common sense" solutions or

excuses for implementing outdated design solutions, or basing interaction around

system hardware and software, rather than vice verca must be changed.

Rosson et at (1987) point out that commercial design is also constrained by

development approaches adopted by organisations. All too often, informal and

belated user testing results in inadequate evaluations. Designers blame inadequate

resources and lack of prototyping tools. However even when such tools exist it

appears that they are underexploited.

In general designers appear to have positive attitudes to HCI in principle but not so

- 195 -

much in practice. They also suffer from lack of experience and understanding of

HCI's value and methods.

The additional principle of Gould et al (1987); Integrated Usability Design is based

upon HCI practitioners practical experience on a real design project. It is likely that

HCI specialists with experience of systems design themselves are likely to produce

very relevant advice for others. It makes sense to assume that responsibility for a

difficult system feature to pin down will be better addressed if there is one control;

in essence, the buck has to stop somewhere. As has been pointed out in the preced-

ing chapter, the fact that different aspects of usability interact with, and may

compromise one another means that integrated evolution must be a better way of

identifying possible trade-offs as soon as they emerge. Such an approach will help

to ensure that the necessary modifications will be identified earlier, and be easier to

make for that very reason.

3.5 Discrepancies Between Theoretical Design Views
and Design Views Based on Studies of Practice

There are a number of discrepancies which can be identified between theoretical

HCI DET views and views of UI design which come from studies of actual practice.

Perhaps the most striking is that empirical evidence suggests that, although they are

generally positive about user centred design (Gould & Lewis 1985), systems

designers do not typically address user issues as rigorously as required by HCI

DETs. A great deal of analysis is necessary to support many DETs, for example

TAG requires that simple tasks be identified, listed and analysed to generate rule

schemas. This may be simple for some applications but for others this requirement

may be extremely time consuming, and at present the evidence does not support the

view that designers are generally prepared to carry out such detailed and scientific

usability analyses (Rosson et al 1987). In fact it would appear that even tailor

made, relatively simple guidelines are not thoroughly read by software designers

(Mosier & Smith 1986).

HCI DETs do not come with a clear explanation and justification of the design

process into which they are to be integrated. Evidence suggests that the design

process is always varied. Some techniques do not address this fact at all, others

only claim to be research tools. Organisational and resource constraints or more

-196-

detailed aspects of the assumed design process are left unaccounted for. For exam-

ple CCT claims to be an early evaluation technique, but it implicitly assumes a great

deal of resources are available to the design team for building a detailed UI simula-

tion before going on to build the actual system. It is not clear that the metrics sup-

plied will always be available before the application software is constructed and that

many design projects will comply with assumptions made by CCT.

Evidence of the utility of HCI DETs over competing UI design and evaluation

approaches is lacking. Sharratt's (1987) study suggests that HQ DETs may not be

cost effective. Evidence from studies of design practice indicates that designers

attitudes to HCI may not be positive enough for them to invest time and effort in

discovering and learning how to apply relevant approaches for their projects.

Validations of the accuracy of HCI DETs predictions are carried out by HCI

experts. The assumption of expertise by these techniques may be unjustified for the

majority of design projects. Accuracy of a grammatical model or performance

model of interaction may rely to a great extent on the experience the analyst who

applies it, rather than on explicit application methods associated with the technique

itself. The evidence from real world systems designers is that they are not well

informed about HCI and psychology.

Few HCI DETs address the value and implications of prototyping in detail.

Iteration is acknowledged by some approaches, but how this is dealt with is not

clear. Moran, for example, admits that more detail needs to be supplied by CLG as

to how iteration is dealt with by the technique. On the other hand, in practice, pro-

totyping appears to be a very common practice (Rosson et al 1987) and therefore

must be seriously considered by applicable HCI techniques.

Competence models assume ideal users which may be unrealistic in most cir-

cumstances. Maclean et al (1985) demonstrate that most users cannot judge the

efficiency of their methods. Payne & Green (1986) point out that acceptance

models which would include non-ideal methods for accomplishing tasks would have

to include so many alternative methods that they would be too large to build in a

sensible amount of time.

-197-

3.6 Summary

The most important general point to make here is that it may well be that it is not

entirely the fault of systems designers that they are not applying HCI knowledge.

Some systems designers seem to be supportive of the idea that user-oriented design

in a good thing (e.g. Hammond et al 1983). However some researchers are begin-

fling to suggest that HCI techniques and guidelines are themselves inadequate as

design support tools (Barnard 1986, Smith & Mosier 1983, Mosier & Smith 1986,

Green et al 1987).

The most striking fact is that there seems to be almost no literature relating to the

use of HCI DETs of the type discussed in Chapter 2 in commercial practice, in the

hands of individuals other than their developers. Sharratt (1987) represents a not-

able exception in this general state of affairs. Any criticisms relating to the applica-

bility or otherwise of these techniques may therefore rely largely upon inference.

Some suggestive evidence is available from empirical studies which address

designers attitudes towards guidelines. As we have seen guidelines, which are what

Thimbleby (1985) refers to as principles worked out in practice, are themselves

often found to be inappropriate or too general to be of use. There seems to be some

suggestive evidence (Mosier & Smith 1983) that guidelines are more useful to those

with a psychological background. HCI DETs are considerably more complex and

rely even more on psychological expertise. It seems highly likely that they will be

subject to the same criticisms and more.

It seems that a major rethink is required from HCI theoreticians who are attempting

to generate techniques to be used by others, particularly psychology naive systems

designers. A better understanding of designers' requirements is needed by HCI

researchers, just as a better understanding of users' requirements is needed by

designers. HCI is, in a manner of speaking, guilty of the same crime that it is

attempting to solve; that is not considering its users.

In order to understand designers requirements, given that the process of design is so

enormously variable (Gould & Lewis 1985, Hannigan & Herring 1987) we must

look at design practice in the real world. A better picture is necessary of the con-

straints which designers have to operate under and of the kinds of activities

involved and problems which emerge. Having a better view of real design will help

- 198 -

HCI theoreticians to identify the kinds of problems their design and evaluative tech-

niques must address.

Hannigan & Herring (1987) reveal that simple models of UI design will not be

sufficient for the purpose of integrating guidelines and HCI DETs. There is too

much variation to present any coherent picture of standard design practice. Perhaps

what we should be looking at are features of UI design without trying to impose a

rigid structure over them. Identifying features of design such as activities involved,

necessary sequences, constraints, problems, and so forth, is better than having no

view at all, or a view which represents only a tiny minority of situations.

3.6.1 Questions Raised by Varied Design Views

The literature available on design practice, does not generally address specific

discrepancies between HCI DETs requirements of design evinced by the assump-

tions they make and the design views they have. It appears that much of the litera-

ture focuses more on user-oriented design practice in general. This means that a

number of issues raised in the preceding discussion still need to be addressed.

1. Are designers prepared to devote the time, effort and resources necessary to apply

HCI DETs. Do they, or can they, collect the kind of data required to support HCI

DETs (such as task analyses, or user characterisations).

2. Are designers well enough educated regarding psychology and HCI to appreciate

the importance and relevance of various techniques available. Are they able to

select, adapt and apply these techniques themselves.

3. Are abstract specifications themselves sufficiently comprehensive to provide a

good basis for evaluation since they do not convey the look and feel of the system

to designers or users.

4. Can levels of analysis required by an HCI analysis be identified a priori to

analysis itself.

5. Are there HCI DETs suitable for application to most design projects, in terms of

user characteristics, UI type, application, and target tasks. Are the metrics

-199-

supplied by HCI DETs likely to be widely applicable for UI evaluation.

6. Can HCI DETs in their present form be integrated into current software design

practice, and if not how can they be adapted for integration.

There is little, if any, evidence to support the argument that HCI DETs are or can be

used in most design situations. The majority of research directed at validating

claims that these techniques are useful for design is centred around application of

techniques by experts to selected existing designs in artificial circumstances.

Discrepancies between theoretical views of design and those views based upon

design practice in the real world support a number of tentative hypotheses with

regard to integration of user-oriented design approaches into current design practice.

In the following three chapters these questions will be addressed. Three studies of

applied UI design practice will be discussed which attempt to provide information

about the features of commercial design practice which might impinge upon HCI

DETs. The first is a questionnaire based study which seeks to provide a picture of

the variety amongst design team structures in applied and commercial practice. It

also attempts to identify activities undertaken by design teams in order to ensure

usability of their UTs. A number of hypotheses about the nature of design and its

results are examined.

The following two interview based studies take broader approaches, the first focus-

ing in more detail on how designers carry out UI design, are constrained by their

environment and on what problems they experience. The second looks at HClprac-
titioners, how they influence design, are constrained, and on what problems they

have to deal with. It is hoped that by comparing systems designers with HCI spe-

cialists we may gain valuable insight into applied UI design practice.

Knowledge of how systems designers' lack of HCI expertise compares with the

expertise of specialists in the field, and what difference this makes in terms of suc-

cess, may be valuable input to future HCI DETs which must supply the missing

expertise, together with methods and tools that are well designed to address prob-

lems which will emerge within the constraints which exist in commercial design

practice. Only by doing this can these techniques be sure of being applicable and

- 200 -

useful.

-201-

Applicability of HCI Techniques to Systems Interface Design

Chapter 4

A Features Analysis of Design Projects:
Designing Systems for Users.

4.1 Introduction and Rationale

The reviews of HCI DETs in Chapter 2 and of UI design views in Chapter 3 suggest

that there are a number of questions and discrepancies between theoretical and em-

pirical, user-oriented design views which need to be addressed by applicable user-

oriented and UT design and evaluative techniques. This chapter describes a ques-

tionnaire based study which focuses on features of design practice in the real world,

as opposed to the HCI specialist's laboratory. The study looks at activities, design

constraints and information sources in applied and commercial systems design pro-

jects.

Hypotheses Based Upon Discussions So Far

A number of hypotheses are proposed below which relate to the nature of the HCI

DETs and the extent to which they may or may not be applicable. Personal experi-

ence of the author, informal discussions with systems designers at Queen Mary Col-

lege where the research took place, the apparent discrepancies between HCI DETs

design views or assumptions and actual design practice, and other questions raised

by assumptions about design practice embodied in HCI techniques described in

Chapter 3 all contributed to these hypotheses. The features analysis of real world

user-oriented design practice reported in this chapter attempts to address them.

The hypotheses are assertions questioning the validity of various claims made by

the developers of HCI DETs which do not seem to have been empirically validated.

1. The design process is very variable, in terms of activities and organisation.

2. Applications are diverse and text editors only make up a small minority of these

- 202 -

(this hypothesis queries the generalizability of HCI DETs to a wide range of UTs).

3. Prospective user populations are highly variable, and the existence of ideal or

even expert users cannot be relied upon.

4. Time and project resources are frequently insufficient for a satisfactory amount of

work to be done on the system design itself which affects the UI design also.

5. Design teams frequently lack HCI or psychology expertise as would be required

for instance to identify appropriate levels of analysis in a multi level HCI DET.

6. Abstract design specifications of any type (including systems analysis and design

methods as well as 1-ICI methods) are not commonly used.

7. Prototyping is a very common feature of design projects.

8. Designers are not rigorous in ensuring user-oriented design and tend to favour

casual and late evaluation, rather than user-driven design and early evaluation.

9. There are many constraints which could pressurise design teams towards certain

methods and away from novel unproven methods.

As well as determining whether these hypotheses are valid, this study seeks to pro-

vide some tentative explanations as to why they are, or are not, supported. The

findings in relation to these hypotheses represent a number of features of applied

and commercial design practice which are relevant to the application of HCI DETs

and development of future techniques. These features are discussed in the discus-

sion section (see 4.5) of this Chapter.

4.2 Questionnaire Structure and Methodology

A questionnaire study was undertaken to identify the features of applied and partic-

ularly commercial user-oriented and UI design practice. Questionnaires were the

chosen data collection method in order to capture as wide a range of individual pro-

jects as possible. The questionnaires stipulated that the respondent refer only to a

single design project in order that a representative picture of the activities undertak-

- 203 -

en be given. The assumption was that each individual project involves only a subset

of the activities which designers undertake in general (it so happens that this as-

sumption was supported by one respondent who answered part of the questionnaire

referring to practice in general and included far more activities than most other

respondents).

Respondents were encouraged to refer to commercial design projects rather than

research projects since research projects were expected to be less representative of

practice in general, even though they might be more interesting and productive.

The design of the questionnaire was aimed at encouraging respondents to provide

information which might be of an unpredictable and varied nature, since existing

evidence suggests that design practice is extremely diverse in nature (Ros son et al

1987). For this reason the questionnaire was not multiple choice in style, and, start-

ing without preconceptions, did not encourage designers to classify their responses

according to a predetermined scheme.

Since the questionnaire was clearly asking for information which might suggest the

rigour with which designers had pursued usability of their system, the questionnaire

avoided asking leading questions such as "Did you use X technique to improve your

design". Where such information was sought the question would be more indirect

such as "What techniques of Y type did you use; e.g. Acronym A, Acronym B,

Acronym C." The reason for avoiding being too specific was that the questionnaire

sought to avoid cueing the designer as to what the analyst might consider good

design. If the designer did not know what "Y" meant, or had a different definition

to that presupposed, then this was also valuable information.

4.2.1 Structure of the Questionnaire

The questionnaire included a brief introduction which explained what aspect of

design, namely the UI, it focused on (see Appendix 1). It stated clearly (twice) that

answers should be based upon a single project only, otherwise the information given

would be misleading. The rest of the questionnaire consisted of two parts. The first

was a purely descriptive section in which respondents were asked to describe vari-

ous aspects of their design, organisations involved and activities undertaken (see

Appendix 1). The second was aimed at identifying constraints (such as those

- 204 -

identified by Hammond et al 1983) which impinged upon UI design activity and the

available information sources which were the basis of UI design decisions. The last

part of the questionnaire invited designers to give a subjective assessment of the

good and bad features of the final product of the design.

Respondents were asked to state how familiar they were with HCI as a field and to

state whether they thought it could be useful to UI design. The full meaning of the

acronym was deliberately not given so that it would not cue designers as to what

constituted a good or bad response. If designers did not understand the meaning of

the acronym but were rigorous as to usability, the questionnaire would pick that up.

The point of this was to inform as to the penetration of HCI into actual design prac-

tice as a discipline rather than a way of casually assessing a system.

Designers were invited at all stages to give any additional information which they

considered might be relevant and to add comments or reasons for their answers.

In more detail, part I asked the respondent to briefly describe roughly the following

general aspects of the design (see Appendix 1 for more detail on the precise ques-

tions):

Product Functions and the Type of UI involved

The Prospective Users

Organisations involved

Design Team Size, Roles and Structure

Availability of Information from Specifications, Task Descriptions, Users

Design Specifications and Methodologies Used

Generation and Testing

Problems and Modifications

Finalisation and Satisfactoriness of the Final Product

Familiarity and Attitude Towards HCI as a Discipline

Additional Information

Although logically Familiarity and Attitude Towards HCI as a Discipline might be

the first question, this information was asked for at the end of the first section in

order to avoid discouraging respondents who were not familiar with this discipline

from answering the questionnaire.

- 205 -

Part H was more structured; it involved 5 sub-sections. Section 1 asked the designer

to read a list of possible constraints which might affect design activities and to rank

any which they themselves experienced on their project in descending order of im-

portance. They were then asked to add any others and indicate importance relative

to constraints from the list.

Section 2 used the same structure as section 1 in that respondents were asked to read

a list of possible information sources and rank those which they used in descending

order of importance, adding any others not included in the list. Section 3 requested

that respondents describe how they went about exploiting each of the information

sources to which they had access.

Sections 4 and 5 were less structured in that they asked respondents to give a sub-

jective evaluation of the good and bad features of their UI. This section was not in-

tended to suggest whether the final product really was either good or bad, it was in-

tended at getting a realistic picture of what designers tend to think of as good and

bad features of their own UI designs as opposed to features of ideal Ills which

would be unconstrained by reality.

4.2.2 Distribution of the Questionnaire

The questionnaire was informally piloted on an HCI specialist and an HCI naive

Computer Programmer. These individuals represented almost opposite extremes in

the profession of UI design in terms of familiarity with HCI. It was then sent out, in

two releases, to approximately 150 addresses in total which were selected largely at

random from Queen Mary College's Computer Science Department address data-

base which includes names of contacts of anybody in the Computer Science Depart-

ment. University addresses were avoided in the first release but not in the second,

when most large companies from the QMC database had been contacted.

-

Although the questionnaire was long and rather complex (it took approximately one

hour to complete), 27 largely complete copies were returned (roughly 18% of those

sent out). One of these had to be discarded since it was completely illegible, anoth-

er two clearly came from two different collaborating organisations on the same very

large government subsidised project; these were treated as one response for project

data, and as two responses for data on constraints experienced and information

- 206 -

sources exploited. Consequently 25 projects contributed to this survey.

4.23 Analysis

The responses yielded largely qualitative data, although the rankings of design con-

straints and information sources provide some statistical evidence for the prevalence

of certain constraining circumstances and activities in design. The design of the

questionnaires and their analysis was directed at features of design practice rather

than a more integrated analysis of design processes and their organisation (a more

integrated view of real world design processes is provided by the second interview-

based study). However, any information provided by designers as to organisation of

the design process has been included in the analysis.

The responses, as has been indicated, were not multiple choice because this was

considered to be likely to encourage designers to apply artificial classifications

which they might not normally use, and which might be misrepresentative. Conse-

quently responses which involved descriptions had to be assessed and classified

when returned. This arrangement probably resulted in a greater number of possible

classifications than a multiple choice responses one would have. Equivalent

responses were compared and in most cases classified for all 25 projects involved in

the study.

The ranked constraints and information sources, where the two responses from the

same multi-site project were treated as separate data points, were simply analysed

according to two alternative ranking schemes. The first scheme used a simple in-

cidence ranking which assessed the occurrence of constraints and information

sources exploited. The second scheme incorporated the ranking of each item as

well as occurrence, giving an assessment of the general perceived importance of

constraints and information sources to the design process.

In addition to the classification of responses, and ranking of design constraints and

exploited information sources, other qualitative information was collected, involv-

ing notable occurrences described, and a large number of informative quotes.

- 207 -

4.3 Basic Findings from Descriptive Responses to Part I

4.3.1 Grouping 25 Projects According to Host Organisation

Initially the responses were classified into host organisation groups. Twenty-five

different projects were involved in the survey. The host organisation type was

viewed as likely to influence the kind of project undertaken and the way in which it

is tackled. These three groups are shown in table 4.1 which represents the total

number of design projects under each classification, together with the number of

projects out of each total involving an HCI specialist. The two respondents from

the same multi-site project were in group B and are represented as one response in

the table. The classification provides a general view of the nature of the host organ-

isations of the projects involved in the study.

Although the questionnaires were distributed as widely as possible and targetted to-

wards commercial organisations of the type in Groups A and C, recipients tended to

redistribute or pass on copies so that a significant number of responses seem to have

come from R & D groups (usually associated with universities), universities them-

selves, or from HCI consultancies (who were not regarded as a target for the ques-

tionnaire since they could bias the view of design strongly towards user-oriented

practice). It is interesting to note that the prevalence of project team members with

knowledge of HCI appears to be extremely high (100%) in Group B (both of the

collaborating respondents reported HCI specialists in their project), even though

only one or two of the teams belonged in what could be classified as HCI consultan-

cy organisations.

It is not possible to judge how representative the responses are of design practice,

but it would seem sensible to assume that response, being voluntary, were self-

selected and may reflect a more positive attitude towards HCI and research oriented

activities than is the norm.

Another reason for maldng the above classification is that it may be interesting to

see whether any interesting differences emerge between the groups in terms of the

features of their design projects. If no differences are apparent, then it may be pos-

sible to assume that the type of organisation is of less importance to design practice

than within organisation structures. If differences do emerge, then it may be safe to

- 208 -

assume that generalisations from one group to another should be avoided by future

research.

Table 4.1

Classification of Design Teams' Organisations

Type

Total number

of projects

in Group

Number of

projects

involving people

with knowledge

of HCI

Group A

Software

Companies &

Consultants

12

5

Group B

R & D Groups,

Universities &

HCI Consultancies

8

8

Group C

Departments of

Non Computer

Companies

5

1

Individual questionnaire responses are referred to as numbered group members; thus

3A would be a member of group A. The numbering serves no other purpose than to

distinguish responses from one another.

4.3.2 Project Size

The size of the design teams and the number of person-months devoted to the pro-

ject was also of interest. As was hypothesised, the amount of time and people

working on the project should be related to the ability to fund better user-oriented

design approaches. Also larger projects should be more likely to include HCI spe-

cialists, as opposed to designers with some lay experience of UT design. The size of

the design team and project length were given by 24 of the 25 projects. One of the

respondents in group B did not include this data. In some cases respondents indi-

cated the number of person-months spent on the design. Where person months were

- 209 -

not given they were calculated from team size and project duration.

The 24 team sizes are given in table 4.2, and the 24 project lengths in table 4.3.

Table 4.2

The Sample of Twenty-Four Design Team Sizes

People in Team Number of Teams Involvement of HCI

Specialist

	

1	 3

	

2	 3

	

3	 4	 iniTeam

	

4	 1	 iniTeam

	

5	 3

	

6	 0

	

7	 2	 iniTeam

	

8	 1

	

9	 1

	

10	 2	 iniTeam

	

11	 1	 iniTeam

	

c30	 2	 in 2 Teams

	

c50	 1	 iniTeam

Total	 24	 8

Average	 8.75

Median	 5

The large differences between the average (8.75) and the median (5) values for

-210-

Table 4.3

Twenty-Four Project Lengths in Person Months

Person	 Project Lengths in Person Months 	 No. of

Years	 Projects

Up to	 0.67	 2.0	 2.5	 5.0	 8.0	 12.0	 6

1 Year

Up to	 14.0	 14.0	 15.0	 24.0	 24.0	 5

2 Years

Up to	 30.0	 36.0	 48.0	 60.0	 96.0	 120.0	 6

10 Years

Up to	 144.0	 144.0	 180.0	 300.0 720.0	 5

100 Years

Over	 1440.0	 1800.0	 2

100 Years

design team sizes in table 4.2, and particularly project lengths in table 4.3 are due to

a few extremely large projects which skew the averages to give values which are

probably larger than the great majority of projects values.

The shortest project is 0.67 person-months long; approximately 20 days. The ion g-

est project is 1800 person-months long; 150 person years. The average length of

projects is 218 person-months long; just over 18 person years. The median is 33

person months or 2.75 person years. No notable relation was identified between

organisational group and design team size and project length, with groups. A sta-

tistical validation of the data was not undertaken because the few very large pro-

jects tended to skew data so greatly that larger samples including a more reliable

proportion of large projects would have been needed to conduct a representative sta-

tistical analysis. The data suggest that a design team of five members working on a

project lasting 6.6 months (33 person-months) is about the most typical design

situation.

Eight out of the 25 design projects surveyed were spontaneously assessed by the

-211 -

respondents as being too short on time (one of the 25 had not stated how long the

project was). The actual number of person months involved was not related to this

assessment with, amongst others, the third longest and the third shortest being sub-

ject to this view.

4.3.3 Familiarity with HCI

Respondents were asked to state the roles of individuals in the design team. A total

of 9 projects were found to include HCI specialists (one of the nine was the one

which provided no team size and project length data, hence its non-appearance in

table 2.4), and it was these individuals who usually answered the questionnaire;

presumably the questionnaires were often passed on until HCI specialists received

them. Some other projects included team members with UI design experience and

lay knowledge of HCI (see table 4.1). No relationship was discovered between size

of design team and lay-familiarity with HCI.

Table 4.2 shows how design team size appears to be linked to involvement of an

HCI specialist. In total 8 of the projects shown in the table involved at least one

HCI specialist. Five others involved one or more individuals with some knowledge

of HCI. Six out of the eight were projects over 60 person months (5 person years)

long, and of these 4 were the four largest projects in the study.

This suggests that larger projects are more likely to involve HCI specialists. Pro-

jects with HCI specialists involved were compared for length against projects

without, in a one-tailed T test (the hypothesis being that HCI specialist's projects

were larger). The result was significant at the 0.005 level (0.5%) with t = 2.99, and

22 degrees of freedom. It seems safe to say that smaller design projects are less

likely to have the resources to employ a specialist in HCI than larger projects.

An interesting finding was that two of the HCI specialists who responded to the

questionnaire indicated that they did not have as much influence over the design as

they would have wished. In one case the respondent described the fact that the

design team ignored the weakness of the original design concept which led to the

first usability test being very unsatisfactory. This respondent then had to engage in

far more usability testing than should have been necessary. The other specialist was

frustrated by the fact that usability testing seemed only to occur as a means of

-212-

resolving disputes amongst those involved in the design. He stated that the user

interface was repeatedly modified to suit the weaknesses in the application software,

rather than modifying the software to support a satisfactory UI design.

Table 4.4

Application Types for Twenty-Five Projects

Text and File Oriented

Word Processing

Programming Environment

Window Manager

Office System

Communications

Teaching

No. of Projects

1

1

1

3

2

1

Group(s)

A

A

A

ABB

AB

A

Data & Process Oriented

Data Processing
	

8
	

AA BB CCCC

Process Control
	

3
	

ABC

Design & Problem Solving

Computer Aided Design
	

2
	

AB

Complex Problem Solving
	

1
	

B

Expert System

Applied Expert System
	

1
	

A

Expert System Shell
	

1
	

A

In Group B all of the respondents were at least familiar with HCI (see table 4.1)

even if their team did not include specialists in the field, this was only true of 42%

of Group A and 20% of Group C. Bearing in mind that these were only small sam-

ples, the results seem to indicate an interesting difference between the informal

classifications of the host organisations. Universities and R & D consultancies, who

make up the bulk of this group, and (of course) HCI consultancies are more likely to

employ HCI familiar people, or are more likely to carry out long term research

-213-

during which employees with a computer science background have a chance to edu-

cate themselves in more diverse fields.

An additional and interesting finding is that only seven (28%) of the respondents did

not express a positive attitude towards HQ in theory. Some of these respondents

were simply unaware of the discipline. However some of the respondents who were

not themselves experienced in HU, but were positive about it, may have been

somewhat wary of the form in which it is typically presented. For example, in

answer to the question "Could HCI be useful ?" two responses were "...not if books

read like the standard Al text. Too academic." and "I would be very interested in

the psychology of screen design, and ease of use if there is an easy to read text."

Such responses tend to enforce the idea that it may be the form, rather than the con-

tent and aims of HCI guidelines and texts, which is the main problem with regard to

its application.

4.3.4 Product Functions and the Type of UI involved

The questionnaire asked respondents to describe their design product's functions.

Table 4.4 provides a rough classification of these responses into a number of groups.

It is important to note the extreme diversity of these applications when compared

with the limited range of applications studied using HCI DETs (see Chapters 2 and

3). Most notable here is that the applications for Group A and Group B do vary

considerably, but all of the Group C responses belong in the Data and Process

Oriented class of applications. Of the 5 in this group, 4 were data processing appli-

cations such as financial transactions, and one was a process control application

(industrial parts movement). These applications were all part of the business of the

design team's company.

Only one project was developing a system comparable with a text editor, this being

a word processor, suggesting that the representativeness of text editors as applica-

tions on which to test HCI DETs may be questionable. One or two of the other

applications such as one of the office systems (a multi author document preparation

system) may have contained text editing facilities, but these would only represent a

subset of the whole UI functionality. Two of the systems were communications

oriented and might be comparable with CLG's EG system. However, it seems that

the type of system typically used to test and demonstrate HCI DETs represents a

-214-

small minority of applications in general.

A variety of types of interface were described by the respondents. Most of these

included menu style dialogues, but not all included a mouse. Many were described

as WIMPs, some being direct manipulation. A few were forms based where users

would fill in certain areas to give particular types of input to a database.

Common keywords used to describe the type of UI involved included:

WIMPS

WYSIWYG

Menus

Mouse

Forms

Function Keys

Of the 25 Uls described, at least 18 were menu-driven (identified by the keywords

menu, mouse, WIMPS or Object Oriented), only 3 of these used cursor keys to

select menu items. It seems therefore that "mousing" with the user selecting visible

menu items is a more representative description of typical interaction styles than is

command-driven input.

4.3.5 The Prospective Users

Respondents were asked to describe their system's prospective users. What is of

interest here is not the actual nature or professions of users, although they turned out

to range from children to garage staff. The real point of this question was to deter-

mine whether or not the design team were aware that their potential user population

might be very different from themselves in terms of computer experience. This

knowledge might impinge upon the value attributed to prospective user evaluations.

All of the respondents were able to name some target group which was more

specific than "the general public" for example.

Table 4.5 shows 25 user group descriptions based directly on the words of the

respondents from the 25 projects. The user groups are informally classified as likely

to be computer experienced or not. The vast majority of user groups described

would seem to be likely to contain significant numbers of computer naive users.

-215-

In up to 20 out of the 25 projects described the designers would not have been able

to rely on their prospective users being computer experienced; meaning having fre-

quent access to and skills related to computers. The engineer designers group may

have been computer skilled, however the respondent did not indicate the type of

engineer involved. Different users described by respondents are listed in table 4.5;

some teams shared prospective user groups; some mentioned more than one. These

are calegorised as those who might possibly be computer naive (one could not rea-

sonably guarantee that they would know anything about computers, possibly having

had no experience with them at all) and those who most probably will be computer

experienced (i.e. are highly likely to have experience of use of a variety of systems

for a number of tasks).

If users are very likely to be computer experienced then it may be safe to assume

that they are familiar with many of the features of systems which systems designers

consider to be natural; and that maybe the design team itself is fairly representative

of prospective users. If there is a reasonable possibility that users are computer

naive then the design team should at least carry Out user evaluations to ensure that

intuitive guesses at what is usable are actually correct.

For the large majority of prospective user groups described for the 25 projects in

this study it is probably not reasonable to assume that they are familiar with com-

puters and their conventions, although the designer engineers are perhaps the least

likely to be in this position. It would also be unreasonable to expect many of these

users to become highly skilled, since use of computers may only be a peripheral part

of their job, and they may not receive any training or enough practice to gain

sophisticated skills. Some design teams mentioned more than one type of user, in

these cases designers need to assume that, as a whole, the most naive prospective

users must be catered for as well as computer literate ones. Only four projects

might reasonably have assumed that their prospective users were relative computer

experts, on the basis that chip designers, unix and graphics workstation users and

software engineers are likely to be professional computer scientists. Even in these

cases user validations could be necessary to determine whether this is indeed true

and the ease with which target tasks of these individuals might be carried out using

the system.

Chip Designers

Unix Workstation Users

Graphics Workstation Users (two projects)

Software Engineers

-216-

Table 4.5

Potential Users Described by Respondents

Computer
	

Computer

Naive
	

Experienced

Air Crew Selectors

Office Staff

Office Workers

Garage Staff

Computer Naive Domain Experts

Non Technical

Production Controllers

Financial Planners

Financial Database Users

Authors

Computer Naive

Secretaries (two projects)

Gallery Staff

Data Entry Clerks

Estimators & Maintenance

Clerks

Telephone Reps

Children & Schoolteachers

(Engineer Designers; perhaps)

4.3.6 Organisations involved

Designers were asked to describe other organisations (i.e. client or marketer)

involved with the project, and the extent of their involvement. Groups A and B

described a number of different arrangements, with the two largest Group B projects

being described as being funded by Alvey (a government IT initiative for funding

collaborative research by industrial and academic organisations). The Group C

respondents all described their projects as being internal to their company as

expected.

-217-

Of the 12 design projects belonging to Group A, seven products were marketed at

general target groups by the design team's company itself. Three were projects

undertaken for one client organisation (and in one case two) only. One was sold

through a marketing organisation, and another was sponsored by the government for

schools, representatives of which collaborated with the team.

Of the 8 Group B design products, three were designed for one client organisation,

two were sold via marketing organisations, two were government funded research

projects, and one was aimed at a general target group (the academic community)

representatives of which were close at hand and able to collaborate in the design

process.

In Group C three projects were within the design team's own department, and two

involved collaboration with another department (or two departments)

In total there were fifteen Group A, B and C projects which involved collaboration

with individuals in a client organisation, collaborating organisation or another com-

pany department. Only three respondents stated that the collaboration or client

assistance was detrimental to the project. Notably one respondent complained that

the physical distance between collaborators on an Alvey project made the work very

difficult. However in most cases collaborator/clients proved to be a valuable

resource for the design team. They supplied equipment, information, expertise, and

test beds, often with potential users.

4.3.7 Information from Requirements, and Design Specifications,
Task Descriptions and Users

The information obtained from this part of the questionnaire was diverse and

difficult to classify. However the responses in the later user-oriented information

sources provide a clearer picture of this information. Here a more qualitative sum-

mary is given of the responses, based upon 25 different projects.

Six questions were devoted to finding out what information was used to drive the

design. Seventeen respondents used some kind of requirements or design (func-

tional) specification for the UI. Only three of these specifications were described as

formal, the rest were in "English" and some were described as being very informal

-218-

or brief. As an illustration, one respondent returned all of the general requirements

and early design specification material from the project. This comprised about 30

pages for the whole system of which only one page was devoted to user require-

ments and UI task oriented functionality. Requirements and design specifications

would usually be agreed with a client or collaborator if there was one. One respon-

dent stated that the design specification was made up as the design went along, this

seems to be more like documentation. At the opposite extreme, another respondent

stated that an early design specification was produced which was used throughout to

drive the design and compare with its outcome.

Three respondents used particular specification methods. Two stated that in-house

specification techniques were used, and one that VDM, which is a strictly formal

specification technique, was used. One of the in-house techniques mentioned was

described as a "formal" requirements specification technique, the other was not

defined. It is not clear whether the latter, in-house method used was actually a for-

mal method like VDM, a structured system specification method, or a requirements

specification technique, however a later response from this project suggests that a

formal approach to generation and testing was used. The exact meaning of the term

formal to describe an approach may well be variable in software engineering as well

as in other domains.

There was some evidence which suggested that abstract design specifications are

not considered practical by some designers. Two quotes were highly illustrative;

"There never was time to indulge in such luxuries (the management claimed...)",

and "None [were used]. This is the real world !"

Information about to-be-supported target tasks was gathered in a number of ways.

Written specifications of target tasks were sometimes supplied by a client or colla-

borator. Task analyses, verbal task descriptions from potential users or manage-

ment, observation of prospective users, documentation on related tasks were all

used on more than one project. The design team themselves might write the target

task specification and agree on it with the client. Sometimes it was a joint activity.

More detail about information sources came from part II of the questionnaire.

What was most disturbing was that eight of the respondents relied very heavily on

indirect information supplied by managers, or documentation, without finding out

-219-

more about the actual needs of the users themselves. In 5 of these cases, represent-

ing 20% of the total number of projects in this study, it was because the user popu-

lation was difficult to get hold of or the tasks were novel. The other three, simply

did not involver users until the evaluation stages. Another design team included

representative potential users and for this reason only used other potential users for

evaluation.

Information from users, where it was used for the design, as opposed to evaluation

of the UI, seems to have come largely from informal, unobtrusive observations,

interviews and verbal task descriptions. Uls were often tested internally, in the

design team's own organisation, and then outside, on a client's site, or with prospec-

tive users elsewhere.

Where users took part in evaluations, they generally used the system prototype,

rather than the completed design product. Informal, and some formal experiments

were common, with users attempting specified tasks using the prototype. In gen-

eral, prospective users appear to play a very important role in the majority of design

projects, though they seem to be involved much more readily in evaluation than

design, as one respondent put it "They were better at reacting than initiating". In 4

teams overall, no user evaluations took place. In one case this seemed to be because

the design team felt that they were sufficiently representative of users. In the other

3 cases, representing 12% of the projects studied, where users would be financial

planners, secretaries, and computer naive users, there was no good explanation for

this lapse.

One respondent stated that "Though the initial concept was poor the design team

went ahead (most subsequent problems arise from this)...After the first exploratory

usability test, the design team acknowledged the problems and started redesign

aimed at the second release." This quote illustrates the value of early evaluations or

user-oriented design which could have saved the first release of the product from

being so problematic.

- 220 -

Table 4.6

Structured Specification Techniques and Descriptive Methodologies

Used for Requirements, Design and Evaluation

Name as Specified
	

Assumed Definition

Task Analysis (3 cases) Any general method for

categorising, breaking down,

generifying, identifying goal

structures, rules etc involved

in tasks.

STNs (2 cases)	 State Transition Networks,

representing	 states	 and

actions in a system.

User Conceptual Design A structure which reflects or

simulates the desired user's

view of the system states and

actions. It must include the

entities and operations

involved in all target tasks.

Adapted VDM Vienna Definition Methodol-

ogy is a formal specification

technique developed by IBM

with which it is possible to

prove for given sets of condi-

tions, given functions wifi

obtain true. It is not gen-

erally used for UI design in

particular.

-221-

Table 4.6 Continued

Structured Specification Techniques and Descriptive Methodologies

Used for Requirements, Design and Evaluation

Name as Specified	 Assumed Definition

JSD Jackson's Structured Design

methodology is a systems

analysis and design tech-

nique. This methodology in

its popular form includes lit-

tie support for user-oriented

design.

ART A knowledge engineering

environment. Supports mul-

tiple paradigm based model-

ling of knowledge (e.g.

production-rule-based,

frames-based etc).

MAID
	

Unspecified

BNF A program specification

language, not a true design

methodology.

DFDs Data Flow Diagrams A

graphical way of modelling

data flow and transformations

in a system.

Internal Design Methodology Mentioned but not specified

by one respondent.

- 222 -

When asked how familiar they were with the application domain of their system,

designers varied unpredictably in their responses. The group, application, type of

user was not related to design team's knowledge about the tasks, problems and so

on associated with a particular domain. The hypothesis that Group C respondents

would be more familiar with their application was not supported. Two out of the 5

design teams in this group were unfamiliar with the domain, and the other three

were partially familiar in two cases because half of the design team were applica-

tion experts whereas the other half knew little about it.

Only about a third of the respondents stated that they were very unfamiliar with the

application domain, some of these respondents were members of teams which

involved application experts who might make up for the problems of unfamiliarity.

Where familiarity was low design teams generally seemed to spend time familiaris-

ing themselves with the application, either by watching current or manual systems

users, or by talking to applications experts. This kind of information supplemented

requirements specifications, and target task descriptions.

4.3.8 Structured Specfi cation Techniques and Descriptive
Methodologies Used for Requirements, Design and Evaluation

Respondents, having described what information was used were then asked to state

what abstract design specifications, or particular descriptive methodologies they

used. Some common examples were used to indicate the type of technique implied,

including Task Analysis, Interaction Gram,nar, JSD, GOMS, LARCH). The acro-

nyms were not explained, since designers who had not used them might have

classified their own informal procedure as being one of these if they felt it was simi-

lar. What was of interest here was not the scope of the techniques suggested by the

two questions relating to this issue (which were left as general as possible) but the

type of techniques reported, and their prevalence. The questionnaire stated twice

that it was the UI design which was the main focus of the system, not the general

functionality of the application software. However, as table 4.6 shows, the majority

of structured techniques reported were not user-oriented.

Thirteen projects used structured techniques of some sort. Ten respondents claimed

to have used an abstract design specification, or descriptive methodologies. Of

these, six mentioned one approach and four used two different approaches. Ten

- 223 -

different approaches were identified overall, these are shown in table 4.6. The main

feature here is that many of the specification and descriptive techniques used are not

user-oriented. Task Analysis, and the User Conceptual Design, are clearly aimed at

specifying the UI behaviour with respect to user characteristics. With five other

techniques (STNs, VDM, JSD, BNF, DFDs) which are not user-oriented, it may be

as easy to specify an unusable system as a usable one. These techniques are really

aimed at improving design of system functionality so that it is elegant, efficient,

reliable, and/or modifiable. These aspects of the system are not sufficient to ensure

usability.

Only 4 projects out of 25 used early user-oriented design abstractions or

specifications. These were the task analysis techniques and the user conceptual

design methodology shown in table 4.6. This suggests that projects which attempt

to build an early model of users or their tasks which could be used to drive the

design are in a minority. Other projects may have relied more on evaluation to get

this kind of information.

Perhaps most important of all the findings in this study is the fact that not one pro-

ject mentioned use of an HCI DET of the type described in Chapter 2. Whether or

not any of the projects were really rigorously user-oriented at all was hard to discern

from the responses.

4.3.9 Generation and Evaluation

When asked to describe how the UI was generated and evaluated for usability, a

very wide range of responses were given. A number of keywords or ideas were

used by respondents to describe their approach to generation and testing. These are

listed in table 4.7, (note that some projects used more than one approach). A more

detailed inspection of responses revealed that the term formal was sometimes used

(in three instances) to refer to any procedure which was in some way structured,

such as an experiment. In the other six cases the term may have meant either

mathematically formal or rigorous.

The number of respondents who used these terms or ideas in their responses may

only be a subset of those who actually could have done. The only clear suggestion

of these responses is that informal, iterative methods seem to be far more common

- 224 -

Table 4.7

Keywords used to describe Generation and Testing Methods

Keyword/Idea	 Number of Projects

Reporting Use

(and Percentage of Total)

Formal	 9 (36%)

Test-against-specs 	 5 (20%)

Informal	 13 (52%)

Iteration or Prototyping	 14 (56%)

than formal, functional/requirements specification-based generation and testing

approaches (this contrasts with the findings of Rosson et al 1987; where the split

between phased and incremental, iterative design was more even).

Clients, prospective users, non-prospective users, members of the design team, and

external consultants were all variously mentioned by one or more of the respondents

as being involved in the generation, testing, and usability evaluations of the system.

Most of the respondents mentioned that they tested their systems themselves, usu-

ally before going on to carry out more extensive testing and evaluations.

Usability evaluation of the prototype or final product varied extensively as shown in

table 4.8 where each project is represented by only a single method; this is possible

since only those projects using early evaluation listed more than one method. In

three instances there were no user evaluations. In another only feedback from

demonstrations was used. In at least seven cases usability evaluation was delayed

until late in the design cycle. At least seven were able to use iteration as a device

for incorporating user feedback and another was left to evolve as requirements grew

after implementation. Six respondents described early user evaluations, using such

techniques as mock-up simulations, concept tests, and user involvement from initial

design stages. These projects also used other methods later on in design. Of these

- 225 -

6, 4 were groups that also used abstract design specifications, or descriptive metho-

dologies, suggesting a more generally rigorous approach to their design.

Table 4.8

Varied Methods of Evaluation in Projects Studied

Evaluation	 Number of Projects

(and Percentage of Total)

None Existent	 3 (12%)

Demonstration Based	 1 (4%)

Late	 7 (28%)

Late Evolutionary Iteration 	 1 (4%)

Iterative	 7 (28%)

Early (& other methods)	 6 (24%)

In general, from table 4.8, it appears that there is a bias in design practice towards

informal generation and testing, and towards later, informal evaluations, rather than

towards more rigorous user-oriented approaches with early specifications and

evaluations.

4.3.10 Problems and Modzfi cations

Respondents were asked whether they had experienced any notable problems on

their projects or had to make any notable modifications. Three stated that no major

problems or modifications were experienced. In total six stated that no notable

problems emerged, and twelve that no notable modifications were required. This

means that in 22 projects notable problems did emerge, and in 11, major alterations

had to be made because of these problems. Another two projects made significant

modifications for other reasons.

- 226 -

Table 4.9

Notable Problems and Modifications Experienced by Respondents

Project & Problem(s)

1A None

2A Slowness & Complexity of part

of the application.

3A Problems caused by designers

ignoring weakness in initial concept.

4A Designer accidentally discovered

a frequent action required several

menu choices.

5A None

6A Ad-hoc design with little regard

given selected machine capability,

with the UI being modified to suit

the implementation.

Modification(s)

None

Simplification of UI functionality to

make it understandable but less

comprehensive.

After first usability test designers

acknowledged problems and began

redesign aimed at the second release.

Added a direct option for the fre-

quent action.

None

Almost every time a module reached

a significant milestone in its design.

7A Technical limitations of other None

equipment the team's package inter-

faces with.

8A Upgrades in the operating system

proved detrimental to system

responses.

Upgrade in hardware to counteract

slow response times.

- 227 -

Table 4.9 Continued

Notable Problems and Modifications Experienced by Respondents

Project & Problem(s)
	

Modification(s)

9A System too slow due to specific None

device drivers.

1OA Lack of personnel; lack of tar- None

get machine power; general lack of

foresight and investment.

hA Managing finite hardware None

resources and getting hardware to

work.

12A Representation of language Defined accented characters using

accents.	 function keys.

lB No methodology available for Changed to Smalitalk.

the application; chose the wrong

language.

2B Bad management & programmer;

nebulous deadlines & contractual

problems; expense.

3B None

Scrapped prototype & prototyper.

Only minor changes made to spec.

UI simplified due to feedback from

demo's.

4B Underestimated system capabili-

ties. Better prototyping may have

helped.

Included more dynamic feedback &

direct manipulation.

- 228 -

Table 4.9 Continued

Notable Problems and Modifications Experienced by Respondents

Project & Problem(s)	 Modification(s)

SB None Rewrote graphics interface late in

project to allow porting to Sun

workstations.

6B French English translations. 	 None

7B Screen handling library software None

was poor, bad documentation & tags.

8B Collaborators too far away. 	 None

1C Technological limitations of None

screens; even though better and

cheaper were available.

2C Hard to get users to agree on None

detailed requirements. This should

have been tackled earlier in the pro-

jects.

3C None
	

None

4C System didn't do exactly what Heavy maintenance in first year to

clients wanted, perhaps prototyping correct design deficiencies & fix

would have helped.	 bugs.

5C None	 Changes in page breaks.

- 229 -

Table 4.9 shows notable problems and modifications described for the 25 projects.

The amount of variability in these responses indicates, once more the variability in

the whole process of design. The problem responses can be classified into a number

of groups see below. Two projects, 2A & 1C, experienced problems which appear

under two classifications. Note that the projects are referred to by their host organi-

sation classification group (see table 4.1) and a number (purely for the purpose of

distinguishing class members).

Technological problems experienced by projects: 2A, 7A,

8A,9A, hA, 12A,7B, 1C)

UI Complexity experienced by projects: 2A, 4A)

Poor design concept experienced by projects: 3A, 6A)

Organisational experienced by projects: 1OA, 2B, 8B, 1C)

Methodological experienced by projects: lB. 4B, 2C, 4C)

Pragmatic experienced by projects: 6B)

This classification scheme is summed up in table 4.10, which is essentially a con-

densation of table 4.9. These problems were not related to whether or not the pro-

ject was large or the familiarity of the design team with HCI. Table 4.10 shows the

incidence of these classes of problems for each of the three groups of organisation

identified here. Technological and organisational problems seem to be more

apparent than design concept and usability based problems. It may be that these

problems are simply the ones which are easier for most designers to identify. The

most interesting finding is that half of Group A experienced technological problems.

A Chi squared test was carried out with two expected cell values of 4, which were

compared with the observed values. A value for Chi of 9 was achieved which with

the one degree of freedom for this test, is highly significant at the 0.5% level (P =

0.005).

This extremely high degree of statistical significance tends to balance the smallness

of the sample (which would normally be advised against for a Chi squared test;

Robson 1973) and suggests that Group A is significantly more prone to technologi-

cal problems than Groups B and C. Unfortunately the scope of this study does not

provide an explanation for this phenomenon, however as an anecdote, it is worth

noting that personal experience of the author suggests that computer software

houses and lone consultants are usually less well equipped with hardware and

software than university and R & D organisations' staff.

- 230 -

An important point to make here is that design problems should be considered as

representing design constraints in themselves. Some of these problems may be

avoidable and it is these which should be dealt with by HCI techniques, whereas the

unavoidable should be considered as part of the overall character of the design pro-

cess within which HCI approaches must be able to work.

Table 4.10

Classification of 25 Design Teams According to Host Organisation

and Incidence of Types of Design Problem

Type of

Problem

Number

in Study

Group A

Software

Companies &

Consultants

12

Group B

R & D Groups,

Universities

&HCI

Consultancies

8

Group C

Departments of

Non Computer

Companies

5

Technological
	

6
	

1
	

1

Organisational
	

1
	

2
	

1

Methodological
	

0
	

2
	

2

UT Complexity
	

2
	

0
	

0
Poor design concept
	

2
	

0
	

0

Pragmatic
	

0
	

1
	

0
None
	

2
	

2
	

2

4.3.11 Finalisation of the Project

Designers were asked to describe how their product was finalised. Three projects

were incomplete, including the project with two respondents from different colla-

borators, and one respondent did not answer, leaving 21 responses to this question.

Table 4.11 shows that eight responses indicate that an agreement was reached, or an

-231 -

earlier specification (by agreement) matched by the product. Another seven

described a process of iteration towards a finalised product; which implies some

agreement as to when to discontinue iteration.

Two projects simply ran out of time, one of these overran anyway. Another could

not improve the design because of limitations in its technological resources. One

was terminated by the team leader's decision, and the last project was transferred to

another site. The three responses stating that resources were exhausted may

represent cases where the whole team would have liked to improve the design.

Table 4.11

Finatisation of Project

Manner of Finalisation	 Number of

Agreement	 7

Specification Satisfied	 1

Iteration	 7

Resource Exhaustion	 3

Team Leader Decision 	 1

Informally Finalised	 1

Project Transferred	 1

The questionnaire asked if the respondent was satisfied with the final product. Six

respondents (28% of the completed projects) stated that they were not. Thirteen

gave an unqualified assertion that they thought the product was good, and 3 used

qualifications such as "Yes, given the constraints of the environment." Surprisingly

there was no apparent link between satisfaction and the manner in which the project

was terminated.

Interestingly, of the thirteen who gave unqualified Yes answers to this question,

three had not carried out user evaluations, and five had only carried out late evalua-

tions. In fact this group, as well as being the most common response (62% of the

completed projects), also represented the majority (eight) of the eleven projects

which had late or non existent user evaluations. There does not seem to be any

- 232 -

relation between rigour of usability evaluation and satisfactoriness of the design

product as perceived by the respondent members of the design teams. This is

perhaps a truism, since those who do not look for problems in their design are

unlikely to perceive them.

4.3.12 Lessons Learned

Finally designers were asked to state what, if anything, they would have done dif-

ferently with the benefit of hind sight. Fifteen respondents stated that they would

have done something differently. Many of these responses revolved around choice

of hardware or software. Those that did not relate to hardware or software included

diverse comments such as "I would have added more features to make the client

think", "I would not have collaborated with a group of people 100 miles away", "I

would have taken someone else's design from day one", and "I would have run the

project with more commercial acumen".

Six of the responses to this question suggested that the respondent would have taken

a different methodological approach altogether. For comparison with table 4.9,

table 4.12 identifies the project respondents who would have taken a different

approach and the comments they made.

These comments mostly relate to the notable problems which emerged in the pro-

jects. 3A and 6A (both members of the software company/consultancy group) are

responses from HCI specialists whose questionnaire responses indicated that they

did not feel they had enough influence in the design process, and what influence

they did have was too late. 12A was not familiar with HCI but obviously positive

about it and took a meticulous approach throughout using extensive, rigorous and

iterative usability testing. However, this respondent used no early task

specifications or evaluations to help drive the design. lB had the problem of being

unable to find an appropriate design methodology, and ended up changing over to

object-oriented software which is considered to be better suited to prototyping,

modification and extension than other types of software, (Bullinger et al, 1984;

Booch, 1986; Meyer, 1988). 4B and 4C, both had problems with a lack of prototyp-

ing. 4B underestimated system capabilities and the respondent seems to think that

an earlier, more specific design would have been helpful. 4C ended up with a pro-

duct which did not completely satisfy the client, and the respondent seems to blame

-233-

Table 4.12

Projects Where Different Approaches Were Indicated

With the Benefit of Hindsight

Project	 Comment on Different Approach Desired

3A	 "I would have fought harder for different

emphasis and direction at the start."

6A "I would have used expert knowledge el-

icitation to define functionality and

would base the design around this (i.e.

reverse the roles."

12A "I would have preferred a more rigorous

specification, but this would have been

hard to achieve."

lB	 "I would have started with an appropriate

methodoloy (a designed one)."

4B	 "I would have used a more specific

design earlier."

4C	 "I would have prototyped - no con-

venient methods existed at the time."

this on the inability to prototype at the time of the project.

4.3.13 Constraints on Design Activity

The second part of the questionnaire involved two ranldng exercises. The first

required respondents to read a list of possible design constraints. A design con-

straint may be anything which impedes or prevents a design team from progressing

- 234 -

in what they perceive to be an ideal manner towards their design goals. It may

increase the difficulty of carrying out certain activities, or it may prevent certain

activities taking place. The constraints listed below are a mixture which could be

placed into the categories indicated by Hammond et al (1983) which are Historical,

Organisarional, System and Personal (see figure 3.3). They were derived from

several pilot conversations which the analyst had with some individuals with com-

mercial design experience at Queen Mary College Computer Science Department.

The constraints listed are as follows:

a) Lack of Autonomy From Parties Outside of Design Team

b) Lack of Guidance From Parties Outside of Team

c) Lack of Authority

d) Oversized Team

e) Undersized Team

0 Undefined Team Member Roles

g) Over-rigid Team Member Roles

h) Lack of Assistance/Collaboration from Client

i) Client Over-Intervention

j) Lack of Information about Tasks

k) Lack of Information about Users

1) Over-casual Approach to Design

m) Over-rigid Approach to Design

n) Over-casual Approach to Evaluation

o) Over Rigid Approach to Evaluation

p) Lack of Experience With HCI

q) Lack of Experience with Interface Design

r) Lack of Information About What Constitutes Interface Design

Improvement

s) Lack of Familiarity of Application Domain

t) Complicated Application! Sophistication of Product

u) Inadequate Resources (e.g. Time, Money, Equipment etc)

The rationale for including these items in the list is, briefly, as follows. Items a and

b are aimed at discovering whether designers feel they have too little or too much

freedom. Item c asks how much power designers have in asserting their decisions.

For d, e, f, and g the aim is to determine whether size and degree of team structure

- 235 -

or lack of it might be a problem. Items h and i are to determine whether clients of

design teams are helpful or constraining in themselves. The availability of user and

task information is queried by j and k. Items 1, m, n, and o seek to determine

whether design and evaluation is perceived to be too informal or too rigid by

designers. The designers' familiarity with HCI, UI design, ways of improving usa-

bility, and with the application domain itself is queried by p, q, r, and s. Finally the

complexity of the application/sophistication of the product, which might be hard to

understand and require time and effort simply to specify, is queried by t. Item u

aims to determined whether time and other resources are sufficient to achieve the

kind of results the design team would like.

Respondents were asked to choose which constraints they felt they had experienced

and then list them in order of their importance to the single design project which

they were referring their responses to. A valid response was therefore taken to be

any ordered list (including items placed as equal) of the constraints above. Respon-

dents provided a variety of rankings which were then combined to give overall

ranking scores for each of the possible constraints. In this section the two responses

from the same multi-site project are treated separately. The reason for this was that

they provided very different responses which indicated that their groups were

operating autonomously from one another. One respondent stated that his rankings

were based on general experience, rather than a single design project. This was

considered unlikely to be unrepresentative for a single project and this data was

therefore not included (virtually every option was included in the ranking by this

respondent). Another respondent did not complete this section. These respondents

were both in group C. In total there were therefore 24 responses.

Respondents varied enormously in terms of the number of constraints they listed.

These ranged from 1 to 21 (out of 22), however there was no discernible difference

between the groups, between long and short projects and between teams with and

without HCI specialists in terms of the number of constraints listed. One might

have assumed that commercial projects are more subject to constraints and pres-

sures, however this intuitive opinion is not supported by this study. Unfortunately

only 3 of the 5 Group C respondents gave valid responses for the ranking exercises,

and as such do not provide a large enough group to support a more detailed statisti-

cal analysis. The average number of constraints listed by members of Group A

(6.00) is similar to the average for Group B (6.5). This suggests that Universities, R

-236-

& D organisations, and HCI consultancies are under the same sorts of pressures as

commercial computer software design companies and consultants.

Interestingly almost all of the respondents ticked many more constraints than design

problems. It is possible that designers make subtle distinctions between what they

consider to be actual problems, and what they consider to be simply constraints

upon their activities. A constraint may be an unavoidable problem to which the

designer sees no practical solution.

Two different rankings were carried out in the analysis of the constraints data, the

first based upon "Incidence" or number of times each constraint was listed as

experienced by respondents. So in this case only the nwnber of times an individual

constraint was listed (as having been experienced on a project) was the basis for its

"Assigned Frequency Rank". The first ranking results are shown in table 4.13.

All of the suggested constraints in the list were existent in at least two projects. The

most common constraint appears to be the Complexity of the

Application/Sophistication of the Envisioned Product which seems to be almost

twice as common as the next most common; Inadequate Resources.

In the second ranking analysis the top ten constraints were accepted from each

respondent and assigned a "Weighting". The first item was scored at 10 points, the

next at 9, and so on down to 1 point These weighted rankings were added together

(again one respondent's rankings were based on general experience and so were not

included). The total score for each constraint was recorded; the "Overall Weight-

ing". In this case, then, the rank of each constraint represents its overall impor-

tance; the "Assigned Importance Rank" (see table 4.14). Two respondents gave

many more than ten ranked constraints (these few additional constraints were not

counted), all of the other respondents gave up to ten.

In this case, the most important constraint is t; Complicated Applicationi Sophistica-

tion of Product (indicating a complex and difficult system to build) but the second

most important constraint is Lack of Information about Users, followed by Over-

casual Approach to Evaluation.

Application complexity or product sophistication was originally viewed as a

- 237 -

Table 4.13

Incidence of Constraints Experienced by Respondents

Item in List
	

Incidence Assigned

Frequency

Rank

t) Complicated Application/Product Sophistication
	

19
	

1

u) Inadequate Resources
	

11
	

2

k) Lack of Information about Users
	

10
	

3.5

n) Over-casual Approach to Evaluation 	 10
	

3.5

e) Undersized Team
	

9
	

5

h) Lack of Assistance/Collaboration from Client
	

8
	

7

q) Lack of Experience with Interface Design
	

8
	

7

r) Lack of Info About UI Design Improvement
	

8
	

7

b) Lack of Guidance From Parties Outside D-Team
	

7
	

10.5

1) Undefined Team Member Roles
	

7
	

10.5

j) Lack of Information about Tasks
	

7
	

10.5

p) Lack of Experience With HCI
	

7
	

10.5

c) Lack of Authority
	

6
	

13.5

1) Over-casual Approach to Design
	

6
	

13.5

s) Lack of Familiarity of Application Domain
	

5
	

15

i) Client Over-Intervention
	

4
	

16

d) Oversized Team
	

3
	

18

g) Over-rigid Team Member Roles
	

3
	

18

o) Over Rigid Approach to Evaluation
	

3
	

18

a) Lack of Autonomy From Parties Outside D-Team
	

2
	

20.5

m) Over-rigid Approach to Design
	

2
	

20.5

candidate design constraint because it would be more likely to give rise to complex

problems which are harder to reason about than simple ones (e.g. Newell & Simon,

1972). This being the case, designers in complex application projects could be

likely to spend a greater proportion of their time problem solving; perhaps finding

any solution at all to each complex problem might be the design goal, rather than

-238-

Table 4.14

Ranked Importance of Constraints Experienced by Respondents

Item in List
	

Overall
	

Assigned

Weighting Importance

Rank

t) Complicated Application/Product Sophistication
	

149
	

1
k) Lack of Information about Users	 74

	
2.5

n) Over-casual Approach to Evaluation	 74
	

2.5

u) Inadequate Resources	 71
	

4

h) Lack of Assistance/Collaboration from Client
	

60
	

5.5

q) Lack of Experience with Interface Design
	

60
	

5.5

e) Undersized Team	 48
	

7
b) Lack of Guidance From Parties Outside of Team

	
46
	

8
p) Lack of Experience With HCI

	
40
	

9

1) Over-casual Approach to Design
	

38
	

10

c) Lack of Authority	 37
	

12.5

Undefined Team Member Roles
	

37
	

12.5

j) Lack of Information about Tasks 	 37
	

12.5

r) Lack of Info About UI Design Improvement
	

37
	

12.5

s) Lack of Familiarity of Application Domain	 24
	

15

i) Client Over-Intervention
	

23
	

16

a) Lack of Autonomy From Parties Outside D-Team
	

17
	

17

d) Oversized Team
	

10
	

18

o) Over Rigid Approach to Evaluation
	

9
	

19

m) Over-rigid Approach to Design
	

8
	

20

g) Over-rigid Team Member Roles
	

3
	

21

selecting the best solution. In such a situation less time will be available for review-

ing alternative solutions, or being creative.

Comparing the two ranking schemes in tables 4.13 and 4.14, it seems that there are

few major differences between them, although the differences that do exist illustrate

- 239 -

that some constraints are perhaps more common but less important than others and

vice verca.

Both of the rankings suggest that there are less complaints about rigid design

approaches, and team roles than about the lack of structure in the design method,

approach goals and organisation which seems to be typical of the mainly informal

design approaches indicated in this study. One designer provided an illustrative

comment "some prototyping iterations had no clear objectives", suggesting that

design teams may go through the motions of generating and evaluating their designs

without having a clear idea of what they are aiming for. There may be some sup-

port here for the idea that structured design methods of the right kind could be a

welcome improvement for design teams. The problem is finding the right methods.

Furthermore the value of the assistance of clients in providing information about

tasks, users and requirements, resources and expertise etc tends to be confirmed by

the rankings. Even though many of the teams did not collaborate with clients, those

that did seemed to think that more assistance would have improved the design, to

such an extent that Lack of Assistance from Client was ranked as the sixth most

common and fifth most important design constraint.

Respondents were invited to add any other constraints which they experienced but

which were not themselves on the list. These were as follows, listed with the iden-

tity of the project from which they were drawn;

1A Over zealous project manager.

2A Time.

Early purchase of lastest technology.

Parallelism of development activities.

3A Lack of high quality investigation information and competitor awareness to

start.

5A Time - more work in whole project (not just UI) than anticipated - negotiated

with client to reduce functionality.

7A Lack of time.

8A Software restrictions.

Hardware restrictions.

9A Machine limitations (memory and speed).

- 240 -

Portability of UI.

1OA Lack of foresight and liaison with hardware team.

1 1A Lack of time.

lB Lack of time.

2B Worker attitude.

3B Incompetence of assisting staff.

Difficulty of motivating collaborators when required.

Disruption moving to new building.

7B Lack of experience of users.

Lack of suitable programming environment.

Slow hardware.

4C Time required under estimated.

Difficulty debugging programs.

These additional constraints were all ranked by the respondents as first, second or

third most important (apart from the disruption moving to a new building which was

ranked 5th by 3B). The comments suggest that respondents felt that time and

resources in themselves are very important as design constraints (e.g. 2A, 8A, and

9A), even though they were listed in the questionnaire under Inadequate Resources

see Appendix 1. The majority of other major problems not included in the question-

naire items seem to be concerned with criticisms of project members (e.g. 1A 1OA,

2B, and 3B), however, these seem to be unlikely to be avoided by adopting other

design strategies.

4.3.14 Information Sources

The same ranking exercises as described for constraints (Assigned Frequency Rank-

ing and Assigned Importance Ranking) were carried out on user-oriented informa-

tion sources which the respondent's design team might have exploited. Information

sources included in the list are shown below. These sources vary in terms of

whether they can be used to generate design or to evaluate it, or both. As with

design constraints there was a great deal of variation between design projects as to

the number of information sources exploited. Twenty-five valid responses were

obtained for this exercise. Again, as for the constraints, a valid response was taken

to be any ordered list of information sources, including sources rated the same (one

response had to be rejected because it was based on general experience rather than

-241-

one project). Again the two responses from the same multi-site collaborative project

were treated separately since they were considered to be operating largely auto-

nomously. The number or sources ranked varied from 1 to 17 and when number of

sources exploited per project were plotted against number of projects, the number of

sources listed by respondents seemed to fit a slightly skewed normal distribution

which justified subsequent t tests on the data.

An additional part of this stage of the questionnaire required that respondents pro-

vide some detail as to how they went about exploiting each of the information

sources they included in their list. Their descriptions are summarised at the end of

this section.

a) Scientific/Psychological References on Human Behaviour etc

b) Psychological or HCI Task Analyses of Related Activities

c) Surveys/Reports on Human Characteristics

d) Documentation on Related Activities (e.g. Teaching material or manuals)

e) Surveys/Reports on Target User-Groups

fl Specifications of To-Be-Supported Activity

g) Interviews with Non-Prospective-Users about User Group Characteristics

h) Interviews with Prospective-Users about their Characteristics

i) Verbal Task Descriptions from Current Activity Performers

j) Verbal Task Descriptions from Other Persons

k) Observation of Prospective User Activity

1) Observation of Non-Prospective-User Activity

m) Observation of Activity Independent of System Prototype Use

n) Observation of Activity Using Prototype

o) Experimentation with/Testing of Prospective-Users

p) Experimentation with/Testing of Non-Prospective-Users

q) Experimentation on Activity with Prototype

r) Experimentation on Activity without Prototype (e.g. with mock-up)

-

The list of possible information sources was based upon HCI recommendations for

user-oriented design and evaluation techniques taken from the literature in general

(e.g. Gould & Lewis, 1985; Jorgensen, 1989), and from the author's experience of

Task Analysis, and Evaluative Techniques in practice.

- 242 -

Table 4.15

Incidence of Information Sources Exploited by Respondents

Item in List
	

Incidence Assigned

Frequency

Rank

n) Observation of Activity Using Prototype
	

16
	

1
k) Observation of Prospective User Activity	 14

	
2

0 Specifications of To-Be-Supported Activity
	

13
	

3.5

o) Experimentation withlresting of Prospective-U's
	

13
	

3.5

d) Documentation on Related Activities 	 11
	

5

i) Verbal T-Ds from Current Activity Performers	 10
	

6.5

h) Interviews with Prospective-U's	 10
	

6.5

a) Scientific/Psychological Ref's on Human Beh etc 	 9
	

8

j) Verbal Task Descriptions from Other Persons 	 7
	

9.5

q) Exp'n on Activity with Prototype	 7
	

9.5

m) Observation of Activity Not Using Prototype
	

6
	

11.5
p) Exp'n Withfl'esting of Non-Prospective-U's

	
6
	

11.5

g) Interviews with Non-Prospective-U's about U-Group
	

5
	

13.5

1) Observation of Non-Prospective-U Activity
	

5
	

13.5

b) HCI Task Analyses of Related Activities
	

4
	

16
c) Surveys/Reports on Human Characteristics

	
4
	

16
e) Surveys/Reports on Target User-Groups

	
4
	

16

r) Experimentation on Activity Not Using Prototype
	

3
	

18

U = User T-D = Task Description

Exp'n = Experimentation

A number of possible hypotheses were explored; firstly that university based design

teams, R & D groups and HCI consultancy projects might exploit more information

sources of the above type than software houses and consultants. Secondly that

teams with HCI specialists might exploit more user-oriented information sources

than those without. Also thirdly, that better resourced or larger projects would

exploit more such information sources than smaller projects.

- 243 -

With respect to the organisational group comparisons, there were only 4 valid

responses from Group 5 which was too small a number to compare statistically with

the other groups. A one-tailed t test performed to compare the number of inforrna-

tion sources exploited by Group A (average number of information sources was 7)

and Group B (average 5.44) was not significant at the 5% level (t = 0.994 with 19

DF). In other words it would not appear that university based design teams, R & D

groups and HCI consultancy projects exploit more user-oriented information

sources than do commercial software houses and consultants.

A one-tailed t test compared the 8 design teams returning valid rankings of informa-

tion sources exploited involving HCI specialists (one other based responses on gen-

eral design practice experience) against those without in order to determine whether

there was any difference between groups with and without HCI specialists in terms

of exploitation of information sources. The hypothesis was that teams with HCI

specialists would be more likely to exploit more user oriented information sources.

Respondents from group C were not included in the study because none of the valid

responses came from a team with an HCI specialist, and it was considered that their

data, coming from a different group, might bias the result one way or the other.

Groups A and B both contained responses from teams with HCI specialists. In total

8 of the groups providing valid responses involved a specialist and 14 did not. The

average number of information sources from the list exploited by groups with an

HCI specialist was 9.00, and for those without, 4.78. A one-tailed t test was

significant at the 0.25% level with 20 degrees of freedom (t = 3.32). This result

indicates, rather unsurprisingly, that design teams involving HCI specialists may be

more likely to exploit user-oriented information sources, than others.

Project length (in person months, see table 4.3) was plotted against number of infor-

mation sources used in each project in order to see if there was any obvious rela-

tionship between these two variables. What was most apparent was that for projects

under two years, there was no relationship between length of project and number of

information sources, with number of sources varying from 2 to 10 independently of

project length). However, for projects over two years there was a clear relationship.

A regression analysis on the data of the 14 projects over 24 person years long

confirmed this. A value of r = 0.734 was obtained with a standard error of 0.00078

and 12 degrees of freedom. In effect 73.4 percent of the variation in number of

- 244 -

Table 4.16

Ranked Importance of Information Sources Exploited by Respondents

Item in List
	

Overall
	

Assigned

Weighting Importance

Rank

f) Specifications of To-Be-Supported Activity
	

113
	

1

k) Observation of Prospective User Activity
	

108
	

2

n) Observation of Activity Using Prototype
	

107
	

3

d) Documentation on Related Activities
	

86
	

4

i) Verbal T-Ds from Current Activity Performers
	

84
	

5

h) Interviews with Prospective-U's
	

76
	

6

o) Experimentation withlFesting of Prospective-U's
	

74
	

7

a) Scientific/Psychological Ref's on Human Beh etc
	

56
	

8.5

j) Verbal Task Descriptions from Other Persons
	

56
	

8.5

m) Observation of Activity Not Using Prototype
	

38
	

10

p) Exp'n Withfresting of Non-Prospective-U's
	

35
	

11.5

q) Exp'n on Activity with Prototype
	

35
	

11.5

e) Surveys/Reports on Target User-Groups
	

26
	

13.5

1) Observation of Non-Prospective-U Activity
	

26
	

13.5

b) HCI Task Analyses of Related Activities
	

23
	

15

g) Interviews with Non-Prospective-U's about U-Group
	

22
	

16

r) Experimentation on Activity Not Using Prototype
	

20
	

17

c) Surveys/Reports on Human Characteristics
	

10
	

18

U = User T-D = Task Description

Exp'n = Experimentation

information sources was explained by project size with a very high probability that

there is a relation between increase in project length and number of information

sources exploited.

It is difficult to explain the variability in the shorter projects with respect to the

number of information sources used. Of the 5 shorter projects with at least 6

sources, only one involved an HCI specialist. There may be some factor which

- 245 -

biases designers towards using more user-oriented information sources which is not

captured by this study, or this phenomenon may be mere coincidence. However,

one feature of this analysis which should be noted is that the number of information

sources used by a design team is not a good indication as to how much time and

effort went into exploiting (i.e. selecting, gathering, organising and analysing) infor-

mation. It may be that in some small teams each individual takes on more responsi-

bilities with each member exploiting user-oriented information however it is very

possible that less time is spent on each source than in large teams.

It is possible that both the increased likelihood of HCI specialists' presence in larger

teams and greater resources made available in terms of time and money will be

likely to enable teams to make better use of user-oriented information which is

available.

From table 4.15 it is clear that Observation of Activity Using Prototype is the most

commonly exploited information source in the projects surveyed. Observation of

Prospective User Activity and Specifications of To-Be-Supported Activity are the

next two most information sources. On the other hand, the most important informa-

tion source seems to be Specifications of To-Be-Supported Activity followed by

Observation of Prospective User Activity and Observation of Activity Using Proto-

type (see table 4.16).

Experimentation with/Testing of Prospective-Users also seems to be important, but

the degree of rigour with which this activity has been pursued is not clear from this

study. It seems probable, from the number of respondents who repeatedly used the

word "informal" to describe their activities, that experimentation, where it took

place was not generally of the type commonly meant by psychologists and HCI spe-

cialists. Five respondents did describe what appeared to be more formal experimen-

tal evaluative procedures. In three cases HCI specialists were involved, in one of

the others the design team was familiar with HCI.

In general, from the findings of part I and part II of the questionnaire, it appears that

specifications provided by clients or marketers, documentation from comparable

systems, observation of prospective users performing tasks with current systems or

on a prototype, and interviews and verbal task descriptions provide the bulk of

user-oriented information used in UI design. Experimentation, even of an informal

- 246 -

nature is of secondary importance, and the scientific literature and Task Analysis

methods are also secondary. HCI DETs of the type reviewed in Chapter 2 did not

appear to be used by any of the respondents.

As with design constraints, respondents were invited to add, and indicate the rela-

tive importance of any other information sources which were not on the list.

1A Software porting expertise.

2A Previous product experience.

3A System usability audit.

Field reactions of users.

5A Conference attendance.

Other people in company.

8A Suggestions/help from software vendors.

9A Existing products.

1OA Technical papers (graphics, windowing software and systems).

hA Hardware specifications.

Papers on graphics.

Papers on colour.

2B Personal experience (of researchers/psychologists in organisation).

Guidelines

Third hand feedback from potential users (the client's clients).

3B Experience with "spy".

Experience with previous UI product design.

Demo programs from a computer & software company that were based on the

package used.

5B Existing interactive graphics modelling programs & literature relating thereto.

Existing demo programs for workstations.

Computer manufacturers literature and manuals.

7B Our own ideas on how it could be done.

2C Technical support.

IMS experts.

4C Written descriptions (practices) from users job functions.

These additional information sources were also mostly ranked as important by

respondents. They suggest that designers see personal experience, specialist

- 247 -

expertise and existing comparable systems as important information sources which

influence their own UI design. However, the study did not capture any information

as to how designers were able to determine whether it was appropriate to "borrow"

somebody else's design ideas. Designers did not describe how they decided what

features were appropriate to copy from existing comparable system, given possible

differences between other parts of the new design and the system from which the

idea came. It is not clear whether borrowing design ideas causes problems of incon-

sistency between different parts of a system.

In the following section respondents were asked to elaborate the manner in which

they went about exploiting information sources. There were 20 responses to this

section in the questionnaire, these are listed in Appendix 2.

In the following, elaborations for each of the information sources listed labeled a to

r, and those added by respondents are summarised.

a) Scientific/Psychological References on Human Behaviour etc This source was

used in literature searches for information such as human reaction times and colour

sensitivity. It seems that such information was useful in fine tuning of designs.

b) Psychological or HCI Task Analyses of Related Activities. This type of infor-

mation was not specified, it may have been used by one team, possibly taken from

literature searches.

c) Surveys/Reports on Human Characteristics. Described as useful in fine tuning

the delays & and responses of the system to make it feel as natural as possible.

d) Documentation on Related Activities (e.g. Teaching material or manuals).

Existing task manuals were used by one respondent to help structure the interactive

system tasks. One team used a competitor's documentation to "identify pitfalls,

drawbacks, etc from the documented description." Another carried out a survey of

similar systems to their design. One respondent stated that this information source

was used for developing specifications which were used as design guidelines.

e) Surveys/Reports on Target User-Groups. These were described by one

- 248 -

respondent as being used as initial input. One respondent stated that an advisor to

potential users supervisors provided this kind of information. Another found it in

the available literature.

0 Specifications of To-Be-Supported Activity. The information required for such

specifications was described as being provided by marketing, or obtained by attend-

ing a course in the application domain, taken from the professional press, manuals

and standards documents, or from investigations of existing tools. Interviews with

potential users were also a used to obtain this information. It seems that the design

team itself was usually involved if any detailed written specification was produced,

rather than being the recipient of a pre-prepared specification.

g) Interviews with Non-Prospective-Users about User Group Characteristics.

When non-prospective users were interviewed it seems that they were either appli-

cation domain experts or, in one case, supervisors of potential users.

h) Interviews with Prospective-Users about their Characteristics. This source

of information seems to have provided specific user and task information which

helped with detailed aspects of design. For example "...so the operator has the final

word on accepting/rejecting shift figures. The system however ensures that all sec-

tions have been entered before reporting the. discrepancy and sections can be

corrected individually, without extensive retyping." Such information might be

used for requirements analysis, or for evaluating prototypes. Users seem to be

better at evaluating existing designs than at suggesting possible design features;

"They were better at reacting than initiating".

