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ABSTRACT 

An investigation of the dispersion and 

attenuation characteristics of cylindrical structures 

supporting guided electromagnetic waves with low 

attenuation is described. The object of the investigation 

is to understand how the cross-sectional shape and the 

nature of the boundary conditions affects the propagation 

characteristics. Attention is directed towards structures 

supporting the least number of propagating modes under the 

conditions which yield low attenuation over a reasonable 

bandwidth. Elliptical waveguides with both smooth-walls 

and corrugated walls are studied in detail. This reveals 

errors in previous-theories which are corrected. Some 

aspects of corrugated rectangular and circular waveguides 

are considered. Potential low attenuation waveguides such 

as the dielectric lined and dielectric waveguides are 

evaluated. 
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During a general research programme on corrugatpd 

waveguides and horns, Clarricoats and Saha <1 >1 
I 

observed the presence"of a low-loss linearly polarised 

hybrid mode in corrugated circular waveguides, 

Figure (4.1). In their analysis, a surface impedance 

model was used to represent the corrugated region of the 

waveguide and the power-losses on the metal surfaces 

were calculated. The low-loss phenomenon of the wave- 

guide was later confirmed theoretically by Clarricoats 

and Olver < 2> and experimentally by Olver, Clarricoats 

and Chong < 3>. In the latter analysis, a space 

harmonic representation of the field was used and field 

matching techniques were employed to derive the 

characteristic equation of the structure <4 >. The 

attenuation results thus obtained were lower than those 

of either the TE 11 mode or the TE 01 mode of a comparable 

size smooth wall circular waveguide. 

It was recognised that the presence of the 

corrugated boundary acts to reduce the field intensity 

near the metal surfaces and thus lowering the power- 

losses at these surfaces. The physical picture'that 

emerges when the corrugation depth is nearly one quarter 

of a wavelength is that the boundary so created acts to 

maintain the azimuthal component of current while 

reducing the dominant axial current component. 

In a dielectric lined circular waveguide, - 

Figure (6.1), the field intensity near the metal surface 
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of a circular waveguide is reduced, as demonstrated by 

Carlin and D'Agostino < 5>, <6 > for circularly 

symmetric modes and by Clarricoats et al <38> for the 

azimuthally dependent modes. The presence of the lining 

near the metalsurface provides the circular electric - 
modes with an electric wall boundary, while. the circular 

magnetic modes are provided with a magnetic wall 

boundary, as either the frequency or thelining thickness 

increases. For the hybrid mode TM conditions predominate 

and low-loss occurs for a thickness near to X/4. 

The above, effects are not restricted to circular 

cross-section waveguides, Bryant < 7>, investigated the 

propagation characteristics of a square waveguide, 

containing transverse periodic corrugations. He 

identified the presence of two types of propagating modes, 

one of which is characterised by low, field intensity, at_ 

the corrugated boundary. Unfortunately the. experimental 

results for attenuation abserved by Bryant, 40-200 dB/mt 

showed a substantial degradation over that 6f a smooth 

wall square waveguide. 

Bryant's explanations. -of the high attenuation 

were: 

(i) -- Due to the, presence of a large metal surface area 

in, the waveguide., 

Due to the method of 60nstruction'of the, waveguide. 

However,, he <8 > claimed later that an antenna 

feed incorporating a corrugated waveguide section produced 
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losses that were not measurably greater than those in a 

smooth wall waveguide. Therefore, Bryant concluded that 

the losses of the first corrugated waveguide may have 

been due to the method of construction. 

A rectangular waveguide with transverse periodic 

corrugations on two opposite sides, was. theoretically- 

investigated by Baldwin and McInnes <9 >,, <10>. Their 

analysis is similar to that of Bryant, but the 

attenuation results they obtained-showed an enormous- 

advantage over those of a smooth wall-rectangular 

waveguide of comparable dimensions. However,,. these 

results are shown to be in error <11>, although the 

reduction in the field intensity at the corrugated 

surfaces does occur for this structure. 

Yet another rectangular structure containing. 

longitudinal corrugations on all sides was. investigatedby 

Dybdelet al, <12%. -The attenuation coefficient of this 

structure when calculated taking into account both the 

increased cross-sectional size. and the. reduced power- 

loss mechanism of the corrugated surface, was found to 

be lower than that of-a-comparable smooth wall 

rectangular waveguide. - From the above examples, it is 

evident that a low-loss mechanism can be introduced in 

existing waveguides. The mechanism provides a means of 

lowering the field intensity near the-metal surfaces and 

acts to confine the power carried by the particular model 

towards the axis of the waveguide. in fact, the effect 

of, the new boundaries can be thought of asabeam waveguidel 
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thus providing the concentration of energy towards the 

centre of the waveguide. 

In order to identify the nature of the new 

boundaries needed to achiev6 the above criterion, * we 

must first form an understanding of the loss mechanism 

that takes place in commercially used waveguides, -such as 

circular, rectangular and elliptical, and then search, for 

a realistic means, to minimise these losses., Power-loss 

occurs'in waveguides due to the flow of currents in the 

metal wall of the boundaries, which possess finite 

conductivity. - The ultimate, objective is therefore to 

reduce the strength of the'currents by either the 

introduction of new boundaries or by the modification of 

the original boundaries..,,, 

To'reduce the power-loss-components-of a smooth 

wall elliptical waveguide, chapter two''is devoted, to, the 

study of the attenuation and propagation characteristics 

of the waveguide. It"is-shown, that a certain asymptotic 

expansion of the"Mathieu-function of the fourth kind <13> 

has'been invalidly applied-to previous elliptical, wave- 

guide calculations., The classical attenuation-formula 

given by Chu <14>'and the surface impedance results- 

reported, 'by Felciasecca et, al <15>, are shown to be in 

error. An appropriate expansion of the fourth kind' 

Mathieu function is discussed at some length and leads to 

a substantial modification of, the published formulae. 

Numerical results of the-attenuation coefficient are then 

compared with the results obtained by McLachlan <16>, 
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and Kretzschmar <17>, who have used the usual perturbation 

technique employed in circular and rectangular waveguides. 

The effects of the ellipse eccentricity on the 

propagation characteristics of the evenand odd modes are 

also illustrated. 

The concept of surface impedance depending on 

position and exhibiting anisotropy for an isotropic wall 

material is discussed and an attempt is also made in 

chapter two to justify the reality of such substantial 

curvature effect. An anomalous property of the 

characteristic number of the Mathieu function insofar 

as it relates to the present problem is left for 

discussion in Appendix III. 

The loss components of the elliptical waveguide 

are identified in chapter two,, and a reduction in the 

major component is shown to be achieved when transverse 

periodic corrugations are introduced near the smooth- 

metal boundary. In chapter three, the characteristic 

equation. of the elliptical corrugated waveguide is 

formulated by ensuring field. continuity across the 

boundary separating the slot and the central region of 

the waveguide. Classification of the elliptical corrugated 

waveguide modes is proposed and the attenuation and 

dispersion characteristics of different modes are also 

illustrated. 

The-circular corrugated waveguide which was - 

investigated by Clarricoats et al <1 > contains slots of 

rectangular profile. In chapte. r four, the analysis is 



- 

extended to circular corrugated waveguides with non- 

rectangular slots. The profile of a non-rectangular 

slot is represented. by a staircase approximation profile 

employed by Clarricoats and Chan <19>j when investigating 

the properties of a selfoc fibre. - 

The dispersion, attenuation and radiation 

characteristics of the waveguide are then obtained, and 

experimental radiation patterns are compared favourably 

with the theoretical results. - Circular corrugated 

waveguides with non-rectangular slots are easier to 

manufacture and possess higher'flexibility merit than 

waveguides with rectangular slots. It could also be 

used for waveguides of elliptical* cross-section. 

The circumstance under which the corrugated 

circular waveguide exhibits low-attenuation is also one 

which permits more than one mode to propagate. Chapter 

five deals with the design of a mode filter to absorb 

the energy in the unwanted modes, and at the same time 

to have minimal effect on the attenuation of the desired 

mode. Because of the close resemblance of the-field 

distribution of the desired mode to that of the dominant 

mode of the optical fibre, the monomode optical fibre 

features are employed in the mode filter design. The 

filter consists of two concentric dielectric cylinders 

and the absorbtion of the unwanted modes is achieved by 

placing a lossy dielectric layer near the slot region of 

the waveguide. The design of a matching section to the 

proposed mode filter is discussed at some length. The 
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suppression of the unwanted modes is observed 

experimentally, when mode filters are inserted in 

existing overmoded circular corrugated waveguides. 

Another attempt is made in chapter six to modify 

the field components of the circular waveguide near the 

metal wall. This is done by coating the surface with a 

dielectric layer. The propagation characteristics of 

the circularly symmetric modes supported by the lined 

waveguide was first reported by Unger <18>, using 

perturbation techniques. The characteristic equation qf 

the structure was later solved by Carlin and D'Agostino, 

< 5>, 
-who 

have reported some interesting attenuation 

properties of the circularly symmetric modes. Brayer 

<20> reported some properties of the hybrid modes 

supported by the-lined structure. The dispersion and 

attenuation characteristics of different hybrid modes 

are illustrated in this chapter and-a discussion of the 

loss mechanism and the nature of the modes is also given. 

The study of circular waveguides is concluded in chapter 

seven by a parametric study of a microwave equivalent of 

the optical waveguide-. Because of the well known 

characteristics of the optical waveguide <21>, the study 

is limited to obtaining parameters that would ensure low- 

attenuation characteristics of the dominant model and to 

present the unwanted modes with high attenuation. The 

group delay and excitation characteristics of the 

dominant mode are also taken into account in selecting 

the waveguide parameters. Practical use of the new 
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waveguide depends on future availability of low-loss 

dielectric materials <22>. 

In chapter eight, the loss. components of a smooth 

wall rectangular waveguide are identified and thus a 

structure with transverse periodic corrugations on two 

opposite sides is investigated. The dispersion and 

attenuation characteristics of the structure are 

illustrated and an error in earlier predictions of the 

attenuation coefficient by Baldwin and McInnes <9 > 

is corrected. Circumstances under which the corrugated 

rectangular waveguide exhibits an attenuation advantage 

over a smooth wall rectangular waveguide are reported. 

The attenuation results are also compared with computed 

values obtained for a corrugated circular waveguide. 

Experimental results in favour of the predicted 

dispersion and attenuation results are shown, using 

resonance cavity techniques <23>. 

The thesis is concluded by a brief list of the 

main contributions and suggestions for future research. 
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CHAPTER TWO 

SMOOTH WALL ELLIPTICAL WAVEGUIDES 
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2.1 INTRODUCTION 

In 1938 Chu <14> presented the theory of 

transmission of electromagnetic energy in hollow smooth 

wall waveguides of elliptical cross-section. In his 

analysis he identified the even and odd modes of 

propagation, relating them to Mathieu functions of even 

and odd types. In the formulation of the attenuation 

coefficient Chu assumed that the conductivity of. the 

metal wall was finite but very large, and the field 

components in the metal region were represented by 

Mathieu function of the fourth kind <13>, whose large 

argument expansion <14> was essential in formulating the 

attenuation coefficient.. Chu did not identify his reason 

for using the more exact perturbation technique In the 

formulation of the attenuation coefficient, rather than 

employing the usual power-loss perturbation method <24> 

normally used in circular and rectangular waveguides.. 

Remembering the tedious numerical work involved in the 

calculations of the Mathieu functions <25>, we believe 

that his choice of the method was mainly due to 

computational difficulties that would have arisen if. 

the usual perturbation method was to be employed. 

The existence of the second even mode, TE c21F was 

overlooked by Chu. For a certain range of eccentricities 

the presence of this mode will determine the upper 

frequency limit of the dominant unimode frequency. range, 

and it is now suggested that its existence should be 
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taken into consideration by waveguide manufacturers <26>. 

In 1946 McLachlan <16> used the usual perturbation method 

to produce formulae for the attenuation coefficient in an 

elliptical waveguide. These formulae needed more 

computational efforts in evaluating integrals involving 

Mathieu functions and no numerical results were reported 

until 1972, when Kretzschmar <17> undertook the 

computational task. Kretzschmar's results were different 

from those obtained by Chu, and no physical reason was 

given to this discrepancy. 

In 1973 Felciasecca, Someda and Valdoni <15>, 

applied the wall-impedance theory to waveguides in general- 

and drew attention to a curvature contribution to the 

attenuation coefficient of an elliptical waveguide. This 

curvature. dependence was included automatically in the 

method of Chu, and on employing the usual perturbation 

method McLachlan had overlooked this curvature dependence. 

Furthermore Falciasecca <15> points out that in order to. 

obtain agreement between the results, using their method 

and Chu's, it was necessary to specify both longitudinal 

and transverse surface impedances which depend on the. 

azimuthal co-ordinate. 

The concept of a'surface impedance depending on 

position and exhibiting anisotropy for an isotropic wall 

material is a little surprising, and in the process of a 

thorough investigation of the formulae in <15>, it was. 

discovered that they lead to an unacceptable form in the 

limiting case of an elongated ellipse. The cause of the. 
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discrepancy was ultimately traced to the form, of 

asymptotic expansion used for the radial Mathieu function 

of the fourth kind within the*waveguide wall. 

In this chapter the general theory of electro- 

magnetic wave propagation in elliptical waveguides is 

presented, with special attention paid to the different 

types and kinds of Mathieu functions governing the wave 

solution in such a structure. The correct form of the 

fields in the metal wall is derived Using the 

appropriate asymptotic expansions'of the Mathieu 

functions. The correct formulae for the attenuation 

coefficient of different modes are derived, and the true 

form of the axial and transverse surface impedance is also 

shown. 

The results obtained are then compared with those 

obtained in <14>'and <17>, and all these preýrious results 

are shown to be in error-due to the incorrect form of 

asymptotic expansion of Mathieu functions having'been 

used. The characteristics of different modes supported 

by the waveguide are discussed'and compared with 

corresponding modes in existing waveguides. 

A general formulation of the curvature-effect is 

presented, and a'-discussion is given of an unsuccessful 

attempt to create a generalised *form that replaces the 

ellipse parameters by differentials of the loca -1 

curvature of the surface. An att: empt is also-made -EO 

justify the reality of such a substantial curvature 
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effect. However, no effect occurs for flat surfaces or 

those of uniform curvature, confirming the validity of 

the usual perturbation technique of calculating waveguide 

attenuation in those cases. 

The major loss components in the elliptical 

waveguide are also identified in this chapter in order 

to determine the nature of wall modifications needed to 

reduce these losses. As a result of this study, a 

transversely corrugated elliptical waveguide was found 

to be a promising structure. Chapter 3 will be devoted 

to the analysis and numerical results of this latter 

structure. 

2.2 GENERAL THEORY OF ELLIPTICAL WAVEGUIDES 

2.2.1 Introduction 

The problem is formulated in terms of elliptical 

cylindrical co-ordinates, and by using large argument 

expansion of the radial Mathieu function the appropriate 

field equations in the metal region are deduced. The 

correct formulae for the attenuation coefficient and. the 

surface impedance are then derived.. 

The elliptic cylinder co-ordinates system 

z) is shown in Fig. (2.1) where, the contour-- 
0 

surfaces of constant are confocal elliptic cylinders,. 

and those of constant are confocal hyperbolic 

cylinders. The constant h represents half the distance 

between the foci. The confocal cylinder C=E0 coincides 
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Figure (2.1) 
(A) Orthogofially intersecting confocal ellipses an4' 

huperbolas'for elliptical coordinates. P has elliptic 
-coordinates ý=2, q= 1/37, (600) and cartesian coordinate 
x=hcosh2cos 1/3r, y7hshin2sin 1/3, T.. 

(B) Degenerate form of ellipse when e=l. As e-0-1, a-o-h, b-), C 
'and the ellipse -). the interfocal line of length 2h. 

(C) Degenerate form of ellipse, when eccentricity e=O. 
The foci coalesce at the centre of a circle radius rp 
equal to the semi-major axis. The original hyperbola 
through P (see A) is now radii making ±1/3w with. 
XIOx <16> 
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with the inner boundary of the metal waveguide, and 

the z-axis coincides with the longitudinal axis of the 

elliptic waveguide. The eccentricity e of the cross- 

section is given by 1/cosh ý. The major and minor axes 
0 

are 2a = 2h cosh ý0 and 2b = 2h sinh ý0 respectively. 

2.2.2 The Wave Equation 

The general form of the wave equation in an 

orthogonal curvilinear system of co-ordinates enclosing 

an infinite source free medium of dielectric permittivity 

C0 and magnetic permeability p0 can be written in the 

form 

32 Aa2A(. t 2A 1) aA a (k 1/P'2) 
T2+++ Y. 12* 

FT -ý02 a02 To 
1 1 '42' 

ý22 

Y, 2A = {2.1} 

where the axial variation 9/az is assumed to have the 

form -j$, Z1 and k2 are the first and second metric 

coefficients of the system, and in the elliptical system 

h(cosh 2ý 
- COS2 {2.21 

Ol and, 02 are the transverse. co-ordinates, equivalent to 

CI-TI in our system, and A is a scalar field function; 

which is-equal to Ez for TM modes and Hz for TE modes. 

Where 

(W2C 02)h (2.3) 
OPO 

and 0 is the phase-change coefficient. 



- 17 - 

Therefore the wave equation in the elliptic cylinder 

system has the form 

a2A 32A 

@ý2 . ar, 2 + 2q(cosh2E - cos2n)A =0 {2.41 

where 

4q K2h2 (2.51 

In, order to obtain solutions of equation f2.411 

we set 

TI) =R (t) 6 (n) , 

substituting into {2.41 and applying the usual separation 

of variable procedure, two ordinary differential 

equations are obtained, 

d 20 (TI) 
+ (C-2q cos2TI) G(rj) =o {2.6) dTj 2 

and 

d2 R(E) 
_ (C-2q I cosh2& I)R (&) 0 {2.71 dý2 

where C is the separation constant. 

Equation {2.6} is the angular Mathieu 

differential equation; equation {2.71, which follows 

from 
. 
{2.6}, by. the transformation ýn, = +-jE, is the 

modified Mathieu differential equation. 

For a physically admissible-single-valued 

electromagnetic field, A(E, n) must be a periodic 
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function of n, of period w or 27. The separation 

constant C, which in this case must be a function of q, 

is an infinite set of characteristic values for every q. 

When q is real the characteristic values are all real; 

when q is negatiVe imaginary, as it is in one of the 

cases which is considered, the characteristic values can 

be either real or complex <16>. 

Corresponding to q=0 there are two independent 

periodic solutions, namely sin(nq) and cos(nq) with the 

separation constant C= n', where n is an integer. It 

can be shown that <27> when q differs from zero, a 

characteristic value C determines one and only one 

periodic solution which is either even or odd in n. The 

characteristic value C, giving rise to even and odd 

solutions are denoted by an(q) and bn (q) respectively. 

The subscript n identifies those sets of characteristic 

values which approach n2 as q -, 0. 
- 

For an arbitrary positive real q,, the periodic- 

solutionsof Mathieu equation {2.61 are 

ce (? l, q) ----- even a (q) 

W M8) 

se q) ----- odd b (q) 

where Cen (n, q) and Sen(n I q) are respectively the. even 

and odd angular Mathieu functions. The corresponding. 

solutions for the modified Mathieu equation'{2.7) are 
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L1 Ce 
n q) +L2 Fey 

n q) --- even an (a) 

R () 
=L3 Se 

n 
(ý, q) +L4 Gey 

n 
(E, q) --- odd bn (q) 

[2.9 ) 

where Ce 
n 

(ý, q) and Sen (ý, q) are radial even and odd 

Mathieu functions of the first kind, Fey 
n 

(e, q) and 

Gey 
n(E' q), are radial even and odd Mathieu functions of 

the second kind. Ll, L2, L3 and L4 are constants. 

2.3 PERFECTLY CONDUCTING ELLIPTICAL WAVEGUIDES 

2.3.1 ' Cut-off Frequencies 

The proper choice of the above solutions to 

represent the electromagnetic fields. in an elliptical 

metal waveguide depends upon the boundary conditions. 

As all the field components must be finite or zero 

within the metal waveguide, then we must discard the' 

functions Fey 
n q) and Gey 

n 
(E, q), since they are 

infinite at the origin, i. e. at 0. 

The solutions of the wave equation 12-41-are 

therefore 

EA Ce (ý,, q) ce (n,, q) +A, Se (ý,, q)se (T),. q) 
znnnnnn 

and 
(2.101 

Hz=Bn Ce 
n 

(ý I q) ce n 
(TI, q) + Bn' Se 

n 
(E, q) se n 

(TI , q) 

where A, A1, B, B' are constants and the exponential 
nnnn 

dependence j(wt-$z) is assumed. 
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As may be seen from {2.10} there are 'four types 

of propagation in an elliptical waveguide, namely, even 

and odd TE and TM modes. To distinguish between the 

different modes the first index of each mode designation 

will be c(cos-type) for even mode and s(sin-type) for an 

odd mode, while the second index n is related to the 

order of the Mathieu function. Furthermore, the 

following equations must hold in order that the boundary 

conditions be satisfied on the wall; 

TM modes; 

even Ce 
n(ýo , -q) = 1,2, --- 

{2.111 

odd Se 
n(Co , q) =0 1,2,3, --- 

TE modes; 

even Celn , q) =, O 
n 

(ýo 1,2, --- 
f 2.12) 

0 

odd Se! n(Co' q) =0 1,2,3, --- 

where the prime denotes derivative-with respect to 

As the parameter q is related to the wave 

number K by {2.51, a different mode is obtained for each. 

root of {2.11} and {2.12}. To resolve this ambiguity, a 

third subscript m, corresponding to the m-th parametric 

root, is required in the mode designation. With {2.51' 

the general fomula'for the'cut-off wavelength of a TE or 

TM mode in an elliptical waveguide becomes 

c irh/rq = 7rae/rq [2.131 
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For a TM 
cnm 

(TM 
snm 

) mode q=q cnm 
(q 

snm 
) is the m-th 

parameter zero of the even (odd) modified first kind 

Mathieu function of order n with argument C0. For a 

TE 
cnm 

(TE 
snm 

) mode q=q cnm 
(q 

snm 
) is the m-th parametric 

zero of the even (odd) derivative of the same function. 

The Bessel function product series <16> were then 

used to find the values of q that satisfy {2.111 and 

{2.12) for a particular value of ý0 This procedure was 

repeated for different values of the eccentricity and the 

normalised cut-off frequency was then calculated using 

{2.131. Figure (2.2) shows the normalised cut-off 

frequency for different even and odd type modes as the 

ellipse is deformed from circle (e=0) to a nearly flat 

plate (e-4-1). The split in the degeneracy which exists 

for circular waveguide modes is clearly shown, even for 

very small deformations. 

The TE 
s modes havq their electric fields parallel 

to the major axis of the ellipse <14>, and so as the 

ellipse is deformed into an almost flat plate their cut- 

off wavelengths approach zero. This phenomenon is in 

accord with that obtained in a rectangular waveguide for 

a TE 01 mode if the sides perpendicular to the electric 

field of the mode are reduced to zero, the cut-off 

wavelength. will decrease 

Similarly, cut-off behaviour of the even and odd 

TM type modes as the elliptical waveguide approaches the 

flat plate is in accord with the boundary condition on 



- 22 - 

1.0 
>1 

ý4 
4j 

0.8 

0.6 

0.4 

0.2 

0 

Figure (2.2) Normalised cut-off frequency-of modes in an 
elliptical waveguide 

WA/C 



- 23 - 

the axial electric field. When the ellipse becomes very 

thin the modes exist only at a frequency which approaches 

infinity in the limit e -. -. 1. 

2.3.2 Field Components 

From the field equations {2.101 and Appendix 1, 

the following results are obtained. 

TE modes: 

Ce ce (ri, 
nn 

HA 
n 

- 
Sen (, g, q) se. (11, 

Ce 
n 

ýC, q)cen' (TI, 
. 

q) 

H Ell A 
wp 01 

XjK 
,n 

{2.14) 

Se 
n 

(E, q)sen' ýrj, q) 

and 

TI Wil 0 

Ce 
n' q) ce n q) 

Senl(ý, q)se n 
(rl q) 

The term expj(wt-Oz)'is assumed. 

The prime here denotes the first derivative with respect 

to either ý or 

TE waves in which the components E and H are 

zero cannot exist in elliptical waveguides. 
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By constrast, circular waveguides can support TE 

modes without EIH, components, corresponding to E, 
r 

H 
TI . 

This can be explained from the wave equation {2.41, 

when for the very nearly circular case the term cos 2n 

is negligible when compared with cosh 2ý. 

TM modes: 

By setting Hz = 0, the remaining five components 

of the field are as follows 

Cen(C, q)ce n 
(tj, q) 

E 
zn 

Se 
n 

(C,, q)se n 
(rl , q) 

(ý, q) ce' q) 

E LL H-2B 

Ce 
n' n 

[2.151 
w E: 

0n ki Kn 

Sen' (E, q)se n q), 

Ce 
n 

(9, q) cen' (il,. q) 

EH 
WC 0x2 

K2 n 
Se 

n 
(9� q) sen' (ii, q) 

The term expj(wt-Oz) is assumed. 

None of the five field components may vanish in 

the TM mode, unless the ellipse degenerates into a circle, 

for reasons similar to that given in the TE mode case. 
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2.3.3 Attenuation Coefficient 

The expressions for the attenuation coefficient 

using the power-loss perturbation technique can be 

formulated using the above field components. The 

technique assumes that the magnetic field at the inner 

metal surface of the waveguide is the same as it would be 

if the metal had zero resistivity. 

For the TM 
cnm modes, the tangential component of 

the magnetic field at the inner surface of the waveguide, 

where ý=E is 

we 
H -j 

0B Ce q) ce 
rl nnn 

(T' 

The power loss Px due to this component is therefore 
I 

W 2C 2R 21r 

p0sB2 Ce o2 (CO 
, q) ce I(rj, q)ds Ik 2 

P, 2K4 nnfn 
0 

where dsi is an infinitesmal length along the contour 

C= constant, and is given by 

ds 1 :=Z1 dn 

Thus, 

p0SB2 CeZ 2 %, q) k 2aK4 n 

27r 

f 
ce I(Tj, q) dn/ (1_e2COS2n)ý 

n 

{2.15al 
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The mean power carried by the mode P0, is given by 

p0 Re (ýxH ds 1 ds 2 
ff 

WC 
Oß 

27r 
0 

v2 2(T, 2(g 
=y_ n K4 

B2 [Ce (g, q) ce q)+Ce q) ce 
nnn 

00 
ds 1 ds 2'1't 1 2,2 

where ds 2 is an infinitesimal length along the contour 

n= constant and is given by 

ds 2=k2 dE 

Thus, 

WC ß 
2Tr go 

P =. 
0, B2f 

f[Cenv2(9, 
q)ce 2 (11 , q) ý- Ce 2 (g�q)ce 

n12 
(T1, q)] dgdT1 

0 2K4 nnn 
00 

(2.15b) 

The same procedure can be followed to obtain the power loss 

and the power flow in the TE modes and the attenuation 

coefficient for the two mode types can therefore be' 

written in the form; 

for TE modes, cnm 

R 
CE s Ce 2 (Eo, q) cn a ýOvll- (f /f c2 

2 Tr 27r o2 f ce (n q) 
TI (! c)% 2 (TI q) e2 COS? n ) 

kdn 
+ n. 

eff ce, ff (1-e 2 COS 2 TO 
00 

2 7r 
0 

no2 
2 (TIq) +Ce2 (E, q) ce v2 lEdri [Ce q) ce nnn 

(n, a) ]c 

0 (2.16a) 
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and for TM 
cnm. modes, 

R 
S- 12 ct 

c 
aZ o v/1- (f/f ') 2C en 

c 

x 

Tr 2 (n q) n 
2COS2n)ý 

dri 
f 

(1-e 
;e 7T ý, 

o2 2 o2 2f 
f0 [den (E, q)ce2. (n, q)+Ce (ý, q)cen (Tj, q)]dýdij nn 

00 
{2.16b) 

By replacing the even Mathieu functions, by odd Mathieu 

functions in the above expressions and using appropriate 

values of q, the attenuation coefficient for the odd type 

modes can be obtained. 

The above expressions have been previously 

derived by McLachlan <16>. The-integrals appearing in 

the numerator containing radial Mathieu functions of the 

first kind and have to be evaluated using numerical 

techniques, while terms containing the angular Mathieu 

function can be evaluated in a closed form in terms of 

their series coefficients (Appendix II). Integrals. 

containing the term Vl-e2cosn can be integrated 

analytically be neglecting high power terms of the 

eccentricity O(e 4) 'and using sufficient terms in the 

evaluation of the series for ce n 
(n, q), and. se n(nI, 

in 1972 Kretzchmar <17> evaluated the above integrals 

numerically on a computer and provided data for the 

attenuation coefficient for the eight lowest order modes 
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in the elliptical waveguide. 

The validity of the formulae {2.161 and the 

results obtained in <17> will be discussedýin the next 

section, where the more exact attenuation formulae will 

be'derived. 

2.4 IMPERFECTLY CONDUCTING ELLIPTICAL WAVEGUIDES 

2.4.1 Introduction 

In the previous section, the attenuation is 

evaluated using a perturbation solution in which the 

principal fields in the waveguide are assumed to be 

those which would be found, were the metal wall to 

possess infinite conductivity. In this section a more 

exact solution is sought in which the field in the metal 

is obtained as a solution of the Mathieu wave equation. 

2.4.2 Mathieu Function Asymptotic Form 

In the metal wall of an 6iliptiCal waveguide, the 

solution of the wave equation involves radial Mathieu 

functions of the fourth kind, <13>. These are analogous. 
(2) to the Hankel function H reqpired in cylindrical'. n 

co-ordinates field representations. The'complex wave- 

number K2 in the metal wall has the form <28> 

K 2ý = (w/c) (C'-j 60Xa) (2.171 

where cl and a are the usual metal constantsp and 

K2 2h2= 4 c12 
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The solution will be stable provided that c' >0 and 

cr >0 and unstable where-c' <0 and a >0. If we let 

W-j6oXa)ý have the. form ±(&+jý)'then the regions of 

stability and unstability governing the wavenumber are 

shown in Figure (2.3). 
a 

Figure (2.3) 

Point B indicates a lossless material and as the material 

becomes lossy the contour of K2 moves in the 4th 

quadrant towards the point A, where it is purely 

imaginary and the assumption a >> we' holds. The same 

contour will be traced out in the 2nd quadrant, 'due to the 

±s ign. 

In the circular waveguide case-the argument of the. 

Hankel function has the form (K 2 r); r being the radial 

transverse distance from the origin. When finding large 

argument asymptotic form of this function, with Xialmost 

at At the product (K 2x r) always occurs as one quantity 
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and therefore if either of the variables is large, K2 in 

this case, then the results obtained will be the same. 

When dealing with the elliptical waveguide case, 

the function Mc (4) has the quantity K2 h cosE as its 

argument, both for even and odd functions. In contrast 

with the circular case, there are two types of asymptotic 

expansions of this function depending on whether K2h is 

large or the radial distance E is large. It is clear 

that in this problem large argument expansions of K2h 

must be sought, and not expansions for large 

Unfortunately many authors <14> and <15>, have used the 

incorrect expansion, and obtained incorrect results for 

the attenuation coefficient and for the surface impedance 

model. The expansion they used appears in <13>, which is 

derived from the expansion of the Mathieu function as a 

series of Bessel functions <16>. The dominant term comes 

from the asymptotic expansion of J 2r (2q 2 
kcoshE) for large 

&t and since the argument is large whether it is & or q2 

that is large, it seems at first sight that the. expansion 

based on large E will also hold for large q2 whether or 

not, E is large. 

The asymptotic form of the fourth kind radial 

Mathieu function based on the large & assumption is given 

as <13>1 

(4) 
Mc q 2) 2ý W2 h coshE)-h exp(-jK h cosh (20181 

n2 
E+y2) 

where 72 =j (2n+l) Tr/4 
I-I 
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Asymptotic expressions for large q exist <16>, and are 

referred to as Goldstein's expansions <13>. They have 

the exponent term, dominated by -jK 2h sinh , i. e. 

(4) 
Mc 

n 
(E, q 2) ýý (K2h coshE)-ý exp(-jK2h sinhE) {2.191 

It should be mentioned that in reference <13> the 

expansion is given for the case q2>0 and real whereas 

we need q2 complex and nearly imaginary Figure (2.3). 

The validity of the formula {2.191 is demonstrated in 

Appendix 2 to hold for the case when q2 is large and 

imaginary. 

The correct form of the radial Mathieu function 

that must be used to represent the field in the metal 

region of the elliptical waveguide is therefore given in 

{2.191 and we conclude that all previous publications 

based on the form appearing in {2.181 are incorrect** 

2.4.3 Wall Impedance 

The modal characteristics of waveguides with 

imperfectly conducting walls, which appear in <29>, is 

based on the assumption that the boundary conditionszmay 

be expressed by the surface impedance of the metal, 

calculated for an impinging uniform plane wave: 

z01= (1+j)R 
5 

Falciasecca <15> showed that the above condition of the 

surface impedance does not apply to any given geometry 
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and derived general equations for the axial and 

transverse surface impedance of the metal wall. These 

equations are independent of the mode in the structure, 

but take into account the geometry of the structure. 

The axial and transverse surface impedance are 

given joy 

K22 
3w -C, 

and 

IWW 
11 tk1 K2 

{2.201 

where ýn and ý 
n' are, respectively the wavefunction for 

the n 
th 

mode of the radial line, and its derivative with 

respect to ý1 (Appendix 1). 

They used the asymptotic expansion-for large,: & 

{2.181 to calculate the surface impedance derived above; 

with 

ýn T n(Tl)(K 2h coshE)-h exp(-jK 2h coshU {2.21) 

ýn' -jK 2h sinhE T (Tj)(K h coshE)-ýexp(-jK h coshE) n22 
{2.22) 

where Tn (n) is function of angular Mathieu functions and 

is defined in {2.30). 

Substituting in equation {2.20} and simplifying 

we obtain 
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Za = zol(l-e 2COS2n)32- (a/b) {2.231 

and 

zt= Zo' (1-e'cos I rl) -ý (b/a) {2.241 

Now, for a fixed b and a {2.231 gives Za which 

must be incorrect, since the region around n w/2 

clearly represents, under the above conditions, part of 

a parallel plate guide with Za = Zo"' 

This physical discrepancy was not pointed out in 

<15>j and it was the basis for finding the correct form 

of the asymptotic expansion. If the correct expansion 

{2.19) is used then; 

ýn =T n(? I)(K2h coshý)-ý exp (-jK2h sinhý) {2.251 

and 

I'n'ý' Tn(Tl) (-jK2h coshý)(K 2h coshý)-h exp(-jK2h sinhE) 

{2.261 

Substituting in'{2.20} and simplifying we get; 

and 

Z 
au = Z, ' (1-e 2C0S2n)h (2.271 

zý = zo, (1-e 2C0S2T, )-ý 

Equation {2.27),, though still revealing an interesting 

position or curvature dependence effect, now correctly, 

gives the expected value for the parallel plate limiting 

form. 
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A general formulation of the curvature effect on 

the attenuation will be given in section (2.6), with 

both quantitative and qualitative explanations. 

