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Summary 

 

Comparisons between vertebrate genome sequences, from mammals to fishes, have 

revealed thousands of conserved non-coding elements (CNEs) that are associated with 

developmental genes. Interestingly, the vast majority of these CNEs cannot be found in 

invertebrate genomes by sequence homology. As many CNEs have been demonstrated 

to act as enhancers in-vivo, it has been postulated that CNEs represent gene regulatory 

elements with crucial roles in aspects of development that are shared between 

vertebrates.  

 

To trace the evolution of CNE sequences in vertebrates, a preliminary search for CNEs 

in the lamprey genome was conducted using the draft lamprey genome sequence. This 

thesis documents how the CNEs identified in lamprey have been used as a guide to ask 

questions about the function and evolution of CNEs in the vertebrate lineage. Through 

the combined use of comparative genomics and developmental biology techniques, 

including a newly developed reporter assay for sea lamprey embryos, crucial first steps 

have been taken toward systematically de-coding these ancient gene regulatory 

elements. Special attention is paid toward utilising the low sequence identity of lamprey 

CNEs for „phylogenetic footprinting‟, an approach which uncovers striking enrichment 

of CNEs for a set of motifs that are characteristic of Hox-regulated elements. These 

findings help to establish CNEs within a developmental and evolutionary context.   
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1 Introduction 

 

Evolutionary developmental biology  

 

Animal taxa with diverse morphologies have arisen from a common ancestor by the 

process of evolution. Any explanation of how morphological evolution has occurred 

(and continues to occur) must address the changes in development that underlie 

heritable morphological changes. This is the aim of evolutionary developmental biology 

(Evo-Devo). In order to elucidate the developmental changes that led to evolutionary 

transitions, the mechanism of development must be understood at a molecular level. 

This mechanism must explain how a single cell can give rise to a multi-cellular 

organism composed of heterogeneous tissues. It is clear that simple asymmetries of the 

expression of early developmental genes can give rise to complex expression patterns of 

genes later in development, directing different tissues to be produced in different 

positions. Early developmental genes achieve this by regulating, via the proteins they 

encode, the transcription of other developmental genes, which are themselves regulators 

of other genes (Carroll, 2000; Levine & Tjian, 2003). This regulation ultimately 

depends upon transcription factors (TFs), which are proteins that bind to DNA in a 

sequence-specific manner at transcription factor binding sites (TFBSs) in the genomic 

vicinity of their target gene. In this model, TFs associated with binding sites in the 

genes promoter region directly influence the formation of the transcription initiation 

complex. Transcription of the gene is also strongly influenced by TFs binding to more 

distal regulatory elements, which also regulate the formation of the transcription 

initiation complex, either enhancing its formation, repressing it, or insulating the 

promoter from enhancers associated with other nearby genes (Kadonaga, 2004) (Figure 

1.1). The proximity of distal regulatory elements to their genes promoter can vary 

widely between different elements, with some having a range of influence of several 

megabases (Vavouri et al., 2006).  

 

The combinatorial regulation of a gene by many TFs makes that gene tightly regulated, 

only being expressed in areas of the developing organism where the right combination 

of TFs is present, enabling that gene to have a complex expression pattern. Clusters of 

TFBSs have been termed „cis-regulatory modules‟ (CRMs) (Howard & Davidson, 

2004) (Figure 1.1), and are a feature of all genes. Indeed, a gene can be regulated 

through the action of multiple CRMs, each able to act independently to drive expression 
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of their target gene in complementary domains of the developing embryo (Arnone & 

Davidson, 1997). 

 

Figure 1.1. A model of transcriptional regulation by transcription factors. Transcription 

factors, represented by blue, green or purple shapes associating with TFBSs regulate 

the formation of the transcription initiation complex (blue circles). CRM: cis -regulatory 

module. Figure adapted from Wasserman & Sandelin (2004).  

 

Complex sets of expression cascades resulting from genes regulating the expression of 

other genes can be represented in the form of hierarchical gene regulatory networks 

(GRNs) (Levine & Davidson, 2005), several of which have been well characterised for 

particular developmental pathways in invertebrates through large scale gene 

perturbation analyses (e.g. Davidson et al., 2002; Shi et al., 2005). An increasing 

number of GRNs are now being characterised in vertebrates (e.g. Sauka-Spengler & 

Bronner-Fraser, 2008; Alexander et al., 2009; Morley et al., 2009). The characterisation 

of GRNs is a powerful approach for investigating developmental processes (Davidson, 

2006). Further, GRNs can provide insights into evolutionary mechanisms, as the 

evolution of body plans can be viewed as being the result of inherited changes in the 

architecture of GRNs (Davidson & Erwin, 2006; Hinman & Davidson, 2007; Erwin & 

Davidson, 2009).  

 

It has been posited that the GRNs of early metazoa were relatively simple and plastic, 

with changes in these networks giving rise to different animal lineages. The diverging 
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core networks then became impervious to major changes as they increased in 

complexity, resulting in taxa of animals that have distinct body plans between groups 

but conserved body plans within groups (e.g. phyla) (Davidson, 2006). Thus, the GRNs 

of animals from different phyla are expected to be similar in architectural principles, but 

different in terms of the specific components making up that architecture, whereas the 

GRNs of different species from the same phyla are expected to be mostly identical in 

their core regions, with changes predominantly at the external network levels (Davidson 

& Erwin, 2006). In order for us to construct GRNs, the developmental genes in the 

network, and their interactions with each other, must be characterised. The identification 

and characterisation of CRMs that regulate these genes is a crucial aspect of inferring 

GRNs, as these modules represent direct regulatory links between the components of 

the network.   

 

Great advances have been made in annotating gene sequences within genomes; 

unfortunately the identification of regulatory elements is less easy. The importance of 

identifying these regulatory elements is highlighted by the prediction that the human 

genome contains 25-30,000 genes, which is only modestly more than the genome of the 

morphologically „simple‟ nematode C. elegans (~19,000) (Hahn & Wray, 2002). Not 

only do metazoan genomes contain similar numbers of genes, they also share many 

gene families. There are some cases in which pairs of distant orthologous genes have 

been demonstrated to be functionally equivalent when substituted between hosts, 

suggesting that the biochemical properties of their proteins and their interactions with 

other factors have changed little between distantly related species (e.g. Hox factors: 

Malicki et al., 1990; McGinnis et al., 1990; Pax6: Halder et al., 1995). This has led to 

the hypothesis that changes in regulatory complexity underlie the evolution of more 

complex body plans (Carroll, 2008). However, it is not clear to what extent inter-clade 

functional equivalence is a common feature of ancient orthologous transcription factors. 

Furthermore, clade-specific expansions of transcription factor repertoires have occurred 

during metazoan divergence, such as KRAB-associated zinc finger genes in tetrapods 

(Huntley et al., 2006), so the developmental gene „toolkits‟ of animal clades are similar 

but not identical. There is empirical evidence for the contribution of mutations both in 

genes and cis-regulatory elements to morphological evolution. Interestingly, the 

examples of mutations in genes predominantly concern those with single roles in 

development, such as those influencing colouration (e.g. Protas et al., 2006). Whilst the 

list of examples is not extensive enough to be conclusive, this is in line with the 
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prediction that mutations giving rise to negative pleiotropic effects, such as those in 

genes with multiple developmental roles, would reduce organismal fitness and thus be 

unable to contribute to morphological evolution. Conversely, mutations in cis-

regulatory elements and in genes with single roles in development would be less likely 

to have negative pleiotropic effects and could therefore provide variation that could be 

positively selected. Taken together, there is a strong theoretical and empirical basis 

underlying the notion that cis-regulatory changes have played an important role in 

morphological evolution, whilst the relative significance of genic versus regulatory 

changes is still a matter for debate. Thus, identifying the regulatory elements of 

developmental genes in vertebrates is a crucial step toward elucidating the genetic 

changes underlying the evolution of the vertebrate body plan and characterising 

vertebrate GRNs.   

 

Identifying cis-regulatory elements through genomics approaches 

 

Traditionally, cis-regulatory elements have been identified by deletion analysis of 

genomic sequences near the gene of interest, followed by testing fragments by reporter 

assay (Pennacchio & Rubin, 2001). A wide range of computational tools for TFBS and 

CRM prediction have been developed for searching genomic sequences (e.g. Berman et 

al., 2002; Ho Sui et al., 2007), yet the success of these methods is limited by the fact 

that many binding sites are short sequences (5-10bp) so performing searches on large 

vertebrate genomes is likely to falsely identify many binding sites by chance 

(Wasserman & Sandelin, 2004). Furthermore, these approaches often require prior 

knowledge of the TFBSs to be searched for, restricting the discovery of CRMs 

composed of novel TFBSs. The availability of genomic sequences of many different 

species enables searching for homologous regions between species that may harbour 

regulatory elements; a technique termed „phylogenetic footprinting‟ (Wasserman et al., 

2000). The assumption is that essential CRMs will be conserved by negative selection, 

so will be identifiable as non-coding sequences conserved between divergent species. 

 

Alignments of whole vertebrate genomes have revealed numerous highly conserved 

non-coding regions of considerable length (>100 bp). For example, whole-genome 

human-mouse alignments identified more than 300,000 conserved non-coding elements 

of 70% identity over at least 100 bp, which are uniformly distributed throughout the 

genome (Dermitzakis et al., 2003). Many conserved elements show evidence of 
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sequence constraint through purifying selection, rather than a low mutation rate, which 

suggests that they have functional roles (Drake et al., 2005; Lunter et al., 2006). 

Putative cis-regulatory elements can be validated by in-vivo experiments using reporter 

constructs (e.g. Muller et al, 2002), but current methods of testing elements for 

regulatory function are relatively slow, making it unfeasible to test such a high number 

of sequences. In some cases, deletion of large regions containing many conserved non-

coding elements had little phenotypic effect (Nobrega et al., 2004). Thus, it is unclear 

what the functions of many of these human-mouse conserved sequences are. 

Approaches to filter out smaller sets of sequences with high regulatory potential include 

searching for elements with more strict conservation parameters (e.g. Bejerano et al., 

2004) and searching for conservation between multiple and more divergent species (e.g. 

Woolfe et al. 2005, Pennacchio et al., 2006).  

 

Conserved non-coding elements between mammal and teleost genomes 

 

A whole-genome comparison between human and the Japanese pufferfish, Fugu 

rubripes (Fugu), identified nearly 1,400 highly conserved sequences of at least 100 bp 

in length that had little or no evidence of transcription (Woolfe et al., 2005). The mean 

length of the conserved sequences was 199 bp with a mean identity of 84%; 

considerably higher than the mean level of coding-sequence identity between the two 

organisms. The sequences were called „conserved non-coding elements‟ (CNEs), a term 

which has subsequently been used to refer to all non-coding sequences conserved 

between distant organisms, not just to this set of sequences. These human-Fugu CNEs 

have been retained in their host genomes more-or-less unchanged since the divergence 

of lobe-finned and ray-finned fish roughly 450 MYA. The majority of CNEs were also 

found to be conserved in other vertebrate genomes, namely rat, chicken and zebrafish, 

indicating that they are probably common to all bony vertebrates. More sensitive 

searches involving multiple species alignments have increased the number of identified 

CNEs conserved between human and Fugu to about 6,000 (Woolfe et al., 2007). 

Searching the invertebrate whole-genome sequences of a urochordate: Ciona 

intestinalis, fly: Drosophila melanogaster, and a nematode worm: Caenorhabditis 

elegans, for sequence identity with the vertebrate CNEs revealed no significant 

matches, suggesting the majority of these sequences to be conserved only within the 

vertebrate lineage. The distribution of CNEs was found to be highly clustered around 

genes involved in transcriptional regulation and development (termed „trans-dev‟ 
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genes). This association of mammal-fish CNEs with trans-dev genes has been 

confirmed by a number of other studies (Sandelin et al., 2004; Sironi et al., 2005; 

Ovcharenko et al., 2005).  

 

Although most of the CNEs within the human genome appear to be unrelated to each 

other, 124 families of two to five duplicated CNEs (dCNEs) were identified, which 

were proposed to have arisen through at least one ancient whole-genome duplication 

early in vertebrate evolution (McEwen et al., 2006). For the majority of these families, a 

set of paralogous genes could be assigned, removing much of the ambiguity involved in 

identifying the specific genes associated with CNEs. This also enabled confident 

measurements of the enhancer range of these dCNEs to be made, revealing that half of 

the dCNEs were situated more than 250 kb upstream of their target gene‟s promoter 

(Vavouri et al., 2006).  

 

The gene-regulatory function of CNEs 

 

The gene-regulatory ability of an increasingly high number of CNEs has been 

confirmed through testing them for enhancer activity by reporter assay in zebrafish 

(Woolfe et al., 2005; Kikuta et al., 2007), frog (de la Calle-Mustienes et al., 2005) and 

mouse embryos (Pennacchio et al., 2006). CNEs often show reproducible enhancer 

activity, with spacio-temporal expression patterns generally reflecting the endogenous 

expression domains of their nearby trans-dev gene. The significance of CNEs for 

normal development is not always clear (Ahituv et al., 2007), but crucial roles for many 

CNEs in development have been inferred through identification of genetic diseases 

arising from mutation or deletion of CNEs (Lettice et al., 2003; Visel et al., 2009; 

Ragvin et al., 2010).  

 

These data support the proposal that CNEs represent highly conserved CRMs. However, 

the conventional wisdom regarding TFs is that their interactions with binding sites show 

high levels of degeneracy (Sandelin & Wasserman, 2004), leading to the suggestion that 

CNEs are composed of multiple, tightly arranged TFBSs, with small sequence changes 

having deleterious effects on the binding of TF complexes to the CNE sequence (Elgar 

& Vavouri, 2008). It is likely that many vertebrate CRMs with conserved and important 

roles in development will not necessarily be found as CNEs, due to their operation 

through less sequence-restrictive mechanisms. Thus, CNEs may represent only a subset 
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of functionally conserved developmental cis-regulatory elements. A key issue is to what 

extent this set of elements operates through mechanisms that have been characterised 

for other, less well conserved CRMs. 

 

The binding specificities of TFs can be inferred through in-vitro binding assays, which 

produce a set of similar sequences to which a given TF can strongly bind. These 

sequences can be aligned to calculate a position frequency matrix (PFM) (Stormo & 

Fields, 1998), which tabulates the frequency at which each nucleotide (A T G or C) is 

found for each position of the alignment. PFMs are converted into position weight 

matrices (PWMs) by weighting each base according to its average frequency in a 

background sequence set (Hertz & Stormo, 1999). These PWMs are usually depicted as 

a logo, in which each nucleotide at each position is represented as a letter with a size 

proportional to its weighted frequency. Publicly available databases of TF PWMs have 

been created (e.g. JASPAR (Bryne et al., 2008)), enabling genomic sequences to be 

scanned for the presence of putative TFBSs. However, only modest progress has been 

made in systematically identifying enriched TFBSs within CNEs, using either targeted 

or de-novo motif discovery approaches (Bailey et al., 2006; Pennacchio et al., 2006; Li 

et al., 2010). Furthermore, although many CNEs have now been shown to exhibit 

enhancer activities in developing embryos, relatively few have been dissected to 

elucidate the specific sequence components responsible for their enhancer functions 

(e.g. Pöpperl et al., 1995; Tümpel et al., 2006).  Thus, the regulatory language of CNEs 

remains somewhat of a mystery.  

 

The evolution of CNEs  

 

Whilst homologs of vertebrate CNEs are largely untraceable in the genomes of 

invertebrates, these invertebrate phyla each have their own characteristic sets of CNEs. 

Over 20,000 conserved non-coding sequences have been identified between closely 

related Drosophila species, with a proportion being traceable in the more distantly 

related mosquito genome, showing a bias in their genomic distribution towards the loci 

of developmental regulatory genes (Glazov et al, 2005). A comparison of the genomes 

of two nematodes, Caenorhabditis elegans and Caenorhabditis briggsae, which show a 

similar level of divergence to that between human and Fugu genomes, revealed worm-

specific CNEs with similar properties to vertebrate CNEs (Vavouri et al., 2007). The 

smaller worm CNEs are found near trans/dev genes and share the same base 
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composition signals as vertebrate CNEs. Their regulatory function is supported by many 

of the worm CNEs containing previously identified transcriptional regulatory sites. 

Interestingly, many of the genes associated with CNEs in invertebrates are orthologs of 

vertebrate CNE-associated genes. Of 190 C. elegans genes with CNE-associated 

orthologs in humans, 60 are associated with worm CNEs in C. elegans, with 40 also 

having orthologs in Drosophila that are associated with conserved fly elements 

(Vavouri et al., 2007). This is consistent with the evolutionary model outlined above, in 

which developmental networks composed of CRMs associated with key developmental 

genes in the metazoan common ancestor were initially evolutionarily plastic, their 

divergent evolution and the subsequent fixation of different regulatory sequences in 

different lineages giving rise to groups of animals characterised by vastly different body 

plans. 

  

To trace vertebrate CNEs deeper into the vertebrate phylogeny, the genome sequence of 

a cartilaginous fish, the elephant shark (Callorhinchus milii) was searched for non-

coding sequence conservation with the human genome (Venkatesh et al, 2006). 

Cartilaginous fishes (Chondrichthyes) represent an extant group of jawed vertebrates 

that diverged from the common ancestor of the bony vertebrates about 530 MYA 

(Figure 1.2) (Kumar & Hedges, 1998). A total of 4782 human-shark CNEs were 

identified, almost all of them being vertebrate-specific sequences, and many having 

representatives in the human-Fugu CNE set. This suggests that a large cohort of CNEs 

evolved prior to the divergence of bony and cartilaginous fishes and were retained in 

both lineages for ~530 million years. In order to ascertain when these sequences first 

arose, the genome of a more distantly related vertebrate must be investigated.  
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Figure 1.2. A phylogeny of the major vertebrate groups. The sea lamprey is a member 

of the agnathan lineage. Figure adapted from Campbell et al., 1999.  

 

The sea lamprey as a model for investigating the evolution of vertebrate CNEs 

 

The phylogenetic position of the sea lamprey (Petromyzon marinus), an extant jawless 

fish (agnathan), makes it ideally suited to answering questions regarding the early 

evolution of vertebrates (Figure 1.2). Given the inferred monophyly of cyclostomes 

(hagfish and lamprey) from molecular phylogenetic analyses (Kuraku & Kuratani, 

2006), characteristics common to lamprey and jawed vertebrates (gnathostomes) can be 

assumed to have been present in the common ancestor of all extant vertebrates. 

Morphologically, the lamprey lacks certain characters present only in jawed vertebrates, 

including paired appendages, hinged jaws, an adaptive immune system, and 

specialisation of the axial skeleton along the anterior-posterior axis, which were 

acquired by the gnathostome lineage (Shimeld & Holland, 2000). The availability of 

large numbers of lamprey embryos during their summer mating season makes lamprey a 

useful model organism for evo-devo (Nikitina et al., 2009). Studies into lamprey 

development have revealed insights into the evolution of vertebrate characteristics such 

as the jaw (Shigetani et al., 2002), paired fins (Freitas et al., 2006) and neural crest 

(Sauka-Spengler et al., 2007). With the establishment of further molecular biology and 

histochemistry techniques for use on lamprey embryos (Kusakabe et al., 2003; 

McCauley & Bronner-Fraser, 2006), and a project to sequence the lamprey genome 

underway, the lamprey is poised to become a crucial evo-devo model. The sequencing 
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of the lamprey genome presents a fantastic opportunity to address questions about the 

timing of fixation of vertebrate CNEs, the functional evolution of CNEs in vertebrate 

lineages, and the evolution of vertebrates in general.   

 

Thesis overview 

 

This thesis traces the use of the sea lamprey as a model for investigating the emergence 

of CNEs in vertebrate genomes and the significance of these elements to vertebrate 

development and evolution. In Chapter 3 the pattern of CNE conservation across 

vertebrates is elucidated by searching for CNEs in the lamprey genome. The main 

findings from this search were that a relatively small, but significant, proportion of 

CNEs were found in the lamprey genome, and these elements were able to function as 

developmental enhancers in a zebrafish assay. An investigation into the functional 

significance of the lack of many CNEs in the lamprey genome is described in Chapter 4. 

Chapter 5 details the use of the lamprey CNE sequences for phylogenetic footprinting. 

This approach led to the identification of enriched Pbx-Hox TFBS motifs within 

lamprey and gnathostome CNEs, which correlate with hindbrain and pharyngeal arch 

enhancer function. In Chapter 6, the development of a reporter assay in lamprey 

embryos, and its use to address whether CNE gene-regulatory functions are conserved 

across vertebrates, is described. An evolutionary model predicting a role for many 

CNEs in the evolution of the vertebrate head is proposed. The topic of the identification 

of TFBS motifs in CNEs is returned to in Chapter 7, where the use of a de-novo motif 

discovery approach on CNEs is detailed.  
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2  Materials and Methods 

 

Materials 

Fish embryo reagents 

20x Embryo medium (1L): 

 NaCl   17.5g 

 KCl   0.75g 

 CaCl-2H2O  2.9g 

 add DDW to 800ml 

 KH2PO4  0.41g 

 Na2HPO4(anhydrous) 0.142g 

 MgSO4-7H2O  4.9g 

 Vacuum filter sterilise   

 

Embryo medium (1L): 

 20x Embryo medium 50ml 

 500x NaHCO3  2ml 

 Fill to 1L with DDW 

 

100x PTU (50ml): 

 PTU   150mg 

 Embryo medium 50ml 

 Heat to 65˚C, aliquot and freeze 

 

Embryo medium with PTU (700ml): 

 1x embryo medium 693ml 

 100x PTU  7ml  

 

10x MMR (1L): 

 NaCl   58.44 g 

 KCl   1.491 g 

 MgSO4  1.204 g 

 CaCl2.2H2O  2.94 g    

 HEPES (pH7.8) 11.915 g 

 adjust pH to 7.4 using 10M NaOH. Autoclave.  
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In-situ reagents 

10X PBS (IL) pH 7.2:        

Na2HPO4.7H20 11.5 g  

NaCl   80 g    

KH2PO4  2 g    

Kcl   2g    

Make up to 1L with DDW       

 

Hybridization mix (500 mL) **DNAse/RNAse free**:      final conc. 

Formamide    250 ml     50% 

20X SSC DEPC(pH 5 w/citric acid) 32.5 ml    1.3X 

0.5 M EDTA (pH 8)   5 ml     5mM 

tRNA (20mg/mL in H20DEPC)  5 ml (or 100 mg)       200µg/ml 

Tween-20    1ml     0.2% 

10% CHAPS in H20DEPC  25 ml (or 2.5 g)   0.5% 

Heparin    50 mg          100µg/ml 

Fill up to 500 mL with DEPC DDW 

 

5X MABT 1L: 

Maleic Acid   58g 

DDW    500 ml 

pH to 7.5 with Tris-base 100-150g 

NaCl    43.5 g 

20% Tween-20  5 ml 

Fill up to 1l with DDW  

 

10% Boehringer blocking reagent in MAB (no Tween-20) (200 ml): 

BBR (Roche)   20g 

1X MAB   180 ml 

heat to 70C to dissolve 

autoclave or microwave to a boil 

aliquot in 1 ml 

freeze at -20C 
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PTW (make fresh): 

PBS with 0.1% Tween-20 

 

20X SSC (200 mL) **RNAse/DNAse free**: 

NaCl   35g 

NaCitrate  17.6g 

pH with 1M citric acid to 5.0 

Fill up to 200 ml with DEPC DDW 

 

NTMT (50 mL):    Final conc. 

5 M NaCl   1 ml     100mM 

1 M Tris.Hcl pH 9.5  5 ml   100mM 

2 M MgCl2   1.25 ml    50mM 

10%Tween-20   0.5 ml      0.1% 

 Fill to final volume with DDW 

 

Glycine: 

0.1g in 50 mL PTW 

sterile filter, make fresh on day of use 

 

MEMFA: 

 16% formaldehyde  2.5ml 

 10x MEM salts  1ml 

 DEPC-DDW   6.5ml 

 make fresh on day of use 

 

10X MEM salts 500ml: 

 MOPS (pH7.4)  104.65g 

 EGTA    3.804g 

 MgSO4   0.602g 

 DDW to 500ml 

 

 

 

 



 

14 

 

Methods 

Molecular biology protocols: 

PCR 

General PCR mix using Taq polymerase: 

 5 μl  10x buffer 

 5μl   10x dNTPs (2mM) 

 2.5μl   forward primer (10μM) 

 2.5μl  reverse primer (10μM) 

 0.5-2μl  template DNA (25-50ng) 

 0.5μl  Taq polymerase  

 to 50μl  DDW 

 Basic cycle: 

 95˚C   2 mins 

 95˚C  30 secs (denature) 

 55˚C  30 secs (anneal) 

 72˚C  30 secs (elongation) 

 repeat final 3 steps 25-35 times 

 72˚C  5 mins 

Adjust elongation temperature according to the instructions included with the enzyme 

being used (for instance, the optimal elongation temperature for Accuzyme (Bioline) is 

68˚C whilst for BioTaq (Bioline) it is 72˚C).  

 

DNA purification 

DNA can be purified from enzymatic reactions (such as PCR and restriction digests) 

and agarose gels using the illustra GFX PCR DNA and Gel Band Purification kit (GE 

Healthcare).    

 

Ethanol precipitation of DNA 

Add one tenth volume of 3M sodium acetate (pH5.2) to DNA solution. Add two and a 

half volumes of cold 100% ethanol, place at -20˚C for 30 mins. Centrifuge sample for 

30 minutes at high speed at 4˚C. Decant supernatant. Add cold 70% ethanol. Centrifuge 

for 10 minutes at high speed at 4˚C. Decant/remove supernatant. Dry on bench or in a 

vacuum. Resuspend pellet in DDW or TE buffer (10mM Tris-Cl, pH 7.5, 1mM EDTA).  
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Agarose gels 

In general, use 1% agarose in 1x TBE buffer. Add 1μl ethidium bromide (10mgμl
-1

) per 

100ml agarose.  

 

Megaprimer PCR 

This technique for introducing mutations into DNA is based on that of Barik (2002). 

 

Figure 2.1. The megaprimer PCR method for site-directed mutagenesis. A and B are 

wild type primers, whilst M is a primer containing site-specific mutations.   

  

PCR1: megaprimer creation – normal PCR settings, gel extract product 

PCR2: megaprimer PCR – use product from PCR1 as primer, ~65˚C annealing 

temperature, 2 min annealing step, 10 min final extension, add primer B at cycle 

6 annealing step, add enzyme at cycle 1 annealing step. Gel extract product.  

PCR3: optional amplification PCR – use product of PCR2 as template, amplify 

element using internal primers. Gel extract product.  

 

DNA extraction from animal tissue 

Low-scale genomic DNA extraction can be performed using the DNeasy Blood and 

Tissue Kit (Qiagen). 

 

Lamprey sperm DNA extraction 

Obtaining lamprey sperm: 

Dissect gonads from adult male lamprey, anaesthetised by Tricaine. Wash 

briefly with PBS, before mincing tissue with a razor and extensively triturating 

in PBS in a 50 ml falcon tube. Filter with a 40 μm filter before centrifugation at 

500 x g for 10 mins. Resuspend the pellet in PBS. Check the colour of the pellet 
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– if it is white/cream then it contains pure sperm; blood appears as a red pellet at 

the bottom – this can be removed by resuspending only the white part of the 

pellet. Resuspend in 5ml PBS. 

 

Counting cells on a haemocytometer: 

Clean the haemocytometer with 70% ethanol, moisten the shoulders and affix 

the coverslip. Mix sperm cells by agitation. Quickly transfer 1 ml with a pipette 

into a separate eppendorf tube. Mix cells in this tube and transfer 100 μl into a 

new eppendorf tube. Add 100 μl of trypan blue (0.4% in PBS) and mix gently. 

Fill the haemocytometer gently with 10 μl of this mix. Count the cells in the 4 

corner squares (not the blue cells!). Average the four counts and multiply by 2 x 

10
6
 to obtain the cell count for the original sample.  

Sperm DNA extraction:  

This method is based on that of Hossain et al (1997). Add 5ml of guanidinium 

lysis buffer (6M guanidinium thiocyanate, 30mM sodium citrate, 0.5% sarkosyl, 

0.3M β-mercaptoethanol 0.2 mgml
-1

 proteinase K (added fresh)) per 1 x 10
7
 

cells. Mix and incubate at 55˚C for 3-4 hours. Add two volumes of isopropanol 

to the lysate and gently invert the tube until DNA fibres clump together to form 

a „cotton ball‟, which should be recovered with a glass sheppard‟s crook and 

briefly washed in 70% EtOH. Dissolve DNA in TE buffer.   

 

Determining the concentration and purity of DNA 

Use a NanoDrop spectrophotometer according to the users manual. Expect a 260:280 

absorbance ratio of ~1.80 for pure DNA, ~2.00 for RNA. A low 260:280 ratio could 

indicate protein contamination and influences concentration determination.   

 

Plasmid transformation 

Add 1μl ligated DNA to 15μl competent cells (such as One Shot TOP10 (Invitrogen)) in 

a pop-top tube. Leave on ice for 10 mins. Heat shock cells at 42˚C for 47 secs and place 

on ice. Add 500μl of 37˚C SOC and incubate with shaking for 1 h. Plate desired volume 

(can try a range) onto pre-warmed 1% LB-agar plates containing the required antibiotic. 

Incubate plates overnight at 37˚C.   
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Plasmid preps 

Inoculate the appropriate volume of LB medium containing the required antibiotic and 

incubate with shaking at 37˚C overnight (minimum 8 hours). Harvest cells by 

centrifugation and proceed with prep using either QIAprep Spin MiniPrep Kit (Qiagen) 

or QIAGEN Plasmid Maxi Kit.   

 

Restriction digestion 

Standard digest mix: 

 1μl  10x buffer 

 6.5μl   DDW 

2μl  DNA (choose concentration appropriate to the size of the band to 

be visualised – the smaller the band the higher the concentration) 

 0.5μl  enzyme (5-10 units) 

 Mix well and incubate for 1h at 37˚C.  

 

DNA ligation 

Standard ligation mix (sticky ends): 

 1μl    10x T4 ligase buffer 

 6:1 molar ratio of insert to vector (~10ng vector) 

 make up to 9.5μl  DDW 

 0.5μl    T4 ligase (200 units) 

 Leave for 10mins at RT. Proceed with transformation. 

 

Fish embryo protocols: 

Zebrafish strains 

 QMWT 

 Tubingen WT 

 rh3/5:KalTA4 (aka: r3r5 RFP) (Distel et al., 2009) 

 

Zebrafish transgenesis – 

Co-injection reporter assay 

This assay is adapted from a protocol presented in Müller et al. (1999). 

Preparation: 
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PCR-amplify βglobinGFP promoter-reporter cassette, ethanol precipitate and 

column purify to make a stock of 200ngμl
-l
. PCR-amplify putative enhancer, 

ethanol precipitate and column purify to make a stock of 500ngμl
-1

.  

Injection: 

Prepare the injection mix – 

 25ngμl
-1

  βglobinGFP promoter-reporter cassette   

 75-125ngμl
-1

  putative enhancer 

 0.5 μl   phenol red (0.5% Sigma) 

 Make up to 5μl with DDW 

 

Inject – 

Pre-warm agarose injection dishes by placing them at room temperature. Load injection 

needle with injection mix and insert into micro-injector. Inject embryos at early 1-cell to 

2-cell stages, either in the cell or into the yolk adjacent to the cell. Inject a volume 

equivalent to 1/5 the volume of the cytoplasm.  

Post-injection – 

Transfer embryos into a petri dish containing EM, incubate at 28˚C. In evening, remove 

unfertilised embryos and transfer embryos to EM-PTU, incubate at 28˚C. Change EM-

PTU daily.  

Embryo screening – 

Dechorionate embryos manually using fine forceps. Anaesthetise embryos with 6-8 

drops (glass Pasteur pipette) of Tricaine stock per small petri dish. Screen under 

fluorescent microscope. Note GFP expressing cells on embryo schematic data sheet. 

Compile composite expression using Adobe Photoshop.    

 

Tol2-mediated transgenesis 

This method is based on that of Fisher et al. (2006). The destination vector into which 

elements are to be cloned is pGW_cfosEGFP (Fisher et al, 2006).  