I) Verbal Task Descriptions from Current Activity Performers. These were

used in much the same way as h.. They seem to be informal but may provide

sufficient detail to drive the design; "Talking about the task to be performed led

almost automatically to the chosen design. The users had already divided the task

into meaningful subtasks."

j) Verbal Task Descriptions from Other Persons. These might be provided by

discussions with management, marketing, or others outside the design team.

k) Observation of Prospective User Activity. Prospective users were observed at

- 249 -

work using, in one example, a manual system, and in another, existing tools. In the

example where prospective users were observed using existing tools, it was possible

to elicit requirements from them based upon the drawbacks of these tools. One

respondent without HCI expertise described using unobtrusive observations to "test

which types of display were most noticeable! most readable etc."

1) Observation of Non-Prospective-User Activity. This seems to be much less

used as an information source; in the one case where it was described, the individu-

als observed belonged to the same profession as the prospective users.

m) Observation of Activity Independent of System Prototype Use.

As indicated by other descriptions of information sources, observation of use

manual systems and existing tools have been given as examples of this source.

n) Observation of Activity Using Prototype. Occasionally this important source

of information seems may be obtained by chance in the course of the design cycle.

In one case, a respondent stated that potential users ignored the prototype made

available for them to try out; "...they ignored the release altogether due to the bugs

which were still in it, and the low level of reliability of the tool, and would carry on

using existing tools." When it was obtained this information was helpful in driving

modifications to designs.

o) Experimentation with/Testing of Prospective-Users. Experimentation, of a

scientific nature may have been quite rare, however testing seems to have been quite

common. Informal acceptance testing, or more formal detailed tests of comparable

screens, response times, seems to have been more prevalent amongst the respon-

dents' projects.

p) Experimentation with/Testing of Non-Prospective-Users. This option was

used as well as testing with prospective users on occasions, or when prospective

users were unavailable or difficult to find. One respondent described such tests

being used simply to resolve arguments over the design when different interest

groups refused to give in. There is little evidence to suggest that experimentation

was of a scientific nature.

q) Experimentation on Activity with Prototype. In all cases where

- 250 -

experimentation/testing took place, apart from one where mock-ups were used, a

system prototype was involved. Sometimes designers experimented with the proto-

type themselves, then feedback from others, sometimes including prospective users

was used for modification. This might take place at various stages in the design

cycle. A prototype may be used for demonstrations as well. As above, experimen-

tation seems from the elaborations to be an informal activity in UI evaluation.

r) Experimentation on Activity without Prototype (e.g. with mock-up). Only

one respondent was specific about this information source, stating that mock ups

were used for very early tests.

The elaborations provided by respondents of their exploitation of information

sources tend to confirm the rest of the information from the questionnaire. Once

again clients, and collaborators figure as important to the design process in provid-

ing many of the information sources listed above. Domain experts or marketers

may be the source of specifications of target tasks, descriptions of target users.

Prospective users themselves are mainly involved in evaluation ,rather than in

specification and development. Whatever observations, interviews, experiments

and so on, there were appear to be informal in nature.

4.3.15 Subjective Evaluations of Good and Bad Design Features

Finally the questionnaire asked respondents to describe their satisfaction with the

outcome of the UI design. The detailed responses are listed in Appendix 3. The

rationale for this question was that the responses would be indicative of what

designers typically consider to be good and bad features of their Uls. Alternatively

respondents could have been asked to list good and bad UI features in general, but

idealised responses might have been more prevalent. Table 4.17 summarises good

and bad features of UI designs described by designers. Features which are very

specific to the details of the project described, such as inability of users to agree on

aspects of the UI, are not included. Also concepts such as "GOOd graphics" and

"Good use of sound" are not included because it is impossible to determine what is

meant by good.

In table 4.17, no order is implied as to which features are most important.

Designers were not asked to rank their responses. However, in Appendix 3,

- 251 -

consistency and simplicity/complexity were mentioned by several respondents. The

fact that designers made use of such terms suggests at least some penetration of HCI

concepts and principles through to design practice, even if HCI techniques seem to

be a rarity.

Speed of response of the UI was also mentioned frequently as a good or bad feature,

and appears to be important (probably because slow response times render a UI

almost totally unusable, and also because fast responses are often hard to achieve).

Some of these features reflect some of the principles of user-oriented design simpli-

city, compatibility, user centred task dynamics, consistency, observabilily and

retrievability, as categorised in Chapter 1. In fact the only principle which is not

represented by comments relating to good and bad design features is retrievability.

Any features which are not related to any of the principles of usability from Chapter

1, tend to be based around pragmatic considerations, such as conformity with in-

house style, technological restrictions/compromises, and UI software compatibility

with other system software.

4.4 Discussion of Results

Much of the information gathered in this study is of a qualitative nature. As was

stated earlier, the study did not attempt to impose preconceived classifications on

respondents. The reason for this was that, in essence, this was an information gath-

ering exercise which aimed to discover features of "real world" design practice

which might impinge upon the application of user-oriented design and HCI DETs.

4.4.1 Grouping Projects According to Host Organisation

There were few differences between the design projects host organisational groups.

The first of those that did emerge was that although no group was seen to include

more HCI specialists than others, R & D Groups, universities and HCI consultancies

(Group B) design teams seem to be more likely to involve HCI awareness in general

than software companies or consultants' (Group A) teams and departments of non-

computer companies (Group C). All of the teams in Group B involved individuals

with some HCI familiarity, compared with less than half of Group A and only one

in Group C. The reason for this is not given by the responses although it seems

Good Features

- 252 -

Table 4.17

Good and Bad Features of UI Designs

Described by Respondents

Bad Features

Uniformity/Consistency

Standardisation of Function Keys

Ease of Learning

UI Division Matches Task

Division

Easy to Follow Procedures

Minimal Keystrokes

Modelessness

Window Types/Screen Areas

as Modes

Pop-Up menus

Display of Command Meanings

Dimmed Non-valid Commands

Only Valid Options Displayed

Simple Uncluttered Screens

Fast Displays

Robustness

Modifiability

Efficiency

Sensible Response to All Input

Conformity with House Style

Cross Check on Data-Entry

Complexity

Hard to Remember

Exceptions to Rules

Inconsistencies between Uls

Inconsistency between UI modules

Overloaded Mouse Button

Functionality

Frequent Mode Swapping

VDU Oriented UI Design

Requiring Computer/Application

Expertise

Vague command Descriptions

Non-Display of Key Press Orders

Hidden Required Key Presses

Lack of On Line Help

Slow Response Times

Technological Restrictions!

Compromises

Technologically Outmoded

Inflexibility

UI Incompatibility with Other

Software

Double Entry Cross Checking

intuitively likely that employees who are more frequently engaged in research pro-

jects in a research oriented institution or organisation (i.e. those in Group B), are

more likely to have the opportunity to discover other fields than their own specialist

area.

-253-

The second difference is that Group C teams appear to work on less varied applica-

tions than the other groups, all of those surveyed being in either data processing or

process control. The third, difference is that Group A design teams seem to be

significantly more prone to technological problems than other groups, although the

reasons for this are somewhat obscure.

4.4.2 Project Size

Project size varied greatly from 0.67 person months to 1800 person months (150

person years). The three very large projects (60 years and over), two in Group A

and one in Group B, meant that average design project size was far greater than the

median. The median project length was 33 person months and the median size of

design team was 7. These values represent more typical project and design team

sizes than do the averages. The presence of a few very large projects made a poten-

tial statistical test for the relationship between host organisation group and project

size unreliable. However, there were no obvious differences between the groups in

terms of project size.

4.4.3 Familiarity with HCI

As stated above, design teams in R & D Groups, universities and HCI consultancies

(Group B) all involved individuals with HCI familiarity, but they were not more

likely to involve HCI specialists. No relationship existed between lay-familiarity

with HCI of team members and size of project. However design projects with HCI

specialists were significantly larger than those without.

Two of the specialists indicated that they were not able to have as much influence

on the design process as they would have liked. This finding is in line with the

point raised by Smith and Mosier (1984) to the effect that HCI specialists may lack

the knowledge about design and the tools to deal effectively with it. They propose

that this may explain the lack of influence which they achieve. It may be that

greater influence can only be achieved by those who have sufficient breadth of

experience to be able to communicate effectively and convincingly with other

members of the design team.

As stated in Chapter 3, smaller, less well resourced design projects will be less able

- 254 -

to apply sophisticated HCI DETs, particularly because they tend to rely on HCI

expertise, and a significant amount of time and effort invested (albeit with the prom-

ise of rewards in terms of improved results). If smaller projects are less likely to

involve specialists, then this problem is even more extreme. Additional, simpler

techniques need to be targetted at smaller design projects which appear to be under

provided for by HCI methodologies at present.

It would appear from the findings that over 70% of the respondents were at least

positive about the potential benefits of HCI. Some of those who were not positive

seem to have no knowledge of the discipline at all. The responses suggested that

there may be an attitude problem towards the form in which HCI and other special-

ist discipline's design recommendations are expressed. Perhaps researchers in the

field presenting recommendations and methodologies for use in design practice

need to be more aware of the fact that systems designers' backgrounds and under-

standing are very different from their own. Much that seems obvious and straight-

forward to specialists in HCI may be abstruse and confusing to others.

4.4.4 Product Functions and the Type of UI involved

The use of text editors as test environments for HCI DETs (e.g. TAG, GOMS, and

CCT) is not vindicated by the results of this study with only one of the applications

being comparable to such a system (a word processor). Data processing was the

most common application type, followed by process control and office systems.

This study tends to suggest therefore that these are the types of application on which

HCI DETs should concentrate, since there is no guarantee that success with one

application will be generalizable to another very different one, unless the DET is

actually tried out on the other application.

4.4.5 The Prospective Users

The great majority of design projects were targeting their UI at users who were

quite likely to be computer naive and possibly infrequent users. In other words it

would not have been safe to assume that they would share the same view of the UI

syntax and semantics as did the designers. This being the case, Gould and Lewis's

(1985) principle of user involvement throughout design appears to be vindicated.

The only way designers can hope to be sure of potential users' understanding and

- 255 -

requirements is to directly involve the users themselves.

Unfortunately the kind of user described (including children, gallery staff, and

garage attendants) could not have been relied upon to have been trained to perform

tasks in the ideal and error free manner represented by a competence grammar

describing their task actions. TAG, GOMS, CC'l', and other HCI DETs tend to gen-

erate competence grammars or idealised task methods for the sake of economy

(acceptance grammars or many, perhaps inefficient alternative task methods are

likely to produce exponentially bigger models which will be more difficult to

analyse; Payne & Green, 1986). Maclean et al (1985) demonstrated that people are

very poor at assessing the efficiency with which they are carrying out interactive

tasks. They may believe they are using the quickest methods when, in fact, they are

not. This means that in many cases the accuracy of competence models of interac-

tion may not be great enough to justify their application.

4.4.6 Organisations involved

The majority of design projects surveyed involved collaboration with organisations

outside the design team's host organisation, or with other departments in the host

organisation. Therefore the size of design teams may not be representative of the

real numbers of individuals involved in the design process. The constraints ranking

indicated that a lack of structure of design approach and roles, rather than too much

structure was typically viewed as a problem by respondents. It is possible that the

clarification of design requirements and goals, and shared views of the design pro-

cess itself are difficult to achieve when large numbers of individuals involved.

Boehm et al (1984) show that larger design teams are less efficient (in terms of

delivered source instructions per person) than smaller teams. The reason for this

could well be that larger teams require more communication and organisational

activity in order to maintain an integrated approach.

The implication from these findings is that, in some cases, structured analysis and

design techniques which account for user-oriented aspects of design could be a wel-

come improvement. At present HCI DETs do not provide a satisfactory design

framework within which they can be applied (see Chapter 3). This inadequacy may

well be an important target for future research.

-256-

4.4.7 Information from Specifications, Task Descriptions and Users

In total 65% of respondents stated that requirements, specifications were generated

for the UI. These were variously generated by the team itself, marketers, clients,

and application experts. The majority of these appear to have used informal

English, rather than any structured or formal notational device. Furthermore some

of these specifications may have been very high level and brief. Overall there was

immense variability in the apparent rigour with which specifications had been gen-

erated and used. In one case functional requirements specifications were generated

as, and after, the code was written, at the other extreme they were generated early

and drove the entire design. Likewise information about the to-be-supported tasks

for the system was gathered from a variety of sources and typically expressed in an

informal manner.

In 32% of the design projects in the study specifications of users' requirements did

not come directly from potential users. For example client managers, marketers or

documentation may have been the source used by the team for discovering users'

requirements. In these cases many simply could not get hold of target users, but in

three cases (12% overall) users were simply not involved until late in the design

cycle. This is only a minority of the projects studied, but there still appears to be a

degree of complacency about user requirements amongst some designers who

assume that prospective users' managers (who often come from a different back-

ground, in terms of skills and experience, from other company employees) can pro-

vide reliable views of user requirements.

The main input from users seems to take place in evaluation of prototypes, or of the

final system. Users may not be very effective as requirements generators because of

their probable ignorance as to what is and is not possible in terms of system support

for their tasks. One designer stated that users were better at reacting than initiating

in the design process. However, this is not an excuse for complacency since there

did not seem to be any cases where designers actively sought to present users with a

view of the functional potential of the prospective system which they could have

used in describing their own requirements.

In 9% of the projects no user evaluations took place, and there were no good expla-

nations for this lapse, particularly since the prospective users were likely to be

- 257 -

computer naive.

There was a great degree of variability in the design teams' familiarity with the

application domain, with Group C (who might have been expected to be familiar

with their own company's application domain) being no better off than the other

groups. Designers spent some time familiarising themselves with application areas,

watching current activity performers or talking to domain experts. Presumably

early design specifications would have to be comprehensible to such individuals if

they were to be evaluated for validity, so there may be considerable pressure from

this source for informal "English" specifications.

4.4.8 Specifications and Methodologies Used

Forty percent of the respondents claimed that their team had used an abstract design

specification or descriptive methodology, some used more than one methodology.

Of these, ten responses, only 4 were clearly user-oriented. In general informal

approaches were preferred as with the requirements specifications and users/tasks

specifications.

It may be that informal specifications and descriptions are preferred by the majority

of individuals involved in design. Structured descriptive methodologies and nota-

tions, with so many to choose from, require some investment in terms of time and

effort to master, until such investment takes place these techniques remain some-

what esoteric and abstruse to the majority. It seems unlikely that all those con-

cerned in a design project will be familiar with the same techniques, so the obvious

notational device has to be the most comprehensible by the majority of those con-

cerned. The two quotes to the effect that SADTs are not generally viewed in a

favorable light supported this hypothesis. Furthermore, none of the HCI DETs

described in Chapter 2, or any related methodology, was used.

This finding is not favorable for HCI DETs since it implies that any methodology

which generates specifications which are obscure in derivation and notation is of lit-

tie value to the design team as a whole. The variety of individuals concerned can-

not all be expected to master all applicable methods and notations in case somebody

wishes to use them. Presumably "in-house" methods are a partial answer to this

problem; at least all the members of the host organisation can use such

- 258 -

specifications.

Another alternative solution to this problem is that the design team is structured in

such a way that specialists in various aspects of design have the ability to translate

from informal to formal or structured specifications of their own particular discip-

line and back again. However, the argument against this would be that any descrip-

tive power gained by a formal or structured specification could be lost as soon as it

was translated back into an informal one.

4.4.9 Generation and Testing

Four keywords or concepts were identified as distinguishing features of the large

variety of approaches to generation and testing of the UI. These were Formal, used

in 36% of responses and which in some cases may have meant structured or

rigorous; Test-against-specs described to by 20% of respondents, which generally

referred to evaluations involving comparisons of performance with prespecified

requirements (which may have been informally stated); Informal, a term used by

52% of respondents, which referred to unstructured approaches; and Iteration or

Prototyping used by 56% of respondents.

The general implication is that informal iterative approaches to system development

are more common than structured ones. Again, this suggests that there is not any

widespread acceptance of the value of rigorous approaches to specification and

evaluation of systems in current design practice, and this suggestion applies both to

straightforward systems analysis and design techniques as well as to more specialist

techniques such as HCI and formal methods. There remains an onus of proof on

those who advocate such techniques, to convince designers of the reliable benefits

of their application, as compared with methods presently in use.

4.4.10 Problems and Modijl cations

The majority of respondents experienced notable problems in their project. Many

of them had to make major modifications as a result. The incidence of technologi-

cal problems appeared to be significantly greater for Group A (software companies

or consultants), although this result is somewhat unexpected and not explained by

the survey findings.

- 259 -

The main implications of the probability that a major, unforseen problem is likely to

emerge at some stage in the design, are that major modifications may well have to

take place, or that there will be unavoidable limitations to the product of the design

cycle. HCI DETs do not generally suggest how such modifications may affect their

application, for example the user's conceptual model, defined in the early stages of

design may have to be violated. There is no guidance for damage limitation in such

circumstances.

Technological, organisational, and pragmatic problems are probably not amenable

to improvement through the adoption of better design approaches. These represent

13 out of 21 problems listed, or 70% of the total. UI complexity, poor design con-

cepts, and methodological problems, 30% of the total, may well be reduced by

user-oriented-design approaches. However, in the majority of design situations,

designers will probably have to be prepared for a variety of unavoidable set backs,

and applicable methodologies will have to be designed to deal with in such situa-

tions.

4.4.11 Finalisation of the Project

System design projects may be finalised by agreement between the parties involved,

or by iteration presumably towards a satisfactory system design state. This does not

imply that the potential users are really satisfied. None of the respondents stated

that the design was completed because it met usability requirements, or because

user were satisfied with the outcome. One respondent stated that the project com-

pleted when a functional specification was satisfied.

The emphasis may often be on satisfying the client management, or a marketer,

rather than users directly. If this is the case, a design team may not be under

optimal pressure to ensure that the design product is satisfactory for the potential

users. Unfortunately the responses to the questionnaire did not clarify how closely

potential users were involved in the finalisation of a product. However if pressure

to ensure usability is low, then designers are unlikely to adopt time consuming and

expensive measures to improve this feature of a system.

- 260 -

4.4.12 Lessons Learned

Of the variety of responses to the question, what would they have done differently

with the benefit of hindsight, one interesting category was identified. These were

the 6 respondents who stated that they would have liked to have used a different

methodology altogether. Together these responses represent 24% of the total. One

of these stated that prototyping would have been desirable, but was not possible at

the time of the project. The other five either wanted to improve the influence of

user-oriented activities, or improve the methodology of the whole design process,

including increasing structure and applying such a methodology earlier.

4.4.13 Constraints on Design Activity

The ranking exercise did not reveal any relation between the number of constraints

listed by respondents and host organisation group, project length, and presence of

HCI specialists in a design team.

The most common and important design constraint seems to be the complexity of

the application or product sophistication (although time shortage was included as an

additional major constraint by many respondents and may have been as important).

The reason for this may be that design in itself is an intrinsically difficult set of ill

defined problems. This may be particularly true of design teams where some of the

members are very unfamiliar with the application domain. If the project involves

generation of a sophisticated and complex solution, designers may feel constrained

by the difficulty of understanding and providing even a single solution to design

problems. Where the application is familiar and simple, they may have more free-

dom to choose between alternative design solutions.

Lack of information about users is also an important constraint as this prevents

designers being sure of the validity of their assumptions and decisions. It seems

that information about tasks is more readily available than information about users.

As we have seen, designers often get their task information from intermediaries, and

it is not clear that task information obtained is always valid. The nature of users is

of course intrinsic to the manner in which they carry Out tasks; novices will make

many errors, and require a great deal of help; experts will want high level short cuts

for frequent actions, occasional users will have difficulty in building up skill using

-261-

the system. These and other features have to be taken into account by UI designers

in the structuring of UI task methods.

Over casual evaluation approaches, lack of guidance from others involved in the

design, over casual design approaches and undefined team member roles were all

constraints of some importance. Such constraints tended to outweigh constraints

relating to excessive structuring of methods and roles, and overintervention from

others outside the design team. In general this gives the suggestion that design is

more typically underorganised and unstructured than the opposite.

The obvious lack of application of structured systems analysis and design methods

may be the main problem here. Although such techniques may not directly improve

the UI, some of the constraints surrounding design could be ameliorated by their

application. Were such techniques to include more user-oriented components, the

situation would probably be greatly improved.

Other important constraints include inadequate resources and small team size, lack

of assistance from collaborating clients, and lack of experience with design itself

and with HCI. All of these contribute to the perceived difficulty of design in itself.

Any HCI methods which are also hard to master, can only increase the designer's

sense of difficulty.

4.4.14 Information Sources

The ranking of user-oriented information sources for UI design and evaluation

exploited by design teams revealed some interesting differences between long and

short projects and projects with and without HCI specialists. Projects under two

years long showed no relation between the number of information sources exploited

and size of project; the reasons for this are not clarified by this study. For these

small projects the presence or absence of HCI specialists in the team does not

explain the lack of correlation.

However for projects over two person years in length, there is a strong correlation

between person-years and number of information sources. This relationship is

further strengthened by the fact that projects with HCI specialists use significantly

more information sources than those without.

- 262 -

These findings imply that time and expertise are strongly related to application of

user-oriented design. This may not be a causal relationship, it may be the case that

the perceptions of those involved in the project influence decisions as to whether it

is feasible to carry out detailed user requirements analysis, task analysis, and

rigorous evaluations, and that when time or expertise is short, they choose to leave

out these activities, when there is no real reason why they should.

The most important information source seems to be specifications of to-be-

supported-activities. As has been suggested, these may not be reliable if they are

not taken directly from discussions with, observations of, or analysis of the

behaviour of potential users as sometimes appeared to be the case. The next most

important information sources are observations of potential users, and observations

of activity with the prototype. These information sources reflect the apparent bias

towards unstructured and informal approaches to design and evaluation. The ela-

borations given of how information was exploited did not suggest that these sources

were typically rigorously exploited.

Interviews and verbal task descriptions are also very important as information

sources, but again may be supplied by non prospective users. The suggestion is that

these too are dealt with in an informal manner. Experimentation with the prototype

rarely appears to be of a scientific nature. However experimentation is clearly

important as a source of valuable evaluative information see table 4.16. Only 25%

of the projects studied seemed to treat experimental evaluation as a well defined,

structured activity. (i.e. many respondents described using experimentation, but few

described any scientific procedure).

HCI literature and task analysis techniques did not seem to be as important as one

might have expected. HCI literature was ranked as the eighth most important

source (out of 18). One respondent spoke of the difficulty of obtaining HCI infor-

mation "While working in industry it was difficult to get easy access to HCI ideas

that would be immediately useful...". The implication seems to be supportive of

other empirical studies findings to the effect that HCI research and techniques are

not generally applicable. As one of the specialists stated "Only pragmatic tools are

useful. Data & design guidelines from HCI are almost never of any real use."

Elaborations of the exploitation of information sources by respondents tended to

- 263 -

confirm existing suspicions about various features of design and evaluation. Most

notably that varied and informal approaches are adopted, and that indirect informa-

tion is obtained about users from managers marketers etc.

The additional information sources supplied by designers are mainly comprised of

personal experience of design team members, and observations of comparable pro-

ducts. Borrowing of ideas seems to be quite common, although it is not clear that

this does not lead to problems of inconsistency, whether it be within the UI itself, or

between the UI and any accepted in-house style. At present HCI DETs do not

account for this borrowing phenomenon, which designers probably rely on as a

means of reducing their own workload.

4.4.15 Subjective Evaluations of Good and Bad Design Features

The results from this part of the study were used to indicate what designers typically

consider to be good and bad features of their own Uls. This idea is distinct from

that of defining idealised system features because the basis for these judgements is

real systems.

Some designers do seem to be intuitively aware of important issues with respect to

system usability. Some of the features they identified tend to reflect the usability

principles identified in Chapter 1. For example at least five of the respondents good

or bad features indicated that they were aware of the importance of consistency.

Many of the designers mentioned simplicity. One of the designers referred to user

centred task dynamics (UCTDs) stating that the division of the UI matched task

divisions.

The intuitive guesses of UI designers may often turn Out tO be wrong, but this study

suggests that many of them have already begun to adopt some user-oriented con-

cepts in their approach, albeit in an informal intuitive manner. This means that

designers may already agree with HCI researchers as to what aspects of UI design

may be important for users. It seems to be the HCI methods rather than the message

which are not getting across to designers in applied practice.

-264-

4.5 General Discussion

The preceding discussions have been restricted to the nature of each of the different

aspects of the questionnaire analysis. In the following discussion the support

obtained for each of the the initial hypotheses will be discussed. However some

more general implications of the findings can be deduced; these are taken up in

Chapter 7.

Validation of Hypotheses

1. The design process is very variable, in terms of activities and organisation.

The findings of this study have supported those of others (Gould & Lewis 1985,

Hannigan & Herring 1987) in that the design process has been found to be highly

variable in nature. Design projects vary extensively in the kinds of activity under-

taken, with few standard approaches being observed. Perhaps the most common

feature of design is the use of iterative, prototyping for testing and user evaluations.

Not only do activities vary but applications, target users, team size and roles, and

organisational structure are also diverse. Design recommendations or methodolo-

gies based upon presuppositions about any of these aspects may prove to be invalid

in many cases.

2. Applications are diverse and text editors only make up a small minority of these

(this hypothesis queries the generalizability of HCI DETs to a wide range of

Us).

The study demonstrated that design projects vary enormously in terms of the appli-

cation of the system. The most common application areas seem to be data and pro-

cess oriented. In this type of system there may be multiple views of the information

required by users. Also the behaviour of the system may not be in full control of the

user, particularly in real-time, process control systems. Text editors are the most

popular candidate applications for testing of HCI DETs, almost to the exclusion of

all other types of system, however they are not representative of the majority of

design project applications. As has been stated earlier in Chapter 3, text editors are

special in that they involve little other than an interface and some text. There is

- 265 -

generally only one view of the data (text) and the behaviour of the system is gen-

erally in full control of the single user.

Another point relating to applications is that the most relevant human performance

metrics of the type provided by HCI DETs collectively, will vary between applica-

tion domains. In some domains speed could be more important (e.g. word process-

ing) and in others errors could be more important (e.g. process control). Without

considering any other factors, it will still be the case HCI DETs are likely to be

relevant to only a subset of possible design projects, purely on the basis of the

relevance of the performance metrics they provide.

3. Prospective user populations are highly variable, and the existence of ideal or

even expert users cannot be relied upon.

It was clear from the responses that prospective users were diverse groups and that

many of them were possibly computer naive. The types of users described by

respondents, such as gallery staff, garage attendants, and secretaries could not have

been relied on to receive special computer training of the kind described by Kieras

& Polson (1985). They would therefore be unlikely to be using idealised methods

for accomplishing their tasks (Maclean et al, 1985), and competence models of

users interactive performance applied as a UI evaluative method could well prove to

be highly inaccurate. Furthermore since most users would be computer naive, they

would be likely to make frequent errors and performance models such as GOMS

and CCT would be inaccurate and could prove inadequate for assessing the causes

of errors.

4. Time and project resources are frequently insufficient for a satisfactory amount

of work to be done on the system design itself which affects the UI design also.

The most common and important design constraints ranked by designers were com-

plexity of application/sophistication of product and (from the additional rankings

supplied by designers) limited time. It appears that designers often feel that they

have so much to do in a project, with so little time, that it actually constrains their

design activity.

This finding tends to belie the fact that only 27% of respondents from completed

- 266 -

projects were dissatisfied with their design product. Another 13.5% were satisfied

given certain qualifications, and 59% were satisfied without any qualification (and

possibly without evidence from proper user evaluations). It may be that designers

are less than eager to suggest that their design was not, in their view a success, or

that they view the constraints which prevent them building better systems as "par

for the course" along with the limitations which this imposes on the outcome of the

design.

The findings do suggest that time is generally considered to be too short, and that

complexity of the application makes it more difficult to achieve good results. How-

ever it appears that in spite of this designers are generally satisfied with their work.

Gaining stronger support for this hypothesis would mean designers having to admit

that their work is unsatisfactory. It is possible that a questionnaire survey is not the

best method for achieving this end.

5. Design teams frequently lack HCI or psychology expertise as would be required

for instance to identify appropriate levels of analysis in a multi level HCI DET.

The proportion of design projects surveyed including HCI specialists was 36% of

the total. A further 20% of teams appeared to have some lay familiarity with HCI,

but not at a sophisticated level. This leaves 44% of the teams with little or no fami-

liarity with HCI at all.

When HCI DETs are evaluated, they are applied by their authors who are highly

expert in their field. The accuracy or correctness of these techniques may depend

very greatly upon the skill of the analyst using them. Sharratt (1987) demonstrated

that CLG was very difficult to use and distracted the HCI MSc students attempting

to apply it from the design itself.

It seems unlikely that most design teams will have the expertise required to achieve

the kind of standards of accuracy reported by the authors of HCI DETs. Further

research is required to determine how accurate such techniques are in the hands of

more typical design teams, and in what way they need to be improved to compen-

sate for lack of psychological and HCI expertise. Sharratt, for example suggests

that automated checking for consistency, mapping between levels in CLG

specifications, and incremental addition or alteration capabilities could be added to

- 267 -

CLG to improve its applicability for its users.

6. Abstract design specifications of any type (including systems analysis and design

methods as well as HCI methods) are not commonly used.

The study clearly showed that abstract design specifications, particularly user-

oriented ones, are not generally popular amongst design teams. Informal unstruc-

tured approaches are more common, and there seems to be a negative attitude

towards such specifications; they were referred to as luxuries and unrealistic. Of the

40% where such techniques were used only a small minority were clearly user-

oriented, and these did not appear to be of a type similar to the HCI DETs described

in Chapter 2. Where abstract specifications are used it seems that they are generally

used for modelling states, data flow or for formal verification, rather than task struc-

tures, or user representations.

7. Prototyping is a very common feature of design projects.

Prototyping was the most popular method of generating, testing and user evaluating

systems. Fourteen of the projects described (56% of the total) involved prototyping

and iteration as opposed to 9 (36%) projects involving formal structured techniques,

and 5 (20%) involving more rigorous tests against specifications.

8. Designers are not rigorous in ensuring user-oriented design and tend to favour

casual and late evaluation, rather than user-driven design and early evaluation.

Although most of the projects studied (all but three) involved user evaluations, most

of these were informal, with some doubt as to the degree of rigour with which these

were conducted. The purpose of user evaluations was sometimes purely to make

the best of a bad design concept, or resolve disputes between interested parties, and

in one case a respondent stated that there were no clear objectives in the prototype

user tests. In at least 7 cases (28%) user evaluations were delayed until late in the

design cycle. However in 6 cases (24%) early evaluations did seem to take place.

Overall this hypothesis does receive some support in the sense that user evaluations

tend to be informal, and medium to late user evaluation is far more popular than

early evaluation. The value of early evaluation was illustrated by one respondent

-268-

who stated that the first exploratory usability test, which took place after a consider-

able amount of design based on a weak initial concept, convinced the design team

that the system had to be greatly modified. The result was that a lot more usability

testing was necessary than if the initial design had been guided by user-oriented

techniques.

9. There are many constraints which could pressurise design teams towards cer-

tam methods and away from novel unproven methods.

As has been stated designers in this study found that, amongst many other con-

straints, the complexity of the application or product sophistication, inadequate

resources and time were the most important. Although respondents did not expli-

citly state that they were prevented from exploring unproven methods, they did indi-

cate that these constraints limited what they were able to do. It would appear that

since many of the novel 1-ICI DETs require considerable time and effort, particularly

for complicated Uls, they are unlikely to be adopted by designers who already have

problems of this type.

Two of the HCI specialists found that organisational structures (i.e. their position in

the company, and the ability of others to ignore their recommendations)

significantly reduced their influence over the design. In these cases and presumably

others, the attitudes of certain team members could have prevented novel HCI

methods being used.

An additional point which is worth making here is that designers see personal

experience, specialist expertise and existing comparable systems as important infor-

mation sources which influence their own UI design. It may well be that, rather

than using a structured design technique, or some user-oriented design or evaluative

technique in order to enhance the usability of a system (which seems to be rare),

design teams prefer to employ HCI specialists (who themselves do not necessarily

apply HCI DETs), or use their own experience of previous or competing designs'

solutions to deal with problems relating to usability.

- 269 -

4.6 Conclusions

The nine hypotheses regarding applied and commercial design practice, as it relates

to the UI and usability were largely substantiated by the findings. Some of the most

interesting findings include the following: Design projects appear to vary along a

large number of dimensions. Design teams typically operate under a number of

constraints which may prevent them from using the most ideal appropriate methods

to achieve their aims, which includes user-oriented techniques, as well as other

methods such as requirements specifications techniques, functional specification

methods, formal verification and so on.

HCI DETs, such as those described in chapter 2, do not appear to be used by system

designers in general, and particularly by those without HCI specialist knowledge.

However, a variety of informal methods are used for exploiting information sources.

Finally psychological and HCI specialist skills are not typical amongst system

designers.

This analysis has not aimed to identify the nature of user-oriented design as a pro-

cess. It has restricted its aims to identification of various activities, and difficulties

experienced by designers attempting to design a usable system. In the following

chapter a supplementary, more qualitative analysis is presented which seeks to

reveal some examples of design as a process with a history, in which activities and

constraints tend to be causally related to later problems.

- 270 -

Applicability of HCI Techniques to Systems Interface Design

Chapter 5

An Interview-Based Investigation of Applied and
Commercial Design Practice Activities and Problems

5.1 Introduction and Rationale

In this chapter a more contextualised study of user-oriented design practice based

upon interviews with designers is reported. The features analysis reported in the

previous chapter, being based upon questionnaires, did not clearly suggest the con-

text of the projects involved. The work reported here therefore represents a smaller

supplementary study which fleshes out some of the features of design practice re-

ported previously. It provides a more broad and integrated view of design as a pro-

cess where early decisions and activities influence later outcomes. It also focuses

more closely on the nature of and reasons for the activities, main constraints and

problems encountered by designers which might obstruct the application of good

design principles and, more specifically, whether commercial UI design reflects HCI

DETs' design views.

The discussions in section 5.4 relate the findings of the interviews directly to some

of those in the features analysis in order to give a more general picture of applied

and commercial user-oriented design practice as a whole.

The main goals of the study can be summed up as follows:

* To present a more integrated view of applied, commercial practice than obtained

by the features analysis of design projects.

* To determine whether HCI DETs or principles are applied by non HCI specialists

in commercial practice.

* To explain the design constraints and their effects which might prevent systems

designers from applying more user-oriented design techniques.

The targets of the study were applied, and especially commercial design projects.

The features analysis indicated wide variations between design projects along a

-271-

number of dimensions, such as application type, prospective user groups, host or-

ganisation and so on. The selection of target design projects was determined by

their distinctness from one another with respect to the system application domain

and potential users, the host organisation employing the designer, and the size of the

design team and project. Unfortunately it was difficult to find designers who had

the time and enthusiasm to take part in the study. Designers who agreed to take part

may have been somewhat unrepresentative in terms of their sympathy for HCI

research. However, by attempting to select projects on the basis of their diversity, it

was hoped that the findings would not be related to a particular kind of design pro-

ject and would be more representative of the variability of design projects in gen-

eral. The interviews focused specifically on designers attitudes to, and approaches

to UI design, also on the problems they face, and the difficulties which affect their

success in dealing with them.

Some of the literature on design practice seems to suggest that systems designers'

attitudes and approaches to UI design are commonly negative (e.g. Dagwell &

Weber 1983, Hammond et al 1983, Gould & Lewis 1985). Designers are seen as

giving inadequate consideration to user issues, and they do not adopt recommended

approaches which would increase the likelihood of producing an acceptable inter-

face. The features analysis of UI design described in the previous chapter suggests

that it may be more fair to suggest that designers attitudes to HCI are really quite

positive. However the main problem, as suggested by Smith & Mosier (1984) ap-

pears to be with the knowledge of systems design held by specialists in HCI, some

of whom may work as consultants, and some of whom produce recommendations

and methodologies for UI design to be applied by systems designers. HCI specialists

and their interests may presently represent a minority view in the design process as

a whole. As a minority view, it may be up to them to come to a better understand-

ing of the design process and adapt their methods to suit it, rather than to expect the

design process to be changed to suit their methods.

The features analysis provided information about what kinds of activities take place

in applied and commercial design practice. However the nature of data collection,

i.e. a questionnaire survey, was not well suited for pursuing sequences of events and

organisation of the design process in any great detail. A better picture of organisa-

tion will suggest more clearly the probable scenarios within which HCI knowledge

might be applied.

- 272 -

The features analysis also indicated that design teams typically operate under a

number of constraints which prevent them from taking an ideal approach, and from

carrying out all of the activities which they might wish to. On the other hand, the

influence of design constraints on the problems which emerge in design, and on ex-

ploitation of potential information sources which might help to improve the usabili-

ty of the UI, were not made explicit.

It is suggested here that there may be significant and unavoidable problems for the

design of usable system interfaces, even for designers who are supportive of HCI

and want to tackle user issues. As Gould and Lewis (1985) suggest, the process of

system development is unpredictable; there are usually unexpected factors involved

which may make it difficult to adopt certain approaches or follow any principles,

(the principles of Gould and Lewis are specified with this fact in mind).

The features analysis showed that user-oriented and HCI approaches do not appear

to be used by systems designers in general, and particularly by those without HCI

specialist knowledge. On the other hand generally positive attitudes were detected

towards the aims of the discipline. This could imply that there are other factors

which prevent systems designers in general from adopting more scientific user

oriented methods, since their attitudes suggest that they can see the value of the dis-

cipline, if not its methods. It may be that any constraints which operate on design

represent important factors in preventing the uptake of scientific HCI recommenda-

tions and methods. By scientific I mean anything which is based upon theoretical

and empirical foundations, as opposed to intuitions and heuristics.

In this study HCI specialists were not interviewed as it was considered that their

familiarity with and any use they might make of HCI design and evaluative methods

would be representative of their own skills and interests, rather than of the pressures

of the design process in general. Also, as has been stated previously in Chapter 3,

one of the problems with HCI DETs is that they require considerable specialist ex-

pertise from those who apply them, and as indicated by the features analysis of

design, such skills are not typical amongst UI designers.

As with the features analysis, each interviewee was restricted to discussion of one

design project only, since a general discussion would not have been representative

of a coherent, integrated design process. Following a number of casual pilot discus-

-273-

sions with academics at Queen Mary College with applied and commercial design

experience, four formal interviews were conducted with designers who were then

working in academic institutions. These involved three employees of London

University, and one Brighton College of Further Education employee. AU of these

interviewees were, at the time of the study, working at Queen Mary College, and

were therefore available for further consultation when necessary. Three of the sys-

tems designers from the academic institutions were familiar with HU. However

they did not have any formal training in the subject, nor did they have much experi-

ence with cognitive psychology which is very important to the understanding HCI

DETs (see chapters 2 and 3).

Three of these designers based their interviews on previous commercial system

design projects (i.e. the designer was paid to write the software for a commercial or-

ganisation, either for its own use or to be marketed) during which they worked as

consultants to other organisations. However one referred to a non-commercial, but

very much applied (i.e. not research), project. These academic based designers' in-

terviews covered the following projects:

1. A display editor running on a unix system; the designer developed this editor,

with advice and assistance from other members of his university department

including computer scientists, and feedback from potential users with a wide

range of computer experience also within the designer's department. This was

the only non-commercial project included here.

2. A network management system, for multiple users employed specifically to

monitor and control the information being passed through a network. The

designer worked largely alone on this project, receiving relatively formal in-

structions and information about the nature of the task, which did not yet exist

in any form, and user requirements from the management of the client group.

3. A garment pattern graphical design-aid or CAD system for fashion designers

with limited experience of computer technology. This designer devoted a great

deal of time to learning about the task of garment design because of its com-

plexity and unfamiliarity.

4. An educational graphics system for children, aged 5 to 15, to design a figure

- 274 -

which could dance to music. The designer worked alone using specifications

provided by the marketing client. In the event the designer deviated from the

specifications to generate more appropriate ones.

As indicated by the features analysis, the host organisation may be related to the

type of application being designed, and design team size may affect the approach

taken towards UI design. The academic based designers were usually working

alone on a consultancy basis, rather than as members of a design team. To ensure

that representative information was collected, four individuals in commercial organ-

isations were also interviewed. Since these people were not easy to contact for

further information, a more exhaustive interview procedure was adopted, based on

the structure used by Hammond et al (1983) in interviews with commercial

designers. These interviews were taped for later analysis. They include the follow-

ing:

5. A window manager to be used by programmers, produced by a team of a sys-

tems architect, a software designer, and a consultant with HCI experience. The

window manager was designed for a Unix workstation with a graphics display.

The HCI consultant provided a catalogue of interactive techniques recom-

mended for good interfaces. The other two team members did not have a great

deal of HCI experience themselves.

6. A systems designer working for a company which sells products on a whole-

sale basis. The aim was to computerise the records of orders and sales and pro-

vide a word-processor for report and letter writing, all presented as an integrat-

ed office system. This designer used an applications generator on a less ad-

vanced PC system, but had extremely easy access to the prospective user popu-

lation.

7. A simulation training device for process controllers produced by a large

hierarchical organisation. The designer delegated software writing to program-

mers and worked largely alone on the actual design, with a manager providing

requirements specifications, and a subject matter expert informing him on the

details of the application which was being simulated. This designer was re-

quired to produce many design specification documents which were verified by

the manager and by the client for whom the product was being designed, be-

- 275 -

fore the programmable-ready material could be written as software.

8. A distributed building management system sold to monitor and regulate tem-

perature, locks, lifts etc, to be operated by a very wide range of users, from

night watchmen to programmers. The design team consisted of the group

leader who was interviewed, four software engineers and a hardware engineer,

thus comprising the largest design team studied.

5.2 Interview Structure and Methodology

A similar philosophy was adopted to that of Rosson et al (1987), in that the main

aim of the study was to gain as much information as possible, rather than to confirm

preconceived hypotheses. For this reason the interview structure was flexible

without the content being permitted to become too general. The interview was car-

ried out in the normal work place of the designer, and in all cases the interviewer

was able to inspect the result of the commercial design project (i.e., see a demons-

tration of the UI itself). The interview was conducted in a series of stages which

were structured as follows:

Stage 1.

* Designer describes general tasks supported by the system

* Designer describes envisaged user population.

* Designer describes own role in design process with respect to impact on UI.

Interviewer relies on checklist of points and questions to ensure appropriate cover-

age. Categories dealt with were; user population, applications, system information

presentation, input devices, input methods, and user's system model. The checklist

was used to increase detailed information and ensure consistency in the areas

covered in interviews.

Stage 2.

General and specific points concerning design decisions discussed. Interviewer in-

cludes particular interface characteristics of:

* The primary system

* Sources of information used in design

- 276 -

* Constraints on design activity

Designer determines content. Interviewer uses checklist of general and specific

points relating to the UI under discussion. The UI itself is referred to, during the in-

terview, for clarification.

Stage 3.

Designer discusses design philosophy and issues more generally.

The interviews with the QMC designers were recorded in note form on paper. The

interviews with the designers in commercial organisations were taped as it would

not be easy to talk to them subsequently. After gathering the information the simi-

larities between the projects they described, the activities they carried out, and the

problems they experienced were identified.

5.3 Findings

The emphasis in the interviews was always restricted to the design of the UI. How-

ever in all of the projects the UI was produced within an overall system design such

that there was no clear distinction between the UI and the application functionality.

Some of what was discussed included the scoping of software functionality (i.e.

what the system software would support), and not just the UI to this functionality,

so the distinction between UI design and general system design was not a clear cut

one. This reflected the roles of the interviewees who were all systems designers

with additional responsibilities as UI designers and evaluators.

A major point that needs to be made here is that it is clear that systems designers

have to consider all of the evaluation factors described in Chapter 1. They are

responsible for the effect that their system has on users. They have to consider how

the application behaves and how this relates to the UI. They design the UI to medi-

ate between the user and the system, and are responsible, if not always perfectly so,

for the ability of the system to support target tasks to an acceptable level of perfor-

mance. Interviewees talked about all of these factors, and there was no evidence to

support a hypothesis that they concentrated only on one aspect.

The designers interviewed provided much qualitative information about the nature

- 277 -

of design. Some of the problems and the comments they made were strikingly simi-

lar. However in the main each design project was quite unique. Only one project

involved use of a publicised structured methodology. All of the others used

idiosyncratic approaches (either personal, or in-house), which meant that no two

projects shared a common structure.

The academic based designers worked largely alone as consultants, which might ex-

plain the idiosyncracy of their methods. Also as a result of this they did not experi-

ence problems associated with being a member of a team. However, in line with the

findings of the features analysis of design projects, these individuals generally had

greater awareness of, and knowledge about HCI as a discipline, this was due to the

fact that they had the opportunity to work with and communicate with HCI special-

isis in the academic environment. However only one of the eight designers inter-

viewed could have been described as very experienced in HCI.

5.3.1 Eight Design Scenarios

The interviews provide eight short design process scenarios. These scenarios are not

meant to highlight the nature of development of the systems and their functionality.

They illustrate the more organisational characteristics of design, the intent of the

designer(s) and the logical progression from an initial undertaking to a completed

product. A more detailed view of the development of the UI, concentrating on the

functionality, user operations and dialogue could demonstrate that certain HCI

DETs would be appropriate in theory, however it is practice that is the main interest

here. At this higher level of generality it is possible to determine why perhaps cer-

tain HCI methods would have been appropriate or inappropriate in the practical si-

tuations in which designers found themselves.

Project 1

Display Editor for Academics and Office Staff

in a Computer Science Department

The designer worked in a computer science department in a university and,

whilst doing a great deal of document preparation, saw inadequacies in exist-

ing text editing packages, and that the system supporting the present package

was capable of supporting a better one. It occurred to him that he should write

-278-

a better system himself. With his own ideas, ideas from other products, and

suggestions from colleagues, he saw the opportunity to produce an improved

text editor. He was familiar with some of the field of HCI, but hail few

resources for this project.

The system functionality was designed to be better suited to editing tasks, and

users' requirements. The overall design process was more or less top-down in

nature, however it was not formalised. The designer maintained a number of

principles which he believed would ensure that the system was easier to use,

including WYSIWYG, typewriter metaphor, modelessness, simplicity, and

adequate feedback. However these ideas had to be heavily constrained by the

many limitations of the system hardware. These limitations had a considerable

impact on the nature of the UI, often maldng ideal solutions impossible.

The prospective users of the text editor would be academics, students and

departmental administrative and secretarial staff, representing a wide range of

computer familiarity. For this reason the designer aimed to ensure that the edi-

tor would be usable with very little knowledge, but that experts would be able

to discover more powerful sophisticated commands as they went along.

Since these users worked in the same building as the designer, it was possible

to allow them to use very early versions of the developing system. The design

process was not structured, and the designer worked alone on the design, gen-

eration of the software and documentation for the text editor, but the prospec-

tive users (including the designer) were able to meet with the designer and dis-

cuss problems they had and further requirements. The design was informally

iterated and continued to undergo modifications until the designer no longer

wished to continue with the effort. Within its limitations the resulting system

satisfied both the designer and its other users.

Project 2

A Network Management System

for Multiple Network Management Staff

The designer worked as a commercial software consultant and was employed

to design a network management system for a commercial company who had

- 279 -

developed a network system for themselves. In initial meetings the designer

was given descriptions about the network managers' (system users') tasks by a

company manager who was very familiar with the existing network system.

No representative prospective users were involved in these meetings, and the

designer was suspicious that the users would have different requirements from

those specified by the manager. He was highly experienced in HCI, but not in

psychology, his awareness of user issues may have enabled him to prepare

better for the eventual problems which emerged.

The UI to the network management system was to involve a query language

for interrogating a database, and a dynamic display representing the network

system. The initial questions for the query language were decided by the com-

pany sales team and the technical team who had been building the network sys-

tem. The designer had further discussions with a salesman and the company

paymaster, to determine what queries would be required. This activity was

carried out using a mockup of the UI. The dynamic display was determined by

what the designers and builders of the existing network system thought the net-

work managers would need to know.

The designer built the network management system in such a way that the UI

was modifiable. He maintained rigid structure for the queries in order that

users would be able to predict dialogue structures from a subset of the

language. The dynamic display was kept fairly rigid because the designer was

more confident about the requirements for the display.

Only after the prototype was built and demonstrated to the network managers

themselves were they able to say what they needed to see on the display. The

network managers then stated that they wanted to be able to ask many other

questions of the database. Luckily the flexibility of the UI was sufficient to

permit many modifications to be made to satisfy the users. However there was

no evaluation of user performance with the new system. The designer's client

only carried out a market evaluation of their new product.

- 280 -

Project 3

A Garment Pattern Design Aid

for Fashion Designers

A commercial company employed the designer to write a CAD system for

them. In the initial meetings the designer met the company director to discuss

the nature of the required system. Unfortunately the the director was not ex-

perienced in the application domain (originally pattern grading), nor was he

experienced with the type of functionality a CAD system might be able to pro-

vide. This led to communication problems with the designer which were com-

pounded by the fact that the designer was very unfamiliar with the application

domain.

The designer had to read about, and educate himself on the application domain

before going on to develop a prototype. Part of this education process involved

watching pattern designers at work. After an initial prototype had been gen-

erated, the director of the client company saw what was possible with a CAD

system and expanded the requirements. Prospective users seeing the prototype

also suggested further possible requirements. The designer saw the main prob-

lem as being the fact that nobody knew what the tasks involved in interactive

pattern grading would be like, this meant .that requirements were often driven

by development. Potential users were so poor at communicating their require-

ments that the designer had to go to people working in industrial pattern design

for more concrete descriptions of the tasks the system would have to support.

As a consequence of this, the conceptual specification which the designer had

of the system evolved along with the prototype. User requirements continuous-

ly drifted as the prototype acquired more functionality, and users began to use

it for a wider variety of tasks than originally envisaged which the designer also

tried to support. He always tried to maintain what he described as "well

formed metaphors" in the representation and behaviour of the UT which naive

users would find easy to capitalise on. Eventually code that had been written

early in the development cycle became an obstacle to further modifications,

and the designer had to settle for partial solutions to requirements. He began to

wish that he could go back to the beginning and start again.

-281-

The designer always regarded the developing system as a disposable prototype,

whereas the client company saw it as a product. The client, responding to

market pressures, forced the completion of development and 'improved and

packaged' the prototype. The designer was not happy with the state of the

finalised system. He also noted that, in 'improving' the final product, the client

company made the UI worse by merging two menus which represented sets of

operations related to two different types of task.

This designer stated that he was aware of some of the HCI DETs of the type

described in Chapter 2, but was convinced that they would be too time con-

suming to use in practice, particularly CLG with its multi-level respecification

approach.

Project 4

An Educational Graphics System

for Children Aged 5 to 15

The designer was employed as a freelance programmer by a software market-

ing company to code a specification which they themselves had prepared for an

educational interactive graphics package. The specification of the target users

was fairly straightforward; they would be home computer experienced children

with a fair degree of familiarity with the conventions of the type of system on

which the package would run. The designer was given the freedom to adapt

the specification where required.

The designer attempted to adhere to well formed metaphors which a child

might capitalise on in learning to user the system, and to ensure that any modes

which occurred simply reflected the functionality and tasks of the users. The

package was specified by the client using very informal diagrams and descrip-

tions. However the designer quickly discovered that the specification was un-

workable, and had to modify it repeatedly. He considered the worst case, most

naive target user (a 5 year old naive child) and attempted to ensure that the sys-

tem could be used by this user. Without any access to prospective users he had

to rely largely on intuition, previous experience with solutions to similar prob-

lems, and other products.

- 282 -

Since the marketing company's specification was so poor, the developing sys-

tem diverged considerably from the original plan. The designer found it neces-

sary to argue eveiy point with the client company, but some of the time the

designers decisions were overruled and, with these disagreements and the

inadequacy of the specification, the project overran. The designer did not see

the system evaluated for usability, and any feedback about its success came

from the software marketer, the designer's client.

Project S

A Window Manager

for Applications Programmers and Graphics Workstation Users

This project was undertaken by a team of two designers working in a small

software and hardware company, with the assistance and guidance of a consul-

tant with considerable expertise in HCI and UI design. One of the designers

conceived and developed the original system structure which was then dis-

cussed amongst the team. The consultant then wrote a document containing

interactive methods for the UI of the application (a window manager for a

Unix and graphics workstation).

The other designer used these software and UI specifications as a basis for the

development. The UI was designed using low level components which were

modular and therefore would be easily modifiable by experienced system users

who would probably be writing their own applications for the system. This

designer used the experience and examples provided by the consultant to guide

design decisions. However no user testing was carried out. Instead the

designer had to ask himself "How would I feel if I was a relatively inexperi-

enced person presented with it [the UI]". The system was informally proto-

typed and tested for robustness by the two designers in the team.

In spite of the input from the consultant, with checklists of user considerations,

the final product when implemented was unsatisfactory. Many users had

difficulties with it. The designer noted that he had become aware that there

were a number of major problems with the UI including overloading of mouse

button functionality, and limitations to the ways in which windows could be

manipulated. He stated "Ideally we should be employing someone ... who

-283-

understands these issues and knows how to analyse them".

Project 6

An Integrated Stock Control Database and Word Processing System

for Staff in a Wholesale Merchandise Company

The designer in this project worked for a wholesale marketing company and

had been employed to build an integrated office system for his organisation

which would handle a database for recording stocks, orders and sales, together

with word processing for report and letter writing. The specification for the re-

quirements was based upon current methods for doing the stock control and ad-

ministrative tasks, and on the business requirements of the company. The

hardware and software with which the designer had to work had already been

purchased by the company.

Since the designer was working in the same office as the potential users, they

were closely involved in the requirements specification. The designer used

some of the JSD recommended techniques to guide the initial analysis of the

functional requirements of the system and a pre-designed 4GL to implement it.

The 40L, the software and the hardware selected by the company all imposed

heavy limitations upon what was possible for the designer.

Once the core features of the system had been implemented, as specified within

the JSD approach (Jackson 1983), the designer broke from the structure of the

JSD methodology and engaged in iterative prototyping which involved getting

users to repeatedly, informally evaluate the system. The designer tried to ad-

dress any suggestions or complaints they made, and also to ensure that the sys-

tem was as easy to use as possible. Unfortunately the software he inherited

was already inconsistent (for example the operation of item selection from

menus varied). A further major problem was that the system would not permit

word processing to be interrupted in order to access the database and carry out

other tasks before returning to word processing. This was a major drawback

because the office tasks carried out by users were necessarily varied and inter-

rupted; for example a user editing a letter would be expected to answer the

phone which might then mean that he or she had to access the database to

answer queries about stocks, or input new data.

- 284 -

The system was not completed at the time of the interview. It was to be used

only within the company, which meant that it could be constantly modified and

improved by the designer after implementation.

Project 7

A Simulation Training Device

for Trainee Process Controllers

The designer worked full time within a specialist simulation software company

on a simulation training device which was being developed for a client of the

company; the client was involved in a high risk process industry. A detailed

functional specification and a requirements document for the computer based

training device was provided by a marketer. The designer was supervised by a

manager who checked his work, and supported by software programmers. He

also worked with a subject matter expert who explained the nature of the appli-

cation and users' tasks to be simulated.

No well known design methodology was used on the project. An analysis and

design document specifying general aims, user population, resources and

time-scales, was used as a reference during the project. Throughout the design

process the subject matter expert was consulted and the designer found that his

own ignorance of the application domain was useful because it forced the ex-

pert to be precise in his descriptions. The designer used specification and re-

quirements documents to produce an early functional system specification

which was signed by the client. Then a more detailed specification was

prepared which represented the states and transitions of the system and the ap-

pearance of each of approximately 500 screens. This specification represented

programmable ready material which could be passed on to the programmers.

Prospective users were brought in to repeatedly evaluate the product whenever

possible, this was made possible by the close collaboration with the customer

who had access to such users (employees). The prototype trials were well

structured with pre-tests to ascertain users' technical knowledge, followed by

test modules prepared by the client. After the tests, users were then asked to

answer some questions about their experiences with the prototype. However

the designer still considered that more user feedback would have been useful.

- 285 -

He felt that prospective users were better as evaluators because management

perhaps know too much about the application domain.

Iterative user evaluations were continued through to the finalisation of the pro-

duct when the client was satisfied. Since the designer was not very experi-

enced, and the product itself was the first of its kind, deadlines were left more

flexible than would have been the norm.

Project 8

A Distributed Building Management System

for Security, Maintenance and Engineering Staff

The designer was a group leader of a team of one hardware and 4 software en-

gineers (making this the largest team in the study) in a company which special-

ises in the development and marketing of distributed building management

systems to be used by various maintenance and security staff in a building. It

was decided by company management that the current product design needed

to be updated, however the way in which this should be done was left to the

design team.

The designer attended meetings with representatives from around the company

in order to collect requirements for the new version. He also analysed the fa-

cilities available on the existing system which were then fed into the functional

specification for the updated version. Unfortunately users' requirements were

unobtainable because they were not the buyers of the product and therefore had

no contact with the company marketers.

The designer produced a more detailed specification from the early

specifications. This consisted of an 8 page requirements specification and a 20

page console specification which was based on a windows applications support

library marketed by another company. This specification was then verified by

company management.

The main requirement for the UI was that routine interactions, such as switch-

ing boilers on and off, should be 'glove easy' and should not require any

learning so that security staff could easily carry out routine tasks with it. The

- 286 -

system also had to support more sophisticated maintenance and analysis in-

teractions with engineers and plant managers. The system was broken down

into functional blocks during development and each block was tested separate-

ly before integration into the final product.

Unfortunately there was no direct contact with any of the prospective users

throughout the design process. Feedback on the development came from peo-

ple who had contact with users of the existing system, and from in-house

demonstrations. The manuals for the system were produced by another com-

pany. The designer stated that ultimately low cost and fast system response

times were the main design goals rather than low user error rates.

5.3.2 Projects Summary

Overall, the designers based in academia were generally more familiar with HCI

than those in commercial organisations. Approaches to design were largely informal

(perhaps a methodology was followed to some extent, or some principles used, but

the general picture is not a highly structured one). Most notable was that no two

projects used the same approach, each one was unique, but some general features of

projects were shared. In the following, the main features of interest from each pro-

ject are summarised.

Project 1

Non-commercial project

Designer had some HCI familiarity

Based design upon explicit usability principles

User input and feedback (informal testing and meetings)

Iterative approach

Very few resources

Designer worked largely alone

Project 2

Designer working as consultant

Designer very familiar with HCI (but not psychology)

Late involvement of users

Used a mockup for early feedback (not from users)

- 287 -

Built in modifiability

Not highly iterative

Project 3

Designer working as consultant

Designer had some HCI familiarity

Novel application

Designer unfamiliar users' with task domain

Highly iterative

Informal user testing of prototype (as early as possible)

Unmodifiable software problems

Forced finalisation

Project 4

Designer working as consultant

Very poor requirements and functional specification from client

Designer worked in isolation

Iterative modification of specifications (achieved by fighting)

Project overran

No user involvement or feedback

Project 5

Designers employed by company marketing product

HCI consultant provided interactive methods and checklists of user considerations

Informal approach

Highly iterative approach

Modifiable low level components of code

No user evaluations or involvement

Feedback from users indicated some problems with UI

Project 6

Designer employed by wholesale marketing company

Supporting current tasks

Very good contact with users

Used JSD and 4GL

Informal user evaluations

-288-

Iteration

Heavily constrained by technology

Project 7

Designers employed by specialist simulation software company

Applied in-house design approach

Top-down specification

Specifications signed off by client organisation

Designer worked closely with subject matter expert

Structured, but iterative user evaluations

Project 8

Designers employed by specialist system marketing company

Product was an update on existing release

Detailed functional specification verified by company management

Used "glove easy" principle

Block design (each block tested separately)

Only indirect user feedback from users on company products

No actual user involvement in design

These design scenarios clearly demonstrate the variability between projects and em-

phasise the difficulty of attempting to present a representative view of design prac-

tice in general without ignoring so much information that the whole process is trivi-

alised. In essence this information strongly confirms the suggestions from the

features analysis that design practice differs widely between projects. It also indi-

cates that designers vary with respect to the amount of consideration and effort they

devote to user-oriented design and evaluation.

Systems designers were seen to be responsible for all areas of design across the sys-

tem which may explain the diversity, in the extent to which they concentrated on

user issues. If they had many other issues to deal with, it is possible that the em-

phasis they placed upon user-orientedness of their designs might be diminished in

their perception of what was most important. However they might not have all

responsibilities if they were working in a team. For example they could be under

the supervision of a senior designer or manager, or be responsible for the direction

of others on the design team (as in projects 5, 7 and 8), in which case there could be

- 289 -

diffusion of responsibility for user-oriented aspects of the system unless, as in pro-

ject 7, client organisation(s) emphasised this aspect by insisting on some user-

oriented design measures such as structured evaluations.

5.3.3 Categories of Design and Development Activity

The main general aim of this study was to provide a more integrated picture of the

process of UI design than was furnished by the features analysis described in the

previous chapter. It should be recalled that the UI design scenarios evade a possible

distinction between UI design and design of the underlying software and its func-

tionality. The interviewees were responsible for both aspects of the system, howev-

er the interviews were not sufficiently lengthy to permit extensive discussion of the

fine details of the distinction between them, and how much each was responsible for

the nature of the other.

In the following discussions the term design, unless otherwise specified, will be

used to refer only to design of aspects of the system and its UI which were seen by

interviewees to affect its usability. This included such aspects as the scope of the

functionality (i.e. scope of the application being designed), and robustness of the

software as well as the presentational and interaction aspects of the system. In other

words the focus of the discussions is more accurately user-oriented design which in-

cludes UI design and some other aspects.

The results of the interviews indicated that design environments and cycles vary

along almost every conceivable dimension. Capturing commonalities may be res-

tricted to intent rather than observable activities which are many and diverse, as

suggested by the features analysis. Furthermore there were no discrete stages, with

the design process being characterised in general by iteration of a variety of activi-

ties. In the interviews it was impossible to pin designers down to identification of

any discrete stages in the design process. However many of the activities they en-

gaged in showed apparent similarities in their rational intention.

By referring back to the scenarios these rational commonalities become more ap-

parent. Each of the designers went through a process of commitment to solve some

obvious problems (as in Project 1) or to a contractual agreement. There was then a

stage of self education and/or clarification of the design space or problem area and

- 290 -

the way in which the design might fill the space or solve the problems; this might

involve ideas, suggestions, meetings, observations and was in essence a period of

information gathering and collation. Then a prototype was generated in all cases

which would be iteratively evaluated and improved, until all development activity

ceased.

For the sake of simplicity and clarity these rational activities are grouped into five

categories of development activity which appear more discrete than is the case in

practice. These are labeled as the following: commitment to a design undertaking,

conceptual specdlcarion, generation of a working prototype, resting, and finalisa-

tion. These categories of design and development activity are distinguished by their

goal, rather than their observable character. They cannot be described as stages in a

well structured and ordered process because they do not occur in a fixed order (and

the commitment stage may only be an observable reality in design projects under-

taken for external clients) where a paper contract is eventually drawn up and agreed

upon. In fact some of them, particularly the conceptual specification, generation of

prototype and testing activities, may occur in parallel and the dependency relation-

ships between them may vary somewhat. A brief description of each activity fol-

lows.

Commitment to a Design Undertaking has contractual importance for pro-

jects where there is an external client involved. Clients may have a predefined

set of design requirements, however their specificity and how realistic they are,

may vary. In project 3 a client director was unclear about the nature of the

tasks the system should support, in project 6 a more detailed specification of

requirements was available based upon current task methods. The physical ac-

tivities may involve employment of the designer, meetings, drawing up propo-

sals or contracts, or simply thinking as in projects 1 and 5.

It implies agreement between the designer or design team, and the organisation

commissioning the design (which may be the employer of the designer(s))on

an initial set of client-requirement specifications and design-team undertakings.

The degree of formality of this activity seems to depend largely on organisa-

tional policies. Basically, certain responsibilities of both designer (e.g., keep-

ing to time and cost estimates) and client (e.g., providing support or informa-

tion) are made more or less explicit. For example, the network management

-291-

system designer received a fairly detailed description, from one of the client's

management, of the prospective users' tasks which the system would be ex-

pected to support. This type of activity does not appear to occur to such a for-

mal extent in projects where the design team or designer is producing a product

for their host organisation (either to use or market).

Conceptual Specification is the process of deciding what the detailed require-

ments of the system users are, and if necessary any organisational require-

ments, and deciding how these can be satisfied, as was the case for project 6;

the stock control system, in the light of the client's initial specification. For

example, if a client wishes for a highly reliable system, then the design team

may translate this into more specific requirements. As far as system func-

tionality was concerned, only two projects used abstract structured representa-

tions (one JSD, and the other an in-house flow chart and screen contents docu-

ment). Conceptual specification may involve nothing more than conversations

and a few rough notes, or it may involve highly elaborate and detailed

representations such as JSD process structure diagrams, mock-ups, lists of

selected interactive methods and so on.

Where user requirements were concerned, informality was the general rule.

However, one of the designers did try to adhere to strict usability principles.

In some of the projects designers interviewed prospective users, or carried out

informal task analyses by talking to and watching experts or potential users in

the application domain, or by trying out tasks themselves to 'get a feel for the

job' and come to a better understanding of what was required. The designer in

project 7; the simulation training device "spent a lot of time with a subject

matter expert" and found that he "had to get acquainted with the subject matter

in order to do the design." In other cases designers had to work with more in-

direct information about users through descriptions in meetings or in require-

ments specification documents.

Such information about users, together with ideas from other products and ad-

vice from others involved in the design, would then form the basis for detailed

design of UI functionality and operations. In the case of project 7; the simula-

tion training device, which was to have non-computer expert users, it was de-

cided to make it impossible for users to enter into a state from which they

- 292 -

would have difficulty escaping.

Conceptual specification appeared to be hampered in projects where the pro-

duct was, in the designer's experience, novel. In project 3 it was difficult to

imagine what the system might be like at all, especially since the application

domain was unfamiliar to the designer. However the designer stated that he al-

ways aimed to make the system adhere to "a well formed metaphor" which

would make it easier to learn.

This type of activity did not, in the projects studied, appear to involve any of

the types of technique typically recommended in HCI DETs. For example no

abstract dialogue specifications were generated, no user's conceptual models

produced, no simulations of user processing or knowledge representations ap-

plied to system specifications. User-oriented design material came from

managers, marketers, application domain experts, or in the best case direct

from users themselves. None of this material seems to have been presented or

analysed in a psychologically rigorous or structured manner. For example, the

designer in project 4 (the educational graphics system) stated that users' ex-

perience of computers was important for example "it was relevant in deciding

which keys caused what function", but the designer assumed that they would

have time to learn the effects of the function keys, even if they were not ideally

designed.

Generation of a Working Prototype seems to take up the most time and ef-

fort in development. All of the projects described prototyped the entire system

and evaluated it, to determine the reliability and acceptability of the design. In

seven of the projects it appeared that the design process centered on continual

adaptation of running software, until it was deemed to meet the requirements

specification. Projects tended to vary somewhat in terms of whether they

adhered, more or less explicitly, to some principles such as sets of user-

oriented principles (project 1), modular and modifiable code (project 2), block

design (project 8), and so on.

Some of the products used early high level specifications of requirements or

functionality which could be said to represent a top-down approach (for exam-

ple JSD specifications were used in Project 6), however where such

-293-

specifications were used, they tended to be integrated with more informal and

iterative generate and test regimes. The only project using structured, top-

down design throughout, together with early use of specifications was the

development of the simulation training device. This exception could be ex-

plained by the fact that the system had a highly constrained interface, with a

small set of possible states.

What was clear for UI generation was that designers had many responsibilities

and were always under pressure, so that some user-oriented measures tended to

be pushed aside. For example the designer in project 5 stated that he "should

have produced a tutorial guide [to the system] but never got round to it ... it

was forever second down on the pile of things to get done". It may be that the

breadth of responsibility designers have is the main reason for inadequacies in

the usability of the interface.

Testing determines whether or not the UI satisfies requirements. Abstract

evaluative descriptions of proposed interface characteristics were not generally

used in the projects described. In particular, HCI DETs, as described in

Chapter 2, were lacking altogether. In all cases any prototype testing was con-

ducted or organised by software designers, possibly with the collaboration of a

client themselves (i.e. it was not passed on to HCI specialists), directly on the

prototype. It generally involved unstructured 'try it out' sessions, however in

project 7 the requirements of the client were that user-evaluations be exhaus-

tive and very structured, possibly because of safety requirements in its high

risk industry. Some designers simply pretended to be naive users (the window

manager designer from project 5 admitted to doing this).

User evaluation of a prototype appears to be more common as a source of in-

formation about users requirements than initial information gathering about

users. Only one of the interviewed designers in the study carried out extensive

user (the designer in project 3) tasks studies before starting to build a proto-

type. On the other hand 4 designers, including the one who also carried out ex-

tensive early task studies, (from projects 2, 3, 6 and 7) reported carrying out

user evaluations, however informal. In the other cases prospective users were

not involved in the design and evaluation of the system before it was finally

implemented or marketed. This is not something which designers are happy

- 294 -

about. As the designer in project 7 put it "Whenever possible test things out...

Always try to see the end-user because management maybe know too much

and don't realise what the end-user knows or needs." All of the designers ex-

pressed similar opinions but it appears that not all of them had the time or sup-

port they needed to carry out appropriate evaluations. In other cases organisa-

tional factors may have been obstructive. For example, the designer in project

8 stated that he "had no contact with users because they wouldn't have bought

the existing system". In other words the purchasers who spoke to the mark-

eteers in his company were not the users of the old release of the system and

therefore could not provide direct feedback into the new design.

In the four projects where users were involved in prototype evaluation it was

clear that many designers did spend considerable time and effort modifying the

interface in response to any advice or "wouldn't it be nice if..." suggestions

they received. They also tried to find ways of 'crashing' the interface to make

sure it was robust. However, evaluation of the developing UI was not rigorous,

user performance goals and metrics were not used, and HCI specialists or spe-

cialists in psychological evaluation were apparently not consulted in the

preparation of user evaluation regimes, if any took place.

Finalisation occurs when the benefits of improving the design as a whole are

outweighed by the costs of putting off implementation or marketing.

Designers interviewed were typically fairly critical of the final product, but

justified shortcomings by explaining that they were unable, for various reasons,

to improve it any further. This finding compares with the the findings of the

features analysis where typical responses were that the system UI was satisfac-

tory even though many constraints had been experienced. The garment

design-aid designer was pressurised by the client into allowing it to be market-

ed long before that designer felt it was ready. He "saw the whole thing as a

prototype [the marketing companyl saw it as a product". This designer men-

tioned that there is sometimes a problem of modifications being made to a

design after it has been handed over to a marketing client by a consultant

software designer. The client may wish to make the design fit in with their

product-range image, or make it possible to link up with other products. This

may occasionally have a detrimental effect on the UI.

- 295 -

Typical development activities do not include abstract specification of a possible

form for the UI. The kinds of activities described by interviewees tended to resem-

ble those pinpointed in other design practice studies, being mainly devoted to

developing and testing system functionality rather than the interface. Requirements

for system functionality were ascertained during commitment to a design undertak-

ing, and conceptual specification. Possible solutions were usually programmed in

directly and informally tested, as described above. Consequently, the generation

and evaluation of the UI appears to be an informal cycle of an iterative nature.

However, in spite of designers' good intentions, early involvement of users in the

design process, as recommended by Gould and Lewis (1985) was a rare occurrence,

and repeated user-evaluation during each iteration was only reported in a minority

of projects.

The informality of various approaches to system development may encourage the

irivialisation of the requirement for user-evaluation. None of the designers inter-

viewed reported ever having used any HCI DET, some stated that they were

unaware of the existence of such techniques. Notably, the finalisation of a system is

frequently determined by external market pressures, rather than any design team sa-

tisfaction with the state of the UI. As long as the software does not crash and the

system has the required functionality, system marketers may be happy to accept in-

terfaces without user-evaluation.

5.3.4 Applied and Commercial Design Problems

The information volunteered by designers about problems they experienced in their

projects was of great interest. It tended to suggest that failure in one area of a pro-

ject tended to lead other problems in dependent areas. Table 5.1 lists problems

which appear to be important in UI design, with the projects where they were most

apparent. In the table they are listed in approximate order of first emergence. A

brief illustration of each problem and its effects follows:

Poor Communication seemed to be the first common potential problem. In project

4, poor communication between the designer and the marketing client, meant that

designer was unable to make use of the specifications they provided. In project 3 a

lack of shared terminology between the designer and potential users made it

difficult to communicate task characteristics and possible system functionality.

- 296 -

Designers' Unfamiliarity with the Task Domain increased the communication

problems. The designer in project 2 reported a shortage of available information

about users' tasks. In this project, the system application was a task which did not,

as yet, exist so that its nature was difficult to determine. Also prospective users

were not involved in the design and development process. The designer in project 3

found it hard to understand what the users' requirements for support were, due to

lack of experience with pattern-design tasks, and had problems understanding pat-

tern designers' explanations of their tasks. In project 7 a useful solution to this type

of problem was found. The designer worked very closely with a subject matter ex-

pert who was able to provide valuable advice, and clear descriptions of the types of

tasks the system would have to support.

Novelty of the Application was a considerable problem in projects 3 and 7. There

were no existing comparable systems upon which to base ideas. The features

analysis suggested that existing products were a significant information source for

designers, without which it may be difficult to conceptualise the nature of the en-

visioned product and the pitfalls associated with it.

Uncertainty About Requirements for the design. In project 3, an explicit require-

ments specification was difficult to provide, so that the designer had to spend a long

time finding out exactly what potential users wanted.

Exclusion of Users from the design process led to the designer in project 2 receiv-

ing completely misleading information about user-information requirements from a

manager who was a system expert, unlike the end-users themselves. This resulted in

an interface which was very unsatisfactory for the users who tried it out. Many

modifications had to be made, which might have been avoided if users had been in-

volved in the design from the early stages, as was recommended by Gould and

Lewis (1985).

Complexity of the UI It seems that exclusion of users could lead to complex user

interfaces. Projects 2 and 5 did not involve users before generating the prototype.

In both cases significant user difficulties emerged as a result of the UI being too

complicated; in the first case because the UI did not supply enough information to

allow users to carry out their tasks (it assumed greater knowledge about the system

than the users had) and in the second case the functionality was badly organised so

- 297 -

that mouse control and window manipulation was very difficult.

Expanding Task Outlines were common. Once users or clients saw a prototype in

action, they often got ideas for extra, useful functions they would like, as well as the

ones available. At least five of the projects involved in this study had to make

significant changes in functionality throughout the design process. Designers from

projects 3, 5, 6 and 8 mentioned that this was a problem.

Lack of HCI Guidelines and Standards meant that solution acceptability was left

to the designers, or to clients, to evaluate. If they did not have experience with

evaluation of usability, then this may not have been adequately considered. In pro-

ject 5 and 8, design solutions were considered acceptable purely on the basis of their

being 'bug' free and running quickly.

Familiar Solution Application was encouraged when there was pressure to com-

plete a design quickly, rather than considering the specific nature of the particular

project. In project 4 the designer was pressurised by a poor specification and lack of

information about users into basing the design on past experience. In project 8 the

designer had to base much of the system functionality on that of the existing old

version, since users were not involved in the design process and their detailed re-

quirements could not be determined.

There may also have been also a positive side to use of familiar solutions where

good design ideas in comparable applications may propagate across the design com-

munity. This was indicated by evidence of a certain amount of "borrowing" going

on. Designers in projects 1 and 5 were significantly influenced by existing systems,

most of the others used experience from other products in some way. In project 3

the designer stated that he had some difficulty with the design because nobody in-

volved had any experience of a comparable system.

-298-

Table 5.1.

Problems Experienced in Interface Design and

Projects Where They Were More Apparent

Numbered Design Projects

1. Display Editor

2. Network Management System

3. Garment-Pattern Design-Aid

4. Educational Graphics System

5. Window Manager

6. Office & Stock Control System

7. Simulation Training Device

8. Distributed Building-Management System

Problems in Approximate Order
	

Design
of Emergence in Design-Cycle 	 Projects

Poor Communication

Designers' Unfamiliarity with Task Domain

Novelty of the Application

Uncertainty About Requirements

Exclusion of Users

Complexity of the UI

Expanding Task Outline

Lack of HCI Guidelines & Standards

Familiar Solution Application

Technological Limitations

Written Software Limitations

Over-Casual Evaluation

Lack of Performance Metrics

Market Pressures

2,4, 8

2,3,7

3,7

3,4,7

2,5, 8

2,5,

1,3,8

5,7,8

4,6, 8

1,6

3

5,8

2,5,8

3,5,8

- 299 -

Technological Limitations were also a considerable problem for projects 1 and 6.