2.4.4 Attenuation Coefficient 

The attenuation coefficient of the imperfectly 

conducting elliptical waveguide is formulated by 

assuming that the field components inside the waveguide 

are not disturbed appreciably from those given in 

{2.14) and {2.151. The attenuation coefficient for the 

TMC modes will now be derived with the aid of the correct 

expansion of the fourth kind Mathieu function (2.191 

needed to represent the field components in the metal 

region of the waveguide. 

From f2.151 the value of H at the boundary wall 

is given by 

WC 
H -j 

0B Cen- q) ce (n , q) T K-T nnn 

The solution of the axial field EzI in the metal region, 

obtained from equation {2.41, is as follows: 

co (4) 
EzEA Mc q 2) ce p 

(ri ,q 2) 
{2.29) 

P=O 
PP 

Using equation {2.19) for the expansion of the radial 

fourth kind Mathieu functions leads to ' 

Ezi l3no Tn(TI) (K2h coshE)-ýexp(-jK 2h sinhg) 

where co 
Bn' E Ap ce (2.30) Tn (11) 'ý2 

P_o '. 
P(Tj, q2) 
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The tangential magnetic field component is therefore given 

by 

B cr (jK hcoshý)(K hcoshE)-hexp-(jK2hsinhC) 
Tj n' 2722 

The term exp j(wt-$z) is assumed in the above 

expressions. The boundary conditions require that the 

two tangential fields H and H must be the same. In 
T1 

- 
the expressions for H 

Ti and Hn only ce n 
(n, q)/;, 

.1 
and 

T n(n)/Y'l are functions of TI, hence the ratio cen (TI, q)/ 

T n(n) must be independent of'n. This ratio can be set 

to unity, as we have not fixed the magnitude of T n(n) 
in the metal wall. 

The necessity of the summation sign appearing in 

equation {2.301 is discussed in greater detail in the 

next chapter when analysing the corrugated elliptical 

waveguide. 

The value. of the constant_Bnl is related to Bn 

by equating thetwo tangential magnetic field components 

at 0 

Bn' = -B 
we 0X2(1 )Cen'(ý, q)(K h coshEO)h 

n 7-K h cosht 02 

exp(jK 2 h. sinh& 0) 

The two tangential field components EI and H at the 
z 

boundary are therefore; 

we K 
Ez' = -B o 2. Ce q) ce (r) 

n -TK-Z- nn 

and 

1= -B 
jwc 

0ce, (go, g) ce (n , q) lý ti -K -, n 
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The power loss, P. , into the metal wall is obtained by 

integrating the real part of the Poynting vector over 

the boundary; 

for a unit length of the waveguide. 

27T 

-32- Ref (E 
zIH rl 

*) z1k2 dn 

0 

Using the, above expressions; 

Re (E H -B 
2w2c02 

ce 
n' 

2(E 
0, 

q) 
ce 2(n, q) . Re (jK 

znk1 zK7 h coshE 
0n 

21cr) 

But 

Wil Trf p 
K2= vl- 3 W5 -7- F Re (jK 2 "a 0] 

a 
0. ] Rs 

V2 cr 

Thus 
2w 

B2RSw2E02 
Cent 2( §y q) f 

ce 2(z q)dn {2.311 
KI ano 

The power, P01 transmitted in the_waveguide, is obtained 

by using the field expressions for a perfectly conducting 

metal waveguide,. 
-and 

therefore takes tlýe same form given 

in,, {2.15b). 

The attenuation coefficient of the TM 
C nodes can 

therefore be written-in the form 

f 27r f 27r 
C, 2fCe2(rl,, q)drl+[l-( C 21 ce 12(n, q)drl 

Renfn 
s Ce 

2(ý 

lq)- 
00 

c aZ n0 27r ý0 

0/ 2f 
f [Ce 12(&, q)ce 2(n, q)+Cen2(C, q)Ce 12(n, q)]dCdrj nhn 

00 

{2.32) 
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The attenuation coefficient of the odd modes can be 

obtained by replacing the even Mathieu functions in 

{2-32} by the odd functions. The power loss expression, 

for the TM 
cnm mode, derived by Chu <14>., was obtained 

using the form of the field in the metal region, based 

on the incorrect asymptotic form of the Mathieu function 

{2.18}. 

The expression for the tangential electric field 

used. by Chu had the form; 

Ez' = -B 
02 Cen' Zoq)ce q) n aIK7-1- h sinhý 0n 

(T' 

When formulating the power loss, P. J. expression, the 

term (sinhE 
0) will give the following result; 

pRSB2w2c02 
cen2 (ýcf 

2n -a,, /I--e2 

2 7r 

ce 2( T, , q) drl {2.331 
n 

0 
i 

The expression'for the total power flowing in the wave- 

guide derived by Cýu had the correct form as in {2.15b), 

because the correct expressions for the field. in the air 

region of the waveguide were used in his analysis. The 

above two expressions for the power'loss, P., (2.311'a'nd 

{2.331 and that obtained assuming a perfectly conducting 

metal wall {2.15al will be compared in the next section. 



- 38 - 

2.4.5 Comparison of Results 

The attenuation results most commonly used by 

those industries m'anufacturing elliptical waveguides 

<26>, are those obtained by Chu <14>. As pointed out in 

the previous section those results are in error, and this 

error is due to the formulation of the power loss in the 

waveguide. 

In what follows we compare the expressions for the 

power loss, for the TM and TE modes, using the results 

obtained using perturbed fields based on the perfectly 
. conducting metal case by McLachlan, and those obtained in 

the-imperfectly conducting metal case. 

For the TM modes, the three normalised power loss 

components, due to H 
?Ir can be re-written, using equation. 9 

{2.15al, {2.311 and {2.33), in the form 

Mode McLachlan Chu, 
I 

Correct 

2? r ce 
2( T, q) n 

21r 21T - 
TM 

cr ln - dTl 
f 

- 
ce 

2(n 
q)dn 

- 

f 

ce 2(n q)dn. 
f, 

i Vi-ezcosz n n 
vfl- --e 2 n 

o 0 0 

21r 
se 

2 (n,, q) 21T 27r 

TM 
snm 

fn 
dn se 2 (n q) dTi 

fn 
- - 

f 
se 2 (r, 

, q)dn 
" v/l-ezcosyn , 2 e n 

0 0 0 

It can be deduced that for' the TM modes; 

W The attenuation coefficient obtained using McLachlan 

formula is always greater than that obtained using the 
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correct formula. This discrepancy between the two 

results will increase for increasing values of e. 

(ii) The attenuation results obtained by Chu need to be 

reduced by a factor b/a. For the TE modes, the 

expressions for the power loss are a little more involved 

as there are two contributing terms, namely Hz and H 
T1 

In order to compare the results obtained, the power 

losses are split into the two components and the 

respective terms compared choosing the appropriate 

ranges of frequency. 

At frequencies near cut-off the dominant term 

will be that due to Hz, while at frequencies far from 

cut-off it will be due to H 

At f ,. fC, , the three normalised power loss 

components due to Hz, can be written in the form 

IMode McLachlan Chu Correct 

2 7t 2 7r 27T 

TE ce 2(TI 
, q) Yl -e2cos 7n dn 

fn 
ce 2(Tlq)dti f 

ce 2(nq)dn f 
crim n n 

0 0 0 
27T. 27r 27r 

TE se 2 (n, q)Vl-e coszTdil 
f 

se 2 (nq)dn 
f 

se 2(TI q) dtl 
f 

snm n n n 
0 0 0 

It can be deduced that for the TE modes at f ý, fc 

The attenuation results obtained using McLachlan. 

formula are always smaller than those obtained using the. 

correct formula. This discrepancy between the two 

results will decrease with increasing eccentricity. 
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The results obtained by Chu. need to be increased 

by a factor a/b. At intermediate frequencies, the 

correct attenuation results cannot be obtained by simply 

multiplying Chu's attenuation results by the factor a/b. 

This-is because the power-loss contribution of the 

azimuthal magnetic field component is comparable to 

that of the axial magnetic field component. However, 

the correction factor decreases with increasing 

frequency and reaches unity in value at some frequencyr 

depending on the order of the TE mode and the 

eccentricity of the waveguide in consideration. 

At f >> f, the three normalised power-loss c 
components due to HI can be written in the form; 

Mode McLachlan Chu Correct 

27r 
ce 12 (ri , q) 

2Tr 2-rr 

TE 
cnm 

nI f 

Vl-ezcos4n-, 
Cen, 2(Tl q)dn 

vl=-e 0 

f 

cen' 2(TI, q)dn 
0 

2 Tr 27t 27r 
se n, 

2(n 
q)' f f f 

TE 
snm dn 

n, 
2(n se , q)dn 

' 
1 2(11 , q) dn sen 

0 Vi-ezcosz-n ri-e2 0 0 

It can be deduced that for the TE modes at'f >>f, &--, -, 

The attenuation results obtained using McLachlan's 

formula are always greater than those obtained using 

the correct formula, -and the discrepancy between the two 

results will increase with increasing eccentricity. 
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(ii) The results obtained by Chu must be reduced by a 

faqtor b/a. 

From the above deductions there appears to be a 

cross over point for the TE modes, at which the previous 

attenuation results will coincide"with the correct 

results. 

Figure (2.4) illustrates the comparison of the 

correct attenuation results with those obtained by Chu, 

for the TE 
col and TE 

cll modes, for eccentricity in the 

neighbourhood of 0.6. The trend of the curves clearly. 

demonstratesthe behaviour described above. 

The normalised attenuation coefficient is plotted 

for the TE 
cll mode in Figure (2.5) using the correct 

formula and that derived by McLachlan. Different values 

of e are used to demonstrate the behaviour discussed 

above. The TEcll mode is 
I 
the'mode used in cor. miercial 

applications of the elliptical waveguidd', with the 

waveguide's eccentricity being > 0.9. For this range of 

eccentricity the waveguide will be operated in the range 

of normalised frequency around wa/c ,. 2.5, as can be seen 

from Figure (2.2). 

The percentage error in the attenuation 

coefficient, of this mode, obtained if the perturbation 

method (McLachlan) was to be used, is illustrated in 

Figure (2.6). The invalidity of the results-obtained- 

using McLachlan's formula, in the range of interest, is 

clearly demonstrated in the figure, where an error of 

nearly 40% is observed. We must emphasise that this 
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error is mainly due to the non-uniform-curvature of the 

ellipse surface, which has to be taken into account as 

will be shown in section (2.6). 

For the circular or rectangular waveguides, if 

the attenuation coefficient was formulated using the 

method described in section (2.4) then the results., ý' 

obtained will be similar to those obtained using the 

usual perturbation method described in section (2.3). In 

(2)1 (2) 
the circular waveguide case, the factor H /H which nn 
occurs in formulating the metal wall field, is unity when 

large argument asymptotic expansion of the Hankel 

function <13> is used, thus causing the two results to be 

the same. This result is clearly demonstrated in 

Figure (2.6), where it is shown that when the ellipse is 

reformed into a circle (e=0) the percentage error reduces 

to zero, and TE 
cli , TE 11 

2.5 MODES CHARACTERISTICS 

2.5.1 TE 
C11 

mode 

The TE 
cll 

mode has an almost linearly polarised 

field, with its transverse electric field vector normal 

to the major axis of the elliptical waveguide <14>. In 

commercial elliptical waveguides, the dominant mode 

TE 
cli 

is used I and'eccentricities-'are in the ranj6'' 

>0.9 and <0.98. The upper frequency limit for single 

mode operation is defined by the cut-off frequency of 

the higher order modes. These are TE 
S11 

for e<0.83 

and TE for e>0.83, as shown in Figure (2.2). 
c2l 
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The variation of normalised single mode bandwidth 

with eccentricity is shown in Figure (2. '7), where it can 

be seen that in the range of operation used commercially, 

maximum bandwidth is obtained. 

For low eccentricities, the upper frequency limit 

could be substantially increased if a means could be 

devised to suppress the TEsll mode, whose transverse 

electric field vector is normal to the minor axis of the 

elliptical waveguide. The upper frequency limit of the 

TE 
C11 mode will then be governed by the TM 

col 
mode, and 

this increase, in normalised bandwidth is shown in 

Figure (2.7). If a long straight section of the wave- 

guide was to be used then a-simple, *mode filter could be 

employed to suppress the TE 
sll mode. A possible mode 

filter might consist of a thin resistive sheet, 

appropriately, shaped, and sandwiched between two semi- 

elliptical-pieces of low density expanded polystyrene 

(9=1). The plane of'the resistive sheet must be placed- 

along the major axis of the waveguide so as not to 

Resistive sheet 

TE 
Cil - 

Expanded polystyrene 

Figure 12-8) 

affect the TE 
cll mode, Figure (2.8). 
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Expanded polystyrene is used to fix the 

resistive material in the correct position without 

distorting the original field configuration in the 

waveguide. As the presence of the resistive material 

in the waveguide will not introduce new boundary 

conditions, we assume that the field configurations are 

unaltered. The power loss in the resistive material, 

P, I, is given by the expression 

WE" JE12 ds 
2f 

s 

where E is the resultant electric field component in the 

material, s being the surface area of the lossy material 

(ell) over which the field is acting. 

For the TE modes 

12212= E9E9*+E 
in 

E 
Ti 

*= JE Z1 
2+ 1 ET, 12 

Using the field expressions given in {2.14}, the following 

results are obtained; 

in the plane n= 01 7T 

en 

s rl 

Ee =0 

and in the plane n= 7T/2,37T/2 

E 
eTI eC 6 

E 
sn 

6E 
se 

0 

being- a finite quantity, s and e define the type of mode. 
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Therefore, if the thin sheet is placed in the plane 

n=0, u, only the odd mode will be attenuated. The 

thickness of the sheet will determine the attenuation of 

the even mode. 

A possible advantage in operating the waveguide 

with small eccentricities is shown in Figure (2.9) and 

Figure (2.10). Figure (2.9) shows the effect of changing 

the eccentricity on the attenuation coefficient of the 

TEcll mode in a copper waveguide, with a=0.0114m, while 

Figure (2.10) shows the approximate increase in 

attenuation over a smooth wall circular waveguide. This 

is obtained from Figure (2.9) and is valid over a wide 

frequency range. A substantial increase in the 

attenuation is observed for waveguides with e ý' 0.9. 

Commercially available el liptical waveguides with 

high eccentricities ensure single mode operation at the 

expense of high attenuation. The use of the mode filter 

described above in an elliptical waveguide of low 

eccentricity overcomes the attenuation penalty though 

bends and deformations might generate higher order modes. 

Figure (2.9) also shows the attenuation 

coefficient of the TE 10 mode in a copper rectangular 

waveguide of dimensions comparable to those of an 

elliptic'al'waveguide of 0.97 eccentricity. It is 

observed that, at frequencies far from cut-off, the, 

attenuation coefficient of the rectangular waveguide is 

very close to that of an elliptical waveguide operating 

in the TE mode. At such high frequencies the power- 
C11 



- 5o - 

I 

91 

r4 

ro 

0.1 

00 

0.011 1. I 

; WO 
WOO, 

%*% 000 WOO, 

10 100 Frequency GHz 

Figure (2.9) Attenuation characteristics of the TE 
cll mode 

in an elliptical waveguide 

a=1.14cm a=5.8 x 107 S/m 

Parameter (eccentricity) 

TE mode in a rectangular waveguide 10 
a=2.28cm b= . 554cm 

1000 



- 51 - 

1.0 
>1 

4J 

ý4 
41 

0. a 

0.6 

0.4 

0.2 

C 
0 80 16.0 240A (3)'% 300 

Figure (2.10j Increase in the attenuation coefficient of the 
TEC11 mode in an elliptical wavegutde over the. 

TE mode in a circular waveguide with r=a 

a aZ, /R. dB 



- 52 - 

loss contribution of the wall perpendicular to the 

electric field vector is substantial when compared-with 

the vertical wall losses. Then, because the former 

wall of the elliptical waveguide considered has a very 

large radius of curvature, the results obtained merely 

confirm the curvature effect contribution to the 

attenuation coefficient. 

In section (2.5.3) the curvature effect is shown 

to be very significant when comparing the attenuation 

coefficient of the TE10 mode in a rectangular waveguide 

with that of the TE 
S11 mode in an elliptical waveguide, 

at high frequencies. This is because the TE 
S11 mode has 

its electric field vector perpendicular t; the wall for 

small radius of curvature. 

2.5.2 TEO, Even Mode 

In a circular waveguide the TEO, 0 mode has an 

attenuation coefficient which continually decreases as 

frequency is increased. The attenuation characteristics 

of the TE 01 even in elliptical waveguide is shown in 

Figure (2.11), where it can be seen that even for very 

small deformations from the circular cross-section, the 

attenuation will always have a minimum. This minimum 

occurs at Very'high'freq'uehci'e-s'f6i'small eccentriCiti6i', "'" 

In the circular waveguide the attenuation of the 

TE 01 mode is due to the power loss of the axial magnetic 

field component Hzj and I is proportional to f -3/2 
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However, for small values of e, an azimuthal magnetic 

field component will be present, in addition to the 

already existing axial component. The latter component 

maintains its decreasing property with increasing 

frequency, while the former component will have an 

increasing value with increasing frequency and becomes 

predominant for large eccentricities or higher 

frequencies. -Thus the presence of the azimuthal 

magnetic component in the field of the TECO, mode gives. 

the mode its minimum attenuation property. 

2.5.3 TE 
S11 

Mode 

The cut-off frequency for a number of odd modes 

is shown in'Figure (2.2) by the dotted curves, where the 

non existence of zero order Mathieu function is clearly 

illustrated. This phenomenon reduces 'the number of odd. 

modes present in the elliptical waveguide and opens up a 

possible use of odd modes. 

In what follows the study of odd modes will be 

based on the assumption that the elliptical waveguide 

contains a mode filter, similar to the one described'in 

the previous section, with its resistive sheet being. 

along the minor. axis of the waveguide, thus ensuring the 

suppression of the TEcll mode. 

Alternatively, the assumption that no cross 

coupling between the two modes will take place is ýmplied. 

This is true for a perfectly made elliptical waveguide as 

the two modes will be stable <16 >- 
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The normalised single mode bandwidth of the 

TE 
sll mode is shown in Figure (2.7) by the dashed curve, 

where the upper frequency limit is set by the low 

frequency cut-off of the TE 
s2l mode for all the range of 

e. - 
A substantial increase in the single mode bandwidth-- 

is observed as compared to the TEcll mode, in particular 

for small values of e. 

The attenuation characteristic of the TE 
sll mode 

in copper waveguide with a=0.0114m is shown in 

Figure (2.12) for different values of e. It is seen that 

as the circular waveguide is deformed into an elliptical 

waveguide, operating in the TE 
S11 mode the point of 

minimum attenuation decreases in value and occurs at a 

higher frequency, until the eccentricity reaches a value 

of li, 0.5. Beyond this value of e the minimum attenuation 

point increases and reaches a maximum in the limit e 

The invalidity of the conclusion reached by 

Kretzschmar <17>, when studying the TE 
sll mode, that 

"at high frequencies the attenuation factor tends to be. 

almost eccentricity independent and approximately equal 

to the attenuation factor of the TE1, mode", is-clearly 

shown in Figure (2.12). Kretzschmar's results were 

terminated at a frequency where his conclusion applied. 

Figure (2.12) also shows-, the attenuation coefficient of- 

the TE mode in a copper rectangular waveguide with 10, 
%I 

dimensions comparable to those of an elliptical waveguide 

of 0.97 eccentricity. It is observed that at frequencies. 

near cut-off the attenuation coefficient of the 
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rectangular waveguide is very close to that of an 

elliptical waveguide operating in the TE 
sll* mode, while 

at frequencies far from cut-off a significant difference 

is observed. At such high frequencies the power-loss 

contribution of the wall perpendicular to the electric 

field vector is substantial when compared with the 

vertical wall losses. Then, because the former wall 

of the elliptical waveguide considered in this example 

has a very small radius of curvature, the results 

obtained merely confirm the curvature-effect contribution 

to the attenuation coefficient. 

on the other hand, ' at low frequencies the power- 

loss due to the wallparallel to the electric f ield vector 

is predominant and as this ýwall has a. very large-, 

radius of curvature in the, elliptical wayeguide case, 

the two attenuation coefficients, are seen to be-veryi 

close. I11. ý 

2.5.4 Comparison of Modes 

Neither physical nor mathematical explanations 

for the attenuation characteristics of the elliptical 

waveguide have appeared in the literature. An attempt 

will be made here to explain the characteristic when the 

elliptical waveguide is operated in dominant even or odd 

mode. 

The power-loss components, in the, TE 
ell or--, 

TE ode, are due to the axial and azimuthal magnetic 
sil m 

field components. The normalised power-losses are 
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plotted in Figure (2.13) for the TEcll mode, in a 

copper waveguide with a =0.0114m, for different values 

of e. It can be seen that as the circular waveguide is 

deformed the contributions due to both Hz and N 

components start to rise. The minimum attenuation point. 

will occur at a frequency, fm, when 

3H 
z 

3H 
U7 af f=f 

J.. 
where H ý"and H are the normalised power-loss z TI 

contributions due to Hz and H 
T) components respectively. 

3H 
The derivative -g 

z is a negatively decreasing f 
@H function of frequency, 

1whereas a ya is a positively 

decreasing function. They--have almost the same trend 

for different values of e as seen"in-Figure (2.13). -- 

Therefore the point of minimum attenuation is expected 

to appear at the same frequency for different values of 

e. and due to the increase in the values of Hz and H 
rl 

the attenuation coefficient must always be greater than 

that of the circular waveguide. This is illustrated in 

Figure (2.9). 

The normalised power-losses for the TE 
S11 mode 

are plotted in Figure (2.14), for the same copper 

waveguide, with different values of e. It is observed 

that as the circular waveguide is deformed the 

contribution due to the H2 component starts to increase, 

while that due to the Hn component starts to DECREASE. 
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As the eccentricity is increased 

value of the Hz component starts to inc. 

rate until value of e 1%, 0.5. The change 

component then becomes very sensitive to 

from ý, O. O, the 

rease at a slow 

in the H 
z 

small changes 

in e, and this component becomes very pronounced for 

high eccentricities. 

The decreasing minimum attenuation phenomenon of 

the TE 
sll mode shown in Figure (2.12) can therefore be 

attributed to the decrease in the Hn component for small 

values of e. As the eccentricity rises the contribution 

of the Hz component becomes much more pronounced and thus 

an increase in the minimum attenuation point is expected. 

The minimum attenuation point will occur at a 

frequency, fm, when 

A 

3H 9H 
z 

af ar- 
If 

=fm 

The two derivations will have the same nature as those of 

the even, mode,, but due to the substantial'increase in the 

cut-off'frequency of the odd mod6, Figure (2.2), 'the 

trend - of the curve's'is not'the same for all values of e. 

Therefore, the point of minimum attenuation is expected 

to shift to higher frequencies for rising valueslof e. 

Another interesting phenomenon appears when, 

comparing the attenuation results for the TEcjj and , 
TES11 odes, Figures (2.9) and (2.12). Above certain 

frequencies, the attenuation coefficient of the TE 
S111 

mode becomes smaller than the attenuation of the 
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TE 
Cil mode. The same phenomenon occurs in a rectangular 

waveguide when the attenuation of the TE 01 mode becomes 

smaller than the attenuation of the dominant TE 10 mode 

in the same waveguide for frequencies larger than a 

certain fixed frequency which depends on the ratio of 

the two sides. 

*2.6 THE EFFECT OF SURFAC'E CURVATURE 

2.6.1 -Surface Curvature Formulas 

The results of section (2.4.3) refer only to the 

elliptic cross-section. The reason why surface curvature 

- or, more accurately, variations in surface curvature, - 

might affect the surface impedance is discussed 

qualitatively in the next section. Here we shall attempt 

to express the curvature-dependent factor in terms 

independent of the ellipse parameters in the expectation 

that the result could be more general, and would apply 

to surfaces of other than elliptical cross-section. 

Defining M= (1-e 2 Cos 2 n)k , we note that the 

radius of curvature R at any point of the ellipse can be 

obtained from the well-known relation R =(l+(dy/dxl 2? /2 / 

(d 2 y/dX2) . 

For the ellipse this gives, after a little 

simplification, 

a 2ki 3 /b f 2.341 

This relation removes the explicit variation of M with 

Section 2.6 is essentially a transcript from a joint 
paper <30> involving Professor L. Lewin and the author. 
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expression it in terms of the local curvature. We choose 

the first and second gradient of radius of-curvature to 

obtain two more relations to remove the parameters a and 

b. We have, on the contour, 

a1a1a 
as as/a -ý -n "ýR an 

whence the first gradient of radius of curvature can be 

written; 

DR/3s = (3ae 2 /2b)sin2n 

Using this result it-is readily verified that'' 

M2(1_M2 )a 2 /b 2 l-m2+ (DR/Ds)2/9 {2.351 

The second gradient of radius of curvature gives 

a2R/qS2 = (3e 2 /bM)cos2n 

from'which 

R92R/DS2 3M2[1+(1-2M2 )a 2 /b2l-- '-{2.36) 

Eliminating a/b from {2.351 and {2.36} gives a 

quadratic in M. Choosing the sign of the square root 

so that M2<1 for the ellipse gives, finally, 

1 DR' R 32 RR2 -nl 21 

7( -)_ ýý s 

(1 
(2 

R) 2+ 
[1 

(. 
LR) 2 (2.37} 1+ 

nk , s =a 9 as 9 as 
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In this form, only the local properties of the surface 

are involved. For both the circular cross-section and 

for flat plates, DR/3s =0 and M=1, the familiar case. 

However, {2.37} cannot represent a unique relationship 

because use could also have been made of higher order 

derivatives, leading to an unlimited number of possible 

forms. Although {2.371 seems to be'the simplest of 

these, unfortunately it has the sole merit of giving the 

correct form for the flat plate, circle and elliptic 

shapes. ror a parabolic shape y= AX21 {2.371 gives 

identically zero, so it cannot be the sought-for 

generalisation. Changing the sign of the inner square 

root does not help matters either, and it has to be 

concluded that a generalisation of f2.271 to other than 

elliptic shapesp and based solely on local properties has 

yet to be found. But if there is a genuine curvature 

effect it will necessarily involve higher order 

differentiations than the second. 

2.6.2 A Qualitative Examination of the Curvature Effect 

It is unlikely that a straightforward explanation 

of any such formulas as {2.27} or {2.371 will be readily 

forthcoming. What is interesting is that the curvature 

variations can apparently give a substantial, zero-order, 

correction to the flat-surface impedance formula, a 

result that microwave engineers, accustomed to working 

with the perturbation method of attenuation calculation, 

may find rather surprising, and not in accord with their 
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intuitive understanding of the process. After all, the 

wave only penetrates a minute distance, of the order of 

a few skin-depths, into the metal. How can the 

curvature of the sur face, unless it is correspondingly 

large, as at a sharp corner, enter into the 

calculations? This section attempts a qualitative 

approach to this question, at least to the point of 

indicating that a zero-order correction might be 

reasonably expected. 

Figure (2.15) shows the orthogonal contours, 

n= constant, to the ellipse, and we can assume that the 

propagation in the metal occurs along the direction of 

these flow lines. Far away from the contour the 

propagation is radial, but close in it is along curved_ 

paths which diverge non-uniformly from each other. Both 

the curvature and the divergence seem relevant, though 

uniform divergence, as with the radii of a circle, does 

not contribute to the effect under study. We shall try 

and indicate here how a uniform curvature of the flow 

lines, without divergence, may be expected to have a 

substantial effect. Although-the. contours in Figure 

(2.15) are not of this character, the demonstration of a 

zero-order effect should give some . confidence in the 

reality of the curvature effects in the ellipse. 

Suppose a curved contour to be subdivided, as in 

Figure (2.16), with a segment of length d, from which 

propagation into the metal wall takes place along a curved 

path of constant curvature radius Ro. Such a propagation 



- 66 - 

Figure (2.15) Flow contours in the waveguide wall 

'Figure (2.16) Flow from contour segment 
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would be closely similar to propagation of a dominant 

TE mode in a curved waveguide of breadth d. The 

analysis of this configuration <31> indicates a first- 

order correction (in d/Ro) to the dominant mode form, 

via the appearance of an axial electric field component 

of order of magnitude k22d 2/E 
2k Ro, where ý2 = -j60Xa, 

and k2= kC2 is inversely proportional to the skin 
32 

depth 6. Continuity of the normal component of the 

electric displacement therefore requires a corresponding 

normalýcomponent of electric field in the hollow guide of 

order'of magnitude k22d2 /k R 
0., 

due to this cause. If we- 

assume that the wave in the metal-is effectively 

extinguished in a distance of a few skin depths and that 

d should be large enough to substantially support a plane 

wave over this distance, then we need d= n6 where n is 

at least unity, and may be of the order of, say, 5 or 

more. Since RO will be-of the order of the guide 

dimensions, and therefore comparable toX 
01 

it is clear 

that the induced normal component of field into the guide 

is far from negligible. Perhaps another way of putting 

this concl, usion. is-to say that the path curvature in the 

metal introduces-. an effect as. from, a slight tilt in the 

wave direction there, and because of the high permittivity 

in the metal, the laws-of refraction at a boundary require 

a zero-order change in the direction of an incoming wave 

to correspond to this small effective tilt. 
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Although far from rigorous, this approach does 

indicate the possibility of substantial curvature 

effects, via the emergence of a non-negligible component 

of normal electrical displacement. 

2.6.3 Discussion 

The unfamiliar and rather recondite properties of 

the Mathieu functions clearly add to the difficulties of 
a- 

correctly analysing the elliptic configuration. The 

requirement that the axial surface impedance at the broad 

wall of an elongated ellipse approach the known value for 

the parallel plate Case must be considered over-riding 

for use as a check point for any formulas derived. The 

corrected formulas of this section do satisfy this 

crit-erion, though the ensuing discussion on the properties 

of Mathieu functions of complex argument does leave 

something to be desired. 

An effect which is here interpreted as a 

curvature-dependent effect survives the present 

corrections, and must be assumed to be a genuine phenomenon, 

surprising though its presence may seem. It would be 

desirable to produce an independent and at least semi- 

quantitative support for the basic formulas {2.271 and 

{2.28). A generalisation to achieve what {2.371 failed 

to achieve is highly desirable if, indeed, it is possible. 

Presumably an analysis of an ellipsoidal resonator could 

introduce yet a further curvature factor, arising from 

the curvature in the perpendicular plane. Clearly the 
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standard perturbation method rests on rather shaky ground 

and engineers using it for other than the simplest shapes 

have presumably been oblivious of the need for the entry 

of these curvature factors into their calculations. 
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CHAPTER THREE 

CORRUGATED ELLIPTICAL WAVEGUIDES 
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3.1 INTRODUCTION 

In the previous chapter it is shown that, for 

the even and odd TE modes, the power-loss 

contribution due to the azimuthal (9) magnetic field 

component is much more significant than that due to the 

axial magnetic field component. Clearly, if the Hn term 

could be removed near the wall or made proportional to 

the longitudinal component of the field at the metal 

boundary, then lower power-losses are expected. Since 

an H field component requires a longitudinal wall 

current, we seek to annul this component without 

disturbing the peripheral current required to support 

the longitudinal magnetic field component. Evidence in 

favour of this surmise was demonstrated by Clarricoats 

and Saha <1 >, when investigating the characteristics of 

a circular waveguide containing corrugations transverse 

to the direction of propagation, Figure (4.1). The 

circular structure satisfies the above condition when the 

slot depth is such that the electric length transfers the 

short-circuit termination at the outer slot boundary to 

an open-circuit (magnetic wall) at the boundary of the 

propagation region. This. condition implies a slot depth 

of one quarter wavelength. 

In this chapter, the concept is extended to 

waveguides with non-circular cross-sections. The 

principle can most easily be investigated for 

elliptical. and rectangular waveguides. The elliptical 
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waveguide with modified wall will be first considered 

in this chapter and in the latter part of the thesis 

the concept is extended to the rectangular structure. 

Formulation of the characteristics equation of the 

6orrugated elliptical waveguide leads to mathematical 

and computational difficulties, arising from the nature 

of the Mathieu functions required to represent the field 

components. It is believed that for these reasons no 

attempt has been made to analyse the elliptical waveguide 

with modified boundaries. Krank<32> analysed the helical 

elliptical waveguide, by assuming that the field 

perturbation in the waveguide grooves is sufficiently 

small so that the results differ only slightly from 

those obtained for the smooth wall elliptical waveguide. 

In this chapter, solutions of the wave equation 

are obtained in the two regions (0 << and 

(ti <t<2) shown in Figure (3.1). The form of the 

characteristic equation obtained using a space-harmonic 

representation of the field is rather complicated 

and, when the computer time-factor is considered, is 

unsuitable, for, present day computers. The form of the 

characteristic equation employed in obtaining the 

results presented in-this chapter, -. is, derived using only 

the fundamental harmonic of the modes supported by the 

structure. The dispersion and attenuation characteristics 

of different modes are illustrated in this chapter, and 

excellent agreement is obtained between the circular 

corrugated waveguide results and those obtained when the 
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Figure (3.1) Elliptical corrugated waveguide - 

Region 0<&< major axis 2al, minor axis 2b,,, eccentricity e 

Region ý1<ý<C2 major axis 2a 
2' minor axis 2b eccentricity e2 

ý 
2' : 
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elliptical corrugated waveguide is re-formed into a 

circular shape. Mode classifications are proposed to 

follow the classifications employed in the circular 

corrugated waveguide. 

3.2 FIELD COMPONENTS 

To obtain the propagation and attenuation 

characteristics of the elliptical corrugated waveguide, 

the structure is divided into two regions; 

(i) a central region (0 <ý<&1) and 

(ii) an outer slot region(ý 1 ý< &<E2), where 

standing waves are assumed to exist, Figure (3.1). 

Solutions of the wave equation {2.41 are obtained 

independently in the two regions in terms of either even 

or odd Mathieu function. Appropriate boundary conditions 

are then applied to ensure the continuation-of the field 

across the boundary between the two regions. In the 

previous chapter it is shown that there aretwo 

independent solutions to the wave equation in the 

elliptical co-ordinate system, giving rise to even and 

odd TE modes or TM modes. in the corrugated structure 

studied in this chapter, the existence of the two 

independent solutions of the wave equation is implied. 