PCR-amplify the element from genomic DNA with a high-fidelity enzyme using a 5 

mins final extension step. For a successful TOPO reaction, column purify the PCR 

product.  

Insertion of element into the entry vector: 

Use the pCR8/GW/TOPO TA vector to clone the PCR product 

50-100ng (4 μl max volume)  fresh, purified PCR product 

0.3 μl (5ngul
-1

)  entry vector (TOPO) 
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1 μl    saline buffer (from TOPO kit) 

make up to 6 μl with DDW 

Leave for 5 mins at room temperature.  

Mix 3 μl of the mix with 50μl competent cells (DH5α, TOP10 or Match1) and  

transform. Plate all the volume on pre-warmed 1% LB-agar plates containing 

spectinomicine (100mgl
-1

). Leave overnight at 37˚C. 

Pick three colonies and inoculate them into 2ml of LB with spectinomicine 

(100mgl
-1

). Incubate overnight at 37˚C with shaking.  

Purify the plasmids by mini-prep and check for the presence of the insert by 

PCR. Select one plasmid for recombination. 

Recombination with pGW_cfosEGFP destination vector: 

Use the Gateway LR Clonase II enzyme (Invitrogen) to transfer the TOPO-

cloned element into the  pGW_cfosEGFP vector- 

1 μl   TOPO vector with insert (100ng) 

1 μl   pGW_cfosEGFP (100ng) 

0.5 μl   Clonase enzyme 

Leave at 25˚C for 1h minimum. Add 0.25 μl of Proteinase K (2μgμl
-1

). 

Transform 1.25 μl in Match1 or TOP10 competent cells. Plate all the volume on 

pre-warmed 1% LB-agar with ampiciline (100mgl
-1

). Leave at 37˚C overnight.  

Pick 3 colonies and inoculate them into 2ml of LB with ampicilin (100mgl
-1

). 

Incubate overnight at 37˚C with shaking.  

Purify the DNA by mini-prep, followed by column purification.  

Injection: 

 Prepare the injection mix – 

 1 μl   DNA (purified plasmid: 125ngμl
-1

) 

 1 μl   transposase RNAenzyme (175ngμl
-1

) 

 0.5 μl  phenol red stock 

Load an injection needle of 1mm diameter with the mix. Inject with a micro-

injector 1-3nl per embryo, aiming for the yolk just adjacent to the cell. Inject 

into embryos at the 1-2 cell stage.  

 

Lamprey transgenesis – 

Lamprey husbandry and embryo care, as described in the transgenesis protocols below, 

is detailed in Nikitina et al. (2009). 
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Linearised construct injection 

Preparation of vector: 

The vector used is pGW_cfosEGFP. Clone the element into the vector as 

described for the zebrafish tol2 assay. Linearise vector by restriction digestion 

with KpnI or XhoI. Digest enzyme with proteinase K (100-200 μgμl
-1

). Column 

purify, elute in DDW to make stock of 100ngμl. 

Injection: 

Obtain lamprey eggs by massaging a gravid female lamprey in a large glass dish 

containing 18˚C Sparkletts water (mineral water with a suitable ionic 

concentration). Fertilise eggs by massaging a mature male lamprey, mix and 

leave eggs to fertilise for 10 mins. Check activation under a dissecting 

microscope – chorions can be seen to expand. Wash thrice with distilled water 

(18˚C) and replace with Sparkletts water. Incubate at 18˚C. The first cell 

division occurs at 5-6 hpf. Check the viability of the batch by the proportion of 

embryos showing cell cleavage - <50% cleavage is bad, >80% is good. Inject 2-

3μl linearised plasmid at 100ngμl
-1

 into embryos at 1-2 cell stage. Store embryos 

in 0.1x MMR at 18˚C. 

Lamprey embryo care: 

Keep embryos at 18˚C in an incubator. Change the 0.1x MMR daily. Remove 

the dead embryos daily. At e4 (3dpf), spread embryos apart in the dish and leave 

them to gastrulate until late e5/e6. Remove dead embryos and screen survivors 

for reporter expression.  

 

I-sceI meganuclease-mediated transgenesis 

This method is based on that of Ogino et al. (2006), which was used on frogs.  

Cloning element into the vector: 

The cfos-IsceI-EGFP vector was created from the β-globin EGFP construct by 

cloning the mouse cfos promoter in place of the β-globin promoter, upstream of 

the EGFP coding sequence (Figure 2.2).  I-SceI sites flank the promoter-GFP 

cassette. Enhancers to be tested can be cloned upstream of the promoter using eg 

5‟ XhoI and 3‟ HindIII sites, which can be added to the primers used to PCR 

amplify the elements. After cloning the element into the plasmid, extract the 

plasmid using an EndoFree Plasmid Maxi Kit (Qiagen) and elute with water 

through QIAQuick columns (Qiagen). Dissolve the DNA in DDW to 1μgμl-1 

and make a working stock of 100ngμl-1. Store both at -20˚C. 
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Figure 2.2. Map of the cfos-IsceI-EGFP plasmid. Key features are highlighted and 

explained by the colour-coded key.  

 

Preparation of injection solution: 

To maximize the number of full transgenics it is good to inject the DNA whilst 

the embryos are still at the single cell stage. However, it was found that injection 

at 2-3 hpf resulted in abnormal division followed by death during gastrulation, 

whereas injection at 5-6hpf was fine. At this stage the embryos start to show 

cleavage furrows.  

The standard reaction is 

2μl   10 X I-sceI buffer + BSA (pre-mixed)  

4μl   cfos-IsceI-EGFP plasmid (100ng μl
-1

)  

3μl   I-SceI enzyme (5 units μl
-1

)    

11μl   Water       

Digest at 37˚C for 40 mins. The I-SceI enzyme should be aliquoted and kept in a 

freezer at -80˚C to prevent degradation. This reaction mix results in a plasmid 

DNA concentration of 20ngμl
-1

. 

Injection: 

After 40 mins of digestion, take the mix out of incubation. This is the injection 

mix. Inject roughly 2-3nl per embryo (quite a small drop) using the standard 
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injection procedure. Inject immediately - freshness is the key. Transfer injected 

embryos to 0.1x MMR and incubate at 18˚C. 

 

In-situ hybridisation on lamprey embryos 

Fixing Embryos:  

Collect embryos and leave in MEMFA at RT FOR 1h on nutator. 

Add 1 X DEPC-PTW solution.  Shake on nutator for at least 15 mins. Discard 

solution. Repeat this wash three times. 

Dehydrate embryos: 15 mins on nutator each 

25% MeOH + 1X PTW/DEPC 

50% MeOH + 1X PTW/DEPC 

75% MeOH + 1X PTW/DEPC 

Add MeOH 100%. Shake for 15 mins. Discard solution. Do this step twice 

Add MeOH. Store at –20 C 

Pretreatments and Hybridization: 

Re-hydrate embryos - 5-10 mins each, on nutator 

75% MeOH + PTW/DEPC 

50% MeOH + PTW/DEPC 

25% MeOH + PTW/DEPC 

  Wash twice with PTW/DEPC for 5 mins each 

Bleaching step: Replace PTW/DEPC with freshly made bleaching solution, 

which is 0.5% SSC, 10% H2O2, 5% formamide (For 10ml add in the following 

order: 500µl Formamide, 6.45ml H2O, mix together then add 250µl 20X SSC 

and finally, 2.8ml H2O2). Place on the light box for 10 mins (this time can be 

increased to 15 mins if stronger signal is desired). Dilute the bleaching solution 

with an equal amount of water.  

  Wash thrice with PTW/DEPC for 5 mins each 

Treat with 14-22µg/ml of proteinase K in PTW/DEPC (1:1000 dilution of the 

Roche PK stock). Incubation time depends on the level of the penetration 

desired. It may vary between 10 – 15 mins. Do not use the nutator after this step 

until the Fixing step! 

Wash in 2 mg/ml of glycine in PTW/DEPC. Incubate for 10mins 

Wash twice with PTW/DEPC for 5 mins 

  Post-fix with 4% PFA + 0.2% glutaraldehyde for 20 min @ RT 

Rinse 4X with PTW/DEPC for 5 mins 
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PTWDEPC: Hybe Mix (1:1) 10 min @ RT 

Hybe Mix 10 min @ RT, add another HybeMix wash if necessary to get as close 

to 100%  HybeMix as possible.  

At this point the embryos can be stored indefinitely in HybeMix at -20C. The 

procedure can then be continued at any convenience.  

Change to new hybe mix and pre-hybridize:       

Incubate at 70C for approximately 3 hours 

Add new pre-warmed (70°C) hybe mix + RNA probe-Dig (1-10 µl/ml hybe) 

Incubate at 70C O/N (at least 16 hours). Position tubes horizontally if using an 

oven. 

Post-hybridization washes (Most important for specificity): 

Remove the probe in Hybe solution and save it @ -20°C (to be re-used) 

Wash 2X with pre-warmed hybridization solution (50 ml tube ON in the oven) 

at 70C for 15 mins each 

Wash 4X with warmed hybridization solution at 70C for 30 –45 mins each 

Wash once with HybeMix:MABT (1:1) @ 70°C for 10 mins 

Wash once with HybeMix:MABT (1:1) @70° C for 30 mins with agitation 

Wash 4X with MABT for 30 mins at RT on nutator 

Change MABT to MABT + 20%Sheep Serum + 2%BBR for 15 mins at RT 

(blocking solution) on nutator 

Replace with fresh MABT + SSC + BBR for 3-4 hours at RT on nutator 

Change to Anti-Dig-AP AB (1:2000)  in MABT + sheep serum + BBR and 

leave O/N at 4C on the nutator 

Post-Ab washes and Histochemistry: 

 All these steps are on the nutator- 

Rinse 2X with MABT for 5 mins each wash at RT 

Wash 2X with MABT for 30 mins each at RT 

Wash 6X with MABT for 1 hour each wash at RT 

Wash at 4C O/N 

Wash 4X with NTMT, 15 min at RT 

Change NTMT solution to BCIP in NTMT (filtered). Be sure to cover vials with 

foil. Change the substrate after 1h. Closely follow the development of colour. If 

necessary leave at 4C O/N. 

 After the desired color has developed, proceed with washing steps. 

Wash 3X with PTW for 5 mins each at RT (in obscurity-foil) 
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Change to 4% PFA, leave at 4C O/N OR 2 hours RT (in obscurity-foil) 

Wash 3X with PTW for 10 mins at RT (in obscurity-foil) 

Change solution to MeOH in PTW - 5 mins each 

25% MeOH + PTW 

50% MeOH + PTW 

75% MeOH + PTW 

Wash twice with 100% MeOH for 5 mins each  

Keep @  4°C or  -20C ON  

 

Re-hydrate embryos before photographing: 

Change solution to MeOH + PTW - 5 mins each 

 75% MeOH + PTW 

50% MeOH + PTW 

25% MeOH + PTW 

Wash 3X with PTW for 5 mins each 

Embryos can be further equilibrated to 75% Glycerol in PTW (gradual steps of 

25%, 50% and finally 75% Glycerol/PTW) 
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3  CNEs in the Sea Lamprey Genome 

 

Abstract 

 

CNEs show an intriguing pattern of conservation across chordates – whilst they are 

incredibly highly conserved amongst jawed vertebrates, there are barely any traces of 

them in invertebrate chordate genomes. This is in contrast to the conservation patterns 

of the genes with which they are associated, the majority of which have invertebrate 

homologues. As an increasing number of CNEs have been shown to have cis-regulatory 

capabilities, they have been proposed to represent regulatory elements that arose early 

in the vertebrate lineage and are crucial for specifying the development of the vertebrate 

body plan. Whilst a wealth of genomic data is available for jawed vertebrates, there is 

another vertebrate lineage containing species whose genomes have not been so well 

characterised – the agnathans. This lineage occupies a unique phylogenetic position, 

having diverged from the other vertebrates very early in vertebrate evolution. In this 

chapter, emerging genomic sequence data from an agnathan – the sea lamprey – is used 

to trace the evolution of CNEs deep into the vertebrate phylogeny. In doing so, a set of 

ancient, pan-vertebrate CNEs is defined. This set of elements provides a useful resource 

for investigation into the crucial roles that CNEs are predicted to play in vertebrate 

development.   

 

Introduction 

 

The high sequence conservation of gnathostome CNEs can be traced back as far as the 

Chondrichthyes (Venkatesh et al, 2006), showing that these sequences evolved prior to 

the divergence of cartilaginous and bony fish more than 500 MYA (Blair & Hedges, 

2005).  However, traces of only a very small number of vertebrate CNEs are visible in 

the genome of an invertebrate chordate, amphioxus, illustrating that the majority of 

CNEs represent a defining characteristic of the ancestral vertebrate genome (Putnam et 

al., 2008; Holland et al., 2008). Invertebrate groups have also been found to posses their 

own sets of CNEs (Glazov et al., 2005; Vavouri et al., 2007) and there is a correlation 

between the families of genes around which both vertebrate and invertebrate CNEs are 

clustered, suggesting parallel evolution of the GRNs in which these CNEs act (Vavouri 

et al., 2007). Thus, despite the fact that the evolution of coding sequences can be 

tracked across the invertebrate/vertebrate boundary, the evolution of CNE sequences 
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seems to have followed a different pattern, with their comparatively rapid emergence 

very early the vertebrate lineage. As a starting point to investigate the origin and 

evolution of CNEs in early vertebrates, I have focused on the sea lamprey, Petromyzon 

marinus. It can be assumed that the common ancestor of gnathostomes and angnathans 

possessed the developmental mechanisms and morphological characteristics that are 

shared by both modern groups. Comparative studies of the lamprey and its genome can 

therefore provide insights into the ancestral vertebrate state, and the common regulatory 

sequences that determined it. 

 

It is likely that the early vertebrate genome was shaped by two whole genome 

duplication events, with gnathostomes possessing paralogous copies of genes that exist 

in single copy in invertebrates such as amphioxus (Putnam et al., 2008). There is 

evidence supporting the hypothesis that both rounds of duplication preceded the 

agnathan-gnathostome divergence (Kuraku et al., 2009). However, this is difficult to 

prove definitively without an assembled lamprey genome.  Whilst the majority of CNEs 

appear to be unique in the human genome, a significant sub-set exist as duplicates and 

are found in the vicinity of paralogous genes (McEwen et al., 2006). These duplicated 

CNEs (dCNEs) indicate that certain CNEs were already in existence prior to at least one 

of the whole genome duplication events in vertebrates. If the agnathan and gnathostome 

lineages diverged after these duplications, then we might expect to find some CNEs to 

also be conserved in the lamprey genome.   

  

The genome of the sea lamprey, Petromyzon marinus, has been targeted for a high 

quality draft and assembly. Over 18 million whole genome shotgun (WGS) reads, 

equivalent to a 6-fold coverage, have been made available. By utilising this lamprey 

sequence data, it is possible to investigate an ancient era between the emergence of 

vertebrates and the divergence of the agnathans and gnathostomes, in order to identify 

those CNEs that are common to all extant vertebrates.  

 

Results 

 

Identification of CNEs from the lamprey whole genome shotgun sequence 

(this data was generated and analysed by G. McEwen) 

Thousands of CNEs have previously been identified by sensitive multiple sequence 

alignment between human, mouse, rat and Fugu genomes (Woolfe et al., 2007). From a 
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database of these CNEs (http://condor.nimr.mrc.ac.uk/) 13 gene regions were selected 

based on the high occurrence of dCNEs within them. Smaller CNEs from these regions 

were removed by using an “LPC” score of >= 50, (the score is based on the sequence 

length and identity across the four species (Woolfe et al., 2007)). The 13 gene regions 

comprise a total of 27 Mb of sequence, containing 1205 elements (Table 1), including 

108 duplicated CNEs (dCNEs) (McEwen et al., 2006) and 46 ultra-conserved elements 

(Bejerano et al., 2004) (UCEs) - sequences with 100% identity over at least 200bp 

between mouse, rat and human genomes. The 1205 gnathostome CNEs were identified 

using a multiple alignment approach - MLAGAN (Brudno et al., 2003) - however, this 

approach is not possible for the lamprey trace sequences due to their short length.  To 

verify the efficacy of using BLAST (Altschul et al., 1997) as a tool for identifying 

CNEs, we searched the Fugu genome for homologous sequences to the 1205 human 

CNEs using sensitive parameters (word size: 8, mismatch penalty: -1, e-value cut-off: 

5e
-4

), with the majority of the CNEs being identified (1035/1205 = 85.9%) (Table 1). 

The 1205 CNEs were then searched against the lamprey reads, which were downloaded 

from the NCBI trace server (http://www.ncbi.nlm.nih.gov/Traces/trace.cgi), using 

BLAST (parameters as above for the Fugu genome search).  

 

Some of the lamprey reads were predicted to represent contamination, as a number of 

hits were almost identical to chicken when compared to all vertebrates in Ensembl using 

BLAST.  The full length lamprey reads corresponding to these hits were then compared 

to the chicken genome using BLAST (with default parameters) and those matching to 

chicken with >90% identity across most of their length were removed (a total of 34 

lamprey hits).  Due to the unassembled lamprey genome sequence, many lamprey hits 

were to multiple redundant reads.  Consensus sequences were generated for each hit if 

the sequences were more similar than 95% identical, with overlapping hits then being 

joined to make a contiguous hit.  

 

From this search, 74 lamprey CNEs were identified, including 38 dCNEs and 8 UCEs, 

with matches to gnathostome CNEs in all but one of the gene regions (Table 1). This 

signifies a widespread distribution of CNEs across trans-dev genes in lamprey. The 

proportion of lamprey hits to dCNEs (38/74 = 51.3%) was found to be greater than 

would be expected based on their proportion in the gnathostome CNE set (dCNEs only 

constitute 3.7% of the total CNEs across the 13 regions). This demonstrates a 

considerable enrichment for this set of ancient elements. Furthermore, whilst 17.4% of 
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the UCEs were detectable, more than twice as many (35.2%) of the dCNEs were 

identified across the regions. Despite lamprey CNEs being found for each of the 13 

gene regions except Dach1, the total number that were identified is low relative to the 

numbers conserved across jawed vertebrates – only 74 of 1205 were found. This could 

be an underestimate due to the incomplete coverage of the lamprey draft genome 

sequence. Alternatively this pattern may represent significant divergence of these 

sequences between lamprey and gnathostome lineages or the rapid emergence of many 

CNE sequences in the gnathostome lineage (see Discussion).     

 

   All CNEs dCNEs UCEs 

 

Human 

genome 

Multi-

LAGAN BLAST hits 

Multi-

LAGAN BLAST hits 

Multi-

LAGAN BLAST hits 

Gene 

Region Chr 

Length 

(Mb) H/F/M/R H/F H/L H/F/M/R H/F H/L H/F/M/R H/F H/L 

BARHL2 1 0.789 55 49 1 4 4 0 0 0 0 

BCL11A 2 2.634 72 55 4 6 6 3 8 5 1 

DACH1 13 1.236 56 50 0 4 3 0 7 4 0 

EBF3 10 1.753 138 118 9 13 13 3 2 1 1 

FOXB1* 15 1.979 45 40 2 5 5 2 0 0 0 

FOXP2 7 1.682 95 78 8 7 7 2 6 3 0 

IRX5 16 4.421 192 163 10 20 20 6 3 1 0 

MEIS2 15 3.079 118 103 10 8 8 4 4 3 0 

NR2F1 5 3.412 117 98 3 5 5 2 1 1 0 

PAX2 10 0.264 51 45 9 6 6 5 9 8 4 

TSHZ3 19 2.194 109 101 10 15 15 8 2 2 2 

ZIC2 13 0.835 36 29 3 4 4 1 0 0 0 

ZNF503 10 2.759 121 106 5 11 11 2 4 4 0 

Totals:  27.039 1205 1035 74 108 107 38 46 32 8 

 

Table 3.1. CNEs from 13 human gene regions identified in the Fugu and lamprey 

genomes. Chr: chromosome, H: human, F: Fugu, M: mouse, R: rat, L: lamprey. 

H/F/M/R: four way multiple alignment (MLAGAN) used to identify CNEs. 

 

The lengths of the lamprey hits were found to be on average considerably lower than 

those defined by gnathostome conservation. Lamprey sequences match on average only 

47% of the length of CNEs defined through alignments between mammals and fish 

using the same BLAST parameters. Nevertheless, sequence conservation is high across 

these core regions, with an average identity of 80%, compared with approximately 90% 

between teleosts and mammals. 
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Analysis of a contiguous region of the lamprey genome that contains CNEs 

(This search was performed by G. McEwen, with the alignment created by myself) 

The pre-Ensembl lamprey draft assembly (PMAL3) was searched for assembled contigs 

that contain multiple lamprey CNEs. The longest of these (contig 1709) encompasses 

33.7kb of contiguous lamprey sequence with just three short unresolved regions. This 

contig contains a number of CNEs as well as an uncharacterised gene, C15orf41, which 

lies immediately downstream of the meis2 gene in gnathostome genomes (Figure 3.1).  

The identified lamprey CNEs reside directly adjacent to, or within the introns of, the 

C15orf41 gene, and form part of a much larger genomic regulatory block covering 

nearly 3.5Mb of the meis2 locus in the human genome, which contains over 200 CNEs. 

 

The organisation of this region, with conserved coding exons acting as landmarks, 

allowed us to identify which gnathostome CNEs are detectable in the lamprey genome 

using multiple alignment approaches. Given the conserved positional relationship of 

CNEs in all other vertebrates, we have assumed that if lamprey CNEs are present, they 

will also be co-linear. From Figure 3.1 it is apparent that whilst some CNEs are clearly 

detectable in the lamprey genome, others are not found using sequence similarity. 

Furthermore, BLAST searches of the WGS reads do not identify these CNE sequences 

elsewhere in the lamprey genome.  
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Figure 3.1. Conservation of non-coding sequences across the meis2/c15orf41 locus in 

vertebrates. a Plot of non-coding sequence conservation between mammals and fish 

across a 3.5 Mb region of human chromosome 15q14, encompassing the meis2 and 

C15orf41 genes. Each vertical bar within the blue panel represents a CNE. b MLAGAN 

alignment of the C15orf41 locus highlighted in a. Human (hs), mouse (mm), zebrafish 

(dr) and lamprey (pm) genomic regions are aligned with the orthologous region in the 

Fugu genome. Exons are represented by blue peaks and are detectable in all species. 

Pink peaks represent non-coding conservation. A number of these are conserved in 

lamprey but many are also absent (grey arrowheads). This figure is based on that of 

McEwen et al. (2009). 

 

 

Functional conservation of lamprey CNEs 

(This functional data was obtained by D. K. Goode and myself) 

Gnathostome CNEs have evolved extremely slowly, given their high identity between 

sharks and mammals (Venkatesh et al., 2006), which diverged over 500 MYA (Blair & 

Hedges, 2005). Lamprey CNEs appear considerably shorter (half as long on average) 

and less well conserved in sequence than their gnathostome counterparts. One of the 

most highly conserved CNEs in our data set is found within the Ebf3 gene region and 
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extends to 491 bp at greater than 90% identity between Fugu and human. The 

corresponding element identifiable in the lamprey genome is only 211 bp long (with 

79% identity). A second representative CNE, associated with the Pax2 gene, is 85% 

identical across 425 bp between Fugu and human, but only 123 bp is conserved in 

lamprey (73% identity).  We predicted that these „core‟ regions of sequence 

conservation might comprise critical cis-regulatory modules common to all vertebrates.  

 

In order to verify that lamprey CNEs represent functionally conserved developmental 

enhancers, we used a functional assay (co-injection: see Materials and methods) to test 

the ability of the core regions from the Ebf3 and Pax2 CNEs to up-regulate GFP 

reporter expression in zebrafish embryos. Testing the orthologous core regions of both 

CNEs from human and lamprey genomes, we found that in all four cases the core 

elements up-regulated GFP expression in a temporal and tissue-specific manner 

consistent with the endogenous pattern of expression of the associated gene. Strikingly, 

the patterns of expression were seen to be very similar between lamprey and human 

elements.  
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Figure 3.2. Schematic representations of GFP expression patterns driven by core 

CNEs. a GFP-positive cells are marked onto camera lucida drawings of a zebrafish 

embryo on day 2 (24-30hpf) and day 3 (48-54hpf) of development. The results from all 

embryos with expression are overlaid, giving a composite depiction of the GFP 

expression pattern. The number of GFP-positive embryos are noted beneath each 

schematic (n=). The charts show the percentage (y axis) of GFP positive embryos with 

expression in each domain. b Key for the schematics and charts shown in a. In both 

the charts and the schematics, broad domain categories are colour-coded as shown. 

An example chart identifies the different expression domains represented by the x-axis. 

This figure is based on that of McEwen et al. (2009). 

 

 



 

33 

 

Ebf3 is a member of the COE (Col-Olf-Ebf) gene family, which consists of the 

vertebrate orthologs of the Drosophila collier gene (Crozatier et al., 1996) and C. 

elegans unc-3 (Prasad et al, 1998). It is expressed in the developing central nervous 

system (Garel et al., 1997) and appears to be a key regulator of neurogenesis, associated 

with the maturation of specific neuronal cell types in the spinal cord and brain 

(Crozatier et al., 1996). On day two of zebrafish embryo development, at 24-30 hours 

post-fertilisation (hpf), both the lamprey and human elements directed expression of a 

GFP reporter gene predominantly in the forebrain (Figure 3.2). Levels of expression 

were much higher on day three, 48-54 hpf, with a more widespread pattern 

encompassing the spinal cord as well as the fore-, mid- and hindbrain regions. Both the 

lamprey and the human Ebf3 elements appeared to up-regulate GFP expression 

specifically in a particular set of neurons in the zebrafish embryo (Figure 3.3), 

demonstrating strong functional conservation between the lamprey element, and the 

equivalent core region of the human CNE. 

 

Pax2 is a member of the vertebrate Pax2/5/8 family of transcription factors that is likely 

to have arisen from early duplications in the vertebrate lineage (Pfeffer et al., 1998). It 

contributes to the development of the eye, ear, pronephros and midbrain-hindbrain 

boundary. In lamprey, it has been demonstrated that the expression pattern of pax2 in 

each region is similar to that of gnathostomes (McCauley & Bronner-Fraser, 2002). 

Injection of Pax2 elements derived from both lamprey and human resulted in GFP 

expression in the CNS and skin at day two, with a more specific pattern of neuronal 

expression, particularly in the hindbrain, on day three (Figure 3.2). Together, these 

reporter-assay data indicate striking functional conservation of non-coding enhancer 

elements that are separated by more than a billion years of vertebrate evolution.    
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Figure 3.3. Up-regulation of GFP by orthologous lamprey and human CNEs. Images of 

live zebrafish embryos 48-54 hpf (a-c) and 24-30 hpf (d), lateral views, anterior to left. 

a and c, GFP expression in the hindbrain, driven by an EBF3 CNE derived from 

lamprey (a) and human (c).  b and d, GFP expression in the spinal cord driven by a 

pax2 CNE derived from lamprey (b) and human (d). e, eye; hb, hindbrain; mb, 

midbrain; nc, notochord; ov, otic vesicle; sc, spinal cord; y, yolk. Scale bars represent 

100μm. This figure is based on that of McEwen et al. (2009). 

 

Comparison of sequence divergence between ancient orthologous CNEs and 

between dCNEs 

 

The period of time during which the 2R duplications occurred, early in the vertebrate 

lineage, is likely to have been roughly contemporaneous with the divergence of the 

agnathan and gnathostome lineages. Thus, the divergence times between pairs of 

orthologous gnathostome-lamprey CNEs and between pairs of paralogous gnathostome 

dCNEs are more or less equivalent. Because some lamprey CNEs exist as dCNEs in 

gnathostomes, it is possible to compare the patterns of sequence divergence (as 

indicated by the length of BLAST alignments, using the paramaters defined on p27) 

between these different pairs of elements. I selected four dCNE families for such 

comparisons, with the main aim of addressing whether the „core‟ CNE regions 

conserved between gnathostome-lamprey CNEs are also conserved between the 

corresponding dCNEs from the human genome (Figure 3.4). The dCNE families were 

selected on the basis of having a large size difference between gnathostome and 
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lamprey CNEs, exhibiting extreme cases of the phenomenon of a „core‟ conserved 

region defined by lamprey homology. 

 

 

 

Figure 3.4. Sequence overlap between gnathostome and lamprey CNEs and dCNEs. 

Four gnathostome CNEs, associated with Ebf3, Pax2, Irx5 and FoxP2, are depicted as 

lines. Their lengths are indicated in bp (not to scale). Beneath each CNE, the aligned 

‘core’ conserved region defined by the orthologous CNE in lamprey (pm: Petromyzon 

marinus) is shown, with positions of overlap between the aligned sequences given in 

bp and the length and percentage identity between human and lamprey elements 

detailed. Beneath this, the region of overlap between the human CNE and its 

paralogous dCNE from the human genome is depicted. 

 

From Figure 3.4 it is evident that, for the four CNEs analysed, the „core‟ regions 

defined by lamprey CNE conservation are approximately reproduced when the 

corresponding dCNEs are aligned. In the cases of the Ebf3 and Pax2 elements, this 

overlap is strikingly clear, with the lamprey conserved regions and dCNE conserved 

regions overlapping almost entirely. In the case of the Irx2 element, the core regions 

defined by lamprey conservation and dCNE conservation are of almost equal length but 
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only overlap with each other over half of this length. For the FoxP2 element, the core 

region of lamprey conservation is considerably shorter than that between the FoxP1/2 

dCNEs. For these elements, there is no consensus pattern for the level of sequence 

identity within alignable regions between human-lamprey CNEs and dCNEs. Thus, the 

human Ebf3 element shows higher sequence identity with its dCNE than it does with its 

lamprey homolog, over equivalent stretches of its sequence. However, this relationship 

is reversed in the case of the Pax2 element, which shows greater identity with the 

lamprey homolog than with its paralog in the human genome.  

 

Further identification of CNEs in lamprey 

(This search was performed by P. Piccinelli and myself) 

Our initial search for gnathostome CNEs in the lamprey genome was restricted to 13 

gene regions that contained high numbers of dCNEs. We subsequently performed a 

further search for a set comprising all human-Fugu CNEs represented in the Condor 

CNE database, using BLAST with sensitive parameters. 6,693 non-redundant human 

CNEs (average length 116bp) were retrieved from the CONDOR database at. We used 

these to search lamprey sequence reads with sensitive parameters (word size: 7, 

mismatch penalty: -1, e-value cutoff: 5e
-4

). As before, lamprey sequences satisfying this 

initial parametric threshold were further analyzed for contamination, and those showing 

>90% homology to human or chicken across the whole read (i.e. extending outside the 

evolutionarily conserved region in other vertebrates) being removed. This search 

resulted in the identification of 246 lamprey CNEs. In agreement with the findings of 

the previous search, the average length of lamprey CNE hits was considerably smaller 

than that of their human-Fugu counterparts (115.4bp vs 230.9bp = 50%), and they had a 

relatively low sequence identity to the human sequences (79%).  

 

Discussion 

 

Identifying ancient vertebrate CNEs using the sea lamprey genomic sequence 

 

This study presents evidence that all extant vertebrates, including the lamprey, possess a 

substantial repertoire of CNEs associated with genes that regulate development. The 

pattern of conservation in lamprey of dCNEs relative to CNEs and UCEs is in keeping 

with the hypothesis that these duplicated elements are evolutionarily ancient, predating 

the divergence of gnathostome and lamprey lineages, whilst a larger proportion of 
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CNEs may have evolved in the gnathostome lineage after this divergence. This suggests 

that the lamprey lineage diverged from the rest of the vertebrates at a time when the 

vertebrate body plan was taking shape, with large cohorts of cis-regulatory elements 

rapidly evolving and becoming fixed in both sequence and function, generating CNEs.  

 

The identification of the C15orf41 contig provides an insight into the CNE landscape of 

the lamprey genome. At one end of the gene region, a majority of gnathostome CNEs 

are detectable in lamprey and show conserved synteny, yet in the other half of this 

region, there are no lamprey CNEs present. This region presents a unique opportunity to 

investigate, by reporter assay, the functional implications of the low CNE quota in the 

lamprey genome. 

