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ABSTRACT 

A group G is a small cancellation group if, roughly, it has 

a presentation 

G= <A; R 

with the property that for any pair r, s of elemets of R either 

r=s1 or there is very little free cancellation in forming 

the product rs. The classical example of such a group is the 

fundamental group of a closed orientable 2-manifold of genus k 

which has a presentation 
k 

G=< al, bl, ..., ak, bk; 'TT \ai, bi' 
i=1 

A countable group G is SQ-universal if every countable group 

can be embedded =in some quotient of G. The obvious example of 

SQ-universal group is the free group of rank 
0. 

This work is a study of the SQ-universality of some small 

cancellation groups. A theory of diagrams is investigated in some 

detail- to be used as a tool in this study. The main achievement 

in this work is the following two results: 

(1) With few exceptions a small cancellation group contains non- 

abelian free subgroups. ( The emphasis here is on the nature of 

the free generators. ) 

(2) A characterization of the S Q-universality of some small 

cancellation groups. 
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CHAPTER T 

DEFINITIONS AND PRELIMINARY RESULTS 

The reader is presumed to have some background in group theory, 

general topology and graph theory to the extent, at least, of feeling 

at home with the basic concepts. Since the work of Lyndon (10) and 

Weinbaum (25) the study of small cancellation groups, `has-been based to a 

considerable extent on geometric techniques, specifically the study 

of planar maps; in section 1 we set forth some conventions in notation 

and terminology, and record some preliminary results on planar maps. 

In section 2 we give the basic definitions and results concerning 

R-diagrams and C(6)-groups. We conclude the chapter in section 3 

with some general and historical remarks. 

In what follows we rely, mainly, on the following papers. 

Lyndon (10), Miller and Schupp (12), Schupp (17,18,19,20). We are 

glad to acknowledge our debt to these works. 

Section 1- Maps 

Let IT denote the Euclidean plane. If Sc It , then So will 

denote the boundary of S, the topological closure of S will be 

denoted by S, and -S will denote II-S .A vertex is a 'point of 

TI. An edge is a bounded subset of 11 homomorphic to the open unit 

interval. A region is a bounded set hotneomorphic to the open unit 

disc. A map yfl is a finite collection of vertices, edges, and 

regions which are pairwise disjoint and satisfy: 
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(i) If E is an edge of 'm , there are vertices v1 and v2 

(not necessarily distinct) in in such that E=Eu {v1} u {v2} 

(ii) The boundary 6 of each region D of Iii is connected and 

there is a set of edges E1, ..., En in -rn such that 

D °El U ... uEn. 

If E is an edge with E=Eu {v1} u {v2} 
, the vertices vl 

and v2 are called the end points of E. A closed edge is an 

edge E together with its end points. Since we usually want to 

consider closed edges, the word "edge" will, ambiguously, often 

mean a closed edge. 

Let %n be a map. We shall usei2, 
f m, `. 

l. ti, to denote the 

set of vertices, edges and regions in °ifl respectively. When no 

confusion seems possible we may write '7 , 
'E, T. The support of )1 

is the set theoretic union of '/, t 
and '. Since 1'1 is finite, 

its support is bounded. We shall use 7n to denote the support of 

'm is called connected, simply connected if its support is. 

A bounded component of - X71 is called a hole, while the unbounded 

component of -'fi'n constitutes the exterior of 771 . We write 1T 

for the boundary of the support of 7fl. A vertex (or edge) is a 

boundary vertex (or edge) if it lies in 7T f. A region D is a 

boundary region if D' n' #P, where is the empty set. A 

vertex, edge or region of mi which is not a boundary vertex, edge 

or region is called interior. The 1-skeleton'j'j-' of III (the edges 

and vertices) does not determine M, since it does not determine which 

components of -'? 71' are regions of 777 . 

Since fl1 is planar, it is possible to orient the regions of IT) 

and the components of -7n so that in traversing the boundaries of 

regions of ? Y% and the components of - )fl, each edge of 771 is 
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traversed twice, once in each of its possible orientations. We shall 

consider iß'1 as being oriented anti-clockwise. With the orientation 

in mind, it is often convenient to consider each edge of T"1 as 

consisting of an unordered pair of oriented edges. To do this 

formally one replaces 
t by the disjoint union 't uI where 

are both in (1-1) correspondence with 
I. We write 

'n'1 =* u` u' UT if we wish to emphasise the orientation. If 

an edge E lies in running from end point v to end point 

v2 , then vl is the initial vertex of E, denoted by A(E) , and 

v2 is the terminal vertex of E, denoted by )((E) . If v is a 

vertex in lTl , d(v) will denote the number of oriented edges having 

v as an initial vertex, and will be called the degree of v. If 

E lies in ýf (or`C) 
, then we shall denote the corresponding edge 

in f" (or ') by E1. Hence for each E in 771, I (E) =p (E 1) 

and u(E) X(E 1) 
.A path is a sequence of oriented (closed) edges 

Ei, ..., En such that u(Ei) = X(Ei+l) . The end points are A(E1) 

and p(En) .A path whose end points coincide is called a closed path 

or cycle. A path is reduced if it does not contain a successive pair 

of edges of the form E, Ew1. A path E1, ..., En is simple if for 

#ý C1). If D is a region every pair i, j of distinct indices, \(Ej) 

of m with a given orientation, any cycle E1, ..., En of minimal 

length which includes all edges of D' , and in which the edges are 
Me 

oriented in accordance withy1 orientation of D, is called a boundary 

cycle of D, and denoted by S(D) . Note that distinct boundary 

cycles are just cyclic permutations of one another and that we use 

d(D) for any suitable boundary cycle of D. We write 

S (D) _ (E 
1, ..., En) , and call n=d (D) the degree of D. If 771 

is a connected simply connected map, a boundary cycle 50 i) of 71? 

is a cycle of minimal length which contains all the edges in 7fl *; 

and note that d()d) stands for any suitable boundary cycle of 177 
. 
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The symbol i(D) will denote the number of interior edges in S(D) 

(When necessary, a subscript naming the map will be added. ) We define 

O(D) - {E, E 1, X(E) IE occurs in S(D)} , 

and 

ß(1n) _ {E, E ', X(E) IE occurs in d(mT! )} . 

If E is an edge in ii? and D isa region in "lTl with E (or E 1) 

in d (D) 
, we write D=p (E) (or a (E)) 

. As a consequence of 

this notation, if E is an interior edge, then p(E) and a(E) are 

defined and p(E) = a(E1) , Q(E) = p(E 
1) 

. (Possibly 

p(E) = p(E 
1) 

.) 

A submap 77 of m is called an extremal disc if 71 is 

bounded by a simple closed path E1, ..., Ek in ß(77l) , where edges 

E1, ..., Ek occur consecutively on some boundary cycle of 772 and 

no proper subpath of E1, ... ' Ek is closed. Since a bounded 

closed set with connected boundary is connected, any extremal disc is 

connected. 

(1.1) Lemma- (12) Let Tfl be a connected, simply connected map 

without vertices of degree 1. If S(n) is not simple closed, then 

711 has at least two extremal discs. 

Let D be a boundary region of" . We say that D is a 

boundary connected region (a bc-region) if either 

(a) ß(D) n OCTfl) is a single vertex, or 

(b) ö(D) _ (El, ..., Ek, Ek+l, ..., En) where Ei e ß(in) , 

l si sl: and E. 1 ß(71j), k+1 5j 5n. 

If (a) occurs we say that D is a weakly boundary connected region 
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(a wbc-region) and if (b) occurs, we say D is a strongly boundary 

connected region (a sbc-region). We say that the boundary region D 

is boundary disconnected (a bdc-region) if it is not boundary 

connected. We say that D is a semi-interior region if 

O (D) n S(1n) (1 &Ms ii. Thus wbc -regions and interior regions are 

semi-interior and sbc-regions are not semi-interior. 

(1.2) Lemma (12) (Consecutive Boundary Lemma) 

Let 711 be a connected, simply connected map with more than one 

region. Assume that if D is any region of 771, then S(D) is a 

simple closed path. Further, assume that lii has no vertices of 

degree 1. Then 11 has at least two distinct sbc-regions. 

Let 7fl _ '1! Ut U1 be a map consisting of unoriented 

edges). Let 'i%# = card 'o', t 4* 
= card and 

T* = card . 

Plain summation signs Z will refer to sums indexed by all vertices 

or all regions of ? 11 . Thus E d(v) is the sum'of the degrees of 

all vertices of "1'n and E d(D) is the sum of the degrees of all 

regions of "11') 
. The notation E' denotes summation restricted to 

boundary vertices or regions and E° summation over interior vertices 

or regions. 

Let p and q be positive real numbers such that 
P+q=2 

the only positive integral solution are (3,6), (4,4), and (6,3). 

If ')y is a non-empty map such that each interior vertex in 7"`i has 

degree at least p and each interior region in 'il has degree at 

least q, -M will be called a (p, q) map 

Let Q be the number of components of MI and h the number of 

holes of M. 
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(1.3) Lemma (10) Let "jl = 1i u '9 uT be an arbitrary map, 

and let p and q be positive real numbers such that 
1+1_1 
pq2 

Then 

(1) p(Q-h) = Ia[p-d(v)] + 10 Cp-d(v)] +qI Cq - d(D)] 

-q( e)", 
, 
116 

where (' )' = card {E E is an unoriented boundary edge in Th }. 

(2) p(Q-h) - I* 
[pq- 

+2- d(v)] + 1° [p - d(v)7 

[q - d(D)] +P 

where (V") '= card {v Iv is a boundary vertex in T'1 1. 

(1.4) Theorem (10) Let 'Tl be a connected, simply connected 

(q, p) map with (q, p) one of the pairs (3,6), (4j 4), (6'3). Assume 

that 7fl has more than one region. Then 

G' . 

rrP 
+ 2J -. i(D)] zp. 

Q 

(1.5) Lemma (18) Let 'il be a connected, simply connected 

(q, p) map with (q, p) one of (316), (4j4) or (6, y3). Assume that 

if D is a semi-interior region then d(D) 2 p. 

Then S(D) is a simple closed path. 

Schupp in (18) derived an inequality as in Theorem (1.4), where 

the summation is restricted to the sbc-regions as follows. 

(1.6) Theorem Let ! "11 be a connected, simply connected (q, p) 
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map. Suppose that 'm has more than one region, and no vertices of 

degree one. Suppose further that if D is a region of-fn , thetº 

d(D) zp, for D semi-interior. Then 

ý+2-i(D)] ZP. Lq 

where the summation runs through all sbc-regions of 7n . 

Section 2- R-diagrams and C(6) groups 

Let F be a free group on a set A of generators. A letter is 

an element of the set X consisting of generators and inverses of 

generators. A word w is finite string of letters, w= xl ... X M. 
We shall not always distinguish between w and the element of F it 

represents. We denote the identity of F by 1. Each element of 

F other than the identity has a unique representation as a reduced 

word w= xl ... xn in which no successive letters xi xi+l form an 

inverse pair a ail or a-1 aý . The integer n is the length of 

w, which we denote by jwj 
.A reduced word w is called cyclically 

reduced if xn is not the inverse of xl . If there is no 

cancellation in forming the product z= yi ... yn , we write 

z=y1 ... yn. 

A diagram over F is an oriented map IM and a function ¢ 

assigning to each (oriented) edge E of m, an element ý(E) of F, 

called the label on E, such that for any (oriented) edge, 

ý(E)-1 . If E1, ..., Ek is a path in 71l , we define 

ß (E 
1, ... , Ek) =4 (E 

1) ... ¢ (Ek) . 
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(2.1) Lyndon-Van Kampen Theorem (10) 

Let F be a free group and u ri ut 
1, 

..., unrnuni a sequence of 

words with each ri cyclically reduced. Then there exists a 

connected, simply connected diagram 'm over F such that 

(i) for each edge E of 711 ,O 
(E) t1, 

(ii) for each interior vertex v inM , d(v) Z3, 

(iii) there is a boundary vertex 0 in 7l such that if 

S(7p) starts at 0 then ý(d('rp)) is a freely 
1 

reduced word and equal in F to 
C u1 ri U! 

IZJL 

(iv) For each region D of Tp , (S C D)) is a cyclic 

permutation of some rs. 

(. v) If D and D' are any two distinct regions inm 
, 

with ý (S (D)) = ri and c (d (D')) = rj then iýj 

Note the variation from Lyndon-Schupp which is due to the fact 

that their orientation of is according to the orientation of 

regions rather than d()')? ) . We illustrate the construction of 

Theorem (2.1) for the sequence c a2 bc1, cb1c1ac1, 

Cc 



c-' 

ar 

ü. _ 

c1 

Iv ä 

Note that the region corresponding to (b 1 
c^1 a) has no edges on 

the boundary of the final diagram. 

L 
Let K. m = (E. )ý 

, where the sum is over all the oriented 
j =l 

edges of n. 
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(2.2) Lemma (17) (Normal Subgroup Lemma) 

Let -M be a connected, simply connected diagram over F with 

regions D1, ..., Dm. Let a(m) be a boundary cycle of 'l1 

beginning at a vertex v0 Eß (7p) 
, and let w- (ý (ö (Tn)))-1 . Then 

there exist elements ul, ..., um of F such that 

w= uirlui1 ... umrmuml , where rý and Ju3 I5 mKy ß 

1, ..., me 

Note that 4(5(Di )) need not be reduced. 

A subset R of F is called symmetrized if all elements of R 

are cyclically reduced and, for each r in R, all cyclically 

reduced conjugates of both r and r1 also belong to R. An 

R-diagram is a diagram Tfn over F such that if D is a region in 

Hint for the proof: If 11'1 has no region then '7)1 is a, tree and 

there is nothing to prove. In general "unstitch" m. For example: 
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-M then 4(6(D)) ER. As a consequence of Theorem (2.1) and Lemma 

(2.2), we have the following fact. Let N be the normal closure of 

R in F. For any element w in F, wcN if and only if there 

is a connected, simply connected R-diagram 'Jfl such that the label on 

the boundary of 'Tfl is w. Connected simply connected diagrams are 

therefore an adequate tool for studying membership in normal 

subgroups. Now, if w is in N, then w can be written as a 

product w= cl .. * cn , for some nk0, of conjugates ci of 

elements r for r in R. A sequence cl, ..., cn of 

conjugates of elements of R will be called a minimal R-sequence if 

the product w= cl ... cn cannot be written as a product of fewer 

than n conjugates of elements of R. Let ')'p be an arbitrary 

diagram over F. 71') is reduced unless there exist D, D', regions 

in `jl such that 5(D) _ (E, E1, ..., En) , d(D') = (E 

1rt 
and ß(E1, ... ' En) Em) 

xTµ' 
As a consequence of Normal Subgroup Lemma we have the following: 

(2.3) Lemma (10,17) If 711 is a diagram of a minimal 

R-sequence, then ICI is reduced. 

Suppose that r1 and r2 are distinct elements of R with 

rl xzl and r2 = xz2 . Then x is called a piece relative to R. 

Since x is cancelled in the product ri1r2 9 and R is a 
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symmetrized, a piece is simply a subword of an element of R which 

ca be cancelled by multiplication of two non-inverse elements of R. 
that 

Notetany subword of a piece relative to R is a piece relative to 

R; in particular, any generator that occurs in a piece relative to 

R is a piece relative to R. 

(2.4) Lemma (10) Let 7fl be a reduced R-diagram. If E is 

an interior edge of 7j'j 
, then ý(E) is a piece relative to R R. 

Proof: Let D1 and D2 be any two regions in 71, such that 

ß(D1) n ß(D2) has an edge. 
D2 D1 ýý 

Suppose first that D1 D2 xti x 

Let ý(S(D )) = xy and (6 (D )) zx 
1. 

ý) 

2 

Since ')7) is reduced, yz 1; and so 

x is a piece. 

Now suppose D1 = D2 =D. 

0 (6 (D)) = xzx 
ly 

r 

Let r' = xz 
lx ly 1. 

Since 

-1 -1 -1 -1 zxy1 zx y, x is a piece. 

Let ) fl be a reduced R-diagram. Then the condition that 

d(D) zp, for any interior region D will follow from the following 

condition on R. 

Condition C(p) No element of R is a product of fewer than p 

pieces relative to R. 

Note that an element of R need not be a product of pieces 

relative to R. 
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Let v be an interior vertex such that d(v) = q-1 ,qZ4. 

Let E1, ..., E 
q-1 

be the edges in 771 in anticlockwise order such 

that X(Ej) = v, 15j5q-1; and let D. = p(Ej) . Then 

0(6(D)) = rý eR. Assume that there is a cancellation in each of 

the products r rz,, ... ' rrrr. To exclude such vertices 1 q-2 q-1' q-1 1 

we have the following condition on R. 

Condition T(q) Let 3s£Sq-1. Suppose r1, ..., r,, are 

elements of R with no successive elements riri+l an inverse pair. 

Then at least one of the pairs r1rz, ..., rL_lr,, rLrl is reduced 

without cancellation. 

(2.5) Lemma (10) Let R be a symmetrized set of elements of a 

free group F, and let 'M be a reduced R-diagram. 

(1) If R satisfies T(q) , then for each interior vertex 

v in ^M , d(v) q. 

(2) If R satisfies C(p) , then for each semi-interior 

region D of 171, d(D) zp. 

A symmetrized set R which satisfies the hypotheses C(p) and 

T(q) for (q, p) one of (3g, 6), (454), or (3y6) is called a small 

cancellation set (a (q, p)-set). 

The factor group of F by the normal closure of such a set is 

called a 
. 
small cancellation group (a (q, p)-group). Since condition 

T(3) is vacuous, a (3,6) group is actually a group that satisfies 

C(6) , and hence we call such a group a C(6)-group. 
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(2.6) Lyndon's Theorem (10) Let F be a free group, Ra 

symmetrized subset of F, N the normal closure of R in F, and w 

a non-trivial freely reduced word in N. If R is a C(6)-set, then 

w contains some r in R with three pieces relative to R missing, 

i. e. w and r have reduced forms w- bac and r- ax1x2x3 where 

xl, x2 and x3 are pieces relative to R. 

Section 3- General and Historical Comments 

A condition closely related to C(p) is the condition C'(4) , 

where C is a real positive number. 

Condition C' (r) If an element r of R has reduced form 

r= xz , where x is a piece relative to R, then jxj < rirj " 

Note that C'(C) implies C(p) for r. 5 
pll . The classical 

example is the fundamental group of closed, orientable 2-manifold of 

genus g which has a presentation 

g; 

9 
[ai, b1 >. Let R be the set of all G= <al, bl, ..., ag, b 

g 

cyclic permutation of r and r1, where r is iIIl 
Eai'b1 

Clearly, pieces relative to R are single letters and R satisfies 

C' (1/4g-1) and C(4g) . 

The cancellation conditions can be extended naturally to the case 

where F is a free product or a free product with amalgamation by 

using the appropriate normal forms and associated length functions. 

The definitions are then essentially the same as for Fa free group. 

The following Lemma due to Lipschutz (9): 
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(3.1) Lemma Let F be a free group on a set A. Let R be a 

symmetrized subset of F. Let G- F/<F <R> , where <F <R> is the 

normal closure of R in F. Let reRR. If rxiz and 

zI xz' , where £z2, x, z, z' EF, then either xý-1 (and hence x) 

is a piece relative to R or x and z are powers (in F) of a 

common subword. 

A countable group G is called SQ-universal if every countable 

group can be embedded in a quotient group of G. The obvious example 

of an SQ-universal group is the free group of rank Xo . The property 

of being SQ-universal may, in a very rough sense, be considered as an 

indication of "largeness" or "freeness". 

(3.2) Theorem (19) If G=H*K is any non-trivial free 

product except C2 * C2 , where C2 is the cyclic group of order twos 

then G is SQ-universal. 

P. Neumann(l3) has shown that a subgroup H of a group G, with 

EG <, is SQ-universal if and only if G is SQ-universal; and 

also he has proved that a finitely generated Fuchsian group which does 

not have an abelian subgroup of finite index is SQ-universal. 

Let U be a subgroup of the group K. Let {x1, x2} be a pair 

of distinct elements of K, neither of which is in U. We say that 

{x1, x2} is a blocking pair for U in K if the following condition 

is satisfied: 

(1) If ueU, u ,&1, then xi u xý / U, 15i, jS2, 

c =±1, n °±1. 

Note that (1) implies that xi xn jUj52 
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=1. n= ±1 , unless xi 0 
3 

(3.3) Theorem (19) Let G= <K *L; U = V> be a free product 

amalgamating the proper subgroups U and V of K and L. If 

there is a blocking pair for U in K, then G is SQ-universal. 

In (8), G. Higman used the group 

H= <a, b, c, d; ab = a2 , be = b2 0 cd = c2 9 da = d2> 

to establish the existence of finitely generated infinite simple groups. 

He showed that H is infinite but has no non-trivial finite quotients. 

(3.4) Corollary, (20) The Higman group H is SQ-universal. 

(3.5) Theorem (15) If G= <A ; r> is a group with a 

presentation having one defining relator and A has at least three 

generators, then G is SQ-universal. 

For completeness, we include a brief historical sketch of small 

cancellation theory. What follows in this section is due to 

Schupp (19). 

In 1911, M. Dehn (3) posed the word and conjugacy problems for 

groups in general and provided algorithms which solves these problems 

for the fundamental groups of closed orientable two-dimensional 

manifolds. A crucial feature of these groups is that (with trivial 

exceptions) they are defined by a single relator r with the property 

that if s is any cyclic conjugate of r or r-1, s r-1 , there 

is very little cancellation in forming the product rs. Dehn's 
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algorithms have been extended to large classes of groups possessing 

presentations in which the defining relations have a similar "small 

cancellation" property. At first, investigations were concerned with 

the solution of the word problem for groups G presented as "small 

cancellation" quotient of a free group F. The theory was 

subsequently extended to the case where F is a free product of a free 

product with amalgamation. Moreover, strong results were obtained 

about algebraic properties; for example, one can classify torsion 

elements and commuting elements in "small cancellation" quotients. 

Dehn's methods (3,4) were geometric. He used the fact that with 

the fundamental group G of an orientable closed 2-manifold there is 

an associated regular tessellation of the hyperbolic plane which is 

composed of transforms of a fundamental region for C. Using the 

hyperbolic metric, Dehn inferred that a non-trivial word w equal to 

1 in G contained more than half of an element of R. 

Reidemeister (14) pointed out that Dehn's conclusion followed from the 

combinatorial properties of the tessellation, without metric 

considerations. 

In 1949, V. A. Tartakovskii (21,22,23) initiated the algebraic 

study of small cancellation theory. Tartakovskii solved the word 

problem for finitely presented quotients of free products of cyclic 

groups by symmetrized R satisfying C(7) . J. Britton (1), in 

1957, independently investigated quotient groups of arbitrary free 

products by R satisfying C'(1/6) . The triangle condition, 

Condition T(4) , was introduced in 1956 by Schick (16), who solved the 

word problem for R satisfying C'(1/4) and T(4). 

Greenlinger (5,6), in 1960, solved the conjugacy problem for C'(1/8), 

gave a new proof of the solvability of the word problem for C'(1/6) , 

and obtained several other important results. Greenlinger (7) 
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subsequently also investigated the C'(1/4) and T(4) hypothesis. 

Very few group presentations have Cayley diagrams which are 

embeddable in the plane. However, it turns out that for any group 

G= <A; R> , if w is in N, (the normal closure of R in the 

free group F on A), there exists a finite planar diagram ')fl 
, 

each edge of which is labelled by an element of F, and such that 

each region (face) D of '7)1 has a label on its boundary an element 

of R, while the label on the boundary of the entire diagram is the 

reduced word w. 

The existence of such a diagram )' fl was observed by Van Kampen (24) 

in 1933. Van Kampen's paper seems to have been totally ignored until 

Weinbaum (25), 1966, used the ideas to prove some of the results of 

Green*Jinger. The above ideas were rediscovered independently 

by R. C. Lyndon (10) in his 1966 paper "On Dehn's Algorithm", which 

provided a unification, simplification, and generalization of many 

previous results. 

Lyndon observed that the condition C(p) asserts that every 

interior region of the diagram III borders on at least p other 

regions. Condition T(q) expresses the dual condition that each 

interior vertex of III (excluding vertices of degree two) has at 

least q incident edges. Lyndon solved the word problem for finite 

R satisfying one of the hypotheses C(p) and T(q) where (q, p) is 

one of the pairs (3,6), (4,4), or (6,3). (Condition T(3) is 

vacuous. ) These hypotheses correspond naturally to the three regular 

tessellations of Euclidean plane. For example, the hypotheses C(4) 

and T(4) correspond to the regular tessellation of the plane by 

squares. In the regular tessellation, all vertices and all regions 

have degree four. In the diagrams considered under the hypotheses 
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C(4) and T(4) , all interior regions and interior vertices have 

degree greater than or equal to four. 



CHAPTER I 

TEM SUBGROUPS o? c(6)-cxouPs 

D. J. Collins (2) has shown that, with a few exceptions, a small 

cancellation group whose presentation eatisfies conditions C(4M and 

T(4) contains a free subgroup of rank two. 

In this chapter we prove the analogous result for the class of 

finitely related C(6)-groups and determine free generators for the 

free subgroups. 

We shall usually work with a finitely related C(6)-group 

G= <A; R> where R is a symmetrized subset of the free group on A. 

For each reR, the relator cycle of r is the set of all 

permutations of r and r-1 . Since R will usually be fixed in 

advance, we often refer simply to a piece rather than a piece relative 

to R. We say the generator aeA occurs in R if a occurs in 

some relator of R. 

In section 1, we shall consider the situation in which there is 

a generator aeA that is not a piece. In section 2, we develop 

some further results on (3,6)-maps which we shall employ in section 3, 

when we turn to the case that all generators in A are pieces. In 

section 3, we shall see that for w=1 in G, an "associated 

R-diagram for w" possesses a certain "nice" configuration, which we 

call a T-path. In section 4, we shall use this configuration to 

consider the situation in which every generator in A is a piece. 

Our method of proof will be by contradiction. 
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Section 1 

Let G= <A; R> . In this section we consider the situation 

in which there is a generator acA which is not a piece. This 

situation is in many ways untypical and we choose to dispose of it 

first. 

Lyndon's Theorem (1.2.6) immediately gives rise to the following: 

(1.1) Lemma If w=1 in G, then there exists rcR such 

that r= yz , where y is a subword of w and z is a product of 

at most three pieces (possibly z_ 1 ). Moreover, if y is a 

product of pieces, then it cannot be written as a product of less than 

three pieces. 

At the outset, we note some C(6)- groups that do not contain a 

free subgroup of rank two. These are: 

(1) G1 = <a; "> , 

(2) G2 <a ; am, a m> 
,mA0, 

(3) G3 <a, b ; a2, ä 2, b2, b-2> . 

In each case, the C(6) condition is satisfied because no 

generator is a piece and hence no relator can be a product of pieces. 

We shall prove that these are essentially the only C(6)-groups that 

do not contain a free subgroup of rank two. 

(1.2) Lemma Let G= <A ; R> and let a be a generator which 

is not a piece. Then either a does not occur in any relator in F. 

or there is a unique relator cycle)in which a appears which is 

defined by a relator (az)m 
,mý1 with z a-free. 
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Proof: If am cR, there is nothing to prove. Now, assume that 

no relator in R has the form a±m . If an ,nZ2, 
is a subword 

of some relator in R, then by Lemma (1.3.1), a is-a piece. This 

is a contradiction. Since a is not a piece, no relator cycle r 

in R is defined by azIa 
1z2 

. 

If a is not a piece and occurs in the relator cycle defined by 

az where z is a-free, we may remove the generator a and the 

relator cycle of az , preserving both the abstract group defined, and 

the C(6) property by this process. Henceforth, we assume that if 

a is not a piece then either a does not occur in any relator in R 

or else a occurs only in (az) m, 
mz2, with z a-free, (possibly 

z- 1). 

(1.3) Proposition Let G= <A; R>, with card AZ2, be a 

C(6)-group. Let a be a generator which does not occur in R and 

b#a be another generator. 

(i) If b does not occur in R, then a and b are 

free generators. 

If b occurs in R, then a and ba b^1 are free 

generators. 

Proof: (i) We may either note that the free group on a and b is 

clearly a homomorphic image of G or appeal to Lemma (1.1). 

(ii) Let w be freely reduced as a word in a and b ab- 
1. 

Cancelling some occurrences of b gives rise to a freely reduced word 

w* in a and b. If w=1 in G, then there exists r in R 

such that r= yz , where y is a subword of w* and z is a 
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product of at most three pieces, by Lemma (1.1). Clearly, yt a±m , 

for any m. Hence y must be either b or b1. By Lemma (1.1), 

b cannot be a piece. Hence there is a relator cycle (bz')m, mZ2, 

where z' is b-free. Therefore either b or b-1 appears in z; 

it follows that b is a piece which is absurd. 

(1.4) Proposition Let G= <A ; R> with Card AZ2, and let a 

be a generator that occurs in R but is not a piece. Let býa be 

another generator. Suppose that G# <a, b ; aZ, a 2, b2, b 2> 
. 

(i) If a2 ER and Card A=2, then aba ib and b"labab1 are 

free generators. 

(ii) If a2 cR and A has three distinct members a, b, c, then 

abac and baca Iare free generators. 

(iii) If am eR with mz3, then bab la 
and a 

ibaba2 
are free 

generators. 

(iv) If no relator in R is of the form a±m, and b is not a 

s 
piece, then (aba lb)2 

a and b(a ibab)2 
alb are free generators. 

(v) If no relator in R is of the form a±m and b is a piece, 

then (aba ib)2 
a and b(ä 1bab)2 

a 
lbq 

are free generators, where q 

is the largest integer such that bq is a subword of some relator r' in 

R, rIb 

Proof: (i) Suppose that some relation in aba 
1b and b-1abab2 is 

ýhd 
valid in G. When cancelled to reduced form as a word in alb this 

relation gives a cyclically reduced word w with the property that it 

contains at1 and b±2 but no higher powers. We have a2 cR and 

a is not a piece. So a appears in no other relator cycle. Thus 
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every other element of R is of the form bm ,m#0. Since C(6) 

condition is satisfied there is at most one such relator cycle b-m , 

mZ3, and b is not a piece, i. e. G= <a, b ;a2, a 
2, bm, b m> 

Either the normal form for free products or Lemma (1.1) gives a 

contradiction. 

"1I 
(ii) Let w be freely reduced as a word in aba, c and 

baea. " 

Then w can be reduced to a freely reduced word w* in a, b and c. 

