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Abstract

Majorisation is a partial ordering that can be applied to the set of probability mea-

sures on the unit interval I = [0, 1). Its defining property is that one measure µ

majorises another measure ν, written µ � ν, if
∫

I
fdµ ≥

∫

I
fdν for every convex

real-valued function f : I → R.

This means that studying the majorisation of MT , the set of measures invariant

under a transformation T : I → I, can give us insight into finding the maximising

and minimising T -invariant measures for convex and concave f .

In this thesis I look at the majorisation ordering of MT for four categories of

transformations T : concave unimodal maps, the doubling map T : x 7→ 2x (mod 1),

the family of shifted doubling maps Tβ : x 7→ 2x + β (mod 1), and the family of

orientation-reversing weakly-expanding maps.
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Chapter 1

Introduction

Majorisation (alternatively known as second order stochastic dominance, or as di-

lation) is a partial ordering. Equivalent partial orderings all denoted by the same

name can be applied to various different sorts of sets, but this thesis is concerned

with majorisation as it is applied to the set of Borel probability measures on the

semi-open unit interval I = [0, 1). Heuristically, one measure majorises another if

they have the same centre of mass but one is more spread out than the other. The

formal definition is most easily stated in terms of the cumulative density function,

wµ(x) =
∫ x

0
µ[0, s)ds: µ � ν if wµ(1) = wν(1) and wµ(x) ≥ wν(x) for all 0 ≤ x ≤ 1.

The connection between the formal and heuristic definitions is made clearer by the

observation that the centre of mass %(µ) satisfies %(µ) = 1 − wµ(1).

Remark 1.0.1. Majorisation is also known as second-order stochastic dominance;

analogous definitions of stochastic dominance of other orders also exist. Assuming

for the sake of elegance that both µ and ν are absolutely continuous with respect

to Lebesgue measure, with corresponding density functions rµ, rn, then zeroth order

stochastic dominance is the property rµ(x) ≥ rν(x) for all x and guarantees that
∫

I
fdµ ≥

∫

I
fdν for positive functions; first order stochastic dominance is the property

that
∫ 1

0
rµ(s)dx =

∫ 1

0
rν(s)dx (i.e. µ[0, 1) = ν[0, 1)) and

∫ x

0
rµ(s)ds ≤

∫ x

0
rν(s)ds and

guarantees that
∫

I
fdµ ≥

∫

I
fdν for increasing functions, and so on. Note that the

absolute continuity assumption is purely for ease of stating the expressions; entirely

analogous results exist when µ and ν are not absolutely continuous.

The motivation for studying this ordering is the following result, and its applica-

tions to ergodic optimisation:

Lemma 1.0.2. Let µ, ν be Borel probability measures on the unit interval with µ � ν,

and let f : I → R be a convex real valued function. Then
∫

I
fdµ ≥

∫

I
fdν.

Corollary 1. Obviously, if in the above lemma we replace “convex” with “concave”

then
∫

I
fdµ ≤

∫

I
fdν.
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Chapter 1. Introduction

As a result, understanding the majorisation ordering of measures invariant under

a given transformation is a good way of understanding the ergodic optimisation of

convex and concave functions with respect to that transformation.

The basic problem of ergodic optimisation is as follows: Denote the set of T -

invariant Borel probability measures on X by MT . Given a transformation T : X →
X on some space X and a function f : X → R, what is the value of maxµ∈MT

∫

fdµ

and which measures in MT attain this maximum?

The simplest space to study ergodic optimisation on is the interval, usually pa-

rameterised as either I = [0, 1] or [0, 1), and a good deal of study has been applied

to the ergodic optimisation of specific combinations of transformations T and func-

tions f . The transformations looked at are usually those which have been most

studied previously in other branches of dynamics - For example the logistic maps

Tµ : x 7→ µx(1 − x), the tent map T (x) =

{

2x if 0 ≤ x ≤ 1
2

2(1 − x) if 1
2
≤ x ≤ 1

, the sawtooth

maps T : x 7→ nx (mod 1) and the Gauss map T : x 7→ 1/x (mod 1). Choices

of function to optimise usually follow from the transformation, but common choices

are classes of functions defined by some information about where they are largest

or smallest - increasing functions, convex or concave functions, sine waves and char-

acteristic functions are all natural choices, whereas e.g. the class of all polynomials

or the class of all piecewise linear functions would generally be less likely to yield

interesting results.

In this thesis, I will look at four classes of transformation and their corresponding

sets of invariant measures: the family of concave unimodal maps (Chapter 2), the

family of shifted doubling maps Tβ : x 7→ 2x + β (mod 1) (Chapter 3), the doubling

map T : x 7→ 2x (mod 1) (Chapter 4), and (jointly with Oliver Jenkinson) the family

of orientation-reversing weakly expanding maps (Chapter 5).

For the family of concave unimodal maps I show that if the set A = {x : T n(x) =

1 for some n} is dense then no T -invariant measure can majorise any other.

For the family of shifted doubling maps Tβ : x 7→ 2x + β (mod 1), I show that

every Tβ-invariant measure is simply a T0-invariant measure transposed by β, and

that every measure majorises a measure corresponding in this way to a Sturmian

measure. I categorise the set of possible centres of mass of a Tβ-invariant measure.

Given a pair of T0-invariant measures µ, ν, I give a way of finding out for which, if

any, β do the corresponding Tβ-invariant measures µβ, νβ measures satisfy µβ � νβ,

and I show that in the case β = 1
2

all T 1

2

-ergodic measures majorise the fixed point

measure δ 1

2

, and no other majorisation occurs.

For the doubling map T : x 7→ 2x (mod 1), it is already known that for any
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Chapter 1. Introduction

centre of mass there exists a unique measure of a class known as Sturmian that

is majorised by all other T -invariant measures of that centre of mass (see [19] for

this result, and [6] for more on Sturmian measures in general), and that for any

given measure there exists a T -invariant measure that majorises it, so the problem

of maximising concave measures is solved and the maximisation of convex measures

is impossible. I illustrate some of the structure between these two extremes, looking

at periodic orbits of weight1 2 and weight 3, and I also give some associated results

about possible cyclic orderings of periodic orbits under the doubling map.

For the family of orientation reversing weakly expanding maps, Jenkinson and I

show that every measure majorises a measure of the form λδxi
+(1−λ)δxi+1

, consisting

of a linear combination of Dirac delta measures supported on consecutive fixed points.

We also show that if T (0) = 1 and T (1) = 0 then every measure is majorised by a

measure of the form λ
2
δ0 + (1 − λ)δxi

+ λ
2
δ1.

1The weight of a periodic orbit is the number of 1’s in its symbolic representation, cf. Definition
4.2.1.
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Chapter 2

Concave Unimodal Maps

Theorem 2.0.3. Let T : I → I be unimodal (i.e. there exists a ∈ I such that

T |[0,a] is increasing and T |[a,1] is decreasing), concave, and such that {x : T n(x) =

T (a) for some n} is dense in I.

If µ, ν are T -invariant ergodic measures on I, with µ ≺ ν, then necessarily µ = ν;

in other words, no non-trivial majorisation can occur among such measures.

Remark 2.0.4. In terms of ergodic optimisation, a consequence of Theorem 2.0.3 is

that, by contrast to the situation for the doubling map (cf. [18, 19, 20]), for concave

unimodal T with {x : T n(x) = T (a) for some n} dense, no class of invariant measures

plays a privileged role in terms of maximising the integrals of concave functions.

Proof. Let A := {x : T n(x) = T (a) for some n} denote the set of iterated preimages

of the maximum. Let µ, ν be T -invariant ergodic Borel probability measures with

µ ≺ ν. We will show that µ ≡ ν on the closure of A. Since T has a maximum at

a, µ((T (a), 1]) = 0. So, by rescaling, without loss of generality we may assume that

T (a) = 1. Similarly, if T (1) > 0 then µ(0, T (1)) = 0, and the Dirac measure at the

leftmost (fixed) point 0 is clearly incomparable to all other measures (none of which

share its barycentre), so without loss of generality we may assume that T (1) = 0.

Let T−1
− (x) and T−1

+ (x) be the left-half and right-half preimages of x, respectively,

or T−1
− (x) = 0 if x < T (0). By the above assumption, these are well-defined.

Next, we focus attention on two of the nth preimages of a point x, defined by

T−n
−−(x) := (T−1

− )n(x) and T−n
+−(x) := T−1

+ (T
−(n−1)
− (x)) .

In particular, note that if y > T−n
+−(1) then T−n

+−(T n(y)) = T n(T−n
+−(y)) = y. This is

only possible if T−n
+−(1) < 1.

We now consider constraints imposed on wµ by the T -invariance of µ. By defini-
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Chapter 2. Concave Unimodal Maps

tion wµ(x) =
∫ x

0
µ[0, s)ds, and

µ[0, s) = µ
[

0, T−1
− (s)

)

+ µ
(

T−1
+ (s), 1

]

= µ
[

0, T−2
− (s)

)

+ µ
(

T−2
+−(s), 1

]

+ µ
(

T−1
+−(s), 1

]

= lim
n→∞

µ
[

0, T−n
−−(s)

)

+
∞
∑

n=1

µ
(

T−n
+−(s), 1

]

.

Clearly the Dirac measure concentrated at the fixed point 0 does not majorise

any other measure, and since we are only interested in majorisation among ergodic

measures µ, we may assume that 0 = µ({0}). Therefore 0 = limn→∞ µ
[

0, T−n
−−(s)

)

for any s, so

µ[0, s) =

∞
∑

n=1

µ
(

T−n
+−(s), 1

]

.

We are interested in the difference between wµ and wν . Defining ∆ to be the

signed measure ∆ = µ − ν, and w∆ = wµ − wν , we see that

w∆(x) =

∫ x

0

∞
∑

n=1

∆
(

T−n
+−(s), 1

]

ds =
∞
∑

n=1

∫ x

0

∆
(

T−n
+−(s), 1

]

ds

since
∑k

n=1 ν
[

0, T−n
+−(s)

]

− µ
[

0, T−n
+−(s)

]

is a monotone function of s for sufficiently

large k. Note also that ∆[0, 1] = 0, as ∆ is the difference of two probability measures.

Now T need not be smooth, but since it is concave, the first derivative is defined

except at countably many points, the left and right derivatives are defined everywhere

and the second derivative can be defined everywhere as a sum of a real-valued function

and a countable number of Dirac Delta functions. The same is true of T n.

Suppose that x > T−n
+−(1) - that is to say, x is to the right of the rightmost maxima

of T n. It follows that x > a, and T i(x) < a for 1 ≤ i ≤ n−1. Unimodality of T then

implies that T ′(x) < 0, and T ′(T ix) > 0 for 1 ≤ i ≤ n − 1, and hence

(T n)′(x) =
n−1
∏

i=0

T ′(T i−1(x)) < 0 for x ∈ [T−n
+−(1), 1] . (2.1)

In addition, concavity of T means that T ′′ ≤ 0, so

(T n)′′(x) =

n−1
∑

i=0

T ′′(T ix)

n−1
∏

j=i+1

T ′(T jx)

(

i−1
∏

j=0

T ′(T jx)

)2

≤ 0 for x ∈ (T−n
+−(1), 1] .

(2.2)
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Chapter 2. Concave Unimodal Maps

Now

w∆(x) =

∞
∑

n=1

∫ x

0

∆
(

T−n
+−(s), 1

]

ds =

∞
∑

n=1

∫ x

0

−∆
[

0, T−n
+−(s)

]

ds .

Letting y = T−n
+−(s), and noting that T−n

+−(x) ≥ T−n
+−(1) implies that either T−n

+−(x) = 1

or T n(y) = s, we obtain

w∆(x) =

∞
∑

n=1

∫ 1

T−n
+−

(x)

∆ [0, y]T n′(y) dy =

∞
∑

n=1

∫ 1

T−n
+−

(x)

w′
∆(y) T n′(y) dy .

Integration by parts then gives

w∆(x) =
∞
∑

n=1

(

w∆(1) T n′(1) − w∆(T−n
+−(x)) T n′(T−n

+−(x)) −
∫ 1

T−n
+−

(x)

w∆(y)T n′′(y) dy

)

.

(2.3)

Now suppose that µ majorises ν. It follows that w∆(0) = w∆(1) = 0, and w∆ ≥ 0.

Setting x = 1 in (2.3) gives

0 = w∆(1) =

∞
∑

n=1

(

−w∆(T−n
+−(1)) T n′(T−n

+−(1)) −
∫ 1

T−n
+−

(1)

w∆(y)T n′′(y) dy

)

,

and hence

∞
∑

n=1

w∆(T−n
+−(1)) T n′(T−n

+−(1)) = −
∞
∑

n=1

∫ 1

T−n
+−

(1)

w∆(y) T n′′(y) dy ≥ 0 (2.4)

because T n′′ ≤ 0 on [T−n
+−(1), 1], by (2.2).

Now w∆ is non-negative and not identically zero (since µ 6= ν), and (2.1) gives

T n′(T−n
+−(1)) ≤ 0 for each n ≥ 1, so the only way that (2.4) can be satisfied is if

w∆(T−n
+−(1)) = 0 for all n ≥ 1 . (2.5)

We can now apply the above argument iteratively. For any m ≥ 1, set x = T−m
+− (1)

in (2.3), and using (2.5) (with n = m), we see that

0 = w∆(T−m
+− (1)) =

∞
∑

n=1

(

−w∆(T−n
+−T−m

+− (1)) T n′(T−n
+−T−m

+− (1)) −
∫ 1

T−n
+−

T−m
+−

(1)

w∆(y)T n′′(y) dy

)

,
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Chapter 2. Concave Unimodal Maps

and hence

∞
∑

n=1

w∆(T−n
+−T−m

+− (1)) T n′(T−n
+−T−m

+− (1)) = −
∞
∑

n=1

∫ 1

T−n
+−

T−m
+−

(1)

w∆(y) T n′′(y) dy ≥ 0 ,

(2.6)

and by arguing as above we deduce that necessarily

w∆(T−n
+−T−m

+− (1)) = 0 for all m, n ≥ 1 . (2.7)

Now, every point satisfying x ≥ a, T k(x) = 1, for some k must be of form

T n1

+−(T n2

+−(...(x)...)) for some n1 + n2... = k. So, by repeating the above steps pro-

cess we see that w∆(x) = 0 whenever T k(x) = 1 for some k and x > a. Since the set

of these points is dense by assumption, and w∆ is continuous, this implies that w∆

is zero on [a, 1], and hence everywhere by T -invariance, and so the measures µ and

ν must be identical, completing the proof.

From the above proof it is clear that even if the set A = {x : T n(x) =

T (a) for some n} is not dense, if one T -invariant ergodic measure majorises another

then the function w∆ defined above must be identically zero on the closure of A, as

illustrated by the following examples.

Example 2.0.5. Consider the map T1 : I → I defined by T1(x) = x
2
+ 3

4
for 0 ≤ x ≤ 1

2

and T1(x) = 2 − 2x for 1
2
≤ x ≤ 1. Here points in the open intervals (0, 1

2
) and (3

4
, 1)

are never iterated onto 1, so these intervals do not contain any preimages of 1; thus

the density hypothesis of Theorem 2.0.3 is not satisfied. Note that the (ergodic)

T1-invariant measure supported on the period-4 orbit
{

0, 1
2
, 3

4
, 1
}

does majorise the

(ergodic) T1-invariant measure supported on the period-2 orbit
{

1
4
, 7

8

}

. However, for

these two measures the function w∆a
is zero except on the open intervals (0, 1

2
) and

(3
4
, 1), which contain no preimages of 1.

Alternatively, consider any map T2 : I → I such that T2(x) = 2k − x for some

interval containing the point k, where 1
2

< k < 1. Such a map has infinitely many

period-2 orbits (any pair of points of the form (k + ε, k − ε) is a period-2 orbit),

whose corresponding (ergodic) invariant measures majorise each other, as well as the

Dirac measure concentrated on the fixed point k. Again, note that for such pairs of

measures the function w∆2
will be 0 except on the interval of periodic points.
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the function w∆ must still be 0 on the closure of A.
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Chapter 3

Shifted Doubling Maps

The dynamics of the doubling map on the unit interval, T0 : x 7→ 2x (mod 1), and

the properties of its set of invariant probability measures MT0
, have been extensively

studied (see e.g. [6, 19]), but less is known about the family of maps Tβ : x 7→
2x + β (mod 1). In this chapter we look at a partial ordering on the elements of the

associated sets of Tβ-invariant measures MTβ
, which has significance to the ergodic

optimisation of concave and convex functions on the unit interval with respect to Tβ

(see e.g. [17, 19, 23]).