 

The gene-regulatory role of ancient vertebrate CNEs 

 

We chose two very highly conserved CNEs for functional analysis. The first, a CNE 

associated with the Ebf3 gene, is over 90% identical across almost 500bp in jawed 

vertebrates, yet the lamprey identity extends to just over 200bp across the centre of this 

CNE. The human core sequence and the lamprey element drove similar patterns of GFP 

expression in the developing zebrafish brain, confirming that the shorter lamprey region 

of reduced conservation still retains the basic instructions for this enhancer function. A 

similar result was obtained for a CNE from the Pax2 region, which shows an even 

greater reduction in length in lamprey, being less than 30% of the length of the 

gnathostome CNE. The long length and high sequence identity of CNEs has made them 

recalcitrant to analyses that aim to identify a regulatory language encoded within them. 

The lamprey sequence, combined with functional assays, provides a new angle to this 

approach and may facilitate the identification of important functional motifs within 

CNEs. 

 

The striking overlap of core conserved regions defined by either human-lamprey or 

human-human dCNE alignments suggests that these core regions may have a functional 

and evolutionary significance, rather than being an artefact of sequence divergence. 

These core regions may be more evolutionarily ancient or may be more recalcitrant to 

sequence divergence than their flanking sequences. It is interesting that, in some cases, 

the same core regions are conserved between ancient orthologs as well as paralogs, as 

these two pairs of elements might be expected to have faced different selective forces – 
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for instance, paralogous regulatory elements might reasonably be predicted to have 

functionally diversified upon duplication otherwise they would be redundant. In which 

case, the core regions may represent essential components of cis-regulatory modules, 

whose regulatory function may be modifiable by flanking sequences – the fact that 

some of these dCNEs also exhibit inter-species conservation in their flanking regions 

that is not conserved between paralogs could support this notion. It would be of interest 

to investigate the patterns of sequence conservation of lamprey CNEs and dCNEs more 

systematically and to address the functional significance of these patterns.     

 

Investigation of the role and function of these ancient CNEs could provide a critical 

starting point for characterising ancient vertebrate developmental GRNs. Gene-

regulatory interactions can be inferred by the characterisation of gene expression 

patterns and by gene perturbation (e.g. by morpholino injection). These experiments are 

a crucial source of information for investigating the conservation of GRNs across 

vertebrates, and even across metazoans. Nevertheless, CNEs represent a 

complementary, genomic source of information regarding GRN conservation. Due to 

their high sequence conservation and length, it is likely that these elements are regulated 

by complex combinations of factors. If this is the case, then lamprey CNEs may 

represent the pan-vertebrate conservation of not just a few gene-regulatory links, but of 

whole circuits. Therefore, lamprey CNEs represent a fantastic resource for the detailed 

investigation into the GRNs operating during the development of all vertebrates.   

 

Conclusion 

 

CNEs show extraordinary sequence conservation across jawed vertebrates but the vast 

majority show no traces in the genomes of invertebrate chordates. This is in stark 

contrast to the conservation patterns of developmental genes, many of which can be 

traced across the invertebrate-vertebrate boundary. We sought to further characterise the 

pattern of conservation of CNEs across the vertebrate phylogeny by capitalising on the 

emerging genomic sequence data for the sea lamprey, the phylogenetic position of 

which makes it an ideal model for characterising the early vertebrate genome. We 

identified a significant number of CNEs in the lamprey genome, which we predict to 

represent ancient regulatory instructions for the ancestral vertebrate body plan. Indeed, 

testing the regulatory functions of two of these CNEs in zebrafish embryos shows that 

they can act as developmental enhancers, sharing tight functional conservation across 
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highly divergent species. Having elucidated the pattern of CNE sequence conservation 

across vertebrates, the next challenge is to interpret the developmental and evolutionary 

significance of this pattern. We predict that the C15orf41 contig will be a useful subject 

for investigating the developmental significance of the lack of many CNEs in lamprey. 

Additionally, the low sequence conservation and small size of the CNE regions defined 

by lamprey sequence conservation may be a useful guide for identifying crucial 

sequence motifs within these elements, which could elucidate details of the GRNs in 

which they are presumed to operate.    
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4  Functional Conservation of Lamprey CNEs 

 

Abstract 

 

The hundreds of CNEs that are conserved between gnathostomes and lamprey point 

towards developmental GRN circuits that are shared across all vertebrates. On the other 

hand, it is interesting that the majority of gnathostome CNEs could not be traced back to 

the vertebrate common ancestor using the lamprey genome. If CNEs represent 

conserved aspects of GRNs, then the opposite may also be true – that lack of CNEs 

could be indicative of divergent GRN architecture. Alternatively, elements homologous 

to CNEs may have been present in the vertebrate common ancestor but diverged in 

sequence between lamprey and gnathostome lineages, whilst retaining their 

developmental roles. In this chapter I investigate whether this could be the case, by 

characterizing the enhancer function of sequences of the C15orf41 genomic region, 

identified in the previous chapter, from which many lamprey CNEs are missing. I find 

CNEs of this region to function as developmental enhancers, particularly of the 

hindbrain. For the regions that are missing CNEs in the lamprey genome, I find little 

evidence for conservation of enhancer function between gnathostomes and lamprey. 

Importantly, this investigation highlights a number of issues that must be resolved in 

order to systematically infer the role of CNEs in vertebrate development and evolution.     

 

Introduction 

 

In the previous chapter we uncovered hundreds of CNEs that are conserved between 

gnathostomes and lamprey, suggesting that aspects of a developmental program are 

highly conserved across all vertebrates. Indeed, for certain developmental pathways, 

gene expression and knockdown studies in lamprey have revealed certain links within 

the relevant GRNs to be conserved (Sauka-Spengler et al., 2007; Murakami et al., 

2001). However, the majority of gnathostome CNEs could not be traced back to the 

lamprey genome using sequence conservation. This may reflect crucial differences 

between the GRNs governing the development of gnathostomes and agnathans. 

Alternatively, many gnathostome CNEs may have functional homologs in the lamprey 

genome that have diverged in sequence, as has been suggested to have occurred for 
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elements between mammals and fish (Fisher et al. 2006), and documented between flies 

(Hare et al., 2008).  

 

In order to assess the functional significance of the lower CNE quota in lamprey, I have 

characterised cis-regulatory elements associated with meis2 by reporter assay in 

zebrafish embryos. As described in the previous chapter, this region, containing the 

bystander gene C15orf41, is missing many gnathostome CNEs in lamprey. I can address 

the functional significance of this by testing the enhancer capabilities of lamprey 

regions from which CNEs are missing and comparing these to the enhancer activities of 

CNEs from the equivalent gnathostome regions. 

 

The vertebrate meis family of homeobox genes comprises at least three paralogs 

(Steelman et al., 1997), which encode transcription factors related to the Drosophila 

gene homothorax (Rieckhof et al., 1997). These proteins can act as co-factors to Pbx 

(Rieckhof et al., 1997; Berthelsen et al., 1999; Chang et al., 1997) and Hox proteins 

(Shanmugan et al., 1999; Shen et al., 1999; Jacobs et al., 1999), forming DNA-binding 

hetero-dimers and hetero-trimers. Meis proteins have diverse roles in vertebrate 

development, including morphogenesis of the lens (Zhang et al., 2002) and retina 

(Bessa et al., 2008; Heine et al., 2008), proximo-distal patterning of the limbs 

(Mercader et al., 2000; Capdevila et al., 1999), specification of telencephalic (Toresson 

et al., 2000) and hindbrain domains (Waskiewicz et al., 2001; Choe et al., 2002) and in 

neural crest development (Maeda et al., 2002). These roles are reflected by the 

widespread expression patterns of meis genes during development (Zerucha & Prince, 

2001; Biemar et al., 2001; Cecconi et al., 1997) and may underlie the particularly high 

number of CNEs associated with these genes in vertebrates (Woolfe et al., 2004).  
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Results 

 

Multiple alignment of the c15orf41 genomic region from vertebrates 

 

As introduced in the previous chapter, a genomic region containing c15orf41, a 

bystander gene of Meis2 (Meis2.2 in zebrafish), can be delineated in the lamprey 

genome through sequence conservation of the exons of C15orf41. Many CNEs reside 

within this genomic region in gnathostomes, a sub-set of which are also identifiable in 

the equivalent lamprey region through sequence conservation (Figure 4.1). However, 

there are also some CNEs that cannot be identified in the lamprey region through 

sequence comparison. Importantly, the regions from which CNEs appear to be missing 

in lamprey can be defined by the conserved genomic landmarks that abut them. These 

landmarks are either conserved exons of C15orf41, or the visible lamprey CNEs. 

Specifically, gnathostome CNEs 3271-80, all reside within an intron of C15orf41 

(intron 7-8). Whilst the equivalent intronic sequence can be defined in the lamprey 

genome, homologs of these CNEs cannot be identified within this intron. The same case 

is found for intron 5-6, which contains CNEs 3281-3 in gnathostomes but not in 

lamprey. Finally, CNE 3286 is conserved in sequence between gnathostomes, but the 

equivalent region in lamprey, between CNEs 3285 and 3287, appears not to contain 

CNE 3286. As described in the previous chapter, searches for homologs of these CNEs 

in lamprey using BLAST did not produce any hits, suggesting that these CNEs have not 

moved to other genomic positions by rearrangement in lamprey. The ability to identify 

equivalent genomic regions between gnathostomes and lampey enables me to address 

whether these CNEs are functionally conserved in lamprey.  
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Figure 4.1. Multiple alignment of the genomic region containing the gene C15orf41. 

Genomic sequences from human (hs), mouse (mm), zebrafish (dr) and lamprey (pm) 

genomes are aligned with the fugu genomic region as a baseline. Exons of C15orf41 

are represented as blue peaks and are numbered below the alignment. Gnathostome 

and lamprey CNEs (pink peaks) are labeled above their positions in the alignment. The 

CNEs investigated in this chapter are highlighted, being conserved across 

gnathostomes and lamprey (dark blue arrowheads) or across gnathostomes but not 

lamprey (grey arrowheads). The introns tested for enhancer activity in this investigation 

(intron 5-6 and intron 7-8) are delineated and labeled above the alignment.  

 

Functional conservation between zebrafish and lamprey CNEs 

 

I first sought to verify that orthologous zebrafish and lamprey CNEs from the C15orf41 

contig represent functionally conserved cis-regulatory elements. I selected four pairs of 

zebrafish (dr) and lamprey (pm) CNEs for reporter assay – CNEs 3285, 3287-8, 3292 

and 3299. Each of these elements was found to drive GFP expression in the hindbrain 

and spinal cord, consistent with the endogenous expression of meis2.2 in zebrafish 

(Figure 4.2). Furthermore, orthologous zebrafish and lamprey elements drove highly 

similar expression patterns. Interestingly, some of these elements created quite restricted 

patterns, such as CNE 3299 in the anterior hindbrain. CNE 3299 is also noteworthy for 

the lamprey and zebrafish orthologs driving slightly different expression patterns, with 
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dr3299 driving expression in the branchial arches whilst that of pm3299 was restricted 

to the hindbrain.  

 

 

 

Figure 4.2. Patterns of GFP expression driven by orthologous zebrafish and lamprey 

meis2 CNEs. Expression is shown for 48-54hpf zebrafish embryos. a Composite 

expression patterns for four pairs of homologous zebrafish (left) and lamprey (right) 

CNEs. b GFP expression in a neuron of the cranial ganglia, driven by element dr3285. 

c-e GFP expression in neurons of the hindbrain driven by lamprey (c, d) and zebrafish 

(d) meis2 CNEs. f-h Endogenous expression pattern of meis2.2 in zebrafish embryos 

at 24-30hpf (f) and 48-54hpf (g,h) revealed by in-situ hybridization. The expression of 

meis2.2 in the head at 48-54hpf is detailed in panel h, highlighting expression in the 

pharyngeal arches (pa – arrows) and cranial ganglia (cg – arrowheads) . mb: mid-brain, 

hb: hindbrain. The zebrafish in-situ data was obtained from Zebrafish Model Organism 

Database (ZFIN), University of Oregon, Eugene, OR 97403-5274; URL: http://zfin.org/) 
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Functional investigation of intron 5-6 

 

The 1.2kb fugu intron (frIntron5-6), containing three elements conserved between 

mammals and fugu (CNEs 3281, 2 and 3), up-regulated GFP expression in the nervous 

system, particularly in the hindbrain and secondary neurons of the spinal cord, with 

greater activity at 48 hpf (Figure 4.3). Surprisingly, the 550 bp lamprey intron 

(pmIntron5-6) was also capable of driving GFP expression in a tissue specific manner in 

zebrafish; however, the expression domains have little similarity to those of the fugu 

intron, being the cranial ganglia, Rohon-Beard neurons of the spinal cord, and the 

pectoral fin, with expression also in the tail and skin, particularly at 24 hpf.  

 

In order to assess the contribution of CNEs to the enhancer activity of the intron, the 

CNEs within intron 5-6 from fugu and zebrafish were tested for enhancer function.  A 

450 bp sequence containing the three Fugu CNEs (fr3281-3) drove GFP expression in a 

manner very similar to the pattern produced by the fugu intron (Figure 4.3), with a 

slightly higher proportion of embryos expressing in the fore- and mid-brain at 48 hpf 

and expression in the muscle and skin at 24hpf. The intronic flanking sequence either 

side of fr3281-3 was not capable of up-regulating GFP expression in this assay. From 

this I can infer that the CNEs within the fugu intron are largely responsible for the 

expression pattern of the intron. 

 

To ascertain whether the CNEs of this intron have conserved enhancer function across 

gnathostomes I tested the orthologous zebrafish CNEs for enhancer activity. The 

MLAGAN alignment identified one CNE within the ~5kb zebrafish intron - dr3282. 

Close inspection of the zebrafish intronic sequence revealed fragments of CNE 3281 to 

be conserved beside dr3282. A sequence encompassing dr3281 and dr3282 (dr3281-2) 

drove GFP expression in domains that are highly consistent with those obtained for 

frIntron5-6 and fr3281-3, except for some additional muscle expression. This suggests 

that the cis-regulatory function of the CNE module is conserved between teleosts 

despite divergence in sequence (partial loss of dr3281 and loss of dr3283 in zebrafish), 

yet this function is not conserved in the divergent lamprey intron. 
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Figure 4.3. The enhancer function of C15orf41 intron 5-6 is conserved between 

gnathostomes but not in lamprey. a Composite GFP expression patterns driven by 

homologous introns from fugu (frIntron5-6) and lamprey (pmIntron5-6) and by CNEs 

within these introns from fugu (fr3281-3) and zebrafish (dr3281-2) at 24 and 48 hpf. 

The charts on the left indicate CNEs within the regions injected and are in the 

MLAGAN output format, as in Figure 4.1. The number of GFP-expressing embryos 

from which the composites are compiled is shown for each element injected and for 

both timepoints. b-g GFP expression at approximately 48-54hpf. The element injected 

is identified on each panel. Arrow heads in c and d point to neurons in the spinal cord 

with ventrally projecting axons. Abbreviations: ka – Kolmer-Agduhr neuron,  pf – 

pectoral fin,  rb – Rohon-Beard neuron,  sc – spinal cord, cg – cranial ganglion cell. 
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Functional investigation of CNE 3286 

 

A lamprey homolog of CNE 3286 was unable to be identified using MLAGAN (Figure 

4.4). I functionally investigated the regions between CNEs 3285 and 3287 from Fugu 

(fr3286+ length: 883bp) and lamprey (pm3286+ length: 1107bp) as well as CNE 3286 

from fugu (fr3286 length 263bp) and zebrafish (dr3286 length: 219bp), by reporter 

assay. dr3286 and fr3286 drove similar expression in the hindbrain and spinal cord, 

mostly at 48 hpf (Figure 4.4). Expression was also evident in the developing gut for the 

zebrafish element. fr3286+, which abuts CNEs 3285 and 3287, up-regulated strong 

expression in the hindbrain and spinal cord at 48 hpf and weak expression in the gut, but 

also produced expression in the muscle and notochord. Intriguingly, the lamprey region, 

pm3286+, also drove expression in the hindbrain and spinal cord, with expression in the 

gut. This similarity of expression patterns driven by gnathostome CNEs and the lamprey 

region suggests that they may derive from an ancestral element which has been 

conserved in function despite sequence divergence between the two lineages. It is 

notable that short lengths of sequence conservation, which may represent conserved 

TFBSs, are visible upon close scrutiny of the aligned zebrafish, fugu and lamprey CNE 

3286 sequences (see appendix).  
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Figure 4.4. CNE 3286 provides evidence for functional conservation despite sequence 

divergence between gnathostomes and lamprey. a MLAGAN alignment of the genomic 

region containing CNEs 3285-7 in vertebrates, showing sequence homology to CNE 

3286 to be absent in the lamprey region. b Composite GFP expression patterns driven 

by elements from zebrafish, fugu and lamprey. c-d GFP fluorescence in 48-54hpf 

zebrafish embryos. Abbreviations: a – anus, g – gut, sc – spinal cord. 

 

Functional investigation of intron 7-8 

 

I next tested the enhancer potential of lamprey intron 7-8 by dividing it into six abutting 

sequences of approximately 1.2 kb for functional assay. The same approach was not 

feasible for the equivalent intron in fugu or zebrafish due to the larger sizes of this 

intron in gnathostome genomes. Instead, three zebrafish sequences containing the CNEs 

within the intron were selected for reporter assay. Of these three elements, two acted as 

enhancers in our assay, with dr3271-4 producing no GFP expression. dr3275-6 drove 

expression in the telencephalon, hindbrain, muscle and tail, with dr3279-80 up-

regulating GFP in the cranial ganglia, hindbrain and spinal cord (Figures 4.5 and 4.6).  
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Figure 4.5. Lamprey sequences within intron7-8 act as tissue specific enhancers in 

zebrafish. Composite GFP expression patterns are shown for two zebrafish CNE 

modules within the intron (top) and six approximately 1.2 kb lamprey sequences 

comprising the lamprey intron (bottom). The MLAGAN alignment highlights the CNEs 

from zebrafish that were functionally tested.  

 

Each of the lamprey sequences tested was capable of up-regulating GFP expression in 

zebrafish (Figure 4.6). pm7-8_1 drove highly consistent and strong expression in the 

olfactory organ, as well as in KA neurons of the spinal cord, in the pectoral fin, tail and 

posterior branchial arches (Figure 4.5 and Figure 4.6). pm7-8_3 drove GFP expression 

in the same domain as one of the zebrafish CNEs of intron 7-8, driving consistent 

expression in the telencephalon, in a similar fashion to dr3275-6 (Figures 4.5 & 4.6).  
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Figure 4.6. Lamprey enhancers and zebrafish CNEs of intron 7-8 drove tissue specific 

expression in zebrafish embryos. a-f GFP fluorescence of zebrafish embryos at 48-54 

hpf. a-c Ventral views of the head, with anterior to the to the top. d-f Lateral views with 

anterior to the left. The element injected is identified at the bottom left of each panel. 

Abbreviations: ba – branchial arch, ob - olfactory bulb, oo – olfactory organ, p – 

pectoral fin, t – telencephalon. 

Thus, lamprey genomic sequences that bear no overt homology to those of 

gnathostomes were able to drive a functional output that was, in some cases, very strong 

and tissue specific. Furthermore, one of the tissues in which expression was up-

regulated was also seen to express GFP when gnathostome CNEs from the homologous 

intron were functionally tested, which could represent a degree of conservation of 

intronic function despite sequence divergence between lamprey and gnathostomes.  

 

Discussion 

 

Conservation of sequence and function in lamprey CNEs 

 

The prediction that lamprey CNEs represent conserved cis-regulatory elements (and 

therefore conserved GRN architectures) that are shared between all vertebrates assumes 

firstly that they are cis-regulatory elements and secondly that their sequence 

conservation correlates with functional conservation within their respective species. It 

was shown in the previous chapter that homologous elements from human and lamprey 

drive highly similar expression patterns when tested in a zebrafish reporter assay. I have 
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now shown, with a larger number of CNEs, that homologous zebrafish and lamprey 

elements associated with meis2 drive consistent expression patterns when assayed in 

zebrafish.  This confirms the assumption that these sequences can act as cis-regulatory 

elements and suggests that they are functionally conserved across vertebrates 

(functional testing by reporter assay in lamprey embryos would confirm this).  

  

The expression patterns of the meis2 CNEs are consistent with the endogenous pattern 

of expression of meis2.2 in zebrafish (Figure 4.2) and meis2 in mouse. CNE 3299 drives 

particularly interesting expression that appears to be restricted to the anterior hindbrain, 

making it a good candidate for functional dissection of potential TFBSs. A limitation of 

our assay is that detailed characterisation of expression domains is hindered by the high 

mosaicism of reporter expression. Further, during the creation of composite expression 

patterns, it is difficult to map positions of GFP-expressing cells with great accuracy. 

This makes it hard to interpret reporter expression patterns within the context of the 

expression of particular developmental genes. Thus, these expression patterns give a 

broad indication of tissue specificity but detailed analysis would require the use of a 

reporter assay that could provide less mosaic reporter expression.   

 

Non-conserved lamprey sequences can function in zebrafish 

 

A notable finding from this investigation is that lamprey sequences that are not 

conserved in gnathostomes are nevertheless able to upregulate GFP expression in a 

tissue-specific manner in zebrafish embryos. In fact, every lamprey sequence that was 

tested showed enhancer function. Controls in which non-conserved non-coding fugu 

sequences of comparable sizes to CNEs were tested for enhancer activity in zebrafish 

yielded no significant GFP expression using the co-injection assay (Woolfe et al., 

2004). In contrast, zebrafish non-conserved sequences have been demonstrated to have 

regulatory function in zebrafish embryos, although at a lower proportion compared to 

conserved elements around the same gene (McGaughey et al, 2008). 

  

The lamprey elements frequently up-regulate GFP expression in domains that are 

consistent with meis gene expression in gnathostomes, for instance in the spinal cord, 

telencephalon, cranial ganglia, branchial arches and pectoral fin. Furthermore, some of 

the gnathostome CNEs drive expression in these domains too; for example in the 

telencephalon (dr3275-6) and cranial ganglia (dr 3285, dr3279-80). As for the 
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expression in the pectoral fin, which is found for two of the lamprey elements 

(pmIntron5-6 and pmIntron7-8_1), the role of MEIS proteins in specifying the proximo-

distal axis during vertebrate limb development has been well documented (e.g. 

Capdevila et al., 1999). Whilst lamprey does not possess paired appendages, there is 

evidence to suggest that aspects of the GRN governing vertebrate paired limb 

development originally functioned in the median fins of early vertebrates (Freitas et al., 

2006). Furthermore, ABD-B class HOX proteins (groups 9 and 10), which are capable 

of forming DNA-binding complexes with MEIS proteins (Shanmugam et al. 1999), are 

expressed in the median fin of lamprey (Freitas et al., 2006). Thus, the functions of 

these lamprey elements in zebrafish may be consistent with ancestral developmental 

roles of Meis genes that have been retained in gnathostomes and agnathans, whilst the 

regulatory elements responsible for these roles may have diverged and changed 

position.  

 

Although many of the expression domains of lamprey elements are consistent with 

endogenous meis expression in gnathostomes, some domains are not. For example, 

pm7-8_1 strongly and consistently expressed GFP in the zebrafish olfactory organ, 

however this is not a domain of endogenous meis expression in zebrafish. It is important 

to note that significant changes in trans-regulatory state may have occurred between 

agnathans and gnathostomes. If this is the case, the expression driven by lamprey 

elements in our zebrafish reporter assay would only represent half of the picture. In 

order to interpret these gene-regulatory elements within the context of cis- and trans- 

regulatory divergence, it is necessary to test their behavior in a lamprey reporter assay. 

This would inform us as to the relevance of their expression patterns in zebrafish and 

would illuminate the degree of similarity of the lamprey and gnathostome gene-

regulatory architectures (this issue is focused upon, with regard to the conservation of 

CNE function between lamprey and gnathostomes, in chapter 6).  

 

Conservation of function despite sequence divergence between gnathostome and 

lamprey enhancers 

 

The key question that I posed regarding the CNE quota in the lamprey genome was 

whether cis-regulatory function is conserved between CNE-harboring regions from 

gnathostomes and the homologous lamprey regions. I addressed this by assaying 

equivalent genomic regions from gnathostomes and lamprey for reporter expression in 
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zebrafish. The data obtained provide evidence for both conservation and divergence of 

function. For CNE 3286, there is evidence for conservation of spinal cord and gut 

enhancer function. Within intron 7-8 the elements pm7-8_3 and dr3275-6 both drive 

GFP expression in the telencephalon despite no overt sequence similarity. However, 

similarity of function between homologous regions when tested in zebrafish does not 

necessarily mean conservation of function. Without knowledge of their regulatory 

potential in lamprey embryos, or of their mechanism of action, it is hard to interpret 

whether these are functionally conserved elements. The case for conservation of 

function is stronger for CNE 3286, as there are chunks of sequence similarity between 

the gnathostome and lamprey sequences. Further evidence for functional conservation 

could be obtained by characterizing whether these stretches of sequence conservation 

contain TFBSs that contribute to the enhancer function of these elements. In the case of 

intron5-6, there is no evidence for functional conservation between lamprey and 

gnathostomes, suggesting that CNEs either evolved in sequence and function within this 

region in the gnathostome lineage, or that they diverged in sequence and function in the 

lamprey lineage.  

 

It should be noted that the approach toward characterizing the enhancer function of 

zebrafish intron 7-8 has limitations. I have assumed that the three CNE modules chosen 

contain the core functional elements within the intron and thus represent its 

transcriptional regulatory function. I have shown this to be valid for fugu intron 5-6, but 

that intron is relatively small compared to the size of the CNEs within it. It is not certain 

whether this rule holds up for larger introns such as intron 7-8. Recent investigations 

into the sequence conservation of functional elements show many functional elements 

not to be conserved (e.g. McGaughey et al., 2008), meaning that the analysis of 

zebrafish intron7-8 function is not exhaustive and that there may be additional (or 

fewer) domains of expression regulated by the zebrafish intron.  

 

Finally, the sea lamprey has recently been found to undergo extensive programmed 

genomic re-modelling during development, involving the loss of a significant 

proportion (>20%) of its germ-line DNA, including transcribed regions (Smith et al., 

2009). The lamprey tissue from which genomic DNA was extracted for the shotgun 

sequencing project was derived from the adult liver, meaning that it may represent a 

lamprey genome from which crucial developmental components, such as CNEs, have 

been lost. In this light, it is possible that the low CNE quota that we have found in the 
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lamprey somatic genome, and the functional ramifications that I show in this chapter, 

are partly the result of extensive loss of genomic DNA during lamprey development. 

Genomic sequence data from the lamprey germ-line would be required in order to 

thoroughly address this possibility.  

 

Conclusion 

 

I set out to investigate the gene-regulatory significance of the absence of a number of 

gnathostome CNEs from the lamprey genome. I addressed this by comparing the 

regulatory functions of equivalent gnathostome and lamprey regions in the vicinity of 

gnathostome meis2 and its lamprey homolog. Of note, I have found that most, if not all, 

of the lamprey regions tested are able to drive GFP expression in a tissue-specific 

manner in zebrafish embryos, suggesting that these regions contain cis-regulatory 

elements in lamprey. Yet, for many of these, the significance of this expression is 

difficult to interpret without characterising their regulatory activity in lamprey embryos. 

I have found evidence hinting at the conservation of enhancer function upon sequence 

divergence between lamprey and gnathostomes. Yet, proof of conserved regulatory 

mechanisms would require detailed characterization of TFBSs within these elements, 

which is difficult given our lack of knowledge of their mechanism of action. I also find 

evidence against functional conservation of equivalent gnathostome and lamprey 

regions. This suggests that the absence of gnathostome CNEs from lamprey could, in 

some cases, indicate significant differences between developmental programs of 

lamprey and gnathostomes. However, the paucity of functional data regarding the 

regulatory roles of gnathostome CNEs makes it difficult to interpret which specific 

gene-regulatory interactions may differ between lamprey and gnathostomes. I have also 

gleaned further evidence for conserved regulatory functions between pan-vertebrate 

CNEs. Characterisation of these conserved elements in more detail could reveal deeper 

insights into the developmental mechanisms that are highly conserved across all 

vertebrates.  
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5 Pbx-Hox Motifs in CNEs 

 

Abstract 

 

Whilst CNEs hold a lot of promise for de-coding vertebrate gene regulation and 

inferring developmental GRNs, our knowledge of their functions and mechanisms of 

action remains poor. Without knowledge of how CNEs work and what their functions 

are, it is hard to interpret their significance in development and evolution. This chapter 

describes the characterisation of TFBS motifs within CNEs of the c15orf41 gene region. 

Using sequence data from the sea lamprey genome to facilitate phylogenetic 

footprinting, I uncover Pbx-Hox motifs within these CNEs. I further discover a striking 

enrichment for Pbx-Hox motifs across the whole vertebrate CNE set. These motifs are 

found to be correlated with reporter expression in the hindbrain and pharyngeal arches 

during development. The implications that these findings have for the functions and 

mechanism of action of CNEs, as well as their evolutionary significance, are discussed.  

 

Introduction  

 

Identifying TFBSs within CNEs  

 

The utility of inter-specific sequence conservation for the identification and 

characterisation of vertebrate cis-regulatory elements was recognised prior to the 

genome-wide identification of CNEs. A number of studies had already identified deeply 

conserved developmental enhancers and used phylogenetic footprinting as a guide to 

characterise crucial transcription factor binding sites within them (e.g. Pöpperl et al., 

1995). However, these studies were mostly restricted to characterising individual 

elements, so it was not clear to what extent their findings were applicable to other cis-

regulatory elements in the genome. 

  

The identification of thousands of CNEs associated with developmental genes has 

provided genome biologists with a wealth of putative cis-regulatory sequences to 

investigate. These elements are predicted to represent crucial links in gene regulatory 

networks (GRNs) that underlie conserved aspects of vertebrate development. In order to 

place these links within the context of GRNs it is essential to uncover the factors 
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binding to CNEs, through identification of the TFBS motifs that they recognise. 

However, the majority of CNEs have not been functionally characterised by reporter 

assay, nor dissected at the level of TFBSs. Whilst early investigations into cis-

regulatory mechanisms uncovered TFBS motifs for a range of factors, it has not been 

clear whether the information gleaned from these studies is applicable to CNEs – 

indeed, the notion that CNEs are composed of „orthodox‟ TFBSs has been called into 

question. The main reason for this is that their high sequence conservation across 

distantly related species is hard to reconcile with the prevailing wisdom of how 

transcription factors bind to DNA, in which a given transcription factor is able to 

recognise short, degenerate sequence motifs, allowing enhancer sequences to diverge 

through mutation and shuffling of TFBSs, whilst maintaining the same function. 

Furthermore, attempts to systematically uncover enriched sequence motifs within 

mammal-fish CNEs, by „top-down‟ de-novo motif discovery, have so far been relatively 

unsuccessful compared to similar approaches applied to mammalian promoter elements.  

 

Thus, whilst CNEs are considered to hold a lot of promise for de-coding vertebrate gene 

regulation, our lack of knowledge of their mechanism of action makes it unclear 

whether the cis-regulatory language of well characterised enhancers is also used by 

CNEs, and whether any language that may be present in CNEs is applicable to less well 

conserved cis-regulatory elements. The low number of well characterised CNEs and the 

failure to systematically uncover enriched sequence signatures within CNEs have 

exacerbated the problem. Without detailed knowledge of how CNEs work and what 

their developmental functions are, it is difficult to place them within the context of 

developmental GRNs, and to interpret their roles in evolution.  

