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Abstract

This thesis contains the results of two investigations. The first concerns the 1-
factorizability of regular graphs of high degree. Chetwynd and Hilton proved in
1989 that all regular graphs of order 2n and degree 2nλ where

λ > 1
2
(
√

7− 1) ≈ 0.82288

are 1-factorizable. We show that all regular graphs of order 2n and degree 2nλ
where λ is greater than the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3

(≈ 0.81112) are 1-factorizable. It is hoped that in the future our techniques will
yield further improvements to this bound. In addition our study of barriers in
graphs of high minimum degree may have independent applications.

The second investigation concerns partial latin squares that satisfy Hall’s Con-
dition. The problem of completing a partial latin square can be viewed as a list-
colouring problem in a natural way. Hall’s Condition is a necessary condition for
such a problem to have a solution. We show that for certain classes of partial latin
square, Hall’s Condition is both necessary and sufficient, generalizing theorems of
Hilton and Johnson, and Bobga and Johnson. It is well-known that the problem
of deciding whether a partial latin square is completable is NP-complete. We
show that the problem of deciding whether a partial latin square that is promised
to satisfy Hall’s Condition is completable is NP-hard.
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Chapter 1

Introduction

This thesis contains the results of two investigations. The first concerns the 1-

factorizability of regular graphs of high degree and is presented in Chapter 3.

This investigation continues the recent work of Cariolaro and Hilton. The second

investigation concerns partial latin squares that satisfy Hall’s Condition and the

results are presented in Chapter 4.

Both chapters need some results from matching theory and the theory of edge-

colourings, and this material has been placed in Chapter 2. This chapter also con-

tains some more specialized results from the investigation into 1-factorizability.

However, these results are somewhat independent of those in Chapter 3 and may

be of more general applicability. For these reasons they are given in Chapter 2.

Throughout, some familiarity with the basic definitions of graph theory is

assumed. The reader is referred to the books of Bondy and Murty [4] and Diestel

[14] for explanations of any undefined terms. However, we will try to provide

definitions of all but the most basic terms from graph theory.

We will give a few definitions right away. A matching in a graph is a set

of pairwise non-adjacent edges. Vertices incident with edges of a matching are

said to be covered by the matching. Similarly, a set of vertices is covered by a

matching if all its members are covered. A 1-factor in a graph is a matching

that covers every vertex. A 1-factorization is a decomposition of the edge set
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into disjoint 1-factors. Note that a matching always covers an even number of

vertices, so graphs of odd order cannot have 1-factors.

1.1 The 1-factorizability of regular graphs of

high degree

The following is a a long-standing conjecture, due to Chetwynd and Hilton [8].

Conjecture 1.1. Any regular graph of order 2n and degree at least n is 1-

factorizable.

There is plenty of evidence of the truth of this conjecture, not least the follow-

ing theorem that shows that it holds “asymptotically”. This result was obtained

by Häggkvist in the 1980s but the proof was never published. It was proved

independently some time later by Perković and Reed.

Theorem 1.2. (Häggkvist [25]; Perković and Reed, 1997 [33]) For any ε > 0

there is an integer N = N(ε) such that for all n ≥ N any regular graph on 2n

vertices and degree at least (1 + ε)n is 1-factorizable.

Various authors have looked at verifying Conjecture 1.1 for graphs of order

2n and degree 2n−k for some fixed k. It is a folklore result that if G is complete,

then G is 1-factorizable (see Lemma 2.3), so Conjecture 1.1 is true when k = 1.

It is also true when k = 2 or 3, and again this result is folklore (see Lemma 3.2).

The case k = 4 was settled partially by Rosa and Wallis [36] and then completely

by Chetwynd and Hilton [8]. In the same paper, Chetwynd and Hilton also dealt

with the case k = 5. The case k = 6 was settled by Song and Yap [39].

However, Chetwynd and Hilton in 1985 gave the first proof that Conjecture

1.1 holds if the degree is sufficiently large as a fraction of the order.

Theorem 1.3. (Chetwynd and Hilton [8]) Let G be a regular graph of order 2n

and degree 2nλ where λ ≥ 6
7
. Then G is 1-factorizable.
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In subsequent work they obtained the following improvement. (Coincidentally,

the same bound was obtained independently by Niessen and Volkmann.)

Theorem 1.4. (Chetwynd and Hilton [10]; Niessen and Volkmann [32]) Let G

be a regular graph of order 2n and degree 2nλ where

λ > 1
2
(
√

7− 1) ≈ 0.82288.

Then G is 1-factorizable.

We will give an improved proof of this theorem. Recently, Cariolaro and

Hilton looked at whether it could be improved further. They showed that if G is

a regular graph of order 2n and degree 2nλ where

λ > 1
6
(
√

57− 3) ≈ 0.75831

thenG is either 1-factorizable or one of two special cases holds [5, 7]. Furthermore,

they showed that if λ is greater than the second largest root of

λ4 − λ3 − 4λ2 + 2λ+ 1

(≈ 0.78526) then the first of these cases cannot occur. However, they did not

rule out the possibility that the second case could occur.

We will show that for sufficiently large λ the second case cannot occur. As a

consequence we obtain an improvement to Theorem 1.4.

Theorem 1.5. Let G be a regular graph of order 2n and degree 2nλ where λ is

greater than the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3

(≈ 0.81112). Then G is 1-factorizable.
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Figure 1.1: Goldwasser’s square

1.2 Partial latin squares and Hall’s Condition

A partial latin square of order n is an n×n array where each cell is either empty

or contains a symbol from {1, . . . , n}, with the condition that no symbol occurs

more than once in any row or column. A latin square is a partial latin square

with no empty cells. If it is possible to turn a partial latin square into a latin

square by filling the empty cells with entries from {1, . . . , n} then we say that the

partial latin square is completable.

We say that a set of cells of a partial latin square is independent if no two of

the cells are in the same row or column. We say that a cell supports a symbol

σ if it either contains σ, or is empty and σ does not occur in the same row or

column. (In other words, the cell either contains σ, or could contain it.)

Let T be a set of cells of a partial latin square P of order n. Let σ be a

symbol from {1, . . . , n}. Then α(σ, T ) is defined to be the maximum size of an

independent subset of the set of cells in T that support σ.

We say that a partial latin square P satisfies Hall’s Condition if for all sets

of cells T we have ∑
σ∈{1,...,n}

α(σ, T ) ≥ |T | . (1.1)

It is not hard to show that Hall’s Condition is a necessary condition for a

partial latin square to be completable (see Lemma 4.2). Hilton and Johnson

[27] observed that in the case of partial latin squares where the filled cells form

8



a rectangle, Hall’s condition is both a necessary and a sufficient condition for

completability:

Theorem 1.6. Let P be a partial latin square of order n whose filled cells are

those in the upper left r×s rectangle, for some r, s ∈ {1, . . . , n}. P is completable

if and only if P satisfies Hall’s Condition.

Cropper [12] asked if this was true more generally: is Hall’s Condition a suffi-

cient condition for the completability of partial latin squares? John Goldwasser

showed that it is not, by exhibiting a partial latin square that satisfies Hall’s

Condition but is not completable [24]. The square is shown in Figure 1.1.

Bobga and Johnson found that Hall’s Condition is also a sufficient condition

for completability in the case that the filled region is a rectangle with one empty

cell inside [3]. We present the following generalization of this result:

Theorem 1.7. Let P be a partial latin square of order n whose filled cells are

those in the upper left r × s rectangle, for some r, s ∈ {1, . . . , n}, except for t

cells in this region that are empty, with the condition that there is at most one

of these empty cells in each column. P is completable if and only if P satisfies

Hall’s Condition.

An obvious computational problem to study is:

Problem 1.8. Let P be a partial latin square. Decide if P satisfies Hall’s Con-

dition.

Unfortunately we are not able to say much about the complexity of this prob-

lem. We conjecture that it can be solved in polynomial time, but at present we

cannot even show that it is in NP. It is however possible to check each Hall’s

Inequality in polynomial time (see Lemma 4.7), and so if we have a partial latin

square that does not satisfy Hall’s Condition, we can verify this fact in polynomial

time. For this reason, Problem 1.8 is in co-NP.
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The following problem was shown to be NP-complete by Colbourn [11] (see

also [17]):

Problem 1.9. Let P be a partial latin square. Decide if P is completable.

We consider the following variant of Problem 1.9:

Problem 1.10. Let P be a partial latin square that satisfies Hall’s Condition.

Decide if P is completable.

The set of partial latin squares that are “yes” instances of Problem 1.9 is the

same as the set of partial latin squares that are “yes” instances of Problem 1.10.

The difference is that in Problem 1.10, the input is restricted to partial latin

squares that satisfy Hall’s Condition. Thus Problem 1.10 is an example of a

promise problem, as the input partial latin square is “promised” to satisfy Hall’s

Condition. (See [23] for a survey of promise problems.) We shall prove the

following.

Theorem 1.11. Problem 1.10 is NP-hard.

Because of Theorem 1.11, knowing that a partial latin square satisfies Hall’s

Condition probably does not help one determine if it is completable or not. In

Section 4.6 we shall give a reduction from an NP-complete hypergraph colouring

problem to Problem 1.9, with the property that it maps to partial latin squares

that satisfy Hall’s Condition. This proves Problem 1.10 is NP-hard, as well as

providing a new proof that Problem 1.9 is NP-complete.
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Chapter 2

Matchings in graphs

In this chapter we provide some results that will be needed later. Section 2.1 cov-

ers some background material on edge-colourings. Section 2.2 covers matchings in

bipartite graphs and Section 2.3 deals with the Gallai-Edmonds Theorem which

describes the structure of maximum matchings in general graphs. The last two

Sections, 2.4 and 2.5, deal with consequences of the Gallai-Edmonds Theorem for

graphs of high minimum degree. This material is specifically included for Chapter

3, although it is somewhat independent and may be of wider applicability.

2.1 Edge-colourings

Let G be a graph and C a set of colours. An edge-colouring of G is a map from

E(G) → C such that adjacent edges receive different colours. The chromatic

index χ′(G) is the least number of colours needed for an edge-colouring of G.

As adjacent edges must be assigned different colours, the set of edges in a

graph coloured by a particular colour is a matching. So an edge-colouring can

be viewed as a partition of E(G) into a set of disjoint matchings. Note that in a

graph with an edge-colouring, we say that a vertex misses a colour c ∈ C if it is

incident with no edges of that colour.

We will use ∆(G) to denote the maximum degree of G, and later on we will
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Figure 2.1: A 1-factorization of Kn.

use δ(G) to denote the minimum degree. One of the most well-known theorems

in edge-colouring is the following:

Theorem 2.1. (Vizing, 1965 [4, 14]) Let G be a graph. The chromatic index

χ′(G) is either ∆(G) or ∆(G) + 1.

If χ′(G) = ∆(G) then G is said to be of class 1, otherwise it is of class 2. A

graph G that is regular and class 1 is 1-factorizable, as an edge-colouring with

∆(G) colours partitions E(G) into disjoint 1-factors. And as a 1-factorization is

a colouring with ∆(G) colours, we have:

Remark 2.2. A graph G is 1-factorizable if and only if it is regular and class 1.

Note that a regular graph of odd order cannot be class 1, as in any graph of

odd order there must be at least one vertex missing from any matching, so more

than ∆(G) colours are needed for an edge-colouring.

Lemma 2.3. The complete graph Kn is class 1 if and only if n is even.

Proof. By what has just been observed, Kn must be class 2 if n is odd. If n is

even, we can draw the vertices of Kn in a circle with one vertex in the centre,

as shown in Figure 2.1. In the diagram, one 1-factor is shown—rotating it gives

n− 1 disjoint 1-factors, showing that Kn is 1-factorizable, and so class 1, when n

is even.
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e0
w0 (no c1)

e1(c1) w1 (no c2)

e2(c2)
w2 (no c3)

ek−1(ck−1)

wk−1 (no ck)
e
k (c

k )

wk

(no c) v

Figure 2.2: Pivot and fan.

Let G be a graph with an edge-colouring using the set of colours C. Suppose

c1, c2 ∈ C are two colours. Then a c1c2-alternating path is a path in G whose

edges are coloured alternately c1 and c2. To exchange a c1c2-alternating path is

to recolour the edges coloured c1 with c2 and the edges coloured c2 with c1.

The following lemma was used by Vizing in the original proof of his theorem

[4].

Lemma 2.4. Let G be a graph and let C be a set of colours. Let e = vw be an

edge of G and suppose that there is an edge-colouring of G− e using the colours

from C. If there is a colour missing at v, and if each of the neighbours of v has

a colour missing, then there is an edge-colouring of G using the colours from C.

Proof. Suppose v is missing the colour c ∈ C. We can construct a sequence of

edges, called a fan, using the following procedure. The vertex v is said to be the

pivot of the fan.

(1) Let i = 0, and w0 = w.

(2) Stop if wi is missing c.

(3) If there is a colour in C that is missing from wi and is distinct from {c1, . . . , ci}

then let ci+1 be this colour. If not, stop.
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(4) If there is an edge of colour ci+1 incident with v, let ei+1 be this edge, and let

wi+1 be its other end. If not, stop.

(5) Increment i. Goto (2).

It is clear that this procedure will always terminate, as the number of coloured

edges incident with v is finite. Suppose it creates a fan with edges e0, . . . , ek. (See

Figure 2.2.) Upon termination, one of the following holds:

(i) Colour c is missing from wk.

(ii) There is no colour ck+1 distinct from {c1, . . . , ck} that is missing at wk.

(iii) There is no edge of colour ck+1 incident with v.

We will show how we can recolour the edges of the fan, to allow us to colour

the edge e.

• If case (i) occurs. We recolour ek, ek−1, . . . , e1 with c, ck, . . . , c2 and colour

e0 with c1. This gives an edge-colouring of G using the colours from C.

(This recolouring procedure is called “rotating” the fan.)

• If case (iii) occurs. In this case, ck+1 is also missing at v, so we recolour

ek, ek−1, . . . , e1 with ck+1, ck, . . . , c2 and colour e0 with c1. This gives an

edge-colouring of G using the colours from C.

• If case (ii) occurs. Let ck+1 be a colour missing at wk. So there is an

i ∈ {1, . . . , k − 2} such that ci = ck+1. Let P be the maximal alternating

cci path starting at wk. We need to consider four cases:

(A) P ends at v.

(B) P ends at w0.

(C) P ends at one of w1, . . . , wk−1.

(D) P ends somewhere else.

14



◦ If case (D) occurs. In this case we can exchange P and recolour

ek, ek−1, . . . , e1 with c, ck, . . . , c2 and colour e0 with c1. This gives an

edge-colouring of G using the colours from C.

◦ If case (A) occurs. As v is missing c, the last edge of P must be

coloured ci, which means it must be ei. Again we exchange P . P

includes ei which is recoloured with c. We then recolour ei−1, . . . , e1

with ci, . . . , c2 and colour e0 with c1. This gives an edge-colouring of

G using the colours from C.

◦ If case (B) occurs. This is the simplest case. We exchange on P and

colour e0 with c. This gives an edge-colouring of G using the colours

from C.

◦ If case (C) occurs. Note that P cannot end at wi, as wi has edges of

both colour ci and colour c incident with it. The last edge of P must

be coloured c because all the vertices w0, . . . , wk have an edge of colour

c incident with them. Suppose P ends at wj. Again we exchange P .

Then we recolour ej, . . . , e1 with c, cj, . . . , c2 and colour e0 with c1.

This gives an edge-colouring of G using the colours from C.

Proof of Theorem 2.1. It is immediate that for any graph G we must have χ′(G)

≥ ∆(G), so it will suffice to prove that any graph G has an edge colouring with

∆(G) + 1 colours. Let e = vw be an edge of G. By induction on the number of

edges, we may assume that G−e can be coloured with ∆(G−e)+1 colours, so it

can certainly be coloured with ∆(G)+1 colours. As we have at most ∆(G) edges

incident with any vertex, and we have ∆(G) + 1 colours, there must surely be a

colour missing at every vertex. So by Lemma 2.4 we can colour G with ∆(G) + 1

colours.

The following two results are consequences of Lemma 2.4.
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Lemma 2.5. Let G be a graph and v ∈ V (G). Suppose ∆(G−v) = ∆(G) and that

v is adjacent to at most one vertex of maximum degree. Then χ′(G) = χ′(G− v).

Proof. Since χ′(G) ≥ χ′(G− v) is immediate, it will suffice to show that χ′(G) ≤

χ′(G−v). Suppose we have an edge-colouring of G−v with χ′(G−v) colours. We

can extend this edge-colouring to G, by colouring the edges incident with v one

at a time. If there is an edge joining v to a vertex of maximum degree we leave

this edge until last. In this way, at all times there is at least one colour missing

from v and each of its neighbours, because each neighbour either has degree less

than ∆(G) or is incident with at least one uncoloured edge. So by Lemma 2.4

each edge can be coloured, using v as the pivot.

Let G be a graph. The core of G, denoted G∆, is the subgraph of G induced

by the vertices of degree ∆(G). Fournier gave the following sufficient condition

for a graph to be class 1. Note that a forest is a graph where each connected

component is a tree.

Theorem 2.6. (Fournier, 1973 [20]) If G∆ is a forest, then G is class 1.

Proof. We will show that G can be coloured with ∆(G) colours. First we colour

all the edges that are incident with at most one vertex of G∆. In the case that

an edge is incident with a vertex v ∈ G∆, we use v as the pivot. Lemma 2.4 says

that we can always colour these edges, as any vertex joined to the pivot by a

coloured edge will be a vertex of degree less than ∆(G), and will therefore have

at least one colour missing. (The pivot will naturally have a colour missing, as it

is incident with an uncoloured edge.)

It remains to colour the edges that are incident with two vertices of maximum

degree. Let T be a connected component of G∆; by assumption T is a tree. Let

v0 be an arbitrary vertex in T , and let k be the maximum distance of a vertex

in T from v0. We can colour the edges of T in k stages. In stage 1 we colour all
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the edges of T incident with v0, using the neighbours of v0 as pivots. In stage i

(1 < i ≤ k) we colour all the edges that join vertices at distance i − 1 from v0

to vertices at distance i from v0, always choosing the vertex furthest from v0 as

the pivot. By colouring in this order, we ensure that the only edges joining our

pivots to other vertices in G∆ are uncoloured edges, and hence these neighbouring

vertices each have at least one colour missing. So by Lemma 2.4 all these edges

can be coloured. We repeat this process for each component of G∆.