Recall that majorisation is a partial ordering on the set of Borel probability

measures on the semi-open unit interval I = [0, 1) (it also occurs in other contexts, see

for example [26]). It is defined in terms of the cumulative density function wµ(x) :=
∫ x

0
µ[0, s)ds as follows:

Definition 3.0.6. (Majorisation)

Let µ, ν be two Borel probability measures on I = [0,1). We say that µ is majorised

by ν, written µ ≺ ν, if wµ(x) ≤ wν(x) for all 0 ≤ x ≤ 1, and wµ(1) = wν(1).

Remark 3.0.7. Note that the centre of mass or barycentre of a measure, defined by

%(µ) =
∫ 1

0
xdµ(x), satisfies %(µ) = 1 − wµ(1) and so, heuristically, µ ≺ ν means that

µ and ν have the same barycentre but ν is more spread out.

Majorisation has the useful property that if µ � ν then for all convex real-valued

functions f we have
∫

I
fdµ ≥

∫

I
fdν. For a proof of this, see [19]. This means that

understanding the majorisation ordering of the elements of MT , the set of T -invariant

probability measures, can often help us solve the problem of finding maxµ∈MT

∫

I
fdµ

for concave and convex f . This approach has been exploited in [18, 19] for the

standard unshifted doubling map T (x) = 2x (mod 1). In this chapter we apply it to

the family of shifted doubling maps, Tβ(x) = 2x + β (mod 1).

14



Chapter 3. Shifted Doubling Maps

3.1 Range of possible barycentres for the family of shifted

doubling maps

Let MTβ
denote the set of those Borel probability measures on the interval which are

invariant under Tβ. Our first result concerns the set of points %(MTβ
) which arise

as a barycentre for some Tβ-invariant probability measure. Clearly each %(MTβ
) is

an interval (since MTβ
is convex and the map µ 7→ %(µ) is affine). To determine the

endpoints, we will need a class of measures known as Sturmian measures:

Definition 3.1.1 (Sturmian orbits and measures). For any two numbers % ∈ [0, 1),

s ∈ [0, 1] let x(%, s,±) be the two points such that their binary expansions, given by

x(s, %,±) =
∑∞

i=1 x(s, %,±)i2
−i have the following properties:

n% + s − 1 <
∑n

i=1 x(%, s, +)i ≤ n% + s

n% + s − 1 ≤∑n
i=1 x(%, s,−)i < n% + s (3.1)

x(%, 0,−) and x(%, 1, +) are undefined, but otherwise for any values of %, s,± these

equations uniquely define x(%, s,±)i to be either 0 or 1.

Example 3.1.2. For example, x(1
2
, 0, +) = 1

3
, which has binary expansion 010101...,

while x(1
2
, 0, +) = 2

3
which has binary expansion 101010..., and x(2

5
, 1

100
,−) = 5

31

which has binary expansion 0010100101... and x(3
4
, 19

20
, +) = 14

15
which has binary

expansion 11101110....

The orbit of any point of form x(%, s,±) is called a Sturmian orbit.

Sturmian orbits have, among others, the following interesting properties (see [6,

29, 36]):

Proposition 3.1.3.

(1) For all s, x(%, 0, +) ≤ x(%, s,±) ≤ x(%, 1,−).

(2) If % is rational then for all values of s and ±, x(%, s,±) have the same T-orbit.

(3) If % is irrational then for all values of s, ±, x(%, s,±)has the same orbit closure.

(4) If % is rational then x(%, 1,−) < x(%, 0, +) + 1
2

(5) If % is irrational then x(%, 1,−) = x(%, 0, +) + 1
2

(6) The orbit of a point x ∈ I can be contained within a semi-circle (a set of form

[a, a + 1
2
] or [0, a] ∪ [a + 1

2
, 1]) if and only if x is Sturmian.
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(7) For every semi-circle Iα = [α− 1
2

mod 1, α], there exists a unique %(α) such that

the orbit of x(%, s,±) is contained in Iα for all values of s,±.

(8) The support of any sturmian measure is a cantor set of zero Hausdorff measure.

The transformation T is order-preserving upon this set, and so can be extended to a

circle homeomorphism of rotation, which will have rotation number %.

Definition 3.1.4. The only T0-invariant Borel probability measure supported on a

semi-circle is that given by the hitting frequency of the Sturmian orbits contained

in it (all Sturmian orbits on a given barycentre have the same orbit closure, and the

same hitting frequency on any Borel set). We call this a Sturmian measure.

Remark 3.1.5. The study of Sturmian words originates with Johannes Bernoulli,

but the first comprehensive treatment, and the first use of the term “Sturmian” to

describe them, was by Hedlund and Morse in 1940 [28]. Initially they were studied

primarily as words in the context of the combinatorics of the shift map, but more

recently their applications to billiards theory [35] and dynamical systems [29] have

been more studied.

The latter family of applications has led to increased consideration being given

to Sturmians as probability measures on the unit interval, rather than as words of

the shift map. These measures are very “clumped up” - they are the only measures

which can be supported on a semi-circle - and they turn out to be the maximising

or minimising invariant measures for many classes of functions on the unit interval

(degree-one trigonometric functions, concave functions, sine waves, etc), see [2], [3],

[5]. For a more comprehensive treatment of Sturmian measures, see e.g. [6], [36].

Given these, we can state and prove the following two theorems:

Theorem 3.1.6. The set of possible barycentres of elements of MTβ
is the interval

%(MTβ
) =

{

[1 − β − σ(β), 1 − β] if β ≤ 1
2

[1 − β, 1 − β + σ(β)] if β ≥ 1
2

where

σ(β) :=

{

maxµ∈MTβ
µ([β, 1

2
]) if β ≤ 1

2

maxµ∈MTβ
µ([1

2
, β]) if β ≥ 1

2

Theorem 3.1.7. For each β, let %(β) denote the barycentre of the Sturmian measure

supported on the (unique) semicircle which contains the point 1
2

and has one endpoint

16
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Figure 3.1: Centre of mass of the Sturmian measure supported on the connected
interval [β, β ± 1

2
]

at β.1 %(β) is illustrated as figure 3.1.

Then for each β, we have

σ(β) =







1 − %(β) if β ≤ 1
2

%(β) if β ≥ 1
2
.

Theorems 3.1.6 and 3.1.7 together completely categorise the set %(MTβ
), which

is illustrated as the shaded region in figure 2. Note that when β = 0, any value in

the interval [0, 1) can be the centre of mass of a Tβ-invariant orbit.

Corollary 2. If %(β) is the centre of mass of the sturmian measure on the semicircle

with an endpoint at β that does not contain 0 or 1, as above, then the set of possible

values of % is

% ∈
{

[%(β) − β, 1 − β] if β ≤ 1
2

[1 − β, %(β) − β + 1] if β ≥ 1
2

which is to say that k − β is an admissible value for the centre of mass of a Tβ-

invariant measure if and only if the measure β-corresponding to σk is supported on

a semicircle.

To aid in the proof of the above results, we define an equivalence relation on the

set M =
⋃

β∈[0,1) MTβ
as follows:

1i.e. if β ≤ 1

2
then %(β) is the barycentre of the Sturmian measure supported on the interval

[β, β + 1

2
], whereas if β ≥ 1

2
then %(β) is the barycentre of the Sturmian measure supported on the

semicircle [β − 1

2
, β].

17
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Figure 3.2: Range of possible barycentres of Tβ-invariant measures

Definition 3.1.8. For any pair of measures µ ∈ MTβ
, ν ∈ MTγ

, we say that µ

corresponds to ν if µ(A − β (mod 1)) = ν(A − γ (mod 1)) for all Borel sets A. For

example, the set of fixed point measures δ1−β ∈ MTβ
correspond to one another, as do

the set of measures supported on period-2 orbits, 1
2
(δ 1

3
−β (mod 1)+δ 2

3
−β (mod 1)) ∈ MTβ

.

Lebesgue measure is in MTβ
for all values of β, and corresponds to itself.

Remark 3.1.9. Note that if we allow measures supported on [0, 1] instead of [0, 1)

then ambiguity arises. Although it can easily be resolved, for simplicity we shall

restrict ourselves to the half-open interval.

Remark 3.1.10. Note that every element of MTβ
always corresponds to precisely

one element of MTγ
, and so we can safely talk about the corresponding measure

without needing to worry about either existance or uniqueness

Proof of Theorem 3.1.6. Let µβ ∈ MTβ
for some β 6= 0, 1, and let µ be the corre-

sponding element of MT0
. By definition, wµβ

(1) =
∫ 1

0
µβ[0, s)ds. Since µβ corre-

sponds to µ,

wµβ
(1) =

∫ 1

0

µ[β, β+s) (mod 1)ds =

∫ 1−β

0

µ[β, β+s)ds+

∫ 1

1−β

µ[β, 1]+µ[0, β+s−1)ds ,

and rewriting this in terms of wµ gives us

wµβ
(1) = wµ(1) + β − µ[0, β) . (3.2)

Now µ is T -invariant, so taking preimages of [0, s) under T we see that wµ(1) =

18
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∫ 1

0
µ[0, s)ds =

∫ 1

0
µ
[

0, s
2

)

+µ
[

1
2
, 1

2
+ s

2

)

ds =
∫ 1

2

0
2µ[0, s)ds+

∫ 1
1

2

2µ[0, s)−2µ
[

0, 1
2

)

ds =

2wµ(1) − µ
[

0, 1
2

]

. Rearranging this gives

wµ(1) = µ

[

0,
1

2

]

. (3.3)

Combining (3.3) and (3.2) gives us

wµβ
(1) =

{

β + µ
[

β, 1
2

]

if β ≤ 1
2

β − µ
[

1
2
, β
]

if β ≥ 1
2
,

and because %(µ) = 1 − wµ(1),

%(µβ) =

{

1 − β − µ
[

β, 1
2

]

if β ≤ 1
2

1 − β + µ
[

1
2
, β
]

if β ≥ 1
2
.

Now the Dirac measure invariant under Tβ is δ1−β , and it gives %(δ1−β) = 1 − β,

which is one endpoint of %(MTβ
), while by the definition of σ(β) the other endpoint

must be 1 − β ± σ(β).

Proof of Theorem 3.1.7. Without loss of generality, let β ≥ 1
2
. We wish to find the

maximum possible value of µ
[

1
2
, β
]

for a T -invariant probability measure µ (the case

when β < 1
2

is exactly analogous).

By the ergodic theorem, the maximum possible value a measure µ in MT can

assign to a set A ⊂ I is equal to the maximum possible frequency (cf. [16]) with

which the orbit under T of a point can hit that set,

µ(A) = sup
x∈X

lim sup
n→∞

#{i ≤ n : T i(x) ∈ A}
n

Let x be a point in I whose orbit hits
[

1
2
, β
]

with maximal frequency, and let

x1x2x3... be the binary expansion of x. The action of T on I is topologically semi-

conjugate to the action of the shift map σ: x1x2x3... 7→ x2x3x4... on the binary

expansion of x.

Now, if T i(x) is an element of the set
[

1
2
, β
]

then xi+1 must be equal to 1, but

not all x with xi+1 = 1 are less than β. So let us define another point X in terms of

its binary expansion, as follows:

Xi+1 =

{

1 if T i(x) ∈ [1
2
, β]

0 otherwise.
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This new point X has the properties that T i(X) ≤ T i(x) for all i, and T i(X) ∈
[

1
2
, β
]

whenever T i(x) ∈
[

1
2
, β
]

. So X is a point whose orbit lands in [1
2
, β] with maximal

frequency, and lands in [1
2
, β] whenever it lands in [1

2
, 1]. Now define H to be the set

of all such X:

H :=

{

X ∈
[

1

2
, β

]

: X hits [
1

2
, 1] with the greatest frequency possible, but never hits [β, 1]

}

.

We have shown that H is non-empty.

Now, let us introduce a new notion, the gap sequence of x, defined for values of

x greater than 1
2

in terms of the binary expansion of x as follows:

Binary expansion Gap series

10010100101... → 3232...

100011101... → 4112...

11010̇ → 12∞

Let β have gap sequence g1g2g3... and define β1, β2, β3, etc to be the numbers

that have the following gap sequences:

β1 → g1 + 1, g1 + 1, ...

β2 → g1, g2 + 1, g1, g2 + 1, ...

β3 → g1, g2, g3 + 1, g1, g2, g3 + 1, ...

...

So for example if β has binary expansion 100110001... then β1 would have binary

expansion 1000 1000 1000..., β2 would have binary expansion 10010 10010..., β3 would

have binary expansion 100110000 100110000... and so on.

If X is an element of H then X1 = 1 = β1. Define k(X) := inf {i : Xi 6= βi},
with k(X) := ∞ if X = β. We know that X ≤ β, so we must have Xk(X) = 0

and βk(X) = 1. That is to say, every value of X in H has a binary expansion

X1, X2, X3... = β1, β2, . . . , βk(X)−1, 0, Y1, Y2... for some Yi. We will say that a point

whose binary expansion is of this form is nice.

Now Y , the point with binary expansion Y1, Y2..., is part of the orbit of X and

hence also an element of H , and so it must also be nice. Hence every point X in

H must have a gap sequence of form g1, ..., gn1
+ 1, g1, ..., gn2

+ 1, g1, .... So either at

least one of β1, β2, β3..., or β itself, must be in H .

We will now show that if β is Sturmian then β itself must be in H , rather than

any of the βi. Assume that β is an upper bound of a Sturmian orbit, of the form

x(%, 1,−), again with gap sequence g1, g2... Define the function
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f(x) = lim
n→∞

#
{

i ≤ n : T i(x) ∈
[

1
2
, 1
]}

n

Now, f(β) = % (see [19, footnote 2]) and f(βk) = k

(
Pk

i=1
gi)+1

but, by (3.1), taking

n =
∑k

i=1 gi + 1, we have the following inequalities:

(

k
∑

i=1

gi + 1

)

% ≤ k + 1 <

(

n
∑

i=1

gi + 1

)

% + 1,

k <

(

n
∑

i=1

gi + 1

)

%,

k
(

∑k
i=1 gi + 1

) < %,

f(βk) < f(β).

So if β is of the form x(%, 1,−) - that is, if β is the maximum point of a Sturmian

orbit - then β is itself a point of maximum hitting frequency for [1
2
, β], and its hitting

frequency is precisely the barycentre of the associated Sturmian measure.

Now the barycentre of the Sturmian measure supported on the semi-circle [β−1
2
, β]

is continuous and non-decreasing as a function of β (more precisely, it is a devil’s

staircase - see [6] for this result and for more details of this remarkable class of

functions).

So if β is not the maximum point of a Sturmian orbit then there exists a unique

%(β) such that the Sturmian orbit of barycentre %, which we shall denote by σ0,% (the

reason for the additional 0 subscript will become apparent when we start dealing with

measures invariant under shifted doubling maps corresponding to sturmian measures),

is supported on [β − 1
2
, β]. For this to be the case, we must have x(%, 1,−) < β <

x(%, 0, +)+ 1
2
. Now since x(%, 1,−) < β, obviously

[

1
2
, x(%, 1,−)

]

is a subset of
[

1
2
, β
]

,

and so σ0,% hits [1
2
, β] with frequency %.

Also, x(%+ ε, 1,−) tends to x(%, 0, +)+ 1
2

as ε ↘ 0, so if any orbit hits [1
2
, β] with

frequency more than % then for sufficiently small positive ε it hits [1
2
, x(% + ε, 1,−)]

with frequency more than % + ε, which is a contradiction.

So the maximum value a measure in MT0
can assign to [1

2
, β] is precisely %(β),

and this bound is achieved by the Sturmian measure σ0,%(β).

These two results together completely categorise the range of possible barycentres

of Tβ-invariant measures (for the explicit formula for %(β), see e.g. [6]).
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3.2 Majorisation of measures corresponding to Sturmian measures

We shall denote the Sturmian orbit of barycentre % by σ0,%, and the element of MTβ

corresponding to σ0,% by σβ,%−β .

Note that σβ,% has barycentre % + σ0,%+β[0, β] (mod 1), which may or may not be

equal to %.

Every Sturmian measure (or shifted Sturmian measure) can be supported on a

(not necessarily unique) semicircle (an interval of form [γ, γ + 1
2
] or [0, γ − 1

2
]∪ [γ, 1]).

