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ABSTRACT

A real dynamic plant is used to compare, test and assess

the present theoretical techniques of adaptive, learning or

intelligent control under practical criteria. Work of this

nature has yet to be carried out if "intelligent control" is

to have a place in everyday practice.

The project follows a natural pattern of development, the

construction of computer programmes being an important part of

it.

First, a. real plant - a model steam engine - and its

electronic interface with a general purpose digital computer

are designed and built as part of the project. A rough math-

ematical model of the plant is then obtained through identific-

ation tests.

Second, conventional control of the plant is effected

using digital techniques and the above mentioned mathematical

model, and the results are saved to compare with and evaluate

the results of "intelligent control".

Third, a few well-known adaptive or learning control al-

gorithms are investigated and implemented. These tests bring

out certain practical problems not encountered or not given due

consideration in theoretical or simulation studies. Alternat-

ively, these problems materialise because assumptions made on

paper are not readily available in practice. The most import-

ant of these problematic. assumptions are those relating to

computational time and storage, convergence of the adaptive or

learning algorithm and the training of the controller. The

human operator as a distinct candidate for the trainer is also

considered and the problems therein are discussed.

Finally, the notion of fuzzy sets and logic is viewed

from the control point and a controller using this approach is

developed and implemented. The operational advantages and the

results obtained, albeit preliminary, demonstrate the potential

power of this notion and provide the grounds for further work

in this area.
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CHAPTER 1

INTRODUCTION

1.1 ARTIFICIAL INTELLIGENCE AND CONTROL: MOTIVATION

The study reported in this dissertation concerns

the faculty of control engineering. It is only natural, there-

fore, to start by asking what is 'artificial intelligence' and

what is implied by 'intelligent control'?

Basically, the scope of artificial intelligence

(Al) embodies any study or research which has as its prime pur-

pose the construction of either a computer programme (software)

or a physical device (hardware) which exhibits intelligent be-

haviour (Feigenbaum and Feldman, 1963). The term 'intelligent'

here implies not only a behaviour exhibiting the faculties of

understanding and reasoning, according to its usual definition

in the English language, but also one which is par excellence

'goal-seeking' through the acquisition of 'experience' and the

process of 'learning'. In other words, implicit in the meaning

of intelligence is the power of 'appropriate selection'. Some

workers in the field of Al hold the strong view that such

behaviour can be found only in humans, by virtue of their

natural endowments, and therefore an 'intelligent machine'

(software or hardware) cannot be constructed (Feigenbaum arid

Feldman, 1963). On the other hand, for whatever reason that

has motivated it, much research has been done, and is still

being done in the simulation of 'cognitive processes' and the

construction of intelligent machines (Samuel, 1959, 1967;

Ernst and Newell, 1969; Rosenblatt, 1962; Gaines and Andreae,

1966; Nilsson, 1969). For the control engineer it suffices to

go just this far on the philosophical aspects of intelligent

behaviour before turning attention to a more practical, and

perhaps a more urgent question: (MOTIVATION) The applicability

of the knowledge and techniques available in the field of Al

to control problems.

If an intelligent machine is defined as a

system which gathers information (experience), and processes

it appropriately and with efficiency (learning), so as to

achieve a high intensity of appropriate selection (control),
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then the possibility of applying techniques of Al to control

becomes obvious. It is misleading and perhaps unfortunate,

however, when the expression 'intelligent control' is used

sometimes in the literature according to the above definition

(Fu, 1971). For, if appropriate selection is an act of

intelligence, then is not a conventional controller

intelligent?

1.2 THE MAIN OBJECTIVES OF THE STUDY

The applicability of Al techniques to control

problems has been extensively studied in the past and many

encouraging results have been reported in the literature

(Widrow and Smith, 196 14; Gaines and Andreae, 1966; Mendel,

1967; Fu, 1970). However, there is one obtrusive gap in these

studies which is due to the general neglect of supplementing

theoretical and simulation work with practical experimentation.

It is indeed very natural in any science to develop the theory

first and test the validity of the theory in a simulated

environment next. But in engineering applications, it is also

as important to have a third stage:(OBJECTIVE) Test for

validity on the real system as a conclusive step. This

constitutes the main objective of this study.

There are certain characteristics about process

control which could maie it unsuitable for the application of

current Al techniques:

(a) Timing is critical and solutions must he reached in

minutes or even seconds.

(b) The solution must be economical in terms of hardware cost

(for example, the size of a computer-controller).

(c) Implementation of the controller must be quick and easy,

(for example, the rate of convergence of the adaptive or

learning control algorithms and the method of training

these controllers - Chapter 'i).

Investigation of the practical limitations arising out of the

above three points constitutes the other objective of this

study.
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1.3 ACHIEVEMENTS AND CONTRIBUTION

In order to satisfy the first objective above, a

real system had to be made available for experimentation. Un-

fortunately though, one is almost always faced with a problem

here since real systems are not readily available when required

for research work. The use of an industrial plant which is

already in production is very unlikely for obvious reasons.

The only alternative, therefore, was to have a laboratory-size

p1 ant.

Prior to the commencement of this work, another

piece of research, which was designed on similar lines as the

present, had just been completed at Queen Mary College (Carter

et al, 1971). The experimental part of Carter's work was con-

ducted on a toy steam engine which was found tobe inadequate

in many ways, and the need for a robuster and more sophistic-

ated system had been shown to be essential for further work.

Thus a new, model steam engine (photographs in Figs.2. 3 and 2.14)

was built in the workshop of Queen Mary College, with which the

author had little to do apart from partaking in some aspects of

its design. However, the design and building of the electronic

interface between the steam engine and the digital computer,

which simulated all the controllers considered in this study,

was completed by the author. This was an achievement in its

own right and inevitably a considerable amount of time was

spent in order to bring it to its final, operating and reliable

form.

Having thus made a. start with a new system, a

carefully planned programme of identification tests was com-

pleted next and a simple mathematical model of the steam engine

was established. These tests evinced the non-linear nature of

the system.

A major justification in considering the applic-

ability of Al techniques in control is the situation where con-

ventional control techniques are inadequate. Nevertheless, a

simple conventional controller was designed and irriplemented in

order to provide a benchmark against which the current state

or power of Al control techniques could be assessed or measured.
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The direct digital controller implemented achieved very

satisfactory control of the steam engine, which was another

achievement in its own right. Furthermore, this exercise

proved the controlability of the steam engine, thus providing

the thesis that learning controllers ought to be able to

learn and achieve the same quality of control.

The investigation of Al control techniques was

star.tëdby reconsidering the work of Carter (1971). An ident-

ical controller to his was implemented, but experimentation

indicated that his procedure was too naive, since essentially

it involves the building up of a memory where for every

possible state of the plant an associated action is stored.

Obviously, this is a. trivial solution to the control problem

with no generalising ability, and this part of the work is not

described in this dissertation.

The relatively better established techniques of

adaptive and learning control (Chapter L) stimulated the

implementation of such controllers next, but two special

features, which were introduced on purpose into the steam

engine, brought out certain difficulties that one can expect to

encounter in a realistic situation. These features are the

multi-variable nature of the plant, and the multi-valued (non-

bang-bang) nature of the inputs to the plant. A critical

survey of adaptive control techniques from the view of such

systems is presented. The main difficulties that were

encountered in the experimental part of the work can be

summarised as follows (Assilian and Mamdani, l97!.a):

(a) With human-supervised learning, very poor convergence is

achieved with adaptive controllers, and the rate of

convergence is unacceptably slow.

(b) With non-supervised learning, the specification of a

useful performance criterion is difficult, and the

storage required with this scheme is exorbitant

(one of the intentional restrictions (Carter et al,197l)

in this work was the use of a, small digital computer -

a PDP8/S with only 8K of core memory).
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Little could have been done with non-supervised

schemes in this study. However, the important conclusion with

human-supervised machine learning is that the real obstacle is

not having the means for linguistic communication between man

and machine. The notion of 'fuzzy logic' (Zadeh, 1965) seemed

to provide a solution in the attempt to overcome this obstacle.

Thus a fuzzy logic controller was designed and implemented,

which, surpassing all expectations, achieved comparable control

of the steam engine with the direct digital controller

(Assilian and Mamdani, 197 14b; Mamdani and Assilian, 1974). This

work is a distinct contribution; although the control applicat-

ions of fuzzy logic have been suggested (Chang and Zadeh, 1972),

to date this work represents the first attempt of an actual

application in a. real system.

1.4 CONTENTS OF CHAPTERS

The length of a chapter in this dissertation bears

no relation to the amount of effort spent on the work described

in that chapter. In general, the material which is presented is

chosen either because it is not documented elsewhere, or because

it is important in comparing and discussing this work in relat-

ion to other previous work.

Chapter 2 is devoted to a description of the

c6mplete steam engine control system. This includes the design

of the electronic interface between plant and computer, and a

brief description of the general software at the end of the

chapter. An account of the modelling of the steam engine is

also presented in this chapter, leading to a simple mathematical

model of the plant.

Chapter 3 is concerned with the design and imple-

mentation of a conventional feedback controller for the steam

engine, based on the mathematical model established in Chapter 2.

Two simple controllers are considered; P1 and PID contro1ler,

and the so-called 'single-term' controller. The tuning of

these controllers is described at the end of the chapter.
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Chapter t is devoted to a review of the

relevant earlier work carried out on adaptive control

techniques. The chapter starts on some fundamental aspects

of adaptive control and the relationship between pattern

recognition and control. Two widely studied adaptive control

techniques are reviewed; those based on the adaptive thresh-

old logic element and those based on decision theory. The

review is critical in nature as seen from the point of view

of a real, multi-variable control system. Mathematics is

kept to the essential minimum. The main training algorithms

and main training modes for adaptive controllers are examined

in detail.

In Chapter 5 the results of adaptive control

of the steam engine are presented. Three different teachers

are considered in the training of the adaptive controllers;

the human operator, the conventional controller developed in

Chapter 3, and the fuzzy logic controller developed later in

the dissertation (Chapter 7). The problems encountered with

each teacher are pointed out and discussed in detail.	 Some

aspects of various linearly independent codes are also examined

at the end of the chapter.

Chapter 6 describes the formulation of the

general fuzzy logic controller. The chapter starts with

certain formal definitions in fuzzy set theory, which are

required in the implementation of such a controller. Central

to the execution of the fuzzy logic control algorithm is the

'compositional rule of inference' which is also defined and

discussed. Throughout this chapter, simple illustrative

examples are given in order to clarify all the definitions

and computations involved in the formulation and implement-

ation of the controller.

In Chapter 7 the results of fuzzy logic control

of the steam engine are presented and discussed. First, a

non-interactive control algorithm is implemented and an

efficient method of tuning this controller is described.

Second, it is demonstrated that the fuzzy logic controller

is equally suitable for implementing interactive, or more

complex control policies.
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Finally, in Chapter 8, a comparison of all

the controllers considered in this research is presented.

This is followed by a summary of the important conclusions

drawn throughout the thesis, leading to suggestions and

recommendations for future work.
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CHAPTER 2

THE CONTROL SYSTEM - HARDWARE AND SOFTWARE

2.1 INTRODUCTION

It is noteworthy that the choice of the steam

engine bears no relevance to the development of theoretical

ideas in this research. In fact, outside the presentation

of experimental results, all discussions are held without

reference to any particular system, thus indicating the

general applicability of the theory. Expressed otherwise,

the steam engine serves only as a vehicle for the investi-

gation of Al techniques in control.

The engine and boiler to be described were

designed and built in Queen Mary College. The author had

little to do with this part of the hardware. However, the

design and building of the electronic interface between the

plant and digital computer were completed by the author,

and this exercise proved to be both painstaking and time

consuming in promoting it to its final, operating form.

A natural follow-up to this task was the identification or

modelling of the yet unknown system. Various experiments

were carried out mainly to test for linearity/non-linearity,

and to produce a mathematical model which is required in the

implementation of a conventional feedback controller. These

tests also helped the author to familiarise himself thorough-

ly with the operational characteristics of the plant, an ex-

perience which was useful later in the development of

trainable adaptive and 'fuzzy logic' controllers.

2.2 STEAM ENGINF-COMPUTER INTERFACE DESIGN

n order to keep the length of presentation

within reasonable bounds, only a brief description of the

interface is given in this section. Where it is deemed use-

ful, certain details are included in Appendix A.
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2.2.1 TOTAL CONTROL SYSTEM

A block-diagrammatic view of the complete

system is given in Fig.2.1. The hybrid computer, a

SOLARTRON HS7-6D, behaves as part of the interface

between plant and digital controller, a PDP8/S digital

computer. Due to its design specifications, the SQLARTRON

is readily coupled to any PDP8 series computer allowing

very convenient and easy communication with the digital

computer for both logic and analogue signals. Equally

useful are the real time clock and the twelve interrupt

channels provided, which in this project are used mainly

for timing sampling intervals and initiating special,

'panic-action' routines when the plant inadvertently

enters 'dangerous states' (see Fig.2.12.)

DIGITAL
	

PLANT
COMPUTER

BOILER
PDP8/S
	

ENGINE

SO LART RON
HS7-6D

L
	 INTERFACE	 I

Fig. 2.1 The System
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Fig. 2.3 The Steam Engine
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A schematic view of the plant is shown in

Fig.2.2, supplemented with two photographs in Figs.2.3

and 2. 1 1. The plant comprises a steam engine-boiler com-
bination. The main inputs to the plant are heat and

throttle, with pressure and speed as outputs. Heat to

the boiler is provided using two electric heaters and

the pressure in the boiler is estimated from the resist-

ance of a thermistor in contact with the steam. The

speed of the engine is measured using a. tachometer

which is directly coupled to the crank rod of the engine.

The speed is controlled via the throttle which is driven

by a small electric motor. Of course, the speed can also

be controlled by varying the heat input, since any heat

change varies the pressure which in turn varies the speed.

Similarly, the throttle can be used to vary the pressure;

in fact, there is coupling between each input and each

output as described in Section 2.3.

The special interface electronics, which is

housed in the box seen behind the plant in Fig.2.4, per-

forms the special functions required in this project which

cannot be achieved on the hybrid computer alone. Besides

providing for the abovementioned inputs and outputs, it

carries out additional signal processing for safety

purposes and for better running of the plant. A safety

water level detector with its associated circuitry makes

sure the boiler never runs completely out of water lest

the heaters are caused to burn out. The steam operated

injector with its associated circuitty keeps the water

level in the boiler within two limits close to each other,

corresponding to the two level detectors shown in Fig.2.2.

In fact, the circuitry performing this task is independent

of the digital computer. Finally, a superheater is

incorporated to dry the steam in an attempt to increase the

running efficiency of the engine. Although the degree of

superheat is kept constant in this project, it could be

made another controlled variable by additional circuitry

similar to that of the heater variable.
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2.2.2 HEATER CONTROL

2.2.2.1 The Circuit±y

The heat input is designed to be discrete

because of the nature of the project and 32 levels or steps

are provided from no power to full power. A schematic view

of the complete heater control circuit is shown in Fig.2.5.

Central to the control scheme is a [1.-bit

binary counter which indicates the present or current level

of input. Clearly such a counter can only indicate 16(2)

levels, however, by separating the control of the positive-

half cycle of the mains input from the negative-half cycle,

it is not necessary to provide for each step of the full

32 levels. The separation of control of the two half-cycles,

which is actually necessitated by the operational character-

istics of the silicon controlled rectifier (SCR), is

achieved by using a different SCR to fire each half. Thus,

the first 15 steps are obtained by controlling the positive-

half cycle, keeping the negative-half cycle switched off.

At step 16, half power, the negative-half cycle is fully

switched on via a Schmitt trigger and the positive-half

cycle initiated to zero. For steps greater than 16, the

positive-half cycle is controlled identical to the first 15,

only this time having the negative-half cycle switched on.

The above scheme simplifies greatly the

commands to be given by the digital computer in order to

manipulate the heat input. From the point of view of the

digital computer, heater control is achieved using three

commands; 'UP n steps', 'DOWN n steps' and 'CLEAR' counter.

Every 'UP' or 'DOWN' command corresponds to putting a logic

pulse on the appropriate line, n steps obviously requiring a

train of pulses. The 'CLEAR' command is provided for

initiating to zero with a single step instead of counting

down. Command frequencies of up to 30MHz can be obtained

because of the fast switching time of integrated circuits. See

Appendix A for further detiils.
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Fig. 2.6 Adjustment of Heater Steps

n	 t(msec.)	 n	 t(msec.)

1	 1.60	 9	 5.'+O

2	 2.30	 10	 5.80

3	 2.85	 11	 6.33

3.33	 12	 6.66

5	 3.77	 13	 7.15

6	 1'	 7.70

7	 i.6O	 15	 8.40

8	 5.00	 16	 10.00

Table 2.1 Values for t in Fig. 2.6



cosut - cosut	 1/8n	 n+1
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2.2.2.2 Adjustment of Heat Steps

The 32 steps on the heat input are adjusted to

give equal power per step. This is achieved by adjusting

appropriately the firing angle of the SCR for each step, as

described in Appendix A.

The power input at any instant is given by the

area under the sinewave shown in Fig.2.6 (see also Fig.2.4).

A simple integral equation gives the values for

t1 , t 2 ,---,t16 in terms of time as follows.

n+l	 nrt	 rt	 =	 t16=l/lOO

sinwt dt - \ sinwtdt	 16	
slnwt dt	 (2.1)

J t0	 'ito	 t=o00	 0

Simple manipulation of Eqn.(2.l) yields

whereupon substituting values for n from 0 to 15 gives the

values for t in Table 2.1.
n

2.2.3 THROTTLE CONTROL

The throttle input is designed to be discrete

for the same reason given in the design of the heater control.

10 steps are provided from the fully-shut position to the

fully-open position.

The throttle is driven via a small electric motor

as shown in Fig.2.2. Basically, the throttle is just a small

brass plate on which 10 holes, increasing equally in area, are

drilled on a circular line and spaced out 300 from' each other.

Every step then amounts to turning the throttle through 30°

in the appropriate direction, left or right, to bring the

corresponding hole on the plate against the opening on the

boiler.
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The motor drive and throttle circuits are also

designed to simplify the commands to be given by the digital

computer to achieve throttle control. Three commands are

provided for similar to the heat variable; 'LEFT n steps',

'RIGHT n steps' and (effectively) 'SHUT FULLY'. Every

'LEFT' or 'RIGHT' command corresponds to putting out , the

right levels or pulses on the appropriate line and taking n

steps requires repeating the command after the previous step

has been completed. The 'SHUT FULLY' command is provided

for initiating the throttle. Details of applying a step,

testing the completion of a step, and the hardware to

achieve these are presented in Appendix A.

2.2. 14 PRESSURE MEASUREMENT

The pressure of the steam in the boiler is

estimated indirectly through the use of a thermistor. The

circuit designed allows measurements of up to 10 atmos-

pheres, the measured variable being a voltage signal

proportional to the pressure. The circuit diagram of the

electronics associated with the thermistor is given in

Apprndix A. This circuit is designed such that the relation-

ship between the measured output voltage and pressure can be

chosen and established by the designer. Clearly a linear

relationship is desirable in this application and the

transposition from the various variables involved to the

final linear relationship between measured output voltage

and pressure is shown in Fig.2.7.
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2.2.5 SPEED MEASUREMENT

The speed of the engine is represented by

the output voltage of the tachometer which is coupled

directly to the engine crank rod, as shown in Fig.2.2.

The relationship between the output voltage of the•

tachometer and the speed of the engine is shown in

Fig.2.8 and can be seen to be linear except at very

high speeds.

0	 2	 4	 6	 8	 10	 12	 1'4 xlOO

RPM

Fig. 2.8 Speed Measurement
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2.3 DYNAMIC MODELLING OF THE PLANT

The modelling of a real dynamic process normally

constitutes a project 'n its own right. The process of

modelling can conveniently be segmented into two stages.

In the first stage, the boundaries of the system to be

modelled must be established and the variables falling

within these boundaries must be examined and classified

according to their role in the process; that is, whether they

are dependent or independent, controlled or uncontrolled, or

measured or unmeasured variables. Clearly, this stage of the

modelling is influenced by the purpose thdt the model is to

serve. For example, in the case of the steam engine, a model

including the superheater would have different bounda.ries

than the model developed below; there will possibly be some

variables common in both models, but it will also include

different variables (Savas, 1965).

The second stage of modelling involves the

development of relationships between the variables. These

relationships, or process equations, are usually derived by

a combination of both theoretical analysis and empirical

observation of the process - a good example of analysis and

synthesis. The theoretical basis for the process model rests

on scientific knowledge about the fundamental chemical and

physical phenomena which govern the process. Ordinarily,

theoretical analysis of the process is the starting point

in model development and is pursued as far as practicable,

before turning to empirical techniques to supplement or

verify the theoretical model. Empirical supplementation

involves the determination of the numerical values of t:he

parameters or constants in the model which cannot realistic-

ally be derived by theoretical analysis. In any case,

empirical observation is a necessary and important aspect of

modelling in order to establish whether the theoretical

model does in fact adequately describe the actual behaviour

of the process.
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2.3.1 THE MODEL

An attempt to develop a theoretical model of

the steam engine system will invariably involve complicated

thermodynamic and energy conservation equations (Evans and

Fry, 196 L1). Having established these equations, it is then
necessary to introduce numerical values relating to physical

quantities, for example, boiler dimensions, in order to

calculate the parameters or constants of the model. Because

such an approach reflects process fundamentals, the result-

ant model can be very reliable. However, apart from its

other limitations, such an approach may yield an unnecessar-

fly over-complex model for the control purposes of this

project. Therefore, rather than .attempting to develop a

full theoretical model, a simple model is considered here

involving single time constants only.

All the controllers to be considered in this

dissertation will use the input and output variables shown

in Fig.2.9. A set of linearised perturbation equations of

these variables is now proposed.

HE AT
	

PRESSURE

STEAM ENGINE

THROTTLE
	

SPEED

AND BOILER

Independent
	

Dependent
Controlled
	

Me as ur ed
Variables
	 Variables

Fig. 2.9 Process Variables
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The pressure in the boiler is assumed to be

directly related to heat and throttle and as first

approximations:

P1(s) -	 Giexp(-sTI)

H(s)	 - G1(s)	 l+s	 (2.3)
Ti

P 2 (s)	 G2exp(-st)

'r(s)	
G2(s)	

-	 l+st1	 (2.')

	

where P	 pressure variationn
H = heat variation

T = throttle variation

G Cs) = transfer functionn

	

G	 gainn

	

T	 time constantn

time delayn
s = Laplace operator w.r.t. time

It has been assumed, from knowledge about other similar

systems, that G 1 (s) and G 2 (s) have approximately the same

time constant.

From Eqns.(2.3) and (2.11.)

P(s)	 P1(s) + P2(s)

G 1exp(-st)	 G2exp(-st)
=	 H(s) -	 T(s)	 (2.5)i+sT1	 -	 l+s-r1

where P = total pressure variation

The total steam flow to the engine can be

considered to be the sum of that due to the throttle position

at constant pressure, and that due to up-stream (boiler) pres-

sure at constant throttle position, i.e.

W(s) = G 5exp(-s-r)T(s) + G 6 exp(-s-r)P(s)	 (2.6)

where W	 steam flow variation
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Lastly, the speed of the engine is related to

the steam flow and a single time constant is introduced to

represent the inertia of the flywheel, i.e.

G 7 e xp ( - st)
S(s) =	 W(s) (2.7)

where S speed variation

Substituting for W(s) from Eqn.(2.6)

S(s)	 G3(s)P(s) + G14(s)T(s)

- G 3 exp(-sT')	 G exp(-st)
F(s) + T(s)	 (2.8)

-	 l+sT2	 l+sT2

where G 3 = G 6G 7	-

@11= G5G7

.t = T+t.

T	 tg+T

A block diagram of the model is shown in Fig.2.lO.

Fig. 2.10 Block Diagram of Model
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2.3.2 DESIGN OF EXPERIMENTS

When an engineer is confronted with a multi-

variable system it is important to have a carefully planned

programme of experiments in order to eliminate bias and to

control the errors of estimate, of the parameters of the

model, in relationship to measurement errors (Savas, 1965).

For the purposes of this project, experiments were designed

bearing in mind the following points:

(1) Does the simple model proposed in the last section

describe adequately the actual behaviour of the

process, and if so, what are the values of the

various parameters;

(2) Does the assumption of linearity hold:

(a) For different amplitudes of the test signal,

(b) For opposite polarities of the test signal, and

(c) For (a) and (b) with different initial conditions.

The test signal used was the step function.

In most applications it is a simple matter to generate a

step function. Furthermore, step response tests are

amenable to convenient and easy analysis by graphical

methods. However, because of the very noisy nature of

the environment, the generalized least squares method

(Clarke, 1967) was used to estimate the parameters of the

model.

2.3.3 ANALYSIS OF EXPERIMENTS

The long series of experiments carried out are

not described in this dissertation, as space limitations do

not allow this. Some of the results are included in Appen-

dix B.

The important conclusions of the tests are

summarized below in the same order as the questions raised

in the last section.
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(1) A single time constant is adequate in all four transfer

functions of Fig.2.lO. Furthermore, the time delay is

negligible in all four functions. The estimated trans-

fer functions are shown in Fig.2.l1 and it can be seen

that the time constants of G 1 (s) and G 2 (s) are equal, as

anticipated in Eqns.(2.3) and (2. L ). However, the time

constants of G 3 (s) and G(s) are different, in contrary

to Eqn.(2.8). It is suggested that this is due to the

assumption of Eqn.(2.6). Finally, as a result of the

non-linearities existing in the system, the gains

quoted in Fig.2.l1 are averages of the different

estimates obtained for variations of the test signal

and the initial conditions.

Fig. 2.11 Estimated Steam Engine Model
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(2) In general, the system is non-linear with both magnitude

and polarity of the test signal. It also exhibits dif-

ferent characteristics in different areas of the bperating

space. In view of this observation there arises the

question regarding the usefulness of the model given in

Fig.2.11, since it is not associated with any particular

operating point. However, as pointed out in Chapter 3,

this model is intended to serve as a starting point in

the design of the controller which is further tuned on-

line.

As a final remark, the speed variable was

observed to be rather noisy compared to the pressure variable.

In addition, the speed variable exhibited either poor

sensitivity or extra-sensitivity to throttle variations,

instead of the desired uniform response. However, rather

than cure these situations, it was felt that they could

present an interesting environment for the learning and fuzzy

logic controllers.

2.' THE SOFTWARE SYSTEM

The development and writing of the software for

the digital computer played an important role throughout this

project since ultimately all theoretical notions had to be

implemented and tested on the experimental set-up. Ordinar-

ily, the writing of software does not present too big a task,

specially when experiments are carried out on simulated

systems so that a high-level language can be conveniently and

adequately used. In this project, however, the assembler

language had to be used because of the real-time nature of

the system, and in order to cope with the workload imposed

on the system, full use had to be made of the 'interrupt'

mechanism available on any general purpose computer.