If w=1 in G then w* =1 in G and hence there exists r in 

R such that r- yz , where y is a subword of w* and z is a 

product of at most three pieces, by Lemma (1.1). By our choice of 

generators, it follows that y= a±l, b±l, c±l, (cb)tl, 

Since a2 eR and a is not a piece, yý ail " 

If yEb, then by Lemma (1.1), b cannot be a piece. Hence 

there exists a relator cycle (bCz')m, where mZ2, z' is 

b -free, and e= ±1 . It follows that b is a piece, contradiction. 

. 
Similarly, yI c±1 If y= (cb) I, 

then again b and 

c are pieces; and this is a contradiction since (cb)'1 is then a 

product of two pieces and y is a product of at least three pieces. 

Hence yI (eb) I. Therefore w#1 in 

G. 

(iii) The argument is similar to that for (i) and (ii). Here 

the possibilities for y are b±1 , a±l and at2 . 

(iv) Let w be freely reduced as a word in (aba 1b)2 
a and 

b(ä ibab)2 
a 

ib 
. Then w can be reduced to a freely reduced word w* 

in a and b. If w=1 in G (and hence w* =1 in G), then 

there exists r in R such that r= yz , where y is a subword of 

w* and z is a product of at most three pieces. Here the 

possibilities for y are a and b Since a and b are not 
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pieces, yt a±l and yt b±l . Therefore w# 1 in G 

(v) This again is similar. The possibilities for y are aal 

and b±k ,1sksq+1 The situation when y= b±k is ruled 

out by using Lemma (1.3.1). 

Section 2 

Here we develop some further results on (3,6) maps which we 

shall employ in section 3, when we turn to the case that all 

generators in A are pieces. 

Throughout this section, let MI be a connected, simply connected 

map with the set `r of regions, the set 'S of (unoriented) edges 

and the set '0" of vertices satisfying the following conditions: 

(Ml) : For each v elf , d(v) z3. 

(M2): If DET is a semi-interior region, then 

i(D) ; -> 6. 

(M3) : For each D in 'ý(1 ,i (D) z 2. 

4k 
(rs4) : I' >1 

Then we have the following: 

(2.1) Proposition (i) "M is a (3,6)-map " 

(ii) For each region D in "m 
, 5(D) is 

a simple closed path. 

(iii) E' [4 - i(D)] 26, where D runs 

through the boundary regions in -M 
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Proof: (i) This follows directly from conditions (Ml) and (M2). 

(ii) and (iii) follow from Lemma (1.1.5) and Theorem (1.1.4) 

respectively. 

We shall call an interior edge E, where either X(E) or p(E) 

is a boundary vertex v0 and the other is interior, a by-edge at 

V0 . 

and Dý 

Let Dt be any two distinct regions in ' and suppose v is 

a boundary vertex such that ve ß(D1) n ß(D2) . Then D1 and D2 

are said to be adjacent if ß(D1) n ß(D2) contains exactly one 

by-edge at v. Let D1, ..., Dm, mz2, be a sequence of 

bc-regions in^M . We say D1, D2, ..., Dm is an adjacent sequence 

if for each 1Sjsm-1, Di and Dj+l are adjacent. 

(2.2) Lemma There exists an adjacent sequence D1, ..., Dn , 

n 
n>1, in '`cv. such that 1 [4 -1(D)]z4. Moreover, there 

j=1 3 

exist r and t, where 05r<tsn, such that Dr+l, . "", Dt 

is an adjacent sequence with the following properties: 

t 
Ci) 1 C4 - i(D. )] z4, 

. 
j=r+1 3 

and 

(ii) for each r+1sk<t, 

k 
0<1 C4 - i(D. )] <4. 

J=r+1 3 

Proof: For each region D in'm 
, S(D) is a simple path by 

Proposition (2.1). Then there exist at least two sbc-regions by 

Lemma (1.1.2)'. We assume first that d(ill) is a simple closed path. 
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If every region in 'ITt is a bc-region in M, then we have 

Z' [4 - i(D)] Z6, where D runs through the boundary regions in "m 

by Theorem (1.1.4); and hence there exists an adjacent sequence 

n 
D1, ..., Dn with 1 [4 - i(D. )] Z6, because the set of all 

j=1 

boundary regions can then be formed into an adjacent sequence as 

follows: 

Pick E1in S(MI) and put D1 = ß(E1) . Now let 

d(u(E1)) = M. Since every boundary region is a bc-region whose 

boundary cycle is simple closed, there exist (mr-1) boundary regions 

with p(E1) as a vertex and they can be formed into the adjacent 

sequence D1, D2, ..., DM-1 . See, for example: 

The operation can be repeated in the successive edges 

E1, ..., Era- 1 that occur in 6 ('M) . By condition (M3), n>1. 

Now, suppose that there exists a bdc-region DI in 7n. 

£j2 . "< 
E 1 
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choose two vertices vZ , v2 e (D') n 0(M) with the property that if 
(EL 

,..., Ek) is the subpath of (Th) fron vi to v2"(i. e. SCE) V 1 
and tc, (E) - v2)' then 

and 

(ii) )(E) CD') fi< 
Ii 

k. 

Now! consider the path (EI,, 
. ".. rE in ý ýi(Dt) from v to 

Let Let 'Y . (E 
L 9,909 Ek'E'ý. ,..., E'k, ) 

. Meujis a simple closed 

path . Let 6 be the submap of 7n consisting cf Y all vertices * edges 
and regions interior to '' 

. We call 9a" aorrespondin componeat tc 

for the bdc-region D' 

Among all bdc-regions 

in ii1 there exists one D' , say, such that one of the corresponding 

submap C has a minimal number of regions. Put -4 = L° U Dt 

Then every boundary region D in J_ is a bc-region in '1. , by the 

minimality. By Theorem (1.1.6), E' [4 - ij (D)I Z6, where D runs 

through the regions of We claim that VD') z2. By our 

construction of iL(D') ý0. Suppose that i, (D') = 1. Let 

E be the unique interior edge in -4 such that E is in 6(D') 

Then X(E) and u(E) are boundary vertices in Since E is an 

interior edge and 6(D') is simple closed path, there exists a region 

D" , say, in I such that E1 is in 6(D") . We claim that D" is 

a bdc-region of . Suppose not; then there must exist a boundary 

edge E' of L such that 6(D") = (E', E 1) 
and so i; 

f 
(D") =1. 

But if D is a region of df. with Dý D' then iL(D) =i (D) z2 

which is contradictory. This gives i4(D') >_ 2. It follows that 

[4 - i, (D)7 [4 - irn(D)] ý4 

where D runs through all boundary regions of such that D/ D' 

Call the boundary regions D in -, 
, with D y` D', Dl, """3, Dn 

. 
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Then we have an adjacent sequence D1, ..., Dn by the same method as, 

we used when every boundary region in '1t is a bc-region in Ill 
. So 

n 
I [4 - i(D. )] Z4; and (M3) ensures that n>1. 

j=1 
R 

If for each 1: 5 1sn, [4 - i(D. )J >0, let r=0, and 
j=1 

t s+l , where s is the largest integer 15s<n such that 

S 
1 [4 - i(D. )] <4. Note that such s exists since [4 - i(Dj)] s 2, 

j=1 

by condition (M3). Suppose that there exists 1S !C<n such that 
L 

[4 - i(D. )] s0. Let r be the largest integer s5s<n 
j=1 

s 
such that 1 [4 - i(D. )] 50. Then for each r<ksn 

j. 1 
k 

[4 - i(D. )] >0. Let t= s+1 , where s is the largest 
j=, ++ 1 

S 

integer r+l !5s<n such that 1 [4 - i(Dý)] <4, (such S 

, sr+l 

exists since [4 - i(Dr+l)] S 2). Note that Dr+l, .. ", Dt is still 

an adjacent sequence. 

Now, if d('m) is not a simple closed path, then IU has at 

least two extremal discs and none of them can be a single region, by 

conditions (Ml), (M3) and Lemma (I. 1.1). Hence, we can apply the 

same argument as before to one of these discs and get the desired 

result. 

(2.3) Corollary Let Dr+l, ..., Dt be the adjacent sequence in 

Lemma (2.2). Then 

(1) Dr+l and Dt are sbc-regions such that i(Dk) =2 or 3, where 

y=r+l or t. 
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(ii) E [4 - i(Di )]'Z 4, where Di runs through the sbc-regions in 

the sequence Dr+l' ". ' Dt' 

Proof. (i) By our choice of r and t. 

a 
(ii) If Dj isjwbc-region, r+l <j<t, then [4 - i(Dj)1 5 -2 , 

by condition (M2). It follows that the only regions in the adjacent 

sequence Dr+l, ..., Dt which contribute positively - are the 

sbc-regions 

(2.4) Remark In the adjacent sequence Dr+l, ..., Dt of Lemma 

(2.2), let DR , r+1 <f<t, be a wbc-region at v. Then there 

exist exactly [d(v) - 3] weakly boundary connected regions at v, 

since S(D) is simple closed for each region D in 1(t . 

Let Dr+l a Di " By induction, for each j 2t 2, let k(j) be 

the least integer, k(j-1) < k(j) 5 t-r , such that D is an 
r+k (] ) 

sbc-region and put D3 = Dr+k(J) . Let L be the number of all 

sbc-regions Dj , r+l 5j5t. Then L>1, by condition (M3), 

Lt 
and 1 [4 - i(D*)] Z1 [4 - i(D. )] Z4. And as a consequence 

j=1 j =r+l 

of Corollary (2.3), i (Dk) =2 or 3, for k=1 or L. 

For each 15j5L, let S(D*) = (X. , X. , """, X. ) 
2 J, n(J) 1 J, 1 J, 

SJ. l. o. g. we assume that X. 
3,1 

is the unique boundary edge and denote 

it by Yj. 

(2.5) Definition (1) Let 15jS L-1 . Let 

m(j) [d(u(Yj) - 3] . We call [4 - i(p(Y. )) -2 m(j)] the weight 

of Yj and denote it by h(Y. ) (Clearly mj 0 or 1. ) 

(2) Let h (YL) =4-i (P (YL)) 
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Now, Lemma. (2.2). can be reformulated as follows: 

(2.6) Lemma There exists a simple path Y1, ..., YL ,LZ2 

in ß("C(1) such that 

(i) p (Yi ) is a region in '(L , 

(ii) h(Y1) =1 or 2, 

L 
(3ji) h(Y. ) z4, and 

j =1 
k 

(iv) for each 15k<L, 0< h(Y. ) <4 
j =1 

Proof: Let Di, ..., DL be the sequence of sbc-regions in the 

adjacent sequence Dr+l, ..., Dt and let YJ be the unique boundary 

edge of D. Let DJ = Dk , Dk+l' .... Dk+ = D* be the 
P J+1 

adjacent sequence of regions with common vertex u(YJ). Then 

k+ 1 
h(Y. ) Z [4 - i(D0)J 

. 
BY Definition (2.5), 

ß=k 

h (YL) 

The condition (M3) directly gives rise to the following 

proposition. 

(2.7) Proposition 

Section 3 

For each 1 <_ jSL, h (Yi) S 2. 

the 

Let F(A) be 1' free group on a set A. Let R be a symmetrized 

subset of F(A) . Let G= F(/)/<F(A) <R> , where <F(A) <R> is the 

normal closure of R in F(A) . Let w be a freely reduced word in 

F(A) such that wt1. Assume that w is a product of pieces 
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relative to R. We define 8R(w) to be the least number of pieces 

P1' ... ' P6R(w) relative to R such that w- P1 ... P0R(w) . Let 

rcR. Assume that r is a product of pieces relative to R. 

Define 8*R(r) = min{O (r*) jr* is a cyclic permutation of r or r 
1} 

Throughout this section we assume that R is finite and satisfies 

the condition C(6) . Further we assume that every generator in A 

is a piece relative to R. Since we only work with one symmetrized 

set at a time we shall omit the phrase "relative to R" and put 

6R(w) =O (w) and O** (r) = 0* (r) 

The following Lemma is a consequence of the Lyndon-Van Kampen 

Theorem (1.2.1). 

(3.1) Lemma Let w be a non-trivial freely reduced word in F (A) . 

If w=1 in G, then there exists a connected, simply connected 

R-diagram '1T1 over F(A) such that 

(i) for each edge E in 'M , ý(E) 11, 

(ii) +(dCm)) W7" , and 

(iii) for each region D in -M , 
(d(D)) ER. 

We shall call an R-diagram which satisfies Lemma (3.1), an 

associated R-diagram for w. 

(3.2) Lemma Let w be a non-trivial freely reduced word in 

F(A) . Suppose that w=1 in G. Let9iL be an associated 

R-diagram for w. 

(i) If E is an interior edge then 0(c(E)) = 1- 

(ii) For each region D in 'TW 
, 8* (¢ (S(D))) Z6. 
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Proof: (i) This follows from Lemma (1.2.4) and the definition of 

0(w) . 

(ii) Since R satisfies C(6) and every element in A is a piece, 

4(6(D)) is a product of pieces. Hence 9*(4(S(D)) Z6. 

(3.3) Lemma Let w be a non-trivial cyclically reduced word in 

F(A) such that w-1 in G. Let 'm be an associated R-diagram 

for w. Assume that for each boundary edge E in ß M), 

o(¢(E)) S4. Then Th. satisfies conditions (Ml) - (M4) of section 2. 

Proof: Since w is a cyclically reduced word in F(A) , there is no 

vertex of degree 1 in U1 ; and we may assume that 'Ut has no 

vertices of degree 2 (if d(v) =2 and v=V (E) _ X(E') replace 

E, E' by a single edge E" with +(E") _ý (E) ý (E' )) . 'M under these 

procedures is a connected, simply connected R-diagram over F(A) which 

satisfies Lemma (3.1). Hence condition (Ml) is valid. Condition (M2) 

follows from Lemma (1.1.5); and conditions (M3) and (M4) follow from 

the assumption that for each boundary edge E, G(4 (E)) 
_< 

4 and 

Lemma (3.2). 

Now, from Lemmas (3.3) and (2.6), we have the following: 

(3.4) Lemma Let w be a non-trivial cyclically reduced word in 

F(A) such that w=1 in G. Let 'M be an associated R-diagram 

for w. Suppose that for each edge E in ('m) ,A 
(4 (E) )54 

Then there exists a simple path Y1, ..., YL ,L22 
in 0('t1') 

labelled by a subword of w 1, 
such that 

(i) for each 15jSL, p (Yj) is a region in 'Y'n , 

(ii) h(Y1) =1 or 2, 
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L 
(iii) I h(Y. ) Z 4, and 

j =l 

k 
(iv) for each 15k<L, 0< h(Y. ) <4. 

j =1 

We shall call a simple path, in a map ^M , satisfying (i) - (iv) 

of Lena (3.4) a T-path. 

We shall, in various cases, consider a C(6) group G= <A; R> 

in which every generator is a piece. Depending on the case, we shall 

select a pair of words w1, W2 in the generators in A whose images 

in G are to be shown to be free generators. Our method of proof 

will be by contradiction. We shall suppose that some relation in wl 

and w2 is valid in G. This relation can also be viewed as a 

relation in the generators of F (A) and thus gives rise to some 

cyclically reduced word w of F(A) with an associated R-diagram %I 

So we shall always be able to apply Lemma (3.4). 

(3.5) Convention In the sequence of results which follow we shall 

assume that we have a fixed R-diagram 'M with ý(ö('Yh)) cyclically 

reduced and a T-path Y1, ..., YL in1'(1 . We also use the following 

associated notation. For each 15j5L, 

(1) Dj =p (Yj) . 

(2) 6(Dj) = (XJ, 
l, ..., XJ, 

n(j)) , where Xj. l = Yj 
. 

Note that n(j) - d(D. ) ; and if d(u(Y. )) =3, then 

-1 Xj, 2 a j+i, n(j+1 ) 

(3) ý(Yyj and X. ) xj, k 
25k5 n(J) " 

Hence 0 (yj) 54 and 0 (xjj 
, k) =1. 
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(4) rj = +(d(Dj)) Yj x, ', 2 ... xJ, 
n(J) 

If d(u(Yj)) =3 

then we may write rj = Yj Xj+l, 
n(j+l) 

Xj, 3 "' xj, 
n(j) 

As a consequence of the above notation, Lemma (3.2) gives rise 

to the following Corollary: 

(3.6) Corollary For each 1aj5L 

(i) 0* (rý) ý6 

(ii) 6*(ri )s0 (yß) + n(j) -1. 

(3.7) Lemma For each 15j5L. h(Yi) C8 (yj) = 2. 

Proof: 6(yß) + i(Dj) z6, since R satisfies condition C(6). 

Then h(Y) 54-i (Dý) s4-6+e (yj ). 

(3.8) Lemma 0(y 
1)=3 or 4. 

Proof: By Lemma (3.4), h(i) =1 or 2; and hence d(u(Y1)) =3 

Now, if A(y) 52, then by Lemma (3.7), h(Y) 50, absurd. 
1- 1 

Let acA. Recall that each element in A is a piece. Let 

p be the maximal integer such that ap appears in some relator r in 

R, where r is not a proper power of a. If ap is not a piece 

then there exists a unique r in R which involves app and r has 

m+ 
the form (apu) , in z1 where u has no occurrences of a±p 

LipschutisLemma (1.2.7) gives rise to the following: 

(3.9) Corollary ap is not a piece if and only if 

(i) 9(a±p) -21 and 
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(ii) 9 (a±ý) =1, R<p. 

(3.10) Lemma Assume that O (acP) =2, c= ±1 . Let 

yj =- ac ,L<p and jZ2. Let yj+l = aEp . Suppose that 

xj, 
n(j) 

does not end in a£ . Further assume that one of the 

following is true. 

(1) h(Yi+1) =0, Yj +2 - acp , and d(u(Yi )) = d(u(Yj+1)) =3. 

(2) ys ys+l aep , and h(Ys) =0, where either 

j+ 35s sL-1 or 25s sj 2. 
d(f`(Y)=3 

(3) Ys = Ys+l- =a ep 
,/ and h(Y8+l) = 0, where 

j+ -3ss sL-1 or 25ssj- 3. 

Then h (Yi )5-2. 

Proof: Assume (1) is valid. By Corollary (3.9), A(y. ) 

Hence h(Yý) s-1, by Lemma (3.7). 

nJ+2 

Dj, t1 
3 

4 ý. z3 I, n(J-I) 

Et =3'2 

äp 

xjtl, 2 

xJ-2, n(3-2) 

a Jf2r2 

aE p 

If h(Y. ) 
J -1 then r. aCL x J.. 2 x J., 3 xJ. 

p4xJ. +5 
x 

J., 6 Now 

rj+l =a xJ+1,2 xJ+1,3 xj+1,4 x3, 
. 

since h(Yj+l) =0; and Cp 
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cp -1 We shall compare rj+2 ma xJ+2,2 ... x(J+2), n(J+2)-1 
xj+1,2 ' 

rj+l and rj+2 , noting that aCp is not a piece. Either 

Ix 
J, 21 Z Ixj+1,21 or Ixj+1,2I Z Ixj, 

21 

If (xj, 
21 Z lxj+1,21 

, then rj = aCI xJ+1,2 z xJ, 3 xJ3,4 xJ, S xJ, 6 

where x J, 2 E xJ+1,2 z. Since xß, 6 does not end in aE , 

comparing rj and rj+l shows that aek xj+1,2 must be a piece. 

Hence 9*(rj+l) s5, contradicting Corollary (3.6). Therefore 

IxJ+1,21 > lxj, 
21 Then rj+l aep xj, 2 zI xj+1,3 xj+1,4 xJ, 2 

where xj, 2 z' = xJ+1,2 Since x 
J, 6 does not end in aE , 

ý 

comparing rj and rj+l shows that ach' x. 2 
is a piece. Hence 

Jý 
A*(ri )S5, contradicting Corollary (3.6). Then h(Yi) s-2. 

Assume (2) is valid. By Corollary (3.9) and Lemma (3.7), 

h(Y. ) 5-1. If h(Y. ) =-1 , then r. = aek x. x. X. x. x. 
]JJXJ, 2 J, 3 j. 4 J, 5 j, 6 

8,5 
Since h(Ys) a0, rs = aep xs, 2 xs, 3 xs, 4 r . 

Further, we can write 

rj+1 aEp xJ+1,2 ... xj+l, 
n(j+l)-l x3,2 and 

rs+l = acp xs+1,2 .. ' xs+l, n(s+l)-1 xs, 2 ' We shall compare r. +l 

and rs+l , noting that acP is not a piece. Now, either 

IxJ, 
2I z Ix 

s, 21 or Ixs, 
2I a Ixj, 

21 If Ix. 
2l 

lxs, 
21 , then 

r. 
]= 

aCz x s. 2 zxJ, 3 x J., 4 x 
J., 5 x j, 6 where x J., 2 x 

s, 2 z. Since 

xj, 6 does not end in ac , comparing r and rs shows that 

acf xs 2 must be a piece. Hence 0*(rs) s5, contradicting 

Corollary (3.6). Therefore Ix 
s, 2 

Ix 
J. 921 

. Then 

rs = acp X. z' xs, 3 xs, 4 xs, 5 , where x. � zI = xs, 2 . Since 

* 
J, 6 does not end in aC , comparing rj and r5 shows that 

act xj, 2 is a piece. Hence e*(rJ. ) 55' contradicting Corollary 
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(3.6). Then h(YI )s-2. 

Assume (3) is valid. By a similar argument, h(Yý) s-2 

(3.11) Lemma Let A (acP) =2, E= ±1 . Let 

yj = a£' , 1. <p and jZ3. Let yj_l aep . Assume that xj 
3,2 

does not begin with ac . Further, assume that one of the following 

is true. 

(1) qj-2 = acP , and h(Y, 
-1) =0 and d(/4(Y J- 2)) 3" 

«µ(Y, ))= vl(A(yj-d) =3 (2) ys = ys+l aE' 'A and h(Ys+1) =0, where 

1 5, s5 j-3 or j+l 5s5 L-1 
d(M(y_, )) 

-3 
ep (3) Ys = Ys+l a, and h(Ys) 0, where 

j+2 Ss5 L-1 or 25s5 j-4 . 

Then h (Yi )s-2. 

Proof: By an argument similar to that in Lemma (3,10). 

CL/ /4(Y =3 aid 
(3.12) Lemma Let 0 (aep) =2. Let/ yj =u aC , P. <pjý1. 

Let yj +1 
= aep . Let O (u) =m, where 15m53. Assume that u 

does not end in aE . Further assume that one of the following is 

true: 

(1) yj+2 = aep and h(Yj+l) =0 
cl(µ(Y)) 3 

(2) ys ys+l = a95( and h(Ys) =0, where 

25ssj-2 or j+25s: L-1. 

(3) ys = ys+l ä ep 
and h(Ys+l) 0, where either 

2 5s :5 j-3 or j+2s s: L-1. 



-39- 

Then h (Yý) 5 m-2 . 

Proof: Assume (1) is valid. By Corollary (3.9), O(acz) =1. 

Hence 6(u ae2) 5 m+l . By Lemma (3.7), h(Y) 5 m-1 . Let 
Jý 

h(Y3 )= m-1 . We can write rý -u aCz xß, 2 ... xJ, 
n(j) . We shall 

consider the case when m=3, i. e. h (Y. ) =2. So, we write J' 

ri -u aCl XJ. 2 xß, 3 . Since h(Yj+l) =0 and d(p(Yý)) =3, 

rJ+l aeP xJ+l, 2 x+1,3 X. +1,4 J, 2 . We write 

r+2 = atp x+2 . "" x. x" We shall compare r+l J+2 J+2,2 

and 

J+2, n(J+2)-1 J+ls2 j+1 

and rj+2 noting that a6p is not a piece. Now either 

IxJ, 21 Z (x3+1,21 or Ix 
J+1,2 

I '- Ix 
J, 2 I. if I ß, 2I ZI J+1,21 

then ri =u ael x +1,2 z xJs3 where x J. r2 
=x 

J+1,2 z. Since u 

does not end in aE , comparing ri and rj+l shows that a6R xJ+1,2 

must be a piece. Hence 9*(r, 
+l) 55, contradicting Corollary (3.6). 

Therefore lj+1,21 > Ixj, 
21 " Then we can write 

r aCP x. z' x. xx1 where x. z x. +1 J, 2 J+1,3 J+1,4 J, 2 ' J, 2 J+1,2 

Since u does not end in ac , comparing rj and r1 +l shows that 

a6R ý, 2 
is a piece. Hence e*(r,. ) 55, contradicting Corollary 

(3.6). Then h(Y 1. Similarly, when m=1 or 2, 

h(Yi )5 m-2 . If we assume either (2) or (3), then by an argument 

similar to the above (see also the proof of Lemma (3.10)), we get the 

desired result. 

(3.13) Lemma Let 8 (acP) 2. Let yj = acl u, !C<P, 

j 'a 3, ca ±1 . Let yj_1 acP . Let 9(u) = m, where 

15m53. Suppose that u does not begin with ac. Further 
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assume that one of the following is true: 

d(U(Yi-2. )) =3 
(1) yß_1 = aeý 

X 
and h(Yý_l) =0. 

d (ýtYs)) =3 
(2) ys = ys+l aep ,/ and h(Ys+l) =0 

25ssj-2 or j+15s5L-1. 

where either 

(3) ys = ys+l =a eP 
, and h(Ys) =0, where either 

2sss j-3 or j+1 sss L-1. 

Then h(Y3 )s m-2 . 

Proof: By an argument similar to that in Lemma (3.11). 

(3.14) Lemma Let O (acP) =2. Let yj act u ank , where 

£'k<p, e-±1, n=±1, j 23. 

it yj+1 = anp and yß_1 = aEp . Let 6(u) -m, where 1smS2. 

. Suppose that u does not begin with at and does not end in at 

Further assume that one of the following is true: 

d( (YJ))=3 dC (yý_Z)ý=3 

(1) Yj+2 = anp ' yj-2 - aEp ,X and h(Y3+1) - h(Y3-1) =0. 

c((t(YJ))=3ý 
dCµýyi-i), =3 

vp (2) Ys = Ys+l =a, v= ±1 and h(Ys) = h(Ys+l) °0, 

where either 25s5 j-2 or j+2 5s5 L-1 . 

Then h(Yi )s im-2. 

Proof: By an argument similar to that in Lemma (3.12). 
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Section 4 

Let G= <A ; R> be a C(6)-group in which every generator is a 

piece. As explained prior to Convention (3.5), our approach in all 

cases leads us to consider an R-diagramCfi , with T-path Y1, Y2, ..., YL 

such that c(6 M)) is the cyclically reduced word derived from a 

supposed relation in a given pair of generators. 

Let a and b be any two distinct generators in A. We have the 

following possibilities: 

positive 
(1) There exist/integers m and n such that am eR and bn e R. 

(Then such m and n are unique, by the C(6) condition. ) 

(2)(i) For every integer m, ajR 
and there exists an integer n 

such that bn cR. 

(ii) The dual of (i) with a and b interchanged. 

(3) No element of R is of form am or bn . 

Recall that our aim is to determine free generators for free 

subgroups of G. For case 1, we shall use Proposition (4.1). For 

case 2 we shall use Propositions (4.3)- (4.7) (or appeal to symmetry). 

Finally for case 3, we shall use Proposition (4.8). 

We illustrate the case division in this section in a more detailed 

way as follows. (For notation see Convention (4.2). ) 
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m 
a 

(ap)il 

e(a))=l 

0 

b-- I R, a -C= 

(By symmetry) 
ä, bnýR 

l A2 
card AJs 

ap occurs in 

b ti apbn z, £)±i 

7) 

as occurs in 

IEapVz, F_±1 
ap occurs in 

býapbe Z, -C 
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At a given vertex we have the case in which we assume all the 

conditions which occur at vertices in the path between the given vertex 

and the top vertex. The case occurring at an extremal vertex is solved 

by the proposition labelling the edge incident to the vertex. 

Propositions (4.1) - (4.6) are comparatively easy. Propositions 

(4.7) and (4.8) are longer and more complicated, partly because we have 

endeavoured to obtain simple short free generators in these cases. 

Some reduction in the length of the proofs could have been obtained at 

the expense of having more complicated generators. 

We make some points about that after Proposition (4.8). 

(4.1) Proposition Let a and b be any two generators in A such 

that am and bn are relators in R, where man >0. Let ap be 

the maximal power of a which appears in the relators of R distinct 

mq from a. Let b be the maximal power of b which appears in the 

relators of R distinct from b±n . Then ap+l(b2q+1 alp+1)2 b2q+lap+l 

q+1 2p+1 2q+1 2 2p+l" q+1 and b (a b)ab are free generators in G. 

Proof. Since_ ap and bq are pieces, O(ap) = 6(bq) =1. Also, 

no larger power of a or b is a piece. It follows that m >_ 5 ptiand 

n 5g-t1. Let w be a word in ap+l(b2q+1 alp+1)2b2q+laP+1 and 

bq+l(a2p+1 b2q+1)2a2p+lbq+l 
, and assume w is cyclically reduced as 

a word in these generators. Then it is clear that w is cyclically 

reduced in a and b. Suppose that w=1 in G. Then there 

exists an associated R-diagram "N4 for w, by Lemma (3.1). Let E 

be a boundary edge offM . By our choice of generators, 4(E) is a 

subword of one of: 
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dap bq)v,, (a2p+l)vý(b2q+l)vý(a2p+2)vý(b2q+2) vp where v= ±1 . 

' YL In all cases, 0(4(E)) 54 and so 'Th has a T-path Y1'Y2' "'" 

by Lemma (3.4). 

Now 0(y1) = 9(ß(Y1)) Z3 and so yl must be one of 

(alp+1)_1, (b2q+1)±1ý(a 
2p+2)±1, (b2q+2)±1 

If yl = alp+2 , then rl =a. 

If pA2, then 

0(y1) =3 and h(Y1) =1, d(p(Y1)) =3 and D1 is adjacent to D2 

It follows that r2 #b Hence y2 - b±k ,15k5q. Then 

e(y2) =1, whence h(Y2) s -1 , by Lemma (3.7). Therefore 

2 
h(Yj) =0, a contradiction since Y1, ..., YL is a T-path. 

j =1 

If p=1, then 6(y 
1) =4. Hence h (Y 

1) 
s2, by Lemma (3.7). 

From the nature of our chosen generators and the maximality of q, 

y2 = bkl and y3 - bkz , where 15 k1, k2 5q. Hence 0(y2) = 0(y3) = 1. 