Lemma 3.2.1. The following conditions on β, % are equivalent:

(i) σ0,%+β([0, β]) = 0

(ii) σβ,% has centre of mass %

(iii) % is a permissible centre of mass for elements of MTβ

(iv) The support of σ0,β+% can be contained in an interval of form2 [γ, γ + 1
2
]

(v) The support of σ0,β+% can be contained in an interval of form [γ, γ + 1
2
] where

γ < 1 − β if β < 1
2

and γ > 1 − β if β > 1
2

Proof. The equivalence of (i) and (ii) follows directly from calculating the centre of

mass of σβ,%. The equivalence of (ii) and (iii) comes from Theorems 3.1.6 and 3.1.7.

The equivalence of these to (iv) and (v) comes from the fact (see Theorem 3.1.6) that

one of the bounds (namely 1−β) on the set of acceptable centres of mass is attained

only by the fixed point measure δ1−β , and the fact that all semicircles not containing

the fixed point contain the point β + 1
2

(mod 1).

We can use this to prove the following theorem:

Theorem 3.2.2. For β ∈ [0, 1), let % be an admissible barycentre for Tβ-invariant

probability measures. If µ ∈ MTβ
has barycentre %, then σβ,% ≺ µ.

To prove Theorem 3.2.2, first note that by Lemma 3.2.1, since % is an admissible

barycentre then σβ,% does indeed have barycentre %, so µ and σβ,% are potentially

comparable with respect to the majorisation partial order.

We will follow the method used by Jenkinson in [19] to prove this result for the

unshifted doubling map. The definition of majorisation we will use is that µ � ν if

and only if
∫

fdµ ≥
∫

fdν for all convex f . Since C2 functions are weakly dense in

2i.e. rather than requiring a ‘wrapped’ semi-circle of form [0, γ− 1

2
]∪ [γ, 1], though note that even

when an interval of form [γ, γ + 1

2
] exists, it may also be possible to find such a ‘wrapped’ interval,

e.g this occurs for σβ,1−β.
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the set of convex functions, it is sufficient to show that for any given β, for all C2

convex f , for all µ ∈ MTβ
,
∫

fdµ ≥
∫

fdσβ,%.

For a given real value θ, define fθ(x) = f(x) + θx. Since
∫

fθdµ =
∫

fdµ + θ%, if

two measures have the same barycentre then
∫

fdµ ≥
∫

fdν if and only if
∫

fθdµ ≥
∫

fθdν. This means that Theorem 3.2.2 is implied by the following result:

Theorem 3.2.3. Let f be a C2 convex function, let β ∈ [0, 1) and let A = [1 − β −
σ(β), 1−β] or [1−β, 1−β +σ(β)] be the set of allowed barycentres for Tβ-invariant

measures. Then for every % ∈ A there exists θ ∈ R such that σβ,% is a minimising

measure for fθ.

Proof. Since % is an allowable berycentre for Tβ-invariant probability measures,

Lemma 3.2.1 means that there exists γ ∈ [0, 1
2
− β] such that the support of σβ,% is

contained in [γ, γ + 1
2
] =: Hγ.

Define the function τ : I → I to be the preimage of x in Hγ - that is, if γ ≤ 1−β
2

then

τ(x) =

{

(x + 1 − β)/2 if 0 ≤ x < 2γ + β

(x − β)/2 if 2γ + β ≤ x < 1

while if γ ≥ 1−β
2

then

τ(x) =

{

(x + 2 − β)/2 if 0 ≤ x < 2γ + β − 1

(x + 1 − β)/2 if 2γ + β − 1 ≤ x < 1 .

Let g(x) =
∑∞

n=1
f ′(τn(x))

2n be a (Lebesgue almost everywhere defined) weighted

average of the gradient at the preimages under τ , and choose θ = −
∫ 1

0
g(x)dx. Then

gθ =
∑∞

n=1 2−nf ′
θ ◦ τn is a L∞ function with Lebesgue integral 0, and so it will be the

almost everywhere derivative of a Lipschitz function ϕθ, with ϕθ(0) = ϕθ(1) = 0.

From the definition of ϕθ we see that (f + ϕθ − ϕθ ◦ Tβ)′ = 0 Lebesgue almost

everywhere on Hγ , so applying the fundamental theorem of calculus (for absolutely

continuous functions) we see that fθ +ϕθ −ϕθ ◦Tβ is constant on Hγ. We claim that

this constant value is in fact the minimum value, that is that

(fθ + ϕθ)(s) ≤ (fθ + ϕθ)(s +
1

2
) if s ∈ [γ,

1

2
] (3.4)

(fθ + ϕθ)(s) ≤ (fθ + ϕθ)(s −
1

2
) if s ∈ (

1

2
, γ +

1

2
] (3.5)

This claim implies that σβ,% is a minimising measure for fθ + ϕθ − ϕθ ◦ Tβ, and
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hence for fθ.

To prove inequality (3.4), let s ∈ [γ, 1
2
] and write E = Es = (γ, s] and E ′ =

E ′
s = (γ + 1

2
, s + 1

2
]. Note that fθ + ϕθ − ϕθ ◦ Tβ is constant on Hγ, and so since

Tβ(γ) = Tβ(γ + 1
2
) we must have (fθ + ϕθ)(γ) = (fθ + ϕθ)(γ + 1

2
), and so

(fθ + ϕθ)(s) − (fθ + ϕθ)(s +
1

2
) =

∫ s

0

(fθ + ϕθ)
′ −
∫ s+ 1

2

0

(fθ + ϕθ)
′

=

(

∫ γ

0

+

∫ s

γ

−
∫ γ

0

−
∫ γ+ 1

2

γ

−
∫ s+ 1

2

γ+ 1

2

)

(fθ + ϕθ)
′

=

∫ s

γ

(fθ + ϕθ)
′ −
∫ s+ 1

2

γ+ 1

2

(fθ + ϕθ)
′

=

∞
∑

n=0

[
∫

E

2−nf ′
θ ◦ τn −

∫

E′

2−nf ′
θ ◦ τn

]

=

∫

Cs · f ′
θ

where Cs is the sum of characteristic functions

Cs(x) =
∞
∑

n=0

[

χτn(E)(x) − χτn(E′)(x)
]

.

Now Cs is Lebesgue integrable, with
∫

Cs = 0, because |τnE| = |τnE ′| = 2−n(s−
γ). Defining Bs(t) =

∫ t

0
Cs, we have Bs(0) = 0 = Bs(1), and so integrating by parts

gives us (fθ + ϕθ)(s) − (fθ + ϕθ)(s + 1
2
) =

∫

Cs · f ′
θ = −

∫

Bs · f ′′
θ .

Now f is convex, so f ′′
θ ≥ 0, and so all we have to show is that Bs is everywhere

non-negative.

To prove this, observe that Cs is identically zero outside the interval [γ, s + 1
2
],

and hence so is Bs. The term
∑∞

n=0 χ(τn(E)) is 0 except on the interval [γ, γ + 1
2
],

and is at least 1 on the interval [γ, s] = E, whereas the term −∑∞
n=0 χ(τn(E ′)) is

either 0 or −1 everywhere, because τm(E ′) and τn(E ′) are disjoint for all m 6= n. So

on the interval [γ + 1
2
, s + 1

2
] we have Cs = −1 and Bs(t) = s + 1

2
− t ≥ 0, while on

the interval [γ, s] we have Cs ≥ 0 and hence Bs ≥ 0. Finally, on the interval [s, γ + 1
2
]

we have Bs ≥ |E| −∑∞
n=1 |τn(E ′)| = |E| −∑∞

n=1 2−n|E| = 0.

The proof of (3.5) is similar: if s ∈ (1
2
, γ + 1

2
] then

(fθ + ϕθ)(s) − (fθ + ϕθ)(s −
1

2
) =

∫

Ĉs · f ′
θ
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where

Ĉs(x) =
∞
∑

n=0

[

χτn(D)(x) − χτn(D′)(x)
]

,

with D = [s − 1
2
, γ), D′ = [s, γ + 1

2
), and we can proceed as before.

Remark 3.2.4. This proof follows very closely the method used by Jenkinson in

[19].

3.3 Majorisation of measures corresponding to given T -invariant

measures

Theorem 3.3.1. For any two measures µ, ν ∈ MT0
, the set of values of β such that

for the corresponding µβ, νβ ∈ MTβ
we have µβ ≺ νβ, is precisely the set of β that are

global minimum points of Gµ,ν(x) but not atoms of the signed measure µ − ν, where

Gµ,ν(x) = wν(x) − wµ(x) − x
(

wν(1) − wµ(1)
)

,

together with the left endpoints of any intervals contained in that set.

Example 3.3.2. If µ is the periodic measure 1
3
(δ 1

7

+ δ 2

7

+ δ 4

7

) and ν is Lebesgue

measure (note that these measures do not have the same barycentre, hence are not

comparable, but that µβ and νβ will be comparable) then

wµ(x) =























0 0 ≤ x ≤ 1
7

(x− 1

7
)

3
1
7
≤ x ≤ 2

7
(2x− 3

7
)

3
2
7
≤ x ≤ 4

7

x − 1
3

4
7
≤ x ≤ 1

wν(x) = 1
2
x2

Gµ,ν(x) =























1
2
x2 + x

6
0 ≤ x ≤ 1

7
1
2
x2 + −x

6
+ 1

21
1
7
≤ x ≤ 2

7
1
2
x2 + −3x

6
+ 3

21
2
7
≤ x ≤ 4

7
1
2
x2 + −5x

6
+ 1

3
4
7
≤ x ≤ 1

So the minimum value of Gµ,ν is attained when x = 5
6
. If we set β = 5

6
then µβ

is the periodic measure 1
3
(δ 13

42

+ δ 19

42

+ δ 31

42

) and νβ is Lebesgue measure itself, which

both have barycentre 1
2
, and we do indeed have µβ ≺ νβ.

On the other hand, the maximum value of Gν,µ occurs at the value 2
7
, which

is an atom of ν − µ, so no measure corresponding to µ can majorise the measure
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equivalently corresponding to ν (the measure ( 9
42

δ0 + 1
3
δ 2

7

+ 1
3
δ 6

7

+ 5
42

δ1) would do so,

but it is not invariant under T 2

7

).

Proof. Given measures µ, ν ∈ MT0
, µβ, νβ ∈ MTβ

, define the signed measures ∆, ∆β

by ∆ = ν − µ, ∆β = νβ − µβ. The functions w∆ and w∆β
can be defined exactly as

for unsigned measures: w∆(x) = wν(x)−wµ(x), w∆β
(x) = wνβ

(x)−wµβ
(x), and Gµ,ν

as defined above can thus be expressed as

Gµ,ν(x) = w∆(x) − xw∆(1) . (3.6)

Now, since

wµβ
(x) =

{

wµ(x + β) − wµ(β) − xµ[0, β) if x ≤ 1 − β

wµ(x + β − 1) − wµ(β) − xµ[0, β) + wµ(1) + x + β − 1 if x ≥ 1 − β

we have

w∆β
(x) =

{

w∆(x + β) − w∆(β) − x∆([0, β)) if x ≤ 1 − β

w∆(x + β − 1) − w∆(β) − x∆([0, β)) + w∆(1) if x ≥ 1 − β.
(3.7)

So, taking x = 1, we see that w∆β
(1) = w∆(β)−w∆(β)−∆([0, β)) + w∆(1), and

hence

∆([0, β)) = w∆(1) − w∆β
(1). (3.8)

Rewriting (3.7) using this new formulation of ∆([0, β)) gives

w∆β
(x) =

{

w∆(x + β) − w∆(β) − x(w∆(1) − w∆β
(1)) if x ≤ 1 − β

w∆(x + β − 1) − w∆(β) − x(w∆(1) − w∆β
(1)) + w∆(1) if x ≥ 1 − β

which can be rewritten in terms of Gµ,ν as

w∆β
(x) − xw∆β

(1) =

{

Gµ,ν(x + β) − Gµ,ν(β) if x ≤ 1 − β

Gµ,ν(x + β − 1) − Gµ,ν(β) if x ≥ 1 − β

so if β is a minimum point for Gµ,ν then w∆β
(x) − xw∆β

(1) ≥ 0 for all x.

Also, w∆(x) =
∫ x

0
∆([0, s))ds, and so if ∆ is non-atomic at β then ∆([0, x)) is con-

tinuous at β and d
dx

w∆(x)
∣

∣

β
= ∆([0, β)). Now, by (3.6), d

dx
Gµ,ν(x)

∣

∣

β
= d

dx
w∆(x)

∣

∣

β
−

w∆(1), and hence if β is a local minimum for Gµ,ν then 0 = ∆([0, β)) − w∆(1), and

using this to rearrange (3.8) we get w∆β
(1) = 0 and hence w∆β

(x) ≥ 0 for all x. And
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this is precisely the definition of µβ ≺ νβ.

If a minimum β of Gµ,ν is an atom of ∆ then - since Gµ,ν must be convex there

- we must have µ({β}) < ν({β}). Here, we will not be able to differentiate w∆ or

Gµ,ν at β. Instead of a corresponding T -invariant measure, by default there will be

a measure supported on the closed interval [0, 1], of the form indicated in Example

3.3.2, that majorises µ. However, if there is an interval (β, β + ε) on which µ = ν

then that measure will in fact be T -invariant as it will assign no weight to the point

1, and hence be supported on [0, 1).

3.4 Majorisation of T 1

2

-invariant measures

Since one measure can majorise another only if they have the same barycentre, we

might expect that as the range of possible centres of mass of Tβ-invariant measures

gets smaller (as β gets closer to 1
2
), we would see more and more majorisation relations

among them, as the range of possible barycentres gets smaller, and at β = 1
2

all

measures have centre of mass 1
2

and are thus potential candidates for majorising one

another. However, in fact we have the following rather surprising result:

Theorem 3.4.1. Let µ, ν be distinct ergodic T 1

2

-invariant Borel probability measures3.

Then every T 1

2

-invariant probability measure has barycentre equal to 1/2, and µ ≺ ν

if and only if µ = δ 1

2

Proof of Theorem 3.4.1. Since µ, ν are ergodic and 1
2

is a fixed point, either µ({1
2
}) =

0 or µ = δ 1

2

. Assume that µ({1
2
}) = ν({1

2
}) = 0.

Once again, recall that µ ≺ ν if and only if wµ(x) ≤ wν(x) for all x, and wµ(1) =

wν(1). Now, since µ, ν are T 1

2

-invariant, we have

µ[0, s) =

{

µ[1
4
, 1

4
+ s

2
) + µ[3

4
, 3

4
+ s

2
) if s ≤ 1

2

µ[1
4
, 1

4
+ s

2
) + µ[3

4
, 1] + µ[0, s

2
− 1

4
) if s ≥ 1

2

and so

3Note that in this section we shall omit the implicit subscript 1

2
on the measures.
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wµ(x) =

∫ x

0

µ[0, s)ds

=

{

∫ x

0
µ[1

4
, 1

4
+ s

2
) + µ[3

4
, 3

4
+ s

2
)ds if x ≤ 1

2
∫ x

0
µ[1

4
, 1

4
+ s

2
)ds +

∫ 1

2

0
µ[3

4
, 3

4
+ s

2
)ds +

∫ x− 1

2

0
µ[3

4
, 1) + µ[0, s

2
)ds if x ≥ 1

2

=























2wµ(
x
2

+ 1
4
) + 2wµ(

x
2

+ 3
4
) − 2wµ(

1
4
) − 2wµ(3

4
) − x

(

µ[0, 1
4
) + µ[0, 3

4
)
)

2wµ(
x
2

+ 1
4
) + 2wµ(

x
2
− 1

4
) − 2wµ(

1
4
) − 2wµ(

3
4
) − x

(

µ[0, 1
4
) + µ[0, 3

4
)
)

+2wµ(1) + x − 1
2
.

(3.9)

Now, by, taking preimages we see that µ[0, 1
2
) = µ[1

4
, 1

2
) + µ[3

4
, 1), and hence

µ[0, 1
4
) + µ[0, 3

4
) = 1, and so in (3.9) taking x = 1 and rearranging proves that

wµ(1) = 1
2
, for any µ ∈ MT 1

2

. Now, taking x = 1
2

in (3.9) we get

wµ(
1

2
) = 2wµ(

1

2
) + 2wµ(1) − 2wµ(

1

4
) − 2wµ(

3

4
) − 1

2

= 2wµ(
1

4
) + 2wµ(

3

4
) − 1

2

and so we can rewrite (3.9) as

wµ(x) =

{

2wµ(
x
2

+ 1
4
) + 2wµ(

x
2

+ 3
4
) − wµ(

1
2
) − 1

2
− x

2wµ(
x
2

+ 1
4
) + 2wµ(

x
2
− 1

4
) − wµ(

1
2
).