The designers sought compromise solutions in both cases, since these limitations

were unavoidable. In project 6, a major problem was caused by the fact that the

editor on the PC could not be interrupted if a user wanted to move temporarily to

another part of the system; if, for example, the user wanted access to information in

the database during a phone-call, and that user was editing at the time, then they

would not be able to do so. Compromise solutions would be to re-allocate tasks to

different users, or to provide each user with two terminals.

Written Software Limitations could be frustrating later in the design, when seem-

ingly trivial changes turned out to be impossible as a result of the way in which the

software had been designed. If the task outline was still expanding later in the

design then the system could not always meet it. In project 3 the pattern designers

were excited by what the system could do and provided lots of ideas as to how it

could be improved. However the designer was unable to implement these ideas.

This designer actually stated that it would have been ideal to have been able to 'go

back and start all over again'. In project 2 the designer was lucky enough to be able

to prepare for this eventuality and maintain a high degree of flexibility in the UI

software which permitted him to make significant alterations to it late in the design

cycle.

Over-Casual Evaluation was apparent in at least three cases. All of the projects,

with the exception of project 7, carried out, at best, unstructured user-evaluations.

At worst, designers pretended to be naive users themselves when testing the

software in action. In project 5 a direct result of over-casual evaluation was an

extremely overloaded window control icon which caused several different effects

depending on the mouse click combination used to activate it. So a window could

close unexpectedly, or disappear behind another one and so on.

Lack of Performance Metrics follows on from casual user evaluation. Evidence

from Hammond et al (1983) suggests that users are not good at assessing the

efficiency of their own performance. It seems probable that if users simply try out a

system, they are unlikely to be aware of changes in their own performance, becom-

ing engrossed in the novelty and powerful functionality of the 'new toy'. Users'

initial opinions are not a satisfactory measure of performance.

- 300 -

Market Pressures were a notable excuse for weak UI design. They cannot be trivi-

alised however as their impact on funding and time-scales is immense and often

unavoidable. This encourages cheap solutions to problems or faster system

response times, which may have a lot of selling power for a product. Projects 3 and

8 both suffered as a result of market pressures which in the first case forced an early

end to design activities, and in the second restricted considerations to cost and sys-

tem responses, rather than usability.

The problems described above appear to be highly dependent upon the nature of the

design environment and activities. Pressure imposed by organisational, practical,

and technological limitations and the exclusion of HCI oriented development activi-

ties in practice were all cited by designers as being responsible for the types of

problems listed here. This kind of information was implied by the features analysis

reported in Chapter 4.

Some problems may be avoidable, or at least reducible, if they are related to aspects

of design which are largely in the designers', or clients' and developers control, par-

ticularly where there is commitment to proper user-oriented design practice. How-

ever other problems may be more unavoidable if they are outside the control of the

designers or any other parties who have some influence over the design environ-

ment.

In effect design problems often represent the effects of constraints upon design

activities. Sometimes they are a result of preexisting unavoidable conditions, or

unforseen conditions which emerge during the design process. Sometimes they

arise as a result of avoidable errors of judgement, mistakes or, lack of awareness or

consideration of certain issues. If unavoidable conditions exist in a commercial

design project, it may be impossible to apply current HCI DETs. Although it may be

possible for designers to adhere more closely to the kind of principles recommended

by Gould and Lewis than they seem to currently, it may not be easy for them to

resist external pressure which encourages them to do otherwise. If designers wish

to resort to a prescribed HCI DET, they will need one that can be applied in condi-

tions where the above problems exist. On the other hand, whilst remaining sensitive

to unavoidable design constraints, HCI DETs must attempt to ensure that the avoid-

able ones are dealt with.

- 301 -

Finally, some reasons why HCI techniques are not applied were supplied by the

designers themselves. Few of these designers were negative about the aims of HU,

the main problems were with the nature of the techniques and their presentation.

These complaints should be taken as caveats for Human Factors specialists. They

were as follows:

No confidence in HCI as a discipline, and no perceived need for it.

Lack of awareness or available information about appropriate techniques.

HCI is seen to be too time consuming and expensive to be worthwhile.

Techniques are often intimidating in their complexity.

These comments suggest that there is a certain amount of mistrust or misunder-

standing of the discipline of HCI amongst some systems designers. Although such

statements have been dismissed as unfounded, or as representing easily solved prob-

lems (e.g., by Gould & Lewis, 1985), the findings of this investigation suggest that

there may also be practical reasons for not applying current HCI DETs.

5.4 Discussion of Interview Findings
With Respect to Questionnaire Findings

As stated earlier, the main goals of the study were as follows:

* To present a more integrated view of applied, commercial practice than was

obtained by the features analysis of design projects. Design is viewed as a pro-

cess where early decisions and activities influence later outcomes,

* To determine whether HCI DETs or principles are applied by non HCI special-

ists in commercial practice.

* To explain the design constraints and their effects which might prevent systems

designers from applying more user-oriented design techniques.

In order to do this it has been necessary to study more closely the activities, main

constraints and problems encountered by designers which might obstruct the appli-

cation of good design principles and, more specifically, whether UI design reflects

HCI DETs' design views.

5.4.1 Characterising Design Cycle Activities and Organisation

The interviews revealed additional information to that provided by the features

analysis of design practice about the diversity of design environments. The

- 302 -

immense variability along many dimensions makes any detailed characterisation

impossible, and it is likely that all such characterisations will either be idealisations

or representative of only a small minority of design projects in general.

The interviews and the resulting examples of design scenarios provide a view of

sequences of events and their organisation/relationships in typical design practice.

Figure 5.1 outlines a tentative framework for the structure of typical design cycles,

based upon the classes of design activity identified in the interviews. The five types

of activity; commitment to a design undertaking, conceptual specification, genera-

tion of prototype, testing and flnalisation are all theoretically optional, and can vary

greatly in their formality and rigour. The only real fixed structure is that commit-

ment, if it occurs, must come before generation which must precede finalisation.

In essence figure 5.1 is a minimal design schema which captures only those core

aspects of design observed in this study which are relevant to the user (for example

software issues such as defining abstract data types, core processes, and so on, as

included in systems development methodologies such as JSD; Jackson, 1983, and

SD; Yourdon & Constantine, 1978, are not included). For this reason it only

represents the tip of the design lceburg, and many of the software implications of

the activities it specifies are hidden. Even though it is intended only as a user-

oriented design practice representation, this design schema still resembles Royce's

waterfall model of design more closely than it does any of the design views

presented by the HCI DETs described in Chapter 3. For example, although it bears

surface similarities to the phased model of UI design described by Polson (1987),

the detailed implications of each phase are completely different, these are ela-

borated by referring back to the design scenarios which represent a more typical set

of design histories than proposed by Poison. It should be noted in particular that

prototyping is more usually of the evolutionary type as proposed by Rosson et al

(1987), than of the simulation type proposed by Kieras & Poison (1985).

However, there are still some important features, relevant to the applicability of

HCI DETs, which are not included. Firstly, there are the more important design

constraints identified in the features analysis and the main dimensions of variability.

Added together with any common problems in the design environment these could

represent obstacles to the application of HCI DETs. Secondly there are the infor-

mation sources which designers typically exploit, and those which are typically

Generation of Prototype
Generally Evolutionary

Building funetionality to
satisfy user requirements,

verifying UI software

Possibly)
paralle
and S
highly '
varied

Iteration
optional

- 303 -

Figure 5.1
Framework for Common User-Oriented Design Cycle Activities

Based Upon Interviews with Designers

Commitment

Explicit agreement
on

general goals

Conceptual SpecifIcation

Defining detailed user-
and functional requirements

to satisfy general goals

Iteration
optional

Testing

Validating functionality 	 Iteration
with respect to	 optional
requirements

Finalisation

Maintenance and
possible further

evolution

- 304 -

inaccessible or inapplicable. We require a representation which can capture this

variability.

HCI DETs must have realistic expectations of the information which designers

should be able to exploit, and the user-oriented design activities they are likely to be

able to undertake. If we are to produce a representative picture of design practice

upon which to base such expectations, then common constraints, and information

sources available must be acknowledged as they represent an important part of the

design environment. They provide valuable information about whether design prac-

tice typically meets the application requirements of HCI DETs.

5.4.2 Problems as Manifestations of,
or results of Design Constraints

Design problems are viewed here as frequently representing or resulting from con-

straints on design activity. The only possible distinction is that some designers may

not acknowledge design problems as such, and prefer to think of them as constraints

within which they have to work. The interviews tended to elicit many more admis-

sions of errors of judgement, bad decision maldng and general difficulties than did

the questionnaires. Permitting potentially avoidable constraints to remain, and

perhaps stand as excuses for any failure in the design may be easier than attempting

to solve them. This will be acceptable in design as long as clients, host organisa-

tions, designers and others involved all agree that certain problems are unavoidable.

The problems or constraints identified in this study can be compared with problems

identified by respondents in the features analysis which were summarised in table

4.10 as of the following types:

Technological problems

Organisational

Methodological

UI complexity

Poor design concept

Pragmatic

Each of the problems identified in the interviews could be classed as an example of,

or resulting from one of the above types of problem. In the features analysis it was

clear that technological problems are the most prevalent, followed by organisational

- 305 -

and methodological, however the elaborations provided by the interviews give a

clearer picture of the nature of such problems.

The problems identified here can be related to some of the types of constraints

identified as important in the features analysis. The ten most important constraints

from the features analysis are listed in table 5.2 (designers ranked these as the most

important of 21 possible options). Some of the constraints were less common but

ranked as more important where they did occur. This explains any discrepancies

between the percentage incidence and the ranked importance of each constraint.

Designers were invited to add and rank additional design constraints. However

those that they added were mainly to do with the inadequacy of time and software

and hardware resources. This suggests that inadequate resources may be a more

important constraint than it appears to be in the ranking in table 5.2. In the follow-

ing is a discussion of the way in which each of the top ten design constraints as

identified in the features analysis can be seen to have emerged in the projects of the

interviewees, but more interestingly the interviews provided better explanations of

their roots, and details as to their effects.

Complicated application/product sophistication placed greater demands on the

designer. Designers seemed to find novel applications very complex, with uncer-

tainty about how to approach the design in general and a poor picture of possible

solutions. Projects 3 and 7 experienced problems with the complexities of the appli-

cation domains with which they were unfamiliar, and with the applications them-

selves which were novel and quite sophisticated. This constraint led to uncertainty

about requirements, in project 3 expanding task outlines resulted. In project 8,

involving a relatively sophisticated product the designer had to rely on familiar

solution application. For many of the designers technological and written software

limitations (e.g. projects 1, 3, 4, and 6), and market pressures (especially 3 and 6)

seemed to limit what was feasible and added to the complexity of solving design

problems.

Lack of information about users was caused by poor communication and coopera-

tion with clients and users or exclusion of users (e.g. projects 2, 3, 4, 5 and 8). A

general lack of HCI guidelines and standard usage may have made this problem

worse. It led to a number of problems, including uncertainty about requirements,

complexity of the UI, familiar solution application, over-casual evaluation, and lack

- 306 -

Table 5.2

The Ten Most Important Design Constraints

Identified in the Features Analysis of Design Practice

Rank Design Constraint
	

Weighted	 Percentage
Importance Incidence

1	 Complicated Application,'
	

149	 79.2
Product Sophistication

2.5	 Lack of Information about 	 74
	

41.7
Users

2.5	 Over-casual Approach to	 74
	

41.7
Evaluation

4	 Inadequate Resources	 71
	

45.8

5.5	 Lack of Assistance!	 60
	

33.3
Collaboration from Client

5.5	 Lack of Experience with 	 60
	

33.3
Interface Design

7	 Undersized Team	 48
	

37.5

8	 Lack of Guidance From Parties	 46
	

29.2
Outside of Team

9	 Lack of Experience With HCI	 40
	

29.2

10	 Over-casual Approach to	 38
	

25.0
Design

of performance metrics.

Over-casual Approach to Evaluation seemed to be a result of the designers' lack

of familiarity with HCI techniques, many of them knew little or nothing about

- 307 -

user-oriented evaluative methods such as those recommended by Jorgensen (1984).

In project 5 this led directly to a complicated UI. Most projects did not have any

clear performance metrics in mind when evaluating their systems. Only project 7

used a rigorous and structured user evaluation regime, where users had to be able to

reach a criterion level of performance in terms of UI errors, and their subjective

assessments were directly probed by a post evaluation questionnaire. For those pro-

jects where evaluations were not rigorous it seems probable that many difficulties

were never identified by the designers.

Inadequate Resources were a frequent complaint in both the features and the inter-

view studies (e.g. projects 3, 4, and 6). In particular lack of time seemed to be a

major grievance with designers in the features analysis spontaneously listing it as a

general constraint in its own right. With better resources designers felt that they

could have got better hardware and software. They would have found ways of

avoiding problems, such as lack of information about users and tasks (e.g. project

5), and familiar solution application (e.g. project 8).

Lack of Assistance/Collaboration from Client was cited as a major constraint in 3

out of the 4 projects where a client organisation was involved. In particular in pro-

ject 2 the client did not allow the designer to work with potential users to get a good

picture of their requirements in the early stages of the project this led to exclusion of

users from the design process, uncertainty about requirements, and complexity of

the UI. In project 4 the designer's client provided a very poor specification and was

not cooperative with attempts the designer made to make it more workable, the

designer was left guessing somewhat about user and client requirements and had to

rely on familiar types of solution which he was confident would work.

Lack of Experience with Interface Design was admitted to by the designers in

projects 5, 6, 7 and 8. This is not to say that they were not experienced software

writers. However they felt unsure about the kinds of requirements users might have

because they did not have enough experience with user feedback from similar solu-

tions they might have used in the past (and as the features study suggested,

designers tend to rely heavily on past experience as an information source for UI

design).

Undersized Teams were the rule, rather than the exception in this study. The

- 308 -

majority of the designers worked largely alone with little support. In project 7 the

designer was lucky enough to be able to work with a subject matter expert to guide

design decisions, the features analysis suggested that working with application

domain experts and consultants with various areas of expertise is a valuable aid to

designers. However in this interview study most of the designers had to manage

alone. In project 3 the designer was heavily pressurised and unable to satisfy many

of the targets he had hoped to. He also had to educate himself in the application

domain with which he was unfamiliar. In project 4 the designer felt isolated from

any assistance, in project 6 the designer found great difficulty in solving technical

problems caused by inadequate software and hardware. Essentially any problem

which emerges in a smaller team is likely to be harder to solve. However the

designer in project 1 was pleased to work alone because he had experience of many

problems which can emerge with larger teams (such as lack of shared goals, incon-

sistencies in the system, and so on).

Lack of Guidance From Parties Outside of Team seemed to be linked to lack of

assistance and collaboration in project 2 where the designer found that the

specification was no use in directing the design because it was unworkable. On the

other hand, in project 3 the client manager was willing to help but lacked the neces-

sary knowledge. He knew little about the application domain, and even less about

what functionality to suggest a CAD system might provide, and the kind of tasks it

might support, communication problems, uncertainty about requirements and an

expanding task outline resulted. The main problem relating to this constraint was

uncertainty about requirements of the client.

Lack of Experience With HCI was a problem for several of the designers, mainly

those in commercial organisations. One was very familiar with HCI, another who

was quite familiar with it stuck to a number of user-oriented design principles, two

worked very closely with users and carried out repeated iterations, and another

worked closely with a subject matter expert and carried out rigorous evaluations.

However projects 4, 5, and 8 where the designers were not experienced with MCI

and did not work closely with users, many problems such as uncertainty about

requirements, exclusion of users, complexity of the UI, over-casual application, and

lack of performance metrics resulted.

Over-casual Approach to Design; the least common design constraint in the

- 309 -

features analysis, was rarely admitted to in the interviews, but was indicated in par-

ticular by the designer in project 5. After the initial involvement of a UI design

consultant, the system was informally and iteratively generated and tested, but no

user evaluation was carried out, and there did not appear to be very good reasons for

this. The design team never looked at user requirements beyond what they con-

sidered would be potentially useful functionality and what were available ways of

providing it. Prospective users were excluded throughout the design, and the

designer informally tested the UI by pretending to be a naive user. The resulting UI

was not satisfactory in the designer's view. A possible reason for not including

prospective users in the design process was that they were a diffuse group in the

general public, this effect seemed to occur for project 4 also. In all the other pro-

jects, prospective users were easily identifiable, and accessible, employees of vari-

ous design host or client organisations. In all the other projects prospective users

were at least involved in prototype evaluations.

The above illustrations suggest that design constraints tend to act as problems or

to lead to problems for the design team, for example poor communication and

exclusion of users lead to uncertainty about requirements. This information was not

made clear by the features analysis, based on questionnaires. Some of the problems

or design constraints described by interviewees may be avoidable or at least reduci-

ble in some circumstances if they are related to design aspects which are largely in

the designers', clients' or design tool developers' control, for example exclusion of

users who may not be an easily accessible target group, should not occur if they are

likely to be easily contacted members of the general public. For projects 4 and 5 it

seems hard to believe that representatives of user groups; children and computer

workstation users respectively, could not have been quite easily and cheaply

accessed, at least for product evaluation (they could even have been friends of the

designers, or their children).

If HCI techniques and user-oriented design constraints emphasise the causes and

effects of these problems and provide methods for avoiding them, it is likely that

design practice will benefit, particularly where there is commitment to proper user-

oriented design practice. Avoiding design problems or constraints, particularly

those which emerge early is likely to reduce the number of problems emerging later

on, simply because so many of these problems are causally interrelated.

-310-

Table 5.3

Design Constraints and Problems Combined

from the Features Analysis and the Designer Interviews

From the Questionnaire-Based Features Analysis

Complicated Application/Product Sophistication

Lack of Information about Users

Over-casual Approach to Evaluation

Inadequate Resources

Lack of Assistance/Collaboration from Client

Lack of Experience with UI Design

Undersized Team

Lack of Guidance From Parties Outside of Team

Lack of Experience With HCI

Over-casual Approach to Design

From the Systems Designers' Interviews

Poor Communication

Designers' Unfamiliarity with Task Domain

Novelty of the Application

Uncertainty About Requirements

Exclusion of Users

Complexity of the UI

Expanding Task Outline

Lack of HCI Guidelines & Standards

Familiar Solution Application

Technological Limitations

Written Software Limitations

Over-Casual Evaluation

Lack of Performance Metrics

Market Pressures

-311-

Some problems are often related to design constraints which are outside the control

of the designer, such as time, resources, lack of assistance from the client, for exam-

ple technological limitations caused by inadequate resources for the project may

simply have to be endured, no matter how many problems result. Future design

techniques must be sensitive to the extra demands and the limitations placed by

these problems upon all concerned in the design process.

The findings relating to design constraints and problems from the features analysis

and the interviews are combined in table 5.4. Some of these overlap, as one would

expect, but others are revealed as a result of the differences between the two studies.

They show some of the problems, avoidable and otherwise which designers have to

contend with in applied practice as opposed to artificial test beds for psychological

and HCI techniques and tools. They are the kinds of problems which HCI DETs

must address if they are to be more widely applicable.

Table 5.3 lists design-organisational and technological limitations, designers' lack

of experience with UI design and with the system's task domain plus many other

factors which may represent real problems for interface designers. Even if a

designer is highly supportive of HCI, these factors may make it impossible to apply

DETs successfully to commercial design in general. Hammond et al (1983) suggest

that, rather than supplying detailed guidelines, Human Factors specialists should

perhaps concentrate on more appropriate 'mini-theories' of the user and user-

performance for designers to use. What appears to be certain is that the design and

development process is unpredictable, with a large number of possible constraints

which may emerge. Designers need a wide variety of flexible DETs which can

satisfy constraints of the kind identified here. Observations from design studies

indicate that HCI DETs must produce useful, comprehensible information and be

easy for the non-HCI specialist to apply, since HCI specialists may be a rarity in

commercial design projects. In Chapter 7 the implications of these constraints for

the Application of HCI DETs in design will be discussed.

5.43 Exploitation of User-Oriented information Sources

The features analysis revealed that the number and type of user-oriented informa-

tion sources exploited by systems design projects varies widely. However some

sources are markedly more popular than others. Table 5.4 shows the ten most

-312-

important user-oriented information sources information sources as ranked by

designers out of 18 possible choices in the questionnaires in the features analysis.

In addition to these designers added personal experience, specialist expertise and

existing comparable systems, which they ranked as being of great importance. In

the following, these findings are compared with those from the interviews and

design scenarios they generated. The interviews provided more qualitative and

detailed information about the way in which user-oriented information sources are

typically exploited.

Specifications of To-Be-Supported Activity proved to be crucial in the projects

studied. They were supplied to designers by clients in projects 2, 4 and 7. In pro-

jects 3, 5, 6 and 8 the designers or design team collaborated with clients or with spe-

cialists to produce specifications. In project 1, which was the only non commercial

project, the designer developed his own specifications. In all eight projects the

specification served as a focus for design. In project 4, where the specification was

ill conceived, the designer changed it himself, and this case illustrates the impor-

tance of the specification and some of the problems of inadequate specification.

The designer had considerable difficulty ascertaining what the client's and users'

requirements were and had to enter into conflict with the client in order to make the

necessary changes.

Observation of Prospective User Activity was very valuable to designers wher-

ever it was possible. In projects 4, 5 and 8 designers recognised that the lack of this

information source represented a major weakness in their design, however it does

not seem to have occurred to them that non-design team members would have been

a possible second best; nobody mentioned settling for evaluation with individuals

who might represent naive users. The other projects used prospective users to

evaluate their prototype in iterative cycles. Most evaluation sessions were unstruc-

tured and informal. Only projects 3 and 6 involved observation of users' activities

before beginning prototyping.

Observation of Activity Using Prototype was crucial as an evaluative aid. All of

the projects (1, 2, 3, 6 and 7) which observed use of their prototype did so with the

involvement of prospective users. It is probably quite rare for designers to ask

non-prospective users to evaluate the UI when no prospective users are available.

Where it was impossible to obtain prospective users, designers tended to test the

-313-

Table 5.4

The Ten Most Important Information Sources

Identified in the Features Analysis of Design Practice

Rank Information Source 	 Weighted	 Percentage
Importance Incidence

1	 Specifications of	 113	 52%
- To-Be-Supported Activity

2
	

Observation of Prospective	 108
	

56%
User Activity

Observation of Activity	 107
	

64%
Using Prototype

4
	

Documentation on Related 	 86
	

44%
Activities

5
	

Verbal Task Descriptions from	 84
	

40%
Current Activity Performers

6
	

Interviews with Prospective	 76
	

40%
Users

Experimentation withfresting of	 74
	

52%
Prospective Users

8.5
	

Scientific/Psychological Ref's 	 56
	

36%
on Human Behaviour etc

8.5
	

Verbal Task Descriptions	 56
	

28%
from Other Persons

10
	

Observation of Activity Not	 38
	

24%
Using Prototype

- 314-

system themselves, attempting to crash the software, or reveal inputs which the sys-

tem could not deal sensibly with.

Documentation on Related Activities was used by projects 1, 3, 5 and 8. The use

of such material helped to provide examples of existing methods of providing the

required functionality, and sometimes more information about the application

domain tasks.

Verbal Task Descriptions from Current Activity Performers

were supplied by prospective users who were already performing tasks which the

system was to support in projects 3 and 6. The designers in these projects spent

considerable time with the prospective users and relied heavily on them for both

task information which directed system functionality and the nature of operations

users would perform.

Interviews with Prospective-Users were not observed as being used by the

designers in this study. The general rule appeared to be informal discussions or

meetings with prospective users. This could also have been true for the respondents

in the features analysis who cited this as an information source, unfortunately the

questionnaires did not reveal if this was the case.

Experimentation with/Testing of Prospective-Users was only used in project 7,

where a rigorous evaluation regime was devised by the design team's client. The

high number of features analysis responses to this information source could have

been due to respondents informal definition of what constitutes experimentation and

testing, which, if the interviews here are representative, may have been nothing

more structured than observations of, and discussions with, users who tried out the

prototype.

Scientific/Psychological References on Human Behaviour etc were not exten-

sively used by any the designers interviewed in this study, although some had

experience of such literature. They tended to give reasons such as those described

earlier relating to the inapplicability or complexity of the material available.

Verbal Task Descriptions from Other Persons were used in project 7 where the

designer worked closely with a subject matter expert who had already learnt the

-315-

skills which the prospective users would be trained in by use of the system. In pro-

jects 2 and 3 the designers were given task descriptions by managers in their client

companies. However these proved to be inaccurate and either vague or misleading.

Observation of Activity Not Using Prototype Only projects 3 and 6 involved

observation of prospective users tasks without system support. Project 2 involved

use of a mock-up but those involved were not prospective users.

For the three information sources added by respondents in the features analysis, the

following describes the kind of role they played in UT design in some of the projects

studied here.

Personal Experience of previous design projects and use of comparable systems

played a major role for all of the designers interviewed. The designer in project 7

stated that his lack of experience meant that deadlines were loosened, and extra

supervision and help given, in recognition of the difficulties his inexperience might

give rise to.

Specialist Expertise was contributed in projects 2 (from management), 3 (from

industrial experts), 5 (from an HCl/UI consultant), 7 (from a subject matter expert)

and 8 (from specialists in different fields within the company). Their input was very

varied depending upon their area of expertise, generally influential, and in all except

project 2, appreciated by the designers.

Existing Comparable Systems were studied by the designers in projects 1, 4, and

5. In project 8 the existing system, which was to be updated was used as a basis for

the new version. In projects 3 and 7 the designers stated that the absence of existing

comparable systems made design more difficult because it was hard to envisualise

the nature of the planned system and its UI.

The findings here tend to confirm those of the features analysis in that an informal

approach to user-oriented design is typically favoured by designers. Informal proto-

typing with prospective users seems to be the most popular route to usable systems

in current design practice. Users are less likely to be involved in the early stages of

design than later on, and their input seems to consist of unstructured try-it-out ses-

sions rather than rigorous experimental studies. However, it may be that the very

-316-

nature of casual use of a prototype may be informative in other ways. In project 3

the designer was surprised to see a user begin using the system for tasks he had not

built it to support. This revelation would probably not have emerged with struc-

tured experimental evaluation but it had a major influence on later design.

5.4.4 Characteristics of Commercial Interface Design Practice and the
Non-Use of HCI DETs

Although considerable time and effort were frequently directed towards planning

and evaluating UI designs, this effort seemed to be applied in very haphazard, infor-

mal ways. There is some agreement with the findings of the design study by Ham-

mond et al (1983) in that, although the designers were not 'computer-centric'

(meaning designers did not only consider the system and ignore its functions, users

and environment), their approach often appeared to exclude important user require-

ments. Two projects were observed to have excluded users from the design process,

possibly because they were not a clearly defined easily accessed group in one of the

organisations concerned with the design. If designers were more aware of the

benefits of user involvement, they could be in a better position to convince other

interested parties that user involvement, even though it might take some extra time,

is important.

The interviews indicated that the three principles espoused by Gould and his col-

leagues were not applied, despite positive attitudes held by designers. Some

designers spent a great deal of time engaged in user- and task-oriented investigation

and development. This kind of activity was only possible when users were accessi-

ble. Since users were sometimes hard to approach, it is not surprising that early

focus on users was sometimes difficult. In some cases users were excluded alto-

gether, or included only at the latest stages in development. Designers' empirical

measurement was particularly weak; proper performance metrics and goals were not

used. It is probable that much better evaluation would be possible if designers were

able to characterise interfaces in such a way that testable performance goals could

be generated.

Finally iterative protozyping was most commonly incremental development (as

described in the design study of Rosson et al, 1987) where the prototype is the

developing implementation itself. However this prototyping often did not include

-317-

user-testing in its cycle. This meant that as far as usability was concerned, the value

of iteration was often lost. This finding is very much in line with that of Rosson et

al (1987) who found that projects taking iterative design approaches were no more

likely to carry out early user evaluations than projects using phased development

where the system is more fully specified before implementation takes place. Most

notable was the fact that none of the designers interviewed used HU DETs (they

had either not heard of them, or they gave specific reasons for not using them). It

therefore appears that this investigation has fulfilled its second aim in determining

whether or not HCI DETs are used.

A view of design as practised is represented by the framework in figure 5.2, which

is based upon the findings of the features analysis reported in Chapter 4 and those

from the interviews with the eight systems designers. The ten most important user-

oriented information sources and design constraints are represented in the figure, in

approximate order in relation to the design activities. It should be noted that this

figure, like figure 5.1, relates only to user-oriented aspects of design, and the

software and hardware oriented, or more computer-centric aspects of design are

only implied by some of the constraints, namely: Lack of Experience with Interface

Design (possibly implying difficulties with implementation of the interface

software), Complicated Application/Product Sophistication (implying problems

with the application software and general complexity of the system as a whole,

which was generally the most important constraint identified in the features

analysis), Inadequate Resources & Undersized Team (implying too little in the way

of time, money, advanced technology, and human-power which must all be distri-

buted over the entire product). These possibly computer based constraints may

represent the major drain away from user-orientedness in the focus of the design.

Smith and Mosier (1984), on the basis of a survey, estimated that 30 to 35 percent

of the software in an application is designed to support UI functions. This leaves 65

to 70 percent of the software to be designed has little impact upon user oriented

aspects of the system, other than on its scope (i.e. the functionality it supports). It

may be easy for systems designers to forget that some of their software, if imple-

mented in a certain manner, has the potential to compensate system users, when

much of it does not.

It should perhaps be emphasised that HCI probably has an important role to play

right from the very earliest moments (Gould & Lewis 1985) through to the end; for

- 318 -

example a system may be supplied with performance predictions based upon the

final version (Card et al 1983), or it could be supplied with an HCI based explana-

tion of all the design decisions contributing to its final form as an aid for main-

tainers and users of the system (Maclean et a! 1989).

If they were developed in such a way that systems designers found them easy to use

HCI techniques of the future might provide methods for improving the rigour of

requirements specifications, user conceptual and task oriented models of the system,

and evaluative methods. At present it seems that some designers are happy to

implement first and think afterwards and the features analysis suggests that there are

occasions where designers are not clear as to what the aims of their evaluations

really are. They need techniques which can focus their attention upon users needs

early on, and which encourage them to use these needs as guidance throughout

design and in the evaluation to ensure that they are really satisfied by the UI.

5.5 Conclusions

The main goals of the study were as follows:

* To present a more integrated view of applied, commercial practice than obtained

by the features analysis of design projects.

* To determine whether HCI DETs or principles are applied by non HCI specialists

in commercial practice.

* To explain the design constraints and their effects which might prevent systems

designers from applying more user-oriented design techniques.

As a supplementary study this interview analysis has confirmed and enhanced the

findings of the previous questionnaire based features analysis. Most importantly the

lack of use of HCI DETs, as described in Chapter 2, is again highlighted as is the

preference for in-house or unstructured iterative development approaches, rather

than SADMs such as JSD (Jackson, 1983) and SD (Yourdon & Constantine, 1978).

A general schema for design practice has been presented, describing UI design as a

series of goal-oriented activities which relate to a number of information sources

and are subject to a number of design constraints. The designers in the study tended

on the whole to recognise the importance of usability. One designer did apply some

Commitment

Specifications of
to-be-supported
activity

Explicit agreement
on

general goals

Observation of
task activity

Verbal task
descriptions
and interviews
with users
experts and
others

(Possibly
Parallel)

Lack of assistance or
collaboration from
client

Lack of guidance from
parties outside of team

-319-

Figure 5.2

Schema for User-Oriented Design Practice: Organisation, Constraints

and Information Sources Based Upon Findings of Two Empirical Studies

INFORMATION	 DESIGN ACTIVITIES	 DESIGN CONSTRAINTS
SOURCES	 OBSERVED	 OBSERVED
OBSERVED

References and
documentation
on related	 y
activities

I Conceptual Specification

Lack of experience with
interface design

Lack of experience
with HCI

Complicated application
or product sophistication

Lack of information
about users

Observation of
use of
prototype

I	 Defining detailed user- 	 Inadequate resources
and functional requirements 	 and undersized team

I	 to satisfy general goals

Over-casual approach
to design

Generation of Prototype
Generally Eulationary

Building functionality to
satisfy user requirements,

verifying 151 software

Testing
Over-casual approach

Validating functionality	 I I to evaluation
with respect to	 I
requirements	 I I

Finalisation

Maintenance and
possible further

evolution

- 320-

user-oriented design principles, others tried to involve prospective users in the

actual design process, or carried out empirical user evaluations.

A minority seemed to evade addressing usability seriously but acknowledged that

this was not ideal. In spite of a generally positive attitude towards HCI, some nega-

tive statements were made about the usefulness of HCI techniques to design prac-

tice. These comments reflect the fact that not one of the designers interviewed in

this study, or responding to the questionnaire in the previous study reported using

one of the influential (within the discipline) HCI DETs described in Chapter 2.

Reasons for not doing so appeared to be largely to do with the nature of constraints

under which designers seem to operate. Lack of adequate resources, design

difficulty, lack of information about users and lack of experience in psychology may

be some of the most serious obstacles to application of HCI DETs in applied and

commercial design practice.

It is worth emphasising the fact that designers do not make a clear separation

between the UI and other factors such as the application and the target tasks when

considering its usability. The functionality of the system, the modifiability of the

software, unforseen tasks and so on were considered as important to usability by

certain designers. Their breadth of view is something of a vindication of the scop-

ing matrix used in Chapter 2 as a useful wy of viewing HCI techniques with

respect to their applicability. The scoping matrix emphasizes consideration of a

number of factors which impact upon usability, on the assumption that design or

evaluation which restricts itself to consideration of only one factor (such as the user)

and ignores others (such as the target tasks) is likely to prove unsatisfactory. This

suspicion has begun to be raised by other researchers in HCI (e.g. Grudin 1989).

The main contribution this study makes to the overall process of user-oriented

design practice is that it enriches our view of design practice as a series of causally

related activities and presents explanations for design constraints and their prob-

lematic effects, and further descriptions of how designers typically exploit user-

oriented information sources in applied and especially commercial systems design

practice.

Unfortunately, the absence of any attempted application of any HCI DET still

leaves a rather large gap in our understanding of whether or not HCI DETs are

-321-

applicable to commercial UI design practice. It is possible that designers' natural

suspicions, as evinced by their complaints about HQ, really only related to the

necessary investment in time. If only HCI specialists in well resourced organisa-

tions are using HCI DETs as a matter of course, then the explanation for under-use

of these techniques may well lie with their requirement for time. If they find them

difficult to interpret and rely on their training in psychology and HCI, then there

may be a requirement for specialist expertise which systems designers do not gen-

erally have. However, if even HCI specialists do not use these techniques, then

other explanations may be required for their lack of use. Such issues are the focus

of the study reported in the following chapter.

-322-

Applicability of HCI Techniques to Systems Interface Design

Chapter 6

An Investigation of HCI Specialists'
Roles and Techniques in Design Practice:

How They Tackle UI Design Activities and Problems

6.1 Introduction and Rationale

This chapter describes a study into the practice and techniques applied by HCI spe-

cialists in commercial organisations. In the first part of the chapter the organisa-

tions employing the specialists, the working regimes, roles and activities of the HCI

practitioners are described. Then the techniques which they applied within these or-

ganisations are described in some detail together with their advantages and their

problems.

In Chapter 3 it was noted that there appears to be strikingly little in the way of

literature or reports on the use of HCI DETs in design practice, particularly in the

hands of other analysts than the developers of the techniques themselves. The study

reported here represents an attempt to present some information relating to the use

of HCI and user-oriented techniques in commercial design practice.

In the preceding two studies interface design practice in applied, and especially

commercial, projects was observed and analysed in terms of its features and general

organisation. However, precise techniques applied to assist in UI design practice

were not identified. The main reasons for this were that in the features analysis the

data collection method (i.e. questionnaire) was not well suited to detailed discus-

sion, by respondents, of particular methods they used, and in the supplementary,

interview-based study it appeared that little use was made of structured methods and

there were no examples of explicitly user-oriented, structured methodologies being

applied.

The features analysis and interview study of UI design practice indicated that, in

general, systems designers do not tend to use the kinds of technique for design and

- 323 -

evaluation described in Chapter 2 (HCI DETs). On the other hand the features

analysis suggested that large projects with HCI specialists were much more likely to

exploit user-oriented information sources, such as experiments or informal evalua-

tions of prototypes with users, task specifications (or to-be-supported activity

specifications) and interviews with prospective users.

A further study was undertaken in order to look at explicitly user-oriented UI design

approaches, in order to see what characterises an applicable HCI design or evalua-

tive technique might possess. In order to obtain this information HCI specialists

were interviewed as it seemed highly likely that such individuals would be more

likely to apply HCI DETs of the kind discussed in Chapter 2.

This detailed interview study aimed to provide more precise information about the

nature and scope of user-oriented techniques in commercial practice than was cap-

tured by the previous studies. The previous studies served to provide a view of vari-

ous features of UI design and a picture of the design as a process of activities and

repercussions. However, they did not provide sufficient detail relating to the use of

user-oriented techniques in particular. It was hoped that interviews with HCI practi-

tioners would be more likely to reveal this kind of information, as their roles in

design should be much more likely to foster use of such techniques.

The rationale supplied a number of clear objectives which the interviews were in-

tended to achieve. These aims are summarised by the following questions which

were to be addressed:

* What precisely are the HCI specialist's roles in the commercial design process.

* What design and evaluative techniques do they use, what is the scope of each of

these techniques, and how are they used.

* How do HCI specialists using user-oriented techniques avoid or cope with user-

oriented design constraints and problems.

* How do user-oriented techniques exploit information sources.

* How do the techniques support the activities of the HCI specialist, and in what

-324-

ways do they fail to do so.

The targets of the study were individuals with education and experience in psychol-

ogy, ergonomics and/or HCI employed by medium to large, well resourced organi-

sations. Even more than with the systems designers in the previous study, candidate

interviewees employed specifically for commercial projects, as opposed to research,

were hard to find. Six HCI specialists from four different organisations agreed to

take part. Two interviewees from one organisation were unable to provide more

time than an hour each, however the other four were able to provide two or more

hours and a great deal of detailed information.

It might be possible that the main reason for the under use of HCI DETs reported in

the studies in chapters 4 and 5 is purely to do with the heavy requirement they have

for psychological and HCI expertise on the part of the analyst and also with the in-

vestment of time and effort needed to apply them. If this were true we might ex-

pect to see HCI specialists in well resourced organisations making much greater use

of such techniques than do systems designers in general.

HCI specialists were also considered to represent a valuable information source in

terms of their alternative roles in the design process. Unlike the interviewees in the

previous study who generally had to address the entire system design (including the

application end of the software and other interests such as system response time,

security of software, memory requirements and so on) the HCI specialist concen-

trates on a subset of design issues. In order to carry out his or her tasks, the HCI

practitioner will have to gather a great deal of information from and communicate

with prospective users and other specialists or generalists who are unlikely to share

the same background and skills. In other words there is not only a question of tech-

niques used, and their applicability from the HCI specialist's point of view. There

is also the issue of the HCI specialist's activities within system design as, for exam-

ple, an analyst a collector and a communicator of specialist information. Of interest

here is whether successful UI design and evaluative techniques used by HCI spe-

cialists support one or more of these activities.

From Chapters 2 and 3 it should be clear that HCI DETs are typically incomplete in

terms of the extent to which they specify their own application and interpretation.

This feature is, in effect, responsible for their requirement for psychological exper-

-325-

tise which enables the analyst to judge, for example, the appropriate grain of

analysis at which to describe actions which fulfill goals, subgoals and even sub-

subgoals. The same features which lead to uncertainty, in terms of the correctness

with which the technique is being applied (for example, with TAG, an analyst might

be unsure as to what constitutes a simple task) also allow a degree of flexibility

which permits the analyst to use the approach in a way which might have been un-

foreseen or unspecified by its authors.

In addition to this it is possible that HCI DETs could, in many ways, be extended to

cope with new applications. Moran (1981), for example, suggests possible exten-

sions to the CLG including cognitive architectures supplying relevant human pro-

cessing constraints which could permit performance metrics to be derived from a

CLG specification. Knowles (1989) has investigated qualitative extensions to CCT

in terms of the knowledge represented by the goal hierarchies in the user's how to

do it knowledge. It seems likely that HCI specialists may adapt techniques to suit

their requirements in various projects with different demands.

There is also the possibility that very different techniques are exploited by HCI spe-

cialists practising in commercial environments to provide the same kind of informa-

tion supplied by HCI DETs developed in research environments. These might well

be idiosyncratic, but the important fact is that the motivation driving their applica-

tion, in addition to capturing and analysing relevant aspects of users, interfaces or

interactions, is likely to be that the technique has practical value for the analyst in

commercial design, rather than value in terms of its furthering understanding of

theoretical issues. In other words such techniques have to be justified in terms of

the value they add to design over the effort and cost they incur for the analysts who

work with them.

6.3 Interview Structure and Methodology

An important difference between the stance adopted in the HCI specialist study and

the two previous studies was that the specialist interviews were not restricted to a

single project. The interviewees were encouraged to focus on particular methods

rather than particular projects, and, time allowing, they were also asked to discuss a

number of more philosophical topics relating to their experience of design in gen-

eral. The reason for this difference was the new focus which concentrated upon de-

-326-

tails of techniques rather than on the whole design process. It was considered im-

portant to discuss as many as possible of the HCI specialists' experiences with each

particular technique covered. The focus of the interviews also encouraged the HCI

specialists to describe any relevant experiences they had with previous employers.

As it turned out, none of the interviewees described using more than two well struc-

tured, theoretically based techniques, although most of them exploited a number of

empirical, informal or heuristic methods, including user observation, experimental

user trials and interviews.

The interviews were structured around the following stages:

Stage 1.

1. Interviewee describes own background with respect to HCI and computer system

design experience

2. Interviewee describes organisation(s) within which s/he practices/d

3. Interviewee describes Team structure (plus roles) within which s/he works/d

Stage 2.

1. Interviewee lists as many as possible HCI or SAD Techniques applied, success-

fully or otherwise

2. If possible interviewee describes the relative usefulness of each technique.

3. Starting with the most widely used, the interviewee discusses each technique in

turn. For each technique interviewee describes situations within which it was

applied in terms of a number of aspects (see Appendix 4)

4. Interviewee describes any constraints on design activities experienced.

5. Interviewee describes information sources used during the various design

processes and states how these were exploited.

- 327 -

Stage 3.

Interviewee discusses design philosophy and issues more generally.

The structure of the interview was sensitive to the descriptions of the interviewees,

such that they were not asked to answer questions on issues which they had already

covered earlier. All of the interviews were taped for later analysis. The amount of

detail required regarding the precise nature of each of the techniques the specialists

used made it appropriate to prepare detailed word-for-word transcriptions of each

interview (these interviews had to provide as much detail on HCI practitioners as

the two previous studies combined had done on systems designers). The transcrip-

tions were then analysed to determine various features of, and similarities and

differences in, the working practices of the various HCI practitioners.

6.4 Findings

The findings are structured, together with a certain amount of discussion, around the

issues addressed by the interviews and the objectives and targets of the study. The

first aim of the study was to determine what precisely are the HCI specialist's roles

in the design process. This aim was supported by the focus of the interview in

Stage 1 which covered the experience of the specialist, the nature of host organisa-

tions employing that individual, and the team structure and the roles within which

he worked (all of the interviewees were male).

For the purpose of clarity in the following discussion the interviewees will be re-

ferred to as A, B, C, D, E, and F. The host organisations within which they were

working at the time of the interview will be referred to as 01, 02, 03 and 04.

6.4.1 Background and Experience of Interviewees

Table 6.1 shows the higher educational qualifications relevant to HCI of the inter-

viewees in the study. Of course such qualifications are not necessary or even

sufficient to ensure proficiency in the discipline, but they indicate the orientation of

the specialists towards a career in the field of HCI or Human Factors.

-328-

Table 6.1

HCI Relevant Higher Educational Qualifications

of HCI Specialists

Qualifications	 Specialist

Psychology BSc	 C, F

Ergonomics BSc	 B

Psychology BSc & Ergonomics MSc A, E

Machine Intelligence Diploma 	 D

Interviewees B and D appear from table 6.1 to be the least proficient in psychology,

however the content of discussions with them revealed that they had considerable

experience with psychological, experimental methods, but B described himself as

having "just shop floor experience of doing human factors related work".

All of the interviewees, except A, had at least several years experience in their pro-

fession, and all but C were still currently employed by their organisation as Human

Factors or HCI specialists working on ensuring the usability of Uls (the one excep-

tion had recently moved into a more general development group, but described him-

self as still doing the same things as before).

6.4.2 Current Host Organisations

The four host organisations employing the interviewees at the time of the study

were all multi-national ranging from medium size (around 2000 employees in 04)

to very large (around 250 000 employees in 03). They were all divided into spe-

cialist or national divisions which operated more or less as autonomous business

concerns. 03 and 04 each supplied two interviewees, Their business interests were

as follows:

01 Photocopiers, computer hardware, and software

02 Computer hardware and software

03 Computer hardware and software

04 Software

-329-

The business roles of the particular divisions within which the interviewees worked

were as follows:

01 Development of products (largely of programmable photocopiers)

02 Development and marketing strategy

03 Research centre

04 UK division (general software consultancy)

6.4.3 Team Structures

All of the interviewees worked within specialist groups of one sort or another but

the structures were variable and this may have reflected or determined the roles and

activities of the group members. In essence the interviewees (and other types of

specialist) might find themselves working as specialist contributers on a general

design project, or as members of a specialist HCI-oriented project. However, the

interviews suggested that there is no clear distinction between project types, and

hence roles. The variability between team structures might be more representa-

tively described by continuums such as the degree to which work is research

oriented, or the extent to which it is market oriented. It is worth noting that some of

the respondents to the features analysis questionnaire belonged to two of the organi-

sations described here. It therefore is safe to assume that projects and design teams

were of a similar range of sizes.

In general the common structure for organising HCI skills within a company seems

to be within a department (referred to variously as a centre, a group, or a team)

which specialises in consultancy, development or R&D which contains sub groups

(or teams) with particular domains of expertise who all work in a generally similar

way. Figure 6.1 is an attempt to represent a general, typical structure for divisions,

subdivisions, groups and subgroups. For the sake of argument we may refer to this

as a hierarchy of groups. This hierarchy does not represent a particular organisation

(it may only be part of an organisation, and an organisation may only include a

sub-set of groups). It does not imply communication or working structures either; it

is, in fact, more representative of management structures. The composite groups

shown are simply indicative of what was reported by interviewees, and are not

meant to be comprehensive.

From figure 6.1 it is clear that skills, not projects, tend to form the basis for

Formal Methods
Systems

Engineering
Human Factors

orHCI

-330-

Products

Figure 6.1

HCI Skills Within a Group Structure

Division

R&D or
Consultancy Marketing

Possible
Subdivisions

Displays and 1	 Software UlsKeyboards I

organisation, presumably projects are a less stable organising factor. The typical

arrangement seemed to mean that there was a certain degree of insularity around

groups of specialists in commercial organisations. Certainly the interviewees com-

ments suggested that the situation tended to be one of working closely only with

other employees in the same skills group. A particularly illustrative quote on this

issue was obtained from F in 04 whilst he was discussing his role in a particular

research project:

"We did do a task analysis. We were not permitted to follow that through to actu-

ally doing an interface design for the project, really because of the nature of the

project being very collaborative, and being done on multi-sites. What's happened

is that people have carved up parts of the project and identified the tools they

- 331 -

have an interest in building, and unfortunately those individuals have done the UI

designs. Now, while they may have been influenced by the task analysis we did,

it's doubtful in my mind that they've been influenced very much."

It would appear that the effectiveness of any work that is carried out by HCI spe-

cialists may be obstructed by organisational separation of specialists in such a way

that there is a physical as well as a disciplinary separation between HCI specialists

and various design specialists.

Figure 6.1 illustrates this constraint which has great influence upon the activities of

HCI specialists. Most of the individuals in computing R&D or specialist consul-

tancy come from a computer science background. Most HCI specialists do not.

More than half of the interviewees mentioned that their group was regarded with

some suspicion or incomprehension by other groups who knew little about their

potential contribution to design. One interviewee summed up this view by saying

"we used to be nicknamed the flower arrangers". Another stated that it was an up

hill struggle trying to convince other company employees that HCI could and

should be considered for all UI design. This finding supports the idea that different

skills groups do not necessarily communicate extensively, and if they are physically

separated then effective communication and collaboration becomes even less likely.

6.4.4 HCI Specialists in Commercial Working Environments

In Stage 1 of the interview, specialists were explicitly asked to describe their roles

within their organisation. However, additional information relating to specialists

roles was also obtained during the other stages. The findings here are drawn from

the entire discussions of the interviewees.

The interviews indicated that there were three important aspects of the specialist's

job within commercial environments. These are the working regime which in many

ways constrains what the specialist does; the roles themselves which define the aims

and functions of the specialist; and the activities which subsume the various roles.

For each of the organisations employing the interviewees a brief outline of each of

these facets of their job is provided in the following. These summaries are useful

because they provide a great deal of qualitative information about the special nature

of the work of HCI specialists as distinct from systems designers in general. Note

- 332 -

that working regimes are shared by individuals from the same organisation, how-

ever roles, and the activities they involve may be different for different HCI special-

isis within the same company.

Specialist A (in Organisation 01)

Working regimes

01 involved fairly well rehearsed and routine activities with the various specialists'

roles being well defined. Design projects focused upon updating or producing new

versions of existing systems with well defined requirements. Projects were there-

fore run in a relatively regular fashion, with different groups in the development

team (including an HCI group, a UI group, a graphics group, a systems engineering

group and a product planners group) collaborating within a well structured design

"programme". In brief, the various groups involving the different specialists would

collaborate on producing requirements and functional specifications. The HCI

group would then deal with presentation and dialogue in the UI and produce a

specification which would be prototyped and eventually specified in a form from

which software could be generated by programmers. Meetings and informal com-

munication between various groups were used to ensure that the specifications pro-

duced by any one group were realistic in terms of feasibility constraints understood

by other groups. Repeated user evaluations would be carried out on simulation pro-

totypes in an iterative design cycle, until late evaluations would simply validate that

requirements specifications had been satisfied. Although deadlines would be set for

completion of the development, A stated that he was able to defer production in the

case of serious usability problems.

Roles

A's roles were relatively well defined, being limited mainly to contributing to, and

working from requirements and functional specifications, and also to ensuring that

prototypes met requirements. He kept himself informed on UI issues, to the extent

that he discovered a technique for specifying and evaluating UI behaviour (Hard's

Statecharts, 1987) which he used to support communication of functional require-

ments to programmers. He generally worked as a permanent consultant carrying

out some design specification and some evaluation work on one or more projects in

- 333 -

parallel.

Activities

A's activities included reading and keeping abreast of current issues in HCI, attend-

ing project meetings, contributing to user requirements and functional analysis,

specification of requirements and functionality, dialogue and display design, and a

good deal of running experimental user trials on prototypes.

Specialist B (in Organisation 02)

Working regimes

02 was a large organisation with a small HCI group which meant that the main

functions of the interviewee were to provide UI design knowledge for the greatest

possible number of people within the company. The size of 02 and variability of the

products produced meant that B was required to work on very different projects,

ranging from writing design guidelines to very late user evaluations. The company

allowed its specialists to take part in research projects. Most notable being one to

develop a methodology for technology transfer of HCI, the results of which began

to be implemented before the research was complete.

02 did not have the kind of sophisticated prototyping tools to enable early simula-

tion prototypes to be built and evaluated (as in 01), so results of evaluations tended

to feed into later releases of products. In essence there was no single, fixed working

regime to which B adhered. The main feature seemed to be his relative autonomy

within the bounds of tasks he was given and evaluation of his work by his manager.

There did not seem to be any well structured interactions or communication paths

between B and other design specialists, his main channels of communication

seemed to be through senior managers and junior staff whom he supervised. In

other words implicit organisational constraints seemed to be imposing a hierarchical

interaction and communication structure as opposed to the more horizontal one in

01.

-334-

Roles

B's roles included a considerable amount of research. 02 was involved in some

government funded initiatives, the main one concerning B was aimed at developing

a methodology for technology transfer, another which B was not personally

involved in was aimed at developing a knowledge-based software engineering

environment which would support user-oriented design. B also carried out research

and design whilst developing user-oriented methods and guidelines for UI

designers. The rest of B's time was devoted to consultancy on specific products,

usually to solve problems relatively late in the design process.

Activities

B engaged in a wide variety of activities in his different roles. Reading various

literature and reports (both on scientific research and on company methods and pro-

ducts) relevant to current projects, conference attendance, correspondence and other

activities enabled him to keep abreast of developments in HCI and systems develop-

ment methods.

Consultancy involved task analysis, requirements and functional UI specifications,

evaluation, design solution generation presented as recommendations. Technology

transfer involved collaboration on developing and running workshops and writing

guidelines. C undertook to set up a user evaluation laboratory which at the time of

the interview had been used for some late user evaluations. He also carried out a

certain amount of administration and supervised two junior staff members

(sandwich course students).

Specialists C and D (in Organisation 03)

Working regimes

The general flavour of the activities in 03 was informal. Communication and con-

trol of projects could be both hierarchical or horizontal; "It can be very hierarchical;

you can have instructions issued from high above, but we can work horizontally

through our network of contacts. We tend to get involved on a given project when a

horizontal request comes from another department."

-335-

The HCI specialists worked mainly on evaluating specifications, documentation and

prototypes, and ran a user evaluation laboratory. However, they were also manag-

ing a long term research project to develop a multi-media system for office tasks

which was based upon their own ideas (as opposed to someone else's specification).

The general regime for evaluating specifications and documentation was fostered by

the distance between the groups who produced such material from the HCI special-

isis' group in 03, and by the electronic mail (email) network between these groups.

Specifications and Documentation would be sent in draft form to 03 where the spe-

cialists C and D would then read it and email their comments back in an informal

manner, or, more formally, send their comments and revisions to a liaison officer

who would distribute this information to the relevant groups.

Prototypes were evaluated regularly in the evaluation laboratory which was moni-

tored by C and D or by junior staff. C and D devised their own methods and pro-

duced recommendations on the basis of their findings which would be distributed in

the same manner as recommendations for specifications and documentation.

At the time of the interview C and D were managing a project based upon their own

design concept. The actual development of the research prototype was carried out

in a computer science department of a university. Regular meetings and demonstra-

tions of the prototype enabled C and D to monitor progress and update their ideas.

The manager of the research group in the university acted as a specialist consultant

and contributed to some of the ideas on the project.

Roles

C and D differed only slightly in their roles, which seemed to be very informal, with

D taking on slightly more in the way of experimental evaluative work, and C, hav-

ing moved into a development group, doing more in the way of project manage-

ment. Essentially their roles were restricted to consultancy and some design. Their

consultancy was restricted to informal evaluation of documentation and UI designs,

and running experimental evaluations of Uls. They did not continue to educate

themselves other than by gaining practical experience. As D stated "We don't base

our comments on HCI research findings or guidelines, we use our experience of

what has happened in the past, essentially from previous products, all of which were

tested on users. They did not carry out research themselves, although they managed

-336-

a research project, and they were not engaged in any technology transfer activities

such as producing guidelines or running workshops.

Perhaps the most unusual feature about C and D was that they instigated their own

long term research project to design and develop a prototype multi-media office sys-

tem, based upon their own ideas. In this case they could be described as having

taken on the role of the main system designers, and in this design project it was the

needs of the individual end-user (rather than an organisation or some set of power-

ful functionality) which drove the entire concept.

Activities

The HCI specialists worked mainly on evaluating specifications, documentation and

prototypes, and ran a user evaluation laboratory. However, they were also manag-

ing the long term research project.

Activities undertaken by C and D included creative design, informal task and user

requirements analysis based upon comprehensive literature on office tasks, informal

functional specification of the UI, empirical evaluation and creative solution genera-

tion based upon activities in the usability lab, report writing, correspondence,

administration and management.

Specialists E and F (in Organisation 04)

Working regimes

The specialists in 04 seemed to have the most flexible working regime which

covered a number of activities. The interviewees described the organisational struc-

ture as "more of a matrix than a hierarchical structure". There were a variety of

skills centres within the company (e.g. communications, and consultancy which the

HCI specialists belonged to). On any one commercial project specialists from a

number of skills centres would be brought in. However, once a project group had

been set up the design team would be very hierarchical with managers controlling

the various specialist activities.

Commercial design projects would be "controlled in a very procedural manner"

-337-

which was governed by an in-house project control system to which everyone

would have to adhere. For research projects such a regime would be rather imprac-

tical, since the nature of the work involved would be somewhat unpredictable

depending upon the aims. E and F tended to do a good deal of research work as

well as commercial consultancy. They also occasionally worked directly for exter-

nal clients on small scale consultancy projects. For these reasons their working

regime tended to be highly variable.

Roles

E and F acted as self educators, reading relevant books and references, attending

conferences and so forth, in order to keep abreast of developments in HCI, research-

ers, UI design tool users and to some extent developers, agents of technology

transfer talking to or presenting technical symposia to others in the company, and as

consultants on a wide variety of projects. In terms of self education both E and F

were probably the most well informed on HCI research and techniques, and E also

had considerable familiarity with software development methods having designed a

method for mapping CLG specifications. E tended to engage in more managerial

activities having been in the company for a greater length of time than F.

Activities

Both E and F worked largely with structured task, requirements and functional

specification methods, and development of prototypes. They read widely and

attended conferences where they also frequently presented papers. They applied a

variety of scientific and HCI techniques, including TAKD (Johnson et at, 1984),

CLG (Moran, 1981), and Statecharts (Harel, 1987), for the purposes of task

analysis, user requirements analysis, requirements and functional specification.

They solved usability problems and engaged in a certain amount of creative design,

both of UI prototypes, and of extensions to existing HCI techniques. They ran

demonstrations of interfaces, produced regular reports for management, clients and

so on, and supervised junior staff.

Unfortunately there was too little space in their company's building to allow a usa-

bility lab to be set up. E and F were the only interviewees who did not have access

-338-

to this type of facility. This may have been their main reason for concentrating

upon theoretically based HCI DETs as a means of evaluating usability, whereas the

other consultants tended to use empirical methods.

Summary of Working Regimes

In 03, the two interviewees communicated regularly with employees in divisions in

the US, however in general interviewees generally worked closely only with people

in their own branch or local divisions. The HCI specialists, and other types of spe-

cialist in 04 often worked on projects for external clients on a consultancy basis,

however the other interviewees only supplied consultancy within their own organi-

sation. Research projects might involve collaboration with other organisations, but

generally organisations would work fairly autonomously on their part of a research

project.

Working regimes varied extensively for the different organisations. Table 6.2 gives

a simple overview of the differences between the organisations involved in the

study in terms of three dimensions or features which were notably variable amongst

the different working regimes. The extent to which the organisation is viewed as

very or hardly hierarchical, structured or variable, is restricted to comparisons

between the four organisations involved in this study. This classification should

not, therefore, be seen as conclusive.

Some organisations were notably more hierarchical than others in their working

regimes. Hierarchical working regimes such as that of 02 seem to structure com-

munication and control in a top down or bottom up manner with senior personnel

acting as coordinators of information channelled to and from junior personnel. In

less hierarchical regimes such as that of 01 junior personnel communicate more

freely and coordinate their own activities. In 04 there was a mix of hierarchical and

horizontal communication and control.

Structured working regimes seem to evolve partly because of the nature of the

company's business. In 01 the work was fairly predictable, being focused around

updates of old systems, or new designs based upon well understood application

domains. This seemed to enable a routine working programme to be built up.

Another factor underlying the apparent structure of working regimes may be the use

-339-

Table 6.2

Characterisation of Variation in Working Regimes

of Organisations in the Study

Extent

Very	 More than

Feature
	

Average

Hierarchical	 02
	

03

Structured	 01
	

04

Variable	 04
	

02

Less than Hardly

Average

04	 01

02	 03

03	 01

of scientific methodologies, as was particularly common in 04. On the other hand,

in 03 the working regime was highly unstructured and this seemed to be partly due

to the use of informal methods of evaluation by C and D, but also to their own

preferences and seniority which gave them greater freedom.

Variability of the working regime was not necessarily related to its structuredness.

In 04 where work was generally well structured, the variety of project types meant

that structures were repeatedly changed to deal with the new product's demands. In

02 the fact that the HCI specialists in the company were so few and the company so

large meant that a wide range of working regimes had to be adopted to tackle jobs

including experimental UI evaluation and development of workshop based technol-

ogy transfer courses.

The working regime tended to dictate the manner in which specialists were

expected to achieve usability and this varied enormously between organisations. It

may be true that specialists have some say in determining their own regimes, partic-

ularly if they are senior personnel as in 03. However, it seemed to be more a func-

tion of the organisation than of the individual since both of the specialists from 03

- 340 -

Table 6.3

Summary of Activities and Roles

Reference to literature and reports

Attendance of courses, workshops, conferences, meetings etc.

UI design

Interview

Observation

Task analysis

User requirements analysis

Functional specification of UI

Analysis of requirements and functional specifications

Designlevaluation technique development

Design/evaluation technique application

Empirical evaluation

Creative solution generation

Demonstration (of techniques or products)

Running workshops, giving seminars or presenting papers

Writing reports/documentation

Correspondence (verbal, electronic or on paper)

Administration

Managerial

shared many working practises as did both of those in 04, despite their differing

backgrounds and skills.

A number of activities which subsumed various roles of the interviewees were

identified. These are summarised in table 6.3. These activities imply a number of

basic actions including such things as reading literature, generating ideas, thinking,

writing up research or work achieved, listening and speaking, interviewing various

people, designing, running, and evaluating experiments, and so on.

As an exercise in simplification the various activities and implied basic activities are

- 341 -

summarised as four rather gross types referred to as information collection, inven-

tion, analysis, and communication. This is not a formal classification, as it is possi-

ble to argue that any of the activities above implies more than one of these types.

However, the purpose here is to attempt to cover the quality of all of the actions

observed, and hopefully it should not be possible to argue that any of the activities

above does not fit into any of these classifications.

information collection includes all activities that increase the knowledge of the

collector. This may represent reading, listening, observing, empirical data gath-

ering and so on.

Invention includes all creative activities especially design activities where novel

features are added in, as far as this analysis goes, a mysterious way to existing

knowledge or to the state of affairs. Invention may be dependent upon all of the

other activities identified here, however it is not within the scope of this study to

demonstrate how.

Analysis includes all activities where information, either collected or based upon

invention, is condensed, elaborated or transformed. For the HCI specialists in

this study, analysis was usually dependent upon information collection, rather

than on invention. Any paucity in the information collected would lead to limita-

tions in the analysis. Analysis would cover, amongst other things, task analysis

where interview information might be summarised and classified as it has been in

this chapter; application of statistical techniques to raw data providing summaries

or clarifying implicit properties of the data; and transformation of informal

English descriptions into more formal statements about the properties of some

system and its states, and vice verca.

Communication includes all acts which produce representations of information

which will permit other agents to collect information. This naturally includes all

speech acts, writing, diagram and chart production and so on. It may be that all

communication implies analysis of some sort, no matter how basic. However,

since the reverse is not necessarily the case, communication is a separate

classification.

How important the various activities are really depends upon the importance of the

- 342 -

role of the specialist who engages in them. As indicated by the descriptions of the

various aspects of an HCI specialist's job, including working regimes, roles and

activities, it is clear that different interviewees in the study differed in their roles,

particularly if they were working in a different organisation.

A number of possible overlapping roles largely relevant to user-oriented design (i.e.

not including managerial or administratory roles) fulfilled by HCI specialists were

identified. These include:

Self Educator: requiring the specialist to keep up with advances in the field.

Designer: requiring the specialist to create a new UI or technique.

Researcher: requiring the specialist to undertake work for the advancement of

knowledge in some field.

Consultant: requiring the specialist to contribute to a commercial design project.

Agent of Technology Transfer: requiring the specialist to teach others about HCI

or pass on skills or techniques.

These roles were not explicit titles used by the specialists, however they are useful

labels which will be adopted here to indicate the rational purpose of the activities

undertaken by the specialists. They are also useful, when thinking about what HCI

specialists do, as implicitly involving certain subsets of the activities identified here.

However, in practice, the activities involved in each of the roles of the specialist

vary within the roles depending upon the circumstances within which the role

exists; for example the HCI specialist as a designer may be designing a system and

its UI (as in 03) or a dialogue (as in 01) or an extension to an existing HCI DET (as

in 04).

In table 6.4 the four types of activity are related to the possible role types of HCI

specialists which the interviews suggested they were involved in. These mappings

are based upon the general descriptions of the HCI specialists and give an indication

of the quality of each of the types of role observed. As indicated, some types of

activity are less important for a given goal than others, and some are not a part of

- 343 -

that role at all.

Perhaps the most important features of table 6.4 to note are that communication

activities are probably the most important to HCI specialists, being crucial to most

of their roles. It is important to recall that communication is viewed here as requir-

ing some analysis and indirectly some information gathering. This is reflected in

table 6.4, however for the role of technology transfer information collection and

analysis are represented as less important because they may have been carried out

by others or completed by the HCI specialist in the past, and it is the communica-

tion which is the main feature of this role.

Also noteworthy is that the roles of researcher and consultant are very similar. The

main difference between the roles appears to be in the constraints within which they

operate; in 03, where a small amount of research was undertaken by C and D, and

04, where research was more common, the specialists C, D, E and F all agreed that

research was much less constrained than commercial work in terms of choice of

aims and methods. However, many of the same activities, and presumably skills,

come into play within both roles.

A brief qualitative discussion of each of the roles identified, as listed in table 6.4 is

included in the following.

Self education is a label used in this study to refer to the role of increasing one's

own knowledge of a subject area in a deliberate manner (as opposed to gaining

experience in an incidental manner, as a by-product of other activities). It was seen

to be important, but restricted mainly to reading in most cases, although some prac-

tical self education was noted in 01 and 04 where the specialists practised a

number of specification and analysis techniques (which became skills) for possible

future use. Self education simply involves the specialist keeping informed on HCI,

psychology, systems engineering (research and techniques) or whatever he/she con-

siders necessary, and also on general company and project concerns which relate to

the work being undertaken.

It is an implicit and private, rather than an explicit role of the HCI specialist.

Only C and D claimed that they did not continue to educate themselves by keeping

up to date with developments in HCI and Psychology. They stated that they always

- 344 -

Table 6.4

Qualities of Activities Involved in

the Various Roles of HCI Specialists in the Study

Roles

Self Educator

Designer

Researcher

Consultant

Technology

Transfer

Agent

X = A Major Quality

x = A Minor Quality

Activity types

Information Invention	 Analysis	 Communication

Collection

x

x
	

x	 x
	

x

x
	

x	 X
	

x

x
	

x	 X
	

x

x	 x
	

x

based their consultancy or design ideas on personal experience with previous sys-

tems.

Design is a role name used here to refer to creation of entirely new things or new

arrangements of existing things, largely by inventiveness, and analysis of current

states of affairs. Perhaps it is best referred to as a poorly understood art form

(Maclean 1988). When practised by the HCI specialist, design seemed to be res-

thcted, in most instances, to extensions of HCI techniques for UI design and evalua-

non, or to guidelines and educational or technology transfer material. The most

obvious instance of HCI specialists undertaking system design was in 03 where

- 345 -

specialists C and D were seen to be the main system designers on a long term

research project to develop a future multi-media office system, where the focus was

on the UI.

For HCI specialists as systems designers, the main source of information used as

input to the design, where the specialists were most clearly instigators of a design

project, was invention based upon knowledge that the specialists already had. Ini-

tially they were short of funding and had to base their understanding of the applica-

tion domain of office tasks upon reported research by other researchers, and on dis-

cussions with management within 03. Having worked out some office tasks and

needs which were generally agreed to be representative, they used these to define a

"function set" which drove initial prototyping of the product in order to determine

how the functionality should be delivered to the user. The main activity providing

the information which shaped the early form of the system after this took the form

of a number of all day "flushing out" sessions which were essentially creative design

and verbal discussion sessions between C and D in which the chosen functionality

was integrated into an informal coherent system specification.

How representative this is of HCI specialists as systems designers in general is not

clear from this study. However, it is probable that this kind of highly inventive and

informal system specification activity on the part of HCI specialists is the exception

rather than the norm. In 04 F also undertook a small amount of system design for a

WIMPs UI management information system (MIS) to front end a mainframe appli -

cation. His approach in this case contrasted with that of C and D because he carried

out his own task analysis and used much more structured techniques to describe

existing users tasks in order to clarify required system functionality.

In most other examples given by interviewees in the study, the original require-

ments and design concepts for system UI designs were presented to the HCI special-

ists by other parties. Most of the HCI specialists inventiveness seemed to be

devoted to finding ways of ensuring that the requirements and functional

specifications supplied by others could be fulfilled by a user friendly system.

Both E and F designed modifications to existing HCI techniques in order to analyse

tasks which would have to be supported by Uls of systems supporting a variety of

applications. They converted re iuirements based upon these into system

- 346 -

specifications which met any functional requirements defined by themselves or oth-

ers. When designing extensions to such techniques their creativity was based upon

the needs of the moment "You do what you can in the circumstances; we add things

and use different techniques". For example they stated, "TAKD [Task Analysis for

Knowledge Descriptions (Johnson et al, 1984)1 worked quite well for us, but it did

need extensions because it doesn't capture context information very well."

In 02 specialist B undertook to design some guidelines for use of colour on screen,

for screen design and keyboard design. These guidelines were for distribution to

systems designers in the company. In terms of the proportion of inventiveness

versus that of information collection underlying the role of design, this is the most

information collection intensive of the design examples observed here. B based his

guidelines variously on functional specifications of proposed systems or keyboards,

reports on committee findings, reports from company marketeers and someone

representing the potential users of the Uls. He also referred to a fair amount of

literature and based many of the guidelines on other existing guidelines. In this

instance he was acting partly as a self educator at the same time. Since some of his

guidelines were borrowed from others, B's role cannot be properly considered

design.

Specialist A was responsible for designing the details of dialogues between users

and programmable photocopiers, however the degree of freedom was very limited

because accepted dialogue styles already existed and were maintained in the new

versions which 01 produced. Furthermore the input devices supplied by the

machines were often very crude (some were quite sophisticated) and once again this

limited what could be designed.

Research is a label used in this study to refer to a role which encompasses activities

which increase general (rather than an individual's) knowledge about a subject.

Research may be long-term, with no immediate benefits, as it sometimes was for E

for example, who managed and contributed to the development of a tool, with

government funding, for mapping CLG specifications to JSD specifications,

although his company 04 made no use of such tools at the time.

Specialist A concentrated on consultancy and carried out very little research. Spe-

cialist B did not engage in a great deal of research, his roles were more restricted to

- 347 -

consultancy and technology transfer.

Specialist B's organisation (02) was involved in a number of government funded

research initiatives. These were very large-scale projects involving a number of

collaborators. The main one involving B was to develop a methodology for tech-

nology transfer of UI design methods to non-HCI specialists.

In the main, specialists C and D did not carry out research, their roles instead being

mainly consultancy oriented. The multi-media office system design project in 03

was officially a long-term research project rather than a straightforward design pro-

ject. It was instigated by C and D who acted as the initial system designers. It

involved a small amount of research on their part into what constituted a representa-

tive set of office tasks. However, most of the research on this project was carried

out by a university research group which investigated ways of providing the kind of

functions required by the specifications that C and D had designed. Furthermore

this group had to provide an environment which supported the philosophy adopted

by C and D where their system was thought of in terms of objects which could pro-

vide services, have a variety of representations and be independent of any particular

machine. Consultancy is seen in this study as referring to the application of

knowledge to particular projects, or to solve particular problems, for clients or other

groups within the organisation. It is perhaps the core role of the commercial HCI

specialist. It certainly represented the main part of all of the interviewees' jobs.

Specialist E described previous consultancy experience with his previous employer

in the following manner "... it tended to be bitty; a lot of firefighting [very late

evaluation]. You'd be dragged on at the end of a project when a lot of things were

going wrong, for example I was dragged onto one project at about four months from

its conclusion. They'd had ten people working on it for four years and they hadn't

put any help in; that was fairly typical."

For A, consultancy involved contributing to a number of projects in a well defined

design programme. He used system and user requirements generated collabora-

tively to drive his dialogue specifications which were based upon his experience and

the use of a formal state specification notation. As well as developing dialogues, he

ran experimental evaluations on prototypes. B undertook a variety of projects as a

consultant, he supervised setting up a usability lab, ran experiments on prototypes

and analysed user difficulties. He also contributed to the development of a UIMS

-348-

by ensuring that low-level incompatibilities between the two tools, which were

integrated to form the UIMS, were resolved. He did not develop parts of systems

himself, his consultancy role emphasised evaluation.

C and D evaluated a number of different manuals, sets of documentation, and proto-

type systems. Their role as consultants involved informal evaluative commentary

on copies of incomplete designs which were sent to them, to be evaluated experi -

mentally or otherwise, from remote design and development sights. E and F con-

sulted for both external and internal clients' projects in 04 which makes them the

exception in this sense. They were also exceptional in that they worked very largely

on development and theoretical analysis for the purpose of evaluation as opposed to

empirical, experimental evaluation. This was mainly because of a lack of space for

experimental evaluation facilities in their organisation.

Technology transfer is the label applied here to the role of educating others to take

over from the consultant by passing on critical information or recommended

methods. Unfortunately where technology transfer was seen to take place in this

study there was usually little time available to pass on a great deal of knowledge.

Specialist A discovered a specification technique which he thought would be ideal

for communicating his ideas in a precise form to programmers. He informally

encouraged the programmers to learn the notation and from then on used it to

represent his design recommendations in the form of programmable ready material.

At the other end of the spectrum of organisational structuredness of technology

transfer, B was involved in a large scale research project undertaken to develop a

detailed procedure for technology transfer which involved producing training

material and preparing workshops, and paper tools to help the receivers of the new

technology to apply it.

Somewhere in the middle, in terms of organisational formality, E and F presented

technical symposia within 04, as did other types of specialist in the company. This

activity was aimed at allowing company employees to "identify who had certain

skills." C and D also regularly talked informally to people in the company with dif-

ferent roles to their own, such as systems analysts and designers. They would "try

and persuade them to take a more user-centred approach" and found that, with per-

sistence, they got a very positive response.

- 349 -

C and D did not appear to engage in technology transfer, and did not receive

transferred technology from other specialists in the company. It seems likely that

03 itself did not encourage this type of activity. However, 02 and 04 clearly

placed great emphasis on this potential role of employees as a valuable educational

exercise, although the motives for encouraging it were at odds. In 02 the aim

appeared to be to save employing more HCI specialists, and in 04 it appeared to be

to ensure that everyone knew what various specialists had to offer and who they

were.

Table 6.5 summarises the various roles identified for the HCI specialists in the four

organisations studied. The only role not undertaken by all of the interviewees, at

least to a minimal degree, is that of technology transfer, which C and D in 03 did

not engage in. Self education was seen to be minimal in 03 (restricted to company

related reading, and parts of a few books relating to the multi-media office system

project). The role of researcher seemed to be limited for A in 01 and for C and D in

03.

Organisations 02 and 04 seemed to involve the most varied roles for their HCI spe-

cialists, and this compares with table 6.2 where these two organisations are

presented as being the most variable in working regime for the interviewees.

6.4.5 General Summary of Working Regimes, Activities and Roles

Working Regimes

The working regime of HCI specialists appears to vary widely. From the interviews

it appeared to do so more as a result of the organisation's practices and the diversity

of projects undertaken, than the preferences of the individual. Since the working

regime tends to dictate the roles and activities of specialists, and thus the manner in

which they attempt to improve usability of Uls, it would seem probable that the

selection of any particular technique for UI design or evaluation will be influenced

by factors external to the individual specialist. Namely any factor which predeter-

mines the nature of analyses made possible and the communication channels open

to the analyst.