A flow-chart of the software is shown in

Fig.2.12. On the occurrence of an interrupt, originating

either in the plant or from the human operator, the interrupt

service routine is activated which passes control to the

special routines or the foreground programme depending on the

source and meaning of the interrupt. The special routines
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respond to stimuli like 'water below safe limit in boiler',

or 'pressure beyond safe limit in boiler', and they initiate

certain panic-actions, like the total shut-down of the system.

The foreground programme executes at interlock level (non-

interruptible) and it responds to all other, normal requests,

like an input to the plant at the end of a sampling interval.

On finishing its execution, the foreground activity passes

control to the background segment which is responsible for

the general 'house-keeping' of the system; logging the events

taking place, processing any data queued by the foreground

activity (for example, updating the memory of adaptive

controllers) and outputting all this information to the

printer.

Plant	 > INTERRUPT 1'	 I Operator

Interrupt Service	
>j 

Special

Routine	 I Routines

Foreground

Program

Subroutines

Background

Progr am

Fig. 2.12 Software Flow-Chart
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The length of the software is over 3000

machine words and in order to minimize the changes

necessary between one series of experiments and another,

the foreground and background segments are written in the

form of calls to subroutines. With the use of this type

of modularity introduced into the software, the

implementation of the modelling programme, the conventional

feedback controller, the adaptive controllers and the

'fuzzy logic' controller, amounted to compiling practically

the same collection of routines with only few lines of

coding altered amongst them.
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CHAPTER 3

DIRECT DIGITAL CONTROL OF THE STEAM ENGINE

3.1 INTRODUCTION

Although the main aim in this project is the

investigation of the applicability of 'artificial intellig-

ence' - adaptive and fuzzy logic theory - in control, it

deemed worthwhile and justifiable to examine in the first

place the quality of control achievable with a simple con-

ventional controller. Since we are starting with a new plant,

at worst the performance of the conventional controller could

prove the system to be uncontrollable, at least with the tools

available in classical control theory. At best, when compared

with the performance of learning or fuzzy logic controllers,

it could prove that classical controllers are still far

superior, possibly bringing out at the same time any

differences which can aid in the improvement of the other

controllers. In any case, the performance to be obtained by

the conventional controller is intended to provide a bench-

mark in the final assessment of the quality of learning and

fuzzy logic control.

The implementation and testing of the convent-

ional controller was again a lengthy exercise like the

mathematical modelling of the system. This chapter gives a

brief account, including important details only.

3.2 BRIEF STATEMENT OF THE CONTROL PROBLEM

Using vector-state notation, the behaviour of

the linear and stationary plant can be described by the vector

equation

X(t)	 AX(t) + BU(t) + FD(t) 	 (3.1)

where X=n-vector representing the state of the plant

Xfirst time derivative of X

U=r-vector representing controllable inputs to the plant

D=s-vector representing uncontrollable inputs(disturbances)

ttime

X,U,Dfunctions of time
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A=nxn (constant) system matrix

Bnxr (constant) distribution matrix

F=nxs (constant) disturbance matrix

The plant output vector, which is not necessarily

identical with the system state vector, is given by

Y=CX	 (3.2)

where Y=q-vector representing the outputs of the plant

C=qxn output or measurement matrix

The performance of the plant at any time can be

expressed as some scalar quantity

P(t)=P(X,U,D,t)	 (3.3)

where t is included to allow for the possibility that the

performance measure may be time-varying.

In general, the control objective is to maximize

or minimize, as the case may be, the integral of P(t) over

all time, i.e. the performance index is

ro.
i::J P(t)dt	 (3.4)

to

where to is the initial time when control is applied.

Any such optimization must, of course, be carried

out within the operating limits of the plant. Therefore, the

control problem statement has to include restrictions

all XR1 (t) and all UR2 (t)	 (3.5)

where R1 (t) and R 2 (t) are vector spaces.

3.3 THE SOLUTION TECHNIQUE

Most control situations assume that a model

(Eqn.3.l) of the process is available and simple feedback is

sufficient to compensate for variations in process charact-

eristics and other uncertainties. The optimum control vector

(U(t)) is then computed from current process input and output

measurements using a prescribed, fixed procedure based on the

model. This procedure may involve solving a set of different-

ial or algebraic equations depending on the problem formul-

ation (Eqns.3.3 and 3.4) and mathematical approach.
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The solution for the optimum control vector in

the above manner for single-input, single-output processes

is fairly well understood, at least for the linear and

stationary case, and relatively simple and easy-to-implement

procedures or techniques are available in the control

literature. However, the solution is by no means trivial

for multivariable feedback systems (Macfarlane, 1972).

Obviously, the difficulty in multivariable feedback systems

arises out of the interacting effects between the multiple

loops. Recalling the results of the identification tests

carried out in Section 2.3, the steam engine must be placed

in the class of interacting multivariable systems.

Heater
Controller

Throttle
Controller

Fig.3.l Steam Engine Control Configuration
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The method, or to be precise, the notion

therein, adopted in designing a controller for the steam

engine is that of 'non-interacting control technique'. The

principle of non-interactive control is to convert the

multivariable feedback system into a family of independent,

single-input, single-output loops, each of whichcan be

handled by conventional feedback theory. It is needless to

say that this technique does suffer certain disadvantages

(Macfarlane, 1972). However, in the face of the very

approximate model obtained for the steam engine, so that

any precise mathematical derivation of a controller would

be meaningless, the simplicity of the underlying principle

of non-interactive control is attractive enough to implement

the control configuration shown in Fig.3.l.

I	
M(z)

I_______ I
ERROR I
E(z)_ICONTROLLER
)__I D(z)

K(z)

DISTURBANCES	 I
G(z)

ZERO-HOLD 
1 ROCESS ^1OUTPUT

H(s)
	

G(s)

ii

Fig. 3.2 Closed-Loop Control Configuration
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Comparing Fig.3.l with Figs.2.1O and 2.11 in

the last chapter, it can be seen that the transfer functions

used in the control configuration are G 1 (s) and G2(s).

Although the controller settings of DH(s) and DT(s), derived

using these transfer functions, do not promise good control,

it is intended that these controller settings serve as the

starting point for further on-line tuning to obtain the best

possible control of the plant.

3.1 CONTROLLER DESIGN

Having reduced the multivariable feedback control

system to independent, single-input, single-output loops, two

simple digital algorithms are derived below for the heater and

throttle controllers, DH(s) and DT(s) respectively in Fig.3.l.

The closed-loop configuration and the definitions of general

terms to be used for either controller are shown in Fig.3.2.

It is noted that the output of the controller, that is the

digital computer, passes through a first-order sample-and-

hold which is an adequate description of the interface between

plant and computer. Using block diagram algebra, it can be

shown that

1	 K(z)
	

(3.6)

G(z) l-K(z)

3.11.1 P1 AND PID CONTROLLER DESIGN

The well-known general form of the controller

here is

M(s)	
(3.7)

where the three terms correspond respectively to the prop-

ortional, integral and derivative actions of the controller.

Optimum settings for the three constants were

originally suggested by Ziegler and Nichols (l9't2) from

empirical studies. However, the Ziegler-Nichols settings
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necessarily include a time delay of the process, which

in the case of the steam engine is negligibly small. The

other alternative for calculating the optimum values for

the three constants above is to use analytical methods in-

volving the minimization of error functional integrals to

define optimality (Eqn.3. 1i). The most often used error

integrals are the error squared integral (ISE), absolute

error integral (IAE), and integral of the product of time

and absolute error (ITAE) (Lopez et al, 1969). In this

project the ITAE criterion is used. The relationships

between the optimum values of KC,TI)TD, the system para-

meters G,T (Eqn.3.11), and the sampling interval T, which

must be considered in sampled-data systems, can be found

in the above reference.

To implement Eqn.(3.7) in the form of a

digital controller, it is first put in digital form, thus:

n	 e -e1
m = K re +	 (e.+e. ) + TD(_ T	 )] (3.8)n CLn T110 1 i-l2

The equivalent of Eqn.(3.8) in z-transform notation is

-1	 -2
a +a z +aD(z) - M(z) - o 1 (3.9)E(z)	 -11- z

TD
where a	 Kc [i +	 + T I0

a1	 'Kc [1 -	 + ---]	
(3.10)

"2	 KCTD/T

The form of Eqn.(3.9) is the one most suitable for implement-

ation on a. digital computer.
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3.'.2 'SINGLE-TERM' CONTROLLER DESIGN

In this controller, due to Higham (1968), one

parameter is used to adjust the closed-loop performance of

the system. Although it was originally designed for processes

with dead time, the algorithm is easily modified for processes

with no dead time. The single parameter also overcomes mis-

measurements of the system parameters, which can cause poor

control and ultimate instability.

Consider the general process having dead time

kT (Fig.3.3) such that

Then

	

G(z) =	 {H(s).G(s)}

	

=	 {lexP(sT)	 G exp(_skT)}
s	 l+sr

-(k+l)GLz	 (3.12)
l-(l-L)z

where L = 1-exp(-TI'r)
	

(3.13)

0	 1	 2	 3	 '	 5	 6	 7	 8	 9 10
	

Time

Dead Time

Fig. 3.3 Controlled Response for Unit
Change in Set Point.



The next step is to define the overall closed-loop

transfer function K(z) of the control loop. By looking at the

open-loop transfer function of G(z) in Eqn.(3.12) and Fig.3.3,

K(z) can be expressed as

-(k+1)Qz	
-1	 (3.1i)

l-(l-Q)z

where Q=l-exp(T/t)	 (3.15)

-r 0 time constant of controlled response

Substituting for @(z) and K(z) from Eqns.

(3.12) and (3.l L ) into Eqn.(3.6)

- 1	 Q/L-zQ(l-L)/L	 (3 16)
G l--(l-Q)z -Qz

For a process with no dead time, i.e. kO,

D(z)	 . Q/L-z1Q(l-LY/L
	

(3. 17)

Eqn.(3.17) can be recognised to be the discrete form of a.

P1 controller - compare with Eqn.(3.9).

3.5 PERFORMANCE

The mathematical expressions for the controllers

referred to by way of curves A through J in the discussion below

are given in Appendix C. The unit on the vertical axis of the

graphs in Figs.3. through 3.7 is voltage, which is proportional

to pressure or speed accordingly.

3.5.1 P1 AND PID CONTROLLERS

Refer to Fig.3.4. Curve A shows the controlled

response of the pressure for a step demand, using a P1 heater

controller with settings based on the transfer function shown

in Fig.3.l. Curve C shows the same response but with the

added effect of derivative action of the controller; that is,

the PID controller. There is very little improvement on the

response with the addition of derivative action. The explan-

ation for this is that, for the first-order process with no
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delay time, the P1 algorithm is optimum (Lopez et al, 1969).

Apart from the above observation, both controllers produce a

big first overshoot, although, admittedly, a big step demand

is made in both cases. In common practice, the step demand

is usually around fifteen per cent of the total operating

range. The reason for making a big step demand here is to

enable a comparison of the results of DDC with the responses

to be obtained using adaptive (Chapter 5) and 'fuzzy logic'

(Chapter 7) controllers. In the latter two cases, the

nature of the quantized operating space induces the necessity

of making rather big step demands.

The above arguments apply in their entirety to

the speed variable as well, the controlled response of which

is shown in Fig.3.5. The occasional big random errors ap-

pearing in the speed variable should not be misinterpreted

as poor control. It has been mentioned in Section 2.3 that

the speed variable is inherently very noisy, in addition to

being poorly sensitive to throttle control in certain areas

of the operating space.

To surnmarise, it can be said that fairly good

control has been achieved with P1 and PID controllers. Of

course, further on-line tuning of both controllers is neces-

sary, and having done this, it is reasonable to assume that

improvement in the quality of control will be obtained.

However, the tuning of the 'single-term' controller is pre-

ferred as it is easier to assess the effect of varying one

parameter only, as opposed to two or three parameters.

Furthermore, by looking at Fig.3.3, the effect of varying

Q in the single-term controller has more to offer to

'insight' (which after all is what the human relies on for

on-line tuning) than the effects of varying <' T 1 and TD,

one or two or three at a time, in the P1 and PID

controllers.
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3.5.2 'SINGLE-TERM' CONTROLLER

For Q=L, the closed-loop response of K(z) is

the same as the open-loop response. This is a convenient

value of Q to use as an initial value in the process of

on-line tuning. In order to achieve tighter control, it

is required to make Q>L. Therefore by incrementing the

value of Q iteratively and judiciously, the best possible

controller can be arrived at. This procedure is followed

below.

Refer to Fig.3.6. Curve E shows the controlled

response of the pressure for a. step demand, with the para-

meters of the heater controller calculated for QL. Curves

F, G and H show the same response for Q(H)>Q(G)>Q(F)>Q(E)L.

The expediency and efficiency of the single-term controller

is clearly evinced in these responses. The final control

achieved, curve H, can be considered to be 'very good'.

Although the same degree of success cannot be

reported in the case of the speed variable, the quality of

control can still be considered to be good, as shown in

Fig.3.7. Curve I in Fig.3.7 corresponds to the response ob-

tained with the throttle controller having its parameters

calculated for QL, and curve J is the best control achieved,

which shows some improvement over the former.

Comparing the responses obtained here with

those of P1 and PID control, it is observed that in general

the single-term controller produces better results. The first

big overshoot obtained with P1 and PID control is not present

in the single-term control. As mentioned at the end of the

last section, however, had the P1 and PID controllers been

subjected to on-line tuning, they would possibly have

converged to the same controllers as in this case.

Using the same, best heater and throttle con-

trollers produced, further tests were carried out with

different initial conditions, spanning much of the operating

space, and with different step demands both in magnitude

and direction. The good quality of control was retained in

the majority of the tests. These results are not presented

here.
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3.6 CONCLUSIONS

Good control of the steam engine has been

achieved using a sij-g1e conventional controller. It

ought to be feasible, therefore, for a learning control-

ler to learn how to control with the same degree of

success from monitoring the same information as the

conventional controller design demands. The experimental

work has also demonstrated the effectiveness of on-line

tuning. This is important since accurate process models

are very difficult to obtain with real systems. Further-

more, good control has been achieved using the same

controller over a wide range of the operating space.

Since the plant characteristics can vary a great deal

under these circumstances, it is indeed ideal to have a

controller which is not affected, at least not to a great

extent, by changes in plant parameters. In the same way,

a learning controller ought to be able to learn to be

insensitive to the non-linearities that obviously exist

in the system.
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CHAPTER 4

PATTERN RECOGNITION AND ADAPTIVE CONTROL

4.1 INTRODUCTION

4.1.1 FUNDAMENTAL ADAPTIVE AND LEARNING CONTROL

Before embarking on the details of techniques

available in the realm of adaptive and learning control it

is first deemed appropriate to try and answer two funda-

mental questions: (a) What is meant by adaptive and learn-

ing control, and (b) The raison d'etre for adaptive and

learning control.

For some time, the first question had the

reputation of being the foremost controversy in the subject.

Numerous papers were published advancing arguments in sup-

port of a particular definition of the terms 'adaptive' and

'learning' (Thorpe, 1950; Pask, 1963; Gibson, 1963), and

inevitably the argument went even further to question whether

a. machine could at all 'think' (Turing, 1950). On the other

hand, adaptive and learning control are different from any

other science in that there is no unifying theory which sub-

sumes the various, and in the majority of cases, only seem-

ingly different activities in the general field of Al

(Blake & Uttley, 1959; Cherry, 1961; Feigenbauin and

Feldman, 1963; Tou and Wilcox, 1964; Mendel and Fu, 1970).

However, the lack of a unifying theory cannot be attributed

to the lack of a universally accepted definition of the

terms adaptive and learning (and other synonymous terms

like seif-organisirig (Yovits et al, 1962), machine intelli-

gence (Meltzer and Michie, 1969), etc.) but rather to the

lack of knowledge on a more fundamental level, the act

of learning itself - What are the mechanisms of learning?

In view of the fact that the present study is an

engineering application, the attitude taken here is

best described by quoting Truxal (1963):
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"While the literature of control theory is replete

with arguments re the definition, progress in

adaptive control theory has not been impeded by the

failure of purists to reach universal agreement on

an appropriate definition."

There are two connotations of the terms adaptive

and learning; behavioural and structural. Speaking generally

from the behaviouristic point of view, where terminology is

kept at the state-transition level (Gaines and Ardreae, 1966),

no real distinction is made between adaptive and learning

control. The typical situation is considered to consist of

three constituents, the plant, the controller and a performance

measure, and the expected behaviour of the controller when

coupled to the plant is that, if its control policy is not

satisfactory for that plant, then it will eventually become so

(Gaines, 1971, 1972). In other words, the controller adapts

itself or learns to improve its performance. Gaines has taken

a step forward towards a formalized behavioural theory of

adaptive and learning control through appropriate abstraction

of the basic concepts of adaption. The obvious advantage of

viewing adaptive behaviour in abstract terms is the possibility

of bringing together the various activities in the general

field of Al.

A distinction between adaption and learning is

introduced when the structure of the controller is considered.
vcrsojIe

It is at least generally accepted that a univcrca-1 learning

machine (controller) has to be associated with a hierarchical

structure of multi-level feedback loops (Sklansky, 1966). Thus,

from this point of view, the structure of an adaptive control-

ler is a two-level hierarchy, termed as the dual control mode

(Feldbaum, 1963, 1965). A learning controller, on the other

hand, would have at least one additional feedback loop result-

ing in a three-level or multi-level hierarchy. This concept is

also in agreement with another school of thought where a.

'memory' is associated with a learning controller over the

adaptive controller (Mendel, 1967). The implication here is

that when the plant or environment paramcters change suffic-

iently often so that purely adaptive action (Elgerd, 1967)
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could not optimize the performance of the controller, then a

memory is necessary to store pertinent information about a

particular situation in order that on consequent confront-

ation with that same situation the corresponding state of the

controller can be immediately reinstated by accessing the

memory. Finally, the concept of a hierarchical structure is

also in accord with the so-called seif-organising systems

(Yovits et al, 1962), a term which has been associated with

the structure of systems as opposed to behaviour (Fu, 1970).

The word structure here does not necessarily refer to

physical considerations, but a mathematical set of relation-

ships can also be regarded as a systems structure

(Mesarovic, 1962).

To recapture, the descriptives adaptive and

learning in control are used synonymously in this dissert-

ation when behaviouristic aspects are of interest, remain-

ing cognizant at the same time of the multi-level hierarch-

ical structure of such controllers. The importance of the

upper level in this hierarchy, in which verbal communication

takes place, is discussed in a later section.

Turning attention to the second question raised

at the beginning of this section, the typical situation

which justifies the need of a new art of learning controllers

is when all or part of the a priori information necessary

about the controlled process and its environment is unknown

to the designer of the controller. Taking it one step

further, the need also arises when the designer is faced with

difficult sensitivity problems. In many of the above

instances, it is reasonable to expect that a learning control-

ler, which continually searches for the optimum within its

allowed class of possibilities via estimating the unknown

information, will have an eventual performance superior to

that of a fixed controller which has been designed using only

partial or incomplete information available.

There are many other realistic situations as

well where the availability of learning systems is desirable;

remote manipulation (Freedy et al, 1971; Whitney, 1969) to

perform handling operations in environments which are hazardous
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to human life,for example, underwater retrieval and the hand-

ling of radioactive materials; space vehicle control systems

(Mendel, 1967); intelligent Robots (Nilsson and Raphael, 1967;

Doran, 1969; Munson, 1971; Ejiri et al, 1971) to be used both

for space exploration and on earth, for example, in automatic

assembly; and indeed in situations where the complexity of the

mathematical model of the environment renders the physical

realisation of a controller impractical and uneconomical, if

not impossible. However, where applicable, learning machines

will be useful only if they can solve significant problems

faster, cheaper or with greater programming ease than conven-

tional machines. From this point of view, there is a trade-

off between developing new techniques for modelling and

recognition of complex environments by mathematical equations,

which are suitable for applying known optimization methods in

the design of controllers, and developing learning machines.

The real advantage of learning controllers over fixed ones is

when learning is to be carried on ad infinitum. Otherwise, if

the environment is stationary, and it has been so in most

cases studied thus far, then once learning is complete the

learning controller can be replaced with a fixed system.

Although the varied uses that an ideal, genera1-purpose.

learning machine offers are attractive, and very often

romanticized in the literature

(to quote a classic statement (Widrow, 196'i.):

"It is expected that pattern recognizing control

systems will be extremely flexible---- ultimately

including processes whose complexities defy detailed

mathematicaldescription and analysis."),

one must be aware at the same time, as a control engineer, of

the practical limitations that exist with the present state

of the art. The purpose of this study is to investigate some

of these limitations.
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ADAPTIVE PATTERN RECOGNITION AND CONTROL

To date, most studies of learning machines have

largely concentrated on adaptive pattern classifiers rather

than adaptive controllers. The complexity of true learning

machines, for example, STELLA (Gaines and Andreae, 1966),

has restricted their applicability in practice and they

remain only as a vehicle for further theoretical research in

the study of learning machines. However, it is of over-

whelming importance that learning machines include clasific-

ation techniques in their skills, since to deal with a problem

in general the machine has to recognise first what kind of

problem it is faced with in order to choose between actions

(Minsky, 1961).

Pattern recognition or classification can be

viewed as a process by which an association, that is, an input-

output relationship is formed between two sets of variables.

A feature that distinguishes pattern recognition is the high

dimensionality of the input space, and the reduction by

grouping of this space through to the output is the task ex-

pected of the classifier. Because of their generality, pattern

classifiers have been used for a great variety of tasks

(Nagy, 1968); character recognition (Minneman, 1966), speech

recognition (King and Tunis, 1966), weather prediction (Hu,1963),

interpretation of aerial photographs (Welch and Salter, 1971)

and control tasks (Widrow and Smith, l96) are only a few

examples.	 -

The process of recognition can be conveniently

segmented into two parts (Fig.4.1), the receptor and the

categorizer (Marill and Green, 1963). In the receptor the

input is subjected to a number of tests in predicate form

(Minsky and Papert, 1969), each of which indicates whether a

certain feature is present or not in the input pattern. Based

upon the features present or absent, represented by a 'feature

vector' X, the categorizer then assigns the input pattern to

oneof a finite number of categories using a decision proced-

ure. In certain tasks, specially in character recognition,
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it is expedient to carry out a pre-processirg (with respect

to noise, translation, rotation and size) of •the input

pattern in order to modify it in such a way that the prob-

ability of correct recognition is increased (Alcorn and Hog-

gar, 1969). Such processing is not necessary in most control

systems as the input pattern is represented by a vector

rather than a matrix.

It is obvious that for any recognition task,

system performance depends upon effective solution of both

segments of the pattern classifier. Although the performance

of the categorizer can be optimized given a set of features,

the selection of features in the receptor is very problem-

dependent by necessity. Feature selection in character

recognition, for instance, is primarily based upon the

designer's ingenuity and intuition (Bomba, 1959; Lewis, 1962;

Chow, 1962; Akers and Rutter, 196'i). To the relief of the

control engineer, the situation is less critical in control

problems where a natural set of features is available as the

best choice. Obviously this choice constitutes the set of

RECEPTOR	 CATEGORIZER

Fig. 4.l A Recognition System
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state variables of the process. Nevertheless, difficulties

can still arise as not all of the state variables of a plant

may be observable or measurable. Moreover, in the absence

of a model of the plant, the state variables may noL even be

identified conceptually. In this case, the absence of a

state variable, for example, pressure velocity in the steam

engine, would render the pattern classifier useless (Nays,l96').

To summarise, it is possible to use an adaptive

pattern classifier as an adaptive controller, since, when the

state of a control system is represented as a pattern, then

learning to make control decisions actually becomes the same

as learning to classify the patterns.

The main techniques used for the design of class-

ification mechanisms (the categorizer segment in Fig.'-1.1) are

threshold logic and decision theory. The rest of this chapter

investigates these methods, including ways of training such

machines.

11.2 PATTERN RECOCNTTION I - THRESHOLD ELEMENT

In the course of time, two general approaches

have been established in the study of machine learning. One

method, known as the neural-net approach, deals with the

possibility of inducing learned behaviour into a switching

net, possibly connected randomly, as a result of a reward!

punishment routine (McCullochet al, l'362; Rosenblatt, l96).

The second method tries to produce the equivalent of learning

behaviour in the form of a heuristic computer program

(Minsky, 1959, 1961; Waterman, 1968, 1970; Samuel, 1959,1967;

Ernst and Newell, 1969; Newell and Simon, 1963, 1972). In

this section, the first approach is considered which is

mostly built around the adaptive threshold logic element (ATLE).
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4.2.1	 RATIONALE OF THRESHOLD ELEMENT APPROACH

The ATLE has been studied under the guise of

various names, for example, Perceptron (Rosenblatt, 1962),

Adaline (Widrow, 1962), and generally, learning machines

(Nilsson, 1965). In spite of its practical limitations to

be described later in this chapter, the ATLE is Still
perhaps the most powerful pattern classifier available to

be utilized as the basic building block of complex, hier-

archical control systems. The reason for this could well

be its origin - the neuron, which is the basic human

nervous system building block. The ATLE can be looked upon

as an engineering version of attempts to model the human

brain. These models are based on the 'neuron-doctrine' of

brain functioning and they are influenced both by the

physical structure of the neuron and known physiological

phenomena. For mathematical convenience the properties of

the neuron are considerably abstracted and simplified in

constructing these models, however, the essential features

are still retained. Good historical reviews on the neuron

can be found in (Hawkins, 1961) and (Rosenblatt, 1962);

a noteworthy contribution to the field is the original work

of McCulloch and Pitts (1943) who showed the possibility of

applying Ecolean algebra to nerve net behaviour.
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1.2.2 THE ADAPTIVE THRESHOLD LOGIC ELEMENT

The ATLE is capable of dichotomous classif-

ication of the input patterns. A typical ATLE is shown

in Fig.i.2. The input pattern, X, is encoded into a binary

N-vector with elements x.O,l (or alternatively, ±1),

liN. Stored within the ATLE there is a N-vector of

weights, W, with elements w1 ,liN. The dichotomous class-

ification is a numerical function - the linear threshold

function - of the scalar product between the input pattern

vector and the weight vector, and a threshold w 0 . Denoting

the threshold input by x0 , which is held fixed at +1, so

that
N

W.X	 E
1 1
	 ('..l)

then the linear threshold function is

if W.X>o	
(i.2)

1._i if W.X<o

By considering patterns X to be points in a

space (the feature space) having dimensions x 1 ,OiN, it

is easy to see that the ATLE implements a linear decision

hyperplane which separates patterns belonging to one class

(Y=^1) from patterns belonging to the second (Y=-1). For

many real recognition problems the linear decision boundary

is not the optimum one. However, the linear boundary has

been the subject of many experimental investigations because

it is optimum in certain idealized cases, convenient to im-

plement in hardware, and convergent adaptive algorithms exist

to search for it iteratively. Additionally, the ATLE class-

ifier can produce useful information, such as the important

features in the classification task and the important samples

in the training task (Greenberg and Konheim, 1964).
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4.2.3 WEIGHT ADAPTATION PROCEDURES

In Section 4.1.1, the concept of adaption was

segmented into two phases; after an initial phase of unsatis-

factory performance, the controller becomes satisfactory in

the second phase. This transition of behaviour is usually

described in anthropomorphic terms as 'training' or 'teaching'.