(3.10)

Now, as in Section 3.3, let ∆ be the signed measure ν − µ and w∆(x) = wν(x) −
wµ(x), and define the function g by

g(x) = w∆(x) − w∆(
1

2
) − (x − 1

2
)∆[0,

1

2
].

Notice that we have already proved that wµ(1) is always equal to 1
2

for any element

of MT 1
2

, and so µ ≺ ν if and only if w∆(x) ≥ 0 for all values of x.

Now, rewriting (3.10) in terms of w∆ gives

w∆(x) = 2w∆(
x

2
+

1

4
) + 2w∆(

x

2
− 1

4
mod 1) − w∆(

1

2
)

And for |ε| ≤ 1
2
, setting x = 1

2
+ ε gives

w∆(
1

2
+ ε) − 2w∆(

1

2
+

ε

2
) + w∆(

1

2
) = 2w∆(

ε

2
mod 1)
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or, in terms of g,

g(
1

2
+ ε) = 2g(

1

2
+

ε

2
) + 2w∆(

ε

2
mod 1)

= lim
n→∞

2ng(
1

2
+

ε

2n
) +

∞
∑

i=1

2iw∆(
ε

2i
mod 1)

Now

2ng(
1

2
+

ε

2n
) = 2n

∫ 1

2
+ ε

2n

1

2

∆[
1

2
, x)dx

|2ng(
1

2
+

ε

2n
)| ≤ ε

2n
sup

xε[ 1
2
, 1
2
+ ε

2n ]

|∆[
1

2
, x)| (3.11)

and therefore, since we have assumed that µ({1
2
}) = ν({1

2
}) = δ({1

2
}) = 0, we see

that limn→∞ 2ng(1
2

+ ε
2n ) = 0. And so g(1

2
+ ε) =

∑∞
i=1 2iw∆( ε

2i mod 1), and so if w∆

is everywhere non-negative then so is g. But w∆(x) = w∆(1
2
) + (x− 1

2
)∆[0, 1

2
] + g(x).

So, using the fact that w∆(0) = w∆(1) = 0, we see that 1
2
∆[0, 1

2
] = w∆(1

2
) + g(0) =

−w∆(1
2
) − g(1).

So if w∆ and g are both everywhere non-negative, we must have ∆[0, 1
2
] = w∆(1

2
) =

g(0) = g(1) = 0, and so from the definition of g we have w∆(x) = g(x) for all x. So,

for −1
2
≤ ε ≤ 1

2
,

w∆(ε +
1

2
) =

∞
∑

i=1

2iw∆(
ε

2i
mod 1) .

So, taking ε = 1
2
, we see that w∆( 1

2n ) = 0, and likewise taking ε = −1
2

gives us

w∆(1− 1
2n ) = 0. Then we can use ε = 1

2
− 1

2n , 1
2n − 1

2
to prove that w∆(x) = 0 whenever

x = 1
2
− 1

2n + 1
2n+m or x = 1

2
+ 1

2n − 1
2n+m

Repeating this procedure infinitely often, we see that w∆(x) = 0 for all x of the

form k
2n , and hence for all x, as w∆ is continuous. So if w∆ is non-negative then

w∆(x) = 0, ∆ is the zero measure and µ ≡ ν. So no ergodic element of MT 1
2

majorises any other such measure other than the fixed point measure δ 1

2

.

Conversely, since we have shown that all measures in MT 1
2

have wµ(1) = 1
2
, all

measures majorise the fixed point measure.
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Periodic orbits of the Doubling Map

In this chapter, we will demonstrate which possible cyclic orderings can arise as

periodic cycles of the doubling map T : x 7→ 2x (mod 1) on the unit interval. We

will then use this result to show the complete structure of the majorisation partial

ordering on the sets of T -invariant measures supported on periodic orbits of weight1

2 and weight 3, of any given length.

In [19], Jenkinson proved that every probability measure on I invariant under T

majorises a member of a class of measures known as Sturmian measures. A great

deal has been written about this class of measures; see for example [6] for a fuller

treatment of their properties. Each closed subinterval of I of length 1
2

supports a

unique T -invariant probability measure; these are the Sturmian measures. For every

% ∈ I there exists a unique Sturmian measure with centre of mass %. This means

that for every concave function there exists a maximising Sturmian measure (there

may also exist non-Sturmian maximising measures).

If we treat T as acting on [0, 1] instead of on [0, 1), with T (1) = 1, then the

minimising measure must be one of the two fixed point measures at the two end-

points. On [0, 1), δ0 is still a fixed point measure, while the fixed point at 1 can be

approximated by the sequence of measures supported on periodic orbits with binary

expansions 01n01n . . ., so a minimising measure for a concave function f exists if and

only if f(0) ≤ f(1).

In this chapter, we will examine how majorisation ordering of T -invariant mea-

sures behaves between these two endpoints by constructing the complete majorisation

partial orderings on the set of measures supported on periodic orbits of a given length

and of weight 2 (that is to say, periodic orbits of length l whose points have precisely

two 1s in the first l digits of their binary expansion), and the set of measures sup-

ported on periodic orbits of a given length and of weight 3. To do this, we will first

1The weight of a periodic orbit is the number of 1’s in its symbolic representation, cf. Definition
4.2.1.
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Chapter 4. Periodic orbits of the Doubling Map

examine the possible cyclic orderings of periodic orbits under T .

4.1 Possible orderings of elements of periodic orbits of T

Definition 4.1.1. Let x ∈ I have binary expansion 0.x0x1x2 . . . (the ambiguity about

0.10̇ = 0.01̇ can be safely ignored). Then the gap sequence of x is defined to be the

sequence of gi (each of which is either a natural number or infinite) such that xk = 1

if and only if k = g1 + g2 . . .+ gn for some n. The gap sequence is finite if x is dyadic

(that is, of form a
2k ), recurring for any other rational x, and non-recurring if x is

irrational.

Example 4.1.2. We list various binary expansions and their corresponding gap

sequences. Note that the notation aḃ denotes a followed by b recurring, while aḃcḋ

denotes a followed by bcd recurring.

Binary expansion of x Gap sequence of x

001010000110̇ 3251∞
0̇1̇ 2̇

1̇0̇ 12̇

110010101101 . . . 1232212 . . .

Theorem 4.1.3. Let x0 ∈ I be a periodic point of least period q, with gap sequence

ġ1, g2, . . . , ġn, and let T i(x0) = xi for i = 0, 1, . . . , p − 1. Then we can construct the

cyclic ordering of {x0, x1 . . . , xp−1} as follows:

1. Construct an ordering {π1, π2, . . . , πn} of the numbers {1, 2, . . . , n} by following

the rule a < b if ga+i > gb+i, where i is the smallest value such that ga+i 6= gb+i

2. Construct a pair of functions λ, ν : {0, 1 . . . , p − 1} → N as follows: if k =

g1 + g2 + . . . + gj − i, with 1 ≤ i ≤ gj, then λ(k) = i and ν(k) = j.

These functions have the properties that λ(k) is the position of the first 1 in the

binary expansion of xk, while among those xk whose binary expansion first has

a 1 in position j, the ordering is given by πν(k).

3. Let G be the largest of the gi. Then the ordering of the xk will be given by:

• If λ(a) < λ(b) then xb < xa.

• If λ(a) = λ(b) and πν(a) < πν(b) then xa < xb.

We illustrate Theorem 4.1.3 with the following example:
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Example 4.1.4. Let x have binary expansion 0̇01010001000010001̇, and hence gap

series 3̇2454̇

The largest gap is g4 = 5, so π1 = 4 − 1 = 3. Then g3 = g5 = 4, but g4 > g1 so

π2 = 3 − 1 = 2 and π3 = 5 − 1 = 4. The next largest gap is g1 = 3, and so π3 = 5

and π5 = 1. So π is the order 32451.

Now the functions λ, ν are as follows:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

λ(k) 3 2 1 2 1 4 3 2 1 5 4 3 2 1 4 3 2 1

ν(k) 1 1 1 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5

and the ordering of the xk is as follows:

k 9 5 10 14 6 11 15 0 7 3 12 16 1 8 4 13 17 2

λ(k) 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1

ν(k) 4 3 4 5 3 4 5 1 3 2 4 5 1 3 2 4 5 1

And it is easy to check this - observe, for example, that e.g. T 9(x), which has the

binary expansion 0̇00010001001010001̇, is the smallest point in the orbit of x.

Definition 4.1.5. Let {π0, π1, . . . , πn−1} be a permutation of {0, 1, . . . , n−1}. Write

a → b to mean that a comes before b in the ordering {π0, π1, . . . , πn−1}. We say that

k, k + 1, . . . , k + m is a rising sequence of {π0, π1, . . . , πn−1} if:

• k → k + 1 → . . . → k + m

• k → k − 1 or k = 0

• k + m + 1 → k + m or k + m = n − 1.

So, for example, in the sequence 0457923618, the rising sequences are 01, 23, 456,

78 and 9.

Theorem 4.1.6. If x ∈ I is a periodic point with gap sequence ġ1, g2, . . . , ġn,

and {π0, π1, . . . , πn−1} is the ordering of x, T (x), . . . , T p−1(x), then the rising se-

quences of {π0, π1, . . . , πn−1} are precisely {0, 1, . . . , g1 − 1}; {g1, g1 + 1, . . . , g2 −
1}, . . . , {gn−1 . . . , gn}.

Proof. This follows directly from the construction given in Theorem 4.1.3; the rising

sequences will be precisely the sets of constant ν.
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Remark 4.1.7. It follows that it is easy to tell whether or not a given permutation

of the numbers {0, 1, . . . , n−1} can arise as the ordering of the elements of a periodic

orbit of T : simply split it up into rising sequences, and see whether or not it is the

ordering given by applying the construction in Theorem 4.1.3 to the number x with

gap sequence given by the lengths of the rising sequences.

Now, armed with these methods, we will go on to look at majorisation ordering

of orbits.

Remark 4.1.8. For the set of words of any given length and weight it is possible

to work out the majorisation ordering using a computer, although for higher lengths

the amount of computing power required becomes problematic.

4.2 Majorisation ordering of periodic orbits of weight 2

Definition 4.2.1. Let x be a periodic point of T . We say that x is a periodic point

of length l and weight w if T l(x) = x and the binary expansion of x has precisely w

1s in the first l digits.

Note that l need not be the least period of x, so that for example 1
3
, with binary

expansion 0̇1̇, is a periodic point of length 2 and weight 1, and also a periodic point

of length 4 and weight 2, and so on.

From now on, let g1g2 . . . gn denote the number with gap sequence ġ1g2 . . . ġn, a

periodic point of length g1 + g2 + . . . + gn and weight n.

Lemma 4.2.2. The centre of mass of a periodic orbit of length l and weight w is

precisely w
l
. As such, a necessary condition for one periodic orbit to majorise another

is that l1
l2

= w1

w2
, where li and wi are the lengths and weights of the two measures.

Proof. Note that if µ is the orbit supported on the orbit of x then µ[1
2
, 1] = w

l
. Now

by referring to the definition of majorisation, and taking preimages under T , we see

that wµ(1) =
∫ 1

0
µ[0, s)ds =

∫ 1

0
µ[0, s

2
) + µ[1

2
, 1

2
+ s

2
)ds = 2wµ1−µ[0, 1

2
) = µ[0, 1

2
), and

so %(µ) = 1 − wµ(1) = µ[1
2
, 1) = w/l. So one measure can majorise another only if

they have the same centre of mass.

So if we are looking for a complete majorisation ordering on periodic orbits of the

doubling map, it suffices to look at the ordering among orbits of each given weight

and length (it is possible to compare e.g. an orbit of length 4, weight 2 with one of

length 6, weight 3 by looking at them both as orbits of length 12, weight 6).

For high weights, this rapidly becomes extremely complicated, but for weights 2

and 3 we are able to give a complete picture of the ordering for any length.

33



Chapter 4. Periodic orbits of the Doubling Map

Figure 4.1: Hasse diagram of majorisation ordering on gap sequences of words of
weight 2, length 8

Notation 4.2.3. For convenience, we will write x majorises y or x � y to mean the

(T -invariant Borel probability) measure supported upon the orbit of periodic point

x majorises the measure supported upon the orbit of y.

Theorem 4.2.4.

l − 1, 1 � l − 2, 2 � . . . � dl/2e, bl/2c

Figure 4.1 illustrates this at length 8.

Example 4.2.5. For example, the gap sequence 31 corresponds to the binary ex-

pansion 0011 and the point 1
5

with orbit 1
5
, 2

5
, 4

5
, 3

5
. . ., while the binary gap sequence

22 corresponds to the binary expansion 0101 and the point 1
3

with orbit 1
3
, 2

3
, 1

3
, 2

3
. . ..

And 1
4

(

δ 1

5

+ δ 2

5

+ δ 3

5

+ δ 4

5

)

� 1
2

(

δ 1

3

+ δ 2

3

)

.

Proof. To prove this, we will use the following lemma:

Lemma 4.2.6. If x and y are periodic points of (not necessarily least) period l then

for 0 ≤ i ≤ l − 1, define αi(x) to be the permutation of 0, 1, . . . , l − 1 such that

T α0(x) ≤ T α1(x) ≤ . . . ≤ T αl−1(x). Then x ≺ y if and only if
∑n−1

i=0 T αi(x) ≤
∑n−1

i=0 T αi(y) for 0 ≤ n ≤ l − 1, with equality when n = l.

Proof. To see this, simply note that if µx is the measure supported on the orbit of

x then wµx
(z) =

∑

T αi(x)<z(z − T αi(x)), and rewrite the definition of majorisation

using this formula.

Now, consider two integers such that g1 ≥ g2 ≥ 2.

If we let x = g1, g2 then

x =
2g2 + 1

2g1+g2 − 1

and

T n(x) =

{

2g2+n+2n

2g1+g2−1
if 0 ≤ n ≤ g1 − 1

2n−g1+2n

2g1+g2−1
if g1 ≤ n ≤ g1 + g2.
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So if we define αi(x) as above then

αi =































i if i ≤ g1 − g2 − 1

i
2

+ g1

2
+ g2

2
if

{

i ≥ g1 − g2 + 1

and i = g1 − g2 + 1 (mod 2)

i
2

+ g1

2
− g2

2
− 1

2
if

{

i ≥ g1 − g2 + 1

and i = g1 − g2 (mod 2)

(2g1+g2 − 1)T αi(x) =































2i+g2 + 2i if i ≤ g1 − g2

2
i+g1+g2

2 + 2
i−g1+g2

2 if

{

i ≥ g1 − g2 + 1

i = g1 − g2 + 1 (mod 2)

2
i+g1+g2−1

2 + 2
i+g1−g2−1

2 if

{

i ≥ g1 − g2 + 1

i = g1 − g2 (mod 2)

(2g1+g2−1)
n−1
∑

i=0

T αi(x) =































(2g2 + 1)(2n − 1) if n ≤ g1 − g2

2
n+g1+g2

2 + 2
n−g1+g2

2 if

{

n ≥ g1 − g2 + 1

n = g1 − g2 + 1 (mod 2)

2
n+g1+g2−1

2 + 2
n+g1−g2−1

2 if

{

n ≥ g1 − g2 + 1

n = g1 − g2 (mod 2).

If we now denote g1 + 1, g2 − 1 by x̂ then

(2g1+g2−1)

n−1
∑

i=0

T αi(x̂) =































(2g2−1 + 1)(2n − 1) if n ≤ g1 − g2 + 2

2
n+g1+g2

2 + 2
n−g1+g2−2

2 if

{

n ≥ g1 − g2 + 3

n = g1 − g2 + 1 (mod 2)

2
n+g1+g2−1

2 + 2
n+g1−g2+1

2 if

{

n ≥ g1 − g2 + 3

n = g1 − g2 (mod 2),

and so, comparing termwise, we see that
∑n−1

i=0 T αi(x̂) ≤∑n−1
i=0 T αi(x) with equal-

ity occuring when n = g1 + g2.

So x̂ � x. And so the complete ordering of measures supported on points of

weight 2 follows directly.
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4.3 Words of Weight 3

Theorem 4.3.1. Given a natural number l > 3, let Ml be the set of all ordered triples

of integers (a, b, c) such that x = a, b, c is periodic under T with (not necessarily least)

period l and weight 3, and is minimal in its own orbit.