-350-

Table 6.5

Roles of HCI Specialists

In the Four Organisations in the Study

Organisation

01	 02
	

03
	

041
Roles

Self Educator

Designer

Researcher

Consultant

Technology

Transfer Agent

Yes	 Yes

Yes	 Yes

Minimal	 Yes

Yes	 Yes

Informally	 Yes

Minimal

Yes

Minimal

Yes

No

Yes

Yes

Yes

Yes

Yes

For example, if the working regime is very hierarchical, a specialist may not be free

to carry out direct task analyses with prospective users in order to determine the

appropriateness of design decisions. In 02 which was hierarchical in its working

regime, specialist B had little direct access to prospective users for the purpose of

ascertaining the utility of design guidelines he was developing. Another example

relating to communication is where F used CLG specifications to describe the func-

tionality and dialogue of a UI. The working regime of 04 meant that he was some-

what isolated from other design team members, and that he began working on the

specifications at the same time as prototypes were being developed. The result was

that, by the time the specifications were complete, the other team members were

unwilling to alter their design to conform with them.

- 351 -

Activities and Roles

The wide variety of activities undertaken by HCI specialists represent the diversity

of tasks they may be expected to carry out by their organisation. It appears that, for

specialists in small HCI groups working for large organisations, HCI involves mak-

ing a small contribution to a large number of projects. This was particularly

apparent in 02 and 03, the two largest organisations. In these cases, the emphasis

for HCI activities was strongly on evaluation rather than on design and develop-

ment.

The roles described above help to clarify the purpose of the activities identified by

the interviews.

Self Education is a private role which enables the specialist to keep up with new

developments and techniques in the discipline, as well as keeping informed on com-

pany matters and the relevant projects to which he or she might be expected to con-

tribute.

Design seems to be highly constrained for HCI specialists in most cases. Limita-

tions in terms of time, and resources, as observed in the features analysis and the

designer interview study, operated for HCI specialists also. Frequently their free-

dom to apply ideas to design was restricted to recommendations or criticisms of

existing designs. Where design took place it appeared to be the exception, rather

than the norm and tended to be associated with research projects as in 03's multi-

media office system research project, and 04's government funded research project

to develop a CLG-JSD mapping tool.

Research seems to be a luxury for commercial HCI specialists. In this study,

research was observed as being "farmed out" to a university, by C and D, and in 02

and 04, where research took place, it was largely supported by government funding

as in the example above. It is interesting to note that research in HCI emphasizes a

variety of activities including technology transfer, knowledge based software

engineering environments which foster user-friendly design, multi-media office sys-

tems, tools for mapping one type of system specification to another. This variety

contrasts with the greater emphasis on evaluation in consultancy.

-352-

Consultancy seems to be the core role of HCI specialists in commercial environ-

ments. There is a distinct emphasis on evaluation, illustrated in particular by 02,

03 and F's previous employer, rather than on design or development in their con-

sultancy. The explanation for this may be rooted in working regimes where com-

munication channels and organisational insularity obstruct the proper integration of

MCI specialists early on in design. There may also be a problem with attitudes of

computer science educated specialists who have little idea of the skills on offer from

MCI specialists, and find it hard to communicate with them. It may also be true that

there are not many user-oriented design and evaluative techniques available to HCI

specialists which are easily applicable to development; in 04 existing techniques

frequently had to be modified.

Technology transfer varies widely from being nonexistent as a role as in 03,

through being a recommended company policy for all specialists as in 04, to being

a highly structured and organisation-wide activity, as in the research project in 02.

It may also take place informally on the initiative of the individual specialist as in

01 and 04. Technology transfer seems crucial for gaining increased acceptance for

HCI as an outsider amongst the more computer-centric specialisations in commer-

cial organisations. It was particularly noticeable in 01, and 04 where informal

transfer took place, that the results were very encouraging, in 01 an efficient shared

notation was used to represent functional UI specifications, and in 04 attitudes to

and understanding of HCI were improved by discussions.

The preceding discussions have been restricted to the nature of working regimes,

activities and roles experienced by HCI specialists. Hopefully HCI specialist's roles

in commercial design have been somewhat illuminated by these findings. This

information helps to provide a clear picture of the nature of the working environ-

ments within which HCI DETs or less theoretical techniques are applied by HCI

specialists to UI design and evaluation, and the nature of the roles which they might

have to support.

6.5 HCI Techniques Applied by Specialists in
Commercial Environments

In the following sections, the nature of the scientific, user-oriented, design and

evaluative techniques exploited by HCI specialists in commercial environments and

-353-

uncovered by the interviews will be described in some detail. By scientific I wish to

imply anything which is significantly non-heuristic or intuitive. However, this does

not deny that a large component of what HCI specialists do may in be, in fact,

heuristic and intuitive. It is simply that this analysis does not focus on the features

of such activities. The findings should help to clarify what are the features of appli-

cable, scientific techniques for usability analysis in commercial practice.

The techniques which are described in this section are as follows:

Experimental Evaluations

Technology Transfer

Statecharts (Harel 1987)

TAKD (Johnson et a! 1984)

CLG (Moran 1981)

Unlike the descriptions above the techniques described in the following are not res-

tricted to single organisations, or specialists. Where the same technique, or varia-

tions of it, have been identified as used by different individuals in different projects,

their experiences with the technique will be presented together and compared and

contrasted. For each of the techniques the analysis asks a number of questions

which relate to the focus of the study:

* What is the scope of each technique, and how is it used.

* How do HCI specialists using the technique avoid or cope with user-oriented

design constraints and problems.

* How does the technique exploit information sources.

* How does the technique support the activities of the HCI specialist, and in what

ways does it fail to do so.

Only techniques applied for practical purposes (as well as research) are discussed,

those which were mentioned by interviewees as only being used for self education

or purely for research were not pursued in the interviews. The techniques identified

are assigned a simple classification of their general orientation and purpose as

exposed by the interviews. They could be either design and/or evaluation oriented,

-354-

and their main function could be analysis and/or communication of information.

The scoping is intended to suggest the potential scope of the various techniques

rather than the scope of particular applications carried out by the HCI practitioners

in this study. The reason for this is that any example would not have demonstrated

such scope, and that the specialists themselves tended to modify or only exploit part

of the scope of techniques. Another difficulty was that they often used different

ways of characterising the scope of their application of a technique. For example

the practitioners who carried out experimental evaluations talked about experiments

being designed to identify user problems and errors in general, which could have

been caused by violation of any or all of the principles. They were not specific

about, or particularly concerned about characterising their evaluations in terms only

of usability principles and evaluation factors.

The "Maybe entries in the scoping matrices are used to represent cells which a par-

ticular application of the technique may address, but which are not necessarily cells

which the technique is explicitly designed to address. Consequently experimental

evaluations and technology transfer techniques have a very broad potential scope,

whereas the other three more precisely defined techniques have narrower potential

scope but more definite areas which they do clearly address.

It is appropriate to add here that the amount of detailed information relating to each

technique is dependent upon what was provided by the interviewees in the study

who varied in terms of the detail they supplied.

6.5.1 Experimental User Evaluation of Prototypes and or Products

Exploited by: Specialists A, B, C, and D.

Orientation: Evaluation of working prototypes or late evaluation of products.

Purpose: Identification of user difficulties.

- 355 -

Scope of the Technique, and How it is Used

Experimental evaluation appears from the interviews to be widely used on commer-

cial products in organisations with HCI specialists. 01, 02, and 03 all had facili-

ties for testing their products on people. Agency supplied individuals, or internal

staff and sometimes external representative users were all seen to be used as experi-

mental subjects at various times. The most detailed information on this method

came from D who spent a good deal of his time conducting experimental evalua-

tions.

In many cases actual versions of the product are tested, but in 01 there were UI

simulation tools which enabled UI testing to be carried out on disposable product

simulations of the type described by Rosson et a! (1987). The scope of the tech-

nique depends largely upon the nature of what is being tested; D stated "We are

always testing incomplete products ... Of course it's a fact of life because we

couldn't influence the design so much later on." If a simulation of a more complete

UI is used early in the design process as in 01, the technique may permit analysts to

identify and rectify deep seated problems with a UI. If the technique is applied to

an evolutionary prototype (as defined by Rosson et al, 1987) in the late stages of

development it may enable analysts to identify major problems, but modifications

may be restricted to superficial aspects, of the UI. This effect was particularly clear

from the descriptions of B who stated that a late evaluation he conducted had no

effect upon the first release of the product (which was the evaluated version). "One

or two" modifications were made to the second release on the basis of the evalua-

tion, and the rest of the recommendations for modifications were addressed in the

third release.

D also noted that findings and recommendations, based upon the results of experi-

mental evaluations, were not generally as influential as they might be; "We are

never satisfied with the product when it goes out of the door because we know that

there are lots of problems that haven't been fixed. They go out of the door for other

reasons, so there is always pressure to get things done [to finalise the design pro-

cess]. The market, etc may be the deciding factor. I don't have to deal with that

side of things; someone else does." Again the insularity of the specialists groups

from the other parts of the organisation may mean that it is easier for other groups

to ignore usability issues to some extent, and push poor Uls onto the market.

-356-

All of the specialists who used experimental evaluation seemed to be familiar with

controlled scientific methods, such as used by psychologists, to ensure avoidance of

bias, and unwanted variables. In commercial product evaluation typically, test bat-

teries of representative tasks are prepared which are then presented to users in the

form of instructions. The users then attempt to carry out the tasks and various

aspects of their performance are monitored by the HCI specialists or assistants. D

stated that in 03 they restricted their experiments to very simple tasks because the

greater the task complexity, the more random noise they found they got in terms of

measurements of performance.

Details of this method seem to vary extensively between organisations. The

representativeness of users may be very high or quite low, particularly where in-

house staff are used as experimental subjects. As D stated, "non-representative

users is a problem for us" because in-house staff tended to be familiar with the UI

house-style and characteristics of the application.

C and D in 03 developed an interesting experimental method for clarifying users'

problems without interfering with what subjects were doing by asking questions. In

early experimental UI trials they wished to reveal and analyse problems with

the UI, rather than produce representative predictions of end-user performance.

They got their subjects to work in pairs; one .with a manual telling the other one

what to do to achieve the target tasks they had been set. The dialogue between the

subjects was usually much more illuminating than having subjects work on their

own.

The type of metrics used to judge performance varied depending upon the facilities

available in the testing laboratories used by the specialists. Usually time taken to

complete tasks, the number and type of errors, and the amount of reference to

manuals or on-line help, were recorded for analysis. The experiment might be

directly monitored, or more usually video cameras (available in 01, 02 and 03)

were used to record the actions of subjects for later detailed analysis. In 01 and 02

the specialists had the facilities to time-stamp and log all keystrokes which helped

clarify users' actions if the video tapes were inadequate. Additional, qualitative

information was sometimes gained by asking subjects to fill in questionnaires after

the experiment, rating what they liked and did not, and describing problems and so

on.

-357-

.- .-

.-
)—

c1 '5-)

.- '5-)

:5

>
•	 I	 :5	 1

	

-	 -	 -	 -a >

I	 >1

0

)—	 :5	 V	 V

	

-	 -	 -

	

>	 V	 >	:5 	 >..
-

>1
I.e
.-
- _	 V	 V
-	 -	 -	 -	 -	 -

	

>	 V	 >'0	 :5	 :5	 >.	 :5	 :5

a

	

V	 V	 V	 V

	

-	 -	 Cfl	 -	 -
:5	 >	 >	 V	 >	 >•

	

:5	 :5
—

0

a

	

V	 V	 V	 V

	

-	 -	 -
-	 >	 >	 V	 >
E	 >

o	 cn-

	

fl	 --
:5V

CJ
a—	 -	 -	 V

-.

	

—	 •J]—.
______	 2

-358-

The technique may reveal many different types of problem, many of which are

difficult to classify. Defining and analysing types of errors, unacceptable task

methods, subjective responses, and so on can be very difficult, both C and D

remarked that this was a problem for them. Also the value of experimental evalua-

tions appears to be debatable. C stated that experiments were "useless, in that you

don't discover anything that you didn't know already." He also stated that the use

of statistics to reveal "significant" differences in performance was very misleading

because such differences can be tiny. However, his colleague was quite positive

about the value of such experiments, although he was unhappy that they were some-

times ignored by managers and designers.

Table 6.6 sums up the scope of experimental user evaluations of a UI in the same

way as the HCI DETs in Chapter 2 were characterised. Theoretically, an experi-

mental evaluation can be identical in its conditions to the real use of a system. It is

clear therefore that there are no limits to the scope of experimental evaluations in

terms of usability principle or evaluation factor. With sufficient skill and experi-

ence, an experimenter should be able to devise a situation where manipulations of

any of the factors (principles or Users, Application, UI, or Target Tasks) would

cause changes in performance, enabling the analyst to predict design features'

effects on users in the real world. However, the sensitivity of experimental metrics

(such as errors or performance) could be so weak as to force unnatural, and con-

trived experimental circumstances in order to get any significant differences

between the results of different conditions.

Furthermore the accuracy of experimental evaluations depends upon use of

representative users, real system behaviour (as opposed to pure UI simulations), and

representative target tasks (under realistic conditions). Hence the "Maybe" entries

in the appropriate cells. A simple UI simulation could well turn out to be mislead-

ing, unless these other factors were accounted for, or their exclusion could be

justified on the basis of a plausible hypothesis, for instance, that certain experimen-

tal manipulations of colour and contrast on a VDU would affect representative, and

non-representative users in exactly the same way.

Avoidance of, or Coping with User-Oriented Design Constraints and Problems.

The main constraints associated with experimental evaluations seem to be the

-359-

availability of representative subjects, the timing of the evaluation in relation to the

stage in the product's development, and the extent to which HCI specialists recom-

mendations impact upon the final product. Avoiding the resulting problems seems

to be quite difficult because of the frequent constraints imposed by inadequate or

non-existent prototyping technology, and the time and expense involved in obtain-

ing representative experimental subjects, analysing data, and making modifications

to the product on the basis of the findings.

If adequate prototyping tools are not available, as was the case in 02 and 03, the

system is usually difficult to modify by the time it is in a robust and complete

enough state to carry out user evaluations. Consequently recommendations based

upon experiments may be ignored, or their impact may be deferred until later

releases of the product as in 02. The only solution to this seems to be ensuring that

prototyping tools and expertise are made available to HCI specialists' groups. Why

this is not already happening seems to be something of a mystery.

Exploitation of Information Sources.

Experimental evaluations have the potential to reveal the precise impact of UT

designs upon users, however the degree to which that information is exploited

depends, at the present time, upon the ingenuity of the analyst. None of the special-

ists reported using any experimental guidelines to enhance the scope of their ana-

lyses, they seemed to rely on their own experience in psychology, or from previous

expenments.

The information sources exploited by experimental evaluations are generally related

to observable performance, e.g. task completion time, number of errors and so on.

This makes piecing together internal confusions a rather difficult task as D stated

"you have to know what the subject's strategy is and you have to be able to decide

whether what they do qualifies as right or wrong; what qualifies as a successful

interaction." The solution used by D, involving getting two subjects to talk to each

other, was able to reveal more about what subjects thought was going on in the sys-

tem because they were forced to explain it to each other. Misconceptions were

made explicit about the nature of the system, its states, and how to accomplish task

goals, based upon information the subjects got from the UI and manuals in the

experiments. Because they were described by subjects to each other they proved

-360-

easier to explain than simple errors.

Support for the Activities of the HCJ Specialist, and Failure to Provide Support.

Experimental evaluations enable the HCI specialist to test the ability of the UI to

successfully support the tasks users are expected to carry Out with it. They quickly

reveal the nature of problems that end-users are likely to have, enabling the analyst

to make accurate predictions. However, they are not so good at explaining such

problems because they may not reveal what is going on in the user's head, so the

analyst may find it harder to suggest causes and solutions to users' problems. In

most cases it may be up to the analyst to carry out a great deal of detective work on

the recorded experimental data, and to guess the source of users' difficulties. On the

other hand, inventing more revealing experiments such as the two-subject strategy

may be a way of improving the value of experiments.

Once the results have been analysed, the HCI specialist has some concrete evidence

which should be easy to communicate in order to support any criticisms he or she

may have of the UI. Unfortunately, this evidence is often ignored by managers and

designers because it is only available after the UI design has largely been com-

pleted. As was illustrated by B's and D's experiences, it may only be later releases

which benefit from late evaluations. In 01 and 03 late evaluations would also be

carried out for the purpose of increasing knowledge about the product's usability,

and this knowledge could well be brought to bear upon future products.

6.5.2 Technology Transfer

Exploited by: Specialists A, B, E and F.

Orientation: Design and Evaluation of Uls in general.

Purpose: Communication of basic HCI principles methods and benefits.

Scope of the Technique, and How it is Used

Technology transfer cannot really be described as a single technique, nor is it sup-

ported by many techniques at the moment. It does represent an important approach

- 361 -

towards improving the user-oriented ness of design. The term here is simply used to

refer to any activities undertaken by HCI specialists to communicate HCI informa-

tion to other non-specialists which will help them to realise the importance of HCI

or UI design and evaluative techniques and tools in system development, and possi-

bly help them to apply some of its philosophy and methods themselves.

For specialists A, E and F, technology transfer was an informal activity, or simply

involved giving presentations to other employees of their company. This represents

technology transfer in its most unstructured form; what is passed on is up to the

individual specialist. In the case of A, he passed on some papers to software

developers to read, which explained a graphical system state specification notation

called Statecharts (Harel 1987). His aim was to use this notation as a means of

communicating his UI behavioural specifications in a precise, and unambiguous

manner. For E and F, technology transfer consisted of presenting, and attending,

technical symposia on research and consultancy projects to audiences of 04's

employees. This activity, together with informal conversations with others in the

company helped familiarise people with the expertise and any number of techniques

(with associated potential value to system development) on offer from the various

skills groups in the company.

By contrast, in 02 a highly structured technology transfer project was under way to

pass on a basic user-oriented design methodology. The methodology was being

developed in collaboration with two other organisations (one commercial and one

academic) supported by government funding. The new methodology was not com-

plete at the time of the interview with B. Its main aims and methods had already

been decided, however its applicability and value had not yet been established.

B was able to provide a detailed picture of the scope of the transfer activities and

the basic user-oriented design methodology. It was essentially designed to fit in

with 02's market analysis strategy and seemed to be designed to be highly

integrated with existing practice. Assuming that the project to which the methodol-

ogy was to be applied had already been through the in-house market analysis stage,

the methodology involved three phases which were specification of the opportuni-

ties for, and feasibility of, the product; identification of the solutions which the pro-

duct would provide; and finally translation into a definition for the nature of the pro-

duct itself, including hardware, software, documentation, user-training required, and

-362-

cn

.-

-

c1*ø

'S

-
>..	 >

I	 I

U

--I
>	 >
I	 I	 I	 I	 I

3

	

-	 V	 V	 V

	

N	 -	
-	 -
>

:

'S

-
-.
-

	

c	 .)	 I

-	 V	 V	 V	 V

	

-	 -	 -
I

I	 I	 I	 I	 I
-

0

V	 V	 V	 V	 V
-	 -	 -	 -

--
I	 -	 I	 I	 I

--
V

C-.I	 --	 -- -	 I- -	
V V

IL

-363-

so on.

The technology transfer involved running a number of workshops lasting two and a

half days, in which syndicates from project teams which had already reached the

required stage in their design cycle (i.e. passed the market analysis stage) were

required to work through examples of each of the activities that the new methodol-

ogy required. A syndicate would typically involve a marketeer, two designers, and

a technical author, with a user representative being brought in at the end of the

workshop to give opinions on the results of the workshop.

The methodology required that the design team consider the various stakeholders in

their planned product and describe how it would affect them, and what they might

want from it. The general structure of the descriptions would be to work in a top-

down manner, beginning with stakeholding groups, then to individual system users

(direct or indirect) of the system within those groups, then to tasks, and then objects.

The descriptions would be rated according to confidence in their validity, and their

importance to the nature of the design itself. Where confidence was low and, or

importance high, then the design team members would be advised to carry out

investigations to supply the required information to clarify descriptions.

Essentially the methodology was intended to force design teams to be explicit about

the impact a system would have on its users, and the roles it would support, and

how. One of the requirements of the methodology was that it should be transferr-

able to non-HCI specialists, and be easy to follow. It focused upon the use of spe-

cial sheets of paper which the design team were required to fill in, and which helped

to guide their descriptions and organise them for later reference. It was simple to

follow and did not require specialist knowledge of jargon or specification tech-

niques with all descriptions being written in English, or involving simple charts

such as matrices, or hierarchy diagrams.

In the actual workshops, the limited time meant that complete descriptions were not

possible, so only one or two examples of each type of description could be followed

through with the HCI specialists (e.g. one stakeholder, with one individual user

might be described). As B stated, the main intention of a workshop was to "get

them [the syndicate] thinking about all the issues, and to do it in a structured

fashion."

-364-

Table 6.7 suggests that the potential scope of technology transfer techniques in gen-

era! is without limits. Essentially, whatever anyone is capable of learning may be

addressed by a technology transfer technique. The particular technique used in 02

is represented as dealing with user-centred task dynamics in particular, it did not

address simplicity, compatibility, observability, consistency and retrievability were

not explicitly described by specialist B. However, he did talk about how systems

designers were encouraged to consider the impact of their system and the roles it

would support. Therefore the tasks that the system would be designed to support

would be subject to scrutiny to ensure that they were sensitive to the roles of users

and business computer support requirements. Solutions to other areas of usability

problems (which the Matrix would capture) seem to have been envisioned as being

addressed by designing system training for users. It is also worth noting that the

technology transfer technique used by 02 did not address performance effects of the

design efforts. It included no explicit methodology for predicting or evaluating user

performance, and restricted itself largely to design alone.

In fact the Usability Scoping Matrix is not broad enough to capture some of the

issues which were regarded as important in the Os technology transfer technique.

Business concerns and organisational factors are not included in the Matrix because

they are not clearly HCI concerns.

Avoidance of, or Coping with User-Oriented Design Constraints and Problems.

The main design constraint for HCI specialists in 02 was that there were too few of

them to provide personal consultancy to every design project. The technology

transfer effort enabled them to influence a greater number of projects than would

have been possible any other way, however the effectiveness of the technique when

applied by the non-HCI specialists on the various design teams who used it was not

clear, since B had little feedback from its impact.

B described a number of problems associated with the method being transferred.

One was that it relied upon the clarity and specificity of the market analysis carried

out by the design team prior to its application. If this had not been done properly

then the target market would not be a consistent collection of potential clients with

similar system requirements which could be satisfied by one product. In one exam-

ple described by B "the basic problem was that we hadn't done a proper

- 365 -

segmentation of the market beforehand, and so what we got into straight away was

this variability problem ... The segmentation was an industry rather than a market

segmentation ... but two supermarkets may order goods in a very different way, yet

a supermarket may go about ordering goods in a very similar way to that of a DIY

store." Unfortunately the method did not include a technique for proper market seg-

mentation. This meant that workshop sessions were sometimes wasted on correct-

ing poor market segmentations, rather than transferring the user-oriented design

methodology.

Other problems included the generality of the methodology which meant that it

often required considerable modification to suit certain design projects. There was

too little time available in the workshops to teach the method properly. The tech-

nique itself took a long time to apply and in the workshop, only one or two exam-

ples of each type of description would be followed through, "whereas the syndicates

have many of each to do and may not bother to finish it because it's difficult after

so little practice, and there is so much to do."

In brief, the main value of the technology transfer of a simple user-oriented design

methodology seems to be that it increases the number of projects a very small

number of HCI specialists can influence. However, the success of the methodology

left in the hands of design teams is open to question. B reported that some of the

recipients of the new technology had a certain amount of difficulty applying the

technique "for example with PC's windowing systems much of this method seems

inappropriate where user-groups, users and tasks are not necessarily relevant."

Exploitation of Information Sources.

The technology transfer described by B essentially exploits the skills and experience

of those who develop what is transferred, and those who decide how to transfer it.

Information about HCI and user-oriented design can be presented in a more accept-

able form to recipients of the transfer than is generally the case in HCI literature.

The methodology described by B was made as non-cryptic as possible, its users

were not expected to have expertise in psychology or specialist techniques. Tech-

nology transfer on its own simply passes information to those who may require it

but to not have the time or the skills to gather information themselves. However,

the methodology transferred to the design teams in 02 was itself a means of

-366-

encouraging non-HCI specialists to exploit user-oriented information sources which

they might otherwise have ignored.

Support for the Activities of the HCI Specialist, and Failure to Provide Support.

The use of technology transfer techniques may not in fact support the role of the

HCI specialist in any way. The main value, as mentioned above, is that the special-

ist can reach more people in less time, however whether this is effective is not

known. Two of the other interviewees, E and F, appeared to be very sceptical about

the use of user-oriented techniques by non-HCI specialists saying I would prefer

them not to get involved" and "If somebody else has to do an HCI design, all we can

do is to give them a checklist and give them guidelines. We prefer not to give

guidelines, but if we are forced to do so then we say use it like a checklist. They're

things for you to think about, they are not god given facts that tell you to do it this

way, because every situation is different. It's about design, it's not about following

these steps to a good design." These comments strongly support B's criticisms of

the transferred methodology, in that it was too general and needed adaptation for

different products, and that there was no guarantee that design teams would use it

properly.

6.5.3 Reactive System State and Dynamic Behaviour Modelling
(Statecharts; Harel, 1987)

Exploited by: Specialists A and F.

Orientation: A Graphical Specification Technique for Use in Design and Evaluation

of Uls.

Purpose: Analysis and Communication of State Behaviour of the Virtual Machine.

Scope of the Technique, and How it is Used

Harel's Statecharts are a simple graphical notation for specifying clearly, and unam-

biguously the state behaviour of a reactive system (i.e. one that is largely event

driven, as are most Uls). They are basically an extended version of state transition

diagrams (see Chapter 2; on CCT's user of STN's). In other words, using this

I	 Substate2.1	 I

- 367 -

notation it should be possible to represent the result of any action at the UI in any

possible state. Statecharts have all of the formal properties of state transition net-

works (STN's) together with a number of advantages(Harel, 1987):

* They exploit and enhance the graphical strengths of STNs

* They can deal elegantly with notions of hierarchy.

* They capture concurrency (it is possible to be in two states simultaneously where

simultaneous events can occur) whereas STNs are essentially sequential.

* They express broadcast communication with a simple mechanism.

Figure 6.2

A Very Simple Statechart

Superstate 1	 I	 I •	 Superstate 2

Substate 1.1
A[c]	 P

Substatel.1

A very simple example of a Statechart is shown in figure 6.2. The result of Action

A, (given condition [c] is true at the time, in substate 1.1) causes the system to leave

substate 1.1 and superstate 1, and move into superstate 2, and the default substate

2.1. to which the small arrow points. In substate 2.1 actions B, C, and D are valid.

This might represent any semantics which the analyst chooses, for example substate

1.1 might be a SELECT-TEXT mode in a TEXT-EDIT state represented by

-368-

superstate 1. Action A could be pressing ESC, given the condition that no other

command is active at the time, which would take the user out of SELECT-TEXT

mode and TEXT-EDIT state and put him or her into a BATCH-COMMAND sub-

state(2.1), with three possible commands; B, C and D, which was the default sub-

state of an INTERRUPT superstate (2).

Specialists A and F used the Statecharts notation extensively, although they both

stated that it is not an explicitly user-oriented technique. It was clear from the inter-

views that Statecharts fulfilled a number of useful functions for that analysts, since

they were both very positive about its value. This attitude was significant in the

light of the fact that they used the notation without any support tools which could

have made their job a great deal easier.

Statecharts was generally used to describe the virtual behaviour of the system, in

terms of expected actions and dynamic responses, such as a change in state, or an

output. The behavioural characteristics of the virtual system were specified by A

and F before any software was actually written, and the specifications were analysed

and evaluated by the specialists to make sure they were correct before being passed

on to programmers who could write code directly from the specifications.

There were a number of differences between he structure of the projects which A

worked upon and that of the project in which F used Statecharts. A used Statecharts

on a number of projects to redesign or update sophisticated office photocopying

technology and had to coordinate his activities with those of a number of other spe-

cialists on design projects, whereas F worked largely alone during the stage of his

project where he wrote the system specifications. A used Statecharts to represent

the virtual states of the underlying system and to direct a separate, "orthogonal

specification of the precise nature of the interaction which was a dialogue

specification which dealt with communication between the user and the system. A

had to ensure that these specifications mapped onto one other orthogonal

specification of the system which was designed using a UI simulation prototyping

tool which captured the "look and feel" of the presentational aspects of UT being

designed, but which was not capable of simulating the underlying system behaviour

(Trillium; Henderson, 1986). All of these specifications would be built up in paral-

lel, but the Statecharts would tend, logically to precede the other two. Only after

these specifications had been completed would the code be generated based upon

-369-

..s

Co

-0

V	 V
>.

V

V
V	 V

>1	>1

C.)

rJ

—
V	 V

V
:
.-

-

-	 -
0

z

0

:
V	 V

>1

V
U

0
--0

V
U

— l	 .- -	 V	 0.
C.)	 -	 I_	 V V

..0
-'	 XC.,	 U_4
-'-	 E-.

-370-

them.

F used Statecharts on a project to develop his MIS in tandem with a task analysis

(TA) methodology (TAKD; Johnson et at, 1984). The system was developed "from

scratch" using a strongly top-down specification approach. The TA methodology

was used to analyse and represent task related information from an initial interview

based study of prospective user activities and requirements for system support. The

TA methodology, though capable of representing the roles of the system within the

task domain, could not represent that behaviour of the UI. As far as B knew "Sta-

techarts are ... the only kind of formalism which can capture the very interactive

type of system you're getting now. Also it appears that they are a very good way of

communicating with the programming." So he chose Statecharts to model the

expected user input and dynamic behaviour of a graphical UI for his own analysis,

and to communicate precisely the intended system behaviour to a programmer.

An implicit requirement of Statecharts is that the analyst already has a good idea of

what the system scope will be, how it should behave, and what if any exist, are the

limits of the system on which the application is to be implemented. Otherwise he or

she is in danger of producing an inappropriate, redundant specification that cannot

be implemented.

In spite of the difference between A's and F's projects and the applications being

designed, their use of the Statecharts notation was only slightly dissimilar, and this

is probably because the scope of the notation is relatively limited to the simple state

behaviour of the system; it says little or nothing about presentation and semantics of

that behaviour. However, what the notation lacks in scope, it seems to gain in gen-

erality across applications, and in its power of precision of expression.

Table 6.8 shows that Statecharts cannot address user-oriented issues directly, it can

only support the representation of application, or UI properties from which an

analyst would be able to deduce that a design was more or less usable. It says noth-

ing about user properties, and how compatible or user-centred the design is, it

merely represents, or more precisely is sensitive to, simplicity, observability, con-

sistency, and retrievability. Changes in these ideal system propertie would have

effects on a Statechart representation. Changes in compatibility and user centred

task dynamics would probably have no noticeable effect. Likewise, whatever the

- 371 -

users or the target tasks turn Out to be, Statecharts cannot suggest their implications

for usability. Furthermore Statecharts has nothing to say about performance aspects

of systems with respect to users.

Specialists A and F confirmed that Statecharts does not explicitly support user-

oriented design, and that it would be quite easy to specify an unusable system using

the technique. They had to be conscious of implications for usability whilst making

their specifications, and they used other user-oriented techniques to support these

other aspects of their approach.

Avoidance of, or Coping with User-Oriented Design Constraints and Problems.

One of the main problems which became apparent with Statecharts in the interviews

is its lack of ability to deal with the constraints of the intended application software.

It was perfectly possible for F to specify states which would be impossible with the

intended software. A got around this problem by being familiar with previous simi-

lar versions of the intended product and communications with other groups working

on the design. For F this was not so easy because the MIS was a completely new

product, without precedent in his organisation, and the application software had not

been decided upon at the time when he was writing the specifications.

Another problem which both A and F remarked upon was that the notation did not

discourage them from specifying an unusable system. This problem relates to the

fact that Statecharts does not deal with presentation or semantics. They had to rely

on their own skill and intuition, and other specifications such as the simulation pro-

totyping tool used by A, and TAKD used by F, to deal with this.

Statecharts may however help to encourage the analyst to maintain consistency, as

F stated "It shows consistency, or the lack of it, as long as you are bearing it in

mind throughout." But the main value it seems to have is its concise representation

of the precise nature of the system behaviour which is easy to understand, and cap-

tures the way in which context influences the effects of actions: "You can get a con-

ceptual model of the system and know exactly what's wrong before a single piece of

code's written. I have discovered quite a few mistakes that I myself made ... and

because it's a visual medium, you can process it more quickly than you can digits

which is a problem with others [other notations]." As far as A and F were

- 372 -

concerned, Statecharts made the analysis of a potentially confusing and dynamic

state of affairs a great deal simpler, and enabled them to communicate much more

effectively with programmers who would implement their ideas.

Exploitation of Information Sources.

Statecharts is a fairly powerful expressive technique which enables the analyst to

transform informal expressions about a planned UI design into formal, visually con-

cise expressions which enhance his or her ability to see the dynamic implications of

the specification, without having to resort to writing and running the software. The

formal expressiveness should also permit the analyst to prove the validity of any

claims made about the effect of various actions given certain conditions in the sys-

tem.

The Statecharts notation does not assist in the collection of information as does

experimental evaluation of a UI, it merely enhances the detectability and precision

of information. It is also an easily processed form of representation which can be

used to communicate information from one agent, such as an HCI specialist, to

another, such as a programmer. It precision, which is sufficient to make it machine

readable, permits a non-programmer to design programs for others to implement.

Support for the Activities of the HC! Specialist, and Failure to Provide Support.

The Statecharts notation fulfilled a number of valuable user-oriented design func-

tions for A and F which were not provided by other methods available to them. It

supported them in their roles as designers and as consultants. The activities it facili-

tated were essentially those of analysis and communication of information about the

intended behaviour of the virtual machine or system UI. For F in particular, the

nature of Statecharts was well suited to a top-down approach to design because it is

well able to support "information hiding" which enables details of the design to be

specified in more detail at a later stage in the design cycle so that decisions can be

put off. This makes the technique quite flexible, which means that it should fit into

a variety of design approaches; e.g. top-down as in SSADM (Downs et al 1988),

bottom up as in the reuse of existing libraries of packets of code (Sammet 1986,

Jacobsen 1987), and middle-out as in JSD (Jackson 1983). A drawback with Sta-

techarts is that although it should be quite easy for most people, including potential

-373-

system users, to read them, they do not convey the look and feel of the system.

However, in this respect, as abstract system representations, they are not unusual.

Its main functions included providing a clear system specification which could be

analysed and discussed before software war written which would be more difficult

to modify. It enabled A and F to identify conceptual and logical mistakes they had

made in their specifications. It was a concise and unambiguous means of communi-

cating designs to programmers.

At the beginning of this sub-section, a number of advantages of Statecharts were

listed. It is appropriate here to expand upon the first of these as it is a particularly

important feature with respect to HCI. Harel (1987) claims that Statecharts capital-

ise on the visual strengths of State Transition Networks (e.g. Arbib, 1969; Pamas,

1969) which are a form 1 representation technique using graphical constructs to

show the states and transitions possible in some system.

Aside from its formal advantages, Statecharts seems an appealing notation because

of its graphical character which specialists A and F claimed made it very easy to

scan briefly or follow in detail. This graphical quality appears to exploit human

visual processing strengths which make pictorial representations superior to text for

some tasks (e.g. Snodgrass et al 1978).

Gestalt psychologists discovered laws which describe how forms are perceptually

organised (Hochberg 1964; Kaufman 1974). For example a series of marks "- - - -"

may be seen as forming a line rather than as discrete elements. Diagrams such as

Statecharts, which exploit these laws, seem to exploit human ability to detect rela-

tionships, changes and groupings in information (Kosslyn 1989). This quality may

make Statecharts particularly useful for certain kinds of communication or analysis.

The main failures of Statecharts related to the complexity of descriptions required

for real systems. As with many descriptive notations, including those described in

Chapter 2, Statecharts are demonstrated by Harel (1987) on very simple systems.

Non trivial systems such as those being developed by A and F generate far more

complex charts and with the complexity come a number of problems, not the least

being the physical size of the specifications "You may have an enormous diagram

that fills a vail, in such a case, tracing the effects of a change may be

- 374 -

extraordinarily painstaking and difficult to do." By hand it may be impossible to

complete a Statechart specification of a complex UI within a reasonable amount of

time. Neither A nor F had the support tools which are available to make the job

easier. F was using a drawing tool to save time, but he had almost run out of system

memory, and still hadn't completed his specification.

E was involved in the design of a system with a sophisticated, adaptive UI which

involved the use of a rapid prototyping tool based upon state transition networks

(RAPID developed by Wasserman et al, 1985; see Chapter 3). With this tool he

stated that it is "very easy to knock off small prototypes when there are 20 to 30

screens. But given that we had an adaptive interface, at 6 different levels, in 3 dif-

ferent dimensions, which is already 18, and you had something like a hundred

screens, then you are talking about 1 800 state transition networks." This kind of

problem could also be a problem for Statecharts, even with automated support, how-

ever the two systems described by A and F were not nearly this complex and their

specifications were correspondingly simpler.

Unfortunately the tools "Statemat&' and "Statemaster" (Ad-Cad, 1986 and Weilner,

1989) which are capable of checking for mistakes, translation into skeleton code for

system software, and supporting UI design, are highly expensive. At the time of the

interviews A was attempting to get a budget to purchase Statemate, whereas F said

that his company would not permit such a large expenditure. Without the support

tools, error checking and modifications (which sometimes propagated throughout

the system, for example when the broadcast mechanism is operating) were

extremely time consuming activities. However, both A and F preferred to modify

their specifications than allow code to be written and then modified, they were also

extremely positive about its value "... even by hand, it's the best method I know for

representing interfaces."

6.5.4 Task Analysis for Knowledge based Descriptions
(TAKD; Johnson et al, 1984)

Exploited by: Specialists E and F.

Orientation: Design of a system's functionality based upon users' task knowledge.

- 375 -

Purpose: Analysis of tasks to generate a user's knowledge structure.

Scope of the Technique, and How it is Used

Task Analysis for Knowledge based Descriptions (Johnson et al 1984) specifies a

method for analysing information, collected from a wide variety of sources, about

people's tasks in order to identify the underlying task executor's knowledge in

terms of actions and objects. Actions and objects are classified into generic actions

and objects and assigned appropriately to lists of action/object pairs which are

expressed in terms of a knowledge representation grammar (KRG).

A brief example follows. Three steps in a hot drink making task description might

be:

Boil water in electric kettle.

Place teabag in cup.

Pour water into cup.

A dictionary of relevant generic actions and objects would be:

Actions

PREPARE: (boil, warm)

PUT: (place, pour)

Objects

LIQUID: (water, milk)

KETTLE: (electric, stove)

INGREDIENT: (teabag, coffee, chocolate)

RECEPTACLE: (cup, mug)

Two KRG expressions generated from the above might be:

PREPARE! a LIQUID! in a KETTLE

PUT! an INGREDIENT! in a RECEPTACLE

This structured technique of describing task knowledge enhances the detectability

of similarities between tasks, and it encourages the analyst to be explicit about what

-376-

is involved in completing a task, and attempts to cut down on redundancy of

description. There is an obvious risk that some of the richness of the semantics and

contextual information supplied about tasks will be lost during the analysis (for

example, when preparing the TAKD sample above, I noticed that PREPARE might

mean chill, which could be done in a fridge. However, a fridge and a kettle are two

very different objects, and to class both purely as preparatory devices would be to

lose a great deal of task related information about them; for example a reader

unfamiliar with kettles and fridges might not know that you cannot simply pour

liquid into a fridge in order to prepare it). This may be the price for the condensa-

tion of knowledge which this methodology permits.

Only the analysts in 04 used this technique which has much in common with the

competence grammars amongst the HCI DETs (i.e. the Formal Grammar of Reisner

1981; and TAG, Payne & Green 1984) described in Chapter 2 (in fact they had

explored many more HCI DETs than any of the other interviewees). E used the

technique on a collaborative research project which aimed to develop a set of

workstation based tools to assist systems analysts in the use of JSD (Jackson's Sys-

tem Development methodology; Jackson, 1983). F used it to describe the tasks of

retail managers, in the design of the WIMPs UI Management Information System to

which he also applied Statecharts; this was a commercial project. E was working on

a large multi-site project, but F was working largely alone. In both cases the spe-

cialists were unfamiliar with the application domain, and there were no comparable

systems currently available at the time of the projects. Both E and F used inter-

views to gather the information they required to develop the TAKD descriptions.

Notably, both E and F found that they needed to extend the notation to capture the

task related information they wanted; "TAKD worked quite well for us, but it did

need extensions because it doesn't really capture context information very well. It

didn't help us very much in allocating information between system and user.

Sequencing was very difficult to capture." E added task hierarchies to show rela-

tions among tasks and sequences of related or dependent tasks. Both E and F also

added ways of including contextual information which enriched the descriptions,

and scoping diagrams which clarified user's tasks which the system must support

and those which it might support, as opposed to tasks which required little or no

support.

- 377 -

.

-	 e-
cI

•-

0

'-

•-

•-
'I

•-
-	 _4

0

>	 >••

0

•-
-a

o
rJ	

U
-	 -	 • L.

<0

-378-

Whereas E sent his TAKD descriptions to other members of the design team, and

was doubtful as to how much they influenced the design, F followed through his

own extended TAKD specifications by translating the functional requirements for

the system they generated into Statechart specifications of that functionality;

"TAKD is good for describing tasks in a purely abstract way, but when you want to

get on to UT descriptions then Statecharts is far more useful." F found that the

TAKD specifications mapped well onto the Statecharts. "In practice it [TAKD] was

reasonably well integrated [with the rest of the design process]. That's partly due to

the fact that I'm only prototyping the UI, not much functionality."

The most important point to mention, regarding the scope of TAKD, is that it com-

plements the scope of Statecharts which it was used in tandem with by specialist F.

As shown in table 6.9, where Statecharts is weak (notably with respect to the User

evaluation factor, and with respect to the Compatibility and UCTDs principles)

TAKD is strongest. This example of use of complementary techniques provides

strong support for the notion that the limited scope of a technique may be a major

drawback if it is time consuming to apply and difficult to master. The analyst may

be forced, as was F, to learn another technique and spend time applying it in order

to cover the possibly wide variety of aspects of the system which are important in a

real world design situation.

TAKD focuses on users' existing knowledge of the real world in terms of the fami-

liar objects and actions, and the commonalities which allow generalisation of task

rules from one specific instance to another. It is less strong in terms of compatibil-

ity than in terms of UCTDs because the process of generification abstracts away

from the familiar instances to possibly unfamiliar generalised concepts which may

be presented in the UI in such a way that users no longer recognise them. For

instance, RECEPTACLE may not easily suggest a mug, more than it does a kettle,

and confusions could arise. Certainly, systems designers in 04 had difficulty with

the TAKD specifications because of the degree of abstraction and loss of contextual

information. They were not sure how to implement and represent generic concepts

such that users would be able to understand them.

Simplicity of target tasks may be captured by TAKD representations by counting

the rules required to describe all target tasks with the UI but it is not clear that this

would be a psychologically real metric, if it is based upon idealised generalisations

- 379 -

of knowledge without additional devices such as TAG has (Payne & Green 1986) to

capture properties of users' existing knowledge as distinct from other knowledge.

Since TAKD includes no independent system- or UI-behaviour modelling com-

ponent it is unable to address simplicity thoroughly, and does not touch upon obser-

vability, consistency, and retrievability. It does not suggest performance predic-

tions, since it is strongly focused on design rather than evaluation.

Avoidance of, or Coping with User-Oriented Design Constraints and Problems.

Contrary to the recommendations of Johnson et al (1984) it was not possible for E

and F to exploit a wide range of information sources, although both wished they had

been able to. Organisational and time constraints limited E to eight three hour inter-

views with systems analysts, and F to several interviews with one highly experi-

enced, representative prospective user. Both of these specialists complained that the

TAKD methodology did not provide sufficient guidance for the actual information

gathering which it depends upon; "TAKD, like CLG, never tells you how to do task

analysis, all it does is suggest or expect you to do interview or observation. There is

little in the literature on this. You have to read literature on knowledge elicitation

which tells you far more about how to do task analysis than anything which goes

under task analysis."

It was obvious from the descriptions of E and F that the TAKD specifications had to

be used as communicable representations, of target tasks for the system to support,

to prospective users or other design team members. F stated "I did go through the

output of TAKD with the person I was interviewing [the prospective user represen-

tative whose interviews provided the basis for the KRG sentences]. He had no

problems validating it." However, E said "... the output was really for the project

team and we did have to do a lot of diagramming and simplification to get points

across for comprehensibility to others. The KRG sentences on their own don't

mean a lot." It would appear that to those unfamiliar with the application domain,

such as members of a system design team, may have considerable difficulty in

understanding TAKD descriptions "... it depends on the audience." This may be

because of the lack of semantic and contextual richness in the KRG expressions, as

noted earlier.

-380-

E was worried that the length of the specifications generated from eight 3 hour

interviews (three 50 page specification versions). He considered that the mere size

of the documents would discourage others from using his descriptions. He also

noted that much of the individuality expressed by interviewees' task methods was

lost in the KRG specifications. What tended to happen was that variability would

be included as options in the KRG expressions making them more structurally com-

plex than they should have been. This problem is precisely the same as the one

identified by Payne and Green (1986) who discuss the trade off between com-

petence (ideal), and acceptance (all sufficient) grammars as ways of describing

tasks. They selected competence grammars, but where there is no clear optimum

method for accomplishing a task, or it depends upon context (which the TAKD

grammar fails to capture), then it is difficult to avoid a more acceptance oriented,

and hence more complex, task description.

Exploitation of Information Sources.

As noted above time constraints tend to limit the extent of realistic task information

gathering exercises. "For the TAKD work we decided all we could do were inter-

views. We couldn't do observational work since that would have taken far too long

because we were looking at a very long procedure; system analysts' work." On the

other hand, if used in systems development TAKD encourages the analyst to inves-

tigate, as far as possible, the nature of tasks users are likely to carry out with the UI.

It tends to force its applier to look carefully at the structure of tasks, and to identify

similarities between actions and objects, which could mean that more attention will

be devoted to the users tasks than might otherwise be the case; "What we found was

that just having a structure to follow for picking out tasks and then laying them

down was very helpful."

As far as communication of information goes the technique seems to fall if the

receiver of the specifications is not familiar with the task domain from which they

are drawn. This seems to be because TAKD, whilst providing analysis, may tend to

lose contextual and semantic information, which tends to be picked up in interviews

or observations. By adding extensions to the TAKD notation, E and F found that

they were able to include more of this information. Even with the extensions non-

application domain experts (i.e. the software writers in E's project) were still unable

to understand the specifications.

- 381 -

Support for the Activities of the HCI Specialist, and Failure to Provide Support.

04 did not have an experimental evaluation laboratory, unlike the other organisa-

tions in this study. This seemed to mean that the activities of E and F were more

restricted to ensuring user-orientedness in the development of systems. TAKD is a

useful means or recording and organising the information required to ensure that the

intended system supports the tasks that users will want to carry out with it. It may

help to increase the chances of getting things right first time, when prototyping with

iterative user evaluations is not possible.

On the other hand, since TAKD relies upon analysis by hand, it may be time con-

suming, but when compared with, for example CLG, it is relatively lightweight "...

the notation is not overly heavy; it's quite simple and it does help you to come to an

understanding on something that you can then question, and question other people

about wanted to do in the project we were undertaking."

Unfortunately, as has been pointed out the technique does not provide much support

for the information gathering process prior to the analysis. This may not intuitively

seem to be a problem, however if HCI specialists can criticise its lack of support in

this area, then the problem is likely to be quite significant for non-HCI specialists.

It should be pointed out that more recently Johnson and Johnson (in press),

recognising this problem have produced a technique for carrying out such informa-

tion analyses called Knowledge Analysis Technique (KAT). However, this tech-

nique was not known to the specialists in 04.

The process of "generification" is heavily dependent upon the point of view of the

analyst, and in an unfamiliar domain unlike the hot drink making one illustrated

above (as was the case with E and F's projects), it may be easy to miss, or to make

erroneous assumptions about, similarities between actions and objects, unless the

analysis is pursued very carefully, i.e. by gathering as much information as possible,

from as many sources as possible, and by checking the KRG sentences with applica-

tion domain experts, which F did.

A possible benefit of TAKD which was not explicitly noted by E and F is its ability

to encourage reuse of concepts in the design, which could save on the amount of

time taken specifying functionality, and writing code. Objects and actions are

-382-

identified and classified as generic types. By identifying a generic type and noting

all of its task roles, the analysis paves the way for a complete specification of all of

the behavioural requirements of system actions and objects (packages of software,

or data structures and procedures) which are specified to replace those in the origi-

nal task domain.

6.5.5 Command Language Grammar
(Moran 1981)

Exploited by.' Specialist E.

Orientation.' Design of user and task oriented dialogues for Uls.

Purpose: Analysis from tasks through to details of dialogue and communication of

interactive system behaviour to programmers.

Scope of the Technique, and How it is Used

For a full description of Command Language Grammer (CLG; Moran, 1981) the

reader is referred to Chapter 2. CLG is the only HCI DET reviewed which was seen

to be used by HCI specialists in applied commercial design practice. It is basically

intended to be a top-down stepwise refinement specification methodology for the

grammer of all possible valid interaction languages for a given system UI, whilst

preserving a users conceptual model for the system based upon the structure of the

tasks which the system will support.

E used CLG, on a large, collaborative, commercial system design project, where his

job was to write a specification of the interactive dialogue for an adaptive UI for an

existing email system. The prospective users would be anyone currently using the

existing email system. He followed the descriptions in the paper on CLG by Moran

(198 1) which contained examples of a specification of a simple electronic mailing

system. He stated that he was probably influenced by the similarity of the two

applications which may have been an advantage, but "it may have led me into doing

some things in certain ways which I shouldn't have done." The whole specification

took about four weeks and generated 60 pages of notation which were passed onto a

secretary to be typed up, and which came back with many typing errors (the

- 383 -

secretary had great difficulty with the notation). E then had to spend a fair amount

of time proof reading and correcting the errors.

E found that CLG worked very well with the system architecture which was main-

tained in the design project. The design team strove to maintain a high degree of

separation between the dialogue control component of the architecture, and the

application part of the architecture (the original email system software) which com-

municated with the dialogue controller through an "application expert" which was

able to map from the user's interactive tasks to the application software. E used his

CLG specifications as a basis for his communication with the application expert

programmer. He was able to describe the tasks of the user at the interaction level

which was compatible with the level of description used by the programmer. Using

CLG he was able to specify the structure and parameters input and also the feed-

back parameters required of the application software via the application expert.

In spite of this, by the time E had completed the specifications and handed them

over to the dialogue software designers they told him (in his words) "We can't

understand a word of this specification without spending time we haven't got to

understand it, and we've already started doing it this way. Tough luck !" He stated

that a lot of his efforts were wasted, however it was a very educational experience

for him.

E had also been involved in a research project which aimed to provide a tool for

mapping CLG specifications onto JSD specifications. This project was based upon

the belief that it is best to allow specialists from different areas o writ.e their own

specifications, but that their work could be integrated by provision of a tool which

would allow one specification to be translated into another. E noted that the entities

in CLG and JSD are quite similar, and that the actions and functions of JSD

specifications map quite well onto the syntactic methods in CLG. These similarities

were sufficient to permit semi-automated mappings from one specification to

another.

E was never able to look at the mechanisms in CLG for representing specifications

of commands at the interaction level in terms of rules which can be used to capture

similarities between expressions in the grammar (see Chapter 2 for discussions of

the CLG interaction level). However, on the basis of his understanding of this

-384-

I
2

-

2
0
>1

—	 -	 -

.	 ;)•
—

:
•-
L1	 •—.

rJ,—
-

0
2

0

>.

-a	 V	 >1

> 2

-4
•S n 	 --0

V

—	 - • - —	 V
ceSJ	 —	 '•-••'

-I

- 385 -

feature of CLG he was convinced that, by exploiting it, he would have been able to

model the complexity of dialogue specifications in CLO.

The CLG Scoping Matrix in table 6.10 is reproduced from Chapter 2 where the

main justifications for its characterisation are discussed. Suffice it to say that the

technique, although time consuming, and detailed in its specification, does not have

the extensive scope, with respect to design and evaluation for usability, which its

complexity might at first suggest. In the example of its use observed in 04, the sys-

tem properties which CLG may be capable of representing (the "Maybe" cells in

table 6.10) were represented by the analyst, which supported him in communicating

with an expert application programmer more successfully. However, this communi-

cation did not seem to be supported by the specification when it was passed on to

the system implementors who could not understand the notation and did not incor-

porate it into the design.

The possible performance prediction extentions, and complexity metrics for CLG

were not exploited by E, which is not surprising since these are not explicitly sup-

ported by the descriptions of use of the CLG approach provided by Moran (1981).

Avoidance of, or Coping with User-Oriented Design Constraints and Problems.

There were a number of difficulties with the CLO notation which made it unlikely

that CLG could be routinely applied given typical design constraints, such as lack of

time, complexity of the application to be specified and lack of experience with HCI.

E, even as an HCI specialist, found CLG very difficult to learn "... some of the

aspects of the specification, particularly at the interaction level, are horrendously

difficult to understand with respect to what you're expected to do, for example, gen-

erating the rules for how you produce command parameters, the notation is very

complex and repetitive down through the levels." He felt the specifications were

unnecessarily large and difficult to manage. He also experienced problems with the

incomprehensibility of CLG specifications when passed onto other members of the

design team. Essentially non-HCI specialists had no experience of the technique,

and worse still, they did not seem to see its potential value.

There were several important constraints on the commercial project for the design

of the adaptive email system UI which severely curtailed E's activities. The first

-386-

was that he did not have access to the functional specifications of the existing email

systems which meant that he had to spend a certain amount of time "playing" with

the system in order to determine its behavioural characteristics. The second con-

straint was that he "wasn't given the opportunity to look at how people use, or what

tasks people do with electronic mail systems in earnest." He had to use literature

and his own experiences with email systems. The third constraint was the limited

amount of time available to E in which he had to learn how to use CLG and write a

correct specification. The fourth constraint was that the software for the system was

being written in parallel with his specification activities which meant that the sys-

tem design was already becoming fixed according to other software engineering

("computer-centric") influences. The research project for the mapping tool was not

subject to these kinds of constraint.

E made a number of criticisms of CLG on the basis of other problems in commer-

cial practice. "... with a real system it turns out to be immensely time consuming,

and if you make a change at the interaction level, for example, you have to make

changes at all the preceding levels and you just can't cope with the immensity of the

specification.

So for anybody to use CLG seriously, you'd need tools ... what you really need is

something which can take the specification and automatically give you a state tran-

sition network, for example, which can then be turned into a first pass prototype

You build in errors as you go along. Also deciding what goes at what level can be

difficult for some people."

Exploitation of Information Sources.

CLG requires that the analyst investigates the nature of the tasks which the system

is to support, although it is not explicit on how to go about the collection of such

information. The main value of CLO, in terms of exploitation of information

sources, seems to be that it maintains the content of task analyses throughout a top-

down specification of the UI in such a way that knowledge which its users are likely

to lack will not be unnecessarily added to the required user's conceptual model for

the system; "Whilst the problem of making incorrect design decisions on the basis

of too little information early in the design project does exist, CLO's starting point

is the right one in terms of users' tasks. If you started bottom-up, you wouldn't be

sure of what you would provide except in terms of system constraints on what you

-387-

can do."

As stated above, E did not exploit the potential performance metrics suggested by

Moran however he did identify potential user error sites in the specification by

investigating mismappings between the various levels of the CLG description. In

the main he used CLG as a design rather than an evaluation tool.

Once again the fact that 04 did not have a user evaluation laboratory may have been

significant in the selection of CLG as a means of helping to ensure that the design of

the UI was more user-oriented, irrespective of user evaluations. E did not believe

that usability metrics were associated with the technique, although this is not strictly

true. He stated that "... there aren't any, but there's no reason why people shouldn't

be able to add to the notation ... for example to estimate how long certain operations

are going to take." However, Moran does address the use of usability and perfor-

mance metrics with CLG (Moran 1981; p 39 and pp 46 - 47) With respect to sim-

plicity, the number of rules in CLG is suggested as a metric; "a system requiring

fewer rules to describe it will be easier (faster) to learn and will result in fewer

errors during use." For performance predictions such as time, Moran states "...

given a table of times for the primitive actions [presumably derived as for GOMS

(Card et al 1983)] the interaction methods should predict the times to do the tasks."

However, it seems that these facets of CLG have never been illustrated in practice.

Support for the Activities of the HCI Specialist, and Failure to Provide Support.

E was able to describe some of the ways in which he felt that CLG supported his

activities "I feel there is some value in distinguishing between levels (which some

people don't) because I have used CLG to specify an existing system and you do get

different things at the semantic and syntactic level. If you do a mapping between

these levels, and use any misniappings you get as an error predictor, you do get

some reliable predictions from the specification." He also stated that it provided a

"bedrock" upon which to base his descriptions of the precise requirements he had

for the UI to the application expert programmer.

On the other hand, E noted that CLG, like TAKD does not guide the acquisition of

the task related information which an analyst would require to drive the task-level

specifications in the first place. In addition t appeared to him to be weak on system

-388-

output "... it doesn't give you any support for direct manipulation or graphics type

interfaces ... it says nothing relating to the presentational aspects, except to say you

can throw this up in this or that display area." Of course the research behind CLG

was carried out before 1981 when graphics Uls were a rarity, and the only widely

available mode of interaction was command driven, so this criticism is perhaps a

reflection of the age of the technique.

Many of the problems of CLG would appear to result from the lack of any

automated support tool which would help the analyst to manage the complexity of

CLG in non-trivial UI specifications. When asked if there was anything he would

have done differently in the project with the benefit of hindsight E stated that he

would not have used CLG "unless there was a tool available to help you do it.

Maybe I would also have said let's not go any further until we have the UI

designed, and we have a specification, in whatever form, even if it's just structured

English, which says what the behaviour is going to be."

6.5.6 Summary

In the preceding descriptions each of the scientific HCI and user-oriented techniques

described by the interviewees in the study has been viewed with respect to its gen-

eral usage, the constraints and problems associated with its use, how it encourages

or enhances exploitation of user-oriented information sources, and its ability to sup-

port the activities of HCI specialists. Notable is the diversity in the focus, scope and

character of the techniques used. It would appear unlikely that a single technique

would be capable of addressing all of the aspects of design covered by those

revealed in the interviews.

It is clear that HCI DETs of the type discussed in Chapter 2 are a rarity even in the

experience of HCI specialists, with only one organisation, 04, employing HCI spe-

cialists who used them. It may also be significant that 04 was the only organisation

without experimental evaluation facilities, which could have meant that it was more

important to ensure user-oriented design, since early or even late user evaluations

were not possible. Another important finding is that those HCI DETs which were

applied in 04; TAKD and CLG had many problems associated with them which

need to be addressed by future similar approaches.

-389-

6.6 General Discussion

6.6.1 Working Regimes, Activities and Roles

The working regime of an organisation was seen to be influential in determining the

activities and roles of its HCI specialists. In organisations which were hierarchical

in their organisation and communication, specialists tended not to communicate

directly with specialists in different disciplines. This was seen to encourage greater

use of written communications which included informal evaluative commentaries,

as used by C and D in 03, and guidelines for general distribution as in 02. On the

other hand, in less hierarchical organisations such as 01, direct communication and

collaboration between diverse specialisations and integrated working regimes were

observed, as well as written communications.

The structuredness of the working regime may have been influenced by the degree

to which design and development activities were repetitive over different projects in

01. However, this was not the case for E and F in 04 where the structuredness of

their working regime may have been related to their frequent usage of scientific

methodologies. In 01 where routine activities dominated the specialist A's work,

his roles within the design process were seen to be well defined. In 03, where work

was less structured and scientific techniques other than experimental evaluations

were not used, C and D tended to work in a much less formal manner, and often

based evaluations on their own intuition and experience, rather than on scientific

analysis.

The variability of the working regime may have been related to the variability of the

projects undertaken by the organisation, for example in 04 both research and com-

mercial projects were undertaken for a wide variety of applications. Variability

might also be caused by a shortage of HCI specialists within the company. In 02,

specialist B was required to assist on various research projects, write guidelines for

UI design, consult on commercial projects, to set up a usability laboratory, and to

run experimental evaluations.

The working regimes illustrate an apparent fact that organisations may impose con-

siderable constraints upon what is possible for HCI specialists trying to improve the

usability of products of design projects. Specialists C and D in 03, and E and F in

-390-

04 were observed to be under the same working regime with their colleagues in the

same organisation, defeating the possible hypothesis that personal preference might

be the cause for the variability in working regime. Furthermore many of the com-

ments made in the interviews indicated that various improvements in UI designs

recommended by some of the specialists were not brought about because of the way

design projects were run by their company. For example where late evaluations

were enforced as in 02 where specialist B complained about being restricted to late

evaluations, experimental evaluations may have had little impact on the released

version of a product. It may be partly the responsibility of an organisation, and its

working practices, that user-oriented design and evaluation is under represented in

final products.

The activities involved in the work of commercial HCI specialists (see table 6.3)

can be characterised as belonging to at least one of the following four types:

Information Collection

Invention

Analysis

Com,nunication

Whatever tools or techniques the HCI specialist uses in commercial practice must

have some value in supporting one or more of these types of activity if it is to be of

any practical use. The more types of activity a technique supports, whilst the effort

of applying it remains constant, the greater its value will be.

Five HCI oriented roles were identified for the specialists, each involving a variety

of different kinds of activity (see table 6.4).

Self Educator

Designer

Researcher

Consultant

Agent of Technology Transfer

The roles of HCI specialists and the various activities they involved were diverse,

especially for B, E and F in 02 and 04 (see table 6.5). In 02 diversity of roles

appeared to be a result of the large size of the organisation which B had to work for.

There were not enough HCI specialists in 02 to allow specialisation in a particular

role. This may explain the importance the company attached to research into tech-

nology transfer which was immediately implemented adding more weight to the

- 391 -

role of technology transfer of specialist B. In 04 the design projects undertaken

were very diverse, the company produced software for a variety of applications

which would run on other companies' hardware.

Both 02 and 04 allowed their specialists to conduct government supported

research, which may also add to the variety of activities undertaken and a strong

requirement for self education of the specialists. In 01 and 03 there was greater

emphasis on the role of commercial consultancy within the organisation. It is

interesting to note that in 02 and 04 where research seemed to be encouraged, HCI

specialists' design activities were more directed towards design of HCI methods.

The different roles of the specialists, and the diversity of working environments and

applications upon which they work suggest that they have a wide variety of require-

ments for support for their different activities. For example, in the role of designer,

invention, analysis and communication seem to be important types of activities (see

table 6.4) as was the case in 03 where C and D invented their system concepts, car-

ried out informal analysis (by storyboarding scenarios) and then communicated the

resulting specifications to the academic software research and development team.

Tools and techniques of greatest value would support as many of these activities as

possible. However, given the difficulty of extending scope of techniques without

losing depth (Barnard 1985) it might be more realistic to recommend that develop-

ers of future techniques concentrate on providing a complete support tool for one

role (i.e. a coherent subset of activities) only. A tool, supporting HCI specialists in

the role of designer, which represented the requirements (or problem space for solu-

tions) of the system in such a way that invention, and analysis of solutions was

easier, and in such a way that communicating with others was easier, would be more

valuable than one which simply represented the requirements for the system. The

nature of a valuable tool for a consultant might have to be different, perhaps putting

more emphasis on support for the information collection which would drive a

requirements specification.

Of course determining the nature of the right tool for the job depends very heavily

on the precise nature of the activities (see summary of activities and roles) which

tended to vary even within the roles identified, for example the role of technology

transfer agent might involve preparing a simple methodology which could be taught

to non-HCI specialists (Design/evaluation technique development), writing

-392-

guidelines of some sort (Writing reports/documentation), or personally teaching the

technology (Running workshops, giving seminars or presenting papers). No single

technique or tool is likely to support all of these activities. However, without a

clear picture of the variability of HCI specialists activities, their requirements for

support, and the diversity of the nature of the applications that the transferred tech-

nology would have to adapt to, it may be difficult to design tools or techniques

which are neither too generalised nor too specific and unadaptable. In the following

section the findings relating to the important features of the techniques applied by

HCI specialists in commercial practice, are discussed with respect to what made

them more or less applicable. In this way it should be easier to identify how appli-

cable techniques do, and might better, support the activities of HCI specialists, and

possibly non-specialists also.

6.6.2 Important Features of Applied HCI and User-Oriented Design and
Evaluation Techniques

In this section the descriptions of the five scientific techniques used by HCI special-

ists in this study are summarised in terms of the requirements they have for success-

ful application; their ability to cope with commercial design constraints and prob-

lems; how they encourage or enhance exploitation of user-oriented information

sources; and finally the manner in which they support the activities, and hence the

roles of HCI specialists. A further brief discussion is devoted to consideration of

the reliance of the techniques observed upon the skills and experience of HCI spe-

cialists in particular, as opposed to non-specialists who might benefit from such

techniques.

Requirements for Successful Application of the Techniques

All of the techniques described by the interviewees required some investment in

terms of time and/or expense. For experimental user evaluations the investment

was particularly heavy, since in all cases valuable space and equipment was

required as an initial investment. The technology transfer technique developed in

02 required research, and then repeated training sessions. The three description and

analysis techniques (Statecharts, TAKD and CLG) were, as applied by the special-

isis considerably cheaper, but still required considerable self-education and time to

carry out (CLG probably being the most complex, and requiring skills in HCI). It is

-393-

not clear what the precise costs were in terms of time and money spent, as against

the benefits of the investment; this is probably difficult to work out; Mantel & Teory

(1988) have proposed a methodology for cost benefit analysis but have not demon-

strated its ease of use in practice.

However, what seemed surprising was that in several instances, but nowhere more

clearly than in the use of experimental evaluations, organisations seemed to under

invest in support tools according to interviewees. In experimental evaluations, the

problem was particularly clear because HCI specialists in 02 and 03 were testing

products which could not be significantly modified before release, and many of their

recommendations were ignored or deferred for later products. Had they been

involved earlier in the design and been able to use a UI simulation tool as in 01, to

prototype and evaluate the UI, the same effort which went into modifying later

releases of the product could have been applied earlier on the basis of experimental

evidence from user evaluation of a simulation. The under investment was also evi-

dent in the purchase of support tools for Statecharts specifications which specialists

A and F were spending a very long time preparing by hand. The problem seemed to

be one of justification of expenditure when nobody knew what the costs and savings

might be for investment in new technology.

Another requirement of the techniques identified in the interviews was that they

integrate well with the host organisation's working regime (which tended not to be

easy to alter). The technology transfer technique had to be simple enough to be

passed onto a design team syndicate in a two and a half day workshop, because 02

did not allow more time to be spent with the recipients of the technology, and the

recipients were not followed up or supervised afterwards. TAKD and CLG were

weak in this respect because they expected more investment in terms of information

collection than was possible, and they did not work as communicable specifications

which could be understood and used by other members of design teams who would

have to implement their recommendations. Systems programmers never had the

time or incentive to learn how to use these notations, nor was there any guarantee

that the specifications would have been sufficiently clear or appropriate enough to

support design activities. As stated previously with TAKD the notation loses much

contextual information which may be crucial in directing appropriate functionality

and UI dialogues. CLG specifications, generated by HCI specialists, are not sensi-

tive to software limitations which may only be known to programmers who cannot

-394-

understand these specifications.

If an organisation's working regime isolates various specialist groups from each

other, as seemed to be the case for most of the interviewees, then the most important

requirement for an integrable technique may be its power to support communication

between specialists with very different backgrounds.

Another issue strongly related to integratability is that of the timing of the technique

in design projects where many activities take place in parallel. A technique, such as

CLG, or experimental user evaluation may depend on other design activities such as

information collection, task analysis and user requirements analysis for CLG, and

generation of a working prototype for user evaluation. It is important that those

depended on activities and the activity of applying the technique itself typically take

place before the results of the technique's application begin to become redundant,

due to the increasing fixedness of the ongoing design. It is probably unrealistic to

assume that working regimes can be adopted to suit the requirements of every new

technique that comes along. It is likely that the most applicable techniques in the

forseeable future will have to suit existing working regimes and design approaches,

no matter how imperfect these regimes seem.

With respect to dependence on other implicit design and evaluation activities, the

technology transfer technique depended on a special in-house analysis technique

called a market segmentation, Statecharts depended on realistic task, and functional

specifications (otherwise their precisely specified content would be verifiable but

invalid as far as the appropriateness of the design went), TAKD depended on a great

deal of information collection, and CLG depended upon task analysis, and applica-

tion of knowledge of how to go about UI design (which was originally planned as a

set of guiding rules to go with the technique; Moran 1978). None of these

depended-upon activities were specified by the techniques themselves and

numerous problems or complaints arose because of this, the worst being related to

the technology transfer technique where much time was wasted rewriting a design

syndicate's market segmentation because they had done it wrong. It would seem

that applicable techniques ought to be self sufficient in that they should not depend

upon unspecified, unguided activities, or at least they should specify other suitable

techniques which must precede their application.

- 395 -

Most activities of HCI specialists, including the use of scientific techniques,

involved resorting to their skills, experience and inventiveness on many occasions.

The techniques applied were obviously reliant upon these abilities, since they often

had to be adapted or viewed in a particular way to deal with specific requirements of

various projects. Experimental user evaluation must be the most idiosyncratic in

terms of its variability as a technique. A notable invention was the use of two sub-

jects who, in talking to one another, revealed more about their problems than their

simple errors would have.

TAKD was notable for its need of extensions, which were used to enhance contex-

tual and sequential information as well as to determine allocation of task functional-

ity to the intended system. Statecharts required its users to bear in mind consistency

and simplicity in their specifications, for the sake of users. Without such considera-

tions it would have been easy for them to specify unusable systems using the nota-

tion.

Coping with Commercial Design Constraints and Problems

Design of the UI is necessarily a process involving uncertainty about the effects of

decisions in its early stages, and commitment to decisions (however inadequate) and

hence inflexibility, in later stages. This poses a problem for all techniques which

seek to provide predictions or evaluations of the developing system, unless the

aspects which they address can be simulated first of all. Unfortunately, the facilities

to simulate Uls adequately were only readily available in Olin this study. It may

not be long before UI simulation tools are a widespead commodity in HCI special-

ists teams, however until they are, techniques which address prediction and evalua-

tion of Uls must be able to deal with this problem, either by tolerating great uncer-

tainty about the actual nature of the system during early design, or by restricting

claims of value in terms of their potential impact upon design. Once simulations of

the whole UI can be produced before code is written, it should be much easier to see

the impact of particular decisions on users and to get things right without resorting

to guesswork.

TAKD and CLG require detailed information collection about users and tasks which

proved to be difficult for the specialists who used them. However, even given lim-

ited access to user information, it was possible for E and F to apply them. The

representativeness of their task specifications based upon limited interviews or

-396-

intuitions about the nature of tasks may be in some doubt, however it did not appear

to compromise the completeness of the descriptions they produced, in terms of the

range of tasks included in their specifications. Whatever technique had been used

the problem of limited access to user-oriented information would have been the

same, and there is probably no simple way of getting round it.

On the other hand, with TAKD, the greater the number of users providing informa-

tion upon which to base task specifications, the more complex the specification

became. TAKD enabled the analyst to represent alternative methods in the KRG

sentences, without supporting a means for paring this number down to the most

probable, or pyschologically plausible representations of methods. As an accep-

tance grammar TAKD can express all possible task methods, but only at the

expense of greater difficulty in interpretation of the notation due to its complexity.

To use it as a competence grammar would have meant losing much of the richness

of the variability possible for task execution. Furthermore, it was not always easy to

determine which method was the most appropriate for the task, so TAKD as a com-

petence grammar could simply be an idiosyncratic collection of methods based

upon the analyst's selection from what was observed.

A related problem was the representativeness of prospective system users for all

design and evaluation techniques. D, E and F all mentioned that this was an area of

difficulty since access to the most appropriate groups of individuals may be impos-

sible for a variety of reasons.

The complexity of the system application (the most important design constraint

identified in the features analysis) may exponentially increase the complexity of any

specification which represents what tasks it will support or the intended functional-

ity. This suggests that support tools may be an important requirement for future

HCI techniques if they are ever to become acceptable to the majority of HCI spe-

cialists. In addition, for non-specialists, operating under the fairly common con-

straint of lack of experience with HCI (from the features analysis), additional gui-

dance would be necessary to substitute for the skills of the specialist. If it is unsup-

ported then the technique must be easy to apply. Experimental evaluations seemed

to be easy for HCI specialists to apply, but sometimes difficult to interpret, as spe-

cialist D pointed out. The technology transfer technique was made very simple for

the recipients to follow, but it turned out to be difficult to adapt to specific projects

- 397 -

with unforseen requirements. Both A and F thought that Statecharts was easy to

understand and acceptable to apply by hand on relatively simple Uls, and E and F

thought that TAKD was acceptable without support tools. However, E complained

that CLG was extremely difficult even for himself as an HCI specialist.

Variability of design projects means that applicable HCI techniques must be adapt-

able to suit changing demands. As Barnard (1986) points out, there is a depth

breadth trade-off in the power of any modelling technique which includes some of

the user-oriented techniques described by the interviewees in this study. Experi-

mental evaluation, being essentially unstructured, apart from the specific design

used by each experimenter, copes well with a wide range of Uls and was not

described as being difficult to generalise. This may be because real people act as

models of the prospective users, but they are far more adaptable than cognitive

competence and performance models which have limited scope and/or depth. Sta-

techarts, being very limited in scope in that it only claims to represent system states

and transitions without judging them, also seems to generalise well. TAKD was

also free from criticism with respect to generalisability, since it was only used to

structure task descriptions. However, the simple UI design approach covered by the

technology transfer technique in 02 was criticised for being too general for use on

certain projects with applications for which many of the recommended activities

were simply not relevant, and CLG was criticised for being unable to address issues

relevant to graphical Uls.

Encouragement or Enhancement of Information Exploitation

All of the applied scientific techniques described by the interviewees encouraged, or

enhanced the exploitation of available user-oriented information sources. One of

the main determinants of whether a technique was selected seemed to be its ability

to capture information which was, in the HCI specialist's view, relevant to the par-

ticular activity being undertaken with respect to improving the design approach or

the UI with respect to usability. This however did not necessarily seem to be

related to the views of the rest of the members of design teams. Interviewees

repeatedly remarked that experimental results, or the content of specifications, were

ignored by management or software specialists.

What the HCI specialists seemed to view as important information varied

- 398 -

extensively. Experimental evaluations were used to provide information about the

likelihood of user errors, and time taken to complete tasks with the system, however

the explanation of difficulties was not always as easy to provide. The technology

transfer exercise was intended to pass on a methodology for encouraging and struc-

turing exploitation of user-oriented information for requirements specification by

non-HCI specialists. Statecharts were used to specify the states and dynamic

behaviour of reactive systems. TAKD was used for the exploitation of information

about how prospective users went about carrying out tasks which the system was

intended to support, and emphasised commonalities between similar task actions

and objects. CLG used task descriptions to enhance a user's conceptual model

which should be supported by the system. This model was maintained throughout

the top-down specification of the UI dialogue structure.

Apart from the nature of the represented information itself, a number of other poten-

tial information related features of techniques seemed to drive their selection.

Accuracy was a feature of experimental evaluations, in that, as far as those who car-

ried out such evaluations were concerned, real people provided more accurate infor-

mation about the usability of the system UI than was possible with other predictive

measures. Statecharts was also selected for its accuracy since it enhanced the preci-

sion of information in specifications passed onto programmers.

Economy of the representations of information supplied by notation based tech-

niques (i.e. Statecharts, TAKD and CLG, used by specialists A, E and F) seemed to

be important. Statecharts were praised for their ability to capture quite complex

information in a compact form. TAKD condensed the wide variety of task related

information gathered by HCI specialists into more manageable, concise descrip-

tions. However, CLG was seen as being too complex and possibly redundant by the

specialist who applied it. CLG requires that the whole system is specified at each

level of analysis, which means that the analyst applying it, or the recipient of a CLG

specification must produce or assimilate four times as much information as would

be necessary with a single level specification.

The expressiveness and clarity of notation based techniques was a source for com-

ment amongst the interviewees who used them. The statecharts notation was

thought to be very easy to interpret because it is visually clear, capitalising on

-3	 -

human perceptual and information processing strengths, and providing all the neces-

sary information relevant to its usage, with little requirement for learning the nota-

tion. However, TAKD, although easy to learn, and relatively clear, seemed to lose

information available from its sources (restricted to interviews for specialists E and

F) which was relevant to its application, i.e. that of task context and task sequences.