We will need the following well-known theorem of Dirac, that provides a suf-

ficient condition for a graph to have a Hamilton cycle.

Theorem 2.7. (Dirac, 1952 [15, 14]) Let G be a graph of order n ≥ 3. If

δ(G) ≥ 1
2
n then G has a Hamilton cycle.

Sadly, we only use Theorem 2.7 to obtain the following corollary.

Corollary 2.8. Let G be a graph of order n where n is even. If δ(G) ≥ 1
2
n then

G has a 1-factor.

Proof. If n = 2 then the result clearly holds. Otherwise n ≥ 4 and by Theorem

2.7 G has a Hamilton cycle. A 1-factor can be obtained by taking every other

edge of this Hamilton cycle.

We conclude this section with the following easy lemma.

Lemma 2.9. Let G be a graph and F a 1-factor of G. Then G is class 1 if G−F

is class 1.

Proof. If G−F is class 1 then it has an edge-colouring with ∆(G−F ) = ∆(G)−1

colours. So we can colour the edges of G with ∆(G) colours by colouring the

edges of G−F with ∆(G)− 1 colours and colouring the edges of F with another

colour.
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2.2 Matchings in bipartite graphs

In this section we give three classical theorems that will be needed in Chapter 4.

The third theorem is less well known than the other two, so we provide a proof.

Theorem 2.10. (Hall, 1936 [26, 1]) Let G be a bipartite graph with bipartition

(A,B). There is a matching in G which covers A if and only if each subset A′ ⊆ A

has at least |A′| neighbours.

If each non-empty subset A′ ⊆ A has at least |A′| + k neighbours, then we

say that A has surplus k. So Theorem 2.10 states that there is a matching that

covers A if and only if A has non-negative surplus. If a set A′ ⊆ A has exactly

|A′| neighbours it is said to be tight, and if it has exactly |A′|+ 1 neighbours it is

said to be nearly-tight.

König’s Theorem states that all bipartite graphs are class 1:

Theorem 2.11. (König, 1916 [1, 4, 14]) Let G be a bipartite graph. Then χ′(G) =

∆(G).

We will also need the following theorem, due to Dulmage and Mendelsohn.

Theorem 2.12. (Dulmage and Mendelsohn, 1958 [16, 1]) Let G be a bipartite

graph with bipartition (A,B) and suppose M1 and M2 are two matchings in G.

Then there is a matching M ⊆M1 ∪M2 such that M covers all the vertices of A

covered by M1 and all the vertices of B covered by M2.

Proof. Let A′ be those vertices in A covered by M1 and let B′ be those vertices in

B covered by M2. Let M14M2 denote the symmetric difference of M1 and M2.

Let G1, . . . , Gk be the components of the subgraph of G consisting of the edges

M14M2. Each of these components is a path or an even cycle. If Gi is an even

cycle, then both M1∩E(Gi) and M2∩E(Gi) cover all the vertices of A′∪B′ that

belong to Gi. If Gi is a path, then it may be the case that M1 ∩ E(Gi) misses a

vertex in B′, or it may be the case that M2 ∩E(Gi) misses a vertex in A′, but at

most one of these situations can occur.
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So for i ∈ {1, . . . , k}, we let

Pi =


M1 ∩ E(Gi) if M2 ∩ E(Gi) misses a vertex in A′,

M2 ∩ E(Gi) if M1 ∩ E(Gi) misses a vertex in B′,

M1 ∩ E(Gi) otherwise.

Then M = (M1 ∩M2) ∪ P1 ∪ · · · ∪ Pk gives the required matching.

2.3 The Gallai-Edmonds Theorem

In this section we will state the celebrated Gallai-Edmonds Theorem, which gives

a canonical partition of the vertices of a graph into three sets. We first need some

more definitions.

A matching in G that misses exactly one vertex is said to be a near 1-factor

of G. If G has near 1-factors missing every vertex it is said to be factor-critical.

(Note that a graph with a near 1-factor is necessarily of odd order.) For a subset

S ⊆ V (G) we define Od(S) to be the set of components of G− S that have odd

order (these will be referred to as “odd components” from now on). A barrier is

a subset S ⊆ V (G) that maximizes |Od(S)| − |S|.

Let S ⊆ V (G). A matching M can cover all the vertices in an odd component

only if M contains an edge joining a vertex in the odd component to a vertex in

the barrier S. So no matching can miss fewer than |Od(S)|− |S| vertices. In fact

we have the following theorem.

Theorem 2.13. (Berge, 1958 [31]) The number of vertices missed by a maximum

matching in G is

max {|Od(S)| − |S| : S ⊆ V (G)} .

(Note that this quantity is never negative, as we can take S = ∅ to get
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|Od(S)| − |S| = |Od(S)| ≥ 0.)

We will now describe a way to partition V (G) into three parts: D(G), A(G)

and C(G). This partition is called the Gallai-Edmonds decomposition of G, and

is defined as follows:

(i) Let D(G) be the set of vertices v ∈ V (G) such that there is a maximum

matching that misses v.

(ii) Let A(G) be those vertices in V (G)−D(G) adjacent to at least one vertex

in D(G).

(iii) Let C(G) = V (G)−D(G)− A(G).

Note that we have defined D(G), A(G) and C(G) as sets, although we will

sometimes need to consider the subgraphs induced by these sets, and for conve-

nience these will also be referred to as D(G), A(G) and C(G).

Let B(G) denote the graph obtained from G by deleting the vertices of C(G),

contracting the components of D(G) to single vertices and deleting edges with

both ends in A(G). Thus B(G) is a bipartite graph with bipartition (A(G),

Od(G)).

Note that there are two degenerate cases:

(A) If G has a 1-factor, then all the vertices belong to C(G), and A(G) and D(G)

are empty.

(B) If G is factor-critical, all vertices belong to D(G), and A(G) and C(G) are

empty.

The following theorem is known as the Gallai-Edmonds Structure Theorem.

Theorem 2.14. (Gallai, Edmonds [31]) If G is a graph and D(G), A(G) and

C(G) are defined as above, then

(1) The subgraph induced by C(G) has a 1-factor.
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(2) Each component of the subgraph induced by D(G) is factor-critical.

(3) A(G) is a barrier.

(4) Any maximum matching in G consists of a 1-factor of C(G), near 1-factors

of each component of D(G) and matches all vertices of A(G) with vertices in

distinct components of D(G).

(5) In B(G), A(G) has surplus 1.

Theorem 2.13 follows as a corollary of Theorem 2.14. A consequence of con-

dition (5) is the following.

Remark 2.15. For any v ∈ Od(G) there is a matching in B(G) that covers A(G)

but misses v.

2.4 Barriers in graphs of high minimum degree

The results in this section will be used in Chapter 3. However, these results may

have wider applicability. The results concern graphs of order at most 2n where

the minimum degree is at least 1
3
(2n). The first two lemmas are due to Cariolaro

and Hilton [7, 5], although we give them here in more generality.

Lemma 2.16. Let G be a graph of even order on at most 2n vertices with δ(G) ≥
1
3
(2n). Suppose that G has no 1-factor and that S ⊂ V (G) is a barrier in G. Then

either S = ∅ or |S| ≥ δ(G).

Proof. Since G is of even order, |Od(S)| and |S| must have the same parity. Let

s = |S| and z = |Od(S)|. We cannot have z = s as G does not have a 1-factor, so

we must have z ≥ s + 2. Suppose the odd components have sizes q1 ≤ · · · ≤ qz.

Let v be a vertex in an odd component of minimal size. The degree of v cannot

exceed s+q1−1, as v can only be adjacent to other vertices in its odd component
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or vertices in S. So we have

δ(G) ≤ s+ q1 − 1. (2.1)

The number of vertices in G is at least

s+
z∑
j=1

qj ≥ s+ zq1

≥ s+ z(δ(G)− s+ 1) (by (2.1))

≥ s+ (s+ 2)(δ(G)− s+ 1).

This last expression can be viewed as a quadratic in s. For s = 1 and s = δ(G)−1

it takes the value 3δ(G) + 1 and exceeds this in between. But

3δ(G) + 1 > 2n,

which contradicts G having at most 2n vertices, so in fact s must either be 0 or

at least δ(G).

Suppose G is a graph of even order on at most 2n vertices with δ(G) ≥ 1
3
(2n)

that does not have a 1-factor. We can apply Lemma 2.16 to the barrier A(G)

given by the Gallai-Edmonds decomposition. So there are two scenarios:

1. If |A(G)| = 0 we say that A(G) is case 1.

2. If |A(G)| ≥ δ(G) we say that A(G) is case 2.

We shall see that if A(G) is case 1 then D(G) consists of two large odd

components and C(G) is empty. (So G itself consists of two large connected

components.) On the other hand, if A(G) is case 2 then A(G) and D(G) are

large, and D(G) consists of many small odd components.

Lemma 2.17. Suppose that A(G) is case 1. Then G consists of two components

of odd order each containing at least δ(G) + 1 vertices.
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Proof. Since A(G) is empty, a vertex in an odd or even component of C(G)∪D(G)

must have all its neighbours in the same component. This means that each

component must have at least δ(G) + 1 vertices. We know that there must

be at least two odd components. And there cannot be any other odd or even

components as δ(G) ≥ 1
3
(2n). Hence D(G) has two odd components and C(G)

is empty.

For the rest of this section we will assume that G has no 1-factor and that

A(G) is case 2. Let s = |A(G)|. As observed in the proof of Lemma 2.16, |Od(S)|

and |S| must have the same parity. This means that there are at least s+ 2 odd

components of D(G).

Lemma 2.18. There are at least (s+ 2)δ(G) edges between D(G) and A(G).

Proof. An odd component of k vertices must have at least k(δ(G)− k+ 1) edges

going to vertices in A(G). This is a quadratic in k with roots at 0 and δ(G) + 1.

When k is 1 or δ(G) it takes the value δ(G) and exceeds this in between. We

claim that k must be less than δ(G). As s ≥ δ(G) and there are at least s + 2

odd components, there are more than 2δ(G) ≥ 2
3
(2n) vertices in the other odd

components and A(G), so it must be the case that k is less than δ(G). Hence

each odd component, of which there are at least s + 2, has at least δ(G) edges

going to vertices in A(G).

Lemma 2.19. Let v be a vertex in C(G) ∪D(G). Then the number of vertices

of A(G) adjacent to v is at least δ(G)− 2n+ 2s+ 2.

Proof. Besides the component containing v there are at least s+ 1 other compo-

nents, accounting for at least this many vertices. So there are at most 2n− s−

(s+ 1)− 1 = 2n− 2s− 2 other vertices in the component that contains v. As v

has at least δ(G) neighbours, and at most 2n− 2s− 2 are in its own component,

it must have at least

δ(G)− (2n− 2s− 2) = δ(G)− 2n+ 2s+ 2
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neighbours in A(G).

A singleton is a component of order 1.

Lemma 2.20. The number of singletons in D(G) is at least 2s− n+ 3.

Proof. Let t be the number of singletons in D(G). All other odd components

have at least 3 vertices. So there are at least s− t+ 2 odd components of D(G)

with at least 3 vertices each. But as there are at most 2n − s vertices in D(G),

we have

t+ 3(s− t+ 2) ≤ 2n− s,

which gives t ≥ 2s− n+ 3.

Lemma 2.21. If a and b are two vertices in different components of C(G)∪D(G)

then they have a common neighbour in A(G).

Proof. Suppose the numbers of vertices in the components containing a and b

are σa and σb respectively. The number of neighbours of a in A(G) is at least

δ(G)−σa+ 1 and the number of neighbours of b in A(G) is at least δ(G)−σb+ 1.

Now a and b will certainly have a common neighbour in A(G) if

(δ(G)− σa + 1) + (δ(G)− σb + 1) > s,

which can be rearranged to give

2δ(G)− (σa + σb − 2) > s. (2.2)

Since there are at most 2n vertices, and there are s vertices in A(G) and at least

s+ 2 components in D(G), the number of vertices in the components containing

a and b, besides these vertices themselves, cannot exceed 2n− 2s− 2. So (2.2) is

implied by

2δ(G)− (2n− 2s− 2) > s,
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which can be rearranged to give

2δ(G) + s− 2n+ 2 > 0. (2.3)

But we know that

δ(G) ≥ 1
3
(2n),

which implies

3δ(G) > 2n− 2,

and then (2.3) follows from the fact that s ≥ δ(G).

Let M be a matching in B(G). An M-alternating path in B(G) is a path

where every other edge belongs to M . Note that the following lemma requires a

stronger assumption about δ(G) than what we have assumed up until now: we

need to assume δ(G) ≥ 3
8
(2n) instead of δ(G) ≥ 1

3
(2n).

Lemma 2.22. Suppose δ(G) ≥ 3
8
(2n). Let M be a matching in B(G) of all the

vertices in A(G) into Od(G). Suppose that all singletons in Od(G) are covered

by M . Then any unmatched vertex in Od(G) contains an M-alternating path to

a singleton in Od(G).

Proof. Let v be a vertex of D(G) that is in an odd component c(v). Suppose

that c(v) is a missed by M in B(G). By Lemma 2.19, v is adjacent to at least

δ(G) − 2n + 2s + 2 vertices in A(G). It follows that c(v) is adjacent in B(G)

to at least this many vertices of A(G), all of which are matched to vertices in

Od(G) − c(v). By Lemma 2.20 there are at least 2s − n + 3 singletons, and so

there are at most s+ 2− (2s− n+ 3) = n− s− 1 odd components that are not

singletons.

There will be an M -alternating path of two edges from c(v) to a singleton

component if

δ(G)− 2n+ 2s+ 2 > n− s− 1,
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Figure 2.3: Exchanging a type-1 quadrilateral.

which can be rearranged to give

3s− 3n+ 3 + δ(G) > 0. (2.4)

We have

δ(G) ≥ 3
8
(2n),

which implies

4δ(G)− 3n+ 3 > 0,

which together with the fact that s ≥ δ(G) implies (2.4).

Lemma 2.23. Let u and v be two vertices in D(G). Then there are at least s

vertices of G that are non-adjacent to both u and v.

Proof. Each vertex in D(G) must be non-adjacent to the vertices in the other

odd components, and there are at least s+ 2 odd components.

2.5 Quadrilaterals

As with the last section, this section will be concerned with graphs of high mini-

mum degree; specifically graphs of order at most 2n where the minimum degree

is at least 1
3
(2n). We will consider such graphs that do not have 1-factors, and

look at how the size of a maximum matching changes when they are “perturbed”

by the operation of exchanging a quadrilateral.
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Again, the results in this section are principally required in Chapter 3, but

they may have other applications.

Let G be a graph of even order on at most 2n vertices with δ(G) ≥ 1
3
(2n) that

does not have a 1-factor. We will consider the Gallai-Edmonds decomposition

A(G), C(G) and D(G). Recall that by Lemma 2.16, A(G) is either case 1 or case

2.

A quadrilateral is a 4-tuple of vertices (a, b, c, d) where ac, bd are edges and

ab, cd are non-edges. We will define two specializations of this definition: type-1

and type-2 quadrilaterals. A graph G can have a type-1 quadrilateral only if

A(G) is case 1, and it can have a type-2 quadrilateral only if A(G) is case 2.

Suppose that A(G) is case 1. In this case, by Lemma 2.17 D(G) consists of

two large odd components. We define a type-1 quadrilateral to be a 4-tuple of

vertices (a, b, c, d) of G such that

(i) a, c belong to one component of D(G) and b, d belong to the other.

(ii) ac, bd are edges in G (certainly ab, cd are not).

Let G∼ = G∪{ab, cd}−{ac, bd}. We say that G∼ is the graph obtained from

G by exchanging the quadrilateral (a, b, c, d). (See Figure 2.3.)

We can imagine that we have changed the edges ac, bd into non-edges and the

non-edges ab, cd into edges. The following lemma shows that exchanging a type-1

quadrilateral always increases the size of a maximum matching, and thus G∼ has

a 1-factor.

Lemma 2.24. G∼ has a 1-factor containing the edge ab.

Proof. By part (2) of Theorem 2.14 (Gallai-Edmonds Theorem), the two compo-

nents of D(G) are factor-critical, so in particular they have near 1-factors missing

a and b. Clearly these do not use the edges ac and bd. So we can form a 1-factor

of G∼ by taking these two near 1-factors together with the edge ab.
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Figure 2.4: Exchanging a type-2 quadrilateral.

Suppose that A(G) is case 2. In this case, we define a type-2 quadrilateral to

be a set of four vertices (a, b, c, d) of G such that

(i) a, b belong to different odd components of D(G).

(ii) c, d belong to A(G).

(iii) ac, bd are edges in G and cd is not (certainly ab is not).

As before, we can exchange the quadrilateral. Let G∼ = G∪{ab, cd}−{ac, bd}.

(See Figure 2.4.) The situation with type-2 quadrilaterals is more complicated

than with type-1; exchanging does not always increase the size of a maximum

matching. However, we will see that one of two things happens: either the size

stays the same or is increased by 1. The rest of this section is concerned with

what happens when a type-2 quadrilateral is exchanged.

Note that in what follows we will consider G and G∼ to be two graphs on

the same set of vertices. For this reason, we will sometimes refer to A(G) and

D(G) as subsets of V (G∼). When doing so, it is hoped that the reader will

not confuse them with the sets A(G∼) and D(G∼) given by the Gallai-Edmonds

decomposition of G∼.

Let c(a) and c(b) denote the components of D(G) containing a and b respec-

tively.

Lemma 2.25. Let ν be the size of a maximum matching in G, and ν ′ the size of

a maximum matching in G∼. Then

(1) ν ′ is either ν or ν + 1.
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(2) In the case that ν ′ = ν any matching in B(G) that covers A(G) and misses

c(a), must cover c(b).

(3) In the case that ν ′ = ν + 1 there is a matching in B(G) that covers A(G)

and misses both c(a) and c(b). Furthermore, each maximum matching in G∼

consists of a 1-factor of C(G), the edge ab, near 1-factors of each component

of D(G) and matches all vertices of A(G) with vertices in distinct components

of D(G).

(Note that condition (3) means that no vertex in A(G) is matched with a

vertex in the components c(a) or c(b).)

Proof. By Remark 2.15, there is a matching M in B(G) that covers A(G) and

misses c(a). Let M ′ be the matching consisting of all the edges of M , except for

the edge that covers c(b), should there be one. We can then form a matching of

size at least ν in G∼ by taking a set of edges that correspond to M ′ (there may

be some choice as to which edges are chosen, in the case that a vertex of A(G) is

adjacent to more than one vertex in an odd component of D(G)), together with

the edge ab, near 1-factors of all the odd components and a 1-factor of C(G).