Training is usually a major part of the implementation of an

ATLE pattern classifier. The training procedures are iterative

processes, whereby patterns from the 'training set' are shown

to the classifier one at a time with the desired output, which

the weight adjustment procedure tries to match with the actual

output of the classifier. It will be assumed for the moment

that the desired response is known.

The two well known and most often used weight

adjustment procedures (next two sub-sections) can be formulated

as hill-climbing procedures (Minsky, 1961). Interpretation of

the problem in hill-climbing terms enables a unified approach to

a number of seemingly different adaptation procedures (Mays,

1965; Smith, 1969). Furthermore, this interpretation gives 1n
sight into a number of problems encountered in complex networks

of threshold logic elements by relating such concepts as 'local

minima' and the 'mesa phenomenon' (Minsky, 1961; Minsky and

Seifridge, 1961; Mays, 196'4; Sklansky, 1966).

4.2.3.1. Error Correction Procedure

As the procedure name suggests, training in this

case is done only on those patterns in the training set which

give erroneous classification. It must be noted that erroneous

classification differs from the notion of rejection, where a

pattern is rejected by the machine as being unrecognizable if

the recognition decision is unreliable in some sense (Highley-

man, 1962). This is usually a safeguard against the undefined

condition in Eqn.(4.2) when W.X zO. The situation can be

avoided by putting ±6 bounds on either side of the zero

threshold, which defines the bounds within which a pattern is

rejected (Griffin et al, 1963).



65

The error correction procedure adjusts every

weight component, Wj by an amount proportional to the

corresponding component of the pattern, x. That is:

wn+l	 n
if decision was correct

W	 W-cXn+I	 n nfl
if decision was incorrect

and W .X > 0n n
(Li.. 3)

W	 W+cXn+l	 n nn
if decision was incorrect

and W .X < 0n n

where c > 0 is called the correction increment, possibly

depending on n which describes the iteration steps.

There are several types of error correction

procedures in the literature. These differ solely in the

interpretation to be given to the value of the correction

increment. The one which is most often used for its sim-

plicity is the fixed-increment rule. In this case, c1c>O

is taken to be a constant not depending on n. The resulting

adjustment may or may not be enough to correct the error for

pattern X depending on the value of W .X in relation to c.
n	 n n

Usually the value of c is taken to be equal to 1, in which

case computation of Eqn.( Li..3) simply involves addition or

subtraction of the pattern vector X from the weight vector

W. Moreover, recalling that the input pattern has binary

components, if the initial weight vector is also chosen to be

an integer, including zero, then all succeeding weights will

be integers thus making digital implementation very conven-

ient.

The other two rules, the absolute correction and

the fractional correction rules (Nilsson, 1965; Fu, 1970),

yield non-integer weights. There is no real advantage in

employing these rules except that the error for a particular

pattern is corrected in a single adjustment step. However,

the same effect can also be achieved with the fixed increment

rule if the pattern is presented repeatedly to the machine

until classification is correct. All three rules will
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eventually produce correct classification provided the

sets to be classified are linearly separable (Section 'i.2.t).

Finally, it is noteworthy that originally the above

solutions of Eqn.(Li.2) were not motivated by studies of

learning machines, but by studies of numerical methods for

solving linear inequalities (Agmon, 195t1; Motzkin and

Schoenberg, 195'i).

L1.23.2 LMS Error Criterion

The least-mean-square (LMS) training procedure

was developed by Widrow and Hoff (1960). Training here is

carried out on all patterns, unlike the error correction

procedure. The weight adjustments are such as to minimise

the mean-square error,

i L	 rdWX]2	
(Ii.L)C

p 1

where L is the number of patterns in the training set and

d is the desired binary output for pattern X. With this

criterion the value of the correction increment in Eqn.(.3)

becomes

where cdnWn•Xn is the error, and A is a proportionality

constant.

The LMS algorithm will give a unique solution,

that is, a unique weight vector W. However, it will not

necessarily minimise the number of classification errors even

with linearly separable pattern sets, that is, with pattern

sets which can be classified correctly by means of a linear

decision surface. A good description of the LMS algorithm

can be found in (Widrow, 1971). Widrow describes the search

for a minimum of expression ('1.4) in terms of hill-climbing

techniques as mentioned previously. Widrow also estimates

the time constant of the learning curve associated with the

LMS procedure. However, because this procedure will not

necessarily produce the optimum decision boundary even with

linearly separable pattern sets, it 1s not widely used.
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Selective Bootstrapping

One of the main difficulties encountered in

control problems is the question of supplying the learning

controller with the desired output for every single input

pattern. This problem does not arise in character recognition

situations, for instance, where the trainer, who is usually a

human, can identify clearly what category (A, B, C, etc.) every

input pattern belongs to. The difficulty can be partly solved

using the concept of bootstrap learning (Widrow, 1966; Widrow

et al, 1973) where a sequence of decisions by the machine are

evaluated as opposed to single decisions.

In bootstrap learning, when a sequence of decis-

ions by the machine is rewarded, then every decision in that

sequence is rewarded. This is similarly true in the case when

a sequence of decisions is punished. Adopting such a policy

constitutes an approximate solution to the credit assignment

problem (Minsky, 1961). It is an approximate solution since

even incorrect (or correct) decisions in a sequence which has
been rewarded (or punished) have their probability of occur-

rence increased (or decreased). Consequently, bootstrap

learning takes place at a slower rate than learning with an

ideal teacher who provides correct information for every

decision made by the machine.

At the end of the last but one paragraph above,

it was stated with care that bootstrap learning only partly

solves the question of performance evaluation of the learning

machine. Although the criterion used for performance

evaluation in bootstrap learning is global, as expressed by

the time integral in Eqn.(3.'), in control systems where an

error-functional performance criterion is adopted, it is

only possible to evaluate a sequence of decisions relative to

some past sequence. Thus qualification in control problems

is in terms of 'better' or 'worse', and not 'good' or 'bad'

(Gaines, 1972). This, of course, very correctly reflects the

endeavour of searching for the optimum performance. If the

optimum performance was known a priori, only then it would be

possible to categorically evaluate a sequence of decisions as
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'good' or 'bad'. Illustrations of this point can be found

in (Hill et al, 1964; Waltz and Fu, 1965; Nikolic and Fu, 1966),

where for every possible plant state the controller remembers

the past performance of every possible action applied in res-

ponse to that particular state. Therefore, when requested to

act upon a particular state of the plant, the controller

chooses that action which has associated with it the best

performance thus far, and the experience of this new action is

added to its memory.

In any case, bootstrap learning is a good

heuristic training method in the absence of a better one. It

has been shown that "using selective bootstrap adaptation, a

single threshold element is able to learn to play blackjack

very well without knowing the rules or the objectives of the

game" (Widrow et al, 1973). Bootstrap adaptation is straight-

forward in blackjack, of course, since an immediate 'win' or

'lose' evaluation is available for every round of play.

Another advantageous application of bootstrap adaptation could

be in multilayered and more generally connected (nontrivial)

networks of adaptive threshold elements, about which very

little is known at present in so far as training procedures

and convergence of training are concerned (Mays, 1964).

'4.2.3.4 A Heuristic Criterion

In an attempt to individualise performance eval-

uation to single decisions of the learning controller, a simple

heuristic criterion has been found to be sufficient for con-

vergence in a particular control problem (Gaines, 1971, 1972;

Witten and Corbin, 1973). The criterion adopted in this case

is to accept a decision as good if the error modulus, between

desired and actual output of the plant, decreases at some given

future time. Conceivably such a heuristic is useful when on-

line learning of bang-bang control systems is of interest.

However, the situation with a multi-class pattern recognizer

controller, that is, a plant whose inputs can have more than

two values, is more complex and this is discussed in Section 4.5.
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.2.4 CONVERGENCE OF ADIPTATION

The discussion of this section refers to con-

vergence proofs of the error correction adaptation proced-

ures. Convergence of the LMS algorithm has already been dis-

cussed, and as regards bootstrap adaptation no theoretical

convergence proof exists to date. Bootstrap adaptation relies

on the heuristic that when better-than-average performance is

rewarded and poorer-than-average performance is punished, then

useful learning will be achieved.

It will be convenient to state the convergence

theorem first and then discuss the main points of interest.

The proof of the theorem, which can be found in the references

cited below, is not given here.

Theorem:	 If there exists a weight vector which will

correctly classify all possible patterns,

then the fixed-increment error-correction

procedure will converge to a solution

weight vector (not unique) which will give

the correct classification for every pattern.

This theorem, perhaps worded differently by different authors,

has been proved over and over in the literature, possibly

because it is one of the few tangible points in the 'theory of

adaptive threshold elements' (Rosenblatt, 1962; Novikoff, 1963;

Nilsson, 1965; Minsky and Papert, 1969). The theorem looks

simple at a first glance, however it subsumes a few important

assumptions, which are as follows.

First, the theorem assumes that there exists a

weight vector which will correctly classify all possible

patterns. With a single ATLE of N inputs, in general there

are	 different input-output relationships or truth functions

by which the N input variables can be mapped into the single

output variable, and only a subset of these, the linearly
a-A

separable logic functions, can be realised by H possible

choicer of the weights. Two sets A and B are linearly
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separable if the intersection of the convex bulls of sets

A and B is the empty set (Greenberg and Yonheim, 1964).

Furthermore, the points in a feature space which are

identified with a particular class by a. linear decision

function, that is the ATLE, form a convex set (Highleyman,

1962). Hence the connotation of linear separability in

the theorem, of the pattern sets that are being trained

into the ATLE.

When the assumption of linear separability is

not valid, there is no theoretical justification that the

weights converge to values which guarantee a minimum number

of incorrect classifications among the training samples,

although empirical results reported indicate that the adapt-

ation procedure generally does produce errors close to the

minimum. Several methods of testing for linear separability

have been suggested (Singleton, 1962; Wee and Fu, 1968),

however, the general approach is to implement the threshold

element and observe if the weights will converge after a.

period of training. The symptoms that suggest non-separ-

ability are oscillations in the weights. The main disadvant-

age of these tests from the point of view of on-line real

dynamic systems,is that it is assumed the training set, with

the desired output for every sample in that set, is available.

Second, the theorem does not provide the number

of steps of adaptation needed to achieve convergence. The

upper bound obtained in the course of the proof of the theorem

unfortunately assumes that at -least one solution to the problem

be known before the length of the training sequence can be

estimated. Nagy (1968) has shown this upper bound to be very

sensitive by way of a counter-example, in which convergence is

achieved in 45 steps as opposed to the theoretically calculated

28'i steps by Singleton (1962). In more realistic applications,

the number of training steps required is actually exhorbitant;

for instance, some l0 odd samples were quoted at a colloquium

by Witten (1973).

Further assumptions of the convergence theorem are

discussed in the following sections. In concluding this section

it is noted that although the theorem has been stated for the

fixed-increment error correction procedure, slightly modified

theorems can also be proved to apply to the absolute and

fractional error correction procedures (Nilsson, 1965).
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'. 2 . 5 GENERALIZATION

A third postulate in the convergence theorem is

that every sample in the set which is to be dichotomized is

present in the training set. That is, the training set should

contain all 2N possible pattern vectors. If only a proportion

of these, y, is included in the training set, then the theorem

says nothing about the remaining (2N_1) samples. This assump-

tion is stronger than necessary in fact since the constraint

of linear separability implies that having dichotomized a sub-

set of the complete set into A and B, then a new pattern X may

not necessarily be assignable at will to -either A or B (Gaines,

1971). In other words, training with the set (MB) and (A^B+X)
leads to the same dichotomization, and the ATLE is said to have

generalizing property.

There are no theoretical methods for calculating

the minimum number of samples to be included in the training

set which will cause correct classification of the complete set

through generalization. The general rule of thumb is that the

training set should be statistically representative of the

environment, so that the structure of the recognition network

reflects in some sense the structure of the environment with

which it must deal. This is a useful heuristic to induce gen-

eralizing properties into the ATLE. Otherwise, if a machine is

trained on a limited number of samples, then it may converge to

a very non-optimum solution because the amount of data is not

sufficient to define an optimujit solution. The constraints on

the training set which are distinct in real dynamic control

problems are discussed in Section Li.5.

4.2.6 CONSIDERATIONS OF THE WEIGHTS

Yet another assumption in the ATLE convergence

theorem is that the values of the weights should be unbounded

in magnitude. Again this condition is stronger than necessary

and it can be shown (Gaines, 1967, 1968) that the weights need

take only a finite range of values but that the range necessary

for convergence is greater than the range necessary for separ-

ability. Hence, with bounded weights one runs the risk of not

achieving convergence even though the two pattern sets to be
dichotomized are linearly separable. An illustration of this
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is given in the above references, where adaptation results in

limit cycling of the weights without attaining a soluLion.

Gaines also points out that in an ATLE with bounded weights

the convergence is a function of the irtLtial values of the

weights, unlike the assumption in the main theorem where the

initial weights are arbitrary.

Turning attention to the physical realisation of

pattern classifiers, the implementation of fixed threshold

logic is relatively easy, but adaptive threshold elements

place restrictions on the phenomena that can be used to re-

present the weights. Various techniques for storage have

been proposed, including those based on the electrochemical

variable resistance cell (Widrow, 1962), the magnetic core

(Brain, 1961), the MOS transistor (McConnell and Meadows, 1966)

and the voltage of a stabilized capacitor (Smith and Harbourt,

1968), but these have all had their defects in cost, size,

reliability or complexity. For want of a simpler and more

economical implementation,a current summing device (Highley-

man, 1962; Griffin et al, 1963) is suitable, although the

latter is only applicable in the implementation of a fixed

threshold element.

The basic difficulty in the above devices is that

analog weights are considered. It was indicated in the fixed-

increment error correction training procedure that integer

weights are desirable since these can be fabricated at a low

cost and high reliability using digital integrated circuits.

It has further been shown (Ide et al, 1968) that digital

storage requirements can be relaxed, so that good performance

can still be obtained with fewer quantizations of the weights.

This supports the fact that the solution weight vector referred

to in the convergence theorem is not unique. However, reducing

the number of quantizations cannot be considered before the

training is complete, as this creates the problem of having

bounded weights discussed above.
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'1.2.7 CODING OF INPUT PATTERNS

It has already been mentioned that the convergence

theorem applies only if a solution exists, and the latter does

so if and only if the two sets of patterns to be dichotomized

are linearly separable. On the other hand, linear separability

applies to the pattern vectors generated by the coder in Fig.'i.2

and not to the original stimuli, which might not even have num-

eric connotations.

A method of coding, the linearly independent code

(Smith, l96 L1, 1966), has proved to be particularly useful in

control problems. Smith has show-n that when the state variables,

Xk, of the plant are each encoded using the linearly independent

code, a single ATLE will approximate to an arbitrary degree of

accuracy switching functions of the form

f(xx 2 ,__, xk)O	 ('1.6)

provided that no cross-product terms are included in the expres-

sion. Expressions containing cross-product terms can be real-

ised by encoding additional analogue variables which are linear

combinations of the original state variables. This is a stand-

ard method used in other coding schemes as well, since a non-

linear decision boundary, that is, a decision boundary between

two sets which are not linearly separable in the original sample

space, appears as a linear boundary in the space spanned by the

products of the original variables (Greenberg and Konheim, 1964).

In general, nonlinear combinations other than products

yield the same result. Various alternative methods for classify-

ing non-separable sets have also been proposed, for example, by

introducing multiple linear planes with some output logic via

AND and/or OR gates (Mattson, 1959), and by cascading threshold

gates (Cadzow, 1968).

It is an obvious desire to have a pattern vector of

minimum dimensions consistent with the separability requirement.

From this point of view, although the linearly independent code

produces a separable pattern set, it requires a large amount of
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storage for the weights which are redundantly used (clearly

not all of the 2N possible combinations of N features occur

with the linearly independent code). For instance, to re-

present a total of 8 patterns, a binary coder requires 3 bits

whereas the linearly independent coder requires 8 bits! In

general, the linearly independent coder requires as many bits

(features) as there are patterns. As a consequence, the ATLE

loses its ability to generalise as well. However, this is a

price that must be paid in order to achieve the desired

classification.

'1.2.8 EXTENSION TO MULTICATEGORY CASE

Up to now the properties of a single ATLE have

been considered thus limiting their application to dichotomous

classification. The extension to multicategory pattern class-

ifiers, by building a network containing more than one ATLE,

is more interesting, although the majority of control problems

studied in the light of learning machines have been limited to

bang-bang systems requiring dichotomous classification.

The immediate problem facing the designer of the

multicategory pattern classifier is the number of threshold

elements to be included in the network. Three possibilities

have been considered, each one being expedient under separate

conditions. The first possibility is to have less number of

threshold elements than the number of classes. In this case

the need arises to code (usually binary code) the output in

some manner, which, unfortunately, requires pre-knowledge of

the clustering properties, or the topology of the input space

with respect to classes. Therefore, the selection of a code

is not arbiirarybüt rather is dictated by the environment. A

simple illustration is given in (Mattson and Dammann, 1965).

Mattson and Dammann also present a method for determining and

coding clusters in an unknown, multi-clustered space. However,

one of the disadvantages of their technique from the point of

view of control problems, is that it is an off-line procedure

requiring all samples to be classified to be available con-

currently.
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The second method of separating multiple classes

is to have C(C-l)12 threshold elements, where C is the number

of classes (Highleyman, 1962). This method, referred to as

class-pair separation (Griffin et al, 1963; Greenberg and

Konheim, l96; Ide et al, 1968), is based on the principle

that any multiclass problem can be treated as a. number of two-

class problems involving the separation of each class from

the remainder of the universe. Although the use of this

method produces good performance, its disadvantage is that a

large number of threshold elements are involved not all of

which may be necessary.

The third method is a compromise between class-

pair separation and the first method mentioned. Referred to

as the 1-out-of-C procedure (see references cited above), it

employs one threshold element for each class. The implic-

ation is, therefore, that each linear plane of each threshold

element separates one class from all the others, and at any

one time only one of these planes is 'on', giving the class

chosen. Inevitably, this method has its disadvantage too, in

that it may not be possible to separate one class from all

others by means of a single linear plane. Obviously, the

convexity or linear separability requirements of the 1-out-of-C

procedure are more stringent than those of the class-pair pro-

cedure which produces better performance. On the other hand,

after a comprehensive experimental study of all the possible

code assignments, Ide, Kiessling and Tunis (1968) conclude

that the performance of the 1-out-of-C coded classifier is

exceedingly close to the performance of the class-pair

classifier. In general, the 1-out-of-C code is preferred

considering the large number of threshold elements that the

class-pair classifier requires.

The most often used weight, adjustment method in

multicategory situations is the fixed-increment error correct-

ion procedure. A convergence proof for the 1-out-of-C coded

classifier using the fixed-increment error correction weight

adjustment procedure is given in (Nilsson, 1965), which is a

slightly modified version of the convergence proof for the

single threshold element. As regards the class-pair classifier

it is easy to see that its convergence requirements are

identical to those of the single threshold element.
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'1.3 PATTERN RECOGNITION II - DECISION THEORY

'1.3.1 RATIONALE OF DECISION-THEORETIC APPROACH

Statistical decision theory establishes rules for

choosing an action based on a set of measurements so that a

loss is minimised. This formulation alone evinces the applic-

ability of decision theory in control problems via pattern

classifiers.

Mathematically, the decision-theoretic approach

is more elegant than that of the threshold element. To be

specific, classification in a decision-theoretic learning

system is based on a gradually updated estimate of the joint

probabilities of recently observed features. The generality

of this formulation enables it to handle a wider variety of

problems. However, the resulting computational load in com-

puting the joint probability distributions of many variables

in a real system could easily overwhelm storage availability,

even in a large digital computer. Furthermore, the time re-

quired to find these distributions can be excessive (Assilian

and Mamdani, l97 L a). Because of these detrimental factors

there has been a general lack of interest in decision-theoretic

pattern classifiers, particularly among control engineers, and

the majority of applications considered have been limited to

cases where it has been possible to assume simple statistics of

the environment.

THE MAXIMUM-LIKELIHOOD CLASSIFIER

Let the R pattern classes be denoted C,lkR,

each having a priori probability of occurrence p(C 1 ), where

R
p(C.)=l
	

('1.7)
i1

Sometimes the categorizer may be allowed to reject a pattern

as being unrecognizable if the recognition decision is un-

reliable in some sense (Section '1.2.3.1). A rejection may

or may not be considered as an error and the rejection

category will be indexed by zero, as C0.



L(C.) L(C.) for 1iR
1 (4.9)

77

Central to the decision-theoretic treatment is

the specification of a loss funtion A(C 1 ,C)X 1 ., O±, jR,

which represents the loss or cost incurred when the machine

places a pattern actually belonging to category Cj into

category C 1 . The usual case requires that A 11 >A

where A 10 is the loss associated with rejection. If the

machine classifies patterns such that the average , value of

is minimised, then it is said to be optimum with respect

to minimising the loss, and is known as a Bayes machine.

Given the conditional probability p(C 1 I )Y, the

conditional average loss, denoted L(C.), is expressed by

R
L(C.) =	 x	 p(c.jX)	 (L.8)

1	 :il	 13

By definition a Bayes machine assigns a pattern X to category

C. , where for ± = ±
B

The expression for L(C 1 ) can be simplified

using:

Bayes' rule

p(CIX)	 p(XjC1)p(C1)/p(X)	 (4.10)

and the special loss function,

(l-tS 11 )A	 (4.11)

where	 is the Kronecker delta function. Although the use

of this loss function is primarily for computational ease, in

certain applications it is also a reasonable assumption to

make; a loss of A units is incurred for an erroneous class-

ification, but no loss is assumed for a correct classification.

Furthermore, it can be shown that a Bayes machine using this

loss function minimises also the probability of erroneous

classification (Highleyman, 1961; Patrick, 1972).



78

Substitution of Eqns. ('i.lO) and ('.11) into

Eqn. ( 1i.8) and simple manipulation yields,

L(C.)	 X [ p ( X I C. )p(C. )]Ip(X)	 ('4.12)1	 1	 1

Finally, minimising the above expression for L(C 1 ) is

equivalent to maximising the expression

p ( X I C ) p ( C ±)	 (.i.l3)

A decision based on such a computation is known as a

maximum-likelihood decision.

'4.3.3 ASSUMPTION OF STATISTICAL INDEPENDENCE

The mathematical derivation in the last section

shows that the implementation of the decision-theoretic

categorizer requires numerical values for p(XIC1) and p(C1).

Of course, these probabilities are unknown at the outset and

it is the task of the learning controller to estimate their

values, the computations of which will depend on the assump-

tions made about the form of the distributions. It is with

respect to these assumptions that the computational load can

be excessive. For instance, the most general but trivial case,

when there are N binary features, would require 21' registers

merely to store the probability distribution of one class.

Clearly, this approach must be rejected outright since it is

impractical for large systems, and therefore some simplific-

ation of the statistics underlying the environment is

necessitated.

The number of distributions to be computed, and

the difficulty of the computation itself is greatly reduced

if statistical independence between the features (xl,x2,___,xN)

that make up a pattern X can be assumed. This assumption is

frequently made as a theoretical constraint in the study of

decision-theoretic learning classifiers. However, how well

the assumption of statistical independence describes many

realistic situations is very application dependent and care

must be exercised before utilizing it. When it can be

assumed, then it is possible to express p(XIC1) as
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II p(x . I C1)p(C.)1j=1
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p ( X I C 1 )	 p(xlICj)p(x2ICj)___p(xNICI)

N
11 p(x.IC)
	

(L.• lii.)

j1

From expression (4.13), the task of the classifier now be-

comes that of maximising

or, since the logarithm is a monotonic function of its

argument,

N

E log p(x.IC.)+ logp(C4)
j	 a.j1

(4.16)

Depending on the application, other assumptions

about the statistics underlying the environment are also

possible. For example, if it is known that the distribution

is Gaussian, then the task of the classifier reduces to that

of estimating the parameters of the Gaussian functional form

(Nilsson, 1965).

4.3.4 PROBABILITY ESTIMATION PROCEDURES

Similar to the weight adjustment procedures for

the threshold element, various methods for estimating the

probabilities involved in a decision-theoretic classifier

have been proposed.

4.3.4.1 Laplace's Rule of Successions

Laplace's rule of successions (Parzen, 1960)

estimates the nth iteration of p(xj,IC.) as
n

1	 (C1,x)

	

-	 (4.17)

	

P'(xIC1) -
	 k1

2+ E	 11) (k,C1)
k 1

where
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k- ri, if x. = 1 in pattern which is

	

classified as C.	 ('p.18)
- to, otherwise	

1

and

1, if C.is chosen

(k,C1) ={, othewise
(Li.19)

n
That is,	 i (k,C.) is the total number of times class C.

	

k=l	 1
is chosen in n training steps. Similarly, the nth iteration

of p(C1 ) is
n

	

1 +	 i (k,C.)

	

Pnl(C1)	 k=l	 1
R	 n

	

2 +	 E	 k,C1)
1=1 k=1

n
=	 r 1 + z	 ip(k,C.)] /(2+n)	 (Li.20)

L k=l

By writing Laplace's rule in short as

(1+a)/(2+b), then it becomes obvious why it is preferred to

the simpler and ordinarily used expression, (a/b), for

estimating probabilities. It may happen that even after a

long period of training, a 0 and b l, in which case

(a/b) = 0, so that the product in Eqn.(4-.1S) of the probabil-

ities is zero. Clearly this is not appropriate, and since

urn	 a
n-	 '+b	 b

Laplace's rule of estimating probabilities is better suited in

on-line applications. A variant of Laplace's rule has also

been suggested (Symons, 1968), however the difference is

unlikely to be felt operationally.
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n
p	 (l-x)p

(4. 23)
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'4.3.'L2 Heuristic Estimators

Dropping the descriptives in brackets in Eqn.(4.17)

and denoting by. d the denominator, it is easy to ee that an

iterative procedure for estimating the probability is:

p°	 1/2

= [(d-l)p 1+4)] /d
	 (L,..21)

The disadvantage of this procedure is that it has to keep record

of d. This can be avoided by a simple heuristic. Rewriting

Eqn. (4.21) in the form
pfl =(l1/d)Pr+4)/d	 (4.22)

the following procedure is suggested:

It can be shown (Minsky and Papert, 1969) that pfl approaches

the true probability as a limit but with the effect of past

iterations decaying exponentially, which could be advantageous

in some applications. A similar estimator can be given for

Eqn.(4.20) with '1' replacing 4). The procedure of Eqn.('4.23) is

also discussed in (Minsky, 1961; Minsky and Seifridge, 1961),

where it is pointed out that essentially the procedure is that

used in 'reinforcement learning' (Bush and Mosteller, 1955;

Estes, 1959).