If follows that h(YZ) , h(Y3) s -1 , by Lemma (3.7); and so 

3 
h(Yj) s0, a contradiction. 

j=1 

Assume y1 a2P+1 , then h(Y 
1' 

)=1, x1,2 begins with a 

Since d(u(Y1)) =3, x2 
n(2) 

ends with a 7l and so y2 bk , 

15k5q. By Lemma (3.7), h(Y2) S -1 . It follows that 

lp+1 
h(Y1) + h(Y2) 50, absurd. Therefore, yl a" 

The other possibilities can be ruled out easily. . Therefore 

wt1 in C. 
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(4.2) Convention If R contains no relator of form am, then ap 

denotes the maximal power of a occurring in any relator of R. If 

some 
acR, then there exists a unique such. In these circumstances 

ap denotes the maximal power occurring in relators different from am 

(4.3) Proposition Let a and b be any two generators in A. 

Suppose that no relator in R is of the form am . Further, assume 
and bn E R. 

that 6(ap) =1 r( Then b -1 a3p and ba 3p 
are free generators in 

G. 

Proof. Let 'w be a word in b-1 a3p and ba 
3p 

, and assume w is 

cyclically reduced as a word in these generators. Then w is 

cyclically reduced in a and b; and if w=1 in G, then there is 

an associated R-diagram ITI for w, by Lemma (3.1). By the nature 

of our chosen generators, 0(4(E)) 54 for each edge E in ß(M1) . 

Then, by Lemma (3.4), there exists a T-path Y1, ..., YL in'`(l 

Also, from the nature of our chosen generators yl = a'j*tl bnk aCL2 

where 1 : 5119 R2 5p, k=1 or 2, cyn, v = ±1 . (Otherwise 

0(y1) s2, absurd. ) Hence y2 = av13 and y,, - a"4 ,v= ±1 , 

1 52.3 ' ! C4 5p" It follows that h(YL) , h(Y3) 5 -1 , by Lemma 
3 

(3.7) and since h(Y1) 52, h(Y. ) s0, which is absurd. 

. 
j=1 3 

Therefore wj1 in G ... 

If 9(ap) =2, then ap is not a piece, and so there exists a 

unique relator r in R which involves ap . This is of form 

Pr= 
(a. z)m, mz1, where z is nontrivial and without occurrences 

of ap (and a -P). 

(4.4) Proposition Let a, b and c be three distinct generators 

in A. Let 6(ap) -2. Suppose that the unique relator r in R 
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involving ap has the form be aP bn z, where e, rj _ ±1 ,ze F(A) 

Then c a4P c 7l and a4p ca 
4P 

are free generators in G. 

Proof Let w be cyclically reduced as a word in c a4P c1 and 

a4p c a4p . Cancelling occurrences of c -1c gives a word w* 

cyclically reduced in a and c. If w=1 in G then w* =1 in 
1T1 

G and there is an associated R-diagramtfor w* , by Lemma (3.1). 

Let E be a boundary edge of 'c \. Since ap c±l and ctl ap 

do not occur in any relator of R, $(E) must be a subword of some 

ESC VR 

a10a2 where 1: k1 ,£2<p, E, n, v "' ±1 . Then certainly 

g(ý(E)) s3 and so "m has a T-path Y1, Yz, ..., YL Since 

e(yl) Z3 yl _ aCL1 cn avy'2 where 1S £1 , 2z <p. E, r1, V = +1 ; 

and so h(Y1) =1. If y2 - and ,R<p then h(Y1) S -1 by 
2 

Lemma (3.7); and so X h(Y. ) 50, absurd. Therefore Y. = anp 
j =j 3 

and h(Y2) =0, whence y3 - anp . It follows that h(Y1) 0, by 

Lemma (3.10). This is a contradiction. Therefore w#1 in G. 

(4.5) Proposition Let a, b and c be three distinct generators 
and bn Cr R. 

in A. Let A(ap) = 24 Suppose that the unique relator in R which 

involves ap has the form cv ap bn z or bn ap cv z, where n,, v = ±1 

Then b -n asp c -v and a5P b -n asp are free generators in G 

vrnrt f Let w be a word in bn a5P c79 and a5P b -n asp , and assume 

w is cyclically reduced word in these generators. Then, w is 

cyclically reduced in a, b and c. W. l. o. g. we may assume that the 

unique relator r in R which involves ap has the form 

r= c ap b z, (hence w is a word in b-1 a5P c 7l and a5P b-1 a5p). 

If wa1 in C, then there exists an associated R-diagram '1 1 

for w. From the nature of our generators, the maximality of p and 
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the nature of r, the label on any boundary edge E must be a subword 

of one of 

(I) (aX1 e1b -1 a12)v , (II) acRI ev ank s 
(III) a 

ELI 
by ant2 

where 15 L1 ,£<p, e, n, v = ±1 . 

In all cases 9(ß(E)) s4 and so there is a T-path 

Y19 ..., YL in'. . Then yl is one of (I), (II) or (III) above. 

Assume (I) occurs with yl = aft c1b1 a1 
2. Then h(Y1) 

or 2. We shall show that y2 - ap ; suppose y2 - aß'3 ,15 R3 < P. 

Then h(Y2) s -1 , by Lemma (3.7), and since Y1, Y2, ..., YL is a 

T-path, h(Y 2 and h(Y2) = -1 . Again since Y1, Y1, ..., YL is 

a T-path h(Y3) z0 and so y3 ap with h(Y") =0, as shown below. 
3 

(See the note after the proposition for an explanation of this diagram. ) 

We compare r3 and r, noting that ap is not a piece. Then 

x3,2 begins with b whence x4, 
n(4) 

ends in b-1 . Now our choice 

of generators gives y4 ay-4 ,15 !C5p and a comparison of rk and 

4 

r shows that I4 ýp. Thus h(Y )5 -1 and I h(Y. ) s0, absurd. 
4 jrl 

therefore yL = ap 

Now compare r2 and r, noting that ap is not a piece. Then 

2 ,1 
begins with b. Since we have a T-path, d cl(Y2)) =3 and 

ac7lbla 
s, 3 ap Y 4 
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therefore x3 n(3) 
ends in b1, and y3 BE a3,1S j3 <p (compare 

r3 and r to get 13 P). To maintain a positive count we have 

h(Y1) =2, h(Y3) = -1 y4 = ap and h(Y4) -0- as shown below. 

But now we get y5 = aR4 ,15 ý4 <p just as we get y3 =- aR3 and 

5 
X hMY. ) s0 which is contradictory. So yi I aR1 c1 b-1 a12 

j =l 

Similar arguments rule out yl =a 
R2 

bca 
ý1 

and (II) and (III). 

Note: In the diagrams above, the edges Y19Y21Y39 ... of the T-path 

occur in left to right order and each edge is directed from left to 

right. The number above Yý is the value of h(Yi ) and the word 

below %Yj 
is the label ý(Y. The drawing of such diagrams is 

essential for easy comprehension of our argument. Mostly, we leave 

the drawing of these diagrams to the reader. 

and bn s R. 

(4.6) Proposition Let O(ap) = 2, ( Suppose that Card A=2 

Further suppose that the unique relator r in R which involves ap 

has the form r= bE ap bE z, where c= ±1 . Then b -c asp b -c and 

asp bE asp are free generators in G. 

Proof W. l. o. g. we assume that the unique relator r in R which 

involves ap has the form rEb aP bz. Let w be a word in 

b1 a5P b-1 and a5P b1 a5P , and assume w is cyclically reduced in 

these generators. Then w is cyclically reduced in a and b. If 

aicIb1ak2 ap aL3 ap 75 
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w=1 in G, then there exists an associated R-diagram for w. 

By the nature of our chosen generators, the maximality of p and the 

nature of r, we will again have a T-path Y1, Y2, ..., YL, and yl 

must be one of the following: 

(I) yi (af1 b2 aR2)v ' (II) yl (ap ba 1)v 
, 

-1 CL nt 
(III) yi (a 1b 

ap)v , (IV) yl a1bVa2, where 

15 11 , ! C2 <p and e, n)v = ±1 (v) y1 (ap bý )#1 or (b ap)tl. 

We shall firstly show that yi does not end with 
a; 

suppose 

not. Compare rl and r, noting that ap is not a piece. Then 

xl 1,2 must begin with by , whence x2 
n(2) 

ends in b -V since 
, 

d(u(Y1)) must be 3. From the nature of our chosen generators, 

V1 ß, 
3 

y2 =a, 15 R3 <p (compare r2 and r to get k3 0 p). 

Then h(Y1) =2 and h(Y2) _ -1 (use Lemma (3.7) and the fact that 

Y1'Y2' 0'' YL is a T-path). It follows that y3 = avp with 

h(Y3) 0. By a similar argument as with y2 we can show that 

vR 
y4 -a4,15 k4 < p, and so h(Y4) 5 -1 , by Lemma (3.7). Thus 

4 
h(Y. ) s0, absurd. Therefore yl cannot end with avp. 

ý Suppose that y1 ends with av. 
0 

,15 .0<pV= 
±1 . If 

vR 
y2 a, 15 £3 <p, then by a similar argument as above we can 3 

vt 
show that y. avp with h(Y3) =0 and y4 -a4,15 £4 <p 

4 
Thus I h(Y. ) 50, absurd. Hence y2 avp and h(Y2) =0 or -1 

j=1 

Compare r2 and r, noting that ap is not a piece. Since 

vi 
d(u(Y2)) =3, y3 =a3,15 R3 <p. Thus h(Y1) =2, 

h(Y2) =0 and h(Y. ) _ -1 
3 

. Since I h(Y. ) =1, y4 =a 
VP with 

j=1 
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h(Y4) =0. Then it is easy to see that h(Y5) _ -1 , absurd. 

Therefore y1 cannot end with a' ,15Z, <p 

The remaining possibilities are easily ruled out, 

(4.7) Proposition Let 9(ap) =2. Let bn be a relator in R. 

Let q be the largest integer such that bq is a Subword of some 
±n 

relator r in R, rIb. Suppose that Card A=2. Further 

suppose that the unique relator r in R which involves ap has the 

form rj =b -C ap be z, where c= ±1 . 

(1) If q=1, then (asp b)5 a5P and (b a5p)5 b are free generators 

in G. 

(2) If qz2, then (asp b2q+1)2 a5p and bq+l a5p(b2q+1 a5p)1 bq+l 

are free generators in G. 

Proof W. l. o. g. we may assume that the unique relator r in R 

which involves ap has the form r -b1 ap b z. 

(1) Let w be a word in (a51' b)5 a51' and (b a5P)5 b, and 

assume w is cyclically reduced in a and b. 

If w=1 in G, it follows that in the associated R-diagram 

there is a T-path, since the label on any boundary edge is a subword of 6-IC 
.7 

(ap b al)e , 
(ap ba . t)E 

, or (a pb ak)£ , where 15£<p and 

E= ±1 . 

Since e (y1) Z3, y1 must be one of the following: 

(i) Y1 ° (ail b aý2)e 9 

(iii) Y1 = (ap ba 2)£ 
9 

(ii) yl = is 
t1 

b at 2)£ 
, 

(iv) Y1 is pb ak)E , 

(v) yl (ap b aL)E , (vi) yl = (ap b)e or (vii) yi = (b 1 
ap)£ 

where 15Z, tl, t2 <p and c- ±1 . 
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Assume (1) occurs. Then 0(y1) =3 and so h(Y 
1)=1. 

To 

maintain a positive count, we have y2 = y3 = aEp with 

h(Y2) = h(Y3) =0; and Lemma (3.12) gives a contradiction. 

By a similar argument we can show that (ii) does not occur. 

Assume (iii) occurs with yl = ap ba ý'. We shall firstly 

show that h(Y1) 2; suppose not. Now, y must begin with a1. 

Since d(u(Y1) =3X2« 2) 
does not end in a1. If 

"' 

y2 =a 
t1 

, Li <p, then h(Y2) = -1 ; and to maintain a positive 

count we have y3 m y4 =ap with h(Y3) =0. By Lemma (3.10), 

h(Yv) s -2 , absurd; and so y2 =ap. By a similar argument 

involving y4 and y5 , we get y3 -ap; and then using Lemma 

(3.11), we can show that y4 a 7P . Clearly, h(Y2) =0 or 

h(Y3) =0. Then Lemma (3.12) gives a contradiction. Since 

Y1'Y2* ***' YL is a T-path, h(Y1) =1. 

We now have to go a little deeper to derive a contradiction. If 

yj involves only a- , then h(Yj) 50 and so the T-path includes 

all edges up to the next edge in which b±l occurs. Specifically, 

let s be the least j, 25jSL such that yý involves b±l 

Then s>4. 

As y1 involves b and a -L which are of opposite sign, our 

choice of generators ensures that ys is a negative word. Also, 

since h(Y1) =1, we have yj BE a -p and h(Y. ) =0,25j5 s-1 

whence ys begins with a 7l 
. Since 

s-1 (P-ý, ) -1 -(p-ß) --1 
-ý1 

y and thus ys aba, 
°h(Yj) 

= 1, ys a- b- 
l 

where 15 kl <p (compare with r1 to get ßl p). By Lemma 

(3.13), h(Y5) 0, and so ys+l -a 
-P with h(Ys+l) ° 0. By 
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Lemma (3.14), h(YS) 5 -1 , absurd. Therefore yi ap ba 7L and 

so yi = aR b1aP 

Again if yj involves only a' , then h(Yj) S0 and so there 

are yj's ,25jýL which involve b- . Let s be the least 

such j; then s>4. 

As y1 involves aL and b1, again ys is a negative word 

and using Lemma (3.10) and (3.11) when h(Y1) =2, we have for each 

25i5 s-1 , yj =ap. Since ys_1 ap x5_1,2 begins with b 

_1 (for r=b ap b z). As d(µ(Ys_1)) must be three, xs n(s) 
ends 

s 

in b1 and so ys cannot begin with a -P 
. Since q=1, ys 

must be b1, i. e. rs =bn and h(Y5) _ -1 . Clearly 

d(u(YS)) = 3. Then xs+l 
n(s+l) must end in b, which means that 

-k 
ys+l =a, k<q, (compare with r to get k# p). By Lemma (3.7) 

h(Ys+l) s -1 and so 

s+l 
I h(Y. ) 5 0, absurd. Therefore (iii) does not occur. 

j=1 

Assume (iv) occurs with y1 =a b-1 ap . This needs our 

lengthiest argument so far. Braodly we consider edges 

y1'YsYs "Ys"'Ys'" 'Yt whose labels contain occurrences of b and 

which are chosen so that intermediate edges Yi always have label 

b-free. Roughly we show that such an intermediate edge Y3 has label 

ap with h(Y-) =0. We shall make numerous uses of Lemmas (3.7)- 

(3.14). Also note that since yl involves b-1 and aq our 

choice of generators ensures that ys'ys , 'ys"'ys"' yt will be 

positive words. 

We divide the proof of this case into steps to avoid repetition 

of the same arguments. 

Let s be the least j, 2Sj5L such that y5 involves b 
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Step (iv) 1- To show that ys begins with ap . 

By the maximality of p, sJ5. Since h(Y1) =1 or 2, yi =app 

2sjs s-1 , using Lemmas (3.10) and (3.11) when h(Y1) =2. In 

particular, d(u(Ys_1)) =3 and xs 
n(s) ends in b-1 . So yo 

must begin with ap . 

Step (iv) 2- If ys = ap b, we shall show that d(u(Ys) =3. 

If d(u(Y 
s)) 

> 3, then d(u(Ys)) =4 and h(Ys) = -1 (and 

hence h(Y1) = 2). Let s' be the least j, s <j sL such that 

Y. involves b. Then s' > s+3 and since 

s 
h(Y. ) =1, for each s<j< s' , yj = ap with h(Yj) =0 

j=l 

By a similar argument as for ys (in Step (iv) 1), ys, does not begin 

with b. 

Now, suppose that ys ap b. (This situation is illustrated 

in the diagram below). 

S-1 
Since h(Yj) =1, h(YS, ) =0 or 1 (and so d(u(Ys, )) = 3). 

j =1 
Since q=1, xs, 2 does not begin with b. Then ysI+l / ap 

and so 9s, +1 a 
R1 

'1s R1 <p. Then h(Ys, 
+l) _ -1 and 

h(Ys1) =1. Let s" be the least j, s'+2 Sj5L such that 

aP aP b 
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ya involves b. By the maximality of p, s" Z s'+4 . Since 

s'+l 
I h(Yj) =1, yk = ap with h(Yk) =0 for each s'+2 5k5 s"-l 

j =l 
(P-! L 

l) Hence ys� must begin with a. By Lemma (3.13), ys,, ab, 

s"-1 P-1 1I ý (note that I h(Y. ) = 1) . Hence ys� aba, with I2 <p 
j=1 

(compare with r to get ß2 # p), as illustrated below. 

By Lemma (3.13), h(Ys�) =0, and so ys�+1 = ap . Hence h(YS,, ) s -1 , 

by Lemma (3.14). This is a contradiction. Therefore d(p(Ys)) =3. 

I 
Step (iv) 3- To show that ys BE ap ba1, where 15£<p. 

1 

Suppose ys = ap b; then ys+l ap . (If ys+l = aP , then 

xs+l, n(s+l) 
ends in b1 and so xs, 2 begins with b; this is a 

contradiction for q= 1). Thus ys+l -all and h(Ys+l) s -1. 

Again let ys, involve b. Thus s+4 < s' :5L and in the usual way 

we can show that for each s+2 :j5 s'-1 , yj aP with h(Y. ) -0. 

P' R1RL 
Then either ys, =ab or ys, ap 

Iba, 
where 1S2. <p. 

P-Li 
If ys, =ab, then h(Y5, ) 5 -1 , by: '. Lemma (3.13). Since 

s1-1 
I h(Yý) 52, h(Ys, ) Thus d(u(Yst)) =3 and since 
j=1 
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I 

q=l, ys'+1ap Thus ys1+1-a2, l512<p and so 

s'+1 p-2, J6 
I h(Y. ) 5 0, absurd. Hence ys, a1ba2 where 1: 51 <p 

j=1 

(compare with r to get ßL # p) and, using Lemma (3.13), h(Ys, ) 50 

Let s" be the least j such that yj involves b. Then 

s'+4 < s" 5L and in the usual way, (using Lemmas (3.10) and (3.11)), 

for each s'+1 5j5 s"-1 , yj - ap with h(Y. ) =0. Then by 

s"-1 
Lemma (3.14), h(Y1) -1 and I h(Y. ) =1; and so h (Ys,, ) Z0 

j=1 3 

The same argument as for ys, gives h(Ys�) 5 -1 which is impossible. 

Therefore ys t ap b and so ys = ap b all , where 15L<p. 

Step (iv) 4- To show that h(Y1) + h(YS) 53. 

Suppose that h(Y1) = h(Ys) =2. Then 0(y1) = e(ys) =4 and 

0(a-1 b-1) = 6(b 1 
a) = 0(ab) = 9(b aß'1) =2. If 9.1 Z 1. , then we 

p -1 a 
-(R1-R) -2. b-1 a-p -1 

. can write rl a ý' b1a zl and r=a zs 

Hence O (a Lb 1) 
=1, absurd. Thus 2. > 21 , and so we can write 

rll =apba1a1z and rs ap bat zs . Hence A(a b 1) 
= 1, 

S 

absurd. Therefore I h(Y. ) 53 
] j=1 

Step (iv) 5- To show that d(p(Y 
s 

)) =3. 

s 

If d(u(Ys) >3, then d(u(Ys)) =4 and so I h(Y. ) 1. 
j=1 

Again let s' be the least j, s<j5L such that y involves 

b. Then s' > s+3 and, as usual, for each s<j< s' , yj = ap 

with h(Yj) = 0. So ys, must begin with a. Arguing almost 

exactly as in Step (iv) 3, we get ys, = ap-11 b a12 and using 

Lemma (3.13), h(YS, ) S0. Then ys1+1 = ap , whence h(Ys, ) s -1 
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S 
by Lemma (3.14), and so h(Y. ) s0, absurd. Therefore 

j=1 

d(u(YS)) =3. 

Step (iv) 6- To show that ys+l - ap 

Lk 
Suppose ys+l °a1,15 1ý2 <p If ys+2 =a3,1Sß3 <p 

then h(Ys+l) h(Ys+2) _ -1 . Then ys+3 ap with h(Ys+3) = 0. 

By Lemma (3.10) (using the labels of a pair of consecutive edges 

YjY+l' 255 s-1) we get h(Ys+2) 5 -2 , absurd. Hence 

ys+2 ap and the same argument gives h(Ys+l) 5 -2 . Thus 

s+l 
h(Ys+l) -2 and 

j 
h(Y. ) =1. Since d(u(YS+1)) 3' xs+l 2 

=1 s 

begins with b (compare rs+2 and r, noting that ap is not a 

- 
piece. Then Xs+2, 

n(s+2) 
ends in b ). Comparing rs+l and rs 

shows that ab is a piece and so h(Ys) =1. Let s' be the least 

js<j5L such that y. involves b. Then s' > s+3 and for 

each s+2 5js s'-l , yj = ap with h(Y. ) =0. 

Now, ys = ap b ail and ys+l aLa. If jl + £2 ýp, then 

it follows from Lemma (3.13) that ys at3 b aß'4 , where 

I3 = p- (L1+Jý2) or ß3 = 2p - (A, 
1+2,2) and 1S £4 <p. By Lemma 

(3.13), h(Ys, ) 50 (or compare rs, with rs to see that a-t3 b 

st-1 
a piece). Since X h(Y. ) =1, h(Ys, )a0 and ys 1 =' ap 

j=1 

By Lemma (3.14), h(Ys, ) s -1 , absurd. Then kl + £2 =p and so 

p-2. 1 
ys+l a, with h(Ys+l) -2 . Then s' > s+3 and 

Ys , ap b a-t3,1 5 £3< p, by essentially the argument of 

Step (iv) 3. Now we noted that ab is a piece (when showing 

h(ys) = 1) and so h(Ys, ) S1. 
SI-1 

As X h(Y3) =1, h(Ysý) =0 
j=1 

or 1. 
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Suppose ys� involves 'b and yj is b-free, s' <j< s" . Then 

p-R R 
we easily get yj = aP , s' <j< s" and y,,, =- a3ba4, 

P-L 
152. <p. As a3b is a piece (compare rs, and rs), 

h(Ys5 0 and we see easily that ysjj+l = aP . By Lemma (3.14), 

h(Ys5 -1 and so h(Ys 1) = 1) h(YS ,)_ -1 . Finally, if ysi,, 

involves b and yj is b-free, s" <j< s"' , then the same argument 

as gave h(Ys�) 5 -1 will show h(Ys5 -1 which is impossible. 

Therefore ys+l - al) 

Step (iv) 7- To show that yst = ap-R1 baL2,15J. 
2 

<p (where 

ys, involves b, and yj is b-free, s<j< s). 

Arguing as in Step (iv) 5, we can show that for s+l sj5 s'-2 

d(u(Yi )) = 3. Then arguing as in Step (iv) 6, we can show that 

y. =ap, s+253 5s'-2. 
J 

We claim that h(Ys) + h(Ys+l) S0. Since y ap 'xs, 2 

begins with b and, looking at ys , we see that ab is a piece. 

So h(Y5) 51. Suppose h(Y5) =1 and h(Ys+1) 0. Since 

ys+2 - ap then one of a'1 xs, 2 and atl xs+i 2 
is an initial 

segment of the other. This means that all xs, 2 
is a piece (since 

ß 
a xs+1,2 is not). However, as ab is also a piece, we get 1 

Lf(rs) 55 and this gives h(YS) + h(Ys+l) 50 as desired. 

Now we look at ys, ; suppose ys, begins with b so that 

ys, -1 
is ap-11 . Then ys, tb since otherwise 

s' 
h(ysv-1) + h(Ys, ) 5 -2 giving X h(Y. ) =0. Since q1, we 

j=1 3 

12 s'-1 
have ys, =ba152<p. Since h(Y. ) = 1, Ys, +l a 

j=1 
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which gives h(Ys, ) 5 -1 , absurd. Hence ys, must begin with 

P-R1 
ab and then ys, _1 

ap , d(u(Ys, 
_1)) =3. 

P-L1 
Suppose ys, ab; by Lemma (3.13), h(Ys, ) 5 -1 , and so 

d(u(Ys, )) = 3. Since q=1, ys, +1 
t aP and so h(Ys, 

+1) 
5 -1 , 

: b:; urdTherefore ys, aP-L' b a'2 with 152.2 <p since 

aP b z. 

Step (iv) 8- To show that ys1+1 = ap 

Using h(Ys) + h(Ys+l) 50, from Step (iv) 7, we have 

s'-1 p-1h(Y. 
) 52. Comparison of rs, and rs shows that a1b is 

jjj 
$' 

a piece and hence h(Ys, ) s 0. Then I h(Y. ) 52. If 
j =l 

R 
ys, +l a3,152. <p then ys, +2 ys, +3 ap and Lemma (3.10) 

gives h(Ys, 
+1) 

s -2 which is impossible. So ys, +1 = ap ; and of 

course by Lemma (3.14), h(Ys, ) 5 -1 

Step (iv) 9- The final contradiction. 

S' 

We have I h(Y. ) 51 and if ys� involves b and yj is 
j=1 

b-free, s' <j< s" then yj = ap and h(Y. )=0, s' <j< s" 

The argument of Step (iv) 7 gives ys� _ ap-R2 b a13 ,15 23< p and 

the argument of Step (iv) 8 (the full argument is not in fact required) 

gives h(Ys�) 5 -1 . 

Next we show that yl a -p b aß' , where 1: 91<p; suppose not, 

and let s be the least j, 25j5L such that yJ involves b 

Then 55s5L and for 25j5 s-1 , yj = ap with h(Y 0 
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(using Lemmas (3.10) and (3.11)). Then by Lemma (3.10), h(Y1) =1 

and Lemma (3.13) giving ys t ap-L b. Thus ys _ ap-R ba1 

15 R1 <p and so h(YS) =0 by Lemma (3.13). Hence ys+1 ap 

with h(Ys+l) =0. By Lemma (3.14), h(Ys) S -1 , absurd. Therefore 

(iv) does not occur. 

Assume (v) occurs with yl =a 7l b-1 ap. We rule this out by 

that dop 
an argument similar toý' y1 =äR b-1 ap . establishing the following. 

In Step 1, ys begins with apb; in Steps 2 and 3, 

R 
Ys = a_p ba1; Step 4, h(Y1) + h(Ys) 53; Step 5, d(u(Y5)) =3; 

Step 6, Ys+l = ap (but replace rs Ys by ri, Y1 to get ab is a 

p-L R 
piece); Step 7, ys, a1ba2,1S ß2 <p. (We show 

s+l 
I h(Y. ) 52, rather than h(Ys) + h(Ys+l) 5 0). 

j=1 

By almost same argument as with y1 -a -p b aý' , we can show 

that y1 t a" b a2' and so (v) does not occur. 

Assume (vi) occurs with yl = ap b. Since h(Y1) =1, 

_1 
y2 _ aP and 

_h(Y1) 
=0. So x2 

n(2) 
ends in b which means 

s 
that x12 must begin with b since d(u(Y1)) =3. Then we can 

s 

write r1 = aP b2 z' which is impossible for q=1. 

Now suppose yl b1ap. Let s be the least j, 25 j< L 

such that yj involves b. Then s>4 and for each 

253 ss-1, yj =ap with h(Y. ) =0. So ys=apba2. As 

in Step (vi) 5, we can show that d(p(Y )) =s3, and as in Step (vi)6 

we can show that ys+l = ap " By Lemma (3.12), h(Ys) 1 and so 

s 
h(Yj) =2. Thus we can apply the same argument as in (iv) (when 

j =1 

yi =a -p b a') to show that (vii) does not occur. 
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(2) Let w be a word in (asp b2q+l)2 a5p and 

bq+l a5p (b2q+1 a5p)2 bq+l and assume w is cyclically reduced in these 

generators then w is cyclically reduced in a and b). 

If w=1 in G, then by the nature of the chosen generators, 

the associated R-diagram IR for w has a T-path and y1 must be one 

of the following: 

(i) yl (ap bk)v ' (ii) yl (b -k aa)v (iii) yl (b2q+1)v 

or (iv) y= (b2q+2)v 
1, where 15ksq and v= ±1. 

so 
It is clear that bq is a piece andt 0(bq) =1. 

Assume (i) occurs with yl = ap bk ,1Sk <_ q and so h(Y1) = 1. 

Since d(p(Y1)) =3, y2 cannot be bkl , where kl >q. It follows 

q+l-k !C 
that y2 =ba, where 15 !t<p. Hence y3 - y4 = ap with 

h(Y3) =0 and so, by Lemma (3.10), h(Y2) 5 -1 , absurd. Therefore 

yl Iapb, where 1SkSq. k 

Now suppose that yl =bkap. Let s be the least j, 

25jsL such that yj involves b±l . Then s>4 and ys does 

not begin with b. (If not; then yi ap, 25i5 s-1 and 

S-1 
h(Y1) =0 since I h(Y. ) = 1. So xs_1,2 begins with b and 

j =1 J 

hence xs, n(s) 
ends with b1, absurd. ) 

-1 Next we show that ys does not begin with b; suppose not. 

Then Ys =b1, where q< kl , i. e. rs = b-n . Now h(Ys) 0 or 

1. Since d(p(Ys)) =3 and xs 2 
begins with b- 

1, 

ys+l aCt , where c_ ±1 ,1sR. <p (compare with r to get Lý p). 

s+l 
Thus h(Ys) -1, h(Ys+l) -1 . Since I h(Yý) =1, ys+2 -ap 

j=1 
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By Lemma (3.10), h(Ys+1) s -2 , absurd. Therefore ys does not 

begin with b1. Hence ys = aP bkz , where 15 k2 5q and 

k 

ys+l =b3,1s k3 sq and so h(Ys+1) = -1 and h(Ys) =1 

Let s' be the least j, s' <j5L 

such that yJ involves b. By the same argument as with ys we 

can show that ys, = ap b, k4 
,1S k4 5q and ys, +l = bk5 , 

15 k4 5q. Then h(Ys, 
+l) = -1 and h(Ys, ) =1 Since 

s' +1 k6 £1 
h(Y. ) = 1, ys'+2 ba, 15 k6 5q and 152, <p and 

. ý=1 

ys, +2 ap . So by Lemma (3.12), h(Ys, 
+2) 

S -1 , absurd. 

Therefore (. i) does not occur. 

By using an argument similar to that in (i), we can rule out (ii). 

Assume (iii) occurs with yl b2q+1 . Then h(Y1) =1. If 

y2 begins with b, then y2 =b a&1 , where 1sR, 
1 

<p and so 

y3 = y4 = ap with h(Y3) = h(Y4) =0. Then by Lemma (3.10), 

h(Y2) s -1 , absurd. 