 

The lack of knowledge of CNE function is being rectified by projects to systematically 

assay CNEs for enhancer activity in mouse (Pennacchio et al., 2006) and zebrafish 

embryos (Li et al., 2010), which will provide useful data enabling CNEs to be grouped 

according to their expression patterns, with the aim of scanning these groups for TFBS 

motifs. This „bottom-up‟ approach - starting with a group of CNEs with similar function 

and identifying TFBS motifs that they have in common - is a complementary alternative 

to the „top-down‟ method of de-novo identification of TFBS motifs across the whole 

CNE set (addressed in chapter 6). 
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Regulation by Hox factors through the Pbx-Hox TFBS motif 

 

A few focused investigations have used phylogenetic footprinting to identify TFBSs 

within selected cis-regulatory elements that are conserved between distantly related 

vertebrates. A particularly well characterised TFBS motif is that recognised by the Pbx-

Hox heterodimer (Popperl et al., 1995; Tümpel et al., 2006). Hox factors binding as 

monomers share similar binding preferences to each other, varying around a core TAAT 

motif (Noyes et al., 2008; Berger et al., 2008). This leads to the question of how 

different Hox factors are able to control the expression of different target genes. Part of 

the answer involves their interaction with co-factors belonging to the „three amino-acid 

loop extension‟ (TALE) class of homeodomain proteins (including Pbx and Meis/Prep, 

and the drosophila homologs Exd and Hth) (Mann & Chan, 1996; Jacobs et al., 1999; 

Moens & Selleri, 2006). Hox factors belonging to vertebrate paralogy groups 1-8 

contain a conserved hexapeptide upstream of their homeodomain, which interacts with a 

hydrophobic pocket within the TALE domain of Pbx, leading to the formation of Pbx-

Hox hetero-dimers (Shanmugan et al., 1999; Joshi et al., 2007). The interaction with 

Pbx increases the binding affinity and selectivity of the Hox factor to DNA, with Pbx-

Hox heterodimers recognising an 8bp core DNA sequence motif: TGATNNAT (Chan 

& Mann, 1996). Pbx binds the TGAT half-site and Hox binds the NNAT half site, with 

different Hox factors having different binding preferences for the variable (NN) 

positions of the motif (Chan et al., 1997). The two positions immediately 3‟ of the core 

Pbx-Hox site also influence binding of the heterodimer, with many characterised 

binding sites containing G/T and G/A at these two positions, although these positions 

are more variable than those of the core motif (Mann et al., 2009). 

 

Many cis-regulatory elements have been identified that are regulated by Pbx-Hox 

complexes, often in conjunction with Meis/Prep factors, which contribute to a ternary 

complex by interacting with PBX via n-terminal domains, and can be either DNA 

bound, to a typical TGACAR motif, or unbound (e.g. Ferretti et al., 2000). As Pbx-Hox 

regulated elements have been characterised in Drosophila and C. elegans, these 

complexes constitute an ancient mechanism of gene regulation, conserved across 

bilaterians (Mann et al., 2009).  

 

In vertebrates, the majority of characterised Pbx-Hox TFBSs reside within elements that 

are involved in regulating the Hox genes themselves, mediating auto- and cross-
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regulatory interactions between anterior hox factors and driving gene expression in the 

hindbrain and neural crest (reviewed by Tümpel et al., 2009). Nested patterns of Hox 

expression that are set up in the hindbrain contribute, via migratory neural crest cells, to 

anterior-posterior (A-P) patterning of the cranial ganglia, pharyngeal arches and their 

derivatives, and facilitate the connection of sensory and motor circuits between the 

hindbrain and tissues of the head and neck (Alexander et al., 2009).  

 

Whilst Hox genes play crucial and evolutionarily conserved roles in A-P patterning of 

vertebrate embryos, our knowledge of their downstream targets is poor. Surprisingly, 

despite the identification of deeply conserved Pbx-Hox TFBSs in vertebrate enhancers, 

and our detailed knowledge of Pbx-Hox-DNA interactions, a systematic search for Pbx-

Hox motifs in vertebrate conserved regulatory elements has not previously been carried 

out. 

 

Results 

 

CNEs from the C15orf41 contig drive expression in the nervous system, especially 

in the hindbrain 

 

As described in chapters 3 and 4, the genomic region downstream of meis2 in jawed 

vertebrates, containing the bystander gene C15orf41, contains a number of lamprey 

CNEs (McEwen et al., 2009). In the human genome, these CNEs lie within an 

approximately 11kb stretch of sequence, roughly 450kb downstream of the meis2 

transcriptional start site (depicted in chapter 3, figure 3.1). In chapter 4, some of these 

elements from both zebrafish and lamprey were demonstrated to function as enhancers 

in zebrafish through our co-injection assay. These CNEs were chosen as a starting point 

for a bottom-up search for TFBSs in CNEs for two reasons. Firstly, they show clear and 

specific expression patterns in the hindbrain of zebrafish embryos in our co-injection 

assay, making them good subjects for functional dissection; and secondly, their 

conservation in lamprey facilitates phylogenetic footprinting, as alignments that include 

lamprey CNE sequences have lower overall sequence conservation, making crucial 

sequence motifs likely to stand out as highly conserved regions of the alignment 

(McEwen et al., 2009). 
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Figure 5.1. Reporter expression driven by CNEs of the C15orf41 contig. The C15orf41 

contig contains a number of lamprey CNEs, which drive expression in the nervous 

system of zebrafish embryos, especially in the hindbrain. a multiple alignment of 

orthologous genomic regions containing the gene C15orf41 (blue peak), downstream of 

meis2, revealing CNEs (red peaks). Human, zebrafish and lamprey sequences are 

aligned with the fugu sequence as a baseline. Zebrafish CNE 329X is translocated in 

the zebrafish genome assembly so does not appear in this alignment. b-m, orthologous 

elements from  lamprey (b-g) and zebrafish (h-m) drive similar GFP expression 

patterns in the nervous system of zebrafish embryos at 54hpf:  element 3285 in the 

cranial ganglia (arrowheads) and primary neurons of the hindbrain and spinal cord 

(arrows) (b,h); 3288 in the hindbrain posterior to rhombomere (r) 4 (c,i), as determined 

by comparison with r3r5-RFP expression (red) (d,j); 3299 in the anterior hindbrain – r2-

4 for the lamprey homolog (e,f) and r3-4 plus the corresponding neural crest for the 

zebrafish homolog (k,l); 329X in the hindbrain (arrow) and neurons of the midbrain 

(arrowhead) (g,m).  

In order to investigate their cis-regulatory function in greater detail, their enhancer 

activities were tested using the less mosaic tol2 reporter assay (Fisher et al. 2006). 

Using the tol2 system, injected embryos (F0) often show strong reporter expression with 

low mosaicism (see Materials and Methods). To obtain „full transgenic‟ specimens, the 

F0 embryos can be grown to adulthood and mated with wild-type fish to create F1 

progeny, a proportion of which will inherit the integrated reporter construct through the 

germline and would be expected to show clear, non-mosaic GFP expression. Whilst the 
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patterns of reporter expression observed for a given construct in F0 embryos often vary 

between individuals, probably due to position effects and multiple integrations, it has 

been shown that expression patterns shared across greater than 25% of F0 embryos are 

representative of the expression patterns found in F1 progeny (McGaughey et al, 2008). 

Thus, consistent patterns of reporter expression in F0 embryos are deemed to give a 

reliable indication of the expression that would be observed in full transgenics (and 

therefore the endogenous activity of the enhancer).   

 

Five pairs of orthologous zebrafish and lamprey elements from the c15orf41 contig 

were tested using the tol2 system. These included the element 329X, which, whilst not 

present in the Condor database, is conserved between gnathostomes and lamprey. In 

zebrafish it has translocated so does not align in the zebrafish trace of the MLAGAN 

alignment (Figure 5.1). Furthermore, it is transcribed in zebrafish so is not considered to 

be a non-coding element. However, it has a non-coding duplicate associated with meis1 

and has been predicted to be a cis-regulatory element overlapping with an exon (Dong 

et al., 2009), so was included in this functional analysis.  

 

Four pairs of elements drive discreet and complementary patterns of reporter expression 

in the hindbrain of zebrafish embryos, which are consistent with the endogenous 

expression pattern of meis2.2 in zebrafish (Figure 5 and compare to Figure 4.2). The 

expression patterns that they drive when tested using the tol2 system show close 

correspondence with those from the co-injection assay (Figure 4.2 – previous chapter), 

confirming the consistency of functional readout from these elements between the two 

different reporter assay approaches. Homologous zebrafish and lamprey elements drove 

similar expression patterns, yet for each pair there were clear differences between 

homologs. dr3285 and pm3285 both drove expression in the crania ganglia and primary 

neurons of the hindbrain and spinal cord, but pm3285 also frequently drove expression 

in non-neural domains such as muscle and eye, whilst these expression domains were 

not observed for dr3285. dr3288 and pm3288 both drove expression in the hindbrain, 

posterior to rhombomere (r) 4 (as shown by comparison with RFP expression in r3 and 

r5 (using the r3r5RFP transgenic line (see Materials and Methods)), but the expression 

driven by pm3288 was broader than that of dr3288. dr3299 and pm3299 both drove 

reporter expression in the anterior hindbrain. By comparison with r3r5 RFP expression, 

dr3299 was seen to direct expression to r3-4 and pm3299 to r2-4, with dr3299 also 

driving GFP expression in the neural crest populating the second pharyngeal arch, 
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whilst pm3299 drove no neural crest expression. Both dr329X and pm329X drove GFP 

expression in the ventral anterior hindbrain and to neurons of the midbrain, however the 

expression driven by dr329X in the hindbrain was more restricted.   

 

CNEs from the C15orf41 contig contain conserved Pbx-Hox and Meis TFBS motifs 

 

The rhombomere-specific expression patterns of dr3299 and pm3299 are reminiscent of 

the expression patterns of anterior Hox factors. Searching for canonical Pbx-Hox motifs 

within CNE 3299 identified two motifs matching the TGATNNAT consensus, which 

are highly conserved between mammals, teleosts and lamprey (Figure 5.2). 

Furthermore, these two Pbx-Hox motifs are each flanked by a highly conserved Meis 

motif (TGACAG/A). Thus, these motifs were considered to be strong candidates for 

TFBSs necessary for the rhombomere-specific expression of dr3299 and pm3299. To 

test this, versions of the zebrafish element were created in which these motifs had been 

mutated. In dr3299_sub1, the 5‟ Meis motifs and the 5‟ Pbx-Hox motif were mutated, 

leaving the other cluster of meis and Pbx-Hox motifs unchanged. This element was 

found to drive a broader expression pattern in the hindbrain compared to the wild type 

element, extending anteriorly into r2, whilst the neural crest expression of the wild type 

element was absent in dr3299_sub1 (Figure 5.2). Mutating the second cluster of Pbx-

Hox and Meis motifs abrogated reporter expression altogether (not shown).  

 

Surprisingly, the other CNEs of the C15orf41 contig, which act as enhancers in the 

zebrafish hindbrain, were also found to harbour Pbx-Hox and Meis motifs that are 

conserved between gnathostomes and lamprey. Of these elements, CNE 3285 was 

selected for functional dissection as it has an expression pattern dissimilar to that of 

CNE 3299 – driving GFP expression in the cranial ganglia and primary neurons of the 

hindbrain and spinal cord. This element contains a single conserved Pbx-Hox motif and 

a distal Meis motif (Figure 5.2). Interestingly, mutating the Pbx-Hox motif within 

dr3285 severely reduced its ability to drive reporter expression in each of the expression 

domains of the wild type enhancer. However, the mutations introduced in dr3285 sub1 

extend beyond the Pbx-Hox motif and into a highly conserved 5‟ homeobox motif, so 

the loss of reporter expression may not be solely attributable to mutation of the Pbx-

Hox motif.       
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Figure 5.2. Pbx-Hox motifs are essential for enhancer activity of meis2_3299 and 

meis2_3285. a Multiple sequence alignment of meis2_3299 from human, zebrafish and 

lamprey genomes, highlighting conserved Pbx-Hox (blue boxes) and meis (green 

boxes) binding site motifs. The mutated bases in dr3299_Sub1 and _Sub2 are shown 

beneath the alignment. b-c dr3299_Sub1 (c) drove broader reporter expression in the 

hindbrain at 54hpf compared to dr3299 (wt) (b) and did not up-regulate GFP 

expression in the neural crest (r3r5 RFP expression shown in red). d Multiple sequence 

alignment of meis2_3285 showing conserved Pbx-Hox (blue box) and meis (green box) 

binding-site motifs. The mutated bases in dr3285_Sub1 are shown. e-f dr3285_Sub1 

(f) drove severely diminished GFP expression at 54hpf compared to the wild type 

dr3285 element (e). 

 

An in-silico search for conserved Pbx-Hox motifs in CNEs 

(This search was devised and carried out by P. Piccinelli and myself) 

 

The occurrence of many highly conserved Pbx-Hox motifs within the CNEs of the 

C15orf41 contig suggested that they may constitute a widespread signature within 

CNEs. To address this, an in-silico search strategy was devised to identify Pbx-Hox 

motifs in two overlapping sets of CNEs – a lamprey set, consisting of 246 CNEs 
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conserved between human, fugu, zebrafish and lamprey, and a gnathostome set, 

consisting of 4259 CNEs conserved between human, fugu and zebrafish. The sequences 

of human, fugu and most zebrafish CNEs were retrieved from the CONDOR database 

(Woolfe et al., 2007). Additional zebrafish CNEs were identified using BLAST against 

a more recent zebrafish genome assembly (Zv8 release 58). Sequences in each 

alignment were clipped to the same size to prevent unaligned edges. To align the 

sequences we used ClustalW version 1.83. As a control, for each CNE we also 

generated 1000 multiple alignments by randomly shuffling the columns of each 

alignment using the seqboot implementation in Phylip version 3.67.  

  

To find evolutionarily conserved Pbx-Hox motifs (TGATNNAT) we employed the 

software CisFinder (Sharov & Ko, 2009) on our two alignment sets and their respective 

controls. A motif match was only considered if it matched all aligned species and 

occurred at the exact same aligned position. The lamprey set was found to contain 61 

conserved Pbx-Hox motifs (within 47 CNEs), a 22-fold enrichment compared to 

shuffled CNE alignments. The gnathostome set contains 712 conserved Pbx-Hox motifs 

(in 591 CNEs), representing a 9-fold enrichment relative to shuffled alignments. Two 

alignments of CNEs with conserved Pbx-Hox motifs from the lamprey set are shown in 

Figure 5.3.  
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Figure 5.3. Conserved Pbx-Hox and Meis motifs within lamprey CNEs. Multiple 

alignments for two CNEs are shown with Pbx-Hox (blue boxes) and meis (green boxes) 

motifs highlighted. The blue dashed box in the Tshz2_24805-6 alignment indicates a 

conserved variant of the Pbx-Hox motif that does not conform to the TGATNNAT 

consensus.  

 

Pbx-Hox motif hits identified in gnathostome CNEs strongly resemble Pbx-Hox 

binding sites identified in the literature 

 

Further analysis of Pbx-Hox motif hits in the gnathostome set reveals a paucity of 

cytosines at variable positions 5 and 6 (Figure 5.4). This is a feature of characterised 

Pbx-Hox binding-sites, as cytosines at these positions destabilise binding of the Pbx-

Hox complex (Joshi et al., 2007). Furthermore, positions 9 and 10, immediately 3‟ to 

the canonical Pbx-Hox motif, show strong bias towards G/T and A/G respectively, 

thereby defining a more stringent TGATNNATKR  (KR) consensus motif that is also 

consistent with previously characterised Pbx-Hox binding-sites. This is revealed by 

comparison of the nucleotide frequency logo of the gnathostome CNE Pbx-Hox hits 

with that compiled from characterised Pbx-Hox sites from the literature (Figure 5.4). 
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Figure 5.4. Frequency logos representing different sets of Pbx-Hox motifs. Those 

identified in the gnathostome alignments (gnathostome set) are compared with 

previously characterised Pbx-Hox motifs (literature set) (from Mann et al., 2009 and 

Wassef et al., 2008) and Pbx-Hox motifs from the gnathostome control set. The 10 

positions of the Pbx-Hox motif are numbered on the x-axis, with nucleotide frequency 

for each position represented on the y-axis. 

The Pbx-Hox hits from the gnathostome control sequence set, which has the same 

overall nucleotide frequency as the gnathostome CNE set, show nucleotide frequencies 

at the variable positions that are consistent with the overall nucleotide frequency of the 

set, indicating that the bias seen in the Pbx-Hox hits of gnathostome CNE is not due to 

an inherent nucleotide frequency bias of CNEs (Figure 5.4). Further analysis of the 

gnathostome CNE alignments resulted in strong support for the KR motif, with greater 

than 16-fold enrichment compared to shuffled alignment controls. The nucleotide 

frequencies at the variable positions suggest that the majority of the conserved motifs 

represent bona-fide Pbx-Hox binding sites. 

 

Pbx-Hox motifs are enriched within other sets of vertebrate CNEs 

(These motif searches were carried out by P. Piccinelli and G. Elgar) 

We searched a set of 6,693 human CNEs, previously identified by human-fugu genome 

comparison (Woolfe et al., 2007) for the stringent 10bp KR motif. The KR motif occurs 

562 times in the human CNE set, representing a highly significant enrichment over 
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shuffled versions of the motif (p=0.000064), and when compared to control genomic 

regions and the entire human genome (Table 5.1). We also examined the distribution of 

Pbx-Hox motifs in other sets of evolutionarily-conserved developmental enhancers. The 

Enhancer Browser (EB) contains 1307 non-coding elements that vary in their degree of 

conservation across vertebrates, around half of which drive reporter gene expression in 

mouse embryos at day 11.5 (Pennacchio et al., 2006). Across the entire dataset there is a 

significant enrichment for the KR motif (p=0.0033) compared with shuffled versions 

despite the fact that some of these are not deeply conserved. We then analysed a set of 

4782 CNEs conserved between human and the cartilaginous chimera, Callorhinchus 

milii (shark CNEs) (Venkatesh et al., 2006), and once again found significant 

enrichment for the KR motif (p=0.000064). It is important to note that whilst these sets 

show some overlap with our human CNE set, there are many CNEs that are unique to 

each set. 427/1307 EB sequences overlap 994 CNEs, covering a total of 146226 bases 

(7.4% of the EB sequence; 18.8% of CNE sequence). 1632 human sequences from the 

shark set overlap 2172 CNEs, covering a total of 271260 bases (26.5% of the shark set, 

34.9% of CNEs). Thus, the enrichment for Pbx-Hox motifs is a phenomenon that is 

characteristic of all deeply conserved vertebrate non-coding elements, and not just of 

our CNE set. 
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motif 
human 

CNEs 

Shark 

CNEs  
EB  

EB 

HB/BA/

CN +ve 

EB  

HB+ve 

Zebrafish 

cne 

Browser  

Zebrafish 

cne 

Browser 

HB+ve 

Human 

genome 

TGATNNATKR 562 666 609 161 131 17 7 530509 

TGTANNATKR 171 188 388 65 52 12 3 543258 

GTATNNATKR 152 168 279 54 39 9 2 442772 

GTTANNATKR 150 178 325 79 65 8 2 475051 

TTGANNATKR 201 245 447 80 64 9 1 626755 

TTAGNNATKR 167 238 398 74 55 7 0 545811 

ATGTNNATKR 259 297 452 86 72 20 1 765597 

ATTGNNATKR 233 297 436 74 61 20 2 550250 

AGTTNNATKR 215 254 431 85 68 9 0 547730 

TAGTNNATKR 147 154 297 54 42 10 4 364553 

TATGNNATKR 177 198 365 74 60 10 3 522892 

GATTNNATKR 274 315 419 97 74 11 0 521158 

TGATNNTAKR 106 143 314 65 50 6 1 489556 

TGTANNTAKR 142 151 421 82 60 14 1 790068 

GTATNNTAKR 59 73 195 41 34 1 0 372793 

GTTANNTAKR 105 108 253 50 33 5 0 419041 

TTGANNTAKR 163 205 385 72 62 10 0 548745 

TTAGNNTAKR 73 97 235 41 31 0 0 371159 

ATGTNNTAKR 103 124 376 64 55 3 0 615961 

ATTGNNTAKR 137 158 305 57 42 6 1 474064 

mean 165.38 196.583 353.54 70.5833 55.458 8.3333 1.25 521299 

S.D 102.75 122.058 93.732 24.7402 20.915 5.522 1.67462 112360 

z-score for 

pbxhox 
3.86 3.84 2.72 3.65 3.61 1.57 3.43 0.082 

p-value 
0.00006

4 

0.00006

4 
0.0033 0.0001 0.0002  0.0003  

 

Table 5.1. Enrichment for Pbx-Hox motifs in different CNE sets and control sequence 

sets. The frequency of strict consensus Pbx-Hox (-KR) motifs is compared to those of 

shuffled variants across a number of different CNE sets, from which z-scores for 

enrichment of Pbx-Hox motifs are derived, with corresponding p-values. HB: hindbrain, 

BA: branchial arch, CN: cranial nerve.    
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CNEs with Pbx-Hox motifs frequently drive reporter expression in the hindbrain 

and pharyngeal arches 

 

As the elements of the C15orf41 contig contained conserved Pbx-Hox motifs and drove 

segment-specific reporter expression in the hindbrain and pharyngeal arches, consistent 

with many other previously characterised Hox enhancers that contain Pbx-Hox motifs, I 

wished to test whether Pbx-Hox motifs predict CNEs with these domains of reporter 

expression. To do this, I assayed 21 CNEs containing Pbx-Hox motifs for reporter 

expression in zebrafish, comprising 11 CNEs that are conserved in lamprey and 10 that 

are conserved across gnathostomes but not in lamprey. These elements were selected 

according to two criteria: firstly, that they represented a number of different gene 

regions, and secondly, that they had multiple Pbx-Hox and Meis sites - similar to the 

elements from the C15orf41 contig. A list of CNEs assayed is found in the Appendix.  

 

12 of these 21 elements up-regulated consistent patterns of reporter expression, 

consisting of 8 from the lamprey set and 4 from the gnathostome set. Remarkably, 11 of 

the 12 GFP-expressing elements (91.6%) drove expression either in the hindbrain, 

pharyngeal arches or both, with one element expressing in the trunk musculature 

(Figure 5.5). The expression patterns driven by these elements are in keeping with the 

endogenous expression patterns of the genes with which they are associated. In support 

of the hypothesis that these elements are directly regulated by specific Hox proteins, 

which have segmentally-restricted expression patterns, the majority of the elements 

expressing in the hindbrain do so in particular rhombomeres, as shown by comparison 

with r3r5 RFP expression (Figure 5.5). Interestingly, whilst in some cases the 

rhombomere-specific expression is seen across the whole rhombomeric domain, such as 

for Evi_40224 and Meis2_3299, in many cases reporter expression is limited dorso-

ventrally (for instance, Tshz3_43509) or medio-laterally (for instance, Pax2_217). 
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Figure 5.5. Pbx-Hox motifs predict segment-specific hindbrain and pharyngeal arch 

reporter expression. a-r, elements from the lamprey (a-j,m,o,q) and jawed vertebrate 

CNE sets (k,l,n,p,r) drive GFP expression either in the hindbrain – elements 

Evi1_40224 (a,b), Tshz3_43509 (c,d), NR2F2_27254 (e,f), Pax2_217 (g, dorsal view: 

h), Tshz3_24804 (m), Nkx6-1_4281 (k,l), BCL11A_2554 (r) – in the pharyngeal arches 

- TshZ3_24805-6 (o), FoxP1_886 (p) - or in both - ZNF503_32799 (i,j), Pax9_2099 (n). 

Expression in the hindbrain is often restricted to certain rhombomeres, as shown by 

comparison with r3r5 RFP expression (b,d,f,h,j,l). Tshz3_24807 drives expression in 

the trunk musculature (q). Arrowheads: hindbrain expression, arrows: pharyngeal arch 

expression. 24hpf embryos: c,d; 54hpf embryos: a,b,e,f,i,j,q; 78hpf embryos: 

g,h,k,l,m,n,o,p,r. 

To address the association between Pbx-Hox motif presence and reporter expression in 

the hindbrain across a larger set of functionally characterised CNEs, we next examined 

functional data from the Enhancer Browser (EB) database (Pennacchio et al, 2006) 

(Bioinformatic analysis performed by Dr. P. Pichinnelli and Dr. G. Elgar). We found 

significant enrichment for the KR motif in those elements annotated as hindbrain 
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positive (64 motifs in 112kb) compared with those with no hindbrain annotation (85 in 

238kb) (p=0.0042) (Table 5.1). We then looked only at those sub-regions within EB 

enhancers that align directly with CNEs. Within these conserved regions, there was 

more than two-fold enrichment for the stringent Pbx-Hox motif (30 occurrences in 

24990bp of HB+ elements compared with 32 occurrences in 60341bp of HB- elements; 

p=0.001). We also analysed a smaller dataset from the cneBrowser set 

(http://bioinformatics.bc.edu/chuanglab/cneBrowser), which contains evolutionarily 

conserved enhancers associated with genes expressed in forebrain and hindbrain during 

zebrafish development. Although only 18 of 146 enhancers are annotated as hindbrain 

positive, 7 out of a total of 17 identified KR motifs reside in hindbrain positive 

enhancers (p=0.0003) (Table 5.1).  

 

CNEs with Pbx-Hox motifs are associated with genes that are likely to be regulated 

by Hox factors 

(The bioinformatic data was obtained by P. Piccinelli) 

Whilst conserved Pbx-Hox motifs have a widespread distribution across the CNEs of 

many different genes, certain gene regions are more enriched for these motifs than 

others (Table 5.2).  We analysed the distribution of Pbx-Hox motifs across CNEs of 

different genes within the CNE set, to ask whether genes with the greatest enrichment 

for Pbx-Hox motifs in their CNEs are known to interact with Hox factors during 

development or have roles in hindbrain or pharyngeal arch patterning. 
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Gene region Number of Pbx-Hox 
motifs in CNEs 

Total length of CNEs 
from gene region /kb 

p-value  

ZNF503 * 36 27.781 0.00E+00 

TSHZ3 29 23.323 0.00E+00 

TSHZ1 16 10.351 0.00E+00 

ZNF703 8 2.991 0.00E+00 

GLI3 8 3.432 9.10E-15 

IRX2 21 23.981 1.08E-12 

MAF 11 7.334 3.77E-11 

ESRRB 7 4.537 2.47E-10 

NKX6-1 * 10 6.853 3.11E-10 

NR2F2 16 18.99 4.28E-10 

POU3F2 6 3.297 4.90E-10 

HOXD9 16 17.77 4.37E-09 

IRX5 27 37.059 1.46E-08 

PBX3 16 17.886 1.58E-08 

SALL3 12 11.405 2.87E-08 

EVI1 * 6 4.015 8.14E-07 

SOX14 6 4.286 1.83E-06 

MEIS1 9 9.298 3.60E-06 

FOXP1 12 15.857 1.69E-05 

PRDM16 4 3.736 2.21E-05 

TSHZ2 * 7 7.221 2.47E-05 

MEIS2 * 16 24.553 2.92E-05 

POU6F2 4 3.103 6.94E-05 

NR2F1 16 25.655 7.37E-05 

PAX5 2 1.05 7.86E-05 

SHOX2 8 7.615 9.07E-05 

PAX9 4 3.217 1.19E-04 

OTP 8 8.986 1.97E-04 

MAB21L2 * 6 5.733 3.54E-04 

ESRRG 8 8.743 3.86E-04 

BCL11A 10 13.643 4.34E-04 

ATBF1 * 6 7.514 9.66E-04 

EMX2 7 8.736 1.10E-03 

EBF1 4 4.032 2.14E-03 

ZFHX1B 13 23.275 3.52E-03 

PAX6 4 4.913 4.37E-03 

ZIC1/4 * 6 8.332 4.76E-03 

SATB1 5 5.558 5.87E-03 

TCF7L2 7 11.045 6.52E-03 

 

Table 5.2. Distribution of Pbx-Hox +ve CNEs across Condor gene regions. The 40 

Condor gene regions from the human genome with the most significant enrichment for 

Pbx-Hox (TGATNNATKR) motifs within their CNEs are listed. For each gene region, 

the number of Pbx-Hox hits within the CNEs is compared with the average number of 

hits within 1000 equivalent sets of control CNEs generated by a zero-order Markov 

model, generating a   p-value for enrichment for Pbx-Hox motifs in the CNEs compared 

to controls (using a z-test). This controls for the influence of the different numbers of 

CNEs between gene regions. Some gene regions contain clusters of genes, for 
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instance ‘IRX5’ contains the genes irx3, irx5 and irx6, ‘IRX2’ contains irx1, irx2 and irx4, 

and ‘HOXD9’ contains the HoxD cluster, including Cdx2 and Lunapark, so CNEs within 

these regions may not necessarily regulate the gene after which the cluster is named. 

Gene names with asterisks beside them indicate that these genes were shown by 

micro-array experiments to be influenced by hoxB1 in r4 of zebrafish or mouse 

embryos (Rohrschneider et al., 2007; Tvrdik & Capecchi, 2006). 

In keeping with their well characterised roles as Hox co-factors, and their essential 

contributions to hindbrain patterning, we find pbx3 and meis2 to be amongst those genes 

with the highest enrichment Pbx-Hox motifs in their CNEs. Many of the other genes 

with high enrichment for Pbx-Hox motifs in their CNEs have characterised roles in 

anterior-posterior (A-P) head patterning and show segment specific patterns of 

expression during development. For instance, the znf503/703 (nlz1/nlz2) zinc-finger 

proteins are essential for specification of rhombomere 4 (Hoyle et al., 2004; Runko & 

Sagerström, 2003). The iroquois (irx) genes, which exist in clusters in vertebrate 

genomes (Gómez-Skarmeta & Modolell, 2002), show rhombomere-specific expression 

in the hindbrain in mouse (Bosse et al., 1997) and zebrafish embryos (Lecaudey et al. 

2005) with irx1 and irx7 interacting with Hox factors during the formation and 

specification of r1-4 in zebrafish (Stedman et al., 2009). The orphan nuclear receptors 

NR2F1/2 (COUP-TF1/2) are negative transcriptional regulators that modulate the 

retinoic acid signalling pathway (Chung & Cooney, 2003), which has a key role in A-P 

patterning of the hindbrain and pharyngeal arches, partly through influencing the 

expression of Hox genes (Pereira et al., 2000). The members of the Teashirt protein 

family (tshz1,2 and 3) show segment-specific hindbrain expression (Santos et al., 2010), 

tshz1 being essential for segmentally restricted gene expression in the hindbrain and 

pharyngeal arches of frog and mouse (Koebernick et al., 2006; Coré et al., 2007). In 

Drosophila, Teashirt has even been suggested to be a Hox co-factor (Robertson et al., 

2004), however no instances of co-operative binding have been characterised (Taghli-

Lamallem et al., 2007). Thus, the distribution of CNEs with Pbx-Hox motifs across 

different gene regions is consistent with them playing roles in Hox-dependent patterning 

mechanisms during development. 

 

Genes with Pbx-Hox +ve CNEs overlap with characterised Hox targets in r4 

 

There is good agreement between the genes highlighted by our in-silico binding-site 

search and by micro-array screens for downstream targets of Hoxb1 in rhombomere 4 of 
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zebrafish (Rohrschneider et al., 2007) and mouse (Tvrdik & Capecchi, 2006) (Table 

5.2). Specifically, the expression levels of znf503, tshz2, evi1, zic4 (within gene region 

„zic1‟ in Condor), shox, meis2.1 and foxd3 are decreased upon knock-down of hoxB1 in 

zebrafish, with znf503, nkx6-1, atbf1, mab21l2 and phox2b down-regulated in hoxB1-/- 

mouse embryos. Accordingly, the CNEs around each of these genes contain Pbx-Hox 

motifs and in the majority of cases show enrichment for these motifs relative to control 

sequence sets (Table 2, Appendix). However, not all the genes identified in the 

microarray screens are highlighted by our motif search. The differences arise because 

many of the genes in the microarray screens do not have CNEs associated with them; 

furthermore, the focus of the screens is restricted to hoxB1 in r4, whilst our search is 

also likely to identify Pbx-Hox motifs that are regulated by other Hox factors in 

different embryonic domains. Additionally, microarray approaches are unable to 

differentiate between direct and indirect effects of Hox perturbation, whereas our Pbx-

Hox motifs predict direct interactions. Nevertheless, both of the microarray datasets 

support our prediction that Pbx-Hox motifs in CNEs represent direct regulatory links 

between Hox genes and their targets during development.   

  

CNEs with Pbx-Hox motifs contain other relevant TFBS motifs 

 

The finding that genes with the highest enrichment for Pbx-Hox motifs in their CNEs 

frequently have roles in hindbrain or pharyngeal arch patterning, or are known to 

regulate or be regulated by Hox factors during development, hints that these genes may 

function in common GRNs and thus might also regulate each other. It is possible to 

address this by searching for TFBS motifs of these factors within Pbx-Hox +ve CNEs.  