This meant that ability to interpret the notation was dependent upon familiarity with

the application domain and its human tasks. The software developers who were

recipients of the TAKD specifications produced by F did not have this kind of

experience. CLG was probably the most criticised notation in terms of clarity,

although it was highly expressive in terms of specifying precisely what was required

of the dialogue for the system. The Lisp-style notation of this technique was even

difficult to copy let alone interpret. A secretary in 04 had great difficulty typing out

CLG descriptions from hand written versions, and other members of F's design

team could not understand the specifications. The evidence from the interviewees

suggests that if a notation is not both expressive and clear, then it will probably fail

to act as a successful communication device between different members of a design

team who may rely on the information contained within it.

Support for HCI Specialists

The scientific techniques used by the HCI specialists interviewed seemed able to

support a variety of activities and roles. No single technique was seen to support all

activities and all roles. For the sake of simplicity the wide variety of activities

identified were classed as members of at least one of the following types: informa-

tion collection, invention, analysis, and communication. These activity types had

various importance with respect to the five HCI oriented roles identified for the spe-

cialists in the interviews; self educator, designer, researcher, consultant, and agent

of technology transfer (see table 6.4).

For each of the techniques observed it is possible to provide a rough indication of

the extent to which various activity types were seen to be supported. This assess-

ment is not assumed to be quantitative, it merely provides a rough summary of the

contribution of each technique to the activity types, and indirectly to the roles of

HCI specialists. However, this summary provides no indication of crucial aspects

of techniques regarding their method and provides no more than a crude assessment

of scope in terms of the type of activity supported. For this reason there is no way

- 400 -

of assessing what technique would be appropriate for a given project, and how it

might relate to the rest of the design process.

Table 6.11

Support of Scientific Techniques Identified for

Various Activities of HCL Specialists in the Study

Activity Types

Information Invention	 Analysis	 Communication

Technique	 Collection

Experimental	 X	 -	 x	 -

Evaluation

Technology	 -	 -	 -	 X
Transfer

Statecharts	 -	 x	 X	 X

TAKD	 -	 x	 X	 x

CLG	 -	 x	 X	 -

X = Supports Effectively

x = Supports Inadequately

- = Does Not Support

If the contents of table 6.11 are compared with those of table 6.4, it should be possi-

ble to assess whether the support provided by each technique is relevant, i.e. valu-

able, to a given role for an HCI specialist. For example TAKD has the potential to

support all of the roles identified at least to some extent, because it is an analytical

- 401 -

tool which enables its user to condense and transform task descriptions. However,

this is not to say that TAKD will be a suitable tool for specialists in all cir-

cumstances and for all applications. That would be dependent upon the scope

required of the technique. Statecharts should also be capable of supporting all roles

of HCI specialists, but it clearly has a different scope to that of TAKD, and will be

applicable in different situations.

Experimental evaluations, technology transfer techniques, do not support invention

for HCI analysts, although they support analysis which could clarify the bounds of

what inventions might be appropriate. For this reason they are not appropriate tech-

niques for designers. Statecharts, TAKD, and CLG, as abstractions of what is

known about tasks and systems, all provide a novel view of available information

which may to some extent support design by clarifying areas of uncertainty within

the solution space. For example Statecharts enhances the visibility of the effects of

actions in states given certain conditions, TAKD highlights commonalities between

objects and between actions, CLG, if its assumptions are valid, captures mismap-

pings between tasks and interactions as represented by system users. However, it

would be an exaggeration to suggest that these techniques actually drive design

since they only emphasise parts of the solution space, they do not themselves sug-

gest solutions.

Table 6.11 suggests that as an analytical support tool experimental evaluations are

weak because they do not necessarily assist in the explanation of users difficulties

with the UI. Technology transfer does not deal with support for analysis by HCI

specialists, although what is transferred may provide analytical support for its reci-

pients. All of the notation based techniques supported analyis of one sort or another

as described earlier.

Technology transfer is the method that seems to provide the narrowest type of sup-

port for HCI specialists, namely communication only. As has been noted earlier in

this chapter, its main value appears to be one of time-saving. By providing the reci-

pients with the tools of the HCI specialist's trade, so to speak, the specialist is saved

from having to repeatedly undertake the same activities for the same group of peo-

ple. This is an idealised view, however, and the extent to which technology transfer

really works remains unclear from the interview with specialist B.

- 402 -

As emphasised above, table 6.11 gives no indication of the method and little indica-

tion of the scope of each technique and how these might support HCI specialists in

relating to and integrating with the rest of the design process. For example CLG

was seen by specialist E as useful in a top-down design approach, for the analysis

and description of the appropriate structure of a grammar for interactive dialogues.

Were the approach used to have been bottom up, it would have been less appropri-

ate since the notation, being paper based rather than on line, is not sensitive to con-

straints imposed on possible dialogues by previously written code.

The scope of each of the scientific techniques as employed by the interviewees in

this study has been summarised as succinctly as possible in the findings section of

this chapter. Where the analysts used the same technique, they tended to apply it to

apparently dissimilar projects to address slightly different aspects of the tasks or

system. For example, Statecharts, although used in similar ways by A and F, was

used by A to model the states of the underlying virtual system with which the user

was interacting, but specified the dialogue separately. F, on the other hand included

his dialogue specifications in the statecharts themselves. TAKD was extended in

similar ways by E and F, who worked closely together, however only E used task

hierarchies to add sequential information about tasks. Experimental analysis was

used for all types of application in 01, 02 and 03.

By adaptation of a technique or different interpretations of what it can address, each

specialist produces a unique style of that technique which may represent a subset of

what was recommended by its creators, plus any extensions which the specialist

sees as useful. Most notable amongst external factors which might be responsible

for forcing modifications was the requirement to integrate and communicate with

the rest of the design process. By omitting aspects of the technique which are

irrelevant or too complex to produce in the circumstances, (for example E did not

use all of the features of CLO) and by adding other features (such as the contextual

information supplied with the TAKD specifications produced by E and F) special-

ists were able to reduce valuable time spent using the techniques, omit aspects

which were not likely to add value to their specifications as far as the design was

concerned, and to enhance or add new aspects which improved the technique for

their purposes.

One point which should be emphasised here is that it would appear that the most

- 403 -

popular of all the user-oriented design or evaluation approaches was experimental

user-evaluations, which also has the broadest potential scope. Its flexibility may be

its strongest feature. Experiments may be poor at explaining user problems, and it

may be expensive to invest in the necessary office-space and experimental labora-

tory facilities but the probability that the technique can be used in almost any design

project (possibly too late to be of real value) may mean that companies see it as a

good thing to invest in.

The scoping issue emerged again when one interviewee reported using two tech-

niques in his design and analysis of a UI, and these techniques turned out to have

complementary scopes. In other words he may well have prefered to use a single

approach with broad scope, rather than worry about the depth of analysis as some

HCI DETs appear to do.

The Scoping Matrix used in this chapter and Chapter 2 to characterise design and

evaluative techniques does not emphasise the depth of a technique, or the accuracy

of its predictions. Such details are generally presented by authors making claims

about the results of experimental validations of their approach's predictions (e.g.

Card et al 1983, and Barnard 1986). The Matrix emphasizes scope, which may well

be the main limitation of current HCI DETs of the type described in Chapter 2, and

may explain the rarity of their successful application in practice, even by HCI spe-

cialists.

In the following chapter a more detailed treatment of the nature of scope of tech-

niques and how they integrate with the process of design as a whole will be given.

For the present it must suffice to say that the scope of applicable techniques as inter-

preted and adapted by the individuals who use them may be as varied as the indivi-

duals themselves, or even as the projects within which they are applied.

Support for Non-HCI Specialists

It is clear that HCI specialists rely upon their own skills and experience together

with creativity when applying scientific techniques to support user-oriented design

activities. Non-HCI specialists such as those interviewed in the design interview

study do not appear to employ such techniques, and it is therefore difficult to deter-

mine how easy it might be for them to do so were the need, or motivation to arise.

- 404 -

HCI DETs such as those discussed in chapter 2, and the other scientific user-

oriented techniques identified here do not incorporate guidance for all of the activi-

ties which they rely upon. Refering back to the earlier discussion of requirements

for unspecified activities which a technique may depend upon before it can be prop-

erly applied, it should be noted that this issue is particularly important for tech-

niques which are intended for use by non-HCI specialists. Some techniques, for

example CLG, claim to be able to support the activities of systems designers (who

may be HCI naive). However, without explicit guidance for all relevant activities,

they run the risk of being misused, or simply not being applied at all.

6.7 Conclusions

The analysis of the information collected in the interviews enabled each of the ques-

tions raised at the beginning of this chapter to be addressed. Perhaps the most

interesting conclusion that can be drawn is that HCI specialists have very different

roles in design to those of systems designers who have more general responsibilities

and engage in different sets activities (see Chapter 5). One of the main differences

is that HCI specialists tend to use scientific user-oriented techniques whereas sys-

tems designers do not. Amongst those techniques only two were similar to the HCI

DETs described in Chapter 2, the others had very different aims and methods.

These two techniques were only used by one organisation and it is possible that they

are only rarely used at all. So it may well be possible for HCI specialists to apply

HCI DETs (with some extensions and a certain amount of difficulty), however the

majority do not, even in well resourced organisations. Therefore it seems that the

requirements for specialist expertise and good resources are not the only reason for

the rarity with which HCI DETs are used.

This study has provided a critique of each of the scientific applied techniques

described by the HCI specialist interviewees. The critiques each addressed the

above questions and provide a good deal of information as to the strengths and

weaknesses of these techniques, and provide some indication of the features

required of applicable techniques. If HCI DETs lack these features, it is reasonable

to assume that there will be at least some degree of difficulty in their application in

commercial design practice.

Finally the implications of the study reported here may be summarised in terms of

- 405 -

some brief answers to the original questions which motivated it.

Question

What precisely are the HCI specialist's roles in the commercial design process?

Answer

HCI specialists, or anyone assigned the role of user-oriented designer and evaluator,

may often have limited responsibility for the design of a system. Of particular

importance is the role of consultant where activities such as information collection,

analysis, and communication are prevalent. However, the areas of concern are res-

tricted, and generally the HCI specialist does not have to worry about programming

considerations, hardware, portability and so on. This contrasts with the two earlier

design studies where systems designers were responsible for the complete system,

especially when working as consultants to design a whole application.

Question

What design and evaluative techniques do they use, what is the scope of each of

these techniques, and how are they used?

Answer

Two out of the five approaches described in detail by the interviewees in this study

were HCI DETs of the type reviewed in Chapter 2. The other three techniques were

clearly user-oriented, or able to support user-oriented design, but did not embody

explicit models of users' knowledge representations or processing properties. The

most popular technique (experimental user-evaluations) is the broadest in potential

scope (along with technology transfer), and it seems to be scope which is one of the

main failings of the model oriented HCI DETs (Barnard 1986, Green et a! 1987). In

the case of one of the two model oriented HCI DETs observed, it was used in tan-

dem with another modelling technique which complemented its scope.

The techniques which were used often seemed to be adapted to fit the requirements

of the project in question. Experimental evaluations are easily adapted to suit

requirements and the content of the technology transfer technique was intended to

be adaptable, although it turned out to be inappropriate for some projects. TAKD

had to be extended to cope with issues arising in one of the projects on which it was

used. It seems that analysts use techniques by following the general procedures

- 406 -

recommended where possible, but try to extend or modify them using their exper-

tise, where their shortcomings become apparent.

The Statecharts notation was notably popular for its clarity which made it easy to

read and communicate to others. Other notations used in HCI DETs may be

difficult to interpret in a way that Statecharts are not. CLG in particular was criti-

cised for its visual complexity. An easier to read notation produced by an HCI spe-

cialist would be more likely to be accepted as a written communication device (as

Statecharts was in 01) by other members in a design team. Furthermore it might be

possible to get feedback from potential users if design specifications can be under-

stood by them.

Given existing knowledge about the psychology of visual processing, it seems

strange that HCI notations, such as CLG with its confusing brackets, do not avoid

complex notations and exploit human visual strengths. Even if most of the informa-

tion in the techniques can be conveyed only in text form, various researchers in the

field of visual information processing suggest that textual material can be enhanced

in terms of readability by using graphical or pictorial information which helps to

organise the text for the reader and assists in top-down processing (e.g. Wailer

1980, Wright 1980). If an HCI DET is to be used as useful communication tool it

needs to be readable by people other than the person who carries out the analysis.

Question

How do HCI specialists using user-oriented techniques avoid or cope with user-

oriented design constraints and problems?

Answer

Again analysts had to resort to their own ingenuity in dealing with constraints or

problems. Where limited user or UI information was available they made the best

of what they had, and applied their techniques to this. Experimental evaluations on

unrepresentative users, for example, would be carried out if representative users

were hard to obtain. If to-be-developed system specifications were not available,

then the analyst might investigate an existing release (e.g. the existing email system

used by specialist E).

- 407 -

Question

How do user-oriented techniques exploit information sources?

Answer

The techniques employed by the HCI specialists in this study clearly provide a

framework for making the best use of available user-oriented information sources.

By encouraging analysis of prospective user behaviour, specifications, simulations

or prototypes of systems, representations of target tasks, and so on they help to

ensure that information about users, and usability does get into the design process,

and in successful cases, is preserved through to the final product.

Some information may be lost due to weaknesses in techniques, or constraints on

time and resources which prevent more detailed analyses, however it seems that,

where problems which obstruct the activities HCI specialists do not emerge, useful

analyses may carried out which can provide valuable input into design, even if it is

only exploited in a later release of a product.

Question

How do the techniques support the activities of the HCI specialist, and in what ways

do they fail to do so?

Answer

There are a number of ways in which user-oriented techniques can support the

activities of HCI specialists. They can provide concrete, and convincing evidence

of usability problems, they help to organise exploitation of information, and they

may provide a theoretical basis for recommending, or explaining properties or the

system which are related to usability.

On the other hand there are many weaknesses related to the limited scope and gen-

erality of some techniques. The lack of support tools which could speed up their

application, or enable it to take place earlier in the design process. The failure of

techniques to provide complete support for coherent roles of specialists particularly

in terms of integration with other design activities, and communication between

stakeholders and contributors to the design.

In the final two chapters of this thesis, further discussion of the strengths and

- 408 -

limitations of HCI DETs with respect to UI design are considered. The HCI spe-

cialists' practice investigation complemented the findings from the two general

design studies reported in chapters 4 and 5, by describing the design and evaluation

techniques used by HCI specialists explicitly for the purpose of improving usability.

In other words this study reflects perhaps a fairly realistic ideal which systems

designers might aspire to given tools and techniques which could compensate for

their lack of time, resources and HCI experience.

What this study suggests is that there are certain desirable features of such tools and

techniques, such that their selection by non-HCI specialists may be determined on

the basis of their scope, appropriateness or their proven success in practice. In

chapter 8 the ideal HCI DET features suggested by this study are made explicit, and

the findings are used as the main basis for a framework for assessing the applicabil-

ity of HCI DETs. This framework addresses design practice (based upon the empir-

ical studies reported in Chapters 4 and 5), scope of techniques and roles of analysts

likely to be using such techniques.

The following chapter serves to sum up the findings of the two general design stu-

dies and relate them to the nature of existing model-oriented HCI DETs. It presents

a general view of the implications of design practice for the applicability of existing

techniques.

- 409 -

Applicability of HCI Techniques to Systems Interface Design

Chapter 7

Systems UI Design and HCI Techniques: Presenting a
View of Current Design Practice as it Relates to HCI

7.1 Overview and Introduction

This chapter attempts to present an overview of current commercial and applied UI

design practice as it relates to the application of HCI DETs. Current HCI DETs as

described in chapters 2, 3 and 6 are presented as placing a number of requirements

on design, in order that they be applied. However it is suggested that design prac-

tice does not typically comply with these requirements and may be viewed as hav-

ing particular characteristics which HCI techniques need to take account of if they

are to be applicable. These were summed up in Chapter 5 in a design schema which

is a simple, empirically based representation of such characteristics. The HCI spe-

cialists' study is not focused upon here (although it is summarised) since, as design

projects with HCI specialists involved are in a minority, it is regarded as represent-

ing relatively unusual circumstances.

Amongst other concerns regarding applicability, it is suggested that projects may be

characterised in terms of the scope of the main user-oriented issues which need to

be addressed in design and evaluation of the UI. Such a characterisation can be

mapped onto a scoping of an HCI DET in terms of the aspects of a system it can ad-

dress. Finally, questions raised by the review of various design views in Chapter 3

are addressed in the light of preceding chapters in this thesis.

The role of this chapter within the thesis as a whole is to present a basis for discuss-

ing more positive responses to the problem of inapplicable HCI DETs. The follow-

ing and final chapter will seek to present a framework for assessing and possibly

guiding the design of future HCI DETs, not in terms of their theoretical direction,

but in terms of qualities which are required of them if they are to be applicable in

typical design projects. Much of the information underlying the framework's view

of desirable features of HCI techniques is drawn from the HCI specialists' interview

-410-

study which is therefore more appropriately reviewed in Chapter 8.

7.2 Resume and Application Requirements of HCI DETs
from Chapters 2 and 3

The application requirements of HCI DETs are assumed to be any aspects of these

approaches which place additional demands on a design project or limit their gen-

erality (to different types of UI and application), their appropriateness (to the types

of analysis required for the system), and scope (i.e. the principles of usability and

evaluation factors addressed), with respect to actual design practice. The descrip-

tions in Chapters 2 and 3 suggest a number of interesting features of HCI DETs, in-

cluding their scope, and how they view the rest of the design process into which

they will be integrated (if they have such a view).

A Brief resume of the main features of each of these techniques described in chapter

2 as regards their possible use in design and evaluation follows. These resumes are

based more upon the claims of their creators than on any other objective evidence

from examples of applications of the techniques in practice by people other than the

creators themselves.

7.2.1 Block Interaction Models

Supports: Analysis of the prospective user's knowledge relating to a task or prob-

lem. BIMs should be capable of assisting in the selection of appropriate detailed

modelling techniques which might capture the most important types of knowledge

relevant to the design in question. They may also support the designer or analyst in

specifying how the different types of knowledge might interact, and how this might

influence user performance and indicate ideal properties which might avoid user

problems related to this interaction.

BIMs are potentially capable of indicating whether the knowledge required to in-

teract with the system (ideal knowledge sources) is compatible with users existing

knowledge. They are not intended to specify the details of the knowledge

sources involved, however within the BIMs framework it should be possible to find

detailed techniques which would enable he analyst to do so. For this reason a BIM

cannot itself capture simplicity or any formal property of a device or UI. It is possi-

-411-

bly capable of indicating compatibility and UCTDs, although without the use of a

more detailed analysis, these principles could only be intuitively dealt with. The

model will not predict quantitative or qualitative aspects of user performance with a

system. It is up to the particular analyst to select models or specification techniques

which will permit this.

Application Requirements:

From the Analyst. BIMs require psychological and HCI expertise and the ability to

select and apply appropriate detailed modelling or specification techniques. The

BuMs elucidation of the nature of interactions between various knowledge sources,

and their effects on human performance, is not presented in sufficient depth to per-

mit a psychology-naive systems designer to apply the technique. Presumably com-

munication or programming skills are also required in order to ensure that the impli-

cations of a BIM specification are reflected in the design of the system and its UI.

From the Design Project and Its Environment: BIMs require that the design en-

vironment allows the applier to gather relevant information about the prospective

system users, the application, the UI, and the target tasks, and all of the relevant

knowledge sources which the user has and should have which may affect use of the

system. It is sufficiently flexible to be generalizable to a wide variety of design pro-

jects and activities, for example it could represent real-time applications as easily as

data processing ones, and it could provide a framework for conceptual specification,

system generation, or for evaluation. The flexibility of the BIMs framework comes

from the fact that the precise representations for each of the knowledge sources are

unspecified, other than in the sense that they should support mappings to other relat-

ed or potentially interacting sources within the BIMs framework.

7.2.2 Reisner's Formal Interactive Grammar (FG)

Supports: Analysis and evaluation of a competence (idealised) model of the rules a

user needs to represent in order to execute target tasks using an existing or precisely

specified system. The notation is sufficiently powerful to permit formal properties

of the dialogue to be determined. However, the more account the analyst takes of

psychological validity of the rules to be represented, by adding semantic restrictions

to what were originally purely syntactic rules, the less formal the specification must

-412-

become (Green et al 1985).

The only property which the FG captures without extensions is that of simplicity of

an idealised user's representation of the UI dialogue. This representation is entirely

context free (system states are not captured), so that rules which might dictate when

actions are valid or likely to fail are not included. Since FG is only associated with

an implicit model of the psychological properties of the user, it only addresses com-

petence properties of user knowledge. It cannot predict performance because no

processing constraints of the human cognitive components which handle the

knowledge represented are made explicit. The essential function of FG must there-

fore be to alert the analyst to complexity of a device. However, the complexity will

only be clear by comparison with other devices specified by the technique. Reisner

uses indices of length of rule sentences and the number of rules as metrics of com-

plexity.

Application Requirements:

From the Analyst: FG's reliance on an implicit psychological model of the user

places a strong requirement on the analyst for psychological expertise. The BNF no-

tation used to express the rules of the grammar is straightforward to learn but of it-

self makes no statement about device complexity. It is the hierarchy of rules

described by Reisner, which generate the terminal strings, which are the main dev-

ice for capturing complexity. Simple observation of sentence string length and

counting of rules in the grammar generates metrics for system complexity which

can be compared with other FG system specifications. The analyst may wish to add

semantic restrictions to increase the psychological validity of the grammars, howev-

er this requires more psychological skill.

From the Design Project and Its Environment: The FG is a reactive tool, in that it

requires that the system to be described already exists or is specified in sufficient de-

tail that the BNF notation can be applied to it. Since the role of PG is essentially

one of evaluation by contrast, a previous or similar system specified in FG should

be available for comparison. If there is to be any benefit from such an evaluation,

the design project must permit modifications to the design to be made on the basis

of any recommendations on the basis of the evaluation. In the case of FG analyses

this must be possible after detailed system specifications have been made, or imple-

-413-

mentations carried out.

Since BNF is a well known, formally precise notation, it should not be necessary for

the analyst to add much in the way of explanation to an FG specification in order to

communicate it to a programmer. FG is potentially machine readable and there is

no reason why automated versions could not be used to help write dialogue

specifications. On the other hand many qualitative and all quantitative aspects of

human cognition are not addressed by the grammar and cannot be predicted or ex-

plained by it.

7.2.3 Task Action Grammar (TAG)

Supports: Analysis and evaluation of a competence (idealised) model as does

Reisner's FG. TAG is, however more psychologically rigorous in its account of

user knowledge representation, in that it accounts for semantics of interactions and

has a more refined view of rule structures which might be plausible in a user's

representation of dialogue with a system. On the other hand TAG is less formally

concise than FG because it appeals to unspecified user attributes which strongly

influence the structure of the concepts and rule schemata modelled on the user, for

example real world knowledge influences the user's understanding and representa-

tion of relationships between different concepts. Because of the less formal nature

of TAG, it is more important that the analyst using TAG has a well developed idea

of how knowledge might be represented by users, as this has greater influence on

TAG than it does on the FG.

TAG supports the same type of analysis as FG in that it assumes an implicit psycho-

logical model of the system user which influences evaluation of a context free gram-

mar which captures simplicity of the UI dialogue. In addition TAG captures simi-

larities (family resemblances) between groups of tasks) within single rule-schemata,

and also uses devices to capture compatibility with users' existing, or real world,

knowledge. A metric of complexity of a dialogue is assumed to be the number of

simple-task rule schemas, discounting those already embodied in real world

knowledge. Compatibility can be evaluated by counting the number or proportion

of concepts, lexemes and rules which are already represented in the user's existing

knowledge.

-414-

Neither TAG nor FG address the performance aspects of cognition nor the process

of learning and skill acquisition, since they are purely competence models. Further-

more they do not assist the analyst in evaluating the graphical qualities of system

output, since they have no explicit component which deals with the perceptual as-

pects of human information processing.

Application Requirements:

From the Analyst: Psychological and HCI expertise is much more important for

TAG than it is for the FG, since TAG resorts to many more devices based upon

psychological theory (such as the feature grammar, and the representation of con-

cepts as semantic components; Payne & Green 1986) which influence the structure

of the grammar. Furthermore, it is unlikely that systems designers would under-

stand a TAG specification without prior education in its use. It is therefore likely

that the analyst using TAG would have to be capable of translating TAG

specifications into a more comprehensible form for UI implementors.

From the Design Project and Its Environment: TAG imposes almost exactly the

same requirements on the design project and its environment as does the FG (i.e. a

detailed system specification). It also requires a detailed task analysis and user

modelling to determine the content and structure of real world knowledge and task

execution knowledge. The added value of its greater psychological scope is coun-

tered by the cost of the possible requirement for translation into some comprehensi-

ble form or machine readable versions of a TAG specification. As with FG, an ex-

isting but modifiable system, or UI specification or implementation is a prerequisite

for obtaining the best value from a TAG analysis.

7.2.4 ACT4

Supports: Any evaluation or design method which seeks to simulate, explain, and

predict human performance in information processing. It does not contain com-

ponents which restrict its scope purely to HCI. It can account for complexity of

competence models of dialogues and tasks, compatibility of knowledge required by

a system, and the effects of incompatibility. It models performance, both with

respect to human learning and actual task execution, and it deals elegantly with

development of skill. It is entirely generalizable and can cope with perceptual as-

-415-

pects of processing as well as cognition.

Application Requirements:

From the Analyst: ACT* really requires a great deal of commitment and psycholog-

ical expertise to apply. The complexity of a non-trivial ACT* model also requires

programming skills in order to build a simulation of the human processor, since the

size of an appropriate production system and simulation of its parallel organisation

and behaviour would be practically impossible without computer support. There is a

risk that production rules can be generated, in any ACT* simulation, on the basis of

arbitrary decisions of the programmer. For this reason, the implementor should

have, or be constrained by psychological theory and empirical support for the nature

of the production rules that should be included in the model.

From the Design Project and Its Environment: An implementation of ACT* re-

quires plenty of time and computer resources, together with all of the requirements

necessary for TAG and FG, including task analysis, user information, and a system

specification which would determine the nature of the production rules necessary

for its operation. An ACT* model would provide reactive assessments of the im-

pact of UI design upon users. Within itself it contains no components which could

explicitly drive design.

7.2.5 Goals Operators Methods and Selection rules (GOMS)

Supports: Evaluation by modelling user cognition and representation of tasks to be

executed with the system. GOMS is able to generate predictions of the speed and

methods with which users would accomplish tasks using a system. It cannot ac-

count for the errors which real users typically experience, and these are only

reflected in the model by expressing time predictions with an error margin (which is

a degree of uncertainty associated with the added time a user might spend making

and correcting errors). On the other hand a GOMS model can suggest areas of hu-

man difficulty with interaction in as much as cognitive components of users are

compromised by the nature of the necessary steps required to execute tasks with the

UI.

The GOMS family of models (the family consists of similar models with different

-416-

grains of analysis) only captures the rules required for ideal users to achieve com-

petence for all target tasks, plus extra rules based upon empirical observation which

reflect variations between methods users might apply. Variations between users can

be captured by adding degrees of freedom to operator times and style variations to

selection rules which can exhibit bias as individuals do towards preferred methods.

Inappropriate or wrong operators methods are not included, and there are always

enough operators and methods to ensure competence in the model (i.e. the model al-

ways knows how to achieve its goals).

Card et al (1983) suggest that GOMS can also be used to diagnose difficulties users

might have with a given specified UI. GOMS is a performance modelling approach,

and comes with a model of human cognitive architecture and processing constraints

which can be applied to GOMS specifications to demonstrate where users process-

ing capabilities might be most likely to prove inadequate. Once again GOMS is a

reactive design tool, however it adds more precise performance explanations to

problem diagnosis (e.g. lack of working memory would prohibit users from storing

long lists of novel information).

The lack of any representation of users' non-ideal or existing real world knowledge

means that GOMS is restricted to the principle of simplicity for the purposes of

modelling and evaluation. It does not account for UI compatibility with existing

knowledge users have, and how this might affect performance. The model human

processor (MHP) model used by GOMS would have to be extended with respect to

human perceptual processes to cope with differences in system output perceived by

users. On the other hand GOMS has been shown to be able to distinguish between

different types of UI input device and predict user performance with them.

Application Requirements:

From the Analyst: GOMS does contain an explicit model of human cognition which

takes the onus of determining psychological characteristics of system users off the

analyst somewhat, although understanding and extending the MHP should be much

easier for a psychologist. It possibly requires psychological expertise in order to

understand the importance of the human information processing model it embodies

and its limitations, and implications for task execution. However, the main require-

ment for specialist skills in psychology and HCI seems to come from the require-

-417-

ment for the analyst to determine the most appropriate grain of analysis for

representing a given type of system interaction. Some levels of the GOMS family of

models may be more accurate in certain circumstances than others.

From the Design Project and Its Environment: Empirical evidence of user perfor-

mance is required upon which to base the basic operator time predictions and selec-

tion of alternative valid methods for accomplishing unit-tasks. This implies previ-

ous trials with users on existing versions or simulations of the system to be evaluat-

ed or on comparable products. Representative subjects will be required for such tri-

als. Task analyses and specifications are required to derive the goal structures for

the model. Also a specification of the product itself is needed to determine what the

appropriate operators, to accomplish target tasks, will be with the new system. Of

course if the model's predictions are to have any impact on the design, then any ex-

isting specification or implementation of the system in question must be modifiable

on the basis of the results of GOMS evaluations.

In addition computer simulations of the tasks as executed by the GOMS model are

necessary for modelling non-trivial systems since the model may need to be run

many times to give an accurate picture of the emergent properties of different com-

binations of methods applied variously by the selection rules.

7.2.6 Cognitive Complexity Theory

Supports: The same kind of simulation-based, performance prediction as GOMS

(see above) which it uses to represent task structures, however CCT has some addi-

tional attributes. CCT incorporates a more sophisticated, ACT* style (see above),

production based human cognitive architecture and represents the system states and

behaviour which gives it greater predictive scope than GOMS because, in addition

to the complexity of the rules required to operate the system, it also addresses ac-

quisition of skill, and the compatibility of users representation of tasks with the

rules required to operate the system. CCT is thus a collection of three models; of the

target tasks, the users cognitive architecture and processing, and the UI behaviour.

Like GOMS, CCT is empirically based and reactive rather than design driving. It

can be applied to modules of the UI to produce mini UI component-evaluations.

This is done by specifying the relevant aspect of the UI using a generalised transi-

-418-

tion network, and mapping the relevant user's goal structure to the equivalent dev-

ice task-hierarchy.

Application Requirements:

From the Analyst: CCT makes many demands on the analyst which reflect its in-

creased scope. It makes all of the demands described for ACT* and GOMS, but in

addition the analyst has to selectively specify the device UI in terms of generalised

transition networks, and this is not so straightforward as it might appear because by

selecting to omit certain aspects of device behaviour, certain states which could

influence predictions made by the model could be omitted.

From the Design Project and Its Environment: CCT requires that the design be ca-

pable of supporting building of a computer based simulation of an ACT* production

system architecture, and a GOMS analysis which would take a good deal of time

and effort. The device specifications would have to be based on highly detailed

descriptions of the nature of the system being designed, but the system itself should

still be modifiable if the analysis is to have any impact on the design. In essence

CCT imposes the most stringent requirements on design projects in terms of the

resources which must be available.

7.2.7 Interacting Cognitive Subsystems

Supports: Any design or evaluative methodology which requires a cognitive archi-

tecture from which to derive processing limitations of system users. ICS does not

provide quantitative performance predictions because it does not assume any pro-

cessing parameters (although these could possibly be added to the model). It has

been shown to be capable of accurately predicting subtle effects, in terms of user er-

rors or difficulties, of variations in the lexicon and structure of interaction languages

(Barnard 1985, 1987). It also provides detailed explanations of users' errors in

terms of the cognitive processing components which it proposes.

The model is highly generalizable because it contains processing components which

would enable it to make predictions about variations in system output, and the re-

quired form of input from the user. It also contains high a level processing com-

ponent (the implicational subsystem) which would handle planning and goal direct-

-419-

ed behaviour. However the more detailed aspects of this component and some of the

other components, such as the visual subsystem, need to be further elucidated. Con-

sequently, in its present form ICS deals with the principles of simplicity and compa-

tibility. Simplicity can be elucidated by looking at the amount of knowledge re-

quired by users to carry out their interactive tasks, and compatibility by identifying

the knowledge they lack and how this lack affects their performance. The lack of

detail for higher level organisation of interactive tasks prevents it from being gen-

eralised to address the presence or absence of user centred task dynamics (UCTDs)

in a system.

ICS contains no recommended form of device representation and therefore does not

address the behaviour of the application during various stages of tasks and the ef-

fects which particular, perhaps erroneous, actions may have at any time.

Application Requirements:

From the Analyst: ICS requires considerable expertise in psychology and HCI be-

cause it relies upon characterisation of the device in terms which highlight its

psychologically important features (such as syntactic command structures) this is

not clearly guided by the existing model and is left to its applier. The analyst really

needs to have a good idea of where to look for complexity and compatibility prob-

lems. The details of the way in which each subsystem represents and transforms in-

formation are also highly esoteric for the non-psychologist, and have only been il-

lustrated in detail for a subset of the subsystems in the whole framework.

ICS is really intended as a research tool, so it may not be fair to evaluate it as a

design tool. At present its main role seems to be one of support for other more de-

tailed and applied techniques which could appeal to this cognitive architecture for

information regarding detailed processing properties of system users.

From the Design Project and Its Environment: ICS would require a design environ-

ment with the expertise and resources to develop and extend the model from its

present form, perhaps to the extent where it could play a similar role to the one of

ACT* in CCT. It is unlikely that ICS could be applied currently outside of the type

of research environment within which it has been developed.

- 420 -

7.2.8 Command Language Grammar

Supports: A complete UI design specification, with a top-down perspective in which

the entire UI is specified at an abstract level, ideally reflecting the user's task model,

to begin with and then transformed, using mapping procedures (some of which are

more explicit than others), through a number of levels down to the precise

specification of the dialogue structure intended for the system. What the approach

seeks to do is to preserve a coherent user's conceptual model of the tasks the system

is intended to support throughout the design process. Moran (1978) intended that

the CLG should be used together with a set of rules for user-oriented design, but

these do not appear to have been widely publicised.

The approach produces a competence grammar for interaction with the system

which may potentially be analysed in much the same way as other competence

grammars for its complexity, by counting the rules at the various levels of represen-

tation required to generate the legal syntax for all commands, and looking at their

length. CLG is also capable of addressing compatibility and UCTDs as long as the

task level is based upon empirical analysis of users' knowledge. Such an analysis

could have been encouraged by the user-oriented design rules mentioned above.

Compatibility would be indicated by analysing the simplicity with which one level

of the UI specification could be mapped to another. This is essentially representing

the amount of extra knowledge, beyond what users need for the task application

domain, which they would require to operate the system.

CLG is capable of representing some of the contextual characteristics of devices, for

example the legal commands within a state can be made explicit. Since only the di-

alogue oriented aspects of system behaviour are explicitly demanded by the nota-

tion, and no proofs are encouraged to verify the specification, it may be easy to miss

some of the state behaviour of the system.

CLG is related to GOMS and shares some of the same features, although the con-

cept of level is somewhat different for the two. A level in GOMS is roughly

equivalent to a level in the task hierarchies generated at the Task Level in CLG

where each sub-task is a procedure within a higher level task. Moran states that per-

formance metrics could be generated for interactions with the UI by associating

times with actions, cognitive operations, and system responses in the specification

- 421 -

in much the same way as with GOMS.

Application Requirements:

From the Analyst. CLG lacks much of the explicit information which might deter-

mine its appropriate use, for example, Moran himself points out that CLG lacks

generative mapping rules between the semantic and the syntactic levels of the

description, and it is not always easy to determine what level an entity name be-

longs at. CLG also assumes that a task analysis has been carried out with sufficient

skill that a representative model of users' tasks can be generated. This places a re-

quirement for psychological skills on the analyst.

The analyst using CLG has to do a good deal of work to understand all of the com-

ponents of CLG, and needs to be extremely careful when writing the specification

because errors seem to be easy to make (Sharratt, 1987). Furthermore, since the

final descriptions are very complex, the person who has produced them will prob-

ably need to interpret them and communicate their implications to others, or use

them to guide their own software generation.

From the Design Project and Its Environment: CLG relies upon a task analysis

focusing upon the knowledge which the user will bring to the system, and a target

task specification which will constrain the scope of the tasks the system will sup-

port. CLG does the job of mapping from the target task specification down to the

specification of the dialogue. An implicit requirement from CLG as a design tool is

that the system is completely unconstrained in structure before the process of design

begins. Being top-down, CLG does not account for the possibility of configuring

existing functionality, as might happen with an applications generator system, and it

will not work with a bottom-up approach unless it is restricted to the role of an

evaluation tool.

7.2.9 Common Attributes of HCI DETs

The above descriptions sum up some of the main features of the HCI DETs

described in Chapter 2 in terms of aspects which relate to their applicability. In the

following discussion, an attempt is made to generalise these features to present an

overview of their support for design and their requirements from the analyst and the

- 422 -

design project and its environment.

Support.'

If we are to take the claims of the authors of the above HCI DETs as realistic, the

what we have are a number of partially overlapping but typically distinctive mode

ling techniques which are designed to represent information about users, tasks an

systems in such a way that exploring potential problems in designs, and explainin

their cause may be made easier. Many or perhaps all of them focus the attention

the analyst in directions which it may not otherwise have taken. Some lil

Reisner's action language may have their main value in forcing the analyst

designer to be explicit about the implications of their designs for userstasks. Othe

like CCT and CLG more or less explicitly add information based upon empiric

evidence about the nature of human processing or representation of knowledge, an

bring this information to bear upon assessment of the UI.

It would appear that they all have a potential capability to support design in variot

ways. However whether the value of the support outweighs the required investmei

in time and skill is not clear for any of them. At present any analyst using any

these methods is taking something of a risk because the evidence presented i

Chapters 3, 4 and 5 tends to suggest that none of these techniques have been prove

to work for individuals other than their creators, and as Chapters 2 and 3 sugges

they have only been tested in artificial circumstances if at all.

Application Requirements:

From the Analyst: All of the techniques discussed require the analyst to have

least some skills and experience in psychology and HCI. Perhaps some ma1

greater demands than others, for example the Formal Grammar of Reisner is quit

straightforward whereas CLG is highly complex and depends on the ability of tF

analyst to carry out a detailed task analysis, assign concepts to appropriate level

derive assessments about complexity and compatibility, and so on.

The ability to communicate the content or import of the models generated seems 1

be inherently necessary, since most of them adopt unfamiliar notations which ai

subject to many implicit and subtle assumptions which may have important implic

- 423 -

tions, for example; TAG assumes real world knowledge, denoted by a special sym-

bol next to a rule schema, will have significant effects on the resulting complexity

of a system for its users. If notations fail to be communicable, then the analyst him-

or herself must be able to implement a UI on the basis of the HCI analysis.

From the Design Project and Its Environment: Time and expense to a varying de-

gree are the most obvious considerations which will affect the applicability of HCI

DETs. Some like CCT are likely to incur very great costs, due to the requirement

for sophisticated simulations of human processing and UI behaviour. Others such

as BIMs seem to require hardly any expense at all.

Only CLG can claim to support design as well as to represent a specification which

can be more easily evaluated in terms of complexity and compatibility than, say, a

network model of a system such as might be generated by a JSD approach (Jackson,

1983), the rest of the techniques are all essentially reactive. For this reason it seems

sensible to assume that a major requirement for them is that a design must exist be-

fore they can support development. A major problem with reactive design tools is

that in theory there is nothing to prevent designers from producing a completely

inadequate first prototype or specification, which could be a waste of their time.

Any tool which can support conceptual specification of a system by mapping users'

requirements seamlessly onto optimal user-oriented solutions is likely to have an

enormous advantage over one which simply suggests that an existing design

conflicts with its users requirements; it will save at least one expensive iteration of

the system life-cycle.

Finally most of the reactive techniques discussed seem to assume that, whatever the

nature of the project they might be applied in, there will be an available system

specification which will be precise enough to allow detailed analysis as occurs with

GOMS, but which will still be modifiable on the basis of any recommendations

derived from the modelling exercise. By contrast CLG assumes that nothing about

the system is specified until the interaction level is complete. CLG does not deal

with bottom-up design influences which could predetermine some of the system's

behaviour and constraints.

In Chapter 3, several discrepancies were identified between explicit design views

held be GOMS, CCT and CLG. Other techniques presented no view at all, and

- 424 -

TAG which claims to be directly applicable to design was one of these. As a rem-

inder, the discrepancies are listed here.

* HCI DETs do not come with a clear explanation and justification of the design

process into which they are to be integrated.

* Evidence of the utility of HCI DETs over competing UI design and evaluation ap-

proaches is lacking.

* Validations of the accuracy of HCI DETs predictions are carried out by HCI ex-

perts.

* Competence models assume ideal users which may be unrealistic in most cir-

cumstances.

* Few HCI DETs address the value and implications of prototyping in detail.

7.2.10 General Application Requirements of HCJ DETs

It is appropriate here to sum up the implications from Chapters 1, 2 and 3 in terms

of some explicit statements which can be made about the nature of HCI DETs with

respect to their applicability in design. These statements will be referred to collec-

tively as the Application Requirements of HCI DETs. Of course they are drawn

from a small subset of techniques of this nature and therefore may not be a complete

set, or even universally general. However, since each applies to most of the sample

discussed here, it seems reasonable to assume that they are likely to be representa-

tive.

Access to Information About Tasks and Users

GOMS, CCT (and CLG if used as a performance model) place a very high require-

ment for empirical evidence of user-system behaviour from which to derive the

basic level operator times, human processing and system response times which form

the basis for their predictions. Most of the techniques require that detailed task ana-

lyses be carried out in order to capture the knowledge, goals and possibly the

methods which users will bring to a system.

- 425 -

Appropriateness

Appropriateness really refers to the notions about user's properties and their impli-

cations for system use which a technique is able to address, and to the expressive-

ness of the notation, i.e. whether and how it captures these notions in some way.

TAG, for example captures the notion of semantic-syntactic alignment which refers

to the generalising properties of users representations such that similar semantics is

best represented with similar syntax.

Appropriateness is the best way we have of ascertaining the relative value of one

technique over another at present. If a technique can address certain properties of a

system and another cannot then, for analysis of a system where these properties are

most important to the success of the system, the technique which can capture them

will be considered to be of greater value.

Appropriateness relies upon determining how well features of a technique such as

its scope, input (e.g. information derived from task analyses or empirical experi-

ments) and its output fit the particular characteristics and requirements of a design

project. For example, if accurate predictions of user performance with a system are

required, then pure competence models may be of no value to the analyst.

Designers' Experience with HCllPsychology

Since HCI specialists are rare in commercial design practice, especially on smaller

projects (see Chapter 4). The largest market for HCI techniques consists of indivi-

duals with limited or no experience of psychology and HCI. By contrast many HCI

DETs seem to be heavily dependent upon implicit psychological models or require

specialist activities such as task analyses, or involve esoteric assumptions about the

psychological aspects of the user and the meaning of certain components of their

notations (such as the real world knowledge rules in TAG and the multi level

abstractions of CLG). It is clear that an important application requirement of many

of these techniques is the ability of the analyst to interpret them in the light of

knowledge and experience with psychology and HCI theory. Evidence from

Chapter 6 suggested that extensions had to be made by HCI specialists to an HCI

DET. These extensions were only possible because the analysts using it were aware

of its limitations and the ways in which it could advantageously be adapted. It is

- 426 -

unlikely that this would be true for non-HCI specialists or non-psychologists.

Existing Modifiable Specifications

Adaptable, existing system design specifications are the main or only implicit as-

sumption about design projects made by most of the HCI DETs discussed in this

thesis. CLG is the exception because it will not work with existing specifications (if

it is made to do so then the main value of the whole top-down approach is lost be-

cause the order of description is essential to ensure preservation of the user's con-

ceptual model). For the majority of HCI DETs the existing specification; be it in

the form of diagrams, English statements, or a simulation prototype, is the crucial

underpinning of their model. The model of users' representations or of their in-

teractions with the system, generated from the system specification produces the

metrics, or has the qualities from which their analytic inferences are drawn. Only

after the implications of the derived model are made explicit can these techniques

impact upon design. All of the techniques discussed have the additional require-

ment that any existing system specification is adaptable with respect to their recom-

mendations. If this is not the case then the value to be derived from their application

would have to be deferred until the next release or version of the design, if one does

emerge. Furthermore, even if such a system specification does exist, they do not

describe how to relate the technique to whatever form the specification might be in,

nor how the output from the technique might drive modifications or improvements.

Communication

Apart from the scope of an HCI DET and the expressiveness of its notation, com-

munication is an important issue for aspiring practical design techniques. A nota-

tion may well be highly expressive of certain properties, but this expressiveness

may not be clear, and may therefore be difficult to communicate using the notation

alone. Communicability must depend upon shared understanding of symbols and

conventions, and it must also depend upon the naturalness of those symbols and

conventions. Naturalness is perhaps a dangerous term to use, but by this I mean the

extent to which the symbols and conventions reflect and capitalise upon the nature

of human perception. Communication of design and evaluative techniques' nota-

tions depends upon both the exploitation of what people perceive most easily and on

use of commonly understood symbols and conventions (which are likely to be less

- 427 -

common between MCI specialists and systems designers than they are within the

MCI community).

This communication requirement is still implicit for all techniques which use un-

familiar notations and associated concepts, and which, due to their sophistication,

are unlikely to be applied by systems designers themselves. HCI Specialists who

may not carry out the actual design may be required to use such techniques and

communicate the output from any analysis to the rest of the design team. The more

esoteric the representation, the more necessary it becomes to actively communicate

it's import to others in a more digestible form. Reisner's BNF notation is perhaps

the most generally comprehensible within the domain of computing; its communi-

cability being based upon shared understanding rather than any inherent naturalness

of BNF compared to other notations, CLG is perhaps the less so because it intro-

duces so many notational devices and interpretations drawn from HCI and psychol-

ogy, and ICS is probably the most remote because it uses both an idiosyncratic nota-

tion, and refers to many esoteric, psychological constructs which make up its archi-

tectural and processing assumptions.

Time and Cost

Perhaps it is unnecessary to point out here that most value adding design activities

come with a penalty in terms of time and cost. The important feature of this appli-

cation requirement is that it should not be so great as to defeat the scope of the tech-

nique itself. For example a technique which provides late evaluation only, may add

virtually no value to the design (and perhaps only a little to later releases or pro-

ducts); its penalties ought therefore to be minimal. Design driving techniques,

which preempt the need for undirected multiple iterations of designs in the hope that

improvements will be stumbled upon, seem intuitively to be more valuable than

reactive ones. We may expect therefore that expense of a design driving method is

not so much of a penalty as it is for a late evaluation method, since it may be more

likely to save expensive iterations.

-

None of the MCI DETs discussed in this thesis have ever been cost evaluated, it is

therefore impossible to judge objectively the penalties and value associated with

them in actual system design practice. Caution could make designers exaggerate

the costs and minimalise the benefits of a potential untried MCI DET which did not

- 428 -

address this requirement. Future HCI DETs need to be tested and supplied with ex-

plicit case history based evidence of their value. An example of this kind of effort is

that of Gould et al (1987) who demonstrated the value of their design principles in

practice, on a commercial style project.

Integration

This application requirement is, in fact, important for any specialist design tech-

nique which requires that other design methods or activities take place in addition to
those they advise for design or evaluation. In Chapter 3 the views of design made

explicit by GOMS, CCT and CLG were discussed. These views imply preconcep-

tions about design, for example CLG assumes a top-down approach, certain activi-

ties which must be addressed are assumed to be completed (for example determin-

ing the correct level of analysis for a set of tasks with the UI is necessary but not

guided by GOMS or CCT). These techniques are the best of those reviewed in this

respect because they at least have a view; the other techniques do not have anything

to say about design circumstances and how these would affect their use.

As well as preconceptions many HCI DETs produce output in the form of evalua-

tion which may be qualitative or quantitative, and which may only be comparative

(e.g. Reisner's FG). Only CLG, of the techniques reviewed in Chapter 2, produces

a design specification. The output of the various techniques may not be in a form

which is readily assimilated into the design process and the analyst may have to

translate concepts and measurements into more readily understood forms, for exam-

ple consistency may have to be redefined as reuse of low level components of code,

and simplicity may be defined as detuning and diffusion of modules of code which

underlie functionality such that dialogue commands are generalizable and not com-

pounded unnecessarily.

The requirement placed upon the analyst is to find a way of fitting in with the rest of

the design process. If an HCI DEl is flexible in what it can support, and the value it

delivers, then it should be possible to adapt it to suit the circumstances; for example

Morton et al (1979) who developed BIMs make no claim as to the precise nature of

the framework's application, but do not constrain the analyst to a particular ap-

proach. On the other hand they have not been shown to work well with any ap-

proach in particular. CLG on the other hand is very highly constrained, and will not

- 429 -

work with existing specifications. An 1-ICI DET must integrate well with other

design methods, otherwise it disqualifies itself as a partial system DET which can-

not work with other DETs to produce a complete methodology. The degree to

which a technique is integratable is probably dependent upon how well it addresses

its other application requirements such as its dependency on HCI expertise or the

amount of time and effort it is likely to take up.

These application requirements are important indicators of how likely it is that HCI

DETs in their present form can be applied to commercial design practice. We also

need to look at the state of affairs in typical commercial design projects in order to

determine whether it does meet these requirements, and in what ways it fails to do

so.

The two design studies reported in Chapters 3 and 4 were able to supply this type of

information. In the following section, the main findings of these two studies will be

related to how the projects involved did or did not meet the requirements for appli-

cation of HCI DETs. The two studies also combined to provide information about

the constraints which limit the ways in which design can be practised, and the user-

oriented information sources which are commonly exploited in commercial prac-

tice.

7.3 Review of Main Findings from the Design Studies
in Chapters 4 and 5 and their Implications for HCI DETs

7.3.1 The Features Analysis of Design Practice

This study set out with a number of hypotheses based upon the discussions in

chapters 2 and 3, and a number of informal discussions with systems designers at

Queen Mary College where the research took place. These rather informal and gen-

eral hypotheses were based upon the empirical studies reviewed in Chapter 3 and on

some informal discussions with systems designers at Queen Mary College, London.

They are directly related to the application requirements of the HCI DETs discussed

in Chapter 2. For this reason each of the hypotheses and how it was supported will

be discussed with reference to the application requirements of HCI DETs.

- 430 -

1. The design process is very variable, in terms of activities and organisarion.

One of the notable findings of the features analysis was the enormous variability

amongst design projects described by questionnaire respondents. No consistent

method for any aspect of the design cycle was identified; in fact informality and

idiosyncrasy was the main impression provided by the analysis. Only 9 out of 25

projects (36%) reported using formal methods (respondents' definition of the term

"formal" sometimes seemed to mean structured). Team sizes ranged from 1 to

about 50 individuals, and project lengths from 0.67 to 1800 person months. Only 7

teams (28%) involved an HCI specialist, and these tended to be the larger teams

with longer projects.

What this means for the application of HCI techniques is that the target users of

these are likely to have widely differing requirements for design tools. As stated

above HCI DETs require investment of time and money to a varying extent this re-

quirement will limit the choice of those who have not got the resources to more sim-

ple techniques. This is not a problem which is peculiar to HCI however (Lyytinen

1987). On the other hand, the wide range of activities undertaken by the respon-

dents in their projects means that any assumptions made by HCI techniques about

the nature of the design process could be invalid in many instances. This issue was

elaborated by the findings from the supplementary interview study which looked

more closely at the quality of design practice.

If any view of design practice is to be held at all, it must be empirically based and

representative rather than ideal, if it is to be effective. It must also account for the

probable constraints which may impinge upon the pursuit of user-oriented design.

Such a view does not seem to come with HCI DETs which may explain the general

reaction to their practical demands as being one of scepticism (see the discussions in

Chapter 5).

2. Applications are diverse and text editors only make up a small minority of these.

Out of 25 applications reported in the questionnaires, only one was a word proces-

sor. Another 8 were also text or file oriented. Since these applications involve sim-

ple manipulations of information or UI objects such as windows and text which re-

quire only one representation, and are unlikely to be affected by other processes or

-431 -

users, it might be reasonable to propose that techniques tested on text editors could

be extended to these. In fact this group included two communications systems

which could have had much in common with the hypothetical "EG" system on

which CLG was demonstrated (Moran 1978 & 1981).

However there were 11 data and process oriented applications which could involve

information perceived by the user changing in accordance with remote input, and

possibly multiple representations (e.g. tables, graphs, flow charts and text). None of

the HCI DETs described in chapter 2 consider the properties of Uls to such systems.

Furthermore 2 CAD, 1 complex problem solving support system, and 2 expert sys-

tem applications were identified. These are also unlike text editors in their character

and are not addressed by the HCI DETs reviewed in this thesis. In total 16 of the

applications described (64%) were very different from text and file oriented sys-

tems, and could have had very different analytical requirements. The appropriate-

ness of the HCI DETs described in Chapter 2 to such applications is doubtful, since

they do not address complex problem solving activities, tasks requiring prolonged

attention in distracting or tiring conditions, parallel activity, perceptual processing,

and many other such components of human psychology which are highly important

to many of the tasks carried out by people using computers in industry today.

The Uls to these applications were typically menu based with WIMPs being com-

mon amongst these. There were also a number of forms based Uls included in the

reported design projects. We could expect that menu based dialogues exhibit a

number of different properties from command driven dialogues such as described

for EG by CLG. For example, the memorising and ordering problems of commands

and arguments does not arise to the same degree in menu dialogues; memory re-

quirements are lessened because the user only has to rely on recognition. Again

these issues are not addressed by the HCI DETs in Chapter 2.

It is necessary to present a wider view of the psychological properties of users than

has been the fashion so far in HCI techniques. Indeed the scoping matrix intro-

duced in Chapter 2 does not give sufficient detail on these issues, and at present may

be inadequate for representing the real scope of HCI DETs because it fails to

highlight which properties of the user are captured by the models. In failing to do

this it cannot, for example, differentiate between two techniques which both model

skilled task execution but one of which is able to model perceptual skills and might

- 432 -

be more suitable for modelling medical diagnosis from radiographs.

3. Prospective user populations are highly variable, and the existence of ideal or even

expert users cannot be relied upon.

All of the respondents to the questionnaires were able to identify target user groups

for their applications. The majority of target users (at least 18 out of 23 different

target groups reported) were clearly not computer specialists, and many may have

received little or no training with the system. Therefore the assumption that com-

petence models could be representative of users is seriously questionable. At

present no studies seem to exist to show that untrained system users ever learn the

most efficient task methods which competence models tend to adopt. Nor have the

effects of user deviance from ideal methods been examined with respect to the ef-

fect that this has on the accuracy of the predictions of competence models. As men-

tioned earlier Young & Maclean (1988) recognise the possible importance of indivi-

dual user variation from an idealised competence model of task execution and have

presented a method for determining how users might select particular optional

methods in given situations. Such a method seems to be an important component

for valid predictions generated by competence models.

4. Time and project resources are frequently insufficient for a satisfactory amount of

work to be done on the system design itself which affects the UI design also.

Before they reached the part of the questionnaire which asked them about time con-

straints, 8 respondents (32%) spontaneously stated that they had too little time to

complete their project to their satisfaction. Inadequate resources were ranked as the

fourth most important constraint with 9 respondents adding extra constraints to the

list they were asked to choose from which were also essentially resource limitations.

Satisfaction is obviously a subjective judgement and is no indicator of the actual

success of a project which was impossible to determine from the responses to the

questionnaire. However the general implication here is that designers tend to feel

that they cannot do all of the things they would like to to improve their design. This

implication is partially based upon the strong suspicion that the priority for most

systems designers, who are generalists rather than specialists in some field, will be

to ensure that all of the necessary functionality is supplied, and to make sure that the

-433-

system will not crash. There will also be other considerations such as security,

modifiability, maintainability and so forth. User issues, and the techniques which

deal with them, have to compete with other concerns in commercial projects under

pressure. The importance assigned to them can only be improved by convincing

evidence of the costs of addressing them versus the costs of ignoring them. If there

is no incentive to improve usability, investment in its cause may be minimal. HCI

DETs must therefore be supplied with convincing evidence of their potential to save

time and expense on the design, maintenance and training of users of systems.

5. Design teams frequently lack HC! or psychology expertise as would be required for

instance to identify appropriate levels of analysis in a multi level HG! DEl'.

Only 28% of the projects in the study involved one or more HCI specialists, and the

impact these individuals had may have been limited (two HCI specialists who com-

pleted the questionnaire claimed that they were ignored to a certain extent in the

projects they described). In the majority of the projects (72%) no HCI specialist

was involved, and although some of the respondents claimed to have some or a little

experience with HCI it seems unlikely that they could have had the kind of experi-

ence in psychology which seems to be a major application requirement for many

HCI DETs.

Simpler, easier to understand HCI techniques may receive a more enthusiastic re-

ception from commercial design practice, even if sophistication and accuracy have

to be traded off against this property. An alternative would be to embody HCI tools

in expert systems which could be queried by designers without requiring additional

HCI and psychological skills from them

6. Abstract design specifications of any type (including systems analysis and design

methods as well as HCI methods) are not commonly used.

Ten respondents (40%) claimed to have used abstract or structured design

specifications (4 described using two different techniques and the rest, only one),

however only 3 used task analyses, one used a user-conceptual model, and one used

a knowledge engineering environment. At least 7 of the 10 different methodologies

cited by respondents were clearly not user-oriented but some of these, for example

state transition diagrams, could have been used as the basis for early evaluation us-

- 434 -

ing an HCI technique capable of recognising the impact of state behaviour on users

as CCT does (Kieras & Poison 1985).

The majority (60%) of respondents used no abstract or structured design

specifications and it is not clear that they could have provided the early complete UT

specifications required by the reactive HCI DETs. For this reason it might be ap-

propriate to suggest that HCI DETs either include a method for producing such a

specification in the first place, or identify a recommended specification technique to

which their notation, or implicit user model, can be applied. Such an effort has

been described by Sutcliffe (1988) who bases an analysis of cognitive complexity

on early JSD life-cycle, entity models (Jackson 1983). This type of approach could

represent an attractive solution to the problem of fulfilling the application require-

ment of communication for HCI DETs since it makes explicit statements about the

effects of the design specified using this notation upon the ultimate users of the sys-

tem. Consequently the HCI specialist can exploit existing design specifications and

can communicate an HCI view of the design without introducing unfamiliar nota-

tions to the systems analyst.

7. Prototyping is a very common feature of design projects.

Prototyping seemed to be the preferred method of system generation with 56% of

respondents citing its use. Only 24% of the projects cited early evaluation, and

since not all of these were in the prototyping group (some of the evaluations were

carried out on concept tests or on mock ups in projects where more formal ap-

proaches were used) it would appear that prototypes are perhaps under exploited as

a means of allowing evaluation to take place.

Many HCI DETs do not seem to capitalise on the possibility of user evaluations

with prototypes. They tend to require that specifications are produced (from

perhaps top-down early representations, or based upon an existing prototype) and

that these will then be analysed using the notation independently of any useful input

which might come from user evaluations. An obvious example of exploitation of

the prototyping method would be to recommend that if some technique is used

model and evaluate a UI, it should focus in particular on areas where users had the

most difficulty.

-435-

8. Designers are not rigorous in ensuring user-oriented design and tend to favour

casual approaches and late evaluation, rather than user-driven design and early

evaluation.

As stated above, only 24% of the respondents in the study described early evalua-

tions in their projects. The majority used iterative evaluations or late evaluations

with 16% reporting no user evaluation at all. For 52% of the projects the approach

to design and evaluation was informal, suggesting that what evaluations took place

would have been unstructured and possibly unfocused. This implication was some-

what substantiated by evidence from the ranking of constraints and the descriptions

of the respondents. Constraints reflecting a lack of structure and rigour were ranked

as more important than those reflecting too much in the way of structure.

It may be that designers would prefer to use structured techniques, including user-

oriented techniques, if they could find ones which reflected their needs. Comments

relating to the impracticality of both HCI and other structured techniques were

made by designers, and their objections may be focused on the form rather than the

intent of these methods. Unfortunately the questionnaires did not go further to-

wards revealing whether this possibility was indeed the case. However the overall

impression seems to be that integration and communication may be major problems

with HCI DETs as far as their application requirements go. Designers may think

that structured design and evaluation techniques, particularly HCI techniques, are

not practical tools because they are too complex and abstract, and take no account

of what the real problems in design practice are (the evidence from both the features

analysis and the supplementary interview study tended to confirm this view). Again

this implies that systems designers may be prefer simpler and informal HCI and

user-oriented design and evaluation techniques such as that recommended by Jor-

gensen (1984) rather than rigorous but complex ones.

9. There are many constraints which could pressurise design teams towards certain

methods and away from novel unproven methods.

This hypothesis justified one of the most important and revealing parts of the

features analysis of UI design practice (see Chapter 4). The more important con-

straints seemed to represent lack of information or technological and human

resources. It was also the case that constraints were more likely to be imposed by

-436-

lack of structure rather than lack of freedom. The most important constraint was

seen to be the complexity of the application itself. This may have been because

finding any solution to requirements was difficult, let alone finding a good design

solution. If this tends to be the case, the additional burden imposed on time, techno-

logical and human resources by HCI DETs could be seen by many design teams to

be prohibitive and this effect could be exaggerated where designers already have lit-

tle knowledge of, or confidence in HCI, as a discipline. In other words we cannot

assume that HCI makes sense to designers; it will probably have to be sold or ex-

plained to them, which implies that its benefits will probably have to be proven and

made explicit.

Two further features of major interest amongst the findings of the features analysis

of design practice were:

The nature of user-oriented information sources used in commercial design

practice, and how they are exploited.

It was clear that design teams varied greatly in the number of different user-oriented

information sources they exploited. Respondents claimed to use anything between

1 and 17 different sources (however some of these could have been overlapping).

Observation of users trying out the prototype design seemed to be the most common

source, however user-task specifications (these might be supplied by marketers or

the design team itself) seemed to be considered more important than observations of

users as a source of information. Experimentation was ranked as a valuable infor-

mation source but it is not clear whether scientific experiments or simple try-it-out

sessions were the norm (the definition of the term "experiment" should have been

clarified by the questionnaire, but unfortunately it was not).

The main implication from the responses about information sources was that HCI

techniques were hardly exploited at all. HCI task analyses were the 15th most im-

portant out of 18 ranked sources and surveys and reports on human characteristics

were the least important of all. On the other hand designers did seem to be using

scientific references on human behaviour, this was the 8th most important informa-

tion source (for example reaction times and colour perception information was

sought by designers from this source).

- 437 -

However it was clear that the favourite information sources were drawn directly

from observations, and interviews carried out by designers themselves, and

specifications and documentation on the tasks the system would support. It appears

that designers generally preferred to gain direct information rather than resorting to

the science base when finding out about user behaviour. They used observation of

use of prototypes, and of prospective users' task activities, interviews and descrip-

tions from prospective users and current task performers, documentation (e.g. train-

ing manuals and surveys), task descriptions, and experimentation (more or less for-

mally). These all constituted direct information about users and their tasks with and

without the new design. HCI DETs have yet to show how they can improve on this

type of information. At the moment they generally seem to claim to be informative

and accurate to some degree, rather than more informative and accurate than com-

monly used sources (this degree is usually a comparison with another HCI DET and

bears little relation to practical value; for example TAG is compared with Reisner's

FG by Payne & Green (1986), and claimed to be of superior sensitivity to user-

complexity).

Designers' understanding of what represent good and bad features of Uls.

Designers were asked to describe what they considered to be good and bad features

of their own UI designs. This was an indirect way of finding out what they per-

ceived to be good and bad UI features in practice, as opposed to in the ideal. The

responses suggested that, even though the majority of the respondent were not HCI

sophisticates, they did consider user-oriented design issues such as simplicity, com-

patibility, UCTDs, consistency, and observability (although they did not always

refer to these issues by the same terms). The only principle identified in Chapter 1

which designers did not mention was retrievability. The suspicion that designers

have other competing considerations as well as HCI was also supported by the fact

that speed, robustness, modifiability, efficiency, and conformity with in-house style

(which are features which apply to the system in general, or are not specific HCI is-

sues) were also cited as being good features of the designs.

Designers may have some intuitive awareness of what constitutes a good UI design.

Their skill in this area may come from past experience with design, rather than from

assimilation of findings from psychological and HCI research. We have no way of

knowing whether HCI naive designers judgements of usability are inferior to those

-438-

of HCI specialists or to experimental evaluations. As well as demonstrating accura-

cy and value for UI design, HCI techniques also have to be able to tackle issues

which designers cannot accurately judge for themselves, otherwise these techniques

run the risk of becoming expensive ways of stating the obvious.

These two additional points of interest both suggest that HCI DETs need to be em-

pirically tested and shown to have additional advantages over existing methods used

in UI design practice. At present designers may consider that they will not gain

anything from applying such an approach, particularly if it is time consuming and

expensive to do so. Just as systems themselves have to be evaluated and have

specifications associated with their performance, so HCI techniques must be tested,

in practice by representative users (other than their developers) in order to provide

convincing evidence of their usefulness.

7.3.2 The Supplementary Qualitative Study of Design Practice

This interview study aimed to clarify the qualities of commercial UI design practice

which might obstruct the application of HCI DETs. The quality of designers' ac-

tivities and how they were causally related to design problems provided additional

information relevant to the application of HCI DETs in applied design. One of the

notable features of the study was that the UI is typically designed in a highly in-

tegrated manner with the rest of the system. Designers may make a logical separa-

tion between designing functionality and designing the interface of a system but this

is not reflected in their practice. It is therefore more precise to talk about user-

oriented design than UI design. Designers seemed to deal with the functionality and

the UI and any user requirements for both together.

The main goals of the study were as follows:

* To present a more integrated view of applied, commercial practice than obtained

by the features analysis of design projects.

* To determine whether HCI DETs or principles are applied by non HCI specialists

in commercial practice.

* To explain the design constraints and their effects which might prevent systems

- 439 -

designers from applying more user-oriented design techniques.

The eight design scenarios provided a more integrated view of user-oriented design

practice than the features analysis. Interviewees were able to describe the sequence

of events which took place during the project and to introduce interesting informa-

tion about problems they experienced and how these arose.

The supplementary qualitative analysis supported many of the findings of the

features analysis. Design practice tended to vary widely, with no two projects using

the same method. Approaches were typically informal on the whole and no HCI

DET of the type described in Chapter 2 was seen to be used. However one of the

interviewees did use a set of design principles which are essentially related to the

Generative User Engineering Principles (GUEPs) of Thimbleby (1984). The main

additional value supplied by the interviews was that they enabled the features of

design to be put into the context of a process.

A User-Oriented Design Framework was derived from the common activities

described which represented a minimal design structure (see Figure 5.2). This sche-

ma provides the basis for combining the findings of both of the design studies into

an empirically based design view which captures both information sources and con-

straints and the general sequence of activities within which they are encountered.

These can be related to the application requirements of HCI DETs in order to deter-

mine whether certain requirements will not be met by typical design projects.

If an HCI DET does not require any additional activity to be undertaken, any extra

information sources to be utilised, and is able to work within or ameliorate existing

design constraints, it should require little investment. For each extra requirement

which has to be satisfied, the technique should provide additional benefits which

justify it.

This schema might be used as a basis for viewing the user-oriented aspects of a par-

ticular design project which could represent a variation on the schema (with certain

activities added or elaborated, and with possibly different information sources and

constraints). Such a view could contribu e to a basis for selecting a particular HCI

DET in preference to others which were less applicable in the circumstances. This

contribution would be in the form of an indication of constraints which could

- 440 -

prevent certain methods being applied, information sources which are available and

which could be exploited easily by some techniques and not others, and the nature

and order of various design activities which might suit the application requirements

of HCI DETs (e.g. existing modifiable specifications). This schema will be con-

sidered further in the following chapter.

Table 7.1

The Eight Projects Included in the Qualitative

Design Practice Study

Numbered Design Projects

1. Display Editor

2. Network Management System

3. Garment-Pattern Design-Aid

4. Educational Graphics System

5. Window Manager

6. Office & Stock Control System

7. Simulation Training Device

8. Distributed Building-Management System

One of the main values of the interview analysis was that it provided eight scenarios

of user-oriented aspects of system design practice with a somewhat qualitative per-

spective. These scenarios allow a closer inspection of the ability of design practice

in applied environments to satisfy application requirements of a set of current HCI

DETs. Such an inspection should provide further evidence concerning the likeli-

hood of HCI DETs, such as those in Chapter 2, in their present form ever being

applied in practice. On the other hand any reasons for their being inapplicable

should also be addressed. In the following sub-section each of the application

requirements identified in section 7.2.10 will be considered in terms of its implica-

tions with respect to the design scenarios and also bearing in mind the more quanti-

tative evidence from the features analysis of design practice.

- 441 -

7.3.3 Contrasting Design Evidence with Application Requirements

The following discussion gives examples of ways in which current HCI DETs appli-

cation requirements, as described in Chapter 5, are not satisfied if certain observed

design conditions or constraints exist. So, although there are design situations

where it may be possible to apply these techniques, they are not adequate as a col-

lective resource for many design projects, and therefore will not be widely applica-

ble. Table 7.1 is a reminder of the eight projects upon which the discussions relat-

ing to application requirements are based.

Access to Information About Users and Tasks

The features analysis showed that the most important user-oriented information

source for systems designers seems to be specifications of the to-be-supported

activity (see table 5.4, Chapter 5). In the qualitative analysis, projects 2, 4, 5, and 8

relied exclusively on indirect information, in the form of a written or verbal

specification, about users tasks, the validity of which could be open to question.

The psychology and experience of the users did not seem to be addressed in any

detail. HCI DETs do not explicitly direct analysts as to how to exploit such infor-

mation sources in their design. This could prove to be a problem because it may not

be immediately obvious to systems jesigners what information sources and infor-

mation gathering and analytic activities could satisfy the requirement for user- and

task-oriented information which most HCI DETs seem to have.

Designers may think of lack of user- and task-oriented information as a design con-

straint which they have to accept (it was the second most important ranked con-

straint in the features analysis) but it is avoidable in most circumstances, particu-

larly if the designer emphasizes the importance of such information to any other

parties with a stake in the design.

Information about tasks and users was cited as crucial by several designers.

Although there was universal agreement that such information was important, four

projects (2, 4, 5 and 8) did not involve user and task evaluation in their develop-

ment. Lack of time, organisational obstruction and inaccessibility of users all

emerged as reasons for not improving user-evaluation. Since all HCI DETs, tend to

require that designers find out about users and tasks, it seems that whatever the

- 442 -

reasons are for excluding user/task investigation, they should be resisted. As it was

in this study, the amount of information of this type collected by designers was at

times certainly inadequate for application of HCI DETs, as well as for any likeli-

hood of a high standard of user interface being developed by any method. The most

obvious case of user exclusion was project 5 where even late evaluations were not

carried out; the resulting UI had many problems associated with it which could

easily have been avoided.

Appropriateness

An HCI DET may prove inappropriate to the needs of a particular design project for

a number of pragmatic reasons. Most of these reasons are covered by the other

application requirements of HCI DETs which may fail to be met by a design pro-

ject. However, it was fairly clear from the interview study that various HCI evalua-

tive techniques would not have been appropriate to certain design projects observed,

purely on the basis of the performance metrics these techniques supply. GOMS, for

example, would not have been suited for evaluation of the simulation training dev-

ice since users would be error prone novices, and the main criterion for user-

evaluation was the simplicity and robustness of the interface, (performance times

were not of any great interest for this system). However there are other reasons for

the inappropriateness of various HCI DETs, which relate to the practical design

constraints identified by this study.

Referring back to Chapter 2, the Usability Scoping Matrix shown in table 7.2 is

intended to represent the potential scope of an HCI DET; which may be appropriate

or inappropriate to the needs of a design project. In this example it happens to be

CCL'. The scoping matrix can also be used to represent the nature of important pro-

perties required of a UI design; these are referred to as principles, and the considera-

tions referred to as evaluation factors affecting the manner in which principles must

be analysed and the implications which they will have. For example the principle of

consistency may have one set of implications for a user, another set for the applica-

tion, and yet another set for the UI. The matrix in table 7.2 also represents an infor-

mal scoping of user-oriented issues in project 5 from the nterview study. This pro-

ject scoping will be illustrated shortly, but first it is appropriate to recollect the

nature of project 5 with respect to how user-oriented issues were addressed.

- 443 -

In project 5, where the design team were working on a window manager for appli-

cation programmers, the issue of simplicity was not really considered in any great

depth. The interviewee described "pretending to be a naive user" as his way of

checking that the UI was easy to use. He described writing the code in a modular

fashion, in order to make it easy to modify. The system had a graphical, direct

manipulation interface and the target tasks were fairly limited (concerned with

manipulation of windows, accessing and selecting from menus and so on). How-

ever the designer did not really consider any usability principle in an objective

fashion with respect to the possible evaluation factors.

By looking more closely at user characteristics, properties of the UI and target tasks

the designer might have realised that the complicated combinations of different

mouse button presses would cause confusion in system users. Different combina-

tions of mouse presses produced different effects with certain icons, and the same

mouse button could also cause different effects depending upon where on the win-

dow or background it was pressed. With hindsight and some feedback from client

users, the designer admitted that the mouse buttons were somewhat overloaded.

An HCI DET which was capable of capturing user characteristics, behaviour of the

UI, and the nature of the probable target tasks of system users would have been

highly valuable to the designer in project 5, so long as it did not involve too much

investment of time and expertise (project 5 involved a small team in which a con-

sultant HCI specialist produced some recommendations, but the other two designers

had little experience in HCI). Perhaps a highly simplified version of CCT with its

useful representation of UI states (the Generalised Transition Networks) could have

been most appropriate. Context free grammars, such as TAG might have been less

well able to cope with the effects of cursor position at the time of actions, and the

effects of preceding events upon the current state of the UI.

Table 7.2 represents the scope of CCT in terms of the principles of usability, and the

evaluation factors it is capable of addressing (see Chapter 2). It also attempts to

provide an informal, and perhaps hypothetical, scoping of the important aspects of

project 5 with respect to usability. It is possible if necessary to weight each of the

cells in the matrix in terms of its relative importance to the design.

As table 7.2 shows, simplicity and compatibility are relevant considerations for

.

0

C.)

0

:

C.)

I..,

0

C.)

0

j

- 444 -

-a
-.S

.-

a
.aL.
.

a
-a

-
.'

'I-

l-I

a:
I?

0
rfl

a

QLL
C.)	 C.)	 C.)

1

QLt	 QLi
0	 0	 C.)

C.)

ri)

It
C.)	 C.)a

L	 ¼S

>e

.
-	 E-

0LL	 u	 ()i	 Q	 Q
C.)	 C.)	 C.)	 0

,

0

0

Q
E	 C.)	 0	 C.)	 0

a
o.-

cI

—	 . I.

______	 ____ ____ ____ ____
z

- 445 -

project 5, but they are of lesser importance. This is because the designer was able

to assume that the target users of the system would be experienced programmers or

at least frequent users who would become more experienced as they went along.

The system was being designed on a workstation for application programmers,

rather than computer naive users or infrequent computer users. Users would have

the time to learn complex features of the system, or would already be familiar with

graphics workstations with similar features.

UCTDs are important because the efficiency of the interactive methods chosen for

the system would have depended on the nature of the tasks that users were likely to

carry out. For example, frequent sequences of operations would best be satisfied by

direct commands or single menu items. Expert users would be likely to become

frustrated by repetitious operations which slowed them down.

Observability is very important because the features of a graphics window manager

tend to focus on direct feedback from manipulations such as pointing, dragging and

clicking on different areas of the screen which determine the results of each action.

Consistency influences the choice of combinations of clicks and the area dependent

effects. Retrievability is also important because a window manager essentially con-

trols access to different applications (e.g. shells, text editors, spreadsheet packages

etc). If the user wants to get anywhere s/he has to open a window, and s/he should

be able to move freely between concurrently open windows and work with different

applications simultaneously.