Then we can construct the poset of majorisation ordering on Ml from the diagram

in Figure 4.2.

Remark 4.3.2. Precisely, the way in which Figure 4.2 yields the majorisation or-

dering on Ml is as follows: read each triple of numbers as the gap sequence of the

binary expansion of a periodic point of period l - for example, if l = 6 then l− 3, 1, 2

corresponds to the point with gap sequence 3̇12̇, binary expansion 0̇01101̇, which is to

say 13/63. Restrict ourselves to the set of points that are minimal in their own orbits

- so for example, at weight 6 we will ignore the entry l−4, 3, 1, because it corresponds

to the orbit of 231 = 0̇10011̇ = 19/63, which contains the point 31 = 0̇01101̇ = 13/63.

Then the lines in the diagram are precisely the majorisation ordering, with the entry

higher up/further to the left majorising the other.

Note that we do include routes that go via points not in our diagram. For example,

at l = 6 we have 312 � 222, even though 231 is not minimal in its orbit.

Figure 4.3 illustrates the diagrams that this generates at l = 6, 7, 8, 9, 10 and 11.

Proof. To prove that the diagram in Figure 4.2 is both sufficient and necessary, it

suffices to prove the following 7 lemmas:

Lemma 4.3.3. Let a ≥ b > c. Then a, b, c � a, c + 1, b − 1.

This lemma gives us the horizontal lines in Figure 4.2.

Lemma 4.3.4. Let a ≥ b ≥ c + 2. Then a, b, c � a, b − 1, c + 1

This lemma gives us the curved horizontal lines in Figure 4.2.

Lemma 4.3.5. Let a − 2 ≥ b ≥ c. Then a, b, c � a − 1, b + 1, c

This lemma gives us the vertical lines in the even columns of Figure 4.2.

Lemma 4.3.6. Let a − 2 ≥ c ≥ b. Then a, b, c � a − 1, b, c + 1

This lemma gives us the vertical lines in the odd columns of Figure 4.2.

Lemma 4.3.7. Let a − 2 ≥ c ≥ b. Then a, b, c � a − 1, c + 1, b

This lemma gives us the diagonal lines in Figure 4.2.

36



Chapter 4. Periodic orbits of the Doubling Map

Figure 4.2: The Hasse diagram for majorisation ordering of words of weight 3 at a
given length l, indexed by gap sequence as in Figure 4.3, can be constructed from this
infinite diagram simply by restricting it to the set of gap sequences that correspond
to points that are minimal in their own orbit at length l. For example, the Hasse
diagrams for majorisation at weights 3,4,6,8 and 15 can be generated by taking the
entries above the red lines indicated, and replacing “l” with the relevant value.

Figure 4.3: Hasse diagrams of majorisation ordering of periodic orbits of weight 3,
lengths 6-10, denoted by the gap sequences of their minimal elements. Lines indicate
majorisation; the entry above and/or to the left majorises the other. So, for example,
the line linking 411 to 321 means that the orbit of 7/63 (binary expansion 0̇00111̇)
majorises the orbit of 11/63 (binary expansion 0̇01011̇).
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Lemma 4.3.8. Let a1 + b1 + c1 = a2 + b2 + c2 with a1 ≥ b1 ≥ c1, a2 ≥ b2 ≥ c2 and

a1 > a2, c1 < c2. Then2
a1b1c1

a1c1b1

}

�

⊀

{

a2b2c2

a2c2b2

Lemma 4.3.9. Let a + b1 + c1 = a + b2 + c2 and a ≥ c1 ≥ b1; a ≥ c2 ≥ b2, and if

a = ci then require that bi < a, ci. Then a, b1, c1

�

⊀
a, b2, c2.

Lemmas 4.3.3-4.3.7, between them, prove that all the orderings in the Hasse

diagram occur, while Lemmas 4.3.8-4.3.9 prove that no others do.

Notation 4.3.10. For any three integers g1, g2, g3 such that g1 ≥ g2, g3 and such

that if g1 = g3 then g1 = g2 = g3, and for i = 1, 2, 3, with x = g1, g2, g3, we define

l = g1 + g2 + g3

λi = 2gi+1+gi+2 + 2gi+2 + 1

di = l − 3gi

d∗ = max(d2, d3) = l − 3min(g2, g3)

µi = g1 − gi

µ∗ = min(µ2, µ3) = g1 − max(g2, g3)

Where necessary, we will write these as e.g. λ1(x), d2(y) to indicate whether we

are refering to the gaps of x or of y as the gi, but where possible we will omit this.

Example 4.3.11. For example, if x has the gap sequence 6, 3, 2 then l = 11, λ1 =

23+2 +22 +1 = 37, λ2 = 22+6 +26 +1 = 197, λ3 = 26+3 +23 +1 = 265, d1 = 11−18 =

−7, d2 = 2, d3 = 5, d∗ = d3 = 5, µ1 = 0, µ2 = 3, µ3 = 4 and µ∗ = 3.

Now, as before, define αk(x) to be the permutation of 0, 1 . . . , n − 1 such that

T α0(x)(x) ≤ T α1(x)(x) . . . ≤ T αn−1(x)(x). The αk(x) are uniquely defined if l is the

least period of x, and T αk(x)(x) is always uniquely defined.

If g2 ≤ g3 then we say that x = g1, g2, g3 is of type I, while if g2 > g3 we say that

x is of type II.

Then, using the results of Section 4.2, we can construct the following tables, which

will enable us to explicitly compute the values of
∑k

i=0 T αi(x) for a given x, and hence

test explicitly whether x ≺ y:

2The symbols � and ⊀ together denote that elements are incomparable with respect to the
majorisation partial order.
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i αi if x is type I αi if x is type II

0 ≤ i < µ∗ i i

µ∗ ≤ i ≤ d∗

i ≡ µ∗ (mod 2)
i+g1+2g2+g3

2
i+g1−g2

2

µ∗ ≤ i ≤ d∗

i ≡ µ∗ + 1 (mod 2)
i+g1−g3−1

2
i+g1+g2−1

2

d∗ ≤ i < l

i ≡ d∗ (mod 3)
i+2g1+2g2+2g3

3
i+2g1+2g2+2g3

3

d∗ ≤ i < l

i ≡ d∗ + 1 (mod 3)
i+2g1+2g2−g3−1

3
i+2g1−g2−g3−1

3

d∗ ≤ i < l

i ≡ d∗ + 2 (mod 3)
i+2g1−g2−g3−2

3
i+2g1+2g2−g3−2

3

i T αi(x) × (2l − 1) if x is type I T αi(x) × (2l − 1) if x is type II

0 ≤ i < µ∗ 2iλ1 2iλ1

µ∗ ≤ i ≤ d∗

i ≡ µ∗ (mod 2)
2

i−µ3
2 λ3 2

i+µ2
2 λ1

µ∗ ≤ i ≤ d∗

i ≡ µ∗ + 1 (mod 2)
2

i+µ3−1

2 λ1 2
i−µ2−1

2 λ2

d∗ ≤ i < l

i ≡ d∗ (mod 3)
2

i−d3
3 λ3 2

i−d3
3 λ3

d∗ ≤ i < l

i ≡ d∗ + 1 (mod 3)
2

i−d2−1

3 λ2 2
i−d1−1

3 λ1

d∗ ≤ i < l

i ≡ d∗ + 2 (mod 3)
2

i−d1−2

3 λ1 2
i−d2−2

3 λ2
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k
∑k

i=0 T αi(x) × (2l − 1) if x is type I

k < µ3 (2k+1 − 1)λ1

µ3 ≤ k ≤ d2

k ≡ µ3 (mod 2)

(

2
k+µ3

2 − 1
)

λ1 +
(

2
k−µ3+2

2 − 1
)

λ3

µ3 ≤ k ≤ d2

k ≡ µ3 + 1 (mod 2)

(

2
k+µ3+1

2 − 1
)

λ1 +
(

2
k−µ3+1

2 − 1
)

λ3

d2 ≤ k < l

k ≡ d2 (mod 3)

(

2
k−d1

3 − 1
)

λ1 +
(

2
k−d2

2 − 1
)

λ2 +
(

2
k−d3+3

3 − 1
)

λ3

d2 ≤ k < l

k ≡ d2 + 1 (mod 3)

(

2
k−d1−1

3 − 1
)

λ1 +
(

2
k−d2+2

2 − 1
)

λ2 +
(

2
k−d3+2

3 − 1
)

λ3

d2 ≤ k < l

k ≡ d2 + 2 (mod 3)

(

2
k−d1+1

3 − 1
)

λ1 +
(

2
k−d2+1

2 − 1
)

λ2 +
(

2
k−d3+1

3 − 1
)

λ3

k
∑k

i=0 T αi(x) × (2l − 1) if x is type II

k < µ2 (2k+1 − 1)λ1

µ2 ≤ k ≤ d3

k ≡ µ2 (mod 2)

(

2
k+µ2

2 − 1
)

λ1 +
(

2
k−µ2

2 − 1
)

λ2

µ2 ≤ k ≤ d3

k ≡ µ2 + 1 (mod 2)

(

2
k+µ2+1

2 − 1
)

λ1 +
(

2
k−µ2+1

2 − 1
)

λ2

d3 ≤ k < l

k ≡ d3 (mod 3)

(

2
k−d1

3 − 1
)

λ1 +
(

2
k−d2

2 − 1
)

λ2 +
(

2
k−d3+3

3 − 1
)

λ3

d3 ≤ k < l

k ≡ d3 + 1 (mod 3)

(

2
k−d1+2

3 − 1
)

λ1 +
(

2
k−d2−1

2 − 1
)

λ2 +
(

2
k−d3+2

3 − 1
)

λ3

d3 ≤ k < l

k ≡ d3 + 2 (mod 3)

(

2
k−d1+1

3 − 1
)

λ1 +
(

2
k−d2+1

2 − 1
)

λ2 +
(

2
k−d3+1

3 − 1
)

λ3
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Proof of lemma 4.3.3. Let x = a, b, c and y = a, c + 1, b − 1. If b = c + 1 then x = y,

so we can assume that b ≥ c + 2. To avoid having to repeatedly divide all terms by

2l − 1, we will work with
∑k−1

i=0 T αi(x)(x) × (2l − 1), which we will write Sk(x), and

endeavour to show that Sk(x) ≤ Sk(y) for k = 0, 1 . . . , l − 1. Now x is type II and y

is type I, and so the proof will follow from handling separately the following 10 cases:

Case (i): k < a − b:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and λ1(x) < λ1(y) as c < b− 1.

Case (ii): k = a − b:

Sx(k) = (2a−b+1 − 1)λ1(x), Sy(k) = (2a−b+1 − 1)λ1(y), and λ1(x) < λ1(y) as

c < b − 1.

Case (iii): a − b + 1 ≤ k < a + b − 2c − 3 and and k = a − b (mod 2):

Sx(k) =
(

2
k+a−b+2

2 − 1
)

λ1(x) +
(

2
k−a+b

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b+2

2 − 1
)

λ1(y) +
(

2
k−a+b

2 − 1
)

λ3(y)

Sy(k)−Sx(k) =
(

2
k+a−b+2

2 − 1
)

(

2b−1 − 2c
)

+
(

2
k−a+b

2 − 1
)

(2a+c + 2c+1 − 2a) > 0

Case (iv): a − b + 1 ≤ k < a + b − 2c − 3 and k = a − b + 1 (mod 2):

Sx(k) =
(

2
k+a−b+1

2 − 1
)

λ1(x) +
(

2
k−a+b+1

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b+2

2 − 1
)

λ1(y) +
(

2
k−a+b+1

2 − 1
)

λ3(y)

Sy(k)−Sx(k) =
(

2
k+a−b+1

2 − 1
)

(

2b−1 − 2c
)

+
(

2
k−a+b+1

2 − 1
)

(2a+c + 2c+1 − 2a) >

0

Case (v): k = a + b − 2c − 3:

Sx(k) = (2a−c−1 − 1)λ1(x) +
(

2b−c−1 − 1
)

λ2(x)

Sy(k) = (2a−c−1 − 1)λ1(y) +
(

2b−c−1 − 1
)

λ3(y)

Sy(k) − Sx(k) = (2a−c−1 − 1)
(

2b−1 − 2c
)

+
(

2b−c−1 − 1
)

(2a+c + 2c+1 − 2a) > 0

Case (vi): k = a + b − 2c − 2:

Sx(k) = (2a−c − 1)λ1(x) +
(

2b−c−1 − 1
)

λ2(x)

Sy(k) = (2a−c−1 − 1)λ1(y) + λ2(y) +
(

2b−c−1 − 1
)

λ3(y)

Sy(k)−Sx(k) = (2a−c−1 − 1)
(

2b−1 − 2c
)

+
(

2b−c−1 − 1
)

(2a+c + 2c+1 − 2a)+2a−1 +

1 − 2a−c−1 > 0

Case (vii): k = a + b − 2c − 1:

Sx(k) = (2a−c − 1)λ1(x) +
(

2b−c − 1
)

λ2(x)

Sy(k) = (2a−c − 1) λ1(y) + λ2(y) +
(

2b−c−1 − 1
)

λ3(y)
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Sy(k) − Sx(k) = (2a−c − 1)
(

2b−1 − 2c
)

+
(

2b−c−1 − 1
)

(2a+c + 2c+1 − 2a) +

(2a + 1)
(

2b−c−1 − 1
)

> 0

Case (viii): a + b − 2c ≤ k < l and k = a + b − 2c (mod 3):

Sx(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(x) +
(

2
k−c−a+2b

3 − 1
)

λ2(x) +
(

2
k−a−b+2c

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(y) +
(

2
k−c−a+2b

3 − 1
)

λ2(y) +
(

2
k−a−b+2c

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2
k−a+2b+2c

3 + 2
k+2a−b+2c

3 + 2
k+2a+2b−c

3 + 2a+b−1 − 2a+c − 2b − 2c > 0

Case (ix): a + b − 2c ≤ k < l and k = a + b − 2c + 1 (mod 3):

Sx(k) =
(

2
k−b−c+2a+2

3 − 1
)

λ1(x)+
(

2
k−c−a+2b−1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−1

3 − 1
)

λ1(y)+
(

2
k−c−a+2b−1

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+5

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2
k−a−b+2c−1

3

(

5.2a + 3.2a+b−1 + 2a−c + 2a+b−c−1 + 1
)

− 2a+b−1 +

2a+c + 2a+b−1 − 2b−1 > 0

Case (x): a + b − 2c ≤ k < l and k = a + b − 2c + 2 (mod 3):

Sx(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(y)+
(

2
k−c−a+2b−2

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+3

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2
k−a−b+2c+1

3

(

2a−c + 2b−c−1 + 2b + 3.2a+b−1 − 1
)

> 0

Proof of lemma 4.3.4. Let a ≥ b ≥ c + 2 and write x = a, b, c, y = a, b − 1, c + 1. x

is type II. If b > c + 2 then y is type II; if b = c + 2 then y is type I. Again, we need

to show that Sx(k) ≤ Sy(k). If b > c + 2 then we must consider the following cases:

Case (Ai): k < a − b:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and λ1(y) − λ1(x) = 2c > 0.