Clearly M ′ will not use the deleted edges ac, bd and will have size at least that of

M . So ν ′ ≥ ν.

Adding k edges to a graph increases the size of a maximum matching by at

most k, and equality is obtained if and only if the set of new edges is independent

and there is a maximum matching in G that is independent of the new edges.

Since there are only two edges in G∼ that are not present in G, the size of

a maximum matching in G∼ is at most ν + 2. But by part (4) of Theorem 2.14

(Gallai-Edmonds Theorem), the vertices c and d are covered by every maximum

matching in G. So the size of a maximum matching in G∼ must be less than

ν + 2. So we have established claim (1).

Suppose that ν ′ = ν + 1. Let F ′ be a maximum matching in G∼. Clearly F ′

must use at least one of the edges ab, cd (for otherwise F ′ would also be a matching
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of size ν + 1 in G). Such a matching cannot contain cd but not ab, because cd is

not disjoint from any maximum matching in G. So F ′ contains ab. If F ′ contains

both ab and cd then by replacing {ab, cd} with {ac, bd} we get a matching of size

ν + 1 in G, which is not possible. So the only remaining possibility is that F ′

contains ab but not cd. And so clearly if F ′ is to have size ν + 1 it must match

all the vertices of A(G) into vertices in distinct odd components of D(G) that

do not include the components containing a and b. This is possible if and only

if there is a matching of A(G) into Od(G) that misses both c(a) and c(b). This

proves claims (2) and (3).

Lemma 2.26. Suppose that the size of a maximum matching in G∼ is ν + 1.

Then C(G) ⊆ C(G∼). Moreover, if P is a 1-factor of C(G) then there is a

1-factor P ′ of C(G∼) that contains P .

Proof. By part (3) of Lemma 2.25 a maximum matching in G∼ of size ν+ 1 must

contain a 1-factor of C(G) and match all the vertices of A(G) into D(G). So

the only vertices in G∼ that can be missed by a maximum matching are vertices

in D(G). None of the vertices in C(G) have neighbours in D(G), so we have

C(G) ⊆ C(G∼).

By part (3) of Lemma 2.25 a maximum matching in G∼ of size ν + 1 must

use the edge ab. So the vertices in the components containing a and b belong to

C(G∼). Let U = D(G) ∩ C(G∼) and let W be the neighbours of U that belong

to A(G). If a vertex w ∈ W is adjacent to a vertex v ∈ D(G∼) then there is a

maximum matching in G∼ that misses a vertex in U , which is a contradiction.

So the vertices of W have no neighbours in D(G)− U , and so W ⊂ C(G∼).

So C(G∼) contains C(G), U , W and the vertices in the components containing

a and b. We can form the required 1-factor P ′ of C(G∼) by taking a matching of

W into U , near 1-factors of the components of U and the components containing

a and b, the edge ab, and P .

The final lemma in this section is used in Chapter 3 to show that exchang-
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ing a type-2 quadrilateral cannot result in a graph G∼ where A(G∼) is case 1.

(Unfortunately we do not have a more elegant way of doing this.)

Lemma 2.27. If 2n ≥ 10 both G and G∼ are connected.

Proof. Lemma 2.21 says that, in G, any two vertices in different components of

C(G)∪D(G) have a common neighbour in A(G). So for any such pair of vertices

we can find a path of two edges connecting them via their common neighbour in

A(G). Let E1 be the set of edges obtained by taking the union of these paths

for each pair of vertices in different components of C(G) ∪ D(G). Let E2 be a

maximum matching in G.

Let H be the subgraph of G consisting of the edges E1 ∪ E2. In H there is

a path between any two vertices of C(G) ∪ D(G), and each vertex in A(G) is

adjacent to a vertex in D(G). So G is connected, and H is a spanning subgraph

of G.

Now consider G∼. Suppose that E2 contains the edges av and bw for some

vertices v, w ∈ A(G). Then the subgraph of H induced by the vertices V (G) −

{a, b, v, w} is a subgraph of G∼, and spans the vertices V (G)−{a, b, v, w}. Hence

G∼ has a connected component of size at least 2n − 4. But δ(G∼) = δ(G) ≥
1
3
(2n) ≥ 10

3
, and the minimum degree must be an integer, so δ(G∼) ≥ 4, and so

any connected component must have at least 5 vertices. Hence there can only be

one connected component in G∼, and so it is connected.
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Chapter 3

The 1-factorizability of regular

graphs of high degree

In this chapter we present our investigation into the 1-factorizability of regular

graphs of high degree. Sections 3.1, 3.2 and 3.3 all contain preliminary material

for the proof of Theorem 1.4, which is given in Section 3.4. Sections 3.5, 3.6, 3.7

and 3.8 contain the proof of Theorem 1.5. In Section 3.9 we look at the Overfull

Conjecture.

3.1 Non-regular graphs from regular graphs

Sometimes we can show that a regular graph is class 1 by showing that an asso-

ciated non-regular graph is class 1. The simplest example of this is the following

lemma.

Lemma 3.1. Let G be a regular graph of even order and degree d, and let x be

any vertex of G. Then χ′(G) = χ′(G− x).

Proof. If G is complete, then the result follows from Lemma 2.3. If G is not

complete, we have ∆(G− x) = d. So by Theorem 2.1 (Vizing’s Theorem) it will

suffice to show that G is d-edge-colourable if and only if G−x is d-edge-colourable.

An edge-colouring of G with d colours clearly gives an edge-colouring of G − x
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with d colours, when restricted to the edges of G − x. Conversely, suppose that

we have an edge-colouring of G−x with d colours. Because G−x is of odd order,

and every colour necessarily appears at an even number of vertices, each colour

must be missing at an odd number of vertices. But the only vertices that miss

colours are the d vertices adjacent to x in G, and these all miss exactly one colour

(as they have degree d − 1). It follows that each of these vertices must miss a

different colour, and so the edge-colouring of G− x can be easily extended to an

edge-colouring of G.

One use of this lemma is the following theorem.

Theorem 3.2. Let G be a regular graph on 2n vertices of degree 2n−2 or 2n−3.

Then G is 1-factorizable.

Proof. Let x be a vertex of G. The core of G−x must certainly be a forest, as it

is a graph on one or two vertices. By Theorem 2.6 (Fournier’s Theorem) G − x

is class 1, and so G is class 1 by Lemma 3.1.

Note that it is quite easy to show that any regular graph of order 2n and

degree 2n−2 is 1-factorizable without the use of this lemma: such a graph is just

a complete graph minus a 1-factor.

In general, if x and y are two vertices of G, the chromatic index of G− x− y

does not determine the chromatic index of G. However, we have the following

result for the special case where x and y have the same—or nearly the same—set

of neighbours.

Lemma 3.3. Let G be a regular graph of even order and degree d, and let x and

y be two distinct vertices of G that may or may not be adjacent. Suppose that

there is at most one vertex in G − x − y that is adjacent to x but not y, and at

least one vertex that is adjacent to neither x nor y. Then χ′(G) = χ′(G− x− y).
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Note that since G is regular, the number of vertices adjacent to x but not y

is equal to the number of vertices adjacent to y but not x.

Proof. As there is a vertex that is non-adjacent to both x and y, we have ∆(G−

x− y) = d. As in the proof of Lemma 3.1 it will suffice to show that G is d-edge-

colourable if and only if G−x− y is d-edge-colourable. Suppose that we have an

edge-colouring of G with d colours. This colouring, when restricted to the edges

of G − x − y, gives an edge-colouring of G − x − y with d colours. Conversely,

suppose that we have an edge-colouring of G− x− y with d colours. The vertex

y in G − x is adjacent to at most one vertex of maximum degree, so by Lemma

2.5 we can extend our edge-colouring of G− x− y to an edge-colouring of G− x.

And then by Lemma 3.1 we can extend this edge-colouring to an edge-colouring

of G.

Note that Lemma 3.3 is true whether x is adjacent to y or not, and it is not

necessary to distinguish between these cases in the proof.

3.2 A sufficient condition for a graph to be

class 1

By considering the core, Theorem 2.6 (Fournier’s Theorem) gives a sufficient

condition for a graph to be class 1. We will need another sufficient condition,

which is due to Chetwynd and Hilton [10]. It was presented slightly differently in

the work of Cariolaro and Hilton [6, 5, 7]. Our presentation is different to both.

Lemma 3.4. Let G be a graph. Suppose the vertices of G∆ can be partitioned

into two sets L and R such that the following conditions hold:

(i) The vertices of L and R can be numbered l1, . . . , lm and rt, . . . , rm (where

m ≥ 0 and t ≤ 1 are integers) such that the edges l1r1, . . . , lmrm are all

present in G∆.
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(ii) There are no edges between vertices of L.

(iii) There are no edges between L and R of the form lirj where i > j.

(iv) There are no edges between vertices of {rt, . . . , r0}.

Then G is class 1.

Proof. We will show that G can be coloured with ∆(G) colours. As in the proof of

Theorem 2.6 (Fournier’s Theorem), we first colour all the edges that are incident

with at most one vertex of G∆. Suppose we have the required partition of the

vertices of G∆ into the sets L and R. Next we colour the edges that have both

ends in R. If one of the vertices is in {rt, . . . , r0}, we use this vertex as the pivot.

The vertices in G∆ that are adjacent to the pivots are all in {l1, . . . , lm, r1, . . . , rm}

and have at least one uncoloured edge, as the edges l1r1, . . . , lmrm are uncoloured

at this stage. So by Lemma 2.4 they can all be coloured.

Next we colour the edges incident with vertices in L. We first colour the edges

incident with l1, using l1 as a pivot and colouring the edge l1r1 last. Then for

i = 2, . . . ,m we colour the edges incident with li, using li as a pivot, and colouring

the edge liri last. Each neighbour to li has at least one uncoloured edge, since li

is not adjacent to any rj where i > j and the edges liri, . . . , lmrm are uncoloured.

So again by Lemma 2.4 all the edges can be coloured.

Note that, in contrast to Theorem 2.6 (Fournier’s Theorem), Lemma 3.4 ac-

tually requires the presence of certain edges. Lemma 3.4 is very useful, as it gives

a sufficient condition for a graph to be class 1 that covers graphs that have Ω(n2)

edges in their core, where n is the number of vertices of maximum degree. This is

in contrast to the condition of Theorem 2.6 which can only be satisfied by graphs

with at most n− 1 edges in their cores.
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Figure 3.1: An example of a core that satisfies the conditions of Lemma 3.4.

3.3 Chetwynd-Hilton decompositions

We will now define a certain graph that depends on two parameters, and a certain

edge-colouring of this graph. We will regard the edge-colouring as a decomposi-

tion of the edge set into matchings. This decomposition will be essential to the

proof of Theorems 1.4 and 1.5.

The graph Hm,t depends on two parameters m and t: both are integers, m ≥ 0

and t ≤ 1. Let q = 2m − t + 1. Then we define the graph Hm,t on q vertices as

follows:

(1) Take the complete graph on q vertices, and label the vertices l1, . . . , lm and

rt, . . . , rm.

(2) Delete all the edges with both ends in {rt, . . . , rm}.

(3) Delete all edges of the form lirj where i ≤ j.

(Note that Hm,t contains precisely those edges that are excluded by conditions

(ii) and (iii) of Lemma 3.4.)

The Chetwynd-Hilton decomposition is a set of q matchings M+
1 , . . . ,M

+
q in

Hm,t. (It can be thought of as an edge-colouring of Hm,t.) We provide a formal

definition below, but Figure 3.3 should make the situation clear.
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l1 r1

l2 r2

l3 r3

l4 r4

r−2

r−1

r0

Figure 3.2: The graph H4,−2.

For 1 ≤ i ≤ 1− t we let

M+
i = {l1r1−i, l2r2−i, . . . , lmrm−i}.

For 2− t ≤ i ≤ m+ 1− t we let

M+
i = {l1li+t−1, l2li+t−2, . . . , lb(i+t−1)/2cld(i+t−1)/2e+1}

∪ {li+trt, li+t+1rt+1, . . . , lmrm−i}.

For m+ 2− t ≤ i ≤ 2m− t− 1 = q − 2 we let

M+
i = {li−m+tlm, li−m+t+1lm−1, . . . , lb(i+t−1)/2cld(i+t−1)/2e+1}.

And finally we let

M+
q−1 = M+

q = ∅.

It can be verified that each M+
i is a matching, and that each edge of Hm,t is

contained in some matching. Figure 3.3 illustrates the Chetwynd-Hilton decom-
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M+
1 M+

2 M+
3

M+
4 M+

5 M+
6 M+

7

M+
8 M+

9 M+
10 M+

11

Figure 3.3: The Chetwynd-Hilton decomposition of H4,−2.

position of H4,−2.

The vertices of Hm,t can be written in a sequence

A = rm, . . . , r1, . . . , rt, l1 . . . , lm.

We will need the following easy observations.

Remark 3.5. M+
i misses the first i vertices of A.

Remark 3.6. The number of edges in Hm,t is m(m− t).

Remark 3.7. Suppose we fix q and then choose m ≥ 0 and t ≤ 1 such that
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q = 2m− t+ 1. Then the number of edges in Hm,t is less than q2/4.

Proof. The number of edges, m(m− t), is maximized when we choose m = bq/2c

and

t =


1 if q is even,

0 if q is odd.

In either case the number of edges is less than q2/4.

3.4 Proof of Theorem 1.4

In this section we will give a new proof of Theorem 1.4. While the original proof

in [10] used near 1-factors, ours is simpler and just uses 1-factors. To begin with,

we will prove the following special case.

Theorem 3.8. Let G be a regular graph of order 2n and degree 2nλ where λ ≥ 3
4
.

Suppose that there are two vertices x, y such that there is at most one vertex in

V (G)− x− y that is adjacent to x but not y. Then G is 1-factorizable.

Suppose we have a graph G with two vertices x and y such that the assump-

tions of Theorem 3.8 are satisfied. By Theorem 3.2, if the degree of G is at

least 2n − 3 then G is 1-factorizable. So we may assume that 2nλ < 2n − 3. In

particular this means that 2n > 12.

We can partition the vertices of G− x− y into four sets as follows:

X = those vertices adjacent to x but not y

Y = those vertices adjacent to y but not x

Z = those vertices adjacent to both x and y

W = those vertices not adjacent to x or y

(See Figure 3.4.) Because G is regular, X and Y will be of the same size, and

by our assumption this is 0 or 1. It may or may not be the case that x is adjacent
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x y

W

X Y

Z

Figure 3.4: X, Y , Z and W .

to y.

Our strategy will be to show that G− x− y is class 1 and then it will follow

by Lemma 3.3 that G is also class 1. We will do this by removing some 1-factors

from G− x− y to leave a graph that is guaranteed to be class 1 by Lemma 3.4.

In G−x−y the vertices of maximum degree are those belonging to W , the set

of vertices that in G are non-adjacent to both x and y. The size of W depends on

whether x is adjacent to y or not, and whether |X| is 0 or 1. However, if q = |W |,

in all cases we have

q ≤ 2n(1− λ)− 1. (3.1)

Let M0 be a maximum matching in the subgraph of G induced by W . We

will define q matchings M1, . . . ,Mq. In the case that M0 is empty, we will let

M1 = · · · = Mq = ∅.

Otherwise, suppose m = |M0| and let t = 2m− q + 1. We can label the vertices

of W as l1, . . . , lm, rt, . . . , rm such that the edges of M0 are l1r1, . . . , lmrm, and

the vertices rt, . . . , r0 are the vertices missed by M0. So we have now labelled the

vertices in the same way as those of the graph Hm,t defined in Section 3.3. We
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now consider the Chetwynd-Hilton decomposition of Hm,t. For i ∈ {1, . . . , q} we

let

Mi = M+
i ∩ E(W )

where E(W ) denotes the set of edges of G with both ends in W . The following

lemma contains the core of the proof of Theorem 3.8.

Lemma 3.9. Suppose that F1, . . . , Fq are disjoint 1-factors of G−x−y such that

(i) No edge of M0 is contained in any of the 1-factors.

(ii) Each edge in M1 ∪ · · · ∪Mq is contained in one of the 1-factors.

Then G is 1-factorizable.

Proof. By Lemma 3.3 it will suffice to show that G − x − y is class 1. And by

Lemma 2.9 it will suffice to show that the graph

G′ = G− x− y − (F1 ∪ · · · ∪ Fq)

is class 1. The core of G′ is the subgraph induced by the vertices in W . These

vertices have degree 2nλ−q. (The vertices in Z have degree 2nλ−q−2 and in the

case that X and Y contain a vertex each, these vertices have degree 2nλ− q−1.)

If M0 is empty, then the core of G′ contains no edges, and so G′ is class 1 by

Theorem 2.6. Otherwise, we can use Lemma 3.4 to show that G′ is class 1. We

have already labelled the vertices of W as l1, . . . , lm, rt, . . . , rm so we just need to

check that the conditions from the statement of Lemma 3.4 hold. None of the

edges of M0 are contained in any of the 1-factors F1, . . . , Fq, so all are present in

G′ and therefore condition (i) is satisfied. Because M0 is a maximal matching,

there are no edges between vertices of {rt, . . . , r0}, so condition (iv) holds. And

because all the edges from M1∪· · ·∪Mq are contained in the 1-factors F1, . . . , Fq,

there are no edges present in G′ of the form lirj where i > j, and no edges with

both ends in {l1, . . . , lm}. So conditions (ii) and (iii) hold, and by Lemma 3.4 G′

is class 1.
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Figure 3.5: X, Y , Z, W and H.

To complete the proof of Theorem 3.8, we need to show that 1-factors F1, . . . ,

Fq satisfying the conditions in the statement of Lemma 3.9 exist when λ ≥ 3
4
.

Suppose—for a contradiction—that they do not exist. Then for some t, where

1 ≤ t ≤ q, there exist disjoint 1-factors F1, . . . , Ft−1 such that:

(1) No edge of M0 is contained in any of the 1-factors.

(2) Each edge in M1 ∪ · · · ∪Mt−1 is contained in one of the 1-factors.

We may suppose that 1-factors F1, . . . , Ft−1 have been chosen so that t is as

large as possible. We will show that if λ ≥ 3
4

another 1-factor Ft can be found,

which will contradict the assumption that the 1-factors have been chosen so as

to maximize t.