Now, y2 = aP. (Otherwise h(Y2) 5 -1 , absurd. ) Let s be 

the least j, 25j5L such that y. involves b. Then 

Ys = aP bk , ys+l _ bki where 15k, k1 5q; it follows that 

h(Ys+l) _ -1 and h(Ys) =1. So ys+2 bk2 aß'1 5 Li <P 

k1 
,= 

2q+l - (k+ki) . Since 

sý2 
h (Y .)=1, Ys+3 ys+4 ap with h (Ys+3) =0. By Lemma 

j=1 

(3.10), h(YS+2) 5 -1 , absurd. Therefore yl b2q+1. Similarly 

yl #b 2q-1 

Finally by almost the same argument as in (iii) we can rule out 

(iv). 
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(4.8) Proposition Let a and b be any two generators in A 

m 
such that no relator in R has the form a or bn . Let bq be the 

maximal power of b which appears in the relators of R, and ap be 

defined as in Convention (4.2). 

(1) If there is no relator r in R of the form r= a£p bnq a -e' b nk 

or bnq a£p b -'k a Ei 
, where 15L<p, 15k<q, e, n = ±l , 

then a3p and b3q are free generators in G. 

(2) If there exists r in R such that r= aEp bnq a-" b nk or 

r= bnq acp b nk a ek 
, where 15L<p, 15k<q, c, n= ±1 , then 

ap+l bq+l ap+l and bq+l ap+l bq+1 are free generators in G. 

Proof Note that in (2), 9 (a£p) = O(b) =2 and if 

ep nq -c' nk nq sp nk -c' 
r= abab then babaR since R is a 

C(6)-set. 

(1) Let w be a word in a3P and b3q , and assume that w is 

cyclically reduced as a word in these generators. Then w is 

cyclically reduced in a and b. 

If w1 in G, then in the associated R-diagram there is a 

T-path, and yi must be either (aep bnk)v or (bnq ael)v ' where 

15k<q, 15 I'< p and c, n, v = ±1 (see Corollary (3.9)). 

If O(ap) = 9(bq) =1, then 0(y1) 52. This is a contradiction 

since 0(y1) Z3 

We shall show that O(ap) = 8(b q) =2. Suppose that O(ap) =1 

and 9(bq) =2. Since 8(y 
l) 

Z3, yl must contain bnq . If 

yl = bnq ack , where 151sp and c, n = il , then h(Y1) =1. 

So y2 = aC11 ,15 Z1 5p and h(Y2) 5 -1 , which is absurd. Hence 

aCL bnq , where 151s yl p, e, ri = ±1 , with h(Y1) 1. So 
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y2 bnq with h(Y2) =0. Let s be the least integer, 

35s5L, such that ys involves a±l . Then yj = bnq with 

h (Y. )=0,2 5j5 s-1 . Thus h(Y)- 0 or 1. Compare rl 

and r2 , noting that b4 is not a piece. Since d(u(Y1)) =3, 

x1 1,2 must begin with a. Then ys = bnq a Eil 
,15 z1 5p, 

(compare rs and rl to show that bn4 must be succeeded by a). 

So ys+l aE-, 15 L2 5p, h (Ys+l) -1 and h(Ys)=1. 

s+l Ex 3 nk Since h(Y. ) =1, s' = s+2 and yso =ab, where 
j =1 

15k<q, 9= ±1 (compare rs, and rl to show k& q). Thus 

ys+3 bnq and h(Ys+2) = h(Ys+3) =0. By using a similar 

argument as in Lemma (3.12), we can show that h(Ys+2) s -1 , which 

is absurd. Therefore A(ap) = O(bq) =2, since the case 

O(ap) =2,8(b q) =1 is disposed of similarly. 

W. l. o. g. we may assume that y1 is one of the following: 

(i) yi Eapbq, (ii) y1=_b-kap, 15k<q, 

(iii) yl = ap bk ,15k<q. The remaining possibilities can be 

dealt with by appealing to symmetry or by replacing a by a-1 or 

b by b-1 as a basic generating symbol. 

We emphasise that ap and bq are not pieces. 

Assume (i) occurs and so h(Y 
1)-1 or 2. In fact we need 

to consider the sequence of edges Y, Ys, Ys to Ys"' Ys"'' Yt' Yt " 

Yt"' Yt"' in the T-path, where 1<s< s' < s" < s'" <t< t' < t" < t" <L 

(in some cases, we need not consider all of them), whose labels 

satisfy the following: 

(1) y1° ap bq ; 

(2) ys involves a` and for each 2 <_ j5 s-1 , yj is a free ; 
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(3) ys, involves b±l and for each s+l Sj5 s'-1 , yj is 

bfree; 

(4) ys� involves a±l and for each s'+1 SjS s"-1 , yj is 

±1 a -free; 

(5) ys,,, involves b±l , and for each s"+l :js s"'-1, yj is 

b' -free; 

(6) yt involves a' , and for each s"' +1 5js t-l , yj is 

a±l-free; 

(7) yt, involves b±l , and for each t+l 5j5 t'-1 , yj is 

b±l-free; 

(8) yt,, involves a±l , and for each t'+l 5j5 0-1 
, yj 

is 

a±'-free; 

(9) ytf� involves b+1 , and for each 0+1 5j5 t"'-1, yj is 

b±l-free. 

It is clear that Y1 and Ys always exist. 

We shall show that h(Y1) #1; suppose not. Thus y2 = bq and 

h(Y2) =0. Compare r1 and r2 to show that x1,2 must begin with 

a1 since d(11 (Y1)) =3. Clearly, s3 and h(Ys) Z0. Since 

h(Y1) =1, for each 25j5 s-1 , yj = bq with h(Yj) =0. 

Compare ri and rs_1 to show that xs n(s) 
ends in a since 

d(p(Ys-1)) 3. So ys does not begin with a±l (otherwise, 

1 2. <p, v= ±1, and h(YS < -1 which is absurd). ys E avt < ) 

Therefore ys must begin with b and so ys = bq a 
P- 

9151<p 

(compare rs and r1 to show x#p). 

If ys+l a 
1,1 

581<p, then ys+z a^p ,h (Ys) a1 
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h(Ys+l) _ -1 and h(Ys+2) =0. If ys+3 begins with a -P then 

the argument used in the proof of Lemma (3.10) shows that either 

xs+l, n(s+l) 
ends in a1 or one of aI xs+1,2 , 

i1 
xs+2,2 is a 

piece. Since neither conclusion can be valid, ys+3 must be 

a 
12 

bvk , where p0 £2 = 2p - (2 +f) ,v= ±1 and, after a moment's 

observation, k<q. Clearly h(Ys+3) =0. Since 

s+3 
h(Yj) =1, Ys+4 ys+5 - bvq with h(Ys+4) = h(Ys+S) =0; and 

j1 

Lemma (3.10) gives h(Ys+3) 5 -1 , which is absurd. Therefore 

ys+l ap. We also want ys+2 a -P ; suppose ys+2 =a -Z1 

15£<p. If kl+2 #p, then we get ys, = a-12 bvk ,15k<q 

with s' = s+3. Also ys, +1 
bvq whence h(Ys, ) 5 -1 , which is 

absurd. Further, we get ys , by 
(q-k) 

aTILL, rl = ±1 ,15 k2 <p, 

(compare rs,,, rs, and r1 to show £2 j p) and yj = bvq , 

s'+1 5j5 s"-l . Using Lemmas (3.12) and (3.13) we can show that 

h(Y81) =0 and h (Ys�) 5 -1 . Thus 

s" 

h(Y. ) 50, which is absurd. Therefore ys+2 ap, whence 
j =1 

h(Ys) =0, by Lemma (3.13). 

If ys, begins with b±l , then ys, 
-1 

=a 
(p-'") 

and so 

s'-1 
h( -(p-R) vk Y5 .)0, which is absurd. Hence ys, ab, 

j=1 

15k<q, v= ±1 (compare rl, rs and rs, to show ki q) and 

s' 
h(YS, ) =0. Since I h(Y. ) =1, yj = a_p with h(Yj) =0, 

j=1 

where s+l <_ iS s'-1 . By Lemma (3.13), h(Ys, ) which is 

absurd. Therefore h(Y1) =2; so 6(ap bq) =4 and O(ab) =2 

Suppose that y2 =_ bk ,1Sk<q. Then h(Y2) must be -1 
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and d(J(Y )) =3. So y3 bq with h(Y3) =0. Then, of course, 

x2,2 does not begin with b±l . Now y4 fb, (using Lemma q 

(3.10)), and so y4 bq-ka61,15ý, sp. If I<p, then 

y5 = y6 =ap with h(Y5) = h(Y6) =0 whence h(Y4) s -1 by Lemma 

(3.13), which is absurd. So y4 bq-k ap (compare r1 and r4 to 

show e= 1). 

Compare rl and r4 , noting that ap is not a piece. Then 

x5, n(5) ends in b1 since d (µ (Y )) =3. So y5= aß' 1 
51 

1s 11 <p (compare r4 and r5 to show ! C1 / p). Thus h(Y5) _ -1 

and h(Y4) =1. Since 

S 
X h(Y. ) =1, y6 = ap with h(Y. ) =0. Since d(p(Yi)) =3, 

j=1 

xs n(2) 
ends in a and r2 -a bk z2 , where z2 does not begin 

with b. So x1,2 does not begin with a-' since ab is nota 

piece. Hence y7 - ap-Z1 bek1 , where 15 kl <q and e= ±1 ; 

(compare r7 and rl to show c= -1 and kl q). Thus 

y8 y9 -bq with h(Y8) = h(Y9) =0. By Lemma (3.12), 

h(Y7) 5 -1 , which is absurd. All our possibilities have led to 

contradiction and therefore y2 = bq . 

Next we show that h(Y2) =0. Suppose that h(Y2) = -1. Then 

Ys = bq a 7l 
,15£<p, h(Ys) =0 or 1, and yj = bq with 

25j5 s-1 . If ys+l a 
11 

,15 !C1<p, then h (Ys+i) 

h(Ys) =1 and ys+2 =a -P ; and if ys±3 begins with a -P then 

h(Ys+l) 5 -1 , which is absurd. Hence s' s+3 with 

ys, _a2 bvk , where p#2.2 = 2p - (2. +21) ,v= ±1 , and k<q. 

So ys+4 - ys+5 bq and Lemma (3.10) gives a contradiction. 

Hence ys+l a -p 
. If ys+2 

R1 
,15 SC1 <p, then s' = s+3 , 

ys, -a -P bk ,1sk<q. It is clear that xs+2 2 does not begin 
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with a1. Since d(u(Ys+1)) = 3, xs+1 begins with b 

(Compare rs+l with rs, , noting that a 
-P is not a piece. ) So 

-1 rs+2 ba zs+2 where zs+2 does not begin with a1. But 

b1a1 is not a piece. Compare rs+l and rl to get Rl =ps 

which is a contradiction since R1 <p. Therefore h(Y2) = 0. 

Knowing that y bq , we see that xl 2 and x2 2 
begin 

s 

with a1, whence x3, 
n(3) ends in a. The possibility that 

_k y3 -b, 15k<q, in which case d(11(Y3)) = 3, is immediately 

rejected by comparison with rl . Thus for each 25j5 s-1, 

yj - bq , and the same argument as with y2 gives h(Yj) =0, 

2\j( s-1 . We shall consider two cases. 

Case 1: Suppose that xl 3 ends in b1 (i. e. the unique relator r 

in R which involves ap can be written as r- b-1 ap z). 

We shall show that this situation leads to a contradiction in 

the following manner. We shall construct an infinite sequence 

LL,, L2, ... of integers such that for each f=0,1,2, ... the 

following hold: 

(a) 1 SLf<L; 

(b) YL =_ ap bq ; 
f 

Lf 

(c) h(Y. ) =2; 
j =1 " 

(d) Lf < Lf+l . 

Conditions (a) and (b) give the required contradiction. 

We take Lo =1. Now, the argument which constructs L1 from 
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Lo will depend only on the three facts 

(b0) YL = ap bQ , 
0 

L 
0 

(co) h(Y. ) = 2, 
j=1 

() O(ab) =2 and ap is preceeded by b-1 

Since (*) is valid, independently of f, the same argument, 

verbatim, will show how Lf+l is constructed from Lf . 

We divide Case 1, according to the form of ys , into two 

sub cases. 

Subcase 1: Suppose that ys begins with a±1 ., Then sZ4 

ys - at ,1s !t<p and h(Ys) = -1 . (Compare rl, r2 and rs-1 

to show that xs, 
n(s) 

ends in a; and by the maximality of Ps 

R P). So ys+1 - ys+2 - ap with h(Ys+1) h(Ys+2) = 0. Then 

p-R ek 
ys, ab, 15k<q, e= ±1 . Since ab is not a piece 

and x., 
ýn(s, 

) does not end in a, e= -1 ; and Lemma (3.13) gives 
s 

SI 

that k=q. By Lemma (3.13), h(Ys, ) =0 and so X h(Y. ) 1. 
j .j 

Thus ys, +1 
bq with h(Ys, 

+1) =0. Further, we get 

YS, °bgap. 

We shall prove that d(u(Ys�)) =3. If d(u(Ys, ) >3 then, 

clearly, d(u(Ys�)) =4 and so h(YS�) =0. Since 

. 
S" 

_ 

j 
and h(Ys�+1) =0. Moreover, for h(Y1) =1, Ys"+1 -ap 

=1 

for each s"+1 5j5 s'll-1, yj =a -P and h(Yj) =0. Since 

d(u(YS"'-1) = 3, xs"'-1,2 must begin with b and hence Xs�'n(s"') 
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ends in b1. By the maximality 
k 

ys,,, apb , 1k/, q Suppo 

Then h (Ys,,, 
+1) -1 and ys,,, +2 

h(Ys,,, 
+1) 

5 -2 , which is absurd. 

of q, yb q. Thus 
se that ys111+1 bk ,1kq 

bq By Lemma (3.10) 

Then ysl�+1 = bq with h(Y5, �+1) = 0. 

It follows that yt = bq-k aez1 ,15 z1 <p; and so Lemma (3.13) 

gives that h(Yt) 5 -1 which is impossible. Therefore 

d(p(Y5,, )) = 3. 

Suppose that h(Ys�) =2. We write rs� = ap bq xs�. 2 xs", 3 

Since d(lA(Ys, 
_1)) 

=3 and ys, 
_1 

grap , xs'_1 2 
begins with b and 

a 

so xs' n(s) 
ends in b1. Now, we can write 

a 

rs, =b 
k-' 

ap-Z bqap bL' zs, , where zs, does not begin with b 

and does not end in b1, and 15 k' , £' <q. Comparing rs"-1 

and r ives-that xR 
sn 

g 
s.. 3=a1,1 5ß <p since d(u(Ys�_1) )3 

Also comparing rs, and rs,, gives that 11 5 p-L and 

V -k' p-(ß-ßl) 
xs� 2=b zs, ba Since d(i(Ys,. )) =3, 

a 
-p+k+t k' -1 -V xs"+l, 

n(s"+1) 
ab zs, b and hence rs�+1 contains 

-1 ba which is not a piece. Compare rs�+ and rs� , noting that 

z does not end in b1 and 1s2, ' <q. This is impossible 

since ab is not a piece. Thus h(Ys�) / 2. 

Next we need to show that ysll+l =a -p ; suppose that 

-2.1 
ys, j+l Ea, 15 z1 <p. Compare r1 and rs, l noting that ap 

is not a piece. Then xs�, 2 begins with b. Since d(u(Ys�)) -3 

x�� ends in b-1 . Now, x� does'not begin with 

a1 since ys�+2 begins with a1; and it follows that 1l =p 

(since ab is not a piece), which is absurd. Therefore 

ysIV+1 =_ ap. Since rs�+1 contains a-p b, an easy iterative 

argument shows that for each s"+2 5j5 s"'-1 , r. contains b1 a 

and therefore yj =_ ap. 
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Suppose that ys�l begins with a1; and so ys,,, =ap bk , 

where 15k<q. If d(p(Ys�, )) >3, then d(u(Ys�, )) =4; and 

s,,, 
so h(Y. ) =1. Thus for each s"1+1 5j5 t-1 , yj bq with 

j .j 

h(Yj) =0. Hence yt = bq-k aV1 ,1sR<p 
(compare rt, rl and 

rs�, to show Rý p). By Lemma (3.11), h(Yt) s -1,, which is 

absurd. Therefore d(u(Ys,,, )) =3. 

Next we need to show that ys�«+1 - bq ; suppose that 

ysbkl ,15 kl <q" If ys", +2 
bk2 , 1: 5k2 <q, then 

h (YS111+1 )=h (Ys"1+2 )_ -1 and h (Ys,,, ) =1. If ys,,, +1 
begins 

with bq , then a contradiction can be easily obtained. So 

k vL 
ys,,, +3 

=b3a1, where qAk= 3q - (k+kI+k2) ,1s z1 <p and 

v= ±1 (compare rs,,, +3 , rs,,,, rl to show 11 # P). Thus 

ys,,, +4 
= avp with h(Ys,,, 

+4) =0 and Lemma (3.12) gives a contradiction. 

sn1+l 
Hence ys, I, +2 

bq and so h(Ys+1) -2 . Since h(Y. ) 1 
j=1 

yj bq with h(Y. ) =0, where s"1+2 <_ j5 t-1 . Now, if 

k+k #p then yt bk2 avt , where k2 = 2p - (kl+k) or 

k2 =p- (k1+k) 
,15R. <p and v= ±1 . So yt+l avp and 

Lemma (3.12) gives a contradiction. Thus k+kl =p and so 

yt = bq a-11 ,151. <p. By Lemma (3.10), h(Ys�1+2) = -2 , 

s'"r +l 
hence X h(Yj) =1. It is easy to see that yj =aP, 

j =l 
- (p-R, ) vk 

t+1 5j5 t'-1 . Then yt, =a1b2,1 5 k2 < q. By 

Lemma (3.13), h(Yt, ) = -1 and so yt1+l =b vq 
" By the same 

arguments as in Lemmas (3.12) and (3.13) we can show that 

-(P-R1) vk 
xt', n(t') 

a and b2 xt 2 are pieces. Then h(Yt, ) s -2 

which is absurd. Therefore ys,,, +l ' bq and so h(Ys,,, ) = 0. 
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Since rs,,, +1 contains bq a 7l 
, an easy iterative argument 

shows that for each s'll +2 5j5 t-1 , r. contains ab and 

therefore yj = bq . Thus yt - bq-k a'"l ,1 5ßl <p, v= ±1 . 

So Yt+l avp and by the same argument as in Lemmas (3.12) and (3.13) 

we can show that xtsn(t) bq-k and avzi x t2 are pieces. Then 
s 

h(Yt) 5 -2 , which is absurd. Therefore ys,,, does not begin with 

a -1 
. Thus ys,,, -b -k 

,15k<q (since xs,,, n(s,,, ) must end 

in b 
1, 

kj q). So yj =bq and h(Y3) = 0, s"1+1 5j5 t-1 

stIt 
since h (Y .)=1. Thus yt =b -(q-k) ap and h(Y) = 0. 

j =1 " 

So yj = ap and h(Yj) =0, t+l Sj5 t'-1 . It is easy to see 

that yt, = ap b. q 

We shall show that d(u(Yt, )) =3; suppose not. Then 

d(u(Yt, )) =4 and h(Yt, ) =0. Since 

to 
h(Y. ) =1, yi = bq and h(Yi) =0, t'+1 5i5 t" -1 . It 

j =1 
-1C 

follows that yt� = bq a 1,1 5 Z1 <p, yj = a_p for each 

t"+l 5jS t"'-l and so h(Yt�) = 0. Thus 

-(p-P., vkl 
h(Yt,,, ) a-b, 15 kl <q. By Lemma (3.13), 

h(Yt,,, ) 5 -1 , which is absurd. Therefore d(p(Yt, )) = 3. 

k 
Since xt,, 2 begins with a_ 

1, 
yt, +l 

b1,15 kl <q and 

so yt++l bq . Compare rt, 
_1, 

rt, and rt, +l noting that ap 

and bq are not pieces. Then xt, a15 ß'< p and 

-k' 
Xt', n(t') 

=b, 15 k' <q" If h(Yt, ) =2, then rt, can be 

written as rt, ° ap bq a*'o b k' 
, where 15Z, <p and 1s k' <q 

which is impossible. Therefore h(Yt, ) =1 

t 
Since X h(Y. ) =2, we can take L1 = to . It is clear that 

J1 J 
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the construction of L1 did not depend on the fact that Lo =1, but 

only on the facts that the sum up to (and including) h(YL ) is 2, 

21 
that ab is not a piece, and that ap is preceeded by b1 

Subcase 2: Suppose that ys begins with b±1 . Then ys - bVIa 

15R5p, since for each 25j5 s-1 , yj b q 

We shall firstly show that d(u(Ys)) =3; suppose not. Then 

d(p(Ys)) =4 and so for each s+l Sj< s'-1 , yj -a -P and 

h(Yi) = 0. Thus ys, =ä 
(p-R) 

bvk ,15k<q and v= ±1 

(compare rs, rl and r2 to get k q) and so Lemma (3.13), gives a 

contradiction. Therefore d(p(Y 
s 

)) =3. 

-R -R2 
Suppose that ys+l =a1,15L<p. If ys+2 -a 

1 's R2 <p, then h (Ys) =1 and h (Ys+ 
l) h (Ys+2) If 

ys, begins with b±l then s' > s+3 and so ys, 
-1 

a -P 
, whence 

ys, =- b vk 
,15k<q, giving h(Ys, ) s -1 , which is absurd. So 

ys, begins with a 
1; 

hence s' > s+2 . If ys, _ 
R3 bvk 

15 23 < p, then we can see that k<q and so ys, +l ys'+2 bvq 

giving h(Y5, ) s -1 , again absurd. So ys, =a -P bvk 1sk<q. 

Then s' = s+3 and k+2.1+L2 = 2p (otherwise, use Lemma (3.10) to 

give a contradiction). Making the usual comparison with parts of 

r2 we can show firstly ys, +1 
= bvq and hence h(Ys, ) = 0. 

If v= -1 , then ys 1+1 =bq and xs, +l, n(s, +1) ends in a; 

and so xs1,2 begins with a1 since d(p(Ys, )) =3. Compare 

rs, and rl noting that ab is not a piece. Then kq, which 

is absurd. Then v=1 and so ys� = bq-k T11 1,15 Li <p, 

n= ±1 (compare rsrs, and r1 to show £1 # p). By Lemma 

(3.13), h(Ys�) 5 -1 and so 
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sit 

, 

jl h(Yj) 50, which is absurd. Therefore ys+2 - a_p which forces 

L+R1 =p and ys, ap bk . In this situation 

h(Ys+l) + h(Ys+2) -2 and then the same argument as above shows 

that h(Ys�) 5 -1 . So we can conclude that ys+l =ap 

An iterative method will show that for each s+2 Sj5 s'-l 

yj a -P 
. Suppose that ys, begins with a 7l 

. Then 

- (p-ß) vk ys ab, 15k<q. If s' > s+3 , then we can apply 

Lemmas (3.12) and (3.13) to show that h(Ys) =0 and h(YS, ) 

s' 
and so 

, 

I1 h(Y. ) =1. Hence ys'+1 bvq , and a similar 

argument as in Lemmas (3.12) and (3.13) shows that xs' n(s') 
a 

(p-R) 

and bvk xs1 2 are pieces, and so h(Ys, ) 5 -2 , which is absurd. 

Thus s' = s+3. 

We claim that h(Ys+l) + h(Ys+2) =0; suppose not. Then 

h(Ys+l) + h(Ys+2) _ -2 or -1 . If h(Ys+l) + h(Ys+2) = -2 , then 

ys'+1 ys'+2 bvq with h(Ys1+l) =0; and so Lemma (3.12) 

gives that h(Ys1) -1 , which is absurd. If h(Ys+l) + h(Ys+2) -1 

then h(Ys) + h(Ys+l) + h(Ys+2) + h(Ys, ) _ -1 and so 

s' 
h(Yj. ) =1. Thus ys, +1 ys'+2 bvq with h(Ys, 

+1) 
0 

j =1 
and again we have a contradiction. Therefore h(Ys+1) + h(Ys+2) =0. 

By Lemmas (3.12) and (3.13), h(Y )=s0, h(Y 
s -1 and so 

s' 
h(Y. ) =1. Thus ys, +l = bvq and a contradiction can be 

j =1 

easily obtained. Therefore ys, must begin with b±l and 

-(p-L1) 
ys, _1 

=a 

_ If ys, -b9, then ys� BE bq a1,1s 1l <p and so 
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-(P-Z1) 
ys,,, 

_1 
a, h(Ys�) =0 and h(Ys,,, 

_1) 
5 -1 , which is 

absurd. Therefore ys, =bQ. Thus h(Ys) =0, MY 
st-1) 

s' 
and I MY. ) =1. It follows that ys� b a_p and for each 

j =j 

s'+1 5j5 s"-1, yj -bq with h(Y) = 0. It is easy to see that 

d(U(Ys�)) -3. Then ysl'+1 -ap since xs�, 2 begins with b 

If h(Ys�) =2, then rs,, can be written as 

rS� =bqap bk* a1* ,15 k* <q, 15 R* <p which is impossible. 

Therefore h(Ys�) =1 

We observed in Subcase 1 that from the point where we established 

h(Ys�) =1, we used the following facts: yl = ap bq 9, y2 = bq with 

h(Y2) =0, y3 begins with bq , ab is not a piece and xl 1,3 ends 

in b1 to construct L1. Since all these facts are valid, the 

argument goes exactly as for Subcase 1. 

Case 2 x1 3 
does not end in bi (i. e. aP is not preceeded by 

b 1). 

We shall show that our assumption in this case also leads to a 

contradiction, by using an analogous method to that in Case 1, i. e. 

we construct an infinite sequence L0, LI, ..., of integers such that 

for each f=0,1,2, ..., the following are valid: 

(a') 1<Lf<L; 

ýbý) YL 
f=bqap; 

Lf 

(c') 
, 

I1 h(Yý) =3; 

ids) Lf < Lf+l 0 
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Again conditions (a') and (d') give the required contradiction. 

We take Lo = s" and so the argument which constructs L1 from 

Lo will depend only on the following facts: 

is*) Y1 ap bq ; 

ib*) YL bQap 
0 

L 
0 

(c*) h(Y. ) =3; 
j=1 

(d*) O(ab) =2 and al) is not preceeded by b1. 

Then the same argument will show how Lf+l is constructed from Lf 

since (d*) is valid independently of f. 

We shall firstly show that ys = bq a 7l 
,15L<p. Since for 

each 25j5 s-1 , yj = bq , xs_1,2 begins with a-1 and so 

xs, n(s) 
ends in a. If ys begins with a±l , then ys - a' , 

1S£<p and so h(Ys) = -1 . Since 

S 

h(YJ. ) =1, yS+l ap with d(v(YS+1)) -3. Compare rS+l 
j _1 

and r1 noting that ap is not a piece. Then xs+l 2 
begins with 

b and so xs+2 n(s+2) ends in b1. Thus ys+2 =a 7Z2 
. 

15 ! C1 <p and h(Ys+2) 5 -1 , which is absurd. Therefore 

ysbaý"" 
q 

Suppose that for each s+l :j s'-1 , yj tap, then 

-v vk 
ys, =ab, 15k<q, h(Ys, ) =0 and 

s' 
h(Y. ) =1. So ys, +1 = bvq and Lemma (3.12) gives a contradiction. 

j =l 

Therefore there exists j, s+1 sjs s'-1 , such that yj =ap" 
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Next we show that for each s+l 5j5L, there are no two 

consecutive edges Yj, Yj+1 with yj ends in aEp , yj+l begins 

with aEp and d(p(Y)) =3; suppose not. Compare rl and rj+1 , 

noting that a -P is not a piece. Then xj+1, 
n(j+l) 

ends in b- 

and 

1 

so xj, 2 begins with b since d(p(Y. )) =3. This is a 

contradiction. Therefore if yj ends in ap with d(p(Y3)) =3, 

then yj+l ta0 

s' 
It is easy to see that ys, b and X h(Y. ) =1. Then 

3=1 3 

Sit 

ys, +l =b, ys� =ba and I h(Y. ) 53 If 
j =1 

d (u (Ys)) >3, then d (p (Ys�)) =4; and so Ys jj+1 =ap" Hence 

y�+2 =a 7L1 
,15L<p and so h(Y )5 -1 , which is absurd. 

S s"+2 
Therefore d(p(Ys�)) = 3. Thus ys, l+l a1'15 11 <p; and 

_ (p_2. ) 
in the usual way we can show that ys�+2 ap ys, +3 a1 

h(Ys"+1) = h(YS�+3) = -1 and h(Ys�+2) = 0. It is not difficult 

to see that s"' = s"+4 and ys= bq So ys,,, +l 
bq with 

h(Ys"'+1) =0. It follows that yt : -- b-q ap and h(Y. ) =3. 
jý 

We take L1 =t. Hence the construction of yL did not depend on 
1 

the fact that Lo = s" , but only on the fact that the sum up to (and 

including) h(Y1) is 3, ab is not a piece, and ap is not 

preceeded by b- Therefore y1 ap bq 

Assume (ii) occurs, i. e. y1 bk ap 5k(q. Hence 

h(Y1) =1; and so for each 25j5 s-1 , y. = ap where s is 
i 

the least integer, 35s5L such that y involves b±l . Thus 

ys = ap b. q 
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Again we need to consider the sequence of edges 

Y1' Ys' Ys" Ys"' Ys"'' Yt' note the variation from before, which 

is due to the assumption that y1 ends with b rather than a. 

Suppose that ab is a piece, and so h(Ys) =1 or 0. Then 

for each s+1 5j5 s'-1 , yj = bq with h(Y. ) 0. So, in the 

usual way, ys, = at ,152, <p, ys� = ap-'t a -q 
s 

s" > s'+2 , h(Ys, ) = -1 , h(Ys�) =0 and for each s'+1 5j5 s"-1 , 

y. ap with h (Y. ) = 0. Thus s"' > s"+1 , y- bqa -P and 

for each s"+1 5j5 s"'-1 , yj -bq with h(Y. ) =0, whence 

t> s"'+l, yt _ap bkl , h(Yt) =0, yj = ap with h(Y. ) =0 for 

t 
each s"'+1 5j5 t-1 and h(Y. ) 52 Finally, t' > t+2 , j =1 

yt, bq-k av2 ,1s1<p and v ±1 . So for each 

t+l 5j5 t'-1 , yj bq with h(Y. ) =0. Hence h(Yt, ) _ -1 

t' 
and I h(Y. ) =1 whence ytý+l - avp ,V= ±1 . Then we can show 

j=1 

that avI xt, 2 and xt' n(t') 
bq-k are pieces and so h(Yt, ) s -2 , 

which is absurd. Therefore ab is not. a piece. 