As an evaluation factor the system application aspects were of secondary or no

importance in project 5. The evaluation of usability of the system was not dictated

by concerns relating to peculiarities of the applications which might run on it. The

users would have generated their own applications and the application behaviour of

the window manager's software itself was largely manifested within the UI which is

viewed here as a much more important evaluation factor. Also user performance

issues were of little importance in project 5. Perhaps an indication of potential error

sites or complexity with respect to each of the principles would have been sufficient

to improve the design.

In fact CCT in a simplified form could have been able to address many, but not all

of the issues which might have been important in project 5. It appears in table 7.2

- 446 -

because, of all the approaches reviewed in Chapter 2, it has the most appropriate

scope for the concerns of project 5. Its main shortcoming with respect to scope lies

in its inability to deal with compatibility and observability with respect to certain

evaluation factors. Compatible menu labels, icons would have to have been chosen

by the designer, and the ability of the user to perceive and interpret feedback would

have to have been predicted by other means. On the other hand, CCT's lack of a

powerful application model is not a major problem for project 5 because the win-

dow manager had little in the way of underlying state behaviour which might alter

the effects of user actions at the UI.

In view of the picture provided by table 7.2, we might suggest that CCI' would have

been a highly appropriate technique to use in project 5. However it is also impor-

tant to take into account the pragmatic effects of design constraints on what is possi-

ble in terms of analysis for user-oriented design.

Designers' Experience with HCI

Lack of experience witiz U! design and lack of experience with HCJ are conditions

which are important to HCI DETs because of the heavy reliance on psychological

terminology and user-oriented concepts. TAG and GOMS, for example, both rely

on the idea that tasks can be broken down into sub-tasks, sub-sub-tasks, and so on.

The level at which tasks stop being decomposed is left to the evaluator's view of

what an automatic or skilled action is, in the particular circumstances. If there is to

be a wide range of users with different levels of skill, doing different tasks on the

system, as was the case in project 8, then deciding what a simple-task is may be

extremely difficult even for a psychologist. Since seven of the designers inter-

viewed had little or no experience of psychology and at least 5 had very little

experience with HCI, it is unlikely that they would even attempt to use any of the

HCI DETs mentioned in Chapters 2 or 6.

Dagwell and Weber (1983) suggested that the poor conceptualisations of users held

by designers could be improved with better, readily available information rather

than education. Perhaps more comprehensible descriptions of psychological

theories and their relevant implications, as proposed by Hammond et al (1983)

could be explicitly included as essential background information in HCI DETs to

help designers who wish to use an HCI DET to make appropriate judgements about

- 447 -

how to apply the technique.

Existing Modifiable Specifications

In cases where the conditions or problems of complicated application domain, lack

of information about users, novelty of the application and expanding task outlines

exist (see Chapter 5), it may be difficult to produce a valuable specification of a

complex UI to be used for the application of HCI DETs. In seven of the projects

examined the UI was developed informally, expanding functionality often occurred

as the project progressed and further user requirements were identified (as in pro-

jects 2 and 3) making specification difficult. Designers are unlikely to want to spend

time and effort specifying systems early on, when they are not sure of what they

want the interface to be like. If HCI DETs were to be applied, it would be after the

prototype was almost finalised, when all the functionality planned had been added.

By this time the benefits of HCI DETs could only be applied to future designs, since

it would be impossible in many cases to change the current system, either because

of lack of time or limitations imposed by the existing software. GOMS, for exam-

ple, requires a fairly detailed system specification, so it may not be applicable early

enough in design for the analysis to influence the UI design in any significant way,

before unmodifiable software is written.

There is a possibility that revised design practice and use of certain types of DET

could address the existing specification problem, especially where complexity is a

major factor. Kieras and Poison (1985), in their explanation of UDM (CCT), which

is based in part on GOMS, recommend that the device specification should be

modular, to maintain flexibility and simplicity, and that it should not be committed

to any particular hardware or software specification. This DET could map directly

onto the extension of iterative prototyping suggested by Smith and Mosier (1984),

incremental acquisition, where separate capabilities are implemented and tested in

evolutionary stages, making it possible to specify parts of an interface indepen-

dently and then to add them to the evolving prototype. This may make the whole

process of specification and evaluation of a complex commercial UI somewhat

more straightforward, and add the benefit of psychologically-based evaluation of

each incorporated function as the design progresses. However, whether this will

really be feasible in commercial design environments with complex system applica-

tions remains to be proved.

-448-

Design models (such as CLO) may also be inapplicable in design projects with

problems such as written software constraints and expanding task outlines (see

Chapter 5). If a design team is forced to adopt a particular approach, if, for exam-

ple, they have to fit in with other project contributors working on software and

hardware design of a system, then certain design methodologies may not be applica-

ble. Written software constraints will mean that abstract specifications which have

been remotely generated by one party, whilst software was beginning to be written

by another party, will probably not be implementable. If the task outline expands,

then a structured design approach like CLO may lose its main value, which is to

produce a complete, top-down, structured system description. The task-, and

semantic-level descriptions of the system would have little value if the functionality

planned for the system was completely different by the time the interaction-level

was described.

Communication

Since none of the systems designers in the interview study used an HCI DET, and

since many were working alone with no need to communicate sufficiently detailed

specifications to produce software from, the main purpose of communication for the

designers in this study was to gain information about requirements and transmit

information about possible system functionality. Specifications of the to-be-

supported activities for the system and documentation on related activities were

important indirect user information sources for designers in the features analysis.

Poor communication was a major problem for the designers in the interview study.

If HCI DETs had been used in each of the interview study projects, and that the

content of these technique's models had to be communicated to other parties within

the project. Only one of the projects involved an HCI specialist who would have

been likely to be familiar with the concepts and the notation of most of the HCI

DETs reviewed in Chapter 2. For most of the other individuals involved in the eight

projects described, the notations and the concepts they attempt to convey would

have been unfamiliar. In cases where designers were working on a consultancy

basis, where conventions of notations and techniques could not be set up, clients

would probably not be happy with an idiosyncratic specification of the dialogue or

interactive tasks.

- 449 -

Communication of an HCI model depends upon both shared understanding of sym-

bols and concepts and naturalness of a notation. Shared understanding of the sym-

bols and concepts of HCI is likely to be rare within commercial design projects

where MCI specialists are a rarity. The notations used are not easy to read either.

The addition of more diagrammatic graphical devices such as has been capitalised

upon in the system entity modelling technique Z, pronounced "Zed" (Abrial 1980;

Hayes 1987) and in Statecharts which were encountered in Chapter 6 (Harel 1987)

would improve the clarity and appeal of notations. Not all diagrammatic notations

are clearer than all non-diagrammatic ones. This depends on the content and quality

of diagrams; Fitter & Green, 1979). Diagrams, however, may often exploit proper-

ties of human perceptual processing which text cannot.

Time and Cost

Small design teams, or lone consultants are unlikely to be able to devote the time

and effort required to carry out application of one of the HCI DETs. CLG, for

example, was cited by one of the college based designers as being too time consum-

ing to be of any real use. When commercial system interfaces are complex, HCI

DETs such as CLG can turn out to be prohibitively time consuming and expensive

to apply, which makes the risk of inappropriate application all the more serious for

the non-MCI expert designer. On the other hand Gould et al (1987) claimed that

their principled approach saved time and ultimately cost in that the interface of the

OMS (Olympic Messaging System) was highly robust and rarely failed. HCI DETs

must also be shown to have these benefits before they are likely to be universally

accepted.

Integration

HCI DETs typically involve assumptions about the design cycle (such as a top-

down approach or the possibility of empirical user observations) and some of the

necessary activities, which they depend upon but do not necessarily guide (such as

task analyses). They also produce output which is not necessarily structured in such

a way that it can be easily assimilated with the rest of the design process. The inter-

view study involved 5 one-person design teams; the features analysis suggested that

5-person teams are probably the median size. In one person teams the requirement

for HCI DET integration could have been more easily satisfied because a single

- 450 -

designer can only work in series, and in the interview analysis single designers

tended to be working very informally. This meant that they could possibly have

adapted their methods to suit HCI DETs quite easily. Ignoring other considerations

for the time being, 1-ICI DETs may be easily integrated into projects where

designers are willing to accommodate application requirements in general, have

satisfied any assumptions of the technique, and have the time to interpret and

exploit the output of the technique and apply it to the design.

However, larger teams are likely to employ a variety of different techniques (formal

or not), which could easily be applied in parallel. This means that, whilst an early

HCI analysis is being carried out, it is possible that decisions about system structure

are already being made on the basis of other considerations such as data types to be

used or core processes essential for business requirements. The software to support

this structure may also be written. Such decisions and activities may ultimately

affect what is possible or desirable at the UI.

Another problem is that early application of HCI techniques must accept the uncer-

tainty typical in the first stages of design, and late application must accept the con-

straining influence of earlier decisions on what is changeable. Without a clear pic-

ture of the design cycle into which they will fit, HCI DETs run the risk of producing

information which cannot be utilised because it is available at the wrong time, or

based upon a view of the system under development which is no longer valid,

perhaps because requirements have drifted, and changes have been made to the

specification or prototype.

Of course by committing themselves to a particular view of the design process, as

GOMS, CCT and CLG have done, HCI DETs risk limiting their generalizability.

However, the situation is made worse by commitment to an unrepresentative design

view which Chapter 3 has suggested is the case for the three techniques which have

attempted a view.

Integration of HCI DETs is perhaps a requirement which is dependent upon other

application requirements such as scope, communication and so on, and how the

technique in question addresses them with respect to the needs arising in typical

design cycles.

- 451 -

Overall it appears that there are many conditions and related problems imposed by

the design environment and activities which are probably incompatible with many

current HCI DETs application requirements. It is proposed that the current HCI

DETs will only be applicable in a proportion of design environments which have

compatible conditions with those required by the DETs. In other words more tech-

niques are required to cater for design environments where the existing techniques

would be inapplicable, approach to interface design and evaluation in many cir-

cumstances.

The qualitative interview study of applied and commercial design practice sug-

gested that HCI DETs, although potentially valuable to commercial design, are not

applied in practice. The design environment conditions required for the successful

application of current HCI DETs do not appear to be satisfied by commercial design

projects. The reason for this is the existence of unavoidable conditions and con-

straints in commercial design which future HCI DETs should try to cater for.

7.3.4 Summary of Implications of Design Practice for HG! Techniques

In this chapter the design studies reported in chapters 4 and 5 were reviewed, and

their findings contrasted with the apparent requirements of HCI DETs in order to

demonstrate mismatches which may be responsible for the rarity with which such

techniques are used in practice. To sum up some of the serious implications to be

considered in the light of this chapter I shall answer the questions raised by the

review of design views presented in Chapter 3.

Each of these questions is answered on the basis of the findings from the two

applied and commercial design studies, and in the light of the preceding discussions

in this chapter.

1. Are designers prepared to devote the time, effort and resources necessary to apply

HCI DETs? Do they, or can they, collect the kind of data required to support HCI

DETs (such as task analyses, or user characterisations) ?

The features analysis indicated that systems designers tended to have positive atti-

tudes to the aims of HCI, if not the methods, and the qualitative interview study

suggested that designers do have reservations about the applicability of HCI in

- 452 -

practice. The answer to the first part of this question is "No". However it is clear

that systems designers do put a considerable amount of effort into determining and

satisfying user requirements, but are subject to many constraints and perhaps lack

some of the necessary skills to carry out these tasks to the standards that HCI spe-

cialists might like to see. So the answer to the second part of the question is prob-

ably "Yes, providing appropriate circumstances prevail".

If there are unavoidable constraints such as lack of access to, and information about,

prospective system users or limited resources then designers may be forced to take

short cuts rather than actually collecting the necessary user-oriented information

(for example talking to managers instead of directly to prospective users). The

main problem seems to be one of distinguishing between avoidable constraints and

real constraints. Real constraints will only hold if there is nothing that any party

concerned in the design process can do about them avoidable constraints are

imposed by such factors as the unwillingness of one party to provide valuable infor-

mation, or to carry out some analysis activity. Such problems may occur for rea-

Sons which would not stand up to scrutiny or because of lack of appreciation of the

importance overcoming such problems.

2. Are designers well enough educated regarding psychology and HCI to appreciate

the importance and relevance of various techniques available ? Are they able to

select, adapt and apply these techniques themselves?

Some systems designers, particularly those in academia, are well aware of the

existence of HCI techniques, but choose not to use them for reasons which are not

to do with their lack of experience in psychology. However it would appear that in

commercial environments many designers have not even heard of HCI techniques

and cannot select one because they do not know about them.

It is clear that few systems designers are experts in psychology, and for this reason

it is probable that, even if they were keen to use an HCI DET they might find they

did not have the necessary skills to do so within a reasonable amount of time.

Further research on improving the usability of HCI DETs for systems designers is

necessary.

3. Are abstract specifications themselves sufficiently comprehensive to provide a good

-453-

basis for evaluation since they do not convey the look and feel of the system to

designers or users?

Abstract design specifications of any type (HCI, formal, SADT) seem to be less

popular as design and evaluative tools than do prototypes (see Chapter 4; the

features analysis of design practice). None of the questionnaire respondents in the

features analysis or the interviewees in the qualitative study reported using an

abstract specification as a user-oriented evaluative tool. Given this fact and the

absence of comparative studies of HCI specifications and empirical evaluations, it is

hard to answer this question. Further studies need to show that abstract

specifications have a value adding role, even if it involves combining them with

empirical evaluations, in providing more informative and accurate critique of sys-

tem designs.

4. Can levels of analysis required by an HCI analysis be identified a priori to analysis

itself?

The ability of designers to determine in advance an appropriate level of analysis for

an HCI design or evaluative technique has not been demonstrated either in theory or

in practice. HCI DETs define, only vaguely the precise meaning of a level. Levels

may refer to the grain of analysis in terms of some dimension such as time, or

implied complexity. For example a high level goal is more complex to satisfy than

a subgoal which subsumes it; this is the case for GOMS. Levels may also refer to

the degree of abstraction from concrete behaviour, for example in CLG a task level

description may say nothing about the actual behaviour of the user with the system.

This distinction is somewhat blurred and levels of one type may be the same as lev-

els of another, for example, the interaction level in CLG is similar in some respects

to a keystroke-level GOMS model (Moran (1978). In addition the definition of a

unit action (e.g. a terminal symbol in Reisner's FG, a simple task in TAG and an

operator in GOMS) tends to vary between techniques, and within techniques.

Given the variation, and frequent uncertainty of what precisely constitutes a unit

action in an analysis, together with the diversity of of definitions of level of

analysis, designers may find it extremely difficult to decide what constitutes an

appropriate level of detail or abstraction for a given analysis in their own cir-

cumstances. Card et a! (1976) found that not all levels of GOMS were equally

- 454 -

accurate for text editing tasks, but they did not show how one might determine in

advance which level would have been most accurate for a range of diverse task

types. Given, then that this is a theoretical problem for the developers of HCI

DETs, how can psychology naive systems designers be expected to tackle this

aspect of an analysis. Given their suspicions of HCI DETs in the first place (see

Chapter 5), they are only likely to be further put off applying them by their lack of

clarity about how to identify a meaningful task, action, or some other psychologi-

cally valid component of an analysis.

If techniques do not supply this important information, then designers may have to

waste time trying a number of different levels of analysis with an HCI DET before

finding one which is most accurate for their particular application. This would con-

stitute another disincentive to using such a technique.

5. Are there HCI DETs suitable for application to most design projects, in terms of

user characteristics, UI type, application, and target tasks ? Are the metrics sup-

plied by HCI DETs likely to be widely applicable for UI evaluation?

This question has largely been answered in the preceding discussions. It is clear

that, without considering any other issue to do with pragmatics of application, HCI

DETs seem to have limited scope, and all have areas which they fail to address (for

example CCT does not address compatibility of a system with users' declarative

knowledge, so ascertaining the best set of command names for a system would not

be supported by the technique). In addition there are many application requirements

for HCI DETs which design projects do not typically satisfy, such as expertise in

psychology and adequate resources. Each HCI DET is likely to be applicable in

only a small proportion of projects. Furthermore the generalizability of many MCI

DETs from the type of application they were demonstrated on to other systems is

seriously questionable.

6. Can HCI DETs in their present form be integrated into current software design prac-

tice, and if not how can they be adapted for integration?

This final question was not addressed by the design practice studies because no

information on the use of HCI DETs was collected. The third study, reported in

Chapter 6 of this thesis looked at the activities of HCI specialists in commercial

- 455 -

environments to determine whether they were using HCI DETs (HCI specialists

tend to work in better resourced organisations and have some background in

psychology).

7.4 Conclusions

In this chapter a number of application requirements which HCI DETs impose upon

design projects were described. The two design practice studies reviewed provide

information about design practice which contrasts with these application require-

ments. It appears, from the evidence obtained, that design practice as it occurs in

commercial and applied projects, does not naturally satisfy the expectations of HCI

DETs in terms of the resources, expertise, and flexibility which would be required

to apply them in many cases.

7.4.1 Problems of Inapplicability

Information about users and tasks is not always easily accessed, and the guidance

required to exploit this information effectively tends not to be supplied by the HCI

techniques themselves. Appropriateness of HCI techniques is not guaranteed for all

design projects. An example of one of the design projects from the interview study

was characterised in terms of its prohable analytical requirements, and it was sug-

gested that CCT had an appropriate scope to satisfy these requirements. However

the results of this scoping exercise were somewhat confounded by the fact that the

practical implications of undertaking a CCT approach would have been extremely

problematic for the design team with their limited resources and constraints.

Designers' experience with HCI may often be so limited that understanding a tech-

nique alone, let alone applying it, could prove difficult. HCI techniques do not

seem to be presented in a simple easily digested form which could make them

accessible to any systems designer. Existing modifiable specifications, from which

to derive some HCI model, may not be available because of various constraints such

as those imposed by the previously written software which constrains what may be

modified, or by expanding task outlines which may make early detailed

specifications unrepresentative.

Communication of the contents of an HCE model and its implications may be

-456-

difficult without interpretation into terms that software specialists can understand.

Notations and concepts which they embody may be obscure and confusing to non-

psychologists or HCI naive designers.

Time and Cost required when taking a rigorous approach to user-oriented design

may be prohibitive for small or poorly funded design teams. Integration of HCI

techniques may be extremely difficult to achieve without support from those tech-

niques themselves. If techniques have no explicit design view, or an unrepresenta-

tive set of assumptions about the nature of design projects, there is no guarantee that

a design team will be able to modify the rest of their approach to suit the idiosyncra-

cies of one specialist approach when they have other issues such as speed, reliabil-

ity, portability and security to consider. It seems more reasonable that HCI tech-

niques should adapt to design practice, rather than the other way round.

7.4.2 Problems with Confidence

HCI techniques seem to fail with respect to convincing designers of their utility in

real design practice. The reason for this failure may be to do with a real weakness

in HCI, in that it may not be capable of addressing real design, or it may be to do

with the fact that HCI techniques are not being presented in a serious form for use in

commercial projects. If the latter is the case then HCI techniques need to be more

appropriately packaged for systems designers to use, and their developers will have

to provide convincing evidence of the techniques' ability to provide real benefits for

designers and design host organisations (perhaps in terms of time and cost savings).

The onus is therefore most strongly on HCI DETs to prove themselves, since cyni-

cal designers are not likely to attempt to try out these approaches themselves.

Researchers need to carry out evaluations of their techniques in use by real systems

designers on real design projects. This may be a tall order since such trials could

prove highly expensive. Research is required to prove the utility of various tech-

niques applied "in vengeance", and to suggest ways in which they need to be

adapted or packaged so that they are more effective and easier to gain benefits from.

- 457 -

7.4.3 Assessing Applicability

HCI DETs may often be inapplicable to systems design projects for a number of

reasons. The main implication from this argument is that for any single design pro-

ject, only a minority of the HCI DETs available, if any, will be applicable in terms

of its application requirements and its analytical scope. The problem is how to

decide which one(s) are applicable in advance.

There are a number of reasons why one might wish to do this. The designer of an

HCI technique might wish to specify exactly what kind of project and user-oriented

analyses he or she has in mind for application of the technique. A researcher or

company manager might wish to compare HCI techniques with respect to design

practice as it occurs in general, or in some special circumstances. A design team

might wish to select a particular technique to fulfill some requirements within their

design project.

What is required is a framework which provides a coherent view of design practice

as it typically occurs and which is able to address relevant issues which may relate

to the suitability of an HCI technique for use in real design situations. In the fol-

lowing chapter an attempt is made to outline such a framework. It does not address

the design of HCI DETs themselves, nor how they might be improved with respect

to application. It simply supports the characterisation of design practice and HCI

techniques in such a way that the suitability of one for the other is easier to deter-

mine.

-458-

Applicability of HCI Techniques to Systems Interface Design

Chapter 8

Discussion of the Use of HCI Approaches in Design Practice
and a Framework for Assessment of HCI DETs

for Application to Design Practice

8.1 Overview and Introduction

This chapter seeks to provide an overview of the direct evidence on use of user-

oriented design techniques from the HCI specialists study reported in Chapter 6.

The specialists study suggested that even those with experience in psychology and

HCI had problems applying user-oriented design approaches within commercial and

applied projects. Two HCI DETs of the type reviewed in Chapter 2 were described

by specialists, and three other main user-oriented design or evaluation approaches

were identified. Their use and the problems and advantages associated with them

suggested a number of desirable features which ideal applicable HCI techniques

might possess.

These features are described and combined with other constructs; the scoping ma-

trix introduced in Chapter 2; the design schema from Chapter 5, and the matrix

describing support requirements of various roles identified for HCI analysts

described in Chapter 6. Together these form a framework for assessing the applica-

bility of HCI DETs. The framework is outlined and then demonstrated in an exam-

ple of the assessment of the suitability of CCT for project 5 from the systems

designers' interview study reported in Chapter 5. This assessment is an expansion of

the scoping exercise carried out for CCT and project 5 in Chapter 7, and provides a

clearer picture of potential application problems for CCT within the project.

The framework represents an attempt to provide a realistic view of design which

HCI techniques should attempt to cater for if they are to be applicable. It does not

suggest what scope techniques should have, nor the depth of analysis they should

provide. Nor does it provide guidance as to how current techniques should be im-

proved. It simply highlights the obstacles likely to prevent application of un-

-459-

compromisingly theoretical and academic approaches in the real world outside the

laboratory.

Most systems designers may never be able to develop sufficient expertise in the

field of HCI to permit them to determine which technique is most appropriate for

their analytical requirements. The assessment framework requires an understanding

of the scope and methods of HCI techniques at a level which most systems

designers cannot quickly achieve (it requires considerable time and effort to become

familiar with even one approach). Therefore it is important to emphasise here that

this framework may only be useful for selection of techniques if HCI DET's

developers begin to present the scope and all necessary activities required to apply

them in an explicit and quickly absorbed fashion. This would be a first step towards

encouraging the application of HCI techniques by making selection quicker and

easier.

8.1.1 Design Practice With or Without HC1

Computer systems and UI design practice (inadequate though it may be) will con-

tinue to occur with or without the intervention of HCI tools and techniques. Sys-

tems analysis and design methodologies (SADMs) have until very recently, been

highly successful without making any but the most cursory concessions to usability

analysis from a psychological perspective. This does not mean that design practice

benefits from the absence of HCI. Recent initiatives suggest that the developers of

some of the most influential SADMs (SSADM, JSD) are now looking towards HCI

specialists to find ways of integrating the two fields of systems engineering and HCI

(Sutcliffe 1988, Walsh et al 1988). The fact that systems engineers are beginning to

recognise a need for a more user-oriented approach is a positive sign for HCI as a

discipline, however it should not be taken as a sign that HCI DETs themselves will

now be taken up by systems analysts and designers.

HCI will have to adapt to fit in to the constraints which design practice suffers. It is

unrealistic to assume that somehow, once designers attitudes towards HCI have be-

come more sympathetic than perhaps they are at present (see Chapter 5), all other

obstacles to use of HCI DETs will melt away. Although UI prototyping and simula-

tion tools are beginning to be available, we are still a long way away from fully au-

tomated HCI expert systems, or cheap highly generalizable cognitive simulation

- 460 -

tools which designers could apply without having to understand the models driving

them. Whilst partial support for UI design is the best we can hope for, the concepts

embodied in the HCI techniques systems designers use, and the notations used to

express them, will have to be comprehensible to designers in order that they can use

them in highly variable, unpredictable design in commercial environments. Furth-

ermore, whether HCI tools and techniques are automated or not, they are still ob-

liged to fit in with the structure of design, and to utilise imperfect input and produce

practical output.

8.1.2 Acting upon the Failure of HCI DETs
to Penetrate Commercial Design

What appears to be of prime importance, at present, is that HCI researchers come to

a better understanding of the process of design which they hope to influence. At

present the various design and evaluation methods such as those discussed in

Chapter 2 seem to do a reasonable job of capturing properties of Uls which impact

on their usability. However, their scope is often limited and has not been proved to

balance the effort required to apply them. Little account is given of how to tackle

activities which these techniques depend on and the problems likely to arise in a

real design situation. Furthermore the techniques have little to say about problems

of applying these techniques along with other, possibly conflicting, activities such

as architecture design, prototyping, formal specification, porting and so on.

It is unrealistic to expect a single HCI technique to have enormous breadth in the

usability issues it addresses, whilst accounting for all design activities on all types

of system. However it is necessary to bear in mind the fact that the potential market

for HCI techniques is largely comprised of systems designers and analysts who have

to consider many more aspects of the design than an HCI DET can satisfy. There-

fore an applicable HCI technique should be clear about its limitations as well as its

scope, it should also be explicit about what other methods it depends on for input,

and what its output represents in terms of its direct impact on design.

There are a wide variety of possible fatures of HCI techniques which might enable

them to be more easily applied, both by HCI specialists and non-specialists. In the

following discussions these features will be organised within an application frame-

work which seeks to clarify the nature and relevance of these features. The frame-

-461-

work could play a number of roles in furthering the penetration of HCI into applied

and commercial systems design practice.

This framework arises from the study of HCI specialists design practice, and obser-

vation of the features they found made user-oriented methodologies more or less ap-

plicable, and of the features their comments suggested would improve applicability

of HCI DETs. The framework also embodies a view of design based upon the

findings of two user-oriented design practice studies. This design view sets the con-

text within which the desirable features of DETs should be considered. The frame-

work itself and its design view will be briefly illustrated with respect to two exam-

ples in order to demonstrate its power to address issues which arise in real design

with respect to existing HCI DETs.

8.2 Implications of the Study of Commercial
HCI Practice for Current HCI DETs.

The study of HCI specialists in commercial design raised a number of interesting

and highly important issues relevant to HCI which it is appropriate to summarise

here. The summary is broken into two parts which reflect the more general findings

relating to HCI specialists' practice, and more specific findings relating to the use

and non-use of HCI DETs. To sum up, the study set out to address the following

questions.

* What precisely are the HCI specialist's roles in the commercial design process.

* What design and evaluative techniques do they use, what is the scope of each of

these techniques, and how are they used.

* How do HCI specialists using user-oriented techniques avoid or cope with user-

oriented design constraints and problems.

* How do user-oriented techniques exploit information sources.

* How do the techniques support the activities of the HCI specialist, and in what

ways do they fail to do so.

- 462 -

The following summaries of the findings give a general overview of how the study

addressed these questions.

8.2.1 Overview of Findings: General Observations of HCI Practice

The working regimes of HCI specialists' employers were seen to be important in

influencing the activities they carried out and the variety of work they undertook.

Perhaps the most important issue to emphasise here is that it seems that an organisa-

tion can either encourage or obstruct the practice of its HCI specialists, and the fact

that HCI specialists are involved in design projects does not guarantee usability of

the end product. Late evaluation, isolation of HCI specialists from other design

contributors, too few HCI specialists being spread amongst too many projects, and

so on may all be dictated by the working regime of the organisation employing the

specialists.

Despite the fact that HCI specialists only concentrate on limited aspects of the

whole system, a number of roles for them were identified which seemed to cover

most of the diverse activities observed. The fact that their activities were so diverse

would seem to suggest that an applicable support tool might be more successful if it

were to focus on an analyst's role as the organising factor determining which subset

of activities it should support.

The study indicated that HCI specialists did not generally have the support tools

they required in order to be more effective. Prototyping tools were not generally

available, and automated support for the Statecharts used by two of the specialists

was not provided. This meant that UI evaluations were usually restricted to almost

complete system prototypes in the late stages of design in 02 and 03, and in 01 and

04 the HCI specialists carried out highly painstaking cross-checking of their Sta-

techarts specifications by hand.

HCI specialists were clearly physically separated from systems designers, and there

were several complaints about poor communication, lack of understanding and lack

of integration. This isolation may have made it even more difficult for HCI special-

ists to overcome any obstacles imposed by working practices in the organisation.

They were dependent on written communication in many cases, but apart from in

01 where integration between different specialisations was observed to be particu-

- 463 -

larly good, no agreed notations apart from informal English were used to communi-

cate between different groups.

Isolation also meant that the ideal timing of the use of HCI and user-oriented tech-

niques was difficult to achieve. Typically HCI specialists would be brought in too

late to have effective influence on the design. In 04, for example, specialist E com-

pleted a CLG specification only to find that the design had already progressed to the

stage that the systems designers were not prepared to make necessary changes to

comply with the specification.

Like systems designers HCI specialists were subject to constraints, some of which

have just been alluded to above. They felt they needed better resources such as

more time, automated support, additional space and people. They often had to work

with limited information about users, or only information from non-representative

users (such as in-house staff in 03). The complexity and variability of applications

meant that any techniques they did use were pushed beyond limits to which they

would have been tested, requiring alteration and extension. In addition, TAKD

which can be viewed as similar to TAG was found to be poor at capturing the varia-

bility of acceptable methods observed in tasks. If used as a competence model of

task execution it was seen as unrepresentative, if used as an acceptance model if be-

came too complicated. This is an interesting finding relevant to all HCI approaches,

particularly Reisner's Action Language (Reisner 1981) and TAG (Payne & Green

1986), which generate competence grammars. Unless some additional model or

empirical analysis determines the most likely as opposed to the ideal methods or all

possible methods that system users may select, there may be a trade off between a

competence and an acceptance model whereby one is simple but unrepresentative,

and the other is representative but complex.

With regard to the exploitation of user-oriented information sources available to

them, HCI specialists were able to concentrate on this information, whereas systems

designers would have to consider more system and market oriented information as

well. It is not surprising therefore that the methods used by the interviewees in this

study were strongly focused on obtaining and analysing information about and

relevant to users and usability. However, due to the existence of the constraints

mentioned above, the information often failed to percolate through to the design of

the UI itself. The most commonly used information source seemed to be the experi-

-464-

mental subject in evaluation. Presumably organisations feel that people themselves

are the best, most flexible and most reliable user simulation technique available.

They are probably correct if they do believe this, but experimental evaluations are,

at present, generally taking place too late to affect design, and they tend only to

highlight faults; rather than suggesting designs.

Perhaps because of the tendency to rely on real people rather than on user models

and simulations, late evaluations may be overemphasised in commercial organisa-

tions. Real people require real-looking, robust Uls in order that they can simulate

user performance. Such Uls may only be available late in the design cycle (Rosson

et al 1987). Consequently HCI specialists who rely on user evaluations may be res-

tricted to the role of late-evaluator (or firefighter). In the case of 04 where there

was too little space to set up a user-evaluation lab, greater emphasis, than anywhere

else in the study, was placed on development of modelling techniques of the type

discussed in Chapter 2 with the process of design. In the following sub-section

some of the main problems which seem to prevent application of existing HCI

DETs will be summarised. By highlighting these problems it should be easier to

ascertain what needs to be done to improve future HCI approaches with respect to

applicability.

8.2.2 Overview of Findings from Chapter 6:
Reasons for Use and Non-Use of HCI DETs

This sub-section briefly seeks to highlight the main problems concerning applica-

tion of HCI DETs. Since most of the direct information concerning application of

these techniques is drawn from the MCI specialist interviews, this sub-section pro-

vides a summary of the most important qualities of HCI DETs which enhance or in-

terfere with their applicability to commercial design practice. However, other

relevant information was also provided by the two design studies which will also be

referred to here.

Reasons for Use of HCI DETs

Since HCI DETs of the type described in Chapter 2 were only found to have been

used by the HCI specialists, the reasons for their use have been drawn exclusively

from observations based upon the two specialists who did use such techniques

- 465 -

(namely E and F in 04).

User-centred rather than process- or system-centred.

The two DETs observed in use in the HCI specialists study were clearly focused

upon the user's concerns in the system, rather than the processes in the system. The

concerns which govern the spirit of TAKD and CLG are based upon basic psycho-

logical theory, such as the existence of multi-layered users' knowledge representa-

tions; an assertion common to both of these techniques (Johnson & Diaper 1984;

Moran 1981). It was clear that the specialists in 04 who used these techniques did

so because they felt these were the most appropriate kind of representation for struc-

turing descriptions which would capture the psychological properties of users.

Task-oriented rather than functionality-oriented.

Many SADMs concentrate upon early specifications of the relevant processes which

the system will be designed to support (e.g. JSD, Jackson 1983; and SD, Yourdon &

Constantine 1978). The meaningfulness of task structures to users may be lost, if

they are broken down into functions which either the user or the system may per-

form (Suteliffe, 1988, has shown that it is possible to extend the JSD notation to

capture complexity of the tasks users would be required to carry out with a system,

thus providing a usability metric based upon an early system specification). Both

TAKD and CLG may help to preserve task structures, which would have been

meaningful to users, within the specification of a system dialogue. The HCI spe-

cialists in 04 were able, using these techniques, to produce a structured

specification of the users' tasks which, in theory, would be translatable into a design

specification for the UI. In the case of CLG, other problems prevented this occur-

ring, however for the specialist using TAKD in a different type of project such a

problem did not arise.

Concrete specification rather than intuitive judgement.

In 03 the two specialists interviewed tended to base their consultancy judgements

on intuition as well as empirical evaluations. In 04 no experimental evaluation fa-

cilities were available, and the two specialists were anxious that their contribution

to design should be as scientifically rigorous as possible. The DETs which they

- 466 -

used were therefore chosen as methods which had been carefully developed with the

aim of permitting a psychologically realistic structure to be reflected in an explicit

analysis of tasks. The completeness of these analytical specifications helped to en-

sure consistency and validity of the actions and objects involved in task descriptions

which could then be reflected in the design of the UI and its dialogue.

Design driving or supporting rather than evaluative.

In 04 the lack of experimental facilities meant that the two specialists tended to

channel their efforts more into influencing design rather than evaluation. The tech-

niques which they chose to assist them in this were therefore ones which allowed

them to produce specifications of to-be-supported tasks which were essentially in-

dependent of the actual design specification itself. In the case of CLG the

specification happened to be based upon an existing version of the UI to the applica-

tion in question, however it could have just as easily been based upon unsupported

tasks. TAKD and CLG seemed to be applicable relatively early in the design pro-

jects described by specialists E and F. This may have been an important feature

governing their selection.

Reasons for Non-Use

The reasons given below for the non-use, or limited use of HCI DETs are drawn

from all of the studies reported in this thesis, and represent a very general summary

of some of the findings.

Lack of automated support.

Complaints about the time consuming nature of HCI DETs which arose in the

Designer Interviews study and the HCI Specialists study tend to support the view

that the complexity of the specifications required for real systems is generally prohi-

bitive of their application. Furthermore the reliance on psychological expertise not-

ed in Chapters 3 and 6, in particular, means that even greater effort must be required

of the non-HCI specialist. HCI specialists A and F who both used Statecharts

(Harel 1987) were keen to acquire support tools they knew to be available for this

technique (STATEMATE Ad-Cad 1986; Statemaster Wellner 1989). Although they

were clearly satisfied with the unsupported notation, they found it highly time con-

-467-

suming, and requiring of painstaking error checking. No HCI DET is currently sup-

ported to the extent that commercial use could be made of the support tool, although

prototypical expert systems do exist (e.g. for ICS; Barnard et a! 1986). It would ap-

pear that the problem of making such tools comprehensible to non-HCI specialists is

greater than that of supporting or automating the notations or the structure of the

models produced.

Lack of general comprehensibility.

In itself the lack of general comprehensibility seems to be a major problem for HCI

techniques. Since psychology is not a common subsidiary course for computer sci-

ence degrees, and was probably never taught on early computer science degree

courses, it is hardly surprising that there seems to be a culture gap between HCI spe-

cialists (many of whom have little programming and system design experience; see

Chapter 6) and systems analysts and designers (who often have little or no HCI ex-

perience; see Chapter 4). Not only are the notations used by HCI DETs frequently

idiosyncratic and visually complex, but the very concepts which they attempt to

convey are highly esoteric, and poorly related to ideas and terminology likely to be

helpful in application of the specification to design. HCI specialist E in 04 provid-

ed the most striking evidence for this feature of 1-ICI DETs when he described the

response he got from a CLG specification he passed on to the systems engineers.

They found the specification to be too complex to understand and did not make use

of it.

In their use of user-oriented DETs HCI specialists in 01 and 04 were clearly reliant

upon their skill and initiative in carrying out appropriate additional activities not

guided by the technique itself, such as task analyses, dialogue specifications, and

system scoping. They also found that their experience was essential in maintaining

usability principles with Statecharts which does not explicitly support usability.

Specialist E himself found CLG extremely difficult to use even with his experience,

and E and F found it necessary to make alterations and extensions to TAKD to Suit

their particular requirements.

-468-

Lack of integration.

A major problem for HCI specialists seems to be their physical isolation from the

rest of the design team. Evidence from the design questionnaire study, and from

the interviews with 1-ICI specialists tends to suggest that their work may easily be

ignored by the majority involved in the project who may not recognise the value of

HCI, and are therefore not prepared to make a special effort to incorporate the ad-

vice of HCI specialists into the design.

This problem cannot be helped by the fact that the methods presented in HCI DETs

do not relate clearly to the rest of a system's design. Many HCI DETs seem to as-

sume that the UI or just its dialogue can be completely defined without integration

with, involving input from, and output to the rest of the design process. This may,

in theory, not be a problem if one assumes that the activities external to the HCI

technique will be properly carried out in such a way that valid input is provided to

the technique, and that its output is taken up in the software specification. However

the targets of the HCI specification may not apparently be related to the targets of a

system specification.

For example simple tasks (as embodied in TAG; Payne & Green 1986) are not elu-

cidated in SADMs (for example JSD; Jackson 1983; has no comparable notion). It

seems to be up to the systems engineer, who will probably have difficulty appreciat-

ing a psychologically founded notion, to take up a specification couched in such

terms and translate it into something more directly related to software related no-

tions.

A further problem for integration of HCI DETs is that of the timing of specification,

evaluation and respecification. Reisner's Action Language (Reisner 1981), TAG,

GOMS, and CCT seem to require a well specified dialogue, in the case of TAG a

high value is attributed to the ability of the technique to capture real world

knowledge, and to highlight different kinds of 'consistency' (consistency meaning a

number of different properties according to the authors of TAG). However the level

of detail to which a dialogue has to be specified to reveal the superiority of one UI

over another makes it highly unlikely that the design is likely to be highly

modifiable on the basis of an HCI evaluation of this type. It seems even more un-

likely that the superiority of TAG over Reisner's Action Language could become

apparent long before the UI design was complete. This suggests that such tech-

- 469 -

niques may not, in practice, yield results of any geat value to a design team since

the information they provide cannot be acted upon (unless the UI is very highly

modifiable even at the end of the design process).

Lack of resources.

Since lack of resources, including time and technology, seems to be a pervasive

problem for all involved in systems design, it is unlikely that the kind of resources

required for a GOMS or CCT analysis would be provided by any but the largest of

projects. Cheap, easy-to-use support tools would ameliorate this problem, but the

effort required for a CCT specification (i.e. programming in a large number of pro-

duction rules to the simulation of the user) would still necessarily take a great deal

of human time. The systems designers interview study revealed that HCI is seen to

be too time consuming and expensive to be worth while. In other words, as has

been stated previously (see Chapter 7; sub-section 7.1.4) the benefits of application

of a technique must be shown to outweigh the costs. This is a property which has

not been proved for any of the techniques described in Chapter 2, and needs to be

considered carefully given the existing mistrust of HCI DETs which was revealed

most clearly in Chapter 5.

8.3 Ideal Properties Required of Applicable HCI Techniques.

In this thesis much has been said about the shortcomings of HCI DETs with respect

to the needs of systems designers and HCI specialists in commercial practice. The

unsatisfied application requirements discussed in Chapter 7, and the findings from

chapters 4 to 6 illustrate the need for greater attention to be paid to applicability if

HCI is to avoid restricting itself to descriptions of existing technology. Throughout

the greatest part of this thesis, the emphasis has been on properties of HCI tech-

niques relating to application, with an implicit acceptance of many of the assertions

and claims made by the authors of the techniques reviewed with respect to their

psychological validity and their descriptive, explanatory, or predictive powers.

Whether the theoretical aspects of these techniques are assailable or not seems to be

of indifferent importance as long as HCI fails to gain an accepted place in UI design

practice.

An important implication of the research discussed in this thesis is therefore the

- 470 -

necessity for HCI, as a discipline, of viewing design practice and its constraints in

much the same way as HCI DETs recommend that systems designers should view

the user. One way to convey this point is to frame it in terms of a metaphor in

which the system life-cycle and the people involved in it are equivalent to the

USER, and the HCI technique is equivalent to THE SYSTEM and its UT. The

designer of the UI, according to HCI advocates, should attempt to design the UI to

suit the needs of the user. In order to do this the designer has to consider what qual-

ities the UI should embody which will make it more suitable to the requirements of

the user. In the same way, designers of HCI DETs should consider what types of

properties their techniques should embody in order that those involved in the system

life-cycle will find them easy to apply. Such properties would be roughly

equivalent, in terms of this metaphor, to the usability principles introduced in

Chapter 1.

In the following discussion a number of types of properties are discussed which

have been drawn from the three studies described in chapters 4 to 6. Some of these

are essentially those which were popular in the existing user-oriented methodolo-

gies applied, others may be more idealistic, based upon observation of problems and

constraints which they might help to overcome. By adhering to these properties as

though they were principles, HCI DETs may significantly reduce their application

requirements (see Chapter 7).

8.3.1 Limited In vestment or Major Pay-Offs

It seems obvious to state that a technique should pay for itself if it is to be commer-

cially viable, however this type of property has never been proved for an HCI DET.

Mantei and Teory (1988) attenipt to show that, in principle at least, a user-oriented

approach to UI design can save money. However the evidence for HCI DETs being

commercially viable is scant, or non-existent. Sharratt's study of students attempt-

ing to use CLG (Sharratt 1987) suggested that the students spent more time worry-

ing about their usage of the CLG specification than they did on the actual design.

The HCI interview study also showed that an attempt by specialist E to apply CLG

in practice turned out to be largely a waste of time.

The costs of applying HCI techniques are likely to be in terms of requirements for

skilled individuals, extra time required to gather the necessary user-oriented infor-

- 471 -

mation and analyse it, tools perhaps for supporting techniques or building user or

system simulations, and effort required to make changes in response to any evalua-

tions.

The benefits of applying a technique are likely to be dependent on certain combina-

tions of properties of that technique such as the stage in the design process at which

the output from that technique is available, or the importance of the aspects of the

UI which it addresses to the overall usability of the system. The property of being

able to drive user-oriented design would be more valuable in terms of benefits for

that design than the ability to evaluate it, given a fixed amount of effort. If a tech-

nique can explain UI problems rather than just highlight them it is likely to be more

valuable.

This property is really dependent upon the existence of the other following proper-

ties within a technique. If they are indeed apparent, then it seems more likely that a

technique which embodies them will be of some value to UI designers. As stated

previously, the onus is on the developers of HCI DETs to prove that they are worth

applying. It is not within the scope of this thesis to suggest for each technique how

best it might be made "cost-efficient". However, for each of the following proper-

ties, ways of determining their presence in a technique are suggested. If developers

of techniques recognise the absence of valuable properties in their approaches, and

desire that their techniques be used in applied design, then they may wish to address

those properties by modifying or repackaging their technique in some way.

8.3.2 Accuracy

As stated earlier, the accuracy or validity of various HCI DETs as claimed by their

authors, is not called into question here, although systems designers seem to be

sceptical about them (see Chapter 5). Various authors (e.g. Card et al 1983; Kieras

& Poison 1985; Payne & Green 1986)claim that their techniques produce predic-

tions about user behaviour which are accurate to some degree when compared

against actual user performance. However the degree to which commercial systems

designers or HCI specialists can replicate the laboratory results in the field is highly

contestable. There are two main reasons for this, the first being the difference in ex-

perience and skill in the technique between the author and the practising analyst,

and the second being the difference between the contrived laboratory circumstances

- 472 -

and the real world where design takes place.

It is important that the developers of HCI DETs provide convincing demonstrations

under realistic design conditions which show that the technique is appropriate, does

not require an inordinate amount of difficult extra work, uses input which is normal-

ly available, and provides output at a time when it can be profitably exploited, be-

fore the system software becomes unmodifiable. Such measures are necessary in

order to persuade skeptical systems designers that a technique will produce useful

results for them, since they seem to be well aware of the difference between theory

and practice. The "this is the real world" philosophy revealed by the design studies

in chapters 4 and 5 may be hard to dislodge without convincing evidence that

theoretically based HCI DETs can produce accurate and valuable information and

predictions.

8.33 Expressiveness, Clarity and Communicability

The notations and constructs chosen by HCI DETs seem to vary widely in form and

expressiveness from the formally precise BNF to the boxes and connecting arcs in

BIMs. Each notation seems to have been chosen with the intention of capturing the

information of interest in a form which enables the analyst to draw the appropriate

inferences, and, in the case of the more highly structured notations, make precise

statements about various properties of the UI, dialogue or user's representation. The

feature of expressiveness has little to do with validity (i.e. the probability that the

notation represents something real in the user's head) and more to do with descrip-

tive power. Hence, if we assume that system users really do construct hierarchies of

interaction rules which are not related to or influenced by any semantics, and other

real world knowledge, then we may have no argument with the form of Reisner's

Action Language which is clearly highly expressive. However if we assume that

psychological validity is important, and our notation, like BNF has difficulty in cap-

turing notions such as semantic restrictions (Reisner 1981) and real world

knowledge (Payne & Green 1986) then our notation is not expressive enough to

deal with these properties of users. In this sense we may assume that TAG is a

more expressive notation for representing users knowledge than the Action

Language is. Expressiveness is an important quality for an HCI DET since anything

which cannot be expressed will either have to be ignored or added in an impromptu

fashion by the analyst, with the subsequent risk of defeating or interfering with the

-473-

spirit of the technique.

Certain constructs, most notably the MHP cognitive processing architecture (Card et

al 1983) and the ACT* architecture (Anderson 1985) may be added to express the

assumed performance properties and constraints of system users. In the case of

competence models such as the Action Language and TAG such constructs are

merely implicit, and as such it is more difficult to invalidate the models they pro-

duce, as well as to be certain of all their implications. The more a technique relies

on implicit assumptions, the less likely it is that an analyst, using the technique for

the first time, will be able to use it as intended by the inventor of the technique. The

more expressive a notation and constructs associated with a technique, the more

likely it is that the results obtained from its use will be consistent between analysts.

In practice the clarity of the notation and representations of the constructs involved

in a technique are probably as important as the expressiveness. CLG is claimed to

be capable of expressing precisely the rules for generating interaction sequences

from the syntactic level (Moran 1981). However its lack of a clear notation makes

it difficult to interpret without a good deal of scrutiny. The Statecharts notation may

be more visually appealing because it capitalises on human perceptual and informa-

tion processing strengths (see Chapter 6).

Expressiveness and clarity when combined should help to ensure communicability

of an HCI DET. If HCI techniques are designed to be used by both HCI specialists

and non-specialists in applied design projects, they should be more appealing to

systems designers and more easily transmittable to various members collaborating

on a project. Perhaps two important questions which the authors of HCI techniques

to be used by non-HCI specialists should be asking themselves are: "Is it clear, in

non-esoteric terms, what exactly this technique entails, including the activities it

depends on ?" and "Would non-specialists be able to do this ?" In other words tech-

niques should exploit notations, constructs and terminology which are unambiguous

and comprehensible to the analyst producing the specification and the recipient of a

specification. Representation is not the same as communication; a notation may

claim to capture properties of what it represents, and the initiated may be able to in-

terpret it. However, for the HCI specialist to be saved the onerous task of rewriting

a model/specification or part of it in order to communicate it to others, the

specification should be expressive, explicit and clear.

- 474 -

8.3.4 High Generality and Broad Scope

A major problem with HCI DETs at present is that they suffer from a trade off

between breadth and depth of the properties of the UI or the user which they are

able to capture (Barnard 1987). For example BIMs cover a wide variety of

knowledge sources and indicate how they might interact, however they are not de-

tailed enough to produce any clear predictions about the effects of interacting

knowledge sources on user performance. GOMS, on the other hand, produces per-

formance predictions about speed of task completion, but will not account for

behaviour of anything but an expert system user who may be fast or slow at the task

(Card et al 1983). HCI DETs seem to cope with only a narrow range of behavioural

properties of users, but within these restrictions, they tend to produce highly de-

tailed models and predictions.

HCI DETs may also be generalizable to only a small number of systems; for in-

stance text-editors, electronic mail systems or drawing systems. The questionnaire

design practice study revealed that many systems will not fit into these categories,

yet HCI DETs seem to focus on such systems and text editors in particular. In order

to be generalizable to a wide variety of systems a model must be able to account for

a wide variety of user behaviour types, such as perceptual processing, problem solv-

ing, learning and so on. Many important types of interaction or computer supported

work, such as direct manipulation, diagnosis from digitised images (as in geological

or medical work), statistical modelling, and design (of clothes, buildings or aero-

planes, for example) will not be adequately described by models which only address

limited behavioural properties of users. This leads us back to the previous point

which was that breadth of HCI DETs is typically limited to a small number of user

characteristics, such as representation of dialogue syntax (as in Reisner's action

Language and TAG) and representation of routine-task goal stacks (as in GOMS

and CCT). There seems to be a need to address more diverse types of user

behaviour in order to improve the applicability of MCI DETs for a wider range of

types of system. In other words, the scoping matrix, introduced in Chapter 2, needs

to be expanded in the evaluation factor row for users into a more diverse set of rows

which will allow it to show more clearly the range of user behaviours an HCI DET

is capable of addressing.

It is also worth remarking on the problems of dealing with user variability which

- 475 -

make models more complex, because they have to include a variety of methods for

accomplishing goals (an acceptance model of interaction) or risk becoming un-

representative. As has been shown by Young and Maclean (1988) it is possible to

reduce the problem of unrepresentativeness by adding a predictive model of how

users select one method over another in a particular set of circumstances.

8.3.5 Successful Exploitation of Information

Exploitation of the limited available user-oriented information in a design project

may be crucial to the success of the UI. Prototyping is becoming an increasingly

popular form of system development (see Chapter 4), and seems to represent a po-

tentially valuable source of information. If it is impossible to get access to

representative users can HCI DETs help us to extrapolate from the behaviour of un-

representative experimental subjects, or in the worst cases, from the behaviour of

members of the design team using a prototype ? GOMS and CCT expect designers

to empirically derive basic operator times as input to their models. However they

do not encourage designers to simulate other aspects of behaviour such as error

making and recovery, inefficient method selection (selection rules in GOMS are

based on competence rather than incompetent performance which is equally likely),

pauses for thought (when might these occur; a prototype might highlight difficulties

users need to think about), and so on. As far as designers may be concerned, proto-

typing using non-representative experimental subjects may be more predictive of

actual user behaviour than a GOMS or CCT simulation. Systems designers need to

be shown that HCI simulation techniques can provide more valuable information in

such circumstances, if indeed they can.

Techniques which depend on task analyses need to maintain all of the necessary in-

formation which would enable the UI designer to provide appropriate support for

the user. In the HCI specialist interviews it was found that TAKD tended to lose so

much valuable contextual infommtion that only the application domain expert who

provided the task information, and the analysts themselves could follow the

analysed generic task representations. This made it necessary for designers to have

the tasks they needed to support explained to them. In a design project where task

analysts probably work separately from systems designers (see Chapter 6), contex-

tually rich communication of user-oriented information is necessary to ensure that

the value of task analysis is not diminished.

-476-

8.3.6 Integratability

Integration of HCI, given the current organisational restrictions which separate HCI

specialists from others involved in design, may rely on a number of properties of

HCI DETs. The input to a technique, its output and the point in the system life-

cycle at which these are produced are all important issues which have to be ad-

dressed by applicable HCI techniques. Many depend upon activities such as task

analysis, system models and user models which provide the input from which they

derive descriptions or predictions. It is not safe to assume that the relevant informa-

tion will be available early enough for an HCI analysis to produce influential

results.

If for example a TAG analysis were chosen for a UI, but the design project was

working along the lines of a top-down design approach (as CLG does), the predic-

tions about usability would only become available at the end of the project when the

details of interaction were being established. The design team would have to have

ensured that code was easily modified right up to the last moment. As the designer

interview study revealed, this can be a problem (see Chapter 5, project 3). It is not

always possible to alter code late on. Perhaps the only solution to this problem is to

highlight the need for ensuring modifiability of code throughout the design process,

as object-oriented approaches attempt to do (Jacobsen 1987; Meyer 1988). On the

other hand, tools such as CLG with a strong top-down bias, would probably not

work well with more bottom-up approaches (such as object-oriented design). So it

seems that an important feature of an applicable HCI DET is a realistic or at least

explicit view of the design process within which it might be used to best advantage.

However, most HCI DETs are not even clear what type of model they are at present

let alone how they might be used (White field 1987).

Integration is also dependent on shared notations, terminology and concepts, in oth-

er words the potential for communication has to be improved between the HCI and

systems engineering disciplines. And finally the roles of those working within

within a design project must be considered as discussed in the following sub-

section.

- 477 -

8.3.7 Support for Analyst

Although this type of feature has been left until last, it may be one of the most im-

portant and easiest to satisfy. By support, we should not restrict ourselves to the no-

tion of computer support or automation. Support can be given in the form of extra

guidance, or a more coherent approach grouping of activities which the HCI DET

can assist. CCT, for example, is presented as an early evaluation tool (although this

claim is contested elsewhere in this thesis) and as a possible teaching tool (GTN

system UI representations are supposed to help users to construct a more efficient

model of the system's behaviour; Kieras & Poison 1985). No coherent role in

which these two types of activity might be combined is presented.

The HCI specialists interviews revealed a number of HCI practitioner roles which

techniques might support (see Chapter 6). This would mean considering all of the

activities important to each role and placing an emphasis on ensuring that these are

given special attention, for example; techniques which are intended for technology

transfer exercises must be easy to demonstrate, flexible enough to suit a variety of

types of project, and explicit as to all of the necessary activities, and the design ap-

proach which they depend upon, failure to ensure these features could lead to the

kind of problems which arose in the technology transfer project described by spe-

cialist B in 02 (such as over general or inapplicable guidelines; see Chapter 6).

Analysts need guidance for the activities upon which a technique depends, which

are often not clarified by the technique. Two HCI specialists in the interview study

of HCI practice, complained that TAKD and CLG required certain activities to be

carried out without explaining how one would do so appropriately. Non-HCI spe-

cialists would need further guidance because they lack the psychological expertise

necessary to perceive implications from analyses, and may even fail to understand

the terminology and concepts involved in the first place. In other words, since HCI

specialists are a rarity in commercial design projects (see Chapter 4) an applicable

HCI DET should have limited dependency on skills and intuition, and needs to

come with more guidance than seems to be the case at present.

The compactness or economy of the components of a technique (its notation, the

user characteristics or the system properties it addresses) may have a good deal to

do with its comprehensibility and the amount of automated support it actually re-

-478-

quires. It would appear that HCI DETs can become tedious or highly complex to

apply as reported in Chapter 6, and even specialists may become discouraged by

this. In addition the amount of time and effort required may be very large for non-

trivial Uls. However, broader, psychologically valid and detailed models will na-

turally be complex since the users which they aim to simulate are highly variable,

complex, context sensitive systems involving perceptual processing, attentional

variations, memory constraints, diverse experience and roles and so on. Complicat-

ed models which can capture multiple properties of users are highly likely to require

computer support for the analysts who use them, perhaps embodied in expert sys-

tems or knowledge engineering or simulation tools. So far such support seems to be

limited, or non-existent.

This informal classification of desirable properties of HCI techniques needs to be

refined into a number of more concrete features which an HCI DET should possess.

In the following Section a number of specific features are drawn from these more

general properties to stand as a checklist for applicable HCI DETs. Their specificity

should make it easier to determine whether or not they are indeed embodied in a

given technique.

8.3.8 Some General Points

The types of feature addressed in the discussion above raise some interesting gen-

eral points about applicability of HCI which are summed up below. This may seem

like stating the obvious, but as Gould and Lewis (1985) showed with their so called

obvious design principles; the obvious may not be as well recognised as it at first

seems.

* Rather than aiming for ever more refined and sophisticated models, techniques

should perhaps be aiming for more complete and coherent support for their appli-

cation, in terms of realistic views of design and activities they depend upon, and

roles which they might support.

* HCI DETs must aim to embody properties that make currently applied practices

popular (irrespective of HCI aspects they may or may not have). For example the

Statecharts reactive-system representations technique was popular because of its

clear representation, simplicity and generalizability.

- 479 -

* HCI must try to provide techniques that can be integrated with popular approaches

to design.

8.4 A Classification of Specific Desirable Features of HCI DETs

This and the preceding chapter have summed up a rather negative view of the im-

pact which HCI techniques seem to be having on applied and commercial design

practice. The discussions do not reflect the validity of user modelling efforts, nor

the ability of theoretically based techniques to produce representative predictions

and explanations of interactive behaviour. The real problem seems to be one of

packaging HCI for use by non-specialists, or for specialists operating in constrained

applied design projects, as opposed to contrived laboratory studies.

In this section the findings which emerged from the investigations reported in this

thesis are brought together and used to construct a list of desirable features for as-

sessing future HCI DETs with respect to applicability.

The sub-sections 8.3.1 to 8.3.7 represent an informal classification of ideal proper-

ties of HCI DETs. In another sense it is possible to say that each type of property is

really a basis for evaluation of the applicability of a technique. Examining the de-

gree to which a technique appears to embody a particular type of property is rather

like evaluating it from a particular perspective. However the above classification,

which is based upon the interviews with HCI specialists in commercial organisa-

tions, is too unclear, since some of the types of property seem to overlap with oth-

ers, for example Li,nited investment or Major Pay-Offs overlaps with Generality

since both would demand that a technique should cover as wide a scope of user

behaviours as possible. It is therefore necessary to make more rigorous demands of

HCI DETs in order that they might be considered more applicable.

In the following, each of the property types (in italics) will be broken down into

more specific, less overlapping features (in bold type) which will be referred to from

here on as Desirable Features of applicable HCI DETs. Each specific feature will

be defined with the intention that it should be possible to ascertain whether or not it

is present in an HCI DET. The responsibility for proving each feature's presence

lies with whoever is most determined to see a technique applied successfully; in

most cases one might assume that this should be the responsibility of the creator(s)

-480-

of the technique.

The possible consequences of the embodiment or lack of each of these features will

be outlined with respect to evidence from the HCI specialists interviews from which

these desirable features are drawn (see Chapter 6; findings of the study). Of course

this is not to say that the feature was either fully or not at all addressed by the tech-

nique concerned in the example, it merely illustrates the consequences of adequacy

or inadequacy in some aspect of the technique with respect to the feature in ques-

tion.

Limited Investment or Major Pay-Offs for an HCI DET can be viewed as a trade off

between the amount of effort required; i.e. simplicity of the analysis, and the scope

of the technique. Most techniques are fairly clear about their scope, however little

is said about their simplicity. If systems designers are going to be able to make an

informed decision about which technique they can afford to use then they need

some information about the time and expense they will have to invest (see Chapter

7), which can be balanced against the benefits of the technique. However, we

should not combine these two features, since the importance of each will vary. If

the expense is not important then one might wish to focus only on how great the

scope is, and vice versa.

1. Simplicity

Defined as the number of constructs and different activities required by a technique,

which would have to be learnt by an analyst in order to use it. Obviously the more

esoteric a technique is, the more its use will be restricted to HCI and psychology

specialists.

Evaluated experimentally and judged either in isolation or compared with a more

common design approach as Boehm et al (1984) have done with prototyping versus

specification (see Chapter 3). It could also be evaluated self referentially by any

HCI DET which claims to capture the property of complexity in a representation of

a task execution.

Presence of the Feature of simplicity of a technique was provided by the use of

Statecharts which were described by two HCI specialists as being easy to learn and

use. The main problem was the size of specifications which they felt they needed

-481-

automated support for.

Absence of the Feature was demonstrated by the use of CLG which was reported

to be difficult to learn, use and understand by an HCI specialist. It involved under-

standing of the nature of each level of description, and of the syntax of the notation,

and the rules for translating one level to another. Furthermore it produced a very

lengthy specification which systems designers could not understand.

2. Broad Scope

Defined as the breadth of properties of a UI to which a technique is sensitive, and

the breadth of properties of a number of factors (users, application, UI, target tasks,

and performance) which it accounts for.

Evaluated by ascertaining how many different principles (i.e. properties which one

might strive to achieve) of usability (e.g. simplicity, compatibility) can be captured

by the model which the technique generates, and the properties of the evaluation

factors addressed In other words, the scoping matrix used to characterise each of

the techniques reviewed in Chapter 2 could be expanded and applied to a technique

to determine how great its breadth was. In addition it is possible to expand the con-

tents of each cell to give either a weighting of the degree of rigour or accuracy with

which it is represented, or a description of how it is tackled by a technique.

Presence of the Feature of broad scope was demonstrated by the scoping of exper-

imental evaluations (see table 6.5) which, by their nature, can simulate an extremely

wide number of properties of the factors essential to evaluation (i.e. users, applica-

tions etc), and reflect the influence of the presence or absence of system properties

(i.e. the various principles) on human behaviour.

Absence of the Feature was illustrated to some degree by TAKD (see table 6.8)

which, although it worked quite well for its analysts, had to be extended to address

allocation of tasks (to the system and to the user which would have addressed the

application factor) and task hierarchies to show relations between tasks and task

dependencies (which would have given a more rich picture of the simplicity of the

overall task descriptions).

Accuracy of predictions as claimed by the authors of a technique, when it is applied

-482-

by another analyst, will depend upon the explicitness of the entities and pro-

cedures it entails. In much the same way as an experimental report must be written

clearly enough to allow results to be replicated, so the definitions of the components

(e.g. simple tasks and cognitive processing constraints) and the methods which in-

volve building a model from them must be laid out in an absolutely unambiguous

manner.

3. Explicit Entities and Procedures

Defined as the extent to which a technique is self explanatory, and can be used by a

non-specialist without prior knowledge being assumed in the description of how to

apply it.

May be evaluated in much the same way as one would try to run a new computer

program, by trying it out on a "naive user" in order to determine if he or she can

complete analyses and obtain valid results with it.

Presence of the Feature was a main aim in the design of the technology transfer

technique used by 02 in the HCI specialists study. The technique avoided jargon,

and specialist knowledge. Most of the methodology involved filling in forms, charts

or matrices, and the technique involved workshops in which designers were taken

through the technique step-by-step.

Absence of the Feature was fairly apparent in CLG and TAKD in that they both

explicitly rely upon collection and analysis of task-oriented information which the

analysts using them conducted, using their own skills and experience, but which the

techniques themselves do not explicitly guide.

Expressiveness, Clarity and Communicability. Communicability is assumed to

depend upon the expressiveness and clarity of an HCI DET. Expressiveness

depends upon whether all of the components which affect predictions of a technique

can be expressed in terms of the notation and constructs involved. For example it is

not appropriate to assume that all analysts will realise that complexity of a UI will

be less of a problem for a user if much of that complexity is already real world

knowledge that the user will have. In such a case the notation would have to in-

clude some way of capturing real world knowledge and indicating that it would not

count towards a complexity metric; for example, this has been achieved to some de-

- 483 -

gree in TAG (Payne & Green 1986).

Clarity may be dependent upon the visual simplicity of the representations or nota-

tions used by the technique, and upon the degree to which the semantics of the tech-

nique are conveyed by the symbols or terms involved (this is covered by the expli-

citness feature).

4. Expressiveness

Defined as the degree to which the theoretical underpinnings and concepts (such as

cognitive architectures, human memory properties and so on) are reflected in the ex-

plicit components of the technique.

Evaluated by identifying each claim made by a technique as to the properties of a

user or system which it is sensitive to or claims to be able to model, and then check-

ing that a complete specification using that technique represents each of those pro-

perties directly.

Presence of the Feature was apparent in Statecharts which makes no claims

beyond the properties which it can be formally demonstrated to possess (Hare!

1987). However in the context within which it was used by HCI specialists, user-

orientedness of the specifications had to be preserved by keeping in mind properties

which might affect usability which are not explicitly encouraged by the Statecharts

technique.

Absence of the Feature was demonstrated by CLG which did not directly represent

any of the user's psychological characteristics which would enable a psychology

naive analyst to determine whether or not a system was usable. Fortunately, the

specialist applying it had enough experience in psychology to compensate for this

lack.

5. Visual Simplicity

Defined as the ease with which the notation used by the technique can be deci-

phered, both by experts and naive analysts.

Evaluated either experimentally by asking subjects to attempt to translate a

specification into some other representation without worrying about the semantics

- 484 -

(perhaps a flow chart, or English) and analysing what problems they had. For ex-

ample parts of a CLG specification could be represented in terms of an execution di-

agram. Visual complexity may also be evaluated by applying some model of the

visual processing system which is able to predict what are the causes of difficulty of

interpretation of visually presented information (e.g. Kosslyn, 1989, presents a

model based upon Gestalt and other processing theories of visual perception which

he claims may be used to evaluate the complexity of graphical information). It may

be sufficient to analyse a textually complex specification using some notation in

terms of the violations of the type of recommendations made by visual processing

researchers (e.g. Waller, 1980; Wright 1980) which suggest use of lay out, font,

spacing, punctuation and so on can all improve clarity of text.

Presence of the Feature was described by both of the specialists using Statecharts

who claimed that the charts were easy to read and comprehend, and could be used

to communicate to programmers who could write software from them.

Absence of the Feature was evident in CLG where a secretary made many mis-

takes in copy typing the notation from the specialist's hand written notes, and sys-

tems designers were unable to decipher the specification.

High Generality and Broad Scope Broad behavioural scope here particularly

focuses upon the range of user behaviours which a model is able to capture. High

Generality is intended to imply the ability of a technique to address issues related

to a wide range of Uls, applications and target tasks (see Chapter 1). These two are

possibly two features which may be traded off against one another. On the other

hand it may be the case that after a certain point, increasing the scope of a model

employed in an HCI DET improves its generality because it contains more cognitive

components which may allow it to explain behaviours with a wider range of ULs.

6. Broad Behavioural Scope

Defined as the range of human behavioural (including cognitive) properties which

are captured or addressed by a technique.

May be evaluated by referring to the HCI scoping matrix (see Chapters 1 and 2) and

expanding the row which relates to the user as an evaluation factor. Candidate sub-

row headings might include items in the following list, (general mental properties

-485-

such as short and long term memories, which underlie common assumptions for all

psychological interpretations of behaviour, are not included as useful behavioural

candidates which would serve to distinguish between HCI models).

Learning

Perceptual Processing

Knowledge Representation

Language

Planning

Problem Solving

Proceduralised Behaviour

Errors

Social Behaviour

Organisational Behaviour

Each of these classes of human behaviour could then be mapped to the usability

principles in the scoping matrix and a user or interaction model could be character-

ised in terms of the cognitive behavioural properties it was attempting to capture, as

influenced by the properties or principles of interest. These were not represented in

the original scoping matrices used on the HCI DETs described in Chapter 2 since

those techniques typically concentrate on few of these properties; predominantly;

knowledge representation, language and proceduralised behaviour (with some pred-

ictions of where user errors might occur in tasks). Whether or not the list of

behavioural classifications represent a complete set of all the behavioural aspects of

system users which could be important to HCI is not at issue here. 'What is of in-

terest is whether these classes help us to characterise an HCI DET more clearly for

the purpose of evaluating its applicability.

Presence of the Feature could have been apparent in experimental evaluations had

the analysts been able to design their experiments such that they were sensitive to

these properties. However the study did not pursue this aspect of the use of experi-

mental evaluations. It may be that the design of commercial user-evaluative studies

focuses on the UI causes of problems, rather than the interplay of cognitive process-

ing components leading to slow performance or mistakes. The evaluative nature of

these experiments may require only that bad design is highlighted, and not that the

psychological reasons for its being bad are described and explained.

Absence of the Feature was seen in the technology transfer technique which only

-486-

focused upon the tasks and roles of system users. Much of the scope of this tech-

nique may lie outside the scope of the matrix, being concerned with markets,

businesses and so forth.

7. High Generality

Defined as the extent to which variations in the evaluation factors in the scoping

matrix can be handled by the technique. A particular technique may deal with all

the factors for one design; say trained users, text editing application, command

driven UI dialogue, simple editing tasks, and performance metrics with respect to

these, and yet may be inadequate for another involving naive users; air traffic con-

trol training applications, menu and direct manipulation UI, monitoring and com-

plex decision making tasks; and appropriate performance metrics with respect to

these factors.

May be evaluated by taking a diverse range of UI, application, and task properties,

selecting representative combinations of these properties and demonstrating an HCI

DETs ability to capture and explain problems or interesting occurences during in-

teraction with a system with these properties.

Presence of the Feature was once again apparent in experimental evaluations

which appeared to be possible for any system which had a robust enough UI for user

testing to take place.

Absence of the Feature was described by the specialist reporting the technology

transfer technique who stated that some systems designers trying to apply the tech-

nique in practice found it redundant in that many of the activities it required were

not appropriate for certain applications.

Successful Exploitation of Information relates to how realistic certain application re-

quirements of an HCI DET are given the likely information available in an applied

or commercial design situation. If an HCI DET does not exploit information which

is readily available, but demands information which is not, then it is unlikely to be

applicable. Two specific features are important to this feature type, the realism of

the design view an HCI DET embodies either explicitly or implicitly, and the ex-

tent to which information input to the technique is preserved in the output. HCI

DETs usually state what information they are trying to convey in an analysis. Any

- 487 -

information loss could be wasteful and could prove problematic for recipients of a

specification based upon a technique, if they have no knowledge about the original

input data.

8. Realism of Design View

Defined as the extent to which the design process assumed or envisioned by a tech-

nique reflects realities of situations where it claims it should be applicable. These

situations may be design practice in general, or a particular type of situation or ap-

proach.

Evaluated by comparing the statements relating to the input for and output from a

technique, plus any pragmatic application requirements, with conditions existing ei-

ther in a target, complete SADM or in a representation of commonly occurring

design practice such as presented in Chapter 5.

Presence of the Feature seemed to be apparent in TAKD which, as a task analysis

technique used input and produced output which was available, and produced output

which was useful for the projects it was used in. It did not make demands for the

existence of system specifications or empirical performance data which would not

have been available.

Absence of the Feature Showed up strongly in CLG which had a top-down ap-

proach but a separate starting point from that of the software designers on the pro-

ject it was used in. Since the analyst who used CLO began his specification at the

same time as the systems engineers began writing the software, the length of time

the specification took reduced its chances of being applicable. By the time the in-

teraction level had been specified, and could be communicated to the systems en-

gineers, they were unable to alter their software to suit the specification. CLG is not

presented with any warning as to the possibility that this might happen, or how to

avoid or deal with it.

9. Preservation of Important Information

Can be evaluated by testing the ability of a complete HCI DETs model to convey

the required design supporting information to a systems designer who has no

knowledge of the analysis which provided the original input data. If additional ex-

planation is required to enable the designer to produce a design or problem solutions

-488-

from the specification then important information may have been lost. In such a

case that information may only be implicit in the analyst's head, and only the

analyst could produce a design based upon the output of the HCI DET.

Presence of the Feature was described by the analyst using CLO who stated that

the technique was useful for maintaining a coherence and task-orientation of the

specification through to the most detailed level.

Absence of the Feature was notable in TAKD in that the analysts who used it stat-

ed that it lost so much contextual information during the process of abstraction that

it required high familiarity with the analysed tasks themselves in order to under-

stand the task specifications. This proved to be a major problem when attempting to

communicate the TAKD specification to software engineers.

Integratability assumes that an HCI DET should, without major modifications, or

extensions, fit into a typical design cycle, that it should not depend upon activities

which are typically not carried out within the type of design cycle it is applied in,

and also that its output will be appropriate as input to other design activities. Essen-

tially the integratability of an HCI DET would have to be determined by the Real-
ism of Design View (see above).

Support for Analyst would appear to be dependent upon two specific features; the

degree to which it restricts its methods to Explicit Entities and Procedures (see

above), and the degree to which it is able to cover a coherent set of activities which

would aid the analyst across the whole of a project. This would mean having a clear

picture of a possible role for the analyst and supporting each of the activities which

that entails (five HCI oriented role types were identified in the study of HCI special-

ists, including that of "designer"). We can refer to this feature as the coherence of
support which an HCI DET provides.

10. Coherence of Support

Defined as the completeness with which the activities within some HCI analyst's

role are supported by a single technique.

Evaluated by determining the most likely role of an analyst using a particular tech-

nique (given the explicit aims which the technique claims to support). Table 6.3 in

-489-

Chapter 6 suggests activities which are important to 5 HCI roles identified in design

practice, and could be used as a framework for judging this feature.

Presence of the Feature was apparent for Statecharts when used as a user-oriented

design specification, since the Statecharts notation did tend to support invention

analysis and communication which were the main types of activity required of

designers (see tables 6.3 and 6.10; Chapter 6). Statecharts did not, however support

collection and analysis of the user- and task-oriented information required, and was

seen to be used in tandem with TAKD by one analyst; the two techniques together

providing much more coherent support for all the design activities he carried out.

Absence of the Feature was clearly apparent in CLG when used to support HCI

consultancy on a commercial design project. It failed to support information collec-

tion and communication which were both important types of activity to the role of

consultant.

Having identified ten concrete, non-overlapping features which an HCI DET may or

may not possess, and which may, by their presence or absence suggest the applica-

bility of a technique, we now need to consider a framework within which these

features might be used together to assess the potential success of a candidate HCI

DET as an applied user-oriented design or evaluation technique. In the following

sections such a framework is outlined and its possible uses indicated.

- 490 -

Component	 Sub-components

*An Empirically Based Applied 	 Design Activities

and Com,nercial Design Schema 	 Information Sources

Design Constraints

*A Usability Scoping Matrix 	 Principles of Usability

Evaluation Factors

*An HCIRoles

and Activities Matrix

*A Desirable Features List

Table 8.1

Overview of the Application Framework

for Assessment of Practical HCI DETs (AF)

8.5 AF: A Proposed "Application Framework" for Assessment of Ap-
plicable HCI DETs

In the following discussions a framework for assessing the applicability of HCI

DETs is outlined in terms of each of its components; sub-sections 8.5.1 to 8.5.4, in-

cluding descriptions of their respective parts and their implications for applicability.

This framework presents a positive contribution to the discipline of HCI which can

influence the considerations which are brought to bear on the form of future design

and evaluative techniques.

The Application Framework for Assessment of the Applicability of HCI DETs (AF)

contains 4 components as shown in table 8.1. Three of these components have been

drawn from, elaborated and justified in chapters 1, 5 and 6, and the features list has
been described in the current chapter:

The framework which is outlined in the following sections is not claimed to

represent the general value of an HCI technique to the discipline as a whole. The

-491-

plausibility and psychological validity of the various claims used to support HCI

DETs are not questioned (although a more detailed framework would perhaps insist

that this be done). The claims made by the developers of the various HCI tech-

niques relating to sensitivity of the technique to various properties of users and sys-

tems are taken to be true in most cases. The framework instead concentrates upon

the practical issues concerning the applicability and utility of the technique for

design practitioners regardless of its scientific strength.

The empirically based applied and commercial design schema (see figure 8.1) and

an expanded version of the usability scoping matrix provide two different perspec-

tives on UI design. The schema is a view of the process, and the matrix is a view of

the usability issues within the scope of design. The HCI roles and activities matrix

simply suggests coherent groups of activities which might be supported within a

role, and the desirable features list is a checklist for an applicable HCI DET.