4.3.5 CODING OF INPUT PATTERNS

A caution was given to treat the property of

statistical independence carefully and this point is elaborated

here. When a state variable of a plant in a control problem

is encoded using the linearly independent code, it can no

longer be assumed that the generated features in this fashion

are statistically independent. For example, consider the case

where a state variable is quantized into three levels and the

single-spot linearly independent code is used:
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State Variable X
	

Single-Spot Code

xl	 001

x2	 010

x3	 100

It is easy enough to see that p(X)#:p(x1)p(x2)p(x3), but

simply:

when X 001

p(X)	 p(x) when X	 010
	

('4. 24)

L p(x3) when X = 100

When the linearly independent code is used,

statistical independence can only be assumed between any two

state variables, X 1 and X 2 , which have been combined to form

the input pattern X. Thus,

p(X) = p(X 1 )p(X 2 )	 (4.25)

but again each partial vector, X 1 or X 2 , follows the rules in

Eqn.(4.24). In the general case, where there are M state

variables quantized into N 1 , N2,	 NM levels, the input

pattern X is composed of N 1+ N2+ --- +NM features,

X = (Xl;X2;---;XM)

(4. 26)

and the probability of the input pattern is

p(X) = p(Xl)p(X2)__p(XM)

= P(Xla)P(X2a)___P(XM)
	

(4. 27)

where a1 corresponds to that position in the partial vector X1

such that Xa =1. It must be noted that the number of terms
1

in Eqn.(4.27) is a. great deal less than it would otherwise be

- see Eqn.(4.l4). Consequently, use of the linearly independ-

ent code reduces computational load in terms of computation

time, but the use of storage is still excessive.
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Similar considerations must also be applied to

the multi-spot code, and an example of the misuse of

statistical independence when linearly independent coding is

used can be found in (Freedy et al, 1971).

Ei. . i THRESHOLD ELEMENT VERSUS DECISION THEORY

Although there seems to be little in common, at

least in mathematical representation, between an adaptive

threshold element and a Bayes pattern classifier, under

certain circumstances the structure of the classifier can be

shown to be identical for both cases. Any disparity arises

only out of the different methods of determining the values

of the components in that structure.

.'4.1 AN EQUIVALENCE

When the features comprising the input pattern

to the classifier can be assumed to be statistically

independent, and when the features take on binary values it

can be shown that the decision boundary of a Bayes classifier

is linear, same as that of the threshold element. This

striking equivalence has been pointed out often in the

literature (Minsky and Selfridge, 1961; Papert, 1961;

Minsky and Papert, 1969; Assilian and Mamdani, l97'4a). An

excellent exposition is given in (Chow, 1965).

To give a brief outline, let

(LI..28)

p(x.	 ('i. . 29)

Assuming statistical independence,expression ( ti.16) can

then be reduced to

N	 N
x.log(p. ./q. .)+ E log q. .+log p(C.)	 (Li..30)

J1	 ]1	 3-
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which is equivalent to the linear threshold function

N
x .w. .+w

j=l	 J] 01

where

N
w	 E log

j1	
1+log p(C1)

(4. 31)

(Li.. 32)

(L. 33)

4.Ll.2 DIFFERENCES

Even though the decision boundary of a Bayes

classifier is linear under the assumption of statistical

independence the orientation or the positioning of this

boundary is different than that of the threshold element

because of the different ways of determining the weights

associated with each boundary. The Bayes boundary tends

to position itself as a perpendicular bisector to the line

joining the centres of gravity of the two classes of points

(Minsky and Pa.pert, 1969). Hence it is possible for the

Bayes classifier to make some errors even when the two sets

of points are linearly separable. On the other hand, when

the two sets are not linearly separable, the Bayes classifier

is known to minimise the number of errors, whereas very little

is known how the ATLE will behave. It was mentioned, however,

that empirical results indicate that in general the latter will

adapt to a configuration which also gives an almost minimal

number of errors. When no prior knowledge exists about

separability, it seems the safer approach is to use a Bayes

classifier. Nevertheless, the simplicity of the threshold

element appears to have had more appeal to most workers in

the field.

4.5. TRAINING OF PATTERN RECOGNIZERS

Up to now very little has been said about the

training aspects of pattern recognizers, and when control

problems are of interest, two main problems can be isolated;

first, the configuration to be used involving the plant,

controller and trainer, and second, the choice of the trainer

itself.
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Fig. 14•3 Training Configurations

4.5.1 OPEN- AND CLOSED-LOOP TRAINING MODES

Considerations of the configuration between plant,

controller and trainer lead to two main types of training,

open- and closed-loop. The distinguishing feature between the

two modes of training is the loop-closing link between plant

and controller as shown by th& dotted line a in Fig.4.3.

When there is no feedback from the controller to

the plant, so that an independent source is influencing the

patterns generated by the plant, the mode of training is called

open-loop (configuration b-c-e). The control actions applied

to the plant in this case are usually those of the teacher.

With this configuration it is possible therefore for the teacher

which would usually have to be the human operator, to give the

controller a 'guided-tour' of the entire state space of the

plant, thus providing a typical or a. statistically represent-

ative training set necessary to produce an optimum controller.

Where this cannot be done, for example, with plants which are
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already in production, then the generalising properties of the

controller become important. Similar views related to these

points are discussed at length by Gaines (1971, 1972) as the

'sub-environment' phenomenon. Effectively, the behaviour of

the controller in the open-loop configuration can be looked

upon as that of mimicing the actions of the trainer, and this

situation can give rise to a ridiculously sub-optimal

controller if the trainer is non-optimal itself.

In the closed-loop configuration where the

controller is part of the control loop, two possibilities arise

depending on whether a teacher is also included (configuration

a-c--e) or not (configuration a-d). When a teacher is included

to guide adaptation through performance evaluation, the problem

of producing a sub-optimal controller still exists, and even

with an optimal teacher, for example, in the case of a fixed

optimal controller acting as the teacher, it may be forced to

operate outside its normal range of inputs thus again showing

sub-optimal behaviour. On the other hand, when the criterion

for adaptation is based on typical performance measures such

as minimisation of some error functional over an interval, the

designer is faced with the problems associated with localising

performance evaluation to single actions of the controller, as

discussed in Section '4.2.3.3.

4.5.2 SUPERVISED TRAINING

4.5.2.1 A Fixed Controller as Trainer

An obvious choice for the teacher in Fig.4.3 is

to use an already existing fixed controller which is known to

operate successfully on the plant. It would be reasonable to as}

at this point the reason for wanfing a second controller when

one already exists. However, the use of a fixed controller to

train an adaptive one is normally encountered in feasibility

studies of learning machines where the objective of the

investigation is the adaptive capabilities of such machines.

It is still conceivable though for the need to arise for

replacing a fixed controller by an adaptive one. For example,

it can happen that theoretical design efforts yield a fixed

optimal controller which is too expensive, or even impossible

to realise in hardware. In such cases, adaptive pattern
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recognising controllers offer an alternative solution since

they can be cheaply implemented after an off-line training

phase carried out in a general purpose digital computer.

A few of the problems associated with the use

of fixed controllers to train adaptive ones have already been

mentioned. One of the main disadvantages is that fixed con-

trollers are usually designed to be optimal only in a very

small region of the entire operating space of the plant.

This region is the immediate neighbourhood of the normal

operating point of the plant, and if large changes in the

operating point are to be demanded it becomes necessary to

design a completely new controller with different character-

istics. This has the consequence that when the same fixed

controller is used for training in the entire operating space

of the plant, it will teach non-optimal control policies for

the most part of that space.

Another disadvantage of a fixed controller, which

is being assumed here to be designed using classical or

conventional control theory, is that usually their inputs are

analogue signals, whereas the inputs of most adaptive

controllers are quantized values of these analogue signals.

This difference between the two can result in the fixed

controller giving contradictory teaching information within

the same quantized region of the input space (see Chapter 5).

Human Operator As Traiier

Having a human operator as the trainer solves

some of the problems mentioned in the last section since, in

general, the human can be more flexible. The human operator

also offers the only alternative when no exemplifying fixed

controller is available. As of this date, the human has

played an important role in studies of learning machines.

In character recognition, speech recognition and studies of

the like, the human has exclusively played the role of the

teacher. Similarly, in the majority of work carried out

within the wide scope of Al, for example, game-playing and

theorem-proving situations, the influence of the human has

been extensive.
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The case is somewhat different in control

situations specially when the control of real dynamic.plants

is concerned, where transient responses (dynamics) rather than

end-states are of importance. Static manipulatory control

tasks are more readily formulated and studies have been carried

out where the human operator has successfully played the role

of the teacher (Whitney, 1969; Freedy et al, 1971). However,

the environment when the human is required to control transient

response is more complex, and his behaviour less predictable

and less understood. The problems arising in these circum-

stances are discussed in more detail in Chapter 5 in the light

of the experience gained in the training of adaptive controllers

for the steam engine.

1.5.3 UNSUPERVISED TRAINING

Undoubtedly, supervised training can create many

problems whether the trainer is another machine or a human,

and as an alternative solution unsupervised training has been

suggested where the controller guides its own learning through

some performance index (configuration a-d in Fig-l.3). An im-

mediate advantage of unsupervised training, therefore, is that

labelling of patterns is eliminated. In fact, unsupervised

training is usually considered when this labelling information

is not available. Another advantage is that unsupervised

learning endows the controller with tracking ability, that is,

the controller is capable of tracking any changes in class

distributions due. to data changes or hardware degradation

(Nagy, 1968). This is because learning in this mode of

training can be carried on ad infinitum unlike the case in

supervised mode, where after an initial phase of learning,

teaching is usually discontinued.

Nevertheless, the unsupervised training mode

has its disadvantages too, particularly in the case of a

multi-class system, for example, the steam engine.in this

study. The discussion below is mainly concerning such systems.

The two main problems in this case are the specification of an

appropriate performance index and the size of storage required

to hold the information necessary for the learning process,

which otherwise is Trememberedt by the teacher.
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The difficulty that arises in evaluating the

performance is due to the credit assignment problem (Minsky,

1961) as discussed in Section '1.2.3.3. In two-class systems,

this problem can be solved using simple heuristic criteria,

for instance, the one described in Section '1.2.3.'1. In

multi-class systems, however, the situation is not as simple

since at every sampling instant, or for every possible state

of the plant, one has the choice between more than two

actions, so that the effect of each of these actions need to be

evaluated in order to choose the optimum. Such unsupervised

training schemes have been suggested and limited simulation

results have indicated the viability of the scheme (Hill et

al, 196 14; Waltz and Fu, 1965; Nikolic and Fu, 1966). The
'local' performance index that is specified in all three

studies cited above is heuristic in nature and it is suggested

(Waltz and Fu, 1965) therefore to have a separate 'learning

loop' to search for the optimum performance index. This,

of course, is reminiscent of the hierarchic structure of the

general learning system. More to the point though, the

inclusion of a secondary learning loop can increase the

learning process to an unacceptably long period in practice,

even though its presence is seen to be important, if not

necessary. Indeed, the learning rate in the unsupervised

mode is in itself very slow without this additional loop

(Nikolic and Fu, 1966).

The second problem in unsupervised learning

arises because of the need to retain vast amount of

information about every possible state of the plant. The

formulations of the training schemes given in the above

cited references indicate clearly the vast space of memory

required to deal even with small systems. Again, the

problem is not as serious with two-class systems as it is

with multi-class systems.
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To conclude, in general the complexity of the

unsupervised mode of training cannot be reduced even though

the scheme is known to be feasible. A good discussion of

the inherent problems in unsupervised learning is given by

Spragins (1966). He points out that theoretically developed

schemes (Hilborn and Lainiotis, 1969) very often cannot be

implemented in practice because of their highly complex

formulation.

t.6 CONCLUSIONS

Two important techniques in adaptive or learning

control have been presented and discussed in detail in this

chapter. These techniques have been criticised particularly

in the light of what might be expected with real systems.

Possible training modes' for such controllers have also'been

presented and discussed. In retrospect, it is obvious that

a large and complex set of interrelated problems exist what-

ever the configuration adopted for training. It would be

virtually impossible to try and associate each problem mentioned

in the chapter with only one configuration. Further discussion

is given in the next chapter where a few particular training

schemes are considered for the control of the steam engine.



91

CHAPTER 5

ADAPTIVE CONTROL OF THE STEAM ENGINE

5.1. INTRODUCTION

The lengthy review presented in the last chapter

of the techniques available in the art of adaptive control was

in preparation for possible experimentation to be carried out on

the steam engine. Classical control methods proved the engine

as controllable and now the way was open to test the applic-

ability of adaptive control methods. The true value of these

tests lie in the fact that a real dynamic system is being used

in assessing the effectiveness of adaptive controllers. Apart

from this fact, no innovation is claimed in any of the learning

controllers, which have been extensively studied, mostly through

simulation work, in the literature.

5.2 EXPERIMENTAL CONSIDERATIONS

5.2.1 INPUTS TO THE ENGINE

It is recalled that both the heat and throttle

inputs to the plant are quantized into 32 and 10 levels

respectively. Because the adaptive controllers to he described

consider errors and changes in errors of the state variables,

similar to the direct digital controller of Chapter 3, the

actions applied by these controllers were accordingly changes

in heat and throttle. The heat input was allowed to take

O-±7 steps, and the throttle O+±2 Steps. The choice of using

these values was made after observing that the direct digital

controller also confined its actions within these ranges. Of

course, any action demand by the controller which would take

the inputs beyond their maximum limits, for example, a +6 step

demand on the heat input which is already at absolute level 30,

is detected by the software and truncated to the maximum

possible (+2 in the above example).
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5.2.2 OUTPUTS FROM THE ENGINE

The state variables monitored by all the adaptive

controllers are the very same ones considered by the direct

digital controller, that is, pressure error (FE), change in

pressure error (CPE), speed error (SE) and change in speed

error (CSE). Naturally, the errors refer to the difference

between the value of a state variable and the set.point for

that variable. And a change in error is defined as the

difference between the magnitudes of error in a variable at

either end of a sampling interval. Since the sampling interval

is kept constant, this information is equivalent to having the

first derivative with respect to time, that is, velocity of a

variable.

-2	 -1	 -O	 +0	 +1	 +2	 +3	 +4 j +5	 +6	 PE

-.15 -.05	 0	 .05	 .15	 .25	 .35	 .45	 .55	 VOLTS
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F-'	 I	 I	 I	 I	 I	 I	 I	 I
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Fig 5.1 PE, SE, CPE, CSE Definitions
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The pressure and speed set points are defined at

the beginning of an experiment and using these values the soft-

ware quantizes the PE and SE variables into l points. Simil-

arly, the CPE and CSE variables are quantized into 13 points as

shown in Fig.5.l. Because a change in error has been defined

as the difference between magnitudes of errors, a negative

change indicates a velocity directed towards the set-point, and

a. positive change indicates a velocity pointing away from the

set-point. Note also that the zero states of the PE and SE

variables have been further divided into +0 and -0 states about

the set-point in an effort to present inputs to the adaptive

controllers as possibly the same as those presented to the

direct digital controller.

5.2.3 SAMPLING

The time interval of sampling the state of the

plant was chosen as 10 secs. The choice of this value was

reckoned as suitable after considering the time constants of

the pressure and speed variables, as established in the mod-

elling of the plant. A second influence in this choice was

the desire to make timing compatible with that of the direct

digital controller, which is included as the teacher of the

adaptive controller in one of the experiments. Using a dif-

ferent sampling interval would have necessitated changing

the already established parameters of the direct digital con-

troller since they depend on the sampling period.

5.3 EXPERIMENT I:

HUMAN OPERATOR AS TEACHER

Two series of experiments were conducted where

the human operator took on the role of the trainer. The

first series involved the training of a Bayes controller for

the engine and the second that of an ATLE-network controller.

Because the observations made were similar for both control-

lers, only the training of the Bayes controller will be

described here.
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The irput pattern to the learning controllers

consisted of PE, CPE, SE and CSE where each variable was

encoded using the single-spot linearly independent code.

Thus each input pattern was a (lLi.+l3+lLt+l3)(5LI)-dimensional

vector. Two probability matrices were defined next, the

first (5 L xl5) matrix for heat control and the second (5!Ix5)

matrix for throttle control. These probabilities were cal-

culated using Laplace's Rule of successions as given by

Eqn.( Li.17). Two probability vectors were also defined to

keep record of the probability of applying each possible

heat and throttle input. These probabilities were calcul-

ated using Eqn.(4..20). The output of the Bayes controller

was calculated using a similar expression to ( L .l6); the

actual expression used accounted for the arguments advanced

in Section '1.3.5 concerning the interrelationship between

statistical independence and the linearly independent code.

The state of the plant was displayed to the

human operator every 10 sees. on a teletype and in the form

of numbers. At first, all four variables FE, SE, CPE, CSE

were displayed but the operator found this as too much in-

formation to absorb in the given time. Also, because of

the quantized nature of the displayed data, and specially

so in the case of CPE and CSE, the operator had great

difficulty in getting a 'feel' for the dynamics of the

plant. For this reason, only FE and SE were displayed to

him on the teletype and at the same time he was allowed to

observe the digital voltmeter, which monitored the pressure

and speed variables on a time-shared basis of 5 secs. each,

in order to estimate the velocity of the two variables.

Finally, the actions applied to the plant were

those of the human operator as shown by the configuration

b-c-e in Fig. t .3. In order to present a statistically repre-

sentative set of training patterns to the learning controller,

training runs were systematically started from different

points in the state space.
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5.3.1 EXPERIMENTAL RESULTS

In anticipation of the conclusion for this series

of experiments, very poor convergence was exhibited by the

Bayes controller even after many days of training. For this

reason alone, insLead of presenting the final, and less

interesting, poor quality of control learned by the Bayes con-

troller by way of state-trajectory diagrams which compare very

unfavourably with those of the direct digital controller,

results will be presented and discussed which point at some of

the reasons accounting for the discouraging outcome.

The main reason which can be attributed to this

discouraging result was the inconsistency of the human oper-

ator in his actions or control policies. Three separate runs

performed on different days are shown in Fig.5.2.

Fig. 5.2 Teaching Trajectories
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SAMPLING PE SE	 OPERATOR BAYES OPERATOR	 BAYES
TIME	 HEAT	 HEAT THROTTLE THROTTLE

	

0	 -4-5	 -	 -	 -	 -

	

1	 -4 -5	 +7	 +3	 +2	 +2

	

5	 -3 -4	 -1	 -1	 0	 0

	

6	 -3 -4	 -1	 +1	 0	 0

	

8	 -2 -3	 -2	 -1	 0	 0

	

12	 -1 -2	 -1	 0	 0	 0

	

15	 -1 -1	 -1	 0	 -1	 0

	

18	 0-1	 -1	 O	 0	 0

	

21	 0	 0	 0	 +3	 0	 0

	

25	 0	 0	 -1	 +3	 0	 0

	

29	 0	 0	 -1	 +4	 0	 0

	

32	 0 +1	 -1	 -1-3	 -1	 -1

	

33	 +1	 0	 -1	 -5	 0	 0

	

36	 +1 +1	 -4	 0	 0	 0

	

37	 +1	 0	 0	 +7	 0	 0

	

38	 0	 0	 +3	 +2	 0	 -1

	

39	 0	 0	 -1	 +3	 0	 +2

	

14 7	 0	 0	 0	 +14	 -1	 +1

	

50	 0 -1	 0	 0	 0	 +1

	

52	 0 -2	 +1	 0	 +1	 +1

	

53	 0 -1	 0	 0	 0	 0

	

514	 0	 0	 0	 -i	 0	 +2

Table 5.1 Sample Run Data (RunAFig.5.2)
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They all start with the same state of the plant ad yet

quite different trajectories are followed in each run, to

say nothing about the quality of control. Although run A

in Fig.5.2 appears to be of good control quality, the run

data given in Table 5.1 indicate in what way this is not

true. To elaborate further on the inconsistency of the

control policies of the human operator (the author, in

this case), a protocol taken at the time run A was

conducted is given below.

Sampling

Time	 Protocol

1	 "Both P(pressure) and S(speed) are way below their

set points - maximum action."

S	 "They are coming up now - decrease H(heat) by one

to avoid overshoot - leave T(throttle) as it is

since S still low."

6	 "Decrease H by one."

8	 "P going up fast - will overshoot - decrease H by 2."

12	 "P still going up - take one from H - let S go up

still."

15	 "Decrease H another step - S almost at set-point -

decrease T by one."

18	 "P is there (at set-point) - but still creeping up -

take one."

21	 "Both there - no action."

25,29	 "P still creeping up (this information is from

observing the voltmeter) - take one from H."

32	 "P still moving - minus one on H - S has overshoot

now - minus one on T."

33	 "P has overshoot - have decreased H so many steps! -

take another one - S O.K."

36	 "P still above set-point! - take t this time from H -

S has overshoot again - but since P is high now, I

-	 think S will come down with P - leave T as it is."

37	 "P still one above (set-point) - but coming down -

no H action - S O.K. as hoped."
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38	 "P at set point but going down too fast now - take

plus 3 on H."

39	 "Maybe plus 3 was too much on H - before I decreased

H so much and P still didn't come down - so take one

from H."

LI7	 "P is at lower edge (of quantized. zone - observed on

voltmeter) - S is at upper edge and going up slowly

to overshoot - will try to rectify both by control-

ling T - take one."

50	 "S one below (set-point) but will wait in case it

comes up again with P since P should increase with

my closing of T."

52	 "Didn't work - S too low now - to recover quick

increase both H and T by one."

53,5i	 "Both P and S doing O.K. - no action."

5.3.2 DISCUSSION

Little need be said about the inadequ.cy of the

human operator in his duty as the teacher. His control

policies were found to be so varied at times that the Bayes

controller was. left in utter confusion. The situation was

very much the same in the training of the threshold logic

controller. Although the human operator knows the basic

principles that govern the operation of the steam engine,

he finds it very difficult to convert his qualitative know-

ledge into numerical quantities. From the point of view of

the adaptive controllers this constant variation in action

for the same plant state is unacceptable. The convergence

theorem for the ATLE assumes that every pattern in the

training set is labelled with only one category that it belongs

to. A few mistakes in this labelling can be tolerated and

averaged out even though the training time is increased

correspondingly. However, inconsistency beyond a certain

limit will not produce any systematic convergence in the ATLE.

Similar arguments apply to the Bayes controller.
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There are several facLors that can influence

the performance of the human operator and some of these pro-

blematic areas were brought out in the experiments. The

first problem is the manner in which information about the

plant is displayed to the human operator. With single-input,

single-output systems this is usually done by displaying the

state of the system as a spot on a cathode-ray tube, with

the two axes corresponding to the position and velocity of

that state variable. This sort of visual aid is suited

best to the human to follow the dynamics of a system.

However, in the case of the steam engine, and multi-variable

systems in general, a display of this nature could not be

utilized and instead information had to be presented in a

discretized form. Unfortunately, this form of information is

not as effectively absorbed and can cause degradation in the

performance of the human operator (Witten and Corbin, 1973).

The protocol given in the results exemplifies

a second problem facing the human operator, which is his

constant uncertainty about the response time of the pldnt

for his actions. When the state of the plant is displayed

visually to the human, empirical studies have shown that

there is an optimum frequenc ' , around 0.7 Hz, at which he can

best follow a motion (Hall, 1963; Sugie, 1971), and that at

very low frequencies the human loses his sense of continuity

given him by his short term memory. Clearly, such factors come

into play irrespective of the form of display adopted. In

simulation studies it is possible, of course, to match the

dynamics of the system near to the optimum frequency for

the human. However, with a real plant there is nothing that

can be done but be faced with the natural dynamics of that

particular plant, and most industrial plants actually have a

slow reaction time as illustrated even by the model steam

engine.

Another important problem facing the human

operator is fatigue, which again may effect his performance

after a certain period depending on the amount of concentration

demanded by the control task. Because of the slow dynamics of

the steam engine runs lasting many hours and many days had to

be performed if any convergence was to be achieved. Under

these circumstances fatigue very often gave way to frustration

which in turn encouraged drastic changes in the control policy
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adopted by the operator in an effort to accomplish the control

task with the least effort and in minimum time. A fei other

and similar problems associated with the human controller have

been extensively studied by Gaines (1971, 1972).

5.	 EXPERIMENT II:

DIRECT DIGITAL CONTROLLER AS TEACHER

The problems and difficulties discussed in the

last section in connection with the human operator can be

bypassed if a fixed controller takes the role of the teacher

in the training of the adaptive controllers. This was the

next natural step to take in this study and further two series

of experiments were carried out involving the training of the

Bayes and threshold logic controllers. - Results are presented

only for the case of the Bayes controller again since similar

observations were made in both cases. The fixed controller

used was the direct digital controller developed in Chapter 3

and the training configuration was the same as that used with

the human operator (configuration b-c-e of Fig..3).

5.1.l. EXPERIMENTAL RESULTS

The results obtained in these experiments were

more successful as regards inducing some learning into the

adaptive controller. However, even after a very long train-

ing period, the Bayes controller still exhibited indecisive-

ness and constant fluctuations in its parameters. This was

the result of incompatibility between the operational natures

of the direct digital controller and the Bayes controller.

Two sample run data are given in Tables 5.2 and

5.3. Both runs show that, in general, the output of the Bayes

controller roughly follows the trainer's actions; not always

the same magnitude is predicted but something close and at

least in the same direction. Closer examination reveals the

cause for these disparities. For example, the seventh input

pattern in run A and the seventh in run B are identical and

yet the direct digital controller has applied different

throttle actions. This has the same detrimental effect as

the inconsistency of the human operator. However the incon-
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PE	 CPE	 SE	 CSE	 DDC	 BAYES	 DDC	 BAYES

	

HEAT	 HEAT THROT. THROT.