 

As an initial study into the feasibility of searching for other motifs within Pbx-Hox +ve 

CNEs, the 10 characterised lamprey CNEs that drove reporter expression in the 

hindbrain (Meis2_3285, Meis2_3288, Meis2_3299, Meis2_329X, Evi1_40224, 

Tshz3_43509, NR2F2_27254, ZNF503_32799, Tshz3_24800, Pax2_217) were scanned 

for NR2F1 motifs that are conserved across gnathostomes and lamprey, using the motif 

scan function of Jaspar (Bryne et al., 2008) with stringent parameters (relative profile 

score threshold of 80%). The NR2F1 motif was chosen for this search because the 

NR2F1 gene is expressed in the developing hindbrain, so is likely to play a role in the 

GRN for hindbrain patterning and therefore may regulate some of these elements. 

Further, this gene has a well characterised TFBS motif in the Jaspar core database 
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(Bryne et al., 2008). Interestingly, two CNEs were identified that contained conserved 

14bp NR2F1 motifs:  NR2F2_27254 (shown in figure 5.6), which contained two 

conserved motifs, and Tshz3_43509, with one conserved motif.  

 

 

Figure 5.6. The lamprey CNE NR2F2_27254 contains conserved NR2F1 motifs. a 

multiple alignment of NR2F2_27254 orthologous sequences from gnathostomes and 

lamprey, with conserved Pbx-Hox (blue), meis (green) and NR2F1 (purple) motifs 

highlighted. b Sequence logo representing the binding preference of NR2F1 (Kimura et 

al., 1993).     

These high scoring, conserved motifs suggest that Pbx-Hox +ve CNEs that drive 

expression in the hindbrain may also be regulated by other factors that are themselves 

regulated by Pbx, Hox and Meis. This would be consistent with a „recursively wired‟ 

gene-regulatory network for hindbrain development. However, it should be noted that 

the NR2F1 motif used for this search also represents the DNA binding specificity of 

other nuclear hormone receptors, which often recognise sequences consisting of 

repeated AGGTCA motifs (Mangelsdorf et al., 1995). Nevertheless, as many of these 

other receptors are also involved in retinoic acid signalling (some of which also have 
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CNEs with Pbx-Hox motifs – e.g. EsrrB, EsrrG (Table 5.2)), it is likely that the 

presence of these motifs signifies that these enhancers are regulated by retinoic acid 

signalling as part of a hindbrain GRN.   

 

Pbx-Hox motifs are retained between duplicated CNEs 

 

Due to the two rounds of whole genome duplication that took place early in the 

vertebrate lineage (2R) (Putnam et al., 2008), as well as the teleost-specific whole 

genome duplication (Jaillon et al., 2004), there are a number of families of duplicated 

CNEs, which are a useful resource for investigating the evolutionary fate of duplicated 

cis-regulatory elements (McEwen et al., 2006; Woolfe & Elgar, 2007). Within our CNE 

set, the 2R duplicates are referred to as dCNEs, whilst the teleost-specific duplicates are 

referred to as co-orthologs.  These duplicated CNEs have previously been the focus of 

studies characterising their sequence and functional divergence upon duplication, 

revealing patterns of both retention and divergence of function between dCNEs 

(McEwen et al., 2006) and patterns of sequence divergence consistent with sub-

functionalisation in co-orthologs (Woolfe & Elgar, 2007). However, the insights from 

these studies are limited by their focus on CNEs that have not been characterised at the 

level of TFBS motifs.  

 

The presence of Pbx-Hox motifs within a number of duplicated CNEs enables a more 

detailed, binding-site-specific, characterisation of CNE divergence upon duplication, 

with the potential to link sequence divergence in TFBS motifs with changes in reporter 

expression driven by duplicated enhancers. An example of this approach is a study 

focusing on cis-regulatory elements controlling expression of duplicated hoxa2 genes in 

teleosts (Tümpel et al., 2006). Whilst the authors found the majority of TFBSs that had 

been characterised in mouse to be alignable between both fugu gene regions, they were 

able to attribute differences in expression patterns between the paralogous fugu genes to 

a small number of nucleotide changes within these TFBSs, providing insight into cis-

regulatory evolution. With a larger number of duplicated cis-regulatory elements at our 

disposal, it is possible to perform a similar study in a more systematic manner. 

 

As a starting point, three CNE families were selected for in-silico analyses. These 

families were chosen as they each contain one of the CNEs for which there is clear 

functional data in zebrafish: Meis2_3299, Evi1_40224 and Tshz3_43509. For each 
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family the following questions were asked: are Pbx-Hox motifs (conforming to the 

TGATNNAT consensus) and Meis motifs (TGACAR) conserved between duplicated 

CNEs? Do different positions of the motif show different frequencies of conservation? 

Are some types of mutation more frequent than others?   

 

The three CNE families are:  3299, including CNE 3299 from meis2 and its dCNE 

associated with meis1; 40224, consisting of CNE 40224 from evi1 and its dCNE 

associated with prdm16; and the large 43509 family, comprising CNE 43509 from tshz3 

and its dCNE associated with tshz1, as well as its co-orthologs in Fugu (from tshz1.1, 

tshz1.2) and zebrafish (from tshz3a and tshz3b). Multiple alignments for these elements 

are shown in Figures 5.7-5.9 and divergence within Pbx-Hox motifs is represented in 

Table 5.3. 

 

In the majority of cases (10/12) Pbx-Hox motifs from duplicated CNEs can be aligned, 

with the core Pbx-Hox motif - TGATNNAT – being conserved in 6 out of these 10 

cases. Inspection of the alignments reveals that the rest of the CNE has often diverged in 

sequence between duplicates, whilst the Pbx-Hox motifs have been retained, suggesting 

that they are of crucial importance for the functionality of their enhancers.  

 

Table 5.3 documents the conservation of nucleotides at the different positions within the 

ten alignable, duplicated Pbx-Hox motifs. Positions 5, 9 and 10 exhibit the highest 

frequencies of mutation between duplicates, whilst positions 2-4 show no instances of 

mutation. This is in accordance with characterised Pbx-Hox binding sites, where 

„variable‟ positions 5, 6, 9 and 10 have less stringent nucleotide specificity than the 

„fixed‟ positions 1-4 and 7-8. This further supports the notion that these sites are indeed 

bona fide Pbx-Hox sites. Interestingly, there is relatively little divergence at position 6, 

either between paralogous elements or between orthologs, whilst position 5 has more 

frequent divergence (Table 5.3).  
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Type of 

duplicates 
Motif comparison 

1 2 3 4 5 6 7 8 9 10 

T G A T N N A T N N 

dCNEs 
3299_PH1 

Meis2 vs Meis1 
C C C C D C C D C D 

dCNEs 
3299_PH2 

Meis2 vs Meis1 
D C C C D D C C C D 

dCNEs 
40224_PH1 

Evi1 vs Prdm16 
C C C C D C C C D C 

dCNEs 
40224_PH2 

Evi1 vs Prdm16 
C C C C D C C C D D 

dCNEs 
43509_PH2 

Tshz3 vs Tshz1 
C C C C D C C C C C 

dCNES 
43509_PH3 

Tshz3 vs Tshz1 
C C C C C C C C D C 

Co-orths 

43509_PH2 

fugu Tshz1.1 vs 

fugu Tshz1.2 

C C C C D C C C C C 

Co-orths 

43509_PH3 

fugu Tshz1.1 vs 

fugu Tshz1.2 

C C C C C C C D C C 

Co-orths 

43509_PH1 

zfishTshz3a vs 

zfish Tshz3b 

C C C C C D D C C D 

Co-orths 

43509_PH2 

zfishTshz3a vs 

zfish Tshz3b 

D C C C C C C C C D 

Occurances of divergence 2 0 0 0 6 2 1 2 3 5 

Table 5.3. Conservation of Pbx-Hox motifs between duplicated CNEs. The 

conservation (C) or divergence (D) between duplicated elements is tabulated for each 

position (1-10) of aligned Pbx-Hox (PH) motifs from duplicated (dCNEs) and co-

orthologous (co-orths) CNEs shown in figures 5.7-5.9. Positions are considered 

conserved if they are conserved between each pair of paralogous CNEs from the 

alignment. Positions that were conserved between paralogous elements from one 

species but not between paralogous elements of another species were considered 

divergent.   

There are some instances where mutations have occurred in the „fixed‟ positions. 

Notably, there are two instances of nucleotide change at position 1 (PH2 of meis1 

elements from the 3299 family and PH2 of zebrafish tshz3a from the 43509 family), 

both involving mutation from T to A, in which case the site is likely to retain its ability 

to be bound by a Pbx-Hox complex (examples of functional Pbx-Hox sites with A at 

position 1 include the mouse hoxB1 r4 enhancer repeat 1 (Pöpperl et al., 1995) and the 

fly fkh250 enhancer (Ryoo & Mann, 1999). There are also two separate instances of 

mutations at position 8 from T to C (PH1 of zebrafish and Fugu meis1 elements from 

the 3299 family and PH3 of the Fugu tshz1.1 element from the 43509 family). In both 

cases the rest of the site still conforms to the Pbx-Hox motif, suggesting these sites may 

still be constrained. In the case of the meis1 element, the mutation of position 8 from T 

to C occurred in the teleost lineage prior to the divergence of Fugu and zebrafish, as this 

same mutation is also found in medaka (not shown). 
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On the whole, Meis motifs are also conserved between duplicated CNEs, but, as is 

sometimes seen between orthologous CNEs from different species (for instance M1 in 

the zebrafish Meis2_3299 element), they can shuffle in position relative to the Pbx-Hox 

site. This shuffling is seen with M2 of CNE3299 between meis1 and meis2 dCNEs.  

 

Figure 5.7. Patterns of retention of Pbx-Hox and Meis motifs between dCNEs I. a-b 

multiple sequence alignment of CNEs orthologous to Meis2_3299 and their paralogs 

associated with meis1 (a), and CNEs orthologous to Evi1_40224 and their paralogs 

associated with prdm16 (b) from gnathostomes, with the homologous lamprey 

elements included for comparison. Pbx-Hox (blue) and Meis (green) motifs are 

highlighted. Deviations from the canonical Pbx-Hox motif that are likely to reduce 

binding affinity are also highlighted (red).  
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Figure 5.8. Patterns of retention of Pbx-Hox and Meis motifs between dCNEs II. 

Multiple sequence alignment between orthologous sequences of Tshz3_43509 and 

their paralogs associated with Tshz1 from gnathostomes, with a lamprey homolog 

included for comparison. Pbx-Hox (blue) and Meis (green) motifs are highlighted, as 

are deviations from consensus motifs likely to reduce binding affinity (red).  
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Figure 5.9. Patterns of retention of Pbx-Hox and Meis motifs between co-orthologous 

CNEs. a multiple sequence alignments of human and zebrafish tshz1_43509 

sequences, with two co-orthologous fugu sequences. b multiple alignment of human 

tshz3_43509 with its homolog in lamprey and two co-orthologous zebrafish sequences. 

Pbx-Hox (blue) and Meis (green) motifs are highlighted as well as deviations from the 

motif consensus sequences that are predicted to reduce binding affinity (red). 

 

Discussion 

 

CNEs of the C15orf41 contig  

 

The CNEs of the C15orf41 contig were chosen as a starting point for functional 

dissection due to their clear and specific expression patterns in the zebrafish co-injection 

assay. Their expression patterns in the tol2 assay are highly consistent with those from 

co-injection, despite these two assays using different minimal promoters, which can 

sometimes have an effect on enhancer expression (de la Calle-Mustienes et al., 2005; 

Gehrig et al., 2009). The generality of their expression patterns between different 
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reporter assays re-enforces the view that these CNEs represent tissue-specific 

developmental enhancers. Their expression domains are highly complementary and only 

partially overlapping, which is in keeping with the notion of cis-regulatory modules 

acting independently in specific domains to contribute to the overall expression pattern 

of their gene. 

 

The patterns driven by homologous zebrafish and lamprey elements in zebrafish are 

very similar, but also show notable differences. For instance, dr3299 expresses GFP in 

the hindbrain and neural crest, whilst pm3299 is restricted to the hindbrain. To assess 

the evolutionary significance of this, it is necessary to functionally test these elements 

by reporter assay in lamprey embryos (this is addressed in more detail in chapter 6). 

Comparing zebrafish and lamprey elements, it appears that the sequences responsible 

for generating the restricted reporter expression of the zebrafish elements are mostly 

conserved within the lamprey elements, such that they are still recognisable to the 

zebrafish transcriptional machinery. However, it is notable that for three of these 

elements, 3288, 3299 and 329X, the lamprey elements up-regulate GFP at a greater 

intensity than their zebrafish homologues. This may reflect „fine-tuning‟ in cis- and 

trans- within a lineage, such that elements drive less well regulated (more intense, 

broader) expression patterns when tested by heterologous reporter assay. This could also 

be further investigated by testing these elements in a lamprey reporter assay.  

 

The functional dissection of dr3299 and dr3285 show that phylogenetic footprinting can 

be applied to CNEs to reveal motifs that are crucial for their enhancer function. The 

expression pattern driven by dr3299 in r3-4 of the hindbrain is highly consistent with 

data from other cis-regulatory elements that contain Pbx-Hox sites and drive 

rhombomere-specific reporter expression patterns. However, the expression pattern 

driven by dr3285, particularly the expression in cranial ganglia, is hard to explain by 

Hox regulation, as Hox factors are not expressed in the trigeminal ganglion. It could be 

that the Pbx-Hox motif is indeed bound by Pbx and Hox factors and contributes to 

expression in the more posterior cranial ganglia, the hindbrain or the spinal cord. It is 

also possible that this site is bound by a heterodimer consisting of Pbx and an orphan 

Hox factor that is expressed in the cranial ganglia (for instance, Tlx (Andermann & 

Weinberg, 2001). Alternatively, this site may resemble a Pbx-Hox site but is actually 

bound by other factors. Pbx-Meis heterodimers have been shown to recognise such 

sites, raising the possibility that these factors bind to this site, possibly facilitating the 
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binding of other factors to neighbouring sites. Thus, whilst the expression pattern and 

motif requirements of dr3299 are highly consistent with it being regulated by trimeric 

complexes consisting of Pbx, an anterior Hox factor, and Meis, the factors regulating 

the expression pattern of dr3285 are less clear. 

 

The finding that all four of the elements of the C15orf41 contig that drive GFP 

expression contain conserved Pbx-Hox and Meis sites is intriguing. It is possible that 

this has a functional significance, with the proximity of these elements to each other 

contributing to or being the product of a more global regulatory mechanism involving 

these motifs. Alternatively, the clustering of these elements with similar TFBS motifs 

may be an outcome of how they arose in the genome (e.g. Cameron & Davidson, 2009). 

The hypothesis that these elements „interact‟ with each other in some way during gene 

regulation could be addressed by functionally testing the whole contiguous genomic 

region by reporter assay.  

  

Identification of motifs in CNEs 

 

The strong enrichment for Pbx-Hox motifs within CNEs suggests that many of these 

elements operate through TFBSs of the type that have been characterised previously, 

rather than through some hitherto unknown mechanism of action. Furthermore, the 

identification of a common motif within CNEs hints that a regulatory language within 

CNEs may be interpretable and that it could also be applicable to other, less well 

conserved cis-regulatory elements. Recent „bottom-up‟ efforts to identify motifs within 

groups of tissue-specific enhancers have succeeded in generating sets of motifs that can 

be used to predict the expression patterns of other CNEs that are conserved between 

mammals (Narlikar et al., 2010) or between gnathostomes (Li et al., 2010). The motifs 

identified in these studies often match characterised binding profiles of developmental 

transcription factors, strengthening the case for CNEs containing an interpretable cis-

regulatory code composed of „conventional‟ TFBS motifs. The success of these bottom-

up approaches, particularly the finding that Pbx-Hox motifs are clearly enriched within 

multiple different sets of CNEs, raises the question of how they had not been identified 

previously by top-down, de-novo motif search strategies (this issue is confronted in 

chapter 7).  
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We have managed to show enrichment for Pbx-Hox motifs within CNEs through two 

complementary approaches – firstly, identifying conserved instances of the core Pbx-

Hox motif within CNE multiple alignments; and secondly, scanning CNE sequences 

from one species, using the more stringent –KR motif. The footprinting (alignment) 

approach gains stringency by searching for evolutionarily conserved motif hits, which is 

appropriate for the Pbx-Hox core motif as positions 1-4 and 7-8 are relatively invariant 

across characterised binding sites. The strong signal that this approach can provide is 

demonstrated by the high degree of enrichment for Pbx-Hox motifs within the test sets, 

particularly using the more divergent lamprey sequences, compared to shuffled 

alignment control sets. However, the requirement for multiple alignments reduces the 

size of the search set (as not all CNEs are found to be conserved in all gnathostome 

genomes, particularly for the teleosts (Venkatesh et al., 2006)). Additionally, the 

requirement for motif hits to be positionally conserved within alignments prohibits the 

identification of TFBSs that have shuffled within CNEs. Thus, the increased enrichment 

signal provided by conserved motifs may be offset by an overall reduction in the 

number of motifs identified. Searching within CNEs of only one species enables a larger 

sequence set to be used and identifies motifs that may have changed position within 

other species, however this may also increase the number of false-positive hits and 

decrease the strength of the enrichment signal. To counteract this, we used the more 

stringent –KR motif when searching CNE sets composed of sequences from one 

species. The motif hits that these two approaches identified are likely to overlap 

considerably, yet each approach is also likely to have identified some motifs that the 

other approach did not. Finally, it is probable that there are Pbx-Hox TFBSs within 

CNEs that these search approaches failed to predict, such as those that may conform to 

the AGATNNAT motif – this highlights the balancing-act in TFBS prediction between 

maximising positive hits whilst minimising false-negatives.  

 

In testing for the enrichment of motifs within CNEs, the approach should be designed 

based on prior knowledge of the motifs in question. It is likely that Pbx-Hox TFBSs 

represent a class of TFBS with motifs that are amenable to identification using strict 

consensus searches – they seem to be highly invariant within the core region and they 

appear to shuffle within CNEs relatively infrequently (as seen by their conservation 

between duplicated CNEs compared to that of meis motifs). Other TFBSs may be 

enriched within CNEs but might be harder to identify using strict consensus motifs and 
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evolutionary conservation, as their motifs may be more variable and may shuffle more 

frequently within CNEs (these issues are elaborated upon in Chapter 7). 

 

It is important to appreciate the role that phylogenetic footprinting played in the initial 

discovery of Pbx-Hox motifs within the meis2 CNEs. The inclusion of lamprey CNEs in 

the multiple sequence alignments stripped away many of the conserved positions within 

these CNEs, making the conserved Pbx-Hox and Meis motifs stand out upon manual 

inspection. This was crucial for their identification, as these motifs are not represented 

in the JASPAR TFBS motif database, so they were not identifiable by a systematic 

search for known motifs using JASPAR. Thus, deep sequence conservation within 

CNEs enables the identification of potentially important motifs without relying upon 

TFBS motif databases that represent only a modest proportion of factors. 

 

Finally, in the introduction it was mentioned that a systematic search for Pbx-Hox 

motifs within vertebrate CNEs had not been performed before, despite these motifs 

being ideal for such a search. However, a study by Ebner et al. (2005) scanned the 

Drosophila genome for instances of the consensus Exd-Lab motif 

(TGATGGAT(T/G)G) accompanied within 40bp by a Hth motif (CTGTCA). Despite 

identifying 30 putative binding sites, only two were situated within 10kb of genes that 

had expression consistent with that of lab, one of these genes being lab itself. The 

expression of the novel putative lab target was subsequently shown to be regulated by a 

non-canonical Exd-Lab site, and not by the predicted site. This led the authors to 

conclude that the consensus Lab-Exd-Hth binding sequences are not sufficient to 

identify lab target genes, suggesting that in-vivo Hox binding-sites might be more 

divergent than anticipated and that the stringency of their motif search was probably too 

high. In light of our findings from vertebrate CNEs, it would be interesting to perform a 

search strategy similar to ours in Drosophila CNEs to investigate whether they contain 

the same degree of enrichment for canonical Pbx-Hox motifs. 

 

Pbx-Hox motif association with hindbrain and pharyngeal arch expression  

 

The aim of our bottom-up strategy for TFBS motif discovery was not solely to identify 

enriched motifs within CNEs, but to use these motifs as predictors of CNE function, 

thereby gaining broader insights into the roles of CNEs in vertbebrate development and 

evolution. From previous studies, the Pbx-Hox motif is strongly associated with 
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segment-specific reporter expression in the vertebrate hindbrain and pharyngeal arches. 

This association is also borne out in the meis2 CNEs of the C15orf41 contig. The 

expression patterns driven by Pbx-Hox +ve elements from the lamprey and gnathostome 

sets further support this correlation, as does reporter expression data from the EB and 

cneBrowser datasets. These patterns are consistent with the hypothesis that CNEs 

containing Pbx-Hox motifs are regulated by Hox factors during development, 

particularly by anterior Hox factors expressed in the developing vertebrate head. 

However, it is not clear whether this regulation is in the form of activation or repression, 

as it could conceivably be either – functional dissection of more CNEs would be 

informative in this regard. It is also not clear why these elements should only be 

regulated by anterior Hox factors in the head – other Hox factors bind as heterodimers 

with Pbx in-vitro (Chang et al., 1996), although more posterior factors are less 

dependent upon Pbx and Meis for DNA binding (Uhl et al., 2010), and anterior Hox 

factors are also expressed in tissues outside the head, such as the somitic mesoderm and 

axial skeleton. This bias for expression in the head may represent an increased level of 

complexity within the head compared to other tissues, thus leading to a greater number 

of enhancer elements, or elements with more complex organisation (therefore more 

likely to be conserved in sequence between gnathostomes). There may also be an 

ascertainment bias due to the developmental time-points at which expression was 

sought – perhaps some Pbx-Hox +ve CNEs function in other domains at later time-

points. Whilst our expression data suggest a correlation between Pbx-Hox motifs and 

hindbrain/pharyngeal arch expression, our results also show that not all CNEs with Pbx-

Hox motifs express in these domains.  

 

The association of Pbx-Hox motifs with genes that have characterised roles as Hox co-

factors, or that play key roles in Hox-dependent patterning processes, particularly of the 

hindbrain, is consistent with the hypothesis that Pbx-Hox motifs in CNEs represent gene 

regulatory interactions between hox factors and their targets, and is in keeping with the 

observed reporter expression patterns of Pbx-Hox +ve CNEs. The finding that some of 

these genes have also been identified through microarray studies as being influenced by 

HoxB1 in r4 provides further support that Pbx-Hox motifs in CNEs can predict Hox-

dependent enhancers. However, many of the genes with CNEs enriched in Pbx-Hox 

motifs also play crucial developmental roles in other embryonic domains, such as the 

tshz genes in patterning the axial skeleton - a role which is also likely to involve being 

regulated by Hox factors. Thus, whilst many of the Pbx-Hox motifs identified in CNEs 
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may well be involved in Hox-dependent head patterning, some may contribute to other 

Hox-dependent patterning networks.   

 

A gene regulatory network for hindbrain patterning is conserved across 

vertebrates  

 

The conservation of a significant number of Pbx-Hox +ve CNEs in sea lamprey, and the 

expression patterns that many of them drive in the hindbrain and pharyngeal arches, 

suggest that aspects of a GRN for hindbrain patterning are conserved across all 

vertebrates (this topic is dealt with further in chapter 6). These CNEs suggest essential – 

and, in some cases, previously unappreciated - roles for tshz3, znf503, nr2f2, meis2 and 

evi1 in vertebrate hindbrain patterning and highlight the important role that Pbx-Hox 

TFBS prediction can play in identifying new HOX target genes.  

 

Importantly, whilst Pbx, Hox and Meis are predicted to play key roles in the regulation 

of these CNEs, their motifs do not explain all of the conserved regions within these 

CNEs, suggesting that other factors within the hindbrain GRN also play a role in 

regulating these elements. As GRNs are likely to be „recursively wired‟, with kernels in 

the network consisting of a number of factors that all regulate each other (Davidson, 

2006), it is probable that many of the genes with Pbx-Hox motifs in their CNEs interact 

with each other, with Pbx-Hox +ve CNEs representing many of the links within this 

network. Such „cis-regulatory embraces‟ have already been uncovered between Hox 

factors and other contributors to the hindbrain patterning network, such as krox-20 and 

rarb (Serpente et al., 2005). More evidence for this model could be gained through 

systematic scanning of CNEs for relevant TFBS motifs, however this is limited by the 

paucity of characterised PWMs for these factors. It could be the case that binding-site 

motifs for some of these hindbrain patterning factors may significantly co-occur within 

certain CNEs. In which case, grouping CNEs according to function and to the presence 

of certain motifs (ie. Pbx-Hox, Meis), coupled with de-novo motif prediction, could be a 

useful approach to identify new motifs and possible patterns of co-occurance for factors 

involved in the hindbrain GRN.  

 

The identification and characterisation of other motifs within Pbx-Hox +ve CNEs, 

coupled with testing them by reporter assay, could also refine predictions of CNE 

expression patterns. Furthermore, co-occurrence of multiple heterotypic motifs could 
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ultimately be used as a method to search genome-wide for Hox-regulated hindbrain 

enhancers without having to rely upon sequence conservation. This could facilitate the 

identification of new enhancers in gnathostomes, as well as providing a means for 

identifying homologous enhancers deeper in the chordate lineage (ie. in lamprey and 

amphioxus), through the identification of conserved signatures.  

 

Mechanism of CNE action 

 

Characterisation of enhancers has led to two different models of enhancer organisation, 

which have different expected evolutionary characteristics with regard to sequence 

conservation (Cameron & Davidson, 2009). „Billboard‟-type enhancers are relatively 

unrestricted with regard to the order and orientation of TFBSs, with functional output 

determined by the sum of transcription-factor input activities. Over large evolutionary 

time-spans the TFBSs within these enhancers can shuffle extensively, resulting in 

functional conservation despite sequence divergence. In contrast, „enhanceosome‟-type 

enhancers (based upon the interferon-β enhancer) serve as rigid assembly platforms for 

protein complexes, relying upon the precise composition, order, orientation and spacing 

of TFBSs, and resulting in high sequence conservation across large evolutionary 

distances (Merika & Thanos, 2001). Most enhancers are likely to lie between these two 

extremes. In this light, the deep evolutionary conservation of CNEs may reflect their 

action through the binding of large cohorts of transcription-factors in precisely ordered 

complexes and positions relative to one another.  

 

With respect to hox-responsive enhancers, the term „hoxasome‟ has been coined, 

describing protein complexes consisting of hox factors, their co-factors and other factors 

that contribute to the output of the enhancer (termed collaborators) (Mann et al., 2009). 

Naming these complexes specifically after hox factors reflects the crucial role for hox 

proteins in these complexes, as interfering with hox binding-sites frequently abrogates 

binding of the protein complex. Our data suggests that many CNEs could be considered 

to be hoxasomes. 

 

The prediction that Pbx-Hox +ve CNEs are regulated by Hox factors enables us to 

interpret the reporter expression patterns of these CNEs in terms of the expression 

domains of Hox factors. By doing so we can speculate over the mechanisms by which 

these CNEs integrate positional information from various factors. Some Pbx-Hox +ve 
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CNEs show broad expression patterns within the hindbrain domains of hox expression, 

consistent with them being bound by a Hox factor across this whole domain and it being 

able to up-regulate reporter expression in all the cells in which it is bound. More 

frequently, however, reporter expression is limited to only certain subsets of cells within 

the expression domain of a Hox factor, showing dorso-ventral and medio-lateral 

restriction. In these cases, what is the role of the Pbx-Hox complex? It may only 

activate expression when in the presence of collaborators, which also have restricted 

expression patterns. If this is the case, how do these factors interact and do they bind co-

operatively to the enhancer? Synthetic enhancers consisting of repeated Pbx-Hox 

binding-sites are able to drive robust and broad, but segment-specific, reporter 

expression (e.g. Pöpperl et al., 1995), suggesting that the role of the hox factors may be 

to provide relatively broad activation within particular A-P domains, which can then be 

sculpted by collaborating factors through repression. Many of the Hox-responsive 

enhancers that have been characterised so far drive reporter expression across whole 

rhombomeres, yet there are some examples of enhancers that integrate A-P Hox 

regulatory signals with D-V regulation (e.g. Samad et al., 2004).  

 

Another question relates to the tissue specificity of these enhancers – presumably other 

factors play roles in restricting or facilitating expression in certain tissues. Finally, it is 

conceivable that some Pbx-Hox binding-sites may act via repression. The set of Pbx-

Hox +ve CNEs that we have identified will be a useful resource for investigating the 

mechanisms by which enhancers determine Hox-specificity and tissue specificity, whilst 

integrating the anterior-posterior patterning information from Hox factors with dorso-

ventral and medio-lateral cues from other factors.  

 

Patterns of evolution of duplicated CNEs  

 

Based upon our selection of duplicated CNEs, Pbx-Hox motifs appear to be frequently 

conserved between duplicates. The conservation seen for the invariant positions of the 

Pbx-Hox motif is in keeping with the essential roles of these positions in binding of the 

Pbx-Hox heterodimer. Whilst nucleotides at „variable‟ positions 5, 9 and 10 were seen 

to frequently differ between duplicates, as well as between orthologs, position 6 

appeared to be more constrained. This is interesting, because it can contain A, T or G in 

different CNEs, but the identity seems to be constrained between homologous elements. 

Whilst mutating the variable positions of a Pbx-Hox site might not prevent the Pbx-Hox 
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complex from being able to bind, these positions may still be important in determining 

the specific Hox protein that binds, so they could be under evolutionary constraint. This 

might imply a greater role for position 6 than position 5 in determining Hox specificity. 

Whilst mutations at position 6 alone have been shown to be able to alter Hox specificity 

in-vitro (Phelan & Featherstone, 1997) as have combined mutations at positions 5 and 6 

in-vivo (Chan et al., 1997), the relative contributions of positions 5 and 6 to Hox 

specificity have not been investigated. 

 

Of the motifs in which the invariant positions are divergent between duplicates, those 

with mutations at position 1 - from T to A - are likely to still be functional, as Pbx-Hox 

binding-sites of this type have been characterised previously. However, there are no 

examples in the literature of Pbx-Hox sites with C at position 8. Duplicated motifs in 

which this mutation has occurred are found twice in our selection of elements. In one of 

these, associated with meis1, this mutation is conserved between teleosts, with the rest 

of the motif adhering to the strict Pbx-Hox consensus motif, suggesting that it is still 

under heavy evolutionary constraint. It is possible that these mutations could still result 

in functional Pbx-Hox sites, or they might create a new binding-site for a different 

protein or protein complex.  

 

The study of Tümpel et al. (2006) found that duplicated Pbx-Hox TFBSs with 

mutations causing them to lose their segment specific expression functionality were 

nevertheless conserved across the rest of the motif, possibly mirroring the situation for 

some of the motifs described here. The authors suggested that those motifs may also 

have other, not previously characterised functions leading to their constraint. Assessing 

the enhancer function of the divergent elements described here could inform us whether 

this is a common phenomenon.  

 

In comparison to the Pbx-Hox motifs, the Meis motifs appear to show a greater 

propensity for shuffling between orthologous and paralogous CNEs. This may be due to 

the short binding-site for the Meis protein making it more likely that Meis sites can 

evolve afresh within a DNA sequence. In-vitro studies have suggested that the position 

and orientation of the Meis site relative to the Pbx-Hox site does not strongly influence 

formation of the Pbx-Hox-Meis complex on DNA (Jacobs et al., 1999). Nevertheless, it 

could be possible that the changes in the positions of Meis sites observed for some of 

these elements may have a functional significance in-vivo. 
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Investigating the functional ramifications of these patterns of sequence retention and 

divergence by reporter assay could be enlightening. As well as enabling the impact of 

naturally occurring mutations upon the function of Pbx-Hox TFBSs to be inferred, with 

the potential of refining the Pbx-Hox TFBS consensus motif, comparisons of expression 

patterns between duplicate pairs could inform us on the role that other TFBSs play in 

the function of these enhancers. For instance, it has been demonstrated that TFBSs 

neighbouring a Pbx-Hox site can influence the hox specificity of this site (Li et al., 

1999). Our duplicated Pbx-Hox +ve CNEs often show retention of the Pbx-Hox motif 

but divergence of the neighbouring sequences – the effect that this has on reporter 

expression patterns would be of great interest, in terms of both the mechanism of 

enhancer action and of cis-regulatory evolution.   