- -1 Suppose that h(Y5) =2. So we can write rs i- bq ap xss2 xx-1 2" 

S 
Now, I h(Y1) 53. Then in the usual way we can show that 

j=1 

d(u(Ys)) = 3, ys+1 bq ; it follows that we can write rs as 

- Ql -k l 
ap bq ab, 15 zI <p and 15 kl <q which is impossible. 

Therefore h(Y5) 2 

S 

Suppose that h(Ys) =0. Then I h(Y. ) =1 and so 
j=1 

ys+l = b4. So s' > s+l and ys, a bq a-I 
,1st<p whence 

s" > s' +1 , ys t, =a 7(P-1) bvk 
,15k<q, v= ±1 0h 

(YS O=0 
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and for each s'+1 5j5 s"-1 , 

follows that h(Ys�) 5 -1 and so 

yj =a -P with h(Y3. ) =0. It 

Sit 

h(Y. ) 50, which is absurd. 
J al 

Therefore h(YS) /0 and so h(Ys) =1. 

s 

Now, I h(Y. ) =2, ys = ap bq , ab is not a piece and ap 
j=1 

is preceeded by b1. So we may use the same argument as in 

Subcase 1 of Case 1 in (i) to get a contradiction. 

Assume (iii) occurs, i. e. yi _ ap bk ,15k<q. So 

h(Y1) =1, y2 = y3 =- bq with h(Y2) = h(Y3) =0 and whence Lemma 

(3.12) gives a contradiction. 

(2) W. 1. o. g. we may assume that r _ ap bq aR b-k ,15R<p and 

15k<q. So 0 (ap bq) =4 and 9 (ab) =2. 

Let w be a word in (alp+1 b2q+l)3 a2p+1 and 

2q+1 2p+1)3 2q+1 (b ab and assume w is cyclically reduced as a word 

in these generators. Then it is clear that w is cyclically 

reduced in a and b. 

If w=1 in G then, by the nature of our chosen generators 

in the associated R-diagram Tn for w, there is a T-path, and yl 

must be one of the following: (i) y ap bq , 
(ii) yl = ap b 

' -k' 15 k' <9 yi a. bq ,1S 1' <p, (iv) Y1 =b ap 

1sk' <k or (v) Y1 bqä. t 1 sß, ' <L. 

Assume (i) occurs, i. e. yi ap bq . Then h(Y1) =1 or 2 

kl 
Suppose y2 =b, 1Sk1<q. Then x 2,2 

does not begin with 

b since y3 begins with b and d(p(Y2)) = 3. It is clear that 

x1,2 begins with a1 and so x2 
n(2) ends in a. So we can 

s 
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k 
write r2 -ab2 z2 where z2 does not begin with b, which is 

absurd. Therefore y2 = bq . Suppose that y4 begins with b 

From the nature of our chosen generators, we can show that 

Y3 = Y4 = bq and y5 b2 

If qZ3, then xs 2 must begin with b and y6 y7 = ap 

with h(Y6) = h(Y7) =0. Thus y8 =a bk ,1sk5q which is a 

contradiction since x8, 
n(8) 

does not end in a. So q=2 and 

xs, 2 
begins with a1. Thus y6 = atl ,1S1<p and 

h(Y6) _ -1 . So y7 = ap with h(Y7 )=0. It follows that 

y8 = ap b2 which forces ßl =1, i. e. y6 a. By the same 

argument as with y2 , y, = b2 . Since ab is not a piece, 

y10 =b and x10 2 must begin with b. So y11 - y12 - ap 

Y13 a and x13 2 must begin with a. Thus h(Y1) = h(Y8) =2, 
s 

13 
h(Y6) = h(Y10) = h(Y13) -1 and I h(Y. ) =1. So 

j=1 

Y14 Y15 bq It follows that h(Y16) S -1 , which is absurd. 

Therefore y4 does not begin with b. Obviously, y4 does not 

begin with b-1 

Suppose that y4 begins with a 
1. 

Then y3 =b, y4 -a -p 

h(Y1) =2, h(Y3) -1 and h(Y4) =0. Since 

, 
4 

=h(Y. 
) =1, y5 =ap with h(Y5) =0 whence y6 Eaib 

kl 

1 

1: k1 <q. Compare r5 and r, noting that ap is not a piece 

and d(p(Y5)) =3. Then x6 
n(6) ends in b1, which is absurd 

since ab is not a piece. Therefore y4 must begin with a. 

So y4 = ys - ap with h(Y4) = h(Y5) -0 and y6 °a bvk ,15k<q. 

5 
Thus h(Y6) s -1 , which is absurd since I h(Y. ) 1. Therefore 

j=1 
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yi I ap bq . It follows that yl ap b2 and yl t aZt b4 and 

the other two possibilities can be ruled out easily. // 

It turned out that the most difficult case was when 

am, bn j R. It is clear that aP and bq are not in general free 

generators (e. g. a relation (aP bq)3 a 1). The following example 

shows that even ap+l and bq+l need not be free generators. 

(4.9) Example 

Let G= <a, b, c, d ; r1 = d2 ap b 

r2=c2bgad2b 1 
a, r3 

It is clear that G is a C(6)-group. 

generated by ri ,i=1,2,3 .RL 

free group on {a, b, c, d} . Consider 

c2 b1a, 

(a 7I b)6> , where p, q Z 2. 

Let R be a symmetrized set 

sa subset of F(a, b, c, d) , the 

the following connected reduced 

R-diagram lb 
. 

b-q a. -1 
/ d-2 2ä 

Pb-1 

a 71b d -b 
a7 

aPbl 
2 

alb 
ä1b 

1bga1 

ä1b ä-lb 
Rc 

b-'aP 

d2 

Now 4(6(Th)) _ (ap+l bq+l)-3 =w, say, is a word in ap+l and bq+l 

which is cyclically reduced in a and b. By the Normal Subgroup 

Lemma (1.2.2), wc <F(a, b, c, d) < R> , where F(a, b, c, d) is the 

free group on {a, b, c, d} 
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We have established that when an, bm IR, (provided no relator 

r in R has the form r- bnq aCP b1la £k or aCP bnq a Ek b -n' 
, 

where 1: k<p, 1<1<q, e, n = ±1), free generators can be 

chosen as proper powers of a and b (see Proposition (4.8)). It 

seems very likely that alp and b2q are free generators, but to 

prove this we should have to consider many more possibilities than in 

the proof of Proposition (4.8)(1); on the other hand, the proof may 

be shortened considerably by using higher powers of ap and bq. 

We conclude this chapter with our main theorem. 

(4.10) Theorem Let G = <A ; R> be a nontrivial finitely 

related C(6)-group. Then G contains a free subgroup of rank two 

finless G is isomorphic to one of the following three groups: 

(i) G1 = a; ýý 

(ii) G2 =La; 21, -a %, is 
4 o, 

(iii) a5 =< asb; a2 a 
2. U29 h2 

Proof Use Proposition (1.3) or Proposition (1.4), if there exists 

a in A which is not a piece. Otherwise, appeal to the tree in 

the beginning of this section. 



CHAPTER III 

A THEORY OF DIAGRAMS 

In this Chapter we shall use R. C. Lyndon's result (10), 

about an arbitrary map, (see Lemma (1.1.3)), to introduce a theory of 

diagrams which is a tool in dealing with embedding problems. In 

section 1 we define a "suitable" map with three types of regions 
', 

' 'd and show that in such a map there exists aU -region whose 

artificial degree is positive. In section 2 we show that, if a 

countable group K, (under certain conditions), is not embeddable in 

a quotient of a C(6)-group G then, roughly, there exists a suitable 

diagram (depending on G and K). This is our main result (Proposition 

(2.17)). Finally, in section 3 we shall establish some results on a 

given suitable diagram. We shall employ this theory in the next 

Chapter. 

Cnn*inr 1 

Let 'm= Ith 
'Ut 

be an oriented map. We shall partition J 

by 
T= TU (U lý , where . 

Let X and Y be regions in (not necessarily distinct). 

Let Let E be an interior edge. We say that E is an 

(X, Y)-edge if p(E) =X and a(E) = Y. We say that E is an (X; ))-edge 

(or E E(X, 3)) if there exists a region Y'6 'j such that E is an (X, Y')- 

edge. We say that E is a ()(, Y)-edge (or EE()E, Y)) if there exists a 

region X'6). such that E is an (X', Y)-edge. We say that E is an 

(-, J)-edge (or EF(, 'J)) if there exists X', Y', regions in X 'Lj 

respectively, such that E is an (X', Y')-edge. Thus the partition of 

° induces a partition of 
t 

via Ec(, j, J) iff p (E)EX and a(EW'J 
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Let v be an interior vertex. Let E1, E2,..., En be edges such 

the following four conditions are valid 

(i) X (Ei) =v, where 1 <, i, n; 

1) (ii) p (Ei) =a (Ei+l) 
,1.. < i.. < n-1, and p (E. ) =a (E 

(iii) E1, E2,..., En are distinct ; 

(iv) If E is an edge with X(E) = v, then there exists 

i, 1, i, n such that E=E. . 

We shall refer to S(v) = (E1, E2,..., En) as the ordered star 

of v (note that S(v) is defined only up to cyclic permutation). It is 

clear that d(v) = n. ' 

Let each of m 1, be one of 
ý, ý, 

1, . Let v 

be an interior vertex with S(v) = (E1, E2,..., Em). We shall say that 

v is an (X1,... 
, )m)-vertex if p(Ei)E, XI for each 1 .<i .<m. 

(1.1) Convention From now on we shall use constantly the 

following notation: 

Let X, Y be any regions in )T =vvVU with °_UKU ýi 
. 

Let v be an interior vertex. Let each of X and' be one of or 
t. 

(i) v# = card {De' Iveß(D) } 

(ii) [X ; v] 
#= 

card {DC-3(--l ve ß(D)} 

(iii) (X ; v] 
#= 

card {E E (Y` AM 
=V or /44(E). = vo 

(iv) [ (X, 'J) ;v]#= card {E G (X, A(E) 
=v or At(E) = v° 

(v) IC Y) ;v]#= card {E E (X, Y) I A(E) =v or . BIL(E) =v, ,j 
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(vi) (X, Y)# = card {E eE is an (X, Y)-edge} 

(vii) (, Y) = card {E EtIE is an ()Y)-edge} 

(viii) (X, 'j)11 = card {E Et IE is an (X, 'j)-edge} 

(ix) (Y-, j) 
#= 

card {E C -t E is an (X, j)-edge} 

(x) card (s ) 

(1.2) Definition 

Let7J'j IhJgU'be a map. Then 7n is called a suitable map 

if °J can be given a partition ° _'kUSUCsuch that the following 

conditions are valid. 

(I) 6(7n) is a simple closed path. 

(II) A boundary region of IT) is aý -region or a Z°-region. 

(III) (i) Any boundary region not semi-interior is a 

f. 
-region. 

(ii) If X is a boundary region which is not semi- 

interior and E Eß(X) is an interior edge of7p, 

then E4 (X, "k) . 

(iii) If X is a boundary region then ß(X) has at most 

one (unoriented) boundary edge of T11 . 

(IV) A semi-interior If 
-region X_ has 

a unique (X, c()-edge. 

(V) (i) If X is aJ -region, then d(X) >, 2. 

(ii) If X is a ! <-region, then d(X) % 6. 

(iii) If X is a 'C -region then d (x) ^ 7. 
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(VI) (i) There are no ( -P, )-edges . 

(ii) There are no (`5 , 
k)-edges 

. 

(VII) If X is a '5 
-region and all the edges in ß(X) are 

(j ,5 )-edges then i(X) >, 6. 

a'hrou rout this sec -Lion le U iij= U UT be a 

ß'n1 ý^ 1e il? Let X De cnly re ion_ of MP r_d ''u 

if X is aal interior rezior, 

4 if is a 'ooundpry re.. --ion 

Let 711 ̀ be th, 6 dual of 711 as defined in (16). 

Applying Le a(I. 1.3 (2) ), with 
,p=6 and q=3, to m 

and noting that, in the obvious notation, 

(('t9''` ) i* Y< (( r)) 3', we l w. ve 

(Fl) G (*) + (*: ý) , where 

*) 
ME 

[a (M) - 1(M) ]+ 
Dý 

ýa CD) -i (D) 

X[ a(K) -i(K)] +2 X (3 - d(v)] 
K6k vE-1', v interior 

Since i71 is suitable, and so L° 0 ¢, it is easy to derive the 

following 

(F2) I [a (D) - i(D)I> 6 
De 

Let Df_ý . We shall say that D is a -region (or DG oje ) 

if (D) 16 )#>o, and D is aj1 region (or De where M E'C , if 

(D, P: )# > o. Hence we have 
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(F3) I [a (D) -i (D) ]>6 
Dj'e 

This is clear for if Dýj. dthen i(D) . 6. (See condition 

(VII)). However (F3) seems inappropriate for us. We obtain a more 

useful inquality by defining for each if c -C its artificial degree 

d (M) and showing a (M) : 6. Roughlj, the sum [a (D) -i (D) ]+ 
ME-ü DC-J 

2 [3 - d(v)] is broken up and distributed among the '9 -regions. 

The exact way of doing that is made precise by the following sequence 

of definitions. 

As a first step we share out the value 3- d(v), where v is ? vty 

interior vertex, among the regions in whose boundary v lies. 

(1.3) Definition 

Let v be an interior vertex and DaI -region with v C- ß(D). 

Define 

f3-d(v) if L(D, C); v] 0 
IS(v, 

D) V 

3-d(v) 1+ Lt; vl#+LP; vl otherwise 

We illustrate the Definition (1.3) in the following example. 

Let M, M2E and D, D1E. Let v Eß (M 
1) 

flß (M 
2 

)nß (D)Aß (D ) where v 
11 

is an interior vertex. 
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1! 

Here d (v) = 6, v# = 4, ['6 ; v] 
I=2, 

v] 
1=ä, 

[(D, *C ); v]# =2, [(D1, L ); v]# = 1, [ßC; v]# =o 

(1.4) Definition 

Let D be aýC -region. Define 

(D) =1# [a (D) -i (D) +21d (v, D) ] 
(D, $) vE 0 (D), v interior 

The idea of the definition is the incorporation with a(D) - i(D) 

of the contributions from the vertices in ß. (D) with the resulting 

quantity being "averaged" in regard tot -regions. 

Finally, if a' -region D has an edge in common with a 

-region M then we transfer the value d(D) to the region M thereby 
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replacing a(M) - i(M) by the new quantity d(M). 

(1.5) Definition 

Let ME C° . Define 

d (M) =a (M) -i (M) + (D, M) 
#d 

(D) 
De% 

(1.6) Proposition 

Ed (M) 6 MEN 

Proof 

From (F1) and conditions VI, VII, we have 

Mi 
[a (M) -i (M) ]+D [a (D) -i (D) ]+ 2vLinterior [3-d(v)1 >, 6. 

By Definition (1.5), 

ow" d (M) [a (M) 1(M) ]+ ýü 
D 

(D, M) 
# 

ft. 
d `D) 

MM Eý M JM 

Now, 

(D, M) 
#d 

(D) 
11 

d (D) 
MEN D EIM DC- 

Cv interior 

We claim that II d(v, D) ;I [3-d(v)] 
D; Sp vE ß(D) v interior 

v interior 
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Let 
ý, (v) vE ß(D)} sL dtv; 

r 
card(`5f (v)), 

(v) = {D E 
ýC 

(v) I[ (D, *C) ; v] 
#> 

0l and 

[ý ; v] 

a= 

card ('6 (0). 

Fix an interior vertex v. Then we can write 
0 

Td (v, D) = (1) +(2) + (3) 
Dý (vo) 0 

where 
3-d 

0) (1) 
V# 

[56; v01 -[ ; vo] ) 
0 

3-d (vo) 

(2) -ý---- 

vp 

{De(v) 

[(D, t); 
v0] 

) 'Vol #+# 3-d(v0 
and (3) _ #(t*; vor [C ; vor ) -- -- 

(t); Vol V0 

Note that 

I1 
DE 

5(v )[ (D, e ); v 1 <, 15 
ýV and 

0ý 
0 

[ý ; vo]a < [(S , 
"') ; ýoj# 

3-d(v ) 
Since < Os we obtain 

v 0 

3-d(v ) 
d(v D) ;v] +[ ý;; v ]#+[ G ;v ]#) 

o00 Dn (vo) �o v0 

4 3_d(vo) 
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v is interior and 

Let 
0= 

{vet! 
I6here 

exists DE with veß (D) } 

Hence IId (v, D) _I[I d(v, D) 
D Eý, v EO(D) v Eý'o DC 

v 
(v) 

v interior 

I (3-d (v)) ?I (3-d (v)) , 
v E4'o v interior 

since 3-d(v) , o, for any v. 

(1.7) Corollary (i) There exists a6 -region 

M in m with d (M) >o6 

(ii) If d (M) > o, then there exists a 

i -region D with d(D) > o. 

Proof (i) Obvious 

(ii) Use the fact that i(M) 3 6, (condition III(iii)). 

(1.8) Definition 

Let M be af -region. For each edge E occurring in d(M) we 

define 

,,, 
d (d'(E)) -1 if O"(E) Ed 

(E; M) 
-1 otherwise, 

and call this the artificial degree of E relative to M. 

(1.9) Proposition 

Let M be a 16 -region. If d(M) > o, then I d(E; M) > -6j 
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where the sum is over all E occurring in S(M). 

Proof From Definition (1.5) we have 

o< d(rt) _ 0c (M) - 1(M) fi CD ) a(D) . 
D FýM 

If M is semi-interior then 

-a() < (D: M) ýa(D) -1ý - 
('M. ý)# - i, ( since (M, %) 

If Ft in not semi-interior then 

< (D, i1i Cd(D) 
- 

1] 
-((Mot 

4- 

In both cases -6 d(EOM) 
E' in (M) 

(I. 10) Remark 

Let M be af -region such that d(M) > o. If (M, 'C )# a(M). r 

then there exists an (M, ý )-edge E such that 

d (E; M) >oi. e. d (tr(E)) > 1. 

11 __-d -- n 

For any set S, we denote the free group on S by F(S). If S 

is a finite, say, S= {x 
1 ,..., xn} we may write F(S) = F(x 

1 ,x2,..., xn) 

Let A be a finite set such that card A >ý 2. Let R be a finite 

symmetrical subset of F(A). We shall assume that R satisfies 

w 
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Hypothesis (H1) 

(1) No element of R is of form az, where ac-A, ze F(A) 

and z is a- free. 

(2) If aeA, which is not a piece relative to R, then 

no element in R is a proper power of a. 

(3) R satisfies C(6). 

Let G=<A; R>-F (A) /<F (A) < R>. Let x and y be 

any two elements not in A. Let B be a normal subgroup of F(x, y) which 

satisfies 

Hypothesis (H2) 

If ugB with uý1 in F(x, y), then Jul ,. 6. 

We write K=<x, y ;B >= F(x, y)/B. Let Bo be the set of all 

cyclically reduced words of B. Then K also has a presentation 

< x, y ; Bo > since any element of B is conjugate to an element of B. 

Let sl = xzit and 

s2 3"Z21 where z1, z2 E F(A). Then s, 
2E 

F(A, x, y) 

and we can form the set C of all cyclic permutations of si±l and s2±1 

We shall assume C satisfies 

Hypothesis (H3) 

Z1 and Z2 are not expressible as a product of fewer 

than six pieces relative to RVC. 

Let R' a R. 'BU. C and let N=< F(A, k, y) < R' >. Let w be a 0 
freely reduced word in N. Then by the Lyndon-Van Kampen Theorem 
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there exists an associated R'-diagram 7n ='ftj UT such that 

ý (d (m)) = W-1. We partititon 
I by 5=ýuk UT, where 

{D 
k- {DE`I 

ý(S(D))E R} , 

ý(s(D)) EB} , and 

" _{DE 1 4(a(D))EC} . 

It is clear that F(A, x, y)/N is a factor group of G, since 
elements of A. 

x and y can be expressed in terms of A Also K is embedded in 

F(A, x, y) /N iff NnF(x, y) t B. 

We shall use our theory of diagrams to show that N ()F(x, y) = B. We 

shall proceed by contradiction and assume 

Hypothesis (H4) N (I F(x, y) JB 

Obviously B <, NnF (x, y) . Suppose that wE N(F (x, y) and 

wýB. Then any R'-diagram for w must involve regions other than 
k 

-regions (otherwise, by the Normal Subgroup Lemma (1.2.2), wE B). 

Now, let A be the set of all cyclically reduced words in 

(N fl F(x, y)) - B. (It follows from (H4) that A is non-empty). We 

shall not distinguish between two elements of A if one is a cyclic 

permutation of the other. 

Among all R'-diagrams whose boundary labels are elements of 

we select a diagram PI(A) with the minimum number of regions. Thus 

'm (A) is R'-reduced. Our main result in this Chapter is to show that 

fl(A) is a suitable map. A series of Lemmas is required. For 

emphasis we repeat that hypothesis (H1) - (H4) are assumed. 
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(2.1) Lemma 

Let m= (ý) (the number of regions in (A)) and let 

u ¢(dCM (A))). If 

n* _1 uR wi ri w0 , ri E R' 
1=1 

is a representation of u as a product of conjugates of elements of R', 

then m< n. _ 

Proof Suppose not. By the Lyndon-Van Kampen Theorem (1.2.1) 

we can construct an R'-diagram for u with -fewer regions than In (A). 

This is a contradiction. 

(2.2) Lemma 
connected, simply connected 

Let m =(Q). Let be a, 
(diagram 

such that for any region 

D, «(6(D)) RUBUC. If 4 (d (n) ) B, then `T 
#>m. 

Proof Clearly ý (S ('n)) V 1. Let f. n 
= n. 

Suppose that n<m. By the Normal Subgroup Lemma (1.2.2), 

n_ 
(d(11)) = II w. r. w. 

l 
, r. E RV BUC 

i=1 1111 

k' r_1 t 
=R wi ri wi , ri ER and k<n 

i=1 

(replacing ri by a suitable conjugate if ri EB- Bo). 

Now, by the Lyndon-Van Kampen Theorem (I. 2: 1), there exists 

an R'-diagram 'n' with 
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$(a(ýl )) n w. ri w1-1 
1 B. 

i=1 

Finally there exists a reduced R'-diagram fl* with ¢(d(')'j)) EA and 
#< T(0) which is impossible. 

(2.3) Lemma S('l(A)) is a simple closed path. 

Proof Suppose not. (See the figure below) 

If there exists a disc :- in 7f(A) such that 4(d(L)) 
ý 

B, 

then by Lemma (2.2), >. *T # 
since for each region D in 4yi 

-M(A) 

¢(8(D)) E RUBQC. This is a contradiction. Thus for each disc 

in 7p(e), q(d(ý. )) E B. 

Let- M, be the diagram obtained from 17)(A) by deleting all 

interior edges and interior vertices in-M(A). 

Then ý (S ()111)) _ (S (m (6)) 
. By the Normal Subgroup Lemma (1.2.2), 

W(Y111)) EB which is impossible. (Note. In'y 
-Ithe interior of 

each disc of Ill is to be regardeda as a region. ) 

(2.4) Lemma 

Let L be a ,g -region in'1'n (A). Then 6 (L) is a simple closed 

path. 
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Proof 

Any closed path has a simple closed subpath. Moreover if 

5(L) is not simple closed, then there must exist a simple closed sub- 

path y with L exterior to y since every region in-n (A) is homeomorphic 

to the open unit disc. 

Let y (E1, ..., Ek), k)1, be a simple closed subpath of 

6(L) with L exterior to y. Let ii be the subdiagram of 771 (0) consisting 

of y and all vertices, edges and regions interior to y. Then 

7Th (o) Z °, n 
+ 1, 

Case 1 0(y) 0 B. Since for each region D in TI, 

0(d (D)) EBURUC, Lemma (2.2) shows that n > 
1 # 

which is Tý 
(A) 

impossible. 

Case 2 4, (y) E B. We write 6(L) = (E, ..., Ek, Ek+l,..., ER), 

where (E1,..., Ek) =y, R= d(L). Consider the path yl = (Ek+1,..., E 

Here u(EX) = a(E1) = (Ek) = X(Ek+l). Then y' is a closed path. Let 

4 be the subdiagram of m (A) consisting of y', all vertices, edges and 
oV 

regions interior to y' - in effect 
J- 

=71 UL 

l 
Now, 4 (S (L)) =ý (y) 4 (Y') EB whence 4 (y') 

.EB. 
Let- 

be the diagram obtained fromm (A) by deleting. all the interior vertices, 

edges and regions of 
f- 

and regarding 
J- 

as a single region. Clearly 

(S (m(ý)) _ (S {m1 and`, <(ý) . Since for each region D in 

1-n 
1, 

S(S(D)) G BURUC, °f'ý1(A) by Lemma (2.2), which is impossible. 
71 
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(2.5) Lemma 

Let L and L' be any two distinct 
ý 

-regions in1f (A). Then 

ß (L) 

Proof Suppose not; then we consider two cases. 

Case 1- When $ (L) (l ß(L') contains an edge E. Letif 
1 

be 

a diagram obtained fromh (A) by deleting E and replacing L and L' by a 

single region L1. 

Then 
.c 

(S (ill )) = Apply Lemma (2.2) to Yll to show 

a contradiction. 

Case 2- When ß(L) fl ß(L') contains a vertex and no edges. 

Let v be an interior vertex in ß(L) f ß(L'); then by case 1, 

d (v) >. 4. Let d (v) = (E1, E2, ... , Em) where E1, Em Eß (L) and Ek, Ek+l Eß (L') , 

2 ,<k ,< in- 2 

L 
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We construct a new diagram if1 by "tearing Yf(A) apart" at v in such 

a way that v is replaced by two new vertices v1 and v2 , and also L and 

L' are replaced by a single region L1. 

Formally v, L 

are replaced by v1, v2, 

= vl, 1: j: k, X(E) 

L' and El, E2, ..., Em are all deleted and 

L1 and E1, E2, ..., Em where X(E 

= v2, k+l ;j<, m and u(E. ) = u(E. ), 1j; M. 

Also we put 4 (E M. 

Then ¢ (S (M)) (S ('ß"n(0))) and `' m(I) . Since 

ß(L1) ß(L1) EB and so Lemma (212) gives a contradiction. 

If v is a boundary vertex, then the star sequence of edges 

at v can be written as d*(v) = (El, E2,..., Em), where El and E2 are 

boundary edges since (M) is simple closed path. And (almost) the 

same argument as with v interior can be applied to give a contradiction. 

0 

L1 
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(2.6) Corollary There are no ('k, 
< 

)-edges infl1 (A). 

(2.7) Lemma 

Let L be a -k -region in7i1 (A). Then 0 (L) nß (1 1(A)) - q. 

Proof 

Case 1 when L is an sbc-region. We write & (T11(0)) = (El, E2,.., ER) 

rII -1 
where E1 E O(L). So we can write 6(L) = (E1, E2, ..., EL), where E1 = El " 

Now, V (EL') = A(E) =p (E1) =X (E2) and 1(Ek) _ , 
ß(E1) p (Ell) = A(E). 

Then we have y= (E2, .., Ek, E2, .., E ,)a closed path (in fact y is a 

simple closed path) and let'j. be the subdiagram of7fl(A) consisting of 

y all vertices, edges and regions interior to y. Hence °V<` 
1(4) 

and for each region D of ., 4 (D) E R1. If (y) B, then by Lemma 

(2.2), 
m(ý) 

which is absurd. Thus 0(y) E B. 

LetIfl1 be the diagram obtained from lil(A) by removing all the 

interior vertices, edges and regions of 
£ and regarding 

4 as a single 

region. Then 4 (6 (n1) _ý (d an (A)) " 

ß(d(1111)) EB which is impossible. 

By the normal subgroup Lemma (1.2.2) 

Cass 2 When L is a wbc-region . Let äZ (9(L) (I (3(Tr 
" 

Le ý. 
- 711( 6) -L; then 

, 
has boundary cycle 

(Ei*..., Ek, E"I,.,., E: tO 
)where arri 

ý(L) - (E'Z,..., Etk) . Tearing : apart at 0 we obtain a connected 

f ly cor ded mao Lwith (5 (ý )) E(F(x, )- B) . As < 
ý rnroý 

w have a contradiction . 

.. 
ý~in.. 

I 
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Case 3- when L is a bdc-region. Let 6('h) _ (E1, E2,.., Em). 

We consider the subsequence (E 
kl ,E k2 , ..., E kt 

) of 6011) where 

(1) kj_1 < kj <j6t, 

(2) Ek. ß (L) 1j tý 

c3) (Ek. ) E6 (L) 
J 

(4) A (Ei) ýO (L) for kj-1 <i, ki -2 and X (Ek 
J , -1) 

E$ (L) 

if and only if Ek. 
-lE 

? (L). Such a sequence must exist since d(rp) 
J 

and ö(L) are simple closed. 

Let 
ý,..., 

%. 
- 2' 

( ri j. - 
where E 

11vj 
is icluded if and if E}.. Now there is w subpath 

, ...,, Elt ) ofd ý(L) with the property that 
ý-1 

(i) )(E' )_ {1L«E1) if F1: 
ß) 

4 (L) 
s nd, (ii) A eJ) 

ºý (ý 
-2 o therwis e 

(Such a path always 
Zezsiet. 

) Thus 
r is a simple closed path. 

For each 14j, t, let 
L. be the subdiagram of m(a) 

consisting of (y., y! ) and all vertices, edges and regions interior to 

(Yr y! )" (In effect 1j<t, are the submaps whose supports are 

the closure of the components of i11 - L). 

Now, Lemma (2.2) shows that for each 1 .<jt, 
W(f- 

j)) E B. 

Let 1'Y11 be the diagram obtained from 111 (A) by deleting all vertices, 

edges and regions interior to the j 
's and regarding each_ j as a 

single region. By the Normal Subgroup Lemma 4 (d (T 11) & B. This is a 

contradiction since I (S (1'pl)) (d (i7(ß))) . 

We observe, from the labels of ' -regions and using Lemma 

(2.7) the following 
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(2.8) Remarks 

(1) Let D and D' be any two -6 -regions in m (A). Let E 

be an edge such that ¢(E) = x±l or y±l. Assume that EE O(D)I) ß(D'). 

We write d(D) = (E, E1, ..., E 
L) and ö(D') = (E 1, 

E i, ..., E k)* Then 

$(5(D)) _ (ý(6(Dl))), 1 

(2) Let D be a boundary region in Tfl(A) which is not semi- 

interior. Let E be a boundary edge occurring in S(D). Then 

(i) D is at -region. 
(ii) E is the unique boundary edge which occurs 

in S(D) 

(iii) 4 (E) =x or y±l 

(iv) If E' is an interior edge occurring in S(D), 

then E' 
ý (D, k) 

. 