+6	 +5	 -'4	 -2	 -5	 -6	 0	 +1
+6	 +6	 +4	 -2	 -7	 -5	 -1	 -1
+6	 +2	 +4	 -6	 -6	 -'4	 0	 -i

+6	 -3	 +14	 +6	 -3	 -2	 -1	 -1
+6	 -6	 +'-I	 -6	 -2	 -2	 -1	 -1
+5	 -6	 +4	 -6	 0	 -2	 0	 -1
+14	 -6	 +3	 -6	 +1	 +1	 +1	 -1
+3	 -6	 +3	 -6	 +1	 +1	 0	 -1
+2	 -6	 +3	 -1	 +1	 +1	 0
+2	 -5	 +2	 -2	 +1	 +1	 -1	 --1
+1	 -4	 +2	 -6	 0	 +1	 +1	 +1
+1	 -3	 +1	 -6	 0	 +1	 +1	 +1
+1	 -3	 +1	 -1	 +1	 0	 0	 0
+1	 -3	 +1	 -1	 +1	 0	 0	 0
+0	 -2	 +1	 -2	 0	 +1	 0	 0
+0	 -2	 +1	 +2	 +1	 +1	 0	 0
+0	 -1	 +1	 +1	 0	 0	 -1	 -1
+0	 -1	 +1	 -5	 0	 0	 +1	 +1
-0	 +1	 +1	 +3	 +1	 +1	 -1	 -1
-0	 0	 +1	 -2	 0	 0	 0	 0

Table 5.2 Sample Run Data A
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FE	 CPE	 SE CSE	 DDC	 BAYES	 DDC	 BAYES

	

HEAT	 HEAT THROT. THROT.

+6	 +6	 -i-El	 -7	 -6	 0	 -1

+6	 1-5	 +11	 +1	 -6	 -6	 -1	 -1

+6	 +0	 -i-El- 	 -Ii	 -5	 -3	 0	 0

+6	 -3	 -i-I	 0	 -3	 -6	 -1	 -1

+6	 -6	 +3	 -6	 -1	 -2	 0	 -1

+5	 -6	 +3	 +2	 0	 -1	 0	 -1

	

-6	 +3	 -6	 +1	 +1	 0	 -1

+3	 -6	 +3	 -Ll	 +1	 +1	 -1	 0

+2	 -6	 +2	 -6	 +1	 +1	 -i-i	 -1

+2	 -5	 +2	 -6	 +1	 +1	 0	 -1

+1	 -ti	 +2	 -1	 0	 +1	 0	 0

+1	 -3	 +2	 +5	 +1	 0	 -1	 -1

+1	 -3	 +2	 -3	 0	 +1	 0	 0

+1	 -2	 +2	 +2	 0	 +1	 0	 +1

+0	 -1	 +2	 -6	 0	 0	 0	 -1

+0	 -2	 +1	 -1	 +1	 0	 0	 0

+0	 -2	 +1	 -1	 +1	 0	 0	 0

-0	 +2	 +1	 -1	 +1	 +1	 0	 0

-0	 +1	 +1	 -1	 0-	 +1	 -1	 0

-0	 0	 +1	 -6	 0	 0	 +1	 -1

Table 5.3 Sample Run Data B
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sistency in this case is on a wuch smaller scale and therefore

some learning has taken place on behalf of the adaptive

controller.

The inconsistency in the direct digital control -

ler is because of the nature of its inputs and not because of

changes in control policy, as the case was with the human

operator - notice the almost identical PE and SE state

trajectories in Tables 5.2 and 5.3. The inputs to the direct

digital controller are analogue signals as opposed to quant-

ized values, and this makes it sensitive to changes in

variables even within a quantized region. Therefore, although

the seventh sanpies in both runs appear as the same input

pattern.to the Bayes controller, in the eyes of the direct

digital controller these two samples must have looked different.

On these grounds, further experimentation involving the direct

digital controller as the teacher were discontinued since it

could not represent the ideal teacher desired.

As a final and side remark, these experiments

bring out one noteworthy point about evaluation of results in

adaptive learning controllers. It is observed from run A in

Table 5.2 that only 50% of the heat actions of the Bayes

controller agree with those of the direct digital controller.

On the other hand, judging from the closeness of the two

columns of actions, the quality of control of the former is

very unlikely to be only half as good as that of the latter.

Therefore in control studies, qualitative evaluation is more

meaningful and informative than quantitative evaluation, and

evaluation of results in terms of "% correct recognition", as

is usually done in character recognition for instance, should

be avoided.

5.5 EXPERIMENT III:

FUZZY LOGIC CONTROLLER AS TEACHER

The experiments to be described next were carried

out after the development of the fuzzy logic controller (see

the next chapter), but the results are presented at this point

in the thesis since they concern the training of adaptive

controllers. Anticipating the success of the fuzzy logic

controller, the reason for conducting further experiments 1th
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the adaptive controllers was to find out how well they can

perform with an ideal teacher. The main difficulty with

both the human operator and the direct digital controller

was inconsistency in teaching. The human operator was

unsuitable because he changes his control policy too often.

The direct digital controller has a fixed control policy

but disparities still arose because of the analogue nature

of its inputs. The fuzzy logic controller has a fixed

control policy and uses the same quantized inputs as both

the threshold logic and Bayes controllers. For this reason,

this series of experiments were deemed important.

5.5.1 TRAINING OF BAYES CONTROLLER

Training in this series of experiments was carried

out off-line where the procedure was to generate all the possibl

states of the plant in a cyclic manner and use these as the

training samples. Training with one complete set of all the

possible states will be referred to as "one cycle of training".

After every cycle of training, the complete set of inputs were

again presented to the controller, this time without any adapt-

ation, and the number of disagreements in its predicted actions

with those of the fuzzy logic controller were calculated as a

percentage. This percentage will be referred to as "cyclic

percentage". A "running percentage" of misrecognition, cal-

culated on a per sample basis as training was taking place, was

also recorded in every training cycle.

The control policies of the fuzzy logic controller

are shown in Figs.5.3 and	 After only one cycle of training

the Bayes controller reached its final form and its respective

learned control policies are shown in Figs. 5.5 and 5.6. The

cyclic and running percentages of misrecognition in heat actions

are shown in Fig.5.7.
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0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

0 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

0 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

0	 0	 0	 0	 0 -1 -1 -1 -1 -1 -1

0	 0	 0	 0	 0	 0	 0 -1 -1 -1 -1

0	 0	 0	 0	 0	 0	 0	 0 -1 -1 -1

0	 0	 0	 0	 0	 0	 0	 0 +1 +1 +1

0	 0	 0	 0	 0	 0	 0 +1 +1 +1 +1

0	 0	 0	 0	 0 +1 +1 +1 +1 +1 +1

0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

0 +1	 +2 +2 +2 +2 +2 +2 +2 +2

0 +1 1+2 +2 +2 +2 +2 +2 +2 +2 +2

-6 -5 -LI- -3 -2 -1	 0 +1 +2 +3 +11. +5 +6	 CSE

Fig.5. I.i- Fuzzy Logic Throttle Control Policy
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PE

+6

+5

+4

+3

+2

+1

+0

-0

-1

-2

-3

-L1.

-5

-6

0 -6 -4 -4 -4 -7 -7 -7 -7 -7 -7 -7 -7

0 -6 -4 -4 -6 -7 -7 -7 -7 -7 -7 -7 -7

o-6 -4 -4 =6 -6 -6 -6 -6 -6 -6 -6 -6

2	 '	 -	 '	 .-
-4 -4 -14 -4 -4 -. 4 -4 -4 -4 -4 -4 -4 -4

-4 -14 -14	 14 +1 +1 -4 -14 -4 -4 -4	 4- -'4

	

-'4 -4 [-3 +1 +1	 0 -1 -1 -3 -4 -14 -14

O -4 -4 -3 +1 +1	 0 -1 -1 -3 -4 -4 -4

+4	 +4	 4-4	 +14	 -2	 -2	 +4	 1-4	 -1-4	 +4. +4	 +4	 i-4

+4	 +4	 +4	 ^4	 +4	 -i-4	 +14	 -1-4	 +4	 +4 +14	 1-4	 +4

fI:::: :: 
L:5 :: :: ::::::'::::

0 +6	 +4 1 +	 +5 +6 +6 +6 +6 +6 +6 +6

0 +4 +4 +4 ^41+7 +7 +7 +7 +7 +7 +7 +7

-6 -5 -4 -3 -2 -1	 0 +1 +2 +3 +4 +5 +6	 CPE

Fig.5.5 Bayes Heat Control Policy
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SE

+6
	

0 -2

+5
	

0 -2

-FL'.	 0	 -2

+3
	

0 -2

+2
	

0	 0

+1
	

0	 0

+0
	

0	 0

-0
	

0	 0

-1
	

0	 0

-2
	

0	 0

-3	 0 +1

-LI- 	0	 +1

-5
	

0 +1

-6
	

0 +1

0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

0 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

0 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

0	 0	 0	 0	 0 -1 -1 -1 -1 -1 -1

0	 0	 0	 0	 0	 0	 0 -1 -1 -1 -1

0	 0	 0	 0	 0	 0	 0 -1 -1 -1 -1

0	 0	 0	 0	 0	 0	 0 +1 +1 +1 +1

:	 :	 :	 :

0 +1 +1 +1 +1 +1 +1 +1 -i-i +1 +1

0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

0 +1 +2 +2 +2 +2 +2 +2 +2 4-2 +2

0 +1 +2 +2 +2 +2 +2 +2 +2 +2 +2

-6 -5 -1'. -3 -2 -1	 0 +1 +2 +3 + 1-I. +5 +6	 CSE

Fig.5.6 Bayes Throttle Control Policy
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5.5.2 TRAINING OF THRESHOLD LOGIC CONTROLLER

In the implementation of the threshold logic con-

troller the 1-out-of-C method (Section '1.2.8) of separating the

multiple classes was employed and the training procedure used

was that of the fixed-increment error correction rule (Section

4.2.3.1). The experimental procedure was identical to the one

described for the Bayes controller.

5.5.2.1 Single-Spot Code

Two methods of coding the input pattern were

tested, one using the single-spot code, and the second, the

multiple-spot code. Note that both are linearly independent

codes (Smith, 1964, 1966). With single-spot coding the

learned control policy for heat is shown in Fig.5.8 which was

arrived at after 50 training cycles. The learning of the

throttle control policy was perfect and therefore Fig.5.4 is

not duplicated unnecessarily.

5.5.2.2 Multi-Spot Code

Two different multi-spot codes were tested

as shown in Fig.5.11. The control policies learned using

these codes were very similar to those obtained with the

use of the single-spot code and therefore these results are

not presented. A more interesting aspect is brought out

instead in Figs.5.9 and 5.10 where the rates of adaptation

using the different coding methods are compared for the

heat and throttle control respectively.
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PE

+6

+5

+3

+2

+1

+0
	 +iI-i	 JJ- 3 H1-

-0	 -i-4	 ^14 +3	 +1 +1	 0 -1 LI +3 
+14	 +4 -f14

-1
	 +14 +14 +4 -3 -2 -2 +4 + I 	 +4 ^4 +4 +14 +14

-2

-3
	

+4 +4 +4+4+4+4 +4 +4 +4 
1

-i

-5

-6
	

0 +6 +4 +4 +4 +7 +7 +7 +7 +7 +7 +7 +7

	

-6 -5 -4 -3 -2 -1	 0 +1 +2 +3 +1.1 +5 +6	 CPE

Fig.5.8 Threshold Logic Heat Control Policy
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S

VARIABLE
	

Single-Spot Multi-Spot I Multi-Spot II

xl	 0,0,0,1
	

+1, +1, +1, +1
	

1,1,1,1

x2	 0,0, 1,0
	

+1, +1 ,+1, -1
	

1,1,1,0

x3
	 0,1,0,0
	

1,1,0,0

xii
	 1,0,0,0
	

I, 0,0,0

Fig. 5.11 Linearly Independent Codes

5.5.3 DISCUSSION

The first observation in these experiments is

that all the adaptive controllers considered achieved to learn

perfectly (there are only two misrecognitions in the case of

the Bayes controller - see point made below) the throttle

control policy of the fuzzy logic controller, but not in the

case of heater control. By comparing the clustering prop-

erties of these two policies in Figs. 5.3 and 5.4 perhaps

this fact is not too surprising. Since the threshold logic

controller achieved 100% classification as dictated by the

fuzzy logic controller, it is concluded that the throttle

control classes are linearly separable. It must be pointed

out here that in designing the fuzzy logic controller no

consideration was given to properties of clustering or linear

separability, and any such outcome was quite accidental. The

two trivial misrecognitions in the Bayes throttle controller,

states (SE	 -0, CSE = +3) and (SE = +0, CSE	 +3), illustrate

the fact pointed out in Section 4.4.2 that even with linearly
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separable sets of patterns it is still possible for the Bayes

classifier to make errors.

In view of the arguments given above, it must

also be concluded that the heat control classes of the fuzzy

logic controller are not linearly separable. As a result

both the threshold logic and Bayes controllers have similar

differences in adapted policy with respect to the fuzzy logic

controller. Although in terms of per cent misrecognition the

figure is only about 16% in both adaptive controllers, the

different policy adapted to can have a detrimental effect

which is far removed from one interpretation of a ratio

like 15%. It is best to illustrate this point by consider-

ing an example. It can be seen from Fig.5.3 that one of the

policies of the fuzzy logic controller is: !'When the pressure

is just below the set-point and its velocity is high and dir-

ected towards the set-point, then decrease the heat input a

little in order to avoid overshooting." For example, the state

(FE	 -1, CPE	 -6). However, because of the clustering

properties of the adaptive controllers, this policy has been

corrupted in the latter, and instead the heat is further

increased which is very likely to produce a big overshoot of

the pressure variable. Close examination of Figs.5.3, 5.5

and 5.8 reveal other similar mal-adaptations in the adaptive

controllers.

Another observation to be made in these exper-

iments is concerning the influence of different codes on the

rate of adaptation. One of the implications of Smith's (19614)

work, is that when the sets of patterns to be classified are

linearly separable, then any linearly independent code used

to represent the inputs will produce correct classification

of these sets. This is indeed the case as the results of

Fig.5.1O show. However, two questions still remain open:

first, what happens when the pattern sets are not linearly

separable, and second, which of the several linearly independ-

ent codes is more efficient regarding rate of adaptation. The

first question is perhaps the harder of the two to answer, and

although the results in Fig.5.9 suggest the superiority of the

single-spot code, no such conclusion can be drawn here on the

grounds of insufficiency of evidence.
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As regards the second question raised, both

Figs.5.9 and 5.10 again suggest the superiority of the

single-spot code. Without drawing such a. conclusion either,

an intuitive explanation is offered on the other hand, which

points towards this possibility. Consider the variable shown

in Fig.5.11. Recalling the weight adjustment procedure of

Eqn.('i.3) for the ATLE, it will be observed that the occur-

rence of the variable in the four different regions

x1 , x 2 , x 3 and x4 , will affect only one different weight

(of evidence) at a time when the single-spot code is used,

whereas the same weight can be influenced by all four values

of the variable when one of the multi-spot codes is used. This

interaction between the weights across different input patterns

can conceivably slow down the rate of adaptation when the

multi-spot code is used.

Remaining on the question of rate of adaptation,

the situation is quite different in the case of the Bayes

controller. The Bayes controller achieved its final form in

one training cycle (Fig.5.7) compared with those siiown for

the threshold logic controller in Fig.5.9. Of course, this

is expected considering the mathematical formulation of the

Bayes controller; given that a. pattern X belongs to a class A,

the probability of X belonging to A cannot change if on every

occurrence of X it is assigned to A in the process of training.

What can change, as indicated by the running percentage of

misclassification in Fig.5.7, is the probability of choosing

a class (or taking an action). From Eqn.(L.13) it is obvious

that the probability of a class that is occurring more often

can outweigh the probability of the true class of an input

pattern by an amount which is enough to cause misclassification.

It is regarding these considerations in giving the rule of

thumb that the training set of -patterns should be statistic-

ally representative of the environment.

Finally, it was interesting to notice the

variation in the range of weights acquired by the threshold

logic controllers, using the three different codes. The

eventual ranges established were:
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Single-Spot Code	 -6+7

Multi-Spot Code I	 -35 + 39

Multi-Spot Code II	 - LEO + 55

Evidently, the single-spot code is more economical in terms of

the number of binary bits required to represent the weights.

In any case, combined with the results for throttle control,

the differences in the weights also prove the non-uniqueress

of the solution weight vector in the convergence theorem of

the ATLE.

5.6 CONCLUSIONS

A number of experiments have been described in

this chapter concerning the supervised training of adaptive

controllers for the steam engine. The results, which have been

discussed in some depth in each experiment, bring out certain

problems that can arise when dealing with a realistic system.

Some of the main conclusions drawn from these problems that

were encountered can be grouped together as follows.

(a)	 Assuming the trainer is perfect, or near-perfect

in his task of labelling the training pattern sets, then it

is known that an appropriate ATLE network will learn to clas-

sify correctly, provided the pattern sets to be classified are

linearly separable. Almost the same arguement is true for the

Bayes classifier. On the other hand, it is very seldom that

prior knowledge about linear sparability exists with patterns

generated in a. real system. Furthermore, it is reasonable to

assume that in most real systems the classification task is of

such nature that the original stimuli generated do not constitut

a linearly separable set of patterns. Thus, with the present

techniques of adaptive control, the controllersproduced in most,

realistic situations are (very often ridiculously) sub-optimal.

This suggests at least three alternatives for future investig-

ation; first, evaluation of present coding schemes and

possibly finding better ones - it is felt that little can be

gained here since any new coding scheme is very likely to

introduce much redundancy, like the linearly independent code;

second, investigation of more complex ATLE networks - although

it is generally agreed that more complex networks are necessary

in order to solve complex problems, such a task is by no means
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easy (Rosenblatt, 1962); and third, investigation of other

techniques than threshold logic and decision theory -. in

fact, a number of other techniques have been studied in the

literature, for example, stochastic controllers (Gaines and

Andreae, 1966; Fu, 1970), and recently, the fuzzy logic

approach (Chang and Zadeh, 1972).

(b) The human operator represents an important

class of controllers in real systems. Taicen on his own, and

given a certain amount of freedom, he can be considered to be

an apt controller albeit irregular in some aspects. On the

other hand, the experiments described in this chapter have

shown that he is unsuitable as a teacher in adaptive

control systems. In view of this, limited studies have been

made and procedures which allow for an imperfect teacher have

been suggested (Shanmugam and Breipohl, 1971). Such proced-

ures, however, are in general difficult to implement, and it

is felt that the real need is in providing a more effective

channel for direct linquistic communication between man and

machine. This channel would constitute the most upper level

in the hierarchic structure of the general learning system.

(c) Unsupervised learning is feasible, and when it

is implemented some of the problems arising with the human

teacher are bypassed. However, two main problems exist with

this scheme; first, the vast amount of storage, and second,

the very long time that are both necessary for the learning

process. In fact, one of the reasons for not considering

unsupervised learning experiments in this study is because

the amount of storage that was available in the PDP8/S was not

sufficient for the implementation of an unsupervised learning

procedure. A second reason is that it was believed research

effort is better spent on the problem of man-machine inter-

action, and this is the theme of the next chapter.
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CHAPTER 6

FUZZY LOGIC AND CONTROL

6.1 INTRODUCTION

One of the important objectives of this study

was the training of adaptive or learning controllers by the

human operator, and yet very discouraging results were ob-

tained in the investigation and experimentation of this

possibility. One of the fundamental reasons accounting

for this failure was the incapability of the human operator

in translating his linguistically expressed control strat-

egies into quantitative control actions. In designing a

controller, quantitative languages supporting arithmetic

are the natural ones to the control engineer. On the other

hand, most control engineers would accept intuitively that

the mathematical computations they perform in translating

their concept of a control strategy into an automatic con-

troller are far removed from their own approach to the

manual performance of the same task. Therefore, there

feels to be a pressing need in providing a direct path be-

tween a loose linguistic statement of a control strategy

and its implementation as a. quantitative control algorithm.

The influence and importance of both direct

verbal communication and linguistic representation/expres-

sion have also been studied ana pointed out in various other

contexts. In the field of psychology, Luria (1961) has

investigated the important role of speech in the organizat-

ion of human behaviour, and in specific, in a child's dev-

elopment of his mental activities. He illustrates clearly

the influence of verbal instructions given to a child in

formulating his own perception of the physical objects

surrounding him and in his learning of simple perceptual-

motor skills. In the field of artificial intelligence,

Winograd (1972) has given an impressive demonstration of
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the possibility of direct linquistic control of a robot

with a. mechanical arm performing manipulatory tasks with

toy blocks, although his main concern has been the

understanding of natural language by machines as one of

the fundamental aspects of intelligence. Becker(1969, 1970)

has attempted to formalize the structure of a. semantic

memory, his work originating again out of the need for

intelligent machines to be able to converse with humans.

In their studies of adaptive controllers and adaptive

trainers, Gaines (1971, 1972) and Pask (1971) have brought

out the importance of the interaction arising out of

verbal instruction between trainer and trainee. Similarly,

in the research carried out by Waterman (1968, 1970) in the

machine learning of heuristics, linguistics has played an

important role.

A distinguishing difference between the

present study and the ones cited above is the desire of

maintaining the level of imprecision or 'fuzziness' in

translating a linguistic instruction into a quantitative

control law. Thus, in the implementation of the control

strategy "when PE is large and negative, and CPE is large

and towards the set-point, then increase the heat by a

medium amount," it is not wished to give precise numerical

definitions of the descriptives 'large' and 'medium'.

Gaines (1971, 1972), for instance, has translated similar

strategies into precise stimulus-response training pattern

vectors in 'priming' ATLE controllers with an initial

control policy which overcomes the sub-environment phen-

omenon. Waterman (1968, 1970), on the other hand,

preserves some imprecision by dealing with a range of

values, instead of a single numerical value in defining a

descriptive like 'high'. The means of maintaining fuzziness

in this study is through the use of Zadeh's (1965) calculus

of fuzzy logic.
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6.2 FUZZY SETS AND FUZZY LOGIC

The notion of a theory of fuzzy sets was first

introduced by Zadeh (1965) out of his contention that the

real physical world is an aggregate of classes of objects

which do not have a precisely defined criteria of member-

ship, and that human thinking and reasoning, be it in the

domain of pattern recognition, communication of information,

decision-making, control or abstraction, is based not on the

traditional two-valued or even multivalued logic, but a

logic with fuzzy truths and fuzzy rules of inference. Zadeh

thus exemplifies his contention by asking the members of

"the class of all beautiful women," when the question might

well have been "the class of all large PE". As regards

human behaviour, he argues that one of the most important

facets of human thinking is his ability to summarize

information, and that by its nature, a summary is an approx-

imation to what it summarizes (Zadeh, 1973). Thus in per-

forming a task, the human retains only 'task-relevant' or

'decision-relevant' information with a maximal degree of

fuzziness which is just sufficient for him to be able to

repeat that particular task in the future.

The intuitive, informal definition of a fuzzy

set is that class of objects in which transition from

membership to non-membership is gradual rather than abrupt.

This definition suggests a distinction between fuzziness and

randomness, which must be emphasized. Essentially, random-

ness has to do with uncertainty concerning membership or

non-membership of an object in a non-fuzzy set. Thus in

dealing with this type of uncertainty, usually the concepts

and techniques of probability theory are employed. For

example, "the probability that a transition will take place

between two states S 1 and S 2 given an action A is 0.7".

Fuzziness, on the other hand, deals with uncertainties of

the type "the grade of membership of state S 1 in the class

of large PE is 0.7".
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Since its first introduction, a fair amount of

theoretical work has been done to extend the concept of fuzzi-

ness in several directions. The work has covered such con-

cepts as fuzzy algorithms (Zadeh, 1968; Santos, 1970), fuzzy

relations and orderings (Zadeh, 1971a), fuzzy functions

(Kandel, 1973), fuzzy systems (Zadeh, 1971b) and quantit-

ative fuzzy semantics (Zadeh, 1971c). Bellman and Zadeh (1970)

have investigated decision-making in a fuzzy environment, where

a fuzzy decision is viewed as an intersection of the given

fuzzy goals and fuzzy constraints. Wee and Fu (1969) have

formulated a fuzzy automaton and used this as a model of

learning systems in automatic control and pattern recognition

applications. Similarly, Chang and Zadeb (1972) have treated

the control problem based on fuzzy mappings and functions.

And lastly, Zadeh (1970) has investigated in a. preliminary

way the importance of fuzzy languages in human and machine

intelligence.

6.3 FORMAL DEFINITIONS OF FUZZY SETS AND THEIR PROPERTIES

The definitions given below are due to Za.deh

(1965, 1973). The order of presentation has been chosen such

as to indicate the way in which fuzzy logic can be used in

the translation of linguistic control strategies into

quantitative algorithms which can be implemented in a

computer programme. Definitions are always illustrated by

examples to clarify the mathematical operations and

computations involved in the procedure.

6.3.1 THE FUZZY SET

Let U be the universe of discourse or the

space of points, with a generi.c element of U denoted by u.

Thus, afinite universe of discourse

U = {u1 , u2 , ---,

{u.}	 i	 1, 2, ---, n	 (6.1)

n
z

1=1

where	 stands fr union.
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Example. The FE universe of discourse from Fig.5.1 is

PE	 {-6 ,-5 ,--- ,-0,+0 ,--- ,+5 ,+6} 	 (.6 .2)

A fuzzy set A in U is characterised by a

membership function PA	 [0,1]which associates with each

element u of U a number PA(u) in the interval [o,i] which

represents the grade of membership of u in A. The fuzzy

set A of U in Eqn.(6.1) will be denoted

n
A
	

(6.3)
i1

Example. The fuzzy set 'positive big' (PB) of FE in Eqn.(6.2) is

PB	 (0.1/+3) + (0. Li. I+ 14) + ( 0.8/+5) + (1.01+6)	 (6.'4)

where + stands for union. Note that at the remaining points,

-6, -5, ---, +2, in the universe FE the grade of membership

of PB is assumed to be zero.

It therefore follows that fuzzy sets can be

viewed as an extension to ordinary sets, since, when IIA(uj)

is constrained to only two values 0 and 1, from Eqn.(6.3)

A reduces to the definition of an ordinary set. More

significant, however, is the ease with which intuitive meanings

can be attached to words in normal use. Thus in the example,

FE is a fuzzy variable, and PB, which is the label of a fuzzy

set, is a value of that fuzzy variable where the fuzzy set

represents the meaning of PB.

6.3.2 BASIC OPERATORS

6.3.2.1 UNION

The union of two fuzzy sets A and B of the same

universe of discourse U is denoted A+B and is defined by

n
A+B	 (p (u.)VPB(u.))Iu.A 1	 1	 1

i1
(6.5)



1214

where V stands for maximum (abbreviated to max). Intuitively,

the union corresponds to the connective OR in the algebra of

ordinary sets..

Example. Define the fuzzy set 'positive medium' (PM) of FE as

PM (O.2/+2)+(O. 7/+3)^(l.OI+Li.)-i-(O.7/+5)+(O.21-i-6) (6.6)

Then the union of PB and PM from Eqns. (6.14) and (6..6) is

PB+PM	 (0. 21+2)+(O. 7/+3)+(1.O/-F'4)+(O. 8/^5)+(l.O/+6) 	 (6.7)

PB + PM
'-I
/	 / '

	 PM

	

/	 F

	

I	 /	 %

	

(	 I
/

// PB
/

/
/

+0 +1 +2 +3 +14 +5 +6	 FE

Fig.6.l Union of Fuzzy Sets.