 

Another interesting question is whether the patterns of sequence and functional 

divergence between dCNEs are the same as those between the teleost co-orthologs. This 

could be informative as to whether the evolutionary processes acting upon duplicated 

CNEs were the same for the early genome duplications (2R) and later ones (e.g. teleost-

specific), or whether the evolutionary ramifications of whole genome duplication can be 

different depending upon the context of these duplications. For instance, one might 

speculate that aspects of the GRNs underlying vertebrate development may have been 

more pliable at the time when the first rounds of genome duplication took place, at the 

base of the vertebrate lineage. In which case, dCNEs may show a greater tendency for 

neo-functionalisation, forging new links in GRNs, whereas duplicated CNEs arising 

from the teleost-specific genome duplication may have found themselves in more rigid, 

hard-wired GRNs and thus might show a greater tendency for sub-functionalisation.  

 

The role of Pbx-Hox +ve CNEs in vertebrate evolution 

 

A complex head patterned by Hox factors is a key vertebrate innovation. We ascertained 

in chapter 3 that hundreds of CNEs can be found conserved between lamprey and 

gnathostomes, yet a larger number of gnathostome CNEs are not identifiable in 

lamprey. Looking deeper in evolutionary time to invertebrate chordates, only a very 

small fraction of gnathostome CNEs have been found. When this pattern of 

conservation is viewed in the context of the findings in this chapter, regarding the 

multitude of CNEs that are likely to be regulated by Hox factors and associated with a 
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GRN for head patterning, it evokes an evolutionary scenario in which many CNEs 

evolved early in the vertebrate lineage to co-ordinate a Hox-dependent GRN for head 

patterning. This scenario is discussed in more detail, with reference to lamprey and 

amphioxus hindbrain patterning, in the next chapter. 

 

Conclusion 

 

The lack of knowledge relating to the functions and mechanism of action of CNEs 

makes it difficult to place these elements within the context of GRNs. Whilst these 

elements are assumed to operate through the binding of TFs, little progress has been 

made in characterising TFBSs within them. I sought to identify TFBS motifs in CNEs 

by performing phylogenetic footprinting, leveraging the increased sequence divergence 

of the lamprey elements as a guide. I have discovered that various sets of vertebrate 

CNEs, defined by conservation across different evolutionary distances, are enriched for 

Pbx-Hox motifs. The sequences of these motifs, the patterns of expression driven by the 

CNEs containing them, and their association with particular genes are all consistent 

with the hypothesis that they are regulated by Hox factors, with an apparent bias toward 

hindbrain and head development. These findings show that many CNEs contain TFBSs 

of the type that have been characterised for other, less well conserved elements. They 

are consistent with the notion that CNEs are composed of complex arrangements of 

TFBSs. Importantly, the identification of these TFBS motifs suggests that there may be 

other enriched motifs within CNEs. Furthermore, the identified Pbx-Hox +ve CNEs 

provide an opportunity to investigate the cis-regulatory evolution of CNEs, as they 

enable the functional divergence of CNEs to be interpreted within the framework of 

conservation/divergence of well characterised TFBS motifs. The expression patterns of 

Pbx-Hox +ve CNEs suggest that many of these elements represent links in a GRN for 

hindbrain and head development, aspects of which are likely to be conserved across all 

vertebrates. Key questions include whether there are other TFBS motifs enriched within 

CNEs, and whether the cis-regulatory functions of CNEs tested in zebrafish can be 

generalised to their homologs across other species.    
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6 Development of a Lamprey Reporter Assay 

 

Abstract 

 

Many CNEs have been shown to function as developmental enhancers by reporter assay 

within their host species, yet the degree to which these CNEs have conserved functions 

between species is investigated less frequently. From another angle, it is not clear 

whether their gene-regulatory function can evolve in a lineage specific manner. These 

are important questions, as they can inform us on the extent to which CNEs reflect 

conserved gene regulatory networks between species, whilst enlightening us on the 

mechanisms underlying cis-regulatory evolution. This chapter describes the 

development of a reporter assay in lamprey embryos and its use to investigate the 

functional evolution of CNEs. The CNEs of the c15orf41 gene region are useful 

subjects for investigation in lamprey because I already have clues as to their mechanism 

of action. This enables me to correlate the reporter expression they drive in lamprey 

with the expression patterns of the factors that are predicted to be regulating them, thus 

placing them within the context of a gene regulatory network for hindbrain patterning. 

The patterns of functional divergence of these CNEs between lamprey and zebrafish are 

discussed, and a model linking Pbx-Hox +ve CNEs with the evolution of the 

gnathostome hindbrain is postulated.  

 

Introduction 

 

Do CNEs drive conserved expression patterns across lineages? 

 

The degree to which CNEs show lineage-specific expression patterns is unclear. Despite 

CNEs having high sequence conservation, it is conceivable that the expression patterns 

driven by orthologous CNEs in their respective species could be significantly different. 

The divergence in expression patterns driven by duplicated CNEs when tested in the 

same species indicates how similar sequences can have significantly divergent cis-

regulatory function (McEwen et al., 2006). As these duplicated CNEs were tested in the 

same species, the changes in expression pattern between them are due solely to 

differences in their sequences (changes in cis-). Between orthologous CNEs tested in 

their respective species these differences could be due to changes in both cis- and trans- 
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(the expression patterns or interactions between the transcription factors binding to 

CNEs, and the influence of the epigenetic machinery and cellular environment). There 

are three conceivable types of expression change that could happen between 

orthologous CNEs: 

 

1. Change of expression domain. Developmental programs for different tissues 

or characters can utilise common gene-regulatory sub-circuits or „plug-ins‟ 

(Davidson, 2006). A cis-regulatory element that is regulated by components of 

such a plug-in may have the potential to switch function to the development of a 

different character, through a relatively simple change in only one of its 

regulatory inputs.  

2. Gain or loss of expression domains. Multi-functional elements could gain 

additional domains of expression or lose some domains, whilst their other 

domains stay conserved. 

3. Modification of expression within a domain. In this case, orthologous CNEs 

would function in the development of the same morphological character, but 

would drive slightly different spatio-temporal expression.  

 

Another regulatory change could result in conservation of function between orthologs, 

with changes in cis- compensating for changes in trans-. Importantly, changes in cis- or 

trans- could conceivably account for each of these types of expression divergence. For 

some regulatory interactions it has been possible to tease cis- and trans- effects apart – 

for instance the binding of certain transcription factors in hepatocytes has been 

compared between human and mouse, revealing conservation in trans- but significant 

divergence in cis- (Odom et al., 2007; Wilson et al., 2008). For CNEs, this separation of 

cis- and trans- effects can be achieved by testing pairs of orthologous elements by 

reporter assay within and across species.  

 

An analysis of CNEs around the vertebrate iroquois gene clusters included assaying 

homologous CNEs from zebrafish and frog for reporter expression in their respective 

species (de la Calle-Mustienes et al., 2005).  Three pairs of CNEs were found that drove 

expression in both species, with the expression patterns in zebrafish and frog showing 

some agreement but also striking differences. For instance, one zebrafish element drove 

expression only in the forebrain in zebrafish embryos, whilst its counterpart from 

xenopus also drove expression in the midbrain and eye of frog embryos. The authors 
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suggested that differences in the assay methodologies (the zebrafish assay was very 

mosaic compared to the frog assay), in the embryos (the greater transparency of 

zebrafish embryos may reveal more reporter expression) and in the sequences of the 

CNEs (evolution in cis-) could each play a role. As they did not test any of the zebrafish 

elements in frog, nor the frog elements in zebrafish they were unable to gain insights 

into the relative roles of cis- and trans- evolution for these elements. 

 

Navratilova et al., (2009) have compared the expression patterns driven by human 

elements in zebrafish and mouse. Of six elements, associated with either Sox3 or Pax6, 

four gave essentially the same patterns in transgenic mice and zebrafish. These 

comparisons are confounded by the data being derived from independent investigations, 

with different lengths of sequence being used for the assays in each species. As flanking 

sequences may influence the expression pattern of a conserved enhancer, the inclusion 

or exclusion of these sequences could alter the overall pattern driven by an element. 

Nevertheless, comparison of the broad expression domains, such as particular regions of 

the developing brain, showed the human elements to behave reasonably similarly in 

zebrafish and mouse assays – suggesting that little evolution in trans- had occurred 

between mouse and zebrafish for the factors regulating these elements. The orthologous 

zebrafish elements were also tested in zebrafish, generally showing a concordance of 

expression pattern with the human elements in zebrafish. 

 

The expression patterns driven by orthologous CNEs from the human and amphioxus 

genomes were compared using reporter assays in mouse and amphioxus (Holland et al., 

2008). Orthologous CNE pairs were found to drive similar expression patterns in mouse 

embryos and were also able to up-regulate reporter expression in an amphioxus assay.  

However, the mosaicism of the amphioxus assay made interpretation of the expression 

patterns difficult. Further, the large flanking regions included in the injected sequences, 

which in human contained other CNEs not found in amphioxus, confounded the 

comparison.   

 

From these examples, it is clear that differences between the transgenesis methodologies 

used for each species could have an influence on the expression patterns obtained. In 

order to infer any details regarding cis-regulatory evolution by cross-species reporter 

assay comparisons, experiments should be designed that eliminate such factors. 

Important factors to control are mosaicism, sequence length and the stages at which 
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reporter expression is characterised. If these are controlled, then divergence between 

expression patterns can be attributed to changes in cis- or in trans- by comparing the 

patterns obtained from an experiment in which pairs of orthologous elements are 

assayed both within and between species.  

 

The utility of a lamprey reporter assay 

 

The phylogenetic position and body plan of the sea lamprey make it a unique model for 

investigating the developmental changes responsible for the transition from ancestral 

invertebrate chordates to jawed vertebrates. Due to the availability of large numbers of 

embryos, lamprey can be used as a developmental model (Nikitina et al., 2009), but an 

efficient reporter assay has not previously been developed. This would be useful for 

investigating CNE functional conservation across large phylogenetic distances. On a 

broader scale, a lamprey reporter assay could be used to investigate many aspects of 

vertebrate gene-regulatory evolution.  

 

Results 

 

Kusukabi et al., (2003) conducted the first application of transgenesis in an agnathan, 

using a close relative of the sea lamprey - the Japanese lamprey, Lampetra japonica. In 

their study, circular plasmid constructs containing the GFP coding sequence 

downstream of either a viral promoter or 5‟ regulatory regions of medaka actin genes 

were injected into fertilised eggs before the first cleavage. Injections resulted in roughly 

50% survival beyond day 2, with highly mosaic GFP expression in 20% to 40% of 

survivors, depending on the construct injected. Interestingly, muscle-specific actin 

promoters from medaka were able to drive muscle-specific GFP expression in lamprey 

embryos. Whilst hinting at the existence of a pan-vertebrate gene-regulatory mechanism 

for muscle development, this study also demonstrated the feasibility of lamprey 

transgenesis, serving as a useful starting point for the development of a more efficient 

reporter assay that would be suitable for testing CNEs in lamprey.  

 

The two key hurdles to overcome in the development of a lamprey reporter assay are the 

identification of a suitable minimal promoter and the reduction of mosaicism of reporter 

expression. The tol2 plasmid utilised for zebrafish transgenesis - pGW_cfosEGFP 

(Fisher et al., 2006) - has a mouse cfos minimal promoter. The cfos_pm3285 construct, 
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with the lamprey CNE 3285 (pm3285) cloned upstream of the promoter, was used to 

test whether the cfos minimal promoter could function in lamprey. pm3285 was selected 

as the first element with which to test the promoter as it drives strong and consistent 

expression in zebrafish embryos.  

 

Whilst Kusukabi et al., (2003) injected circular plasmid DNA, linearised plasmid DNA 

would be expected to have a higher chance of genomic integration, so the cfos_pm3285 

plasmid was linearised with KpnI (see Materials and methods). Injection of this 

construct during the first cleavage resulted in a high death rate immediately post-

injection, as well as during gastrulation, such that the frequency of injected embryos 

surviving through gastrulation was less than 5% (Table 6.1) and they were often 

deformed. Of 18 survivors, 10 showed mosaic GFP expression in the ectoderm, with 5 

of those also exhibiting mosaic expression in the nervous system and 2 expressing in the 

cranial ganglia (Figure 6.1, Table 6.1). The neural expression is in agreement with that 

driven by the same construct using the tol2 assay in zebrafish, suggesting that the cfos 

minimal promoter is capable of up-regulating CNE-dependent reporter expression in 

lamprey. Accordingly, the empty reporter construct, containing no enhancer, drives GFP 

expression only in the ectoderm. However, the survival rate was so low for this assay 

that the exact nature of any background expression driven by the cfos promoter could 

not be reliably inferred.  

 

To decrease mosaicism and increase embryo survival, more sophisticated transgenesis 

methods were used. I reasoned that by increasing the probability of early genomic 

integration of the injected construct, the amount of DNA injected could also be lowered, 

lessening the toxic effect of exogenous DNA whilst decreasing mosaicism. The tol2 

assay is highly efficient in zebrafish (Fisher et al., 2006) however, using the same 

method in lamprey embryos resulted in an extremely low survival frequency (data not 

shown) and no reporter expression.  

 

The I-SceI meganuclease-mediated transgenesis method utilises the rare-cutting I-sceI 

meganuclease (Ogino et al., 2006). This technique requires a construct in which the 

DNA to be integrated is flanked by I-sceI recognition sites. This construct is digested 

with the meganuclease enzyme in-vitro and the reaction mix is injected immediately 

into fertilised eggs. Whilst the integration mechanism is unclear, it is considered 

unlikely that the enzyme cuts genomic DNA, as its 18bp recognition site is predicted to 
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occur once in every 7 X 10
10

 bp of genomic sequence (compared to the medaka genome 

size of 7 x10
8
 and lamprey 2.3x10

9
) (Thermes et al., 2002). Rather, it has been 

suggested that the continued association of the enzyme with the digested construct 

prevents its degradation or concatamerisation, thus increasing the probability of 

genomic integration (Thermes et al., 2002).  

 

The β-globin_egfp construct utilised in the zebrafish co-injection assay consists of GFP 

under the control of a mouse β-globin minimal promoter, with the promoter-reporter 

cassette flanked by I-sceI recognition sites. When pm3285 was cloned upstream of the 

promoter in this construct and injected using the meganuclease-mediated method, the 

construct was cleaved as expected and embryo survival was high, but no GFP 

expression was observed. The cfos-IsceI-EGFP construct was created by replacing the 

β-globin promoter with that of mouse cfos (see Materials and methods for plasmid 

map). Injecting this construct with no enhancer cloned into it, using the meganuclease 

method, resulted in a high rate of embryo survival (66% post-gastrulation), with a large 

proportion (87.5%) of survivors showing mosaic GFP expression in the ectoderm 

(Table 6.1, Figure 6.1). As this mosaic ectodermal expression is driven by the construct 

in the absence of an enhancer it can be considered „background‟ expression.  
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Figure 6.1. Development of a reporter assay in lamprey embryos. a-b Stage 26 

transgenic lamprey generated through injection of the linearised cfos_pm3285 plasmid 

show mosaic GFP expression in the cranial ganglia (a) and neurons of the spinal cord 

(b), with low survival and frequent deformity. c-d Stage 26 lamprey embryos with GFP 

expression in the cranial ganglia (c) and spinal cord (d), obtained using the 

meganuclease assay with lamprey CNE 3285. e-h GFP expression in the ectoderm of 

stage 19 (e), 21 (f), 23 (g) and 25 (h) embryos, driven by the cfos minimal promoter in 

the absence of an enhancer (embryos shown are different individuals). i-l The lamprey 

homologs of CNE 3285 and CNE 3299, despite directing enhancer-specific expression 

(shown in fig 2 and 3), also both up-regulate GFP expression in neurons of the spinal 

cord in a proportion of transgenic embryos (see table 1). GFP expression in primary 

neurons of the spinal cord is shown in stage 24 (i,j) and stage 27 (k,l) embryos, driven 

by CNEs 3285 (i,k) and 3299 (j,l). 
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Method Construct Plasmid 

conc. /ngul 

Embryos 

injected 

(approx.) 

Survivors  Ectodermal 

background 

expression 

Enhancer -

dependent 

neuronal 

expression 

Enhancer- 

specific 

expression 

Linearised 

plasmid 
cfos_pm3285 100 500 18 10 5 2 

Meganuclease 
cfos_IsceI_pm

3285 
20 600 220 not counted 35 10 

Meganuclease cfos_IsceI 20 350 232 203 1 NA 

Meganuclease 
cfos_IsceI_pm

3299 
20 700 302 not counted 56 8 

Table 6.1. A comparison of lamprey transgenesis methods. Results are shown for 

linearised plasmid injection and meganuclease-mediated transgenesis. For the 

meganuclease method, results from three different constructs are shown, including the 

cfos_IsceI construct in the absence of an enhancer. Skin background expression was 

not counted for the injections of pm3285 and pm3299 with the meganuclease method, 

but in both cases the proportion of embryos with this background expression was 

roughly in keeping with that found for the cfos_IsceI construct.  

 

Two lamprey CNEs, pm3285 and pm3299, were tested for enhancer activity in lamprey 

using the meganuclease assay. As mentioned above and described in the previous 

chapter, in zebrafish embryos pm3285 drives GFP expression in the cranial ganglia and 

primary neurons of the hindbrain and spinal cord, with pm3299 driving expression in 

the anterior hindbrain. Using the meganuclease assay, the pattern of GFP expression 

driven by pm3285 in lamprey is similar to that obtained by the injection of the 

cfos_pm3285 linearised plasmid, except it is less mosaic (Figures 6.1 and 6.2). 

Expression is observed in the cranial ganglia as well as in primary neurons of the 

hindbrain and spinal cord, with expression often differing between individuals both in 

the number of cells expressing and in the intensity of expression. Whilst the background 

ectodermal expression was visible from early stages and often lost intensity in later 

stages (Figure 6.1), the earliest neural expression was seen at stage 21 in a low number 

of cells, becoming more expansive in later stages. 35 embryos had expression in the 

hindbrain or spinal cord, with 10 of these 35 also expressing GFP in the cranial ganglia.    

Surprisingly, pm3299 was also found to up-regulate GFP in a similar pattern to 

pm3285, with background expression in the ectoderm and enhancer-dependent 

expression in primary neurons (Figure 6.1). However, unlike pm3285, pm3299 was 

never seen to direct expression to the cranial ganglia, whilst clear expression in the 
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anterior hindbrain was seen in a number of embryos (Table 6.1, Figure 6.3) – an 

expression pattern that is consistent with its pattern in the zebrafish assay. Thus, 

pm3285 and pm3299 direct GFP expression to discreet „enhancer-specific‟ domains, 

namely the cranial ganglia and anterior hindbrain respectively, in a low number of 

injected embryos. However, both elements also drive very similar expression patterns to 

each other in primary neurons of the hindbrain and spinal cord in a larger number of 

embryos. As this expression is reliant upon an enhancer (the cfos promoter alone does 

not drive this expression) but is not different between the two enhancers, it is termed 

„enhancer-dependent‟ expression.  

 

Expression in the cranial ganglia driven by pm3285 is present in all but the most 

anterior cranial ganglia (Figure 6.2). This is in agreement with the reporter expression 

of both pm3285 and dr3285 in zebrafish, in which GFP is up-regulated in clusters of 

cranial ganglia both anterior and posterior to the otic vesicle. The intensity of expression 

in lamprey differed somewhat between ganglia within an embryo in a manner that was 

not consistent across embryos, with some embryos also showing GFP expression in 

regions of the spinal cord.  Two lamprey genes showing homology to jawed vertebrate 

Meis genes have been identified and named pmMeis1/2a and b (Sauka-Spengler et al., 

2007). The expression patterns of these two genes at this developmental stage are very 

similar to each other, with both showing clear cranial ganglia expression (Figure 6.2). 

However, the expression of these genes is restricted to posterior cranial ganglia, so does 

not entirely overlap the expression driven by pm3285, which extends to more anterior 

ganglia. Both pm3285 and dr3285 also drive expression in primary neurons of the 

hindbrain and spinal cord in zebrafish embryos (Figure 6.2). As mentioned above, 

pm3285 drives expression in these domains in lamprey embryos but it is not clear to 

what extent this expression is controlled by the enhancer as pm3299 also drives a very 

similar expression pattern. 
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Figure 6.2. Comparison of GFP expression driven by CNE 3285 in lamprey and 

zebrafish embryos. a GFP fluorescence in stage 26 transgenic lamprey embryos, 

generated by meganuclease-mediated transgenesis with the cfos_IsceI_pm3285 

construct. In each embryo shown, expression is seen in the cranial ganglia, whilst the 

pharyngeal pouches produce autofluorescence. b,c Characterisation of the cranial 

ganglia with GFP expression (b) by comparison with an anatomical figure from 

Kuratani et al. (1997) (c), in which cranial nerves and their ganglia are described for a 

stage 27 larval lamprey.  p2-8: pharyngeal pouches 2-8; glV2,3: trigeminal ganglion; 

glf: facial ganglion/anterior lateral line ganglion; gldIX: epibranchial ganglion of the 

glossopharyngeal nerve; pllg: posterior lateral line ganglion; gldX1: epibranchial 

ganglion of the first vagal nerve. d Expression of pmMeis1/2a and b genes in stage 25 

lamprey embryos, revealed by in-situ hybridisation. Arrows highlight expression in 

cranial ganglia. e-g GFP expression of zebrafish (e, g) and lamprey (f) homologs of 

CNE 3285 in 54hpf zebrafish embryos, using a tol2 assay. Expression in the cranial 

ganglia is seen for the elements from both zebrafish and lamprey. Ganglia anterior to 

the otic vesicle are likely to be the trigeminal or facial ganglia (arrowheads), with those 

posterior to the otic vesicle being the vagal and posterior lateral line ganglia (arrows) 

(e,f). Expression is also seen in primary neurons of the hindbrain and spinal cord (g – 

arrowheads). 
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Figure 6.3. Comparison of GFP expression driven by CNE 3299 in lamprey and 

zebrafish embryos. a GFP fluorescence from stage 26 lamprey embryos transgenic for 

the cfos_IsceI_pm3299 construct, generated by meganuclease-mediated transgenesis. 

Lateral views show GFP expression in the hindbrain, with a clear anterior limit 

(arrowhead). b Dorsal views of the embryos from a show expression on both sides of 

the neural tube, with low mosaicism and, in the majority of cases, clear anterior limits. 

c-d Expression of ljHox2 (c) and ljHox3d (d) in stage 26 Lampetra japonicum embryos 

(from Takio et al., 2007). e-f Expression of pmMeis1/2a (e) and b (f) in stage 25 

Petromyzon marinus embryos, with anterior limits of hindbrain expression (arrowheads) 

being consistent with that of ljHox2. g-k GFP expression driven by the zebrafish (g,h) 

and lamprey (i,j,k) homologs of CNE 3299 in 54hpf zebrafish embryos with a tol2 

reporter assay (as presented in the previous chapter). GFP expression by the zebrafish 

element is directed to the hindbrain (hb) and neural crest (nc) (g). Hindbrain GFP 

expression is restricted to rhombomeres (r)3 and 4, in comparison to RFP expression 

driven by a Krox20 r3r5 enhancer (h). GFP expression driven by the lamprey element 

is seen in the hindbrain at 30hpf (i) and 54hpf (j,k). Expression from the lamprey 

element is directed to r2-4 (k) but is not seen in the neural crest (j,k).   

 

The hindbrain expression driven by pm3299 in lamprey has an anterior limit consistent 

with that of ljHox2 in Lampetra japonicum (Figure 6.3). This anterior limit of hindbrain 

expression is in accordance with the expression pattern of the two identified lamprey 

meis genes and also with the pattern of expression driven by pm3299 in zebrafish, 

which is restricted to r2-4 – the domain of expression of Hoxa2 (Figure 6.3). In 

zebrafish, the expression of dr3299 differs from that of pm3299, as it is restricted to r3-
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4 in the hindbrain and is also present in the neural crest cells migrating into the 

corresponding pharyngeal arch (Figure 6.3). 

 

Discussion 

 

Development of a reporter assay in lamprey embryos 

 

The I-sceI meganuclease reporter assay described in this chapter is an improvement 

upon the previously published lamprey assay, due to the higher embryo survival rate 

and the lower mosaicism of reporter expression. These improvements arise through the 

use of the I-sce I meganuclease enzyme in the injection protocol. It is likely that this 

enzyme facilitates early integration of the linearised construct by protecting it from 

degradation and concatamerisation. This enables a lower concentration of DNA to be 

injected, which is the probable reason why this assay is less toxic to lamprey embryos 

than injecting DNA alone. This assay also makes use of the mouse c-fos promoter, 

showing that it has promoter activity in lamprey embryos as well as in gnathostomes.  

 

Enhancer-specific, intense and non-mosaic reporter expression can be observed for a 

modest, but still significant, number of injected embryos. However, intense reporter 

expression in primary neurons of the hindbrain and spinal cord is a feature of the 

expression patterns driven by both enhancers tested, and is seen more frequently than 

the enhancer-specific expression. This expression is not „background‟ expression as the 

promoter alone only drives weak, mosaic expression in the ectoderm. However, this 

expression may represent „promoter bias‟ for these neurons that is only exerted when 

the promoter acts in conjunction with a proximal enhancer. Testing other enhancers 

with this promoter, or other promoters with these enhancers, would shed more light on 

this issue. 

 

Lamprey represents a useful model organism for investigating the evolution of the 

vertebrate body plan, due to its phylogenetic position and its lack of certain features that 

are characteristic of jawed vertebrates, such as a jaw and paired limbs. Whilst regulatory 

elements from lamprey have been tested in jawed vertebrate reporter assays (Carr et al., 

1998), to be able to thoroughly answer questions about gene regulatory conservation 

and divergence it is essential to also test these elements in lamprey. Furthermore, testing 

the function in lamprey of enhancers involved in the development of gnathostome-
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specific traits could give insights into the cis-regulatory changes underlying the 

evolution of these morphological characters in the gnathostome lineage. Thus, the 

development of the I-sceI meganuclease reporter assay in lamprey embryos promises to 

have a significant impact on investigations into vertebrate gene-regulatory evolution.  

 

Conservation and divergence of CNE function between lamprey and zebrafish 

 

The enhancer-specific expression patterns driven by pm3285 and pm3299 in lamprey 

show clear similarity to the expression patterns driven by their orthologs in zebrafish 

embryos. This suggests that these elements carry out broadly similar gene-regulatory 

functions in lamprey and zebrafish and that this functional conservation is responsible 

for their sequence conservation. This may have been predicted, as the gnathostome 

cranial ganglia and hindbrain have clear homologs in lamprey. Nevertheless, there are 

some interesting differences between the expression patterns driven by the orthologous 

CNEs in their respective species.  

 

The only clear difference between pm3285 and dr3285 is their expression in zebrafish 

embryos, in which dr3285 is restricted to neuronal domains whilst expression driven by 

pm3285 is often seen in other tissues including muscle and eye. These domains may be 

attributable to „background‟ F0 expression, which is not present in F1 transgenics, yet it 

is not clear why this would occur only with pm3285 and not dr3285. When pm3285 is 

tested in lamprey, muscle and eye expression is not observed. This might reflect 

lineage-specific, compensatory changes in cis- and trans- which result in tight control of 

expression when the element is tested in its host species but less well regulated 

expression when tested heterologously. It would be interesting to test dr3285 in the 

lamprey assay, to see whether it too drives less tight expression when tested 

heterologously.  

 

In zebrafish, dr3299 and pm3299 both drive expression in the anterior hindbrain. 

However, the neural crest expression driven by dr3299 is not seen for pm3299. pm3299 

does not drive expression in the neural crest in lamprey embryos either. Therefore, the 

function of this enhancer in the neural crest has either been gained in the lineage leading 

to zebrafish or lost in the lamprey lineage. The pattern driven by dr3299 in lamprey 

would inform us whether this change is purely in cis-, in which case dr3299 would drive 

neural crest expression in lamprey, or whether changes in trans- also play a part. The 



 

105 

 

functional dissection of dr3299 in the previous chapter demonstrated that combined 

mutation of the first Pbx-Hox site and its proximal Meis site abrogated neural crest 

expression. Interestingly, this region of the enhancer is highly conserved between 

lamprey, human and fugu, with the zebrafish enhancer showing the greater divergence. 

This raises the possibility that the neural crest expression domain was gained by the 

enhancer in the zebrafish lineage, potentially by the modification of only a modest set of 

transcription factor binding sites. This could be tested by functional assay of 

orthologous enhancers from other gnathostomes in zebrafish, coupled with a more 

detailed functional dissection. However, it must be noted that the functional dissection 

so far only indicates that these sites may be necessary for neural crest expression, whilst 

other sites within the enhancer, that may also be divergent between zebrafish and 

lamprey, might also play key roles.  

 

dr3299 and pm3299 also differ in their expression within the hindbrain in zebrafish, 

with dr3299 expressing in r3-4 and pm3299 in r2-4. As it was demonstrated in the 

previous chapter that Pbx-Hox sites within dr3299 are essential for its enhancer activity, 

these elements are likely to be regulated by hox factors in the hindbrain. The expression 

patterns of dr3299 and pm3299 correspond to the anterior limits of expression of 

different PG2 hox genes – Hoxb2a and Hoxa2b respectively, suggesting that in 

zebrafish these two elements may be differentially responsive to paralogous hox factors. 

It is notable that mutation of the first Pbx-Hox and Meis sites in dr3299, as well as 

removing neural crest expression, also led to a broader hindbrain expression pattern, 

reminiscent of that driven by the lamprey element, whilst mutation of the second Pbx-

Hox and Meis sites abrogated expression completely. This suggests that in dr3299 the 

first Pbx-Hox and Meis sites may prevent expression in r2. If it is the case that these 

sites can differentiate between different Hox factors from the same paralogy group, the 

mechanism underlying this would be interesting to investigate. In lamprey, pm3299 

expression has an anterior limit in the hindbrain that is consistent with that of the PG2 

hox factor ljHox2 in Lampetra japonicum, suggesting that this element is regulated by 

homologous hox factors in lamprey and zebrafish. However, it is not clear how many 

PG2 hox genes are present in the P. marinus genome, nor what their precise expression 

patterns are, so the evolutionary significance of the different expression patterns driven 

by dr3299 and pm3299 in zebrafish is difficult to address. Again, the expression pattern 

driven by dr3299 in lamprey embryos would be interesting in this regard, as would 

those of other gnathostomes in zebrafish. 
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In gnathostomes the majority of anterior hox factors have anterior expression limits that 

are in register with rhombomere boundaries; indeed, hox gene expression is often used 

as a marker for rhombomere boundaries (Alexander et al., 2009). In Lampetra 

japonicum, Krox20 and EphC are expressed in the hindbrain in the same rhombomere-

specific manner as they are in gnathostomes (Murakami et al., 2004). However, in 

contrast to the registry seen in gnathostomes, some lamprey hox factors have anterior 

expression limits that do not coincide with rhombomere boundaries, despite them 

showing collinear spatial expression in the hindbrain (Murakami et al, 2004; Takio et 

al., 2004, 2007). For instance, the anterior limit of LjHox2 expression is in r2 but not at 

the r1/2 boundary and the anterior limit of LjHox3d expression is within r3 - not at the 

r4/5 boundary as in gnathostomes. Furthermore, application of retinoic acid (RA) to 

Lampetra japonicum embryos results in an anterior shift of hox expression and the 

positions of branchiomotor neurons, but does not have an effect upon Krox20 

expression or reticulospinal neuron positioning. In light of this, the anterior limit of GFP 

expression driven by pm3299 in lamprey embryos, which appears to correlate closely 

with hox PG2 expression, is thus likely to be out of register with the r1/r2 boundary, in 

contrast to the expression pattern driven by pm3299 in zebrafish. If this is indeed the 

case, then this would represent a difference in trans- between zebrafish and lamprey, 

which changes the expression pattern of CNE 3299 in each species. Thus, the 

expression driven by this CNE in lamprey and zebrafish appears to be influenced both 

by changes in cis-, resulting in neural crest expression for the zebrafish element but not 

for the lamprey element, and by changes in trans-, due to the different expression 

patterns of hox factors in lamprey and zebrafish.  