Proof of Theorem 3.8. Let

M ′
t = Mt − (F1 ∪ · · · ∪ Ft−1)

and

Gt = G− x− y − V (M ′
t)− (M0 ∪ F1 ∪ · · · ∪ Ft−1).

We will show that if λ ≥ 3
4

then Gt has a 1-factor F ′t , from which it follows that
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G− x− y has a 1-factor

Ft = F ′t ∪M ′
t

such that F1, . . . , Ft satisfy the above conditions (1) and (2). This will contradict

our assumption that the 1-factors F1, . . . , Ft−1 were chosen to maximize t.

Let us calculate a lower bound on the minimum degree of Gt. By Remark 3.5,

Mt—and therefore M ′
t—covers at most q−t vertices. All vertices in G are incident

with an edge from each 1-factor F1, . . . , Ft−1, and some vertices are adjacent to

x or y. Vertices that are not adjacent to x or y in G are covered by M0. So we

have

δ(Gt) ≥ 2nλ− 2− (q − t)− (t− 1)

= 2nλ− q − 1

≥ 2nλ− (2n(1− λ)− 1)− 1 (by (3.1))

= 2n(2λ− 1).

When λ ≥ 3
4
, we have 2λ − 1 ≥ 1

2
and so the minimum degree of Gt will be

over half the order of Gt and so Gt will have a 1-factor F ′t by Corollary 2.8.

We will now move on to the proof of Theorem 1.4. In light of Theorem

3.8, we only need to consider the case where we have chosen x and y so that

|X| = |Y | > 1. We will need to choose two arbitrary vertices x∗ ∈ X and y∗ ∈ Y .

(See Figure 3.5.) Again, we will show that G is 1-factorizable by showing that

G− x− y is class 1. However, this will take a little bit more work.

Let H be the set of vertices (X − x∗) ∪ (Y − y∗) ∪W . Let q = |H| and let

k = |X| − 1 = |Y | − 1 (by our assumption, k ≥ 1). Let M0 be a maximum

matching in the subgraph of G induced by H. Again, we define q matchings

M1, . . . ,Mq. In the case that M0 is empty, we let

M1 = · · · = Mq = ∅.
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Otherwise, we can label the vertices of H as l1, . . . , lm, rt, . . . , rm such that the

edges of M0 are l1r1, . . . , lmrm, and the vertices rt, . . . , r0 are the vertices missed

by M0. As before, we consider the Chetwynd-Hilton decomposition of Hm,t. For

i ∈ {1, . . . , q} we let

Mi = M+
i ∩ E(H)

where E(H) denotes the set of edges of G with both ends in H.

Our next lemma is similar to Lemma 3.9, with the difference that it involves

two kinds of matchings: 1-factors of G and 1-factors of G− x− y.

Lemma 3.10. Suppose that there exist disjoint matchings F1, . . . , Fq in G, such

that

(i) Exactly k of the matchings are 1-factors of G and the rest are 1-factors of

G− x− y.

(ii) The matchings that are 1-factors of G each contain an edge joining x to

X − x∗ and an edge joining y to Y − y∗.

(iii) Each edge in M1 ∪ · · · ∪Mq is contained in one of the matchings.

(iv) No edge of M0 is contained in any of the matchings.

Then G is 1-factorizable.

Proof. Let

G′ = G− x− y − (F1 ∪ · · · ∪ Fq).

The core of G′ is the subgraph of G′ induced by the vertices in H (the vertices

in H have degree 2nλ− q, x∗ and y∗ have degree 2nλ− q− 1, and the vertices in

Z have degree 2nλ− q − 2).

If M0 is empty, then the core of G′ contains no edges, and so G′ is class 1 by

Theorem 2.6. Otherwise, we can use Lemma 3.4 to show that G′ is class 1. We

have already labelled the vertices of H as l1, . . . , lm, rt, . . . , rm so we just need to
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check that the conditions from the statement of Lemma 3.4 hold. None of the

edges of M0 are contained in any of the matchings F1, . . . , Fq, so all are present

in G′ and therefore condition (i) is satisfied. Because M0 is a maximal matching,

there are no edges between vertices of {rt, . . . , r0}, so condition (iv) holds. And

because all the edges from M1∪· · ·∪Mq are contained in the 1-factors F1, . . . , Fq,

there are no edges present in G′ of the form lirj where i > j, and no edges with

both ends in {l1, . . . , lm}. So conditions (ii) and (iii) hold, and by Lemma 3.4 G′

is class 1.

Let G′′ be the graph obtained from G′ by adding all the edges in those match-

ings from F1, . . . , Fq that are 1-factors of G− x− y. By Lemma 2.9 G′′ is class 1.

There are k remaining matchings in F1, . . . , Fq that are all 1-factors of G contain-

ing an edge from x to X and an edge from y to Y . Suppose the matchings are

Fi1 , . . . , Fik . Let G′′′ be the graph obtained from G′′ by adding in the vertices x

and y together with all the edges joining them to their neighbours in G except

those contained in Fi1 , . . . , Fik . (So in G′′′ the vertex x is joined to the vertices

in Z and the vertex x∗, and to no other vertices. Similarly, the vertex y is joined

to the vertices in Z and the vertex y∗.) It follows from Lemma 3.3 that G′′′ is

class 1. And since G is obtained from G′′′ by adding k 1-factors, it follows from

Lemma 2.9 that G is class 1.

Before proving Theorem 1.4, we need the following lemma. We wish to choose

the vertices x and y so that q is as small as possible. Since q = |H| = 2n−4−|Z|,

we need to choose x and y so that Z is as large as possible. In other words, we

need to choose two vertices x and y that have as many common neighbours as

possible.

Lemma 3.11. We can choose the vertices x and y so that

q < 2n(1− λ2)− 3.
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Proof. Let d = 2nλ, the degree of G. There are 2n
(
d
2

)
paths of length 2 in G.

The average over all unordered pairs of vertices is

2n
(
d
2

)(
2n
2

) =
d(d− 1)

2n− 1
.

So there must exist two vertices with at least this many common neighbours. So

we can choose x and y so that

|Z| ≥ d(d− 1)

2n− 1
.

We have

q = |W |+ |X|+ |Y | − 2

= 2n− 4− |Z|

≤ 2n− 4− (2nλ)2 − 2nλ

2n− 1

< 2n− 4− (2nλ)2 − 2nλ

2n

= 2n− 4− 2nλ2 + λ

≤ 2n(1− λ2)− 3.

Recall from Section 3.3 the sequence

A = rm, . . . , r1, . . . , rt, l1 . . . , lm.

Label the vertices in X−x∗ as x1, . . . , xk according to the order in which they

appear in A, and similarly label the vertices in Y − y∗ as y1, . . . , yk according to

the order in which they appear in A.

By Remark 3.5, Mi misses (at least) the first i vertices inA. For i ∈ {1, . . . , k},

xi and yi must both occur in the first q− k+ i vertices of A. So it is certain that

Mq−k+i misses the vertices xi and yi.
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We will show that as long as λ is sufficiently large, there exist matchings

F1, . . . , Fq so that:

(1) F1, . . . , Fq−k are 1-factors of G− x− y.

(2) Fq−k+1, . . . , Fq are 1-factors of G.

(3) For i ∈ {1, . . . , k}, Fq−k+i contains the edges xix and yiy.

(4) No edge of M0 is contained in any of the matchings.

(5) Each edge in M1 ∪ · · · ∪Mq is contained in one of the matchings.

Note that these conditions are stronger than those in the statement of Lemma

3.10. Suppose—for a contradiction—that such matchings F1, . . . , Fq do not exist.

Then for some t, where 1 ≤ t ≤ q, there exist matchings F1, . . . , Ft−1 such that

the conditions (1)–(4) above are satisfied along with the condition:

(5′) Each edge in M1 ∪ · · · ∪Mt−1 is contained in one of the matchings.

As before, we will assume that the matchings F1, . . . , Ft−1 are chosen so as to

maximize t. Let

M ′
t = Mt − (F1 ∪ · · · ∪ Ft−1)

and

Gt =



G− x− y − {M0 ∪ F1 ∪ · · · ∪ Ft−1}

−V (M ′
t) if 1 ≤ t ≤ q − k,

G− x− y − {M0 ∪ F1 ∪ · · · ∪ Ft−1}

−V (M ′
t)− xt−q+k − yt−q+k if q − k + 1 ≤ t ≤ q.

(3.2)

We will show that if λ is sufficiently large, Gt has a 1-factor F ′t . We can then let

Ft =


F ′t ∪M ′

t if 1 ≤ t ≤ q − k,

F ′t ∪M ′
t ∪ {xt−q+kx, yt−q+ky} if q − k + 1 ≤ t ≤ q.
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And then F1, . . . , Ft will satisfy the above conditions. This will contradict our

assumption that the 1-factors F1, . . . , Ft−1 were chosen to maximize t. As before,

we will give a lower bound on the minimum degree of Gt.

The following lemma is similar to one from [5, 7], although we avoid an in-

convenient constant term that their version contains.

Lemma 3.12. If we choose x and y so that q is as small as possible then

δ(Gt) ≥ 2n(λ2 + λ− 1).

Proof. Note that a vertex cannot be adjacent to both x and y and be covered by

M0. The number of vertices covered by M ′
t is at most q − t. It follows that the

degree of a vertex in Gt is at least

δ(Gt) ≥ 2nλ− 4− (q − t)− (t− 1)

= 2nλ− q − 3

> 2nλ− (2n(1− λ2)− 3)− 3 (by Lemma 3.11)

= 2n(λ2 + λ− 1).

Proof of Theorem 1.4. Let G be a regular graph of order 2n and degree 2nλ where

λ > 1
2
(
√

7− 1) ≈ 0.82288.

By Theorem 3.2, if the degree of G is at least 2n− 3 then G is 1-factorizable.

So we will assume that 2nλ < 2n− 3. (This means that 2n ≥ 18.)

We choose two vertices x and y so that q is as small as possible. If |X| = |Y | is

0 or 1 then G is 1-factorizable by Theorem 3.8, so we may assume that this is not

the case. We will follow the strategy outlined above, and assume that F1, . . . , Ft−1

have been chosen so as to maximize t. As observed above, if the graph Gt has a
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1-factor, then there exists an Ft satisfying the appropriate conditions, which will

give us a contradiction. By Corollary 2.8 we can be certain that Gt has a 1-factor

F ′t if the minimum degree is at least half its order. But then by Lemma 3.12 this

will be the case if

λ2 + λ− 1 > 1
2
,

which is equivalent to

2λ2 + 2λ− 3 > 0.

But we have chosen λ to be larger than the positive root of this quadratic.

3.5 Critical quadrilaterals

We now turn to the task of improving Theorem 1.4. Suppose that G is a regular

graph of order 2n and degree 2nλ. If

λ > 1
6
(
√

57− 3) ≈ 0.75831,

then we have

λ2 + λ− 1 > 1
3
,

and so by Lemma 3.12 we have δ(Gt) >
1
3
(2n). This means that δ(Gt) satisfies

the assumptions for Sections 2.4 and 2.5, namely that G is a graph on at most

2n− 2 vertices with minimum degree at least 1
3
(2n).

Let us assume that

0.75831 ≈ 1
6
(
√

57− 3) < λ < 1
2
(
√

7− 1) ≈ 0.82288.

For λ in this range, we can use the machinery that we used to prove Theorem

1.4, except that we cannot use Corollary 2.8 to show that Gt has a 1-factor. In

fact, for such λ we cannot be sure that Gt has a 1-factor, so we will adopt a
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slightly different strategy.

We will also change our assumptions slightly about how the matchings F1, . . . ,

Ft−1 are chosen. We will assume that:

(1) F1, . . . , Fq−k are 1-factors of G− x− y.

(2) Fq−k+1, . . . , Fq are 1-factors of G.

(3) Fq−k+i contains the edges xix and yiy for i ∈ {1, . . . , k}.

(4) No edge of M0 is contained in any of the matchings.

(5) Each edge in M1 ∪ · · · ∪Mt−1 is contained in one of F1, . . . , Ft−1, P where P

is a 1-factor of C(Gt).

We will assume that subject to these conditions, we have chosen the matchings

F1, . . . , Ft−1 so that:

(i) t is as large as possible.

(ii) Subject to (i), Gt has as large a matching as possible.

We will show that for sufficiently large λ, either Gt has a 1-factor, or for some

i ∈ {1, . . . , t− 1} we can change Fi to obtain a new matching F ′i so that either:

(A) We can find a matching Ft so that F1, . . . , F
′
i , . . . , Ft satisfies conditions (1)-

(5) above, or

(B) F1, . . . , F
′
i , . . . , Ft−1 satisfies the conditions above, but the newGt has a larger

matching than the old one.

So we will obtain a contradiction if we assume that the matchings F1, . . . , Ft−1

are chosen subject to the conditions (i) and (ii) above. It will then follow that

the required matchings F1, . . . , Fq exist.
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The method we will use to change the matchings is that of exchanging a

quadrilateral, which was defined in Section 2.5. In fact, we will only exchange a

certain kind of quadrilateral, which we will call a critical quadrilateral.

So from now on we will assume that Gt does not have a 1-factor. Consider

the Gallai-Edmonds decomposition of Gt. Recall from Section 2.4 that A(Gt) is

either case 1 or case 2. Note that we will say that an edge is marginal if it belongs

to M1 ∪ · · · ∪Mt−1.

Suppose that A(Gt) is case 1. Then a critical type-1 quadrilateral is a type-1

quadrilateral (a, b, c, d) where

(i) ab, cd are edges in Fi for some i ∈ {1, . . . , t− 1}.

(ii) cd is not marginal.

The following lemma is due to Cariolaro and Hilton [7, 5], although our pre-

sentation of it here is different. The proof is quite technical, and will be postponed

until Section 3.7.

Lemma 3.13. If A(Gt) is case 1 and λ is greater than the second largest root of

λ4−λ3−4λ2 +2λ+1 (≈ 0.78526) then Gt contains a critical type-1 quadrilateral.

Suppose that A(Gt) is case 2. A vertex in A(Gt) is said to be inflexible if it

is adjacent to at least 2n− 2δ(Gt) vertices outside A(Gt), otherwise it is flexible.

A critical type-2 quadrilateral is a type-2 quadrilateral (a, b, c, d) where

(i) ab, cd are edges in Fi for some i ∈ {1, . . . , t− 1}.

(ii) cd is not marginal.

(iii) If c(a) and c(b) denote the odd components of D(Gt) containing a and b

respectively, then in B(Gt), c(a) and c(b) are not contained in the neigh-

bourhood of a nearly tight set of flexible vertices.
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The proof of this lemma is even more intricate than that of the previous

lemma, and will be postponed until Section 3.8.

Lemma 3.14. If A(Gt) is case 2 and λ is greater than the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3

(≈ 0.81112), then Gt contains a critical type-2 quadrilateral.

3.6 Proof of Theorem 1.5

We will now turn to the proof of Theorem 1.5. The following lemma shows that

exchanging a critical quadrilateral allows us to “do better” than before in our

choice of matchings.

For this lemma we will need to assume that

λ > 1
4
(
√

26− 2) ≈ 0.77475.

This ensures that

λ2 + λ− 1 > 3
8
,

and so by Lemma 3.12 we have δ(Gt) >
3
8
(2n) and so Gt satisfies the assumptions

of Lemma 2.22. We will also assume that 2n ≥ 10, so that we can use Lemma

2.27.

Recall that we are supposing that we have chosen matchings M1, . . . ,Mt−1 so

that

(i) t is as large as possible.

(ii) Subject to (i), Gt has as large a matching as possible.

And we are requiring, among other things, that
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M1 ∪ · · · ∪Mt−1 ⊂ F1 ∪ · · · ∪ Ft−1 ∪ P (3.3)

where P is a 1-factor of C(Gt).

A crucial step in the proof of the following lemma is where it is shown that

exchanging a type-2 quadrilateral increases the size of a maximum matching in

Gt. This method appears to be novel, and it may have other applications.

Lemma 3.15. Suppose there is a critical quadrilateral (a, b, c, d) where the edges

ab, cd are from the matching Fi for some i ∈ {1, . . . , t−1} that is type-1 or type-2

according to whether A(Gt) is case 1 or case 2. Let

F ′i = Fi ∪ {ac, bd} − {ab, cd},

and let

G∼t = Gt ∪ {ab, cd} − {ac, bd}.

Then either

(A) there is a 1-factor of G∼t and we can find the desired Ft with

M1 ∪ · · · ∪Mt ⊂ F1 ∪ · · · ∪ F ′i ∪ · · · ∪ Ft,

or

(B) there is a matching in G∼t larger than any in Gt, and a 1-factor P ′ of C(G∼t )

such that

M1 ∪ · · · ∪Mt−1 ⊂ F1 ∪ · · · ∪ F ′i ∪ · · · ∪ Ft−1 ∪ P ′.

(Note that G∼t is the graph obtained if F1 ∪ · · · ∪F ′i ∪ · · · ∪Ft is used in (3.2)

in place of F1 ∪ · · · ∪ Ft.)
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Proof. We will consider the Gallai-Edmonds decomposition of Gt and its associ-

ated bipartite graph B(Gt).

In the case that A(Gt) is case 1, C(Gt) is empty and so P is empty and can

contain no marginal edges. By Lemma 2.24 we can find a 1-factor of G∼t that

contains the edge ab. And so as before we can find Ft. So we have situation (A).

From now on, we will assume that A(Gt) is case 2.

Let ν be the size of a maximum matching in Gt. By part (1) of Lemma 2.25

the size of a maximum matching in G∼t is either ν or ν + 1. We will show that in

fact the first case cannot occur.

So suppose—for a contradiction—that the size of a maximum matching in G∼t

is ν. By part (5) of Theorem 2.14 there is a matching M in B(Gt) that covers

A(Gt) but misses c(a). And by part (2) of Lemma 2.25, M must cover c(b). By

condition (iii) of the definition of a type-2 critical quadrilateral, it follows that

there is an M -alternating path starting at c(b) with an edge of M and ending at an

inflexible vertex v of A(Gt). Let M ′ be the matching obtained by exchanging on

this alternating path. We can then form a matching F ′ in G∼t of size ν by taking

a set of edges corresponding to the matching M ′, the edge ab, near 1-factors of

all the odd components, and a 1-factor of C(Gt).