However, the presence of the second region, which 

introduces an'anisotropic boundary, will always couple 

the. pure TE mode and TM mode supported by the smooth 

wall structure. Notations and classifications of the 

hybrid modes in the corrugated structure are given in 
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section (3.6). Modes whose 

component is represented by 

considered in this section, 

to the second type of modes 

The axial field components 

considered have the form; 

axial magnetic field 

even Mathieu functions are 

and the theory is extended 

at the end of the section. 

of the hybrid modes 

Co -Z 
Ez ZB 

vm 
Sev (q 

im, 
9)sev(qlm, n)e 

V M=-co 

mZ Hz =Y0Z E_ Avm Cev(qlm, 9)cev(qlmii)e 
V m= Co 

in the inner region, 0<C<ý0r2 Tr > Tj >0 and 

-m >z> +w. In the. slot region, the'axial field 

components have the form; 

00 

2Ez ZL 
rp 

%r (q 2p'ý2'u ser(q 2p n)cosr z 
r 11=0 11 

Oo 

+E LrIll if (q se (q n)sinrý z 
r P=l r 2111EVE) r 2p 11 

co 
2H z=y0EEp ril 

ErI (cJ2,1 ý2 ce r., 
(q 2p"n) sinr,, z. 

r p=l 

Co 
+ Yo EEPI 

r 11=1 rp 
ý: 

r(q2jl"'EVý)ce r 
(q2li' n)cosr I,, z 

0.21 

for 0< lz-iDj < d/2 

and for d/2 < Iz-iD, :j D/2 2 Ez =0=2Hz 

0,1,2, 

Throughout this chapter the notation MF(q, n. or ý) is used 
instead of the notation MF(n or ýjq)*employed in chapter two, 
where MF denotes the Mathieu function. 
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The following notations have been used in the above 

expressions. 

4q, 
m = h7(w2c 

0 
11 

0 -a m 
2) 4q 21i= h2 (W2C 

0 
110-r 

11 
2) 

4q 21 ýi =h2 (W2 E. ii. -r,,, 
2) 

where 

r- 2Trp (ii= 0,1,2, -) pd 

I Tr 
U(2p-1) 

0m is the phase-change coefficient of the (m+l)th 

spatial harmonic and is related to the phase-change 

coefficient of the fundamental harmonic , by the 

relationship 

a=a 

m 
B,, A,, L,, L', P and p, are amplitude coefficients and the 

factors IT and E are defined below; 

Se i (q, E)GeY i(q'E2 )-Sei(q 1ý2 )GeYi(q,, E) 
{3.41 

GeY i (qE 2) 

Ce i (q,, E)Fe'Yj(qj E2 )-Cdi(q, FeYi(qtE) 
i(q, E) 

FeY i (q, ý 2) 

0.5) 

The'prime means first derivative of the function with 

respect to E,, and the factor expj(wt) is assumed throughout. 
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In {3.1} and {3.2} the summation is carried out 

over the eigenfunCtions (v, r are the number of the 

eigenfunctions). The. solutions of the wave equation 

written in the form 0.11,0.21, satisfy-the boundary 

conditions at the lateral sides of the slots; 

rl 

where E and E 
r) are derived using Appendix 1. 

Applying the boundary conditions; 

1EZ=2E Z# 1HZ=2H zi 
(3.6} 

1 Tj 2E TI 11 Tj 2H T) 

for C=ý,.. 27T >q>0 and +- >z> --I 

the characteristic equation of the elliptical corrugated 

waveguide is then obtained. 

The form of the characteristic equation will be 

similar to that of the corrugated circular waveguide <4 >, 

but of a more complicated nature. The complexity arises 

due to the presence of the angular Mathieu functions, 

which are not only functions of n, the angular co-ordinate, 

but also of the electrical properties of the medium in 

which they apply. In order to simplify the form of the, 

characteristic equation and for practical computationsp 

the first spatial harmonic will only be used to 

represent the field components in the inner region of the 

waveguide. This assumption implies that the field is 
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constant within the slots along the axis of the waveguide. 

This assumption has a real physical basis, since the 

condition X >> d(X=27/a) is satisfied fairly well in the 

waveguide. 

Under this approximation the field components in 

the inner region have the form; 

Ez =ZB Se (qj, ý)sev(qj, n) 
V=O VV 

Hz =y0E AvCev(qj, ý)cev(qj, Tj) 
V=l 

E= -i 
$EB Se (q,, C)se 

r) IR7vvvV, (q, , ri) 

+j 
kEA Ce TRT 

vv V'(qj, 
ý)cev(qjn) 

we 
0EB Se '(q,, E)sev(ql,, Tl) -7 vv kK 

v 

ay 
0EA Ce (q,, E)cevl(ql, n) 

vvv 

E -j 17E BvSevl(ql,, E)sev(qlpn) E LK 
v 

k 
-j-=,, EA Ce (qjjý)cevl 

KvVV 

WE 
Hj0ZB Se (qj, ý)se I (ql,, n)- ZKT 

vvvv 

-j 
oy 

0E AvCevl(ql, e)cev(ql,, n) (3.71 
V 

The factor expj(c4t-az) is assumed throughout. 
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The field components 2H z' 2E and 2En. are zero 

at the lateral metal sides of the slots, and therefore 

the assumption made above does not permit their 

existence in the slot region. An analogy can be drawn 

between the above null components and the null field 

components in the slots of a circular corrugated 

waveguide <33>1 viz. 2 Hz 12Ee and 2Er 

The remaining field components are therefore; 

2 Ez ZLrIr (q 2'ý2 C)se 
r 

(q 211) 
r=l 

we 
H0 j=,, (q 2 2 tk ELr iT 

rI 
(q 21ý21ý) se r. r 

we 0 
H TRY ELr5r (q 2'ý21ý) serl (q2ll) {3.81 

2r 

where 4q, =h2 (k 2-a2)1 4q 2=h2k 
21 k2= W2C 

0v0 and 

Z is the first or second metric coefficient defined in 

{2.21. The factor expj(wt) is assumed, and the prime here 

denotes the first derivative with respect to either 

or q. 

3.3 BOUNDARY CONDITIONS 

The boundary condition {3.61 that the tangential 

components of the electric and magnetic field must be 

continuous across the boundary will be utilised 

to obtain the characteristic equation under the above 

assumption. In order to illustrate the difficulties 

encountered in satisfying the above boundary conditions 

for the elliptical corrugated waveguide, the case of the 
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circular corrugated waveguide will be illustrated first. 

The axial electric field component in the inner 

region has the form 

Co 
-jßz Ez =S0BnJn (K 1 r)cos(n6)e 

n= 

and in the slot region 

Co 
Ez ZLn (D n 

(kr 2 kr)cos(n6) 
n=O 

where the function ýn is a combination of the ordinary 

and modified Bessel functions of the n-th order. Making 

use of the assumption that the field is invariant with 

respect to the z-direction at the corrugation edge r=r,,, 

Figure (4.1), then the boundary conditions'[3.61 yield 

EBnJn (K 1r1 
)cos(nO) =ELn (D n 

(kr 2 , krl)cos(nO) (3.91 
nn 

f or 27r >0>0 and - 00 <Z< co 

Multiplying both sides of 0.91 by cos(mO) and integrating 

with respect to e from 0 to 21T, and making use of the 

orthogonality of the trigonometric functions, {3.91 

yields 

BmJm(Klrl) =Lm 4ým (kr2, kri) [3.101 

It should be noted that-for each mode (in this case for 

each m) there should be only one propagation coefficient* 

for a particular root of the characteristic equation. 

Equation'[3.101 shows that the boundary conditions may be 
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satisfied for each m separately, due to the 

orthogonality in 0 of the fundamental solutions and the 

fact that the angular functions cos(ne) or sin(nO) are 

independent of the characteristics of the medium. When 

representing the fields in the corrugated elliptical 

waveguide, the summation sign over the eigen-numbers 

(V and r) must not be deleted, otherwise_a corresponding 

equation to 0.10) containing the n dependance will be 

obtained, i. e. 

Bm Cem(qj, ý)cem(qjTj) =Lm 5m(q 2'El'E2) cem(q 21n) 

where cem(ql, n) and ce m(q2, n) are functions of rl. The. 

only way that equation 0.111 can be satisfied is by 

assuming that 

cem(qjjýn) cem(q 21T') 

which is not true except when the eccentricity is zero. 

3.4 THE CHARACTERISTIC EQUATION 

In order to obtain the dispersion characteristics 

of the elliptical corrugated waveguider it is necessary 

to solve the characteristic equation relating w and 
I 
The non-existence of the field components Hz,, E and E 

in the slot region of the waveguide implies the following 

boundary conditions; at &=E1 
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1Ez 2Ez 

1H 2H r) 

and 

E 0 

4 {3.121 

for 2Tr >n>0 and +- >z> --. 

Substituting the appropriate field components from 0.71 

and {3.81 in the boundary conditions 0.121 the following 

relationships are obtained; 

TI 

Bv Se 
v 

(q,, El)sev, : ql, n) AvCevl (qjL, El)cev(ql, n) 
V=l V=l 

{3.131 

In order to eliminate the n dependence, the expansion 

00 
sevl(ql, n) =EaV,, Il 

ce 
p 

(ql, n) 
-p=O 

where 

27r 2 Tr 

sev' (qjL,, n)ce (qln)dn/ ce 
2 (ql,, n) dn 

VFPfp 
00 

is used in {3.13} to obtain 

Bv Sev(ql,, El)ce 
11 

(ql,, n)av, p= V. =l P=O 
EA Ce I (ql,, C 1) cev (ql, n) (3.141 

V=l vv 
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Multiplying both sides of {3.14} by ce n 
(ql, ) and 

integrating with respect to n between 0 and 27T, leads to 

I 
ZBv Se 

v 
(qj, ý, )a 

v, n =An Ce 
n' 

{3.15} 
V=l 

where Uk. 

E z 

EBv Se 
v 

(qj, ýj)sev(qj, n) ELv %V(q 21ý1'Y sev (q2l? l) 
V=l V=l 

0.161 

using the expansion 

sev(ql, n) =E6 VIP se 11 
(q 2, TI) 

P=l 

where 
2Tr 2 Tr 

se (qll? l)se, (q . 71)dri/ se 2( q n)dri 0.17) 
VIP 

fV2, f 
11 2 

00 

and following the'same procedure above, {3.16) leads to 

E BvSev(q,,, ý 1 )ev, 
fn 

=LnIn0.18) 
V=l 

Hn 

EB Se I (qj_, El)sev(qln)+O EA Ce 
V=l vv V=l vv 

(q,, El)cevl 

2ELII (q sev (q 0.19) 
k 

V=l vv 21EVY 21 TI ) 
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The expansion 

Co 
cev' (ql, ri) =Z6V, p se li 

(q Vtl) 
P=l 

where 

27r 27-, 

cel (ql, q)se I)dTI/f se 
2 (q2 , Ti) dil 

vfv 
(q2 "p 

00 

and (3.171 are used in {3.191 to give 

E BV[Sevl (qjjCj)-(E)2 
'ýnl (q 2'ýVY Se (qj, ý, ) 0 

V=l 
k IF 

n 
(q 2'ýVY v] vn 

EAv Ce 
V(qjj; 

ý, ) 6v, 
n 2'- 0 0.20) 

V=j 

where the coefficient Ln has been eliminated using {3.18). 

Substituting in 0.20) for the coefficient Av from 0.15) 

leads to 

E Bv[seý (qjjý, )- (E) 2n 
(q 21ý1'Y Se 

v 
(ql, El) 

v, n 
vkn 

(q 2'ýl' 2) 

ý2E ZB Se (ql, 91) 
Ce 

r 
(q 1. - 9 1) 6, = 

vrvv 
Cerl (ql� 91 )ctv, r r�n 

0.21) 

Equation {3.21) can be written in the form 

Z' 
v 

Vn�v ý 

or n=2,4,6, --- 

or n=1,31 51 
0 

{3.221 

where V 
n, v 

is given in {3.21). 
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It is noted that in equations {3.151 through 
. 

0.221 when n is odd, the series are summed over all odd 

values of v, and when n is even, the series are summed 

over all even values of v. This is due to properties of 

the Mathieu functions. Equations 0.221 form a set of 

infinite homogeneous linear algebraic equations in the 

coefficients Bv* For a non-trivial solution, the 

determinant of these equations must vanish. The roots of 

this infinite determinant provide the values from which the 

phase-change coefficient, ý, can be determined. The 

infinite determinant for the rnrodes considered, summing 

over odd values of v, is_ 

v 13 v 15 

v 31 v 33 v 35 

v 51 v 53 v 55 

.. SSSS 

= 13.231 

Another equation similar to {3.23) can be obtained when 

the summation is carried over the even values of v. 
I 

Applying similar mathematical techniques to the modes 

whose axial magnetic field component is represented by 

odd type Mathieu functions, one can write their 

characteristic equation in the form; 
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A 11 A 13 A 15 

A 31 A 33 A 35 

A 51 A 53 A 55 0.241 

f or n=0,2,4, --- 

or n=1,3,5, --- 

where 

Av= Ce I (ql, El) eTnI 
(q 2'ýVY 

Ce (ql, El) 
nvv, n kn (q VEVY vn 

+ ýý2 Ce (q,, El) Z 
Se 

r(q,, 
El) 

(3.251 
vIr Se r, 

(qj, ý1)6ý, n aý, n 

where 

T ný cl2lýIE2) 'Ce n 
(q 2, C)Fey 

n 
(q 21E2) -Ce n' 

(q 2"E2)]Feyn (q 21ý) 
1ýeyn(qVC2) 

2 7r 2 7r 

cev(ql, n)ce (q n)dn/ ce 2 (q )dn 
rfr2 21n 

00 

7r 2 7r 

cevl (ql, -n)se (q,, Tl)dn/ se 2 (qln)dn 
V'r a, 

frr 

00 

and 

2 7T 2 7r 

V, r sevl (ql,, n) ce r 
(q 21TI )dn/ ce, (q 2, n)dn 

ff2 

00 
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Another equation similar to {3.24} can be obtained, when 

even values of v are used. It must be noted here that 

if the characteristic impedance of the slot region, 

2E z/2 
ff 

n, was equated to the characteristic impedance of 

the inner region, Ez/, H 
TI , 

at the boundary ý= El, then 

the same characteristic-'equations 0.231 and {3.24} 

would have been obtained provided that the surmation 

signs appearing in the field expressions were not omitted. 

If the field is represented by a single term of the series 

0.71 and 0.81, then the characteristic equation derived 

using the boundary conditions 0.12), has the form; 

Sevl (qjjý, ) _ (E)2 
TV' (qVýVY 

Se k T, 
v 

(q 21ý1'ý2) v 

Ce (ql, cl) 

Sev(qj, ý, ) CL {3.261 Ceý (qj, ý, ) V, V 

which is not the form given in 0.23). Under this 

assumption the characteristic impedance of the slot 

region '2E z/2 
H 

'n , 
is independent of the azimuthal position 

(n) around the waveguide. This condition is not 

necessarily'true in general except for a circular 

waveguide i. e. when the eccentricity is zero. ý 

3.5 TRANSITION TO CIRCULAR CROSS-SECTION 

: ý- , An elliptical corrugated waveguide is reformed 

intoacircular corrugated waveguide when its focal- length, 

h, tends to zero while and ý approach infinity. - The 
-2 

products hcoshý 1 or hsinhýl then, tend. to rl,, the inner 
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radius of the circular waveguide, and hcoshC 2 or hsinh& 2 

tend to r 21 the outer radius. The degenerate forms of 

the angular and radial Mathieu functions are given in 

<16>. Using the degenerate expressions one obtains the 

following degenerate forms for the factors appearing in 

the characteristic equation; 

Cen (ql, 9) ", Sen (ql, 9) ý, in (x 1) 

Ce 
n1 

(ql, g) �u Sen' (ql, Z) -v x Vjn' (x 1) 

Ce 
n 

(q 2'ý) ý, Se 
n 

(q 21ý) "' an(x2) 

Ce ' (q Se 
n' 

(q -v X n 21ý) 2jn' (x2) 

Fey 
n 

(q,, C) A. Geyn (q,, E) nu Yn (x 

Fey n' 
(ql, C) ru Gey 

n' 
(qj, ý) v xjY n' 

(xl) 

e FV v, r 

avjr ". -6 vjr Av 

when v=r 

when v 7ý r 

V 

0 

I 
where X1 

2= r12 (k 2_ý2) 

when v=r 

when v ýl r 

x2r2k2 22 

All terms in the infinite determinant 0.23) vanish 

except, those along the main diagonal of the determinant. 

it is also noted that the degenerate forms of 0.231 and 

{3.24) are identical, hence, the even and odd modes are 

degenerate in the circular corrugated waveguide. 
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The degenerate infinite. determinant then becomes 

n, n n 

with n= 11 21 31 --- representing all possible hybrid 

modes of order n 1,21 3, --- respectively in the 

circular corrugated waveguide. Substituting the 

degeneratelexpansions for different Mathieu functions in 

Vn, 
n or A 

n, n , 
leads to the expression 

jn, (x 1) 221n 
(X, ) 

81l! 
, (x 1ýyn (x 2 )_i 

n 
(X 2) Yn'(xl) 

xný (Eix - lin (x 1) 
X1jn, (x, ) k11n (x2) Yn (x2) -jn (x2) Yn (xl) ' 

0.271 

which is the characteristic equation of the corrugated 

circular waveguide given in <1 >, ' with xlý 2=r12 k2e 

Therefore, it is concluded that,, for the corrugated-, 

circular waveguide the terms in'the infinite series (3.71 

and {3.81 are uncoupled and the summation sign may be 

omitted. 

3.6 - CUT-OFF CONDITIONS AND CLASSIFICATIONS OF MODES 

In a corrugated circular waveguide,, it is known 

that <33>1 the, co-existence of E and, H modes gives rise 

to hybrid modes. -For reasons explained by Clarricoats and 

Saha <34> these modes are designated by HE if, the cut-off 

frequency of the modes is that of an E-type mode in a 

smooth-wall circular waveguide and by EH if the cut-off 

frequency of the modes corresponds to that of an H-type 
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mode in the smooth wall structure. With this notation 

the fields awayýfrom cut-off, of modes, used in practice, 

resemble H-type and E-type modes respectively. 

This classification of the nodes is illustrated 

when finding the roots of equation {3.271 in the limit 

ß -- i. e. 

jnI (kr 1) -* EH 
nm modes 

and 

in (kr 2 HE 
nm modes 

The subscripts n and m denote respectively the number of 

azimuthal variations with 0 and the m-th root of the 

characteristic equation {3.27) for either EH or HE mode. 

These hybrid modes are doubly degenerate since an equally 

valid solution results if sin(nO) is replaced by cos(nO)t 

and cos(ne) by -sin(nO). However, in the elliptical 

corrugated waveguide it is possible to have two 

orientations {2.8) for the field configurations. Thus a 

hybrid mode in this waveguide will be designated by a 

prescript e or ol indicating an evenor an odd mode. 

In order to distinguish between the even and odd 

HE or EH modes, the following field dependence will be 

utilised,, for reasons given below. The axial magnetic 

and electric field components of an even EH mode or an 

odd HE mode are represented by odd and even Mathieu 

functions respectively. The reasons are as follows; 
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in the next section it i's shown that the rnain diagonal 

terms of equation {3.23} dominate in the calculations 

of the dispersion characteristics of different modes. 

Thus, in order to establish a reasonable means of mode 

classification, the roots of the main diagonal terms 

are found when 0. The-roots of the equation 

Lim 
n,, n 

are 

0.28) 

Se 
n 

(q 21ý2 ) and Ce 
n(q2lýl) while those. of 

I 
the equation 

Lim A 
n, n 

are 

Ce'n(("'2ý'Y "lrrd S%I(cIVE'lý 

{3.29) 

Therefore, following the mode classification$ used in the 

previous chapter, the roots of {3.281 are tho se of the 

odd TE modes and even TM modes, while the roots of {3.291 

are those of the even TE modes and odd TM raodes. Thus, to 

follow the mode classification used in the corrugated 

circular waveguide <34>, the solutions of equation {3.231 

will give rise to the 

0 
HE 

nm modes and e 
Ell 

nm modes 

and of equation (3.24} will give rise to the 

e 
HE 

nm 
modes and 0 

EH 
rim 

modes 
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The double subscript (n, m) employed here denotes the 
. 

order of a mode which corresponds to the order (n, m) for 

an HE 
nM mode or an EH 

nm mode in the circular corrugated 

waveguide when the eccentricities e1 and e2 become zero. 

With this notation the field of the 
o 

HE,, mode and e 
HE 11 

mode, away from cut-off, resemble that of the TEcll ode 

and TE 
sll mode respectively. 

3.7 DISPERSION CHARACTERISTICS 

It is known that the angular Mathieu functions 

may be expanded in terms of an infinite series of 

trigonometric functions, and that the corresponding 

modified Mathieu functions can be expanded in terms of an 

infinite series of products of Bessel functions (Appendix 

II). As has been pointed out in the previous chapter, in 

order that the solutions of the Mathieu differential 

equation be periodic, the characteristic number C or the 

separation constant of the wave equation must satisfy a 

certain transcendental equation which is a function of. q. 

Furthermore, the coefficients of these infinite series are 

functions of q and C. 

Supposing one is interested in obtaining the 

numerical value of a certain modified Mathieu function of 

order m, one must first determine the value of the 

characteristic number which is the root of an infinite 

continued-fraction transcendental equation <35> and then 

find the coefficients from the three-term recurrence 

relations <25> which are functions of q and C. 
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Substituting these coefficients into the infinite Bessel 

function product series and carrying out the computations 

one finally obtains the result. According to the above 

description, it is quite evident that the task of computing 

the numerical values for a great number of angular 

Mathieu functions and modified Mathieu functions is very 

time consuming,, even on a fast computer. Thus, for 

practical computations, the infinite determinants {3.23) 

and {3.241 must be reduced to contain the minimum number 

of terms that will produce sufficiently accurate results. 

In section (3.5) it is shown that,, ý for small 

eccentricities, the term V 
n, n when equated to zero, gives 

a good indication of the dispersion characteristics for 

the mode (n, n). Therefore, for a first approximation of 

the roots of the (1,1) mode, the determinant {3.231 is 

reduced to the form; 

vii =. o {3.301 

The roots of {3.301 were calculated for different values 

of e1 and e2. The series summation over r in {. 3.211-was 

found to be very rapidly converging and only-the first 

three terms Were used in the calculations. The roots 

obtained for the-case e1n, e2v 01 were in very good 

agreement with those obtained for the circular corrugated 

waveguide equation {3.27). In order to obtain a better- 

approximation of the roots, the equation 
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v 13 

v 31 v 33, 

= (3.311 

is solved for different values of el and e2, and the 

roots obtained were then compared with computed values 

using {ý. 30). 

It was found that,, for a particular value of the 

normalised phase-change coefficient, the values of the 

normalised frequency obtained from {3.301 and {3.311 were 

almost identical for small eccentricities. This difference 

was found to be of the order of 1% even at high 

eccentricities. 

Table (3.1) shows computed results for the 

0 HE 1,1 ýmode, obtained using the above two approximations, 

for different values of ell, with e2 ='0.8el. 

e1 aa 1 (wa 1 /c) {3.301 (wal/c) {3.311 

. 1ý 1.8 3.1407 3.422 

.5 1.8 -3.577 3.592 

.7 1.8 3.813 3.826 

.9 3.6 5.098 5.063 

Table (3.1). 
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The values of the phase-change coefficient obtained 

using equation {3.301, would only produce an error of 

the order of 5 MITZ, which is a very small error at an 

operation frequency of the order of 5 GHz, and'would be 

within the limits of experimental observations. Computed 

results for the normalised phase-change coefficient of 

the 
o 

HE 11 mode are shown in Figure (3.2) as a function of 

normalised frequency. The figure clearly illustrates the 

proximity of the roots of equations 13.301 and 0.31), 

for a wide range of frequencies. Because of the long 

comp utational time involved in calculating the roots of 

equation 0.311, the roots of the slightly less complicated 

equations 

and [3.321 

were used to obtain thedispersion characteristics of the 

even and odd modes shown in'Figure (3.3). 

At a particular frequency, the even and odd HE, l 

modýs in an elliptical corrugated waveguide are observed 

to have the same phase-change coefficient. This implies 

very high coupling between the two modes, and thus this 

frequency must be avoided when the waveguide is to be 

used in a practical system. No attempt has been made to 

....,,,.. 
compute. the,,, dispersion characteristic for. 

-values,, of. 

a k. This is because of the extreme mathematical 

complexity of the Mathieu functions needed to perform 

the computations <16>. In any case, a. low- 
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attenuation waveguide will not be operated in the 

range ý>k, as high attenuation figures are expected in 

this range. 

3.8 ATTENUATION CHARACTERISTICS 

In previous sections, field expressions in 

different regions of the waveguide are presented and the 

dispersion characteristics of the corrugated waveguide, 

are shown. 

In order to formulate the attenuation coefficient 

of the waveguide, it is necessary to calculate the power 

carried by different modes. Furthermore, the power-losses 

due to the imperfectly conducting metal slots must also 

be calculated. 

3.8.1 POWER FLOW 

The time average power flow over an area S--is 

given by the integral of the complex Poynting vector, 

Po =h Re 
f 

(E, x H*). ZdS, 

in cylindrical elliptical co-ordinates this simplifies to 

Po Re 
f 

(E Hn *-E 
nH 

*), t 1 P, 2 dýdn 

For the corrugated elliptical waveguide, P0 is formulated 

in terms of the inner region field expressions given in 

0.71. Following the argument used in the computations 

of the dispersion characteristics, only the appropriate 
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terms of the series given in {3.71 are used to formulate 

the average power flow of different modes. Therefore, 

for the modes o 
HE 

nm or e EH 
nm , 

the average power flow, P 
of 

is given by; 

271 
2K 4PB 2we (Sený 2(ql, ý) se 2 (q n) +Se 2(ql,, TI) se v2 (ql, n))dT 

0n0fnnn 
00 

C2 Tr 

+A 2 kY aff (Ce 
no 

2 (ql, ce 2 (q TO +Ce 2 (ql, C) ceý 2 (q,, Tl)) dndý 
non 1' n 

00 

1 
+A nBnY0 

(k 2+ý2)j (Sen(qj, ý)Ce 
n 

(q,, 
IC)+Cenl(ql, 

&)Se 
n 

(qj, ý))ý 

0 

2 7T 

where I sen (ql, n)cenl(ql, n)dn. f 

0 

For the 
e 

HE 
nm or 0 

EH 
nm modes, the average power flow, P0 

has exactly the same form given above, except the term I 

is now replaced by -I. This can easily be shown using the 

identity of the angular Mathieu functions; 

27r 27r 

sen(ql, n)cen(ql, n)dn 
f 

sen(ql, n)ce n 
(qjL, n)dn, 

00 

it is noted here that I is a negative quantity. 

Terms involving the integrals of the angular Mathieu,. 

functions or their derivatives, can be evaluated using 

some combinations of the coefficients of, the trigonometric 

series generating the angular Mathieu functions., On the 

other hand, -terms involving the integrals, of the radial 

Mathieu functions or their derivatives, cannot be 
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integrated in a closed form, and therefore numerical 

integration techniques are used to evaluate them. 

3.8.2 Power losses' 

The usual perturbation techniques <24> are used 

to formulate the power losses in the slot region of the 

waveguide. The technique assumes that, the magnetic 

field component near the slot metal surface'is not 

influenced by the finite conductivity of the rr. etal. ' 

The techniques employed in section (2.4) when 

formulating the attenuation coefficient of the smooth 

wall elliptical waveguide, will not be employed here. 

The reason is merely due to the extrene mathematical 

complexity of the Mathieu functions required to 

represent the field components inside the metal region 

of the slots. However, the results obtained for the 

smooth wall waveguide can always be used as a guide to 

attaining a better estimate of the attenuation 

coefficient of the corrugated waveguide. The power loss 

of each_slot can be divided into two components; 

P1= Power-loss on the two lateral sides of the slot, 

and P2= Power loss on the base of the slot. 

The contribution to the attenuation coefficient, of the 

power loss at the top of the ridges is neglected. This 

does not mean that the ridges have an infinitesimal 

thickness, where high current concentration occurs, but 

it merely implies that this component of the loss is 

very small when compared with P1 or P 2' ' In fact, in 
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the circular waveguide, the ratios of P1 or P2 to the ridge 

power loss is of the order of 10 4, in the frequency range 

of interest. 

For the 
0 

HE 
nm or e 

EH 
nm modes, the power loss 

expressions are; 

Rsf (12 Hr, 12 +12 HC12) Zj z2 dndý 

s 

L2 (q ; ') se 
2 

k4 nf no 21ý2n (q2 

10 

2v2, n) ] dýd-, 
n('ý121ý21ý)sen 

(q 2 

and 

R2 ir 

P2df 12 Hn kdri 

0 
ý=ý2 

Tr 
Rs W2C 

02d2 Ili 22T, 2 COS2n) 2a 2 k4 Ln (q 2'ýVý2)f- se n 
(q 2e2 dri 

0 

Since e2<1, the denominator of the integrand, in 

the expression for P21' may be*expanded binominally, 'i. e. 

2Tr 

se 2(q 1+he ? cos6+ 
1*3e4 

Cos 4 
Tj+ dn, n 2'Tl)x[ 222.22 

0 

which can be integrated in a closed form in terms of the 

coefficients of the trigonometric series generating the 

angular Mathieu function. 

For the HE or EH modes, the odd Mathieu 
e nm o nm 
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functions are replaced by even Mathieu functions in the 

expressions for P1 and P 2' 

The attenuation coefficient is finally calculated 

using the formula; 

Ct =p1 
+P 2 

2DP 
0 

Computed results of'the attenuation coefficient 

for the even and odd HE,, modes are illustrated in 

Figures (3.4) and (3-5), as a function of frequency. 

The internal and external major axes of the waveguide, 

2a 1 and 2a 
2 are fixed at 8 and 10 cm. respectively and 

the inner region eccentricity, el, is varied in the 

computations with e2=0.8e 1* An increase in the 

minimum attenuation value, is"observed'for the'-'HE ""mode 
o 11 

as the eccentricity is raised from zero value. On the 

other hand, for the eHEjj mode a decrease in both the 

minimum attenuation value and the frequency at which the 

point occurs is observed, for increasing values of the 

eccentricity. However, the decrease in the minimum 

attenuation value reaches a minimum when the value of 

e 0.55, and then starts rising again. This value of 

the eccentricity isIrather interesting as it was found to 

provide the TE 
S11 mode, propagating in a smooth wall 

elliptical waveguide, with its minimum attenuation value. 

A'similar phenomenon was observed by Yeh <36 >, 

when studying electromagnetic wave propagation along a 

dielectric cylinder of elliptical cross-section. 
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CHAPTER FOUR 

INFLUENCE OF SLOT SHAPE ON THE 
PERFORMANCE OF A CORRUGATED 

CIRCULAR WAVEGUIDE 
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4.1 INTRODUCTION 

Recent investigations ofýthe circular corrugated 

waveguide by Clarricoats and Olver <2 > indicate the 

presence of low-attenuation properties of linearly 

polarised hybrid modes, of which the HE mode has 

practical importance. The structure supporting such a' 

low-Tattenuation mode has been analysed with rectangular 

transverse slots, Figure (4.1). Commercial use of the 

circular corrugated waveguide, has'been'impeded because 

of manufacturing difficulties. It is hard to conceive a 

simple means for manufacturing a flexible waveguide with 

rectangular slots. However, since the presence of the 

slots forms the very basis of the low-attenuation 

property of the waveguide, the effect on"the attenuation 

coefficient of modifying, the shape of the slot to aid 

manufacture purposes must be well understood. 

When studying the circular waveguide structure- 

with non-rectangular slots, the difficulty arises in 

obtaining solutions I to the wave equation in"'the-"'slot 

region of the waveguide. The method employed-in 

synthesising the field is, to replace the non-rectangular 

continuous profile of a slot by a staircase approximation 

consistinglof a series of rectangular slots. The field 

solution in each individual rectangular step of the 

staircase approximation is then obtained and field 

continuity at the interface of consecutive steps is---- 

ensured. A surface-impedance model boundary is then 
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f 

I 
used to represent the slot-region of the waveguide,. and 

the characteristic equation of the structure is thus 

obtained. The effects of non-rectangular slots on the 

dispersion, attenuation and radiation characteristics of 

the waveguide are illustrated in this chapter. 

Experimental verification of this effect on the radiation 

characteristics' is presented in the latter part of the 

chapter. 

4.2 CIRCULAR CORRUGATED WAVEGUIDE WITH RECTANGULAR 

SLOTS- 

4.2.1 Introduction 

Recently, the 

shown in Figure (4.1) 

and Olver <2>. using 

inner region (0 <r< 

slot region (r 1<r< 

solution of the wave 

form; 

corrugated circular waveguide 

has been studied by Clarricoats 

a space-harmonic field in the-. 

rl) 
, 

and higher order modes. in* thip 

r0). In their analysis the field 

equation in the two regions has the 

Co -jo z 
Ez=E E_ B 

vm 
Jv (K lm r)cos(vO) e m, 

V M= co 

00 

-ja HZ =Y0A vm 
Jv (K lm r)sin(vO) em 

V M= Go 

and for r, <, r< r0 
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Co 

0EZ=ZZ 
[L 

nji 
Un (K 

2 ja 
r08, K2 

l'i r) cosr 11 z+ Ln' 
11 

ý In (K; 
Ij 

rc) 
�r) n p=O 

sinr zjcos(ne) 

Co 
HY [P (K r �K r)sinrvz+pn, 11---n, 

(Ký. r0., Ký. r) 0Z0n 
p=l np n2o 2p 

cosr'zls in (n0) 

where the different notations used are similar to those 

used in the analysis of the elliptical corrugated'wave- 

guide, equations 0-11 and 0.2), except for the angular 

and radial Mathieu functions, which are replaced by 

trigonometric and Bessel functions. 

on making use of the boundary conditions at r r,, for 

271 >0> 0# 

1Ez=0Ez1Hz ýýIo Hz-I., 

HeoHe 

and after some very cumbersome algebra'one obtains a 

homogeneous system of equations for the coefficients 

BA , -L j L" ,P 'and PI 
vm vm nnnn 

By using the condition 

of non-triviality, the chara'cteristic equation is then 

obtained in the form of a (4m+2) determinant, which Is 

solved for a finite number of p and m. From a knowýedge 

of the phase-change coefficient the attenuation coefficient 

is calculated, taking into account the higher order modes 

in the slot region. 
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The same structure was previously analysed by 

Clarricoats and Saha <34>, using a surface impedance 

model to representl'the boundary at r= rl, A much 

simpler representation of the field in the central 

region is used and the slots assumed to support a cut-off 

TM mode only. This is equivalent to taking first terms 

of the space harmonic formulation. The ratios (E 
z 

/H 0)1 

which are assumed to be independent of the propagation 

direction, are then equated at the boundary r= rl, 

Figure (4.1), to obtain the characteristic equation of 

the structure. The above approximation is valid when the 

numbers of slots per wavelength is large. The attenuation 

coefficient can then be formulated using the field 

components in the slot region. 

Table (4.1) shows numerical '. results obtained for 

the HE 11 mode, in a corrugated waveguide, w Ith rI=4 cm 

and ro = 5, cm, when using the simple and exact 

formulations mentioned above. The exact formulation 

results shown are obtained with m(=2) pairs of space- 

harmonics and V(=2) higher order slot modes. 

wr 1 /C a dB/M 

Simple Exact Error Simple Exact Error % 

o. 6 2.86 2.90 1.4 0.4-79' 6.457 4.6 

1.6 3.10 3.14 1.1 0.139 0.153 9.0 

2.6 3.60 3.59- 0.1 0.081 0.058 28.3. -- 

Table (4.1) 
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The values of the phase-change coefficient obtained 

using the simple theory have been found to lie within the 

limits of experimental observations obtained by Olver 

et al <3> using resonant cavity techniques. In fact, in 

the frequency range in which low-attenuation occursg the 

difference between the values of frequency obtained using 

exact and simple theories is only of the order of 5 MHzr 

which is very small when compared with the operating 

frequency of 9 GHz. Therefore, the application of the 

simple theory to circular corrugated waveguides with 

different transverse surface impedances, at the boundary 

r= rl, should give quite accurate propagation curves. 