 

Evolution of the vertebrate hindbrain GRN  

 

The expression pattern driven by pm3299 in the anterior hindbrain of lamprey embryos, 

which is in good agreement with the expression driven by its zebrafish ortholog in 

zebrafish embryos, verifies that these elements act within a GRN for hindbrain 

development that is conserved (in some respects) between all vertebrates. This GRN is 

likely to also involve many of the other Pbx-Hox +ve CNEs characterised in the 

previous chapter. This is significant as it enables these CNEs to be placed within a 

developmental and evolutionary context. By comparing hindbrain development between 

amphioxus, lamprey and gnathostomes, and correlating this with the conservation signal 
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of Pbx-Hox +ve CNEs, a model can be formulated that infers the role of many CNEs in 

the evolution of vertebrate head patterning. 

 

Amphioxus shows a nested pattern of Hox gene expression in the neural tube (Wada et 

al., 1999; Schubert et al., 2006), suggesting that a rostral region of the neural tube is 

homologous to the vertebrate hindbrain. The re-iterated and co-incident expression of a 

number of genes - including shox, AmphiKrox (Jackman & Kimmel, 2002), islet 

(Jackman et al., 2000), AmphiMnx (Ferrier et al., 2001) and AmphiERR (Bardet et al., 

2005) - in territories within the putative hindbrain region hints towards a division of this 

region into serially homologous domains, similar to the gnathostome hindbrain. 

However, the overt morphological segmentation that is characteristic of the vertebrate 

hindbrain is not seen in amphioxus. The amphioxus hindbrain also lacks the expression 

of genes such as krox-20 in the stripes that are crucial for rhombomere development in 

vertebrates. The amphioxus homologs of other crucial regulators of hindbrain patterning 

and segmentation, such as kreissler, also appear to lack the striped hindbrain expression 

of their vertebrate counterparts (Jackman & Kimmel, 2002). Analysis of cis-regulatory 

elements associated with amphioxus anterior Hox genes by reporter assay in mouse and 

chick showed that they are regulated by RA signalling in a similar manner to those of 

vertebrates (Manzanares et al., 2000). Yet the enhancers that, in vertebrates, respond to 

regulation by krox-20 and kreissler and to auto-regulation by the hox genes, appear to 

be absent in amphioxus (Manzanares, 2001). Additionally, the source of the 

segmentation signal in amphioxus is from the underlying segmented mesoderm (Mazet 

& Shimeld, 2002), whilst in gnathostomes, hindbrain segmentation is dependent on an 

A-P RA gradient within the neurectoderm, which influences segmentation factors such 

as krox-20. Thus, in the amphioxus hindbrain, the segmentation mechanism may be 

independent of RA signalling and hox-expression domains.  

 

As alluded to earlier, the developing lamprey hindbrain is divided into rhombomeres, 

with segmentation genes such as krox-20 and EphC showing rhombomere-specific 

expression as seen in gnathostomes. However, the tight registration between hox 

expression domains and rhombomere boundaries that is characteristic of the 

gnathostome hindbrain is only apparent for Hox1 in lamprey r4, with other Hox factors 

showing anterior limits of expression that are out of register with rhombomere 

boundaries (Murakami et al., 2004; Takio et al., 2007). Two patterning mechanisms 

appear to be employed in the lamprey hindbrain – one correlating with rhombomeres, 
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which controls the pattern of reticular neurons and involves Krox20 and EphC, and the 

other being dependent on the nested pattern of Hox expression, which controls 

specification of branchiomotor neurons and is influenced by RA signalling. These 

networks seem to only partially interact in lamprey, in contrast to their extensive 

integration in gnathostomes. 

 

Figure 6.4. Hypothetical scenario for the evolution of the gnathostome hindbrain, with 

reference to patterns of CNE conservation in the chordate lineage. The inferred 

hindbrain developmental characteristics of the chordate, vertebrate and gnathostome 

common ancestors are placed upon a simplified chordate phylogeny, which excludes 

the derived tunicates. The numbers of Pbx-Hox motif-containing CNEs that have been 

identified in these common ancestors are shown on the right. 

Thus, the gnathostome mechanism for hindbrain development appears to have evolved 

through sequential steps that can be inferred by comparison with amphioxus and 

lamprey (Figure 6.4). The key transitions include the evolution of morphological 

segmentation (rhombomeres) and a multi-step integration between networks governing 

segmentation and hox-dependent patterning. This integration, combined with the loss of 

segmentation in the head mesoderm, may have set the stage for further elaboration of 

downstream, hox-dependent head patterning mechanisms. The integration between 

networks is likely to have involved the evolution of new regulatory links between hox-

factors and components of the GRN for hindbrain segmentation, through the elaboration 

of cis-regulatory elements. Within this context, it is interesting to observe that large 

numbers of CNEs containing conserved Pbx-Hox motifs become apparent in the 

vertebrate lineage, before and after the divergence of agnathans and gnathostomes 

(Figure 6.4). Considering their association with hindbrain and pharyngeal arch 
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expression (chapter 5), it is likely that the evolution of a more complex, integrated GRN 

for hindbrain and head patterning involved the evolution and fixation of some of these 

CNEs. If this is the case, then the conservation pattern for these CNEs across chordates 

may represent the evolution of new regulatory interactions that are crucial for the 

development of the complex vertebrate head. This model could be evinced by 

investigating the expression patterns and regulatory interactions between components of 

the gnathostome hindbrain GRN in lamprey and amphioxus. 

 

Conclusion 

 

An important issue relating to CNEs is whether their regulatory functions are conserved 

between the species that contain them. This chapter describes the development of a 

reporter assay in lamprey embryos that can generate non-mosaic, enhancer-specific 

expression patterns. A key task remaining in the development of this assay is to clarify 

whether certain patterns of expression are due to promoter bias. This assay has been 

used to demonstrate for two lamprey CNEs that the expression patterns they drive in 

lamprey and zebrafish embryos show clear similarity, mirroring the findings from 

studies comparing CNE expression patterns between gnathostomes. The implication 

from this is that the functional roles of CNEs in different species are broadly the same, 

verifying that CNEs represent conservation of underlying GRNs. Nevertheless, 

differences between the functional roles of orthologous elements in their respective 

species were seen, and are likely to have occurred through changes in both cis- and 

trans-. This implies that these highly constrained regulatory elements can nevertheless 

evolve lineage-specific functions through accumulating modest numbers of mutations in 

their sequences, providing significant scope for evolutionary tinkering. Finally, the 

lamprey assay provides cis-regulatory evidence that aspects of a GRN for hindbrain 

development are conserved across all vertebrates. This leads to a model of hindbrain 

evolution in chordates, which hypothesises that many CNEs evolved in the vertebrate 

lineage to co-ordinate development of the complex vertebrate head.  A key question is 

whether these elements arose afresh in the genome or whether they evolved from 

previously existing cis-regulatory modules.  
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7 De-Novo Motif Discovery in CNEs 

 

Abstract 

 

A major hurdle preventing CNEs from being placed within the context of 

developmental GRNs is the paucity of information available regarding the TFBSs that 

they contain. The discovery of enrichment for Pbx-Hox motifs within CNEs, detailed in 

chapter 5, represented a major step toward de-coding CNEs. The next step is to identify 

other enriched motifs, enabling a library of motifs to be curated, which could be used to 

characterise CNEs in-silico. The lack of data from de-novo motif discovery approaches 

on CNEs is at odds with our finding of strong Pbx-Hox motif enrichment. In this 

chapter I use a de-novo approach to identify enriched motifs in CNEs. I find a 

significant number of enriched motifs, some of which correspond to motifs recognised 

by well characterised TFs. I relate the abundance of these motifs in CNEs to the 

properties of their predicted binding factors, leading to a general model of CNE action 

involving the co-operative interaction of facilitator and specifier factors. I also search 

for a regulatory language within a set of CNEs that are conserved amongst 

urochordates, finding no overt similarity between the enriched motifs of vertebrate and 

urochordate CNEs.    

 

Introduction 

 

De-coding CNEs promises to provide a wealth of information pertaining to the GRNs in 

which they operate and the mechanism by which their cis-regulatory language controls 

gene expression. The identification of enriched motifs within CNEs represents an 

important step in this characterisation as these motifs would provide a means by which 

to link CNE sequence with cis-regulatory function. Further, by classifying CNEs 

according to the presence of particular sequence signatures, they could be placed within 

the context of gene regulatory networks, either known or predicted.  

 

Strategies for identifying motifs within a set of sequences involve either targeted 

searches, in which sequences are searched for matches to defined motifs, or de-novo 

motif discovery approaches, which characterise all motifs within the set that occur more 

frequently than would be expected (reviewed by Pavesi et al., 2004a). These approaches 
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are complementary, with findings from one strategy being useful in refining the other. 

An advantage of de-novo strategies is that they require minimal prior knowledge of the 

motifs that should be searched for, enabling the identification of novel motifs. This is 

important for CNEs as they may contain motifs that are recognised by complexes of 

factors binding in combination, which could result in binding-site preferences that are 

not represented in TF binding profile databases, as they often derive their PWMs from 

studies in which these factors are considered individually. However, the ultimate aim of 

de-novo motif discovery, when applied to CNEs, is to identify what these motifs are 

recognised by, requiring either comparison to known motifs or targeted protein-binding 

assay techniques. Nevertheless, by identifying enriched motifs within CNEs we can 

address to what extent these elements can be placed within the context of characterised 

mechanisms of cis-regulation.  

 

The finding in chapter 5 that gnathostome CNEs are enriched for Pbx-Hox and Meis 

motifs confirmed the notion that many of these elements are regulated by transcription 

factors via recognisable binding-sites, which can be identified through sequence 

analysis. This is supported by the findings of Bailey et al. (2006), who performed a 

targeted search for Sox, Pou and homeo-domain (HD) motifs within a set of CNEs 

conserved between human, mouse and Fugu. Their motif scan revealed a general 

enrichment for these motifs across CNEs, with an association with genes involved in the 

developing CNS.  

 

The identification of enrichment for these motifs through targeted approaches is hard to 

reconcile with the paucity of published de-novo motif discovery data pertaining to 

vertebrate CNEs (Pennacchio et al., 2006; Li et al., 2010). Whilst there are a large 

number of available tools for motif finding, there is little clear guidance in choosing the 

best tool for a given set of sequences. The reason for this is that assessment of the 

performance of tools is not a straightforward task, due to a lack of clear understanding 

of the regulatory mechanisms of these elements (Tompa et al., 2005). Our finding that 

Pbx-Hox motifs are highly enriched within CNEs provides a standard by which to 

assess these tools for motif identification. This enables us to select an appropriate motif-

discovery tool to address the question of whether the few enriched motifs that have been 

found in CNEs represent special cases or whether there are others.  
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Results 

 

CisFinder identifies Pbx-Hox motifs in CNEs 

 

A variety of software tools have been developed to identify enriched motifs within 

sequence sets (Reviewed by Wei & Yu, 2007). Consensus-based methods (e.g. Weeder 

(Pavesi et al., 2004b)) enumerate all the possible oligos of a certain length and count the 

occurrences of each oligo within the test set, allowing for a certain number of 

substitutions. These counts are then compared to expected counts, for instance within a 

„randomly‟ generated control set, to obtain a statistical measure of the significance of 

enrichment.  

 

Tompa et al. (2005) performed an evaluation of the efficacy of different motif discovery 

tools using synthetic cis-regulatory sequences, finding Weeder to frequently outperform 

other methods. Recently, a tool has been developed – CisFinder – that estimates PFMs 

from counts of 8-mer words and clusters them to generate sets of motifs (Sharov & Ko, 

2009). This consensus-based method is similar to the Weeder algorithm, but has a 

significantly faster processing speed, meaning that it can effectively process large 

sequence sets. It has also been shown to be able to process sequence data containing a 

low-level enrichment for motifs. These characteristics make CisFinder a suitable 

candidate tool for searching for motifs within CNEs, as the CNE set is relatively large 

(the human CNE set comprises 776 Kb, compared to the <32 Kb recommended for 

efficient use of Weeder (Sandve et al., 2007)) and is likely to contain a functionally 

heterogeneous mix of elements, thus a relatively low enrichment for motifs compared to 

other types of data-sets (such as those derived from chip-seq (Valouev et al., 2008)). I 

have utilised CisFinder to search for enriched motifs within a set of 6693 human CNE 

sequences.   
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Figure 7.1. CisFinder identifies an enriched motif that closely resembles the Pbx-Hox 

motif in a set of gnathostome CNEs. 6693 human CNE sequences used for de-novo 

motif identification with cis-finder, using clustering similarity of 0.7. Shown are 

frequency logos for the Pbx-Hox resembling motif found by cis-finder, the Pbx-Hox 

motif hits from the gnathostome CNE set (chapter 5) and from 32 characterised Pbx-

Hox motifs (Mann et al., 2009; Wassef et al., 2008).  

 

Due to our prior knowledge of the enrichment of Pbx-Hox motifs within CNEs, we can 

judge the efficacy of a de-novo motif search tool by asking whether it is able to identify 

this motif as being enriched in the human CNE set. CisFinder satisfies this criterion, 

identifying the Pbx-Hox motif as one of its top-ranking (according to z-score and 

enrichment) motifs within the human CNE set. Comparison of the frequency logos 

shows that the motif identified by CisFinder is very similar to that derived from the 

bottom-up search of the gnathostome set, and to previously characterised Pbx-Hox 

motifs (Literature set) (Figure 7.1). Specifically, these profiles all share a low frequency 

of C at positions 5 and 6, with a tendency for A/G and T/G at positions 9 and 10. The 

CisFinder motif has a notable frequency of A at position 1, which is in keeping with the 

literature set, but was not a part of the Pbx-Hox consensus used for the bottom-up 

search.  
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CNEs contain enriched motifs besides Pbx-Hox 

 

When the enriched motifs discovered by CisFinder are ranked according to z-score and 

enrichment ratio, the Pbx-Hox motif is the third highest ranked motif. Sequence logos 

for the 27 enriched motifs identified by CisFinder are shown in Figure 7.2. By 

comparing these motifs to those in the CisView database of vertebrate TFBSs 

(comprising TFBSs from Jaspar and other literature sources), implementing a 

comparison tool provided by CisFinder and using a similarity cutoff of 0.8, it can be 

seen that many of these motifs can be strongly matched with previously characterised 

motifs.  

 

Motifs 1 and 11 show a strong resemblance to the well characterised „octamer‟ motif, 

recognised by a subset of POU domain proteins (Phillips & Luisi, 2000). Members of 

this large protein family are broadly expressed during development, particularly in the 

central nervous system, where they play a role in neural cell differentiation. These 

proteins bind to the octamer sequence with their POU domain, which consists of two 

sub-domains that make independent interactions with half-sites on opposite faces of the 

DNA, with a linker between these sub-domains making contact along the minor groove 

(Klemm et al., 1994). They are able to interact with other factors to carry out their 

trans-regulatory functions, including Sox1-3 in neural progenitor cells (Kondoh & 

Kamachi, 2010), with co-operative DNA binding between these factors being dependent 

upon tightly linked TFBSs (Ambrosetti et al. 1997).  The strong enrichment for this 

motif in CNEs confirms the findings of Bailey et al. (2006).  

 

Motif 4 is a close match to the „E-box‟ motif (CANNTG), which represents the 

consensus binding-site for basic helix-loop-helix (bHLH) factors, which bind as homo- 

and hetero-dimers to DNA. Members of this family of transcription factors are involved 

in a variety of developmental pathways such as neural patterning (Olig2) (Guillemot, 

2007), neurogenesis (Neurogenin) and myogenesis (MyoD) (Rudnicki et al., 1993).  
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Figure 7.2. CisFinder identifies enriched motifs within human CNEs. Sequence logos 

representing the 27 motifs enriched within 6993 human CNE sequences as identified 

by CisFinder are shown, ranked according to enrichment score. Sequence logos of 

matching TFBS motifs that have been previously characterised are shown for 

comparison.  
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Motif 5 resembles a typical homeo-domain binding-site motif that is the potential 

binding-site of a very large number of proteins including members of the Hox, Phox, 

Six, Pax, Nkx and Dlx families (Berger et al., 2008).     

 

Motifs 8, 9 and 22 closely match those characterised for the Meis/Prep/Tgif family of 

homeo-domain-containing factors. Meis and Prep proteins are broadly expressed during 

development, acting as Hox co-factors as well as carrying out Hox-independent roles 

(Moens & Selleri, 2006; Mercader et al., 2000). The enrichment for this motif in CNEs 

corroborates the enrichment found from the targeted search for canonical Meis motifs 

(TGACAR) in the previous chapter. 

 

Motif 10 resembles the TFBS motif of a number of posterior Hox factors including 

HoxD10 (Berger et al., 2008), which have roles in patterning the skeleton, the 

peripheral nervous system and in limb development (de la Cruz et al., 1999; Wahba et 

al., 2001).  

 

Interestingly, one of the enriched motifs most frequently occurring in CNEs – motif 2 - 

does not appear to closely match any characterised motif. It would be of great interest to 

discover the factors that recognise it, as its high enrichment in CNEs suggests that these 

factors play important and evolutionarily conserved roles in the regulation of many 

genes.  

 

I next sought to investigate whether other sets of vertebrate CNEs also contain similar 

enrichment for these motifs. I used CisFinder to search the shark CNE set (introduced in 

chapter 5), comprising 4782 elements conserved between human and the elephant shark, 

for enriched motifs using the same search parameters as used for the Condor human 

CNE set. This search resulted in the identification of 42 enriched motifs in the shark 

CNE set (Figure 7.3). Despite the shark set overlapping with only 34% of the Condor 

set, CisFinder identified many of the same motifs to be enriched in both sets. Indeed, 

using CisFinder‟s motif comparison tool, 18 of the motifs from the Condor set had 

matches to motifs in the shark set (above a match threshold of 0.7). Furthermore, the 

matching motifs, when ranked according to enrichment, occur in a very similar order – 

thus, the most highly enriched motifs in the Condor set are also amongst the most 

highly enriched in the shark set. Other than the different number of enriched motifs 
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identified, the most notable difference between sets is that a retinoic-acid response 

element (RARE)/nuclear hormone receptor motif – AAGGTCA – ranks prominently in 

the shark motif set but is not present in the Condor motif set. The strong agreement 

between enriched motifs within the different vertebrate CNE sets is likely to reflect 

shared regulatory properties of the elements they contain, and confirms that these 

patterns of motif enrichment are significant within a broader context than just the 

Condor CNE set.   
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Figure 7.3. Enriched motifs within human-shark CNEs as identified by CisFinder. 

Sequence logos representing the 42 motifs enriched within 4782 human-shark CNEs 

are ranked according to enrichment score. Sequence logos of corresponding TFBS 

motifs that have been previously characterised are shown for comparison. 

 

Pbx-Hox and Oct motifs associate with different gene regions 

(This data was obtained by P. Piccinelli) 

In chapter 5 I suggested that Pbx-Hox motifs show a non-random distribution across 

CNEs of different gene regions, being preferentially associated with genes involved in 

hox-dependent developmental processes. I wished to test whether the same could be 

true for other enriched motifs in CNEs. To this end, I have tabulated the number of 

octamer (Oct) motif hits occurring within CNEs of different gene regions of the Condor 

human CNE set and compared the distribution to that of Pbx-Hox motif hits (Table 7.1).  
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GENE size 

/kb 

Pbx- 

Hox 

hits 

Oct 

hits 

Pbx- 

Hox/Oct 

 Gene size 

/kb 

Pbx- 

Hox 

hits 

Oct 

hits 

Pbx-

Hox/Oct 

ESRRB 4.54 7 0 - BCL11B 3.26 1 9 0.111 

EVI1 4.02 6 0 - PITX2 5.81 1 4 0.25 

POU3F2 3.30 6 0 - POU3F3 4.02 1 4 0.25 

POU4F2 5.81 3 0 - SHH 5.02 1 3 0.333 

PAX5 1.05 2 0 - LHX1 4.44 2 5 0.4 

ARX 2.58 1 0 - EN1 2.24 2 4 0.5 

SOX3 2.05 1 0 - LMO4 6.74 2 4 0.5 

TSHZ1 10.4 16 2 8 LMO1 4.73 1 2 0.5 

GLI3 3.43 8 1 8 SOX1 1.80 1 2 0.5 

ZNF703 2.99 8 1 8 PAX2 9.19 5 9 0.555 

SALL3 11.4 12 2 6 EBF1 4.03 4 7 0.571 

MEIS1 9.29 9 2 4.5 ZFHX4 12.7 4 7 0.571 

ZNF503 27.8 36 9 4 FOXP2 17.8 10 16 0.625 

OTP 8.99 8 2 4 TFAP2A 11.1 5 8 0.625 

POU6F2 3.10 4 1 4 EBF3 26.2 10 15 0.666 

PRDM16 3.73 4 1 4 FIGN 8.81 4 6 0.666 

TCF7L2 11.0 7 2 3.5 BHLHB5 6.94 2 3 0.666 

TSHZ3 23.3 29 9 3.22 CST 8.39 2 3 0.666 

ZIC1 8.33 6 2 3 DLX1 6.28 2 3 0.666 

SOX14 4.29 6 2 3 BNC2 10.6 4 6 0.666 

HOXD9 17.8 16 6 2.67 AUTS2 7.04 2 3 0.666 

SHOX2 7.61 8 3 2.67 EYA1 5.54 2 3 0.666 

NKX6-1 6.85 10 4 2.5 BARHL2 13.0 5 7 0.714 

SOX6 10.5 5 2 2.5 MAB21L1 4.84 3 4 0.75 

FOXP1 15.9 12 5 2.4 POU3F1 4.13 3 4 0.75 

 

Table 7.1. Comparison of the distribution of 561 Pbx-Hox and 389 Oct motif hits across 

gene regions in the human CNE set. The results derive from strict searches for Pbx-

Hox KR motif hits and Oct (ATGCWAAT) hits in the Condor human CNE set. The hits 

are organised according to the gene regions in which the CNEs containing them are 

situated. For the CNEs of each gene region, the ratio of Pbx-Hox to Oct hits is shown. 

The table on the left hand side describes the 25 gene regions with the highest ratio of 

Pbx-Hox to oct motifs, whilst the table on the right lists the 25 regions with the lowest 

ratio.  

 

The distribution of Oct motifs across gene regions is interesting when compared to that 

of Pbx-Hox motifs. Whilst they overlap for many gene regions, some genes have many 

more Pbx-Hox motifs in their CNEs, such as esrrb, tshz1 and znf703, and others many 

more Oct motifs, such as bcl11b, pitx2, ebf1. These contrasting distributions of Pbx-

Hox and Oct motifs may correlate with roles of Hox and Oct factors in different 

developmental processes, such as in different pathways of patterning and differentiation.  
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Motifs enriched in ciona CNEs show no overlap with those of vertebrate CNEs 

 

Despite the urochordates being the closest invertebrate relatives of vertebrates (Delsuc 

et al, 2006), their genomes contain no detectable traces of the CNEs that are found in 

vertebrates. However, in keeping with the existence of clade-specific CNEs in worms 

and flies (Vavouri et al., 2007), 2,336 urochordate-specific CNEs have been identified 

by genome comparison of C. intestinalis and C. savignyi (Vavouri, unpublished data). 

The sequence divergence between these two urochordate species is between that of 

human-chicken and human-frog (Johnson et al., 2004). The ciona CNEs are on average 

182bp in length and share an average of 82% identity between C. intestinalis and C. 

savignyi, which is comparable to the first set of human-Fugu CNEs identified by 

Woolfe et al. (2005) (mean length 200bp, average 84% identity). The ciona CNE-

associated gene set was found to be enriched for transcription factors and signalling 

genes, as seen for vertebrate CNEs, with a significant proportion of these genes being 

orthologous to human CNE-associated genes. This hints that ciona and vertebrate CNEs 

may function in parallel, lineage-specific GRNs involving some of the same factors.   

 

I sought to test whether the same sequence motifs that we have found to be enriched in 

vertebrate CNEs are also strongly enriched in ciona CNEs. A search for enriched motifs 

within the ciona CNE set using CisFinder, with the same parameters as were used for 

the human CNE set, identified 19 motif clusters (Figure 7.4). CisFinder‟s motif 

comparison tool is unable to detect any overt similarity between the ciona motifs and 

those of the Condor human CNE set (using a lenient match threshold of 0.7). 

Nevertheless, some of the Ciona motifs do match closely to known TFBS motifs, with 

particularly strong matches to Atf1/CREB and Myc motifs. Interestingly, the proteins 

characterised as binding to CREB and Myc motifs are components of signalling 

pathways. This high enrichment for putative signal-transduction motifs in ciona CNEs 

is in contrast to the enriched motifs in vertebrate CNEs. Thus, whilst enriched motifs are 

identifiable within ciona CNEs, some of which correspond closely to previously 

characterised binding preferences of vertebrate transcription factors, these motifs 

provide no evidence that ciona and vertebrate CNEs are regulated by the same factors.  
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Figure 7.4. Motifs enriched within ciona CNEs, as identified by CisFinder. Motifs are 

represented as PWMs. Motifs are ranked according to enrichment and z-score. 

Matches to characterised PWMs from the literature are shown.  
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Discussion 

 

de-novo tools can identify enriched motifs in CNEs 

 

I set out to address whether CNEs are enriched for any other motifs besides Pbx-Hox 

and Meis motifs. I approached this by utilising a top-down, de-novo motif discovery 

approach. Interestingly, these approaches have not yielded any strong enrichment for 

motifs within CNEs up until now. I reasoned that the enrichment for Pbx-Hox motifs in 

CNEs suggested that de-novo motif discovery using the human CNE set should be 

possible, and that the ability of a de-novo motif discovery tool to identify these motifs 

could be used as a criterion by which to assess its suitability to the task. CisFinder was 

selected as a suitable candidate de-novo motif discovery tool for three reasons, it is fast 

(so can be used on large sets in an effective way), it can identify relatively weak 

enrichment, and it is based on a similar approach used by Weeder, which has been 

shown to frequently outperform other algorithms in a previous evaluation (Tompa et al., 

2005). 

 

CisFinder identified 27 enriched motifs within the Condor CNE set, many of which 

match to PWMs for factors that have been previously characterised, either in-vivo or in-

vitro. Indeed, there is good agreement between in-vitro characterised motifs (such as 

from protein-binding micro-array data) and enriched motifs within putative regulatory 

elements (CNEs). This is significant for two reasons: firstly, it indicates that in-vitro-

characterised binding profiles can faithfully represent many in-vivo interactions; 

secondly, it strongly suggests that CNEs are regulated by a range of known - and, in 

some cases, well characterised - TFs.     

 

The existence of a highly enriched, novel motif (motif 2) suggests either that an 

important family of TFs have not had their binding characterised yet, or that the 

characterised binding profiles of the factors involved do not represent their preferences 

in-vitro – possibly due to co-operative binding. The Oct and Pbx-Hox motifs have been 

a source of much interest and have generated many principles regarding TF binding. 

Motif 2 appears to have a similar prevalence within CNEs, so the discovery of the 

factor/s binding to it is an important problem. 
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It is noteworthy that of the 6 characterised PWMs that can be matched to enriched 

motifs in CNEs, 5 of them are for homeodomain factors. The interpretation of the 

biological significance of this finding is clouded by a number of factors that may 

introduce ascertainment bias into the motif discovery and characterisation process. For 

example, it is possible that an ascertainment bias arises from the limited breadth of 

characterised PWMs available for comparison with the enriched CNE motifs. However 

there are numerous PWMs within the Jaspar database that describe the binding 

preferences of non-homeodomain factors, such as those from the forkhead (Fox), Sox, 

bHLH, nuclear hormone receptor and zinc finger families. Of these, the consensus 

bHLH motif matches an enriched motif in the Condor CNE set, whilst a nuclear 

hormone receptor motif matches to an enriched motif in the shark CNE set, yet the 

PWMs of members of the other TF families do not match to any enriched CNE motifs. 

This could be attributable to the de-novo motif discovery approach having certain 

limitations; for instance, its exhaustive enumeration of all possible words within the 

CNE set is based on 8mers, so some shorter motifs are likely to be missed. Further, it is 

probable that many TFs do not have such consistent binding preferences as those 

recognising the enriched motifs found here, or their binding profiles may not be so 

amenable to representation as PWMs, which assume positional independence across the 

motif. Additionally, if factors show highly promiscuous DNA binding preferences 

depending on the context of their binding (e.g. through protein-protein interactions), 

they will bind to a number of different motifs that will not then be identifiable by 

significant enrichment within CNEs. These limitations mean that caution must be taken 

in inferring the relative prominence of a factors role in CNE-regulated developmental 

processes from the frequency of occurrence of its binding-motif in CNEs. Thus, whilst 

the identification of these motifs is a major step toward de-coding CNEs, this set of 

motifs is likely to represent only a sub-set of TFBSs within CNEs. 

 

Enriched motifs in CNEs point towards combinatorial transcriptional regulation 

 

This de-novo motif discovery approach has found CNEs to be enriched in TFBSs 

corresponding to a variety of TFs. Many of these, such as Oct, Pbx and Meis, show 

broad expression patterns during development and have been shown to interact with 

many different TF partners (Ravasi et al., 2010). These characteristics have led to a 

model of TF interaction networks, in which such broadly expressed factors act as 

„facilitators‟ of transcription, interacting with other tissue/domain-specific „specifiers‟ 
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to create tightly defined gene expression patterns. Under this model, specific expression 

domains are defined by the domain-specific interactions between these factors. The 

enrichment for the TFBS motifs of these facilitators in CNEs may therefore represent 

their broad roles in cis-regulation, collaborating with many different specifiers to 

regulate expression in different domains.  In some cases, such as with many of the 

homeodomain TFBSs, the homeodomain-containing factor may play the role of a 

specifier. Thus, the enrichment for the TAATTA homeo-domain TFBS motif may also 

reflect the large number of factors that can bind to it, rather than being due to these 

factors being facilitators. If it is the case that homeodomain proteins acting as specifiers 

bind onto this motif then this raises the question of how the enhancer attracts only the 

correct homeodomain protein. Combinatorial interactions between proteins that 

assemble upon the CNE are likely to play an important role in this specificity. 

Addressing the nature of these interactions is an important task for the future, which 

goes beyond investigating just the protein-protein interactions, their binding to DNA 

adding a further degree of complexity.   

 

The Pbx-Hox hetero-dimer is an interesting case to classify according to the 

facilitator/specifier model. Pbx factors have broad expression patterns and many 

interactions with other factors, so they can be considered as facilitators. The interaction 

of Pbx and Hox factors creates a heterodimer with potential to regulate transcription 

within only a limited A-P region. Thus the Pbx-Hox interaction could be viewed as a 

facilitator-specifier interaction, with a characteristic binding motif shared amongst many 

different Pbx-Hox heterodimers. From the expression patterns of Pbx-Hox +ve CNEs, it 

is apparent that further specification is being carried out, presumably by other factors 

binding to neighbouring TFBSs. Thus, CNEs could be viewed to define tightly 

controlled expression patterns by using facilitators in conjunction with multiple 

specifiers.  

 

The identification of these motifs presents a number of opportunities for further 

characterising their distribution and conservation across CNEs. Interesting questions are 

whether any of these motifs show patterns of co-occurrence with each other, or 

significant associations with particular gene regions, as may be the case for the Pbx-Hox 

and Oct motifs. By grouping CNEs with common motifs, it may be possible to enrich 

these new sets for other motifs that were not picked up by CisFinder over the whole 

CNE set. As the efficacy of CisFinder decreases for smaller sequence sets (Sharov & 
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Ko, 2009), it may be necessary to utilise other tools for this task. Finally, it would be 

interesting to identify what proportion of CNE sequence can be „explained‟ by these 

motifs, and conversely, what proportion is unexplained. These questions highlight how 

little is known about the regulatory language contained within CNEs; however, the 

identification of common words constituting this language is a critical step toward de-

coding these crucial cis-regulatory elements.  

 

ciona CNE motifs do not overlap with those of vertebrate CNEs 

 

Despite the lack of conservation of vertebrate CNEs in invertebrates, invertebrate phyla 

have their own, lineage-specific CNEs (Bejerano et al., 2005; Vavouri et al., 2007). As 

many of these elements are associated with the same genes that have CNEs in 

vertebrates, they have been hypothesised to function in GRNs that evolved in parallel 

between the different phyla during the diversification of metazoans, which contribute to 

the different morphological characteristics of each phylum (Vavouri & Lehner, 2009). 

Comparison of urochordate genomes has uncovered a set of „ciona CNEs‟, which are 

associated with many of the same genes as vertebrate CNEs, including those 

orthologous to Pax, Tshz, Sall, and Zfhx factors (Vavouri, unpublished). If vertebrate 

and ciona CNEs, and their associated transcription-factors, belong to equivalent but 

distinct GRNs that produce alternative body plans, they may be expected to share a 

common cis-regulatory language.  