Case (Aii): a − b + 1 ≤ k < a + b − 2c − 3, k = a − b (mod 2):

Sx(k) =
(

2
k+a−b+2

2 − 1
)

λ1(x) +
(

2
k−a+b

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b+2

2 − 1
)

λ1(y) +
(

2
k−a+b

2 − 1
)

λ2(y)

Sy(k) − Sx(k) =
(

2
k+a−b+2

2 − 1
)

2c +
(

2
k−a+b

2 − 1
)

2a+c > 0

Case (Aiii): a − b + 1 ≤ k < a + b − 2c − 3, k = a − b + 1 (mod 2):

Sx(k) =
(

2
k+a−b+1

2 − 1
)

λ1(x) +
(

2
k−a+b+1

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b+3

2 − 1
)

λ1(y) +
(

2
k−a+b−1

2 − 1
)

λ2(y)

Sy(k) − Sx(k) =
(

2
k−a+b−1

2 − 1
)

(

3.2a−b+c+1 + 2a−b+1 − 1 + 2a+c+1 − 2a
)

− 2a+c −
2c > 0
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Case (Aiv): k = a + b − 2c − 3:

Sx(k) = (2a−c−1 − 1)λ1(x) +
(

2b−c−1 − 1
)

λ2(x)

Sy(k) = (2a−c−1 − 1)λ1(y) +
(

2b−c−1 − 1
)

λ2(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−1 − 2a+c − 2a+b−c−2 + 2a−1 − 2b−c−2 + 2b−1 − 2c + 1 > 0

Case (Av): k = a + b − 2c − 2:

Sx(k) = (2a−c − 1)λ1(x) +
(

2b−c−1 − 1
)

λ2(x)

Sy(k) = (2a−c − 1) λ1(y) +
(

2b−c−2 − 1
)

λ2(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−1 − 2a+c − 2a+b−c−2 + 2a − 2b−c−2 + 2b−1 − 2c + 1 > 0

Case (Avi): k = a + b − 2c − 1:

Sx(k) = (2a−c − 1)λ1(x) +
(

2b−c − 1
)

λ2(x)

Sy(k) = (2a−c − 1) λ1(y) +
(

2b−c−1 − 1
)

λ2(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−1 − 2a+b−c−1 − 2a+c + 2a − 2b−c−1 + 2b+1 + 1 − 2c > 0

Case (Avii): a + b − 2c ≤ k < l and k = a + b − 2c (mod 3):

Sx(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(x) +
(

2
k−c−a+2b

3 − 1
)

λ2(x) +
(

2
k−a−b+2c+3

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(y) +
(

2
k−c−a+2b−3

3 − 1
)

λ2(y) +
(

2
k−a−b+2c

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c

3

)

(2a + 1)
(

2b−1 − 2c
)

+ 2c > 0

Case (Aviii): a + b − 2c ≤ k < l and k = a + b − 2c + 1 (mod 3):

Sx(k) =
(

2
k−b−c+2a+2

3 − 1
)

λ1(x)+
(

2
k−c−a+2b−1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a+2

3 − 1
)

λ1(y)+
(

2
k−c−a+2b−4

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+5

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c−1

3

)

(2a + 1)
(

2b−1 − 2c+1
)

+ 2c + 2a+c > 0

Case (Aix): a + b − 2c ≤ k < l and k = a + b − 2c + 2 (mod 3):

Sx(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(y)+
(

2
k−c−a+2b−2

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+4

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c+1

3

)

(2a + 1)
(

2b−1 − 2c
)

> 0

If b = c + 2 and y is hence type I, we have the following cases:

Case (Bi): k ≤ a − b:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and Sy(k) − Sx(k) =
(

2k+1 − 1
)

2b−2 > 0.

Case (Bii): k = a − b + 1:

Sx(k) =
(

2a−b+1 − 1
)

λ1(x) + λ2(x)

Sy(k) =
(

2a−b+1 − 1
)

λ1(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−2 − 2a−1 − 2b−2 > 0
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Case (Biii): k = a − b + 2:

Sx(k) =
(

2a−b+2 − 1
)

λ1(x) + λ2(x)

Sy(k) =
(

2a−b+1 − 1
)

λ1(y) + λ2(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−2 + 2b−2 > 0

Case (Biv): k = a − b + 2:

Sx(k) =
(

2a−b+2 − 1
)

λ1(x) + 3λ2(x)

Sy(k) =
(

2a−b+2 − 1
)

λ1(y) + λ2(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−2 − 1 > 0

Case (Bv): a − b + 4 ≤ k < l and k = a − b + 1 (mod 3):

Sx(k) =
(

2
k+2a−2b+2

3 − 1
)

λ1(x) +
(

2
k−a+b+2

3 − 1
)

λ2(x) +
(

2
k−a+b−1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k+2a−2b+2

3 − 1
)

λ1(y) +
(

2
k−a+b−1

3 − 1
)

λ2(y) +
(

2
k−a+b+2

3 − 1
)

λ3(y)

Sy(k) − Sx(x) = −2
k+2a+b−4

3 + 2a+b−2 + 2b−2 > 0

Case (Bvi): a − b + 4 ≤ k < l and k = a − b + 2 (mod 3):

Sx(k) =
(

2
k+2a−2b4

3 − 1
)

λ1(x) +
(

2
k−a+b+1

3 − 1
)

λ2(x) +
(

2
k−a+b−2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k+2a−2b+1

3 − 1
)

λ1(y) +
(

2
k−a+b+1

3 − 1
)

λ2(y) +
(

2
k−a+b+1

3 − 1
)

λ3(y)

Sy(k) − Sx(x) = −2
k−a+b−2

3 + 2a+b−2 + 2b−2 > 0

Case (Bvii): a − b + 4 ≤ k < l and k = a − b (mod 3):

Sx(k) =
(

2
k+2a−2b+3

3 − 1
)

λ1(x) +
(

2
k−a+b+3

3 − 1
)

λ2(x) +
(

2
k−a+b−3

3 − 1
)

λ3(x)

Sy(k) =
(

2
k+2a−2b+3

3 − 1
)

λ1(y) +
(

2
k−a+b

3 − 1
)

λ2(y) +
(

2
k−a+b

3 − 1
)

λ3(y)

Sy(k) − Sx(x) =
(

2b−2 − 2
k−a+b−3

3

)

(2a + 1) > 0

Proof of lemma 4.3.5. We are given a−2 ≥ b > c. We wish to show that x+a, b, c �
a − 1, b + 1, c = y. Now x and y are both of type II, and so we need to consider the

following cases:

Case (i): k ≤ a − b − 2:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and Sy(k) − Sx(k) =

2b+c
(

2k+1 − 1
)

> 0.

Case (ii): k = a-b-2:

Sx(k) =
(

2a−b−1 − 1
)

λ1(x)

Sy(k) =
(

2a−b−2 − 1
)

λ1(y)

Sy(k) − Sx(k) = (2a−b−1 + 1)2b+c > 0

Case (iii): k = a − b − 1:
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Sx(k) =
(

2a−b − 1
)

λ1(x)

Sy(k) =
(

2a−b−1 − 1
)

λ1(y) + λ2(y)

Sy(k) − Sx(k) = 2a+c−1 − 2b+c + 2a−1 − 2a−b−1 − 2a−b+c−1 + 1 > 0

Case (iv): a − b ≤ k < a + b − 2c, k = a − b (mod 2):

Sx(k) =
(

2
k+a−b

2 − 1
)

λ1(x) +
(

2
k−a+b

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b−2

2 − 1
)

λ1(y) +
(

2
k−a+b+2

2 − 1
)

λ2(y)

Sy(k) − Sx(k) = 2
k+a−b+2c−2

2 + 2a+c−1 + 2a−1 − 2b+c > 0

Case (v): a − c ≤ k < c + a − 2b, k = a − b + 1 (mod 2):

Sx(k) =
(

2
k+a−b+1

2 − 1
)

λ1(x) +
(

2
k−a+b+1

2 − 1
)

λ2(x)

Sy(k) =
(

2
k+a−b−1

2 − 1
)

λ1(y) +
(

2
k−a+b+3

2 − 1
)

λ2(y)

Sy(k) − Sx(k) = 2
k+a−b+2c−1

2 + 2a+c−1 + 2a−1 − 2b+c > 0

Case (vi): c + a − 2b ≤ k < l, k = c + a − 2b (mod 3):

Sx(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(x) +
(

2
k−c−a+2b

3 − 1
)

λ2(x) +
(

2
k−a−b+2c+3

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−3

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+3

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+3

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2a+c−1 − 2b+c − 2a−1 + 2b + 2
k−a−b−c

3

(

2a+c−1 − 2b+c+1
)

> 0

Case (vii): c + a − 2b ≤ k < l, k = c + a − 2b + 1 (mod 3):

Sx(k) =
(

2
k−b−c+2a+2

3 − 1
)

λ1(x)+
(

2
k−c−a+2b−1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−1

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+2

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2a+c−1 − 2b+c − 2a−1 + 2b + 2
k−a−b−c−1

3

(

2a+c − 2b+c+1
)

> 0

Case (viii): c + a − 2b ≤ k < l, k = c + a − 2b + 2 (mod 3):

Sx(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−2

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+4

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(y)

Sy(k) − Sx(k) = 2a+c−1 − 2b+c − 2a−1 + 2b + 2
k−a−b−c−1

3

(

2a+c−1 − 2b+c
)

≥ 0

Proof of lemma 4.3.6. We are given a − 2 ≥ c ≥ b. We wish to show that x =

a, b, c � a − 1, b, c + 1 = y. Now x and y are both type I, so we need to consider the

following cases:

Case (i): k ≤ a − c − 3:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and Sy(k) − Sx(k) =

2c
(

2k+1 − 1
) (

2b + 1
)

> 0.

Case (ii): k = a − c − 2 :
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Sx(k) = (2a−c−1 − 1)λ1(x)

Sy(k) = (2a−c−2 − 1)λ1(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−1 − 2b+c − 2a−c−2 − 2c + 2b + 1 > 0

Case (iii): k = a − c − 1:

Sx(k) = (2a−c − 1)λ1(x)

Sy(k) = (2a−c−1 − 1)λ1(y) + λ3(y)

Sy(k) − Sx(k) = 2a+b−1 − 2b+c − 2a−c−1 − 2c + 2b + 1 > 0

Case (iv): a − c ≤ k < c + a − 2b, k = a − c (mod 2):

Sx(k) =
(

2
k+a−c

2 − 1
)

λ1(x) +
(

2
k−a+c+2

2 − 1
)

λ3(x)

Sy(k) =
(

2
k+a−c−2

2 − 1
)

λ1(y) +
(

2
k−a+c+4

2 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

2c − 2
k−a+c−2

2

)

(

2a−c−2 − 2b − 1
)

− 2a−2 + 2a+b−1 > 0

Case (v): a − c ≤ k < c + a − 2b, k = a − c + 1 (mod 2):

Sx(k) =
(

2
k+a−c+1

2 − 1
)

λ1(x) +
(

2
k−a+c+1

2 − 1
)

λ3(x)

Sy(k) =
(

2
k+a−c−1

2 − 1
)

λ1(y) +
(

2
k−a+c+3

2 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

2c − 2
k−a+c+1

2

)

(

2a−c−1 − 2b − 1
)

− 2a−1 + 2a+b−1 > 0

Case (vi): a + b − 2c ≤ k < l, k = a + b − 2c (mod 3):

Sx(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(x) +
(

2
k−c−a+2b

3 − 1
)

λ2(x) +
(

2
k−a−b+2c+3

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−3

3 − 1
)

λ1(y) +
(

2
k−c−a+2b

3 − 1
)

λ2(y) +
(

2
k−a−b+2c+6

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c

3

)

(

2b + 1
) (

2b−1 − 2c
)

+ 2
k−a−b+2c

3

(

2b + 1
)

> 0

Case (vii): a + b − 2c ≤ k < l, k = a + b − 2c + 1 (mod 3):

Sx(k) =
(

2
k−b−c+2a−1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+2

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−4

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+2

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+5

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c+2

3

)

(

2b + 1
)

(2a−1 − 2c) + 2
k+2a−b−c−4

3 > 0

Case (viii): a + b − 2c ≤ k < l, k = a + b − 2c + 2 (mod 3):

Sx(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−2

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+4

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c+1

3

)

(

2b + 1
)

(2a−1 − 2c) ≥ 0

Proof of lemma 4.3.7. We are given a−2 ≥ c ≥ b. We wish to show that x = a, b, c �
a − 1, c + 1, b = y. Now x is type I, y is type II, so we need to consider the following

cases:
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Case (i): k ≤ a − c − 2:

Sx(k) = (2k+1 − 1)λ1(x), Sy(k) = (2k+1 − 1)λ1(y), and Sy(k) − Sx(k) =
(

2k+1 − 1
) (

2b+c + 2b − 2c
)

> 0.

Case (ii): k = a − c − 2:

Sx(k) = (2a−c − 1)λ1(x)

Sy(k) = (2a−c−1 − 1)λ1(y) + λ2(y)

Sy(k) − Sx(k) = 2a−c−1
(

2b − 1
)

(2c + 1) > 0

Case (iii): a − c ≤ k < a − 2b + c, k = a − c (mod 2):

Sx(k) =
(

2
k+a−c

2 − 1
)

λ1(x) +
(

2
k−a+c+2

2 − 1
)

λ3(x)

Sy(k) =
(

2
k+a−c

2 − 1
)

λ1(y) +
(

2
k−a+c+2

2 − 1
)

λ2(y)

Sy(k) − Sx(k) = (2a−1 − 2c)
(

2
k−a+2b−c+2

2 + 2b − 1
)

> 0

Case (iv): a − c ≤ k < c + a − 2b, k = a − c + 1 (mod 2):

Sx(k) =
(

2
k+a−c+1

2 − 1
)

λ1(x) +
(

2
k−a+c+1

2 − 1
)

λ3(x)

Sy(k) =
(

2
k+a−c−1

2 − 1
)

λ1(y) +
(

2
k−a+c+3

2 − 1
)

λ2(y)

Sy(k) − Sx(k) =
(

1 + 2
k−a−c+1

2

)

(

2b − 1
)

(2a−1 − 2c) + 2
k+a+c+3

2 > 0

Case v: a + b − 2c ≤ k < l, k = a + b − 2c (mod 3):

Sx(k) =
(

2
k−b−c+2a

3 − 1
)

λ1(x) +
(

2
k−c−a+2b

3 − 1
)

λ2(x) +
(

2
k−a−b+2c+3

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−3

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+3

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+3

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

2b − 1
)

(

2a−1
(

1 − 2
k−a−b−c

3

)

− 2c
)

+ 2b+c+1 − 1 > 0

Case (vi): a + b − 2c ≤ k < l, k = a + b − 2c + 1 (mod 3):

Sx(k) =
(

2
k−b−c+2a−1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+2

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−1

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+2

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+2

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
[

2b
(

1 − 2
k−a−b−c+2

3

)

+ 1
]

(2a−1 − 2c) > 0

Case (vii): a + b − 2c ≤ k < l, k = a + b − 2c + 2 (mod 3):

Sx(k) =
(

2
k−b−c+2a+1

3 − 1
)

λ1(x)+
(

2
k−c−a+2b+1

3 − 1
)

λ2(x)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(x)

Sy(k) =
(

2
k−b−c+2a−2

3 − 1
)

λ1(y)+
(

2
k−c−a+2b+4

3 − 1
)

λ2(y)+
(

2
k−a−b+2c+1

3 − 1
)

λ3(y)

Sy(k) − Sx(k) =
(

1 − 2
k−a−b−c+1

3

)

(

2b + 1
)

(2a−1 − 2c) ≥ 0

Proof of lemma 4.3.8. Let a1 + b1 + c1 = a2 + b2 + c2 = l, with a1 ≥ b1 ≥ c1, a2 ≥
b2 ≥ c2, a1 > a2, c1 < c2. We wish to show that if x is either a1, b1, c1 or a1, c1, b1 and
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y is either a2, b2, c2 or a2, c2, b2 then x � y, y � x. To prove this, it is sufficient to

note that T α0(x)(x) = x < 2−a1−1 < y = T α0(y)(y) since a1 > a2, and T αl−1(x)(x) =

x < 2−1 + 2−c2+1 < y = T αl−1(y)(y).

Proof of lemma 4.3.9. Let a + b1 + c1 = a + b2 + c2, with a ≥ ci ≥ bi, and require

that if a = ci then bi = a = ci. Let x = a, b1, c1 and y = a, b2, c2. We wish to

show that x � y, y � x unless x = y. To do this, assume without loss of generality

that b1 > b2 and c1 < c2. Then T α0(x)(x) = x < y = T α0(y)(y) since b1 > b2 and

T αl−1(x)(x) = T a−1(x) < T a−1(y) = T αl−1(y)(y) since b1 > b2.

Remark 4.3.12. While brute force is sufficient to completely solve the majorisation

ordering at weights 2 and 3, for higher weights it becomes much harder. In part

this is due to the the fact that at weights 2 and 3 we have the useful property that

a1, b1, c1 � a2, b2, c2 if and only if a1 + 1, b1, c1 � a2 + 1, b2, c2. However, at higher

weights this is not the case.
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Chapter 5

Weakly Expanding Orientation-Reversing Maps

5.1 Introduction

Majorization is a way of making precise the notion that one measure is more spread

out than another (see e.g. [4, 7, 9, 12, 24, 25, 26, 30]). If µ and ν are Borel probability

measures on the unit interval [0, 1], we say ν majorizes µ, and write µ ≺ ν, if

µ(f) ≤ ν(f) for all convex functions f : [0, 1] → R. Equivalently, µ ≺ ν if and only if

∫ t

0

µ[0, x] dx ≤
∫ t

0

ν[0, x] dx for all t ∈ [0, 1] (5.1)

and
∫ 1

0

µ[0, x] dx =

∫ 1

0

ν[0, x] dx .