Although the differences in the attenuation results are 

of the order of 35% in the range of operation, the 

surface impedance theory should still provide a useful 

indication of the attenuation coefficient. A detailed 

comparison of the above theories appears in <4 >. 

In what follows, various practical structures 

will be analysed using the simple surface-impedance model. 

The analysis for a circular corrugated waveguide with 

rectangular slots will first be presented, and the method 

then extended to structures with non-rectangular s lots 

such as are used in practical flexible corrugated 

waveguides, Figure (4.2a). 

4.2.2 Surface-ImEedance Thýjorv 

The transverse surface-admittance presented to the 

central region by a rectangular slot at the surface r= r1j, 
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Figure (4.2)- Corrugated circular waveguide 
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is given by the ratio of the azimuthal magnetic field 

component to the axial electric field component in the 

slot, evaluated at r= rl, i. e. 

-jy 0sn 
l(rl, ro) z -jYOY (4.11 

where Y is the normalised surface-admittance of the slot, 

Yo vfýjl ,i= krl, io = kro, k= wrii- e--' and 00100 

s (X, y) 
i 

n'(X)yn(y)-jn(Y)yn'(x) 
nin (x) Yn (y) -jn (y) Yn (x) 

The transverse surface-admittance presented by the inner 

region at r= rl, is given by the same ratio of the field 

components in the inner region, i. e. 

F2 (Krl) - (ný 

-jyoil 
n 

)2 (Kr 1Fn 
(Kr 

where (Kr )2 2 )2 

= 

j 
n' 

(x) 

in (x) 

J4.21 

The characteristic equation is then obtained by equating 

the admittancesgiven in {4.11 and {4.21 and leads to 

F 2(Kr (nO) 2 
ny 

r1 (Kr 2F 
n 

(4 "3 
}* 

The transverse surface admittance 14.21 is derived by 

assuming that the azimuthal electric field component 

vanishes on the slot edge, this is due to the presence 
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of the transverse impedance boundary at r=r1, This 

assumption will not be affected by the shape of the- 

slots Provided thA there is. a large number of slots 

per wavelength. Changing the slot shape will not affect 

the field expressions in the central region of the 

waveguide, and equation {4.21 will still be valid. - The 

characteristic equation of the corrugated structure with 

non-rectangular slots will therefore have the same, form 

as {4.31, with the appropriate value of Y obtained for 

the new slot shape. The first step is therefore to 

obtain the value of Y for different slot shapes. 

4.3 CIRCULAR CORRUGATED WAVEGUIDE WITH NON-RECTANGULAR 

SLOTS 

4.3.1 Introduction 

Figure (4.2a) shows a possible profile for slots 

in a corrugated circular waveguide. The continuous 

profile of each-slot is replaced by a staircase 

approximation of equal widths as shown in Figure (4.2b). 

Each step is then considered to support a cut-off TH 

mode, and field continuity at the interface of two 

neighbouring steps must be ensured. The transverse 

admittance of each individual step is then calculated 

using'the appropriate field components and this 

admittance is then related to the admittance of the 

neighbouring step. A re-occurrence procedure is then 

developed to transfer the admittance of successive 

steps until the transverse slot admittance at r=r1 is 
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obtained. The staircase procedure has been previously 

used in synthesising a continuous radial variation in the 

refractive index of an optical waveguide. The results 

obtained by Clarricoats and Chan <19> in synthesising a 

parabolic profile of a Selfoc fibre were found to be_, in 

very good agreement with the results obtained by 

Kirchhoff ý37>, who formulated an exact characteristic 

equation of the fibre taking into account the parabolic 

refractive index profile. 

4.3.2 Formulation of the Problem 

Figure (4.3) shows a profile*thathas been 

replaced by an (m-1) step-staircase approximation. The 

quantity Y 
s,, q 

defines the normalised transverse 

admittance of the q-th region at radius r=r., looking 

radially outwards. The axial width of the q-th region is 

dq The normalised surface admittance of the m-th region 

at radius r M-1 
is therefore given by; 

y 
m-l'M =SnI (r 

m- i" Im) . {4.41 

For-ýn'-intermediate region q, the field components are 

given by; ,, 

qE z= 
Aqj 

n+ 
Bq ynq Hz = 0,, 

qH0 = -jy 0 
[A 

qJnBqY n' 
('ý)1, 'qE 0= 01 

gqqErý 
(4.51 
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Figure (4.3) Step representation of an arbitrary. profile 
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Therefore, 

y 
Jn v(r 

q)+Cýyn' 
(r 

q 
q, q Z' 

in (ý 
q 

)+C 
qYn 

(r 
q) 

and 

ynI 
(r 

q-1 
) +Cjn (r 

q-1) 
q-l, q Jn (r 

q-l)+Cqyn 
(r 

q-1) 

where 

Cq = Bq/Aq 

Eliminating Cq from {4.61 and {4.71 leads to 

S (r ,rRn 

(r 
qr q-1 -Y qg 

q-llq n q-1 qS 
n 

(r 
qr q-1 

)-y 
qq 

where 

i n' 
(x) Yn' (y) -jn' (Y)'yn' (x) 

(X, y) 2-- 
1n (x) Yn' (y) -jn' (y) Yn (x) 

{4.61 

(4.71 

{4.81 

So far we have obtained the relationship between the 

surface admittances of a single step when observed at 

the two inner boundaries of the step. The next Stage is 

to obtain the relationship between the surface admittances 

of two consecutive steps, when observed, at. the interface 

of the two steps. 

The admittance presented by the q-th step to the 

boundary at r=r can be written in the form <39> q 
dq 2 7r 

r qf qEz. qHGlr=rq 
dOdz 

Y 
qq JL 

q, q dq 2 fqEz 
dz 

r=r 01q 

Lq dq 
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The admittance represented in this way can be thought of 

as the ratio of the reactive power flowing into the slot 

to the square of the voltage across the slot. 

Similarly 

d 
q+l 

2 7r 

rqf Jq+l E 
z*q+l 

H elr=r 'dedz 
y 

q, q+l d 
q+l 2qd q+j f 

q+l 
Ez2 dz 

01 r=r q 

But Yqq must be equal to Y 
q, q+l' using power conservation 

thus 

yqrq - dq 
(4.91 

yq, 
q+ 1d q+l 

Substituting the relationship 14.91 in equation 14.81 leads 

to 

d 
q+l 

RnI (r 
qr q-1 

)-dqyq, 
q+l (4.101 

q-llq n q-1 rqSI 
-d Y d 

q+l n 
(i 

qr q-1 
)qq,, 

q+l - 

Physically, equation {4.101 transfers the surface 

admittance from the upper part of region q+l through the 

lower part of region q, to the upper part-admittance of 

region q as shown in Figure (4.4). 
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r 

Figure (4.4) 
Physical representation of {4.101 relationship 

4.3.3 Influence of Number of Steps 

The overall transverse surface admittance Y of 

the slot can be calculated using the following procedure; 

(a) the transverse admittance of the m-th step Is 

obtained using equation {4.4}, 

(b) the, recurrence relationship given in {4.101 is then 

used (m-2) times to find the admittance Y and 

(c) finally the relation {4.91 is used to find the 

surface admittance of the slot Y=Y1,1- 

A computer program was developed to calculate the 

surface admittance of different profiles, by subdividing 

the given profile into equal (m-1) horizontal intervals, 

and then finding a suitable height for each step, to fit 

the smooth profile as closely as possible. Alternatively, 

the co-ordinate points of the profile are inserted into 

the program. The influence of the number of steps 

required to approximate a smooth profile was first 
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studied using different profiles. Figure (4.5) shows 

this influence when approximating a cosine profile, 

shown in Figure (4.6). The results converge as the 

number of steps are increased, and for m> 21 the results 

show negligible change with further increase. 

4.3.4 Influence of Slot Shape 

The profile of the different slot shapes shown 

in the insert of Figure (4.6) were replaced by a 20 step 

staircase approximation, and the normalised surface 

admittance was then calculated using the procedure 

developed. Figure (4.6) shows the normalised admittance 

as a function of normalised slot depth. It is evident 

that for non-rectangular slots, a deeper slot depth is 

required to produce the open -circuit condition, with the 

triangular slots being the deepest. We observe that the 

corrugated surface is capacitive at low frequencies, and 

that as the frequency is increased it acts 'as an open 

circuit boundary. Further increase in frequency causes 

the surface to become inductive. Figure (4.6) also shows 

that, as the frequency is increased, the rectangular 

slots have the fastest rate of change of admittance. 

"-In'ýpassingj-we note that"for a hybrid mode in a 

circular corrugated waveguide, the condition that the 

surface is inductive is not a sufficient condition for a 

surface. wave as it is in the plane case. When the wave 

phase velocity is less than the velocity of light, the 

condition becomes sufficient and the surface supports a 
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surface wave with its field localised near the surface. 

This phenomenon will therefore take place in the 

corrugated waveguide when ý>1, as both conditions are 

satisfied. 

In order to overcome the difficulties in 

producing rectangular slots, which give the shortest slot 

depth to provide the open circuit condition, slots with 

shapes that produce the same condition with the least 

increase in slot depth are sought. For large scale 

production of a flexible waveguide, slots with rounded 

edges are easier to manufacture. The effect of rounding 

the top and bottom edges of a square slot is shown in 

Figure (4.7), where the edges are considered to form an 

arc of a circle of radius (h-d)/2. A twenty step 

approximation was used to synthesise the slot profile and 

it is seen that, rounding of the edges will not increase 

the depth required to produce the open circuit condition 

by a great amount. 

4.3.5 Influence of Central Region Radius 

As the slot surface admittance is a'function of 

the central region radius of the waveguide, then the 

influence of this,. -radius on the open-ci rcuit condition is 

studied. If a larger waveguide radius rlF was I chosen, 

then a smaller slot-depth would have been necessa . ry to 

cause the open-circuit condition for all the profiles 

shown in Figure (4.6). Figure (4.8) shows the 

dependence of the normalised slot depth needed to produce 
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Figure. (4.8) Inner region radius required to produce the 
open circuit condition for a rectangular slot 
against slot depth. 
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the open-circuit condition, for a variable central region 

radius of a circular corrugated waveguide with 

rectangular slots,; wh. ere it can be seen that as the 

central region radius of the waveguide increases, the 

slot-depth required approaches one quarter-wavelength in 

depth. This characteristic is also 

the large argument expansion of the 

functions appearing in the expressi 

when r0 and r1 are large, Sn0 

revealed by considering 

j (i 1) and Y (p 1) 

on of S (rlro). 

) reducesto, a 

trigonometric cotangent function. This condition is 

expected physically, as the transverse surface admittance 

of a plane corrugated surface (rl=-) is given by jy 
0 

cot(a), where a is the normalised corrugation depth. 

d is equal to 7rj2-for the open circuit condition. 

4.4 DISPERSION CHARACTERISTIC 

4.4.1 Introduction 

The characteristic equation of the circular 

corrugated waveguide, using the surface impedance model 

theory is given in equation'14.311 where the variable Y 

is the only term influenced by changing the slot shape of 

the waveguide. For an arbitrary slot shape, the value of 

Y is, first-calculated'at a-particular"frequency, %` using 

the procedure described above, with a knowledge of the 

physical dimensions of the waveguide. This value of Y 

is then substituted in equation {4.31 and an iteration 

process is then used to solve the dispersion equation of 

the waveguide. The dispersion characteristic of a 
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corrugated waveguide, with r1=4 cmp ro =5 cm,, 

containing eithersquare or cosine profile slots is shown 

in Figure (4.9), for the modes HE 11 and HE 21' with the 

latter profile being approximated using-20 steps., 

4.4.2 Cut-off Conditions 

The low frequency cut-off condition of the modes 

is obtained by setting the value of the phase-change 

coefficient, to zero in equation (4.31. ' The 

resultant expression is therefore: 

(ri) 
(4.111 

In the region of r, we are interested in, the function 

Fn is sketched in Figure (4.10) by the dotted 

curve, for n 1. 

F, (r 

1.84 
br 

COSJII -Tie 

Figure (4.10) 
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The approximate variation of the surface 

admittance with respect to r1 is also shown by the 

continuous curves, for the case of a square and a cosine 

profile slot. From the trend of the curves, it can be 

seen that the solution of equation {4.11} for non- 

rectangular slots will always yield a value of r1 greater 

than that obtained for a rectangular slot. Thereforer an 

increase in the low frequency cut-off is expected for 

modes propagating in a circular corrugated waveguide with 

non-rectangular slots. As the left hand side of equation 

{4.111 is not influenced by the outer radius of the 

waveguide, it is therefore possible to construct a 

circular corrugated waveguide with outer radius r 01 and 

with non-rectangular slots, so as to possess the same low 

frequency cut-off as that corresponding to a waveguide 

with rectangular slots and a radius roe From Figure (4.6) 

it can be seen that, if the two waveguides had the same' 

inner radius than the ratio ro/rolis < 1. In the cosine 

slot case, the effect of increasing r0 will merely shift 

the solution point B towards the point A, in Figure (4.10), 

where the two corresponding modes will have the same low 

frequency-cut-off. 

The high frequency cut-off of different modes 

occurs when the boundary at r=r, presents an open 

circuit condition. As the frequency is increased, from 

below the dominant mode cut-off, the first open circuit 

condition will cause the EH 11 mode to be at cut-off, 

while the second condition will correspond to the high 
I 
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frequency cut-off of the HE 11 mode. Table (4.2) shows 

the normalised high frequency cut-_off. in different- 

waveguides. 

Slot Shape Square Cosine Triangle 

Mode EH 11 HE 11 EH 12 EH 11 HE 11 EH 12 EH 11 HE 11 HE 12 

wr 1 /c 8.8 9.7 19.0 20.8 21.7 31.6 33.0 1 33.8 ýI 

Table (4.2) 

4.4.3 Influence of Slot Shape 

-'The effect, on the dispersion characteristic, of 

choosing different slot shapes is very pronounced at and 

naar the low frequency cut-off. But asthe frequency is 

increased, the effect becomes less pronounced, as shown 

in Figure (4.9) . This phenomenon is not surprising as at 

such frequencies the left hand_side of, equation J4.31 

becomes dominant and'small changes in the Y value, due to 

the choice of different slot shapes, will not affect the 

overall solution of the characteristic equation. 

Figure (4.11) shows the effect of changing the 

normalised slot admittance value, Yj on the phase-change 

coefficient, 0. when the corrugated waveguide, is-operated'*' 

at different normalised frequen6ies in the HEll mode. At 

high,,, values,, of the, solution will be almost, 

independent of the slot shape. Physically, this 

phenomenon occurs due to the nature of the HE mode f ield 

in the central region of the waveguide. At these values 

of rl, the presence of the corrugated surface can be 

thought of as a series of convex lenses placed along the 

z-axis of the waveguide. These lenses act to focus the 
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power, carried by the mode, towards the centre of the 

inner region and the field has an almost gaussian like 

decay towards the boundary r=r This phenomenon, of 

the HE 11 mode, also accounts for the low-loss property of 

the mode, as will be discussed in the next section. 

However, as the frequency is further increased, the 

corrugated surface becomes highly inductive and the 

field becomes stronger near the corrugation edges. The 

influence on the dispersion characteristic, of the 

surface admittance value is again significant thus 

causing the different high frequency cut-off for 

different slot shapes, as shown in Table (4.2). 

4.5 ATTENUATION CHARACTERISTIC 

4.5.1 Introduction 

In order to obtain the attenuation coefficient of 

the corrugated structure, the overall power-loss of 

each slot must first be calculated. The total power-loss 

on the sides of a single rectangular slot has been 

formulated <33>p and the attenuation coefficient is then 

calculated knowing the power flow in the central region 

of the waveguide. 

As a, result of the staircase approximation used 

to represent the smooth slot profile, the power-loss. 

contribution of each individual step must first be 

calculated and the overall slot loss is then calculated 

by numerically summing up the contributions of each 

individual step. The increase in the surface area of 
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the slotst due to the stepping effect is taken into 

account by introducing a correction factor in the power- 

loss expression. The influence of the slot shapes on 

the overall attenuation is also discussed, and an 

equivalent waveguide inner radius, with non-rectangular 

slots, is found to give the same attenuation coefficient 

for waveguides with rectangular slots. 

4.5.2 Slots Power-Loss 

The power-loss of each individual step is 

divided into components associated with horizontaland 

vertical parts of the step, and for the q-th region, 

the symbols qP h and qPV are used respectively. Then 

using the field components in the q-th region given in 

equation {4.5 1 the horizontal loss component is due to 

the qH0 component evaluated on the axial surface at 

r=r qI while the vertical component qPv 
'-is due to 

qH 

and H components evaluated on the transverse slot qr 

surface enclosed by the radii rq and rq-1 , as shown in 

Figure (4.12). 

qHO Iq 

rg 

qth region 

Figure (4.12) 
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The total power loss due to the q-th step is therefore 

given by; 

r 

qpv +qphRs4 iT 
fq 

qHe 
1 2+1 

qHrl 
ý rd r+2 iTrq (dq-d 

q+l) 
IqH0 12r=r 

q r q-1 

after simplification the vertical power-loss component can 

be written in the form, I 

prr -n 
2Z 22k 

(-2 2) {Aqjn (ýq) +B 
qyn 
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The horizontal power-loss component have the form, 
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The constant Cq (=B 
q 

/A 
q 

is computed using 

equation [4.7}, and the coefficient Aq is related to the 

central region coefficient A1 via the relationship (4.12} 

derived assuming the continuity of the H0 components at 

the interface of two neighbouring steps, viz 

q 
J (Kr 2 

11 [in' (-r 4c iynl(r i) 
A "2 An (F (Kr (ný i=2 

q1 (Kr 1) nFn (Krl) q 
11 ljý (i) +ýi+lyn'( r i) J=l 

(4.121 

The overall power-lOss of the (m-1) steps profile, P., can 

therefore be calculated using the relationship; 

m 
E (qpv +qp h) + 27rrl(dl-d 

2)*( 
11HO 12+1 

JHZJ 
2 )r=r 

q=2 1 

where dm+j = 

The power flow in the central region, P0, is found using 

the relation 

P0= hRe 
f 

s 

(lExl H)-ds 

The attenuation coefficient of the structure is formulated 

using the above expressions and is given by; 

2d 1p 

The staircase approximation used in synthesising 

the'smooth profile of the slot, introduces an increase in' 

the overall surface area of the profile. In order to 

account for this increase, when calculating the total 
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slot power-loss, an approximate correction factor must 

therefore be introduced to account for this increase in 

surface area. The attenuation coefficient a, is 

therefore given by; 

Pt 
2d 1p0 

where the correction factor C is the ratio of the original 

smooth profile length to the overall length of the steps. 

4.5.3 Influence of Slot Shapes 

The attenuation characteristic of a corrugated 

waveguide, with r1=4 cm, ro =5 cm, containing 

different slot profiles is shown in Figure (4.13) for, 
A 

the HE mode. The square slot profile is seen to have 11 

the lowest-attenuation coefficient. By rounding the 

bottom corners of the slotthe attenuation is slightly 

increased, and further increase in the attenuation is 

observed if the square slots were' replaced by cosine 

profile slots. 

From Figure (4.9), 'it-is'seen that,, at 

frequencies below the open-circuit condition frequency# 

it is possible to find an equivalent central region 

radius for waveguides with non-rectangular slotsiP so as 

to'have-tlýe' same attenuation' coef f icient * as -a waveguide- 

with rectangular slots,, 'when both waveguides are operated 

at the. same frequency. Table (4.3), shoWs , the equivalent 

inner radius needed-for a corrugated circular waveguide, 

when different slot shapes are being used. 
p. 
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SLOTS SHAPE RECTANGULAR COSINE TRIANGULAR 

CENTRAL 
r1 rl/0.75 r1 /0.63 

REGION RADIUS 

Table (4.3) 

Physically, increasing the central region radius of the 

waveguide will merely lower the open-circuit condition 

frequency of the slots, as shown in Figure (4.6). This 

effect will cause the waveguide to have lower attenuation 

at a given frequency, as the open-circuit condition 

frequency is reached much more rapidly. At frequencies 

above the open-circuit condition frequency, finding an 

equivalent radius is no longer possible, as the slots 

will begin to act as an open-circuit boundary for the 

square profile but not for the other profiles. Minimum 

power-losses are expected to o*ccur at frequencies 

slightly higher than the open-circuit condition frequency 

and due to the increase in this frequency for non- 

rectangular slots the shift of the minimum attenuation 

point is also expected. 

4.6 Radiation Characteristics 

4.6.1 Introduction -, --- 1- - -, -ý - 111. 

The boundary condition E0 at r=r discussed 

in section (4.2.2), due to the presence of the surface- 

impedance model, yields the equation 

nO AF (Krl) 4.13) 
n 
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where T is a scalar factor, known as the hybrid 

coefficient, and is defined by the expression 

-jy 0A=1H Z/1 
Ez 

Its modulus, JKJ, is therefore defined as the ratio of 

the longitudinal admittance of the wave to the free 

space wave admittance. When the slots act as an open- 

circuit boundary, the characteristic equation f4.31, 

reduces to the form; 

±F 
n 

(Kr {4.14) 

Comparing equations {4.13) and f4.141, it can be deduced 

that under this condition A= +11 this is known as the 

balanced hybrid condition. Physicallyr this condition 

means that if the waveguide is terminated and radiation 

from its open end is allowed, the radiation pattern in 

both E and H planes will be identical. 

4.6.2 Influence of Slot Shapes 

As the open-circuit boundary condition is affected- 

by the slots shape in the waveguide, Figure (4.6),, then a 

change in the frequency where balanced hybrid condition 

occurs is also expected. This change must be towards higher 

frequencies for circular waveguides with non-rectangular 

slots in order to follow the open-circuit frequency' 

condition. Figure (4.14) shows the theoretical-variation 

in A against normalised frequency when a corrugated. 

waveguide is operated in the HE 11 mode, with either square 
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or cosine slots. The shift in the frequency where 

balanced hybrid condition occurs is clearly illustrated. 

4.6.3 Experimental Results 

The frequency at which balanced-hybrid condition 

occurs for a flexible corrugated waveguide was at 8.0 GHz, 

when calculated using the spacerharmonic theory, which 

assumes rectangular slots profile. 'The exact profile slot 

of the flexible waveguide was then used to obtain the true 

balanced hybrid condition frequency, usin g the step 

approximation theory developed above, and it was found to 

occur at 9.6 CHz. 'Due to the large difference between 

the two frequencies, an experiment was carried out to 

locate the frequency at which the balanced hybrid 

condition occurs. The radiation pattern of the waveguide 

was measured at different frequencies in both E and H 

planes, and the results were then compared at corresponding 

frequencies. Figures 
. 
(4.15) and (4.16) show the measured 

radiation pattern at 8.0 and 9.6 GHz respectively, where 

the narrow beam of the E plane pattern is illustratedr 

and'also the increased rate of change of the E plane 

pattern with respect to frequency, over the H plane 

pattern is also shown. 

. 
At each particular frequency the difference 

between the E and H planes beam widths is measured at 

different power points below the OdB point, The 

differences were found to be very pronounced at 

frequencies below and above 9.3 GHz. This confirms 
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the theoretical results within 3% error, this error is 

expected in measuring techniques used to determine 

radiation patterns. For waveguides with rectangular 

slots Sahat <33 >,, found a very good agreement between 

the theoretical and experimental values of balanced 

hybrid condition frequency. The difference of 14% in 

this case clearly demonstrates the effect of using non- 

rectangular slots on the open circuit condition frequency 

and thus confirms the shift in the balanced hybrid 

condition frequency. 
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CHAPTER FIVE 

A NEW MODE FILTER FOR USE IN 
CORRUGATED CIRCULAR WAVEGUIDES 
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5.1 INTRODUCTION 

The circumstance under which the corrugated 

waveguide exhibits low-attenuation is also one which 

permits more than one mode to propagate. If the input 

and output waveguides support. only a single made then 

the higher order modes in the connecting waveguide cause 

trapped mode resonance, see for example the typical 

transmission characteristicsas a function of frequency, 

shown in Figure (5.1). In most microwave communication 

systems stringent requirements exist for a flat 

transmission characteristic as non-linearities cause 

co-channel inj-erference in a broadband multi-channel 

system. A characteristic such as in Figure (5.1) is 

unacceptable, thus in a practical system, higher modes 

must be severely attenuated without appreciably 

increasing the attenuation of the dominant mode. This 

chapter is concerned with the design of a filter to 

accomplish this objective. 

one type of mode filter consists of a suitable 

metallic screen placed in the transverse plane of the 

waveguide <40>. The screen is so designed that the 

undesirable mode or modes are reflected without affecting 

the transmission of the desired mode. For examplel a 

screen can be designed with thin. wires along the 

direction of the transverse electric fields for the 

undesirable modes provided the desired mode has no 

transverse electric field along the same direction. 
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Sometimes, it may be undesirable to reflect the 

unwanted moýes back into the waveguide <41 >, instead it 

may be preferable that they are absorbed by some means. 

The means adopted should be one that will absorb the 

unwanted modes without materially reflecting the desired 

mode. As a practical matter it is impossible to achieve 

perfect reflection or absorption for all undesirable 

modes without influencing the desired mode. Therefore, 

in multimode waveguides, mode filters are introduced to 

provide sufficient differential transmission loss between 

the unwanted modes and the desired mode. 

The corrugated circular structure shown in 

Figure (4.1) is a multimode waveguide, supporting the 

desired low-attenuation HE 11 mode and other unwanied 

modes. The HE,, mode comprises an almost linearly 

polarised field <33>, and bears a close resemblance to 

the dominant HE,, mode of the optical waveguide <21>.. 

Because of this similarity between the modes in the two 

structures, the unimode optical waveguide features*will 

be utilized in proposing a mode filter for the corrugated 

circular waveguide. 

A study of the field distribution of the unwanted 

modes in the empty corrugated waveguide gave rise to the 

mode filter structure shown in Figure (5.2), which 

provides sufficient differential attenuation between the 

unwanted modes and the desired HE,, mode in the corrugated 

waveguide. By arranging that the central core has a 

permittivity greater than that of the surrounding cladding, 
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Figure (5.2) Corrugated circular waveguide containing a 
mode filter 
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it is possible to arrange that only the desired HE 11 mode 

propagates with most of its field confined to the core 

region of the mode filter. The unwanted"modes have , 

fields extending radially well beyond the core. Then if 

a lossy layer is provided it will act to absorb the 

energy carried by these modes, and thus a substantial 

differential attenuation can be achieved between the 

desired HE 11'' mode and the unwanted modes. Provided that 

the core region has a very low-loss tangent, and its 

diameter is arranged to confine most of the HE mode 

power, then the influence of the lossy layer on the 

desired mode can be rendered almost negligible. When 

small sections of the proposed mode filter are Inserted 

in the empty corrugated waveguide, it is immediately 

recognised that a means must be devised to provide the 

desired HE 11 mode with minimum reflection at the 

junction between the empty section of the corrugated 

waveguide and the section containing the mode filter. 

This chapter aims to identify suitable 

parameters for the proposed concentric mode filter for 

use, in existing circular corrugated waveguides, at the 

frequency of minimum attenuation of the HE 11 mode. The 

general principles can also be applied at other 

frequencies. The dispersion and attenuation 

characteristics of the corrugated waveguide, 'containing 

the mode filter, for the desired mode and two of the- 

unwanted modes are illustrated. The design of a matching 

device for the mode filter is explained in detail in the 
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latter sections of this chapter. 

Finally, experimental results obtaine d with -a 

corrugated circular waveguide containing the proposed 

mode filter*clearly illustrate the suppression of the 

unwanted modes and also the effectiveness of the 

matching device at the design frequency. 

5.2 FORMULATION OF THE PROBLEM 

5.2.1 Introduction 

The structure proposed which will least affect 

the lowest attenuating HE 11 mode and at the same time 

set to absorb the unwanted propagating modes in the 

corrugated circular waveguide is shown in Figure 

The core region, 0<r< rl consists of a 

dielectric material of relative permittivity IC, and very 

low loss angle 61. The cladding region, rl <r<RI of 

relative permittivity Z2 (< E1) and loss angle 6 21 acts 

as a low-loss support for the core region. The 

absorption of the unwanted modes is achieved by placing 

a. thin lossy layer R ll< r<r 2' of relative permittivity 

E2 and loss angle. 6 3 near the corrugation edge. 

A solution of the wave equation is obtained 

assuming a loss-free structureand perturbation 

techniques are then used to obtain the dielectric power- 

loss in different regions of the waveguide and the metal 

power-loss of the corrugation region. The influence of 

the different parameters on the attenuation coefficient 
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of different modes is studied in order to achieve the 

highest possible differential attenuation between the 

HE 11 mode and the: unwanted modes. The TE mode and 01 

the HE 21 mode are chosen as a basis of comparison for 

the unwanted modes. This is because the HE 11 mode 

couples easily into these modes when bends are 

negotiated <4 >, -and secondly due to their low 

attenuation characteristic when compared with other 

higher order modes <1 >. Field expressions obtained in 

the next section are based on the assumption that the. 

structýLre shown in Figure (5.2) extends-to infinity-at 

either'end. 

5.2.2 Field Components 

In the core region, 0<r< r1l'solutions of the 

wave equation have the form 

1 Ez =A11n (K 1 r)cos nO 

[5.11 
1H=C1yin 

(K 1 r) siri. ne 

Field expressions written in this, form satisfy the 

boundary condition for finite field at the origin r=0, 

where A,, Cl-are amplitude coefficients, Yo = rC. _o7)_, O 
K12= W2Z 1C0P0- 

o2 and 0 being the phase-change 

coefficient. The transverse field components are obtained 

using Appendix I; 
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nO AJ (K r) + jk C (K r) sin nO 1n1 1'7n' 1 

kC 
yo nV in (K 1 r) A1Jn' (K 1 r) cos nO 0 

l2r 
C Rl- 

I 

E 
[-j 

A, Jn(Klr) _j 
nk (Klr)]cos. nO 1rK, r 

Clan 

nke 
H Yo 

[-j 
(;, Jý (Klr) -j -K-7y AJ (K r) 

] 
sin nO Kn 

where k2=- W2C OPO and w= angular frequency. 

In the second dielectric region rl <r<r 2' the-field 

components have the following form; 

E =[A 2jn (K 2 r) +B 2yn (K 2 r) 
I 

cos nO 

Hz= 70 
IC2 

in (K 2 r) +D 2yn (K 2 r) 
I 

sin nO 

Ee nO [A 
(K r) +B (K r) +jk 2= K2"r 2jn 2 2yn 2 K2 

IC2jn'(K 
2 r) +D2! Cn' (K2 r) 

11 
sin nO 

H=y _j :. n6 CJ (K r)+D (K r) 200 2n2 2ýCn 2 

W2AJI 
IK r)+B Ya (K r) cos' 

A 
K2[2n222 

r 2jnl(K2r)+B A 2yn' (K2r) 
2K2[ 

fik CJ (K r) +D (K r) cos nO K2 r[2n2 2yn 2 I IF 
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Yj 
[C, 

J. ' (K r)+D2yn' (K r) 2r0K2.2 2 

nk ý2 
J (K, r)+B (K r) 

[A 
2n2 2yn 2 sin nO {5.31 

where A, B and D are amplitude coefficients and 2 21 C2 2 

K222C0E 211o - 02. - 

in the above field expressions, a factor expj(wt-oz) is 

assumed. 

The slots, r2<r<r3 are assumed to support a TM cut- 

off. mode;, anaccount of, this assumption is given in 

chapter (4) and in <4 >'and <33>. Field'compo'nent Is 

satisfying the boundary conditions at the metal wall 

r=r 3' are given by; 

A3 
Ezn 

(kr 3 

[1 

n 
(kr)y, 

n 
(kr 

3) -Y n 
(kr) J 

21 
(kr 

3+0s no 

A3 
H6=-ji, Jý (kr)y (kr )-Ynl (kr)i (kr )]cos n0 

Yn (kr3) 

[n3n3 

H, -j Y nk 
A3Jn 

(kr)y 
n 

(kr 3) -Y- n 
(kr) Jn (kr 3 )] sin- nO 3ro T2r -- 

y (kr-) 
n3 

{5.41 

where A3 is an amplitude coefficient, and the primed 

Bessel functions means first derivatives with respect 

to their arguments. 
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5.2.3 Boundary Conditions 

At the boundary r= rl, the boundary cond itions; 

equal tangential electric and magnetic field components 

are applied to relate the amplitude coefficients in the 

two regions; i. e. 

A11n (K 1r1)-A 2jn (K 2r, ) - B2yn (K 2r, ) =0 

c11n (K 1r1)-c21n (K 2r, ) -D 2yn (K 2 rl) = 

E- AJ (K r +kK C Jnl (K r) -" K2 
[A 

J (K rl) +B rl) 
r11n11111r12n2 2yn (K2 

-kK2K 2 IC 
2Jn(K 2 rl)+D 2yn'(K2 rl) 

I=0 

n2 kK, A, Jý (Klrl) +=ýC J (K rl) -kK K 
[A 

(K rl) +B K rl) ri 1n12 C2 2jn' 2 2yý (21 

-EOK 2 
LT (K rl) +D (K rl) 0 

r, 

[C2 

n2 2yn 2 
1= 

where 

A surface impedance model is used to represent the 

boundary at r= r2 of Figure (5.2), i. e. the ratio 

E2 /H a is assumed to be invariant with respect to the 

propagation z-direction. This impedance model also 

implies a vanishing azimuthal electric field component at 

this boundary. The above conditions yield; 

nB A 2jn (E2 r2)1-'Býyn (E 2r2 +kK2 
[C2 

Jý (K2r 2) +DýY*ý (K 2 r2)] T2 
I 

= 
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and equating 2H 0/2 Ez to 3H 6/3 Ez yields 

, no CJ (K r) +D (K r] +kC2 A* (K r +BZ K2 2r2 
[2n22 

ýyn 2 2) K2[ 2jý 2 2) (K 
2r 2)] 

A 2jn (K 
2r 2) +B 2yn (K 2r 2) 

Sn(Kr2 kr 3) 

kr 2 

where 

s, n 
(x'y) =x 

-i 
nf 

(x) Yn_(y) - ýn (Y. ) Yn (x) 

Jn (x) Yn (y) -jn (y) Yn (x) 

The validity of. the above approximation is justified 

provided that the number of slots per wavelength is 

large, a detailed account of this approximation appears 

in <4 >. 