 

Despite the apparent similarities between vertebrate and ciona CNEs – the size and 

conservation of the elements, and the overlapping sets of genes with which they are 

associated – there is no overt similarity between the enriched motifs that can be 

identified within them. As CisFinder was used with the same settings to uncover 

enriched motifs in both the vertebrate and ciona CNE sets, the sets of motifs identified 

are directly comparable and differences between them should be attributable to 

biological differences between the urochordates and vertebrates. Potential differences 

between urochordate and vertebrate transcription factors that could explain these 

different motifs include clade-specific TF repertoires and DNA binding-specificities.  

 

It is unlikely that clade-specific transcriptional repertoires account for the non-

equivalence of enriched motifs in urochordate and vertebrate CNEs as the factors that 

bind to the Pbx-Hox, Oct and HD motifs - highly enriched in vertebrate CNEs – are also 
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utilised by enhancers in invertebrates (e.g. Ryoo et al., 1999; Kitamoto & Salvaterra, 

1995; Mann et al., 2009). Indeed, a survey of developmentally relevant genes in Ciona 

intestinalis identified homeobox genes related to a variety of classes of vertebrate 

factors that would recognise these motifs (including Hox, TALE, pou and NK) (Wada et 

al., 2003). It is possible that the binding preferences of these factors have diverged in 

urochordates, but the conservation of their characteristic DNA-binding domains 

suggests otherwise (Wada et al., 2003).  

 

The different motifs in these two CNE sets may also reflect differences between the 

developmental programs of urochordates and vertebrates. Importantly, vertebrate CNEs 

represent only a sub-set of cis-regulatory elements, as not all elements are highly 

conserved. This sub-set may be involved in particular aspects of vertebrate development 

– those aspects that are highly conserved between vertebrates, and that rely on complex, 

highly structured, regulatory elements. Different aspects of vertebrate development 

might involve the use of different sets/classes of transcription factors, such that 

enhancers involved in the development of different tissues may be enriched for different 

motifs. Thus, it is possible that ciona CNEs represent a sub-set of regulatory elements 

that are involved in aspects of urochordate development that are highly conserved 

within that clade, but are only partially equivalent to those aspects of vertebrate 

development that are represented by vertebrate CNEs.  

 

Two of the most enriched motifs in ciona CNEs correspond to characterised TFBSs for 

factors involved in signal transduction in vertebrates, supporting the notion that the 

ciona CNEs may be regulated by different types of factors to those regulating vertebrate 

CNEs. Indeed, despite the sets of genes containing vertebrate and ciona CNEs showing 

some overlap, they are not entirely equivalent, with ciona CNEs being associated with a 

relatively high proportion of signalling genes compared to vertebrate CNEs. 

Nevertheless, genes encoding proteins with POU and HD domains are enriched within 

the ciona CNE-associated gene set, yet the oct and HD motifs are not identified as being 

enriched in ciona CNEs, in contrast to their strong enrichment in vertebrate CNEs. It is 

possible that some ciona CNEs do indeed contain the same motifs as are enriched in 

vertebrate CNEs and contribute to equivalent developmental processes as some 

vertebrate CNEs but that these are diluted by other ciona CNEs with different motifs 

that contribute to other aspects of development.  
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A direct comparison between the contribution of particular factors to vertebrate and 

urochordate embryonic development can be made for the Hox family. As described in 

chapter 5, Hox factors play crucial and conserved roles in AP patterning during 

vertebrate development and their binding motifs (Pbx-Hox) are enriched in vertebrate 

CNEs. In contrast, it has recently been shown that Hox genes have limited functions 

during the larval development of ciona intestinalis, based upon evidence from knock-

down experiments (Ikuta et al. 2010). This finding may explain the lack of enrichment 

for the Pbx-Hox motif in ciona CNEs and supports the notion that ciona and vertebrate 

CNEs are involved in regulatory networks that are only partially equivalent. Thus the 

different enriched motifs in the two CNE sets could be partially due to differential 

enrichment of motifs in each set, due to inter-clade differences in the contributions of 

particular factors to development. With this in mind, it would be interesting to 

investigate whether the enriched motifs of the vertebrate CNE set can be identified as 

enriched in ciona CNEs through targeted motif searches, which may be more sensitive 

than de-novo strategies. Further it would be of interest to investigate the types of motifs 

that are enriched within CNEs of other invertebrate phyla, and within different 

vertebrate CNE sets (e.g. those defined by human-mouse or human-frog genome 

comparisons).   

 

Conclusion 

 

I set out to identify enriched motifs within CNEs using a de-novo motif discovery 

approach. I predicted that such an approach should find at least some significantly 

enriched motifs, as we have already characterised the enrichment of the Pbx-Hox motif 

in the human CNE set. CisFinder is a motif discovery tool that appears well suited to the 

task, identifying 27 enriched motifs. A substantial proportion of these motifs match 

closely to the binding preferences of well characterised transcription factors, suggesting 

that many CNEs are regulated by known factors. This finding also implies a generally 

good agreement between in-vitro characterised binding profiles and in-vivo TFBSs. 

However, there are some motifs that, despite occurring frequently in CNEs, do not 

match the characterised binding profiles of any factors. These motifs may indicate 

hitherto uncharacterised transcription factors or structural elements, or may point 

toward novel combinatorial interactions between known factors. Identifying what binds 

to these motifs would be of great interest. Whilst there are a number of possible reasons 

for the enrichment for these specific motifs in CNEs, many of the TFs that are predicted 
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to recognise these motifs share common roles as transcriptional „facilitators‟, hinting at 

a model of combinatorial protein interaction through which CNEs carry out their 

regulatory functions. An intriguing finding is the lack of overt similarity between motifs 

enriched in vertebrate and ciona CNEs. Whilst the biological significance of this is hard 

to interpret, this finding hints at differences between the aspects of development that are 

highly conserved within the vertebrate and urochordate lineages. The identification of 

these enriched motifs is a crucial step forward in de-coding CNEs and helps to further 

place these elements within the context of developmental gene regulatory networks. 

Key issues to be resolved are whether these motifs show any significant patterns of co-

occurrence, or associations with particular genes, whether further motifs can be 

identified through other, complementary motif discovery approaches, and the identity of 

the factors that recognise the novel motifs.    
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8  Discussion 

 

This thesis documents the use of the sea lamprey as a model organism for investigating 

the role of deeply conserved non-coding genomic elements in vertebrate development 

and evolution. Through comparative genomics, I have described the pattern of sequence 

conservation of these elements across the vertebrate phylogeny. I have addressed the 

biological meaning of this sequence conservation pattern using developmental biology 

approaches in zebrafish and lamprey embryos. The major findings presented herein are 

fourfold: firstly, a significant number of ancient CNEs are shared across all vertebrates; 

secondly, a large proportion of vertebrate CNEs contain Pbx-Hox TFBS motifs, which 

correlate with regulatory functions in hindbrain and head patterning; thirdly, distantly 

related orthologous CNEs perform similar, but evolvable, roles in the development of 

their respective species; fourthly, CNEs contain components of a regulatory language 

that is also found in less constrained regulatory elements. In this chapter, these findings 

will be discussed in the context of the broader aspects of evo-devo and gene regulation. 

 

CNEs and gene regulation 

 

Broad-scale surveys of the regulatory activity of CNEs have now provided 

overwhelming evidence that the majority of them can function as cis-regulatory 

elements during vertebrate development (Pennacchio et al., 2006; Woolfe et al., 2007; 

Li et al., 2010). These databases of reporter expression represent incredibly useful 

resources for systematically investigating the relationship between CNE sequences and 

their regulatory functions. The development of new reporter assay methodologies, 

particularly the tol2 system in zebrafish embryos (Fisher et al., 2006), has facilitated 

faster and more detailed characterisation of the reporter expression patterns that CNEs 

can drive. This was evident in chapter 5, where the use of the less mosaic tol2 system 

significantly aided the characterisation of rhombomere-specific reporter expression 

patterns, and the dissection of the TFBSs responsible for these patterns. 

 

The ability for CNEs to act as enhancers in reporter assays does not necessarily indicate 

that this is their only biological function. The hypothesis that CNEs may carry out 

multiple overlapping functions was posited in order to account for their unusually high 

sequence constraint. Recently, a large number (~3,000) of neuronal enhancer sequences 

have been shown to give rise to short „enhancer RNAs‟ (eRNAs) in mouse cell cultures, 
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whilst also up-regulating expression of their target gene (Kim et al., 2010). Roughly 

half of these elements were found to be under evolutionary constraint (although not to 

the level of human-Fugu CNEs). Although the functional significance of these eRNAs 

was not established, they may play a role in regulating transcription. This hints that 

some CNEs may also produce RNA molecules that have yet to be characterised. It is 

possible that such RNAs may be transcribed locally, making them difficult to detect 

without more sensitive methods. However, we identified lamprey CNEs showing 

patterns of sequence conservation that are clearly consistent with TFBSs, where the 

majority of the conserved regions can be explained by Pbx-Hox and Meis motifs. Thus, 

it is possible that an alternative explanation to constraint upon TFBSs may not need to 

be evoked in order to explain the patterns of deep sequence conservation of these 

elements. 

 

The identification of a high enrichment for Pbx-Hox motifs in vertebrate CNEs 

represented a major breakthrough in this thesis. Prior to the identification of these 

elements, it was difficult to place CNEs into GRNs as, without any TFBS motif 

information, there was no means by which to predict the factors regulating CNEs or 

what the functional output (reporter expression) of a CNE could be. The identification 

of many other enriched motifs within CNEs confirmed that these elements contain 

TFBS motifs that correspond to those of well characterised TFs, further placing CNEs 

within a developmental GRN context. The crucial task now is to find a way to utilise 

these motifs, and our knowledge of the factors that are predicted to recognise them, to 

de-code the cis-regulatory functions of these elements. This will require the 

identification/confirmation of factors that bind to CNEs, as well as characterisation of 

their interactions.  

 

A recent study used a systematic approach to identify many interactions between 

developmental TFs in cell culture, characterising ~800 interactions from a set of ~1200 

human TFs (Ravasi et al., 2010). This led to insights regarding the TF interaction 

networks that occur in different tissue types. A major theme arising from their networks 

was that of specificity through interaction, which is in agreement with the patterns of 

motifs that we find in CNEs – individual motifs within CNEs may have only modest 

predictive power regarding reporter expression patterns, whilst specific combinations of 

motifs are likely to enable more accurate predictions. The TF-TF interactions 

characterised by that study are just a first step – further progress must be made in 
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discovering TF-DNA-TF interactions, which are likely to be a critical aspect of the 

mechanism of complex cis-regulatory elements. CNEs could be used as a starting point 

to identify TF combinations and their TFBSs, through in-silico and proteomics methods.  

 

CNEs were first searched for as a means to identify functional non-coding elements, 

particularly cis-regulatory elements. Recent advances in sequencing technology mean 

that chip-seq can now be used to identify cis-regulatory elements, with this approach 

being complemented in some instances by the use of sequence conservation to further 

refine predictions of functional elements. Two recent studies using chip-seq to identify 

enhancers active during development of the heart in mouse (McCulley et al., 2010) and 

in human and mouse ES cells (Kunarso et al., 2010) have shed more light on the 

degrees of sequence constraint that developmental enhancers are under. In the first case, 

predicted mouse forebrain enhancers were found to be on average three times more 

deeply conserved (most showing conservation between humans and birds) than 

predicted heart enhancers. In the second study, the binding profiles of three TFs were 

obtained in human and mouse ES cells. It was found that CTCF binding was highly 

conserved between species, whilst the binding profiles of OCT4 and NANOG were 

different between human and mouse cells, suggesting turnover of TFBSs and re-wiring 

of regulatory circuits. These studies are a reminder that CNEs represent only a subset of 

cis-regulatory elements, and this subset is likely to be biased towards elements that are 

involved in the development of certain tissue types and that are regulated by particular 

combinations of TFs. Chip-seq will be an incredibly useful tool for systematically 

predicting cis-regulatory elements, and can be used to identify elements in a general or a 

TF-specific manner. Nevertheless, CNEs provide a complementary source of 

information representing many elements that may not be immediately identifiable by 

chip-seq due to the unavailability of particular antibodies. Furthermore, patterns of 

motifs that may be identifiable through in-silico investigation of CNE sequences could 

shape investigations into TF-binding using chip-seq. 

 

Recently, a targeted motif-based strategy has been used to predict tissue-specific 

vertebrate enhancers (Narlikar et al., 2010). This strategy leveraged the functional data 

from the EB database to create a set of heart enhancers, which was used to train an 

algorithm to identify similar motif patterns in constrained genomic sequence (conserved 

between mammals). The success of this approach in identifying heart enhancers 

highlights the utility of CNE functional datasets (such as EB and Condor) and implies 
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that CNEs can be useful subjects for discerning regulatory codes predictive of tissue-

specific enhancer function in less deeply conserved sequences. This same approach 

could be applied to the Pbx-Hox +ve CNEs that show hindbrain enhancer activity, in 

order to identify further Hox-responsive vertebrate hindbrain enhancers. Another recent 

study made use of homotypic clusters of TFBSs to predict vertebrate tissue-specific 

enhancer elements (Gotea et al., 2010), further showing that the knowledge gleaned 

from characterising CNEs can be used to predict other cis-regulatory elements in the 

genome.  

 

In each of these cases, enhancer verification required the use of a reporter assay, which, 

despite the relatively high throughput tol2 assay in zebrafish, is still a limiting factor for 

systematic characterisation of enhancers. This is particularly true for investigating the 

language of enhancers, which could require extensive fine-scale perturbation analyses. 

Automated screening of zebrafish embryos promises to make the process faster (Gehrig 

et al., 2010). It is also likely that alternative high-throughput reporter assay 

methodologies involving DNA barcoding can be developed for vertebrate models, based 

on an approach introduced in sea urchin embryos (Nam et al., 2010).  

 

The over-riding message from this section is simple: whilst CNEs do not represent the 

be-all and end-all of vertebrate cis-regulation, their mechanisms are still likely to apply 

to a much larger group of cis-regulatory elements, making them an incredibly useful 

stepping stone toward the de-coding of vertebrate gene regulation. In order to use CNEs 

for this purpose, approaches combining multiple sources of information – protein-

protein interactions, protein-DNA binding, cis-regulatory activity – must be utilised.  

 

CNEs and evo-devo 

 

A point frequently emphasised in this thesis is that in order to infer the roles of CNEs in 

evolution we must first know their roles in development. The approach to address the 

significance of the lack of many gnathostome CNEs in the lamprey genome in chapter 4 

was limited by a lack of knowledge of how the missing CNEs worked and what their 

developmental significance was. This made it hard to interpret their absence in lamprey 

in terms of developmental GRNs. The identification of conserved Pbx-Hox motifs in 

many CNEs, coupled with the correlation with hindbrain and pharyngeal arch enhancer 

function, makes it possible to predict (roughly) the function of a large cohort of CNEs 
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and to place them within a GRN for hindbrain/head patterning. With these CNEs placed 

into a developmental context it is possible to address the functional significance of their 

patterns of conservation in chordates by referring to other sources of data (e.g. gene 

expression patterns) regarding the GRN in which they are predicted to act, leading to 

the formulation of a testable model of their role in vertebrate evolution. Importantly, 

with increased knowledge of the motifs underlying CNE functions, it will be possible to 

search in the lamprey and amphioxus genomes for homologous elements that are not 

highly conserved, thereby further addressing how these elements, and the GRNs in 

which they act, evolved.      

 

The finding in chapter 7 that vertebrate and ciona CNEs do not share the same enriched 

motifs, as characterised by a de-novo motif search, is intriguing. The discovery that 

CNEs from different metazoan lineages were associated with overlapping sets of 

developmental regulatory genes originally led to the hypothesis that these CNEs are 

associated with equivalent GRNs, composed of similar genes, that have diverged in 

each lineage. If this is the case, CNEs from different lineages might be expected to be 

regulated by homologous sets of factors and to utilise equivalent sequence vocabulary. 

However, the different enriched motifs in vertebrate and ciona CNEs do not provide 

support to this notion. In chapter 7, I proposed two reasons for these differences. Firstly, 

the two CNE sets are associated with only partially overlapping sets of genes so the 

factors regulating the CNEs of each set could differ significantly between sets. 

Secondly, even for factors that do have CNEs associated with them in both clades, there 

may be significant differences between their contributions to ascidian and gnathostome 

development, leading to differential enrichment of motifs within the two CNE sets. The 

combination of both of these factors could explain the differences between the enriched 

motifs in each CNE set. Thus, the clade-specific GRNs in which these CNEs act may be 

partially equivalent - comprising interactions between some common and some different 

factors - and the involvement of each CNE set with some different genes may reflect the 

different developmental trajectories of each clade. CNEs represent only a sub-set of 

regulatory elements in each clade, and the motifs identified to be enriched within them 

are likely to represent only a sub-set of the TFBSs that they contain, so care must be 

taken in inferring the degree of equivalence of GRNs from different metazoan lineages 

based on the characteristics of their CNEs. 

 



 

135 

 

The lamprey reporter assay, developed in chapter 6, confirmed the functional 

conservation of CNEs between zebrafish and lamprey. As well as showing functional 

conservation, this approach also suggested that significant functional divergence is 

possible between orthologous CNEs, and that it can involve only a relatively modest 

change in enhancer sequence. With greater knowledge of the TFBSs in CNEs, these 

elements will provide a rich source of information regarding this type of lineage-

specific evolutionary tinkering, which is likely to play a crucial role in generating 

variations of the vertebrate body plan (Carroll, 2008; Prabhakar et al., 2008).  

 

An important question in evo-devo is the relative contributions to morphological 

evolution of cis-regulatory versus genetic changes. The current model invokes the 

negative pleiotropic effects of divergence in developmental proteins as prohibiting their 

evolution, with changes in developmental GRNs predicted to arise mainly through cis-

regulatory divergence (Carroll, 2008). However, TFs are likely to function in a modular 

manner, with the evolution of new protein-protein interactions being possible without 

altering the other functions of the protein (Lynch & Wagner, 2008). In order to obtain 

empirical evidence regarding a role for the evolution of new protein-protein interactions 

in morphological evolution, the complexes of proteins that form on developmental 

enhancers need to be further characterised. As mentioned above, CNEs could be useful 

subjects for this characterisation. 

 

A final evolutionary question regards how CNEs, and cis-regulatory elements in 

general, arise in the genome. Chapter 6 hinted at the functional co-option of an existing 

hindbrain enhancer to drive additional expression in the neural crest in zebrafish, in 

keeping with a characterised mechanism whereby additional TFBSs can evolve within 

previously existing cis-regulatory elements (e.g. Gompel et al., 2005). Other cis-

regulatory elements have been identified to have evolved through the action of 

transposable elements (Bejerano et al., 2006), with the conserved nature of CNEs being 

crucial for this identification. Whilst insightful, this exaptation of regulatory elements 

does not answer how functional elements first arise from non-functional genomic 

sequence. A recent characterisation of functionally constrained genomic regions of 

vertebrates and invertebrates has found 200-300MB of the human genome to be under 

functional constraint, with constrained non-coding bases representing 5-8 times the 

number of constrained protein-coding bases. In contrast, only ~60MB of the D 

melanogaster genome was similarly constrained, with a ratio of non-coding to protein-
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coding constrained bases of roughly 2. This confirms the notion that many new cis-

regulatory elements must have emerged during metazoan diversification, rather than cis-

regulatory evolution acting through divergence of pre-existing regulatory elements. 

Whilst potential mechanisms of de-novo cis-regulatory element evolution have been 

imagined (e.g. Cameron & Davidson, 2009), there is scant evidence for their veracity. 

The detailed characterisation of the mechanism of action of CNEs, identifying the 

crucial functional motifs within them, may prove enlightening in this regard.  

 

Thus, CNEs are likely to prove useful subjects for investigating many aspects of evo-

devo research. They can be used to identify certain ancient conserved GRN circuits and 

to trace how these circuits have evolved. Because CNEs, by definition, represent sets of 

orthologous (and sometimes paralagous) regulatory elements, they are a useful resource 

for investigating lineage-specific cis-regulatory changes, as well as the cis-regulatory 

changes that can occur after genome duplication. These investigations are facilitated by 

the development of reporter assay techniques in multiple model organisms. As subjects 

of detailed cis-regulatory characterisation to identify the mechanism of action of 

enhancer elements, CNEs may also represent key sources of information regarding the 

role of protein-protein interactions in evolution, and the mechanisms by which 

regulatory elements first arise in the genome.   
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Appendix  
Chapter 3.  

Table A1. A list of gene regions with lamprey CNEs. 

gene 

region 

#lamprey 

CNEs 

 

gene 

region 

#lamprey 

CNEs 

TSHZ3 16 ZNF703 2 

TSHZ1 12 ZIC2 2 

IRX5 12 TFAP2A 2 

EBF3 12 SOX5 2 

PAX2 9 SOX21 2 

NR2F2 9 SOX14 2 

MEIS2 9 SALL3 2 

ESRRG 9 POU6F2 2 

ZNF503 8 POU4F2 2 

FOXP2 8 POU3F2 2 

BNC2 8 MAB21L2 2 

NR2F1 6 LMO4 2 

ZFHX4 5 FOXB1 2 

IRX2 5 FOG2 2 

HMX2 5 EYA1 2 

ATBF1 5 ESRRB 2 

ZFHX1B 4 EMX2 2 

TSHZ2 4 EBF1 2 

PAX1 4 SP8 1 

NR4A2 4 SOX2 1 

MEIS1 4 SHOX2 1 

BCL11A 4 SHOX 1 

TCF7L2 3 PRDM16 1 

SOX6 3 PBX3 1 

OTP 3 PAX9 1 

NKX6-1 3 PAX5 1 

HOXD9 3 PAX3 1 

GBX2 3 MAF 1 

FOXP1 3 MAB21L1 1 

EVI1 3 LMO1 1 

DACH1 3 FOXD3 1 

BCL11B 3 CST 1 

ARX 3 AUTS2 1 
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Chapter 4.  

Figure A1. Multiple sequence alignment of CNE 3285-6. Chunks of lamprey sequence 

conservation are highlighted in the region of CNE 3286. Generated using ClustalW2.  
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Chapter 5.  

List of injected Pbx-Hox +ve CNEs: 

Lamprey set - 

>drEvi1_40224 

>drNR2F2_27254 

>drPax2_217 

>drZNF503_32799 

>drTshz3_24797 

>drTshz3_24798 

>drTshz3_24800 

>drTshz3_24804 

>drTshz3_24805-6 

>drTshz3_24807 

>drTshz3_43509 

 

Gnathostome set - 

>drBCL11A_2554 

>drFoxp1_886 

>drFoxp2_3502 

>drGli3_2152 

>drNKX6.1_4281 

>drPax9_2099 

>drPou3f2_9802 

>drSP8_1540 

>drTCF7L2_5416 

>drTshz3_7655 
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Table A2. The number of Pbx-Hox motif hits in the CNEs of each gene region. 

Control sets generated by 0-order markov model.  

 

GENE # 

hits 
in 

test 
set 

kb size #hits per kb # hits in 

control set 
(average) 

standard 

deviation 

z-score p-value 

ZNF503 36 27.781 1.295849681 3.184 1.762425601 18.61979307 0.00E+00 

TSHZ3 30 23.323 1.286283926 3.085 1.767420437 15.22840827 0.00E+00 

IRX5 27 37.059 0.728567959 5.388 2.32539373 9.293909982 0.00E+00 

IRX2 21 23.981 0.875693257 3.1 1.799444359 9.947515139 0.00E+00 

HOXD9 16 17.77 0.900393922 2.186 1.439931943 9.593508963 0.00E+00 

MEIS2 16 24.553 0.651651529 3.42 1.909869105 6.586838838 4.49E-11 

NR2F1 16 25.655 0.623660105 3.724 1.840060869 6.671518432 2.53E-11 

NR2F2 16 18.99 0.84254871 2.524 1.587269353 8.490052411 0.00E+00 

PBX3 16 17.886 0.8945544 1.89 1.351998521 10.43640195 0.00E+00 

TSHZ1 16 10.351 1.545744373 1.627 1.315245604 10.92799699 0.00E+00 

ZFHX1B 13 23.275 0.558539205 3.132 1.721213525 5.733164337 9.86E-09 

FOXP1 12 15.857 0.756763574 1.731 1.244443249 8.251882927 2.22E-16 

SALL3 12 11.405 1.052170101 1.425 1.206803629 8.762817531 0.00E+00 

MAF 11 7.334 1.499863649 1.151 1.100090451 8.952900184 0.00E+00 

BCL11A 10 13.643 0.732976618 2.143 1.432672677 5.48415568 4.15E-08 

EBF3 10 26.18 0.38197097 3.219 1.792495188 3.782994813 1.55E-04 

FOXP2 10 17.844 0.560412464 2.296 1.512079363 5.094970667 3.49E-07 

NKX6-1 10 6.853 1.459214942 0.82 0.923904757 9.936089116 0.00E+00 

MEIS1 9 9.298 0.967950097 1.457 1.214146202 6.212596133 5.21E-10 

NR4A2 9 14.765 0.609549611 1.513 1.240899271 6.033527601 1.60E-09 

DACH1 8 12.338 0.648403307 1.428 1.22589396 5.360985711 8.28E-08 

ESRRG 8 8.743 0.915017728 1.731 1.36258541 4.600812509 4.21E-06 

GLI3 8 3.432 2.331002331 0.503 0.702844933 10.66664871 0.00E+00 

OTP 8 8.986 0.890273759 1.28 1.133843023 5.926746354 3.09E-09 

SHOX2 8 7.615 1.050558109 0.966 0.998420753 7.045125994 1.85E-12 

ZNF703 8 2.991 2.674690739 0.372 0.601345159 12.68489467 0.00E+00 

EMX2 7 8.736 0.801282051 0.808 0.897293709 6.900750489 5.17E-12 

ESRRB 7 4.537 1.542869738 0.664 0.820429156 7.722787463 1.13E-14 

TCF7L2 7 11.045 0.633770937 1.514 1.214826737 4.515870317 6.31E-06 

TSHZ2 7 7.221 0.969394821 0.861 0.93363751 6.575357068 4.85E-11 

ATBF1 6 7.514 0.798509449 1.178 1.119962499 4.305501303 1.67E-05 

EVI1 6 4.015 1.494396015 0.648 0.817371397 6.547819048 5.84E-11 

FOG2 6 11.306 0.530691668 1.067 1.070752539 4.607040208 4.08E-06 

MAB21L2 6 5.733 1.046572475 0.892 0.932918003 5.475293632 4.37E-08 

POU3F2 6 3.297 1.819836215 0.47 0.689274981 8.022922852 1.11E-15 

SOX14 6 4.286 1.399906673 0.417 0.638052506 8.750063592 0.00E+00 

ZIC1 6 8.332 0.720115218 1.137 1.070621782 4.542220308 5.57E-06 

BARHL2 5 12.98 0.385208012 1.405 1.167465203 3.079320901 2.07E-03 

HMX2 5 7.662 0.65257113 0.977 0.959411799 4.19319421 2.75E-05 

PAX2 5 9.193 0.543892092 1.083 1.045041148 3.748177772 1.78E-04 

SATB1 5 5.558 0.899604174 0.54 0.755248304 5.905342626 3.52E-09 

SOX6 5 10.525 0.475059382 1.377 1.175955356 3.080899271 2.06E-03 

TFAP2A 5 11.087 0.450978624 1.251 1.107248391 3.385870803 7.10E-04 

BNC2 4 10.59 0.377714825 1.65 1.32721513 1.770624782 7.66E-02 

cont.        
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GENE # 

hits 
in 

test 
set 

kb size #hits per kb # hits in 

control set 
(average) 

standard 

deviation 

z-score p-value 

EBF1 4 4.032 0.992063492 0.925 0.955706545 3.217514849 1.29E-03 

FIGN 4 8.809 0.454081053 1.02 1.073126274 2.77693322 5.49E-03 

FOXB1 4 8.603 0.464954086 1.181 1.106453343 2.547780273 1.08E-02 

PAX1 4 9.457 0.422967114 1.048 0.998847336 2.955406592 3.12E-03 

PAX6 4 4.913 0.814166497 0.731 0.886926716 3.685761112 2.28E-04 

PAX9 4 3.217 1.243394467 0.51 0.742899724 4.697807641 2.63E-06 

POU6F2 4 3.103 1.289075089 0.452 0.696918934 5.090979494 3.56E-07 

PRDM16 4 3.736 1.070663812 0.737 0.834164852 3.911696822 9.16E-05 

UNC4 4 6.23 0.642054575 0.65 0.84231823 3.977119196 6.98E-05 

ZFHX4 4 12.676 0.315556958 1.954 1.379813031 1.482809594 1.38E-01 

FOXD3 3 9.839 0.304909035 1.286 1.130576844 1.516040249 1.30E-01 

MAB21L1 3 4.838 0.620090947 0.738 0.869112191 2.602655934 9.25E-03 

POU3F1 3 4.128 0.726744186 0.722 0.847771196 2.687045764 7.21E-03 

POU4F2 3 5.809 0.516440007 0.724 0.865923784 2.628406843 8.58E-03 

ZIC2 3 7.68 0.390625 0.917 0.974736375 2.136988066 3.26E-02 

AUTS2 2 7.036 0.284252416 1.01 1.018773773 0.971756465 3.31E-01 

BHLHB5 2 6.937 0.288309067 0.959 0.970215955 1.072956999 2.83E-01 

CST 2 8.39 0.238379023 0.959 0.979448314 1.06284322 2.88E-01 

DLX1 2 6.28 0.318471338 0.703 0.810426431 1.600392029 1.10E-01 

EN1 2 2.244 0.891265597 0.4 0.6244998 2.562050461 1.04E-02 

EYA1 2 5.536 0.361271676 0.806 0.889024184 1.343045579 1.79E-01 

GBX2 2 2.623 0.762485703 0.463 0.663800422 2.315454991 2.06E-02 

LHX1 2 4.442 0.450247636 0.749 0.854399789 1.464185754 1.43E-01 

LMO4 2 6.74 0.296735905 0.663 0.832725045 1.605571982 1.08E-01 

PAX5 2 1.05 1.904761905 0.271 0.505528436 3.420183467 6.26E-04 

PHOX2B 2 4.45 0.449438202 0.612 0.785783685 1.766389435 7.73E-02 

SHOX 2 4.128 0.484496124 0.489 0.707021216 2.137135302 3.26E-02 

SOX21 2 5.466 0.36589828 0.491 0.682582596 2.210721471 2.71E-02 

SOX5 2 3.691 0.541858575 0.729 0.835199976 1.521791231 1.28E-01 

SP8 2 4.61 0.433839479 0.507 0.705656432 2.115760492 3.44E-02 

ARX 1 2.572 0.388802488 0.368 0.608749538 1.038193806 2.99E-01 

BCL11B 1 3.257 0.30703101 0.576 0.747143895 0.567494431 5.70E-01 

LMO1 1 4.728 0.211505922 0.444 0.665480278 0.835486819 4.03E-01 

PITX2 1 5.806 0.172235618 0.798 0.902882052 0.223728005 8.23E-01 

POU3F3 1 4.017 0.248941997 0.677 0.829862037 0.389221323 6.97E-01 

SHH 1 5.019 0.199242877 0.726 0.88933908 0.308093961 7.58E-01 

SOX1 1 1.802 0.554938957 0.303 0.522676764 1.333520155 1.82E-01 

SOX11 1 1.678 0.595947557 0.185 0.422817928 1.927543622 5.39E-02 

SOX3 1 2.049 0.488042948 0.257 0.494925247 1.501236812 1.33E-01 

HLX1 0 2.925 0 0.369 0.605672354 -0.609240289 1.46E+00 

PAX3 0 1.673 0 0.271 0.509469332 -0.531926032 1.41E+00 

PAX7 0 2.807 0 0.391 0.60672811 -0.644440225 1.48E+00 

PAX8 0 0.19 0 0.03 0.170587221 -0.175863115 1.14E+00 

SOX2 0 4.237 0 0.601 0.799874365 -0.751367998 1.55E+00 

SOX4 0 1.156 0 0.186 0.430585648 -0.431969809 1.33E+00 

  