The extension of the union to more than two

sets is obvious. For instance,

A+B+C	 Emax{A(u.),B(u±),vC(u±)}/uI	 (6.8)

6.3. 2..2 INTERSECTION

The intersection of two fuzzy sets A and B of

the same universe of discourse U is denoted Aj'\B and is

defined by

n
A(\B	 E
	

(6.9)
i=l

where A stands for minimum (abbreviated to mm). Intuitively,

the intersection corresponds to the connective AND in the

algebra of ordinary sets.
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E (1I1A(u.))/u.

1=1
(6.12)
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Example. The intersection of PB and PM from Eqns.(6. 1-) and

(6.6) is

PB('IPM = (0.lI+3)+(0.LI/+I.I.)+(0.7/+5)^(0.2/+6)	 (6.10)

1.01.
I t'PB 'r'PM /

,
1

I
/

/
/
/

/

PM /•&'
/ /\I

/
/ /PE/

/
/

+0 +1 +2 +3 +i +5 +6	 FE

Fig.6.2 Intersection of Fuzzy Sets.

The extension of the intersection to more than

two sets is obvious. For instance,

n
ACB(\C	 min{IJA(u.),1.IB (u±),Ilc(u.))/u.	 (6.11)

1	 111

6 . 3 . 2. 3 COMPLEMENT

The complement of a fuzzy set A of the universe

of discourse U is denoted 1A and is defined by

The operation of complementation corresponds to negation -

NOT.
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Example. The complement of PM (NOT PM) from Eqn.(6.6) is

1PM	 (l.O/-6)+(l.OI-5)-'-(l.O/-4)+(l.O/--3)+(l.O/-2)

+(l.OI-l)+(1.O/-O)+(l.O/+O)+(l.O/^l)+(O.8/+2)

-f(O.3/+3)+(O.O/+'t)+(O..3/+5)+(O.8/+6) 	 (6.13)

-6 -5 -1 -3 -2-1 -O +0 +1 +2 +3 +4 +5 +6 	 FE

Fig.6.3 Complement of Fuzzy Set

It can be seen, therefore, that the three basic

operators AND, OR and NOT permit the representation of

expressions of words. Thus, it is possible now to give a

value to the meaning of expressions like 'positive big OR

positive medium AND NOT positive small'. Zadeh (1973) considers

also the introduction of hedges, such as 'very', 'much',

'slightly', etc., into expressions and by viewing these as

operators similar to the three above, he gives intuitive

definitions for them. However, the use of such linguistic

hedges was left out in this study for two reasons; first, in

order to keep the level of the final product simple, with the

intention of introducing them later if it became necessary to

do so (which it didn't - see the results of Chapter 7);

second, the effect of operating a linguistic hedge on a fuzzy

set becomes significant only when a large universe of discourse

3 assumed, which is not the case in this study.
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6.3.2.4 CARTESIAN PRODUCT

The cartesian product of two fuzzy sets A and

B, of possibly different universes of discourse

U z {ui,u2,___,un} and V	 {v1,v2,---,v} respectively, is

denoted AxB and is defined by

n m
AxB	 E	 X rnin{p (u.)PB(v.)}/(u.,v.)	 (6.l'i.Ai JLl j1

The cartesian product of two sets AxB can be conveniently

represented by a matrix of n rows and m columns.

Example. The 'heat change'(HC) universe of discourse from

Section 5.2.1 is

HC = {-7,-6,---,-1,O,+l,---,+6,-i-7}	 (6.15

Define the fuzzy set 'negative big' (NB) of HC as

NB = (1.O/-7)+(O.8/-6)+(O.14/--5)^(O.1/-4)	 (6.16

Then the cartesian product of PE=PB and HC=NB from Eqns.

(6.4) and (6.16) is

PEPBxHCNB = O.1/(+3,-7)+O.1/(+3,-6)+O.1/(-i-3 ,-5)-i-O.1I(^3,-4)

+l.O/(+6,-7)+O.8/(+6,-6)^O.Lt/(+6,-5)^O.1/(^6,-4) 	 (6.17

which can be represented by the matrix

HCNB -

(-7)	 (-6)	 (-5)	 (-4)

(+3)[0.1	 0.1	 0.1	 0.1
PE	 (^4) 0.4	 0.14	 0.4	 0.1

PB	 ()I 0.8	 0.8	 0.4	 0.1	 (6.18)

(+6) L1.O	 0.8	 0.14	 0.1

The extension of the cartesian product to more

than two sets is obvious. For instance, if C is a fuzzy subset

of the universe Wz{w1,w2,---,w,}, then

n m 2.
AxBxC	 E	 min{PA,IiB(v,PC(wk)}/(u.,v.,wk)	 (6.19)

i=jj=lk=l	 1	 J	 1 J
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6.3.3 RELATIONS AND FUZZY CONDITIONAL STATEMENTS

In essence, the cartesian product of two fuzzy

sets can be looked upon as a relation between two fuzzy

variables. Thus, the cartesian product AxB establishes a

relation from U to V. Similarly, in the example given above,

Eqn. (6.17) or the matrix of (6.18) define the relation of

applying a big negative heat action when the pressure error is

positive big. A relation will be denoted R.

An alternative view is to regard the cartesian

product as a representation of conditional statements of the

form

IF A THEN B = AxB	 (6.20

Thus Eqn. (6.17) represents the conditional statement that

"IF the pressure error is positive big THEN apply a negative

big heat action". More generally, conditional statements can

have the form

IF A THEN (IF B THEN(IF C THEN(IF---)))	 AxBxCx---	 (6.21

or, further

IF A1 THEN (IF B 1 THEN(IF C 1 THEN(IF----)))

ELSE IF A2 THEN (IF B 2 THEN(IF C 2 THEN(IF----)))

ELSE

= (A1xB1xC 1x---) + (A 2xB 2 xC 2 x---)+ ---	 (6.22

where + stands for union.

6.3.' COMPOSITIONAL RULE OF INFERENCE

To summarise the development thus far, numerical

values can be given to the meaning of words, these words can

be combined to form expressions, and these expressions can be

used to make (conditional) statements. One last question

remains: How can one infer relevant information from these

statements?
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To be specific, let R be a fuzzy relation from

U to V as given by Eqn.(6.l't). Then, given a fuzzy subset a

of U, the fuzzy subset b of V which is induced by a is given

by the composition of R and a., that is,

b = aoR
	

(6.23)

Composition is interpreted as the max-mm product of a and R,

and therefore from Eqns.(6.14) and (6.23)

rn
b	 [max[min{p (u.),min{1 Cu.)

a 1	 A 1:j = l	 i

in
[max[min{U (u.),PA(u.),PB(v.)}]]/(v.)	 (6.2i)

a ij=1 I

where max denotes maximum over all i.
1

Example. Consider the following:

1) If PE is PB then make HC equal NB.

ii) If PE is PM, then what is HC?

The conditional statement in i) is given by Eqn. (6.17)

The definition of PE=PM is given by Eqn.(6.6)

Therefore, from Eqn.(6.2')

HCPEPM= (0. 71-7)+(0. 7/-6)+(O.Ll./-5)+(0.1I--I.l.)	 (6. 25)

It is worthwhile to look a little closer at this result

-7	 -6	 -5 -	 -3	 MC

6.I4 Inference
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By looking at Fig.6.'4, Eqn.(6.22) effectively says "when the

pressure error is positive medium then do not apply a

negative big heat action with the same certainty as when the

pressure error is positive big". In other words, a negative

medium heat action is given preference. Furthermore, the

more different PE is from PB, the less close HC is to NB, and

atthe same time the less sharply defined is HC. Thus, with

a FE far removed from PB, virtually nothing can be inferred

about HC from the statement in i). Of course this is not

unreasonable, and it becomes necessary in this case to

consider other statements which are relevant to that situation.

The extension of the compositional rule of infer-

ence to cover conditional statements of the forms given in

Eqns.(6.21) and (6.22) is straightforward. The following two

examples give simple illustrations of each case.

Example. Consider the conditional statement

IF A THEN (IF B THEN C) 	 (6.26)

where A, B and C are fuzzy subsets of the universes

U, V and W respectively. The relation RAxBxC is

given by Eqn.(6.19). Then, given a fuzzy subject a

of U and a fuzzy subset b of V, what is the fuzzy

subset Cc) of W induced by a and b. The answer to

this question can be found in two parts. Analogous

to Eqn.(6.2 L1), the fuzzy subset a induces the two-
dimensional fuzzy set BC of VxW as

£ m
BC =	 [max[min{p	 (6.27)a ikl j=l ±

And now, the fuzzy subset b induces the fuzzy set c as

2.
c =

k=l j.	 ±

k=l[[±ai	 b(v) 'A±	 B (v) , V C (wk ) }J]] ICwk) (6 .2E
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Example. Consider the conditional statement

IF A1 THEN B1

ELSE	 IF A 2 THEN B 2	(6.29)

where A1 and A2 are values of the fuzzy variable A, and

similarly, B1 and B 2 are values of the fuzzy variable B. The

question is this: If the value of the fuzzy variable A is a,

then what is the value (b) of the fuzzy variable B induced by

a. From Eqn.(6.24), the first conditional statement in (6.29)

yields

m
b1 = E [max[min{Ii (u.),pA(u.),PB(v.)}J]/(v.)	 (6.30)

j1	 a i

Similarly, the second conditional statement in (6.29) yields

m
b =	 [max[min{1J (u.),p2	 a. 1	 A2(U1)PB2(Vj)}J]I(Vj) 	 (6.31)

Now, the connective ELSE is equivalent to the

connective OR, and therefore correbponds to the max operation.

That is,

b = max(b1,b2)

m

[max(max[min{ji (u.),PA(u.),I1fl(vi)}],a. ij . l	 ±

max[min{p (u.),PA(u.),IJB(v.)}] }]I(v)a i1

m
=	 [rnax[min{i (u.),IJA(u.),PB(v.)},a. ij=l i

min{p (u.),IJA(u.) 	 (6.32)a i

Jith the above examples, all the tools necessary

for a linguistic synthesi0 of a controller are complete.
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6.L FUZZY LOGIC CONTROL ALGORITHMS AND THEIR EXECUTION

In its strict sense, an algorithm is an ordered

set of instructions which upon execution yield a solution to a

specified problem. Here a fuzzy logic control algorithm is a

collection of control policies of the form given in Eqn.(6.22)

which upon execution in response to an input to it, correspond-

ing to a state of the controlled plant, yields an action to be

applied to that plant. Both the algorithm and its execution

exhibit certain features which are noteworthy.

A very significant feature of the algorithm of

Eqn.(6.22) is that it is an unordered or unstructured set of

instructions. This fact can be verified by the execution of

the algorithm given in Eqns.(6.2), (6.28) and (6.32). The

important implication of this is, of course, that modification

of the algorithm can be achieved with great convenience;

policies can be deleted or added anywhere in the set without

affecting the result of execution. In contrast, the 'product-

ion rules' of Waterman (1968, 1970), which are very similar

to the conditional statements referred to in this study, form

an ordered set and a great deal of rearrangement must be car-

ried out if any rule is deleted, modified or added to the set.

A rough contrast can also be made with the vast amount of work

which incorporate a 'decision tree', as a model of the

environment, from which to extract a decision (for instance,

Rae, 1968)). The inconvenience of deleting or adding a node

in such trees is obvious.

An interesting feature of the execution of the

algorithm is that more than one control policy can contribute

to the computation of a control action. This, of course,

arises out of the fuzzy nature of the control policies, and

as it happens, it has its assets. For one, it is not

necessary to specify a long and exhaustive set of rules or

instructions since a situation can still be covered by rules

which apply to similar situations. Secondly, and more

important, the output of the algorithm can indicate if there
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are any contradictory, or even any weak or bad rules in the set.

For example, consider the illustrations in Fig. 6.5.

(a)	 (b)

Fig.6.5 Fuzzy Outputs of Algorithm

An output of the form in (a) indicates the absence of a strong

or good set of rules. An output of the form in (b), on the

other hand, indicates the presence of at least two contradict-

ory rules. Therefore it is possible by monitoring the

execution of the algorithm to locdte and modify control

policies of such bad nature. This point is discussed further in

the next chapter.

Finally, it is clear that the output of the fuzzy

logic control algorithm is a fuzzy set which corresponds to a

fuzzy action. Of course, only deterministic actions can be

applied to a real plant, and therefore some procedure must be

employed to reduce a fuzzy action to a deterministic one.

The specification of such a procedure depends on the particular

application and it is usually at the designer's discretion.

Zadeh (1968) has considered a few possibilities and the

particular procedure used in this study is given in the next

chapter.
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6.5 CONCLUSIONS

Using the notion of fuzzy sets and fuzzy logic

a procedure has been developed for translating linguistic

control policies into a quantitative, executable and coherent

control algorithm. The procedure is fairly simple, and more

important, has an intuitive appeal to the human way of

thinking.

Central to the scheme is the fuzzy conditional

statement of the form IF A THEN B, which is so simple in what

it says, that its significance can be easily overlooked when

it is isolated to only one study.like this one. It is remark-

able, .however, that it is used as the underlying mechanism in

so many different studies. In psychology, one of the two

major categories into which learning theories fall is the

stimulus-response (S-R) theory (Hilgard and Bower, 1966). In

studies of problem solving, the expression 'condition - action'

has been used to characterise the problem-solving process

occurring in a. human subject asshe solves a problem (Newell

and Simon, 1972). In studies of strategy or heuristics

learning, heuristics have been represented as an ordered set

of production rules which again have the form 'condition +

action' (Waterman, 1968, 1970). Similarly, the concept of the

production has proved useful in the analysis of compiler

writing (Floyd, 196 ti). And as a last instance, the same

concept is implied by the expression 'state - action' which

is used in control studies (Gaines and Andreae, 1966).

The conditional statement IF A THEN B is also

studied in propositional calculus as the implication ()

connective, where A and B are propositional variables. From

this point of view, the compositional rule of inference can

be regarded as an approximate extension of the rule of modus

ponens. Informally, the rule of modus ponens states that

having previously established the propositions "AB" and

"A", then "B" may be inferred. Thus, the formulation of the

fuzzy logic controller is in fact based on well established

concepts and theories.
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CHAPTER 7

FUZZY LOGIC CONTROL OF THE STEAM ENGINE

7.1 INTRODUCTION

The fuzzy logic control algorithm developed in the

last chapter was implemented on the PDP8/S and experiments were

carried out to test the applicability of the fuzzy logic approach

to the control of the steam engine. To the best knowledge of the

author, this is the first case study where fuzzy logic is used in

the control of a real plant.

The experimental features were the same as those

described in Section 5.2 for the adaptive controllers. That is,

there were four inputs to the controller, FE, SE, CPE and CSE,

quantized as specified in Fig.5.l, and two outputs, heat change

(HC) and throttle change (TC), which were allowed to take O^±7

and O+±2 steps respectively. The sampling period was 10 secs.

The implemented control algorithm is a collection

of control policies that the human operator (the author, in this

case) would have used had he been controlling the steam engine.

These control policies were established first by imagining the

entire state space (PExCPExSExCSE) to be divided into a. number of

areas, and second, writing down a control policy for each of

these areas. Obviously, the first set of rules obtained in this

manner does not necessarily produce the best quality of control

possible and therefore further modifications of the algorithm

must be considered. A method of modifying the control algorithm,

or 'tuning' the controller, and features to faciliLate it are

described below.

Finally, it must be made clear that the fuzzy logic

controller does not exhibit any learning in the sense implied in

the case of adaptive or learning controllers. The fuzzy logic

controller merely implements the control policy of the human

operator, and nothing else. The fabrication of a learning fuzzy

logic controller (Wee and Fu, 1969) is a possibility, of course,

and this will be discussed later.
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7.2 PRELIMINARY CONSIDERATIONS

7.2.1 SPECIAL FEATURES OF THE CONTROLLER

The fuzzy logic controller developed in Chapter 6

is in its most general form and it becomes necessary to introduce

certain special features when one is dealing with a real plant.

These features concern the inputs and outputs of the controller.

7.2.1.1 The Inputs

The computation of the compositional rule of inference

assumes that the input to the controller has a fuzzy value. In the

present study, the inputs were chosen to be non-fuzzy vectors, where

only one element of a partial input vector has a membership grade

of one, the rest being all zero. Input vectors constructed in this

manner are actually identical to those when the single-spot

linearly independent code is used.

Example. When PE	 +2, then the partial non-fuzzy PE input vector is

-6 -5 -4. -3 -2 -1 -O +0 +l +2 +3 -1-4. +5 +6

[0, o, o, o, o, o, o, 0, 0,	 1, 0, 0, 0, 0]

With this constraint on the input, the computation

involved in calculating an action is considerably reduced. Thus, if

t (u.)l for i=p lpna 1

O for ±^p	 (7.1)

and
for j=q lqm

0 for j^q	 (7.2)

then, Eqn.(6.28) reduces to

c	 E minUJA(up)1IB(vq)I.1C(wk)}/(wk)
k1

and Eqn.(6.32) reduces to

(7.3)
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m
b	 max{min{PA

1
(u),PB(v.)}mintI1A(u))I.IB(v)}}/(v) 	 (7.4)

It would have been quite feasible, of course, to

fuzzify (Zadeh, 1973) the input once it was sampled. In certain

applications such a procedure may be advantageous if the input

variables are inherently very noisy, or if the measuring instru-

ments used are not reliable.

7.2.1.2 The OutDuts

It was mentioned in Section 6.4 that some procedure

must be employed to reduce the fuzzy output of the controller to a

deterministic one in order to apply it to a real plant. The

procedure used in this study is the following:

(a) If there is a distinct peak in the fuzzy output spread,

then apply the action corresponding to that peak.

(b) Otherwise, if there are two equal peaks or a plateau in

the output spread, then take an action which is midway

between the two peaks or at the centre of the plateau.

Thus, in Fig. 6.5 the actions taken are indicated by the arrows

pointing upwards.

There are at least two important points about this

procedure, which must be mentioned. First, it is clear that in

the absence of any output spread, which can happen if none of the

rules contribute anything to the output, the controller will take

no action. This is a reasonable policy, of course, since an output

spread is not produced only when fhe controller does not recognize

the input state of the plant. The second point is that, even when

the grade of membership is as low as 0.1 at a peak, the controller

will still take the action corresponding to that peak. Applying

such an action can produce unsatisfactory control since a member-

ship grade of 0.1 suggests great uncertainty in the choice of that

action. However, it can also happen that the chosen action is the

right one, so that eventually it is up to the designer to decide,

depending on the particular application.
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7.2.2 THE VALUES OF THE FUZZY VARIABLES

The six fuzzy variables PE, SE, CPE, CSE, HC and TC

were assigned values using nine basic fuzzy sets. These values

were:

(a) PB - Positive Big

(b) PM - Positive Medium

Cc) PS - Positive Small	 )

Cd) P0 - Positive Zero (in the case of PE and SE)
1

(e) NO - Negative Zero (in the case of PE and SE)

- Zero	 (in other cases)

(f) NS - Negative Sniall

(g) NM - Negative Medium

(h) NB - Negative Big

(i)ANY - Any value.

The subjective fuzzy sets defining these values

are given in Tables 7.1 to 7.'i.

-6 -5 -Li -3 -2 -1 -0 +0 +1 +2 +3 +L +5 +6

PB	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0 .l.'.81.

PM	 0	 0	 0	 0	 0	 0	 0	 0	 0 .2 .7 1.	 .7 .2

PS	 0	 0	 0	 0	 0	 0	 0.3 .81.	 .5.100

P0	 0	 0	 0	 0	 0	 0	 0 1. .6 .1	 0	 0	 0	 0

NO	 0	 0	 0	 0 .1 .6 1.	 0	 0	 0	 0	 0	 00

NS	 0	 0 .1 .5 1.	 .8 .3	 0	 0	 0	 0	 000

NM .2 .7 1.	 .7 .2	 0	 0	 0	 0	 0	 0	 0	 0	 0

NB 1.	 .8 .ti	 .1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

	

ANY 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.

Table 7.1 Values for PE and SE
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-6 -5 --t -3 -2 -1	 0 +1 +2 +3	 +5 +6

PB	 0	 0	 0	 0	 0	 0	 0	 0	 0 .1 .'	 .8 1.

PM	 0	 0	 0	 0	 0	 0	 0	 0 .2 .7 1.	 .7 .2

PS	 0	 0	 0	 0	 0	 0	 0.91.	 .7.2	 00

NO	 0	 0	 0	 0	 0 .5 1. .5	 0	 0	 0	 0	 0

N S	 0	 0 . 2 . 7 1.	 . 9	 0	 0	 0	 0	 0	 0	 0

NM .2 .7 1.	 .7 .2	 0	 0	 0	 0	 0	 0	 0	 0

NB 1.	 .8 .'	 .1	 0	 0	 0	 0	 0	 0	 0	 0	 0

ANY	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.	 1.

Table 7.1 Values for PE and SE

	

-7 -6 -5 -i -3 -2 -1	 0 +1 +2 +3 +L1 -i-S +6 +7

PB	 0	 0	 0	 0	 0 ,	0	 0	 0	 0	 0	 0	 .1	 •'-i-	 .8 1.

PM	 0	 0	 0	 0	 0	 0	 0	 0	 0 .2 .7 1.	 .7 .2	 0

PS	 0	 0	 0	 0	 0	 0	 O.'31.	 .8 .13 .1	 0	 0	 0

NO	 0	 0	 0	 0	 0	 0 .2 1. .2	 0	 0	 0	 0	 00

NS	 0	 0	 0 .1 .13 .8 1.	 .11.	 0	 0	 0	 0	 0	 0	 0

NM	 0 .2 .7 1.	 .7 .2	 0	 0	 0	 0	 0	 0	 0	 0	 0

NB 1. .8 .13 .1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

Table 7.3 Values for HC
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-2 -1	 0 +1 +2

PB	 0	 0	 0 .5 1.

PS	 0	 0 .5 1.	 .5

NO	 0 .5 1.	 .5	 0

NS .5 1.	 .5	 0	 0

NB 1. .5	 0	 0	 0

Table 7.4 Values for TC

7.2.3 SPECIAL FEATURES OF THE SOFTWARE

7.2.3.1 The Monitor

Several points have been mentioned which make

it desirable to have a fairly easy way of modifying or 'tuning'

the fuzzy control algorithm. To facilitate this, a monitor

was incorporated in the software which, for every action chosen

by the algorithm, stored away (a) the fuzzy spread of the

action, and (b) the rules contributing to the decisicrn of this

action. This information in conjunction with the state-traject-

ory of the engine, which were both printed out after every run,

formed the basis for making any modifications to the control

algorithm. The important role of the monitor, without which the

tuning process would not have been as systematic and as efficient,

will be highlighted in Section 7.4.



7.2.3.2 Separation of Programme and Data Space

To facilitate further the tuning process of the

controller, certain features were introduced in the structure

of the software. First, it is clear from Eqns.(7.3) and (7.4)

that it is only necessary to store away the nine basic values

of the six fuzzy variables, and not the relations that are im-

plied by every rule that make up the algorithm. The significant

reduction in data space here is obvious. Second, the rules com-

prising the algorithm were written as calls to the same sub-

routine, which worked on the data space of the basic definitions

of the variables. Therefore, with this scheme the programme and

data spaces were separated so that changes could be made independ-

ently to either space. Further, by having the algorithm as a

chain of subroutine calls, and recalling that this chain of rules

is unordered, deleting, modifying or adding a. rule amountsto

changing only a few lines of coding in the programme.

The subroutine that processes the rules has four

parameters passed to it, which are FE, CPE, SE and CSE. Although

in one of the controllers implemented not all four inputs are

necessary (non-interactive control), the subroutine was made as

general as possible so that it could be used unaltered for any

configuration (interactive control).

7.3 THE FUZZY LOGIC CONTROLLER:

NON-INTERACTIVE CONTROL

The first controller implemented was based on

the principle of non-interactive control. Thus, two separate

controllers were implemented, one for the heater and one for

the throttle. The inputs to the heater controller were PE and

CPE (with SE and CSE equal to ANY) and the inputs to the

throttle controller were SE and CSE (with PE and CPE equal to

ANY). The two algorithms are given below, where the rule

numbers attached will be referred to in the discussions and

in the tuning of these controllers.
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7.3.1 HEATER ALCORITFIM

Rule Hi	 If	 FE NB

then if CPE = not (NB or NM)

then if	 SE ANY

then if CSE = ANY

Then	 I-IC = PB

Else

RuleH2	 If	 PENBorNM

then if CPE = NS

then if	 SE ANY

then if CSE ANY

Then	 HC = PM

Else

Rule H3	 If	 FE = NS

then if CPE = PS or NO

then if	 SE ANY

then if CSE = ANY

Then	 HC PS

Else

Ru].eH L	If	 FE	 NO

then if CPE = PB or PM

then if	 SE ANY

then if CSE ANY

Then	 MC = PM

Else

Rule H5	 If	 PE NO

then if CPE NB or NM

then if	 SE ANY

then if CSE = ANY

Then	 HC NM

Else

Rule 116	 If	 FE	 P0 or NO

then if CPE = IS or N$ or NO

then if	 SE = ANY

then if CSE = AMY

Then	 MC = NO

Else
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Rule H7

Else

Rule H8

Else

Rule H9

E is e

Rule H1O

Else

Rule Hli

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

FE P0

CPE NB or NM

SE ANY

CSE ANY

HC PM

PE = P0

CPE = PB or PM

SE ANY

CSE ANY

tiC	 NM

FE PS

CPE PS or NO

SE ANY

CSE = ANY

tiC MS

PE PB or PM

CPE NS

SE ANY

CSE ANY

BC NM

PE = PB

CPE	 not (MB or NM)

SE ANY

CSE ANY

tiC = NB
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7.3.2 THROTTLE ALGORITHM

Rule Ti	 If	 PE = ANY

then if CPE = ANY

then if	 SE NB

then if	 CSE = not (NB or NM)

Then	 TC PB

E is e

Rule T2	 If	 PE ANY

then if CPE ANY

then if	 SE NM

then if CSE PB or PM or PS

Then	 TC PS

E is e

Rule T3	 If	 PE = ANY

then if CPE ANY

then if	 SE NS

then if CSE z PB or PM

Then	 TC PS

E is e

Rule T'4	 If	 FE = ANY

then if CPE = ANY

then if	 SE NO

then if CSE PB

Then	 TC PS

Else

Rule T5	 If	 PE ANY

then if CPE ANY

then if	 SE NO

then if CSE NB

Then	 TC = NS

Else

Rule T6	 If	 PE = ANY

then if CPE ANY

then if	 SE = P0 or NO

then if	 CSE = PS or NS or NO

Then	 TC NO

Else



Rule T7

Else

Rule T8

Else

Rule T9

Else

Rule T10

Else

Rule Til

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

If

then if

then if

then if

Then

PE ANY

CPE ANY

SE P0

CSE NB

TC PS

PE ANY

CPE = ANY

SE P0

CSE = PB

TC NS

PE ANY

CPE ANY

SE = PS

CSE PB or PM

TC NS

PE = ANY

CPE ANY

SE PM

CSE = PB or PM or PS

TC NS

PE ANY

CPE ANY

SE PB

CSE = not (NB or NM)

TC NB

7.3.3 EXPERIMENTAL RESULTS

The quality of control obtained for the pressure

variable is shown by curve P1 in Fig.7.1. The quality of control

obtained for the speed variable is shown by curve Sl in Fig.7.2.