If T : [0, 1] → [0, 1] is Borel, its set MT of invariant Borel probability measures

becomes a partially ordered set when equipped with ≺. For the doubling map T (x) =

2x (mod 1), the poset (MT ,≺) was investigated in [19] (see also [18, 20]), where its

minimal and maximal elements were identified:

Theorem 5.1.1. Let T (x) = 2x (mod 1) for x ∈ [0, 1), and T (1) = 1. The minimal

elements of (MT ,≺) are precisely the Sturmian1 measures. The maximal elements

of (MT ,≺) are precisely the convex combinations of the Dirac measures at the two

fixed points 0 and 1.

In this article we consider maps such as the reverse doubling map, defined by

T (x) = −2x (mod 1) for x ∈ (0, 1], and T (0) = 1. As for the doubling map, the

invariant measures for the reverse doubling map are naturally identified with those

for the full shift on two symbols; in particular, both maps have precisely two fixed

1Sturmian measures are symbolic versions of rotations (see e.g. [3, 5, 15, 18, 19] for further details);
in particular they are ergodic, supported by either a periodic orbit (in the case of a rational rotation)
or a uniquely ergodic Cantor set.
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points. The role of the fixed points for the reverse doubling map turns out to be the

reverse of their role for the doubling map:

Theorem 5.1.2. Let T (x) = −2x (mod 1) for x ∈ (0, 1], and T (0) = 1. The

minimal elements in (MT ,≺) are precisely the convex combinations of the Dirac

measures at the two fixed points 1/3 and 2/3.

Perhaps surprisingly, and in contrast to Theorem 5.1.1, the statement of Theorem

5.1.2 is robust under nonlinear perturbation. It is a particular case of the following

result:

Theorem 5.1.3. If T : [0, 1] → [0, 1] is the lift of a continuous orientation-reversing

expanding circle map, with fixed points x1 < . . . < xk, then the minimal elements

of (MT ,≺) are precisely those measures of the form λδxi
+ (1 − λ)δxi+1

for some

λ ∈ [0, 1], 1 ≤ i ≤ k − 1.

For T the reverse doubling map, the maximal elements of (MT ,≺) are identified

as follows:

Theorem 5.1.4. Let T (x) = −2x (mod 1) for x ∈ (0, 1], and T (0) = 1. Let µ01 =

(δ0 + δ1)/2, the invariant measure supported by the period-2 orbit {0, 1}.
The maximal elements in (MT ,≺) are precisely the convex combinations of µ01

with δ1/3, and the convex combinations of µ01 with δ2/3.

Theorem 5.1.4 can be generalised as follows:

Theorem 5.1.5. Suppose T : [0, 1] → [0, 1] is the lift of a continuous orientation-

reversing expanding circle map, with T (0) = 1 and T (1) = 0, and with fixed points

x1 < . . . < xk. The maximal elements of (MT ,≺) are precisely those measures of

the form either λµ01 + (1 − λ)δx1
or λµ01 + (1 − λ)δxk

, for some λ ∈ [0, 1], where

µ01 := (δ0 + δ1)/2.

A primary motivation for the above results is ergodic optimization (see e.g. [5, 10,

11, 17]), i.e. the study of the smallest and largest possible ergodic averages of a given

function f : [0, 1] → R, and of the invariant measures µ (so-called minimizing and

maximizing measures, cf. Defn. 5.2.3) for which µ(f) attains these extrema. When

f : [0, 1] → R is convex2, we solve the ergodic optimization problem as follows:

2Clearly, the solution of the ergodic optimization problem for concave f follows immediately,
since in this case −f is convex.
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Theorem 5.1.6. Suppose T : [0, 1] → [0, 1] is the lift of a continuous orientation-

reversing expanding circle map, with T (0) = 1 and T (1) = 0, and with fixed points

x1 < . . . < xk. If f : [0, 1] → R is convex then its minimum ergodic average is

α(f) = min
1≤i≤k

f(xi) ,

and its maximum ergodic average is

β(f) = max

(

f(x1) , f(xk) ,
f(0) + f(1)

2

)

.

There exists 1 ≤ i ≤ k such that δxi
is an f -minimizing measure, and at least one

of the measures δx1
, µ01, δxk

is f -maximizing.

This chapter is organised as follows. In Section 5.2 we introduce the class of

orientation-reversing weakly expanding maps, a suitable generalisation of the maps

T considered above. For orientation-reversing weakly expanding maps T we identify

(see Theorem 5.3.1 in Section 5.3) the minimal elements of (MT ,≺), a result which

implies Theorem 5.1.3. Under additional hypotheses we then identify (see Theorem

5.4.1 in Section 5.4) the maximal elements of (MT ,≺), a result which implies Theo-

rem 5.1.5. Theorem 5.1.6 is a consequence of Theorems 5.3.4 and 5.4.4, which also

give more precise information in the case where f : [0, 1] → R is strictly convex. In

Section 5.5, some of the fine structure of (MT ,≺) is explicitly computed in the case

where T is the reverse doubling map. In Section 5.6 we consider the extension of

our results to interval maps with infinitely many branches, with Gauss’s continued

fraction map serving as an illustratative example.

5.2 Preliminaries

Notation 5.2.1. For a Borel probability measure µ on [0, 1], let b(µ) :=
∫

x dµ(x) de-

note its barycentre. If T : [0, 1] → [0, 1] is Borel, let MT denote the set of T -invariant

Borel probability measures. For % ∈ [0, 1], define the corresponding barycentre class

M% := {µ ∈ MT : b(µ) = %}.

Definition 5.2.2. Suppose 0 = a0 < a1 < . . . < ak = 1, where k ≥ 2. Let J1, . . . , Jk

be disjoint sub-intervals of [0, 1], with ∪k
i=1Ji = [0, 1], such that the left (respectively

right) endpoint of each Ji is ai−1 (respectively ai). Suppose that, for each 1 ≤ i ≤ k,

the restriction T |Ji
is continuous. Suppose that 0 ∈ T (J1), that T (Ji) = [0, 1] for

1 < i < k, and that 1 ∈ T (Jk).
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We say that T is orientation-reversing if T |Ji
is decreasing for each 1 ≤ i ≤ k,

and that T is weakly expanding if |T (x)− T (y)| ≥ |x− y| for all x, y ∈ Ji, 1 ≤ i ≤ k.

Definition 5.2.3. Suppose f : [0, 1] → R is bounded and Borel measurable, and that

T : [0, 1] → [0, 1] is Borel. For % ∈ [0, 1], a measure µ ∈ M% is called f -minimizing

in M% (respectively f -maximizing in M%) if µ(f) = infm∈M%
m(f) (respectively

µ(f) = supm∈M%
m(f)).

Define the minimum ergodic average

α(f) := inf
m∈MT

m(f) ,

and the maximum ergodic average

β(f) := sup
m∈MT

m(f) .

A measure µ ∈ MT is called (globally) f -minimizing if µ(f) = α(f), and (globally)

f -maximizing if µ(f) = β(f).

For orientation-reversing weakly expanding maps, not every point in [0, 1] is the

barycentre of an invariant measure:

Lemma 5.2.4. If T : [0, 1] → [0, 1] is an orientation-reversing weakly expanding

map, with fixed points x1 < . . . < xk, then its barycentre set b(MT ) is the interval

[x1, xk].

Proof. The set b(MT ) is an interval, since it is the affine image of the convex space

MT . Since x1 = b(δx1
) and xk = b(δxk

), it remains to show that x1 ≤ b(µ) ≤ xk for

every µ ∈ MT .

Define σ : [0, 1] → R by σ(x) = min{x, xk}. If x > xk then T (x) < xk, and

x − xk ≤ xk − T (x) because T is weakly expanding, so x − σ(x) + σ(Tx) = x −
xk + T (x) ≤ xk. If x ≤ xk then x − σ(x) + σ(Tx) = σ(Tx) ≤ max σ = xk. Thus, if

µ ∈ MT then b(µ) =
∫

x dµ(x) =
∫

(x − σ(x) + σ(Tx)) dµ(x) ≤ xk.

Defining τ(x) = max{x1, x}, a similar argument shows that x−τ(x)+τ(Tx) ≥ x1

for all x ∈ [0, 1], hence that b(µ) =
∫

x dµ(x) =
∫

(x − τ(x) + τ(Tx)) dµ(x) ≥ x1 for

all µ ∈ MT .

A necessary condition for two measures to be related by majorization is that

they share the same barycentre (since f(x) := x and g(x) := −x are both convex).

Consequently the poset (MT ,≺) is the disjoint union of barycentre classes (M%,≺),

% ∈ [x1, xk]. For % ∈ [x1, xk], a natural first question about the barycentre class
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(M%,≺) is whether it has a smallest and a largest element. In Section 5.3 and Section

5.4 this question will be answered affirmatively3, where the following measures m%

and ν% will be identified as, respectively, the smallest and largest elements of (M%,≺).

Notation 5.2.5. (The measures m% and ν%)

Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding map, with

fixed points x1 < . . . < xk. For each % ∈ [x1, xk], define

m% := λδxi
+ (1 − λ)δxi+1

,

where λ ∈ [0, 1] and 1 ≤ i ≤ k − 1 are such that % = λxi + (1 − λ)xi+1.

If furthermore T (0) = 1 and T (1) = 0, with µ01 := (δ0+δ1)/2, and x1 < 1/2 < xk,

then define ν% to be the unique member of M% which is a convex combination of µ01

with either δx1
or δxk

. Explicitly,

ν% :=







1/2−%
1/2−x1

δx1
+ %−x1

1/2−x1
µ01 for % ∈ [x1, 1/2] ,

%−1/2
xk−1/2

δxk
+ xk−%

xk−1/2
µ01 for % ∈ [1/2, xk] .

5.3 Minimal elements of (MT ,≺), and minimizing measures for

convex functions f

Each barycentre class has a smallest element, which can be explicitly identified:

Theorem 5.3.1. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with fixed points x1 < . . . < xk. For every % ∈ [x1, xk], the ordered set (M%,≺)

has a smallest element, namely m%.

Proof. For every convex function g : [0, 1] → R, we must show that m%(g) ≤ µ(g) for

all µ ∈ M%. Note that this inequality holds if and only if

m%(f) ≤ µ(f) for all µ ∈ M% , (5.2)

where

f(x) := g(x) +
g(xi+1) − g(xi)

xi − xi+1
x ,

and 1 ≤ i ≤ k − 1 is chosen such that xi ≤ % ≤ xi+1.

We now claim that all measures in N = {εδxi
+ (1 − ε)δxi+1

: ε ∈ [0, 1]} are f -

minimizing. This implies m%(f) ≤ µ(f) for all µ ∈ MT , which in particular implies

(5.2).

3We emphasise that there are (well known) interval maps T for which the barycentre classes
(M%,≺) do not have smallest or largest elements, see Chapter 2 of this thesis.
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Note that f(xi) = f(xi+1), and denote this common value by α. Define ϕ :

[0, 1] → R to equal −α on (xi, xi+1), and by ϕ(x) = −f(x) otherwise. We claim that,

for all x ∈ [0, 1],

(f + ϕ − ϕ ◦ T )(x) ≥ α . (5.3)

If x /∈ (xi, xi+1) then (f + ϕ − ϕ ◦ T )(x) = −ϕ(Tx) ≥ −maxy∈[0,1] ϕ(y) = α, so

(5.3) holds.

If x ∈ (xi, xi+1) then T (x) /∈ (xi, xi+1), so

(f + ϕ − ϕ ◦ T )(x) = f(x) − α + f(Tx) . (5.4)

Note that x ∈ Ji ∪ Ji+1. If x ∈ Ji then T (x) < xi < x, and weak expansion gives

xi − T (x) ≥ x − xi . (5.5)

Since f(xi) = f(xi+1), the convexity of f implies it is non-increasing on [0, xi], so

f(xi) − f(Tx) ≤ 0. Combining with (5.5) gives

f(xi) − f(Tx) =
f(xi) − f(Tx)

xi − T (x)
(xi − T (x)) ≤ f(xi) − f(Tx)

xi − T (x)
(x − xi) . (5.6)

But f is convex, so (see e.g. [31, p. 113])

f(xi) − f(Tx)

xi − T (x)
≤ f(x) − f(xi)

x − xi

. (5.7)

Combining (5.6) with (5.7) gives f(xi)−f(Tx) ≤ f(x)−f(xi), and substituting into

(5.4) gives (5.3).

The argument when x ∈ Ji+1 is similar. In this case x < xi+1 < T (x), and weak

expansion gives

T (x) − xi+1 ≥ xi+1 − x . (5.8)

Since f(xi) = f(xi+1), the convexity of f implies it is non-decreasing on [xi+1, 1], so

f(Tx) − f(xi+1) ≥ 0. Combining this with (5.8), and the fact that

f(xi+1) − f(x)

xi+1 − x
≤ f(Tx) − f(xi+1)

T (x) − xi+1
,

we deduce that f(Tx)− f(xi+1) ≥ f(xi+1)− f(x), and again (5.3) follows from (5.4).

Having established (5.3) for all x ∈ [0, 1], integration of this inequality with

respect to an arbitrary µ ∈ MT gives µ(f) ≥ α = m(f) for every m ∈ N , so indeed

every measure in N is f -minimizing.
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Theorem 5.3.1 asserts that if f : [0, 1] → R is convex then the measure m% is

minimizing in M% (cf. Defn 5.2.3). If f is strictly convex then this conclusion can be

strengthened as follows:

Corollary 5.3.2. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with fixed points x1 < . . . < xk. If f : [0, 1] → R is strictly convex, and

% ∈ [x1, xk], then m% is the unique f -minimizing measure in M%.

Proof. An alternative definition of majorization (see [4, 7]) is that µ ≺ ν if and only

if ν is a dilation of µ, i.e. there exists a family of probability measures (Dx)x∈[0,1],

with each b(Dx) = x, such that if f : [0, 1] → R is bounded and Borel then so is

x 7→ Dx(f), and ν(f) =
∫

Dx(f) dµ(x).

If µ ∈ M% \ {m%} then m% ≺ µ by Theorem 5.3.1, so there exists (Dx)x∈[0,1] as

above, such that µ(f) =
∫

Dx(f) dm%(x) for any bounded Borel f . Now µ 6= m%,

so there is a Borel set A, with m%(A) > 0, such that Dx 6= δx for all x ∈ A. Since

Jensen’s inequality is strict, i.e. Dx(f) > f(x), whenever f is strictly convex and Dx

is not the Dirac measure at x, we deduce that µ(f) > m%(f).

In particular the variance var(µ) =
∫

(x − b(µ))2 dµ(x) around the mean % is

minimized precisely when µ = m%:

Corollary 5.3.3. For every % ∈ [x1, xk], the measure m% is the unique measure with

smallest variance in M%.

For convex f : [0, 1] → R we are now able to identify the minimum ergodic average

α(f), and deduce information about (globally) minimizing measures:

Theorem 5.3.4. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with fixed points x1 < . . . < xk. If f : [0, 1] → R is convex then its minimum

ergodic average is

α(f) = min
1≤i≤k

f(xi) ,

and there exists 1 ≤ i ≤ k such that δxi
is f -minimizing.

If f : [0, 1] → R is strictly convex then either there is a unique 1 ≤ i ≤ k such

that f(xi) = α(f), in which case δxi
is the unique f -minimizing measure, or there

exists 1 ≤ i ≤ k − 1 such that f(xi) = f(xi+1) = α(f), in which case the set of

f -minimizing measures is {λδxi
+ (1 − λ)δxi+1

: λ ∈ [0, 1]}.