If M misses a vertex of Od(Gt) that corresponds to a singleton vertex u, then

let M ′′ = M . Otherwise, by Lemma 2.22, there must be an M -alternating path

joining an unmatched vertex of Od(Gt) to a vertex of Od(Gt) that corresponds

to a singleton u that is covered by M . Let M ′′ be the matching obtained by

exchanging on this alternating path. We can form a matching F ′′ in G∼t that has

size ν by taking a set of edges corresponding to M ′′ minus the edge that covers

c(b), the edge ab, near 1-factors of all the odd components, and a 1-factor of

C(Gt).

So we have two maximum matchings F ′ and F ′′ in G∼t , with F ′ missing the

inflexible vertex v and F ′′ missing the singleton u. Because they are missed by

maximum matchings, both u and v must be in D(G∼t ) by the construction of the
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Gallai-Edmonds decomposition. However, u is adjacent to at least δ(Gt) vertices

of A(Gt) and v is adjacent to at least 2n− 2δ(Gt) vertices that are not in A(Gt).

So the vertex set {u, v} has at least than 2n− δ(Gt) neighbours, and so at most

δ(Gt)− 2 non-neighbours.

But if A(G∼t ) is case 2, any pair of vertices in D(G∼t ) must have at least

δ(Gt) non-neighbours by Lemma 2.23. So A(G∼t ) cannot be case 2. But it cannot

be case 1 either, because by Lemma 2.27 G∼t is connected. But if the size of a

maximum matching in G∼t is ν there is no 1-factor, and so A(G∼t ) must be case

1 or case 2. So we have a contradiction.

We conclude that the size of a maximum matching in G∼t is ν+ 1. By Lemma

2.25 there is a 1-factor P ′ of C(G∼t ) that contains P . If G∼t has a 1-factor then

A(G∼t ) and D(G∼t ) are empty and so P ′ is a 1-factor of G∼t . And so in this case

as before we can find Ft and we have situation (A). Otherwise we have situation

(B).

Proof of Theorem 1.5. Suppose λ is greater than the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3

(≈ 0.81112). By Theorem 3.2, if the degree of G is at least 2n − 3 then G is

1-factorizable, so we will assume that 2nλ < 2n− 3. (This means that 2n ≥ 16.)

In addition, if λ > 1
2
(
√

7− 1) ≈ 0.82288 then G is 1-factorizable by Theorem 1.4

so we may also assume this is not the case.

We choose two vertices x and y so that q is as small as possible. If |X| = |Y |

is 0 or 1 then G is 1-factorizable by Theorem 3.8, so we may also assume that

this is not the case.

We claim that we can choose the required matchings F1, . . . , Fq one at a time.

Suppose we have chosen the first t − 1 matchings, but that we cannot choose

Ft because Gt does not have a 1-factor. As mentioned already, we may assume

that we have chosen the matchings subject to the condition that t is as large as
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possible, and subject to this, that Gt has as large a matching as possible.

If A(Gt) is case 1 then by Lemma 3.13 there exists a critical type-1 quadri-

lateral, and if A(Gt) is case 2 then by Lemma 3.14 there exists a critical type-2

quadrilateral. But then by Lemma 3.15 we can adjust our choice of matchings so

that either we can choose Ft or if not, we can make Gt have a larger matching.

In either case we contradict our assumptions about the choice of F1 ∪ · · · ∪ Ft−1.

It follows that all the required matchings F1, . . . , Fq can be found.

3.7 Proof of Lemma 3.13

In the following two sections we will use δ and ∆ to denote the minimum and

maximum degrees of Gt, δ(Gt) and ∆(Gt) respectively.

In this section we will assume that A(Gt) is case 1. Recall from Lemma 2.17

that D(G) consists of two large odd components, each with at least δ+1 vertices.

Suppose these components are called D1 and D2 and that they contain d1 and d2

vertices respectively. Let κ be the number of edges in the matchings F1, . . . , Ft−1

that have one end in D1 and the other in D2.

Lemma 3.16.

κ > (2n)2(λ2 + λ− 1)(λ2 + 2λ− 2).

Proof. In G, any vertex in non-adjacent to 2n(1− λ)− 1 other vertices. So in G

a vertex v ∈ D1 is adjacent to at least d2 − (2n(1 − λ) − 1) vertices in D2, and

at most one of these is joined to v by an edge in M0. So in G, v is joined to at

least d2 − 2n(1− λ) vertices in D2 by edges that are not present in Gt or M0, so
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must be contained in the matchings F1, . . . , Ft−1. So

κ ≥ d1(d2 − 2n(1− λ))

≥ (δ + 1)(δ + 1− 2n(1− λ))

> (2n)2(λ2 + λ− 1)(λ2 + 2λ− 2). (by Lemma 3.12)

Suppose that Fi, where i ∈ {1, . . . , t − 1}, is the matching that contains the

most edges that have one end in D1 and the other end in D2.

Lemma 3.17. If κ > 1
2
q2 then Fi contains at least one non-marginal edge that

has one end in D1 and the other end in D2.

Proof. It must be the case that Fi has at least

κ

t− 1

edges with one end in D1 and the other end in D2. Since t− 1 < q this number

is more than κ/q. No matching can contain more than q/2 marginal edges. So if

κ/q > q/2 it is certain that Fi contains at least one non-marginal edge that has

one end in D1 and the other end in D2.

Suppose c and d are two vertices in Gt such that cd is a non-marginal edge in

Fi that has one end in D1 and the other end in D2. Let F ∗i be those edges in Fi

that have one end in D1 and the other end in D2, excluding the edge cd.

Lemma 3.18. If |F ∗i | > 2n − 2δ then there are vertices a, b such that (a, b, c, d)

is a critical type-1 quadrilateral.

Proof. We will find vertices a, b such that ac, bd are edges in Gt and ab is an edge

in F ∗i . (Note that we have already found cd, a non-marginal edge in Fi.)

The vertex c is adjacent to at least |F ∗i | − (d1 − 1− δ) vertices that are ends

of edges in F ∗i . If we look at the other ends of these edges, d can be non-adjacent
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to at most (d2 − 1− δ) of them. So there will be suitable vertices a, b if

|F ∗i | − (d1 − 1− δ)− (d2 − 1− δ) > 0. (3.4)

But we have assumed that

|F ∗i | − 2n+ 2δ > 0,

which, as d1 + d2 < 2n, implies

|F ∗i | − (d1 + d2) + 2δ > 0,

which implies (3.4).

Proof of Lemma 3.13. We wish to show that for λ sufficiently large κ > 1
2
q2 and

|F ∗i | > 2n− 2δ. By Lemmas 3.11 and 3.16 the first will certainly hold if

(2n)2(λ2 + λ− 1)(λ2 + 2λ− 2) > 1
2
(2n)2(1− λ2)2. (3.5)

Since |F ∗i | > κ/q the second condition will hold if

κ/q > 2n− 2δ,

which by Lemmas 3.11 and 3.16 will hold if

(2n)
(λ2 + λ− 1)(λ2 + 2λ− 2)

1− λ
> 2n(3− 2λ− 2λ2). (3.6)

Both (3.5) and (3.6) are satisfied if λ is greater than the second largest root of

λ4 − λ3 − 4λ2 + 2λ+ 1

(≈ 0.78526).
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3.8 Proof of Lemma 3.14

In this section we will assume that A(Gt) is case 2. Let w be the number of

vertices in G − x − y that are not present in Gt (so w will count the vertices

in V (M ′
t) and xt−q+k and yt−q+k in the case that t ≥ q − k + 1). As before let

s = |A(Gt)|. Clearly we have

w ≤ 2n− 2s− 4.

Note that in the proof of Theorem 1.4 we established that if λ > 1
2
(
√

7− 1) ≈

0.82288 then Gt has a 1-factor. So it must be the case that λ is less than this

bound. (Incidentally, the following lemma also holds if A(Gt) is case 1.)

Lemma 3.19.

∆− δ ≤ w + 2.

Proof. In G−{F1∪· · ·∪Ft−1} all vertices except x and y have degree 2nλ− t+1.

Removing x, y and the edges of M0 reduces the degrees of the remaining vertices

by at most 2, and removing the vertices of V (M ′
t) (and xt−q+k and yt−q+k in the

case that t ≥ q − k + 1) reduces the degrees further by at most w.

Lemma 3.20.

t− 1 ≥ 2n(λ2 + 2λ− 2) + 1.

Proof. In G a vertex is non-adjacent to 2n(1− λ)− 1 other vertices. Yet in Gt a

vertex in D(Gt) is non-adjacent to all the vertices in the other odd components

of D(Gt), of which there are at least

s+ 1 ≥ δ + 1

≥ 2n(λ2 + λ− 1) + 1.
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It follows that for a vertex v ∈ D(Gt) at least

2n(λ2 + λ− 1) + 1− (2n(1− λ)− 1) = 2n(λ2 + 2λ− 2) + 2

edges incident with v in G must be present in the matchings M0, F1, . . . , Ft−1. So

we have

t− 1 ≥ 2n(λ2 + 2λ− 2) + 1

> 2n(λ2 + 2λ− 2).

Lemma 3.21. A vertex in A(Gt) must have fewer than n neighbours in D(Gt).

Proof. First note that for any X, Y ∈ R we have

min{X, Y −X} ≤ 1
2
Y. (3.7)

Let v be a vertex in A(Gt). The maximum number of neighbours that v can have

in D(Gt) is clearly bounded above by both ∆ and the size of D(Gt) which is at

most 2n− w − s− 2. So the maximum number of neighbours is at most

min{∆, 2n− w − s− 2} ≤ min{δ + w + 2, 2n− w − δ − 2}

≤ min{δ + w + 2, 2n− (δ + w + 2)}

≤ n.

The first inequality comes from Lemma 3.19 and the last inequality follows from

(3.7).

We will now define three quantities, β, θ and ψ. Let β be the number of

inflexible vertices in A(Gt). Let θ be the number of edges in the matchings

F1, . . . , Ft−1 that have both ends in A(Gt). And let ψ be the number of non-

marginal edges in the matchings F1, . . . , Ft−1 that have both ends in A(Gt). We
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will now obtain bounds for these quantities.

Lemma 3.22.

β > 2n
2(λ2 + λ− 1)(3λ2 + 3λ− 4)

4λ2 + 4λ− 5
.

Proof. Let β be the number of inflexible vertices in A(Gt). By Lemma 3.21 the

maximum number of edges joining such vertices to their neighbours in D(Gt) is

at most nβ. So we have

nβ + (s− β)(2n− 2δ) ≥ (s+ 2)δ.

So we have

β ≥ s(3δ − 2n) + 2δ

2δ − n

>
δ(3δ − 2n)

2δ − n
.

The result then follows by Lemma 3.12.

Remark 3.23. There are at most 2(s− β) vertices in D(Gt) that are contained

in a nearly-tight neighbourhood of a set of flexible vertices in A(Gt).

Proof. There are at most s−β flexible vertices in A(Gt). The number of vertices in

A(Gt) that are contained in nearly-tight neighbourhoods of these flexible vertices

is clearly bounded above by 2(s− β). (This bound is attained when each flexible

vertex is adjacent to exactly two vertices in D(Gt).)

Lemma 3.24.

θ > (2n)2 (λ2 + λ− 1)(3λ2 + 4λ− 5)

2
.

Proof. Let v ∈ V (G) − x − y. The number of edges in F1, . . . , Ft−1 that are

incident with v is t − 1. The number of these edges that go to C(Gt) ∪ D(Gt)
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is bounded above by the number of vertices in C(Gt) ∪D(Gt) which is at most

2n− δ − 2. And at most one of these edges goes to {x, y}. However, by Lemma

2.18 there are at least δ(s+ 2) edges in Gt that join A(Gt) to D(Gt). So we have

θ ≥ 1
2
(s(t− 1)− (s(2n− δ − 1)− δ(s+ 2)))

> 1
2
(s(t− 1)− s(2n− 2δ − 1))

≥ 1
2
(s(2n(λ2 + 2λ− 2))− s(2n− 2n(2λ2 + 2λ− 2)− 1))

≥ 1
2
s(2n(3λ2 + 4λ− 5) + 1)

> 1
2
(2n)2(λ2 + λ− 1)(3λ2 + 4λ− 5).

Lemma 3.25.

ψ > (2n)2 2(λ2 + λ− 1)(3λ2 + 4λ− 5)− (1− λ2)2

4
.

Proof. By Lemma 3.11 we have q < 2n(1− λ2)− 3. By Remark 3.3 the number

of marginal edges is at most

1
4
q2 < 1

4
(2n)2(1− λ2)2.

The result then follows by Lemma 3.24.

Suppose that Fi, where i ∈ {1, . . . , t − 1}, is the matching that contains the

most non-marginal edges that have both ends in A(Gt), and let φ be the number

of such edges that Fi contains.

Lemma 3.26.

φ > 2n
2(λ2 + λ− 1)(3λ2 + 4λ− 5)− (1− λ2)2

4(1− λ2)
.
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Proof. There are at least ψ non-marginal edges in the matchings F1, . . . , Ft−1

that have both ends in A(Gt). So there must exist a matching Fi, where i ∈

{1, . . . , t− 1}, that contributes at least ψ/(t− 1) edges to this total. The result

follows from Lemma 3.25 and the fact that t− 1 < 2n(1− λ2).

Lemma 3.27. Suppose that

2φ− 2n+ 2δ + 4 > 0. (3.8)

Then for any pair of vertices a, b in different odd components of D(Gt) there is

an edge cd ∈ Fi such that c, d ∈ A(Gt), and ac, bd are edges in Gt.

Proof. Suppose that a, b are two vertices in different odd components of D(Gt),

and that the sizes of the odd components they are contained in are σa and σb.

Since there are at least s+ 2 odd components, we have

σa + σb − 2 ≤ 2n− 2s− 4. (3.9)

The vertex a is adjacent to at least δ−σa + 1 vertices in A(Gt), and b is adjacent

to at least δ − σb + 1 such vertices. There are more than 2φ vertices in A(Gt)

incident with a non-marginal edge of Fi. So a must be adjacent to at least

2φ− s+ (δ − σa + 1)

of them. There is an equinumerous set of vertices that are joined to these vertices

by an edge of Fi. Now b must be adjacent to at least

2φ− s+ (δ − σa + 1)− s+ (δ − σa + 1) = 2φ− 2s+ 2δ − (σa + σb − 2).

And by (3.9) this is at least

2φ− 2n+ 2δ + 4.
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It follows that if this number is positive then the required vertices c, d exist.

Lemma 3.28. Suppose that

2φ− 2n+ 2β + 4 > 0. (3.10)

Then Fi contains an edge ab, such that the vertices a, b are in different odd com-

ponents of D(Gt) and are not contained in a nearly-tight neighbourhood of a set

of flexible vertices.

Proof. By Remark 3.23, there are at most 2(s − β) vertices in D(Gt) that are

contained in a nearly-tight neighbourhood of a set of flexible vertices in A(Gt).

So there can be at most s − β edges in Fi that have both ends in a nearly-tight

neighbourhood of a set of flexible vertices.

Since each component of D(Gt) is of odd order, each component must contain

at least one vertex that is incident with an edge of Fi, the other end of which is

not in the component. Two of these edges may go to x and y; at most s − 2φ

go to vertices in A(Gt); and at most 2n− 2s− 4 go to vertices in C(Gt). So the

number of such edges that go to a different component of D(Gt) is at least

1
2
((s+ 2)− 2− (s− 2φ)− (2n− 2s− 4)) = 1

2
(2φ− 2n+ 2s+ 4).

So at least

1
2
(2φ− 2n+ 2s+ 4)− (s− β)

of these have at least one end not in a nearly-tight neighbourhood of a set of

flexible vertices. It follows that if this number is positive then the required edge

ab exists.

Proof of Lemma 3.14. We wish to show that for λ sufficiently large, conditions

(3.8) and (3.10) are satisfied. By using the bounds obtained in Lemmas 3.12,
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3.26 and 3.22, we obtain the inequalities

λ4 + 10λ3 + 4λ2 − 14λ+ 3

2(1− λ2)
> 0,

and

4λ6 − 28λ5 − 71λ4 + 54λ3 + 88λ2 − 62λ+ 3

2(λ2 − 1)(4λ2 + 4λ− 5)
> 0.

Both of these are satisfied if λ is greater than the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3

(≈ 0.81112). So by Lemma 3.28 we can find two vertices a, b in different odd

components of D(Gt) that are not contained in a nearly-tight neighbourhood of

a set of flexible vertices. And by Lemma 3.27 Fi contains a non-marginal edge

cd such that c, d ∈ A(Gt) and ac, bd are edges in Gt. Hence (a, b, c, d) is a critical

type-2 quadrilateral.

3.9 The Overfull Conjecture

In this section our graphs will be of both odd and even order. Accordingly, they

will be of order n not 2n. A graph G is said to be overfull if it contains a subgraph

H such that H is of odd order at least 3, ∆(G) = ∆(H) and

|E(H)| > |V (H)| − 1

2
∆(H). (3.11)

An overfull graph is necessarily class 2, as more than ∆(G) colours are needed

to colour the edges of H. Regular graphs of odd order are always overfull, since

(3.11) is satisfied by taking H = G. (Note that a graph G is overfull if and only

if its fractional chromatic index is ∆(G) + 1. See e.g. [35].)

In 1986 Chetwynd and Hilton made the following conjecture which came to
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be known as the Overfull Conjecture.

Conjecture 3.29. (Chetwynd and Hilton [9]) Let G be a graph of order n where

∆(G) > 1
3
n.

Then G is class 2 if and only if G is overfull.

In the case of regular graphs, overfullness has a simple interpretation.

Lemma 3.30. Let G be a regular graph of degree d. Then G is overfull if and

only if there is a set S ⊆ V (G) of odd size such that there are fewer than d edges

between S and V (G)− S.

Proof. Suppose G is overfull. Then there is a set of vertices S, of odd size k, such

that the subgraph of G induced by S has over d(k−1)/2 edges. Since the number

of ends incident with vertices in S is dk, there are fewer than dk − d(k − 1) = d

edges between S and V (G)− S.

Conversely, suppose there is a set S ⊆ V (G), of odd size k, such that there

are fewer than d edges between S and V (G) − S. Then there are more than

(kd − d)/2 = d(k − 1)/2 edges in the subgraph of G induced by S and so G is

overfull.

The following lemma shows that Conjecture 3.29 is implied by Conjecture 1.1.

Lemma 3.31. Let G be a regular graph of even order n and degree at least n/2.