(3) If D is a semi-interior 
' 

-region in Y11(s), then 

there is a unique (D, k )-edge which occurs in S(D). 

In Chapter II, Section 3, we defined AR(w) and 6R (r). 

From now on we shall use them. 

(2.9) Lemma (i) Let E be a )-edge. Then 

R(ý(E)) = 1. 

(ii) for each DE, 8R(ß (d (D)) >. 6, 

provided that +(S(D)) is a product of pieces relative to R. 
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Proof (i) The label on a ('J 4 )-edge is a 

piece relative to R. 

(ii) This is true since R satisfies C(6). 

(2.10) Remark There are no (j 
, 

k)-edges in %ß'1(A) 
. 

Next we assume the following hypothesis is valid on Y1l(A). 

Hypothesis (HS) 

Let E be a (' ,f )-edge. 

(1) If 4 (E) is a product of pieces relative to R, then 

0R(O (E)) ; 3. 

(2) If ý(E) involves a generator a in A which is not a 

piece relative to R,, ýthen $(E) =u1a u2 where ul and u2 are a- free. 

(2.11) Lemma 

Let D be a region of f (e). 

(1) If D is aý -region then d(D) >, 2. 

(2) If D is a 
k-region 

then d(D) : 6. 

(3) If D is a 
c-region 

then d(D) , 7. 

Proof 

(1) Let EEß (D) . If ¢ (E) involves a generator which is 

not a piece relative to R, then using hypothesis (H5) and (H1) it is 

easy to show that d(D) >, 2. 

Now, if for each Ee ß(D), 4(E) is a product of pieces then, 
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using hypothesis (H5) and Lemma (2.9) (ii), again d(D) 2. 

(2) By Remark (2.10) and Corollary (2.6), neither (J(, 5 )- 

edges nor (k, <)-edges 
can exist in 7l (Q) . Since the label on a 

(k, r')-edge is either x±l or y+l, d(D) >, 6 by hypothesis (H2). 

(3) This follows easily from hypothesis (H3). 

(2.12) Lemma 

Proof 

S(a(it(e))) E A. 

can show that i 0, P% 

and 

(ii) 

(i) Use Lemma (2.7) and the fact that 

(ii) Using Lemmas: (2.11) and (1.3.1), we 

"g+ 
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", 

v 
r '. c - ", . _ 

Next, we want to show that every countable group can be 

embedded in a countable group K= <x, y ; B> which satisfies (H2). 

We shall use an argument similar to that in the proof of Theorem 

(1.3.1). 

Let F be a free product of nontrivial groups GJ . Then 

each non-identity element w of F* has a unique representation in 

normal form w=zl ... zn where each of the letters zi is a nontrivial 

element of the factors G. and where no adjacent zip zi+l come from 

the same factor. The integer n is the syllable length of w, written 

1w) Let u, v EF, u= xl ... xk and v= yl ".. ys in normal form. 

A word w has semi-reduced form uv if w= uv and there is no cancellation 

between u and v. If yl and xk are in different factors of F, then 

w= uv has reduced form. An element w in F with normal form w zl ... 

zn is said to be weakly cyclically reduced if zn 0 z11 or lwlF. 4- 1. 

An element w in F with normal form w= zl ... zn is said to be 

cyclically reduced if (w1 
F1 

or zl and zn are in different factors 

of F. 
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A subset R* of F* is called symmetrized if every r6 R* is 

weakly cyclically reduced and every weakly cyclically reduced conjugate 

ofromdrlisalso inR 

A word b is called a piece if R contains distinct elements 

rl and r2 with semi-reduced forms rl = bcl and r2 bc2. Note that 

the last letter of b does not have to be a letter of the normal form 

of r1 or r2. 

Condition C% (' ) 
F 

If r& R, r= be in semi-reduced form and b is a piece, then 

lbI 
Fit 

<rF*9 'and always :1r 
ý- 

*>F5 

(2.15) Theorem (Lyndon (10)) 

Let F be a free product. Let R be a symmetrized subset 

of F which satisfies C' (') for 6. Let N* be the normal closure 
F 

of R in F*. If w is a nontrivial element of N* then w has a reduced 

factorization w= usv in reduced form, where there is a cyclically 

reduced r6 R with r= st in reduced form and IS! 
*>* 

FF 

(2.16) Lemma Every countable group can be embedded in a 

group K with a presentation K= <x, y ; B> that satisfies (H2). 

Proof 

Let K' _ <kl, ... ; B'> be any countable group. Let F* 

K'* <x> * <y> be a nontrivial free product, where <x> and <y> are the 

infinite cyclic groups generated by x and y respectively. 

80 2i 
Let ri = kit 11 ((XY)L . 10 

y] 2, ... 
R=1 
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The symmetrized set R generated by the ri(i; l) satisfies 

C' (1) since [(xy)1.102iy (xy)(9+1)102iy] cannot be a subword of F* 10 ' 

a piece. Let N_ <F 
<R 

> and put K= FIN By Theorem (2.15), if 

wj1 in F and w belongs to N, then w contains at least 
10 
7 

of an 

element of R; and so K embeds all the factors of F. By the 

nature of our chosen relators rip K is generated by x and y. In 

fact we can eliminate the relations R by Tietze transformation, 

rewriting the relations B' in terms of x and y to give the presentation 

<x, y ; B> for K. 

Now, if w=1 in K. (hence we N*), then IwI 
* >, 6, since 0- 

of 
F 

an element of K has syllable length much larger than 6. Thus 

Iwl 6. 
Now, before we give the main proposition, we summarise what 

we have done in this section. We begin with a finitely presented 

group G= <A ; R> and K= F(x, y)/B = <x, y ;B0> where B is a normal 

subgroup of F(x, y) and B0 is the set of all cyclically reduced words 

in B. We choose C to be the symmetrized subset of F(A, x, y) generated 

C. by s1 and s2, where sl =x zl and s2 =y z2 , and put R' = RUB VC. 

Then ci is the set of all cyclically reduced words in (F(x, y) (i N) - B, 

where N- <F(A, x, y) <R>. We assume the following: 

(H1) R satisfies C(6), no element in R has the form 

az where aEA and z is a- free and if a6A which is not a piece 

relative to R, then no element r in R has the form r-am, any m. 

(H2) If u c- B, ul1, then Iuý ; 6. 

(H3) 0 
RUC 

( Z1 ) 
' eRUC ( Z). )6 
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(x4) Nn F(X, y) # B. 

Since (H4) is given, tJO, and we can select an Re-diagram 

-M (A) with 0 (d (h(A))) EA and for each R'-diagram ii 
, 

if 0 (d (7 1)) E A, 

then 

ýf-nl >- T-nll (A) 

Further, we assume 

(HS) If E is an edge inY)1(4) with a (E) or p (E) E-eJ 
, then 

6R(ý(E)) :3 provided that $(E) is a product of pieces; otherwise 

+(E) = zlaz2 where a is not a piece relative to R, zl and z2 are a- free. 

Finally, we conclude this section with our main result. 

(2.17) Proposition 

Given, G, A, R, K, B, B 
0 , 

C, R', N, A and'm '(d) as above with (Hl) - 

(H5) valid. Then)fl(A) is a suitable R'-diagram. 

Proof 

'M(A)-is a suitable R'-diagram if 'm(A) satisfies the 

conditions I- VIII of a suitable map. Now, condition I follows from' 

Lemma (2.3); condition II follows from Lemma (2.7); conditions III 

and IV follow from Remark (2.8); condition V follows from Lemma (2.11); 

condition VI (i) follows from Corollary (2.6); condition VI (ii) follows 

from Remark (2.10); condition VII follows from Lemma (2.9) 
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Section 3 

Throughout this section, let =VUU 
of 

be a suitable map 

with _U 
RU 

b. In this section we establish some results which we 

may need in the next Chapter . 

(3.1) Lemma Let D be aý -region in TA with 

1< (D, 'C )# * 3. Assume that i (D) 5. Let v be an interior vertex 

in ß(D). (For notation see convention (1.1)). 

(1) If [ (D, 'C ) 

(2) If [(D, t ) 

(i) if 

(ii) if 

d( 

v]# =o, then d(Y, D) <, d(v) - 1. 

v]# >o, then we have the following 

d (v) =3, then d (v, D) =o; 

d (v) =4 and [(D, ', ) ; v] 
#=1, 

then 

v, D) ,-3 ; 

(iii) if d (v) =4 and ((D, ) ; v] 
#=2, 

then 

d(v, D) c, -1 4 

- (iv) if d(v) =5 and [(D, ' ); v]# - 1, then 

d(v, D) <, -5; 

(v) if d (v) =5 and [(D, 2, then 

d(v, D) <, -5 

(vi) if d (v) 5 and [ (D, '&) then 

d (v, D) 5 
12 

(vii) if d(v) = 6, then 

3- d(v) i1 d(v, D) 

d(v) CDs )# 6 
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Proof 

(1) Since 1; 
v 

,< d(v) and 3- d(v) ; 0, 

d (v, D) 3-d (v) 
< 

3-d (v) 
=3_1 

.. v# 
d (v) dlv) 

(2) (i) This is obvious since 3- d(v) 4 0. 

(ii) Here v is either a (S ,6, Y, ý )-vertex or 

a )-vertex, where is either *6 or , since there are no 

&' )-edges inT'). 

d(v, D) = 
3-a( 1+ It ; vl# 

v [(D, ); v] [(1 
,t); v] 

3-4 [i +2V3 -- <- .1 since 
28 

#<4. 

(iii) Here v is a (S 
���)-vertex where 

Xc{5ºtý" Lit %_ g. 
Case1 - when d(v, D) =3-4 (2 +ýC ; v] 

-i 
V# 

4 

Case 2- when d(v, D) 
3# [2 +[2; v, 13 

V 

Case 3- when d(v, D) = --I [+ 2] 
_ --1 2 2 

If then it is easy to show that v-$43 and dk v f)' -(1/3) " 

(iv) Here v is either a, t, Iý )-vertex or 

, ýý{ý, f(, ý}, 
a )-vertex, where 
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In all cases N 
(v, D) _ 

3-5(. 1 
#+ 

[f ; v]#+[k ; v]#ý ` --3 
V tcýj; e); V] 5 

(v) Follows by a similar argument as that in the previous cases 

(vi) Note that i(D) , 5. Then [t ; v] 
#=2 

and [(ý 6 ); v]# a4 

(Use Jordan curve theorem). So 

d125 Eý V 
12 

(vu) 
By definition, if an edge D contributes 1 to ßD, ); vJ 

then 2E (D., t). Tkrms C(D, t); v] (D, C) 3. When d(y) 6, 

13 - d(v) 
attains its iaiL u. with d(v) = C. 

d(v) 

Let M be at -region. Let E be an edge in S(M). In section 

1, (Definition (1.8), we introduce the artificial degree of E relative 

to M and in Remark (1.10), we observed that if (M, *') #. 
a (M), then 

there exists an edge E with d(E; M) > 0. 

We shall call an edge Ea positive edge iff d(E; M) > 0, a 

negativ e edge iff d(E; M) < 0t and a neutral edge iff d(E; M) - 0. So, 

obviously, if (M, e )# >, a(M), then there must exist a positive edge. 

Also if an edge E is not a negative edge then E must be a 

( C, ý )-edge. 

Let w= xj1 
l 

... xim be a reduced word with ei M. 
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w is called a same sign word if cl = ... - cm. Hence we have the 

following 

(3.2) Lemma Assume that for each MEý, ¢ (6(M)) is a 
for eac M&t 

same sign word. Then, there are no (M1M) -edges in 7n . 

(3.3) Lemma Assume that for each M eC , 0(6(M)) is a 

same sign word. Let E be an edge occurring in d(M) with a(E)E j, where 

M is a' -region. If i (a (E)) _ (a (E) ,C)#=3, then E is a negative edge. 

Proof Suppose not; and so d (v) = 3, all vE3 (D), VY " 

Then examination of signs of symbols on the successor and predecessor 

edges gives a contradiction, (using the fact that G(S(M)) is a same 

sign word for each M Ee ). 

Now, let 711 = 771(s) be the suitable R'-diagram constructed in 

section 2, assuming that (H1) - (H5) are valid. 

(3.4) Lemma Let D be aj -region in')'ij (A) such that 

i(D) 2. Then the edges which occur in 6 (D) are (D, '. )-edges. 

Proof Use Lemma ( 2.9 ), condition VII, and 

hypotheses (H5) and (H1). 

Let Ebe a (t , 
ýJ )-edge inTfl (0). 

Then E is called a st_ able edge (or an S-edge) if ¢(E) contains exactly 

one kind of letter, and E is called a transition (or a T-edge) otherwise. 
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(3.5) Lemma Let E be a (g 
., 
¬)-edge in 1'l (A). E is 

a positive edge iff p(E) is a region D such that 2, i(D) ,4 and 

(i) if i(D) = 2, then I d(v, D) >-1, 
vE$ (D), v interior- 

(ii) if i(D) = 3, then (D, *C )# =2 and 

Gd (v, D) >_1 
i 

va (D), v interior 

(iii) if i(D) = 4, then (D, C )# =1 with 

Id (v, D) >-1 
Z 

v cc ß (D) 
,v interior 

Proof Easy argument from the definitions 
, 
(H1) and (H5). 

(3.6) Corollary Let M be aC -region in %rj(D). Let 

E be an edge occurring in S(M). Then d(E; M) 1. 

(3.7) Let M be a6 -region. Let E be an edge occuring in 

a (M) with a (E) c and 
a (a (E)) -i (a (E)) 

< 1. If E is a negative edge 

then d(E, M) - 
6. 

Proof Use Lemma (3.1) and the defintions. 



Chapter'IV 

THE SQ-UNIVERSALITY OF C(6)-GROUPS 

This chapter is devoted to study the SQ-universality of C(6)- 

groups. It has been proved, (Theorem (11.4.10)), that C(6)-groups, 

with few exceptions, contain non-abelian free subgroups. In general, 

the property of having non-abelian free subgroups does not imply 

SQ-universality, (for example, PSL(n, 7-), n> 3). However, we shall 

see that for C(6)-groups this property characterizes SQ-universality. 

In particular, the aim of this chapter is to prove the following result. 

MAIN THEOREM 

Let G=<A; R> be a nontrivial finitely related C(6)-group. 

Then G is an SQ-universal group unless G is isomorphic to one of 

the following three groups: 

(i) Gl °< ai 95 %r 

(ii) G2 = a; a la, a-M 
>, m00, 

(iii) G3 = 
<a, b; a2"a. 

2"b2, b 

Note that'if A is infinite, then there are some generators in A which 

do not occur in R, and hence G=<A; R ' is a nontrivial free 
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product which is SQ-univeral, by Theorem (1.3.1). Therefore, w. l. o. g., 

we consider G=<A; R > as a finitely presented C(6)-group. 

Now, G=A; R i= G* < A*, R* > if and only if G 

can be transformed into G* by a finite sequence of Tietze transforma- 

tions-. From now on, we will restrict our attention to a "suitable" 

presentation of G by repeated applications of Tietze transformation; 

so we can assume that there is no element in R of the form at. , 

where aeA, ze F(A) and z is a-free. If an element aeA, 

i, s not a piece relative to R with aeR, 
m>0, and G is neither 

G2 = a; am, al ) 
nor G3 = (a, b; a2, a-2, b2, b 2>, 

then G is cyclic or 

a nontrivial free product which is SQ-universal by Theorem (1.3.1). 

Hence the only non-SQ-universal C(6)-groups which do not satisfy (Hl) 

are the groups which 'Are. isomorphic to one of the following groups 

Gl Z a; z>, G2 = a; a 
, a-m > and 

G3 -(a,, b; a2, ß 2'b2, b-2 

Therefore to prove the Main Theorem, it is sufficient to establish 

the following proposition. 

(0.1) Proposition 

Every finitely presented group G=<A; R ) which satisfies 

(H1) is SQ-universal. 

Note that if G=LA; R > satisfies (H1), then card A>2. 

The proof of Proposition (0.1) will be divided into cases according 

to various assumptions. 

r 
r 

7 
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case 1- 'There exists aeA which is not a piece relative 

to R such that the unique relator r in R which involves a has 

the form r= (az )n, n>2, Z is a-free and Z. 1 1. 

case 2- when every generator in A is a piece relative to 

R and there exist two distinct generators a and b in A such 

that an 
eR and be R, n, m > 0, 

3- when every generator in A is a piece relative to 

R and there exists aeA with 

(ý) aýR, for any m 0, 

(ii) BR (ä) = 1, 

--Case 4- when every generator in A is a piece relative to 

R and there exists aEA with 

(i) ofR, for any m00 

BR 
--ffa) = 2, 

(iii) for each beA, b¢a, the unique relator r involving 

aP is not of the form r= (a b-E z b£ )n, n>1, E_±1 where 

z is ap-free. 

case 5- when every generator in A is a piece relative to 

P. and there exists aeA with 

(i) a/R, for any Tn # 0. 

(ii) 8R(ä). = 2,. i 
E 
i 

i 
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(iii) card A>3, 

(iv) there exists ceA, cja, such that the unique relator 

r involving 
p is of the form r =_ (a cýEz c)m, m>1, E=t1 

where z is ap free. 

case 6- when A. _{a, b }, where a and b are pieces 

relative to R such that 

(i) a/R, for any in 09 

(lid OR(a) = 2, 

(iii) the unique relator r in R involving ap is of the 

, 
£orm r (ä bE zb 

)m, 
E= t l, in> 1, where z is ap-free. 

Case i will be done in section ij i 

Now, every countable group can be embedded in a group K= 

F(x, y)/B which satisfies (H2). If K is not embeddable in a quo- 

tient of G, we choose suitable words u and w in F(A, x, y) and 

then put L 

Si =xw and 

j2 

2L 
s2 yu (w3 u)' 

j=L+2 

where 

(1) L=2k, and k) 1000, 

(2) if u begins with a letter a and ends with a letter a', 
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(a and at are any two letters in AuA1, possibly a= a'), then 

w begins with a letter distinct from at and ends with a letter dis- 

tinct from a, 

(3) u is not a subword of w1,1 Li<. 2L. 

Let C be the set of all cyclic permutations of s1 and s2 

Then C satisfies (H3) since, by (2) and (3), a piece relative to 

RUC must be a subword of (w1 u w1+1), some i. Put R' = 

CuRv Bo, where B0 is the set of all cyclically reduced words in 

Bo' Let N=< F(A, x, y) ( R' >. Since K is not embeddable 

in F(A, x, y)/N, Nn F(x, y) # B. i. e. condition (H4) is valid. 

Hence there exists an R'-diagram 'a(&) = Ifu juv, where 

u UL (see the remarks preceding Lemma (111 '. 2.1)). If 11L(n) 

satisfies (H5), then M(p) is a suitable R'-diagram, by. Proposition 

(111.2.17)9 We shall show that for each A-region M of 1n(A) j 

Z-(E; M) < which contradicts Pro- 

E occurs in E (M) 

position (111.1.9). 

Throughout this chapter we shall constantly use the following 

notation. Let M be aI -region in m(, &) " 

(1) We write c(M) = (E1, E2, ..., Enwhere ý (El) 

+1 +1 
x or y" 

(2) For each 2<k<n, if Ek is an (M, )- edge, then 

we write (i) Dk = v-(Ek), and 

(ii) 6(Dk) _ (Ekel, Ek, 2, ..., Ek, 
n(k)where 

Ek, l 

E -1ý 
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Evidently, if Ek+1 is an (M, 3 )-edge and d(p�(Ek)) = 3, 

then Ek+1,2 Ek, 
n(k)' 

(iii) rk =r (S 6(Dk)) ek, l ek, 2. """ ek, 
n (k) , where 

ek. J - T(Ekj)' 1<j< n(k). 

(3) We recall that a piece relative to R ij C is a subword 
i i+l ±1 

of (w uw) Hence for any j, -region M, it is possible to 

define subpaths ý, 1<j< L/2 (or (L/2)+1 <j< L), of C(M) 

with the following properties. 

Ci, ) If (S' (M)) Si 

. where 
+ T(E1) =x1. 

(ii) If ib iM)) s2, E_±1, 

where (E 1) _y 
+i 

.... 21 
_9 

then E (M) ýEl ýi ý2)... 
ýY /2} 

then g(M) ° (E1'X(L/2)+1) 
... ýk' 

U1) cu W-' u)- is a subword of 

(iv) '(T. ) is a subword of (w 2j-1 
u w2j u w2j+1)£ 

(v) For each j, 1<j< (L/2) -1 (or (L/2) +1 <j< L-1), 

the label on the last edge in Yj must involve a subword of ut 

Note that for each 1<j<. L, Y 
j) must 

2j involve w and 

exactly two u's. 

Section 1 

Let G=<A; R) be a finitely presented group which satisfies 

(H1). Thus card A>2. Let aEA be any generator which is 

not a piece relative to R. Since C satisfies (H1), the unique 
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relator which involves a has the form (a z)m, where m>2, z is 

a-free and zf1, (see the introduction). 

Now z begins with c and ends with c' (possibly c= c'), 

where c aE and c' a Put waa 
L/2 

and 

u=b, where b is a letter in AUA1 such that z neither begins 

nor ends with b. (Such b must exist for, at worst, when card A 

= 2* with A= (a, b) must begin and end with býý 1, and 

if q=1, replace b by b-1 as a basic generator). Hence (H3) 

is valid and so there exists an' R'-diagram 'fji() . (See the intro- 

duction). 

" (1.1) "Lemma 

. Let E be a (2 ,s )-edge in T11(L1) 
. Then E 

i. s an S'-edge with ? (E) =a1 or b 
±1. 

"Proof Since z neither begins nor ends with b, E must 

be an S-edge. If a± ý(E) BE n, then n=1, by condition 

(H1) and the fact that a is not a piece relative to R. So 
±1 ±1 

T (E) =a or b- as required. 

(1.2) Corollary V(d) is a suitable R'-diagram. 

Proof 

if (E) b£ý 6=t1 

to R, then BR(? 
1(E)) 

= 1. Thus 

and b is a piece relative 

(H5) is satisfied. As 

(H1) (H4) are valid, is a. suitable Rt-diagram by Proposition 

(111.2.17). 
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We-recall that S(M) = (E1, E2, ..., En), where 7(E1). _x 
ti 

or y-1, (for notation see the introduction). 

''(1.3)' Lemma Let Em, 2<m<n, be an (M, '5 )-edge that 

occurs in S(M). 

(1) If ( DQ, ,ß )# = 1, then 

(i) 9 (Em) = b£, £ 

(ii) b is a piece relative to R, 

(iii) Ym does not involve a±l, and 

(iv) 1(D)> 6 

(2) If (Dm,, Q, )# =2 or 3, the i(D) > 4. 

'Proof (1) (i) - (iii) follow from the fact that G satis- 

fies (Hl). Since O 
R(r 

(Em)) = 1, then i (D >6 by Lemma 

(111.2.9). 

(2) Since z neither ends nor begins with b and using 

(H1), i(D > 4. 

.. (1.4) 'Corollary For each edge E which occurs in S (M), 

fl* d(E; M) < 0. 

Proof 

IE is an 01,8 )-edge, then d(E; M) < 0, by using 

Lemma (1.3),. If cr(E) #, then by the definition of articial 

degree of E relative M, d(E; M) _ -1. 
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(1.5) Lemma 

Let Em, Em+i be any two. (M. 3$)-edges which occur in 

S(M), 24m< n-1. If i(Dm) = i(Dm+1) 
.=4, then d(/ .;. (Em)) 0 3. 

Proof Suppose that d(p. (Em)) = 3. By Lemma(1.3), em em a. 

Let (Dm) (Emil. Emý2, Emj3* Em, 4)1 and 

(Dm+l) (m+Em+l, 
2' Em+1,3' Em+1,4)o Then 

Em, 4 Em+1,2 . So em, l em, 3 em+1,1 em+1,3 ma, E 

because Cf (Em) aa , where rm -a em 2a em 4 and 
ss 

_ -E -E m+l a em+1,2 a em+1,4° Since a is not a piece rel- 

ative to R; em 2=m4= em+1 2° So we can write s,, 

-a£ m+l 2a£ em 4 which is absurd since a is not a 
s, 

piece relative to R. (Compare r and r to show a contradic- 
m m+l 

tion). 

(1.6) Proposition Let. G. ' _. <A; R) be a finitely 

presented group which satisfies 011). Assume that there exists 

aEA which is not a piece relative to R. Then G is SQ-universal. 

- a6 I- 

a 
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Proof Suppose not; then we shall have a contradiction by 

using the method suggested in the introduction. 

Now, the unique relator in R which involves a has the form 

(a z)m, where m>2, z is a-free and z 1. Assume that z 

neither ends nor begins in b and put w aL/t and u=b. By 

corollary (1.2), 'M (A) is a suitable R'-diagram. Then there 

exists a . 
s-region M such that d(E; M) > 

-6p 

E occurs in 8 (M) 

by Proposition (III. 1.9). 

Let S(M) _ (E1, E2, ..., En), where 5(E1) =x1 or 
y 1. 

We write S(M) = (El P ý',..., 
11 

ýL/2)' when ( (M)) s1 and 

ä(M) _ (E1' ýL/241' ' 
L/2+2' """, 'L) when 7(ö (M) )= s21 

11 ) must (see the introduction). Hence for each 1<j<L, q 1" 
ýQj 

involve exactly two u's and w2j. 

Suppose that S(M) = (E1, ä1, Y2, 
""", 

YL/2)" If there 

exists k, 1<k< L/2, such that'any edge E occuring in ' is 
k 

an (M, 'S )-edge, then there is a subpath Yk* of Xk with p(Yk) = w2k 

(by using Lemma (1.1)). Then Y. 
k* has exactly Lk edges. Let 

Yk* = (E2 , ..., Et), 2<1 <t<n, and t-ZLk-1. By 

applying Lemma (1.5) inductively, we can show that for each, e <i< t-1, 

d(p. (Ei)) > 4; and so Z (E; M) <-4 by Lemma (111.3.1) and (IV. 1.3). 

Hence 

d (E; ri) <d (E; ri) Lok < 
-6. Y 

E occurs in S(ki) E occurs in Yk 

which is absurd. Thus for each 1<j4 L/2, there is an (M,., )-edge 
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occuring in and so a (E; M) . C. - 1. 

E occurs in i% 

Therefore i (E; M) L- L/2 which is impossi- 

E occurs in S(M) 

ble. 

By the same argument as above we can show that 

d (E; M) <' when 5(M) = (E1' Y001, 
L/2+1'* 

E occurs in S (M) 

YL), which is absurd. 

Section 2 

Let G. - <Ä; R> be a finitely presented group which satisfies 

(Iil). Throughout this section we assume that every generator in A 

is a piece relative to R and there exist two distinct generators a 

and b in A such that a MI eR and bni e- R, m', nI > 0. 
the 

Let R0 be k subset of R involving all the elements of R 

which are a proper power of a generator in A. Let aP be the 

maximal power of "a occuring in any relator of R- R0. (see Con- 

vention (11.4.2)). Let bq be the maximal power of b occuring 

in any relator of R- Roo Thus ml S 5p+1 and n' > 5q+l (by 

using the C(6) condition). 

lie shall consider five cases. 



-124- 

case 1 Either r>2 or q>2. 

Without-loss of generality we assume that r>2, and put 
Zp+1 q+l L/2 2p+1 q+l 2 q+l w= (a b) and uabaPb Hence 

(H3) is valid, and there'exists an' R'-diagram Tfl (A) (see the intro- 

duction). Then for each edge EE (M, ý ), where M is aA -region 

in ßn (A) 
, 6RCT (E)) 3. Therefore (H5) is valid; and hence 

gis, a suitable R'-diagram. Let M be a -region in 1p (0) 

1 1) el 1=x with S (M) _ (El, E2, ... En), where (E 
"' 

or y 

'The following Lemma is generally valid and will be applied in 

particular to case I. 

-(2.1) Lemma 

Let vj with ul<oS be 

a suitable map. Let E be an (2 
, J)-edge in ý.. Let a-(E) D 

and F(E) = M. Assume that eR( (P(EI)) < 2, all E' E 
l! 
3(D) 

Then (i) cl (EM) < 0; 

(ii) if 0R( r(E)) = 1, then d (E; M) <- 1/3; and 

(iii) if there exists a vertex vE P(D) with d(v) > 4, 

then d (E; M) ' :G- 1/6. 

Proof (i) Clearly, i (D) 0 2; and if i (D) = 3, then 

CD, Z3 whence 
d (E; M) =2 d(v, D) < 0. 

vE3(D) 

For i(D) = 4, (D,., )2;. and so 
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d (E; M) < 
-2 

d (v', D) < 0. 
Y- 

^OF 

v' E3 (D) 

Obviously, d (E; M) '<0 for i(D) > s. 

Ui) Since QR(ý(E)) = 1, i(D) > 4. For i(D) = 4, 

(D,, ß )>3 whence 

d(E, M) _-3t. 2 d(v, D) ' 
(D, 'fve 3(D) 

for £(D) 
._. 

5, (D,. 4) >2 whence 

d (E; M) 2+2 
d(v, D) 

vE t3(D) 

For i(D) > 6, clearly., IV (E; M) < -1. 

(11Zý 

If [(D, ý) 3 vj Z2 when d(v, D) 4 
and the result 

is clear . 

Subpose tat [(Doe)-; r] 3. If i(D) then, of course, 

(D, ý) = 3= {(D, v]*- whence, d(v) 
-> 

12, (there are no (P-I, M)-edge: ), 

asid d (v, D) <- agaih. If. ' i(D) 4 then d(E; M) -3. 

(2.2)'-Lemma 

Let E be an (11, -S )-edge in T(Q) 
, where 

2 <, m < n--1. Let -(EE) = DD and p (S (Dm)) 's rm If 
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rm 6R-ö, where Ro is the. suhset. of R involving all elements 

of R whicli are a proper power of a generator in A then 6R( T(E)) < 2, 

all EEß (Dm) . 

'Proof OR (y (E)) =3 if and only if T(E) _a 
±(2p+1). 

(2.3) Lemma 

Let Em be an (M, '§ )-edge, where 2&m< n-1. 

Suppose that i(D ). =4 and (Dm,, b )# 1. If d(, u (Em)) 
m 

then d (Em; M) +d (Em},; M) <-1 
8° 

"Proof Suppose not. 