Proof. The map F : % 7→ infµ∈M%
µ(f) is clearly convex on [x1, xk]. Since m%(f) =

infµ∈M%
µ(f) by Theorem 5.3.1, the map F is affine on each interval [xi, xi+1], 1 ≤ i ≤

k−1. Consequently, there exists 1 ≤ i ≤ k such that f(xi) = min%∈[x1,xk] F (%) = α(f),

and therefore δxi
is f -minimizing.
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Now suppose that f is strictly convex. If there is a unique 1 ≤ i ≤ k such

that f(xi) = min%∈[x1,xk] F (%) = α(f), then the f -minimizing measures are precisely

those which are minimizing in Mxi
; Corollary 5.3.2 then implies that δxi

is the

unique invariant measure which is minimizing in Mxi
, hence it is the unique f -

minimizing measure. If not then the strict convexity of f implies that f(xi) =

f(xi+1) = min%∈[x1,xk] F (%) = α(f) for some 1 ≤ i ≤ k − 1, with f(xj) > α(f)

for j ∈ {1, . . . , k} \ {i, i + 1}. So F attains its minimum value α(f) precisely on

the interval [xi, xi+1], hence an invariant measure is f -minimizing if and only if it is

minimizing in M% for some % ∈ [xi, xi+1]. Corollary 5.3.2 then implies that the set

of f -minimizing measures is precisely {λδxi
+ (1 − λ)δxi+1

: λ ∈ [0, 1]}.

When T is the reverse doubling map, the result is particularly explicit:

Corollary 5.3.5. Let T (x) = −2x (mod 1) for x ∈ (0, 1], and T (0) = 1. If f :

[0, 1] → R is strictly convex then its minimum ergodic average is

α(f) = min
(

f(1/3), f(2/3)
)

.

If f(1/3) < f(2/3) then the unique f -minimizing measure is δ1/3, while if f(1/3) >

f(2/3) then the unique f -minimizing measure is δ2/3. If f(1/3) = f(2/3) then the

set of f -minimizing measures is precisely the convex hull of {δ1/3, δ2/3}.

5.4 Maximal elements of (MT ,≺), and maximizing measures for

convex f

We shall prove the following stronger version of Theorem 5.1.5.

Theorem 5.4.1. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with T (0) = 1 and T (1) = 0. Let x1 < . . . < xk denote the fixed points of T ,

and assume that x1 < 1/2 < xk. For every % ∈ [x1, xk], the ordered set (M%,≺) has

a largest element, namely ν%.

Proof. Suppose that % ∈ [x1, 1/2]; the proof for % ∈ [1/2, xk] is almost identical, and

will be omitted. For all convex functions f : [0, 1] → R, we wish to show that

µ(f) ≤ ν%(f) for all µ ∈ M% . (5.9)

We may assume that f(0) = 0 = f(1) (since f̃(x) := f(x) + (f(0) − f(1))x − f(0)

satisfies f̃(0) = 0 = f̃(1), and (5.9) holds if and only if µ(f̃) ≤ ν%(f̃) for all µ ∈ M%).
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So, since ν% = 1/2−%
1/2−x1

δx1
+ %−x1

1/2−x1
µ01, we wish to show that

µ(f) ≤ 1/2 − %

1/2 − x1
f(x1) for all µ ∈ M% . (5.10)

Now (5.10) is implied by the existence of a continuous function ϕ : [0, 1] → R

satisfying

(f + ϕ − ϕ ◦ T )(x) ≤ 1/2 − x

1/2 − x1
f(x1) for all x ∈ [0, 1] , (5.11)

and if we define f̂ : [0, 1] → R by

f̂(x) = f(x) +
f(x1)

1/2 − x1
x

then (5.11) becomes

(f̂ + ϕ − ϕ ◦ T )(x) ≤ 1/2

1/2 − x1
f(x1) = f̂(x1) for all x ∈ [0, 1] . (5.12)

Defining ϕ by

ϕ(x) =







−f̂(x1) for x ∈ [0, x1] ,

−f̂(x) for x ∈ [x1, 1] ,
(5.13)

we shall verify that (5.12) holds4. If x ∈ [x1, 1] then (f̂ + ϕ−ϕ ◦ T )(x) = −ϕ(Tx) =

f̂(x1), while if x ∈ [0, x1] then (f̂ + ϕ − ϕ ◦ T )(x) = f̂(x) − f̂(x1) + f̂(Tx), so (5.12)

holds if and only if

f̂(x) + f̂(Tx) ≤ 2f̂(x1) for all x ∈ [0, x1] . (5.14)

To prove (5.14), first note that convexity of f̂ implies

f̂(x) ≤ x

x1

f̂(x1) +

(

1 − x

x1

)

f̂(0) =
x

x1

f̂(x1) for all x ∈ [0, x1] , (5.15)

and

f̂(y) ≤ 1 − y

1 − x1

f̂(x1) +
y − x1

1 − x1

f̂(1) for all y ∈ [x1, 1] . (5.16)

Now T is weakly expanding, so if x ∈ [0, x1] then T (x)− x1 ≥ x1 − x, or in other

words

T (x) ≥ 2x1 − x . (5.17)

4Note in particular that (5.12) implies that δx1
is (globally) f̂ -maximizing.
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But f̂ : [0, 1] → R is decreasing, since it is a convex function with

f̂(1) = 2f̂(x1) =
f(x1)

1/2 − x1
< 0 = f̂(0) , (5.18)

so (5.17) implies that

f̂(Tx) ≤ f̂(2x1 − x) . (5.19)

Setting y = 2x1 − x in (5.16), and combining with (5.19), gives

f̂(Tx) ≤ 1 + x − 2x1

1 − x1
f̂(x1) +

x1 − x

1 − x1
f̂(1) . (5.20)

Using (5.15) with (5.20), and the fact that f̂(1) = 2f̂(x1), we obtain

f̂(x) + f̂(Tx) ≤ f̂(x1)

(

x

x1
+

1 − x

1 − x1

)

for all x ∈ [0, x1] . (5.21)

Now x1 < 1/2, so the function x 7→ x
x1

+ 1−x
1−x1

is increasing on [0, x1], attaining its

maximum value 2 when x = x1. Therefore (5.21) implies the desired inequality (5.14),

and the proof is complete.

The proofs of the following two corollaries are similar to those of Corollaries 5.3.2

and 5.3.3, so will be omitted.

Corollary 5.4.2. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with T (0) = 1 and T (1) = 0. Let x1 < . . . < xk denote the fixed points of T ,

and assume that x1 < 1/2 < xk. If f : [0, 1] → R is strictly convex, and % ∈ [x1, xk],

then ν% is the unique maximizing measure in M%.

Corollary 5.4.3. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with T (0) = 1 and T (1) = 0. Let x1 < . . . < xk denote the fixed points of T ,

and assume that x1 < 1/2 < xk. For every % ∈ [x1, xk], the measure ν% is the unique

measure with largest variance in M%.

For convex functions f : [0, 1] → R, the maximum ergodic average β(f) is deter-

mined by simply evaluating f at the points 0, 1, x1, and xk:

Theorem 5.4.4. Let T : [0, 1] → [0, 1] be an orientation-reversing weakly expanding

map, with T (0) = 1 and T (1) = 0. Let x1 < . . . < xk denote the fixed points of T ,

and assume that x1 < 1/2 < xk. If f : [0, 1] → R is convex then

β(f) = max (f(x1), f(xk), (f(0) + f(1))/2) ,
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and at least one of the measures δx1
, µ01, and δxk

is f -maximizing.

If f : [0, 1] → R is strictly convex then exactly one of the following five possibilities

holds:

(i) δx1
is the unique f -maximizing measure,

(ii) µ01 is the unique f -maximizing measure,

(iii) δxk
is the unique f -maximizing measure,

(iv) The set of f -maximizing measures is {λδx1
+ (1 − λ)µ01 : λ ∈ [0, 1]},

(v) The set of f -maximizing measures is {λµ01 + (1 − λ)δxk
: λ ∈ [0, 1]}.

Proof. The map G : % 7→ supµ∈M%
µ(f) is easily seen to be concave on [x1, xk], and

Theorem 5.4.1 implies that G is affine on both [x1, 1/2] and [1/2, xk]. Consequently,

G attains its maximum value at either x1, 1/2, or xk, so at least one of the measures

δx1
, µ01, and δxk

is f -maximizing.

Now suppose f : [0, 1] → R is strictly convex. If G has a unique maximum then

this must be attained at either x1, 1/2, or xk, in which case Corollary 5.4.2 implies

that the unique f -maximizing measure is, respectively, δx1
, µ01, or δxk

.

We next show that G : [x1, xk] → R cannot be a constant function. If G ≡ c, say,

then f(x1) = f(xk) = c; the strict convexity of f then implies that min(f(0), f(1)) >

c, hence G(1/2) = µ01(f) = (f(0) + f(1))/2 > c, a contradiction.

There remains the case that G is constant on either [x1, 1/2] or on [1/2, xk]: here

Corollary 5.4.2 implies that the set of f -maximizing measures is, respectively, either

{λδx1
+ (1 − λ)µ01 : λ ∈ [0, 1]} or {λµ01 + (1 − λ)δxk

: λ ∈ [0, 1]}.

Remark 5.4.5. Theorem 5.4.1 implies Theorem 5.1.5, and Theorem 5.4.4 implies the

corresponding part of Theorem 5.1.6, since the condition x1 < 1/2 < xk in Theorems

5.4.1 and 5.4.4 is automatically satisfied if T is expanding.

5.5 Computations

The majorization criterion (5.1) can be used to compute some of the structure of

(MT ,≺). These computations are particularly tractable when µ and ν are purely

atomic with finitely many atoms (which are necessarily periodic points for T ). If

the mass of each atom is rational then (5.1) can be re-formulated in terms of a well

known criterion of Hardy, Littlewood & Pólya (see [12, 13, 18, 19]); for example if

µ := Q−1
∑Q

i=1 δµi
and ν := Q−1

∑Q
i=1 δνi

, with µ1 ≤ . . . ≤ µQ and ν1 ≤ . . . ≤ νQ,

and b(µ) = b(ν), then µ ≺ ν if and only if
∑n

i=1 µi ≥
∑n

i=1 νi for all 1 ≤ n ≤ Q − 1.

Now let T : [0, 1] → [0, 1] be the reverse doubling map, given by T (x) = −2x

(mod 1) for x ∈ (0, 1], and T (0) = 1. Any invariant measure supported by a single
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Figure 5.1: Hasse diagram for a portion of (M1/2,≺) ⊂ (MT ,≺), where T is the re-
verse doubling map. Symbolic codes denote the corresponding periodic orbit measures.
The least element in (M1/2,≺) is the non-ergodic measure (δ1/3 + δ2/3)/2, while the
largest element is the invariant measure supported by the period-2 orbit {0, 1}.

periodic orbit lies in M% for some rational % ∈ [1/3, 2/3]; conversely, if % ∈ (1/3, 2/3)

is rational then infinitely many such periodic orbit measures belong to M%. For

barycentre % = 1/2, the majorization relations between some of the periodic orbit

measures in M1/2 are depicted in Figure 5.1. Here symbolic codes denote the corre-

sponding periodic orbit measures, where as usual the left half-interval is coded by 0,

and the right half-interval by 1. For example 0011 denotes the measure 1
4

∑4
i=1 δi/5,

supported by the period-4 orbit {1/5, 3/5, 4/5, 2/5}.

5.6 Infinitely many branches: the Gauss map

The results of this chapter can be extended, with some modification, to maps T :

[0, 1] → [0, 1] which are orientation-reversing and weakly expanding, but with in-

finitely many branches. More precisely, the techniques of Section 5.3, and to a lesser

extent those of Section 5.4, can be used to study the majorization structure of MT

for maps T satisfying the analogue of Definition 5.2.2 where the finite set (ai)i∈{1,...,k}

is replaced by a countably infinite set (ai)i∈I , with each ai < ai+1.

A treatment of general countable branch orientation-reversing weakly expanding
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maps would necessitate individual analyses of various sub-cases, according to which

of 0 and 1 is an accumulation point of (ai)i∈I , and the value of T at the accumulation

points. Instead of performing this analysis, we shall fix ideas by concentrating on the

most well known such map, the Gauss map, which illustrates the way in which the

infinite branch case differs from Section 5.3 and Section 5.4.

The Gauss map is most naturally defined as a self-map of the set of irrationals in

(0, 1). However, it is usually extended to (0, 1] by the formula

T (x) = 1/x (mod 1) ,

and can be extended to a self-map of [0, 1] by choosing T (0) to be some element

of [0, 1]. Since 0 cannot be a point of continuity of T , this choice of T (0) is rather

arbitrary; for definiteness, and in view of the assumptions in Section 5.4, we set

T (0) := 1.

The fixed points of T are

zi := (
√

i2 + 4 − i)/2 , for i ≥ 1 .

In particular, z1 = (
√

5 − 1)/2 = maxi zi, z2 =
√

2 − 1, and infi zi = 0.

By analogy with Notation 5.2.5, let m% := λδzi
+ (1 − λ)δzi+1

, where λ ∈ [0, 1]

and i ≥ 1 are such that % = λzi + (1 − λ)zi+1. Proofs analogous to those of Lemma

5.2.4 and Theorem 5.3.1 give:

Theorem 5.6.1. For T : [0, 1] → [0, 1] the Gauss map, b(MT ) = (0, (
√

5 − 1)/2].

For every % ∈ (0, (
√

5−1)/2], the ordered set (M%,≺) has a smallest element, namely

m%.

Using the same arguments as in Section 5.3, it can also be shown that m% is

the unique f -minimizing measure in M% for strictly convex f : [0, 1] → R, and in

particular that m% is the unique measure in M% with smallest variance.

The following result on global minimization for convex functions is an analogue

of Theorem 5.3.4, the significant difference being that f -minimizing measures need

not exist (e.g. this occurs if the convex f is strictly increasing):

Theorem 5.6.2. Let T : [0, 1] → [0, 1] be the Gauss map. If f : [0, 1] → R is convex

then its minimum ergodic average is

α(f) = inf
i≥1

f(zi) . (5.22)

If the infimum (5.22) is not attained by any i ≥ 1, then there are no f -minimizing
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measures. Otherwise, at least one Dirac measure δzi
is f -minimizing.

If f is strictly convex, and (5.22) is attained by a unique i ≥ 1, then the corre-

sponding Dirac measure δzi
is the unique f -minimizing measure. If (5.22) is attained

by at least two distinct values i ≥ 1, then there exists j ≥ 1 such that the set of

f -minimizing measures is {λδzj
+ (1 − λ)δzj+1

: λ ∈ [0, 1]}.

Example 5.6.3. Let T : [0, 1] → [0, 1] be the Gauss map, and define f : [0, 1] → R

by f(x) = (x − 1/2)2. Since f is strictly convex, Theorem 5.6.2 implies that its

minimum ergodic average is

α(f) = inf
i

f(zi) = f(z2) = (3/2 −
√

2)2 =
17

4
− 3

√
2 ,

and that its unique f -minimizing measure is δz2
= δ√2−1.

Remark 5.6.4.

(a) A completely different approach to ergodic optimization for infinite branch maps,

based on symbolic dynamics, has been considered in [14, 21, 22].

(b) The choice T (0) = 1 renders {0, 1} a period-2 orbit of T , so that µ01 = (δ0 +

δ1)/2 ∈ MT . Arguments similar to those of Theorem 5.4.1 can then be used to show

that for % ∈ [1/2, (
√

5− 1)/2], the appropriate convex combination of µ01 with δz1
is

the largest element in (M%,≺). For % ∈ (0, 1/2), however, the absence of a smallest

fixed point of T can be used to show that (M%,≺) has no largest element.
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Press, Cambridge, (1st ed., 1934; 2nd ed., 1952).

[14] G. Iommi, Ergodic optimization for renewal type shifts, Monatsh. Math., 150

(2007), 91–95.

[15] O. Jenkinson, Frequency locking on the boundary of the barycentre set, Experi-

mental Mathematics, 9 (2000), 309–317.

[16] O. Jenkinson, Maximum hitting frequency and fastest mean return time, Non-

linearity, 18 (2005), 2305–2321.

[17] O. Jenkinson, Ergodic Optimization, Discr. & Cont. Dyn. Sys., 15 (2006), 197-

224

[18] O. Jenkinson, Optimization and majorization of invariant measures, Elec. Res.

Ann. Amer. Math. Soc., 13 (2007), 1–12.

[19] O. Jenkinson, A partial order on ×2-invariant measures, Math. Res. Lett., 15

(2008), 893-900.

[20] O. Jenkinson, Balanced words and majorization, Discr. Math. Alg. & Appl., 1

(2009), 485–498.

[21] O. Jenkinson, R. D. Mauldin & M. Urbański, Ergodic optimization for countable
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compact dynamical systems, Dynamical Systems, 22 (2007), 379–388.

[23] O. Jenkinson & J. Steel, Majorization of invariant measures for orientation-

reversing maps, Ergod. Th. & Dyn. Sys., 30 (2010), 1471–1483.
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