Then G is not overfull.

Proof. Suppose G is overfull. Then by Lemma 3.30 there is a set S, of odd size

k, such that there are fewer than d edges between S and V (G)− S. Note that if

a set S satisfies this property, so does its complement. So we may assume that

k ≤ n/2.

The maximum number of edges that the subgraph induced by S can contain

is k(k − 1)/2. So the number of edges between S and V (G) − S is at least
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kd− k(k − 1) = k(d− k + 1). This is a polynomial in k which takes the value d

when k = 1 and k = d and exceeds this value in between. So we must have k > d.

But we have assumed that k ≤ n/2 ≤ d, so we have a contradiction. Hence G is

not overfull.

In what may be the only partial result on the Overfull Conjecture, Plantholt

proved the following.

Lemma 3.32. (Plantholt [34]) Suppose λ ≥ 3
4

is a real number such that all

regular graphs of order n and degree at least nλ are 1-factorizable. Let G be a

graph of order n. If

3δ(G)−∆(G)

2
≥ nλ,

then G is class 2 if and only if G is overfull.

Combining Lemma 3.32 with Theorem 1.4, we have the following.

Corollary 3.33. Let G be a graph of order 2n. If

3δ(G)−∆(G) ≥ n(
√

7− 1),

then G is class 2 if and only if G is overfull.

And using the trivial bound ∆(G) < n we have:

Theorem 3.34. (Plantholt [34]) Let G be a graph of order n and minimum degree

nµ where

µ >

√
7

3
≈ 0.88192,

then G is class 2 if and only if G is overfull.

If instead of using Theorem 1.4 and use our new Theorem 1.5, we obtain the

following.

Theorem 3.35. Let λ∗ be the second largest root of

4x6 − 28x5 − 71x4 + 54x3 + 88x2 − 62x+ 3.
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Let G be a graph of order n and minimum degree nµ where

µ >
2λ∗ + 1

3
≈ 0.87408,

then G is class 2 if and only if G is overfull.
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Chapter 4

Partial latin squares and Hall’s

Condition

In this chapter we present our investigation into partial latin squares that satisfy

Hall’s Condition. Sections 4.1 and 4.2 provide an introduction to Hall’s Condition.

In Section 4.3 we prove Theorem 1.6, and in Section 4.4 we prove the more general

Theorem 1.7. Section 4.5 contains some results that will be needed in Section 4.6,

where we show that the problem of determining the completability of partial latin

squares that satisfy Hall’s Condition is NP-hard. Finally in Section 4.7 we give

some variations on this result.

Although Hall’s Condition was first investigated in connection with the prob-

lem of determining completability of partial latin squares [27], most of the recent

work is concerned with how it applies to list-colourings of graphs, so we introduce

it here via list-colourings. For a recent survey on Hall’s Condition see [28].

4.1 List-colourings

Let A = {A1, . . . , An} be a finite collection of finite sets. A system of distinct

representatives for A is a set {a1, . . . , an} of n distinct elements such that ai ∈ Ai

for all i ∈ {1, . . . , n}. Theorem 2.10 (Hall’s Theorem) can be restated in the
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following way. (In fact, this is how Hall originally stated his theorem.)

Theorem 4.1. (Hall, 1936 [26, 1]) A has a system of distinct representatives if

and only if for all subsets I ⊆ {1, . . . , n} we have

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |I| . (4.1)

Let G be a graph, and let L be a map that assigns to each vertex v ∈ V (G)

a set L(v) of positive integers. We refer to L(v) as the list of v. We say that G

is L-colourable if there is a map c from V (G) to the positive integers such that

c(v) ∈ L(v) for all v ∈ V (G) and for all pairs of adjacent vertices u, v we have

c(u) 6= c(v). If σ ∈ L(v) then we say that v supports σ.

Let (G,L) be a graph with lists. We say that (G,L) satisfies Hall’s Condition

if for all induced subgraphs H of G we have

∑
σ∈N

α(L, σ,H) ≥ |V (H)| (4.2)

where α(L, σ,H) is the size of a maximum independent set in the subgraph of H

induced by those vertices that support σ. Despite the name, Hall’s Condition is

actually a set of 2|V (G)| inequalities, one for each induced subgraph of G. If H is

an induced subgraph of G then we refer to the inequality involving H as Hall’s

Inequality on H, which we will abbreviate to H(H).

Is is not hard to see that Hall’s Condition is a necessary condition for a graph

to have a list-colouring:

Lemma 4.2. Let (G,L) be a graph with lists. Then (G,L) is list-colourable only

if (G,L) satisfies Hall’s Condition.

Proof. Suppose we have a list-colouring of (G,L). Let H be an induced subgraph

of G. For σ ∈ N, let Vσ be the set of vertices in H coloured σ. We must have
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∑
σ∈N |Vσ| = |H|. As each set Vσ is an independent set of vertices in H, we have

α(L, σ,H) ≥ |Vσ|. Therefore

∑
σ∈N

α(L, σ,H) ≥
∑
σ∈N

|Vσ| = |V (H)|

and so H(H) holds. As this holds for all induced subgraphs H, (G,L) satisfies

Hall’s Condition.

For certain sorts of graphs with lists, Hall’s Condition is both a necessary and

a sufficient condition for list-colourability. For example, we have the following.

Lemma 4.3. A complete graph Kn with lists has a list-colouring if and only if

Hall’s Condition is satisfied.

Proof. Suppose the vertices are labelled v1, . . . , vn. Since any two vertices are

adjacent, finding a list-colouring is equivalent to finding a system of distinct rep-

resentatives for L(v1), . . . , L(vn). And as every induced subgraph of Kn is a com-

plete graph, condition (4.2) implies that for every set of vertices J ,
∣∣⋃

v∈J L(v)
∣∣ ≥

|J |. So in this case condition (4.2) is equivalent to condition (4.1).

However, it is not difficult to find examples of graphs with lists that satisfy

Hall’s Condition but are not list-colourable—see Figure 4.1 for one example.

(In this graph every set of vertices of size 3 is list-colourable, so to verify Hall’s

Condition we just need to check Hall’s Inequality for the whole graph, and indeed

it holds. However the graph is clearly not list-colourable.)

4.2 Partial latin squares

A partial latin square P gives rise to a graph with lists (G,L) in the following

natural way: create a vertex for each cell, join two vertices by an edge if and only

if their corresponding cells are in the same row or column, and for each vertex

v in G let L(v) be the set of symbols supported by the cell corresponding to v.
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{3}

{1, 3}

{1, 2}

{2, 3}

Figure 4.1: A graph with lists that satisfies Hall’s Condition but is not list-
colourable.

(So if the cell contains the symbol σ, L(v) = {σ}, and if the cell is empty, L(v)

is the set of symbols that do not occur in the same row or column.) We refer to

the graph with lists (G,L) as L(P ).

Note that the graph of L(P ) is sometimes called the cartesian product Kn�Kn.

(For two graphs G1 and G2, the cartesian product G1�G2 is the graph with vertex

set V (G1) × V (G2), where (u1, v1) is adjacent to (u2, v2) if either u1u2 ∈ E(G1)

and v1 = v2, or v1v2 ∈ E(G2) and u1 = u2. See e.g. [4].)

It should be clear that a vertex of L(P ) supports a symbol σ if and only

if the corresponding cell of P supports σ, and that a set of vertices of L(P ) is

independent if and only if the corresponding cells of P are independent. So we

can see that not only is a list-colouring of L(P ) entirely equivalent to a completion

of P , but that Hall’s Condition for P—as defined in Chapter 1—is the same as

Hall’s Condition for L(P ). So we can use both definitions of Hall’s Condition

interchangeably.

If we have a set of cells T of a partial latin square P , by H(T ) we mean the

Hall’s Inequality on the set of vertices of L(P ) that correspond to the cells of T .

Lemma 4.4. Let P be a partial latin square of order n, T a set of cells and f ∈ T

a filled cell. Then H(T ) holds if and only if H(T − f) holds.

Proof. Assume that H(T ) holds. As the cell f only supports one symbol, it can
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only contribute 1 to the quantity

∑
σ∈{1,...,n}

α(σ, T ),

so

∑
σ∈{1,...,n}

α(σ, T − f) ≥

 ∑
σ∈{1,...,n}

α(σ, T )

− 1 ≥ |T | − 1 = |T − f | ,

and so H(T − f) holds. Conversely, suppose that H(T − f) holds, and that f

contains a symbol σ ∈ {1, . . . , n}. As no other cells of T in the same row or

column as f support σ, the size of a maximum independent set of cells of T that

support σ is exactly one greater than the size of such a set in T − f . So

∑
σ∈{1,...,n}

α(σ, T ) =

 ∑
σ∈{1,...,n}

α(σ, T − f)

+ 1 ≥ |T − f |+ 1 = |T | ,

and so H(T ) holds.

A consequence of Lemma 4.4 is that when determining if a partial latin square

satisfies Hall’s Condition it is sufficient to verify that Hall’s Inequality is satisfied

for each set of empty cells.

Recall Goldwasser’s square from Chapter 1 (see Figure 1.1). It can easily be

verified that Goldwasser’s square is incompletable. To see that it satisfies Hall’s

Condition, we will use the following lemma, which will also be needed later. Note

that we say that a symbol is missing from a row or column if it does not appear

in the filled cells of that row or column.

A vertex cover of a graph G is a set of vertices C, such that each edge of G

has at least one end in C. We shall need the following classical theorem:

Theorem 4.5. (König–Egevary, 1931 [1, 4, 14]) Let G be a bipartite graph. The

size of a maximum matching in G is equal to the size of a minimum vertex cover.
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It can be easily verified that Goldwasser’s square (see Figure 1.1) is incom-

pletable. To see that it satisfies Hall’s Condition, we shall use the following

lemma, which will also be needed in Section 4.6.

Lemma 4.6. Let P be a partial latin square. Suppose that a symbol σ is missing

from k columns and k rows of P but is present in all the other rows and columns

of P . Suppose that we have a set of empty cells T which contains t cells that

support σ. Then α(σ, T ) ≥ dt/ke.

Proof. Let G be the bipartite graph on 2k vertices, defined as follows. There are

k vertices r1, . . . , rk, representing the rows from which σ is missing, and there are

k vertices c1, . . . , ck, representing the columns from which σ is missing. For each

cell of T that supports σ, we place an edge between the vertex that represents

the cell’s row, and the vertex that represents the cell’s column. Matchings in

G correspond to independent sets of cells in P . By Theorem 4.5, the size of a

maximum matching in G is equal to the size of the smallest vertex cover. But G

has t edges and maximum degree at most k, so any vertex cover must contain at

least dt/ke vertices. Hence there is a matching in G of size dt/ke, and therefore

α(σ, T ) ≥ dt/ke.

In the preceding proof we found that determining the size of a maximum

independent set in a set of cells is equivalent to finding a maximum matching in

a certain bipartite graph. Since the size of a maximum matching in a bipartite

graph on n vertices can be determined in O(n3) time (see e.g. [38, Chapter 20]),

we have the following result:

Lemma 4.7. Let P be a partial latin square, and T a set of cells. Then H(T )

can be determined in O(n4) time.

In Goldwasser’s square, all symbols are missing from 2 rows and 2 columns,

and each empty cell supports 2 symbols. By Lemma 4.4, Hall’s Condition holds

if Hall’s Inequality holds for each set of empty cells. So let T be a set of empty
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cells of Goldwasser’s square. For each i ∈ {1, . . . , 6}, let ai be the number of cells

of T that support i. As each cell of T supports 2 symbols we have

6∑
i=1

ai = 2 |T | . (4.3)

But then

6∑
i=1

α(i, T ) ≥
6∑
i=1

dai/2e (by Lemma 4.6)

≥ 1
2

6∑
i=1

ai

= |T | . (by (4.3))

And so H(T ) holds. So Hall’s Inequality holds for each set of empty cells T , and

so Goldwasser’s square satisfies Hall’s Condition.

4.3 Hall’s Condition and Ryser’s condition

The following is a classical theorem of Ryser, which gives a necessary and sufficient

condition for a latin rectangle to be extendable to a latin square.

Theorem 4.8. (Ryser, 1951 [37, 1]) Let P be a partial latin square of order n

whose filled cells are those in the upper-left r × s rectangle R, for some r, s ∈

{1, . . . , n}. P is completable if and only if ν(σ) ≥ r+s−n for all σ ∈ {1, . . . , n},

where ν(σ) is the number of times that σ occurs in R.

Hilton and Johnson [27] proved that Ryser’s condition is equivalent to Hall’s

Condition—in fact, it is equivalent to a single Hall’s Inequality. This theorem

provoked much of the current interest in Hall’s Condition. We say that a symbol

σ has an r-independent set, in a set of cells H, if there is an independent set

of size r in the cells of H that support σ. To prove Theorem 1.6 we need the

following lemma.
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Lemma 4.9. Let P be a partial latin square of order n whose filled cells are those

in the upper-left r × s rectangle R, for some r, s ∈ {1, . . . , n}. Let H be the set

of cells in the top r rows, and for each σ ∈ {1, . . . , n} let ν(σ) denote the number

of times that σ appears in R. Then

α(σ,H) = min{r, ν(σ) + n− s}.

Proof. Let S1 be the set of cells in R that contain σ. S1 is an independent set

of size ν(σ). In H there are n − s columns with empty cells, and r − ν(σ) rows

that do not contain σ. From the cells in these n − s columns and r − ν(σ)

rows we can select an independent set S2 of size min{r − ν(σ), n − s}. Then

S = S1 ∪ S2 is an independent set of size min{r, ν(σ) + n− s}. This shows that

α(σ,H) ≥ min{r, ν(σ) + n − s}. Moreover, α(σ,H) ≤ r as there are r rows in

H; also α(σ,H) ≤ ν(σ) + n − s as no independent set for σ can use more than

ν(σ) + n− s columns. So in fact we have α(σ,H) = min{r, ν(σ) + n− s}.

Proof of Theorem 1.6. If P is completable then it satisfies Hall’s Condition by

Lemma 4.2. Conversely, suppose P satisfies Hall’s Condition. Then H(H) holds,

which means that ∑
σ∈{1,...,n}

α(σ,H) ≥ rn,

which in turn implies that α(σ,H) = r for all σ ∈ {1, . . . , n}. By Lemma 4.9 we

have ν(σ) +n− s ≥ r for all σ ∈ {1, . . . , n}. Hence P is completable by Theorem

4.8 (Ryser’s Theorem).

4.4 A more general result

In this section we will present the proof of Theorem 1.7, the most general “posi-

tive” result on Hall’s Condition that we have been able to obtain. The proof makes
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Figure 4.2: The shapes of partial latin square considered in Theorems 1.6 and
1.7.

use of the following classical result of Ford and Fulkerson, commonly known as

the “Max-flow Min-cut” Theorem. For basic definitions concerning flows and cuts

see [4]. Note that an integral flow is a flow in which the flow along each edge is

an integer.

Theorem 4.10. (Ford and Fulkerson, 1956 [19, 4, 14]) Let G be a directed graph

with integral edge capacities and two distinguished vertices α (the “source”) and

ω (the “sink”). Then the size of a maximum flow between α and ω is equal to

the minimum size of a cut that separates these two vertices. Moreover, there is a

maximum flow that is integral.

Theorem 4.10 is in a sense more fundamental than Theorem 2.10 (Hall’s The-

orem). In fact, it is a common exercise to deduce Hall’s Theorem from it. In

the proof of Theorem 1.7 we will use a technique inspired by this exercise. The

following lemma is a generalization of Lemma 4.9.

Lemma 4.11. Let P be a partial latin square of order n whose filled cells are all

in the upper-left r × s rectangle R, for some r, s ∈ {1, . . . , n}, although at most

one cell in each column inside the rectangle may be empty. Let J be a subset

of these empty cells. Let H be the set of cells in the top r rows, and for each

σ ∈ {1, . . . , n} let ν(σ) denote the number of times that σ appears in R, and let

ρ(σ) be the number of rows in which there is an empty cell in R−J that supports
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σ. Then

α(σ,H − J) = min{r, ν(σ) + ρ(σ) + n− s}.

Proof. Let S1 be the set of cells inH that contain σ, plus one empty cell fromR−J

that supports σ from each row that contains such a cell. S1 is an independent

set of size ν(σ) + ρ(σ). We can find an independent set S2 of size min{r −

ν(σ) − ρ(σ), n − s} from the cells in the rightmost n − s columns that are in

the r − ν(σ) − ρ(σ) rows that have no cells in S1. Then S = S1 ∪ S2 is an

independent set for σ of size min{r, ν(σ) + ρ(σ) + n − s}. This shows that

α(σ,H − J) ≥ min{r, ν(σ) + ρ(σ) + n− s}. Moreover, α(σ,H − J) ≤ r as there

are r rows in H; also α(σ,H − J) ≤ ν(σ) + ρ(σ) + n − s as no independent

set for σ can use more than ν(σ) + ρ(σ) + n − s columns. So in fact we have

α(σ,H − J) = min{r, ν(σ) + ρ(σ) + n− s}.

Proof of Theorem 1.7. If P is completable then it satisfies Hall’s Condition by

Lemma 4.2. Conversely, suppose P satisfies Hall’s Condition. We will show that

P can be completed to a latin square of order n. We will do this by showing that

we can fill all the empty cells in R, in such a way that Ryser’s condition given in

Theorem 4.8 is satisfied.

Let H be the set of rn cells in the first r rows of P , and let B = {b1, . . . , bt}

be the set of empty cells in R. By Lemma 4.11, first with J = B, and second

with J = ∅, we have

α(σ,H −B) = min{r, ν(σ) + n− s}

and

α(σ,H) = min{r, ν(σ) + ρ(σ) + n− s},

where ρ(σ) is the number of rows in which σ is supported by an empty cell in R.
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H(H) implies that for all σ ∈ {1, . . . , n} we have α(σ,H) = r and therefore

ν(σ) + ρ(σ) + n− s ≥ r.

For each symbol σ ∈ {1, . . . , n} we let µ(σ) be the least non-negative integer

such that

ν(σ) + µ(σ) ≥ r + s− n. (4.4)

So we have

µ(σ) ≤ ρ(σ). (4.5)

Note that if σ already appears at least r+ s−n times in R we have µ(σ) = 0;

otherwise we have µ(σ) > 0 and

ν(σ) + µ(σ) = r + s− n. (4.6)

The proof will be in four stages. Let

u =
∑

σ∈{1,...,n}

µ(σ).