In the following sections the form of the framework is discussed in terms of the

representations used for each of the components, and their implications. Then a

number of possible roles are suggested; one of these roles presents a more stringent

set of requirements for the framework than have been satisfied by this outline of it.

8.5.1 The AF Empirically Based Applied and Commercial
Design Schema: Design Practice Activities,
Information Sources and Design Constraints

Figure 8.1 is an adaptation of the design view presented on the basis of the two em-

pirical user-oriented design practice studies in Chapter 5. What was observed in the

two design studies will be assumed as representative of design practice in general

by AF. The point of making this representation explicit is to allow the framework

to be responsive to design practice, and to make more realistic statements about

what type of user-oriented or HCI approach might be possible for typical design

projects.

This design schema represents UI design practice in general as identified by the

systems designer studies in chapters 5 and 6. The design studies suggested that the

majority of projects involving UI design do not involve HCI specialists. Conse-

quently the largest market for HCI may be non-specialists in HCI. HCI DETs could

- 492 -

Figure 8.1
Schema for User-Oriented Design Practice Organisation, Constraints and

Information Sources Based Upon the Findings of Two Empirical Studies

INFORMATION	 DESIGN ACTIVITIES 	 DESIGN CONSTRAINTS
SOURCES	 OBSERVED	 OBSERVED
OBSERVED

Specifications of
to-be-supported
activity

References and
documentation
on related
activities	 r

Observation of
task activity

Verbal task
descriptions
and interviews
with users
experts and
others

(Possibly J
Parallel)

Observation of
useof
prototype	

/

Co rninitment

Explicit agreement
on

general goals

Conceptual Specification

Defining detailed user-
and functional requirements

to satisfy general goals

Generation of Prototype
Generally Evolationary

Building functionality to
satisfy user requirements,

verifying UI software

Testing

Validating functionality
with respect to
requirements

Lack of experience with
interface design

Lack of experience
with HCI

Lack of information
about users

Inadequate resources
and undersized team

Over-casual approach
to design

Lack of assistance or
collaboration from
client

Lack of guidance from
parties outside of team

Over-casual approach
to evaluation

Complicated application
or product sophistacation

Finalisation

Maintenance and
possible further

evolution

-493-

be useful for supporting a wide range of user-oriented design activities including

conceptual specification, prototype generation and testing which are overlapping

and probably iterative. Any DET which is likely to integrate successfully into typi-

cal design practice should have application requirements which can easily be

satisfied within the type of design schema represented in figure 8.1. Some examples

of the measures required to do so are given below.

Design Activities

At present HCI DETs tend to focus upon conceptual specification (e.g. TAKD;

Johnson et al 1984, and the top two levels of CLG; Moran 1981), or user-oriented

testing design activities (e.g. TAG; Payne & Green 1986, GOMS; Card et al 1980).

However support for design commitment could be a target for HCI tools which

were able to suggest the types of general support a system should provide, and

therefore its scope and the design goals which would have to be satisfied to provide

that scope of support. As a hypothetical example; a commercial client's request for

design team to produce a system which recommends books to library users might be

shown to be inappropriate by a design team with the appropriate HCI DET; they

might be able to show, quite convincingly that a better goal would be a support tool

for the librarian to recommend books to the library borrower.

UI generation seems to involve prototyping in applied and commercial environ-

ments and could be supported by HCI DETs which capitalised on prototype genera-

tion, as well as the existence of any dialogue specifications. For example current

HCI DETs tend to ignore the "look and feel" qualities of the UI which are provided

by prototypes. Apart from the fact that prototyping may reduce the need for user

modelling in the first place perhaps the main reasons for not exploiting prototypes,

may be the difficulty which many current user models have with accounting for per-

ceptual processing, creativity, variability, and any number of human characteristics

which may become important in evaluation of simulations UI behaviour using

modern prototyping tools such as Hypercard (Goodman 1987) and Trillium

(Henderson 1986).

Design finalisation is also supportable. HCI DETs such as GOMS can provide sys-

tem purchasers with information about various performance times for target tasks

(final "beta-test" user evaluations could also provide this information). For example

- 494 -

Maclean et al (1989) suggest the use of a tool for providing information about

design decisions and the criteria which shaped them which could help maintain

user-orientedness as modifications were made to the UI by users and system

modifiers. In essence this tool would represent an additional design product which

could be used to ensure that the reasoning behind the design was not violated by

later alterations or extensions which would endanger the consistency and coherence

of the system UI.

Information Sources

The information sources assumed by the design schema are the ten most commonly

exploited sources ranked by designers in the questionnaire study reported in Chapter

4. An HCI DET which restricted itself to requirements for these sources only would

be more likely to be applicable than one which requested sources such as perfor-

mance data from previous or comparable system users (as perhaps a GOMS or a

CCT evaluation might). This is not to say that additional information source exploi-

tation should not be encouraged, merely that the sources included here seem to be

readily available and easy to exploit.

The information sources are represented next to the design activity within which

they are usually exploited. For example, specifications of to-be supported activity

tend to be available before other information. An early HCI DET would probably

have to rely on this type of information, rather than the sources which are represent-

ed as being used later in the design process. However, only a relatively late HCI

DET would be able to exploit information from observations of use of prototypes.

Constraints

Design constraints must be accommodated by applicable HCI DETs because they

may render a technique completely inapplicable if they clash strongly with its appli-

cation requirements (see Chapter 7). Some constraints may be more avoidable than

others, but it is up to the designers rather than the HCI DET developers to judge

which these are. It may be possible to avoid design constraints such as lack of ex-

perience with UI design or HCI (perhaps through self education), and over casual

approaches to design and evaluation. Designers who do so may be able to use a

wider range of HCI techniques. However this requires that designers make addi-

- 495 -

tional efforts which they may not be prepared to do. HCI technique developers can-

not rely on this alone if they wish to see their methods applied in practice.

8.5.2 The AF Usability S coping Matrix:
A Representation of the Analysis Space for HCI DETs

Table 8.2 is an extended adaptation of the scoping matrix used to characterise HCI

DETs in Chapter 2, and Chapter 6, and to represent user-oriented design issues in

Chapter 7. The "user" evaluation factor has been expanded to enable various HCI

DETs to be characterised in terms of the variety of user behaviours they can

describe and explain. The greater the scope across user behaviours, the more likely

it is that the DET in question can be applied to a wide variety of UI and application

types (e.g. direct manipulation Uls, command line based Uls, process control appli-

cations, and CAD applications). At present the concentration on text editing sys-

tems, "email" systems and their kin by HCI DETs enables them to avoid coming to

terms with the implications of tasks which involve wider demands on human abili-

ties (see Chapter 7, Section 7.2).

A generalizable scoping matrix must include these user sub-factors which may be

inadequately dealt with by existing 1-ICI DETs. However, as stated earlier in this

chapter, these sub-factors were not applied in the characterisations of the HCI DETs

reviewed in this thesis since their attention has been largely limited to knowledge

representation, language and proceduralised behaviour with limited considerations

of errors in response to certain properties of systems.

The other factors might also be expanded where appropriate, for example the appli-

cation factor might be expanded into sub-factors such as state-behaviour (such as

modality, legal operations and broadcasting of effects of operations), architecture,

hardware components, and so on. However, the focus of the approaches reviewed

in Chapters 2 and 6 has been largely upon user-orientedness in design and the com-

plexities of other aspects of system design have been avoided since they are less

directly relevant to HCI.

The scoping matrix does not directly suggest the nature of the users, UI, application

and target tasks which an HCI DET could be appropriate for. In order to ascertain

this, an analyst would have to assess the nature of the system he or she was design-

U
-e-'--

CI)
-%..

-

-

- 496 -

- 497 -

ing in terms of these factors, and determine which cells were the most important to

the usability of the system. He or she would then need to assess whether a tech-

nique was able to address these issues, and determine whether there was a good

match between what the design project required, and what the HCI DET provided.

Note that it is possible to expand the contents of each cell to give either a weighting

of its importance to a design project, and another weighting to the degree of rigour

or accuracy with which it is represented, or a description of how it is tackled by a

technique.

The analyst using the framework to characterise an HCI DET would have to judge

whether a technique meets the requirements for capturing each usability principle (a

to f below) with respect to the evaluation factors (g to k below). A Brief reminder

of the implications of row and column headings for table 8.2 (based upon table 2.1,

Chapter 2) follows.

Models which capture:

(a) Simplicity must model (and present metrics for) simplicity of representations or

specifications.

(b) Compatibility must capture the relationships between external (real world, and

other systems) knowledge and the knowledge required to use the system.

(c) UCTDs must present system or device independent task analyses and goal struc-

tures which reflect the needs and characteristics of the user.

(d) (e) & (f) Observability, Consistency and Retrievability must have some com-

ponent for presentation of user independent representations of the appropriate

system properties.

Models which account for:

(g) Users must employ empirically based psychological theory or preferably expli-

cit models of human information processing.

(h) System Applications must entail representations of system functionality and

- 498 -

behaviour.

(i) UI must be sensitive to static and dynamic representation and behaviour in in-

teraction (e.g. command versus menu driven).

(j) Target Tasks must specify a coherent (or perhaps representative) set of basic or

composite tasks the system is designed to support.

(k) Acceptability of Performance must generate testable predictions about qualita-

tive or quantitative aspects of user behaviour.

The way in which the principles of usability might be addressed in terms of each of

the evaluation factors was elaborated in more detail in Chapter 2. An analyst in-

terested in applying this matrix to a design project and an HCI DET, to determine

whether the latter was appropriate for the needs of the project,(see the example in

Chapter 7) could use elaborations for each cell based upon the explanations and

justifications of the characterisation for each technique reviewed in Chapters 2 and

6.

However table 8.2 contains the additional use.revaluation sub-factors which make

the assessment of any technique potentially far more complicated. The human sub-

factors may be captured by a technique implicitly or explicitly, and the ability of an

analyst to achieve this sensitivity may depend more on the skills of the analyst than

the technique itself. For example Reisner (1981) poiflts Out the possibility of plac-

ing Semantic restrictions on some of the rules in the Action Language for the

"Robart" drawing tools. These restrictions would help to avoid redundancy in the

rules by allowing the grammar to show generalisations across similar rules as users

might represent them. The semantic restrictions produce a more psychologically

valid rule set and increase the user knowledge representation powers of the notation.

However it would probably take a considerable amount of HCI skill to carry out

such extensions to Reisner's approach.

Given the potential complexity of the scoping matrix, the human sub-factors are not

judged with respect to each of the usability principles. This is because many of the

principles are not even relevant to some of them, and also because it may be

difficult to prove whether a model really does embody each principle with respect to

- 499 -

each particular sub-factor.

By adding the social and organisational sub-factors, a number of additional usability

principles might be suggested which would be important to these views of a UI

(two, examples of additional principles might be "social responsiveness"; the sys-

tem behaves more like a human personality and "business efficiency"; the system

actively prevents the user wasting company time). Likewise additional evaluation

factors might be added to the existing ones, such as "production costs" and "mark-

et". However these are not clearly within the domain of HCI, and are therefore not

presently included. The absence of such principles, however, is not a serious prob-

lem for the matrix since it can clearly be expanded where appropriate to address

new principles and sub-factors.

It was noted in Chapter 6 that the technology transfer technique was probably not

adequately captured by the existing Scoping Matrix because it aimed to encourage

designers to consider bLisiness and marketing aspects of systems which could re-

quire expansions in ternis of additional principles and evaluation factors. This indi-

cates, either an inadequacy of the Matrix in its present form (which would have to

be expanded), or a mixing of concerns in the technology transfer technique, with

business interests being combined with HCI interests.

The scoping matrix is not by any means a formal tool and may be viewed as a

memory aid which encourages the analyst to keep a broad view of potentially in-

teresting or important perspectives from which a design might be viewed. The ma-

trix may even be expanded to include principles peculiar to a particular project,

such as compatibility with a particular in-house style, or additional evaluation fac-

tors which have not been included in the matrix, such as the cost of the design and

evaluation, or the state of competition in the market for the product of the design.

8.53 The AF HCI Roles and Activities Matrix:
A Representation of Coherent Support Options

Chapter 6 suggested a number of 1-ICI roles which act as an organising scheme for

types of activity. Table 8.3 is derived from table 6.3; it represents the need for sup-

port for particular types of activity associated with HCI specialists roles. These

roles would also be relevant to systems analysts and engineers charged with design

Information

Collection

S

S

S

S

S

-500-

Table 8.3

Matrix of Support Requirements for Activities Involved in

the Various Roles of HCI Specialists in the Study

Roles

Self Educator

Designer

Researcher

Consultant

Technology

Transfer Agent

Activity types

Invention	 Analysis	 Communication

S

S
	

S
	

S

S
	

S
	

S

S
	

S
	

S

5
	

S

S = Requires Strong Support

s = Requires Little Support

of, and evaluation of the usability of, a UI (Chapter 5 showed systems designers

tended to be responsible for all aspects of the system including the UI.

The roles identified involved a variety of types of activity (see table 6.3). These ac-

tivities are distinguished from the design goal-oriented activity classification in the

design schema (see Chapter 5) by the fact that they are classified according to more

basic or general aims (such as information collection, and analysis). So, for exam-

ple, the conceptual specification activity type in the design schema could involve

many or all of the activity types involved in the various roles. The precise UI and

HCI oriented activities suggested by the activity type in table 8.3 are roughly

- 501 -

classified as; Information Collection (IC), Invention (I), Analysis (A), and Com-

munication (C), or some combination of these.

Reference to literature and reports (IC)

Attendance of courses, workshops, conferences, meetings etc. (IC)

Interview (IC)

Observation (IC)

Empirical evaluation (IC) & (A)

Task analysis (A)

User requirements analysis (A)

Analysis of requirements and functional specifications (A)

Design/evaluation technique application (A)

UI design (I)

Design/evaluation technique development (I)

Creative solution generation (I)

Functional specification of UI (C)

Demonstration (of techniques or products) (C)

Running workshops, giving seminars or presenting papers (C)

Writing reports/documentation (C)

Correspondence (verbal, electronic or on paper) (C)

The roles in which these precise activities play an important part seem for the most

part to be intuitively obvious, but are described throughout Chapter 6. However, it

is left to the analyst using AF to judge the precise activities which subsume the roles

which are important in the project(s) for which an HCI DET is being designed or

chosen, and to determine whether the HCI DEl supports all of these. The activity

support matrix is really an outline guide to the sorts of activity which are likely to

be most important to each role.

It is clearly important that an HCI DET supports as many activities as possible, if it

is to serve as a multi purpose design tool. For example Moran (1981) suggests a

number of potential activities CLG could be used to support (it could be used both

for design and evaluation, for competence, and even for performance modelling

with some extensions). However, to avoid being unnecessariLy cumbersome it may

be necessary to restrict the support a technique provides to a small Set of activities.

It would seem sensible to aim for a set of activities which supported an HCI special-

- 502 -

ist or a UI designer throughout a project, thus removing the need to learn to use

more than one technique. So a technique which restricted itself to activities in-

volved in one role would tend to be more applicable than one which supported only

one type of activity, since perhaps three or four of the latter type would have to be

learnt by one individual with a particular role.

8.5.4 The AF Desirable Features List

Table 8.4 shows the desirable features list, the items of which were defined for the

purpose of detecting their presence or absence in an HCI DET in section 8.4. How

important they are in practice may be influenced by the particular circumstances in

which a technique is used; for example lack of simplicity may not be a problem for

design projects with generous resources and expertise in HCI. Narrow scope may

not be important if the issues which are addressed by a technique are overridingly

important, and no other technique deals with them so well.

The desirable features (see table 8.4) are deliberately presented as the last part of an

AF analysis, since the preceding three sections (the design schema, the scoping ma-

trix, and the support matrix) are used to formulate any information in such a way

that it is easier to deterniine the existence of some of these features in an HCI DET.

By evaluating an HCI DET in terms of these features it may be possible to highlight

aspects which will prevent it from being applied in particular circumstances where

particular features are important. Looking at an individual project, it should be pos-

sible to determine whether some features are more or less important, given available

resources, expertise, information sources, and so on.

8.5.5 Possible Roles of the Application Framework:
What the Framework is, and What it Can Do

AF has 4 components which each provide either a view, or a structure for a view, of

some important aspect of user-oriented design practice; important that is for HCI

DETs.

The Design Schema presents a realistic picture of the type of situation an applicable

HCI DET should be designed to deal with.

- 503 -

Table 8.4

Desirable Features of Applicable HCI DETs

Simplicity

Scope

Explicit Entities and Procedures

Expressive ness

Visual Complexity

Broad Behavioural Scope

High Generality

Realism of Design View

Preservation of Important Information

Coherence of Support

The Scoping Matrix presents a space within which any particular design project or

HCI DET can be characterised. In the former case it would represent areas that re-

quired special analytical attention (see the example in Chapter 7), and in the latter it

would represent areas which a particular technique is capable of addressing (as in

chapters 2 and 7).

The HCI Roles and A ctivities Matrix suggests coherent support for HCI roles which

an HCI DET might attempt to follow.

The Desirable Features List makes explicit a set of potentially evaluable features

which are desirable for an applicable HCI DET.

These features are based upon the findings from the three design studies reported in

this thesis.

Having discussed the form of the framework, the uses to which it could be put will

be addressed. These possible roles would require few significant modifications to

the framework which is essentially intended to act as a view of design with respect

to HCI techniques. Four possible uses are suggested in the following.

- 504 -

An HCI Design View

The AF provides a view of design practice as it relates to the discipline of HCL In

other words it is a deliberately distorted picture which emphasizes certain aspects

which usually receive scant attention (such as the activities and roles of HCI spe-

cialists, and the design constraints which interfere with usability). This is perhaps

the most straightforward role for the matrix and the one which has most nearly been

fulfilled in the preceding subsections.

An HCI DET Development Guide

On the basis of the research presented in this thesis, AF emphasizes those aspects of

design which appear to need to be addressed by applicable HCI DETs. Researchers

in the field of HCI wishing to develop tools and techniques for use in applied and

commercial design practice may find the framework useful as a guide to develop-

ment of an applicable technique, as opposed to a technique whose main value is to-

wards advancing theory of HCI.

AF will not provide support for the development of basic concepts and components

(such as a cognitive architecture, a system simulation or model, or a notation with

the appropriate formal power or psychological validity) it should, however suggest

the questions which must be addressed if the (theoretically validated) technique in

question is ever to prove usable to analysts other than the developers of the tech-

nique itself, and able to work in an applied system design project.

A Framework for Critiques of IICI DETs

Just as AF helps to raise questions for the developer of an HCI DET, it should sug-

gest ways in which techniques can be criticised by others. It provides a useful basis

for comparison of two or more techniques in terms of their usability and applicabili-

ty.

An HCL DET Selection Device for applied and commercial designers

For systems designers AF could, work as a highly generalizable, simple framework

for selecting an appropriate HCI DET for a design project. The system designer at-

tempting to use it for this purpose would have to characterise both the design pro-

ject in question, and the HCI DETs of potential interest, in terms of the framework.

Of course the design schema, in this case would have to be transformed to match

any projected approach or expected constraints and information sources. Likewise

- 505 -

the roles and activities matrix would have to be modified to fit expected roles and

activities for the project in question.

By following the same schematic forms the designer could produce a simple design

outline which could be balanced against the DETs application requirements (see

Chapter 7), and a matrix reflecting typical roles assigned within the host organisa-

tion of the project and suggesting the amount of support required for each type of

activity within a particular role (i.e. the importance of the activity type to the role in

question).

The default design schema presented in figure 8.1 has been developed on the basis

of evidence from a highly variable set of system design projects described in three

studies (see chapters 4, 5 and 6) involving systems designers and MCI specialists.

For this reason it is firmly rooted in practice, as opposed to theory and should be

easily adapted to many projects. The same could be said of the roles and activities

support matrix, It should also be easy to adapt this to Suit a given project if the roles

and activity types are generally consistent within the organisation where the design

project is to take place.

The main difficulty with this selection role is that it requires that the designer or

analyst applying the framework has sufficient knowledge of all the HCI DETs he or

she is considering as candidates in order to characterise them in terms of the usabili-

ty scoping matrix. As has been stated repeatedly in this thesis, many systems

designers have little or no familiarity with HCI techniques. It would therefore be

infeasible to expect them to familiarise themselves with a number of potentially

inapplicable techniques in order to choose one which actually is applicable to their

project.

Clearly HCI techniques must provide explicit information of this type in order to al-

low potential technique appliers to make an informed choice as to which technique

most suits their requirements. This is not an unreasonable request if HCI wishes to

be taken seriously by designers in applied and commercial projects who do not have

the time to spare to read many papers relating to a discipline in which they are not

specialists.

- 506 -

8.6 Illustration of Application Framework's Descriptive Power

Perhaps the best way of elucidating AF is to provide a worked example of how it

might be applied to a real design project. The role focused upon in the example is

that of an HCI technique selection device. This is the most demanding role as it re-

quires that the framework be adapted to represent more accurately the particular

design approach to be used (if this is known) and the probable roles and activities

involved in the project (if these are also known about). All other potential roles of

the framework are envisioned as requiring little or no adaptation, unless the scoping

matrix needs to be expanded for a particular focus of some DET.

It is important to note that project 5 is of course a completed design, and as such is

not an ideal target for real application of AF. For this reason, a starting assumption

in this example will be that the host organisation always takes the same general ap-

proach to design projects and designers and other individuals adopt predictable

roles. In this sense the general course and roles of the project are reasonably

predictable (bearing in mind unpredictable low level implementation difficulties,

bugs etc).

8.6.1 An Example of Application Framework:
CCT and the Workstation Window Manager

In Chapter 7 a worked example was presented in which the scope of CCT was

matched against the scope of the important issues for one of the design projects

described. Here, the same example, referred to from here on as EX (for example),

is expanded into a complete AF analysis which would suggest the feasibility of ap-

plying CCT in project 5 from the Design Interview study reported in Chapter 5. As
a reminder, project 5 involved the following:

A window manager to be used by programmers, produced by a team of a systems

architect, a softivarc designer, and a consultant with HG! experience. The window

manager was designed for a Unix workstation with a graphics display. The HG!

consultant provided a catalogue of interactive techniques recommended for good

interfaces. The other two team members did not have a great deal of HGI experi-

ence themselves.

Commitment
Existing
comparable
systems

Explicit agreement
on general goals
and functional
requirements

Lack of experience
with HCI

Specifications
of to-be-supported
activity

1
V

Conceptual Specification
Lack of information
about users

- 507 -

Figure 8.2
EX Schema for Design Practice Organisation, Constraints and Information

Sources Based Upon Project 5 from the Designer Interview Study

INFORMATION	 DESIGN ACTIVITIES	 DESIGN CONSTRAINTS
SOURCES	 EXPECTED	 EXPECTED
EXPECTED

Documentation
on related
activities

Defining detailed
interactive methods,

and functional requirements
to satisfy general goals

Over-casual approach
to design

Generation of Prototype
Incremental Development

modifiability requirements,

(Parallel)	 Building functionality to satisfy

interaction methods, and
verifying Ci software

Observation
ofuseof
prototype

	

	 I
Testing

Validating functionality
with respect to
requirements

Finalisation

System marketed and
maintained with the

workstation on which it runs

Over-casual approach
to evaluation

-508-

I. Adapting the AF View of Design Practice:

Design Practice Acti ities, Information Sources and Constraints

AF is to be used as a selection device for a particular project EX. This means that

the design schema needs to be adapted to fit more closely with the particular charac-

teristics of typical projects in the host organisation for the project. The starting as-

sumption is therefore that it is possible to predict certain characteristic design activi-

ties (or lack of them), information sources, and constraints for EX. This is done on

the hypothetical basis of assumed 'normal practice'. In this example the assump-

tions about the design process and the roles and activities involved have to be taken

from what transpired in the original project 5 itself, since we have no other informa-

tion about projects in the host organ isation.

If in reality it was impossible to predict the course of a design project (as perhaps it

might be if a completely novel application was being generated) AF would recom-

mend that the design schema and the roles and activities support matrix default to

the empirically based general versions (in the case of the roles and activities support

matrix this might still have to reflect the nature of the design team) as presented in

figure 8.1 and table 8.3.

We shall assume that the design team in EX are considering CCT as a possible can-

didate for supporting the design and evaluation of the UI in their project. We shall

also have to assume that they have information relating to the design expectations

and requirements of CCT (which were outlined in Chapter 3).

Figure 8.2 represents the expected EX design process.

The expected information sources are:

* Existing comparable systems; (these influenced all of the team members

throughout project 5. The systems architect conceived the system on the basis of

comparable window management systems on similar workstations to the one for

which this software was being designed).

* Specifications of to-be-supported activity; (provided by the EX team itself).

* Documentation on related activity; (in project 5 this was provided by the HCI

consultant after initial system goals were established. It was a document contain-

ing descriptions of interactive methods for graphics workstations).

-509-

* Observation of use of prorotype, (in which the EX designers use themselves as

subjects. No representative or outside users are tested the prototype).

The expected design activities are:

* Commitment; (in project 5 one of the designers (the systems architect) decided to

outline a system, and then communicated the system structure to the software

designer and the consultant).

* Conceptual Specification; (particular interactive methods were selected from the

HCI consultant's document in project 5).

* Generation; (in which the EX software is implemented in modifiable low level

components to support the interaction and allow iteration and changes to be

made).

* Testing; (is carried out exclusively by the EX software designers who pretend to

be naive users).

* Finalisation; (involves the sale of the system together with the EX workstation on

which it runs).

The expected design constraints are

* Lack of Experience with Nd; (in project 5 only the HCI consultant had such ex-

perience).

* Lack of Information about Users; (no attempt is made in EX to carry out empiri-

cal studies or read about user requirements).

* Over-casual Approach to Design; (the host organisation of EX does not en-

courage a structured approach to design).

* Over-casual Approach to Evaluation; (the host organisation does not encourage a

structured approach to evaluation).

CCT requires mainly the following information sources:

* Empirical user performance data NOT PROVIDED IN EX

* User cognitive simulation NOT PROVIDED IN EX

* GTN simulation of UI behaviour NOT PROVIDED IN EX

* Specification of Target Tasks INFORMALLY PROVIDED IN EX

-510-

CCT assumes the following design phases

(all of which may be iterated; PoIson 1987; see Chapter 3).

* 1. System Definition Phase: Specify the functional requirements of the system.

EQUIVALENT TO CONCEPTUAL SPECIFICATION IN EX

* 2. Task Analysis Phase: Specify the user's decomposition of each task performed

by the system.

NOT EQUIVALENT TO ANY PHASE IN EX

* 3. Detailed Design Phase: Specify the details of the user interface, including

methods, menus, commands, etc.

POSSIBLY EQUIVALENT TO GENERATION IN EX

* 4. Evaluation Phase: Evaluate the design using simulation methods and modify

on the basis of evaluation.

NOT EQUIVALENT TO ANY PHASE IN EX

The CCT Approach does not assume any design constraints, however there are 4

here which strongly impinge upon the probable success of CCT.

* Lack of Experience with HC!; means that the.EX systems designers will probably

have great difficulty understanding CCT

* Lack of Information about Users; means that without taking a significant amount

of extra time to set up user studies CCT cannot be applied in EX.

* Over-casual Approaclz to Design; means that no coherent specification of target

tasks for the system is provided in EX.

* Over-casual Approach to Evaluation; means that the EX designers are not overly

concerned about the usability of the system, assuming users will, as frequent

users, quickly find it as simple as they do.

The CCT view of the design process is not very close to the reality in the EX exam-

ple. It expects many extra information sources to be exploited which would clearly

be expensive for a small design team (as project 5 had). It has a more complicated

model of design phases which does not include initial and final phases (commitment

and finalisation) which could also require HCI support. It clashes quite markedly

with each of the constraints in EX.

- 511 -

This suggests that in order to apply CCT to EX it would be necessary to make

significant changes to the host organisation design approach. It seems less likely

that this would happen than that a simpler, perhaps less powerful HCI approach

would be chosen in preference to CCT, on the basis of the incompatible approaches

they have to design.

II. The AF Scoping Matrix:

A Representation of the Analysis Space for HCI DETs

In chapter 7 a similar scoping exercise for CCT and project 5 was carried out, which

showed the similarity between the issues important to the window manager, and

those within the predictive scope of CCT. For a more detailed explanation of the

features which place CCT and EX in the cell in which they are shown, see Chapter

7. Suffice it to say here that, on the basis of its characterisation according to the

usability scoping matrix, CCT represents the closest match, amongst the HCI DETs

discussed in this thesis, in terms of scope, to the requirements of project EX (for

comparisons see other techniques' scoping matrices in Chapters 2 and 6).

The only new addition to the scoping matrix shown in table 8.5 is the set of user

sub-factors which reflect the requirement stipulated in the desirable features list that

the scope of user behavioural characteristics be as wide as possible to allow gen-

eralisation to a variety of Uls, applications, and target tasks.

The system in question in EX is a direct manipulation graphics workstation window

manager, to be used by relatively skilled system users. Although CCT deals well

with skilled (proceduralised behaviour) which is obviously important to EX, it has

little power to capture perceptual behaviour, which would also be highly important

for EX which requires the user to interpret patterns, movements, changes in size of

objects on the screen, and so on. CCT contains no perceptual processing com-

ponents within its cognitive architecture which would enable it to distinguish one

set of icons from another, or one method of indicating a window was being moved

from another method.

In respect of the expanded user sub-factors part of the scoping matrix, the apparent

match between CCT and project EX with respect to users suggested in Chapter 7, is

not quite as close as it might at first seem. CT would probably provide no assis-

—

C.)
C.)

>

C.)

>4

1

C-.-

c)

M	 — —

.- J

c4.I	 —.-	 >4	 >4

:z	 E-
C.)

C.)

—4	 C4

C.)	 C.)
c)	 -	 -

>4	 H

>4	 C->l	
pp	 >4

>4

-512-

>4	 >	 >4
:

1t3	 j

-	 j-C.)	 C.)	 C..)

	

C.)	 c)	 C.)

-	 -
.

I.
13	 .e	 -	 -.
'S	 3

-	 -	 3

.	 4---
;ziI

c4)
M	 .4

E-'	 L.

-S

—	 C--
E—	.c5

- 513 -

tance with the design of the system presentation. As it turned out, the main problem

with the project 5 design was overloading of the window manipulation icon (dif-

ferent combinations of mouse clicks on this icon produced different responses).

This problem seems to be to do with the confusability of the mouse actions, com-

bined with the automated nature of user's actions with the mouse (it was simply

very easy to make a slip-up). Since CCT does not address errors in great detail it is

doubtful whether it would have picked this up. On the other hand, errors were not

perceived as a major concern with the project because no serious consequences

were likely to emerge from them (for example one might find oneself shrinking a

window accidentally instead of moving it). The designer interviewed, only realised

the importance of this annoying problem after release of the product.

Ill. The AF Roles and Activities Matrix:

A Representation of Coherent Support Options

Since EX is a project where roles, like design processes, are assumed to be predict-

able, the default roles and activities support matrix shown in table 8.3 has been

adapted to fit assumed roles and activities in this instance.

The designers (and consultant) in EX are assumed to be responsible for all aspects

of the design and evaluation of the system. They therefore need to undertake all

types of activity in the support matrix. The support matrix implies the basic activi-

ties which are presented in table 8.6 roughly classified as Information Collection,

Invention, Analysis, and Communication, or some combination of these. The ones

carried out in EX are in bold print.

The designers in project 5 carried out a small amount of information collection from

meetings, and a good deal of design. The HCI consultant carried out some analysis

in preparation of the interactive methods document, and some communication in

presentation of the document in paper form. The systems designers tended to res-

trict their activities to invention (the only information they collected was from the

consultant and in design project meetings). The consultant carried out information

collection, analysis and communication.

Assuming the same activities in EX as in project 5, the support matrix in table 8.7

suggests that CCT does not strongly support either the activities in the designers'

-514-

Table 8.6

List of IICI-Oriented Applied and

Commercial Design Practice Activities from Chapter 6

INFORMATION COLLECTION

Reference to literature and reports

Atten dance of courses, workshops, conferences, meetings
etc.

Interview

Observation

Empirical evaluation (for data)

ANALYSIS

Empirical evaluation (for explanation)

Task analysis

User requirements analysis

Analysis of requirements and functional specifications

Design/evaluation technique application

INVENTION

UI design

Design/evaluation technique development

Creative solution generation

COMMUNICATION

Functional specification of UI

Demonstration (of techniques or products)

Running workshops, giving seminars or presenting papers

Writing reports/documentation

Correspondence (verbal, electronic or on paper)

roles or the consultant's role. CCT would not support information collection as it is

not clear about the details of selecting appropriate subjects and experimental cir-

cumstances for deriving operator times, target task structures and so on. It is reac-

tive to design and may only provide limited support for invention; Poison's (1987)

claim that the technique can be used for early evaluation depends upon the design

process achieving a workable simulation of all the necessary functionality in the

early stages. This seems to be an unlikely possibility for EX where resources are not

suitable for simulations to be built.

-515-

For analysis, the technique enables predictions about learning and performance to

be generated (although whether these are important metrics in EX is perhaps anoth-

er question). CCT does not explicitly support communication of its user model and

the implications of the mismappings between system and user goal hierarchies.

However Kieras and Poison (1985) make the unsupported claim that the GTN dev-

ice models can be used for communication of the system behaviour to users to help

them build an appropriate model of it.

Table 8.7

Matrix of Support Requirements for Activities Involved in

the Various Roles of the Designers in EX

Including Assessment of CCT Support

Activity types

Roles

Designer

Consultant

CCT Support

Information

Collection

S

S

No

Invention

S

No?

Analysis

S

Yes

Communication

S

No

S = Requires Strong Support

s = Requires Little Support

IV. The AF Desirable Features List

Project EX has few of the extra resources and skills available to it to enable it to ig-

nore some of the setbacks which could be imposed by a lack of AF "desirable

features" (see table 8.4). For the purposes of argument we shall assume that all of

- 516-

the desirable features apply to CCI in this instance, and will briefly discuss each

one in turn. However, in certain circumstances some features would be less impor-

tant that others and features could be traded off against one another, given that, in

an imperfect world, it will be difficult to satisfy all desirable features at once.

It should be noted here that the role of AF is not to direct the development of im-

provements to CCT (and all HCI DETs); this task would be immense. AF restricts

itself to highlighting areas where CCT is likely to be weak with respect to applica-

bility. It must remain the job of the developers of techniques to solve the particular

application problems of their own approach.

Simplicity: it seems clear that CCT is not simple to apply. It requires three models;

of the user, the UI and the target tasks, to be implemented and combined in a simu-

lation. Prior to this empirical data has to be collected to support the task model

(unit task times). After running the simulation, it may be necessary to redesign the

simulation and then run it again.

Scope: CCI' does not address the underlying application as part of its scope (see

Chapter 2). It's device model is a superficial, and selective representation of UI

behaviour. It so happens that this is appropriate for EX because the application is a

window manager which manifests most of its behaviour as changes in presentation

anyway.

Explicit Entities and Procedures: CCT is particularly inexplicit as to how produc-

tion rules should be organised to produce simulations of interactive behaviour. The

designer writing the simulation could produce a completely arbitrary production

system which had little to do with the spirit of ACT* (Anderson 1983; see Chapter

2).

Expressiveness: the expressiveness of CCT is entirely dependent upon the

representativeness of whatever criterion level of real user performance it accepts

after some expected training. If this selected criterion level is realistic, and

representative of the performance it predicts then CCT may produce accurate

speed, or subsequent learning predictions. Without explicit knowledge of what the

system users know when they begin to use the system (and how they represent it)

CCT is likely to become highly inaccurate. If no training is guaranteed for users,

-517-

then this is likely to be case. The sensitivity of metrics to UI and task variations,

and to practice obtained by its authors could only be guaranteed in situations where

rigid training programmes for system users were enforced. In EX it is assumed that

no training is planned for the system users.

Visual Complexity: Although not as complicated as CLG in terms of notational

devices and use of bracketing, the GOMS style notation of the ACT* production

rules, and the goal hierarchy notation, the GIN notation together, make CCI'

specifications rather diffuse and impractical to view in a holistic manner. On the

other hand, use of indentation in the GOMS specifications makes task, and sub-task

identification relatively easy. Task-to-Device mappings are based upon

simplifications of the system state representations and the user's task goals. Since

much redundant information is removed, these seem to be a useful simple summary

of system-user mismatches which many other DETs fail to provide.

Broad Behavioural Scope: the behavioural scope of CCT is perhaps surprisingly

narrow (a problem which many HCI DETs may share) it fails to capture perceptual

behaviour (table 8.5 suggests that CCT cannot deal with observability with respect

to users) and error behaviour, both of which are relevant to EX (although errors

were not of great importance in project 5 because of their limited consequences).

High Generality: due to its limited behavioural scope, it seems likely that CCT

(like many other HCI DETs) is not likely to be highly generalizable to a wide

variety of system types. Any claims regarding this matter would, however, have to

be empirically vindicated since it may be that the behavioural scope it does have is

sufficient to allow its generalisation to a number of applications (even if it cannot in

practice be applied). Given the limited available information here it is difficult to

tell if CCT is really appropriate for analysis of the type of UI involved in EX. It

lacks the ability to capture the important human perceptual characteristics of

behaviour, but it could be sensitive to other aspects of interactions such as ordering

in task sequences, or mousing differences in menu versus icon-based window con-

trol.

Realism of Design View: In this instance the CCT design view fails to map to the

realities of EX. The design process aspects of EX are perhaps the most problematic

area for CCT (see above) since most of its assumptions fail to be satisfied.

-518-

Preservation of Important Information: The obvious problem in EX is that CC'!'

will not indicate any likely error sites which are dependent on similarities of action

sequences between similar tasks, rather than poor task-to-device mappings. Hence

it seems unlikely that it would spot the problem with the overloaded window icon.

In other words the simulation could produce a false sense of security for the

designers in EX by only highlighting some potential user difficulties, whilst obscur-

ing others.

Coherence of Support: As shown above CC does not seem to have a coherent ap-

proach to support for the person using the technique. The roles identified in

EX involve different activities, and (although it is probable that many useful activi-

ties are not carried out by the design team) neither of the roles is supported by CC'!'.

The above is by no means a complete analysis of CCT's embodiment of desirable

features for application. It is brief, and selective with the emphasis on major

failures of the technique. It merely serves to suggest how AF may reveal some im-

portant reasons why CCT could prove very difficult to apply within a design project

like EX.

Overall, then it would seem that the impression gained from the use of the scoping

matrix alone (see Chapter 7) was rather misleading. CT appeared to be a very

suitable match for the requirements of project 5. It turns out in the EX example

however, that CCT has many practical problems associated with it and AF indicates

that it would be highly unwise to select it for such a project. This demonstrates the

importance of using the framework as an integrated whole since applying only one

component could give a very misleading picture of the applicability of a particular

technique.

8.6.2 Summary of the Application Framework for Assessing HCI DETs

The brief example above demonstrates the AF role of HCI DET selection device for

a systems design project. This role is probably the most complex and unrealisable

for the framework because it required adaption of the design schema and the roles

and activities support matrix to suit the particular conditions of the design project

concerned.

-519-

The other uses of the technique would normally exploit the original design schema

and support matrix. Their application of the framework would be relatively

straightforward, and would have a great deal in common with the example illustrat-

ed above. An outline of each of the other three roles follows.

An HCI Design View

The AF provides a deliberately distorted picture of design practice, as it occurs in

applied and commercial environments, which emphasizes certain aspects which

usually receive scant attention (such as the activities and roles of HCI specialists,

and the design constraints which interfere with usability). As a design view it may

be used by HCI researchers as a brief picture of the practical implications of design

practice for HCI intervention, either as practised by consultants, or as outlined or

recommended in user-oriented methodologies.

An HCI DET Development Guide

Although the AF will not provide support for the development of basic concepts and

components it should, suggest the questions which must be addressed if a technique

is to prove usable to analysts other than its developers. It suggests directions which

the developers of HCI tools and techniques might most profitably take in improving

the impact which they have on design. The desirable features list could be used as a

set of principles which should be adhered to in the development of the new HCI

DET. By ensuring that application requirements which a DET possesses are likely

to be satisfied by design practice with its typical constraints, and by attending to the

desirable features list, an HCI DET may be better designed for practical use by sys-

tems designers or HCI practitioners in commercial environments.

The only modification envisioned for the AF within this role is the adaptation of the

usability scoping matrix, to address principles or evaluation factors which are not

currently included as suggested earlier in this chapter. The scoping matrix would

help to remind the developer of the breadth of the technique which would be a use-

ful perspective to consider, and contrast with the expected effort required to apply

the technique. Narrower scope also suggests that a technique is likely to satisfy the

analytical requirements of fewer design projects.

A Framework for Critiques of IICI DETs

The role of AF as a framework for critiques of HCI techniques is dependent upon

-520-

the assumption that the person carrying out such a critique is a specialist in HCI, or

is familiar with the technique(s) being assessed. If this is not the case it could be

difficult to carry out a representative scoping exercise as many HCI DETs are not

explicit about their scope and do not advertise their limitations. Since the

framework's development has been driven by studies aimed at analysing why HCI

DETs are not applied, and at what features are desirable for applicable techniques, it

is strongly oriented towards this role.

In the example presented in the previous section, the assessment of CCT in terms of

the AF was tailored towards a particular project. However, a very similar analysis

could have been carried out to obtain a general application critique of the CCT ap-

proach, by substituting the default design schema and roles and activities support

matrix for the adapted versions of these components. Comparisons between several

approaches with equivalent scope but varying applicability would also be possible.

In order to be consistent with its own philosophy, it could be argued that the Appli-

cation Framework presented above should exhibit the features, or their equivalent,

which it states that an applicable technique should embody. If it does not do so then

it has shortcomings as an applicable technique for applied and commercial practi-

tioners itself. However this is only one of the possible roles of AF; the main role
perhaps being that of a design view for HCI.

On the other hand, a useful structure for the discussion of this framework will be to

address the existence or lack of AF's desirable features for application to AF itself.

The following summary restates the main features of the framework and represents

a brief attempt to address how well its components conform with the ten desirable

features discussed in section 8.4.

Simplicity of the AF framework relates to what the Analyst is expected to do in

order to apply it. The framework may be seen as a design view, an HCI DET

development guide, a basis for critiques of DETs, or a selection device for applica-

ble techniques in design projects. In Chapters 7 and 8 the design schema, the scop-

ing matrix, the support matrix and the features list have all been demonstrated. The

framework is relatively straightforward and can be adapted to suit the skills and

needs of its user. The most complex aspect is perhaps the scoping matrix which re-

quires a working knowledge of the character of an HCI DET. This is not a failure

- 521 -

of the framework itself, rather it is related to the lack of explicitness of most HCI

DETs in stating clearly and concisely what their scope in design might be. For ex-

ample Moran (1981), Card et al (1983), and Kieras and Poison (1985) attempt to

suggest some practical aspects of the scope of their approaches, but these are

presented in a diffuse and confusing manner which requires a potential applier to

read, perhaps several papers, carefully before a comparison can be made between

the techniques.

Scope is an important issue for AF. It attempts to capture a wide scope of possible

system properties from a number of viewpoints. Whether the scoping matrix re-

quires further expansion or not probably depends upon the views of any who might

see it as useful. For example, as a selection device for an SADM, AF is clearly too

limited to HCI concerns.

Explicit Entities and Procedures need to be presented in order that an analyst can

take up a method and use it appropriately. AF is not presented here in a clear

enough manner to ensure that it could be used by anyone, however it is hoped that

the demonstration of its application would be sufficient guide for most.

Expressiveness of AF is perhaps not an important feature as it does not claim to

capture any precise theoretical property of design practice. Its roots are based in

empirical observation, but the features of design which it embodies are open to

question and the approach may be adapted or expanded to suit the particular needs

of anyone using the framework.

Visual Complexity of the framework is kept to a minimum in AF. All of its devices

are based upon tables or lists (of activities or desirable features). Of course the

framework has no formal properties which the notation might otherwise need to

preserve, and therefore its simplicity is largely due to the lack of a strong require-

ment for notational precision.

Broad Behavioural Scope for an 1-ICI DET refers to the wide range of properties of

the thing that might be modelled (i.e. the user and his/her interaction with a system

UI). The four components of AF attempt to cover as wide a range of properties of

FICI DETs and design (the things being characterised) as is possible within the

bounds of a simple assessment device.

-522-

High Generality is addressed, perhaps on too simple a basis, by expanding the

view which AF has of the system user. A number of user sub-factors are included

in the scoping matrix which allow it to indicate particular human qualities which

nay be important in certain systems design projects, or HCI DETs. By allowing the

design schema and the support matrix to be adapted to suit particular projects it is

hoped that AF is not chained to a limited range HCI techniques and design ap-

proaches.

A Realistic View of the Design Process is provided by AF in the form of an adapt-

able schema, in which the components; the information sources, activities and con-

straints relevant to UI design can be substituted for in instances where appropriate,

say when applying the technique to an actual design project. The general form of

the schema is, however based upon empirical evidence drawn from two applied and

commercial design practice studies.

Coherence of Support AF attempts to support four rather brief roles, not neces-

sarily based in commercial design practice. As a design view, a development aid, or

a basis for critiques of HCI approaches to design, it supports a range of practical ar-

guments. If, however, a systems analyst chose to use the framework to convince a

manager and design team of the usefulness of one HCI DET over another, it is not

clear that the present form would support the types of argument needed. Because of

the lack of information provided by HCI DETs themselves on the subject, it is

difficult for AF to conipensate by providing the kind of information needed, say for

a cost benefit analysis as suggested by Mantei and Teory (1988). Were this infor-

mation available then the scope of a technique should help in suggesting whether

the cost of applying a particular technique was worthwhile.

Preservation of Important Information is perhaps the main reason for the ex-

istence of AF. It attempts to highlight information which is important to the discip-

line of HCI as a whole and seriously needed by HCI DET developers, and systems

designers trying to choose a technique for their own design. At present too little at-

tention is paid to the information required by designers to choose and successfully

apply HCI DETs. Although claims are often made that techniques are indeed appli-

cable to design (Moran 1981; Card et al 1983; Kieras & PoIson 1985; Payne &

Green 1986), too much attention seems to be focused upon the theoretical defensi-

bility of their methods, and too little on providing this necessary information.

- 523 -

8.7 Summary

AF attempts to fulfill an apparent gap in the field of HCI. There appears to be no

coherent, or agreed basis for allowing various techniques to be compared in terms of

their practical value to design. HCI DETs do not even present empirically based

views of design, or evidence that they do indeed satisfy the claims for applicability

made for them. If designers are prepared to adapt techniques themselves, or modify

their design approaches to suit the application requirements of HCI DETs then there

is no problem for HCI. It is not unreasonable to expect that a new design approach

requires some changes in behaviour in design practices. However is the new ap-

proach is only able to deal with one part of the system's development then it is not

clear how a project should assimilate the new approach, given other design activi-

ties and pressures.

The evidence presented in this thesis suggests that systems designers are not assimi-

lating HCI approaches into normal design practice. Even some HCI specialists ap-

pear to prefer to use intuition (see Chapter 6). However there is currently a move-

ment in the field of HCI towards making explicit attempts to integrate HCI metho-

dologies into SADMs Wasserman et al (1986) combines prototyping with a struc-

tured approach towards user-oriented design; Sutcliffe (1988) exploits existing JSD

notational conventions from an HCI perspective, Damodaran and Beck (1988)

describe adherence to human factors principles and user-oriented design procedures

within combined SSADM (e.g. Downs et al 1988) and project resource management

methodologies.

Although such efforts are urgently needed, it does appear from the design studies re-

ported in chapters 3 and 4, that informal approaches to design are more popular than

adherence to some SADM. Furthermore, the design of HCI DETs to suit one partic-

ular SADM such as a top-down approach like SSADM, may make a technique inap-

plicable with another bottom-up approach such as "ObjectOry" (Jacobsen 1987),

and of course vice verca. Each single approach may only be used on a tiny minority

of design projects as a whole. So unless an approach is particularly prevalent in

practice, it may be more realistic to attempt to integrate with the most commonly

observed approaches, even if they are varied and unpredictable. As Lyytinen (1987)

points out, even IS design approaches (another term for SADMS) have weaknesses

which make them inapplicable in some cases. Consequently the inapplicability

-524-

problem may not be solved by integrating HCI with a theoretically based, but

unproven SADM.

AF attempts to compensate for its minimal design-cycle view, which represents

commonalities between very different projects, by representing the probable infor-

mation sources which will be available, and the likely constraints on practice. If an

HCI DET reflects the AF design schema, unpredictability in the design process may

be less of a handicap because the technique is already designed to cope with the

most important problematic constraints which could emerge, and to exploit whatev-

er information is likely to be available, rather than having requirements which can-

not be fulfilled in practice.

Over all of the projects examined in this thesis, only two cases involved use of HCI

DETs of the type described in Chapter 2, and in these cases the analysts were HCI

specialists, unable to carry out user evaluations. This suggests that HCI techniques

are not penetrating the commercial market, and are rarely applied in practice.

The four potential roles for AF, a realistic design view, an HCI DET development

aid, a critiquing aid, and a selection tool, are all important roles which may help to

improve the applicability of future HCI DETs. The selection tool role is perhaps the

hardest to fulfil as long as HCI DETs are being developed without consideration for

the people who might want to use them, or the design situations within which they

could be applied. AF cannot make up for inadequacies in the practical aspects of

HCI DETs, it can only highlight them. Therefore, for the time being, the other three

roles may be the only important ones.

Unfortunately AF itself fails to satisfy some of its own desirable feature recommen-

dations. It has not been shown to be applicable as a selection tool in practice,

although an attempt has been made to demonstrate this role. It may turn out that the

present form of AF needs to be developed into something more explicit (perhaps in

the form of a manual), but space does not permit such an effort to be attempted

here. A good deal of empirical work would be needed, and a more exhaustive

characterisation of HCI DETs than provided in Chapter 2 would be necessary since

we cannot assume that anyone using AF would have sufficient time to characterise

all potentially applicable HCI DETs, before using AF. It is however suggested that

this should not be the job of AF, and that HCI DET developers themselves should

- 525 -

provide this information in a more easily digested form than they do at present.

In conclusion, then, AF represents a distillation of the findings from the research re-

ported in this thesis in a potentially useful form which allow them to be put to some

practical use in HCI. Further work is needed to develop the framework into some-

thing which could be applied in the form of a form of HCI DET selection tool by

non-HCI specialists.

-526-

Applicability of I-IC! Techniques to Systems Interface Design

Chapter 9

General Summary and Conclusions

9.1 Overview

This short, concluding chapter summarises each of the preceding chapters, how they

contribute to HCI, and how the studies might be improved upon. It also considers

some general implications of the research reported for HCI and recommends further

research in the area of application of HCI DETs

9.1.1 Summary of Chapters 1 to 8

Chapter 1 attempted to address the scope of HCI with emphasis on those aspects of

particular concern to modelling-oriented HCI techniques. A number of important

evaluation factors were identified. These factors represented important perspectives

on system properties which must be considered together in order to produce a sys-

tem which is usable. Evaluating a system from only one perspective could lead to

serious misconceptions. Six different usability principles were also identified, each

of which reflects some property of a system thought to be influential in determining

its usability. In order to illustrate the importance of maintaining a broad perspective

on UI design and evaluation in general, some implications of considering these dif-

ferent principles with respect to the various evaluation factors were discussed.

Chapter 2 examined a number of influential HCI design and evaluative techniques.

They were classified in terms of whether they were a design or an evaluative ap-

proach, whether they represented competence (ideal knowledge representations) or

performance (predicting actual user behaviour), and whether they embodied a

model of some psychological property of the user, or a of model the interactions

between the user and the system. Their scope with respect to UI design and evalua-

tion was characterised in terms of a matrix which mapped usability principles onto

evaluation factors, each principle and evaluation factor was described in Chapter 1.

Each technique was seen to be more or less limited in scope, and as a collection, the

- 527 -

set of techniques reviewed raised some suspicions which were addressed in the fol-

lowing chapters.

Chapter 3 presented a more general discussion of HCI techniques of the type re-

viewed in Chapter 2 in terms of their apparent applicability to design. It outlined

the design views embodied by those techniques which are supplied with explicit

statements about the nature of the design process into which they might fit. These

design views were criticised and contrasted with alternative user-oriented and em-

pirical views of design practice. Several questions were raised by a number of

discrepancies identified between the different design views. These questions were

the basis for three studies of UI design as practised by systems designers and HCI

specialists.

Chapter 4 described a questionnaire study of the features of UI design practice as it

occurs in applied and particularly commercial environments. Nine hypotheses were

proposed for the study relating to claims made by the authors of some techniques

about their applicability to design. The hypotheses were assertions about the invali-

dity of various claims which did not seem to have been empirically validated by the

authors of techniques. These related to suspicions of the author, informal communi-

cations with systems designers, and assumptions implicit in HCI techniques. The

questionnaires yielded a great deal of data about approaches to user-oriented design,

and various important aspects of the environment within which it takes place, some

of which provided evidence to support the hypotheses, and some of which provided

valuable information about pragmatic concerns within design projects, such as

user-oriented information sources and design constraints which may have an impor-

tant impact upon the outcome of the project.

Chapter 5 reported on a supplementary design practice study based upon interviews

with designers. This investigation attempted to give a more qualitative picture of

the design process in terms of sequences of events and how various problems arose

for the designers. Systems designers were seen to make no clear separation between

the design of the UI and the rest of the system in terms of their attempts to ensure

usability. This finding supported the view taken by the scoping matrix used in

Chapter 2, that many factors need to be considered together when designing and

evaluating with respect to usability. The activities of the designers and the prob-

lems they experienced were related to the findings of the previous study, and togeth-

- 528 -

er the questionnaire and interview studies provided the basis for a representative

design schema which emphasised three aspects of design practice, as it typically oc-

curs, which are relevant to the application of HCI DETs. These aspects were the

goal oriented design activities, the most important information sources exploited,

and the most important design constraints which impinge upon practice.

Chapter 6 described a study undertaken to provide information about use of user-

oriented and HCI design and evaluation techniques. Since systems designers did not

seem to be using recommended HCI approaches, 1-ICI specialists were interviewed

to provide a view of the use of such techniques. The specialists in the study concen-

trated their activities around user-oriented considerations and used a number of

techniques to carry out analysis, specification and evaluation. They themselves ex-

perienced a number of special problems such as late involvement in design projects,

being ignored or not taken seriously, and being expected to spread their efforts thin-

ly over a large number of projects. The techniques which they used were judged by

these specialists to have a number of properties which made them more or less ap-

plicable in "real world" design projects.

Chapter 7 summarised the findings of the two systems designer studies and attempt-

ed to relate these to HCI DETs in order to demonstrate the many obstacles which

are likely to make it impossible for many designers to use them. The HCI DETs re-

viewed in chapter 2 were summarised as having a number of application require-

ments which are not typically satisfied by design practice. The questions raised in

Chapter 3 on the basis of discrepancies between HCI DETs' and other approaches'

design views were tackled here. The overall impression seemed to be that a number

of fundamental issues relating to applicability of HCI DETs are not being taken

seriously by their developers.

Chapter 8 provided an overview of the findings from the HCI specialists interview

study. It proposed a number of reasons for why various HCI DETs seem to be ap-

plicable or inapplicable; there seem to a variety of general properties which are ma-

jor determinants of this. These properties were refined into a number of more expli-

cit desirable features for applicable HCI techniques.

In the following part of the chapter a framework was outlined for assessing applica-

bility of HCI DETs. The framework is essentially a distillation of the findings from

-529-

the research reported in this thesis and embodies a view of the important aspects of

systems design as it relates to HCI. It may be viewed as having a number of possi-

ble roles, perhaps as an empirically based design view, a tool for guiding the

development of applicable HCI approaches, a basis for critiques of HCI DETs, and

as a selection tool for determining an applicable technique for a design project (if

the selector has sufficient knowledge of the HCI techniques he or she is consider-

ing).

9.1.2 Summary of Contributions of the Research to HCI

A great deal of interesting information about user-oriented design practice has been

revealed by the research in this thesis which accounts for its length. Much of the in-

formation from the three systems design and HCI practitioner studies may be of use

in providing a general picture of the realities and difficulties of ensuring usability in

applied and commercial environments. Some more specific contributions made to

the science of HCI are listed below.

* A number of user-oriented evaluation factors have been identified which can be

viewed as providing a wider context for considering the realism of any HCI as-

sessment of a UI.

* The evaluation factors are mapped onto a number of usability principles in a usa-

bility scoping matrix which is a device for representing concisely the scope of

any HCI design or evaluative technique (DET). This scoping matrix is used to

characterise a number of influential existing HCI DETs and techniques applied by

HCI practitioners in commercial environments.

The matrix can be used to characterise the user oriented analytic requirements of

an applied design project. It is also expandable and each cell can be assigned a

weighting which represents its importance in a technique or to a particular design

project.

* The design views of a number of HCI DETs are made explicit and contrasted with

alternative views of design practice. Two studies of user-oriented systems design

practice as it occurs in applied and commercial environments demonstrate two

points. Firstly, HCI DETs of the type reviewed in this thesis are rarely used, if at

-530-

all, by non-HCI specialist systems designers and HCI specialists are a rarity in

commercial design projects. Secondly, there are a number of practical reasons as

to why HCI DETs are inapplicable. These reasons are made explicit in chapter 7

where the application requirements of HCI DETs are contrasted with the realities

and constraints of applied and commercial design practice.

* The two user-oriented systems design studies reported in chapters 4 and 5 com-

bine to provide a simple empirically based design schema which represents the

goal-oriented activities common to various design projects studied, together with

the ten most common user-oriented information sources used, and the ten most

common design constraints which were reported in Chapter 4. This design sche-

ma provides a more realistic and practical view of design as it occurs in practice,

together with its problems, than those idealised views embodied in HCI DETs.

* The HCI practitioner interviews yielded further information which, in the light of

the previous two studies, led to the identification of a number of specific desirable

features which a generally applicable HCI DET should have. These features are

incorporated within a framework for assessing the applicability of HCI DETs

(AF). This framework embodies the empirical findings of this thesis and presents

them in a form which may be used to fulfill four roles, which are as follows;

The Design Schema presents a realistic picture of the type of situation an applica-

ble HCI DET should be designed to deal with.

The Scoping Matrix presents a space within which any particular design project

or HCI DET can be characterised. In the former case it would represent areas

that required special analytical attention (see the example in Chapter 7), and in

the latter it would represent areas which a particular technique is capable of ad-

dressing (as in chapters 2 and 7).

The HCI Roles and Activities Matrix suggests coherent support for HCI roles

which an HCI DEl might attempt to follow.

The Desirable Features List makes explicit a set of potentially evaluable features

which are desirable for an applicable HCI DET.

These features are based upon the findings from the three design studies reported

- 531 -

in this thesis.

9.13 Shortcomings of the Research

The HCI DETs reviewed in this thesis are only a small subset of the techniques

which are currently in existence and there is some risk that they might be un-

representative. They were chosen on the basis of their being influential and well

known within the HCI community, however other techniques which are also

influential have not been considered and may not suffer from the same weaknesses.

Both the questionnaire design and the interview design for the two user-oriented

systems design studies were aimed at gathering as much information as possible

without preconceptions about what kind of information was to be revealed (as a

result the questionnaires were over long and took a great deal of time to complete

which may account for the fact that only 18% were returned). For this reason some

interesting features of design practice were only hinted at accidentally by parfici-

pants in the studies. Further, more directed studies along the same line may be

necessary in order to pursue such information.

The relative rarity of HCI specialists in commercial organisations made it difficult

to obtain volunteers for interview. Consequently only a small number were includ-

ed in the HCI practitioner study. Luckily the participants came from four different

organisations with markedly different working regimes, providing a wide range of

approaches to HCI in systems design. However this set may still be unrepresenta-

tive of HCI practitioners as a whole.

There was insufficient time to attempt a real analysis of the utility of the application

framework in any of its potential roles in Chapter 8. Consequently its most

demanding role (that of an 1-ICI DET selection device for commercial designers)

had to be demonstrated using one of the design projects from Chapter 5 as an exam-

ple. For this reason it may have many practical shortcomings which will need to be

ascertained and dealt with before it can be presented as a widely accessible HCI

tool.

-532-

9.2 Summary of Implications for HCI DETs

A great deal of information has been presented in this thesis and many interesting

facts about user-oriented design as it relates to HCI techniques have been revealed.

It remains however to pull out the major implications for existing or future HCI

techniques of the type described in Chapter 2, since the evidence seems to suggest

that HCI runs the risk of being marginalised within systems design practice, where

many other considerations compete for the attention of the design team. In the fol-

lowing discussions a number of newspaper-style headlines are presented and dis-

cussed which sum up the important findings emerging from this thesis.

Power versus Pragmatics: Where Should the Emphasis Lie?

Descriptive, explanatory, or predictive power seem to be the main obsessions of

developers of HCI DETs in terms of how they demonstrate their value. Detailed la-

boratory studies are used to vindicate the accuracy and sensitivity of various tech-

niques (e.g. Card et a!, 1983; Kieras & Poison, 1985), or lengthy and precise

specifications of existing or imaginary systems are presented (e.g. Moran, 1981;

Payne & Green 1986) in order to vindicate the theoretically based claims for their

power in some respect. The impression gained by the reader is that the techniques

should be applied in the same way as they are demonstrated. However it is obvious

that the demonstrations reflect contrived circumstances (such as laboratory conch-

tions, or analysis of a completed or imaginary or very simple system) and the appli-

cations chosen in these circumstances are perhaps selected because they do not raise

complex problems outside the scope of these techniques (e.g. text editors, "email"

systems, and drawing tools).

It is hardly surprising then that the impressive accuracy of predictions, or the so-

phistication of explanations of usability problems do not cut much ice with the

analyst in the "real world", particularly if he or she is not an HCI specialist. A gen-

eral feeling beginning to emerge amongst the HCI population is that generality of

applicability is more important than precision (e.g. Barnard 1986), and that, in the

design or evaluation of a UI, adherence to the spirit of a technique may bestow a!-

most as much value in terms of ensuring usability, as applying the whole technique

in all its detail (Maclean 1989, personal communication).

9.1.4 Related Work on Scoping of HCJ DETs

The AF scoping of H DETs for the purpose of examining their analytic breadth

may be compared with two other approaches which have similar aims. These are

Simon's Trade-Off approach (Simon 1988) and Young and Barnard's Scenario ap-

proach (Young & Barnard, 1987; Young et al,1989).

Tony Simon has identified the problem of the difficulty analysts must have in identi-

fying an evaluative HCI modelling approach which best suits their requirements,

given that no model is able to tackle all design issues at present. He presents a

multi-dimensional representational space, within which HCI modelling techniques,

such as those reviewed in Chapter 2, can be characterised. They are portrayed as

three dimensional shapes in different shades which represent the functions for

which they were intended or the output they produce. Their depth in the space

represents scope of the processing resources (motor, cognitive, and/or sensory)

which they capture.

Their position on the vertical axis illustrates the extent to which idealisation of

behaviour being modelled (to produce concrete predictions) is traded off against the

qualitative aspects of the mental operations which support behaviour (allowing

greater generalisation of the model). The position of the models on the horizontal

axis also relates to where they stand on a trade-off. This is between the extent to

which a model enumerates the data which is mentally manipulated, and the extent to

which it identifies what knowledge is exploited in mental processes for various

tasks. Another trade-off identified by Simon is that of input-output whereby models

which require much effort to build, must justify this effort in terms of greater value

of output. This recommendation has been referred to in previous chapters in this

thesis.

What Simon's work seems to do is present a characterisation of HCI modelling

techniques in terms of analytic features and trade-offs which are qualities of the

models themselves. This work does not refer to the actual UI properties and factors

which temper evaluation as does the AF scoping matrix. It is therefore up to the

analyst to intuit from Simon's characterisation whether any given model would be

appropriate for a design question. The scoping matrix is more clear in this respect,

and the AF covers practical design application issues which Simon's work does not

-531b-

extend to.

A more similar approach to that of the matrix is the work of Young and Barnard

(1987) and Young et al (1989) which uses sets of behavioural scenarios which cover

the same type of ground addressed by the scoping matrix. The behavioural

scenarios are like instantiations of configurations of cells in the scoping matrix. A

behavioural scenario is a brief characterisation of some robust phenomenon of in-

teraction between a user and a computer. An example would be the user typing an

abbreviated command "d" to move down in a text editor, when in fact the effect of

this command is to delete the previous character. Such a phenomenon occurs in

many circumstances and raises a number of issues for modelling techniques which

could be characterised in the scoping matrix (perhaps as appearing in the Compati-

bility column on the User, UI and Target Tasks rows).

Collections of scenarios presenting different aspects of behaviour may be used to

represent the scope of issues a modeller wishes to be able to model. Aspects of the

scenarios which a model fails to address represent the limits to its scope, as do emp-

ty cells in the matrix. It would probably take a great many scenarios to fill the en-

tire scope of the matrix. Many scenarios will tend to overlap. Therefore the matrix

is perhaps a convenient abstraction which is capable of summing up more clearly

the scope of a given technique.

One of the weaknesses of the scoping matrix is that it does not currently have dev-

ices to represent the grain of analysis taken by an approach to a given area of in-

teraction. Nielsen (1986) has usefully compared a number of approaches to dialo-

gue characterisation to show the extent to which they are capable of capturing levels

at which dialogue may be said to occur. Some levels, such as the Syntactic and

Lexical Levels of CLG are clearly observable. Others such as the CLG Task and

Semantic Levels may only be inferred, and are consequently more difficult to model

with psychological plausibility. Since different units of information are conveyed at

different levels of dialogue, some units such as task goals may only addressed at a

high level of abstraction, others such as keystroke sequences must be addressed at a

low level. It would be useful to capture this variation within the usability scoping

matrix, but at present this has not been addressed.

-533-

The scepticism about HCI DETs apparent in systems designers contrasts with their

generally positive attitudes to user-oriented design. By suggesting that they use

highly complex, unfamiliar, and esoteric techniques, which do not seem to allow for

a rough approximation, MCI technique developers may create the impression that

HCI is always difficult to apply, and they may be providing an excuse for designers

to ignore HCI altogether.

What seems to be needed is some trade off between considerations for the

overworked under-resourced systems designer, and the scientific defensibility of

theoretically based techniques. It may be that making techniques easy to apply

means that they will also have to be made less precise. However, instead of

evaluating techniques for their psychological validity and analytic power we should

be evaluating them in terms of the sense, and practical use, that can be made of

them by the non-HCI specialist.

The Price is Right:

Practical Cost Benefit Considerations for HCI

The findings from the two systems design studies suggested that inadequate time

and resources are a major problem for systems design projects. Yet cost benefit

considerations are given scant attention by the HCI community, with the assump-

tion being that any technique which can demostrably predict the effect of some as-

pect of the UI in terms of user performance must be valuable. Management in sys-

tems design companies are less likely to risk running over budget by spending more

on ensuring usability, or any other property of their product, if they have no idea

what commercial benefits they will accrue by doing so.

HCI must take a more serious attitude to the requirement for demonstrations of the

real commercial value of applying HCI techniques (e.g. Mantei & Teory 1988). At

present the cost of applying some technique versus proven economic returns is not

considered in anything more than a hypothetical sense by the developers of HCI

techniques. This may be a problem of the nature of HCI research which seems to

take place in something of a vacuum, rather than within some design project. Gould

et al (1987) are an exception to this rule as they were able to provide some demons-

tration of concrete beneficial effects of adhering to a user-oriented approach in prac-

tice in an applied project, even if they were not able to prove that the precise cost of

-534-

not applying their approach would have been greater.

The "Moral High Ground": Where does HCI Stand

With Respect to User-Oriented Design and Evaluation

It seems to be a popular notion that systems designers willfully go about designing

unusable systems without paying any attention to their prospective users. This

thesis has attempted to suggest that they are not entirely to blame for this. Pragmat-

ic considerations such as the difficulty of making late modifications to software,

inaccessibility of prospective users, and so on tend to make the designers job far

from easy. They are therefore not helped by being exhorted to take up HCI tech-

niques which make few if any concessions to the difficulty of design pracdce, and it

is unreasonable to expect them to redesign such techniques themselves.

Where HCI DETs were observed to be used in applied or commercial projects, they

were used by HCI specialists who were able to concentrate their efforts on the UI,

and had the skills and experience to adapt the techniques, where necessary, to their

requirements. However HCI specialists are present in only a minority of design pro-

jects, and it seems that even they find that HCI techniques need modification. In

general it seems more reasonable to suggest that the onus is on HCI DET developers

to aim for greater comprehensibility of their techniques as well as for theoretical ac-

curacy, such that systems designers can use them successfully, if they wish to see

their approach in use in applied and commercial design projects.

Mohammed and the Mountain: I-IC! and The Rest of Design

HCI research has successfully demonstrated many inadequacies in existing Uls and

calls upon designers to change their practice and develop less system-cenuic ap-

proaches. The interview study reported in Chapter 5 strongly suggested that sys-

tems designers have many considerations to bear in mind, and that their responsibil-

ity to the user is really only one of many since they have employers budgets, market

forces, and software considerations as well.

The features analysis and the interview study of design practice suggested that

design approaches, though highly varied, are more likely to be informal, and to in-

volve iterative prototyping with user-evaluations, than they are to be top-down

-535-

structured specification-oriented. Whatever the case, the limited notions of the sys-

tem life-cycle embodied in HCI DETs, which may be inadequate, certainly do not

suggest how they should be related to other aspects of the design and competing

considerations important to the ultimate character of the UI such as in-house style,

software and hardware limitations, inherent complexity of target tasks and scoping

of system support for these.

Greater effort therefore is required in order to make HCI techniques self sufficient

(i.e. not dependent upon any possibly unfounded assumptions about the design ap-

proach) or easy to integrate with other approaches which deal with the considera-

tions which they ignore. It is unlikely that the mountain of design practice will

come to the prophet of HCI if as it seems, HCI is so poorly represented at present

(see Chapter 4). So the discipline of HCI must address this problem and begin to

turn Out techniques which will fit in with current practice.

The Application Framework (AF) described in Chapter 8 set out to address this is-

sue. It attempted to represent design in terms of its goal directed activities, typical

user-oriented information sources exploited, and typical design constraints. It lays

out the scope of a technique, in such a way that it can be compared with other tech-

niques, or with the requirements of a design project. It attempts to characterise

coherent HCI analyst roles which involve various types of activity which might re-

quire support. Finally these components are used to help address an ideal features

list which stipulates a number of specific features which should improve the appli-

cability of an HCI DET. At present the main obstacle to the use of this framework

within design projects as an HCI DET selection tool is the frequent lack of explicit-

ness amongst the HCI techniques about their design process assumptions or their

scope, and suitability for different application domains.

HCI: Who Needs it Anyway?

The features analysis of of user-oriented design practice suggested that HCI special-

ists tended to be employed on large design projects. Mantei and Teory (1988) sug-

gest that projects over a certain size are more likely to profit from the application of

HCI than are small projects (but do not base their analysis on actual application of

various HCI techniques). The features analysis certainly seemed to confirm that this

may be commonly believed to be true by those who determine when it is appropri-

-536-

ate to invest in the services of an HCI specialist. However, it seems irrational to

suggest that it is the nature of the design team size, or project length which should

dictate whether or not HCI is worth applying. This is something which should be

addressed by HCI researchers; that there may be a strong requirement for HCI tech-

niques of some sort on small, less well resourced projects.

Something resembling a market analysis could identify the type of system which

would be suitable for certain types of HCI DET. Some systems, such as those in

high risk domains like power generation must be designed to avoid human error,

others like automatic telling machines should be designed in such a way that every-

one will be able to use them; these types of system have a strong requirement for

HCI input into their design. Other systems, such as text editors (which seem to be a

popular target for demonstrations of HCI DETs) may not require much HCI input

into their design in order that they be marketable; in fact they may be designed by

following styles and ideas manifested in other comparable systems (see Chapters 4

and 5).

The requirements of small and large projects designing varied systems, and the type

of analysis they can support are bound to be diverse. Perhaps HCI DETs could get

away without being generalizable to all Uls if they were targeted at some

identifiable class of design project which could.clearly benefit from their input. A

technique aimed at designs where HCI is not the most important concern, should be

cheap and easy to apply. An evaluative technique should offer the most appropriate

usability or performance metric for evaluations; for example it is not clear that

speed of ideal users is the most appropriate metric for all text editors (GOMS; Card

et al, 1983, for example, concentrates on this metric in evaluations of text editors).

Some considerations for designers were suggested in Chapter 1, however it was not

clear that any of the HCI DETs described in this thesis were targeted in a coherent

manner towards classes of applications other than those like text editors, involving

simple user tasks, no real-time system output behaviour, and focusing on limited

user psychological characteristics. HCI DETs should explicitly describe the appli-

cation domains for which they are appropriate, the user populations best simulated

by any model they present; e.g., naive users, expert users, domain experts and so on.

They should eniphasise whether they focus on perfect performance, speed, error

prediction, learning and so forth whilst being explicit about any assumptions being

-537-

made about users; e.g. the training to which they have been exposed, their represen-

tativeness of some population, the conditions under which they are expected to in-

teract with the system (e.g. when they are not tired or frightened), their tasks, and so

on.

The discussion about who needs HCI appeals for detailed breakdown of the scope of

a technique to be carried out by its developers. Different design projects have dif-

ferent requirements for analysis. The usability scoping matrix applied in in Chapter

8 would be a suitable guide to the effort of providing a scoping breakdown of a

technique. Each cell addressed by a technique should be considered in precise de-

tail, with assumptions about each of the evaluation factors being made explicit. En-

suring that techniques are clearly characterised by their authors should make them

easier to select by systems designers.

9.3 Recommended Further Research

In this chapter several suggestions have already been made for further research in

HCI which should enhance its applicability. These are briefly summed up here.

Proven Benefits From Use of Techniques need to be demonstrated before making

claims about the utility of a technique for improving usability. Demonstrations by

the developers themselves in contrived circumstances, on existing systems are un-

likely to convince systems analysts and engineers that a technique has any relevance

to real world design practice.

Integration with other design activities should be a prime concern for HCI DETs

which do not, in themselves, represent complete methodologies. It has been sug-

gested frequently in this thesis that current techniques of the type described in

Chapter 2, do not seem to be well adapted for use in a real design project; they have

various application requirements which often do not appear to be satisfied by ap-

plied and commercial design.

Explicit scope and procedures in techniques need to be presented in order for sys-

tems engineers to be able to select the one which best fits their analytic needs, and

which is best suited to what their project can support.

-538-

HCI Techniques Should be Targeted at particular application domains or types of

user and task with which they are best suited to deal. If they are not targeted, then

they should be highly generalizable (thereby running the risk of being complex to

apply). Any targets should be realistic, reflecting typical or common contexts of

design projects rather than reflecting convenient assumptions made by the develop-

ers of the technique.

Non Esoteric techniques are required since most design projects do not involve

HCI specialists with the skills and experience to understand and modify a technique

where necessary. There seems to be a greater emphasis on accuracy of predictions,

rather than ease of use of HCI DETs. Either a trade off will have to be made

between accuracy and ease of application (since sophisticated models are complex

and time consuming to build), or future techniques will need to be embodied within

automated user models or support tools which make the task of analysis of, or

design for usability much simpler for the non-HCI specialist.

The Application Framework needs to be empirically validated as a potential HCI

DET or user-oriented approach selection tool. At present it requires that the analyst

using the technique would require considerable familiarity with each of the ap-

proaches he or she was considering. Either a taxonomy of a wide variety of existing

HCI DETs should be supplied with the framework, or (more desirably) HCI DET

developers should be more explicit about the scope, limitations and assumptions of

their technique.

- 539 -

References

Abrial J.R. (1980), The specification Language Z, Basic Library, Oxford Universi-

ty, Programming Research Group.

Ad-Cad Ltd., (1986), "The Languages of STATEMATE," Internal Report, Weiz-

man Science Park, Rehovort, Israel.

Adhami E., Browne D.P., & Mitra, S.K. (1987), "Application Modelling for the

Provision of an Adaptive User Interface: A Knowledge Based Approach. in-

Proceedings of INTERACT'87 Human-Computer Interaction, H.J. Bullinger & B.

Shackel, eds., Elsevier Science B.V. North-Holland, pp 981 - 987.