5.2.4 Characteristic Equation 

in order to obtain the dispersion characteristics 

of the loaded corrugated waveguide, it is necessary to 

solve the characteristic equation relating L) and 

The set of equations derived in the. previous section 

completely describes the propagation of the hybrid modes 

in the structure and this set is homogeneous in the 

arbitrary amplitude coefficients A, # Cli A 21 B21 C2 and 

D2* 

The set of equations when written in a matrix form 

is 
D. X =0 
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where D is a square matrix of order 6x6 and its 

elements are the field component functions,, and. X is a 

6 column vector consisting of the amplitude 

coefficients. For non-trival solution of equation (5.51 

the determinant of D must vanish, i. e. 

det D=0 [5.61 

Equation {5.6} is the characteristic equation of the 

structure since det D can be expanded into a single 

equation. On solving {5.6) for w and 0, the dispersion 

characteristics are obtained. This operation is 

performed numerically on a digital computer. In the 

process of solving the characteristic equation, it is 

zilso necessary to evaluate the associated arbitrary 

constants which are required in the computation of 

power, attenuation, and field components. For a gemeral 

matrix equation with non-trival solution, i. e. 

D. X = 

where D is a singular matrix of order mxm, with det D=0 

and X is a column vector with m elements 

(Xil x 2' - -. - V 

the value of the elements are given by 

L ij (j = 11 2t -I-- 

where Ljj is the co-factor of the j-th element in the 



- 157 - 

i-th row of det D. The row number is immaterial because 

the value of the co-factor is independent of the row, 

which means 

Ljj =L 2j ý- ---=L mj 

The value of X so evaluated is not, however, absolute 

since it can be multiplied by any arbitrary constant 

without affecting the validity of the equation D. X 0. 

X is normalised with respect to the element with 

maximum modulus. 

5.2.5 Dispersion Characteristics 

Computed dispersion characteristics of the 

circular corrugated waveguide is illustrated in 

Figure (5.3),, for the' two cas . es'of an empty and loaded 

waveguide. Expanded foam of relative permittivity 1.02 

is used to support the core region of relative 

permittivity 2.25 and'l cm. radius. 

The effect of the core region on the dispersion 

curves of different modes is clearly illustrated in 

Figure (5.3) , where its ef f ect is seen to be most 

significant on the HE 11 mode. This is due to the field 

concentration of this mode in the central region of the 

waveguide. 

The value of the normalised phase-change 

coefficient ý(=O/k) falls in three ranges for all the 

raodes; 
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(a) o<<v'ç 

The cut-off frequency of different modes supported by an 

empty corrugated circular waveguide decreases-when an 

axial dielectric region is present in the waveguide. 

Figure (5.4) shows as a function of r 2/rl, the normalised 

cut-off frequency for different modes which approaches 

that of the empty corrugated waveguide for large.. 

values of r2 /rl. 

The influence of the core region on the modes 

with power distribution not concentrated in the central 

region of the waveguide, is not significant, and th4Ar 

characteristics in this part of the range of ý are 

similar to modes supported by a corrugated waveguide 

filled with a dielectric material of relative 

permittivity E 2* On the other handthe influence of 

the core region on the HE 11 mode, whose power 

distribution is mainly in the central region of the 

waveguide is significant and its field concentration in 

the central region rises with increasing frequency. 

For this part of the range of ý, the arguments of the 

Bessel functions in all field expressions will be real. 

rE- 

when a is greater than vrC2, the mode becomes a slow 

wave whose energy is mainly concentrated in the core 

region of the waveguide. The influence of the core 

region on the HE mode is very significant and'weak'' 

power distribution putside the core region is expected 
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for this mode. This form of power distribution for 

the HE 11 mode formsthe very. basis of the mode filter 

design, and thus the mode filter parameters must be 

chosen so that in the region of operation the value of 

falls within this range. -The characteristics of the 

modes are very similar to those exhibited by modes in a 

corrugated circular waveguide when completely,, filled 

with a dielectric material'of relative permittivity c, V 

For this part of the range of the argument of the 

Bessel funcLons in {5.31 is purely imaginary and 

therefore the Bessel J and Y functions are replaced by 

the modified I and K functions respectively. 

Go 

Due to the periodic nature of the waveguide under 

investigation, different modes will have different 

high-frequency-cut-off. An account of the high- 

frequency cut-off in an empty, corrugated waveguld e is' 

given in chapter (4) and in <33>. However, in the 

loaded corrugated waveguide the high-frequency cut-off- 

of the modes occurs at lower frequencies, and the 

decrease is very significant for the HE,, mode., The 

Bessel functions arguments in'{5.1), {5.21 are purely 

imaginary and the J function is replaced by an I function'. 

5.2.6 Attenuation Characteristics 

The field expressions are derived in the 

previous section assuming a loss-free structure, i. e. 

the imaginary-part of the permittivity is neglected and 
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one assumes perfectly conducting metal slots. it is 

possible to formulate and solve the characteristic 

equation in complýex. mathematical form to obtain an 

exact solution. This method is, however, lengthy and 

involved. The attenuation coefficient can be more 

conveniently found by the perturbation method <24> 

which is accurate for small dielectric loss and 

sufficient for the present purpose. 

The attenuation coefficient a per unit length of 

the loaded corrugated waveguide consists of two 

components 

a=ý (a +et m) 

where ad is the normalised dielectric power-loss and 'I'm 

is the normalised metal power-loss. ' Applying the first 

order perturbation formula, the normalised dielectric 

power-loss can be written in the form; 

W(ff 1 tan6 1p1 +u 2tan6 2P2 +E 2tan6 3p2 
ad 2P 

The three terms are due to the power-loss in the core, 

cladding and lossy layers respectively, with 

21T r1 
ff 

1E rdrde,, 

00 

27r R1- 2Tr r2 
ff2E 

rdrde +ff2E rdrde, 

0 rdL oR2 
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27T r2 
pi =ff 

o R, 
2E rdrdO, {5.7) 

PO = average power flow in the waveguide 

where qE "ý2 qEz2+qEr2+q 
Ee 2 The lossy layer 

I 
of 

relative permittivity E2 and loss angle 63 is assumed to 

lie within the radial co-ordinate RI and R 2* In Figure 

(5.2) the lossy layer is situated such that Rr 2 2* 

The normalised metal power-loss is obtained by 

calculating the power-loss in rnetal surfaces of a single 

unit cell of the corrugations, i. e. 

Rw4 +P 5 +P 6) 
2P 

0D 

where P4 due to the top of a ridge at r=r 21 

PS due to the two side walls of a slot and 

p6 due to the base of a slot 

Rs = surface resistivity of the metal. 

Therefore, 
21r 

(D-d)r He 12 d61 42f 
12 

r=r 2 
0 

27r r 

5=2f 
f3 

(3 H62 +3 Hr2)rdrd0 

or2 

and 
27r 

2 p6= dr 3f !3 He Ir=r 
3 

d6, 

0 

where d is the slot width and (D-d) is the ridge width. 
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2Tr r1 21T r2 

0=ýff 
(1 E 

rl 
H 6-1 E ei Hr )rdrd6A 

ff 
(2 E 

r2 
H 0-2 E 02 Hr )rdrd0 

00or1 

Analytical techniques were first used to obtain closed 

form expressions for the above integrals. These 

techniques appear in <21> for the dielectric power. losses 

and in <33> for the metal power losses. The total 

electric field distribution 
qE 

is clearly a major factor 

influencing thd dielectric loss component, thus a study 

of the electric field distribution of the HE mode 

should prove useful in positioning the lossy layer in the 

waveguide. 

5.3 PROPERTIES OF HE 11 MODE 

5.3.1 Field Distribution 

The magnitude of the normalised total electriC 

field in a loaded corrugated circular waveguide is 
I 

plotted in Figure (5.5) as a function of waveguide 

radius. The discontinuity at the core-cladding 

interface, r rl, is due to the discontinuity in the 

Er component at this boundary. The curve shows a 

decrease in the magnitude towards the slot edge, r r2l, 

where it has a minimum value. Therefore, in order to 

minimise-the attenuation ofýthe HE 11 mode caused, by the 

presence of a lossy layer, this layer must be positioned 

near the corrugation edge, as shown in Figure (5.2). 

The presence of the'core region concentrates the HEjl 

mode power into the central region of the waveguide and 
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thus, the effect of E and r on the electric field 

strength of the HE mode near the corrugation-edge 

must be. investigated, enabling the correct choice of the 

core parameters resulting in minimum electric-field 

strength in the lossy layer. 

Figure (5.6) shows computed total electric 

field strength at the boundary r=r2 as a function of 

normalised core radius. The core relative permittivity 

is set to 2.25 in the computations, whichwere carried 

out at a fixed frequency of 9 GHZ. The effect of the 

cladding region was omitted by setting the value of 9- 
.2 

to unity and the corrugation depth was fixed. It can be 

seen that as the core radius increases the power 

concentration of the HE,, mode increases in the core 

region, thus weakening the field strength near the 

boundary r=r 2* The field strength at rr reaches 2 

a minimum for a particular value of core radius, a point' 

beyond which further increase in the core region slze 

increases the field strength at r=r 2' This phenomena 

is expected to occur b'eyond, certain values of r-I as, the. 1 

field outside the core will no longer have sufficient 

radial distance to decay. 

The value of rl giving rise to minimum electric - 

field-str, ength. at,. r, = r is,, howeverj, not. necessarily, an. _. 2 

optimum value for the mode filter design, but it is the.. 

maximum value of r1 that can be chosen, 'and therefore. 

will be designated the symbol r lmax This is because, 

when selecting the value of rl, the core loss that would 
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be. introduced dueto the increase in-the core size must,, -, - 

be weighed against the advantage gained in lowering the 

field strength at r=r2. For example, by increasing 

the value of the core radius by Ar 1 (=rZ -rZI), a drop in 

the 
. 
total electric field at r=r2 by A 2K is produced. 

The difference between the quantities 

r1 of r2 
tanS 1 -E 2 tan62) 

f 
1E rdr - 02 tan6 3f A2 K rdr (5.81 

r11R1 
.1 

when evaluated must be made zero by altering Arl so that 

at the optimum value of the core radius ril is obtained. 

The choice of the core radius and the 

significance of the above expressionýwill be illustrated 

in the next section, where numerical, values of the 

dielectric power-loss are given. 

Evaluating the above expression is rather 

tedious and cannot be. generalised for the de. sign of mode 

filters, as the lossy layer thickness, loss angle, 

relative permittivity, and the corrugation depth will all 

influence the evaluation of the fields. However, in the 

design of mode filters, the core radius is chosen to be 

very slightly less than r lmaxI thus ensuring minimum 

electric field strength at the corrugation edge, and 

negligible increase in core loss. 

The influence of increasing the core radius on the 

dispersion characteristics of the HE,, mode is shown in 

Figure (5.7). It can be seen that, the point ý 
':: "fT2,, at 
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which the fields begin to be confined to the core region, 

occurs at lower frequencies as the core radius is 

increased. The effect of the core radius on the cut-off 

frequency of the mode is also shown. The influence of 

the core relative permittivity ffl, on the field 

concentration of the HE,, mode in a fixed radius core 

region is illustrated in table (5.1). It is seen that 

the point y1c 2, moves to lower frequencies. as the 

value of the core permittivity is increasedg thus 

confirming the effect of the core region on the HE 11 

mode power distribution in the waveguide. The similar 

effects of r1 and El on the HE 11 mode characteristics, 

introduce. 1, another dimension in selecting the core radius, 

but due to the limitation in available, low-loss 

dielectric materials, the influence of different values 

of El on the attenuation characteristics of different 

modes is not studied. It is evident that very low-loss 

dielectric. materials must be employed in the fabrication 

of the core region. 

(Wý 21c) at /cF2 

9.6 

1.5 7. o 

2.0 4.96 

2.5 4.55 

3.0 4.14 

Table (5.1) 

influence of ýL on core field concentration of the HE 11 

mode r, =1 cm., r2=4 cm., r3 =5 cm. 
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5.3.2 Effects of the Lossy Layer 

The metal and dielectric losses of the loaded 

corrugated waveguide are studied separately, using 

appropriate expressions derived above. In order to 

visualise the effect of the lossy layer on the overall 

dielectric power-loss of different modes, parameters of 

the core and cladding regions are maintained. For such 

a set of parameters the influence of the thickness and 

the loss angle of the lossy layer on the overall 

dielectric loss is shown in Figure (5.8) for the HE 

mode as a function of frequency. The dimensions of the 

empty corrugated waveguide chosen in this example will 

cause the HE,, mode to have minimum attenuation at a 

frequency of nearly. 9 GHz. 

The effect of increasing the'lossy layer 

thickness is clearly shown, but at the'frequency of 

operation it is seen to be almost negligible. On the 

other hand, the effect of increasing the value of the 

loss tangent, tanS31 is more pronounced. For a lossy 

layer of 3 mm thickness, the attenuation nearly doubles 

when the loss tangent is increased-by 10 times. The 

above two phenomena merely illustrate that the total 

electric field component of the HE 11 mode is small at 

the boundary r=r2, as predicted previously. The 

choice of the loss tangent and the thickness of the 

lossy layer will be made not only so as to provide the 

HEll mode with the least possible loss, but also to 

present the unwanted modes with the highest possible 
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attenuation coefficient. The effects of the lossy layer 

on the unwanted modes will be discussed in the coming 

sections. 

5.3.3- -Influence of Core Radius 

Results showing computed normalised dielectric 

power-loss for different values of core radius, as a 

function of frequency are presented in Figure (5.9),, 

with all other parameters of the waveguide and the 

dielectric layers being fixed. At frequencies near cut- 

off, the increase in the dielectric power-loss with 

increasing'-core radius is attributed to a change in the 

cut-off frequency of the HE,, mode. As frequency 

increases, thepower concentration in the core region 

rises at a faster rate when the core radius is large and 

therefore the effect of the lossy layer becomes less 

pronounced when compared with the smaller core size 

configuration. 

At a frequency of 9 GHz, it is noticed thait-the 

overall dielectric power loss for the 1.5 cm core radius 

configuration is higher than that of the 1.0 cm structure, 

which is contradictory to the results shown in Figure 

(5.6). There it was shown that, when rl = 1.0 cm the,,, 

value of the total electric field component-near the""""' 

corrugation edge is nearly 4 times that obtained when 

r, = 1.5 cm. The inconsistency of the results is_ 
_. 

attributed to the significant core power-loss Introduced 

by increasing the core radius. The results clearly 
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demonstrate the importance of the expression fS. 81 in 

obtaining an optimum core radius for a particular 

configuration. 

J6US 
0,, Due to the small influence of the core _-aA.,. 4 

the overall dielectric, power-loss of the HE model the 

choice of the core radius will be made to provide the 

unwanted modes withý-, the maximum possible attenuation 

coefficient. 

5. -3.4 Power-Losses in Metal Surfaces 

Computed results for the power-loss in metal 

surfaces for the HE, mode are shown"in Figure 

with the core radius-fixed at 1.0 cm and using different 

values for the core permittivity. The cladding region 

is assumed to be air for all values of Elm The 

influence of increasing the core permittivity oh the 

metal power-loss clearly demonstrates the increase in the 

concentration of the Power carried by the HE,, mode in the 

central 
. 
region of the waveguide. It was found that even 

for very high values of tan6 31 the Power-loss contribution 

of the dielectric regions always dominates that. of the 

metal part. Therefore, when searching for high 

differential attenuation values between the HE,, mode 

and the unwanted modes, only the dielectric -loss 
-, 1. ý _1 ., _,. 

power 

contribution of different modes will be taken Into 

account. From the results-shown in Figure (5.10), the 

existence of a very low-loss loaded corrugated circular 

waveguide may be envisaged although itý achievement will 
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depend on ensuring a low dielectric loss contribution in 

the core region. 

An approximate formula for the dielectric power- 

loss of the core region can be derived <21> assuming a 

plane wave incident in the core region; then, 

tan6 neper/m. 

where X is the free-space wavelength. 

For example, if a core region of relative permittivity 

1.5 had a loss tangent, tan6l, equal to 8.0 x . 
10-7 , then 

using the expression and Figure (5-10), the overall 

attenuation coefficient of the HE,, mode propagating in 

this structure would be 11-0.46 dB/Km at 10 GHz. An empty 

corrugated waveguide suPPorting the same mode Is seen to 

have an-attenuation coefficient of ", 2.2 dB/Km at 10 GHz. 

The advantage in attenuation is based-on low-loss 

dielectric materials which have not been developed yet, 

but it, is known, <22> and <42>,, that Imperial Chemical 

industries are developing an ultra low attenuation- 

pblypropylene. 

5.4 PROPERTIES OF HE 21 MODE 

5.4.1 Introduction 

In Figure (5.3) the dispersion characteristics 

of an empty circular corrugated waveguide are shown. At 

the operating frequency of 9 GHz several other modes can 

be excited apart from the low attenuation HE 11 mode. 
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Some of these modes have high attenuation coefficients 

<34> when compared with the attenuation of the HE 11 

mode, and therefore will decay very rapidly. The 

remaining modes, such as HE 21 , TEO,, have slightly 

higher attenuation coefficients than that of the HE 

mode and can cause signal distortion if excited. The 

influence of the mode filter on two of these modes will 

be investigated; these are the hybrid HE 21 mode and the 

circularly symmetric TE 01 mode. These modes are chosen, 

as they could be gasily excited by the HE 11 mode when 

bends are negotiated <4 >. 

5.4.2 Field Distribution 

The magnitude of the total normalised electric 

field of the HE21 mode in a loaded corrugated circular 

waveguide is plotted in Figure (5.5) as a function of 

waveguide radius. The discontinuity at the core- 

cladding boundary, r= rl, is due to the discontinuity 

in the radial electric field component at this boundary. 

The curve shows an initial rapid increase in the electric 

field. distribution towards the boundary r = rl, which is 

then followed by a slow decrease towards the boundary 

r= r2o At this boundary it is. found that the value of 

the normalised electric field of the HE 21 mode is- 

nearly two orders of magnitude higher than that of the 

HE mode. This clearly confirms the effectiveness of 

positioning the lossy layer near the corrugation edge. 

The overall differential attenuation between the HE 
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mode and the HE 21 mode will not necessarily be of this 

order of magnitude, because of the-core and cladding 

losses being different for these modes. 

5.4.3 Effects of the Core Radius and the Lossy Layer 

The influence of the core radius r1 on the 

overall dielectric power-loss of the HE 21. mode is 

illustrated in Figure (5.11), for a pa3fticular thickness 

and loss angle of the lossy layer. For frequencies near 

cut-off, the increase in the loss for higher values of 

rl, is merely due to the change in the cut-off frequency 

of the mode. The decrease in the dielectric power-loss 

with increasing core radius, at frequencies far from 

cut-off, is attributed to the. higher field concentration 

of the HE mode in the core region of the waveguide, 21 

and thus giving rise to weaker field near the corrugation 

edge. The effect of decreasing thecore radius an the 

dielectric power-loss. of the HE,, mode Figure (5.9), is 

seen to be almost negligible when compared with the 

increase obtained for the HE21 mode, Figure (5-11), at 

9 OHz. The influence of the thickness and the Ioss angle 

of the lossy layer on the overall dielectric power-loss 

of the HE 21 mode is shown in Figure (5.12),, with all 

other parameters being fixed. 

At the frequency of operation, 9 GHz, it is seen 

that an order of magnitude increase inthe loss tangent of, 

the lossy layer is followed by a similar increase in the 

overall dielectric power-loss of the mode. This 
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compared with nearly two-fold increase in the dielectric 

power-loss of the Ht 11 mode for the sane configuration, 

Figure (5.8). On the other hand, by increasing the 

lossy layer thickness by 1 rmn, a two-fold increase in 

the dielectric power-loss is observed, compared with a 

negligible effect on the HE,, mode power-loss, Figure 

(5.8). Therefore, in order to present the HE 21 mode 

propagating in an empty corrugated circular waveguide 

with a maximum absorbing device, the mode filter proposed 

must consist of a small core diameter and a very lossy 

layer of reasonable thickness. 

5.5 PROPERTIES OF TE 01 MODE 

5.5.1 Theory 

The surface impedance model'used to represent 

the boundary at r=r2, Figure (5.2), was found to give 

very satisfactory results for the hybrid'modes in an 

empty corrugated waveguide when compared with th .eI space- 

harmonic formulation of those modes given in <4 >. This, 

boundary representation provides an open circuit 

condition for the E-radial line,, but for the H-mode line 

it is assumed to be short circuited and therefore does 

not permit an H-radial mode to propagate. 

In order to avoid the use of the space-harmonic 

formulation for the TE modes, it is clear that the 

surface impedance model representation of the boundary 

at r= r2 must be modified. Since the aim of the study 
is to evaluate the effects of introducing the dielectric 
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core region and the lossy layer on the TEO, mode 

propagating in the empty corrugated waveguide, and as 

the dielectric power loss is mainly dependent, on the 

azimuthal electric field component of this mode, the 

distribution of this component will, be evaluated first. 

Computed values of the normalised E component . 

in an empty corrugated circular waveguide are shown in 

Figure (5.13) as a function of waveguide radius. When 

using the space-harmonic formulation which takes into 

account the field'distribution in the slot regi on, the 

results clearly, illustrate the extension of this 

component in the slot region, which vanishes at the base 

boundary of the slots, r=r 3* On the other hand, the 

simple surface impedance approach shows a-vanishing 

azimuthal electric field component at the boundary r=r 2* 

Therefore, if the surface impedance approach is used to 

calculate the loss introduced by the lossy layer placed 

near the boundary r -. =: r 2, the results obtained will be - 

much smaller than those obtained using the correct field 

representation.,. As the field distribution in the slot 
'7 

region is of no4mportance in this analysis, the search, 

is directed towards finding a function which will give 

rise to the same f ield distribution. in the region 

o<r< r2 as that obtained using the exact formulation. 

Remembering the favourite position of the lossy layer 

reached when investigating the HE 11 mode.. field 

distribution, the new function representing the TE01 

mode field distribution must therefore be very close to 
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the exact theory field distribution in the region. close 

to r 2* It was found that if the impedance boundary was 

moved to a new radius r2 '(=r 2 +Ar 2) instead'ofýr 21 then a 

value of Ar 2 can be-found for which the two distributions 

coincided at and near the boundary r=r 2'- Figure (5.13) 

shows the results obtained when the impedance boundary 

is, placed at the new radius r2l =r2x 21/20. It is seen 

that very good agreement between the two normalised, 

fields is obtained in particular near the slot edge 

r=r 2* For values r>r 21 the discrepancy is of no 

importance as no attempt will be made to calculate the 

metal power-loss of the TE 01 mode. 

5.5.2 Field Components 

In the loaded corrugated waveguide shown in 

Figure (5.2), some field components of the TEO, mode are 

given by: 

in the region 0<r<r 

HzyoC110 (K 1 r) 

j (h-) CJ' (K 
K11 

and in the cladding region rl'Ic r4 rj , the 

components are given by 

C2 

2Hz=Y oYO(K 2r 2' 
[Jo (F, 2r) Yol (K2 r2l)-JO(K2 rý) Yo (K2r) 

E= j(k ) --C 2 [Jot (K r) Yol r2l) -J' (K r2l) Y, I (K2r) 2 K2 Yoý (K 2r2'-T 2 (K2 
o20 
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The field components written in the above form satisfy 

the, boundary conditions, namely,. finite, field at the 

origin and vanishing tangential electric field component 

at the impedance boundary r=r21' 

C1 and C2 are amplitude coefficients, and the 

factor expj(wt-az) is assumed throughout, other symbols 

are defined in section (5.2). 

At the boundary rr the boundary conditions, 

equal tangential electric and magnetic field components 

are applied to obtain the characteristic equation for 

the TE 01 mode in the structure, i. e. 

0' 
(K 1 ri) Jý (K 2 r2l) Y01 (K 2 r2l) -jol (K 2r 2') Yo' (K 2r 1) 

0 
(K 1r 1) 10 (K 2rl) Y. ý (K 2r 21 ) -JG" (K 2 ri ) Yo. (K2 rl) 

5.5.3 Effects of Core Radius 

The TE 01 mode: power-loss-at different regions of 

the mode filter are fOrmulatediusing the same perturbation 

techniques used in the formulation of the hybrid modes 

power-loss, with the integrands containing E0 component 

only. When obtaining the dielectric power-loss of the 

lossy layer the integration given in (5.71, was carried 

out between the limits R, and r2 and not between R, and 

r2 This isbecause of,,. the actual physical position of 

the lossy layer in the waveguide. 

The influence of the core radius r1 on the 

overall dielectric power-loss of the TE 01 mode is 

illustrated in Figure (5.14) for a particular thickness 
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and loss angle of the lossy layer. It is seen that as 

the core size is increased, the dielectric power7loss, 

decreases with in'creasing frequency,, this is mainly due 

to the concentration of the TE 01 mode field in the core 

region of the waveguide. As the electric field 

component of the TE 01 mode has zero value on the - 

waveguide axis, then the increase in the core power-loss 

is not expected to be very significant when the core 

size is increased. It'is clear-that in order to obtain 

high values for the attenuation coefficient of. the TE 01 

mode, a small core radius would be appropriate to" 

choose. 

5.5.4 Effects of the Lossy Layer 

The influence of the thickness and loss tangent 

of the losSy layer on the overall dielectric power-loss 

of the TE 01 mode are studied separately. Figurd (5.15) 

shows this'influence, when all other parameters are 

maintained. At the frequency of operatioh. ý9. GHz, it is 

seen that for an order of magnitude increase in the. loss 

angle of the lossy layer, the overall dielectric power- 

loss rises by the same order. This phenomena merely 

confirms the high field strength of the TE mode near 01 

the slot edge. On the other hand, by increasing the 

10SSy layer thickness by 1 mm, the overall loss rises 

twO-fold. Thereforer in order to absorb the TEO, mode 

Propagating in the empty circular corrugated waveguide, 

arriode filter consisting of a small core diametery and 

-10ssy layer of a very high loss tangent is needed. 



- 189 - 

102 

E 

rd 

U) 
U) 
0 

r-I 
rl) 

-rq 
ý4 
4-3 

CD 

10 

1 

., 
(l 3 .74 1) 

a "., 

H 

: 

lo -1 1111 

357 JL. L 
Frequency GHz 

Figure (5.15) Attenuation'due to loss in dielectric for 
the TE mode against frequency 14 01 4 
Cl = 2.25 C2ý1.02 tanS 1= 10 tan62 = 10 

Parameter (rjjRl,, r2' tan63) 



- 190 - 

5.6 MODE FILTER DESIGN 

From the above results, the possibility of 

obtaining high differential attenuation between the 

desired HE 11 mode and the unwanted modes is quite 

evident. The choice of the mode filter parameters is 

dictated by the amount of differential attenuation 

required and the attenuation which can be tolerated by 

the HE,, mode. Very low loss dielectric materials Will 

obviously improve the mode filter performance, in 

particular the losses of the desired mode. The 

differential attenuation can always be achieved by 

increasing the thickness or the loss angle of the lossy 

layer. The theoretical performance of a mode filter 

achieved by proper choice of different parameters is 

shown in Table (5.2). Theoretical attenuation figures 

obtained using a space harmonic <4 > approach in the 

formulation of the attenuation coefficient is also 

shown. The differential attenuation ratio shown in the 

last column clearly demonstrates the effectiveness of 

the mode filter in absorbing the unwanted modes energy. 

Mode Filter Parameters 

r, = 1.0 cm 

91=2.25 

tan6 1= 10- 4 

R1=3.7 cm 

E2 *= 1.02 

tan6 2 lo- 5 

r2=4.0 cm 

r3=5.0 cm 

tan6 3 ý-- 1.0 

9ýO GHz Rs =. 0474P 
1 
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MODE 
am 
- dB/M Differential CL 

/m -d dB Differential 
2 Ratio , 2 Ratio 

HE 0.0034 0.23 

HE21 0.0095 N"3 19 83 

H 01 0.0034 1 8 35 

Table (5.2) 

The presence of the lossy layer near the corrugation edge. 

, will absorb most of the energy carried by the modes- 

within this region and therefore the metal Power-loss, of 

different modes will be almost negligible. However, UAe 

metal-power-loss of the unwanted modes will merely 

improve the overall performance of the mode filter. 

5.7 , MATCHING SECTION DESIGN 

5.7.1 Introduction 

In previous sections the mode filter design was 

based on'studying the characteristics of an infinitely 

long corrugated waveguide containing the concentric 

dielectric structure. In practice, small. sections of the 

mode filter will be inserted in the long empty corrugated. 

waveguide to provide the required differential attenuation. 

The length of the mode filter sections will depend on the 

amount of attenuationýtolerated by-the HE mode and the 
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loss angle of the lossy layer for a particular core size, 

It is immediately recognised, that a matching 

section must be used between the empty section of the 

corrugated waveguide and the section containing the mode 

filter in order to avoid serious losses by reflection 

and the setting up of standing waves at the junction. 

one method of providing good matching into the mode 

filter is by tapering the core region to very small core 

radius. The theory of designing an optimum arrangement 

is described by Klopfenstein <43>. This method is based 

on solving a first order non-linear differential 

equation involving the reflection coefficient at any 

position along the taper. Exact mathematical solutions 

to the differential equation are only possible when the 

reflection coefficient varies along the longitudinal 

direction of propagation in some specific manner. 

Examples of possible reflection coefficient variations 

are given in <40>, giving rise to the design of Bessel, 

hyperbolic and exponential tapers. Collin and Brown <44> 

describe the use of a quarter-wave transformer to match 

the junction between an empty and a filled smooth wall 

waveguide. 

Application of the quarter-wave transformer 

theory requires the evaluation of the reflection 

coefficient for the two configurations, 

M the junction between an empty corrugated 

waveguide and one containing a core dielectric of 

variable size and permittivity and 
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thejunction between two similar corrugated 

waveguides containing axial core regions of different 

size, Figure (5.18) junctions a and b respectively. 

The second method will be used. in designing-the 

matching section of the mode filter, as the first method 

requires the knowledge of the reflection coefficient for 

a continuous range of the core radius and in general 

very long sections, of, the_'taper are needed to produce 

low reflection coefficient. 

In the following sections an account of the 

theory of the matching section is given and the junction 

reflection coefficient in a corrugated circular 

waveguide is formulated, in-terms, of known field 

components, using a. modified form of the variational 

method employed by Farmer <45>. The overall V. S. W. R. of 

the matching transformer is computed using transmission 

line theory <40>. 

5.7.2 Transformer Prototype Theory 

Figure (5.16) shows. the junction between an 

empty corrugated waveguide and one containing an axial " 

dielectric rod of radius rl and relative permittivity 

Fl, For the values of r1 and El chosen in the mode 

filter design, the reflection coefficient of the junction 

will be very high and cannot be tolerated in, practice. - 

A matching section to minimise the reflection of the 

desired HE 11 mode at the junction may be designed on the 

same principle as a transmission line quarter-wave 
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transformer. A matching transformer consisting of 

n-sections is shown in Figure (5.17), where the ratio 

(R/Z ) being theV. S. W. R. of the junction shown in 
0 

Figure (5.16). For n-! -sections of transmission lines in 

cascade, each having the same electric length but 

different characteristic impedance, the overall transfer 

or wave matrix <46>, have the form 

zi-i Zn 
(, k+ z B) o+R Lo) 

where j0 -je- -j0 -j 0- 
ee -e 

B= 

.e 
je 

e- 
je 

--e 
je 

e-i 
0 

eo B0 

0 being the electric length of each section. 

The overall transfer matrix T is a2x2 matrix and can 

be replaced by 

TT 12 

T 21 T 22 

The matrix element T 11 represents the reciprocal of the 

amplitude of the transmission coefficient <40>. 
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Therefore the power-absorbed by the load through the 

n-section transmission line is 

(T11TJ1. R)1 

where T* is the complex' 66njugate of T and R is the 

normalised load impedance of the end of the line, . i. e. 

the core region of the mode filter. If a unit amplitude 

of incident wave is assumed, then the power loss, ratio is 

defined as Pt, týen 

Pt. =T T* "R 11 11 

From {5.9) it is seen that the Polynomial representing 

Pt is an even function of cose and is symmetrical about 

the point 0=0. But Pt is related to the input 

reflection coefficient r, viz. 

[1-ir 12]-l --l +jr 12', Ir 12 << 1. 

Since the performance of an n-section transformer is 

determined by the input reflection coefficient then 

Pt is synthesised so that the desired bandwidth and 

passband tolerance need ed for the transformer can be 

achieved. After Pt has been synthesised to obtain the 

predetermined frequency response, the appropriate 

characteristic impedance Zi of each section can be 

determined. 
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As might be expected, there are many possible 

combinations of the characteristic 'impedances*. Three 

special cases are described in <41>; 

M where all impedance steps are equal (linear), 

(ii) where*the percentage change at-each step -is a 

constant (exponential); and 

(iii) where the steps are proportional in accordance 

with the so called "binomial distribution". A Chebysher 

polynomial of various degrees can also be'us"ed'to' 

synthesise the reflection coefficient behaviour in the 

passband <40>. 

5.7.3 Characteristic Impedance 

The V. S. W. R. of different junctions form the 

basis of formulating the input reflection coefficient r 

of the transformer. Therefore, the V. S. W. R. at two 

types of junctions in the loaded corrugated circular 

waveguide must first be investigated. 

Consider a single step quarter-wave transformer 

section to match the core region of the filter in a 

cor rugated waveguide, Figure (5.18). It is required to 

formulate the V. S. W. R. at the junctions (a) and (b) 

shown in Figure (5.18). The radii xl,, r, of the first 

and core regions are assumed arbitrary with El being 

the relative permittivity of both regions. The cladding 

relative permittivity E2 is assumed unity, thus 

permitting the use of the results obtained at junction 

(b),, when a multi-section transformer is considered. 
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By using a modified form of the variational 

method employed by Farmer <45>, it is shown by 

Clarricoats <47> that 

x1r, 
fx 

II b *rdr +fEcxHb *rdr 

Zi/ {5 . 101 
0xr 

*rdr +x lic*rdr 
f 

Ub X Ha 
f 

ýb 

0x1 

and 
xrr2 
f 

ýd xHa *rdr +f ýd x Hc*rdr + 
11 

E0xHd *rdr 

21xrr2 
f 

ýa xHd *rdr +fEcxHd *rdr +f 1ýc xHe *rdr 

x 

where the transverse field components are given in 

0 table 
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Region Radius Transverse 
Pield 

Relative 
Permittivity 

0 0-)r2 ýa Ua 

0-x1 ýb Ub 

x1- r2 ýc Uc 

2 0- rl ýd ýd 

2 r1r2 E He 

Table (5.3) 

where Eal Ua are the transverse electric and magnetic 

field components of the empty corrugated waveguide. 

The above junction V. S. W. R. 's are calculated using 

transverse field components of a particular mode at a 

given frequency and therefore, the following assumptions 

are implied; 

the phase-change coefficient of the given mode is 

frequency independent in any given section of the 

waveguide, and 

(ii) the characteristic impedance_of various sections 

are also frequency independent. 

The transformer design is based on providing the HE 11 

mode with the least possible reflection coefficient and 

as the object of the mode filter is to attenuate the 

unwanted modes, then the reflection coefficients of the 

unwanted modes are not significant. 
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Transverse field Components of the HE mode in 

appropriate sections of the'-corrugated waveguide are 

substituted'in {5.10) and {5.111 to calculate the 

V. S. W. R. at the two junctions. The transverse field 

components are obtained'by first'solving the 

characteristic equation'{5.5) for given values'of 

w and rl, and then values of $ and the amplitude 

coefficients are inserted in the appropriate expressions. 