In Stage 1, we show that we can create a partial latin square Q1 containing P by

filling in u cells of R in such a way that each symbol σ ∈ {1, . . . , n} appears µ(σ)

times in the empty cells of R. It will follow from (4.4) that Q1 satisfies Ryser’s

condition of Theorem 4.8, namely that each symbol appears at least r+s−n times

in R. However, Q1 may still have some empty cells in the upper-left r×s rectangle

R. In Stage 1 we will use the Hall’s Inequality H(H−B′) for each subset B′ ⊆ B,

and our main tool will be the Max-flow Min-cut Theorem (Theorem 4.10).

Stage 2 is independent of Stage 1. We create a second partial latin square

Q2 containing P . Q2 will not depend in any way on Q1. In the upper-left r × s

rectangle R of Q2 there will be no empty cells. Thus R will be completely filled,

but Q2 will not necessarily satisfy Ryser’s condition of Theorem 4.8. In Stage 2
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we will use Hall’s Inequality H(B′) for each subset B′ ⊆ B whose cells all lie in

just one row.

In Stage 3 we use the Dulmage-Mendelsohn Theorem (Theorem 2.12) to pro-

duce from Q1 and Q2 a partial latin square Q3 that also contains P , and where the

upper-left r × s rectangle R contains no empty cells, and which satisfies Ryser’s

condition of Theorem 4.8.

In Stage 4 we complete Q3 using Theorem 4.8, and, since Q3 contains P , in

so doing we finish the completion of P .

Stage 1.

We will show that we can fill some of the cells of B to create a partial latin

square Q1. In the partial filling of B, each symbol σ ∈ {1, . . . , n} will be used

µ(σ) times. If a symbol σ has µ(σ) = 0 then there is nothing to do. We just need

to consider those symbols for which µ(σ) > 0. If this is the case, then σ satisfies

(4.6).

In order to show that we can fill some of the cells of B using each symbol

at least µ(σ) times, we will consider an edge-capacitated directed graph G. The

graph G has vertex set U ∪X ∪B ∪ {α, ω} where

U = {σ : σ ∈ {1, . . . , n} and µ(σ) > 0},

X = {(σ,w) : w ∈ {1, . . . , r} and at least one empty cell in row w supports σ},

and α and ω are two additional vertices (the “source” and the “sink”).

In G, α is joined to each vertex σ ∈ U by an edge of capacity µ(σ), the

direction being from α to σ. Each vertex σ ∈ U is joined to all the vertices in X

of the form (σ,w) for some w ∈ {1, . . . , r} by edges of capacity 1, the direction

being from U to X. Each vertex (σ,w) ∈ X is joined to all b ∈ B where b is a

cell in row w that supports σ, with edges of capacity u, the direction being from

X to B. Each vertex in B is joined to ω by an edge of capacity 1, the direction
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α ωU X B

Figure 4.3: The directed graph G from Theorem 1.7.

being from B to ω. (See Figure 4.3.)

Claim 1. We can fill some of the cells of B using each symbol σ ∈ U µ(σ) times

if and only if there is a u-flow in G from α to ω.

Proof. Suppose there is such a partial filling of B. For each instance that a

symbol σ ∈ U is placed in cell b ∈ B of row w, we can create a 1-flow in G from

α to ω by sending a flow of 1 from α to σ ∈ U to (σ,w) ∈ X to b ∈ B to ω. The

sum of all these 1-flows gives a u-flow from α to ω.

Conversely, suppose that there is a u-flow from α to ω. By the Max-flow

Min-cut Theorem (Theorem 4.10) there is such a flow that is integral. All the

edges from α to U must carry a flow equal to their capacity, and there must be u

paths from U to ω each carrying 1-flows. These flows indicate how the cells of B

can be filled. The fact that the edges between U and X have capacity 1 ensures

that each symbol is placed at most once in each row. This proves Claim 1.

Suppose, for a contradiction, that it is not possible to fill some of the cells

of B using each symbol σ ∈ U µ(σ) times. It follows that there does not exist

a u-flow in G from α to ω. Hence by the Max-flow Min-cut Theorem (Theorem

4.10), there must be a cut T in G of size less than u that separates α from ω.

T cannot contain any of the edges between X and B as each of these edges

has capacity u. Also T cannot contain all the edges between α and U (or it would

have size u).
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Let U ′ ⊆ U be the set of vertices that α is joined to with an edge that is not

in T . (See Figure 4.4.) For each σ ∈ U ′ let c(σ) be the number of edges joining

σ to X that are in T . We may suppose that for all σ ∈ U ′ we have c(σ) < µ(σ)

as otherwise we can create a new cut T ′ from T , where |T ′| ≤ |T |, by adding the

edge joining α to σ and removing the edges joining σ to X.

Let B′ ⊆ B be the set of vertices in B that are joined to vertices in U ′ by

paths containing no edges of T . Because the cut T separates α from ω all the

edges that join B′ to ω must be in T . Since we have assumed that T has size less

than u we must have

∑
σ∈U−U ′

µ(σ) +
∑
σ∈U ′

c(σ) + |B′| < u =
∑
σ∈U

µ(σ),

so that ∑
σ∈U ′

(µ(σ)− c(σ)) > |B′| . (4.7)

By Lemma 4.11 we have for all σ ∈ U ,

α(σ,H −B′) = min{r, ν(σ) + ρ′(σ) + n− s}

≤ ν(σ) + ρ′(σ) + n− s,

where ρ′(σ) is the number of rows in which σ is supported by a cell in B − B′.

Then by (4.6) we have

α(σ,H −B′) ≤ r − µ(σ) + ρ′(σ). (4.8)

Consider a row w containing an empty cell b ∈ B − B′ supporting a symbol

σ ∈ U ′. This occurrence of σ in a cell of row w contributes 1 to ρ′(σ). The

occurrence of cell b ∈ B−B′ in row w supporting σ corresponds to a unique path

joining σ ∈ U ′ to b ∈ B−B′ and passing through (σ,w) in X. Such a path must

contain one of the c(σ) edges of T joining σ ∈ U ′ to X. Therefore for σ ∈ U ′ we
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α ωU ′ B′

Figure 4.4: The sets U ′ and B′ from Theorem 1.7.

have

ρ′(σ) ≤ c(σ),

and therefore by (4.8),

α(σ,H −B′) ≤ r − µ(σ) + c(σ).

So

∑
σ∈{1,...,n}

α(σ,H −B′) ≤
∑

σ∈U−U ′

r +
∑
σ∈U ′

(r − µ(σ) + c(σ))

≤ rn−
∑
σ∈U ′

(µ(σ)− c(σ))

< rn− |B′| , (by (4.7))

which contradicts H(H −B′).

Hence it is not possible that G has a cut of size less than u. It follows that

the required partial latin square Q1, which contains P , and in which each symbol

appears at least r + s− n times in R, can be found. This completes Stage 1.

Stage 2.

We must now show that we can find a partial latin square Q2, that contains P ,

and has no empty cells within the upper-left r× s rectangle R. We will construct

Q2 by taking P and filling the cells in B one row at a time.
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For each row w ∈ {1, . . . , r} that contains cells in B, consider the bipartite

graph Gw on the vertex set S ∪ Bw where S = {1, . . . , n} and Bw is the subset

of B consisting of the members of B that are in row w. In Gw each cell b ∈ Bw

is joined to the symbols in S that it supports. So a matching in Gw that covers

Bw corresponds to a filling of the cells Bw with distinct symbols.

Claim 2. There is a matching in Gw that covers Bw.

Proof. Suppose not. Then by Hall’s Theorem (Theorem 2.10) there is a subset

B′ ⊆ Bw with neighbour set Y ∈ S such that |Y | < |B′|. But for any symbol

σ ∈ {1, . . . , n} we have α(σ,B′) ≤ 1, so H(B′) implies that the cells of B′ support

at least |B′| symbols, which contradicts B′ having fewer than |B′| neighbours in

Gw. This proves Claim 2.

It follows that the required partial latin square Q2, which contains P , can be

found, by filling the empty cells of R row by row.

Stage 3.

In Stage 3 we use Q1 and Q2 to construct a partial latin square Q3 that

contains P and whose filled cells are those in the upper-left r × s rectangle R,

which has no empty cells and which satisfies Ryser’s condition of Theorem 4.8.

For each row w ∈ {1, . . . , r} that contains cells in B, the way that the cells

of Bw are filled in Q1 and Q2 give two matchings in Gw, M1 and M2. By the

Dulmage-Mendelsohn Theorem (Theorem 2.12), there is a matching M3 ⊆M1 ∪

M2 that covers all the vertices in Bw that are covered by M2 (i.e. in fact, all the

vertices of Bw), and all the vertices in S that are covered by M1. In Q3 we fill

the cells of B in row w according to the matching M3.

Once all the rows have been filled, there are no empty cells in R. And since

the symbols in each row of Q1 are a subset of those in the same row of Q3, it

follows that Q3 satisfies the conditions of Ryser’s Theorem (Theorem 4.8).
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Figure 4.5: An empty framework.

Stage 4.

We apply Ryser’s Theorem (Theorem 4.8) to complete Q3 to a latin square of

order n. As Q3 contains P , we have completed P . This proves Theorem 1.7.

4.5 Frameworks

In what follows we will need the concept of a framework. Informally, a framework

is an array equipped with row and column lists (or sets). They play an important

role in the proofs by Colbourn [11] and Easton and Parker [17] that the problem

of deciding if a partial latin square is completable is NP-complete.

Frameworks have also been studied independently of partial latin squares.

Frieze [21] and Fon-Der-Flaass [18] showed that the problem of deciding if a

framework is completable is NP-complete. A related concept is the patterned

hole, used by Lindner and Rodger [30] to prove embedding theorems for cycle

systems and other graph designs.

Formally, a framework R = (r, s, t, P,R1, . . . , Rr, C1, . . . , Cs) consists of an

r × s partial latin rectangle P on the symbols 1, . . . , t, together with row and

column lists (i.e. row and column sets) R1, . . . , Rr and C1, . . . , Cs. We require

each list to be a subset of {1, . . . , t}, and for all i, 1 ≤ i ≤ r, Ri must not contain

any symbol that occurs in row i of P , and for all j, 1 ≤ j ≤ s, Cj must not
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contain any symbol that occurs in column j of P .

A framework R is said to be balanced if the following two conditions hold:

(i) for all i, 1 ≤ i ≤ r, |Ri| is equal to the number of empty cells in row i of

P , and for all j, 1 ≤ j ≤ s, |Cj| is equal to the number of empty cells in

column j of P ; and

(ii) each of the symbols {1, . . . , t} occurs in the same number of row lists as

column lists.

The admissible symbol array of R is an r × s array A(R) in which A(R)ij =

Ri ∩ Cj if cell (i, j) of P is empty and A(R)ij is the singleton set containing the

symbol in the cell (i, j) of P otherwise. Figure 4.5 is an illustration of a framework

in which all the cells are empty.

A completion for R is an r × s latin rectangle P ∗ on the symbols {1, . . . , t}

with the conditions that for all cells (i, j) (1 ≤ i ≤ r, 1 ≤ j ≤ s), the following

holds: if the cell (i, j) of P is filled then the cell (i, j) of P ∗ must contain the same

symbol, and if the cell (i, j) of P is empty then the cell (i, j) of P ∗ must contain a

symbol from Ri∩Cj. Thus a completion for R is an r× s latin rectangle P ∗ such

that the cell (i, j) of P ∗ contains a symbol from the set A(R)ij for all 1 ≤ i ≤ r

and 1 ≤ j ≤ s.

If a symbol σ belongs to A(R)ij we say that the cell (i, j) supports σ, and the

set of cells that support σ is called the support of σ. Note that in a balanced

framework, if a symbol appears in k row lists (and therefore k column lists) it is

supported by k2 empty cells. Indeed, the empty cells that support each symbol

can be made into a square by a suitable permutation of the rows and columns.

A partial latin square Q of order n is said to realize the framework R if

(i) it contains P in its top-left corner,

(ii) the only empty cells of Q are those of P ,

86



(iii) for all i, 1 ≤ i ≤ r, the symbols missing from row i of Q are those in Ri,

and (iv) for all j, 1 ≤ j ≤ s, the symbols missing from column j of Q are

those in Cj.

We now give the following theorem, which shows that any balanced framework

can be realized by a partial latin square. It is similar to some proofs of Ryser’s

Theorem (see e.g. [1]).

Lemma 4.12. Let R = (r, s, t, P,R1, . . . , Rr, C1, . . . , Cs) be a balanced frame-

work. If n ≥ max{t, r + s}, then R can be realized by a partial latin square Q of

order n.

Proof. Suppose n ≥ max{t, r + s}. Let Q′ be a partial latin square of order n

where all cells are empty except for an r × s array of cells in the top-left corner

which is filled by P . We will describe a procedure for obtaining the required

partial latin square Q by filling in all the cells of Q′ that are not in the top-left

r × s rectangle.

We do this in two stages. In the first stage, we will describe how the cells

in the last n − s columns of rows 1 to r can be filled. In the second stage, we

describe how the cells in the bottom n− r rows can be filled.

Consider a bipartite graph G1 with bipartition (A,B), where the vertices in

A are labelled a1, . . . , an and correspond to the symbols 1, . . . , n, and the vertices

in B are labelled b1, . . . , br and correspond to the top r rows of Q′. For all i, j

(1 ≤ i ≤ n, 1 ≤ j ≤ r), G1 has an edge between ai and bj if and only if the

symbol i is not in Rj and does not occur in the jth row of P .

The vertex ai has degree r−ν(i) where ν(i) is the number of times the symbol

i occurs in the row lists plus the number of times it appears in P . The vertex bj

has degree n − s, because there are s symbols in the jth row of P and the row

list Rj. The maximum degree ∆(G) is n − s because otherwise we would have

some i for which r − ν(i) > n− s, which contradicts the assumption n ≥ r + s.

By Theorem 2.11 (König’s Theorem), G1 has an edge-colouring using the
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colours {1, . . . , n− s}. So the cells in the last n− s columns of rows 1, . . . , r of Q′

can be filled according to this edge-colouring: symbol i is placed in cell (j, s+ k)

if ai is joined to bj with an edge of colour k.

It remains to fill in the bottom n− r rows of Q′. Consider a bipartite graph

G2 with bipartition (C,D), where the vertices in C are labelled c1, . . . , cn and

correspond to the n columns of Q′, and the vertices in D are labelled d1, . . . , dn

and correspond to the symbols 1, . . . , n. For all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ n), G2

has an edge between di and cj if and only if i is not in Cj and does not occur

in the jth column of P (for 1 ≤ j ≤ s) or i does not appear in the top r cells

of column j of Q′ (for s + 1 ≤ j ≤ n). Each vertex has degree n − r so by

Theorem 2.11 (König’s Theorem), we can give G2 an edge-colouring using the

colours {1, . . . , n− r}. We can now obtain Q from Q′ by putting the symbol i in

cell (r + k, j) if di is joined to cj with an edge of colour k.

This procedure creates a partial latin square Q, where the symbols missing

from rows 1 to r are those in the lists R1, . . . , Rr and the symbols missing from

columns 1 to s are those in the lists C1, . . . , Cs. In other words, R is realized by

Q.

A framework R is said to be symmetric if P is a symmetric partial latin

square, r = s, Ri = Ci for all 1 ≤ i ≤ r, and each symbol occurs an even number

of times in the lists R1, . . . , Rr. Note that a symmetric framework necessarily

satisfies condition (ii) of the definition of a balanced framework. A framework

R is said to be idempotent if r = s, and the leading diagonal of P is filled with

distinct symbols. The following lemma is based on a theorem of Cruse [13].

Lemma 4.13. Let R = (r, r, t, P,R1, . . . , Rr, R1, . . . , Rr) be an idempotent sym-

metric balanced framework. If n is odd, and n ≥ max{t, 2r + 1}, then R can be

realized by an idempotent symmetric partial latin square Q of order n.

Proof. Suppose n is odd and n ≥ max{t, 2r+ 1}. Let Q′ be a partial latin square

of order n where all cells are empty except for an r × r array of cells in the
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top-left corner which is filled by P . We will describe a procedure for obtaining

the required partial latin square Q by filling in all the cells of Q′ that are not in

the top-left r × r subsquare. The procedure will consist of n− r stages. During

the lth stage (1 ≤ l ≤ n − r) a “border” of cells will be filled, consisting of the

first r + l − 1 cells of column r + l, the first r + l − 1 cells of row r + l and cell

(r + l, r + l).

We will assume that before stage l is performed, each symbol appears at least

2(r + l− 1)− n times in the row lists and the upper-left (r + l− 1)× (r + l− 1)

subsquare. Since n ≥ 2r + 1, this will certainly be the case when l = 1.

To perform stage l we construct a bipartite graph G with bipartition (A,B),

where the vertices in A are labelled a1, . . . , an and correspond to the symbols

1, . . . , n and the vertices in B are labelled b1, . . . , br+l and correspond to the first

r + l − 1 cells in row (or column) r + l, together with a further vertex br+l. For

all i, j, (1 ≤ i ≤ n and 1 ≤ j ≤ r+ l− 1), G has an edge between ai and bj if and

only if the symbol i is not in Rj (if 1 ≤ j ≤ r) and does not appear in the jth

row of Q′ (all 1 ≤ j ≤ r+ l− 1). For all i (1 ≤ i ≤ n), G has an edge between ai

and br+l if and only if the symbol i does not appear on the diagonal of Q′.

We will say that a symbol is critical if it appears fewer than 2(r+ l)−n times

in the row lists and the upper-left (r + l − 1)× (r + l − 1) subsquare. We claim

that the maximum degree ∆(G) = n− (r+ l− 1), and that all vertices in B and

each vertex in A that corresponds to a critical symbol has degree n− (r+ l− 1).

First, each vertex in B has degree n − (r + l − 1), since in each row there

are r + l − 1 symbols that are either in the row list or already appear in the

row. Consider a symbol σ that is not critical. Then aσ has degree at most

(r + l)− (2(r + l)− n) = n− (r + l).

Now consider a symbol τ that is critical. Let ν(τ) be the number of times τ

appears in the row lists and the upper-left (r + l − 1) × (r + l − 1) subsquare.