We have T (Em; M) =1+2 

and so d (E; M) "41+2d ('(Em) Dm) . 

we have the following possibilities: 

rd 
(v, DM 

vGr (D) 

By using Lemma (111.3.1), 

(i) d (µ(Em)) `4 and d (Em; M) <4 

(ii) d (Em)) 5 _- and 'd (Em- ; M) <-; 5 

(iii) d (Zu. (E, )) 'A `6 -and . 'd , 
(Em ;i M) 

.. 
(-' 

6 

Since 9R* ( 
m) 

'>6, our choice -of w and u ensures°. that 

T(E 
E) 

_ as 
(2p+1) 

whence 

E (E; 1) =bk 

means that 6R(p (E)) < 2, all 

1<k< q+l. This certainly 

E6P (DM+l) and so ' Lemma 

(2.1) (iii), gives the required result for the two cases (ii)and(iii). 
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Suppose (i) occurs; then EE1, S) 
and so we can m+1,2 

assume that i(Dm+l) =4 or 5. If i(Dm+l). = 4, then 

(Dm+l 
,o 

)# 2 or 3; and we. have either 

d (Em+i; M) <d (/ (En) 
9 m+1) or 

d CE 
+1 ; 

Iý) <3d (p. CEm) , Dm+l) 3 

Since [(Dm+1, (EM)J = 1, we.. are done by Lemma 

IZI. 3.1. 

If i(Dm+1) = 5, then ä (EE+1; M) *<2 d(1(Em), Dm+l) <-3 

by Lemma III. 3.1 and we are done. 

" (2.4) "Lemma 

Let Em be an (M, j )-edge, where 2<m< n-1. 

Suppose that i (Dm) _ .3 and (Dm,, ß 2. Let 9 (Dm) (Ems 
1, ms2, Em, 3) 

where Em, 3 
is a . 

(Dm )-edge. If d(p. (Em)) 
.>4, 

then 

(E 
m; 

M) + 2(E 
m+l; 

M) <-- 
8° 

d1 

'"Proof By an argument similar to that in Lemma (2.3). 

" (2.5) ' Lemma 

(i) Let Em be either a neutral or a positive (M, ý )-edge, 

where 2<m< n-3, 

(1) IE is. a T-edge, then it is a neutral edge. More- 

pyear, there exists an integer t, m +1 <t< m+5, such that 
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t 
d (Ej; M) 3 

j=m+l 

(2) If Em is an S -edge, then there exists an integer t, 

m+l <t< m+5 such that 

t 
(E3; M) 1z 

(ii) 
If Em is a 'negative edge with T(Em) involves b1ý = tl 

<-6 then TAE 
m ; 

M) 

-Proof (1) As Em is a T-edge, em 1 
is a subword of 

s 

(-apb4)£ or (bgaPp £, 7=t1. So 8R (ems 1) 2; and 

by Lemma (2,2), OR(T (E)) < 2, all Ee P(Dm) since Tr-m 

involves more than one generator, 

Therefore, by Lemma (2.1), d, (E ; M) . 0; and so 
m 

d (Em; M) = 0. 
___ 

Clearly, i(Dm) 02. If i(Dm) = 3, then (D,. ß )=3 

and so by Remark (111.3.7), a (E--; M) <-6 which is absurd. 

If i(Dm) > 6, -then d (Em; M) <-1, which is impossible. Therefore 

i(DD) =4 or 5. 

Let i (Dm) = 4. Then (Dm, $ )1. =2 and d (v) = 3, all 

vE0 (D), since d(Em; M) = 0. (Lemma (2.1) (iii)). If 

Em+1 is an (M, 4)-edge, then d (EE+1; M). and so 
d_(Em; M) + 

d (Em+1; M)' <-1. Thus t- mfl. 

Let Em+l be an (M, ý )-edge, Now,. rm+l r_ R- Ro for if 

+l e Ro, then there is a cancellation in rm which is impossible 
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(see the introduction of this section for the definition of Ro). 

Thus if m+ls1 or m+ls1 b '} 19 then 

1p and 14 k<q, By Lemma (2.1) (ii), d (Em+l'M) 

since eR 
m+l, l) - 1. hence t=m+1. 

Now, em+l 1= atIl bEki or .b 
Ek 1 eti 

,I /_ ki G q, 

I< ý1 G p, If Emt2 is an (Mý £)-edge, then 
e k1 t, Qi 

t +2. Let Eý2 be an (Mý' )--edge and let e m+l 1-ba 
's If 6m+2,1 =b, 14 k2 < q, then m+2 bn , and 

hence t=m+ . 
2. Thus e m+2.1 

=a P-4 z 

£23 
P. If em+3 1=a, then 1'm+3 

ia, 
' 

T no R), and hence t=m+3. Thus em+3,1 bEk2 aEP and 

. Ez P, where 1< k2 < q. If em+4 1ob 
k3 

then 

+4 
b, (b e 

k3) 
R), and hence t. =m+4. Thus em+4 1 

ý. ý4 e(9+1 - ab1< . e4- '<p. Finally, em+5,1 must 

be ä 15 
and Ym+5 a hence t=m+5. 

Fox' m+l-. aal b£k1 ,1 . 
t1 p, 1< kl <q and 

£. _ ý' 1, it is not hard to see that t-m+4. 

(2) Now Em is an 

since 
ä (E, t4) > 0; and 

We recall that S(D) 

(Dýý1 )-edge. If d(r 

S-edge. 

so e 
s1 

(Em, 
i, E 

" (Em»i 

Let i(Dm) = 3, then (Dý, .ß )# =2 

must be either 
a 2r 

or ä (2f+1) 

n 2' Em, 3)° Let Em. 3 be the 

4, then by Lemma (2.4), t= m+l. 

Let d (aw(E))" = 3. Then E3, =E 13,2 and so 

e must begin with ä It follows that e= b£k 
ja}1sZ 

1. 
m+ls1 
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14k<q and ±-l since Ym+l involves more than one letter. 

It is easy to see that d(2 (Em )) > 4. Thus d (Em ; M) .4. 

Now, if d( (Em 2)) = 3, then em+ 13 bk' ,1< ki. q. %` 

Since rm+l bn, (b n' E R) , 
BR(ý (E)) '<2, for all ECP (Dm+l) ° 

Hence i (D 1) >5 and if i (Dm}1) = 5, then (Dm+l'j, ) >3 

Whence d (E ° Therefore Z (Em; M) +d '(Em+1; M) < 

6 
and t= r+*1. 

Let d(f (Em, 
2)) > 4. If IA. (Em, 

2) 
A (Em, 

2then using 

Lemma (III. 3.1), we can show that d (Em; M) <-$ which is 

impossible since Em is either neutral or positive. Then )(Em 
2) s 

p. (Ein. 
2 and so, using the Jordan curve theorem, the fact that d(v) > 3, 

all y' and that there is no (M', M')-edge where M' is a . 
C-region 

in 'M we have d ()A (Em 
2) 

)i7. 

4 ------- Em 

d(ý`(m 
2)' P 

d(v)) / (d(v) - 2)) [1/2 
+(2/(d(v) - i)ýý 

Since (d(v) 
- 2) (d(v) 

-1) < (d(a) 
- 3) (d(v) - 1)q a( m 2)9 m) C -(1/2) , 

Nov, let E: 
mv2 

be the (Dm, -P. - )-edge. Then Em93 is a 

)-edge. a nd d(( 3)) 
> 4. Let* d(p(Em, 3)) 4 and 

, 

v Cýýý3) 
.a. M' , (possibly M' = M. ) Then Em+1s2 is a (Dm+1, M')-edge. 
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Hence either 
. E(ZPtl) 

eM 1_a or. em 3 
. E(Z t1) 
a' +1 

(by using the condition C(6). and the fact that 8R(ap) = 1). If 

em 1_ a£(ar+l) then m+l 1- b£k ,1<k< q+l, while 

if em93 a aEc? -P tl) then e m+1 2' be 
llý 

,1< k1 < q+l. 
92 

n' n' If rm 
Jb (b E R), then either k q+l or kl 7& q+l whence 

either 0RCem+1,1) or 9 
R(ein+1,2) = I. Thus i(Dm+l) > 4. 

i(D )=4, then 
#N"-ý. 

ln+1 
Cfýý, ß) >3 whence d (E, M) <3 

Thus d (Em ; M) +d (Em+1; M) <-3+4. _- 12 and so 

t=m+l. 

if i (Dm{ 5, then (Dm+l; 4)>2 whence CY (Em+l; M) <- 

and Sv t -. m+l. 

If i(D1) 6, then (Em+1; M)' < -1; and so t=m+1. 

Let rm+l b "` 
, (b" Then i 0m) > 3. If i (DM+1) 

# q+I 
3, then (Dm+1,4) =3 since 9R(b 2. Since d(µ(Em. 2)) = 4, 

(jntl) #A (Em+l) " 

1 

So d ýEinflýMi 3 [', (Z4 (Em+1) ' DA+1) + ýCa (+1) '+1ýJ 

2 [- 
4-41-3 

(by using 
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N_11=1 

Lemma (111.3.1). Thus d (Em; M) + .d 
(Em+; M) 3+4 12 

and so that t= m+l. ___ _. _ 

Let i(DD 1) = 4. We note that since d(A(EmP3)) = 4, d(Em; M) ý 4i 

and using Le.. "=a(III. 3.1) we get 
d(Em+1; M) <-,. ßWL can take t_m+1 

unless (Dm-1, tß) 2 and d(v) ; 3. all vc (D 
1), v (E.. 

n, 
) If 

rM}1 bn it is easy to see that we can take t. _ m+2 (using Lemma(2.1)) . 

Otherwise eM+191 .ba. Next we can take t- m+2 unless i(Dm 
2) 

(Dmt2,? )= l, d(v) _ 3, a11 vE t9(D 2) *and e»291 =a 
ki £(q-1- L) 

Unless 
a k1 

occurs within 
a 2p (rather than a£(2ý1)) we can take t- m+3 

If a kl 
occurs within a 

£2p 
we need to go on two more steps, in a similar 

way, and take t= m+5 . 

When i(Dm+l) 5, since (Dm+l# j2 the result is clear . 

Let d(, u (Em, 
3)) -5. Then d(% ; M) whence t=ni I. since 

i5 
Let d(4 

ý 3)) 
>6 Then d( m, IT) <ý since 

M9 
[(D f)tc(Em3)]'= 2. Thus argue similarly to the case when d(P(EMO)) 4 

Let i(Dm) =4 and (D,, (, ) =1. Then e 
il 

ä (2p-1). 
If d(N(Eýý)) 4s 

then d(E; 2K) .+ 
d(Emt1; 1I) L. -8, by Lenraa(2.3). So t=w +1. Now let 

d(4(E )) =3 and w. 1. o. g. we:. 'mssume that E=1. Since m=a , nl 0, 
M 7- 

em. 4 must end in a (and hence em{1,2 begins with a-') and so emfbk 

1ý k. q and rm}1^ bn', n., is- 0 (hn e R). 

Suppose that ' d(µ(Em. 3)) %4. If d(»(ms 4 
, 
then d(fi( m, 3)) =5 or 6 

with d( ä; I'I) =5. It is not difficult to see that d(E 
; M) 5 "�j 

' 
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- iý 
. Then t 1. Let d(M(Em 

r3)) 
4. Tuen d(%; M) 2,. 

T lr36 
j 

and i(D1}1) 5. If i('DM 
1) ), 6r then d(E 

1; 11) < -1 M+j 

whence d(EM; M) + d(E 
1; M) L-2 and so t- m+l. row let i(D+1) = 5. 

Then we can take t= rn-}1 unless (Dla+1, () =2 and d(v) = 3, all veß (Dm41), 

v. , "(E ) 
. 
(Remember that eä aS(2p-1) 

Sk, 
m-19 3 m, lr en-tl' b 1,1 k, <q 

since d(p(Em)) = 3) Hence eß}2 1b 
(gTl-k1) 

aýQ1 rl S. Q2 <p and we 
r 

can take t= raf2 finless i(Dm-v2) = 2r (Dr. 
+2OX)#r - 2, cr(Em+2,3) et and 

d(v) = 3, all v. t3 (D 
m-2)"' 

It is not difficult to see that i(D )>4 

with 6 
F(ep}3) = 1. Thus, t= m+3 . 

0 

Let d (JA (Em 3)) = 3. Now, em+l, 1=b, 
1<kCq. 

, 

It is clear that Em+l 3 
is a (Dm+l, '& )-edge and 

ný 
rm+l 

ýb, 

a, j 0. Thus i (Dm+i) i5 and if i (Dm+l) 5, then 

+1, 
t )->2. (D 

m 

If d( (E ))> 4, then d (Exa+114) and so 

_ - bkl or e a. 
41 

bk2, 1< k�k' <q and 2 ._ 
1< e" p. 

m+2 
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k 
If em+2 b 1, 

then 

and so t m+2. 

17 d (. m) G2-3 
12 

'k 
IV , If em+2 aa 

ýý 
b then d (Em+2; M)' <-4 and so 

.lN2 1 
eJn+3 a, 1< , ý2 < p. Hence d (Em+3 ; M) <-3 by Lemmas 

I 
(2.2) and (2.1) since Ir a, m' 0. Thus t= m+3. 

Suppose that d(ý. (Em+l)) = 3. Hence d (Em+1; M) (2 

If em+2 1= bk2,1 < k2 < q, then d (Em+2; M)' <-4 and so 
s 

k 
t= m+2. And for em+2,1 a1b2 then put t= m+3. 

k 
P ally, let i(Dm). =4 and (Dm,. %)# 2. If em1, l = (a Zb 2 

1< k2 G q, 1Cip. Then it is easy to see that 

in+l <t< m+2; otherwise t= m+l. 

(ii) An easy argument, (see case(i)), give the required result. 

The following result gives the cotradiction we required. 

(2.6) Corollary 

For any A -region M in 1ý(1), 

d (E; M) < -6 . 
E in 9 (M) 

Proof 

Suppose not; then there exists aA -region M in 771(6) 

such that 

d CEi; Mi i 

iii) = (E1, E2, ... En) and 

,. (j .. where 

p(E1) =X or p (E1) = Yý1" 
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If each E. is a negative-edge,. 2Gi<n, Lemma, (2.5) and 

the nature of the choice of the words w and u give a contradiction. 

Otherwise let E be the first edge following E1 which is neutral m 1 

or positive. By. Lemma (2.5), 
-there exists t, ml+l <t< m1+5 

such that 

Z (E j'M) w 12 
Jý}1 

If each Ei is a negative-edge, m1+t+1- G i' L n, then using 

the same- argument as above we get a contradiction. Otherwise let 

E be the first edge following Eý +t which is neutral or positive. 
211 

Apply Lemma (2.5) again to find t2, m2+14 t2<- m2+5 such that 

t2 
Td (Ej; M) - 

i2 

. 
j=m 

21 

Since L is chosen to be large enough, we eventually get 

d (Ei; M) <- which is a contradiction. 

The following Lemma is generally valid and will apply to cases 

II - IV. 

"' (2.7) "Lemma 

Let M be aA -region in 711(A) . Let 

S(M) 
.ß 

(E1, E2, ... , EL/2) or 9 (M) 
.= 

(Ei, 
ýý-IZ)}1 

' ... s 
Id 

aa explained in the introduction. If for each, 1. <i< L/2 (or 

(1,12)+1 (i < L) there is a negative edge. E in Xi, then 
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(E; M) -6 . 
E. in 5(M) 

Proof 
A careful examination of all possibilities shows that if E is 

a negative edge, then d(E; M) < -(1/70) 

Hence 
(E; M) - (L/12) - 

Ein9(M) 

Ce'II when (i. ) p=q=1, 

(ii) either 8R(ab) 1 or OR(ba) 1. 

22L/2 lb222 
Put w.. = (ab) and u= aab. Then (H3) is valid 

and so there exists an RI-diagram ')i) (d) 
. For each (L, ý )-edge 

E in 'M (A) 
, so (E) is a subword of a6 bI7 or 

0 
aE , where 

E )? r . 
"-= ± 1, This OR(cp (E)) < 2. Then certainly (H5) is 

yalid and 'l(Q) is a suitable R'-diagram. 

"- (20 8) Lemma 

--For any t -region M in 

(E; M) < -6 0 
E in S(M) 

. -Prööf 

We can write S(M) = (E1, öl, ö2, "", 
i(L/2)) or 

SCH) (E1031 '(L/2)+1' ..., 
rL), Athen CE1) = x11 or 

ýCE1) y±1. If for each i., 1. <i< L/2 (or (L/2) +1< L) 

there is an (M, .' 
)-edge occuring in ö. , then by Lemma (2.7). 

.-ý 
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d (E; M) -6 as required. 
E occur in 97(M) 

Now, suppose that there exists an integer j such that every 

edge in is an (M, 'S')-edge. If an edge E in Y. is an 
f- I rk 

j 
$-edge then cP (E) =a or cP(E) =b1 and so 

d (E; M) -3 by Lemma (2.1). Hence 

d (E; M) < -6 as required. 
E in 6 (M) 

Suppose that 

the nature of the 

labels are (ab) 

(ab) =1 or 

required result. 

Case III 

not of the form 

for each edge E in Y3, E is a T-edge. By 

chosen words w and u there must exist edges whose 
19 

and (ba) respectively. By (ii), either 

BR(ba) =1 and Lemmas (2.1) and (2.7) give the 

- when (i) p=q=1, 

(ii) BR(ab) = () 
R(ba) = 2, 

(iii) The unique relator involving ab is 

T: (babz)m, m>1., 

Put w= (ab2)L12 and u =- ab2a2b2. Then again ? D(A) is 

a suitable Rl-diagram. And by an almost identical argument as in 

case II, we show the contradiction required. 

Case ' IV - when Wp=q=1, 

(ii. ) BR(ab) 
.- 

9R(ba) - 29 

and (iii) The unique relator r in R involving 
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ab is not of. the form r= (abaz)m, m>1. 

Put w .= 
(a2b)L/2 and u d2'b2a2b2 and argue exactly 

as in Case III. 

-Case V -- when (i) p=q=1, 

(iý) 8R(ab) = 6R(ba) = 2, 

(iii) The unique relator _r 
in R involving 

ab -is of the form r= (babaz)m. 

Then put w3 (a2 b2)L/2 and u= a-b-2 a2 b2 and by a 

similar way as in case II, we show the contradiction required. 

Section 3 

Let G. (A; R ) be a finitely presented group which satisfies 

(H1). Throughout this section we assume that every generator in 

A is a piece relative to R and there exists a in A with 

(i) a R. for any mý0, 

(ii) 6R(ap) =. _1. 

We shall consider four cases. 

'Case I- when there exists baA, býa with R(bq) a 1, 

(see section 2 for the definition of bq) . 

Put w "-2 (ap)L/2 and u bq}1. Then (113) is valid. 

Now, for each (, ý 
, 'ý)-edge E in V(A) 

, (p (E) is a subword of 
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apbq) (bgap or (b4+1) , E'01y =±1 and so 0R( P(E)) < 2. 

Then (H5) is valid and 'm(L1) is a suitable RT-diagram. 

Let M . be any A -region in Th(A) with (El, E2, ..., En 

where (El) =x1 or yt1 

Q 1) Lemma 

Let Em, 2m<n be an (M, S )-edge. Then 

CES; M) 0. Moreover, if em1 a or m1bk, 
s9 

1<L' <p, 1< k<q, F-i? = 1. 

Then d (E 

'Proof 

By Lemma (2.1), d (Em; M) 4 0. If ms1 -a 

say, 1<2'<p then ßR (em 
1) 1 and so i(Dm) > 4. 

If i (Dm) 
.=4, then (Dm, $>3 and d (Em; M) 3 

as required. If i (Dm) = 5, then (DM,. ý 2 and hence 

d (EM; M) <-2. 

The following Lemma gives the contradiction we require. 

'(3e2) Lemma 

For any ß-region M in 111(A), 

ä (E; M)' 
E in S01) 
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'Proof 

Suppose not; and let M . be aA -region with 

d (E; M) >- We can write S(M) a (E1, Yl, ä2, 
E in g(M) 

**oft 
i 

LI2) or 9 (M) (El, ' '(L/2)+1' 
""", 

öL) as explained 

in the introduction. If for each i, 1<i< L/2 (or (L/2) +1<i< L) 

there is an (14, A)--edge occuring in Y. then 

d (E; M) (by Lemma (3.1)). 
E in Y. 

Thus (L/2), which is absurd. 

E in 9 (M) 

Hence there exists an integer j such that every edge occuring 

in is an (M, j )-edge. By the nature of w and u, at most 

four T-edges and at least (L-2) S-edges occur in These 

S--edges have labels which are subwords of af, E_±1. Then 

Lemma (3.1) easily gives a contradiction. 

'-Case II - when (i) card A>3, 

(ii) for every bEA, býa, BR(bq) - 2, 

(iii) there exists b G. As boa such that 

the unique relator r involving bq is not of the form 

t^E £ 
r= (bqa za )r3, m>1, E. =t1, where z is a bq-free. 

Possibly xeplacing a by a"1, we can assume that if b is a 

generator satisfying (iii) then neither bqa--- nor abq occurs in r. 

Then'we put w (ap)L/2 and u= bq*l; and so (H3) is valid. 
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Not, . 
OR(T (E)) '42, for any (2,, j)-edge in 'M(A) and 

clearly (H5) is valid so that 7 11 (0) is a suitable R'-diagram. 

" (3.3), Lemma 

For any -region M in M (A) 

(E; M) -E " 
E' in 9 (M) 

-'Pröof 

As in Lemma (3.2), it suffices to consider a path 

. 
4n which all edges are (M, S )-edges. In such a path there are 

at most four -T-edges, and at least (L - 2) S-edges. Then the 

labels-on the-S-edges are subwords of a£p. and the argument of Lemma 

(3.1) remains valid to give 
d (E, M) <-3 for each such E. 

Case III -- when (i) card A>3, 

(ii) for every beA, b a, BR(b4) Q 2, 

(iii) for every b c- A, b#a, the unique 

relator r involving bq is of the form r! (bqä-£ zaE )m, m> 

E' _±1, where z is bq-free, 

Let cEA, c#b and 
"c4a. 

Let cq be the maximal power 

of c occuring in any relator of R. Thus the unique rt in R 

inyolying cq is of the form r' _ (cq aý z'0 )n n>1, a±1, 

whexe - z' is cq -. free 

t 
Put tz = bq)L 

2 
and u cloq 

}1ý Then (H3) is valid 

and so there exists an R'-diagram 'yjl(A ). As 8R(? (E))* < 2, 
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all EE (H5) is valid so that i11(Q) is a suitable 

R'-diagram. The following remarks can be observed easily. 

" (3.4) 'Remarks 

Let M be a Z-region in 1fl (Q) with S (M) 

(E1, E2, ..., En) and 1 (E1) x1 or ? (Ei) =Y 
ti 

(1) d (E; M) ' G 0, all Eep (m) 

-(2) If F. is an S-edge with 0R(0 (E)) = 1, then 

d CE; M) - 
3. 

From (3) (2). dEM -6 if for edge EEMnM 
E in (M) 

E is an S-edge 

(4) A T-edge does not involve b' or cegt, gý = tl 

(5) Let T(E )=D, where Ee (4 ,S). If d (E; M) > 61 

then either i (D) =4 or i (D) = 5. 

(i) If i(D) = 4, then d(v) 3, all ve 1Ün F ýD) 

and (D, 4)# = 2. 

. (ii) If i(D) = 5, then d(v) = 3, all vC -11n 

and (D, 4) = 1. 

(6) If E is a negative edge then d (E; M) <- 6" 

(7)" If there exists a vertex v6 P(D) with d(v)> 4, where 

D. T(E) and F. C then d (E; M). < 6" 

(8) If E is a neutral edge and ß'(E) =DE, then 

8r*(? CE(D)) 6. 
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.. (3.5), Lemma 

. Let'- Em, 10 <m< n-10, be a T-edge. Then 

d- --1 z 
-60 

J=M 

=rroof 

By Remarks (304), it is sufficient to consider the case 
N 

when d (E . ; M) 
.=0, 

Now, either em 1b 
£X 

c 
E, k 

or em 1= c 
L. k 

bU 

1< ,ý'<q, 1-< k< q' and . ±1 
.. 

W, 1. o. g. we assume 

EX £k that e=' 1bc. By Remarks (3.4), i (Dm) 4 or 

i(Dm) =5 and in both cases, BR*(rm) = 6. 

Suppose that i(DM) = 4. It is not hard to see that Em'3 is 

the other (Dm,, ß)-edge, (otherwise there exists a vertex ve (Dm) 

such that d (v) > 4). It is clear that em+l, l= b£ 4 and 

en+2,1 ° Applying the same argument as that in Lemma 

fk (11.3.12), we can show that b em 2 is a piece relative to R. 
s 

Hence e 
R*(r m) 

ý 5, which is absurd. By the same argument as 

above we-can-show that i(Dm) #5 , which is a contradiction. There- 

fore there exists t, n+l <t< M'ZSSuch that d (Et; M) <0 whence 

d (Et; M) (by Lemma(2.1)). 
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'Lemma (3.6) 

For any 
T 

E in 1(M) 

Proof 

, $-region M in eil (A ), 

^I 

Suppose that there exists a path 

(or-(L/2) +1Zj4. L) such that 

E in 

ý, 1j L/2 

N 
d (E ; M) - 0. 

ýS ee the introduction for the definition of Then for each 

E in d (E; M) = 0. Obviously, there is no (M, I )-edge 

j. n öj. By Lemma (3.5), no E in can be a T-edge; and by 

Remark (3.4) (3) either T(E) = big or ? (E) 

This is impossible by the nature of the chosen word u. Hence for 

each j, 1--< j< L/2 (or (L/2) + 1-< j<Q. there is a negative 

edge in and Lemma (2.7) gives the required result. 

Case IV - when (i) =A= ta, b3 

(ii) 0 
R(bq) .=2, 

(iii, ) the unique relator r involving bq 

is of the form r= (bqa C 
zaF )m, in >1 and z is bq-free. 

W. l. oag. we can assume that £1 and then argue exactly 

as in case II. 
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Case Vw 

bq is of the form 

bq-free. 

We can take 

Then again Th (A) 

hen (i) A= ýa, b j, 

(ii) 
R(bq) .=2, 

(iii) the unique relator r in R involving 

r (bqa 6 
za 

F' )m, > 1, t 1, where z is 

E= 1. Again put w= (ap)L? 2 
and u= b4+1 

is easily seen to be suitable. 

' (3ý"j) "L nuns 

let Em, 2<m<n be an (MS 

Suppose that e _1 
=a 914.1/', < p and 

d (Em; M) - 0. 

Then either d (E 
, M) '/-3 or d (Em 

1; M) -. 
1 I_ 

Prößf 

Since Z (Em; M). = 0, we must have i(D) = 4, 

(Din =2 
__and 

d(v) =3 for every vE ß(Dm (Remember that 

13 
R(ap) = 1). 

Let F(Dm) _ (Em 
1, ... , Em 4) . If E1E (D 

m, 
e) 

ss 

then 
Nd (EE_1; M) 1 (since d (/u(Em_1) = 3) and if Em. 4 E (DD, 4 ) 

then 
d (Em+i, M) -1 (since d(%%+1)) 3). 

So suppose that Em, 3 E (Din then Em, 2 and Em, 4 are 

(DD, ý )redges. Thus e (bga4l)I), P, 

with BRCem, 
3) = 3. Let 

. M' = U'(Em. 3) 
(possibly M' M). 

We take º7. It when '_ -1 the argument is similar. 
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Since . d(p. (Em, 2)) = 39 Em+1,3 E (Dm+l' M') and em+1,3 -a' 

1< , 
Qz' < p. Similarly em-l, n(m-1) -1 aý3 

0< 23 P. Then e. 
R(em+l, 3) 1 and 8R (em-1, 

n(m--1)-1) 
< 2. 

If BR(em+l)' < 2, then we-have i(Dm+l)> 4. If i(Dm+l) 4, 

then (Dm+l,. ý) >3 giving d (Em+1, M) <-3 while if i(Dm+l) - 

5, then (Dm+l, )>2 and d (Em+1, M)" 

1must be 1L 
So suppose that 0R(em+ls1) = 3. Then1 em+ls1 bqaa 

Its So. em_1,1 a, IG ßs C p. and e 
R(em-l, l) 1" As 

8R( 
m-l, n(m-1)-1) 

<2 i(Dm_i) > 4. Again if i(Dm_1) 4, 

then (Dm 
1,. 

$ 
#>3 

and d (ERr-1; M) <-3 while if i(Dm_1) 5, 

then (Dýl, >2 and d (Em_l; M) 
2. 

(3.8) Lemma 

Let Em, 2<mn be an (M, S )-edge and suppose 

that em i= a- I& b q, 1<4<p. If a' (Em; M) = 1, then 
s 

d (Em+1; M) 
2, 

"Proof 

Since d (E14 ; rs) = 1, we must have (Dmt 1 and 

j(Dm) = 4, 
. 
d(v) - 3, all ye (2(D )o As 

d(t, (Em, 3)) = 3ý Em+1,3 E (m+1, ýJ) and 

Eý3 E (Dm, ý) and 

eR(em+l, 3) = 1. 
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Since d(, /u. (Em, 
4)) = 3, a-(EM+1) E 

1< is <p. 

.e and ee+l, l -a1, 

If i (Dm+l) =4 then BR(em+1,4) =3 and so em+1,4 = (bgaZZ )£, 

1< ýZ < p, _ t' 1. But e=1 gives cancellation in rm+l and 

E. _1 means that 'r contains alb qa1 
as a subword which is 

at variance with the fact that r= (bgaza 1)n, 
n>1. Hence 

ý. C 
y4+1) . 

4. 

If i (DD+1) 5 then (Dm+l,, e) >2 and d (Em+1; M) < -- 2 

as required. 

(39) -* Lenuna 

Let Em, 2C <m4n be an (M, 5 )-edge and suppose 

that em' 1_ b4 0; 21<I<P. 
If d (Em; M) = 1, then 

ä (E; M)' 40 

"Proof 

By the same argument as that in Lemma(3.8)" 
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" (3; 10) "Lemma 

Let' Em 2Cmn, be an S-edge, 

negative edge then d (Em; M) <- 60 

Proof 

If E is a m 

As Ela i$ an S-edge, i (D)>3* If i (Dm) = 3, 

then' 

Let i (Dm)' = 4. 

then ' (E; M) <- 30 

exists a vertex =_v in 

ä (m; M) < -.... o 

And by Remark (III. 3.7), d (Em; M) <. 6. 