For a core radius of 1.5 cm the V. S. W. R. at the 

junctions (a) and (b) of Figure (5.18) is'shown in 

Figure (5.19), as a function of transformer radius xV 

if V1 and V2 denotes the V. S. W. R. at the junctions (a) 

and (b) then 

V1= zl/zo v2=Z 2/Zl 

When the transformer radius x, is equal to zero or to 

the core radius 1; 5 cm, the junction V. S. W. R. will be 

the same and is given by ZZ (=1.372). The product 21, o 
(v xV) must be constant for all values of x and 12 

equal to 1.372. But this is shown to be not the case 

in Figure (5.19),, where a maximum departure of nearly 

4% is observed. This error can be attributed to the 

neglect of the junction reactance in the transmission 

line equivalent circuit <48>. Due to the neglect of 
. 

the junction reactance there is a small non-reciprocity 

of the formula used (5.101 and{5.11} to obtain V1 and V2. 

122 V-(x To- *y-, z01) 
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This. implies, slightly, incorrect results. for the. two- 

junction problem. However, the small error introduced 

in the calculations of the junction V. S. W. R. will be 

neglected as the transverse field components used in the 

calculations are also approximate. This is becaus e they 

were derived assuming an impedance boundary model at 

r=r2 

5.7.4 Junction V. S. W. R; 

The V. S. W. R. at a junction between an empty 

corrugated waveguide and one containing an axial 

dielectric region is shown in Figure (5.20) as a 

function of the core radius rls The field components of 

the HE 11 mode were used in the computation of 15-101 for 

two values of corrugation radius r, at a fixed frequency 2 

of 9 GHz. The relative permittivity of the core region 

used in calculating the field component was 2.25. It is 

seen that for a particular value of core radius rl,, the 

junction V. S. W. R. decreases with increasing value of 

corrugation, radius r2. This phenomena occurs due to the 

concentration of the HE,, f ield in the axial region of 

the waveguide, and therefore high reflection coefficient 

is expected for smaller values of corrugation radius. 

The necessity. for a matching section is clearly 

illustrated in Figure (5.20)t where it is seen that in a 

4.0 cm corrugation radius waveguide, the V. S. W. R. of the 

junction is greater than 1.2, when a 1.0 cm. core mode 

filter is used. This figure is unacceptable. The V. S. W. R. 
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at a junction between two similar corrugated waveguides 

containing axial core regions of different radii is 

shown in Figure (5.21). With the corrugation radius 

r2 equal to 4 cm, x q--ýnd x q-1 
being the radii of the* 

q-1 and q-th region of Figure (5.17). The computation 

was carried out using {5.111 at a fixed frequency of 

9 GHz. 

The influence'of the core Size on the-junction 

V. S. W. R. is illustrated in Figure (5. ýl), where it is 

seen that for large values of x the junction V. S. W. R. 
q 

becomes very sensitive to small changes in the value 

of x q-l* 
Figure (5.21) is used in selecting the junction 

V. S. W. R. requiredýfor different steps of the quarter- 

wave transformer shown in. Figure (5.17). These-values 

are then inserted in the insertion loss expression and 

the overall reflection coefficient of the transformer 

is calculated. The radii of individual steps are 

therefore obtained. The electric length 0 of each 

section of the transformer was assumed to be 7r/2,, at 

the design frequency, thus the physical'length Xg/4, 

(Xg=27r/0), can easily be calculated using Figure . (5.22), 

where the guide wavelength Xg is plotted as a function 

of the core radius rl* Values of Ag are obtained-at a 

frequency of 9 GHz, with r2 being equal to 4.0 cm. 

5.7.5 Transformer Design 

Figures (5.20) and (5.21) are used to select 

the V. S. W. R. -at the-first junction-and at all consecutive 
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junctions. The criterion. used' in selecting the' V. S. W. R. 

values is that at all-junctions, this quantity must be as 

small as possibleýprovided that the last section of the 

transformer is matched to the core region of the mode 

filter with a low V. S. W. R. A computer program was 

developed to provide the overall V. S. W. R. of an n-section 

transformer at the design frequency fo and at different ' 

frequencies f. The range (f/fo) of validity of the 

results, is based on the assumption that the V. S. W. R. of 

the junctions calculated at fo will remain constant 

throughout the range. This assumption also implies that 

the value of the guide wavelength Xg obtained at fo, for 

the different sections, will remain constant for the 

range. A defined polynomial-was not used to synthesise 

the transformer performance in-this instance because of 

the error introduced in the calculations of the V. S. W. R. 

at the multi-section transformer, i. e. 

z2z3R 

zo Zn 
(5.121 

The equality of this expression form the bases of the 

synthesis procedure, and accurate values of the radii 

xq of the different sections were not obtainable. 

Computed results for a three-section transformer 

are shown in Figure (5.23), where*the V. S. W. R. of 

different junctions is chosen rather arbitrary to give 

best performance at and near the designed-frequency f 
0 

The transformer is designed to match a 1.0 cm. core radius 

mode filter situated in a corrugated waveguide with r 



, G%JU 

91 3 

-ý2 
x2x3 

1.009 

1.005 

1.001 

. 85 1.0 f/fo, 1.15 

Figure (5-23) Theoretical V. S. W. R. of a three section 
transformer against normalised frequency 

c=2.25 r= lcm r=2.54cm f 9.0 GHz 
ý1 120 
k1=9.4rn Z2 = 8.8mm. Z3=7.7mm 

x1= 1MM x2=2.5mm x3= 4mm 
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equal to 2.54 cm. 

The product of the V. S. W. R. at different 

ý junctions is equal to 1.23, while in the absence of the 

transformer, the junction V. S. W. R. at the 1.0 cm core 

radius will be 1.30. The difference between the two 

results clearly demonstrates the inequality sign in the 

expression {5.121 and is due to the error explained 

above. A cross-sectional view of the transformer is 

shown in the insert of Figure (5.23), the lengths of 

different sections are calculated from a knowledge of the 

values of Xg at different sections of the waveguide. 

5.8 EXPERIMENTAL OBSERVATIONS 

Two mode filters of the type described in. 

-previous sections were designed, constructed and tested 

in existing corrugated circular waveguides. Figure (5.24) 

shows a three-step transformer section at either end of 

the core region of the mode f ilter. The core region is 

contained in an annulus of expanded polystyrene. The 

outer absorbing layer, not shown inthe photograph, was 

'created 
first by winding two layers of flexible absorber 

(Emerson and Cumming Ecosorb VF10) around the outside of 

the expanded polystyrene. The loss tangent of the 

absorber is about equal to unity and its relative 

., permittivity is slightly greater than ýý2(=1.02), Figure 

(5,25) a, b shows swept frequency measurements made both 

with and without the mode filter. Elimination of the 

- unwanted modes trapped resonance is clearly observed. 
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Subsequent reduction to one fold of the outer absorbing 

layer still eliminated the trapped resonances but almost 

halved the additional. HE,, mode attenuation. An 

alternative very thin absorbing layer was made of 

solidified 'Emerson and Cummings' lossy paint. Its 

effect on the HE,, mode was observed to be even less, 

while the elimination of the trapped resonance was still 

achieved. Experimenting with different absorbing 

materials gave satisfactory results for the overall 

performance of the mode filter. 

The low mismatch achieved by the transformer 

section is clearly shown in Figure (5.25) b, where it 

is seen that at the designed frequency, 9 GHz, the 

mismatch is minimum. The high mismatch observed at 

frequencies above 9 GHz, merely confirms the power 

concentration of the HE,, mode in the central region of 

the waveguide, and therefore a high reflection coefficient 

at these frequencies is noticed. On the other hand# at 

frequencies below 9 GHz, the mismatch does not result in 

high reflection coefficient because of the weak 

concentration of the HE,, mode power in the central region 

of the waveguide. 

Due to the circular symmetry of the mode filter, 

it was observed that its influence on the cross-polarised 

components was exactly the same. 
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CHAPTER SIX 

DIELECTRIC-LINED CIRCULAR WAVEGUIDES 
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6.1 INTRODUCTION 

The investigations of corrugated circular 

waveguidesby Clarricoats and Olver < 2> show that one 

reason for low attenuation lies in the low field strength* 

near the wall in the case of the lowest order linearly 

polarised mode. The condition is achieved because a' 

reactive boundary is created in the corrugated waveguide 

by a slot of approximately one quarter wavelength in 

depth. As corrugations are difficult to fabricate it 

was natural to wonder whether a dielectric-lined waveguide 

might exhibit low-attenuation and evidence in favour of 

this surmise is demonstrated in this chapter. 

Barlow et al <49> have discussed the use of a 

dielectric-lined waveguide for long distance communication 

utilising the TEO, mode. In 1971 Carlin and D'Agostino 

<5>j<6> extended the analysis reported by Unger <18 > 

to include higher order circularly symmetric electric and 

magnetic modes of the lined waveguide. These authors have 

demonstrated that the attenuati. on of the TM Om modes may be 

reduced under certain conditions. Furthermore, they show 

that under'the same conditions, the TEOm modes of the 

lined waveguide exhibit high losses. However, these 

authors were unaware of a previous study of the same 

structure by Brayer <20>, who had not only made the above 

observation but had also found low-attenuation bandpass 

characteristics in a linearly polarised wave supported by 

the lined structure. 
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Falicasecca and Prandi <50> calculated the 

complex propagation coefficient of the lined waveguide 

for the circularly symmetric modes using Rayleigh- 

Schroedinger power expansion technique. Their dispersion 

and attenuation results were found to be in good 

agreement with those obtained in <5 > where first order 

perturbation techniques were used. 

From the above description, one would not expect 

a low-attenuation region for the azimuthally dependent 

modes, since, as is well known <51>, the boundary 

conditions at r= rl, Figure (6.1), couple E and H-type 

fields together to form hybrid modes. These boundary 

conditions would not appear to be simultaneously 

favourable to both E and H-type fields. 

In April 1973 Carlin and D'Agostino <52> 

extended their investigations of the dielectric lined 

waveguide to include the azimuthally dependent modes. 

They illustrated the dispersion and attenuation 

characteristics of a number of modes supported by the 

structure. Apparently, these authors were unaware of our 

Electronics Letterr August 1972, where the attenuation 

characteristics of the two lowest order hybrid modes of 

the lined waveguide are reported. 

in this chapter, it is shown that at the low- 

attenuation condition, the EH, j mode of the lined 

waveguide exhibits properties similar to those of the 

IlEll mode in a corrugated circular waveguide. Under this 

condition it is found that the HE,, mode of the lined 
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structure exhibits maximum-attenuation condition. The 

mode designated HE 11 
in corrugated circular waveguide is 

so named because the. fields in the interior region 

(r <r1, Figure (4.1)) closely resemble those of the 

HE 11 mode of a dielectric rod which was the first hybrid 

mode structure to be studied in depth. However, - 

examining the field over the total waveguide cross- 

section including the slot region, it is easy to identify 

the mode with the EH 11 mode and the correspondence with 

that mode in dielectric lined waveguide follows naturally. 

In the last part of this chapter it is shown that the 

EH 11 mode could be more readily excited than the 

circularly symmetric modes, and thus we believe that this 

inode could find applications at millimetre wavelengths, 

where the metal wall loss of an unlined waveguide is 

normally very high. 

6.2 FORMULATION OF THE PROBLEM 

6.2.1 Introduction 

The waveguide structure under investigation is 

shown in Figure (6-1). It is a perfectly conducting 

cylinder of radius r2 to which a lossless dielectric of 

relative permittivity E and thickness d is bonded. 
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Figure (6.1) Dielectric Lined Waveguide 

The interior region (r < rl) is to be filled with Woble 

gas whose electrical properties are those of free-space 

over the frequency range of interest. Solutions of the 

wave equation in the two regions are obtained and on 

applying appropriate boundary conditions the 

characteristic equation of the structure is obtained. As 

the structure is assumed losslessl the transverse wave 

numberf as given by the solution of the characteristic 

equation, is either real or pure imaginary. , 

The normal mode azimuthal dependent fields of the 

structure are not pure transverse electric or magnetic as 

in a hollow metallic waveguide, rather they are hybrid 

HE or EH modes. On the other hand, the circularly 

symmetric modes are pure TE or TM modes. This will be 
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demonstrated using the transverse network 

representation of the structure. 

6.2.2 Characteristic Equation 

Solutions of the wave equation in the two 

regions shown in Figure (6.1) have the form; 

<r<r11 Ez =A11n (K 1 r)cos(nO) 

Hz =B1y0jn (K 1r) sin (nO) 

r<r<r EZ =A 
§D 

n 
(K 2rlK2r 2) 

cos(nB) 1222yn (K 2 
F2) 

(6.1) 

Hz =BY 
TjD 

n 
(K 2r,, K 2 r2) 

sin(nO) 22o Yrý (K 2r 2) 

The transverse wavenumbers are related by; 

K22 11 E- o2 K2= W2p ECO 02 10020 

where is the phase-change coefficient, y0 rc-770P-O- 

R 
TVx"y). 

=x 
Jn' (x)yn' (Y)-jnv (Y)yn' (x) 

n 
(x , y) =x fi D (x� y) J (x) Yu (Z- nnn 

(y)-Jn[ Y)yn Y 

s (x y) =x 
§N 

n(x-'y) =xjn8 
(x) yn (y) ý. -jn (y) Yn' (x) 

D (x, y) i (x) yy y% (x) nnn (y) -jn (y 

A,,, A 2** B, and B2 are amplitude coefficients. 

The primed Bessel functions mean first derivations with 

respect to their a; guments. 

The term expj(wt-oz) is assumed in the field expressions. 
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The fie ld expressions written in the form {6.1) and {6.21 

satisfy the boundary conditions; 

M Finite field intensity at the origin r=0. 

(ii) Vanishing tangential electric field intensity at 

the metal wall r=r 2* 

(iii) Vanishing normal magnetic field intensity at the 

metal wall r=r 2* 

The transverse field components in the two regions are 

obtained using Appendix I with Z1=1, jt 2=r, and the 

appropriate value of the transverse wavenumber in the two 

regions. 

in the region 0<r< rl; 

(Or) IxrI 
E -j[A J l(K r) +B nr J (K r) cos(nB) 

1rn11 (K 1 r)2 n11 

-jYO[A 
ný 

2J 
(K 

r1 (K 
1 r) n 

(Or) IK1 rl 
(K r) sin (nO) (K 1 r)2 -- n 

1Ee 

[Al 

n 
(Klr) + B, (K 1 

r) 2 LTn' (Klr) 
I 

cos (ne) 

-jy A 
ilKlrl 

Jn' (Klr) 
0 'F-- 

[1 

Kjý ý)2 
n (Or) (K r) Sin (nO) (K n11 

{6.3} 
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and in the dielectric region; 

§N (K r, K r) ID (K r, K r n222+B nr n22 2) 
cos (n8) 

ryn (K 2r 2) 2 (K 2 r)2 YZ (K 2r 2) 

-- §D (K r, K r IN (K Kr) 
H -jYO[A 

nre n22 2) 
1B 

(Or) n 21 22 
sin 2r2 (K 2 r) yn (K 2r 2) 2 (K 2 r) YZ (K 2r 2) 

n (ar) §D 
n 

(K 2 r, K 2r 2) 4B 
IN 

n 
(K 2r,, K 2r 2) 

sin (nO) 2 

[A 

21 -Ký Yn (K 2r2) 21-KýFT K2r 2) 

§N (K rK r ilD r, K r 
-jyo A er n22 2) 

, 13 2n 
(Or) n 

(1ý2 
2) 2) 

cos (nO 
02 (K r) Y (K r Y-' (K r 2n22 JIL 22 

(6.4) 

where r 00 

The general solutions of the field are then introduced 

with the boundary conditions; 

at 

Ez22 

1E0=, E01H0 ý" 2H6 

and after some cumbersome algebra a homogeneous system of 

equations for the amplitude coefficients is obtained. 

From the condition of non-triviality of the solution of 

the system obtained, the characteristic equation of the 
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lined waveguide is obtained, which after simplification 

can be written in the form 

Fn (K 
1r 1) Rn (K 2 r, ,K2r2 )' [F 

n 
(Klrl) sn (K 2 r, ,K2r 2) 

« 

(K1r1)2(K2r1)21(K1r1)2(K2r, ) d 

(K 1r1 (K 2r 

where FW=x 
'Tn' (x) 

and r) 
n jý ýX) 

r 

The above characteristic equation is valid when the 

transverse wavenumber is real, i. e. ý<1. 

When X1 becomes pure imaginary the characteristic 

equation has the form 

(6.51 

Fn (Kl' r 1) + 
JRn (K 2r,, K2r 2) Fn (K11 

+sn 
(K 2rlllý2r 2 

r (K r, )77' (K rl) 2 (K rl) 212 

2 

(ný) 2 
j-K-11 

1+11 

where Fn W=x 
Int (X) 

and K, j K11 

The amplitude coefficients can be expressed in terms of 

A1 using the relAtionships 
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in (K 
1r1), yn (K 

2r 2) 
§D 

n 
(K 

2 rl, K 2r 2) 

in (K 1r1) Yn' (K 2 
IID 

n 
(K 2 rl, ]K 2r2) 

W6oFn (Klrl) Sn (K 
2r1K 2r 2) nn BA1)2 WCE -TK- (K r (K rl) 1102 

(6.61 

6.2.3 Transverse-Network Representation 

The electromagnetic behaviour of the dielectric 

lined circular waveguide can also be described by the use 

of th. e transverse network representation. As ummary of 

the theory is given here, the details of development can 

be found in <51> and <53>. The transverse-network shown 

in Figure (6.2) corresponds to the physical structure 

shown in Figure (6-1). The electric and magnetic field 

components of the lined waveguide are expressed in terms 

of voltages and current analogies. The electromagnetic 

behaviour is described in terms of the transfer 

admittances and impedances. In the E-line, the 

admittances at the boundary r=r1 are given by; 

= -j 
0F (IK r Ya 

a iýI 2n 

0S (K rl, Kr 
a, a 3K2n22 2) 
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and for the H-line the impedances at the boundary r=r1 

are given by; 
I 

4- wp 
0 

z 

b, b -j Fn (K 1r 

0 
z b, b R27Rn (K 2r, ,K2r2 

The impedances and admittances are evaluated looking in 

the positive radial direction. 

At the junction i. e. at the boundary r= ri, the radial 

transmission lines are related by 

b, b +Z b� b) (ya, 
a+ya, a) =N2 (6.71 

where N represents the transformer ratio, and is given by; 

-n 
2o2 

R2 

Substituting for the impedances and admittances in 

{6.71 leads to the same characteristic equation obtained 

in {6-51. 

When n=0, the coupling transformer is removed, and no 

coupling between the E and H lines Occurs. Thus, 

circularly symmetric modes can be supported by the lined 

waveoide. 

I 
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r=r 

r=r 

Figure (6.2) 

Transverse network representation of the 
lined waveguide 

6.2.4 Classifications of Modes 

When analysing the lined waveguide Unger <18> 

used the notation TE 
om 

(TMom) for Circularly symmetric 

modes-to correspond to the TE 
om 

(TMom) modes in a hollow 

conducting circular waveguide, when the lining thickness 

is reduced to zero. The same notation was later adopted 

by Carlin and D'Agostino <5> and <6>, when studying 

the attenuation characteristics of the circularly 

symmetric modes in the lined waveguide. However, the 

existence of a pure TE 
nm and TM 

rLM mode for n>0 is no 

longer possible in the lined waveguide due to the coupling 

E-line H-line 
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mechanism introduced by the boundary at r=r1 This is 

illustrated by the presence of the transformer in the 

transverse network representation described in the 

previous section. 

Unger <54> used the term hybrid TE 
nm 

(TM 
nm 

) modes 

for the azimuthally dependent modes in the lined waveguide 

which correspond to the TE 
nm 

(TM 
nm) modes in a hollow 

conducting circular waveguide, when the lining thickness 

is reduced to zero. When analysing the same structure 

Brayer <20> used the same notation given by Unger for 

the circularly symmetric modes, but used the term hybzid 

. 
HE 

nm 
(EH 

nm 
) modes for the azimuthally dependent modes, 

which correspond to the TE 
nm 

(TM 
nm 

) modes in the hollow 

waveguide, when the lining thickness is reduced to zero. 

Since the azimuthally dependent hybrid modes are due to 

contributions of both TE and TM modest Brayer's hybrid 

mode notation will be adopted in naming the modes. 

Recently, Carlin and D'Agostino <52>, reported 

some properties of the hybrid modes in the lined waveguide, 

the notation they used in naming the modes was that due 

to Unger. The suffix n, is the azimuthal dependence of 

the model and n> 01 indicates the order of the hybrid 

mode. The suffix m will indicate the m-th parametric root 

of the characteristic equation. 

Table (6.1) summarises the mode nomenclature and 

notation used by different authors. 
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Wave- 
guide 

Unger, Carlin and 
D'Agastino Brayer 

Hollow TM TE TE TE TM TE TM om om nm om om nm nm 

Lined TM TE TE TM TM HE EH om om nm om om nm nm 

Table (6.1) 

6.2.5 Circularly Symmetric Modes 

When the azimuthal order n=0, the characteristic 

equation of the lined waveguide {6.51, splits into two 

equations; 

for < 

F0 (K r RO(K2r,, K 2r 2)= 
-(K 1r)- (K 2 rl)w- 

and 

F0 (K 1r1) 
ES 

0 
(K 2 rl, K 2r 2) 

(K 1r1)d. 
-- (K 2 r, ) 2 

for > 

0 

'IF 0K-r+ 
Ro (K 2 rl,, K2r 2) 

0 
(Kllrl). z (K2 rl)w 

and 

0 
(KZ r, ) ES 

0 
(K 2 rl, K 2r 2) 
(K 2r 17-- 

= 

representing the TE 
om and TMOM modes respectively. 
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The radial propagation constant for a TE 
om 

(TM 
om 

) mode in 

the lined waveguide equal to that of a TEom_l(TM 
om-1) 

mode in an unlined waveguide, when the lining is 

equivalent to half wavelength in thickness. For the 

TM 01 mode, the radial propagation constant decreases 

rapidly to zero as the lining thickness increases and 

then becomes imaginary. This indicates 
* 
that the TM 01 

mode propagates as a surface wave closely bound to the- 

lining region. The other circularly symmetric modes 

exhibit the same surface wave behaviour for thicker 

linings. The attenuation characteristics of the 

circularly symmetric modes will be discussed in section 

(6.4). 

. 6.3 . 
DISPERSION CHARACTERISTICS 

unger <18> treated the hybrid modes of the lined 

waveguide, with very thin lining, as perturbed TE 
rLm and 

TM 
rIM 

modes of the hollow circular waveguide. Perturbation 

formulae obtained for the phase-change coefficient were 

valid for small lining thicknesses. 

A computer program was developed to obtain exact 

solutions of the characteristic equation {6.51 using an 

iteration, process, for values of ý greater than and less 

than unity. The validity of the results obtained did not 

depend on the lining thickness chosen, as no 

approximations of the field were'used in the formulation 

of the characteristic equation. For a fixed frequency 

7.3 GHz, the effect of increasing the lining thickness 
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on the normalised phase-change coefficient of different 

hybrid modes is shown in Figure (6.3), with the 

waveguide's outer radius r2, being fixed at 8.6 cm and 

perspex is used for the lining, F=2.56. 

At the two extremesof the rl/r 2 axis, the values 

of the normalised phase-change coefficient coincide with 

those obtained in a circular waveguide filled with 

homogeneous dielectric of relative permittivity E; 

p 
nm) 

r2 
(6.91 

where P 
nm 

is the m-th parametric root of Jn ý- 0 for TM 
nm 

(EH 
nm 

) modes, and is the m-th parametric root of inI=0 

for TE 
nm 

(HE 
nm 

) modes. 

wr 200 

6.4 ATTENUATION CHARACTERISTICS 

6.4.1 Introduction 

The attenuation characteristic of the TEO, mode in 

a thinly lined circular waveguide was first determined by 

, Unger <18>. His work was later extended by Carlin and 

D'Agastino < 5>, where attenuation results of circularly 

symmetric modes are reported. It is shown that the 

attenuation of the TMOM modes may be reduced when the 

dielectric thickness is equal to (2m-1)L, Where-A' is. 
4 

the effective transverse wavelength in the dielectric. 
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They provide an explanation of the phenomena in terms of 

the creation of a magnetic-wall at the boundary r= r1j, a 

condition which causes the familiar low-attenuation 

properties of the TE 
om modes in a hollow waveguide. 

Furthermore, they show that the TE 
om modes, 

exhibit high loss under the (2m-l)ý-' conditions. The 4 

low-attenuation condition of the TE 
om modes corresponds 

to d= (m-l)ý' , provided that, when m >1, surface wave 2 

conditions do not predominate. From the above 

description, one would not expect a low-attenuation 

region for the azimuthally dependent modes, due to the 

coupling mechanism of the E-type and H-type fields 

described in section (6.2). However, evidence to the 

contrary is given by Brayer <20>, who observed that, 

under certain conditions, the EH 11 mode could exhibit 

low-attenuation. in what follows, the above inconsistency 

is resolved by demonstrating that when low-attenuation 

occurs, the EH, l mode exhibits nearly pure E mode 

properties. The influence of dielectric permittivity and 

loss tangent on the attenuation of the EH 11 mode will be 

discussed and an optimum dielectric thickness to produce 

the low attenuation condition is found. The low-loss 

behaviour of the EH 11 mode will be discussed in terms of 

surface currents induced in the metal walls by different 

field components. 
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6.4.2 Power-Losses 

In the lined waveguide, the power losses consist 

of two parts; 

pm: due to induced currents in the metal wall of the 

structure at r=r2, and 

d: due to dielectric loss. 

The two components are formulated separately and the 

overall power-loss of the waveguide 1 Is obtained by 

numerically summing the two contributions. 

For hybrid EH 
nm and HE 

nm modes the power-loss 

components are given below. 

The metal wall power-loss/unit length of the 

waveguide is given by; 

R2 
7T 

s 
PM 

f 
(2 Hz*2H 

z 
*+ 2H0*2H0 

r=r 
r2 dO (6.101 

02 

where Rs is the surface resistivity of the metal wall. 

using the expressions for 2Hz and 2 H. given in (6.21 and 

{6.41, and expressing the coefficients A2 and B2 in terms 

of A1 {6.61, the metal wall power-loss can be found in 

terms of A,. 

To formulate the dielectric power-loss, the 

field components in the lining are assumed to be 

unperturbed by the loss conponent of the permittivity 

as shown below; 
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writing 

2= K2' -jK 2W V/P 0E0 
(E-j IE 

then 

2 E: when 0.0002,2. R--r -20* 0001 
2 

Thus, when using very small loss tangent dielectrics, 

the complex aspect of the field is unimportant. 

The dielectric power-loss/unit length of the waveguide 

is given by; 

we Etan6 27r r2 
Pd 02ff (2E 

r-'-2 Er *+ 2E 6*2 E0 *+ 2E z*2E Z*)rdrdO 
or1 

16.11) 

where 6 is the loss angle of the lining. 

Using the expressions for the electric field 

components given in f6.31 andf6.4), and Substituting for 

the coefficients A2 and B2 in terms of A1 {6.6), the 

dielectric power-loss can be found in a closed form in 

terms of the amplitude coefficient A 

6.4.3 Power-Flow 

The average power flowing through the waveguide 

for a given mode is given by; 

Re 
f 

(V X U*).; dS 

s 

where S is the cross-sectional area of the waveguide. 
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The power flow expression is formulated in two parts 

using appropriate field expressions in the two regions. 

27Tr 
1 

27rr 
2 

Po=kf 
f(JE 

r 1H 
*-, E e 1H 

*)rdrde+,, 
f f(2 

E 
r2 

HEH *)rdrdO 

00er62 
e2 r 

The field expressions given in {6.31 and (6.41 are 

substituted in {6.121 and the amplitude coefficients 

Bl, A2 and B2 are expressed in terms of A, {6.61. The 

average power flow in the two regions can be found in a 

closed form in terms of the amplitude coefficient A,. 

For the circularly symmetric modes the two 

power-loss expressions and the average power-flow 

expression have a much simpler form, due to the non- 

existence of some of the field components. 

The attenuation coefficient, a, for the hybrid 

modes is formulated using the above Power-loss and 

power-flow expressions; 

mdx8.68 dB/M 
2P 

0 

when ri and r2 are measured in meters. 

6.4.4 HE 11 Mode Characteristic 

Figure (6.4) shows computed attenuation due to 

the metal wall-loss for the HE 11 mode as a function of 

dielect3ýic thickness. At the two extreme points r 1/r 2 

and r1=0, the attenuation coefficient of the hybrid mode 

is in agreement with that of a TE1, mode in a circular 
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Figure (6.4) Attenuation due to loss in the metal wall 
against lining thickness 
HE,, mode 

r2 . 086m E=2.25 f=7.3 GHz 

a 1.57 x 10 7 
S/M 
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waveguide filled with a lossless dielectric of relative 

permittivity E, i. e. 

R2E 
CL 

S, (f /f) 2+ -- 
ncx8.68 dB/M 

r2z0 VIE- (f 
c 

/f T2 CPI 

where f is the cut-of ff requency, Z yrj_17/_E: c000 
As the lining thickness increases the metal wall-loss of 

the HE,, mode rises rapidly. This is due to surface wave 

phenomena exhibited by this mode. The metal wall-loss 

reaches a maximum when d= ý-' 
, and further increase in 4 

lining thickness reduces the wall-loss as illustrated in 

Figure (6.4). The attenuation behaviour of the HE,, mode 

parallels that reported by Carlin and D'Agastino for the 

TE 01 mode, which has minimum attenuation for zero lining 

thickness and reaches a maximum when d= )L' 
4 

6.4.5 EH 11 Mode Characteristic 

Figure (6.5) shows the computed attenuation due 

to the metal wall-loss for the EHll mode as a function 

of dielectric thickness. At the two extreme points 

rl/r2 22 1 and rl = 0, the attenuation coefficient of the 

hybrid mode coincides with that of the TMll mode in 

circular waveguide filled with a lossless dielectric of 

relative permittivity c, i. e. 

Cc =R 
SE 

-x8.686 dE/m. 
r 2ZO vlc-- (f 

C/ 
I f) 2 
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As the lining thickness is increased the metal wall-loss 

of, the EH 11 mode rises, but falls very rapidly for further 

increase in lining thickness, reaching a minimum when 

d< 
11 

. As the lining approaches one quarter wavelength 4 

thickness, the loss increases very rapidly. This rapid 

rise is due to surface wave phenomena that takes place 

when the lining is one quarter wavelength thickness. For a 

lining greater than 
ý-I 

thickness, the metal wall-loss 4 

decreases again and reaches a second minimum when 

d= 5X' , where the attenuation coefficient is nearly 4 

40% higher than that reached at the first minimum. This 

rise is due to confinement of energy in the dielectric 

region of the waveguide. Further increase in lining 

thickness causes a third rise in the metal wall-loss and 

reaches that of the homogeneously filled waveguide at 

r, = 

6.4.6 Effect of Lining Loss Angle 

The effect of the lining loss on the attenuation 

of the EH 11 mode is shown in Figure (6.6), where 

computed attenuation due to the metal wall loss and 

metal loss plus dielectric loss is plotted as a function 

of dielectric thickness. The value of the loss tangent 

4 
used in the computation is 4x 10- At the point of 

minimum attenuation it is seen that the lining loss 

contribution is 58% of the total waveguide attenuation. 

As the lining thickness cannot be reduced for obvious 

reasons, low-loss dielectrics must therefore be used for 
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the lining. The dieledtric loss was formulated assuming 

the field components in the lining are unaffected by the 

loss component of'the dielectric and {6.111 shows that 

the dielectric loss is directly proportional to the loss 

tangent of the lining. Therefore, a drastic reduction in 

this loss component is achieved if low loss dielectrics 

are used. For example, the 58% contribution of the lining 

loss can be reduced to 12% contribution if the linin g had 

a loss tangent of 4x 10-5 instead. 

6.4.7 Effect of Lining Permittivity 

The lining thickness required to achieve low- 

attenuation condition for the EH 11 mode, is in the range 
Al 

>d>0, the upper limit is set to avoid the surface , 4- 

wave region. In order to obtain the necessary lining 

thickness required to produce minimum attenuation 

condition, the metal wall loss of the EH 11 mode is 

computed using liningsof different permittivities, in 

the vicinity of the low-attenuation region, the value of 

is nearly unity, and thus the relationship 

(X=free-space wavelength) 

is used. to obtain approximate values of lining thickness. 

Table (6.2) shows the thickness required to produce the 

minimum attenuation condition for various values of E. 

E.. .. . 1.56 2.56 3.56 4 . 56 

Xv/d 5.68 5.76 5.44 5.56 

Table (6.2) 
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The approximate lining thickness needed was found to 

be given by: 

M131 
5.6 /E: '-l 

6.4.8 Low-Loss Mechanism 

in order to identify the phenomena underlying the 

low-loss property of the EH 11 mode, the contribution of 

separate power-loss components is studied. For low-loss 

lining materials, it was shown that the power-loss 

contribution of the lining is very small, when compared 

with the conducting wall power-loss, and therefore the 

lining loss will not be considered. 

The metal wall power-loss is separated intotwo 

components; that due to the azimuthal and that due to 

longitudinal components of the magnetid field at the 

boundary r=r 2' Computed normalised metal wall-loss 

components are shown in Figure (6.7) as a function of 

lining thickness. The expression for A given in {6.4) 

consists of two parts; the first due to an E-type mode, 

while the second is due to an H-type mode. However, it 

can be seen from Figure (6.7), that in the region of 

interestj the H-type part is negligible when compared with 

that of the E-type contribution. Thus# after an initial 

rise,, the subsequent reduction in 2 He component as the. 

dielectric thickness increases is due to the trend towards 

a magnetic-wall condition at the boundary r= rl, which 

occurs when r1jr 2= At Figure (6-7). The dielectric 

thickness is then given by 

A 

4 i- 1 



- 24o 

ON 
0 

a 

" 0 
1 

- 

0 u %.. I %. 
C%j 

0 



- 241 - 

The above behaviour parallels that reported by Carlin and 

D'Agostino <5 >, for the TM 02 mode, and if it were not for 

the F-type part of the hybrid field with its associated 

Hz component, the above condition would lead to an 

attenuation minimum. However, it can also be seen from 

Figure (6.7), that the 2Hz component increases as d 

increases and the attenuation minimum condition occurs 

when rl/r 2=B, Figure (6.7), where the total metal wall- 

loss contribution is a minimum. The same agreement can 

be followed for the HE 11 mode, which does not exhibit 

a minimum because the Ha field has a stronger component 

associated with the H-type part of the field, and this 

reaches a maximum when d= -L-' , as is evident from the 4 

attenuation characteristic shown in Figure (6.4). 

6.5 TRANSVERSE FIELD PATTERN 

Two methods can be adopted in plotting the 

electric field lines in the transverse plane of a 

circular waveguide <24>. 