Both responses shown are typical of a. series of runs performed.

The printout of the monitor for this run (A) is given in

Appendix D.l.
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Fig. 7.2 Speed Response

7.3.11 DISCUSSION

Consider the heat-pressure loop. By looking at

curve P1 in Fig.7.l, two main observations can be made about the

pressure variable. First, the climb towards the set-point is

very satisfaco-try, and second, there seems to be poor control

around the set-point once the pressure gets there. Therefore

the rules that come into play around the set-point need to be

modified, and if necessary, new ones added.

After analysing the information printed out by

the monitor (Appendix D.1), three rules were found which accounted

for the poor control around the set-point. The rule that was

central to the problem was H6. In words, rule H6 says that Itjf the

pressure is just below or just above the set-point, and if its

velocity is zero or very small in either direction, then take no

heat action". There are two possibilities in this rule which can

give rise to oscillations around the set-point. First, when the

pressure is just below the set-point and its velocity is small but



l'48

away from the set-point, then it will be allowed to continue

on this course without taking any action to stop or reverse it.

The same is true when the pressure is just above the set-point.

Therefore modification of this rule was necessary, which will

be considered in the next section.

The analysis further showed that once the pres-

sure left the vicinity of the set-point, the two rules H3 and H9

did not take strong enough actions to return the pressure to the

set-point as quickly as possible. It can be seen from curve P1

that this is specially true when the pressure is below the set-

point. Therefore rules H3 and H9 required to be modified also.

Apart from this, it was remarkable that the pressure variable

behaved in the way that it did, specially when considering the

small number of rules that were put down, and moreover, at a

first attempt. Different initial conditions of the pressure were

also considered and identical observations were made.

Turning attention to the throttle-speed ioop now, it

can be seen from curve Si in Fig.7.2 that good control has been

obtained. Although it is not indicated on curve Si, there were

occasions when the speed tended to get trapped either just above

or just below the set-point. The rules that caused this situation

were T5 and T7 (Appendix D.l). For instance, when the speed was

just below the set-point and going up fast, then rule T5 would put

a negative step on the throttle, thus never allowing the speed to

get to the set-point unless it was approaching at a slow rate.

Therefore rules T5 and T7 required revision. Otherwise, the same

general remarks can be made about the speed variable as in the case

of the pressure.

7.4 TUNING OF FUZZY LOGIC CONTROLLER:

NON-INTERACTIVE CONTROL

The weak rules discovered in the analysis of the

last section were rectified and a modified controller was

implemented as described below.
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7.4.1 MODIFIED HEATER ALGORITHM

Apart from modifying rules H3, H6 and H9, four more

rules were added to the algorithm to give even tighter control

around the set-point. The modified and the new rules are given

below, with the changed lines indicated to the right.

Rule H3a	 If	 FE NS

then if CPE PS or NO

then if	 SE ANY-

then if CSE ANY

Then	 HC = PM	 (changed)

Rule H6a	 If	 FE P0 or NO

then if CPE = NO	 (changed)

then if SE ANY

then if CSE = ANY

Then	 HC NO

Rule H9a	 If	 FE PS

then in CPE PS or NO

then if SE ANY

then if CSE ANY

Then	 HC NM	 (changed)

Rule H12	 If	 PE NO

then if CPE = PS

then if SE ANY

then if CSE ANY

Then	 HC = PS

Rule H13	 If	 FE NO

then if CPE = NS

then if SE ANY

then if CSE ANY

Then	 HC NS
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Rule H1'i	 If
	

PE	 P0

then if CPE = NS

then if SE ANY

then if CSE = ANY

Then
	

HC PS

Rule H15	 If	 •PE	 P0

then if CPE PS

then if SE ANY

then if CSE = ANY

Then	 HC NS

7.L.2 MODIFIED THROTTLE ALGORITHM

The only modification made to the throttle algorithm

was to delete rules T5 and T7 to avoid the situation described in

Section 7.3.'i. The decision to delete rather than modify t1iem,

was made after verifying in the analysis that they did not make

any contribution otherwise.

7.'.3 EXPERIMENTAL RESULTS

The quality of control obtained with the modified

version of the controller is shown by curve P2 in Fig.7.l for

the pressure variable, and by curve S2 in Fig.7.2 for the speed

variable. Again, the responses shown in both Fig.7.1 and 7.2

are typical of the results obtained. The monitor printout for

this run (B) is given in Appendix D.2.

7. It. Ll DISCUSSION

It can be seen from curve P2 in Fig.7.1 that

control of the pressure around the set-point has improved con-

sidera.bly with the modified heater algorithm. The increased

sensitivity of the heater controller can be seen by comparing

the monitor outputs before and after tuning, given in

Appendix 0. Similarly, deleting the throttle rules T5 and T7

allowed settling of the speed variable at the set-point, and the

response of both variables can be considered as very satisfactory

now. Thus, no further modification of the two control algorithms
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was necessary. It is remarkable in fact that such good quality

of control is achieved after only two attempts. This only goes

to suggest that there can be a great value and potential in the

technique of using fuzzy logic whenever a humanistic problem is

being tackled.

The importance of the monitor in providing feed-

back to the human operator is clearly evinced in these experi-

ments. Without this information the human operator would

probably have great difficulty in modifying his control policies.

An off-line execution of the modified control algorithms and the

monitor produced the summary shown in Figs. 7.3 to 7.6. The

control policies of these algorithms were given in Figs.5.3 and

5 • [ in Chapter 5. The entries in Figs.7.3 and 7.5 are the rules

which produce the highest peaks in the output spreads, with cor-

responding membership grades shown in Figs.7. LI. and 7.6. It is

not suggested, though, that data obtained in this manner can be

used to modify the algorithms, since no information is apparent

about the quality of control implied in these data. The 'tuning'

process must still be carried out on-line. The date, illustrate,

on the other hand, the two points mentioned in Section 7.2.1.2

concerning the output decision procedure.

As a final remark, it is useful to note that it

is the rules that are modified in the tuning process and not the

nine basic, but subjective definitions of the values assigned to

the variables involved in the rules. Given a. simple, say,

l it-point universe of discourse, any subjective definition of

ositive big' is hardly likely to be too contentious. Stated

otherwise, a set of rules is rather insensitive to the definition

of an individual fuzzy subset. Similarly, when sets with a large

number of members are considered, it is again expedient to mani-

pulate the rules, possibly using hedges (Zadeh, 1973), since

manipulating the basic definitions interacts with the policy

implied in more than one rule. Obviously, this can perpetuate

into a vicious circle of modifying a definition, followed by

examining all the rules affected by this change.
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7.5 INTERACTIVE FUZZY LOGIC CONTROL

This section is primarily intended for further

demonstration of the effectiveness of fuzzy logic in translating

linguistic instructions into an executable control algorithm.

The two control algorithms described in the last section were

non-interactive, that is, the choice of heat action was influenced

by the pressure only, and the choice of throttle action was

influenced by the speed only. Here, the mode of operation is

changed, so that both pressure and speed influence the choice of

both the heat and throttle actions. The new desired control

policies are described below.

7.5.1 HEATER ALGORITHM

It is known that when the heat input is increased,

then this causes the pressure to rise, which in turn increases

the speed. Therefore, it is desirable to consider the speed as

well when intending to increase the heat input. This policy is

introduced by the two modified and the two new rules given below.

It will be observed that the nature of the change is 'precaution-

ary', and not for better control of the speed variable.

If

then if

then if

then if

Then

If

then if

then if

then if

Then

FE NB

	

CPE	 not (NB or NM)

	

SE	 not (PB or PM)

CSE ANY

HC = PB

FE NB or NM

CPE NS

SE = not (PB or PM)

CSE = ANY

HC=PM

(changed)

(changed)
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Rule H16

Rule H17

If

then if

then if

then if

Then

If

then if

then if

then if

Then

PE NB

CPE not (NB or NM)

SE = PB or PM

CSE NB or NM

HC = PB

PE NB or NM

CPE NS

SE = PB or PM

CSE NB or NM or NS

HC = PM

7.5.2 THROTTLE ALGORITHM

The desired policy for throttle control is the

following. It is known that the faster the steam engine is

running, the greater is the consumption of steam from the

boiler, and therefore the greater must the heat input be in

order to maintain the pressure - conservation of energy. Thus,

when the pressure is very low, it may be desirable to allow the

pressure to reach a certain level first before opening the

throttle to gain speed. With this procedure, one would expect

a faster rise in the pressure, than when consumption of steam

is allowed during the build-up in pressure. Such a policy is

normally adopted in the operation of a real steam engine, for

example, a steam train, although more for start-up purposes

rather than direct control. This policy was implemented by

writing a completely new set of rules for throttle control, which

is given below.

Rule Tl2	 If

then if

then if

then if

Then

Else

PE = NB

CPE ANY

SE = NB or NM

CSE not NB

TC = NO
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Rule T13	 If	 FE NB

then if CPE ANY

• then if	 SE = NB or NM

then if CSE NB

Then	 TC NS

Else

Rule Ti Ll.	If	 PE = NB

then if CPE ANY

then if	 SE not (NB or NM)

then if CSE ANY

Then	 TC NS

Else

Rule T15	 If	 FE NM

then if CPE not (NB or NM)

then if SE = ANY

then if CSE = ANY

Then	 TC = NO

Else

Rule Tl6	 If	 FE not NB

then if CPE = NB or NM

then if SE = NB or NM

then if CSE ANY

Then	 TC = PS

Else

Rule T17	 If	 FE not NB

then if CPE ANY

then if SE = NM or NS

then if CSE = NB

Then	 TC:NO

Else

Rule T18	 If	 FE = not NB

then if CPE ANY

then if SE = NS

then if CSE not (NB or NM)

Then	 TC PS

Else
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Rule T19	 If	 FE not NB

then if CPE ANY

then if SE NO

then if CSE PB or PM

Then	 TC PS

E is e

Rule T20	 If	 FE = not NB

then if CPE = ANY

then if SE P0 or NO

then if CSE = PS or NS or NO

Then	 TC NO

Else

Rule T21	 If	 FE not NB

then if CPE = ANY

then if SE P0

then if CSE PB or PM

Then	 TC MS

Else

Rule T22	 If	 PE	 not NB

then if CPE = ANY

then if	 SE = PS

then if CSE	 not (NB or NM)

Then	 TC = NS

E is e

Rule T23	 If	 PE = not NB

then if CPE ANY

then if SE = PM

then if CSE = PB or PM or

Then	 TC NS

E is e

Rule T2' .	If	 FE = not NB

then if CPE ANY

thenif	 SE=PB

then if CSE = not (NB or NM)

Then	 TC NB
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7.5.3 EXPERIMENTAL RESULTS AND DISCUSSION

The response obtained with the interactive control

policy is compared with that of non-interactive control in

Figs.7.7 and 7.8. Curves P2 and S2 are the best responses

obtained in Section 7.'. Curves P3 and S3 are typical pressure

and speed responses respectively, obtained with interactive

control. It is observed that no improvement has been achieved

in the quality of control, if minimum-time is the criterion of

performance. However, the speed response in Fig.7.8 reflects

clearly the intended change in control policy; the speed is not

allowed to increase until the pressure reaches a certain level

(roughly NM in this case, as it can also be confirmed by the

throttle algorithm).

It is observed that the pressure response P3, shown

in Fig.7.7 does not exhibit the expected faster rise towards the

set-point. There is an explanation for this if the monitor print-

out, given in Appendix D.3 for this run (C), is studied closely.

It can be seen from the printout that the heat input has reached

maximum power (32 steps) at T=i and has remained at that level

until T=9, when it has started decreasing. Comparing this with

the printout data for run B in Appendix D.2, it can be seen that

the same path has been taken in that run. Therefore, on the one

hand, the physical limitations of the system can explain the

identical, initial responses obtained in Fig.7.7. On the other

hand, one still would expect a lag in the pressure since in

run B the speed is higher at all times, thus using up more steam.

However, two points must be borne in mind here; first, the rate

of consumption of steam at very low speeds is unlikely to effect

the pressure in the boiler, where steam is being produced at a much

faster rate (at maximum power) than at which it is being consumed,

and second, because of the quantized nature of the displayed

variables, any small difference that could have existed within a

quantized region is obviously not brought out.

In Fig.7.7, the lag in pressure that appears starting

at T=lO, is because the speed in run C is allowed to increase, by

opening the throttle, without compensating for the steam that is

used in doing this. It is assumed here that at the sort of
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pressure and speed found around the set-points in run C, the heat

input that is present at TlO is roughly right to maintain a

stable state (this can also be verified in the tests carried out

for the modelling of the steam engine - see, for example, the

initial values of the pressure, speed and heat input given in

Tables B..l and B.2 in Appendix B for Test 3, and compare these

values with those given for run C here). This implies that the

rate of steam production at T1O is comparable with the rate of

consumption, so that a better policy at that point in time would

be to increase the heat input a little at the same time that the

throttle is opened, in order to avoid the drop in pressure.

The implementation of the above suggested modific-

ation in the control policy was not tried. However, the

argument leading to that suggestion was presented primarily to

demonstrate the richness in the 'heuristics' that the human

operator can impart to a (learning) machine controller. At the

same time, the complexity demanded of an 'intelligent' control-

ler becomes clear. It would be expedient, for example, in the

above case, to augment the input vector to the controller by

its outputs, so that a policy like "when opening the throttle,

increase the heat appropriately" can be implemented conveniently.

The consequences of increasing the dimensionality of the input

yector in this manner, when adaptive (ATLE or Bayes) controllers

are considered, are hardly to be wished for in the light of the

arguments presented in Chapters ! and 5. On the other hand, the

formulation of thefuzzy logic controller and its implementation,

indicate the great ease with whidh complexities of this nature

can be accommodated in:the fuzzy logic approach.

7.6 CONCLUSIONS

It is difficult to draw many conclusions from the

experimental results described in this chapter, because no other

similar work is available in the literature, apart from certain

theoretical investigations and suggestions arising therein

(Cha.ng and Zadeh, 1972), so that a comparison can be made with

this case study. The question may arise, therefore, as to

whether the fuzzy logic deterministic controller described

represents a non-trivial alternative to other approaches.

Unfortunately, it is difficult to see any direct relationship
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between such a controller and any other deterministic controller,

such as the direct digital control algorithm or some logic circuit.

which has the same input-output capability. Nevertheless, some

obvious observations can still be made.

The experimental work described demonstrates the

excellent applicability of fuzzy logic theory to the design of

controllers. The power of this approach derives from the fact

that it enables translation of an entirely unstructured set of

heuristics expressed linguistically into an executable control

algorithm. The results obtained indicate further, that a

controller designed in this manner can produce very effective and

very satisfactory control, if some sort of feedback is provided

to the designer (the human operator) through which he can system-

atically modify or optimise the performance of the controller.

The only comparable studies in the literature,

where linguistic instructions are used in a similar manner, appear

to be those of Waterman (1968, 1970) and Gaines (1972). Waterman

uses linguistic instructions for teaching heuristics to a computer

programme which is learning to play draw poker. The similarity

between Waterman's production rules and the fuzzy logic conditional

statement used here has already been pointed out. Gaines, on the

other hand, describes a procedure for 'priming' an ATLE-based

controller by giving it instructions which it interprets by

'mentally rewarding' itself when 'imagining' itself carrying out

the instructions. Remarkably, Gaines further adds that he could

not choose a good set of instructions in advance, and that

feedback information as to the effect of different instructions

formed the basis of choosing the best set. This finding of

Gaines and the function that the monitor is designed to provide in

this study are clearly very closely related to each other.

As a last remark, it may be desirable in certain

applications to have the means of modifying, deleting or adding

rules to the fuzzy logic control algorithm on-line, instead of

having to recompile the whole programme every time any such

alteration is made in it. This enhancement can be provided very

simply by writing an 'interpreter' programme between man and

computer. Basically, this interpreter needs to have two modes of

operation; in the first mode it enquires whether the alteration

desired is a modification or deletion of an already existing rule,
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or an addition of a new rule, and in the second mode it

accepts the corresponding modified or new rule to make he

actual alteration.
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CHAPTER 8

CONCLUSIONS

8.1 COMPARISON OF CONTROLLERS

Three basic types of controllers have been

considered in this study for the control of the steam engine;

conventional controllers, adaptive or learning controllers,

and controllers based on the fuzzy logic approach. It is

interesting now to try and compare these controllers in the

light of the experimental work done, bearing in mind the

three aspects of main importance to the control engineer,

which are implementation, operational characteristics and

performance.

Comparing the adaptive (threshold logic and

Bayes) controllers with the fuzzy logic controller, it is

true to say that both require fairly simple data structures

when they are implemented in the form of a computer programme.

The data which is stored is either in the form of matrices of

weights in the adaptive controllers, or in the form of vectors

of membership grades defining fuzzy subsets in the fuzzy logic

controller. It is assumed here that in the implementation of

the fuzzy logic controller it is the basic definitions that

are stored and not the relation matrices, which can be of

many dimensions in the general case. However, there is one

important difference in the two approaches, in that as the

size of the system which is being controlled increases, the

storage requirements of the adaptive controller grows

enormously, whereas in the fuzzy logic controller this expan-

sion in storage is not as significant.

To illustrate this point, consider the hypo-

thetical case where a system has 10 inputs and 10 outputs each

of which is coded into a 10-bit pattern, or in the case of the

fuzzy logic approach, each is represented by a fuzzy subset in

a universe of 10 elements, with 10 basic values defined for

each input or output variable. Therefore, the adaptive con-

troller would require (l0x1O)x(10xlO)l0,000 weights ,whereas the
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fuzzy logic controller would require lOx((10+lO)xlO)2,OOO

grades of membership. Similarly, with a system having 100

inputs and 100 outputs, the adaptive controller would re-

quire (lO0x1O)x(lOOxlO)l,O0O,0O0 weights, whereas the fuzzy

logic controller would require lOx((lO0+100)xlO)=20,000

grades of membership. Of course, hidden in the calculation

of these figures are a number of assumptions, for example,

the number of bits required to represent each weight or

each grade of membership. For the sake of argument it is

assumed here that the same number of bits can represent both,

if the weights refer to those stored in an ATLE - t bits are

necessary to represent grades of membership 1--lO, and compare

this with the range of weights obtained for the ATLE in

Section 5.5.3 when the single-spot linearly independent code

is used. In the case of the Bayes controller, of course

more than bits are required normally, since to represent

a probability or the logarithm of a probability, real numbers,

as opposed to integer numbers must be stored if some degree of

accuracy is to be maintained.

It is evident from the implementation described

in Chapter 7, that further reduction in the data space of the

fuzzy logic controller is conceivable in practice since the

same fuzzy value can be assigned to more than one fuzzy

variable. For example, the same fuzzy NM value is assigned

to both PE and SE variables in the steam engine. Similarly,

with the configuration adopted in this study, where a

separate matrix is kept for each output variable of the

controller, it may not be necessary to include all the

measured outputs of the plant in the input pattern of every

matrix in the adaptive controller. For example, the input

pattern to the heat matrix in the steam engine s'stem may not

necessarily include any information about the speed or its

time derivative. Clearly, the data space required in the

example given in the last paragraph is a great deal reduced

in this case. On the other hand, this separation of the

multiple control action loops may necessitate the inclusion

of other variables in the input pattern, specifically the

control variables themselves. An example where this might

be desirable was given in Section 7.5.3.
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Considerations as those given above lead to

a more basic question which arises out of the multi--output

nature of the controller that was introduced in this study.

In the case of the steam engine, therefore, an alternative

configuration, or internal structure that can be adopted in

the implementation of the adaptive controllers is to have

one matrix of weights, where the implication is that the

two actions HC and TC are combined, through same coding,

to give one tcomposltet action. Thus, action	 1 could

represent (HC	 -7, TC	 -2), action 2 could represent

(HC	 -7, TC	 -1), ---, action 75 could represent

(HC	 +7, TC = +2). One of the advantages in this structure

is that dependencies between the control variables can be

directly embedded. Refer again to the example given in

Section 7.5.3 where it is desired to "Increase the heat

input at the same time that the throttle is opened tt . The

main disadvantage, on the other hand, is the considerable

increase in data spare; with separate matrices for the two

control variables the total number of ATLEs is (15+5)=20,

whereas here it is (15x5)=75. It is clear that either

structure has both its advantages and disadvantages. But

if storage requirements are to be rninimised, then the

structure with separate loops must be preferred.

When the structure of the adaptive (threshold

logic or Bayes) controller is described in terms of matrices,

a striking similarity becomes apparent between the operat-

ional characteristics of the fuzzy logic and adaptive

controllers. In both cases the input to the controller is

represented by a vector, and if the mm operation in the

compositional rule of inference (Section 6.3. Lt) is replaced

by the product, and the max operation is replaced by the sum,

then the calculations involved in the two controllers are

identical. The implications of this remarkable similarity

are not Immediately obvious, except it is felt that the

similarity originates in the fact that both approaches are

based on the stimulus-resoonse (S-R) structure. On the other

hand, one suggestion that may be made because of this similar-

ity is not recommended to be pursued. Thus it may be sug-

gested to develop procedures similar to the weight adjustment

algorithms in the adaptive controllers, which will enable the
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the 'learning' of the grades of membership that are involved

in a relation matrix. Although feasible, this suggestion

defeats the original purpose - the linguistic nature - in

the fuzzy logic approach to the problem. It should be

preferred, therefore, not to reduce the learning process to

the parameter level, but to maintain it at the linguistic

level. The possibility of having a self-learning fuzzy logic

controller is discussed further in Section 8.3.

In comparing the performance achieved with

each of the three controllers that were considered, it is

evident from the results reported that the fuzzy logic

controller can challenge the conventional controller, whereas

the adaptive controllers fall behind in this respect.

Fig.8.1 shows the best pressure responses obtained with the

fuzzy logic (curve P2 in Fig.7.l) and the conventional

(curve H in Fig.3.6) controllers; a choice between the two

is difficult. The same is true in the control of the speed

variable. The adaptive controller which can be expected to

yield the best performance is the one which was trained by

the fuzzy logic controller in Section 5.5. But even then,

that performance is not likely to be of the high quality

appearing in Fig.8.l.

8.2 SUMMARY

The research st.udy described in this dissert-

ation investigates the applicability and utility of Al

techniques in control problems. Emphasis is laid on

supporting this investigation with evidence obtained through

experimentation which is carried out on a real control system.

Thus, theoretical investigation establishes the applicability

of the proposition, and the practical work provides the

evidence of its utility. A critical survey of the relevant

literature (Chapter 'i) indicates that a few of the better

known adaptive or learning control techniques are restricted

in their applicability when the general multi-variable arid

non-bang-bang control system is considered. Such systems are

not widely studied in the light of adaptive or learning

control theory and very little documentation is available in

the literature. The most important restrictions that can be

expected in these systems are summarised below.
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Prerequisite to the success of an ATLE-based

controller is the assumption of linear separability of the

input pattern set.	 This can be a serious limitation in real

systems, even when the variables are encoded using techniques,

in particular, the linearly independent code, which are known

to improve the chances of meeting the above prerequisite.

When the performance of a controller is assessed in terms of

'per cent correct recognition' of the input patterns, it is

indeed true that even with pattern sets which are not linearly

separable, the controller will minimise the number of incor-

rect classifications. 	 On the other hand, it was indicated

(Section 5.LI.) that such assessment of performance is not

really meaningful in control systems with non-bang-bang

inputs, where the 'degree' of misrecognition can have much

deeper implications than the obvious but simple division into

'correct' and 'incorrect' classifications. 	 Similar arguments

apply to the Bayes controller, since the efficiency of this also

relies on the clustering properties of the input space.

Obviously, with both controllers, clustering features in the

input space start fading away, or grow in complexity as the

dimensionality of the input space increases, or even more

important, as the number of categories increases.

Although the use of the linearly independent

code improves the chances of separability in the input space,

at the same time it introduces much redundancy in the data

that is stored in the memory of adaptive controllers.	 With

multi-variable systems, this can result in the requirement

of a vast storage space in a digital computer.	 Furthermore,

the processing of this data can present problems in process

control where timing is critical. 	 For example, when the

controller is implemented by a computer programme where

processing is done serially, the calculation of control

actions and the updating of the memory, when on-line training

is taking place, can take a long time.

The training of adaptive or learning control-

lers is perhaps one of the most difficult tasks in the

implementation of such controllers. 	 Basically, two modes of

training are available, supervised and unsupervised.	 In

the supervised training mode the obvious choice of the

teacher is the human operator. 	 Although the use of another,

already existing fixed controller is often considered in



172

theoretical or simulation studies, this would not be done

normally in actual practice, since very rarely one would

want a second controller. In the unsupervised mode, apart

from the storage limitations and the specification of an

appropriate performance criterion (Section 14.5.3), a strong

objection may also be raised against this method in certain

applications. Implicit in this method of learning is the

requirement of 'exploration' of the environment in order to

find out the best choice of an action for a given state.

Clearly, when it is an industrial process that is being

controlled, the risk in allowing this can be too high. For

example, when the pressure in the boiler of the steam

engine is at the extreme high end, the consequences of

applying full power to the heater can be disastrous.

The human operator, therefore, is the most

suitable, and probably the only teacher to be considered in

the training of learning controllers. Indeed, in most

studies reported in the literature he has been exclusively

given this role, or at least he has had an influence in

one way or another. However, the human operator can

present serious problems too in practice. In the first

place, he is not well suited to the discretized and

quantized nature of the environment that he is required to

operate in. Secondly, he soon shows the effects of fatigue

which make his control actions or policies appear as

vagarious. Under these circumstances the adaptive control-

lers do not exhibit systematic convergence towards a def-

inite control policy, and even if they may do eventually,

the time taken for this would be unacceptably long.