So ν(τ) is either 2(r + l − 1) − n or 2(r + l − 1) − n + 1. We consider two

cases, depending on whether τ appears on the diagonal or not. First, suppose τ
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appears on the diagonal. In this case ν(τ) is odd, as any symbol must occur an

even number of times off the diagonal and an even number of times in the row

lists. Since n is also odd, we must have ν(τ) = 2(r + l − 1)− n. In G, aτ is not

adjacent to br+l and nor to 2(r + l − 1) − n vertices of {b1, . . . , br+l−1}, so the

degree of aτ is (r + l)− (2(r + l − 1)− n)− 1 = n− (r + l − 1).

Now suppose τ does not appear on the diagonal. In this case ν(τ) is even,

and so we must have ν(τ) = 2(r+ l− 1)− n+ 1. In G, aτ is adjacent to br+l but

not adjacent to 2(r + l − 1) − n + 1 vertices of {b1, . . . , br+l−1}, so the degree of

aτ is (r + l)− (2(r + l − 1)− n+ 1) = n− (r + l − 1).

Thus ∆(G) = n − (r + l − 1) and the critical vertices of A, and all vertices

in B, have degree n − (r + l − 1). By Theorem 2.11 (König’s Theorem), G has

an edge-colouring using the colours {1, . . . , n− (r+ l− 1)}. By taking one of the

colour classes, we get a matching M , that covers all the vertices of B and each

vertex of A that corresponds to a critical symbol. The matching M indicates how

to fill in the first r+ l− 1 cells of column r+ l, and the first r+ l− 1 cells of row

r + l, for we place symbol i in cells (r + l, j) and (j, r + l) if ai is joined to bj by

an edge of M , if 1 ≤ j ≤ r+ l− 1, and we place the symbol i in cell (r+ l, r+ l)

if ai is joined to br+l by an edge of M .

We claim that after we have done this, each symbol appears at least 2(r+l)−n

times in the row lists and the upper-left (r + l)× (r + l) subsquare. For symbols

that were not critical, this is clearly the case. If a critical symbol was placed in

cell (r + l, r + l) then it appears in one more cell than before, but as it appeared

an even number of times previously, it now appears an odd number of times, and

so appears 2(r + l)− n times. All other critical symbols appear two more times

than before, and so they each appear at least 2(r + l)− n times.

By performing stages 1, . . . , n − r we create a partial latin square Q where

the symbols missing from rows 1 to r are those in the lists R1, . . . , Rr and the

symbols missing from columns 1 to r are those in the lists R1, . . . , Rr. In other

words, R is realized by Q.
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4.6 Complexity Questions

In this section, we use the terminology of Garey and Johnson [22]. We will need

the following theorem of Kratochv́ıl [29]. A (k-in-m)-colouring of an m-uniform

hypergraph is a colouring of the vertices with red and blue such that each edge

contains exactly k red vertices and m− k blue vertices.

Theorem 4.14. For every q ≥ 3, m ≥ 3 and 1 ≤ k ≤ m− 1, the problem of de-

ciding (k-in-m)-colourability of q-regular m-uniform hypergraphs is NP-complete.

In particular, the following problem is NP-complete.

Problem 4.15. Let H be a 4-uniform 4-regular hypergraph. Decide if H is 2-in-4

colourable.

A partial latin square of order n is said to be L-shaped if the cells in the upper-

left r× s rectangle are empty, for some r, s ∈ {1, . . . , n}, and the remaining cells

are filled.

Problem 4.16. Let Q be an L-shaped partial latin square. Decide if Q is com-

pletable.

We shall show that Problem 4.16 is NP-complete, by giving a reduction from

Problem 4.15. This reduction is a Karp reduction, also called a polynomial trans-

formation [22]. Our reduction will have the feature that it maps 4-uniform 4-

regular hypergraphs to L-shaped partial latin squares that satisfy Hall’s Condi-

tion.

Lemma 4.17. Problem 4.16 is NP-complete. Moreover, there is a reduction

from Problem 4.15 to Problem 4.16 that maps 4-uniform 4-regular hypergraphs to

L-shaped partial latin squares that satisfy Hall’s Condition.

We will need the following lemma.
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(b)

ai,j,0
ai,j,1
bi,k,0

ai,j,0
ai,j,1
bi,k,0

ai,j,0
ai,j,1
bi,k,1

ai,j,0
ai,j,1
bi,k,1

bi,k−1,5

bi,k,0

bi,k,4

bi,k,0

bi,k,4

bi,k,1

bi,k,5

bi,k,1

bi,k−1,5

bi,k,2

bi,k,4

bi,k,2

bi,k,4

bi,k,3

bi,k,5

bi,k,3

ai,j,2

ai,j,3
bi,k,2

ai,j,2

ai,j,3
bi,k,2

ai,j,2

ai,j,3
bi,k,3

ai,j,2

ai,j,3
bi,k,3

Figure 4.6: (a) The symbols supported in a 4 × 4 subsquare. (b) The supports
indicated by rectangles.

Lemma 4.18. Let P be a partial latin square of order n. For all σ ∈ {1, . . . , n},

let ν(σ) denote the number of times that σ appears in P . For each empty cell b

of P we let S(b) denote the set of symbols supported by b. Suppose that for each

empty cell b of P , ∑
σ∈S(b)

1

n− ν(σ)
≥ 1. (4.9)

Then P satisfies Hall’s Condition.

Proof. By Lemma 4.4, Hall’s Condition holds if Hall’s Inequality holds for each set

of empty cells. Let T be a set of empty cells of P . For each symbol σ ∈ {1, . . . , n},

let Tσ denote the subset of T consisting of the cells that support σ. Then

n∑
σ=1

α(σ, T ) ≥
n∑
σ=1

|Tσ|
n− ν(σ)

(by Lemma 4.6)

=
∑
b∈T

∑
σ∈S(b)

1

n− ν(σ)

≥
∑
b∈T

1 (by (4.18))

= |T | ,

92




1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1


Figure 4.7: An example of a 4-uniform 4-regular hypergraph H, where the edges
are drawn as ellipses (left), and its incidence matrix D (right).

and so H(T ) is satisfied.

Proof of Lemma 4.17. We will show that Problem 4.16 is NP-complete, by giving

a reduction from Problem 4.15.

Let H be a 4-uniform 4-regular hypergraph on n vertices. Because H is 4-

uniform and 4-regular, it has n edges. We will describe the construction of a

framework R = R(H), derived from H. We will suppose the vertices and edges

of H are each labelled 0, . . . , n− 1. Let D = D(H) be the n×n incidence matrix

of H defined by the rule that Dij is 1 if vertex i and edge j are incident, and 0

otherwise.

We will construct a balanced framework R = (r, s, t, P , R1, . . . , Rr, C1, . . . ,

Cs) where r = s = 4n, P is an empty partial latin square of order 4n, and

t = 4n2 + 12n. Instead of using the positive integers {1, . . . , t} as symbols, we

will use symbols from three sets A, B, and C. A consists of the symbols aj,k for

all j, k, where 0 ≤ j ≤ n−1 and 0 ≤ k ≤ 3. B consists of the symbols bi,j,k for all

i, j, k where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 5. C consists of the symbols

ci,j,k for all i, j, k where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, 0 ≤ k ≤ 3 and vertex i is

not incident with edge j.

We will describe R by giving the support of each symbol, or in other words,

by giving the 4n × 4n admissible symbol array of R. In a balanced framework,
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Figure 4.8: The framework R = R(H).

each symbol must be supported by a set of cells that can be made into a square

by permuting the rows and columns, and we will ensure that this is the case.

Symbols in A and C will each appear in four row and column lists, and symbols

in B will each appear in two row and column lists. Given the supports, it is an

easy task to construct the row and column lists.

R is constructed in the following way. Each entry (i, j) of the incidence matrix

D corresponds to a 4×4 subsquare of cells inR whose top-left corner is cell (4i, 4j).

If Dij = 1, the cells in the 4×4 subsquare at cell (4i, 4j) support some symbols

from A and some from B. Suppose that the (i, j) entry in D is the (k + 1)th

occurrence of 1 on the ith row. (In other words, edge j is the (k+ 1)th edge that

is incident with vertex i in our ordering.) Each of the 4 cells in the top row of

the subsquare support symbols aj,0 and aj,1, and each of the 4 cells in the bottom

row of the subsquare support symbols aj,2 and aj,3. The cells of the subsquare

also support symbols bi,k,l for all 0 ≤ l ≤ 5, and bi,k−1,5 (where subtraction is

taken modulo 4), in the manner shown in Figure 4.6(a). Figure 4.6(b) gives a

simplified picture, where the supports are indicated by rectangles.
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(b)

(a)

Figure 4.9: (a) “sloping left” and (b) “sloping right”.

If Dij = 0, the cells in the 4 × 4 subsquare at cell (4i, 4j) support some

symbols from C. Each of the 16 cells supports the 4 symbols ci,j,0, ci,j,1, ci,j,2 and

ci,j,3. These symbols are merely “placeholders”, and play no interesting role in

the reduction.

Figure 4.7 gives an example of a 4-uniform 4-regular hypergraph H and its

incidence matrix D. Figure 4.8 illustrates the framework R = R(H), where the

supports of the symbols in B are indicated by rectangles. It is a simple task to

verify that the support of each symbol can be made into a square by permuting

rows and columns, and that each row and column list contains 4n symbols.

We claim that R that can be completed if and only if H is 2-in-4 colourable.

First, suppose R is completable. Notice that for a fixed vertex i of H (0 ≤ i ≤

n − 1) the position of just one symbol bi,k,l (for some 0 ≤ k ≤ 3 and 0 ≤ l ≤ 5)

determines where all the others are placed. Each of these symbols appears twice

in the row and column lists, and so is supported by four cells, which we can call

top-left, top-right, bottom-left and bottom-right. In a completion of R, each of

these symbols appears twice, in either the bottom-left and top-right cells, or the

top-left and bottom-right cells. However, due to the way the supports intersect,

there are only two possible ways that these symbols can be placed. These are

indicated in Figure 4.9, where we have used rectangles to indicate the supports,

and circles to indicate the placement of the symbols. The first case we call
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aj,0

aj,0

aj,0

aj,0

aj,1

aj,1

aj,1

aj,1

aj,2

aj,2

aj,2

aj,2

aj,3

aj,3

aj,3

aj,3

aj,0

aj,1

aj,1

aj,0

aj,1

aj,0

aj,0

aj,1

aj,2 aj,3

aj,2 aj,3

aj,3 aj,2

aj,3 aj,2

Figure 4.10: Placing the symbols aj,k for 0 ≤ k ≤ 3.

“sloping left” and the other case “sloping right”.

Next observe that for any edge j of H, two of its incident vertices must “slope

left” and two must “slope right”. To see this, consider the four vertices incident

with edge j, and the four 4× 4 subsquares corresponding to these incidences. In

these four subsquares, we need to place four copies of each of aj,0, aj,1, aj,2 and

aj,3. If more than two vertices “sloped left”, at most one of these symbols could

be placed in column 4j, and so it would not be possible to place each of these

symbols four times in the columns 4j, . . . , 4j + 3. A similar argument applies in

the case that more than two vertices “slope right”. Figure 4.10 illustrates how

the symbols aj,0, aj,1, aj,2 and aj,3 might be placed, in the case where two vertices

“slope left” and two “slope right”.

So if we colour each vertex in H red or blue according to whether its associated

symbols in B “slope” left or right, we obtain a colouring of H, where each edge

has 2 blue and 2 red vertices. Hence H is 2-in-4 colourable.

Conversely, suppose H is 2-in-4 colourable. Then we can choose a 2-in-4
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colouring of H, and place the symbols of B according to whether their associated

vertices in H are coloured red or blue (e.g. red vertices “slope left”, blue vertices

“slope right”). This leaves empty cells in which the symbols aj,k for all j, k,

0 ≤ j ≤ n − 1 and 0 ≤ k ≤ 3, can be placed. The symbols of C can be placed

without any difficulty, as the symbols ci,j,0, ci,j,1, ci,j,2 and ci,j,3 for a fixed i and

j (0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1) are supported by only the cells in the 4× 4

subsquare whose top-left corner is (4i, 4j). So we just need to fill this subsquare

with a latin square on these 4 symbols. Hence R is completable.

By Theorem 4.12, R can be realized by a partial latin square P of order

n = r + s. The proof of Theorem 4.12 given in Section 4.5 is of a constructive

nature, and provides a procedure for computing P . This procedure consists of

edge-colouring two bipartite graphs, each with O(t2) edges. This can be done in

time polynomial in t, as an edge-colouring of a bipartite graph G = (V,E) with

∆(G) colours can be found in O(|V | |E|) time [38, Chapter 20].

Finally, we claim that P satisfies Hall’s Condition. Because of the manner in

which we constructed R, and subsequently P , each empty cell supports either:

(i) two symbols from B, (ii) one symbol from B and two symbols from A, or

(iii) four symbols from C. Each symbol from B is missing from two rows and

columns, and each symbol from A and C is missing from four rows and columns.

Hence by Lemma 4.18, P satisfies Hall’s Condition.

We can now prove Theorem 1.11.

Proof of Theorem 1.11. A Turing machine equipped with an oracle for solving

Problem 1.10 could solve Problem 4.15 in polynomial time by transforming in-

stances of Problem 4.15 into instances of Problem 1.10, using the reduction given

in Lemma 4.17, and then calling the oracle. Since Problem 4.15 is NP-complete,

it follows that Problem 1.10 is NP-hard.
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P P ∗

Figure 4.11: From the proof of Theorem 4.21.

4.7 Variants of Theorem 1.11

We can also consider the following problems, where ε > 0 is fixed.

Problem 4.19. Let P be a partial latin square that satisfies Hall’s Condition

where the proportion of empty cells is less than ε. Decide if P is completable.

Problem 4.20. Let P be a partial latin square that satisfies Hall’s Condition

where the proportion of filled cells is less than ε. Decide if P is completable.

Theorem 4.21. Problems 4.19 and 4.20 are NP-hard.

Proof. In Lemma 4.17, we gave a reduction from Problem 4.15 to Problem 1.10.

Given a 4-regular 4-uniform hypergraph H on u vertices, we constructed a bal-

anced framework R = R(H), and then argued that by Theorem 4.12 it could be

realized by a partial latin square of order n = 4u2 + 12u where the upper left

4u × 4u subsquare is empty. So as n tends to infinity, the proportion of empty

cells tends to zero. In fact, this actually shows that Problem 4.19 is NP-hard.

However, just to be sure we can modify the reduction of Lemma 4.17 to create

partial latin squares where the proportion of empty cells is less than ε. This

is easy to do, because Theorem 4.12 says that we can find an L-shaped partial

latin square realizing R of any order at least n. So in particular, we can find an
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L-shaped partial latin square P of order n′ = d2/εen that realizes R. In this way,

for any ε > 0, we can obtain a reduction from Problem 4.15 to Problem 4.19.

To show that Problem 4.20 is also NP-hard, we can use the same reduction, but

with the extra step that we delete the symbols in the bottom-right (n′−r)×(n′−s)

rectangle of P to create a partial latin square P ∗ (see Figure 4.11). The proportion

of filled cells in P ∗ is less than ε and it is clear that P ∗ can be completed if and

only if P can. It remains to show that P ∗ satisfies Hall’s Condition. Suppose we

have a partial latin square that satisfies Hall’s Condition and we delete a symbol.

The support of a symbol σ in the old square is a subset of the support of σ in

the new square, and so if the old square satisfies Hall’s Condition, the new one

must too. So as P satisfies Hall’s Condition, so does P ∗.

Finally, we have the following problem. A symmetric partial latin square

is one that is equal to its transpose. An idempotent partial latin square is a

partial latin square where each symbol appears once on the diagonal. Note that

a symmetric idempotent latin square is necessarily of odd order, as each symbol

must appear an even number of times off the diagonal. Idempotent symmetric

latin squares exist for any odd order n, as the addition table for Z/nZ is symmetric

and contains distinct entries on the diagonal.

Problem 4.22. Let P be a symmetric idempotent partial latin square that sat-

isfies Hall’s Condition. Decide if P is completable.

Note that by saying that P is completable, we mean P is completable to a

latin square that is symmetric and idempotent.

Theorem 4.23. Problem 4.22 is NP-hard.

Proof. We will give a reduction from Problem 4.15 to Problem 4.22. Let H

be a 4-uniform 4-regular hypergraph on n vertices. By the process described

in the proof of Theorem 4.17, we can construct a balanced framework R =

(r, s, t, P,R1, . . . , Rr, C1, . . . , Cs) that is completable if and only if H is 2-in-4

colourable.
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Figure 4.12: From the proof of Theorem 4.23.

We will assume that both r and s are odd. If there are not, we can add an

extra row and/or column to R, and some new symbols to the row and column

lists.

We will describe the construction of a symmetric idempotent framework RS =

(r+s, r+s, t+r+s, P , L1, . . . , Lr+s, L1, . . . , Lr+s), which will be derived from R.

RS will use the symbols {1, . . . , t} and the additional symbols I = {i1, . . . , is} and

J = {j1, . . . , jr}. RS will have row lists L1, . . . , Lr+s as follows: Lk = Ck∪(I− ik)

for 1 ≤ k ≤ s, and Lk = Rk−s ∪ (J − jk−s) for s + 1 ≤ k ≤ r + s. Because

RS is symmetric, the column lists are also L1, . . . , Lr+s. P will have the symbols

i1, . . . , is, j1, . . . , jr on the diagonal, in this order, and all other cells empty. R is

a valid symmetric framework, as each symbol appears an even number of times

in the lists.

We claim that RS can be completed if and only if R can be completed. If R

can be completed, then we can complete RS in the manner shown in Figure 4.12.

This involves placing a completion of R and the transpose of such a completion

as shown, together with idempotent symmetric latin squares F1 on the symbols

I and F2 on the symbols J . Note that we required r and s to be odd so that

suitable squares F1 and F2 exist.

Conversely, suppose that RS can be completed. Because the symbols I only

appear in the first s rows and columns, the top-left s × s subsquare must be a
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latin square on these symbols. Similarly, the bottom-right r × r subsquare must

be a latin square on the symbols J . Hence the situation must be as in Figure

4.12, with two copies of a completion of R (one transposed) filling the remaining

cells.

By Theorem 4.13, RS can be realized by an idempotent symmetric partial

latin square P of any odd order n ≥ max{t, 2r+ 1}. The procedure for finding P

is given in the proof of Theorem 4.13 and requires edge-colouring bipartite graphs.

As before, it is not hard to verify that this task can be done in polynomial time.

Finally, it is a simple application of Lemma 4.18 to verify that P satisfies Hall’s

Condition.
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