The first method involves solving a differential 

equation governing the contours of electric field lines; 

1 dr Er 
Y UT ýU 

The results can be obtained using Runge-Kutte process, 

with the appropriate conditions. In the lined waveguide 

two such differential equations must be solved in the 

appropriate regions, with the field expressions given in 

[6.31 and {6.41. The second method requires to express 
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the transverse field components in terms of cartesian 

components; 

EX =Er cos6 - E, sinG 

Ey =-- Er sine + Eecosl 

ý= tan- 
1 (E 

x 
/E 

y) 
(6.141 

The gradient of the electric field lines given in (6.14) 

can be found for a particular value of r and 0. This 

procedure is followed over the complete r, 0 grid and the 

appropriate points are then joined to trace the electric 

field lines. In the lined waveguide, the second procedure 

is followed using the appropriate field expressions in 

the two regions. 

Figure (6.8) shows the transverse-electric field 

configuration of the EHll mode under the minimum 

attenuation condition. It can be seen that the lining 

drastically alters the field lines from those in a hollow 

waveguide. The position of the two nulls in the electric 

field configuration of the TM mode in a hollow circular 

waveguide, moves towards the boundary r r, p as the 

lining thickness increases. Over the central region of 

the waveguide, the field shows similarity to the field of 

the TEll mode in a hollovy waveguide of radius rl which 

suggests that the EH1, mode in the lined waveguide could 

be quite efficiently excited from a smooth wall waveguide. 
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CHAPTER SEVEN 

CONCENTRIC DIELECTRIC WAVEGUIDES 
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7.1 INTRODUCTION 

This chapter is concerned with an evaluation of 

cladded circular dielectric waveguides, as shown in 

Figure (7.1), for microwave communication. The dominant 

mode of the dielectric waveguide comprises a linearly 

polarised field <21>. It is designated HE 11 and bears a 

close resemblance to the mode of similar designation found 

in corrugated circular waveguides investigated in chapters 

4 and 5. By arranging that the central core has a 

permittivity only slightly greater than that of the 

surrounding cladding, it is possible to arrange that only 

the HE 11 mode propagates with its field confined to the 

core region <21>. Other higher order modes, e. g. the 

TEO, j, TMO1, HE 21 , etC., have fields extending radially 

well beyond the core. Then if a lossy outer layer is 

provided, as shown in Figure (7.1) a substantial 

differential attenuation can be achieved between the 

desired HE 11 mode and the higher order modes. Provided 

the lossy region is not brought too close to the core, 

its. influence on the HE 11 mode can be rendered almost 

negligible. Then. the attenuation of*that mode is -ý 

given, to a good approximation, by 

7r 

,,, 
tan6 nepers/m a=- 

9 

where X9 is the guide wavelength and tanS the loss 

tangent of the interior regions. As an example, with 

'N 9=1 
cm (f = 30 GHz), the attenuation coefficient is 
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*32 tan6 3 

* 21 c2 tan6l 

rl, E: j, tan6l 

Figure. (7.1) Concentric dielectric waveguide 
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approximately 30 dB/km when tanS = 10-5. Loss tangents 

of this order have been measured for commercial 

polystyrene foam <22>. and solid polypropylene also has a 

loss tangent of this order <3 >. By comparison, copper 

waveguides exhibit <55> measured attenuation of about 

1 dB/m at f= 35 GHz, which suggests that dielectric 

waveguides could find an important place in future 

communication systems operating at higher microwave 

frequencies. 

It is noteworthy that a comparable waveguide is 

being developed for optical communication in U. S. A., U. K., 

Japan and Germany <56>. To date, the best attenuation 

figure reported for optical waveguides is 4 dB/km at a 

wavelength of 0.8pm, furthermore, there is good reason to 

anticipate an ultimate limit of about 2dB/km. The 

prospect of such exceedingly low attenuation in waveguides 

inevitably influences long-term systems planning and may 

result in impact on the microwave communication industry 

during this decade. However, because of the requirements 

for a substantial capital investments there seems a 

likelihood that conventional microwave communication 

systems will survive into the more distant future although 

there will be increased use of higher microwave 

frequencies. At these frequencies dielectric waveguides 

may find an important place. 

This chapter aims to identify suitable parameters 

for a concentric dielectric waveguide for use in the 

frequency band 30-40 GHz. The general principles can also 
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be applied at other frequencies. Our proposals are based 

mainly on electrical rather than mechanical considerations, 

and this should be borne in mind when the ultimate 

assessment is made. We begin by illustrating the 

attenuation and dispersion characteristics of the lowest 

*order modes of the waveguide and then discuss the choice 

of parameters for monomode operation. We indicate a 

prospect for efficient input/output transducers and show 

favourable group delay characteristics. Because the 

detailed formulation of the electromagnetic problems 

underlying this study have been extensively described 

elsewhere <21>, we refrain from discussing mathematical 

aspects here. 

7.2 CHARACTERISTIC EQUATION 

Figure (7.1) shows a view of the concentric 

dielectric waveguide. The central core of radius r 

comprises a dielectric of relative permittivity El* The 

function of 
I 
the cladding, rl <r< r2l of relative 

permittivity E21 (E2 < Ul), is to act as a low-loss 

support for the central core. Also shown is a thin 

lossy layer, r2 <r<r 31 which might be made from plastic 

of relative permittivity E 2.. The dielectric loss angles 

of the core, cladding and the lossy layers are 61,61 and 

63 respectively, where 63 >>61. As the lossy layer is 

very thin and its permittivity is matched to that of the 

cladding layer, its effect may be considered as a 

perturbation of the lossless structure of radius r3, 
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The characteristic equation of a lossless multi- 

layer dielectric waveguide has been formulated by 

Chan <21>, while investigating the propagation 

characteristics of the optical waveguide. General field 

components in different layers are derived for the 

azimuthal dependent hybrid and circularly symmetric pure 

modes. On matching the tangential electric and magnetic 

field components at the interface of the different layers, 

a homogeneous system of equations for the amplitude 

coefficients in the different layers is derived. From the 

condition of non-triviality of the solutions of the 

homogeneous system, the characteristic equation of the 

structure is obtained. 

Symbolically, it has the form; 

F(a.. wi, rl, r 3'611C2 n) = (7.1) 

where, $ is the phase-change coefficient, w is the angular 

frequency, and n being the azimuthal order of the mode. 

7.3 DISPERSION CHARACTERISTICS 

If the boundary r=r3 is assumed to be infinite, 

the characteristic equation (6.1) simplifies to a form 

given in < 21 >. The normalised phase-change coefficient 

for all the modes lies in the range 

C2 

where 0/ki, k= wv/-c 0p0 
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The propagation characteristics of such structures are 

independent of the change in the difference in 

permittivities between the core and the surrounding 

medium. A normalised frequency, V, has been used 

extensively in describing surface wave behaviour on 
11 

aielectric rods <57>j and optical waveguides <58>, which 

is defined as 

2-ff r1 
Tf2 {7.2) 

where X is the free space wavelength. 

The normalised cut-off frequency for different modes 

basedon an infinite cladding assumption are given In table 

(7.1),, where it can be seen that, except for the HE 11 

hybrid mode, all other modes have finite cut-off 

frequencies. For the HE,, model propagation exists down 

to zero frequency. In surface waves, the cut-off is 

defined as the condition at which the phase velocity of 

the wave is equal to that of a plane wave in the inf inite 

homogeneous surrounding medium, i. e. when ý= /c2* 

MODE Cut-off V 

HE 0 

TE 01 
TM 01 2.405 

HE21 2.80 

HE 12 EH 12 3.83 

Table (7.1) 

Cut-6ff V value of dielectric rod 
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However, an infinite cladding radius cannot be assumed 

when studying the propagation characteristics of a 

realistic dielectric waveguide at microwave frequencies. 

The exact characteristic equation for a three layer 

concentric dielectric waveguide is thus solved. The 

normalised phase-change coefficient for all the modes 

lies in the ranges; 

/62 

The first range, cannot exist when employing the infinite 

cladding assumption, as the modes will be cut-off for 

such values of ý. This part of the range is known as 

cladding mode approximation, as most of the energy carried 

by the modes lies outside the core region, and thus the 

existence of the core will have very little influence on 

the propagation characteristics. In the second part of 

the range, very good agreement is found <21>, between 

values of ý obtained by solving'17.1}, and those obtained 

using the infinite cladding approximation. This agreement 

is in accord with the observed concentration of the energy 

carr ied by the modes, in the core region of the waveguide. 

However, the cut-off frequencies of the different modes 

will obviously be different from those obtained using the 

infinite cladding approximation. The energy carried by 

the dominant HE,, mode will be mainly distributed in the 

cladding region for values of V near cut-off (V=O). As 

frequency increases the field concentration of the HE 11 

mode increases in the core region. For the higher order 
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modes, the core field concentration will occur when the 

infinite cladding approximation can be applied, i. e. 

V>2.405. Therefore in order to operate the concentric 

dielectric waveguide such that only the field of the 

dominant mode is confined to the core region, while the 

fields of the higher order modes extend outside the core 

region, the V value must lie in the range 

2.405 >V >> 0 

Figure (7.2) shows, computed results for the normalised 

phase-change coefficient as a function of frequency, for 

the dominant HE,, mode and mode of the first higher order 

triplet (HE 21, Hol, E01). 

7.4 ATTENUATION CHARACTERISTICS 

The dielectric power-loss of the waveguide is 

formulated by assuming that the field Components are 

similar to those obtained in a lossless structure# and 

then using the well known perturbation expression for 

the power-loss per unit length; 

p= wEtan6 JE12 dS 
2 

s 

(7.31 

where,, for a hybrid mode JE12 =Er2+E02+ EZ2 and S is the 

waveguide cross-section. The dielectric power-loss in 

the different layers is obtained using appropriate field 

components and corresponding values of E, 6 ýtnd S. 
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The dielectric power-loss of the outer lossy layer is 

formulated using the field components in the cladding 

region, and integrating over the area enclosed between 

r2 and r3' This procedure will no longer apply when the 

lossy layer has a large value of 6 3. For such a 

situation the problem must be formulated taking into 

account the complex permittivity of the layers. The 

average power flow in the waveguide is formulated by 

integrating the appropriate Poynting vectors over 

separate layers and then numerically summing the results. 

The attenuation coefficient is finally formulated from 

the knowledge of the average power flow and the power- 

loss of individual layers. Figure (7.3) shows, as a 

function of frequency, computed curves of attenuation for 

three waveguides with permittivity values of core and 

cladding corresponding to two expanded polystyrene foams 

of different density <59>. The loss tangents of the foams 

correspond to those measured using lOw-loss cavity 

techniques. Figure (7.3) also shows'that, over a broad 

frequency band, the attenuation of the first higher-order 

mode HE21 is significantly greater than that of the 

dominant HE,, mode. 

7.5 PARAMETRIC STUDY 

7.5.1 Introduction 

The choice of waveguide parameters is governed 

principally by the operating frequency and the 

availability of dielectric materials with low losses. 
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The aim of this study is to find suitable parameters for 

the dielectric concentric waveguide to fulfil the 

following criteria for the range of frequencies of 

interest; 

. 
(a) Dominant mode operation: 

In order to achieve dominant mode operation only 

the field of the HE,, mode must be confined to the core 

region. Then because of the outer lossy layer, higher- 

order modes are strongly attenuated, as their flelds 

extend radially well beyond the core. Therefore, the 

parameters Eli, E 
2' r1 must be chosen to assure the 

confinement of the HE 11 mode field in the core region. 

(b) Minimum outer radius: 

At optical wavelengths, the ratio of the cladding 

radius r2 to core radius r1 is chosen in the range 20-50 

mainly for reasons of mechanical strength. At Millimetre 

wavelengths and even more so at centimeter wavelengths, 

r2/rl must be restricted otherwise the outer radius of the 

waveguide will be inconveniently large. Therefore, the 

core radius r2 must be chosen to minimise the effect of 

the lossy layer r> r2 on the dominant mode field and to 

maximise its effects on the higher order modes. 

(C) Minimum-attenuation for the HE 11 mode: 

In the above range of operation the attenuation of 

the HE11 mode is dependent only on the losses in the core 

and cladding regions. Therefore, the core must be chosen 

of dielectric materials with very low loss angle. 
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(d) Maximum-attenuation for the higher-order modes: 

A substantial differential attenuation can be 

achieved between the desired HE 11 mode and the higher- 

order modes if the thickness of the lossy layer and the 

loss angle 63 are chosen correctly. 

(e) Group delay: 

in communication systems, it is desirable to 

reduce the delay distortion arising from the waveguide 

effects. Chan < 21 >, shows that the group delay change 

in the optical waveguide is proportional to the core- 

cladding permittivity difference. Therefore, for the 

concentric dielectric waveguide the difference in 

permittivity must be chosen to be as small as possible 

consistent with acceptable waveguide dimensions. 

(f) maximum excitation efficiency: 

When assessing the overall power-loss of a 

communication system employing the concentric dielectric 

waveguide as the guiding medium, the power-loss due to the 

input/output transitions of the waveguide must be taken 

into account. Obviously the transition reflection loss 

must be well below the power-losses in the waveguide, 

which are themselves very small. Therefore maximum 

excitation efficiency of the dominant HE 11 mode must be 

sought. A corrugated circular waveguide can be used to 

efficientlY excite the concentric dielectric waveguide, 

because of the similarity between the HE,, mode fields in 

both waveguides. Clarricoats and Salema <60>, show that 

for the range of frequencies of interest, the excitation 
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efficiency of such a configuration depended on permittivity 

difference, core radius, and the inner radius of the 

corrugated waveguide R. Therefore, when choosing the 

permittivity difference and the core radius of the 

waveguide, the excitation efficiency must be taken into 

consideration. 

Due to the number of parameters involved and the 

wide range of each parameter, a straight forward 

optimisation technique cannot be followed to obtain 

suitable parameters for a particular range of frequencies. 

The influence of the relevant parameter on performance is 

studied. The overall parameters of the concentric 

dielectric waveguide are then chosen to best satisfy the 

desired performance criterion. 

7.5.2 Choice of Core Radius 

The choice of core size determines the frequency 

band of operation. It is desirable to operate below the 

frequency at which higher order modes begin to have their 

field concentration in the core region. This condition 

will' lead to a choice of normalised frequency v42.405. 

if the operating frequency is chosen to be slightly below 

this frequency, e. g. V=2.2, then rl can be determined in 

terms of AE as shown in Figure (7.4), for a frequency of 

40 GHz; this frequency is chos. en as a convenient upper 

bound, AE =E1-E 2* 
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7.5.3 Choice of Loss Angle 61 

The influence of the loss angle 61, is shown in 

Figure (7.5), where it is observed that at frequencies 

above and slightly below the frequency of minimum- 

attenuation, the core and cladding loss only influences 

the HE 11 mode attenuation. This criterion confirms the 

confinement of the dominant mode power to the central 

region of the waveguide. It was found that when the loss 

is the same in the core and cladding regions, the 

attenuation coefficient a, is then given, to close 

approximation, by the expression 

a 
'T 

tan6 Ag 1 nepers/m (7.41 

where Xg is the wavelength of a plane wave in the core 

region, whose permittivity is assumed to be nearly the 

same as that of the cladding. Computed resul ts using 

{7.4) are also shown in Figure (7.5) for different values 

of 610 

7.5.. 4 Choice of Cladding Radius 

The criterion applied in selecting the outer 

cladding. radius r 2' is that at the frequency when the 
'11 

domina nt HE 11 mode has minimum attenuation, the attenuation 

of the higher order modes shall exceed that of the HE 

mode by at least one hundred times. Figure (7.4) is 

used to select values of core and cladding permittivities 

for a particular value of core radius r1. For this set of 
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parameters, the cladding radius r2 is increased gradually 

until the above differential attenuation criterion is 

f ulf illed. 

In Figure (7.6) it is assumed rather arbitrarily 

that the thickness of the outer lossy layer is r2110 when 

r2 > 2.7 cm and r215 when r2 < 2.7 cm, as there is a 

substantial tolerance on this parameter. It is also 

assumed that the loss tangent of the lossy layer is to 

have the value tan 63 = 0.1. The characteristics shown 

in Figure (7.6) are consistent with differences in the 

nature of the transverse electric field of the HE,, and 

HE 21 modes. For a core V value of about 21 the field of 

the HE,, mode in the lossy region is of the form 

exp-V(r/rl-l)l whereas that corresponding to the HE2. 

mode is of the form J {L7-Tr -1) 
hl 

As V is constant 

throughout Figure (7.6) and the slope of il Bessel 

function is negative, rl and El are inversely proportional 

if the field and attenuation ratios are to remain constant. 

The permittivities of the core region, shown in Figure 

(7.6), are representative of both solid and expanded 

types and extrapolation between them can be made easily. 

For el = 1.1, the limit in the value of r1 is due to the 

choice of AE in Figure (7.4). - 

7.5.5 cou2ling Efficiency 

Salema <59>j studied the excitation of the IIE., l 

mode in a dielectric rod using, square, circular and 

corrugated circular waveguides as launchers. The 
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corrugated circular waveguide is found to give the best 

coupling efficiency; this is due to the similarity 

between the HE mode fields in both waveguides. Further, 

satisfactory transitions between conventional smooth- 

wall waveguides and corrugated waveguides have been 

manufactured in the millimetre regime, <61>, lending 

confidence to the practicability of the above choice. 

The coupling efficiency of such a transition, shown in 

the insert of Figure (7.7), is calculated using modal 

matching method <62>, and computed results for two 

values of AE are displayed in Figure (7.7). From the 

given data, it is possible to calculate the coupling 

efficiency as a function of the frequency or the 

corrugated waveguide inner radius R, for a particular 

value of core radius rl. 

From Figure (7-7) three important practical 

conclusions can be drawn. 

M Over a wide frequency band, the excitation 

efficiency exceeds 70%. This implies a total transition 

loss at the input and output of less than 3 dB. The loss 

of the concentric dielectric waveguide shown in Figure' 

(7.1) is of the order of 40 dB/kml thus the contribution 

due to the transitions is almost negligible if kilometer 

lengths are envisaged. 

(ii) The lower the frequency and the dielectric 

permittivity, the larger the ratio between the launcher 

and the rod cross section for maximum efficiency. 
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(iii) The aperture of the coupling corrugated waveguide 

should exceed that of the core by about 1.5 times for 

rnaximum efficiency, a result which is to be expected 

when consideration is given to the nature of the fields 

in the two waveguides. 

7.5.6 Group Delay Consideration 

When formulating the group delay characteristic 

of dielectric waveguides two factors must be taken into 

consideration <63>. First, due to the material dispersion, 

which is neglected in this study because of the assumption 

that the permittivity is frequency independent, and 

secondly, the group delay on account of waveguide 

dispersion, which can be calculated from a knowledge of 

the dispersion characteristic of the waveguide. 

Computed results of the differential change in 

group delay with differential change in frequency, 
al 
afs, 

is shown in Figure (7-8), for dielectric waveguides with 

different values of core and cladding permittivities, 

where 

aT 
-1 

av 
9 Vg group velocity -V 

C-2 
Uf -a af 

3T 
it can be seen that ý-f decreases rapidly as the frequency 

is increased, and at approximately V=2.6, there is a 

singularity which implies no signal distortion. 

Theoretically this means infinite bandwidth, which, 

however, in practice, will be limited because of material 
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dispersion mentioned above. Unfortunately, this value 

of V is higher than the upper limit for dominant mode 

operation, i. e. V=2.4, this operating point is 

therefore not adopted. The influence of the dielectric 

difference A-E: is also illustrated in Figure (7.8), where 

it is seen that for case (a), AE = . 1, the group delay 

change is 0.35 ns/km over 1GHz bandwidth centred at 

40 GHz. Recently, Ravenscroft and Jackson <64> have 

described a single mode dielectric-rod waveguide 

suitable for microwave transmission at millimetre wave- 

lengths. Their waveguide resembles the structure shown 

in Figure (7-1),, with the central core, r1=2.5 cm, 

comprising polypropylene, e1=2.26, and surrounded by 

polypropylene foam of finite radius. The group delay 

characteristic of the waveguide is shown in Figure (7.8) 

case (c), where it is seen that their waveguide has a 

group delay change of 20 ns/km over 1 GHz bandwidth 

centred at 40 GHz. Evidently, waveguide (a) has 

Superior group-delay properties, although it has twice 

the diameter of (c). 

It may be concluded that group delay dispersion 

is unlikely to present a problem in the design of 

dielectric waveguides of the kind envisaged here. 

7.6 CONCLUSIONS 

We have presented the results of a parametric 

study which suggest that a homogeneous dielectric 

waveguide of outer diameter between 5- 7 cm, could 
I 
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exhibit low-attenuation at wavelengths in the range 

0.75 - 1.0 cm, where metal waveguides begin to exhibit 

unreasonably high attenuation. To Summarise the 

anticipated waveguide performance, Figures (7.9)(a) 

and (b) show attenuation curves appropriate to optimum 

designs for two different values of core permittivity. 

The design parameters have been taken from Figures (7.4) 

and (7.6). The overall properties of waveguide (a) are 

shown in the table below, for operating frequency of 

40 GHz. 

Choice of Parameters: 

PARAMETER VALUE REMARKS 

Core relative 
permittivity C1 1.11 Specified 

Cladding relative 
permittivity E2 1.01 Specified 

Core, claddifig 
loss tan6 1 10-5 Specified 

outer layer 
loss tan6 3 1071 Specified 

Core radius r1 1.0 cm Figure (7.4) 

Cladding radius r2 3.2 cm Figure (7.6) 

LOSSY layer 
radius r3 3.4 cm Figure (7.6) 

Launcher radius R 1.6 cm Figure (7.7) 
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Performance: 

PARAMATER VALUE REMARKS 

Attenuation 
coefficient HE 42dB/km Figure (7.9a) 

Attenuation 
coefficient, HE 21 5OOOdB/km Figure (7.9a) 

Excitation 
efficiency 95% . 2dB Figure (7.7) 

Group delay 
change 0.35ns/km Over 1 GHz B. W. 

I Figure (7.8) 

The performance of the concentric dielectric waveguide 

system, while not as good as either the optical or TE 01 

mode systems, deserves consideration for use in 

telecommunication applications at higher microwave 

frequencies. 

In a practical system, protection against 

moisture penetration into the dielectric waveguide could 

be achieved by introducing a weather resistant layer 

around the outer lossy layer or alternatively by making 

that layer itself weather resistant. Besides application 

in digital microwave-communication systems, as discussed 

by Ravenscroft and Jackson <64>, dielectric waveguides may 

find use in millimetre radioastronomy <65> and in 

millimetre-wavelength microwave-antenna systems, where 

conventional metallic waveguides exhibit prohibiting high 

losses. The waveguides we have described are similar to 
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those investigated in <60> as feeds for microwave 

antennas, and these are known to exhibit little 

mechanical flexibility; for this reason we have not 

addressed the problem of radiation losses arising owing 

to bends. Nevertheless, the problem has been considered 

recently by Lewin <66>, and his analysis could be used if 

sharp bends were envisaged as forming part of a practical 

dielectric-waveguide system. 

Another factor that we have not considered here 

is the loss arising from scattering due to inhomogeneities. 

This problem has been discussed by Clarricoats and Chan 

<67> in the context of optical waveguides. The extension 

of their results is probably well justified for solid 

dielectric materials but may be questioned in the case of 

low permittivity foam materials. At millimetre wavelengths, 

scattering losses due to inhomogeneities will be 

significant and extrapolation of the results presented 

here to wavelengths around 2 mm should be made cautiously 

if the use of foam materiaLis envisaged. However, in the 

absence of reliable data on the nature of inhomogeneities 

in foam materials, we have deferred this problem. 

Finally, recognising the conclusion reached by 

Yeh <36> that a thin elliptical dielectric rod operating 

in the dominant even HE,, mode has much lower loss than a 

circular rod of identical cross-sectional area. A 

concentric dielectric waveguide of elliptical cross- 

section with high eccentricity might provide lower 

attenuation values at microwave frequencies than the 
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waveguide studied. 

It is reported <22> that Imperial Chemical 

Industries (U. K. ) are developing an ultra low attenuation 

polypropylene andiconceivably before the end of the 

century, the era of the metallic waveguide will have 

passed. 
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CHAPTER EIGHT 

CORRUGATED RECTANGULAR WAVEGUIDES 
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8.1 INTRODUCTION 

Elliptical and circular structures with modified 

boundaries have been investigated in previous chapters. 

In this chapter the concept is extended to the rectangular 

structure with the aim of identifying configurations 

having favourable propagation and attenuation 

characteristics. 

The rectangular corrugated waveguide with 

corrugation on two opposite sides, Figure (8.4), could 

be easier to manufacture than the circular corrugated 

waveguide and also have the advantage of stable modes, 

whereas the latter has the problem of mode polarisation 

rotation associated with slightly elliptical cross- 

section. 

In section 2 the major power-loss components of 

the dominant mode in a smooth wall rectangular waveguide 

are identified and the nature of wall modifications, 

needed to reduce these losses, are discussed. The most 

promising structure As shown to have transverse 

corrugations on the two walls perpendicular to the 

electric field. The possibility of obtaining a closed 

form solution <68> of Maxwell's equations in the 

rectangular structure with impedance walls is also 

discussed in this section. 

Field expressions and the characteristic equation 

of the corrugated waveguide are formulated in section 3, 

and the existence of two types of waves is explained. 
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The behaviour of the solutions of the characteristic 

equation are discussed and the dispersion characteristics 

of ýhe waveguide are obtained. 

In section 4 the attenuation coefficient of the 

corrugated structure is formulated and published 

attenuation results of Baldwin and McInnes <9 > are shown 

to be in error. The major power-loss components are 

identified and it is shown that a tall corrugated wave- 

guide could have an advantage, in attenuation, over the 

smooth wall circular and rectangular waveguides. it is 

also shown that the corrugated circular waveguide has an 

attenuation advantage over the rectangular corrugated 

structure. This is attributed, in part, to higher 

relative field strengths in the slot and to the presence 

of an additional loss component in the rectangular 

structure. 

The chapter is concluded with experimental 

verification of the theoretical results obtained in 

sections 3 and 4, using a resonant cavity. 

8.2 CHOICE OF WAVEGUIDE 

The attenuation of the dominant TE 10 mode 

(neglecting surface roughnesses) in a smooth wall 

rectangular waveguide is qiven by the expression <55> 

8.686R 
{1/b +2 (f 

c 
/f) 2 /a) dB/m 

where the electric vector is normal to the side a. 
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The first term is the contribution of the two 

horizontal walls, while the second term is due to 

vertical walls. It is evident that at frequencies above 

cut-off (fc), the contribution of the first term will be 

predominant. The horizontal and vertical wall losses in 

a square waveguide are shown in Figure (8.1) where it is 

seen that in order to achieve lower losses the search 

must be directed towards finding a structure which will 

provide weaker fields at the two horizontal walls. 

8.2.1 Walls Modification 

There are four possible ways of modifying the 

fields near the two horizontal walls: 

(a) Coating the horizontal walls with a dielectric 

material: 

By choosing appropriate thicknesses and 

permittivities of a low loss dielectric material, it would 

be possible to create a quarter-wave transformer action, 

and hence reducing the field strength at the metal- 

dielectric interface. Experience with the lined circular 

waveguide, chapter six, suggests the possibility of 

obtaining lower attenuation figures, but not as attractive 

as figures offered by other structures. 

(b) Extending the height of the waveguide: 

-, . 
This will cause an appreciable drop in the 

attenuation, but suffers the disadvantage of permitting 

a large number of modes to propagate <55>. 
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(c) Longitudinal Corrugation: 

When the waveguide is operating in the TE 10 mode 

there exist two magnetic field components, axial, Hz 

acting at the four walls and transverse, Hx at -the two 

horizontal walls. The loss due to the Hx component is 

very much greater than the loss due to the Hz component 

at the two horizontal walls as shown in Figure (8.2). 

Longitudinal corrugations of appropriate depth can reduce 

the power-loss due to the transverse current flow in the 

walls. As its contribution is very small, one would not 

expect a large decrease in attenuation due to the 

presence of longitudinal corrugations. 

(d) Transverse Corrugation: 

From Figure (8.2) it would seem that transverse 

corrugations having quarter wavelength depth would be the 

most feasible method for reducing the longitudinal 

currents due to Hx. Furthermore, if the corrugations 

reduced the number of modes existing in the waveguide, 

then method (b), could simultaneously be utilised. 

From the above discussions it was decided to 

study in detail a rectangular structure with transverse 

corrugations on the two horizontal walls. 
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8.2.2 Rectangular Waveguide with Im2edance Walls 

y 

x 

z 

Figure (8.3) 

Figure (8.3) shows a rectangular structure with impedance 

boundaries Zl, Z2' Z3 and Z4 where 

Ex /H Z. 2=Tz /H 
x y=o, b 

Z3 =±Ez /H z4+Ey /H x=0a 

The impedance boundaries could be either 

isotropic z Z 21 z3 z4 e. g. proposal (a) or, 

anisotropic Zl Z21 z3 Z4 e. g. proposal (c) and 

(d) section (8.2.1). 
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The field equations in the above structure will have a 

closed form solution if and only if the condition 

z1z3-z2z3+z2z4 f8.11 

is satisfied <68>. The choice of transverse 

corrugations at y0 and b, creates impedance walls 

having Z, =0Z3Z 4' and therefore a closed form 

solution of the field equations is possible in the 

structure. However, the field equations of a rectangular 

structure with transverse corrugations on all four walls 

cannot be written in a closed form. 

8.3 Rectangular Corrugated Waveguide 

a I- 

h 

4' 

f 

b 

ri 
i 

-I. - t -4- -10- 

Figure (8.4) 
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The geometry of the rectangular corrugated waveguide used 

in this study is depicted in Figure (8.. 4). The origin of 

the cartesian system of co-ordinates is chosen to be at 

the centre of the waveguide, and the structure is divided 

in two regions; 

region 1- b/2 <y< b/2 

region 2 -(b/2+h) <y< -b/2 - a/2 <x< a/2 

(b/2+h) >y> b/2 

I 
The analysis to be derived neglects the dependence of the 

solution on the width of the slots and the thickness of 

the teeth. The interaction of modes between consecutive 

slots is also neglected. Higher-order space harmonics 

are neglected in region 1. The phase-change coefficient 

of the first spatial harmonic ýz will be used in the 

analysis, where the phase-change coefficient 0 
zn of the 

(n+l) th 
spatial harmonic is given by 

(2nTr) 
zn z g+t 

The boundary condition at y=± b/2 is assumed to 

be a continuous impedance transverse to the slots, z1=0. 

Thus the only fixed boundary condition assumed is that 

the electric field parallel to the corrugation edge at 

b/2 is zero. This boundary condition is 

independent of the type of modes supported by the 

styucture. 
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8.3.1 Field Equations 

Solution of the wave equation, in region 1 is of 

the form 

1 Ez =C1 sin(Kxx+e)sin(K y Y+Y) 

where 

mTT/a m, = 0,2,41 e=0 asymmetric modes 

m=1,3,5, e= w/2 symmetric modes 

and when the slot depth h is one quarter of a slot 

wavelength 

rir/b 0,2,4, 

3,5, 

C1 is an amplitude coefficient. 

Two types of waves can be supported by this 

structure depending on 
. 
whether KY is real or imaginary. 

in the former case the modes supported are similar to 

those supported by the smooth wall waveguider while in 

the latter case the modes do not exist in the ordinary 

rectangular waveguide, and their energy is bound to the 

corrugated surface and decay in an exponential manner 

towards the centre of the waveguide, i. e. in a manner 

similar to a surface wave structure. 

The field components are obtained using App. 

with Yl = JE 2=1. Assuming the guide is excited by a 

vertically polarised field 1 Ex = 0, then 
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H 
ßz- f DjEZ 

dy 1Z wp 0 
ax 

zKx =C1 wp K cos(K 
x X+8)cos(K 

y 
Y+Y) 

= jc m sin (Kxx+O) cos (K Y+Y) x1 wp 0Kyy 

K 
Hy = -jc x cos(Kxx+8)sin(K y+y) 11 wp 0y 

I 
Ey = -jC 

Lý- sin(K x+O)cos(K y-ýy) 11Kyxy 

where 

Kk2_ax2+Xy21am2=k2_K 

and k= wrll--e- = 27r/X. 
00 

For the case Ky= jK 
y 

', solution of the wave 

equation in region 1 has the form 

1 Ez =c1 Isin(K 
x x+O)sinh(K y 

ly+jyl) 

where 

Y' = or 7r/2. Kc2=k2-az=Kx2_ (K 
y 

1)2 

The slots are thouýht of as rectangular 

waveguides supporting an infinite number of modes, 

{8.21 

producing standing waves in the slots. Experience with 

the corrugated circular waveguide and the discussions in 

<4 >, indicate that it is a good approximation to assume 

TE. 0 modes in the slots, i. e. modes with Ez, Hx and Hy 
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field components as compared with Ez, He and H. in the 

corrugated circular waveguide. 

As the slot width, g, is very much smaller than 

the guide wavelength, the reasonable assumption is made 

that only the dominant TE10 mode will be sufficiently 

unattenuated to be reflected from the outer metal wall of 

the slot and so produce a standing wave in the slot. The 

condition g << X9 is also being made use of in removing 

the z variation of the slot fields. 

The field components in region 2 are therefore 

given by; 

Ez =c2 sin(K x x+O)sin{Bm(b/2+h-y)) 

Hx = -jc 
we 0am sin(K x+e)cosfa (b/2+h-y)l 

22 kz xm 

Hy = -jc 
0x cos(K x+O)sin{$ (b/2+h-y)l 

22 k2 xm 

The time factor exp(jwt) is assumed in the above 

expressions. The assumption that only the TE10 mode 

exists in the slots implies that only modes with single 

X-variation dependence will be supported in the 

propagating region, i. e. m=1. 

8.3.2 Characteristic Equation 

The characteristic equation of the structure is 

obtained by equating the surface impedance z2 of region I 

to that of region 2, at the boundary y= ±b/2. 
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Ky real -> ßi tan(ßlh) = -Y, y 
tan(K 

y 
b/2+-y) 

Ky imaginary -* ýjtan(ýjh) =Ky 'tanh(K 
y 

lb/2+jyl) 

The modes generated in the case y=0= y' are designated 

EH ln modes, and those generated by setting y= w/2 = yl 

are designated HE ln modes, where the integer n>0 shows 

the n 
th 

root of either of the two cases above. Typical 

dispersion characteristics of the corrugated structure 

are shown in Figure (8.5), where a=0.0228m, b=h=0.01ol m. 

For each particular mode there are three points 

which can be evaluated using simple algebra. The table 

below shows values of ýl at these special points and with 

the aid of equation {2.81 the appropriate frequencies can 

easily be found. 

MODE 
0z=0 

Low frequency 
cut-off 

az=a 1 
K becomes jK 

yy 

0 

-* a* z 
High frequency 

Cut-off 

HE n M 

n7T 

h+b/2 
n7r 

_(2n+l) 
IT 

2h 

EHm 
(2n+l) 7r 
2h+b 

tan(a h)=2/b (2n+l) 7r 
2h n 

Table (8.1) 

The "cross over point" (K 
y -*jK y 

') shown above is not the 

point at which Oz = k, i. e. the mode becomes a slow wave 

with increasing frequency, this point occurs beyond the 
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the cross over point, and it approaches the fast-slow 

wave point in the limit a -* co. 