The vagaries that the human operator

exhibits are not entirely due to fatigue or his unsuitable

environment however. Another, and perhaps more significant

factor accounting for this is his difficulty in translating

linguistically conceived control policies into their numerical

equivalent. Thus, the human operator has knowledge of

powerful control policies, but he cannot convey this useful

knowledge to a machine, the controller, efficiently and

uncorrupted in context. The provision of a medium which

enables direct verbal communication between man and machine

can obviously be seen to be of great importance in many

other fields than just control.
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It has been shown in this dissertation that

one effcient method of translating linguistic instructions

into their numerical equivalent is through the use of the

semi-quantitative calculus of fuzzy logic. Using this

approach, a controller has been formulated which is found

to produce excellent performance when controlling the

steam engine. Furthermore, it has been shown that by prov-

iding the necessary feedback to the human operator to assist

in his evaluation of the effects of different instructions,

he can very systematically and quickly modify his instruct-

ions to produce the optimum controller.

Finally, the generality or flexibility of the

fuzzy logic controller has been elucidated by injecting such

control policies into its operation which are not conceivable

with conventional controllers. For example, apart from fine

control around the set-point of the plant, the fuzzy logic

controller is equally proficient in start-up or shut-down

operations, and moreover, interaction between any input or

output variables does not present the problems that are

encountered in the design of conventional controllers. In

this respect, the adaptive controllers are conceivably

capable too, but the additional problems introduced can be

quite serious. It is argued sometimes that the great value

of adaptive (threshold logic and Bayes) controllers lies in

their generality, or capability of solving many varied types

of problems, with excellence taking second place. On the

other hand, when a control engineer is faced with a particular

problem, he is concerned more with excellence, or how

'special-purpose' he can make a technique that is available

to him, rather than how 'general-purpose' that technique is.

8.3 RECOMMENDATIONS FOR FUTURE WORK

The results obtained in this single case study

of the fuzzy logic approach to control are very encouraging.

However, it is evident that the nature of the work is rather

heuristic, and furthermore, the study has concentri.ted

solely on the synthesis of controllers. An important and

useful extension to this work is therefore to consider the

analysis of such controllers, simi1a. to the procedures
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followed in classical control theory. Thus, stability and

sensitivity analysis should be possible since the actual

operation of the method is based on a well-defined calculus.

Another interesting area where further research

can be done is the synthesis and analysis of self-learning

fuzzy logic controllers. In a sense, the procedure of tuning

the fuzzy logic controller as described in this study can be

viewed as unsupervised training or learning. The formulation

of a self-learning fuzzy logic controller must have at least

three distinct functions available:

(a) A method of evaluating the efficiency or 'goodness'

of rules.

(b) A method of generating rules.

Cc) A method of merging rules.

The work done by Waterman (1968,1970), which is very similar
in nature, can be useful in this investigation (Assilian, 1971).

Of course, there are many other questions too

that can stimulate further research. For example, can sim-

ilarly successful results be obtained with systems much larger

and more complex than the steam engine in this study? In what

way, specially hardware, can a fuzzy logic controller be

physically realised other than a computer programme? From the

commercial point of view, can a general package be developed

which can, through 'initialization', be tailored to the needs

of particular applicat{ons?

Finally, both the analysis and synthesis of con-

trollers in classical control theory require a mathematical

model of the control system. Thus modelling is an important

aspect in control studies. In the same way, it should be

possible to establish a. fuzzy logic model of a system, which

can later be used to design a fuzzy logic controller. It is

obvious in the synthesis of the fuzzy logic controller described

in this study, that the control rules specified by the human

operator are based on such a model of the system. However, it

is very likely,this model as conceived by the human is not very

accurate. Furthermore, in certain areas of the operating space,

or indeed for the whole of the control system, the human may

not even have a model to work from. Therefore, the development

of techniques for building a fuzzy logic model of a system can

be of great importance.
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APPENDIX A

DETAILS OF STEAM ENGINE - COMPUTER INTERFACE DESIGN

A.1 HEATER CONTROL

Referring to Fig.2.5, the design and functions

of the various components shown are as follows.

The level converters merely match the different

operating logic levels of the hybrid computer and the inte-

grated circuit chips.

The function of the sorting circuitry can

best be explained in three stages. The first stage determines

whether the negative-half cycle of the mains input should be

on or off. The circuit achieving this is shown in Fig.A.l.

The condition above is given at the output of bistable Eli.

The output of the second bistable, B12, is used for the

switching of the 32nd step. It is reminded that a LI.-bit

binary counter can give 15 counts excluding the zero.

Therefore B12 gives relative count 16 which corresponds to

absolute step 32 with the negative-half cycle switched on.

Absolute step 16 is of course achieved by simply switching

the negative-half cycle on, as described in Section 2.2.2.1.

The second stage of the sorting circuitry

simply analyses the state of the counter to determine at whal

count or step the positive-half cycle of the mains input is

out of the possible 15. This is achieved by having 15

replicas of the circuit shown in Fig.A.2, with inputs

ABCD, ABCD, ABCD, etc.

The third and final stage of the sorting

circuitry is mainly for scaling purposes of the 32 steps, as

described in Section 2.2.2.2. An identical circuit, shown in

Fig.A.3, is provided for each of the 15 outputs in Fig.A.2

and the output of bistable BI2 in Fig.A.l. Clearly, at any

given instant only one of these 16 steps is V active', thus

switching the appropriate voltage onto the output line, which

acts as the input to the SCR control circuit to be described

below. Scaling is achieved by adjusting the potentiometers

to give the required voltage.
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Referring back to Fig.2.5, the SCR control cir-

cuit, shown in Fig.A. tia, provides an output to a SCR gate

variable from.0 to 10 msec., thus giving control of the

conduction angle from 0 to 1800. The variation is con-

trolled by the positive d.c. signal coming from the output

of stage three of the sorting circuitry. The operation of

the SCR control circuit can be followed by referring to the

waveforms sketched in Fig.A.tib.

The last component in Fig.2.5 is a standard

Schmitt trigger used for switching the negative-half cycle

of the mains.
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A.2 THROTTLE CONTROL

There are two main circuits associated with

throttle control; a motor drive circuit and a throttle

circuit.

From the description given in Section 2.2.3,

the function requested from the motor is that of a stepping-

motor. Such a function could be achieved by energizing the

motor with a fixed-length pulse which correspondingly turns

the throttle through 300. This was tried but found to be

unsatisfactory as the load frictional forces on the motor

were too big and varied to give a. rotation of the throttle

the same number of degrees with every step. The accuracy

was also badly affected because transmission of rotational

torque from the motor shaft to the throttle plate is through

a steel chain which cannot be kept equally taut throughout

its length. The design given here allows for these variations

by stopping the motor, after energizing it to take a step, ordy

when 300 of rotation is completed by the throttle. The detect-r

ion of these 3O points is accomplished by the throttle circuit

described below. The motor drive circuit is shown in Fig.A.5

and it is noted that the method used for' stepping the motor

through 3Q0 allows any convenient speed of the motor.

When 30° of rotation is completed by the throttle

plate, this condition is detected by the throttle circuit, at

which point a pulse is generated and fed back to the 'energize'

gate of the motor drive circuit in order to stop it. In

addition, the throttle circuit generates a separate pulse when

the throttle is in the fully-shut position. This pulse is

eventually transmitted to the digital computer to inform it

that the throttle is at the origin. The throttle circuit is

shown in Fig.A.6. It consists of a 12-way switch which is

mounted and kept fixed concentric with the throttle plate. The

two brushes shown rotate with the throttle plate and they are

aligned such that they close the gap between two adjacent

contacts at the same time when one of the holes on the throttle

plate is in line with the opening on the boiler. It can be

seen from the diagram that the terminal indicated by 'COUNT'

gives a positive pulse at the 3Q0 marks, and the terminal
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marked 'ORIGIN' gives a. positive pulse when the throttle is
fully shut.

0
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A.3 PRESSURE MEASUREMENT

The resistance change of a thermistor is

produced by a change of temperature in the semiconductor

itself. This may be achieved either by a change in temp-

erature of its surroundings, or internally by heat result-

ing from dissipation of power in the element. Because

the interest here is only in changes of the first type

above, it is imperative to keep the power dissipated in

the thermistor below the safe maximum quoted by the

manufacturers. The thermistor circuit is shown in Fig.A.7.

The two potentiometers are used to adjust the relationship

between measured voltage and pressure, as described in

Section 2.2.11.

ov

-7V

Fig. A.7 Thermistor Circuit
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A.Li THE INJECTOR CIRCUIT

Boiler feed injectors require steam for

their operation and this is usually provided directly

from the boiler as shown in Fig.2.2. A steam valve on

the boiler has to be opened to allow the steam to •flow

into the injector. The purpose of the injector is to

replace the water in the boiler that is used up in run-

ning the engine. Two water level probes operate the

injector by sending make/break signals to the circuit

which controls the steam valve. A schematic view of

this circuit is given in Fig. A.8.
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A.5 SAFETY WATER LEVEL DETECTOR

It is important to make sure that on no

account the boiler runs out of water completely as this

can cause the heaters to burn out. A probe is provided

to detect this 'danger state' and send a warning - an

interrupt - to the digital computer to switch the heaters

off. The detecting circuitry is shown in Fig.A.9.

-12.5V	 -7V

OV

Fig. A.9 Safety Water Level Detector
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APPENDIX B

SOME RESULTS OF THE IDENTIFICATION TESTS IN

THE DYNAMIC MODELLING OF THE STEAM ENGINE

Some of the typical results obtained in the

tests carried out for the dynamic modelling of the steam

engine are summarized in Tables B.1 to B.11. Graphical

illustrations are given in Figs.B.l to B. L . Referring to

Fig.2.1O, the tests summarised in Table B.l are to

estimate G 1 (s), Table B.2 for G 3 (s), Table B.3 for G 2 (s) and
Table B.L for G(s).

The abbreviations used are HHeat, TThrottle,

P=Pressure and SSpeed. The units of heat and throttle used

correspond to the quantized steps, as described in Section 2.2.

The unit of pressure and speed is voltage. The unit of gain

(per step of heat or throttle) is voltage, which is propor-

tional to either pressure or speed from the linear relation-

ships shown in Figs. 2.7 and 2.8.

Finally, it is also noted that in the tests

summarised in Table B.Li the pressure was kept constant by

closing the heat-pressure loop through the heater controller

described in Chapter 3.
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Initial	 - Positive Steps	 Negative_Steps ____

Inputs	 Initial	 Initial

(H/T)	 State Step Gain t	 State Step Gain c
E-1	 (PIS)	 E-1	 (PIS)

l'1/3	 01 2.21 14.2	 +3 0.08 250 02 2.2/14.1 -3 0.15 260

12/3	 03 2.0/3.5 +3 0.11 280 05 2.0/3.6 -2 O.l'i 280

12/3	 04 1.9/3.5 +6 0.11 300

18/3	 06 2.7/ 14.8 +3 0.15 200 07 2.7/5.0 -3 0.09 300

15/3	 08 2.5/4.4 +3 0.08 200 10 2. 1i/4.6 -3 0.13 275

15/3	 09 2.'4/'-l.2	 +6	 0.06 125

15/5	 11 2.2/4.5 +3 0.08 250 12 2.2/4. 14 -3 0.12 250

Table B.l	 Step on Heat; Throttle Constant:; Pressure as Output

Initial - Positive_Steps ____	 Negative_Steps ____

Inputs	 Initial	 Initial
w State Step Gain -c u State Step Gain c.

(HIT)	 , ,-...
Ei	 rii	 F'

14/3	 01 2.2/4.2 +3 0.13 260 02 2.2/4.1 -3 0.40 265

12/3	 03 2.0/3.5 +3 0.28 125 05 2.0/3.6 -2 0.514 330

12/3	 04 1.9/3.5 +6 0.22 300

18/3	 06 2.7/14.8 +3	 -	 - 07 2.7/5.0 -3	 -	 -

15/3	 08 2.5/4.4 +3 0.16 120 10 2.4/4.6 -3 0.24 200

15/3	 09 2.4/4.2 +6 0.12 120

15/5	 11 2.2/4.5 +3 0.08 170 12 2.2/4.4 -3 0.27 340

Table B.2	 Step on Heat; Throttle Constanf; Speed as Output
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Initial	 Positive_Steps	 Negative_Steps

Inputs	 Initial	 Initial

(H/T)	 cri State Step Gain -c	
Cl) State Step Gain -c

_______	
(P/S)	 (P/S)

13/3	 13 2.1/14.0 +1 -0.08 250

15/3	 114 2.5/3.7 +1 -0.12 300 15 2.5/14.5 -1 -0.41 320

15/2	 16 2.9/4.4 +1 -0.146 220

15/2	 17 2.9/4.3 +2 -0.30 2140

Table B.3 Step on Throttle; Heat Constant; Pressure as Output

Initial	 Positive Steps	 Negative_Steps

Inputs	 Initial	 H Initial
Cl) State Step Gain	 °	 State Step Gain -c
[-i	 PS	 El	 PS)

3	 18 2.2/4.1 +1 0.29 150 19 2.2/4.4 -1 0.88 60

3	 20 2.2/4.0 +2 0.15 85

3	 21 2.2/3.7 +2 0.46 110

4	 22 2.2/4.1 +1 0.07 125

Table B.4 Step on Throttle; Pressure Constant; Speed as Output
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100 T/Tf 7

a	 360
a 1 -17 (Eqn. 3.10)

36-17
DT(z)= 1-z1 (Eqn. 3.9)
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APPENDIX C

DDC CONTROLLER PARAMETERS

C.1 P1 CONTROLLER

a. Curve A: Heat-Pressure Loop.
0=0.1	 KG=13

	 T	 10
t = 250	 T/T1 11

Ta	 K (1 +	 }	 160
0	 C

}
	

(Eqn. 3.10)

a j -K {1 -
	

}	 -100

DH(z)= 
160- lOOz 1
	

(Eqn. 3.9)

b. Curve B: Throttle-Speed Loop.

0 = 0.3	 1<G	 8
	

T	 10



}
	

(Eqn. 3.10)
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C.2 PID CONTROLLER

a. Curve C: Heat-Pressure Loop.

G=O.1	 KG=15	 T=1O
C

250	 t/T1= 10	 TD/t= 0.05

aK(l+T	
TD

0	 C

ci	 _K{1-— +	 }	 95

KTcD
2	 T	 187

375-95z1+187z2
-•11- z

(Eqn. 3.9)

b. Curve D: Throttle-Speed Loop

C = 0.3
	

KG=11	 T=10

t = 100
	

7	 TD/T= 0.06

a	 52
0

a 1 - 148	 a2 16

52-48z'+16z2
DT(z)=	

1-z

(Eqn. 3.10)

(Eqn. 3.9)
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C.3 'SINGLE-TERM' CONTROLLER

a. Heat-Pressure Loop:

G=O.1	 T=1O

t = 250	 L	 1-exp(-T/T)	 0.04

1) Curve E. Choosing Q = L 	 0.04

AD11 (z)	 10 - 9.6z1

ii) Curve F. Choosing t	 100

Q = 0.1

DH(z)	 25 - 24z1

iii) Curve G. Choosing r = 50

Q •= 0.18

DH (z) = 45 - 43z'

iv) Curve H. The controller was chosen as

DH(z) = 45 - 40z1

b. Throttle-Speed Loop:

G=0.3	 T=lO

T = 100	 L	 1-exp(-T/t)	 0.1

i) Curve I. Choosing Q 	 L = 0.1

MJT(z) = 3.3 - 3z1

ii) Curve J. Choosing r = 80

Q = 0.12

DT(z)	 14 - 3.6z1
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APPENDIX D

MONITOR PRINTOUTS OF FUZZY LOGIC CONTROLLER

The format of the printout is as follows

Line 1

Line 2

Line 3

Line 4

Line 5

-	 PE CPE HC SE CSE TC

-	 Heat rules contributing to output with highest

peak due to every rule.

-	 Spread of heat output vector.

-	 Throttle rules contributing to output with

highest peak due to every rule.

-	 Spread of throttle output vector.

This format is repeated at each sampling instant

which is 10 secs. If any of lines 2 to 5 are missing, it

implies that no rules 'caught' the input state at that sampling

instant. The membership grades shown vary [0+10]

instead of [0+1]. The pressure and speed set-points and the

initial heat and throttle input values are also given at the

beginning of each run.

D.l PRINTOUT FOR RUN A (NON-INTERACTIVE CONTROL)

Pressure Set-Point
	

2.4 Volts

Speed Set-Point
	

3.8 Volts

Initial Heat
	

0 (Steps)

Initial Throttle
	 3 (Steps)

-6	 +3	 +7	 -6	 +0	 +2
HOl = 10
00 00 00 00 00 00 00 00 00 00 00 01 04 08 10

TOl = 10
00 00 00 05 10

-6	 +4	 +7	 -6	 +3	 +2
HOl = 10
0000000000000000000140810

T01=10	 T02=2
00 00 02 05 10
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-6	 +0	 +7	 -6	 -6	 +0
HOl = 10
00 00 00 00 00 00 00 00 00 00 00 01 04 08 10

-6	 -2	 -1-4	 -5	 -6	 +0
HO1=08 H02=1O
00 00 00 00 00 00 00 00 00 02 07 10 07 08 08

-6	 -3	 +4	 -5	 -6	 +0
H0i=03 H02=07
00 00 00 00 00 00 00 00 00 02 07 07 07 03 03

-5	 -5	 +6	 -4	 -6	 +0
H01=02
00 00 00 00 00 00 00 00 00 00 00 01 02 02 02

-5	 -6	 +0	 -3	 -6	 +0

-4	 -6	 +0	 -3	 -6	 +0

-3	 -6	 +0	 -2	 -6	 -i
T05=01
01 01 01 00 00.

-3	 -6	 +0	 -1	 -6	 -1
T05=06
05 06 05 00 00

	

-2	 -6	 -4	 -1	 -6	 -1
H05=01
00 01 01 01 01 01 00 00 00 00 00 00 00 00 00

T05=06
05 06 05 00 00

	

-1	 -6	 -4	 -1	 -5	 -1
H05=06
00 02 06 06 06 02 00 00 00 00 00 00 00 00 00

T05=06
05 06 05 00 00

	

-0	 -6	 -4	 -1	 +1	 +0
H05=10
00 02 07 10 07 02 00 00 00 00 00 00 00 00 00

T06=06
00 05 06 05 00

-0	 -4	 -4	 -1	 -3	 +0
H05=10 1106=02
00 02 07 10 07 02 02 02 02 00 00 00 00 00 00

T05=01	 T06=06
01 05 06 05 00
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+0	 +1	 +0	 -0	 -3	 +0
H06 : 09 HO9O3
000000010303030902 000000000000

TO5O1 T06=07
01 05 07 05 00

+0	 +0	 +0	 -0	 -1	 +0
H06=10 H0903
000000010303031002000000000000

T06=09
00 05 09 05 00

+0	 +1	 +0	 -0	 +6	 +1
H0609 H09=03
000000010303030902000000000000

T0303 T0t1.zlO
0000051005

+0	 +1	 +0	 -0	 +0	 +0
H0609 H0903
00 00 00 01 03 03 03 09 02 00 00 00 00 00 00

T0610
00 05 10 05 00

+1	 +1	 -2	 +0	 +6	 -1
H0606 H09=08
00 00 00 01 04. 08 08 06 02 00 00 00 00 00 00

T08=10 T0903
05 10 05 00 00

+1	 +1	 -2	 -0	 +6	 +1
H06 : 06 H09=08
00 00 00 01 04. 08 08 06 02 00 00 00 00 00 00

T03=03 T04.10
00 00 05 10 05

-0	 +1	 +0	 -1	 -1	 +0
H03=03 H0609
0000000000000209 03030301000000

T06=06
00 05 06 05 00

-0	 +2	 +0	 -0	 -6	 -1
H0303 H04.=02 H0610
00 00 00 00 00 00 02 10 03 03 03 02 02 02 00

T05=10
05 10 05 00 00
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-1	 +2	 +1	 -1	 +6	 +1
H0308 H01402 H0606
00 00 00 00 00 00 02 06 08 08 014 02 02 02 00

T0308 T01406
00 00 05 08 05

-1	 +1	 +1	 -1	 -1	 +0
H03 : 08 H0606
0000000000000206080801401000000

T06=06
00 05 06 05 00

-1	 +1	 +1	 -0	 -6	 -1
H03=08 H06=06
0000000000000206080801401000000

T0510
05 10 05 00 00

D.2 PRINTOUT FOR RUN B (NON-INTERACTIVE CONTROL)

Pressure Set-Point	 2.'4 Volts
Speed Set-Point	 3.8 Volts
Initial Heat	 = 10 (Steps)
Initial Throttle 	 3 (Steps)

	

-6	 -1	 +7	 -6	 -5	 +1
HO1=l0 HO2=O9
00000000000000000002 0709070810

TOl=02
00 00 00 02 02

	

-6	 +1	 +7	 -6	 -3	 +1
HO 1 10
00 00 00 00 00 00 00 00 00 00 00 01 014 08 10

TO1=03
0000000302

	

-6	 -'4	 +14	 -6	 -6	 +0
H02=02
00 00 00 00 00 00 00 00 00 02 02 02 02 02 00

	

-6	 -5	 +6	 -5	 -6	 +0
HO1=02
00 00 00 00 00 00 00 00 00 00 00 01 02 02 02

-6	 -6	 +0	 -'4	 -6	 +0

-5	 -6	 +0	 -14	 -6	 +0

-'4	 -6	 +0	 -14	 -6	 +0

-3	 -6	 +0	 -3	 -6	 +0
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-2	 -6	 -14	 -3	 -6	 +0
HO5O1
00 01 01 01 01 01 00 00 00 00 00 00 00 00 00

-1	 -6	 -'i	 -2	 -6	 +0
HO5O6
00 02 06 06 06 02 00 00 00 00 00 00 00 00 00

-0	 -6	 -14	 -1	 -6	 +0
H051O
00 02 07 10 07 02 00 00 00 00 00 00 00 00 00

+0	 +5	 -14	 -1	 -6	 +0

HO 8 08
000207080702 000000000000000000

+0	 +2	 -1	 -0	 -6	 +0
HO802 H0903 H1510
00020303 0408 100400000000000000

+1	 +2	 -ii.	 +0	 +6	 -1
H0802 H0908 H1SO6
000207080706060400000000000000

T0810 T09=03
05 10 05 00 00

-i-i	 +1	 -p4	 +0	 +0	 +0
HO605 H0908 H1506
000207080706060502 00 0000 00 00 00

T0610
00 05 10 05 00

+0	 -3	 +3	 +0	 -2	 +0
H07=07 H14=07
00 00 00 00 00 00 00 014 07 07 07 07 07 02 00

T0610
00 05 10 05 00

+0	 -5	 -i-4	 +0	 -o	 +0
HO708
00 00 00 00 00 00 00 00 00 02 07 08 07 02 00

T0609
00 05 09 05 00

-0	 +3	 +3	 +0	 -1	 +0
HO303 H04=07 H12=07
0000000000000001407070707070200

T0609
00 05 09 05 00

-0	 -1	 -1	 +0	 +1	 +0
H0303 H06=05 H13=09
0000000101408090502020303030200

T0609
00 05 09 05 00
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D.3 PRINTOUT FOR RUN C (INTERACTIVE CONTROL)

Pressure Set-Point	 2.14 Volts
Speet Set-Point	 3.8 Volts
Initial Heat	 10 (Steps)
Initial Throttle	 = 3 (Steps)

-6	 -1	 +7	 -6	 -1	 +0
HOl=lO H02=09
00 00 00 00 00 00 00 00 00 02 07 09 07 08 10

T12=lO T15=02
0006100500

-6	 +0	 +7	 -6	 -3	 +0
H01=lO
00000000000000000000000101408 10

T12=09 Tl3=Ol T15=02
01 05 09 05 00

-6	 -3	 +14	 -6	 -	 +0
H0l=03 H02=07
00000000000000000002 0707070303

Tl2=06 T13=0'4 T15=02
Q14 05 06 05 00

-6	 -i	 +14	 -6	 -6	 -1
H02=02
00 00 00 00 00 00 00 00 00 02 02 02 02 02 00

T13=10
05 10 05 00 00

-6	 -6	 +0	 -6	 -1	 +0
T12 =10
00 05 10 05 00

-5	 -6	 +0	 -6	 -5	 -1
T12=02 T13=08 T16=02 Tl7=02
05 08 05 02 02

-tI	 -6	 +0	 -6	 -14	 +1
T12=O tt T13=O LI T16=06 T17=02
ott 014 05 06 05

-3	 -6	 +0	 -5	 -6	 +1
T13=O1 T1 tl=01 Tl6=08 Tl707
01 05 07 08 05

-2	 -6	 -tI	 -I	 -6	 +0
HO 5:01
00 01 01 01 01 01 00 00 00 00 00 00 00 00 00

T16 : 1O T17=10
00 05 10 10 05
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-2	 -6	 -Li	 -3	 -6	 +0
H05=01
00 01 01 01 01 01 00 00 00 00 00 00 00 00 00

T16=07 T17=07
00 05 07 07 05

-1	 -6	 -i	 -3	 -6	 +0
H05=06
00 02 06 06 06 02 00 00 00 00 00 00 00 00 00

T16=07 T17=07
00 05 07 07 05

-1	 -	 -3	 -6	 +0
H05=06 H1302
00 02 06 06 06 02 02 02 00 00 00 00 00 00 00

T1607 T1707
00 05 07 07 05

-1	 -1	 -2	 -2	 -5	 +0
H03=05 H06=05 H1306
00 00 00 01 0i 06 06 05 02 02 05 05 05 02 00

T17=08 T1802
00 05 08 05 02

-0	 -1	 -1	 -2	 -2	 +1
H0303 H0605 H1309
00 00 00 01 0'4 08 09 05 02 02 03 03 03 02 00

T1808 T2001
00 01 05 08 05

-0	 +0	 +0	 -2	 -3	 +1
H0303 H0610
00 00 00 00 00 00 02 10 02 02 03 03 03 02 00

T1701 T1803 T2001
00 01 03 03 03

-1	 +1	 +i	 -2	 -6	 +0
H03=08 H0605 H12=06
00 00 00 00 00 00 02 05 06 06 07 08 07 02 00

T1710
00 05 10 05 00

-1	 +1	 +t1.	 -1	 -6	 +0
H03=08 H0605 FI1206
00 00 00 00 00 00 02 05 06 06 07 08 07 02 00

T17=08
00 05 08 05 00

-1	 +0	 1-ti.	 -1	 -6	 +0
H03=08 H0606
00 00 00 00 00 00 02 06 02 02 07 08 07 02 00

T1708
0005080500
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-O	 -2	 -1	 -1	 -6	 +0
HO5O2 H131O
00 02 02 02 O1 08 10 O 00 00 00 00 00 00 00

T1708
00 05 08 05 00

+0	 +5	 -'4	 -0	 -6	 +0
HO 8 08
00 02 07 08 07 02 00 00 00 00 00 00 00 00 00

T1703
00 03 03 03 00
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