Alexander H. (1987), "Executable Specifications as an Aid to Dialogue Design," in

Proceedings of INTERACT'87 Human-Computer Interaction, H.J. Bullinger & B.

Shackel, eds., Elsevier Science B.V. North-Holland, pp 739 - 744.

Anderson J. R. (1982a), "Acquisition of Cognitive Skill," Psychological Review,

89, pp 369 - 406.

Anderson J. R. (1982b), "Representational Types: A Tricode Proposal," Technical

Report NR-82-1, Carnegie-Mellon University.

Anderson J.R. (1983), The Architecture of Cognition, Harvard University Press.

Anderson R.C. & Ortony A. (1975), "On Putting Apples into Bottles - A Problem

of Polysemy," Cognitive Psychology 7, pp 167 - 180.

Appleton D.S. (1986), "Very Large Projects," Daramation, Vol 32 No.2, pp 62 -

70.

Arbib M.A. (1969), Theories of Abstract Automata, Englewood Cliffs, New Jer-

sey: Prentice-Hall.

Barnard P. (1985), "Interacting Cognitive Subsystems: A Psycholinguistic Ap-

- 540 -

proach to Short-Term Memory," in A. Ellis, ed., Progress in the Psychology of
Language, Vol 2, London, Lawrence Earibaum, pp 197 - 258.

Barnard P., Wilson M. & Maclean A. (1986), "Approximate Modelling of Cogni-

tive Activity with an Expert System: A Concept Demonstrator for an Interactive

Design Aid," IBM Hursley Human Factors Report, HF 123.

Barnard P. (1987), "Cognitive Resources and the Learning of Human-Computer Di-

alogues," in Interfacing Thought: Cognitive Aspects of Human-Computer Interac-

tion, J.M. Carroll, ed., MIT Press.

Bellotti, V. (1988), "Implications of Current Design Practice for the Use of HCI

Techniques," in People and Computers IV; Proceedings of Fourth Conference of

the BCS HCI Specialist Group, D.M. Jones & R. Winder, eds., C.U.P., pp 13 - 34.

Bennet J.L., Lorch D J., Kieras D.E. & Polso P.G. (1987), "Developing a User Inter-

face Technology for Use in Industry," in Proceedings of INTERACT 87 Human-

Computer Interaction, H.J. Bullinger & B. Shackel, eds., Elsevier Science B.V.

North-Holland. pp 21 - 26.

Boehm B.W., Gray T.E., & Seewaldt T. (1984), "Prototyping Versus Specifying: A

Multiproject Experiment," IEEE Transactions on Software Engineering. Vol SE-lO

No.3 pp 290 - 302.

Booch G. (1986), "Object Oriented Development," IEEE Transactions on Software

Engineering, Vol. SE-12, No 2., pp 211 - 221.

Briscoe E.J. (1987), Modelling Human Speech Comprehension: A Computational

Approach, Ellis Horwood

Bullinger H. J., Fahnrich K. P., Raether C. (1984), "Task and User Adequate

Design of Man-Computer Interfaces in Production," in INTERACT'84 B. Shackel,

ed., Elsevier Science North-Holland. pp 338 - 343.

Card S.K., Moran T.P. & Newell A. (1976), "The Manuscript Editing Task: A

Routing Cognitive Skill," Palo Alto, Ca.: Xerox Corp., Palo Alto Research Center.

- 541 -

Card S.K., Moran T.P. & Newell A. (1980), "The Keystroke Level Model for User

Performance Time with Interactive Systems," Communications of the ACM, 23, pp

396-410.

Card S.K., Moran T.P. & Newell A. (1983), The Psychology of Human Computer

Interaction, Lawrence Earibaum Associates, Hilisdale, New Jersey.

Carroll J.M. & Mack, R.L. (1985), "Metaphor, Computing Systems, and Active

Learning," International Journal of Man Machine Studies 22, pp 39 - 57.

Chomsky N. (1957), Syntactic Structures, The Hague: Mouton.

Chomsky N. (1965), Aspects of the Theory of Syntax, Cambridge, Massachusets.:

MIT Press.

Christensen N. & Kreplin K.D. (1984), "Prototyping of User-Interfaces," in Ap-

proaches to Protolyping, R. Budde, K. Kuhienkamp, L. Mathiassen & H. Zulligho-

yen, eds., Berlin: Springer-Verlag pp 58 - 67.

Cockton G. (1987a) "Some Critical Remarks on Abstractions for Adaptable Dialo-

gue Managers," in People and Computers III; Proceedings of HC187, D. Diaper, &

R. Winder, eds., C.U.P., pp 325 - 343.

Cockton G. (1987b), "A New Model for Separable Interactive Systems," in

Proceedings of INTERACT'87 Human-Computer Interaction, H.J. Bullinger & B.

Shackel, eds., Elsevier Science B.V. North-Holland, pp 1033 - 1038.

Cockton 0. (1988), "Generative Transition Networks: A New Communication

Control Abstraction," in People and Computers IV; Proceedings of Fourth Confer-

ence of the BCS HCI Specialist Group, D.M. Jones & R. Winder, eds., C.U.P., pp

509-527.

Coutaz J. (1989), "Architecture Models for Interactive Software," in ECOOP'89:

Proceedings of 3rd European Conference on Object Oriented Programming, S.

Cook, ed., C.U.P. pp 383 - 399

- 542 -

Dagwell R. & Weber R. (1983), "System Designers' User-Models: A Comparative

Study and Methodological Critique," Communications of the ACM, 26, (11), pp.

987-997.

Damodaran L., Ip K. & Beck M. (1988) "Integrating Human Factors Principles into

Structured Design Methodology: A Case Study in the UK Civil Service," Informa-

tion Technology for Organizational Structures, H. J. Bullenger et al eds., Elsevier

Science Publishers, North Holland.

di Sessa A.A. (1985), "A Principled Design for an Integrated Computational En-

vironment," Human-Computer Interaction Vol 1, Lawrence Earibaum Associates,

pp 1-47.

Dix A.J. Harrison M.D. & Miranda E.E. (1986), "Using Principles to Design

Features of a Small Programming Environment," in Proceedings Software En-

gineering Environments Conference, Lancaster, I. Sommerville, ed., Peter Pere-

grinus, pp 135 - 150.

Downs E., Clare P. & Coe I. (1988), Structured Systems Analysis and Design

Method: Application and Context, Prentice Hall International (UK) Ltd.

Earl M.J., (1987), "Information Systems Strategy Formulation," in Critical Issues

in Information Systems Research, R.J. Boland & R.A. Hirschheim, eds., John Wi-

ley & Sons. pp 157- 178.

Fitter M. & Green T.R.G. (1979), "When do Diagrams Make Good Computer

Languages ?" International Journal of Man-Machine Studies, 11, pp 235 - 261.

Fitts P.M. (1954), "The Information Capacity of the Human Motor System in Con-

trolling Amplitude of Movement," Journal of Experimental Psychology, 47, pp 381

- 391.

Fodor J.A. (1983), Modularity of Mind, M.I.T. Press

Foley J.D., Kim W.C., Gibbs C.A. (1987), "Algorithms to transform the formal

specification of a User-Computer Interface," in Proceedings of INTERACT'87

- 543 -

Human-Computer Interaction, H.J. Bullinger & B. Shackel, eds., Elsevier Science

B.V. North-Holland, pp 1001 - 1006.

Foss D.J., & DeRidder M. (1987), "Technology Transfer: On Learning a New

Computer-Based System," in Interfacing Thought: Cognitive Aspects of Human-

Computer Interaction, J.M. Carroll, ed., MiT Press.

Fountain A.J. & Norman M.A. (1985), "Modelling User Behaviour With Formal

Grammar," in People and Computers: Designing the Interface, Proceedings of

HCI'85, P. Johnson & S. Cook, eds., C.U.P. pp 3 - 12.

Gardner A., Mayfield T. & Maguire M. (1984), "Human Factors Guidelines for the

Design of Computer-Based Systems," in Hu,nan Computer Interaction - IN-

TERACT'84, B. Shackel, ed., Elsevier Science North-Holland. pp 45 - 49.

Glasson B.C. (1984), "Guidelines for User Participation in the System Develop-

ment Process," in Human Computer Interaction - JNTERACT'84, B. Shackel, ed.,

Elsevier Science North-Holland. pp 284 - 290.

Goodman D. (1987), The Complete Hypercard Handbook, Bantam Books, New

York.

Goransson B., Lind, M., Pettersson, E., Sandblad, B., & Schwalbe, P. (1987), "The

Interface is Often Not the Problem," Human Factors in Computing Systems And

Graphics Interface; Proceedings of the CHI + GI'87, New York, ACM, pp 133 -

136.

Gould J.D. & Lewis C. (1985), "Designing for Usability - Key Principles and What

Designers Think," Com,nunications of the ACM 28, pp 300 - 311.

Gould J.D. Boies S.J. Levy S. Richards J.T. & Schoonard J. (1987), "The 1984

Olympic Messaging System: A Test of Behavioural Principles of System Design,"

Communications of the ACM 30, pp 785 - 796.

Green T.R.G., Schiele F., & Payne S.J. (1988), "Formalisable Models of User

Knowledge in Human-Computer Interaction," in Working With Computers: Theory

- 544 -

Versus Outcome, G.C. Van Der Veer, T.R.G. Green, J. M. Hoc, D. M. Murray, eds.,

Academic Press.

Green T.R.G., Bellamy R.K.E. & Parker J.M. (1987), "Parsing and Grisnap: A

Model of Device Use," in Proceedings of INTERACT'87 Human-Computer In-

teraction, H.J. Bullinger & B. Shackel, eds., Elsevier Science B.V. North-Holland

pp 65 - 70.

Grimes J., Erlich K. & Vaske J. (1986), "User Interface Design: Are Human Fac-

tors Principles Used ?," SIGCHI Bulletin Vol 17, No. 3 pp 22- 26.

Grudin J., & Maclean A., (1984), "Adapting a Psychophysical Method to Measure

performance and Preference Tradeoffs in Human Computer Interaction," in Human

Computer Interaction, Proceedings of INTERACT'84, B. Shackel, ed., Elsevier Sci-

ence North-Holland. pp 737 - 741.

Grudin J., (1989), "The Case Against Consistency," Communications of the ACM.

Vol 32,pp 1164- 1173.

Hammond N.Y., Jorgensen A., Maclean A., Barnard P., & Long J. (1983), "Design

Practice and Interface Usability: Evidence from Interviews and Designers," Hursley

Human Factors Laboratory Research Report, HF 082,.

Hammond N.Y., Morton J., Barnard P.J., & Long, J. (1982), "Knowledge Fragments

and Users' Models of Systems," Hursley Human Factors Laboratory technical Re-

port HF 071.

Hammond N. Morton J. Maclean A. & Barnard P (1983), "Fragments and

Signposts. Users' Models of the System," in Proceedings of the 10th International

Symposium on Human Factors in Telecommunications,

Helsinki 6 - 10th June.

Hannigan S. & Herring V. (1987), "Human Factors in Office Product Design - Eu-

ropean Practice," in Cognitive Science in the Design of Human-Computer interac-

tion and Expert Systems, G. Salvendy, ed,. Elsevier Science Publishers B.V., Am-

sterdam. pp 225 - 232.

- 545 -

Harel D. (1987), "Statecharts: A Visual Formalism for Complex Systems," Sci.

Comput. Prog. 8, pp 231 - 274.

Harrison M.D. & Thimbleby FLW. (1985), "Formalising Guidelines for the Design

of Interactive Systems," in People and Computers: Designing the Interface,

Proceedings of HC!'85, P. Johnson & S. Cook, eds., C.U.P. pp 161 - 171.

Hayes I., ed. (1987), Specification Case Studies, London: Prentice-Hall.

Hekmatpour S. & Ince D.C. (1987), "Evolutionary Prototyping and the Human-

Computer Interface," in Proceedings of INTERACT'87 Human-Computer Interac-

tion, H.J. Bullinger & B. Shackel, eds., Elsevier Science B.V. North-Holland, pp

479 - 484.

Henderson A. (1986), "The Trillium User Interface Design Environment," in Hu-

man Factors in Computing Systems; Proceedings of CHI' 85, M. Mantel & P. Orbe-

ton, eds., pp 221 - 227.

Holland J.H. (1986), "Escaping Brittleness: The Possibilities of General Purpose

Machine Learning Algorithms Applied to Parallel Rule-Based Systems," in

Machine Learning II: An Artdlcial Intelligence Approach, R.S. Michaisky, J.G. Car-

bonell & T.M. Mitchell, eds., Los Altos, Calif: Kaufmann.

Holyoak K.J. (1984), "Mental Models in Problem Solving," in Tutorials in Learn-

ing and Me,nory: Essays in Honour of Gordon Bower, JR. Anderson & S.M.

Kosslyn, eds., San Fransisco: Freeman.

Jacobsen I. (1987), "Object Oriented Development in an Industrial Environment,"

in Proceedings of OOPSL4'87, ACM, pp 1 - 9.

Jackson M. (1983), System Development, London: Prentice-Hall.

Johnson P., Diaper D. & Long J.B. (1984), "Tasks, Skill and Knowledge; Task

Analysis for Knowledge Descriptions," in Human Computer Interaction, Proceed-

ings of INTERACT'84, B. Shackel, ed., Elsevier, Holland.

- 546 -

Johnson P., & Johnson H. (in press) "Knowledge Analysis of Tasks: Task Analysis

and Specification for Human-Computer Systems," in Engineering the Human-

Computer Interface, A. Downton, ed., London: McGraw Hill.

Jorgensen A.H. (1984), "On The Psychology of Prototyping," in Approaches to

Prototyping, R. Budde, K. Kuhienkamp, L. Mathiassen & H. Zullighoven, eds., Ber-

un: Springer-Verlag pp 278 - 289.

Jorgensen A.H. (1989), "Taken by Surprise: System Designers Applying the

Thinking-Aloud Method in User Interface Design," Draft Submission for People

and Computers: HCI'89.

Kieras D.E. & Poison P.G. (1982), "An Outline of a Theory of the User Complexity

of Devices and Systems," University of Arizona and University of Colorado Project

on User Complexity of Devices and Systems, Working Paper No. 1 pp. 1 - 22.

Kieras D.E. & Poison P.G. (1985), "An Approach to the Formal Analysis of User

Complexity," International Journal of Man-Machine Studies, 22, pp 365 - 394.

Knowles C. (1988), "Can Cognitive Complexity Theory Produce an Adequate

Measure of System Usability ?," in People and Computers IV; Proceedings of

Fourth Conference of the BCS HCI Specialist Group, D.M. Jones & R. Winder,

eds., C.U.P.

Knowles C. (1989), "A Qualitative Approach to Assessing Complexity," in Design-

ing and Using Human-Computer Inteifaces and Knowledge Based Systems, G. Sal-

vendy & M.J. Smith, eds., Elsevier Science Publishers, B.V. Amsterdam. pp 35 -

42.

Kosslyn S.M. & Pomerantz J.R. (1977), "Imagery, Propositions, and the Form of

Internal Representations," Cognitive Psychology, 9, pp 52 - 76.

Kosslyn S.M. & Schwarz S.P. (1977), "A Simulation of Visual Imagery,"

Cognitive Science, 1, pp 265 - 295.

Kosslyn S.M. (1985), "The Medium and the Message in Mental Imagery: A

- 547 -

Theory," in Issues in Cognitive Modelling, A.M. Ankenhead & J.M. Slack, eds.,

Lawrence Earibaum Associates, London.

Kosslyn S.M. (1989), "Understanding Charts and Graphs," Applied Cognitive

Psychology, Vol 3, pp 183 - 226.

Landauer T.K. (1987), "Relations Between Cognitive Psychology and Computer

System Design," in Intetfacing Thought: Cognitive Aspects of Human-Computer In-

teraction, J.M. Carroll, ed., MIT Press.

Lees R.B.A. (1957), "A Review of N. Chomsky's Syntactic Structures," Language

33, pp 375 - 408.

Lyytinen K. (1987), "A Taxonomic Perspective of Information Systems Develop-

ment: Theoretical Constructs and Recommendations," in Critical Issues in Informa-

tion Systems Research, R.J. Boland & R.A. Hirschheim, eds., John Wiley & Sons.

pp 3-41.

Maclean A., Barnard P., & Wilson M.D., (1985), "Evaluating the Human Interface

of a Data Entry System: User Choice and Performance Measures Yield Different

Trade off Functions," in People and Computers: Designing the Interface, P. John-

son & S. Cook, eds., Cambridge University Press pp 172 - 185.

Maclean A. Young R. & Moran T.P. (1989), "Design Rationale: The Argument

Behind the Artifact," in Human Factors in Computer Systems; Proceedings of the

CHI'89 Conference, K. Bice & C. Lewis, eds., Addison Wesley. pp 247 - 252.

Magers C. (1983), "An Experimental Evaluation of On-line Help for Non-

programmers," in Human Factors in Computer Systems; Proceedings of the

CHI'83 Conference, ACM, New York, pp 277 - 281.

Maher P. K. C. & Bell H. V. (1977), "The Man-Machine Interface - A New Ap-

proach," in Proceedings of the International Conference on Displays for

Man/Machine Systems. Lancaster, pp 122 - 125.

Mantei M. & Teory (1988), "Cost Benefit Analysis for Incorporating Human Fac-

- 548 -

tors in the Software Lifecycle," Computing Practices Volume 31, No. 4, pp 428 -
439.

Meyer, B. (1988), Object Oriented Software Construction, Prentice Hall.

Monk A. F., & Dix A. (1987), "Refining Early Design Decisions with a Black Box

Model," in People and Computers Ili, Proceedings of HC187, D. Diaper, & R.

Winder (Eds), C.U.P., pp 147 - 158.

Moran T.P. (1978), "Introduction to the Command Language Grammar," Report

No: SSL-78-3, Palo Alto, California.: Xerox Corp.

Moran T.P. (1981), "The Command Language Grammar: A Representation for the

User Interface of Interactive Computer Systems," International Journal of Man-

Machine Studies, 15, (1), pp 3 - 50.

Moran T.P. (1983), "Getting into a System: External-Internal Task Mapping

Analysis," in Human Factors in Computing Systems; Proceedings of CHI'83,

ACM, New York.

Morton J., Barnard P.J., Hammond N. y., & Long J.B. (1979), "Interacting With The

Computer: A Framework," in Teleinformarics'79, E.J. Boutmy & A. Danthine,

eds., Holland: North-Holland.

Mosier J.N. & Smith S.L. (1986), "Application of Guidelines for Designing User

Interface Software," Behaviour and Information Technology Vol. 5, No. 1, pp 39 -

46.

Newell A. & Simon H.A. (1972), Human Problem Solving, Prentice-Hall.

Nielsen J. (1986), "A Virtual Protocol Model for Human-Computer Interaction"

International Journal of Man-Machine Studies, 24, pp 301 - 312.

Norman D.A. (1982), "Some Observations on Mental Models," in Mental Models,

D. Gentner & A. Stevens, eds., Hilisdale, New Jersey: Lawrence Earibaum Associ-

ates.

- 549 -

Oatley K. (1978), Perceptions and Representations: The Theoretical Bases of Brain

Research and Psychology, London: Methuen.

Parnas D.L. (1969), "On the Use of Transition Grammars in the Design of a User

Interface for an Interactive Computer System," in Proceedings of the 24th National

ACM Conference, pp 379 - 385.

Payne S.J. (1984), "Task Action Grammars," in Proceedings of JNTERACT'84 -

First IFIP Conference on Human Computer Interaction, B. Shackel (Ed), Elsevere-

Science, Amsterdam, pp 527 - 532.

Payne S.J. & Green T.R.G. (1986), "Task Action Grammars: A Model of the Men-

tal Representation of Task Languages," Human Computer Interaction, Vol 2,

Lawrence Earibaum Associates pp 93 - 133.

Poison P. (1987), "A Quantitative Theory of Human-Computer Interaction,"

in Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, J.M.

Carroll (Ed), MIT Press.

Pylyshyn Z.W. (1980), "Computation and Cognition: Issues in the Foundations of

Cognitive Science," Behavioural and Brain Sciences, 3, pp 111 - 169.

Pylyshyn Z.W. (1984), Computation and Cognition: Toward a Foundation for

Cognitive Science, MIT Press, Massachusetts.

Ratcliffe B. (1987), Software Engineering: Principles and Methods, Blackwell

Scientific Publications.

Reisner P. (1981), "Formal Grammar and Human Factors Design of an Interactive

Graphics System," IEEE Trans Software Engineering, Vol SE-7, No 2, pp 229 -240

Reisner P. (1982), "Analytic Tools for Human Factors of Software," in Enduser

Systems and their Human Factors, A. Blaser & M. Zoeppritz, eds., pp 94 - 121.

Springer-Verlag, Berlin.

Robson C. (1973), Experiment Design and Statistics in Psychology, Penguin

- 550 -

Books.

Rosch E. H. (1973), "On the Internal Structure of Perceptual and Semantic

Categories," in Cognitive Development and the Acquisition of Language, T.M.
Moore, ed., New York Academic Press.

Rosson M.B., Maas S., & Kellogg W.A. (1987), "Designing for Designers: An

Analysis of Design Practice in the Real World," Human Factors in Computing Sys-

tems And Graphics Inteiface; Proceedings of the CHI + GI'87 Conference, New
York, ACM, pp 137 - 142.

Royce W.W. (1970), "Managing the Development of Large Software Systems: Con-

cepts and Techniques," in Proceedings WESTCON, Calif., USA.

Rumelhart D.E., & Norman D.A., (1978), "Accretion, Tuning and Restructuring:

Three Models of Learning," in Semantic Factors in Cognition, J.W. Cotton & R.L.

Klatzky, eds., N.J.: Lawrence Eribaum Associates.

Sammet J.E. (1986), "Why Ada is not just Another Programming Language,"

Com,nunications of the ACM, 29(8), pp 722 - 732.

Schank R., & Abelson R. (1977), Scripts, Plans, Goals, and Understanding, Hills-

dale, N.J.: Lawrence Eribaum Associates.

Sharratt B.D. (1987), "Top-Down Interactive Systems Design: Some Lessons

Learnt from Using Command Language Grammar," in Proceedings of IN-

TERACT'87 Human-Computer Interaction, H.J. Bullinger & B. Shackel, eds., El-

sevier Science B.V. North-Holland, pp 395 - 399.

Simon T. (1988) "Analysing the Scope of Cognitive Models in Human-Computer

Interaction: A Trade-Off Approach," in People and Computers IV; Proceedings of

Fourth Conference of the BCS HC! Specialist Group, D.M. Jones & R. Winder,

eds., C.U.P.

Smith S.L. & Aucella A.F. (1983), "Design Guidelines for the User Interface to

Computer Based Information Systems," Technical Report ESD-TR-83-122,

- 551 -

U.S.A F. Electronic Systems Division, Hanscom Air Force Base, Massachusetts

(NTIS No. AD Al27 345).

Smith S.L. & Mosier J.N. (1984), "The User Interface to Computer-Based Informa-

tion Systems," in Human Computer Interaction, Proceedings of INTERA CT' 84, B.

Shackel, ed., Elsevier Science North-Holland, pp 35 - 39.

Smith S.L. (1986), "Standards versus Guidelines for Designing User Interface

Software," Behaviour and Infor,nation Technology Vo15, No. 1, pp 47 - 61.

Snodgrass J.G., Burns P.M., & Pirone G.V. (1978), "Pictures and Words and Space

and Time: in search of the elusive interaction," Journal of Experimental Psycholo-

gy: General, 107, pp 206 - 230.

Sommerville I., (1989), Software Engineering (Third Edition) Addison-Wesley Pub-

lishing Company.

Summersgill R. & Browne D.P. (1989), "Human Factors: Its Place in Systems

Development Methods," in Proceedings of the Fifth International Workshop on

Software Specification and Design, pp 227 - 234.

Sutcliffe A. (1988), Cognitive Complexity with JSD "Some Experiences in Integrat-

ing Specification of Human-Computer Interaction Within a Structured System

Development Method," in People and Computers IV; Proceedings of Fourth

Conference of the BCS HCf Specialist Group, D.M. Jones & R. Winder, eds.,

C.U.P., pp 145 - 160.

Tester L. (1983), "Enlisting User Help in Software Design," SIGCHI Bulletin Vol

14,No.3pp5-9.

Thimbleby H.W. (1984), "Generative User-Engineering Principles for User Inter-

face Design," in Human Computer Interaction, B. Shackel (ed) Proceedings of IN-

TERACT'84, Elsevier Science North-Holland. pp 102 - 107.

Thimbleby H.W. (1985), "Failure in the Technical User-Interface Design Process,"

Computers & Graphics (Journal), Vol 9, No 3., Pergamon Press, pp 187 - 193.

- 552 -

Wailer R.H.W. (1980), "Graphic Aspects of Complex Text: Typography as

Macro-Punctuation," in Processing of Visible Language 2., P. Kolers, M. Wrol-

stad & H Bouma, eds., Plenum Press, New York and London.

Walsh P.A., Lim K.Y., Long J.B., & Carver M.K. (1988), "Integrating Human Fac-

tors With Systems Development," in Designing End-User Interfaces, N. Heaton, &

M. Sinclair, eds., Oxford: Pergamon Infotech.

Wasserman A.!. (1985), "Extending State transition Diagrams for the Specification

of Human-Computer Interaction," IEEE Transactions on Software Engineering,

Vol. SE-lI, No. 8, pp 699 - 713.

Wasserman A.!., Pircher, P.A., Shewmake D.T., & Kersten M.L. (1986), "Develop-

ing Interactive Information Systems with the User Software Engineering Methodol-

ogy," IEEE Transactions on Software Engineering, Vol. SE-12, No.2, pp 326 - 345.

Weliner P.D., (1989), "Statemaster: A UIMS Based on Statecharts for Prototyping

and Target Implementation," in Hwnan Factors in Computing Systems; Proceed-

ings of the CHI'89 Conference, K. Bice & C. Lewis (eds). Addison Wesley. pp

177 - 182.

Whitefield A. (1987), "Models in Human Computer Interaction: A Classification

With Special Reference to Their Uses in Design," in Proceedings of INTERACT'87

Human-Computer Interaction, H.J. Bullinger & B. Shackel, eds., Elsevier Science

B.V. North-Holland. pp - 57 - 63.

Whiteside J. Jones S. Levy P.S. & Wixon D. (1985), "User performance with Com-

mand, Menu, and Iconic Interfaces," in Human Factors in Computing II; Proceed-

ings of the CHI'85 Conference, L. Borman & B. Curtis, eds., Elsevier Science,

Amsterdam. pp 185- 191.

Wilson M.D. Barnard P. & Maclean A. (1988), "Knowledge in Task Analysis in

Human Computer Systems," in Working With Computers: Theory Versus Outcome.

T. Green, J. Hoc, D. Murray & G. Van Der Veer, eds., London Academic Press.

Wood-Harper A.T., Antill L. & Avison D.E. (1985), Information Systems

-553-

Definition. The Multiview Approach, Blackwell Science Publications.

Woods D.D. & Roth E.M. (1988), "Cognitive Engineering: Human Problem Solv-

ing with Tools," Human Factors Vol 30, No.4, pp 415 - 430.

Woods W.A. (1970), "Transition Network Grammars for Natural Language

Analysis," Com'nunicatjons of the ACM 13, (10), pp 591 - 606.

Wright P. (1980), "The Criterion for Designing Written Information," in Process-

ing of Visible Language 2., P. Kolers, M. Wroistad & H Bouma, eds., Plenum

Press, New York and London.

Young R. (1983), "Surrogates and Mappings: Two Kinds of Conceptual Models

for Interactive Devices," in Mental Models D. Gentner & A.L. Stevens, eds., pp.

35 - 52. Lawrence Earibaum, Hillsdale, New Jersey.

Young R. & Barnard P. (1987) "The Use of Scenarios in Human-Computer Interac-

tion Research: Turbocharging the Tortoise of Cumulative Science," in CHI &

Gl'87: Human Factors in Computing Systems and Graphics Interface, J.M. Carroll

& P.P. Tanner, eds., ACM, New York, pp 291 - 296.

Young R., Barnard P., Simon T. & Whittington J. (1989) "How Would Your Favor-

ite User Model Cope With These Scenarios ?" SIG CHI Bulletin Vol 20, No 4, pp

51-55.

Young R. & Maclean A. (1988), "Choosing between methods: Analysing the

User's Decision Space in terms of Schemas and Linear Models," in Human Factors

in Computing Systems; Proceedings of CHI'88, E. Soloway, D. Frye, S. Sheppard,

eds., pp 139 - 143.

Yourdon E. & Constantine L. (1978), Structured Design, Prentice-Hall.

- 554 -

Applicability of HCI Techniques to Systems Interface Design

Appendix 1

Questionnaire Distributed to Systems Designers
in Features Analysis of Applied
and Commercial Design Practice

Please return copies to me:

Victoria Bellotti at

Queen Mary College
Department of Computer Science

and Statistics
Mile End Road
London El 4NS

tel :019755200
messages only

home: 01 514 8849

- 555 -

I should be very Grateful if you could assist me in my research by
filling in this questionnaire. I am very interested in interactive system
interface design, but have found it hard to meet and interview commer-
cial designers. This questionnaire is designed to find out about the way
in which designers go about collecting the information they need to
make interface design decisions. I am particularly interested in com-
mercial design projects, so if you have been involved in a commercial
project I should be grateful if you could relate your answers to that in
preference to research or other types of projects. However, if you have
not been involved in commercial work, then please refer to any other
type of project.

-556-

Questionnaire

In Confidence

Please read the following before attempting to answer my questions.

This questionnaire is aimed at collecting information about how
designers go about designing the user-inteiface to computer systems in
commercial projects. I should therefore be grateful if you would base
your answers on a single project rather than on your general practice.
The first part of this questionnaire is designed to gather background in-
formation about the nature of the project and how it proceeded. The
second part, which may require you to duplicate some of the informa-
tion from part I, asks more specific questions about problems, practices
and results. It is therefore important that only information relating to a
single project is included, otherwise the information I receive will be
misleading. Please try to answer all of the questions. Also, if you wish
to learn about my overall findings, please write an address below to
which I can send the information when I have completed my analysis.

Part I

I need a brief description (approx 2 or 3 sentences, more if you wish) under each of

the headings below. Please read all of the headings in Part I before beginning in

order to avoid duplicating information.

Product Function(s)

- 557 -

Type of Interface (e.g. WYSIWYG)

Prospective Users

Description of Own Organisation (no name required)

Description of Client/Marketing Organisation (if other than own)

Extent of Involvement of Client and Any Other Organisations or Individuals

Design-Team Size, Roles and Structure (including consultants)

Your Job Description

Your Particular Role in the Design of the Interface

Human Resources (programmers, secretaries, associated researchers etc)

-558-

Technological Resources (hardware, software etc)

Time Resources (e.g. available person-hours, deadlines)

Availability and use of Specification Information

Availability and use of Information About To-Be-Supported Activities

Availability and use of User Population Information

Design-Team Familiarity with System Application Domain

Use of Abstract Design Specifications (e.g. Task Analyses, Interaction Gram-

mars etc)

Particular Descriptive Methodologies Adopted (e.g. JSD, GOMS, LARCH)

Give Reasons

Generation and Testing (formal, informal, iterative, etc)

-559-

Prototype-Interface Evaluation (self -, prospective-user -, experimentally - test-

ed, etc)

Notable Problems (state when they emerged and how they might have been

avoided)

Notable Modifications(state when made and why)

How the Product Interface Was Finalised

Was the Product Interface Satisfactory, if Not Say Why

Rough Initiation and Termination Dates of Project

What You Would Have Done Differently with the Benefit of Hindsight

Do You Know HCI Well as a Discipline, Could it be Useful, (please state

why/why not)

Any Additional Information You Consider Relevant

-560-

Part II

la). The following is a list of possible constraints on design activities. Please rank

any which you experienced in descending order of importance (i.e. 1 is most

important). Feel free to make a) to u) more specific if necessary, by adding to

them.

a) Lack of Autonomy From Parties Outside of Design Team

b) Lack of Guidance From Parties Outside of Team

c) Lack of Authority

d) Oversized Team

e) Undersized Team

f) Undefined Team Member Roles

g) Over-rigid Team Member Roles

h) Lack of Assistance/Collaboration from Client

i) Client Over-Intervention

j) Lack of Information about Tasks

k) Lack of Information about Users

1) Over-casual Approach to Design

m) Over-rigid Approach to Design

n) Over-casual Approach to Evaluation

o) Over Rigid Approach to Evaluation

p) Lack of Experience With HCI

q) Lack of Experience with Interface Design

r) Lack of Information About What Constitutes Interface Design Improvement

s) Lack of Familiarity of Application Domain

t) Complicated Application! Sophistication of Product

u) Inadequate Resources (e.g. Time, Money, Equipment etc)

- 561 -

Rank

Please refer to each item above by its reference letter

2.

3.

4.

5.

6.

7. _________

8.

9.

10.

ib). Any constraints you experienced which are not included above may be ranked

below. To indicate where they would fit in use a sub-index (i.e. 0.1 Disorgani-

sation, 3.1 Sickness, 3.2 War etc)

Rank

-562-

2a). Please read the list of possible information sources and rank those to which you

had access in descending order of importance as in question la. Feel free to

make a) to r) more specific if necessary, by adding to them. N.B. The word ac-

tivity is used to denote tasks, games, learning, etc

a) Scientific/Psychological References on Human Behaviour etc

b) Psychological or HCI Task Analyses of Related Activities

c) Surveys/Reports on Human Characteristics

d) Documentation on Related Activities (e.g.teaching material or manuals)

e) Surveys/Reports on Target User-Groups

f) Specifications of To-Be-Supported Activity

g) Interviews with Non-Prospective-Users about User Group Characteristics

h) Interviews with Prospective-Users about their Characteristics

i) Verbal Task Descriptions from Current Activity Performers

j) Verbal Task Descriptions from Other Persons

k) Observation of Prospective User Activity

1) Observation of Non-Prospective-User Activity

m) Observation of Activity Independent of System Prototype Use

n) Observation of Activity Using Prototype

o) Experimentation with/Testing of Prospective-Users

p) Experimentation with/Testing of Non-Prospective-Users

q) Experimentation on Activity with Prototype

r) Experimentation on Activity without Prototype (e.g. with mock-up)

- 563 -

Rank

Please refer to each item above by its reference letter

1.

2.

3.

4.

5.

6.

7.

8.

9.

2b). Any information sources you used which are not included above may be ranked

below in the same manner as in question lb.

Rank

-564-

3. Please describe briefly (2 to 3 sentences, more if you wish) how you went about

exploiting the information sources you had access to. It would be helpful if you

could describe them in the order of importance, as you have ranked them and

refer to them according to their ranks (e.g. 0.1, 1, 2, 3, 3.1, 3.2, etc)

Rank

-565-

4. Please describe the degree to which you are satisfied with the user-interface as it

was after finalisation. If possible, it would be very helpful if you could include a

list of good, and of bad features about the interface, together with reasons. Write

on the back of this page if you run out of room

-566-

5. Finally, please read the following list of possible relevant aspects of your inter-

face which are of particular interest to me. Next to any aspects which you iried to

incorporate into your interface please write 'Yes' if you succeeded to reach a sa-

tisfactory design solution, and 'No' if you did not. Please feel free to give rea-

Sons and to extend the list.

Many thanks for your time.

Possible Aspects of Your interface

Ease of Learning

High Consistency/Predictability

Low User Confusion

Minimum Interaction Rules

Few Interaction Steps Per Command

Low Error Rates

Good Error Handling

Good Active Help Facilities

Good Passive Help Facilities

Good Manuals

Good Teaching Material

High Discoverability of Existing Functionality

-567-

Modelessness

Well Formed Metaphor

Good Special Key Functions

Easy Use of Mouse

Appropriate Special Input Devices

Good Overall Screen Layout

Good Text Layout

Well Designed Windows

Good Use of Graphics

WYSIWYG

Good Icons

Appropriate Commands

Well Designed Menus

Good Direct Manipulation Tools

Appropriate Colour Coding

Appropriate Functionality

High Reliability

- 568 -

Applicability of HCI Techniques to Systems Interface Design

Appendix 2

Systems Designers' Descriptions of Their
Exploitation of Information Sources

in Features Analysis of Applied
and Commercial Design Practice

Exploitation of Information Sources

Where rankings have been supplied by the respondents these are shown in the

tables. Additional comments, where ranked are described in order according to

their relative importance with respect to other information sources. The information

sources are referred to by the letter associated with them in the following list.

a) Scientific/Psychological References on Human Behaviour etc

b) Psychological or HCI Task Analyses of Related Activities

c) Surveys/Reports on Human Characteristics

d) Documentation on Related Activities (e.g.teaching material or manuals)

e) Surveys/Reports on Target User-Groups

f) Specifications of To-Be-Supported Activity

g) Interviews with Non-Prospective-Users about User Group Characteristics

h) Interviews with Prospective-Users about their Characteristics

i) Verbal Task Descriptions from Current Activity Performers

j) Verbal Task Descriptions from Other Persons

k) Observation of Prospective User Activity

1) Observation of Non-Prospective-User Activity

m) Observation of Activity Independent of System Prototype Use

n) Observation of Activity Using Prototype

o) Experimentation withlresting of Prospective-Users

p) Experimentation with/Testing of Non-Prospective-Users

q) Experimentation on Activity with Prototype

r) Experimentation on Activity without Prototype (e.g. with mock-up)

1A

3A

- 569 -

Source i k a c d g h 1 m n

Rank	 1 2

The Design team collected information directly from potential users.

Used paper tools (Kelly's personal construct theory) to represent system view and

checked these with potential users.

Source e f o p q r

Rank	 1 2 3 4 5 6

e Designers used "this kind of thing" as initial input before respondent joined the

team.

f "Functionality & tick lists" provided by marketing early on "and just filter into the

design."

o, p, q, r All the outputs used similarly: difficulties agreed, solutions proposed,

cost/benefit analysed, changes made.

4A

Source i j	 d k m h n

Rank	 1 2 3 4 5	 6 7

i, j "Talking about the task to be performed led almost automatically to the chosen

design. The users had already divided the task into meaningful subtasks."

d, k, m "Manual systems were highly developed for the task and provided further

structure to the task. I didn't try to draw the charts on the screen, rather to produce

printouts that correspond to the manual summary books."

h "It became clear that the operators were not allowed to alter the system, but that they

had considerable discretion over how to organise their work, e.g. shifts rarely bal-

ance exactly, so the operator has the final word on accepting/rejecting shift figures.

SA

6A

- 570 -

The system however ensures that all sections have been entered before reporting the

discrepancy and sections can be corrected individually, without extensive retyping."

n The designer did get to see the system in daily use "I shared an office with the opera-

tor", but it needed only trivial changes to increase the speed of keying.

Source a n p r

Rank	 1 2 3 4

The design team used people in the company and text from the CHI'84 workshop.

"Even if we had wanted to, there was not enough time to look for further informa-

tion sources. It was not clear where there would be any (we were putting together a

novel system, and did not know who the user base would be)."

Source d	 f	 j	 k	 1	 m	 a	 n h i

Rank	 1	 2	 3	 4	 5	 6	 7	 8 9 10

Source c	 q	 o	 p	 e	 b	 g

Rank	 11	 12	 13	 14	 15	 16	 17

d Searching the related literature in professional publications. Reading a competitor's

documentation. Trying to identify pitfalls, drawbacks, etc from the documented

description.

f Respondent attended in house short course on chip design. Attended exhibitions,

demo's etc of competitors. Collected information from the professional press, and

investigated existing tools.

j Discussions with management.

k Observations of the in-house electronics engineers using existing tools. Discussions

with them getting subjective evaluations of existing tools, and eliciting require-

ments mainly based on drawbacks of existing tools.

1 Observation of in-house software engineers using other tools, observing the

-571 -

learnability process.

m Included in k.

a, b, c, e Searching available literature.

n Tools released for engineers to test and respond to at various stages in the design

process. "The common response was that they ignored the release altogether

due to the bugs which were still in it, and the low level of reliability of the tool,

and would carry on using existing tools."

h Informal discussions were held with engineers and layout designers. They were

useful for identifying deficiencies in existing tools, but not as useful in presenting a

systematic and comprehensive set of requirements. "They were better at reacting

than initiating"

iAsinh.

q Prototype did not stay in-house for experimentation, Various tools were constantly

released in-house. However, the fully integrated prototype was sent out for pros-

pective customers for a three months Beta-testing period.

o No experimentation as such. Observations of use of externally produced existing

tools and various system versions, as it progressed.

p Very minimal in-house experiments on software people "Usually to resolve HCI

arguments when no side was giving in."

7A

Source	 1 k n

Rank	 1 2 3

The only information source was a design team member "using his immediate

experience and his observations for the need of the product and the prospective

users. Once the prototype was working, he tested it and then let prospective users

use it. It was then modified and improved." The other design team member used

experience with other products and own design. "We have not researched the

design interface or the application, we have used experience and watched the users."

- 572 -

9A

Source h o k

Rank	 1 2 3

The designer has had experience of many products this led to the UI being

designed through discussions. Existing products were examined to determine

how they behaved.

1OA

Source f	 q a n

Rank	 1 2 3 4

f Specification of user activity was very global in nature; i.e. ALL user activity would

occur via our interface.

Technical papers Algorithms and overall design was specified using the "technical

references" available.

q Feedback from prototypes helped the team to "fine tune" many aspects of the sys-

tem.

a Use of reaction time information, and information on colour sensitivity. "Would

have liked info on interpretation of colour and symbols."

n Same as for q.

hA

Source d a n k

Rank	 1 2 3 4

Hardware Specifications These were essential to control machine resources.

Papers on Graphics Used to develop graphics algorithms.

Papers on Colour Used to develop algorithms to change between colour models.

Used to develop WYSIWYG colour editors.

-573-

12A

Source n g j	 h e d k o a c

Rank	 1 2 3 4 5 6 7 8 9 10

n Allowed (the potential users) to play with self contained modules of the program to

see where they became confused or managed to disrupt the program. Then

modified the UI and decided on the order of presentation of the modules.

g Consulted with users' supervisors as to whether users would work alone or in

groups, and how much it would be possible to leave them alone; i.e. what level of

sophistication they would be able to deal with unaided.

j A large number of modules was needed, Some were contributed from outside the

design team.

h When users had used the programs under the observation of their supervisors both

were encouraged to suggest problems and improvements.

e, d These were provided by the supervisors' advisor and improvements were made

in consultation with him; e.g. alterations to vocabulaty used on screen/difficulty of

certain aspects of the program.

k, o Users were allowed to use the computers apparently unattended, and their use of

the keyboard noted. Tests were performed to test which types of display were

most noticeable! most readable etc.

a, c Not used much, but helpful in fine tuning the delays & and responses of the sys-

tem to make it feel as natural as possible.

lB

Source h f	 d b a c	 g 1	 o q

Rank	 1 2 3 4 5 6 7 8 9 10

There were two responses from tizis project, however only one gave elaborations on

how information sources were exploited.

h User requirements analysis on document preparation (the application domain)

was very important. Opened up a lot of possible areas for adaption; used "rich pic-

tures" to show the user requirements analysis on each person.

- 574 -

f From h it was possible to identify a product which could incorporate various areas of

adaption and thus provide a design/chart-of-areas-to-be-researched.

3B

Source d

Rank	 1

Experience with "spy" "Spy set a standard that I sought to equal using techniques

that assured the user that he/she knew what was going on. I sought to use some of

the principles used in spy in my own work."

Experience with previous UI product design "On an earlier project I had the oppor-

tunity to work directly with users of the package I was building, and respond

directly to feedback I received. This was a useful experience."

d The package used "enables a good UI to be constructed in a remarkably short time...

has some annoying features and the original manual was atrocious, but it provides a

very productive environment, with a resulting interface that I can be proud of."

Demo program of the package used Because of weaknesses in the package used

"demo programs were essential in getting me on the right track in the begin-

ning."

4B

Source n h o q r

Rank	 1 2 3 4 5

Reference Manual of the graphical toolkit used. Source code of existing applica-

tions which shared features with the new application. Systems manuals.

5B

6B

7B

8B

- 575 -

Source i	 k o n

Rank	 1 2 3 4

Existing interactive graphics modelling programs and literature relating thereto.

Existing demo programs for workstations. Computer manufacturers literature and

manuals.

Source b f k I	 m a

Rank	 1 2 3 4 5 6

"We wrote the usability spec. We researched related activities and different inter-
faces.

Source h f e k o n

Rank	 1 2 3 4 5 6

"Client visited us to see some early versions; some useful feedback. We used our

own internal reviews as we had a simulated system to interface to."

Source m k f d i	 g n q

Rank	 1	 2 3 4 5 6 7 8

m, k Design team very familiar with application domain; used intuition to deter-
mine the most helpful UI.

f "Design team member wrote a document describing formally the model of

-576-

theorem proving (the application domain) we would support. he based it on papers

by mathematicians [application domain experts]."

d "There have been a number of systems like ours, though with not so good HCI. We

did a survey of these."

i, g "Informal commentary from mathematicians [application domain experts] during

our design conferences."

n, q "We built a prototype system, tried it out ourselves and showed it around a

lot."

ic

Source	 h	 f	 i

Rank	 1 2 3

Talking to the estimators (application domain expert potential users), understanding

what went in to building up an estimate. Did not talk to eniry clerks (non-

application domain expert potential users) who would have to use the system.

2C

Source f d p o

Rank	 1 2 3 4

Technical support; IMS Experts Talked to company experts when advice needed.

f "Documentation; read manuals/standards documents."

d "Specification; developed specifications and used them as guidelines."

p, o "Testing with users and non-users; used to check response times and other

problems and acceptability to user department."

4C

- 577 -

Source i	 h k o p

bank	 1 2 3 4 5

i Design team reviewed client's written job descriptions.

h Interviewed clients to determine how the job was currently done.

k Observed clients in workplace.

o Tested UI design (e.g. screens) with non-clients.

p Tested screens with clients.

- 578 -

Applicability of' HCI Techniques to Systems Interface Design

Appendix 3

Systems Designers' Descriptions of Their
Satisfaction with UI Product of Design

in Features Analysis of Applied
and Commercial Design Practice

The respondents views of their Uls are shown here. Some have included good and

bad features. These responses are not assumed to reflect objective features of the

UI, merely to indicate what designers typically regard as good and bad features of

Uls which they themselves have designed.

1A It was appropriate because "it struck an acceptable balance between a user and sys-

tern driven dialogue."

3A Due to extensive usability tests and problems found, designers are going on to

implement extensive changes [project not completed].

Bad Features: Ulis complex and difficult to use and remember.

Mechanisms for search tasks [crucial to the filing and retrieval

application] slow and clumsy.

4A Respondent thinks the UI is very good.

Good Features: Uniformity. Menus approach to all screens, two formats used con-

sistently for (a) select subtask and (b) action within subtask. "Esc"

used for return to previous menu. "Fixed meanings" for naviga-

tion keys, inclLlding skip back.

No stupid questions and relevant menus appearing only when

valid.

6A

5A

- 579 -

Interface division matches task division.

Streamlined, e.g. menu actions only require one keystroke.

Configuration file ensures that data collected exactly matches local

requirements, users' locally chosen names etc.

Bad Features: Bad hardware

Configuration aspects not flexible enough.

Good Features: Consistency of concepts throughout. Careful with names and

relationships.

Use of window types as modes.

Consistent use of function keys/menu items between modes.

Command key meanings displayed - non-valid ones are dimmed.

Splitting of screen into areas with different meanings.

Bad Features : Technological restrictions of the display to PC text/graphics char-

acters (not a real window system)

Amount of mode swapping necessary to complete the task (even

though structure of modes reflects the parts of the task).

Bad Features : "The use of this system was quite difficult to master. It could even

be said that the mouse buttons were overloaded with functionality

which wasn't necessarily 'common sensible' or easy to explore."

-580-

"System-wide uniformity was not always maintained, usually as a

result of implementation constraints. The end result was that there

were too many exceptions to each rule."

"Response time of system wasn't really satisfactory, with its worst

effect on direct manipulation, pop-up menus etc."

7A The respondent was satisfied with the UI.

Good Features: "Simple uncluttered screens."

"Good use of colour, though not too flash."

"Fast display."

"Pop-up windows to select options. The text in windows is easily

configured outside the program."

"This configuration means that the users only see the options

applicable to each of them. Hence they are not confused by

unusual options."

"Good use of function keys."

"Standardisation of function keys wherever possible."

"Very few key presses to make selections etc."

"Good use of sound."

Bad Features : "Function key descriptions are not always descriptive enough."

"Program does not always show order that the function keys

should be used in."

"Tried to avoid hidden key presses (screen mostly displays which

- 581 -

keys are currently available). However some key presses are not

displayed.'

8A "Although the UI is easy to use and looks 'good', there are now on site a prolifera-

tion of screen driven systems, all accessible from any terminal. These systems run

on various types of hardware. Some are bespoke and many are packages. It would

be helpful if they could all be driven similarly, e.g. common semantics, use of func-

tion keys etc, in order that users did not have to do the mental switch and use the

help functions."

9A "The interface was a success."

1OA "The only real problem with the interface was that it was not complete, this meant

greater difficulties in programming for it than were necessary, and

the user having to resort to traditional interaction styles too often."

hA "Not all Uls completed since project terminated; for those that were:"

Good Features: Simple

Good feedback

Quick.

Bad Features : No help

Not for completely naive user.

Demands knowledge of graphics hardware.

12A "Within the limitations of a simple microcomputer, the UI performed well."

Good Features: The UI was robust despite the lack of skill of some users; it never

got stuck, or failed to respond sensibly to input.

Bad Features : The biggest fault was a certain amount of inconsistency between

-582-

modules in the UI; 'this is not entirely undesirable, as it provided

practice in a variety of skills for the user."

3B "The interface is excellent.' It is frequently sought for demo's.

Good Features: 'The graphics output is impressive."

"The UI provides an illustration of what can be achieved with a

modern colour graphics workstation and the right software tools."

Bad Features : There are flaws because of some limitations in the development

package.

4B The UI is "Reasonably satisfactory (about 7/10)."

Good Features: "It conforms closely to the accepted house style."

"It is simple, efficient and fairly modeless."

Bad Features : 'It has to be compromised because of shortcomings in the underly-

ing system."

"Users unfamiliar with the house style may experience

difficulties."

"No on-line help apart from a manual page."

SB Design team is sufficiently well pleased with the outcome to embark on a continu-

ing programme of development of more sophisticated software of this type.

Good Features: The UI is fast

It is easy to learn and use (it is used in teaching in a university and

commercially in the UK and abroad).

Bad Features : Does not make use of more sophisticated features which are

'C

2C

- 583 -

available on workstations. Largely, this is because workstation

hardware and software has been developed in parallel with this

work.

7B "As always, a second go would be nice - however the client wanted a working sys-

tem. There was little iteration to incorporate user experience into a design change.

The client did not want a mouse/WIMP system - they wanted low cost and quick

delivery."

Good Features: The UI is simple.

Easy for other programmers to change.

Bad Features : The UI uses the Xenix libraries. Subsequent updates to the Xenix

system have caused software compatibility problems.

Good Features: Gathers all information.

Has cross check on data entry.

Good audit procedures.

Easy to follow procedures.

Bad Features : Cross check on data entry not liked by clerks - depends on double

entry.

Good Features: Works efficiently.

Reliable.

Software has not needed major amendments.

-584-

Central to system currently used.

Bad Features : Lack of agreement in user department on some of the require-

ments still persists.

Communications support required.

4C Not really satisfied. "UI really centred about the use of the VDU."

Bad Features: Poor when implemented.

Improved after maintenance/change, but still not good.

Very limited by state of the art of the old VDUs, e.g. no colour, no

highlighting, no menus, no mouse, no graphics, only upper case

letters etc (this project took place during 1975 -1976)

5C "It worked. One is quite limited with what one can do with" the application

involved.

-585-

Applicability of IICI Techniques to Systems Interface Design

Appendix 4

Designer Interview Structure From the Interview Based
Investigation of Applied and Commercial Design Practice

Stage 1.

1. Designer describes general tasks supported by the system.

2. Designer describes envisaged user population.

3. Designer describes own role in the design process with respect to impact on end-

user interface.

Interviewer relies on checklist of points and questions to ensure appropriate cover-

age.

Stage 2.

General and specific points concerning design decisions discussed. Interviewer to

include particular interface characteristics of:

i) The pri,nary system ii) Sources of information used in design iii) Con-

straints on design activicv

Designer to determine the content. Interviewer uses the checklist of general and

specific points relating to the system under discussion. If the system in question is

available, it should be referred to.

-586-

Stage 3.

Designer discusses design philosophy and issues more generally.

- 587 -

Checklist for Interview

User Population

Predictability of user population

Homogeneity/heterogeneity

Age group(s)

Professional or private users

General experience

Previous system training

Planned training

Probable frequency of interactions

Probable Length of interaction sessions

Application(s)

Programming

Design

Drawing

Office tasks

Editing

Teaching

Monitoring

Data analysis

Information retrieval

Project planning

Expert system

Games

Other

System Information presentation

Text lay-out

Windows

Menus

Icons

- 588 -

Graphical

Other

Input Devices

Keypad

Special key functions

Mouse

Joystick

Touch screen

Light pen

Other

Input Methods

Command language

Menu selection

Special tools

User's System Model

Manuals

Help facilities (active/passive)

Error messages

Well-formed metaphor

Consistency/predictability

Modelessness

Discoverability of functionality

- 589 -

Applicability of IICI Techniques to Systems Interface Design

Appendix 5

HCI Practitioner Interview Structure

Stage 1.

1. Interviewee describes own background with respect to HCI and

computer system design experience

2. Interviewee describes organisation(s) within which s/he

practices/d

3. Interviewee describes Team structure (plus roles) within which

s/he works/d

Stage 2.

1. Interviewee lists as many as possible HCI or SAD Techniques

applied, successfully or otherwise

2. Interviewee ranks these in order of their usefulness (perceived

or otherwise)

3. Starting with the highest ranking, the interviewee discusses

each technique in turn.

Stage 3.

-590-

For each technique interviewee describes situations within

which it was applied in terms of the following:

1. End product function(s), type of interface (e.g. WYSIWYG) &

prospective users

2. Design-team familiarity with system application domain

3. Roles of organisations involved (own, client, marketers etc)

4. Your particular role in the design of the interface

5. Human/technological resources (research, hardware, etc) & time

resources (e.g. person-hours, deadlines)

6. Collection of information about client requirements, user

requirements, tasks, objects, processes etc.

7. Analysis of information

8. Was the technique used in a manner that was independent of

or integrated with the rest of the design process

9. Top-down, bottom-up, modular or incremental in approach

(which best)

10. The scope of the technique used (aims, targets, output etc)

11. Usability metrics associated with technique (if any)

12. Utility, translatability, compatibility with other specs

13. Comprehensibility by expert, non-expert, user

14. Generation and V&V (formal, informal, iterative, etc). Evaluation

(self-, user-, experimental etc)

- 591 -

15. Notable problems & modifications

16. Satisfactoriness of the product when finalised (why finalised)

17. What you would have done differently with the benefit of

hindsight

18. Any additional information

Possible constraints on design activities

Interviewee ranks any experienced in descending order of importance

(i.e. 1 is most important).

1.

2.

3.

4.

5.

6.

Information Sources

What information sources were used during the design process?

How were these exploited?

-592-

Stage 4.

Practitioner discusses design philosophy and issues more

generally.

1. What types of techniques and methodologies are generally the most

useful and why.

2. Which are the easiest for the HCI Expert to apply.

3. Which are the easiest for the non-expert to apply.

4. Which techniques and methodologies can provide the most

comprehensible output for implementors and user-evaluators.

5. Do the properties of a user-tested final prototype form the

basis for requirements specification.

6. Do methodologies provide clear information on how to obtain the

relevant information required to support their application.

7. What kinds of abstraction/specification are most easily used

for representation/evaluation by other members of the design

team/clients/users etc.

8. Is there such a thing as a useful evaluative grammar for the

user-interface. If so what are the appropriate targets of

description, metrics etc.

9. Are tools such as UIMS, Applications Generators etc useful aids.

10. Are tools which model user cognitive processes useful - say how

11. Are HCI design methodologies useful - how

12. Is an approach which can be incorporated with the rest of

-593-

design better that one which is independent but which also

yields compatible results.

	DX200687_1_0001.tif
	DX200687_1_0005.tif
	DX200687_1_0007.tif
	DX200687_1_0009.tif
	DX200687_1_0011.tif
	DX200687_1_0013.tif
	DX200687_1_0015.tif
	DX200687_1_0017.tif
	DX200687_1_0019.tif
	DX200687_1_0021.tif
	DX200687_1_0023.tif
	DX200687_1_0025.tif
	DX200687_1_0027.tif
	DX200687_1_0029.tif
	DX200687_1_0031.tif
	DX200687_1_0033.tif
	DX200687_1_0035.tif
	DX200687_1_0037.tif
	DX200687_1_0039.tif
	DX200687_1_0041.tif
	DX200687_1_0043.tif
	DX200687_1_0045.tif
	DX200687_1_0047.tif
	DX200687_1_0049.tif
	DX200687_1_0051.tif
	DX200687_1_0053.tif
	DX200687_1_0055.tif
	DX200687_1_0057.tif
	DX200687_1_0059.tif
	DX200687_1_0061.tif
	DX200687_1_0063.tif
	DX200687_1_0065.tif
	DX200687_1_0067.tif
	DX200687_1_0069.tif
	DX200687_1_0071.tif
	DX200687_1_0073.tif
	DX200687_1_0075.tif
	DX200687_1_0077.tif
	DX200687_1_0079.tif
	DX200687_1_0081.tif
	DX200687_1_0083.tif
	DX200687_1_0085.tif
	DX200687_1_0087.tif
	DX200687_1_0089.tif
	DX200687_1_0091.tif
	DX200687_1_0093.tif
	DX200687_1_0095.tif
	DX200687_1_0097.tif
	DX200687_1_0099.tif
	DX200687_1_0101.tif
	DX200687_1_0103.tif
	DX200687_1_0105.tif
	DX200687_1_0107.tif
	DX200687_1_0109.tif
	DX200687_1_0111.tif
	DX200687_1_0113.tif
	DX200687_1_0115.tif
	DX200687_1_0117.tif
	DX200687_1_0119.tif
	DX200687_1_0121.tif
	DX200687_1_0123.tif
	DX200687_1_0125.tif
	DX200687_1_0127.tif
	DX200687_1_0129.tif
	DX200687_1_0131.tif
	DX200687_1_0133.tif
	DX200687_1_0135.tif
	DX200687_1_0137.tif
	DX200687_1_0139.tif
	DX200687_1_0141.tif
	DX200687_1_0143.tif
	DX200687_1_0145.tif
	DX200687_1_0147.tif
	DX200687_1_0149.tif
	DX200687_1_0151.tif
	DX200687_1_0153.tif
	DX200687_1_0155.tif
	DX200687_1_0157.tif
	DX200687_1_0159.tif
	DX200687_1_0161.tif
	DX200687_1_0163.tif
	DX200687_1_0165.tif
	DX200687_1_0167.tif
	DX200687_1_0169.tif
	DX200687_1_0171.tif
	DX200687_1_0173.tif
	DX200687_1_0175.tif
	DX200687_1_0177.tif
	DX200687_1_0179.tif
	DX200687_1_0181.tif
	DX200687_1_0183.tif
	DX200687_1_0185.tif
	DX200687_1_0187.tif
	DX200687_1_0189.tif
	DX200687_1_0191.tif
	DX200687_1_0193.tif
	DX200687_1_0195.tif
	DX200687_1_0197.tif
	DX200687_1_0199.tif
	DX200687_1_0201.tif
	DX200687_1_0203.tif
	DX200687_1_0205.tif
	DX200687_1_0207.tif
	DX200687_1_0209.tif
	DX200687_1_0211.tif
	DX200687_1_0213.tif
	DX200687_1_0215.tif
	DX200687_1_0217.tif
	DX200687_1_0219.tif
	DX200687_1_0221.tif
	DX200687_1_0223.tif
	DX200687_1_0225.tif
	DX200687_1_0227.tif
	DX200687_1_0229.tif
	DX200687_1_0231.tif
	DX200687_1_0233.tif
	DX200687_1_0235.tif
	DX200687_1_0237.tif
	DX200687_1_0239.tif
	DX200687_1_0241.tif
	DX200687_1_0243.tif
	DX200687_1_0245.tif
	DX200687_1_0247.tif
	DX200687_1_0249.tif
	DX200687_1_0251.tif
	DX200687_1_0253.tif
	DX200687_1_0255.tif
	DX200687_1_0257.tif
	DX200687_1_0259.tif
	DX200687_1_0261.tif
	DX200687_1_0263.tif
	DX200687_1_0265.tif
	DX200687_1_0267.tif
	DX200687_1_0269.tif
	DX200687_1_0271.tif
	DX200687_1_0273.tif
	DX200687_1_0275.tif
	DX200687_1_0277.tif
	DX200687_1_0279.tif
	DX200687_1_0281.tif
	DX200687_1_0283.tif
	DX200687_1_0285.tif
	DX200687_1_0287.tif
	DX200687_1_0289.tif
	DX200687_1_0291.tif
	DX200687_1_0293.tif
	DX200687_1_0295.tif
	DX200687_1_0297.tif
	DX200687_1_0299.tif
	DX200687_1_0301.tif
	DX200687_1_0303.tif
	DX200687_1_0305.tif
	DX200687_1_0307.tif
	DX200687_1_0309.tif
	DX200687_1_0311.tif
	DX200687_1_0313.tif
	DX200687_1_0315.tif
	DX200687_1_0317.tif
	DX200687_1_0319.tif
	DX200687_1_0321.tif
	DX200687_1_0323.tif
	DX200687_1_0325.tif
	DX200687_1_0327.tif
	DX200687_1_0329.tif
	DX200687_1_0331.tif
	DX200687_1_0333.tif
	DX200687_1_0335.tif
	DX200687_1_0337.tif
	DX200687_1_0339.tif
	DX200687_1_0341.tif
	DX200687_1_0343.tif
	DX200687_1_0345.tif
	DX200687_1_0347.tif
	DX200687_1_0349.tif
	DX200687_1_0351.tif
	DX200687_1_0353.tif
	DX200687_1_0355.tif
	DX200687_1_0357.tif
	DX200687_1_0359.tif
	DX200687_1_0361.tif
	DX200687_1_0363.tif
	DX200687_1_0365.tif
	DX200687_1_0367.tif
	DX200687_1_0369.tif
	DX200687_1_0371.tif
	DX200687_1_0373.tif
	DX200687_1_0375.tif
	DX200687_1_0377.tif
	DX200687_1_0379.tif
	DX200687_1_0381.tif
	DX200687_1_0383.tif
	DX200687_1_0385.tif
	DX200687_1_0387.tif
	DX200687_1_0389.tif
	DX200687_1_0391.tif
	DX200687_1_0393.tif
	DX200687_1_0395.tif
	DX200687_1_0397.tif
	DX200687_1_0399.tif
	DX200687_1_0401.tif
	DX200687_1_0403.tif
	DX200687_1_0405.tif
	DX200687_1_0407.tif
	DX200687_1_0409.tif
	DX200687_1_0411.tif
	DX200687_1_0413.tif
	DX200687_1_0415.tif
	DX200687_1_0417.tif
	DX200687_1_0419.tif
	DX200687_1_0421.tif
	DX200687_1_0423.tif
	DX200687_1_0425.tif
	DX200687_1_0427.tif
	DX200687_1_0429.tif
	DX200687_1_0431.tif
	DX200687_1_0433.tif
	DX200687_1_0435.tif
	DX200687_1_0437.tif
	DX200687_1_0439.tif
	DX200687_1_0441.tif
	DX200687_1_0443.tif
	DX200687_1_0445.tif
	DX200687_1_0447.tif
	DX200687_1_0449.tif
	DX200687_1_0451.tif
	DX200687_1_0453.tif
	DX200687_1_0455.tif
	DX200687_1_0457.tif
	DX200687_1_0459.tif
	DX200687_1_0461.tif
	DX200687_1_0463.tif
	DX200687_1_0465.tif
	DX200687_1_0467.tif
	DX200687_1_0469.tif
	DX200687_1_0471.tif
	DX200687_1_0473.tif
	DX200687_1_0475.tif
	DX200687_1_0477.tif
	DX200687_1_0479.tif
	DX200687_1_0481.tif
	DX200687_1_0483.tif
	DX200687_1_0485.tif
	DX200687_1_0487.tif
	DX200687_1_0489.tif
	DX200687_1_0491.tif
	DX200687_1_0493.tif
	DX200687_1_0495.tif
	DX200687_1_0497.tif
	DX200687_1_0499.tif
	DX200687_1_0501.tif
	DX200687_1_0503.tif
	DX200687_1_0505.tif
	DX200687_1_0507.tif
	DX200687_1_0509.tif
	DX200687_1_0511.tif
	DX200687_1_0513.tif
	DX200687_1_0515.tif
	DX200687_1_0517.tif
	DX200687_1_0519.tif
	DX200687_1_0521.tif
	DX200687_1_0523.tif
	DX200687_1_0525.tif
	DX200687_1_0527.tif
	DX200687_1_0529.tif
	DX200687_1_0531.tif
	DX200687_1_0533.tif
	DX200687_1_0535.tif
	DX200687_1_0537.tif
	DX200687_1_0539.tif
	DX200687_1_0541.tif
	DX200687_1_0543.tif
	DX200687_1_0545.tif
	DX200687_1_0547.tif
	DX200687_1_0549.tif
	DX200687_1_0551.tif
	DX200687_1_0553.tif
	DX200687_1_0555.tif
	DX200687_1_0557.tif
	DX200687_1_0559.tif
	DX200687_1_0561.tif
	DX200687_1_0563.tif
	DX200687_1_0565.tif
	DX200687_1_0567.tif
	DX200687_1_0569.tif
	DX200687_1_0571.tif
	DX200687_1_0573.tif
	DX200687_1_0575.tif
	DX200687_1_0577.tif
	DX200687_1_0579.tif
	DX200687_1_0581.tif
	DX200687_1_0583.tif
	DX200687_1_0585.tif
	DX200687_1_0587.tif
	DX200687_1_0589.tif
	DX200687_1_0591.tif
	DX200687_1_0593.tif
	DX200687_1_0595.tif
	DX200687_1_0597.tif
	DX200687_1_0599.tif
	DX200687_1_0601.tif
	DX200687_1_0603.tif
	DX200687_1_0605.tif
	DX200687_1_0607.tif
	DX200687_1_0609.tif
	DX200687_1_0611.tif
	DX200687_1_0613.tif
	DX200687_1_0615.tif
	DX200687_1_0617.tif
	DX200687_1_0619.tif
	DX200687_1_0621.tif
	DX200687_1_0623.tif
	DX200687_1_0625.tif
	DX200687_1_0627.tif
	DX200687_1_0629.tif
	DX200687_1_0631.tif
	DX200687_1_0633.tif
	DX200687_1_0635.tif
	DX200687_1_0637.tif
	DX200687_1_0639.tif
	DX200687_1_0641.tif
	DX200687_1_0643.tif
	DX200687_1_0645.tif
	DX200687_1_0647.tif
	DX200687_1_0649.tif
	DX200687_1_0651.tif
	DX200687_1_0653.tif
	DX200687_1_0655.tif
	DX200687_1_0657.tif
	DX200687_1_0659.tif
	DX200687_1_0661.tif
	DX200687_1_0663.tif
	DX200687_1_0665.tif
	DX200687_1_0667.tif
	DX200687_1_0669.tif
	DX200687_1_0671.tif
	DX200687_1_0673.tif
	DX200687_1_0675.tif
	DX200687_1_0677.tif
	DX200687_1_0679.tif
	DX200687_1_0681.tif
	DX200687_1_0683.tif
	DX200687_1_0685.tif
	DX200687_1_0687.tif
	DX200687_1_0689.tif
	DX200687_1_0691.tif
	DX200687_1_0693.tif
	DX200687_1_0695.tif
	DX200687_1_0697.tif
	DX200687_1_0699.tif
	DX200687_1_0701.tif
	DX200687_1_0703.tif
	DX200687_1_0705.tif
	DX200687_1_0707.tif
	DX200687_1_0709.tif
	DX200687_1_0711.tif
	DX200687_1_0713.tif
	DX200687_1_0715.tif
	DX200687_1_0717.tif
	DX200687_1_0719.tif
	DX200687_1_0721.tif
	DX200687_1_0723.tif
	DX200687_1_0725.tif
	DX200687_1_0727.tif
	DX200687_1_0729.tif
	DX200687_1_0731.tif
	DX200687_1_0733.tif
	DX200687_1_0735.tif
	DX200687_1_0737.tif
	DX200687_1_0739.tif
	DX200687_1_0741.tif
	DX200687_1_0743.tif
	DX200687_1_0745.tif
	DX200687_1_0747.tif
	DX200687_1_0749.tif
	DX200687_1_0751.tif
	DX200687_1_0753.tif
	DX200687_1_0755.tif
	DX200687_1_0757.tif
	DX200687_1_0759.tif
	DX200687_1_0761.tif
	DX200687_1_0763.tif
	DX200687_1_0765.tif
	DX200687_1_0767.tif
	DX200687_1_0769.tif
	DX200687_1_0771.tif
	DX200687_1_0773.tif
	DX200687_1_0775.tif
	DX200687_1_0777.tif
	DX200687_1_0779.tif
	DX200687_1_0781.tif
	DX200687_1_0783.tif
	DX200687_1_0785.tif
	DX200687_1_0787.tif
	DX200687_1_0789.tif
	DX200687_1_0791.tif
	DX200687_1_0793.tif
	DX200687_1_0795.tif
	DX200687_1_0797.tif
	DX200687_1_0799.tif
	DX200687_1_0801.tif
	DX200687_1_0803.tif
	DX200687_1_0805.tif
	DX200687_1_0807.tif
	DX200687_1_0809.tif
	DX200687_1_0811.tif
	DX200687_1_0813.tif
	DX200687_1_0815.tif
	DX200687_1_0817.tif
	DX200687_1_0819.tif
	DX200687_1_0821.tif
	DX200687_1_0823.tif
	DX200687_1_0825.tif
	DX200687_1_0827.tif
	DX200687_1_0829.tif
	DX200687_1_0831.tif
	DX200687_1_0833.tif
	DX200687_1_0835.tif
	DX200687_1_0837.tif
	DX200687_1_0839.tif
	DX200687_1_0841.tif
	DX200687_1_0843.tif
	DX200687_1_0845.tif
	DX200687_1_0847.tif
	DX200687_1_0849.tif
	DX200687_1_0851.tif
	DX200687_1_0853.tif
	DX200687_1_0855.tif
	DX200687_1_0857.tif
	DX200687_1_0859.tif
	DX200687_1_0861.tif
	DX200687_1_0863.tif
	DX200687_1_0865.tif
	DX200687_1_0867.tif
	DX200687_1_0869.tif
	DX200687_1_0871.tif
	DX200687_1_0873.tif
	DX200687_1_0875.tif
	DX200687_1_0877.tif
	DX200687_1_0879.tif
	DX200687_1_0881.tif
	DX200687_1_0883.tif
	DX200687_1_0885.tif
	DX200687_1_0887.tif
	DX200687_1_0889.tif
	DX200687_1_0891.tif
	DX200687_1_0893.tif
	DX200687_1_0895.tif
	DX200687_1_0897.tif
	DX200687_1_0899.tif
	DX200687_1_0901.tif
	DX200687_1_0903.tif
	DX200687_1_0905.tif
	DX200687_1_0907.tif
	DX200687_1_0909.tif
	DX200687_1_0911.tif
	DX200687_1_0913.tif
	DX200687_1_0915.tif
	DX200687_1_0917.tif
	DX200687_1_0919.tif
	DX200687_1_0921.tif
	DX200687_1_0923.tif
	DX200687_1_0925.tif
	DX200687_1_0927.tif
	DX200687_1_0929.tif
	DX200687_1_0931.tif
	DX200687_1_0933.tif
	DX200687_1_0935.tif
	DX200687_1_0937.tif
	DX200687_1_0939.tif
	DX200687_1_0941.tif
	DX200687_1_0943.tif
	DX200687_1_0945.tif
	DX200687_1_0947.tif
	DX200687_1_0949.tif
	DX200687_1_0951.tif
	DX200687_1_0953.tif
	DX200687_1_0955.tif
	DX200687_1_0957.tif
	DX200687_1_0959.tif
	DX200687_1_0961.tif
	DX200687_1_0963.tif
	DX200687_1_0965.tif
	DX200687_1_0967.tif
	DX200687_1_0969.tif
	DX200687_1_0971.tif
	DX200687_1_0973.tif
	DX200687_1_0975.tif
	DX200687_1_0977.tif
	DX200687_1_0979.tif
	DX200687_1_0981.tif
	DX200687_1_0983.tif
	DX200687_1_0985.tif
	DX200687_1_0987.tif
	DX200687_1_0989.tif
	DX200687_1_0991.tif
	DX200687_1_0993.tif
	DX200687_1_0995.tif
	DX200687_1_0997.tif
	DX200687_1_0999.tif
	DX200687_1_1001.tif
	DX200687_1_1003.tif
	DX200687_1_1005.tif
	DX200687_1_1007.tif
	DX200687_1_1009.tif
	DX200687_1_1011.tif
	DX200687_1_1013.tif
	DX200687_1_1015.tif
	DX200687_1_1017.tif
	DX200687_1_1019.tif
	DX200687_1_1021.tif
	DX200687_1_1023.tif
	DX200687_1_1025.tif
	DX200687_1_1027.tif
	DX200687_1_1029.tif
	DX200687_1_1031.tif
	DX200687_1_1033.tif
	DX200687_1_1035.tif
	DX200687_1_1037.tif
	DX200687_1_1039.tif
	DX200687_1_1041.tif
	DX200687_1_1043.tif
	DX200687_1_1045.tif
	DX200687_1_1047.tif
	DX200687_1_1049.tif
	DX200687_1_1051.tif
	DX200687_1_1053.tif
	DX200687_1_1055.tif
	DX200687_1_1057.tif
	DX200687_1_1059.tif
	DX200687_1_1061.tif
	DX200687_1_1063.tif
	DX200687_1_1065.tif
	DX200687_1_1067.tif
	DX200687_1_1069.tif
	DX200687_1_1071.tif
	DX200687_1_1073.tif
	DX200687_1_1075.tif
	DX200687_1_1077.tif
	DX200687_1_1079.tif
	DX200687_1_1081.tif
	DX200687_1_1083.tif
	DX200687_1_1085.tif
	DX200687_1_1087.tif
	DX200687_1_1089.tif
	DX200687_1_1091.tif
	DX200687_1_1093.tif
	DX200687_1_1095.tif
	DX200687_1_1097.tif
	DX200687_1_1099.tif
	DX200687_1_1101.tif
	DX200687_1_1103.tif
	DX200687_1_1105.tif
	DX200687_1_1107.tif
	DX200687_1_1109.tif
	DX200687_1_1111.tif
	DX200687_1_1113.tif
	DX200687_1_1115.tif
	DX200687_1_1117.tif
	DX200687_1_1119.tif
	DX200687_1_1121.tif
	DX200687_1_1123.tif
	DX200687_1_1125.tif
	DX200687_1_1127.tif
	DX200687_1_1129.tif
	DX200687_1_1131.tif
	DX200687_1_1133.tif
	DX200687_1_1135.tif
	DX200687_1_1137.tif
	DX200687_1_1139.tif
	DX200687_1_1141.tif
	DX200687_1_1143.tif
	DX200687_1_1145.tif
	DX200687_1_1147.tif
	DX200687_1_1149.tif
	DX200687_1_1151.tif
	DX200687_1_1153.tif
	DX200687_1_1155.tif
	DX200687_1_1157.tif
	DX200687_1_1159.tif
	DX200687_1_1161.tif
	DX200687_1_1163.tif
	DX200687_1_1165.tif
	DX200687_1_1167.tif
	DX200687_1_1169.tif
	DX200687_1_1171.tif
	DX200687_1_1173.tif
	DX200687_1_1175.tif
	DX200687_1_1177.tif
	DX200687_1_1179.tif
	DX200687_1_1181.tif
	DX200687_1_1183.tif
	DX200687_1_1185.tif
	DX200687_1_1187.tif
	DX200687_1_1189.tif
	DX200687_1_1191.tif
	DX200687_1_1193.tif