The above table shows that the cut-off frequencies 

of the corrugated guide coincide with those of a smooth 

wall guide of height (2h+b) and width a. In the case 

y=0 the cut-off frequencies are those of modes with 

suffix (m, 2n) and for y= 7/2 they coincide with modes 

having (m, 2n+l) suffix. 

8.3.3 Mode Recognition 

Mode recognition based on the nature of the modes 

at cut-off is not very profound in the case of the 

corrugated rectangular structure, as all modes will have 

a TM type cut-off (Hz = 0) when az = 0, except for the 

case n=0, when it is a TE10 type cut-Off. This 

phenomena occurs due to the setting of E. = o, in the 

original analysist as explained below. 

In a smooth wall rectangular guide the following 

field components remain finite at cut-off: 

TM Ez, Hxj, Hy 

TE Hz, E_X, Ey 

But in the analysis we have assumed that Ex =0 for all- 

rnodes, and hence a TE 
mn 

(n>0) type mode will not exist at 

cut-off in the corrugated rectangular waveguide. While 

for a smooth wall circular waveguide the fields 

components that remain finite at cut-off are: 
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TM -+ Ez, He, Hr 

TE -Hz, Ee, E 

and as none of the components is set to zero in the 

analysis of the corrugated circular waveguide <33>, modes 

possessing TE or TM type cut-off exist in the corrugated 

circular waveguide. 

Mode recognition based on the modes's nature 

when the slot depth is one quarter of a slot wavelength 

deep seems to give-a better picture in naming the modes; 

at y= ±b/2 Y0 Hz 0 thus HE type 

Y w/2 Ez0 thus EH type 

8.3.4 Single_Mode Operation 

The operating frequency for low loss condition 

must be well below the cross-over frequency Ky -0* JK 
y 

'r as 

at frequencies above this most of the modeli power is 

carried near the corrugated surface, and high losses are 

expected. 

For wide-band low loss unimode operation it is 

adequate to ensure that the cross-over frequency of the 

nE In mode is below the low frequency Cut-off of the EH In 

mode. Furthermore, the high frequency cut-off of the 

HE 1 (n-1) must be below the low frequency cut-off of the 

HElr. mode. The first condition yields h> nb, and the 

latter gives h> b(2n+l)/3, which is implied in the first 

results for n'> 1. The choice of slot depth might prove 
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useful in providing a unimode region, but does not imply 

low loss condition. 

Clarricoats and Olver <2 > demonstrated that 

the point of minimum attenuation, in a corrugated 

circular waveguide, occurs at a frequency when the slot 

depth is between X/3 and X/4. 

As the slot wavelength differs from the free 

space wavelength, then we must ensure that the mode will 

not start to propagate beyond a frequency where the slot 

depth is one quarter of a slot wavelength. For the HE 

type modes, the cut-off frequency occurs when Olh = n7r/(I+c),, 

where c= b/2h. 

The quarter wavelength condition, h= 7r/2,, 

for the HE 11 mode is satisfied if e>1, which is 

contradictory to the wide-band unimode condition derived 

above. 

8.4 ATTENUATION 

The corrugated rectangular structure was analysed 

by Baldwin and McInnes <9 >, and their results showed a 

substantial advantage in attenuation over the TE 10 mode 

propagating in a smooth wall rectangular waveguide of 

comparable dimensions. For certain values of slot depth 

they reported an attenuation figure of -lOdB/Km, as 

compared with -llOdB/Km for the smooth wall waveguide. 

They also derived an approximate attenuation formula'for 

the corrugated structure under special conditions. 
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A numerical error was discovered in their 

attenuation results, which eroded away the attenuation 

advantage over the smooth wall rectangular waveguide. 

Their approximate formula was found to be incorrect, as 

they have neglected a substantial loss component. 

In this section we will discuss the conditions 

leading to an improvements, in attenuation, over the 

smooth wall waveguide. 

8.4.1 Power Expressions 

The expression for the power flow in region 1 is 

formulated in the usual manner and expressions for the 

wall loss are derived using perturbation techniques. 

Surface roughnesses are not included. Expressions for 

the power losses over a single slot are given below for 

the two cases Ky real and imaginary, with the appropriate 

values of y and y'. The attenuation coefficient, a, is 

finally obtained using the expression; 

5 
Ep 

8.686 i=l 
- dB/M. 2 (9+t) p0 

Po = Power flow in region 1, over the area (axb) 

ab$ m 
2s 

zc 2{1+COS (2y)sinc(bK 
8wp K, 1y 

0y 
Po= 

abo m 
2a 

Z-7 C 12{cos(2y')+sinhc(bK 
8wp 

0Ky 
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p1= Power loss on the transverse slot walls, 

over the area 4(axh) 

w2c02 ahR s p-C fk4(a2-K sinc(20 h)) 
1 2k4 20mxm 

P2 = Power loss on the slot base, over the area 2(axg) 

w2c02Rs agO 
m2 

24 

P3ý: Power loss on the axial slot walls, over the 

area 4(hxg) 

2c02 
ghKx 

2Rsc22 

{1-sinc(2ý 
m 

h)l 
3 k4 

P4 = Power loss on the teeth edge, over the area 2(axt) 

at cos 2 (K 
y 

b/ 

- 

2+y) RSC 
2{j< 20 2+a 41 

2w4p 
0 
-Z-K 

y, 
1xzm 

P4 '": 

0 

at cosh 2 (K lb/2+jy')R 
v'SC 12 {K 2a 2 +0 41 

2wzpo W. K 
y 

9z 1xzm 

Power loss on the vertical smooth walls, over 

the area 2{bx (g+t) I 

]KX 2 (g+t) bRs 
C. 2(02 +(S 2+K 2)COS(2y)sinc(K b)) -2w2po, 7KY2 mzyy 

p5 = 

x 
2(g+t)bRs 

Clt2{0 2cos(2y')+($ 2 +K 2)sinhc(Ky'b)) 
y 2w'j. ý Kymz 
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where C /C sin (ý h) sin (K b 
12m. yry) 

C 11C sin(ý h)/sinh(K Ib 12my ý+jy, ) 

The ratio of the constants C1 /C 2 and CI I/C 
2 

were obtained by equating the E_ components at y= ±b/2. 
19. - 

At this value of y the assumption that the slot width 

g is very much smaller than the guide wavelength in 

region 1, permits the existence of a continuous constant 

axial surface impedance, thus removing the field 

dependence in region 1 of the propagation direction. The 

common factor expj(wt-ýzz) is therefore replaced by 

(axpj(wt) at this value of y. 

6.4.2 Low Attenuation Characteristic 

In order to identify modes possessing the 

property of low attenuation, over a reasonable band 

width, and which will propagate with the least possible 

number of propagating modes, our attention must be 

focussed on the following: 

(a) Yly must be real; thus avoiding the slow wave 

region where most of the power is carried near the 

corrugation surfaces, giving rise to high losses. 

(b) The tangential fields at y= tb/2 must be weak; 

this condition is fulfilled by the HE type mode, 

(c) Least possible nunber of propagating modes; the 

influence of normalised slot depth on the normalised 

high frequency cut-off is shown in Figure (8.6), which 
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could be made use of in conjunction with the normalised 

low frequency cut-off, Figure (8.7), to minimise the 

number of propagating modes at a particular value of wa/c. 

(d) Large values of h must be avoided; as this will 

cause high slot losses. 

8.4.3 Attenuation Characteristic 

The attenuation characteristic of the first few 

modes supported by the corrugated structure are shown in 

Figure (8.8) for a waveguide with a=0.0228m, b=0.0101m, 

h= 0-0101m, g=0.005m, t =0.0005m. All modes have a 

minimum of attenuation. Beyond the frequency for minimum 

attenuation the modes, except HE10, approach their cross 

over frequencies, where high losses are expected. The 

losses of the EH modes are higher due to their rapid 

approach to the cross over point as seen in Table (8.1) 

and Figure (8.5). 

The slow wave nature of the HEIO model and its 

rapid approach to the high frequency cut-bff makes this 

mode unsuitable for communication purposes, 

The HE,, mode is used in corrugated rectangular 

horns due to its uniform polarisation and has been studied 

by several authors <10>. For long distance communication 

this mode would be used because of its low attenuation 

property, and it could be supported with minimum overmoding. 

The attenuation advantage of the HE 12 mode cannoýt 

be utilised as at such high frequencies the waveguide 
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will be grossly overmoded. 

In the sections to follow the properties of the 

HE,, mode will be investigated. 

8.4.4 Comparison with Published Results 

Attenuation results in dB/m for acorrugated 

rectangular waveguide are plotted for various slot 

depths in Figure (8.9). On the same figure, the 

attenuation results obtained by Baldwin <10> are also 

shown - 

Two significant errors were found in Baldwin's 

work: 

(a) A numerical error was discovered in the 

calculations of the attenuation coefficient. 

(b) A false assumption for narrow-slots under the 

quarter slot-wavelength condition. 

M The dispersion characteristics obtained were in 

agreement with Baldwin's available characteristics. His 

expressions for the losses of the HE 11 mode were found to 

be correct, but when calculating the attenuation 

coefficient a very large difference in the numerical 

values was observed, as shown in Figure (8.9). 

Using Baldwin's available reSUltS an approximate 

correction factor for his attenuation results was found to 

7-/-E- be (Zo/h) ZO = rPO 
0, 

h is slot depth in mm. 
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i. e. a BALDWIN X(z 0 
A) =a CORRECT 

(ii) Baldwin suggested that under the quarter wave- 

length slot depth condition, the only significant loss 

component was that due to the broad walls of the slot, 

Pl, and hence arrived at an approximate expression for 

the attenuation coefficient. The invalidity of this 

assumption is demonstrated in Figure (8.10), where the 

normalised power loss components of a square corrugated 

waveguide are shown. It is seen that at the frequency 

where the slot depth is one quarter of a slot-wavelength, 

the contributions of the vertical smooth walls PS, and 

of the slot base P2, are of the same order as the broad 

wall base Pl, and thus the former two components cannot 

be neglected. 

8.4.5 Parametric Study 

The influence, on the attenuation coefficientr of 

different parameters has been studied in order to find 

circumstances leading to an advantage in attenuation over 

the smooth wall waveguide. The difficulty in finding an 

optimum slot depth was the optimisation of the two 

dimensions a and b at a particular frequency. For small 

values of b/A (X=21r/k), the optimum slot depth was found 

to be very sensitive to changes in the value of wa/c, as 

shown in Figure (8.11), and deep slots were necessary to 

obtain the minimum attenuation condition. The overall 

slot loss was therefore high and a disadvantage 'in 



- 303 - 

10-4 

0 
r-4 

0 
P4 

lo- 

lo- 
6 

\ 

\ I. 
/ \\ 

1" \\ 
\\ 7/ 

N 
N 

I I 

-- 

6 10 
Fre4uency GHz 

Figure (8-10) HE,, mode normalised power loss in square 
corrugated waveguide 

a=4. Ocm b=4. Ocm h= . 8cm 

- Pl p2p 



- 304 - 

attenuation was observed. 

The sensitivity of the slot depth for large 

values of b/X was found to be less and shallower slots 

were needed to produce the minimum attenuation condition 

as shown in Figure (8.12). Due to the decrease in slot 

depth, and weaker fields near the slot edge, the 

attenuation coefficient had lower values for corresponding 

values of wa/c. 

8.4.6 The Tall Waveguide 

The major loss components of a corrugated square 

waveguide are shown in Figure (8.10). It is clear that in 

order to obtain lower values of the attenuation 

coefficient, a means must be found to reduce these losses, 

preferably the slot losses, as this consists of two 

components. In order to specify the means by which the 

losses can be reduced, we will study the normalised loss 

expressions when the waveguide's slot depth is one 

quarter of a slot wavelength, i. e. 

. 
0mh = 7T/2 1Kyb= 7r when y=0 (HE modes) 

After simplification it can be shown that the significant 

normalised losses are proportional to; 

/P 
0 al/(b3a z)IP 2/po ctl/(b 3 $Z) and P5/Po al/Oz 

As increasing the b dimension will cause a decrease in 

the value of Ky and hence an increase in the value of 
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ýz, eqn. f8.21, it follows that increasing the b 

dimension of the corrugated waveguide will cause a 

substantial decrease in the slot losses and a marginal 

decrease in the vertical smooth wall loss. The normalised 

losses of a corrugated tall waveguide are shown in Figure 

(8.13), where a decrease in all components is seen when 

compared with those of a square corrugated waveguide, 

Figure (8.10). 

There are two more advantages in increasing the b 

dimensions: 

(1) Due to the decrease in the value of Ky the 

frequency at which the minimum slot loss condition occurs 

will move further away from the cross-over frequency, 

iK = 0, thus occurring at lower frequencies. 
Y. 

(2) The low frequency cut-off of the HE,, mode is 

lowered, which provides a larger bandwidth Of propagation 

as the cross-over frequency is'not altered. 

A disadvantage in increasing the b dimension is 

the increase in the number of propagating modes as shown 

in Figure 

8.5 COMPARISON OF WAVEGUIDES- 

8.5.1 Smooth Wall Waveguides 

In order to visualise the advantages, or 

disadvantages, offered by the corrugated rectangular 

waveguide two comprisons can be made; 
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(a) The decrease, or increase in the attenuation 

coefficient when compared with that of an uncorrugated 

rectangular waveguide operating in the TE 10 mode. 

The decrease, or increase, in the number of modes 

supported by the corrugated structure when compared with 

the smooth wall structure. 

Both comparisons should be made at the same 

frequency and between structures of comparable 

dimensions. The two comparisons are shown in Figure (8.14) 

where the attenuation coefficient of the TE 10 mode in a 

smooth wall rectangular waveguide is plotted as a function 

of the waveguide height. The operating frequency is 

maintained at 9.0 GHz. On the same graph is shown the 

attenuation coefficient of the HE 11 mode in a corrugated 

waveguide possessing the same internal dimensions. The 

total number of propagating modes in the two types of 

waveguides are also given in Figure (8.14), with the 

assumption made that these are the TE 
. 1m, TM lm' IIEjm and 

EH Im modes. So, by corrugating the two surfaces of a 

smooth wall waveguide, an advantage in attenuation is 

achieved and a reduction in the number Of propagating 

modes is observed. A much greater advantage in 

attenuation is seen if the comparison is based on 

structures supporting the same number of propagating 

modes. 

Figure (8.15) shows an alternative attenuation 

comparison, illustrating the frequency dependence, 
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in which single mode operation is maintained for the 

smooth wall rectangular, circular and the corrugated 

rectangular waveguide. It is observed that the 

rectangular corrugated waveguide offers an attenuation 

advantage over both most commonly used waveguides. 

Unfortunately, the size of the new waveguide is large and 

the cost of producing the waveguide might erode the 

attenuation advantage gained by corrugating the surfaces. 

8.5.2 Corrugated Waveguides 

Although the corrugated rectangular waveguide can 

exhibit an attenuation advantage over the smooth wall 

circular and rectangular waveguides, Figure (8.16) shows 

that the attenuation is always higher than that of a 

corrugated circular waveguide having the same perimeter. 

In order to give a physical explanation of the 

lower attenuation characteristics of the circular 

waveguide, the power-losses at the slot base and the 

slot sides of the corrugated waveguide, are plotted as a 

function of frequency in Figure (8.17). When comparing 

these losses with the losses obtained in a corrugated 

square waveguide, Figure (8.10), it is immediately 

recognised that the loss contribution of the uncorrugated 

sides P5, causes the large degradation in the attenuation 

coefficient of the square waveguide. The magnitudes of 

the normalised electric field strength in the squarej 

rectangular and circular corrugated waveguides are 

plotted in Figure (8.18) as a function of normalised 
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waveguide dimension. The average electric field. strength 

at the slot edge (y=±b/2, r=r 1) is found to vary in 

proportion to the slot power loss in the individual 

waveguides. The decrease in the field strength for the 

tall rectangular waveguide is clearly illustrated, and it 

is also observed that the field strength at the 

corrugation edge of the circular waveguide is the 

lowest. 

8.5.3 Fully Corrugated Rectangular Waveguide 

So far we have demonstrated the feasibility of the 

method described in section 8.2 in reducing the losses of 

a smooth wall waveguide by corrugating the two surfaces 

normal to the electric field and by increasing the 

dimensionsof the other two sides. 

In order to further reduce the losses of the 

tall corrugated waveguide a method similar to the one 

described in section 8.2 must be adopted. The part - 

played by the dimensionsof the smooth surfaces in 

lowering the losses of the corrugated surfaces was 

described in section 8.4 where it was also shown that 

the contribution of the smooth surfaces was very 

significant. Therefore modification of the remaining 

smooth surfaces must be made in accordance with the 

contributions of the axial and transverse currents. The 

smooth wall loss expression P 5, derived in section 8.4 

shows that the ratio of axial to transverse magnetic 

field is of the form sin(K y 
b)/(K 

y 
b) which is always less. 
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than 1 for Kyb>0. Thus by transversely corrugating the 

two vertical walls a reduction in the loss component P5 

is probably expected, particularly at frequencies well 

below the cross-over frequency. Therefore the fully 

transversely corrugated tall structure is expected to 

provide lower losses for the same modes supported by the 

tall corrugated waveguide described in the previous 

sections. 

The condition {8.11 described in section 8.2 is 

not satisfied for the fully transversely corrugated 

structure as this configuration requires Z1=0=Z 41 
z2 pi 0 and Z3 7ý 0' thus it is not possible to obtain a 

modal solution in such structure. Bryant <7 > has 

presented an analysis for the fully corzugated waveguide. 

This is in error; the author has overlooked the boundary 

condition corresponding to Z2. 

8.6 EXPERIMENTAL RESULTS 

Due to the low values of the attenuation 

coefficient of the corrugated rectangular waveguide and 

manufacturing difficulties in construction of long 

sections of the waveguide, a method employing short 

sections of the waveguide must be adopted for measuring 

the predicted attenuation coefficient. One simple method 

is to form a resonant cavity out of a short section of 

the waveguide. The losses of such resonating system can 

easily be related to the resonant frequency of the 

system, thus enabling the assessment of the attenuation 
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coefficient of the waveguide. 

A section of a waveguide, L, sandwiched between 

two short circuited plates, providing coupling to the 

waveguide's wavelength by the equality L= mX g/ 
21{8.31, 

m is an integer. A measure of the strength of the 

resonance is given by the 'Ql =f0 /Af, fo being the 

resonant frequency specified by eqn. (8.31 and Af is the 

difference between the two frequencies where the power 

output has fallen to half its peak value, Af is solely 

determined by the losses in the cavity, and consistgof 

two parts A1f and A2f The former is due to wall losses 

and is given by a= 
7rý if 

v- group velocity, while the v99 
latter is due to the coupling holes and the losses on the 

end plates, which is inversely proportional to the length 

of the cavity <23>. Thus, 

Af =A1f+A2f 

The attenuation coefficient (ax8.686)dB/m is readily. 

obtained from a plot of Af against l/L. 

A multi-section cavity was designed to be 

resonant at a frequency of 9 GHz, a section of which is 

shown in Figure (8.19). The edges of each section were 

then painted with silver paint, ensuring good electrical 

contact, and added to previous sections placed in the 

circuit shown in Figure (8.20). The resonant frequency 

was located by using a swept frequency source. A 'stable 

I 
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H. F. signal generator, producing a frequency f1 was 

introduced to frequency modulate the backward wave 

oscillator of the swept frequency source. The swept 

frequency source was then generating three frequencies 

at any given time, f0, f 
0- 

fl, fo+fl. The sidebands could 

be used to calibrate the frequency scale. The half power 

points are found by inserting 3 dB attenuation in the 

circuit. These points for cavities of different lengths are 

plotted against the inverse of the length in Figure (8.21) 

and the ordinate interception was found using a least- 

squares fit using first order orthogonal polynomials. 

A very good agreement was obtained between -the 

designed resonant frequency and the observed resonant 

frequency, thus confirming the calculated guide wavelength. 

The predicted attenuation coefficient using the analysis 

presented in the previous sections was found to be 

1.601 x 10- 2 
dB/m. The calculated coefficient using the 

experimental results was found to be 1.8 x 1072 dB/m. 

The experimental error introduced by the swept 

frequency technique is of the order of 5% <23 >. The 

percentage difference between measured and theoretical 

results is nearly 12%. A nominal value for the 

conductivity was used in the calculations, this value is 

slightly higher than the value obtained from measurements 

of conductivity. The correct value of the conductivity 

will thus increase the surface resistivity of the 

material bringing the theoretical attenuation value closer 

to the experimental value. 
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CHAPTER NINE 

CONCLUSIONS 
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9.1 1 SUMMARY OF MAIN CONTRIBUTIONS 

In preceding chapters a variety of cylindrical 

structures guiding electromagnetic energy have been 

investigated. The main concern of the study was to 

describe the effects of the shape and the nature of the 

boundary on the propagation characteristics of the guided 

waves, leading to favourable attenuation characteristics. 

The main contributions of the individual chapters 

(identified by number) are given below: - 

2. Smooth Wall Elliptical Waveguides; 

Basic correction to the classic attenuation 

results obtained by Chu <14>. 

(ii) Correction to the surface impedance formulae 

derived by Falciasecca, et al <15>. 

(iii) Formulation of the surface curvature-dependent 

effect on the attenuation and surface impedance in 

waveguides. 

(iv) Identification of a family of Mathieu functions, 

different from the established ones, which appear 

to have been almost overlooked in the literature. 

The last contribution stems from a discussion on 

Mathieu functions related to the elliptical waveguide 

problem and it appears in Appendix ill,. 
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Corrugated Elliptical Waveguides; 

Formulation and solutions of the characteristic 

equation. 

(ii) Mode classifications and attenuation results. 

4. Influence of Slot Shape on the Performance of a 

Corrugated Circular Waveguide; 

The principal effect of non-rectangular 

corrugations is on the slot depth required to 

produce the open-circuit condition in the 

surface-impedance-model. 

(ii) The attenuation and radiation characteristic of 

the corrugated waveguide with non rectangular slots. 

5. A New Mode Filter for use in Corrugated Circular 

Waveguides; 

The monomode optical waveguide features are 
I 

applied successfully in the design of a mode 

filter for use in overmoded corrugated circular 

waveguides. 

(ii) Elimination of the undesired modes is illustrated. 

Dielectric-Lined Circular Waveguides; 

(i) An explanation is given for the low-attenuation 

characteristics of a hybrid mode in a dielectric- 

lined circular waveguide. This contribution 

preceded a similar study undertaken at Bell 

Laboratories. 
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Concentric Dielectric Waveguides; 

Appropriately designed concentric dielectric 

waveguides can have favourable attenuation, 

group-delay and excitation characteristics, and 

therefore can find future applications for 

millimetre-wavelength microwave transmission. 

S. Corrugated Rectangular Waveguides; 

An error in earlier predictiom of the attenuation 

coefficient is corrected. 

The region is identified in which the corrugated 

waveguide exhibits an attenuation advantage over 

comparable smooth wall waveguides. 

Except for some of the results of chapter two, 

most of the theoretical results have required substantial 

computer program development. The results given here 

should prove useful in the early stage of the w'aveguide 

design. 

The attenuation results compared here and else- 

where <9>, <10>,, with those obtained in smooth. wall 

waveguides, clearly illustrate the need for the presence 

of a hybrid mode in the waveguide in order to achieve the 

low attenuation characteristics. The. nature of the 

boundary created to produce the hybrid mode is, 

unfortunately, always frequency dependent. Thus, in 

raetal waveguides, the low-attenuation phenomenon occurs 

over a relatively narrow, but useful, frequency band. 
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The low-attenuation property of the hybrid mode 

can be made use of either in the centimetre or the 

millimetre-. wavelength regime. Corrugated, circular, 

elliptical and rectangular waveguides can offer an 

attenuation advantage in the former range, while in the 

millimetre range the use of the dielectric-Iined 

waveguide has been envisaged by workers at the Bell System 

Laboratories <69> and the use of the concentric dielectric 

waveguide also by researchers at the British Post Office 

<64>. 

9.2 SUGGESTIONS FOR FURTHER WORK 

Although the existence of a low-attenuation 

hybrid mode in corrugated and lined waveguides has been 

illustrated, structures with different boundaries might 

provide an even lower attenuation coefficient or prove 

I- rnore economic to manufacture. Clarricoats <70> has 

proposed a hybrid mode waveguide comprising dielectric 

washers spaced periodically along a metal cylindrical 

waveguide, while Barlow < 71 > is investigating the 

propagation of dipole-modes in a circular grid of 

longitudinal lossy conductors insulated from each other. 

r4ore recently Clarricoats <72> has proposed a modified 

version of the corrugated circular waveguide in which the 

metal boundary at r=r0, Figure (4.1)'is. being replaced 

by four longitudinal inetal strips at 900 angles. The 

advantages. offered by this structure is the lowering in 

weight and comparative ease of. manufacture. While a 
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general mathematical formulation of the attenuation 

coefficient in smooth wall waveguides is possible <73>, 

the formulation, for obvious reasons, cannot be extended 

for the hybrid modes in an anisotropic: wall waveguide. 

The only physical criterion that can be searched for in 

order to achieve low-losses, is the influence of the new 

boundaries on the field strength near the new metal 

surfaces. Moreover, the new metal boundaries must be 

shaped such that only sufficient metal surface-area is 

present to provide a current path, thus removing any 

unnecessary metal loss. 

Apart from the general research into an optimum 

waveguide boundary, directions for further work, on the 

individual structures studied in this thesis are described 

below: - 

With regard to the anomolous property of the 

Mathieu functions, further mathematical work should prove 

generally useful. Experimental work to determine the 

accuracy of the attenuation formula derived in chapter 

two are required and will demonstrate the curvature- 

dependent effect. 

A more exact formulation of-the attenuation 

coefficient of the corrugated elliptical waveguide is 

very important bef ore any experimental work can be 

carried out. Elliptical corrugated horns employed in 

I rnicrowave antennas have not been analysed on a rigorous 

basis. The theory developed by Jansen. and Jeuken <74> 
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to describe their radiation characteristics is-only 

applicable under very special conditions. The analysis 

presented in chapter three can be extended to predict the 

radiation characteristics of elliptical corrugated horns. 

Resonant cavity techniques can be employed to 

measure the attenuation coefficient of the dominant mode 

in the concentric dielectric waveguide. The ef f ect of 

the lossy layer on the higher order modes can also be 

illustrated in a manner similar to that described during 

the mode filter experiments. 

Large scale production of corrugated waveguides 

has been impeded by manufacturing difficulties. However, 

the results presented in chapter eight could be utilised 

in the manufacture of low-loss flexible rectangular 

waveguides. Finally, the low-loss rectangular corrugated 

waveguide could be employed in the manufacture of 

waveguide components for use in the millimeter range. 
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APPENDIX 

Field Equations in General System of Co-ordinate (ý 1" ý21' Z) 
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APPENDIX II 
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11.1 Angular Mathieu Functions 
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11.2 Modified Mathieu Functions 
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11.3 Orthogonality of the Anqular Mathieu Functions 
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APPEIIMIX III 

MATHIEU FUNCTION FORMULA 

III. 1 Asymptotic Expansion for Large_q 

Asymptotic expressions of the modified Mathieu 

function for large q exist <16>, and are referred to as 

Goldstein's expansion <13>. They have an exponent 

dominated by -2jqý sinh z and are the form used and needed 

in chapter 2. We give here a brief derivation, and draw 

attention to a peculiar anomoly in the determination of 

the characteristic values associated with these functions. 

It should be mentioned that in <13> the expansion is 

given for real q>0 whereas we need q complex and nearly 

imaginary. McLachlan <16> in his section 3.43 takes q 

pure imaginary, and uses the corresponding Goldstein 

equation to derive the characteristic number. it is here 

that the anomolous features make their appearance# as 

discussed more fully, in the next section. 

The equation to be solved is 

; 2V a2V 2 2(cosh 2t-COS2n) =0 + =, _ +kh an 

Putting V= XY and decomposing in the usual way gives 

d 2y 
+k2h 2y(o_COS2 n) - FF 

d 2X 
+k2h 2X (cosh 2&-0) =0 

ucr 
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where 0 is a separation constant. The standard form comes 

by putting k2h2= 4q and 0=h+ a/k 2h2r where a is 

known as the characteristic number. (Confusion with the 

use of a for the ellipse semi-major axis should not 

arise). It is determined by the requirement that 

physical solutions of {21 be periodic with period 7ror 27r, 

and it is a function of q and of n, the order of the 

function. For n even, a is treated as an even function 

of q; that is, the series expansion of a as a function 

of. q,, convergent for small q, has q occurring only in 

even powers. However, we are here concerned with 

asymptotic expansions for large q and the way in which q 

enters the formula has to be watched carefully. In the 

case of a non-conducting wall material q is pure real 

and positive. As a increases q moves directly into the 

fourth quadrant, approaching the negative imaginary axis. 

Hence, for physical wall materials we are interested in 

that solution whichl in the non-conducting case, gives q 

real and positive. For this case it Is known that the 

established Mathieu function solutions have 

-2q + 2(2n+l)qh +--- as q -l- co (4) 

so that 0-0 for large q, sinco 0-h+ a/4q. 

We are here interested only to demonstrate the 

dominant part of the exponents for X and Y, and to this 

end we write Y= CY and X-aX. The equations for y and 

x are then 
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yst + yt2 = 4q(COS2 ri - $) {51 

x et + xt2 = -4q(cosh 
2t 

- ß) {6) 

If we assume, as in <16> section 11.43 the existence of 

solutions in descending powers of qh (this is the Horn- 

Jefferys technique <31>),, then the first-order solution 

of {51 gives y', ý, 2qhyo 1 where 

12 (Cos 2n 

0 
(7) 

This equation has two values of a which apparently could 

lead to periodic solutions, namely 0 and 1. Since we 

know that 0 -)- 0 for large q togive the established 

solution, it is this value that we discuss here. An 

examination of the consequences of choosing the other 

value is postponed to the next section. 

The solutions of {71 are accordingly yol -±cosn 

leading to y=T 2qh sinn as the (known) dominating part 

of the exponent for the relvant Mathieu functions. With 

0= 01 (61 similarly gives X= ±j2qh sinh&p leading to 

the dominant term in the exponents for Mcm (3 ) 
and Mcm (4) 

as used in chapter 2. It remains to discuss the 

validity of the equation for the characteristic numbers 

particularly for q complex. 

111.2 The Characteristic Numbers 

Remembering that a (for n even) is considered 

an even function of q, the asymptotic form for a in (4) 
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is usually written a- -21qj + 2(2n+l)jqjý + --- as 

±q -* -. This use of jqj is merely a device to select 

the positive value of q, and is not meant to imply the 

modulus when q is complex. The important question is: 

what form should the equation take for complex q? There 

is nothing in the analysis of the previous section which 

seems to demand that q be real and positive, other than 

that which led to the choice of a=0 rather than 0 1. 

What, then, is wrong with the latter choice? It would 

correspond to a-+ 2q as jqj -)- -, and for q negative 

this is the 'correct'form. But for this relation with q 

positive an analysis of the number of zeroes of the 

function (<16> section 12.30), would indicate a number 

increasing with q in a finite interval, and therefore 

not agreeing with the established properties of the 

Mathieu function that the number of such zeroes be 

independent of q. Either this choice for a is then 

unacceptable, or it indicates a family of Mathieu 

functions, different from the established ones, which 

appears to have been almost overlooked in the 

literature. We say "almost" because no less an authority 

than Arscott <35> writes "There are apparently two values 

of a for which 0 can have period 2n, namely (i) a= -2j 

0= 2sinz and (ii) a= 21 ý= 21 cosz ---" (Arscott's 

is -2 + four times our 01 i. e. the coefficient of q in (4); 

and his z is our q). But he then goes on to say that the 

substitutions q -ý- -q, z -* , r/2 -z transform this second 

solution into the first so that there is really only the 
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known, established solution. This conclusion. appears as 

if it may be in error. For if the relationship of a to 

q considered is asymptotically a-+ 2q (q positive), and 

q is replaced by -q, then if a is even in q, the relation- 

ship becomes a= -2 (q negative), and this is not the 

usual solution. Alternatively, if we retain a= +2g then 

the relationship is a+ 2q (q negative) and a is not then 

an even function of q. As mentioned earlier, a is usually 

taken as an even function, but this cannot be assumed if it 

is this feature which is itself under discussion. Of 

course, the series expansion for a does require this, but 

this expansion is only convergent for a< so = 1.4688 ... 

and says nothing about the behaviour for large Iql. There 

exists a continued fraction expansion valid for all q, 

but since its generation is based on the series solution 

method it does not necessarily exclude another type of 

solution. it is as if the expression for a involved 

some such form as (q 2+s0 2)ý. This is clearly an even 

function of q for q< so, as is seen by the Taylor 

expansion, but for larger values of q we encounter a 

branch cut and the value for large q could be ±q depending 

on which side of the cut we are. The behaviour for small 

q does not tell us anything about it. 

In the present problem it may seem as if this 

whole matter could be avoided by simply noting that for 

a lossless material we are starting out from q real and 

positive, and therefore we need that solution for which 

a- -2q (or = 0), leaving a discussion of the possible 
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existence of other types of solution for another occasion. 

This has been the intention of this Appendix. However, 

the matter cannot be completely ignored, because the 

substitutions q -* -q, n--. T/2 -n leaving Mathieu's 

equation formally unaltered though it alters the form of 

solution of (5) and {61 unless we also allow the change 

a -),, -a(a=O to 1); and this is not accomplished if the 

form a- -2q is retained under this substitution. 

Arscott's comments <35> imply that a change (corresponding 

to his a going from +2 to -2) is made in his example 

(corresponding to a even in q), but he seems unaware that 

he is not then dealing with the standard solution. All 

this arises because we need to know whether we can use 

a- -2q for q complex, and this forces a consideration 

of the possible additional solutions stemming from 

a-+ 2q. For the radial functions the two forms lead to 

different results, since q -* -q, -jw/2 + C, which 

leaves Mathieu's equation formally unaltered, interchanges 

sinhý and -j coshý in the exponent for X. Clearly the 

latter form is not suitable, since the exponent would 

then change from -j2jqýjsinhý to -21qýjcoshý which 

represents, for real positive qa damped, not a 

propagating wave. But for q pure imaginary, and with 

qk used instead jqkI the substitution merely interchanges 

sinh& and coshE unless a is also changed. Either form 

a- ±2q therefore seems to give rise to a possible 

solution but they are different, and only one corresponds 

to the established form of Mathieu function suitable for 
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use in the analysis of the elliptical waveguide. Which 

is it? It is suggested that (4} is the basic equation to 

use, starting out from positive real'q, and usable into 

the fourth quadrant only, as q becomes complex with 

negative imaginary part. This leads to {61 with 0=0, 

and to the results of chapter 2, with the physically 

acceptable limit for ZaI and ZtI as a/b -, - - for a 

flattened ellipse. But it has to be admitted that the 

properties of the Mathieu functions in this domain are 

not straightforward, and do require a very careful 

determination if erroneous results are to be avoided. 
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