Then (D 
,, G) > 2. If (D, $)>3, 

Otherwise (Dý, ý )=2, and so there 

p(Dm) such that d(v) > 4. Hence 

Similarly for i(Dm) =5 and (Dot) 1, 

there exists a vertex v in P (Dm) with d(v) 4 whence 

d (E ; M) <-. Otherwise d (E ; M) <-1. Clearly, for i(D) 
m 4* m-2m 

(3.11) Lemma 

Let Em, 3<m< n-1, be a T-edge. If d (EE; M) < 1, 

then äC ri) <3 0 

"Proof 

It is su"£icient to consider the case when i(Dm) 4 and 
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(Din , 
4) = 1. Since d(Em; M) < 1, then there exists a vertex v 

in P (Dm) with d(v) > 4, (otherwise d(Em; M) = 1). Hence, by 

Lemma (III. 3.1), d (Em, M) <3 as required. 

' --(3; 12) ' Remarks 

Now, *from Lemmas (3.4) - (3.8), we conclude the following: 

Let Em be an (M, S )-edge in s(M). 

(1) If Em is an S-edge with 
d(Em; M) = 0, then either 

N 
d (ý+1; M) <-3 or d (Em 1; M) <-3, (Lemma 3.7). 

(2) If Em is a negative S-edge, then d (Em; M) <-6. 

(Lemma (3.10)). 

(3), If Em is a T-edge with d (Em; M) = 1, then d (Em; M) + 

ä (E 
1; M) < 4. 

"(Lemmas (3.8) and (3.9)). 

(4) If 
__EE 

is a T-edge with d(EM; M) < 1, then 

d (EM. ; M) <. (Lemma (3.11)). 

(5) If Em is a nagative edge, then d(Em; M) <-1 
70 . 

(See the proof of Lemma(2.7)). 

A subpath Ei ,..., Ei , 24 i1 < ik L n, of is (M) 
1k 

is called a b-path in $(M) if it has the following properties, 

(i) For each il tj . 4, ik ,ei ivolves btl 

(ii) If ei begins with at , v_zil, and ei 
-1 

ends in b then 
11 

6 v' 

,` 
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Ei 
_1 

must be an (M, e)-edge otherwise ei is a br1-free 
11 
(iii) If ei ends in at, r. il, and ei begins with 

b, 
then 

k k+ 
Ei 

+1 
(M, 6) otherwise ei 

_1 
is a bbl-free. 

kk 
(Note that fok ik = n, condition(iii) is still valid. ) 

(6) if r is a b-path in 6 (M), then 2 d"(E M) 41, where E in 17 
. 

(3.13) Lemma 
For any c -region in 7l1 (t) t 

d(E; M) 4 -6, where E in 5(M) 
. 

dk. 

]Proof 
- Suppose not . Then there exists a ý 

-region M such 

that d(E; M) '> 
-6, where E in 5 (M). We write ; (M) = (E1, E2,... tEn 

where 
4, (E1) =i -l or y1 Hence d(E1; M) = -1 . 

Let rl ; (E 
,..., Ej, ) be the first b-path in S(M) that 

mkl 
1m 

follows El. Since d(E; M) G 1, -S- d(E; M) < of 

m- 
1j 

mkt jj 

(See Remark(3.12)(6)). If 
amd(Ej; 

M) ) -(1/4), then it is not hard 
! 
j-1 Mt, - 1 

to, show that cr(Emt t 1) Wit d(Emý 
} 1; M) < -(1/4) whence d(E ; M) 

1 
4-0/4) 3 

Let V2 (E1 
9... tEm be the first b-path in 6'(M) that nk2 R2 

follows if d(Ej; M) < -(1/4), then 

mQj 

d(E; M) < -(1/2) 

mk j 
2 mQ 

2 

Suppose that d(E; M) > -(1/4) . If for each j. 
J- mk , 2 

71 
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mý t1<i me -1 PEi is an S-edge then there are sufficiently large 

2M Me 
2 

number of them with d(EM) -(5/4) whence 
Z d(E ; M) 

j=mQ t2 3" 
1 

Now , soppose that there exists an (M4)-edge Et, mi .1GtG me -1. If 
2 

m ý2 

d(E; M))-(1/4)ý then o'(Em + 1)Eý with -1 d(Em 41; 
M) 

k 

t;. 
Ii . V"" 

<-(1/4); b E'r 
j-t 1 

k2 2 
. '' 

thus I(E.; M), < -(1/2). S ince L is chosen to be large enough, we can 

repeat- the argument to show that 2 d(E,; M) 4 
_6, which is absurd'. 

3=1 

.. Sectian*4 

Let G. =<A; R > be a finitely presented group which satisfies 
Art }. Throughout this section, we assume that every generator is 

a piece relative to R and there exists aeA with 

Cý) a'A ý R, for any in 0, 

OR(ap) - 2, 

(Ui) for each beA, b0a, the unique relator :: r involving 

n 
ap is not of the form ra (apb £zbc), 

n>1, t=t1, where z is 

ar-free. 

We shall consider three cases. 

-ý-'Cac I '- ruhen (i) card A> 3p 

(i i. ) the unique. relator involving ap is of 
e the forum x= Cai'bz c'l)' where b c, m>1 and 
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w. l. o. g. we. assume that r (apb lzc)n, 
nN1,. Put 

p 36L. 
tit ^ (a ) and u=b. Then . 

(R3) is valid; and for each 

)-edge 
_. 
E inifl (A), e 

R( 
(E)) G 3. Hence (H5) is valid 

and is a suitable R'-diagram. 

Let M be any 
e 

-region inM (Q) with S(M) - (El, E2,..., En), 

hexe either T (E1) xt1 or (El) yt1 We observe the following ý=. 

remarks. 

" (4.1) -, Remarks 
N 

(i) d (E; M) < 1, all EEP (M). 

I' GR(y (E)) = 3, then () (Em) _ (a ball) , where 

14 £i 
,4<p and 

E_±1. (iii) A T-edge cannot involve aE P. 

(iv) There are at most (L/2 - 1) T-edges in c(M). 

(v) Let E24m<n, be an (M, ý )-edge. 

If Em is an -S-edge and d (Em; M) - 0, then i(Dm) -4 or i(Dm) = 59 

2 and d(v) -3 all and; (i) for i(Dm) = 4, we have (D, d -0 

vE (Dm) () 15_j 

(ii) for i(Dm) = 5, we have (D, )=1 and d(v) -3 

(D% 

...... ............. 
" (4.2) - Lemma 

Let Em be any (M, 'ýj )wedge, where 2Gm n-1. 

Suppose that ý+1 is an (M)-edge. Further assume that 

)) 3. CE )= Ce (Em+1) = aE p. Then d (1U(EM 
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T roof 

W. l. o. g. we assume that s= -1. If d(µ (Em)) a 3, 

Recall that the unique relator r involving then Em, 
n(m) 

Em+1,2' 

ap has the form r_ '(apb-lzc)nt, . nv "> 1. Compare rm+l and r, 

noting that ap is not a piece relative to R. Hence e ends 
mn(m) 

in b which is absurd. Therefore d( (Em)) 3. 

-'Lemma 

Let Em be an (M.: 95 )-edge inTh (A), 

() Suppose that E. is an S-edge. Then 
m 

(i) 8R(c(Em))' 2, 

(ii) Em cannot be a positive edge, 

(iii) If Em+l' Em+2' Em+3 are S-edges and Em is 

a neutral edge then there exists an integer t, m+l <t e- m+3 such 

that 

d (E. pM) 4s 
. 
j=m 

N1 

(iv) If Em is a negative edge, then, d "(Em; M) <-6. 

(2) Suppose that Ein is a T-edge. Then 

(i) Em is a positive edge with d (Em; M) # 1, 

3 
then dCE; M} 

^ 4' 

(ä, i, ) if E is, a. positive. edge with d (E ; M) - 1, 

then there exists an integer t, m+i 4tZ -m such that 

A 
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. .L3 d (Ej; M) 

. j=m 4ý 

'Proof 

Cl) Given an S-edge Ems, then ( (EA) =aA or 

where' 1 '- p and 'C, Y L, _ 1. Hence, clearly, 8 
R(ý (Em)) L 2; 

and so (L) is valid. (ii) is valid by using (i) and Lemma (111.3.5). 

(iii) Let (P (Em) -b --q 
, 

'1= f 1. Then i(Dm) -4 or 5. 

since Em is a neutral edge. If i(Dm) = 5, then (D, ß )# >2 

whence 
d(Em; M) <-2 which is absurd. Therefore i(Dm) 4 

. and (D, e )# = 2. Let S(D (E 
m' 

EEm. 3 E 
m, 4 s m92 

'Since Em is a neutral edge, d(v) 3, for all vertices vE@ (Dm). 

ý£ m, 2 is the second (Dm, e)-edge, then em. 2 = (a'Ll ba Q2) 

where 1G £j p, So, Em 3 and Em, 4 are (Dm, ý )-edges. 
, 

Clearly Ems4 Em+1s2. Let a-(E m, 3) D'E Then 

Em+ls3 is a (Dm+l, D')-edge. 

Now, em+l, l= a' 
13 

By the condition C(6), 

i (D 
M+l 

)#3. If i (Dm+l) = 4, then Em+14 is a (Dm+l, -d) -edge 

and d (v) = 3, all vertices vE? (Dm+l) . Thus Em+2 is an 

(M, d )-edge whence d (Em}2; M) 1. Thus t= m+2. 

If (Di+l) 5, then Em+l, 4 and Eý+S. must be (ý+ 

-edges with d(v)' = 3, all vertices v C- 0 (Dm+l) (otherwise put 
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t- M+1). Thus em+l 1 a' 
e 

Let 6' (Em+l 
4) = D". Then 

s, 

Em+2,3 is a (D 
m+2 , 

D")-edge.. By Lemma (4.2), em+2 1= aqf 
s 

1<%<p. If i(Dm+2) 4,. then Em+2 4 must be a T-edge 
s 

with em+2,4 = (a'26 ba'ýl and so rm+2 = (a I6 ba17) a ̀ ý4S em-2 2 s 

em+2,3. Thus e 
R((aR'6 bat )h alk5 3 so that R* 

(m+2) .. 5 

-whi, ch. is absurd. Thus i (Dm+2) . 5, and for i(D2) - 5, (Dm, )# ,' 2" 

.. Hence d (E2; M) ' 4- -2 and so that t= m+2. 

It-is not hard to show the required result for T(E) =äf, M 
1Lt' L'p. (Note that Em+l' Em+2' Em+3 are assumed to be S- 

edges: ). 

(2) 
. 
(i) If d (Em; M) < 1, and m is a positive edge 

then either i(Dm) =4 with (D, ß )# 1 or i(Dm) 3 with 

4 '0' (D, )2 . For the first case, there exists a vertex v Cr E3 (Dm)A 

such. that d(v)_, )4 whence d (EM; M) L4 as required. In 

the second case, clearly d (Em; M) 
2 

(ii) By a similar way as in (1) we can have the required 

result. 

t4o4) " Lemma 

Let Em and be- any two distinct T-edges in S (M) . 

If for each m}J. ' 4j< m' 4, E. is an S-edge, then 
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-. 

z 

E in S (M) 

-Proof 

N 

d (E; M) '< 

Suppose not; and let 

-6. 

E in (M) 

N 

d (E; M)ý -6 . 

By Remark'(4.1), d (E; M) <1 and T-edges are the only one which 

can make'i positive contribution to the sum d (E; M). 
E in ,5 (M) 

Since there are at mot L/2 T-edges in (M), 

N 

- o((M) <d (E; M) < L/2 > (see Remark (4.1)). 

E in (M) 

Now,. from the nature of the chosen words w and u, there are 

at. leas, t (36 L- 1) S-edges between Em and Em Apply Lemma 

(4.3), to show that 

mt 
(E.; M) <-6L which is absurd. 

. 
jzm 

-- 

(4.5)" Corollary 

Let Em and Em, be any two distinct T-edges in 

ýCM). If 
d (E"M) then there must s 

E in 5 (M) 

exist an (M, ' )-edge between Em and Eßto 

Let M be ae -region in 71i (, A). Let E be an edge that 

pccurs in 5(M). We shall call E if and only if 

(E) inyolves b, 7=±1. Hence for each b-edge E in 
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$(M), c (E) involves exactly one b, '=t1. If the 

b-edge E is an (M, 'd)-edge, then d (E; M) _ -1. 

". (4; 6) Lemma 

For any -region M in 711 (A) 
, 

d (E; M) <- 6 

E in 6 (M) 

-Proof 

. Suppose not. Then there exists a 19 -region m 

in M (A). with d (E; M) >-6 

Ein (M) 

If each b-edge is either an (M, t)-edge or an S-edge, then clearly 

ve'haye a contradiction (using Lemma (4.3)). Hence there exists a 

b-edge in 6 (M) which is-a T-edge. Apply corollary (4.5) and 

Lemma (4.3) to show a contradiction. 

"Case 'II - when (i) card A>3, 

(ii) there exists cGA. c. 0 a such that 

the unique relator in R involving ap is of the form 

r_ (apcq. ztc'L)In , ja -N 1, ºl =±1 and z' is ap-free. 

but w= (ap)36L and u =_ b, b#c. This follows by an almost 

s=e izay as in case 1. 

" Case III" T when (i) A a, b , 

iii) The unique relator involving av is not 
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E 
of the form r_ (aPb zb 

E )m, m>1, z is ap-free, Put 

w` (aP)36L and u=b. This again follows by an almost similar 

way as in case I. 

SeCtiön 5 

Let G= <' A; R > be a finitely presented group which satisfies 

(A1). Throughout this section we assume that every generator in A 

i, 4 a piece relative to R and that there exists, -- a in A with 

(i) aýR, for any mý0, 

(Li. ) 0 
R(ap) .=2, 

" (i. i, i) card (A) > 3, 

(ly) there exists cEA, cja, such that the unique relator 

r involving ap is of the form r_ (apc zc 
ý )m, m>1 and 

ý_ ý 1. 

Put w_ (al 36L 
and u_b, where b*c and b0a. 

Then for each (16 , 
'i )-edge E in 711 (Q), Q (E) is a Subword of 

aE p 
or aF-)4 bE a£ß'2 , where 1G It <P 

and So 

that 
GR(T (E)) -3 and certainly, in the usual way, m (4) is suit- 

able R! -diagram. 

Let' M be any «region i, n"M (A) with S (M) _ (E1, E2, ..., En) 

and either (E1) = xti or CQCE 
1) = yti" 

" (S. 1) "Remarks 

Let' Em, 2Gmn be an (M, ý )-edge. 

i 
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(1) If E is 

(2) A T-edge 

(3) e 
R(em) 

3 

1<1 

an S-edge, then 8 
R(Y 

(Em)) < 2. 

cannot involve aVIP ,. 

if and only if e_ as 
gA 

bL alt1, where 

i: -. L<P and 4=±1. 

(4). If Em is an S-edge, then i(Dm) ý 4. Moreover, if 

d (9, 
xa; 

M) = 0, then i(m) 4 or 5 and; 

Ci) for i(Dm) = 4, (D -9) 
#2 

and d(v) =3 all 

vE6 (D m) rA 0"ji 
(ii, ) for i(m) =50 (D, g) =1 and d(v) - 3, all 

n19° YE@CD 

(5) If E is an S-edge and there exists a vertex v in O (D 
Q) 

with, d(v) 4, then d (Em; M) 'G-6 

(6) i (Dul) 
-2. 

(7) If 1(D) - 3, then (Dm-. 6) 
# 

-! s 2. Moreover, if I(Dm) -3 

and (D*C) 
#=2, 

then (Dm, e )-edges in 0 (Dm) are T-edges. 

(8) Suppose that i (Dm) =3 with (D, 
#= 

2 and b (Dm 

(E, 1, E, 2, 
in, 3 ° 

(i) If Em, 2 
is a (Dm, I )-edge and eitherd( (Em, 2)). 5 

or L( (Emo2)) , 5, then d CE M) 
4- loo 

cii) If Em, 2 is a (Djz, ý )-edge and either 

(ý 
)1= 4o ; rd 

ý 
(E = 4, then d (E ; M) +d (E ; M) . nrl 4 (Eý, 

2 m, 2)) 

(iii) if Em 3 is a (m, j)-edge and either 
7 
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m,, 3)): 
ý. 

Q\ (Em,, 3), = 4 

d CE 
]a ; 

M} 

5 oz, 
/l 5 

U) If Ema 3 

ozc1 (EE. 3)) = 4, 

If i. (D 3 and 

then d (Em; M) G- To 

is a (Dm, 5 )-edge and either 

then d (Em; M) +d (EE+1; M) <-4. 

(Dm, ß )# a 3, then 

(10) Suppose that i(Dm) =4 and S(Dm) (Em, 
1,..., Em, 4) 

(i) If (Dm, r)1 and either X (Em) '\5 or 

d CE 5, then d (Em; M) .- -5 
(ii) If (m, bf=1 andd(> (Em)) = 4, then 

dCE; M)+. d(E 1; M) L- 8° 

(iii) If (Dm, d) =1 and G ((Em)) = 4, then 

d (E ; M) +d (Em+l; M) L 8. 

(iv) If (D, '9) 2 and there exists a vertex 

vE@C m) ,d (v) N 4, then d (Em; M) <-4. 

(v) If- (Dm, 19) - 3, then d (Em; M) 4-3. 

(11) Suppose that i(Dm) =5 and (Dm) (Em, 
1,..., Em, 5). 

(i. ) If (Dm, ý° )=1 and either d (JL (Em)) .4 or 

dC (n)) 4, then d (E ; M) 4. 

Zf (D; 
rL, 

)#. 2, then d (E 
jn 

; M) - 
2. 

Ci. ii) If ()D 
es, 

U )# 3, then d%; M) 3. 

(12) Suppose that i(D )m6, then d(E 
m 

; M) G-1. 
- 
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(13) Suppose that i(Dm) -N 7, then d(Em; M) 4-$. 

(14) If i0m) =4 and (Dm, 1 )# 1, then (C`m) 6. 

If i (Dm) 5 and (Dm, )# = 1, then R( rm) = 6. 
CLY1ä cr( 

E,, 
j) 

4 

(15) Let i (Dm) =3j (D, ). = 2A , Then em must 

end in a Suppose that d(L (Em)) =3 and 

a- (Em+l) E If em+l =aP, d(, U(Em+l)) =3 and 

aP; Moreover there is no pair of (M. 1 )- d(Ejn+2) E' , then e,, +2 

edges Ej; Ej+l 2<j< n-1 and j0 m+l such that e1 ej+l _äP 

(16) Let i (Dm) =4 and (D. ,t )4. = 1. Then 

em _ ae aý-_ 4cp. 

If either em+l atP or eil _ a6 
p. 

, then there is no 

pair of (M, j )-edges Ej, Ej+l, 24jG m-2 (or m+2 e- j< n) such 

that e3 ej 1ý aE p 

(5.2) Lemma 

Let Em, 2LmGn be an (M, lj )-edge. If 

(Em) aP1, 
then Em 

2 and Em 
n(m) 

must be (Dm, ý )-edges. 
ss 

Proof 

Compare r and r, noting that aP is not a 

piece relative to R. It fg11ows that Ein, 2 must begin with c and 

maust end with Co j= t" Hence both E2 and 
p1, n (P) ms 

E, 
nýý 

are (, )"-edges. 
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(5.3) -Lemma 

. Let' Em, 2mG n-2 be an (M, f)-edge. Suppose 

that Em is an S-edge with the property that i(Dm) 4, d(E; M) > 

6 
and eý _ aE'ý ,1- . 

Q' 4 p. Further assume that Em+l 

and Eju+2 are S-edges. 

m+2 1 Then d (Ej ; M) G-T. 

'Proof 

Without loss of generality we can assume 6_ -1, i. e. 

P. 

Suppose that e1_ aý1 ,1G£. l. < p. Then 
ms 

0, C) 
.=2/ d(v) -3 all v (Dm) !1 1ý, since e 

R(a 
ý1) 

=1 

and 
d(Em; M) >-6. (see Remarks 5.1). Moreover the other 

(Dm, e )-edge must be Em 3 with em 3 == (a 
ý-z 

baf, 3 
ss 

1< Q2 , 
Q3 Lp and 1. Thus Em+l 3 is a (Dm+l, t )-edge 

and em+l 3 must be a subword of 
OF 

since d QA(Em, 3) 3. 

4 Note that it is sufficient to show that either d(Em+i; M) 1 

4IV or d(Em+2; M) L ... 
4. 

7. em+l 1_b, then it is not hard to see that d(Em+1; M). 

j; 
and by a similar argument we can show that if m+1,1 =a 

ý3 
, 

1< , 
C3 < p, then' d(Emt1; M) G ., 

1 
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Now,.. Let em+1 1= ap and d(Em+1, M). = 0. Then 
s 

em+1,3 -. ap and i(Dm+1) =4 such that Em+1,4 (D 
1,5 

) and 

d(v) 
.=3, all vE0 (Dm). We write r 

m+l =. ap e 
m+1,2 

ap e m+1,4 

Ie= ap then we can. write r ade-1 z' which is 
m+2,1 - m+2 +1,4 

absurd, since "ap is not a piece. Thus either e m+2, =-b or 1 

ý+2s1 
.=a 

L5 
.1L .6 <-p and in both cases d (Em ; M) 

C5: 4) :: Llýmma 

Let Em, 2<mG n-2 be an (M, )-edge, Suppose 

that L(D) = 3, (Dm, & )ý = 2. and d (Em; M) >- 10' 
Then 

there exists t, m+1 <t4 m+2 such that 

d (E M) 10' jýn+l 

Proof 

Suppose that Em 2 is a (Dm )-edge. Hence Em, 3 must be in 

(Din, g) 
. If d(/A(E)) ) 5, then it is not hard to see that 

PO - d(EE; M) + d(Em+1; M) e- 10 and so t= m+1. 

Let d (P (EM)) 4. Clearly, e +1,1 = aýýi '1< 
tI p 

and e= aE 
E2 1<< and soe (e e)'G2. p; R w+l, l m+1,2 

. m+102 

if e Ce e)=2, then ee aE 
', Ef1. 

R +111 x+1,2 ' +1,1 m+102 

Hence 
,, +1,3 and Em+1 

n(m+l) are (Dm 
f)-edges, 

by Lemma (5.2). 

So that ß, (D 1) a5 and for i(D 1) 5, (D, )# 3 whence 
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"-2 Thus t= m+1. 

. Let 8 
R(em+l, l m+1,2) ._`1. Since 

ya+12 ends in a£ , 
3 

)' G 3. If I e) 4 3, then. R 3: 1 m+1,3 

(it is not difficult to see that j(D1) . 5; and)., t= m+l. If 

3 
0R( IT emfl, j) = 3, then Em+1.3 E (Dm+1, bý) and em+1,3 

. vus, t end in aF E, Hence e, j) 
-5 

and R X31 in+l 
L 

CDm+l 4. Thus i (Dm) 5. If i (Dm+l) = 5, then 

CDC+1' $ )# -ý 4. and so d (Em+1; M) L-4; and again t= m+l. 

d( M(Em)) = 3, then Em+1 C- (M, ý) whence t- m+l. 

Let ms2 be a (D, )-edge. Hence Em,, 3 E (m, ý). if 

"d (/L (E )) -N 4, then d (/u (Em)) =4 and t= m+l. (Using Remark 

g(i. i J aid Civ), 
Now, we consider the case when d(µ(Em)) = 3. Let 

em+ls1 = a'P '_ 
ý' 1" If d(, l4(E 1)) 5, then 

d(Em; M) + d(Em+1; M) L- 10 
and t= m+l. If d(M(Em+l)) = 4, 

then t= m+2. Let d(P(Em+l)) = 3. If em+1,1 a'IP , then 

Em+l, n Cy-n+1) & (Dmt1' J). It is not hard to see that d(IL (Em, 2))-= 

3 or 4j and for d(/(Em, 2)) = 4, t= m+l. 

Let d(µ (E 
m. 2)) = 3, then Eis a (Dm+l, cr (m, 

2))-edge. 13 

(Rewembe7C . that 0CE, 2) E). Thus eil 3 aý2 ,IG 
L2 ' p" 

s 

Let eýmt1,3 = alp " Then E=7. If i(Dm+l) = 4, then 
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we write rm+l = (a? P em+1,4)2. If either d(fL (Em+l 4)) 
}5 

or d( )(Em+1,4)) 
_N 5, then t= m+l. Also, if either d(1A(Em+l 4)) 

4 or d(), (Em+1,4)) = 4, then t= m+2. 

Let d(, u C m+1,4)) 
'- 

d(X (Em+1,4)) 3. Thus em+2,1 a 

and em+2 3- a14 ,1`. 
L3, i4-ß 

p" Then i(Dm+2) >5 and if 

i, CDm+2)* =5 then (D, )# 3; and so t= m+2. 

. Let e at 1Gß. 5 < p. Then d(E; M) <-2. 
w+1,3 --- 

Thus if t#, m-1 then t=m-2. 

. 
Let em+1 1 a' ,1G 

Q6 < p. By the usual way we can 
a 

show that t is either m+l or m+2. 

By almost the same way we can establish the following results: 

. (5.5) .. Lemma 

Let Em, 24mG n-20 be an (M, Q)-edge. Suppose 

1 
that i(DM) = 4, and d(Em; M)> Then E - $o M-1 

and E 
+1 must be S-edges. and there exists t, m-Iý t m+20 such 

that 
ý7 

d(E.; M) <-$, provided that for each mGjG t-1, 

E 

............. ...... 
(5.6) Le=a 

Let E,. 2m<n be an (M, )-edge. Suppose 

i, (Dm) 4, (D, )# =2 and d( m; ri) >-4. Further suppose 
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that or (E 
1) Then there exists mA <t< m+2 such 

m+2. 
that Z d(E.; M) ' /, - 

ß=m-1 

(5.7). Lemma 

Let Ems, 2.4m, <n be an (M, I )-edge. Let 

i(Dm) = 4, (D, ). =- 2, d(E; M) =0 and a 

Suppose that there exists a b-edge following Em (see section 4 

Xpz the . 
definition of the b-edge) and I et Em'' 2- m' < n, be 

the first b--edge following Em__ in S(M). Further assume that 

there does not exist an (M, &)-edge between' Em and m, and 

m'-2 
that d(E.; M) = 0. Then Z d(EM) 

10, 
j--m j=m 

, hereI-tW5 

(5.8) *Leiuna 

Let Ems, .2 '- m4n, be aT-edge. Suppose that 

i, (DC) = 5, CD, 4) 
,=1 and d (Em; M) >-4. Then there 

t1 
exists-t., m-l 4t< m+2 such that d(Ej; M) L-4. 

. 
j=m-l 

.................. 
(5 9).. Lemma 

)For any 6 "-region 14 in M (A) 9 

d (E; M) <-6. 
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-Proof 

. Suppose, by way. of contradiction, we. have 

d(E; M) >6 

E in 5 (M) 

First, d(E1; N) _ -1. If each Ej, 2cjn, is an. (M, 'G)-edge 

-then there is nothing to prove. ! 1oreover, if there are more than or 

equa-velent to L/8 b-edges in (M, C), then a contradiction can be', 
- 

obtain. easily . Otherwise let Em,, Em,..., Em ,24tjn, be a subse- 

quence of -(E1,..., En) consisting of the b-edges in. (M, Qj). Thus 

t> 7L/8 If for each 14 J4 t d(EE 
J; 

M) G -(1/10)9 then again we 
have a contradiction. Otherwise there exists i, 1G1t, such that 

d(jm'M) i- 
10 " 'hen 3K i(Dm 5. 

Since L is chosen tobe-large enough, in effect, we have 36L 

b-edges in S(M). We can apply one of the Len=s(5.4)-(5.9), 'for any 

b-edge whose artificial degree > 
-r 

1 
10 and show that 

d(Ej; M) d 
-6, which is impossible 

SecUUon'6 

Let G. ayb; R> be a finitely presented group which 

satisfies' Offi?. Throughout thiq section, we assume that 

(fl a and b" are pieces relative to R, 

(i) a R, any m 0, 
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(iii) 0 
R(ap) = 2, 

(iv) the unique relator r involving ap is of the form 

r (apbe za 
t )111, m 

We write r_ (apbk, z'a' b 
kZ 

)ý, m 1ý fakir =1 

We shall divide this section into ten cases. In each 

case we give suitable words w and u and leave the proofs to the 

reader. 

"Case I- when (i) q=1, 

(ii) 0 
R(ab) = 1, 

Put y_ (aP)36L and u. b2. Gbrt 

fee sec. ýfr 2, , 

"Case-' II -- when (i) q=1, 
- (ii) ©R(ab) = 2. 

2 L/2 2 
Put w_ (ab ) and u_abi" (we recall that 

the unique relator r involving ap has the form 

r (apbZagb ' ); m> 1). (Apply Lemma (2.7)). 

Case III when (i) q 3, 

R(ab) = 1, 

and (i i. i) kl .=1. 

auf _ (apý36L and u_b. (see section S). 
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' 'Case' 'IV - when (i) q ,)3, 
(ii) "0 R(ab) .=1, 

and (iii) k1 . 2. 

L+i 

Put sl xwa (u a wi) and 

2L 

rs2 
_yu 

lT (a ý u), where w (ap)LhI2 and jýL42. 

u`b. (see section 5). 

'Casa- V- when (i) 0 
R(b2) 1, 

(ii) kl = 1, 

(IU) Ee 
R(ab) = 2. 

Put w= (ab) and u=aba7 b2. (see section 2). 2 1'/'2 

"Case' 'VI - when (i) 8 
R(b2) = 1, 

(ii) 0R(ab) = 2, 

and (iii) k1 2. 

Put w- (ab) L/2 
and u_a b2 a'I bab (see section 2). 

Case , VIZ - when (i, 1 8R(a2) 
= 1. j. e. p. 3. 

(By 6yrwuetry) . 

. Case' VIII - when Ci. ) 8 
R(a2) ._ .U R(b2) = 2, i. e. pq=2. 

> 1. and (ii) r_ (a2b2ä tzb-') in 
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(1) If 6 
R(ab) = 1, then argue exactly as with case IV. 

(2) If 0 
R(ab) = 2. then put 

(bee section 2). 

w _, (ab)]6`2 and u. ab 
lab. 

Case IX. - when (i) 8R(ä) 
R(b2) = 29 

(ii) r= (a2b a'1 zb 
1)m, 

m >, 19 

and (iii) e 
R(ab) 

= 1. 

(1) If h 1t then argue similarly as with case III. 

(2) If n= 1p then put v a2L and u= b2L. 

(see section 2) 

Case X. - when (i) 0 
R(a2) 

R(b2) 2, 

(ii) r= (alb ah zb 
1)m, 

m>I, 

and (iii) 8 
R(ab) = 2. 

Put w_ (ab)L/2 and u=. ablb. (see section 2). 
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